1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==(int)iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call BtreeMovetoUnpacked() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 goto moveto_done; 831 } 832 }else{ 833 pIdxKey = 0; 834 } 835 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 836 moveto_done: 837 if( pIdxKey ){ 838 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 839 } 840 return rc; 841 } 842 843 /* 844 ** Restore the cursor to the position it was in (or as close to as possible) 845 ** when saveCursorPosition() was called. Note that this call deletes the 846 ** saved position info stored by saveCursorPosition(), so there can be 847 ** at most one effective restoreCursorPosition() call after each 848 ** saveCursorPosition(). 849 */ 850 static int btreeRestoreCursorPosition(BtCursor *pCur){ 851 int rc; 852 int skipNext = 0; 853 assert( cursorOwnsBtShared(pCur) ); 854 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 855 if( pCur->eState==CURSOR_FAULT ){ 856 return pCur->skipNext; 857 } 858 pCur->eState = CURSOR_INVALID; 859 if( sqlite3FaultSim(410) ){ 860 rc = SQLITE_IOERR; 861 }else{ 862 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 863 } 864 if( rc==SQLITE_OK ){ 865 sqlite3_free(pCur->pKey); 866 pCur->pKey = 0; 867 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 868 if( skipNext ) pCur->skipNext = skipNext; 869 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 870 pCur->eState = CURSOR_SKIPNEXT; 871 } 872 } 873 return rc; 874 } 875 876 #define restoreCursorPosition(p) \ 877 (p->eState>=CURSOR_REQUIRESEEK ? \ 878 btreeRestoreCursorPosition(p) : \ 879 SQLITE_OK) 880 881 /* 882 ** Determine whether or not a cursor has moved from the position where 883 ** it was last placed, or has been invalidated for any other reason. 884 ** Cursors can move when the row they are pointing at is deleted out 885 ** from under them, for example. Cursor might also move if a btree 886 ** is rebalanced. 887 ** 888 ** Calling this routine with a NULL cursor pointer returns false. 889 ** 890 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 891 ** back to where it ought to be if this routine returns true. 892 */ 893 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 894 assert( EIGHT_BYTE_ALIGNMENT(pCur) 895 || pCur==sqlite3BtreeFakeValidCursor() ); 896 assert( offsetof(BtCursor, eState)==0 ); 897 assert( sizeof(pCur->eState)==1 ); 898 return CURSOR_VALID != *(u8*)pCur; 899 } 900 901 /* 902 ** Return a pointer to a fake BtCursor object that will always answer 903 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 904 ** cursor returned must not be used with any other Btree interface. 905 */ 906 BtCursor *sqlite3BtreeFakeValidCursor(void){ 907 static u8 fakeCursor = CURSOR_VALID; 908 assert( offsetof(BtCursor, eState)==0 ); 909 return (BtCursor*)&fakeCursor; 910 } 911 912 /* 913 ** This routine restores a cursor back to its original position after it 914 ** has been moved by some outside activity (such as a btree rebalance or 915 ** a row having been deleted out from under the cursor). 916 ** 917 ** On success, the *pDifferentRow parameter is false if the cursor is left 918 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 919 ** was pointing to has been deleted, forcing the cursor to point to some 920 ** nearby row. 921 ** 922 ** This routine should only be called for a cursor that just returned 923 ** TRUE from sqlite3BtreeCursorHasMoved(). 924 */ 925 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 926 int rc; 927 928 assert( pCur!=0 ); 929 assert( pCur->eState!=CURSOR_VALID ); 930 rc = restoreCursorPosition(pCur); 931 if( rc ){ 932 *pDifferentRow = 1; 933 return rc; 934 } 935 if( pCur->eState!=CURSOR_VALID ){ 936 *pDifferentRow = 1; 937 }else{ 938 *pDifferentRow = 0; 939 } 940 return SQLITE_OK; 941 } 942 943 #ifdef SQLITE_ENABLE_CURSOR_HINTS 944 /* 945 ** Provide hints to the cursor. The particular hint given (and the type 946 ** and number of the varargs parameters) is determined by the eHintType 947 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 948 */ 949 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 950 /* Used only by system that substitute their own storage engine */ 951 } 952 #endif 953 954 /* 955 ** Provide flag hints to the cursor. 956 */ 957 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 958 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 959 pCur->hints = x; 960 } 961 962 963 #ifndef SQLITE_OMIT_AUTOVACUUM 964 /* 965 ** Given a page number of a regular database page, return the page 966 ** number for the pointer-map page that contains the entry for the 967 ** input page number. 968 ** 969 ** Return 0 (not a valid page) for pgno==1 since there is 970 ** no pointer map associated with page 1. The integrity_check logic 971 ** requires that ptrmapPageno(*,1)!=1. 972 */ 973 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 974 int nPagesPerMapPage; 975 Pgno iPtrMap, ret; 976 assert( sqlite3_mutex_held(pBt->mutex) ); 977 if( pgno<2 ) return 0; 978 nPagesPerMapPage = (pBt->usableSize/5)+1; 979 iPtrMap = (pgno-2)/nPagesPerMapPage; 980 ret = (iPtrMap*nPagesPerMapPage) + 2; 981 if( ret==PENDING_BYTE_PAGE(pBt) ){ 982 ret++; 983 } 984 return ret; 985 } 986 987 /* 988 ** Write an entry into the pointer map. 989 ** 990 ** This routine updates the pointer map entry for page number 'key' 991 ** so that it maps to type 'eType' and parent page number 'pgno'. 992 ** 993 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 994 ** a no-op. If an error occurs, the appropriate error code is written 995 ** into *pRC. 996 */ 997 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 998 DbPage *pDbPage; /* The pointer map page */ 999 u8 *pPtrmap; /* The pointer map data */ 1000 Pgno iPtrmap; /* The pointer map page number */ 1001 int offset; /* Offset in pointer map page */ 1002 int rc; /* Return code from subfunctions */ 1003 1004 if( *pRC ) return; 1005 1006 assert( sqlite3_mutex_held(pBt->mutex) ); 1007 /* The super-journal page number must never be used as a pointer map page */ 1008 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1009 1010 assert( pBt->autoVacuum ); 1011 if( key==0 ){ 1012 *pRC = SQLITE_CORRUPT_BKPT; 1013 return; 1014 } 1015 iPtrmap = PTRMAP_PAGENO(pBt, key); 1016 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1017 if( rc!=SQLITE_OK ){ 1018 *pRC = rc; 1019 return; 1020 } 1021 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1022 /* The first byte of the extra data is the MemPage.isInit byte. 1023 ** If that byte is set, it means this page is also being used 1024 ** as a btree page. */ 1025 *pRC = SQLITE_CORRUPT_BKPT; 1026 goto ptrmap_exit; 1027 } 1028 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1029 if( offset<0 ){ 1030 *pRC = SQLITE_CORRUPT_BKPT; 1031 goto ptrmap_exit; 1032 } 1033 assert( offset <= (int)pBt->usableSize-5 ); 1034 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1035 1036 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1037 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1038 *pRC= rc = sqlite3PagerWrite(pDbPage); 1039 if( rc==SQLITE_OK ){ 1040 pPtrmap[offset] = eType; 1041 put4byte(&pPtrmap[offset+1], parent); 1042 } 1043 } 1044 1045 ptrmap_exit: 1046 sqlite3PagerUnref(pDbPage); 1047 } 1048 1049 /* 1050 ** Read an entry from the pointer map. 1051 ** 1052 ** This routine retrieves the pointer map entry for page 'key', writing 1053 ** the type and parent page number to *pEType and *pPgno respectively. 1054 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1055 */ 1056 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1057 DbPage *pDbPage; /* The pointer map page */ 1058 int iPtrmap; /* Pointer map page index */ 1059 u8 *pPtrmap; /* Pointer map page data */ 1060 int offset; /* Offset of entry in pointer map */ 1061 int rc; 1062 1063 assert( sqlite3_mutex_held(pBt->mutex) ); 1064 1065 iPtrmap = PTRMAP_PAGENO(pBt, key); 1066 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1067 if( rc!=0 ){ 1068 return rc; 1069 } 1070 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1071 1072 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1073 if( offset<0 ){ 1074 sqlite3PagerUnref(pDbPage); 1075 return SQLITE_CORRUPT_BKPT; 1076 } 1077 assert( offset <= (int)pBt->usableSize-5 ); 1078 assert( pEType!=0 ); 1079 *pEType = pPtrmap[offset]; 1080 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1081 1082 sqlite3PagerUnref(pDbPage); 1083 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1084 return SQLITE_OK; 1085 } 1086 1087 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1088 #define ptrmapPut(w,x,y,z,rc) 1089 #define ptrmapGet(w,x,y,z) SQLITE_OK 1090 #define ptrmapPutOvflPtr(x, y, z, rc) 1091 #endif 1092 1093 /* 1094 ** Given a btree page and a cell index (0 means the first cell on 1095 ** the page, 1 means the second cell, and so forth) return a pointer 1096 ** to the cell content. 1097 ** 1098 ** findCellPastPtr() does the same except it skips past the initial 1099 ** 4-byte child pointer found on interior pages, if there is one. 1100 ** 1101 ** This routine works only for pages that do not contain overflow cells. 1102 */ 1103 #define findCell(P,I) \ 1104 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 #define findCellPastPtr(P,I) \ 1106 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1107 1108 1109 /* 1110 ** This is common tail processing for btreeParseCellPtr() and 1111 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1112 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1113 ** structure. 1114 */ 1115 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1116 MemPage *pPage, /* Page containing the cell */ 1117 u8 *pCell, /* Pointer to the cell text. */ 1118 CellInfo *pInfo /* Fill in this structure */ 1119 ){ 1120 /* If the payload will not fit completely on the local page, we have 1121 ** to decide how much to store locally and how much to spill onto 1122 ** overflow pages. The strategy is to minimize the amount of unused 1123 ** space on overflow pages while keeping the amount of local storage 1124 ** in between minLocal and maxLocal. 1125 ** 1126 ** Warning: changing the way overflow payload is distributed in any 1127 ** way will result in an incompatible file format. 1128 */ 1129 int minLocal; /* Minimum amount of payload held locally */ 1130 int maxLocal; /* Maximum amount of payload held locally */ 1131 int surplus; /* Overflow payload available for local storage */ 1132 1133 minLocal = pPage->minLocal; 1134 maxLocal = pPage->maxLocal; 1135 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1136 testcase( surplus==maxLocal ); 1137 testcase( surplus==maxLocal+1 ); 1138 if( surplus <= maxLocal ){ 1139 pInfo->nLocal = (u16)surplus; 1140 }else{ 1141 pInfo->nLocal = (u16)minLocal; 1142 } 1143 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1144 } 1145 1146 /* 1147 ** Given a record with nPayload bytes of payload stored within btree 1148 ** page pPage, return the number of bytes of payload stored locally. 1149 */ 1150 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1151 int maxLocal; /* Maximum amount of payload held locally */ 1152 maxLocal = pPage->maxLocal; 1153 if( nPayload<=maxLocal ){ 1154 return nPayload; 1155 }else{ 1156 int minLocal; /* Minimum amount of payload held locally */ 1157 int surplus; /* Overflow payload available for local storage */ 1158 minLocal = pPage->minLocal; 1159 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1160 return ( surplus <= maxLocal ) ? surplus : minLocal; 1161 } 1162 } 1163 1164 /* 1165 ** The following routines are implementations of the MemPage.xParseCell() 1166 ** method. 1167 ** 1168 ** Parse a cell content block and fill in the CellInfo structure. 1169 ** 1170 ** btreeParseCellPtr() => table btree leaf nodes 1171 ** btreeParseCellNoPayload() => table btree internal nodes 1172 ** btreeParseCellPtrIndex() => index btree nodes 1173 ** 1174 ** There is also a wrapper function btreeParseCell() that works for 1175 ** all MemPage types and that references the cell by index rather than 1176 ** by pointer. 1177 */ 1178 static void btreeParseCellPtrNoPayload( 1179 MemPage *pPage, /* Page containing the cell */ 1180 u8 *pCell, /* Pointer to the cell text. */ 1181 CellInfo *pInfo /* Fill in this structure */ 1182 ){ 1183 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1184 assert( pPage->leaf==0 ); 1185 assert( pPage->childPtrSize==4 ); 1186 #ifndef SQLITE_DEBUG 1187 UNUSED_PARAMETER(pPage); 1188 #endif 1189 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1190 pInfo->nPayload = 0; 1191 pInfo->nLocal = 0; 1192 pInfo->pPayload = 0; 1193 return; 1194 } 1195 static void btreeParseCellPtr( 1196 MemPage *pPage, /* Page containing the cell */ 1197 u8 *pCell, /* Pointer to the cell text. */ 1198 CellInfo *pInfo /* Fill in this structure */ 1199 ){ 1200 u8 *pIter; /* For scanning through pCell */ 1201 u32 nPayload; /* Number of bytes of cell payload */ 1202 u64 iKey; /* Extracted Key value */ 1203 1204 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1205 assert( pPage->leaf==0 || pPage->leaf==1 ); 1206 assert( pPage->intKeyLeaf ); 1207 assert( pPage->childPtrSize==0 ); 1208 pIter = pCell; 1209 1210 /* The next block of code is equivalent to: 1211 ** 1212 ** pIter += getVarint32(pIter, nPayload); 1213 ** 1214 ** The code is inlined to avoid a function call. 1215 */ 1216 nPayload = *pIter; 1217 if( nPayload>=0x80 ){ 1218 u8 *pEnd = &pIter[8]; 1219 nPayload &= 0x7f; 1220 do{ 1221 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1222 }while( (*pIter)>=0x80 && pIter<pEnd ); 1223 } 1224 pIter++; 1225 1226 /* The next block of code is equivalent to: 1227 ** 1228 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1229 ** 1230 ** The code is inlined to avoid a function call. 1231 */ 1232 iKey = *pIter; 1233 if( iKey>=0x80 ){ 1234 u8 *pEnd = &pIter[7]; 1235 iKey &= 0x7f; 1236 while(1){ 1237 iKey = (iKey<<7) | (*++pIter & 0x7f); 1238 if( (*pIter)<0x80 ) break; 1239 if( pIter>=pEnd ){ 1240 iKey = (iKey<<8) | *++pIter; 1241 break; 1242 } 1243 } 1244 } 1245 pIter++; 1246 1247 pInfo->nKey = *(i64*)&iKey; 1248 pInfo->nPayload = nPayload; 1249 pInfo->pPayload = pIter; 1250 testcase( nPayload==pPage->maxLocal ); 1251 testcase( nPayload==pPage->maxLocal+1 ); 1252 if( nPayload<=pPage->maxLocal ){ 1253 /* This is the (easy) common case where the entire payload fits 1254 ** on the local page. No overflow is required. 1255 */ 1256 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1257 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1258 pInfo->nLocal = (u16)nPayload; 1259 }else{ 1260 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1261 } 1262 } 1263 static void btreeParseCellPtrIndex( 1264 MemPage *pPage, /* Page containing the cell */ 1265 u8 *pCell, /* Pointer to the cell text. */ 1266 CellInfo *pInfo /* Fill in this structure */ 1267 ){ 1268 u8 *pIter; /* For scanning through pCell */ 1269 u32 nPayload; /* Number of bytes of cell payload */ 1270 1271 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1272 assert( pPage->leaf==0 || pPage->leaf==1 ); 1273 assert( pPage->intKeyLeaf==0 ); 1274 pIter = pCell + pPage->childPtrSize; 1275 nPayload = *pIter; 1276 if( nPayload>=0x80 ){ 1277 u8 *pEnd = &pIter[8]; 1278 nPayload &= 0x7f; 1279 do{ 1280 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1281 }while( *(pIter)>=0x80 && pIter<pEnd ); 1282 } 1283 pIter++; 1284 pInfo->nKey = nPayload; 1285 pInfo->nPayload = nPayload; 1286 pInfo->pPayload = pIter; 1287 testcase( nPayload==pPage->maxLocal ); 1288 testcase( nPayload==pPage->maxLocal+1 ); 1289 if( nPayload<=pPage->maxLocal ){ 1290 /* This is the (easy) common case where the entire payload fits 1291 ** on the local page. No overflow is required. 1292 */ 1293 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1294 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1295 pInfo->nLocal = (u16)nPayload; 1296 }else{ 1297 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1298 } 1299 } 1300 static void btreeParseCell( 1301 MemPage *pPage, /* Page containing the cell */ 1302 int iCell, /* The cell index. First cell is 0 */ 1303 CellInfo *pInfo /* Fill in this structure */ 1304 ){ 1305 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1306 } 1307 1308 /* 1309 ** The following routines are implementations of the MemPage.xCellSize 1310 ** method. 1311 ** 1312 ** Compute the total number of bytes that a Cell needs in the cell 1313 ** data area of the btree-page. The return number includes the cell 1314 ** data header and the local payload, but not any overflow page or 1315 ** the space used by the cell pointer. 1316 ** 1317 ** cellSizePtrNoPayload() => table internal nodes 1318 ** cellSizePtr() => all index nodes & table leaf nodes 1319 */ 1320 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1321 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1322 u8 *pEnd; /* End mark for a varint */ 1323 u32 nSize; /* Size value to return */ 1324 1325 #ifdef SQLITE_DEBUG 1326 /* The value returned by this function should always be the same as 1327 ** the (CellInfo.nSize) value found by doing a full parse of the 1328 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1329 ** this function verifies that this invariant is not violated. */ 1330 CellInfo debuginfo; 1331 pPage->xParseCell(pPage, pCell, &debuginfo); 1332 #endif 1333 1334 nSize = *pIter; 1335 if( nSize>=0x80 ){ 1336 pEnd = &pIter[8]; 1337 nSize &= 0x7f; 1338 do{ 1339 nSize = (nSize<<7) | (*++pIter & 0x7f); 1340 }while( *(pIter)>=0x80 && pIter<pEnd ); 1341 } 1342 pIter++; 1343 if( pPage->intKey ){ 1344 /* pIter now points at the 64-bit integer key value, a variable length 1345 ** integer. The following block moves pIter to point at the first byte 1346 ** past the end of the key value. */ 1347 pEnd = &pIter[9]; 1348 while( (*pIter++)&0x80 && pIter<pEnd ); 1349 } 1350 testcase( nSize==pPage->maxLocal ); 1351 testcase( nSize==pPage->maxLocal+1 ); 1352 if( nSize<=pPage->maxLocal ){ 1353 nSize += (u32)(pIter - pCell); 1354 if( nSize<4 ) nSize = 4; 1355 }else{ 1356 int minLocal = pPage->minLocal; 1357 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1358 testcase( nSize==pPage->maxLocal ); 1359 testcase( nSize==pPage->maxLocal+1 ); 1360 if( nSize>pPage->maxLocal ){ 1361 nSize = minLocal; 1362 } 1363 nSize += 4 + (u16)(pIter - pCell); 1364 } 1365 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1366 return (u16)nSize; 1367 } 1368 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1369 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1370 u8 *pEnd; /* End mark for a varint */ 1371 1372 #ifdef SQLITE_DEBUG 1373 /* The value returned by this function should always be the same as 1374 ** the (CellInfo.nSize) value found by doing a full parse of the 1375 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1376 ** this function verifies that this invariant is not violated. */ 1377 CellInfo debuginfo; 1378 pPage->xParseCell(pPage, pCell, &debuginfo); 1379 #else 1380 UNUSED_PARAMETER(pPage); 1381 #endif 1382 1383 assert( pPage->childPtrSize==4 ); 1384 pEnd = pIter + 9; 1385 while( (*pIter++)&0x80 && pIter<pEnd ); 1386 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1387 return (u16)(pIter - pCell); 1388 } 1389 1390 1391 #ifdef SQLITE_DEBUG 1392 /* This variation on cellSizePtr() is used inside of assert() statements 1393 ** only. */ 1394 static u16 cellSize(MemPage *pPage, int iCell){ 1395 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1396 } 1397 #endif 1398 1399 #ifndef SQLITE_OMIT_AUTOVACUUM 1400 /* 1401 ** The cell pCell is currently part of page pSrc but will ultimately be part 1402 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1403 ** pointer to an overflow page, insert an entry into the pointer-map for 1404 ** the overflow page that will be valid after pCell has been moved to pPage. 1405 */ 1406 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1407 CellInfo info; 1408 if( *pRC ) return; 1409 assert( pCell!=0 ); 1410 pPage->xParseCell(pPage, pCell, &info); 1411 if( info.nLocal<info.nPayload ){ 1412 Pgno ovfl; 1413 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1414 testcase( pSrc!=pPage ); 1415 *pRC = SQLITE_CORRUPT_BKPT; 1416 return; 1417 } 1418 ovfl = get4byte(&pCell[info.nSize-4]); 1419 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1420 } 1421 } 1422 #endif 1423 1424 1425 /* 1426 ** Defragment the page given. This routine reorganizes cells within the 1427 ** page so that there are no free-blocks on the free-block list. 1428 ** 1429 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1430 ** present in the page after this routine returns. 1431 ** 1432 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1433 ** b-tree page so that there are no freeblocks or fragment bytes, all 1434 ** unused bytes are contained in the unallocated space region, and all 1435 ** cells are packed tightly at the end of the page. 1436 */ 1437 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1438 int i; /* Loop counter */ 1439 int pc; /* Address of the i-th cell */ 1440 int hdr; /* Offset to the page header */ 1441 int size; /* Size of a cell */ 1442 int usableSize; /* Number of usable bytes on a page */ 1443 int cellOffset; /* Offset to the cell pointer array */ 1444 int cbrk; /* Offset to the cell content area */ 1445 int nCell; /* Number of cells on the page */ 1446 unsigned char *data; /* The page data */ 1447 unsigned char *temp; /* Temp area for cell content */ 1448 unsigned char *src; /* Source of content */ 1449 int iCellFirst; /* First allowable cell index */ 1450 int iCellLast; /* Last possible cell index */ 1451 int iCellStart; /* First cell offset in input */ 1452 1453 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1454 assert( pPage->pBt!=0 ); 1455 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1456 assert( pPage->nOverflow==0 ); 1457 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1458 temp = 0; 1459 src = data = pPage->aData; 1460 hdr = pPage->hdrOffset; 1461 cellOffset = pPage->cellOffset; 1462 nCell = pPage->nCell; 1463 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1464 iCellFirst = cellOffset + 2*nCell; 1465 usableSize = pPage->pBt->usableSize; 1466 1467 /* This block handles pages with two or fewer free blocks and nMaxFrag 1468 ** or fewer fragmented bytes. In this case it is faster to move the 1469 ** two (or one) blocks of cells using memmove() and add the required 1470 ** offsets to each pointer in the cell-pointer array than it is to 1471 ** reconstruct the entire page. */ 1472 if( (int)data[hdr+7]<=nMaxFrag ){ 1473 int iFree = get2byte(&data[hdr+1]); 1474 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1475 if( iFree ){ 1476 int iFree2 = get2byte(&data[iFree]); 1477 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1478 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1479 u8 *pEnd = &data[cellOffset + nCell*2]; 1480 u8 *pAddr; 1481 int sz2 = 0; 1482 int sz = get2byte(&data[iFree+2]); 1483 int top = get2byte(&data[hdr+5]); 1484 if( top>=iFree ){ 1485 return SQLITE_CORRUPT_PAGE(pPage); 1486 } 1487 if( iFree2 ){ 1488 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1489 sz2 = get2byte(&data[iFree2+2]); 1490 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1491 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1492 sz += sz2; 1493 }else if( iFree+sz>usableSize ){ 1494 return SQLITE_CORRUPT_PAGE(pPage); 1495 } 1496 1497 cbrk = top+sz; 1498 assert( cbrk+(iFree-top) <= usableSize ); 1499 memmove(&data[cbrk], &data[top], iFree-top); 1500 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1501 pc = get2byte(pAddr); 1502 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1503 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1504 } 1505 goto defragment_out; 1506 } 1507 } 1508 } 1509 1510 cbrk = usableSize; 1511 iCellLast = usableSize - 4; 1512 iCellStart = get2byte(&data[hdr+5]); 1513 for(i=0; i<nCell; i++){ 1514 u8 *pAddr; /* The i-th cell pointer */ 1515 pAddr = &data[cellOffset + i*2]; 1516 pc = get2byte(pAddr); 1517 testcase( pc==iCellFirst ); 1518 testcase( pc==iCellLast ); 1519 /* These conditions have already been verified in btreeInitPage() 1520 ** if PRAGMA cell_size_check=ON. 1521 */ 1522 if( pc<iCellStart || pc>iCellLast ){ 1523 return SQLITE_CORRUPT_PAGE(pPage); 1524 } 1525 assert( pc>=iCellStart && pc<=iCellLast ); 1526 size = pPage->xCellSize(pPage, &src[pc]); 1527 cbrk -= size; 1528 if( cbrk<iCellStart || pc+size>usableSize ){ 1529 return SQLITE_CORRUPT_PAGE(pPage); 1530 } 1531 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1532 testcase( cbrk+size==usableSize ); 1533 testcase( pc+size==usableSize ); 1534 put2byte(pAddr, cbrk); 1535 if( temp==0 ){ 1536 if( cbrk==pc ) continue; 1537 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1538 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1539 src = temp; 1540 } 1541 memcpy(&data[cbrk], &src[pc], size); 1542 } 1543 data[hdr+7] = 0; 1544 1545 defragment_out: 1546 assert( pPage->nFree>=0 ); 1547 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1548 return SQLITE_CORRUPT_PAGE(pPage); 1549 } 1550 assert( cbrk>=iCellFirst ); 1551 put2byte(&data[hdr+5], cbrk); 1552 data[hdr+1] = 0; 1553 data[hdr+2] = 0; 1554 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1555 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1556 return SQLITE_OK; 1557 } 1558 1559 /* 1560 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1561 ** size. If one can be found, return a pointer to the space and remove it 1562 ** from the free-list. 1563 ** 1564 ** If no suitable space can be found on the free-list, return NULL. 1565 ** 1566 ** This function may detect corruption within pPg. If corruption is 1567 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1568 ** 1569 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1570 ** will be ignored if adding the extra space to the fragmentation count 1571 ** causes the fragmentation count to exceed 60. 1572 */ 1573 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1574 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1575 u8 * const aData = pPg->aData; /* Page data */ 1576 int iAddr = hdr + 1; /* Address of ptr to pc */ 1577 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1578 int x; /* Excess size of the slot */ 1579 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1580 int size; /* Size of the free slot */ 1581 1582 assert( pc>0 ); 1583 while( pc<=maxPC ){ 1584 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1585 ** freeblock form a big-endian integer which is the size of the freeblock 1586 ** in bytes, including the 4-byte header. */ 1587 size = get2byte(&aData[pc+2]); 1588 if( (x = size - nByte)>=0 ){ 1589 testcase( x==4 ); 1590 testcase( x==3 ); 1591 if( x<4 ){ 1592 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1593 ** number of bytes in fragments may not exceed 60. */ 1594 if( aData[hdr+7]>57 ) return 0; 1595 1596 /* Remove the slot from the free-list. Update the number of 1597 ** fragmented bytes within the page. */ 1598 memcpy(&aData[iAddr], &aData[pc], 2); 1599 aData[hdr+7] += (u8)x; 1600 }else if( x+pc > maxPC ){ 1601 /* This slot extends off the end of the usable part of the page */ 1602 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1603 return 0; 1604 }else{ 1605 /* The slot remains on the free-list. Reduce its size to account 1606 ** for the portion used by the new allocation. */ 1607 put2byte(&aData[pc+2], x); 1608 } 1609 return &aData[pc + x]; 1610 } 1611 iAddr = pc; 1612 pc = get2byte(&aData[pc]); 1613 if( pc<=iAddr+size ){ 1614 if( pc ){ 1615 /* The next slot in the chain is not past the end of the current slot */ 1616 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1617 } 1618 return 0; 1619 } 1620 } 1621 if( pc>maxPC+nByte-4 ){ 1622 /* The free slot chain extends off the end of the page */ 1623 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1624 } 1625 return 0; 1626 } 1627 1628 /* 1629 ** Allocate nByte bytes of space from within the B-Tree page passed 1630 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1631 ** of the first byte of allocated space. Return either SQLITE_OK or 1632 ** an error code (usually SQLITE_CORRUPT). 1633 ** 1634 ** The caller guarantees that there is sufficient space to make the 1635 ** allocation. This routine might need to defragment in order to bring 1636 ** all the space together, however. This routine will avoid using 1637 ** the first two bytes past the cell pointer area since presumably this 1638 ** allocation is being made in order to insert a new cell, so we will 1639 ** also end up needing a new cell pointer. 1640 */ 1641 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1642 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1643 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1644 int top; /* First byte of cell content area */ 1645 int rc = SQLITE_OK; /* Integer return code */ 1646 int gap; /* First byte of gap between cell pointers and cell content */ 1647 1648 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1649 assert( pPage->pBt ); 1650 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1651 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1652 assert( pPage->nFree>=nByte ); 1653 assert( pPage->nOverflow==0 ); 1654 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1655 1656 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1657 gap = pPage->cellOffset + 2*pPage->nCell; 1658 assert( gap<=65536 ); 1659 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1660 ** and the reserved space is zero (the usual value for reserved space) 1661 ** then the cell content offset of an empty page wants to be 65536. 1662 ** However, that integer is too large to be stored in a 2-byte unsigned 1663 ** integer, so a value of 0 is used in its place. */ 1664 top = get2byte(&data[hdr+5]); 1665 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1666 if( gap>top ){ 1667 if( top==0 && pPage->pBt->usableSize==65536 ){ 1668 top = 65536; 1669 }else{ 1670 return SQLITE_CORRUPT_PAGE(pPage); 1671 } 1672 } 1673 1674 /* If there is enough space between gap and top for one more cell pointer, 1675 ** and if the freelist is not empty, then search the 1676 ** freelist looking for a slot big enough to satisfy the request. 1677 */ 1678 testcase( gap+2==top ); 1679 testcase( gap+1==top ); 1680 testcase( gap==top ); 1681 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1682 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1683 if( pSpace ){ 1684 int g2; 1685 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1686 *pIdx = g2 = (int)(pSpace-data); 1687 if( NEVER(g2<=gap) ){ 1688 return SQLITE_CORRUPT_PAGE(pPage); 1689 }else{ 1690 return SQLITE_OK; 1691 } 1692 }else if( rc ){ 1693 return rc; 1694 } 1695 } 1696 1697 /* The request could not be fulfilled using a freelist slot. Check 1698 ** to see if defragmentation is necessary. 1699 */ 1700 testcase( gap+2+nByte==top ); 1701 if( gap+2+nByte>top ){ 1702 assert( pPage->nCell>0 || CORRUPT_DB ); 1703 assert( pPage->nFree>=0 ); 1704 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1705 if( rc ) return rc; 1706 top = get2byteNotZero(&data[hdr+5]); 1707 assert( gap+2+nByte<=top ); 1708 } 1709 1710 1711 /* Allocate memory from the gap in between the cell pointer array 1712 ** and the cell content area. The btreeComputeFreeSpace() call has already 1713 ** validated the freelist. Given that the freelist is valid, there 1714 ** is no way that the allocation can extend off the end of the page. 1715 ** The assert() below verifies the previous sentence. 1716 */ 1717 top -= nByte; 1718 put2byte(&data[hdr+5], top); 1719 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1720 *pIdx = top; 1721 return SQLITE_OK; 1722 } 1723 1724 /* 1725 ** Return a section of the pPage->aData to the freelist. 1726 ** The first byte of the new free block is pPage->aData[iStart] 1727 ** and the size of the block is iSize bytes. 1728 ** 1729 ** Adjacent freeblocks are coalesced. 1730 ** 1731 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1732 ** that routine will not detect overlap between cells or freeblocks. Nor 1733 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1734 ** at the end of the page. So do additional corruption checks inside this 1735 ** routine and return SQLITE_CORRUPT if any problems are found. 1736 */ 1737 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1738 u16 iPtr; /* Address of ptr to next freeblock */ 1739 u16 iFreeBlk; /* Address of the next freeblock */ 1740 u8 hdr; /* Page header size. 0 or 100 */ 1741 u8 nFrag = 0; /* Reduction in fragmentation */ 1742 u16 iOrigSize = iSize; /* Original value of iSize */ 1743 u16 x; /* Offset to cell content area */ 1744 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1745 unsigned char *data = pPage->aData; /* Page content */ 1746 1747 assert( pPage->pBt!=0 ); 1748 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1749 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1750 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1751 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1752 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1753 assert( iStart<=pPage->pBt->usableSize-4 ); 1754 1755 /* The list of freeblocks must be in ascending order. Find the 1756 ** spot on the list where iStart should be inserted. 1757 */ 1758 hdr = pPage->hdrOffset; 1759 iPtr = hdr + 1; 1760 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1761 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1762 }else{ 1763 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1764 if( iFreeBlk<iPtr+4 ){ 1765 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1766 return SQLITE_CORRUPT_PAGE(pPage); 1767 } 1768 iPtr = iFreeBlk; 1769 } 1770 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1771 return SQLITE_CORRUPT_PAGE(pPage); 1772 } 1773 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1774 1775 /* At this point: 1776 ** iFreeBlk: First freeblock after iStart, or zero if none 1777 ** iPtr: The address of a pointer to iFreeBlk 1778 ** 1779 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1780 */ 1781 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1782 nFrag = iFreeBlk - iEnd; 1783 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1784 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1785 if( iEnd > pPage->pBt->usableSize ){ 1786 return SQLITE_CORRUPT_PAGE(pPage); 1787 } 1788 iSize = iEnd - iStart; 1789 iFreeBlk = get2byte(&data[iFreeBlk]); 1790 } 1791 1792 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1793 ** pointer in the page header) then check to see if iStart should be 1794 ** coalesced onto the end of iPtr. 1795 */ 1796 if( iPtr>hdr+1 ){ 1797 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1798 if( iPtrEnd+3>=iStart ){ 1799 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1800 nFrag += iStart - iPtrEnd; 1801 iSize = iEnd - iPtr; 1802 iStart = iPtr; 1803 } 1804 } 1805 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1806 data[hdr+7] -= nFrag; 1807 } 1808 x = get2byte(&data[hdr+5]); 1809 if( iStart<=x ){ 1810 /* The new freeblock is at the beginning of the cell content area, 1811 ** so just extend the cell content area rather than create another 1812 ** freelist entry */ 1813 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1814 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1815 put2byte(&data[hdr+1], iFreeBlk); 1816 put2byte(&data[hdr+5], iEnd); 1817 }else{ 1818 /* Insert the new freeblock into the freelist */ 1819 put2byte(&data[iPtr], iStart); 1820 } 1821 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1822 /* Overwrite deleted information with zeros when the secure_delete 1823 ** option is enabled */ 1824 memset(&data[iStart], 0, iSize); 1825 } 1826 put2byte(&data[iStart], iFreeBlk); 1827 put2byte(&data[iStart+2], iSize); 1828 pPage->nFree += iOrigSize; 1829 return SQLITE_OK; 1830 } 1831 1832 /* 1833 ** Decode the flags byte (the first byte of the header) for a page 1834 ** and initialize fields of the MemPage structure accordingly. 1835 ** 1836 ** Only the following combinations are supported. Anything different 1837 ** indicates a corrupt database files: 1838 ** 1839 ** PTF_ZERODATA 1840 ** PTF_ZERODATA | PTF_LEAF 1841 ** PTF_LEAFDATA | PTF_INTKEY 1842 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1843 */ 1844 static int decodeFlags(MemPage *pPage, int flagByte){ 1845 BtShared *pBt; /* A copy of pPage->pBt */ 1846 1847 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1848 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1849 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1850 flagByte &= ~PTF_LEAF; 1851 pPage->childPtrSize = 4-4*pPage->leaf; 1852 pPage->xCellSize = cellSizePtr; 1853 pBt = pPage->pBt; 1854 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1855 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1856 ** interior table b-tree page. */ 1857 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1858 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1859 ** leaf table b-tree page. */ 1860 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1861 pPage->intKey = 1; 1862 if( pPage->leaf ){ 1863 pPage->intKeyLeaf = 1; 1864 pPage->xParseCell = btreeParseCellPtr; 1865 }else{ 1866 pPage->intKeyLeaf = 0; 1867 pPage->xCellSize = cellSizePtrNoPayload; 1868 pPage->xParseCell = btreeParseCellPtrNoPayload; 1869 } 1870 pPage->maxLocal = pBt->maxLeaf; 1871 pPage->minLocal = pBt->minLeaf; 1872 }else if( flagByte==PTF_ZERODATA ){ 1873 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1874 ** interior index b-tree page. */ 1875 assert( (PTF_ZERODATA)==2 ); 1876 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1877 ** leaf index b-tree page. */ 1878 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1879 pPage->intKey = 0; 1880 pPage->intKeyLeaf = 0; 1881 pPage->xParseCell = btreeParseCellPtrIndex; 1882 pPage->maxLocal = pBt->maxLocal; 1883 pPage->minLocal = pBt->minLocal; 1884 }else{ 1885 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1886 ** an error. */ 1887 return SQLITE_CORRUPT_PAGE(pPage); 1888 } 1889 pPage->max1bytePayload = pBt->max1bytePayload; 1890 return SQLITE_OK; 1891 } 1892 1893 /* 1894 ** Compute the amount of freespace on the page. In other words, fill 1895 ** in the pPage->nFree field. 1896 */ 1897 static int btreeComputeFreeSpace(MemPage *pPage){ 1898 int pc; /* Address of a freeblock within pPage->aData[] */ 1899 u8 hdr; /* Offset to beginning of page header */ 1900 u8 *data; /* Equal to pPage->aData */ 1901 int usableSize; /* Amount of usable space on each page */ 1902 int nFree; /* Number of unused bytes on the page */ 1903 int top; /* First byte of the cell content area */ 1904 int iCellFirst; /* First allowable cell or freeblock offset */ 1905 int iCellLast; /* Last possible cell or freeblock offset */ 1906 1907 assert( pPage->pBt!=0 ); 1908 assert( pPage->pBt->db!=0 ); 1909 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1910 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1911 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1912 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1913 assert( pPage->isInit==1 ); 1914 assert( pPage->nFree<0 ); 1915 1916 usableSize = pPage->pBt->usableSize; 1917 hdr = pPage->hdrOffset; 1918 data = pPage->aData; 1919 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1920 ** the start of the cell content area. A zero value for this integer is 1921 ** interpreted as 65536. */ 1922 top = get2byteNotZero(&data[hdr+5]); 1923 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1924 iCellLast = usableSize - 4; 1925 1926 /* Compute the total free space on the page 1927 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1928 ** start of the first freeblock on the page, or is zero if there are no 1929 ** freeblocks. */ 1930 pc = get2byte(&data[hdr+1]); 1931 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1932 if( pc>0 ){ 1933 u32 next, size; 1934 if( pc<top ){ 1935 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1936 ** always be at least one cell before the first freeblock. 1937 */ 1938 return SQLITE_CORRUPT_PAGE(pPage); 1939 } 1940 while( 1 ){ 1941 if( pc>iCellLast ){ 1942 /* Freeblock off the end of the page */ 1943 return SQLITE_CORRUPT_PAGE(pPage); 1944 } 1945 next = get2byte(&data[pc]); 1946 size = get2byte(&data[pc+2]); 1947 nFree = nFree + size; 1948 if( next<=pc+size+3 ) break; 1949 pc = next; 1950 } 1951 if( next>0 ){ 1952 /* Freeblock not in ascending order */ 1953 return SQLITE_CORRUPT_PAGE(pPage); 1954 } 1955 if( pc+size>(unsigned int)usableSize ){ 1956 /* Last freeblock extends past page end */ 1957 return SQLITE_CORRUPT_PAGE(pPage); 1958 } 1959 } 1960 1961 /* At this point, nFree contains the sum of the offset to the start 1962 ** of the cell-content area plus the number of free bytes within 1963 ** the cell-content area. If this is greater than the usable-size 1964 ** of the page, then the page must be corrupted. This check also 1965 ** serves to verify that the offset to the start of the cell-content 1966 ** area, according to the page header, lies within the page. 1967 */ 1968 if( nFree>usableSize || nFree<iCellFirst ){ 1969 return SQLITE_CORRUPT_PAGE(pPage); 1970 } 1971 pPage->nFree = (u16)(nFree - iCellFirst); 1972 return SQLITE_OK; 1973 } 1974 1975 /* 1976 ** Do additional sanity check after btreeInitPage() if 1977 ** PRAGMA cell_size_check=ON 1978 */ 1979 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1980 int iCellFirst; /* First allowable cell or freeblock offset */ 1981 int iCellLast; /* Last possible cell or freeblock offset */ 1982 int i; /* Index into the cell pointer array */ 1983 int sz; /* Size of a cell */ 1984 int pc; /* Address of a freeblock within pPage->aData[] */ 1985 u8 *data; /* Equal to pPage->aData */ 1986 int usableSize; /* Maximum usable space on the page */ 1987 int cellOffset; /* Start of cell content area */ 1988 1989 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 1990 usableSize = pPage->pBt->usableSize; 1991 iCellLast = usableSize - 4; 1992 data = pPage->aData; 1993 cellOffset = pPage->cellOffset; 1994 if( !pPage->leaf ) iCellLast--; 1995 for(i=0; i<pPage->nCell; i++){ 1996 pc = get2byteAligned(&data[cellOffset+i*2]); 1997 testcase( pc==iCellFirst ); 1998 testcase( pc==iCellLast ); 1999 if( pc<iCellFirst || pc>iCellLast ){ 2000 return SQLITE_CORRUPT_PAGE(pPage); 2001 } 2002 sz = pPage->xCellSize(pPage, &data[pc]); 2003 testcase( pc+sz==usableSize ); 2004 if( pc+sz>usableSize ){ 2005 return SQLITE_CORRUPT_PAGE(pPage); 2006 } 2007 } 2008 return SQLITE_OK; 2009 } 2010 2011 /* 2012 ** Initialize the auxiliary information for a disk block. 2013 ** 2014 ** Return SQLITE_OK on success. If we see that the page does 2015 ** not contain a well-formed database page, then return 2016 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2017 ** guarantee that the page is well-formed. It only shows that 2018 ** we failed to detect any corruption. 2019 */ 2020 static int btreeInitPage(MemPage *pPage){ 2021 u8 *data; /* Equal to pPage->aData */ 2022 BtShared *pBt; /* The main btree structure */ 2023 2024 assert( pPage->pBt!=0 ); 2025 assert( pPage->pBt->db!=0 ); 2026 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2027 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2028 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2029 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2030 assert( pPage->isInit==0 ); 2031 2032 pBt = pPage->pBt; 2033 data = pPage->aData + pPage->hdrOffset; 2034 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2035 ** the b-tree page type. */ 2036 if( decodeFlags(pPage, data[0]) ){ 2037 return SQLITE_CORRUPT_PAGE(pPage); 2038 } 2039 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2040 pPage->maskPage = (u16)(pBt->pageSize - 1); 2041 pPage->nOverflow = 0; 2042 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2043 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2044 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2045 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2046 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2047 ** number of cells on the page. */ 2048 pPage->nCell = get2byte(&data[3]); 2049 if( pPage->nCell>MX_CELL(pBt) ){ 2050 /* To many cells for a single page. The page must be corrupt */ 2051 return SQLITE_CORRUPT_PAGE(pPage); 2052 } 2053 testcase( pPage->nCell==MX_CELL(pBt) ); 2054 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2055 ** possible for a root page of a table that contains no rows) then the 2056 ** offset to the cell content area will equal the page size minus the 2057 ** bytes of reserved space. */ 2058 assert( pPage->nCell>0 2059 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2060 || CORRUPT_DB ); 2061 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2062 pPage->isInit = 1; 2063 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2064 return btreeCellSizeCheck(pPage); 2065 } 2066 return SQLITE_OK; 2067 } 2068 2069 /* 2070 ** Set up a raw page so that it looks like a database page holding 2071 ** no entries. 2072 */ 2073 static void zeroPage(MemPage *pPage, int flags){ 2074 unsigned char *data = pPage->aData; 2075 BtShared *pBt = pPage->pBt; 2076 u8 hdr = pPage->hdrOffset; 2077 u16 first; 2078 2079 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2080 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2081 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2082 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2083 assert( sqlite3_mutex_held(pBt->mutex) ); 2084 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2085 memset(&data[hdr], 0, pBt->usableSize - hdr); 2086 } 2087 data[hdr] = (char)flags; 2088 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2089 memset(&data[hdr+1], 0, 4); 2090 data[hdr+7] = 0; 2091 put2byte(&data[hdr+5], pBt->usableSize); 2092 pPage->nFree = (u16)(pBt->usableSize - first); 2093 decodeFlags(pPage, flags); 2094 pPage->cellOffset = first; 2095 pPage->aDataEnd = &data[pBt->usableSize]; 2096 pPage->aCellIdx = &data[first]; 2097 pPage->aDataOfst = &data[pPage->childPtrSize]; 2098 pPage->nOverflow = 0; 2099 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2100 pPage->maskPage = (u16)(pBt->pageSize - 1); 2101 pPage->nCell = 0; 2102 pPage->isInit = 1; 2103 } 2104 2105 2106 /* 2107 ** Convert a DbPage obtained from the pager into a MemPage used by 2108 ** the btree layer. 2109 */ 2110 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2111 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2112 if( pgno!=pPage->pgno ){ 2113 pPage->aData = sqlite3PagerGetData(pDbPage); 2114 pPage->pDbPage = pDbPage; 2115 pPage->pBt = pBt; 2116 pPage->pgno = pgno; 2117 pPage->hdrOffset = pgno==1 ? 100 : 0; 2118 } 2119 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2120 return pPage; 2121 } 2122 2123 /* 2124 ** Get a page from the pager. Initialize the MemPage.pBt and 2125 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2126 ** 2127 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2128 ** about the content of the page at this time. So do not go to the disk 2129 ** to fetch the content. Just fill in the content with zeros for now. 2130 ** If in the future we call sqlite3PagerWrite() on this page, that 2131 ** means we have started to be concerned about content and the disk 2132 ** read should occur at that point. 2133 */ 2134 static int btreeGetPage( 2135 BtShared *pBt, /* The btree */ 2136 Pgno pgno, /* Number of the page to fetch */ 2137 MemPage **ppPage, /* Return the page in this parameter */ 2138 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2139 ){ 2140 int rc; 2141 DbPage *pDbPage; 2142 2143 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2144 assert( sqlite3_mutex_held(pBt->mutex) ); 2145 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2146 if( rc ) return rc; 2147 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2148 return SQLITE_OK; 2149 } 2150 2151 /* 2152 ** Retrieve a page from the pager cache. If the requested page is not 2153 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2154 ** MemPage.aData elements if needed. 2155 */ 2156 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2157 DbPage *pDbPage; 2158 assert( sqlite3_mutex_held(pBt->mutex) ); 2159 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2160 if( pDbPage ){ 2161 return btreePageFromDbPage(pDbPage, pgno, pBt); 2162 } 2163 return 0; 2164 } 2165 2166 /* 2167 ** Return the size of the database file in pages. If there is any kind of 2168 ** error, return ((unsigned int)-1). 2169 */ 2170 static Pgno btreePagecount(BtShared *pBt){ 2171 return pBt->nPage; 2172 } 2173 Pgno sqlite3BtreeLastPage(Btree *p){ 2174 assert( sqlite3BtreeHoldsMutex(p) ); 2175 return btreePagecount(p->pBt); 2176 } 2177 2178 /* 2179 ** Get a page from the pager and initialize it. 2180 ** 2181 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2182 ** call. Do additional sanity checking on the page in this case. 2183 ** And if the fetch fails, this routine must decrement pCur->iPage. 2184 ** 2185 ** The page is fetched as read-write unless pCur is not NULL and is 2186 ** a read-only cursor. 2187 ** 2188 ** If an error occurs, then *ppPage is undefined. It 2189 ** may remain unchanged, or it may be set to an invalid value. 2190 */ 2191 static int getAndInitPage( 2192 BtShared *pBt, /* The database file */ 2193 Pgno pgno, /* Number of the page to get */ 2194 MemPage **ppPage, /* Write the page pointer here */ 2195 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2196 int bReadOnly /* True for a read-only page */ 2197 ){ 2198 int rc; 2199 DbPage *pDbPage; 2200 assert( sqlite3_mutex_held(pBt->mutex) ); 2201 assert( pCur==0 || ppPage==&pCur->pPage ); 2202 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2203 assert( pCur==0 || pCur->iPage>0 ); 2204 2205 if( pgno>btreePagecount(pBt) ){ 2206 rc = SQLITE_CORRUPT_BKPT; 2207 goto getAndInitPage_error1; 2208 } 2209 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2210 if( rc ){ 2211 goto getAndInitPage_error1; 2212 } 2213 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2214 if( (*ppPage)->isInit==0 ){ 2215 btreePageFromDbPage(pDbPage, pgno, pBt); 2216 rc = btreeInitPage(*ppPage); 2217 if( rc!=SQLITE_OK ){ 2218 goto getAndInitPage_error2; 2219 } 2220 } 2221 assert( (*ppPage)->pgno==pgno ); 2222 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2223 2224 /* If obtaining a child page for a cursor, we must verify that the page is 2225 ** compatible with the root page. */ 2226 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2227 rc = SQLITE_CORRUPT_PGNO(pgno); 2228 goto getAndInitPage_error2; 2229 } 2230 return SQLITE_OK; 2231 2232 getAndInitPage_error2: 2233 releasePage(*ppPage); 2234 getAndInitPage_error1: 2235 if( pCur ){ 2236 pCur->iPage--; 2237 pCur->pPage = pCur->apPage[pCur->iPage]; 2238 } 2239 testcase( pgno==0 ); 2240 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2241 return rc; 2242 } 2243 2244 /* 2245 ** Release a MemPage. This should be called once for each prior 2246 ** call to btreeGetPage. 2247 ** 2248 ** Page1 is a special case and must be released using releasePageOne(). 2249 */ 2250 static void releasePageNotNull(MemPage *pPage){ 2251 assert( pPage->aData ); 2252 assert( pPage->pBt ); 2253 assert( pPage->pDbPage!=0 ); 2254 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2255 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2256 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2257 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2258 } 2259 static void releasePage(MemPage *pPage){ 2260 if( pPage ) releasePageNotNull(pPage); 2261 } 2262 static void releasePageOne(MemPage *pPage){ 2263 assert( pPage!=0 ); 2264 assert( pPage->aData ); 2265 assert( pPage->pBt ); 2266 assert( pPage->pDbPage!=0 ); 2267 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2268 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2269 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2270 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2271 } 2272 2273 /* 2274 ** Get an unused page. 2275 ** 2276 ** This works just like btreeGetPage() with the addition: 2277 ** 2278 ** * If the page is already in use for some other purpose, immediately 2279 ** release it and return an SQLITE_CURRUPT error. 2280 ** * Make sure the isInit flag is clear 2281 */ 2282 static int btreeGetUnusedPage( 2283 BtShared *pBt, /* The btree */ 2284 Pgno pgno, /* Number of the page to fetch */ 2285 MemPage **ppPage, /* Return the page in this parameter */ 2286 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2287 ){ 2288 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2289 if( rc==SQLITE_OK ){ 2290 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2291 releasePage(*ppPage); 2292 *ppPage = 0; 2293 return SQLITE_CORRUPT_BKPT; 2294 } 2295 (*ppPage)->isInit = 0; 2296 }else{ 2297 *ppPage = 0; 2298 } 2299 return rc; 2300 } 2301 2302 2303 /* 2304 ** During a rollback, when the pager reloads information into the cache 2305 ** so that the cache is restored to its original state at the start of 2306 ** the transaction, for each page restored this routine is called. 2307 ** 2308 ** This routine needs to reset the extra data section at the end of the 2309 ** page to agree with the restored data. 2310 */ 2311 static void pageReinit(DbPage *pData){ 2312 MemPage *pPage; 2313 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2314 assert( sqlite3PagerPageRefcount(pData)>0 ); 2315 if( pPage->isInit ){ 2316 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2317 pPage->isInit = 0; 2318 if( sqlite3PagerPageRefcount(pData)>1 ){ 2319 /* pPage might not be a btree page; it might be an overflow page 2320 ** or ptrmap page or a free page. In those cases, the following 2321 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2322 ** But no harm is done by this. And it is very important that 2323 ** btreeInitPage() be called on every btree page so we make 2324 ** the call for every page that comes in for re-initing. */ 2325 btreeInitPage(pPage); 2326 } 2327 } 2328 } 2329 2330 /* 2331 ** Invoke the busy handler for a btree. 2332 */ 2333 static int btreeInvokeBusyHandler(void *pArg){ 2334 BtShared *pBt = (BtShared*)pArg; 2335 assert( pBt->db ); 2336 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2337 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2338 } 2339 2340 /* 2341 ** Open a database file. 2342 ** 2343 ** zFilename is the name of the database file. If zFilename is NULL 2344 ** then an ephemeral database is created. The ephemeral database might 2345 ** be exclusively in memory, or it might use a disk-based memory cache. 2346 ** Either way, the ephemeral database will be automatically deleted 2347 ** when sqlite3BtreeClose() is called. 2348 ** 2349 ** If zFilename is ":memory:" then an in-memory database is created 2350 ** that is automatically destroyed when it is closed. 2351 ** 2352 ** The "flags" parameter is a bitmask that might contain bits like 2353 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2354 ** 2355 ** If the database is already opened in the same database connection 2356 ** and we are in shared cache mode, then the open will fail with an 2357 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2358 ** objects in the same database connection since doing so will lead 2359 ** to problems with locking. 2360 */ 2361 int sqlite3BtreeOpen( 2362 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2363 const char *zFilename, /* Name of the file containing the BTree database */ 2364 sqlite3 *db, /* Associated database handle */ 2365 Btree **ppBtree, /* Pointer to new Btree object written here */ 2366 int flags, /* Options */ 2367 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2368 ){ 2369 BtShared *pBt = 0; /* Shared part of btree structure */ 2370 Btree *p; /* Handle to return */ 2371 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2372 int rc = SQLITE_OK; /* Result code from this function */ 2373 u8 nReserve; /* Byte of unused space on each page */ 2374 unsigned char zDbHeader[100]; /* Database header content */ 2375 2376 /* True if opening an ephemeral, temporary database */ 2377 const int isTempDb = zFilename==0 || zFilename[0]==0; 2378 2379 /* Set the variable isMemdb to true for an in-memory database, or 2380 ** false for a file-based database. 2381 */ 2382 #ifdef SQLITE_OMIT_MEMORYDB 2383 const int isMemdb = 0; 2384 #else 2385 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2386 || (isTempDb && sqlite3TempInMemory(db)) 2387 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2388 #endif 2389 2390 assert( db!=0 ); 2391 assert( pVfs!=0 ); 2392 assert( sqlite3_mutex_held(db->mutex) ); 2393 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2394 2395 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2396 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2397 2398 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2399 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2400 2401 if( isMemdb ){ 2402 flags |= BTREE_MEMORY; 2403 } 2404 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2405 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2406 } 2407 p = sqlite3MallocZero(sizeof(Btree)); 2408 if( !p ){ 2409 return SQLITE_NOMEM_BKPT; 2410 } 2411 p->inTrans = TRANS_NONE; 2412 p->db = db; 2413 #ifndef SQLITE_OMIT_SHARED_CACHE 2414 p->lock.pBtree = p; 2415 p->lock.iTable = 1; 2416 #endif 2417 2418 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2419 /* 2420 ** If this Btree is a candidate for shared cache, try to find an 2421 ** existing BtShared object that we can share with 2422 */ 2423 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2424 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2425 int nFilename = sqlite3Strlen30(zFilename)+1; 2426 int nFullPathname = pVfs->mxPathname+1; 2427 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2428 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2429 2430 p->sharable = 1; 2431 if( !zFullPathname ){ 2432 sqlite3_free(p); 2433 return SQLITE_NOMEM_BKPT; 2434 } 2435 if( isMemdb ){ 2436 memcpy(zFullPathname, zFilename, nFilename); 2437 }else{ 2438 rc = sqlite3OsFullPathname(pVfs, zFilename, 2439 nFullPathname, zFullPathname); 2440 if( rc ){ 2441 if( rc==SQLITE_OK_SYMLINK ){ 2442 rc = SQLITE_OK; 2443 }else{ 2444 sqlite3_free(zFullPathname); 2445 sqlite3_free(p); 2446 return rc; 2447 } 2448 } 2449 } 2450 #if SQLITE_THREADSAFE 2451 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2452 sqlite3_mutex_enter(mutexOpen); 2453 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2454 sqlite3_mutex_enter(mutexShared); 2455 #endif 2456 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2457 assert( pBt->nRef>0 ); 2458 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2459 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2460 int iDb; 2461 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2462 Btree *pExisting = db->aDb[iDb].pBt; 2463 if( pExisting && pExisting->pBt==pBt ){ 2464 sqlite3_mutex_leave(mutexShared); 2465 sqlite3_mutex_leave(mutexOpen); 2466 sqlite3_free(zFullPathname); 2467 sqlite3_free(p); 2468 return SQLITE_CONSTRAINT; 2469 } 2470 } 2471 p->pBt = pBt; 2472 pBt->nRef++; 2473 break; 2474 } 2475 } 2476 sqlite3_mutex_leave(mutexShared); 2477 sqlite3_free(zFullPathname); 2478 } 2479 #ifdef SQLITE_DEBUG 2480 else{ 2481 /* In debug mode, we mark all persistent databases as sharable 2482 ** even when they are not. This exercises the locking code and 2483 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2484 ** statements to find locking problems. 2485 */ 2486 p->sharable = 1; 2487 } 2488 #endif 2489 } 2490 #endif 2491 if( pBt==0 ){ 2492 /* 2493 ** The following asserts make sure that structures used by the btree are 2494 ** the right size. This is to guard against size changes that result 2495 ** when compiling on a different architecture. 2496 */ 2497 assert( sizeof(i64)==8 ); 2498 assert( sizeof(u64)==8 ); 2499 assert( sizeof(u32)==4 ); 2500 assert( sizeof(u16)==2 ); 2501 assert( sizeof(Pgno)==4 ); 2502 2503 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2504 if( pBt==0 ){ 2505 rc = SQLITE_NOMEM_BKPT; 2506 goto btree_open_out; 2507 } 2508 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2509 sizeof(MemPage), flags, vfsFlags, pageReinit); 2510 if( rc==SQLITE_OK ){ 2511 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2512 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2513 } 2514 if( rc!=SQLITE_OK ){ 2515 goto btree_open_out; 2516 } 2517 pBt->openFlags = (u8)flags; 2518 pBt->db = db; 2519 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2520 p->pBt = pBt; 2521 2522 pBt->pCursor = 0; 2523 pBt->pPage1 = 0; 2524 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2525 #if defined(SQLITE_SECURE_DELETE) 2526 pBt->btsFlags |= BTS_SECURE_DELETE; 2527 #elif defined(SQLITE_FAST_SECURE_DELETE) 2528 pBt->btsFlags |= BTS_OVERWRITE; 2529 #endif 2530 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2531 ** determined by the 2-byte integer located at an offset of 16 bytes from 2532 ** the beginning of the database file. */ 2533 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2534 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2535 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2536 pBt->pageSize = 0; 2537 #ifndef SQLITE_OMIT_AUTOVACUUM 2538 /* If the magic name ":memory:" will create an in-memory database, then 2539 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2540 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2541 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2542 ** regular file-name. In this case the auto-vacuum applies as per normal. 2543 */ 2544 if( zFilename && !isMemdb ){ 2545 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2546 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2547 } 2548 #endif 2549 nReserve = 0; 2550 }else{ 2551 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2552 ** determined by the one-byte unsigned integer found at an offset of 20 2553 ** into the database file header. */ 2554 nReserve = zDbHeader[20]; 2555 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2556 #ifndef SQLITE_OMIT_AUTOVACUUM 2557 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2558 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2559 #endif 2560 } 2561 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2562 if( rc ) goto btree_open_out; 2563 pBt->usableSize = pBt->pageSize - nReserve; 2564 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2565 2566 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2567 /* Add the new BtShared object to the linked list sharable BtShareds. 2568 */ 2569 pBt->nRef = 1; 2570 if( p->sharable ){ 2571 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2572 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2573 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2574 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2575 if( pBt->mutex==0 ){ 2576 rc = SQLITE_NOMEM_BKPT; 2577 goto btree_open_out; 2578 } 2579 } 2580 sqlite3_mutex_enter(mutexShared); 2581 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2582 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2583 sqlite3_mutex_leave(mutexShared); 2584 } 2585 #endif 2586 } 2587 2588 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2589 /* If the new Btree uses a sharable pBtShared, then link the new 2590 ** Btree into the list of all sharable Btrees for the same connection. 2591 ** The list is kept in ascending order by pBt address. 2592 */ 2593 if( p->sharable ){ 2594 int i; 2595 Btree *pSib; 2596 for(i=0; i<db->nDb; i++){ 2597 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2598 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2599 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2600 p->pNext = pSib; 2601 p->pPrev = 0; 2602 pSib->pPrev = p; 2603 }else{ 2604 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2605 pSib = pSib->pNext; 2606 } 2607 p->pNext = pSib->pNext; 2608 p->pPrev = pSib; 2609 if( p->pNext ){ 2610 p->pNext->pPrev = p; 2611 } 2612 pSib->pNext = p; 2613 } 2614 break; 2615 } 2616 } 2617 } 2618 #endif 2619 *ppBtree = p; 2620 2621 btree_open_out: 2622 if( rc!=SQLITE_OK ){ 2623 if( pBt && pBt->pPager ){ 2624 sqlite3PagerClose(pBt->pPager, 0); 2625 } 2626 sqlite3_free(pBt); 2627 sqlite3_free(p); 2628 *ppBtree = 0; 2629 }else{ 2630 sqlite3_file *pFile; 2631 2632 /* If the B-Tree was successfully opened, set the pager-cache size to the 2633 ** default value. Except, when opening on an existing shared pager-cache, 2634 ** do not change the pager-cache size. 2635 */ 2636 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2637 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2638 } 2639 2640 pFile = sqlite3PagerFile(pBt->pPager); 2641 if( pFile->pMethods ){ 2642 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2643 } 2644 } 2645 if( mutexOpen ){ 2646 assert( sqlite3_mutex_held(mutexOpen) ); 2647 sqlite3_mutex_leave(mutexOpen); 2648 } 2649 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2650 return rc; 2651 } 2652 2653 /* 2654 ** Decrement the BtShared.nRef counter. When it reaches zero, 2655 ** remove the BtShared structure from the sharing list. Return 2656 ** true if the BtShared.nRef counter reaches zero and return 2657 ** false if it is still positive. 2658 */ 2659 static int removeFromSharingList(BtShared *pBt){ 2660 #ifndef SQLITE_OMIT_SHARED_CACHE 2661 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2662 BtShared *pList; 2663 int removed = 0; 2664 2665 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2666 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2667 sqlite3_mutex_enter(pMainMtx); 2668 pBt->nRef--; 2669 if( pBt->nRef<=0 ){ 2670 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2671 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2672 }else{ 2673 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2674 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2675 pList=pList->pNext; 2676 } 2677 if( ALWAYS(pList) ){ 2678 pList->pNext = pBt->pNext; 2679 } 2680 } 2681 if( SQLITE_THREADSAFE ){ 2682 sqlite3_mutex_free(pBt->mutex); 2683 } 2684 removed = 1; 2685 } 2686 sqlite3_mutex_leave(pMainMtx); 2687 return removed; 2688 #else 2689 return 1; 2690 #endif 2691 } 2692 2693 /* 2694 ** Make sure pBt->pTmpSpace points to an allocation of 2695 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2696 ** pointer. 2697 */ 2698 static void allocateTempSpace(BtShared *pBt){ 2699 if( !pBt->pTmpSpace ){ 2700 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2701 2702 /* One of the uses of pBt->pTmpSpace is to format cells before 2703 ** inserting them into a leaf page (function fillInCell()). If 2704 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2705 ** by the various routines that manipulate binary cells. Which 2706 ** can mean that fillInCell() only initializes the first 2 or 3 2707 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2708 ** it into a database page. This is not actually a problem, but it 2709 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2710 ** data is passed to system call write(). So to avoid this error, 2711 ** zero the first 4 bytes of temp space here. 2712 ** 2713 ** Also: Provide four bytes of initialized space before the 2714 ** beginning of pTmpSpace as an area available to prepend the 2715 ** left-child pointer to the beginning of a cell. 2716 */ 2717 if( pBt->pTmpSpace ){ 2718 memset(pBt->pTmpSpace, 0, 8); 2719 pBt->pTmpSpace += 4; 2720 } 2721 } 2722 } 2723 2724 /* 2725 ** Free the pBt->pTmpSpace allocation 2726 */ 2727 static void freeTempSpace(BtShared *pBt){ 2728 if( pBt->pTmpSpace ){ 2729 pBt->pTmpSpace -= 4; 2730 sqlite3PageFree(pBt->pTmpSpace); 2731 pBt->pTmpSpace = 0; 2732 } 2733 } 2734 2735 /* 2736 ** Close an open database and invalidate all cursors. 2737 */ 2738 int sqlite3BtreeClose(Btree *p){ 2739 BtShared *pBt = p->pBt; 2740 2741 /* Close all cursors opened via this handle. */ 2742 assert( sqlite3_mutex_held(p->db->mutex) ); 2743 sqlite3BtreeEnter(p); 2744 2745 /* Verify that no other cursors have this Btree open */ 2746 #ifdef SQLITE_DEBUG 2747 { 2748 BtCursor *pCur = pBt->pCursor; 2749 while( pCur ){ 2750 BtCursor *pTmp = pCur; 2751 pCur = pCur->pNext; 2752 assert( pTmp->pBtree!=p ); 2753 2754 } 2755 } 2756 #endif 2757 2758 /* Rollback any active transaction and free the handle structure. 2759 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2760 ** this handle. 2761 */ 2762 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2763 sqlite3BtreeLeave(p); 2764 2765 /* If there are still other outstanding references to the shared-btree 2766 ** structure, return now. The remainder of this procedure cleans 2767 ** up the shared-btree. 2768 */ 2769 assert( p->wantToLock==0 && p->locked==0 ); 2770 if( !p->sharable || removeFromSharingList(pBt) ){ 2771 /* The pBt is no longer on the sharing list, so we can access 2772 ** it without having to hold the mutex. 2773 ** 2774 ** Clean out and delete the BtShared object. 2775 */ 2776 assert( !pBt->pCursor ); 2777 sqlite3PagerClose(pBt->pPager, p->db); 2778 if( pBt->xFreeSchema && pBt->pSchema ){ 2779 pBt->xFreeSchema(pBt->pSchema); 2780 } 2781 sqlite3DbFree(0, pBt->pSchema); 2782 freeTempSpace(pBt); 2783 sqlite3_free(pBt); 2784 } 2785 2786 #ifndef SQLITE_OMIT_SHARED_CACHE 2787 assert( p->wantToLock==0 ); 2788 assert( p->locked==0 ); 2789 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2790 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2791 #endif 2792 2793 sqlite3_free(p); 2794 return SQLITE_OK; 2795 } 2796 2797 /* 2798 ** Change the "soft" limit on the number of pages in the cache. 2799 ** Unused and unmodified pages will be recycled when the number of 2800 ** pages in the cache exceeds this soft limit. But the size of the 2801 ** cache is allowed to grow larger than this limit if it contains 2802 ** dirty pages or pages still in active use. 2803 */ 2804 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2805 BtShared *pBt = p->pBt; 2806 assert( sqlite3_mutex_held(p->db->mutex) ); 2807 sqlite3BtreeEnter(p); 2808 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2809 sqlite3BtreeLeave(p); 2810 return SQLITE_OK; 2811 } 2812 2813 /* 2814 ** Change the "spill" limit on the number of pages in the cache. 2815 ** If the number of pages exceeds this limit during a write transaction, 2816 ** the pager might attempt to "spill" pages to the journal early in 2817 ** order to free up memory. 2818 ** 2819 ** The value returned is the current spill size. If zero is passed 2820 ** as an argument, no changes are made to the spill size setting, so 2821 ** using mxPage of 0 is a way to query the current spill size. 2822 */ 2823 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2824 BtShared *pBt = p->pBt; 2825 int res; 2826 assert( sqlite3_mutex_held(p->db->mutex) ); 2827 sqlite3BtreeEnter(p); 2828 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2829 sqlite3BtreeLeave(p); 2830 return res; 2831 } 2832 2833 #if SQLITE_MAX_MMAP_SIZE>0 2834 /* 2835 ** Change the limit on the amount of the database file that may be 2836 ** memory mapped. 2837 */ 2838 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2839 BtShared *pBt = p->pBt; 2840 assert( sqlite3_mutex_held(p->db->mutex) ); 2841 sqlite3BtreeEnter(p); 2842 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2843 sqlite3BtreeLeave(p); 2844 return SQLITE_OK; 2845 } 2846 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2847 2848 /* 2849 ** Change the way data is synced to disk in order to increase or decrease 2850 ** how well the database resists damage due to OS crashes and power 2851 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2852 ** there is a high probability of damage) Level 2 is the default. There 2853 ** is a very low but non-zero probability of damage. Level 3 reduces the 2854 ** probability of damage to near zero but with a write performance reduction. 2855 */ 2856 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2857 int sqlite3BtreeSetPagerFlags( 2858 Btree *p, /* The btree to set the safety level on */ 2859 unsigned pgFlags /* Various PAGER_* flags */ 2860 ){ 2861 BtShared *pBt = p->pBt; 2862 assert( sqlite3_mutex_held(p->db->mutex) ); 2863 sqlite3BtreeEnter(p); 2864 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2865 sqlite3BtreeLeave(p); 2866 return SQLITE_OK; 2867 } 2868 #endif 2869 2870 /* 2871 ** Change the default pages size and the number of reserved bytes per page. 2872 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2873 ** without changing anything. 2874 ** 2875 ** The page size must be a power of 2 between 512 and 65536. If the page 2876 ** size supplied does not meet this constraint then the page size is not 2877 ** changed. 2878 ** 2879 ** Page sizes are constrained to be a power of two so that the region 2880 ** of the database file used for locking (beginning at PENDING_BYTE, 2881 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2882 ** at the beginning of a page. 2883 ** 2884 ** If parameter nReserve is less than zero, then the number of reserved 2885 ** bytes per page is left unchanged. 2886 ** 2887 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2888 ** and autovacuum mode can no longer be changed. 2889 */ 2890 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2891 int rc = SQLITE_OK; 2892 int x; 2893 BtShared *pBt = p->pBt; 2894 assert( nReserve>=0 && nReserve<=255 ); 2895 sqlite3BtreeEnter(p); 2896 pBt->nReserveWanted = nReserve; 2897 x = pBt->pageSize - pBt->usableSize; 2898 if( nReserve<x ) nReserve = x; 2899 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2900 sqlite3BtreeLeave(p); 2901 return SQLITE_READONLY; 2902 } 2903 assert( nReserve>=0 && nReserve<=255 ); 2904 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2905 ((pageSize-1)&pageSize)==0 ){ 2906 assert( (pageSize & 7)==0 ); 2907 assert( !pBt->pCursor ); 2908 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2909 pBt->pageSize = (u32)pageSize; 2910 freeTempSpace(pBt); 2911 } 2912 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2913 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2914 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2915 sqlite3BtreeLeave(p); 2916 return rc; 2917 } 2918 2919 /* 2920 ** Return the currently defined page size 2921 */ 2922 int sqlite3BtreeGetPageSize(Btree *p){ 2923 return p->pBt->pageSize; 2924 } 2925 2926 /* 2927 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2928 ** may only be called if it is guaranteed that the b-tree mutex is already 2929 ** held. 2930 ** 2931 ** This is useful in one special case in the backup API code where it is 2932 ** known that the shared b-tree mutex is held, but the mutex on the 2933 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2934 ** were to be called, it might collide with some other operation on the 2935 ** database handle that owns *p, causing undefined behavior. 2936 */ 2937 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2938 int n; 2939 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2940 n = p->pBt->pageSize - p->pBt->usableSize; 2941 return n; 2942 } 2943 2944 /* 2945 ** Return the number of bytes of space at the end of every page that 2946 ** are intentually left unused. This is the "reserved" space that is 2947 ** sometimes used by extensions. 2948 ** 2949 ** The value returned is the larger of the current reserve size and 2950 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 2951 ** The amount of reserve can only grow - never shrink. 2952 */ 2953 int sqlite3BtreeGetRequestedReserve(Btree *p){ 2954 int n1, n2; 2955 sqlite3BtreeEnter(p); 2956 n1 = (int)p->pBt->nReserveWanted; 2957 n2 = sqlite3BtreeGetReserveNoMutex(p); 2958 sqlite3BtreeLeave(p); 2959 return n1>n2 ? n1 : n2; 2960 } 2961 2962 2963 /* 2964 ** Set the maximum page count for a database if mxPage is positive. 2965 ** No changes are made if mxPage is 0 or negative. 2966 ** Regardless of the value of mxPage, return the maximum page count. 2967 */ 2968 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 2969 Pgno n; 2970 sqlite3BtreeEnter(p); 2971 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2972 sqlite3BtreeLeave(p); 2973 return n; 2974 } 2975 2976 /* 2977 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2978 ** 2979 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2980 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2981 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2982 ** newFlag==(-1) No changes 2983 ** 2984 ** This routine acts as a query if newFlag is less than zero 2985 ** 2986 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2987 ** freelist leaf pages are not written back to the database. Thus in-page 2988 ** deleted content is cleared, but freelist deleted content is not. 2989 ** 2990 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2991 ** that freelist leaf pages are written back into the database, increasing 2992 ** the amount of disk I/O. 2993 */ 2994 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2995 int b; 2996 if( p==0 ) return 0; 2997 sqlite3BtreeEnter(p); 2998 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2999 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3000 if( newFlag>=0 ){ 3001 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3002 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3003 } 3004 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3005 sqlite3BtreeLeave(p); 3006 return b; 3007 } 3008 3009 /* 3010 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3011 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3012 ** is disabled. The default value for the auto-vacuum property is 3013 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3014 */ 3015 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3016 #ifdef SQLITE_OMIT_AUTOVACUUM 3017 return SQLITE_READONLY; 3018 #else 3019 BtShared *pBt = p->pBt; 3020 int rc = SQLITE_OK; 3021 u8 av = (u8)autoVacuum; 3022 3023 sqlite3BtreeEnter(p); 3024 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3025 rc = SQLITE_READONLY; 3026 }else{ 3027 pBt->autoVacuum = av ?1:0; 3028 pBt->incrVacuum = av==2 ?1:0; 3029 } 3030 sqlite3BtreeLeave(p); 3031 return rc; 3032 #endif 3033 } 3034 3035 /* 3036 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3037 ** enabled 1 is returned. Otherwise 0. 3038 */ 3039 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3040 #ifdef SQLITE_OMIT_AUTOVACUUM 3041 return BTREE_AUTOVACUUM_NONE; 3042 #else 3043 int rc; 3044 sqlite3BtreeEnter(p); 3045 rc = ( 3046 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3047 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3048 BTREE_AUTOVACUUM_INCR 3049 ); 3050 sqlite3BtreeLeave(p); 3051 return rc; 3052 #endif 3053 } 3054 3055 /* 3056 ** If the user has not set the safety-level for this database connection 3057 ** using "PRAGMA synchronous", and if the safety-level is not already 3058 ** set to the value passed to this function as the second parameter, 3059 ** set it so. 3060 */ 3061 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3062 && !defined(SQLITE_OMIT_WAL) 3063 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3064 sqlite3 *db; 3065 Db *pDb; 3066 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3067 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3068 if( pDb->bSyncSet==0 3069 && pDb->safety_level!=safety_level 3070 && pDb!=&db->aDb[1] 3071 ){ 3072 pDb->safety_level = safety_level; 3073 sqlite3PagerSetFlags(pBt->pPager, 3074 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3075 } 3076 } 3077 } 3078 #else 3079 # define setDefaultSyncFlag(pBt,safety_level) 3080 #endif 3081 3082 /* Forward declaration */ 3083 static int newDatabase(BtShared*); 3084 3085 3086 /* 3087 ** Get a reference to pPage1 of the database file. This will 3088 ** also acquire a readlock on that file. 3089 ** 3090 ** SQLITE_OK is returned on success. If the file is not a 3091 ** well-formed database file, then SQLITE_CORRUPT is returned. 3092 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3093 ** is returned if we run out of memory. 3094 */ 3095 static int lockBtree(BtShared *pBt){ 3096 int rc; /* Result code from subfunctions */ 3097 MemPage *pPage1; /* Page 1 of the database file */ 3098 u32 nPage; /* Number of pages in the database */ 3099 u32 nPageFile = 0; /* Number of pages in the database file */ 3100 u32 nPageHeader; /* Number of pages in the database according to hdr */ 3101 3102 assert( sqlite3_mutex_held(pBt->mutex) ); 3103 assert( pBt->pPage1==0 ); 3104 rc = sqlite3PagerSharedLock(pBt->pPager); 3105 if( rc!=SQLITE_OK ) return rc; 3106 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3107 if( rc!=SQLITE_OK ) return rc; 3108 3109 /* Do some checking to help insure the file we opened really is 3110 ** a valid database file. 3111 */ 3112 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3113 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3114 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3115 nPage = nPageFile; 3116 } 3117 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3118 nPage = 0; 3119 } 3120 if( nPage>0 ){ 3121 u32 pageSize; 3122 u32 usableSize; 3123 u8 *page1 = pPage1->aData; 3124 rc = SQLITE_NOTADB; 3125 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3126 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3127 ** 61 74 20 33 00. */ 3128 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3129 goto page1_init_failed; 3130 } 3131 3132 #ifdef SQLITE_OMIT_WAL 3133 if( page1[18]>1 ){ 3134 pBt->btsFlags |= BTS_READ_ONLY; 3135 } 3136 if( page1[19]>1 ){ 3137 goto page1_init_failed; 3138 } 3139 #else 3140 if( page1[18]>2 ){ 3141 pBt->btsFlags |= BTS_READ_ONLY; 3142 } 3143 if( page1[19]>2 ){ 3144 goto page1_init_failed; 3145 } 3146 3147 /* If the write version is set to 2, this database should be accessed 3148 ** in WAL mode. If the log is not already open, open it now. Then 3149 ** return SQLITE_OK and return without populating BtShared.pPage1. 3150 ** The caller detects this and calls this function again. This is 3151 ** required as the version of page 1 currently in the page1 buffer 3152 ** may not be the latest version - there may be a newer one in the log 3153 ** file. 3154 */ 3155 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3156 int isOpen = 0; 3157 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3158 if( rc!=SQLITE_OK ){ 3159 goto page1_init_failed; 3160 }else{ 3161 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3162 if( isOpen==0 ){ 3163 releasePageOne(pPage1); 3164 return SQLITE_OK; 3165 } 3166 } 3167 rc = SQLITE_NOTADB; 3168 }else{ 3169 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3170 } 3171 #endif 3172 3173 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3174 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3175 ** 3176 ** The original design allowed these amounts to vary, but as of 3177 ** version 3.6.0, we require them to be fixed. 3178 */ 3179 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3180 goto page1_init_failed; 3181 } 3182 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3183 ** determined by the 2-byte integer located at an offset of 16 bytes from 3184 ** the beginning of the database file. */ 3185 pageSize = (page1[16]<<8) | (page1[17]<<16); 3186 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3187 ** between 512 and 65536 inclusive. */ 3188 if( ((pageSize-1)&pageSize)!=0 3189 || pageSize>SQLITE_MAX_PAGE_SIZE 3190 || pageSize<=256 3191 ){ 3192 goto page1_init_failed; 3193 } 3194 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3195 assert( (pageSize & 7)==0 ); 3196 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3197 ** integer at offset 20 is the number of bytes of space at the end of 3198 ** each page to reserve for extensions. 3199 ** 3200 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3201 ** determined by the one-byte unsigned integer found at an offset of 20 3202 ** into the database file header. */ 3203 usableSize = pageSize - page1[20]; 3204 if( (u32)pageSize!=pBt->pageSize ){ 3205 /* After reading the first page of the database assuming a page size 3206 ** of BtShared.pageSize, we have discovered that the page-size is 3207 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3208 ** zero and return SQLITE_OK. The caller will call this function 3209 ** again with the correct page-size. 3210 */ 3211 releasePageOne(pPage1); 3212 pBt->usableSize = usableSize; 3213 pBt->pageSize = pageSize; 3214 freeTempSpace(pBt); 3215 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3216 pageSize-usableSize); 3217 return rc; 3218 } 3219 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3220 rc = SQLITE_CORRUPT_BKPT; 3221 goto page1_init_failed; 3222 } 3223 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3224 ** be less than 480. In other words, if the page size is 512, then the 3225 ** reserved space size cannot exceed 32. */ 3226 if( usableSize<480 ){ 3227 goto page1_init_failed; 3228 } 3229 pBt->pageSize = pageSize; 3230 pBt->usableSize = usableSize; 3231 #ifndef SQLITE_OMIT_AUTOVACUUM 3232 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3233 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3234 #endif 3235 } 3236 3237 /* maxLocal is the maximum amount of payload to store locally for 3238 ** a cell. Make sure it is small enough so that at least minFanout 3239 ** cells can will fit on one page. We assume a 10-byte page header. 3240 ** Besides the payload, the cell must store: 3241 ** 2-byte pointer to the cell 3242 ** 4-byte child pointer 3243 ** 9-byte nKey value 3244 ** 4-byte nData value 3245 ** 4-byte overflow page pointer 3246 ** So a cell consists of a 2-byte pointer, a header which is as much as 3247 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3248 ** page pointer. 3249 */ 3250 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3251 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3252 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3253 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3254 if( pBt->maxLocal>127 ){ 3255 pBt->max1bytePayload = 127; 3256 }else{ 3257 pBt->max1bytePayload = (u8)pBt->maxLocal; 3258 } 3259 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3260 pBt->pPage1 = pPage1; 3261 pBt->nPage = nPage; 3262 return SQLITE_OK; 3263 3264 page1_init_failed: 3265 releasePageOne(pPage1); 3266 pBt->pPage1 = 0; 3267 return rc; 3268 } 3269 3270 #ifndef NDEBUG 3271 /* 3272 ** Return the number of cursors open on pBt. This is for use 3273 ** in assert() expressions, so it is only compiled if NDEBUG is not 3274 ** defined. 3275 ** 3276 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3277 ** false then all cursors are counted. 3278 ** 3279 ** For the purposes of this routine, a cursor is any cursor that 3280 ** is capable of reading or writing to the database. Cursors that 3281 ** have been tripped into the CURSOR_FAULT state are not counted. 3282 */ 3283 static int countValidCursors(BtShared *pBt, int wrOnly){ 3284 BtCursor *pCur; 3285 int r = 0; 3286 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3287 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3288 && pCur->eState!=CURSOR_FAULT ) r++; 3289 } 3290 return r; 3291 } 3292 #endif 3293 3294 /* 3295 ** If there are no outstanding cursors and we are not in the middle 3296 ** of a transaction but there is a read lock on the database, then 3297 ** this routine unrefs the first page of the database file which 3298 ** has the effect of releasing the read lock. 3299 ** 3300 ** If there is a transaction in progress, this routine is a no-op. 3301 */ 3302 static void unlockBtreeIfUnused(BtShared *pBt){ 3303 assert( sqlite3_mutex_held(pBt->mutex) ); 3304 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3305 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3306 MemPage *pPage1 = pBt->pPage1; 3307 assert( pPage1->aData ); 3308 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3309 pBt->pPage1 = 0; 3310 releasePageOne(pPage1); 3311 } 3312 } 3313 3314 /* 3315 ** If pBt points to an empty file then convert that empty file 3316 ** into a new empty database by initializing the first page of 3317 ** the database. 3318 */ 3319 static int newDatabase(BtShared *pBt){ 3320 MemPage *pP1; 3321 unsigned char *data; 3322 int rc; 3323 3324 assert( sqlite3_mutex_held(pBt->mutex) ); 3325 if( pBt->nPage>0 ){ 3326 return SQLITE_OK; 3327 } 3328 pP1 = pBt->pPage1; 3329 assert( pP1!=0 ); 3330 data = pP1->aData; 3331 rc = sqlite3PagerWrite(pP1->pDbPage); 3332 if( rc ) return rc; 3333 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3334 assert( sizeof(zMagicHeader)==16 ); 3335 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3336 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3337 data[18] = 1; 3338 data[19] = 1; 3339 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3340 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3341 data[21] = 64; 3342 data[22] = 32; 3343 data[23] = 32; 3344 memset(&data[24], 0, 100-24); 3345 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3346 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3347 #ifndef SQLITE_OMIT_AUTOVACUUM 3348 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3349 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3350 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3351 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3352 #endif 3353 pBt->nPage = 1; 3354 data[31] = 1; 3355 return SQLITE_OK; 3356 } 3357 3358 /* 3359 ** Initialize the first page of the database file (creating a database 3360 ** consisting of a single page and no schema objects). Return SQLITE_OK 3361 ** if successful, or an SQLite error code otherwise. 3362 */ 3363 int sqlite3BtreeNewDb(Btree *p){ 3364 int rc; 3365 sqlite3BtreeEnter(p); 3366 p->pBt->nPage = 0; 3367 rc = newDatabase(p->pBt); 3368 sqlite3BtreeLeave(p); 3369 return rc; 3370 } 3371 3372 /* 3373 ** Attempt to start a new transaction. A write-transaction 3374 ** is started if the second argument is nonzero, otherwise a read- 3375 ** transaction. If the second argument is 2 or more and exclusive 3376 ** transaction is started, meaning that no other process is allowed 3377 ** to access the database. A preexisting transaction may not be 3378 ** upgraded to exclusive by calling this routine a second time - the 3379 ** exclusivity flag only works for a new transaction. 3380 ** 3381 ** A write-transaction must be started before attempting any 3382 ** changes to the database. None of the following routines 3383 ** will work unless a transaction is started first: 3384 ** 3385 ** sqlite3BtreeCreateTable() 3386 ** sqlite3BtreeCreateIndex() 3387 ** sqlite3BtreeClearTable() 3388 ** sqlite3BtreeDropTable() 3389 ** sqlite3BtreeInsert() 3390 ** sqlite3BtreeDelete() 3391 ** sqlite3BtreeUpdateMeta() 3392 ** 3393 ** If an initial attempt to acquire the lock fails because of lock contention 3394 ** and the database was previously unlocked, then invoke the busy handler 3395 ** if there is one. But if there was previously a read-lock, do not 3396 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3397 ** returned when there is already a read-lock in order to avoid a deadlock. 3398 ** 3399 ** Suppose there are two processes A and B. A has a read lock and B has 3400 ** a reserved lock. B tries to promote to exclusive but is blocked because 3401 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3402 ** One or the other of the two processes must give way or there can be 3403 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3404 ** when A already has a read lock, we encourage A to give up and let B 3405 ** proceed. 3406 */ 3407 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3408 BtShared *pBt = p->pBt; 3409 Pager *pPager = pBt->pPager; 3410 int rc = SQLITE_OK; 3411 3412 sqlite3BtreeEnter(p); 3413 btreeIntegrity(p); 3414 3415 /* If the btree is already in a write-transaction, or it 3416 ** is already in a read-transaction and a read-transaction 3417 ** is requested, this is a no-op. 3418 */ 3419 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3420 goto trans_begun; 3421 } 3422 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3423 3424 if( (p->db->flags & SQLITE_ResetDatabase) 3425 && sqlite3PagerIsreadonly(pPager)==0 3426 ){ 3427 pBt->btsFlags &= ~BTS_READ_ONLY; 3428 } 3429 3430 /* Write transactions are not possible on a read-only database */ 3431 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3432 rc = SQLITE_READONLY; 3433 goto trans_begun; 3434 } 3435 3436 #ifndef SQLITE_OMIT_SHARED_CACHE 3437 { 3438 sqlite3 *pBlock = 0; 3439 /* If another database handle has already opened a write transaction 3440 ** on this shared-btree structure and a second write transaction is 3441 ** requested, return SQLITE_LOCKED. 3442 */ 3443 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3444 || (pBt->btsFlags & BTS_PENDING)!=0 3445 ){ 3446 pBlock = pBt->pWriter->db; 3447 }else if( wrflag>1 ){ 3448 BtLock *pIter; 3449 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3450 if( pIter->pBtree!=p ){ 3451 pBlock = pIter->pBtree->db; 3452 break; 3453 } 3454 } 3455 } 3456 if( pBlock ){ 3457 sqlite3ConnectionBlocked(p->db, pBlock); 3458 rc = SQLITE_LOCKED_SHAREDCACHE; 3459 goto trans_begun; 3460 } 3461 } 3462 #endif 3463 3464 /* Any read-only or read-write transaction implies a read-lock on 3465 ** page 1. So if some other shared-cache client already has a write-lock 3466 ** on page 1, the transaction cannot be opened. */ 3467 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3468 if( SQLITE_OK!=rc ) goto trans_begun; 3469 3470 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3471 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3472 do { 3473 sqlite3PagerWalDb(pPager, p->db); 3474 3475 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3476 /* If transitioning from no transaction directly to a write transaction, 3477 ** block for the WRITER lock first if possible. */ 3478 if( pBt->pPage1==0 && wrflag ){ 3479 assert( pBt->inTransaction==TRANS_NONE ); 3480 rc = sqlite3PagerWalWriteLock(pPager, 1); 3481 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3482 } 3483 #endif 3484 3485 /* Call lockBtree() until either pBt->pPage1 is populated or 3486 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3487 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3488 ** reading page 1 it discovers that the page-size of the database 3489 ** file is not pBt->pageSize. In this case lockBtree() will update 3490 ** pBt->pageSize to the page-size of the file on disk. 3491 */ 3492 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3493 3494 if( rc==SQLITE_OK && wrflag ){ 3495 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3496 rc = SQLITE_READONLY; 3497 }else{ 3498 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3499 if( rc==SQLITE_OK ){ 3500 rc = newDatabase(pBt); 3501 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3502 /* if there was no transaction opened when this function was 3503 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3504 ** code to SQLITE_BUSY. */ 3505 rc = SQLITE_BUSY; 3506 } 3507 } 3508 } 3509 3510 if( rc!=SQLITE_OK ){ 3511 (void)sqlite3PagerWalWriteLock(pPager, 0); 3512 unlockBtreeIfUnused(pBt); 3513 } 3514 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3515 btreeInvokeBusyHandler(pBt) ); 3516 sqlite3PagerWalDb(pPager, 0); 3517 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3518 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3519 #endif 3520 3521 if( rc==SQLITE_OK ){ 3522 if( p->inTrans==TRANS_NONE ){ 3523 pBt->nTransaction++; 3524 #ifndef SQLITE_OMIT_SHARED_CACHE 3525 if( p->sharable ){ 3526 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3527 p->lock.eLock = READ_LOCK; 3528 p->lock.pNext = pBt->pLock; 3529 pBt->pLock = &p->lock; 3530 } 3531 #endif 3532 } 3533 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3534 if( p->inTrans>pBt->inTransaction ){ 3535 pBt->inTransaction = p->inTrans; 3536 } 3537 if( wrflag ){ 3538 MemPage *pPage1 = pBt->pPage1; 3539 #ifndef SQLITE_OMIT_SHARED_CACHE 3540 assert( !pBt->pWriter ); 3541 pBt->pWriter = p; 3542 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3543 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3544 #endif 3545 3546 /* If the db-size header field is incorrect (as it may be if an old 3547 ** client has been writing the database file), update it now. Doing 3548 ** this sooner rather than later means the database size can safely 3549 ** re-read the database size from page 1 if a savepoint or transaction 3550 ** rollback occurs within the transaction. 3551 */ 3552 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3553 rc = sqlite3PagerWrite(pPage1->pDbPage); 3554 if( rc==SQLITE_OK ){ 3555 put4byte(&pPage1->aData[28], pBt->nPage); 3556 } 3557 } 3558 } 3559 } 3560 3561 trans_begun: 3562 if( rc==SQLITE_OK ){ 3563 if( pSchemaVersion ){ 3564 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3565 } 3566 if( wrflag ){ 3567 /* This call makes sure that the pager has the correct number of 3568 ** open savepoints. If the second parameter is greater than 0 and 3569 ** the sub-journal is not already open, then it will be opened here. 3570 */ 3571 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3572 } 3573 } 3574 3575 btreeIntegrity(p); 3576 sqlite3BtreeLeave(p); 3577 return rc; 3578 } 3579 3580 #ifndef SQLITE_OMIT_AUTOVACUUM 3581 3582 /* 3583 ** Set the pointer-map entries for all children of page pPage. Also, if 3584 ** pPage contains cells that point to overflow pages, set the pointer 3585 ** map entries for the overflow pages as well. 3586 */ 3587 static int setChildPtrmaps(MemPage *pPage){ 3588 int i; /* Counter variable */ 3589 int nCell; /* Number of cells in page pPage */ 3590 int rc; /* Return code */ 3591 BtShared *pBt = pPage->pBt; 3592 Pgno pgno = pPage->pgno; 3593 3594 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3595 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3596 if( rc!=SQLITE_OK ) return rc; 3597 nCell = pPage->nCell; 3598 3599 for(i=0; i<nCell; i++){ 3600 u8 *pCell = findCell(pPage, i); 3601 3602 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3603 3604 if( !pPage->leaf ){ 3605 Pgno childPgno = get4byte(pCell); 3606 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3607 } 3608 } 3609 3610 if( !pPage->leaf ){ 3611 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3612 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3613 } 3614 3615 return rc; 3616 } 3617 3618 /* 3619 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3620 ** that it points to iTo. Parameter eType describes the type of pointer to 3621 ** be modified, as follows: 3622 ** 3623 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3624 ** page of pPage. 3625 ** 3626 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3627 ** page pointed to by one of the cells on pPage. 3628 ** 3629 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3630 ** overflow page in the list. 3631 */ 3632 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3633 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3634 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3635 if( eType==PTRMAP_OVERFLOW2 ){ 3636 /* The pointer is always the first 4 bytes of the page in this case. */ 3637 if( get4byte(pPage->aData)!=iFrom ){ 3638 return SQLITE_CORRUPT_PAGE(pPage); 3639 } 3640 put4byte(pPage->aData, iTo); 3641 }else{ 3642 int i; 3643 int nCell; 3644 int rc; 3645 3646 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3647 if( rc ) return rc; 3648 nCell = pPage->nCell; 3649 3650 for(i=0; i<nCell; i++){ 3651 u8 *pCell = findCell(pPage, i); 3652 if( eType==PTRMAP_OVERFLOW1 ){ 3653 CellInfo info; 3654 pPage->xParseCell(pPage, pCell, &info); 3655 if( info.nLocal<info.nPayload ){ 3656 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3657 return SQLITE_CORRUPT_PAGE(pPage); 3658 } 3659 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3660 put4byte(pCell+info.nSize-4, iTo); 3661 break; 3662 } 3663 } 3664 }else{ 3665 if( get4byte(pCell)==iFrom ){ 3666 put4byte(pCell, iTo); 3667 break; 3668 } 3669 } 3670 } 3671 3672 if( i==nCell ){ 3673 if( eType!=PTRMAP_BTREE || 3674 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3675 return SQLITE_CORRUPT_PAGE(pPage); 3676 } 3677 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3678 } 3679 } 3680 return SQLITE_OK; 3681 } 3682 3683 3684 /* 3685 ** Move the open database page pDbPage to location iFreePage in the 3686 ** database. The pDbPage reference remains valid. 3687 ** 3688 ** The isCommit flag indicates that there is no need to remember that 3689 ** the journal needs to be sync()ed before database page pDbPage->pgno 3690 ** can be written to. The caller has already promised not to write to that 3691 ** page. 3692 */ 3693 static int relocatePage( 3694 BtShared *pBt, /* Btree */ 3695 MemPage *pDbPage, /* Open page to move */ 3696 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3697 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3698 Pgno iFreePage, /* The location to move pDbPage to */ 3699 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3700 ){ 3701 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3702 Pgno iDbPage = pDbPage->pgno; 3703 Pager *pPager = pBt->pPager; 3704 int rc; 3705 3706 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3707 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3708 assert( sqlite3_mutex_held(pBt->mutex) ); 3709 assert( pDbPage->pBt==pBt ); 3710 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3711 3712 /* Move page iDbPage from its current location to page number iFreePage */ 3713 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3714 iDbPage, iFreePage, iPtrPage, eType)); 3715 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3716 if( rc!=SQLITE_OK ){ 3717 return rc; 3718 } 3719 pDbPage->pgno = iFreePage; 3720 3721 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3722 ** that point to overflow pages. The pointer map entries for all these 3723 ** pages need to be changed. 3724 ** 3725 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3726 ** pointer to a subsequent overflow page. If this is the case, then 3727 ** the pointer map needs to be updated for the subsequent overflow page. 3728 */ 3729 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3730 rc = setChildPtrmaps(pDbPage); 3731 if( rc!=SQLITE_OK ){ 3732 return rc; 3733 } 3734 }else{ 3735 Pgno nextOvfl = get4byte(pDbPage->aData); 3736 if( nextOvfl!=0 ){ 3737 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3738 if( rc!=SQLITE_OK ){ 3739 return rc; 3740 } 3741 } 3742 } 3743 3744 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3745 ** that it points at iFreePage. Also fix the pointer map entry for 3746 ** iPtrPage. 3747 */ 3748 if( eType!=PTRMAP_ROOTPAGE ){ 3749 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3750 if( rc!=SQLITE_OK ){ 3751 return rc; 3752 } 3753 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3754 if( rc!=SQLITE_OK ){ 3755 releasePage(pPtrPage); 3756 return rc; 3757 } 3758 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3759 releasePage(pPtrPage); 3760 if( rc==SQLITE_OK ){ 3761 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3762 } 3763 } 3764 return rc; 3765 } 3766 3767 /* Forward declaration required by incrVacuumStep(). */ 3768 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3769 3770 /* 3771 ** Perform a single step of an incremental-vacuum. If successful, return 3772 ** SQLITE_OK. If there is no work to do (and therefore no point in 3773 ** calling this function again), return SQLITE_DONE. Or, if an error 3774 ** occurs, return some other error code. 3775 ** 3776 ** More specifically, this function attempts to re-organize the database so 3777 ** that the last page of the file currently in use is no longer in use. 3778 ** 3779 ** Parameter nFin is the number of pages that this database would contain 3780 ** were this function called until it returns SQLITE_DONE. 3781 ** 3782 ** If the bCommit parameter is non-zero, this function assumes that the 3783 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3784 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3785 ** operation, or false for an incremental vacuum. 3786 */ 3787 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3788 Pgno nFreeList; /* Number of pages still on the free-list */ 3789 int rc; 3790 3791 assert( sqlite3_mutex_held(pBt->mutex) ); 3792 assert( iLastPg>nFin ); 3793 3794 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3795 u8 eType; 3796 Pgno iPtrPage; 3797 3798 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3799 if( nFreeList==0 ){ 3800 return SQLITE_DONE; 3801 } 3802 3803 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3804 if( rc!=SQLITE_OK ){ 3805 return rc; 3806 } 3807 if( eType==PTRMAP_ROOTPAGE ){ 3808 return SQLITE_CORRUPT_BKPT; 3809 } 3810 3811 if( eType==PTRMAP_FREEPAGE ){ 3812 if( bCommit==0 ){ 3813 /* Remove the page from the files free-list. This is not required 3814 ** if bCommit is non-zero. In that case, the free-list will be 3815 ** truncated to zero after this function returns, so it doesn't 3816 ** matter if it still contains some garbage entries. 3817 */ 3818 Pgno iFreePg; 3819 MemPage *pFreePg; 3820 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3821 if( rc!=SQLITE_OK ){ 3822 return rc; 3823 } 3824 assert( iFreePg==iLastPg ); 3825 releasePage(pFreePg); 3826 } 3827 } else { 3828 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3829 MemPage *pLastPg; 3830 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3831 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3832 3833 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3834 if( rc!=SQLITE_OK ){ 3835 return rc; 3836 } 3837 3838 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3839 ** is swapped with the first free page pulled off the free list. 3840 ** 3841 ** On the other hand, if bCommit is greater than zero, then keep 3842 ** looping until a free-page located within the first nFin pages 3843 ** of the file is found. 3844 */ 3845 if( bCommit==0 ){ 3846 eMode = BTALLOC_LE; 3847 iNear = nFin; 3848 } 3849 do { 3850 MemPage *pFreePg; 3851 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3852 if( rc!=SQLITE_OK ){ 3853 releasePage(pLastPg); 3854 return rc; 3855 } 3856 releasePage(pFreePg); 3857 }while( bCommit && iFreePg>nFin ); 3858 assert( iFreePg<iLastPg ); 3859 3860 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3861 releasePage(pLastPg); 3862 if( rc!=SQLITE_OK ){ 3863 return rc; 3864 } 3865 } 3866 } 3867 3868 if( bCommit==0 ){ 3869 do { 3870 iLastPg--; 3871 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3872 pBt->bDoTruncate = 1; 3873 pBt->nPage = iLastPg; 3874 } 3875 return SQLITE_OK; 3876 } 3877 3878 /* 3879 ** The database opened by the first argument is an auto-vacuum database 3880 ** nOrig pages in size containing nFree free pages. Return the expected 3881 ** size of the database in pages following an auto-vacuum operation. 3882 */ 3883 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3884 int nEntry; /* Number of entries on one ptrmap page */ 3885 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3886 Pgno nFin; /* Return value */ 3887 3888 nEntry = pBt->usableSize/5; 3889 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3890 nFin = nOrig - nFree - nPtrmap; 3891 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3892 nFin--; 3893 } 3894 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3895 nFin--; 3896 } 3897 3898 return nFin; 3899 } 3900 3901 /* 3902 ** A write-transaction must be opened before calling this function. 3903 ** It performs a single unit of work towards an incremental vacuum. 3904 ** 3905 ** If the incremental vacuum is finished after this function has run, 3906 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3907 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3908 */ 3909 int sqlite3BtreeIncrVacuum(Btree *p){ 3910 int rc; 3911 BtShared *pBt = p->pBt; 3912 3913 sqlite3BtreeEnter(p); 3914 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3915 if( !pBt->autoVacuum ){ 3916 rc = SQLITE_DONE; 3917 }else{ 3918 Pgno nOrig = btreePagecount(pBt); 3919 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3920 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3921 3922 if( nOrig<nFin || nFree>=nOrig ){ 3923 rc = SQLITE_CORRUPT_BKPT; 3924 }else if( nFree>0 ){ 3925 rc = saveAllCursors(pBt, 0, 0); 3926 if( rc==SQLITE_OK ){ 3927 invalidateAllOverflowCache(pBt); 3928 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3929 } 3930 if( rc==SQLITE_OK ){ 3931 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3932 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3933 } 3934 }else{ 3935 rc = SQLITE_DONE; 3936 } 3937 } 3938 sqlite3BtreeLeave(p); 3939 return rc; 3940 } 3941 3942 /* 3943 ** This routine is called prior to sqlite3PagerCommit when a transaction 3944 ** is committed for an auto-vacuum database. 3945 ** 3946 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3947 ** the database file should be truncated to during the commit process. 3948 ** i.e. the database has been reorganized so that only the first *pnTrunc 3949 ** pages are in use. 3950 */ 3951 static int autoVacuumCommit(BtShared *pBt){ 3952 int rc = SQLITE_OK; 3953 Pager *pPager = pBt->pPager; 3954 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3955 3956 assert( sqlite3_mutex_held(pBt->mutex) ); 3957 invalidateAllOverflowCache(pBt); 3958 assert(pBt->autoVacuum); 3959 if( !pBt->incrVacuum ){ 3960 Pgno nFin; /* Number of pages in database after autovacuuming */ 3961 Pgno nFree; /* Number of pages on the freelist initially */ 3962 Pgno iFree; /* The next page to be freed */ 3963 Pgno nOrig; /* Database size before freeing */ 3964 3965 nOrig = btreePagecount(pBt); 3966 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3967 /* It is not possible to create a database for which the final page 3968 ** is either a pointer-map page or the pending-byte page. If one 3969 ** is encountered, this indicates corruption. 3970 */ 3971 return SQLITE_CORRUPT_BKPT; 3972 } 3973 3974 nFree = get4byte(&pBt->pPage1->aData[36]); 3975 nFin = finalDbSize(pBt, nOrig, nFree); 3976 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3977 if( nFin<nOrig ){ 3978 rc = saveAllCursors(pBt, 0, 0); 3979 } 3980 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3981 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3982 } 3983 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3984 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3985 put4byte(&pBt->pPage1->aData[32], 0); 3986 put4byte(&pBt->pPage1->aData[36], 0); 3987 put4byte(&pBt->pPage1->aData[28], nFin); 3988 pBt->bDoTruncate = 1; 3989 pBt->nPage = nFin; 3990 } 3991 if( rc!=SQLITE_OK ){ 3992 sqlite3PagerRollback(pPager); 3993 } 3994 } 3995 3996 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3997 return rc; 3998 } 3999 4000 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4001 # define setChildPtrmaps(x) SQLITE_OK 4002 #endif 4003 4004 /* 4005 ** This routine does the first phase of a two-phase commit. This routine 4006 ** causes a rollback journal to be created (if it does not already exist) 4007 ** and populated with enough information so that if a power loss occurs 4008 ** the database can be restored to its original state by playing back 4009 ** the journal. Then the contents of the journal are flushed out to 4010 ** the disk. After the journal is safely on oxide, the changes to the 4011 ** database are written into the database file and flushed to oxide. 4012 ** At the end of this call, the rollback journal still exists on the 4013 ** disk and we are still holding all locks, so the transaction has not 4014 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4015 ** commit process. 4016 ** 4017 ** This call is a no-op if no write-transaction is currently active on pBt. 4018 ** 4019 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4020 ** the name of a super-journal file that should be written into the 4021 ** individual journal file, or is NULL, indicating no super-journal file 4022 ** (single database transaction). 4023 ** 4024 ** When this is called, the super-journal should already have been 4025 ** created, populated with this journal pointer and synced to disk. 4026 ** 4027 ** Once this is routine has returned, the only thing required to commit 4028 ** the write-transaction for this database file is to delete the journal. 4029 */ 4030 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4031 int rc = SQLITE_OK; 4032 if( p->inTrans==TRANS_WRITE ){ 4033 BtShared *pBt = p->pBt; 4034 sqlite3BtreeEnter(p); 4035 #ifndef SQLITE_OMIT_AUTOVACUUM 4036 if( pBt->autoVacuum ){ 4037 rc = autoVacuumCommit(pBt); 4038 if( rc!=SQLITE_OK ){ 4039 sqlite3BtreeLeave(p); 4040 return rc; 4041 } 4042 } 4043 if( pBt->bDoTruncate ){ 4044 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4045 } 4046 #endif 4047 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4048 sqlite3BtreeLeave(p); 4049 } 4050 return rc; 4051 } 4052 4053 /* 4054 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4055 ** at the conclusion of a transaction. 4056 */ 4057 static void btreeEndTransaction(Btree *p){ 4058 BtShared *pBt = p->pBt; 4059 sqlite3 *db = p->db; 4060 assert( sqlite3BtreeHoldsMutex(p) ); 4061 4062 #ifndef SQLITE_OMIT_AUTOVACUUM 4063 pBt->bDoTruncate = 0; 4064 #endif 4065 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4066 /* If there are other active statements that belong to this database 4067 ** handle, downgrade to a read-only transaction. The other statements 4068 ** may still be reading from the database. */ 4069 downgradeAllSharedCacheTableLocks(p); 4070 p->inTrans = TRANS_READ; 4071 }else{ 4072 /* If the handle had any kind of transaction open, decrement the 4073 ** transaction count of the shared btree. If the transaction count 4074 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4075 ** call below will unlock the pager. */ 4076 if( p->inTrans!=TRANS_NONE ){ 4077 clearAllSharedCacheTableLocks(p); 4078 pBt->nTransaction--; 4079 if( 0==pBt->nTransaction ){ 4080 pBt->inTransaction = TRANS_NONE; 4081 } 4082 } 4083 4084 /* Set the current transaction state to TRANS_NONE and unlock the 4085 ** pager if this call closed the only read or write transaction. */ 4086 p->inTrans = TRANS_NONE; 4087 unlockBtreeIfUnused(pBt); 4088 } 4089 4090 btreeIntegrity(p); 4091 } 4092 4093 /* 4094 ** Commit the transaction currently in progress. 4095 ** 4096 ** This routine implements the second phase of a 2-phase commit. The 4097 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4098 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4099 ** routine did all the work of writing information out to disk and flushing the 4100 ** contents so that they are written onto the disk platter. All this 4101 ** routine has to do is delete or truncate or zero the header in the 4102 ** the rollback journal (which causes the transaction to commit) and 4103 ** drop locks. 4104 ** 4105 ** Normally, if an error occurs while the pager layer is attempting to 4106 ** finalize the underlying journal file, this function returns an error and 4107 ** the upper layer will attempt a rollback. However, if the second argument 4108 ** is non-zero then this b-tree transaction is part of a multi-file 4109 ** transaction. In this case, the transaction has already been committed 4110 ** (by deleting a super-journal file) and the caller will ignore this 4111 ** functions return code. So, even if an error occurs in the pager layer, 4112 ** reset the b-tree objects internal state to indicate that the write 4113 ** transaction has been closed. This is quite safe, as the pager will have 4114 ** transitioned to the error state. 4115 ** 4116 ** This will release the write lock on the database file. If there 4117 ** are no active cursors, it also releases the read lock. 4118 */ 4119 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4120 4121 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4122 sqlite3BtreeEnter(p); 4123 btreeIntegrity(p); 4124 4125 /* If the handle has a write-transaction open, commit the shared-btrees 4126 ** transaction and set the shared state to TRANS_READ. 4127 */ 4128 if( p->inTrans==TRANS_WRITE ){ 4129 int rc; 4130 BtShared *pBt = p->pBt; 4131 assert( pBt->inTransaction==TRANS_WRITE ); 4132 assert( pBt->nTransaction>0 ); 4133 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4134 if( rc!=SQLITE_OK && bCleanup==0 ){ 4135 sqlite3BtreeLeave(p); 4136 return rc; 4137 } 4138 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4139 pBt->inTransaction = TRANS_READ; 4140 btreeClearHasContent(pBt); 4141 } 4142 4143 btreeEndTransaction(p); 4144 sqlite3BtreeLeave(p); 4145 return SQLITE_OK; 4146 } 4147 4148 /* 4149 ** Do both phases of a commit. 4150 */ 4151 int sqlite3BtreeCommit(Btree *p){ 4152 int rc; 4153 sqlite3BtreeEnter(p); 4154 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4155 if( rc==SQLITE_OK ){ 4156 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4157 } 4158 sqlite3BtreeLeave(p); 4159 return rc; 4160 } 4161 4162 /* 4163 ** This routine sets the state to CURSOR_FAULT and the error 4164 ** code to errCode for every cursor on any BtShared that pBtree 4165 ** references. Or if the writeOnly flag is set to 1, then only 4166 ** trip write cursors and leave read cursors unchanged. 4167 ** 4168 ** Every cursor is a candidate to be tripped, including cursors 4169 ** that belong to other database connections that happen to be 4170 ** sharing the cache with pBtree. 4171 ** 4172 ** This routine gets called when a rollback occurs. If the writeOnly 4173 ** flag is true, then only write-cursors need be tripped - read-only 4174 ** cursors save their current positions so that they may continue 4175 ** following the rollback. Or, if writeOnly is false, all cursors are 4176 ** tripped. In general, writeOnly is false if the transaction being 4177 ** rolled back modified the database schema. In this case b-tree root 4178 ** pages may be moved or deleted from the database altogether, making 4179 ** it unsafe for read cursors to continue. 4180 ** 4181 ** If the writeOnly flag is true and an error is encountered while 4182 ** saving the current position of a read-only cursor, all cursors, 4183 ** including all read-cursors are tripped. 4184 ** 4185 ** SQLITE_OK is returned if successful, or if an error occurs while 4186 ** saving a cursor position, an SQLite error code. 4187 */ 4188 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4189 BtCursor *p; 4190 int rc = SQLITE_OK; 4191 4192 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4193 if( pBtree ){ 4194 sqlite3BtreeEnter(pBtree); 4195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4196 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4197 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4198 rc = saveCursorPosition(p); 4199 if( rc!=SQLITE_OK ){ 4200 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4201 break; 4202 } 4203 } 4204 }else{ 4205 sqlite3BtreeClearCursor(p); 4206 p->eState = CURSOR_FAULT; 4207 p->skipNext = errCode; 4208 } 4209 btreeReleaseAllCursorPages(p); 4210 } 4211 sqlite3BtreeLeave(pBtree); 4212 } 4213 return rc; 4214 } 4215 4216 /* 4217 ** Set the pBt->nPage field correctly, according to the current 4218 ** state of the database. Assume pBt->pPage1 is valid. 4219 */ 4220 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4221 int nPage = get4byte(&pPage1->aData[28]); 4222 testcase( nPage==0 ); 4223 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4224 testcase( pBt->nPage!=nPage ); 4225 pBt->nPage = nPage; 4226 } 4227 4228 /* 4229 ** Rollback the transaction in progress. 4230 ** 4231 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4232 ** Only write cursors are tripped if writeOnly is true but all cursors are 4233 ** tripped if writeOnly is false. Any attempt to use 4234 ** a tripped cursor will result in an error. 4235 ** 4236 ** This will release the write lock on the database file. If there 4237 ** are no active cursors, it also releases the read lock. 4238 */ 4239 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4240 int rc; 4241 BtShared *pBt = p->pBt; 4242 MemPage *pPage1; 4243 4244 assert( writeOnly==1 || writeOnly==0 ); 4245 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4246 sqlite3BtreeEnter(p); 4247 if( tripCode==SQLITE_OK ){ 4248 rc = tripCode = saveAllCursors(pBt, 0, 0); 4249 if( rc ) writeOnly = 0; 4250 }else{ 4251 rc = SQLITE_OK; 4252 } 4253 if( tripCode ){ 4254 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4255 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4256 if( rc2!=SQLITE_OK ) rc = rc2; 4257 } 4258 btreeIntegrity(p); 4259 4260 if( p->inTrans==TRANS_WRITE ){ 4261 int rc2; 4262 4263 assert( TRANS_WRITE==pBt->inTransaction ); 4264 rc2 = sqlite3PagerRollback(pBt->pPager); 4265 if( rc2!=SQLITE_OK ){ 4266 rc = rc2; 4267 } 4268 4269 /* The rollback may have destroyed the pPage1->aData value. So 4270 ** call btreeGetPage() on page 1 again to make 4271 ** sure pPage1->aData is set correctly. */ 4272 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4273 btreeSetNPage(pBt, pPage1); 4274 releasePageOne(pPage1); 4275 } 4276 assert( countValidCursors(pBt, 1)==0 ); 4277 pBt->inTransaction = TRANS_READ; 4278 btreeClearHasContent(pBt); 4279 } 4280 4281 btreeEndTransaction(p); 4282 sqlite3BtreeLeave(p); 4283 return rc; 4284 } 4285 4286 /* 4287 ** Start a statement subtransaction. The subtransaction can be rolled 4288 ** back independently of the main transaction. You must start a transaction 4289 ** before starting a subtransaction. The subtransaction is ended automatically 4290 ** if the main transaction commits or rolls back. 4291 ** 4292 ** Statement subtransactions are used around individual SQL statements 4293 ** that are contained within a BEGIN...COMMIT block. If a constraint 4294 ** error occurs within the statement, the effect of that one statement 4295 ** can be rolled back without having to rollback the entire transaction. 4296 ** 4297 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4298 ** value passed as the second parameter is the total number of savepoints, 4299 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4300 ** are no active savepoints and no other statement-transactions open, 4301 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4302 ** using the sqlite3BtreeSavepoint() function. 4303 */ 4304 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4305 int rc; 4306 BtShared *pBt = p->pBt; 4307 sqlite3BtreeEnter(p); 4308 assert( p->inTrans==TRANS_WRITE ); 4309 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4310 assert( iStatement>0 ); 4311 assert( iStatement>p->db->nSavepoint ); 4312 assert( pBt->inTransaction==TRANS_WRITE ); 4313 /* At the pager level, a statement transaction is a savepoint with 4314 ** an index greater than all savepoints created explicitly using 4315 ** SQL statements. It is illegal to open, release or rollback any 4316 ** such savepoints while the statement transaction savepoint is active. 4317 */ 4318 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4319 sqlite3BtreeLeave(p); 4320 return rc; 4321 } 4322 4323 /* 4324 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4325 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4326 ** savepoint identified by parameter iSavepoint, depending on the value 4327 ** of op. 4328 ** 4329 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4330 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4331 ** contents of the entire transaction are rolled back. This is different 4332 ** from a normal transaction rollback, as no locks are released and the 4333 ** transaction remains open. 4334 */ 4335 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4336 int rc = SQLITE_OK; 4337 if( p && p->inTrans==TRANS_WRITE ){ 4338 BtShared *pBt = p->pBt; 4339 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4340 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4341 sqlite3BtreeEnter(p); 4342 if( op==SAVEPOINT_ROLLBACK ){ 4343 rc = saveAllCursors(pBt, 0, 0); 4344 } 4345 if( rc==SQLITE_OK ){ 4346 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4347 } 4348 if( rc==SQLITE_OK ){ 4349 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4350 pBt->nPage = 0; 4351 } 4352 rc = newDatabase(pBt); 4353 btreeSetNPage(pBt, pBt->pPage1); 4354 4355 /* pBt->nPage might be zero if the database was corrupt when 4356 ** the transaction was started. Otherwise, it must be at least 1. */ 4357 assert( CORRUPT_DB || pBt->nPage>0 ); 4358 } 4359 sqlite3BtreeLeave(p); 4360 } 4361 return rc; 4362 } 4363 4364 /* 4365 ** Create a new cursor for the BTree whose root is on the page 4366 ** iTable. If a read-only cursor is requested, it is assumed that 4367 ** the caller already has at least a read-only transaction open 4368 ** on the database already. If a write-cursor is requested, then 4369 ** the caller is assumed to have an open write transaction. 4370 ** 4371 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4372 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4373 ** can be used for reading or for writing if other conditions for writing 4374 ** are also met. These are the conditions that must be met in order 4375 ** for writing to be allowed: 4376 ** 4377 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4378 ** 4379 ** 2: Other database connections that share the same pager cache 4380 ** but which are not in the READ_UNCOMMITTED state may not have 4381 ** cursors open with wrFlag==0 on the same table. Otherwise 4382 ** the changes made by this write cursor would be visible to 4383 ** the read cursors in the other database connection. 4384 ** 4385 ** 3: The database must be writable (not on read-only media) 4386 ** 4387 ** 4: There must be an active transaction. 4388 ** 4389 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4390 ** is set. If FORDELETE is set, that is a hint to the implementation that 4391 ** this cursor will only be used to seek to and delete entries of an index 4392 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4393 ** this implementation. But in a hypothetical alternative storage engine 4394 ** in which index entries are automatically deleted when corresponding table 4395 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4396 ** operations on this cursor can be no-ops and all READ operations can 4397 ** return a null row (2-bytes: 0x01 0x00). 4398 ** 4399 ** No checking is done to make sure that page iTable really is the 4400 ** root page of a b-tree. If it is not, then the cursor acquired 4401 ** will not work correctly. 4402 ** 4403 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4404 ** on pCur to initialize the memory space prior to invoking this routine. 4405 */ 4406 static int btreeCursor( 4407 Btree *p, /* The btree */ 4408 Pgno iTable, /* Root page of table to open */ 4409 int wrFlag, /* 1 to write. 0 read-only */ 4410 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4411 BtCursor *pCur /* Space for new cursor */ 4412 ){ 4413 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4414 BtCursor *pX; /* Looping over other all cursors */ 4415 4416 assert( sqlite3BtreeHoldsMutex(p) ); 4417 assert( wrFlag==0 4418 || wrFlag==BTREE_WRCSR 4419 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4420 ); 4421 4422 /* The following assert statements verify that if this is a sharable 4423 ** b-tree database, the connection is holding the required table locks, 4424 ** and that no other connection has any open cursor that conflicts with 4425 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4426 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4427 || iTable<1 ); 4428 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4429 4430 /* Assert that the caller has opened the required transaction. */ 4431 assert( p->inTrans>TRANS_NONE ); 4432 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4433 assert( pBt->pPage1 && pBt->pPage1->aData ); 4434 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4435 4436 if( wrFlag ){ 4437 allocateTempSpace(pBt); 4438 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4439 } 4440 if( iTable<=1 ){ 4441 if( iTable<1 ){ 4442 return SQLITE_CORRUPT_BKPT; 4443 }else if( btreePagecount(pBt)==0 ){ 4444 assert( wrFlag==0 ); 4445 iTable = 0; 4446 } 4447 } 4448 4449 /* Now that no other errors can occur, finish filling in the BtCursor 4450 ** variables and link the cursor into the BtShared list. */ 4451 pCur->pgnoRoot = iTable; 4452 pCur->iPage = -1; 4453 pCur->pKeyInfo = pKeyInfo; 4454 pCur->pBtree = p; 4455 pCur->pBt = pBt; 4456 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4457 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4458 /* If there are two or more cursors on the same btree, then all such 4459 ** cursors *must* have the BTCF_Multiple flag set. */ 4460 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4461 if( pX->pgnoRoot==iTable ){ 4462 pX->curFlags |= BTCF_Multiple; 4463 pCur->curFlags |= BTCF_Multiple; 4464 } 4465 } 4466 pCur->pNext = pBt->pCursor; 4467 pBt->pCursor = pCur; 4468 pCur->eState = CURSOR_INVALID; 4469 return SQLITE_OK; 4470 } 4471 static int btreeCursorWithLock( 4472 Btree *p, /* The btree */ 4473 Pgno iTable, /* Root page of table to open */ 4474 int wrFlag, /* 1 to write. 0 read-only */ 4475 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4476 BtCursor *pCur /* Space for new cursor */ 4477 ){ 4478 int rc; 4479 sqlite3BtreeEnter(p); 4480 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4481 sqlite3BtreeLeave(p); 4482 return rc; 4483 } 4484 int sqlite3BtreeCursor( 4485 Btree *p, /* The btree */ 4486 Pgno iTable, /* Root page of table to open */ 4487 int wrFlag, /* 1 to write. 0 read-only */ 4488 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4489 BtCursor *pCur /* Write new cursor here */ 4490 ){ 4491 if( p->sharable ){ 4492 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4493 }else{ 4494 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4495 } 4496 } 4497 4498 /* 4499 ** Return the size of a BtCursor object in bytes. 4500 ** 4501 ** This interfaces is needed so that users of cursors can preallocate 4502 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4503 ** to users so they cannot do the sizeof() themselves - they must call 4504 ** this routine. 4505 */ 4506 int sqlite3BtreeCursorSize(void){ 4507 return ROUND8(sizeof(BtCursor)); 4508 } 4509 4510 /* 4511 ** Initialize memory that will be converted into a BtCursor object. 4512 ** 4513 ** The simple approach here would be to memset() the entire object 4514 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4515 ** do not need to be zeroed and they are large, so we can save a lot 4516 ** of run-time by skipping the initialization of those elements. 4517 */ 4518 void sqlite3BtreeCursorZero(BtCursor *p){ 4519 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4520 } 4521 4522 /* 4523 ** Close a cursor. The read lock on the database file is released 4524 ** when the last cursor is closed. 4525 */ 4526 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4527 Btree *pBtree = pCur->pBtree; 4528 if( pBtree ){ 4529 BtShared *pBt = pCur->pBt; 4530 sqlite3BtreeEnter(pBtree); 4531 assert( pBt->pCursor!=0 ); 4532 if( pBt->pCursor==pCur ){ 4533 pBt->pCursor = pCur->pNext; 4534 }else{ 4535 BtCursor *pPrev = pBt->pCursor; 4536 do{ 4537 if( pPrev->pNext==pCur ){ 4538 pPrev->pNext = pCur->pNext; 4539 break; 4540 } 4541 pPrev = pPrev->pNext; 4542 }while( ALWAYS(pPrev) ); 4543 } 4544 btreeReleaseAllCursorPages(pCur); 4545 unlockBtreeIfUnused(pBt); 4546 sqlite3_free(pCur->aOverflow); 4547 sqlite3_free(pCur->pKey); 4548 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4549 /* Since the BtShared is not sharable, there is no need to 4550 ** worry about the missing sqlite3BtreeLeave() call here. */ 4551 assert( pBtree->sharable==0 ); 4552 sqlite3BtreeClose(pBtree); 4553 }else{ 4554 sqlite3BtreeLeave(pBtree); 4555 } 4556 pCur->pBtree = 0; 4557 } 4558 return SQLITE_OK; 4559 } 4560 4561 /* 4562 ** Make sure the BtCursor* given in the argument has a valid 4563 ** BtCursor.info structure. If it is not already valid, call 4564 ** btreeParseCell() to fill it in. 4565 ** 4566 ** BtCursor.info is a cache of the information in the current cell. 4567 ** Using this cache reduces the number of calls to btreeParseCell(). 4568 */ 4569 #ifndef NDEBUG 4570 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4571 if( a->nKey!=b->nKey ) return 0; 4572 if( a->pPayload!=b->pPayload ) return 0; 4573 if( a->nPayload!=b->nPayload ) return 0; 4574 if( a->nLocal!=b->nLocal ) return 0; 4575 if( a->nSize!=b->nSize ) return 0; 4576 return 1; 4577 } 4578 static void assertCellInfo(BtCursor *pCur){ 4579 CellInfo info; 4580 memset(&info, 0, sizeof(info)); 4581 btreeParseCell(pCur->pPage, pCur->ix, &info); 4582 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4583 } 4584 #else 4585 #define assertCellInfo(x) 4586 #endif 4587 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4588 if( pCur->info.nSize==0 ){ 4589 pCur->curFlags |= BTCF_ValidNKey; 4590 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4591 }else{ 4592 assertCellInfo(pCur); 4593 } 4594 } 4595 4596 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4597 /* 4598 ** Return true if the given BtCursor is valid. A valid cursor is one 4599 ** that is currently pointing to a row in a (non-empty) table. 4600 ** This is a verification routine is used only within assert() statements. 4601 */ 4602 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4603 return pCur && pCur->eState==CURSOR_VALID; 4604 } 4605 #endif /* NDEBUG */ 4606 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4607 assert( pCur!=0 ); 4608 return pCur->eState==CURSOR_VALID; 4609 } 4610 4611 /* 4612 ** Return the value of the integer key or "rowid" for a table btree. 4613 ** This routine is only valid for a cursor that is pointing into a 4614 ** ordinary table btree. If the cursor points to an index btree or 4615 ** is invalid, the result of this routine is undefined. 4616 */ 4617 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4618 assert( cursorHoldsMutex(pCur) ); 4619 assert( pCur->eState==CURSOR_VALID ); 4620 assert( pCur->curIntKey ); 4621 getCellInfo(pCur); 4622 return pCur->info.nKey; 4623 } 4624 4625 /* 4626 ** Pin or unpin a cursor. 4627 */ 4628 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4629 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4630 pCur->curFlags |= BTCF_Pinned; 4631 } 4632 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4633 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4634 pCur->curFlags &= ~BTCF_Pinned; 4635 } 4636 4637 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4638 /* 4639 ** Return the offset into the database file for the start of the 4640 ** payload to which the cursor is pointing. 4641 */ 4642 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4643 assert( cursorHoldsMutex(pCur) ); 4644 assert( pCur->eState==CURSOR_VALID ); 4645 getCellInfo(pCur); 4646 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4647 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4648 } 4649 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4650 4651 /* 4652 ** Return the number of bytes of payload for the entry that pCur is 4653 ** currently pointing to. For table btrees, this will be the amount 4654 ** of data. For index btrees, this will be the size of the key. 4655 ** 4656 ** The caller must guarantee that the cursor is pointing to a non-NULL 4657 ** valid entry. In other words, the calling procedure must guarantee 4658 ** that the cursor has Cursor.eState==CURSOR_VALID. 4659 */ 4660 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4661 assert( cursorHoldsMutex(pCur) ); 4662 assert( pCur->eState==CURSOR_VALID ); 4663 getCellInfo(pCur); 4664 return pCur->info.nPayload; 4665 } 4666 4667 /* 4668 ** Return an upper bound on the size of any record for the table 4669 ** that the cursor is pointing into. 4670 ** 4671 ** This is an optimization. Everything will still work if this 4672 ** routine always returns 2147483647 (which is the largest record 4673 ** that SQLite can handle) or more. But returning a smaller value might 4674 ** prevent large memory allocations when trying to interpret a 4675 ** corrupt datrabase. 4676 ** 4677 ** The current implementation merely returns the size of the underlying 4678 ** database file. 4679 */ 4680 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4681 assert( cursorHoldsMutex(pCur) ); 4682 assert( pCur->eState==CURSOR_VALID ); 4683 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4684 } 4685 4686 /* 4687 ** Given the page number of an overflow page in the database (parameter 4688 ** ovfl), this function finds the page number of the next page in the 4689 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4690 ** pointer-map data instead of reading the content of page ovfl to do so. 4691 ** 4692 ** If an error occurs an SQLite error code is returned. Otherwise: 4693 ** 4694 ** The page number of the next overflow page in the linked list is 4695 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4696 ** list, *pPgnoNext is set to zero. 4697 ** 4698 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4699 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4700 ** reference. It is the responsibility of the caller to call releasePage() 4701 ** on *ppPage to free the reference. In no reference was obtained (because 4702 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4703 ** *ppPage is set to zero. 4704 */ 4705 static int getOverflowPage( 4706 BtShared *pBt, /* The database file */ 4707 Pgno ovfl, /* Current overflow page number */ 4708 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4709 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4710 ){ 4711 Pgno next = 0; 4712 MemPage *pPage = 0; 4713 int rc = SQLITE_OK; 4714 4715 assert( sqlite3_mutex_held(pBt->mutex) ); 4716 assert(pPgnoNext); 4717 4718 #ifndef SQLITE_OMIT_AUTOVACUUM 4719 /* Try to find the next page in the overflow list using the 4720 ** autovacuum pointer-map pages. Guess that the next page in 4721 ** the overflow list is page number (ovfl+1). If that guess turns 4722 ** out to be wrong, fall back to loading the data of page 4723 ** number ovfl to determine the next page number. 4724 */ 4725 if( pBt->autoVacuum ){ 4726 Pgno pgno; 4727 Pgno iGuess = ovfl+1; 4728 u8 eType; 4729 4730 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4731 iGuess++; 4732 } 4733 4734 if( iGuess<=btreePagecount(pBt) ){ 4735 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4736 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4737 next = iGuess; 4738 rc = SQLITE_DONE; 4739 } 4740 } 4741 } 4742 #endif 4743 4744 assert( next==0 || rc==SQLITE_DONE ); 4745 if( rc==SQLITE_OK ){ 4746 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4747 assert( rc==SQLITE_OK || pPage==0 ); 4748 if( rc==SQLITE_OK ){ 4749 next = get4byte(pPage->aData); 4750 } 4751 } 4752 4753 *pPgnoNext = next; 4754 if( ppPage ){ 4755 *ppPage = pPage; 4756 }else{ 4757 releasePage(pPage); 4758 } 4759 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4760 } 4761 4762 /* 4763 ** Copy data from a buffer to a page, or from a page to a buffer. 4764 ** 4765 ** pPayload is a pointer to data stored on database page pDbPage. 4766 ** If argument eOp is false, then nByte bytes of data are copied 4767 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4768 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4769 ** of data are copied from the buffer pBuf to pPayload. 4770 ** 4771 ** SQLITE_OK is returned on success, otherwise an error code. 4772 */ 4773 static int copyPayload( 4774 void *pPayload, /* Pointer to page data */ 4775 void *pBuf, /* Pointer to buffer */ 4776 int nByte, /* Number of bytes to copy */ 4777 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4778 DbPage *pDbPage /* Page containing pPayload */ 4779 ){ 4780 if( eOp ){ 4781 /* Copy data from buffer to page (a write operation) */ 4782 int rc = sqlite3PagerWrite(pDbPage); 4783 if( rc!=SQLITE_OK ){ 4784 return rc; 4785 } 4786 memcpy(pPayload, pBuf, nByte); 4787 }else{ 4788 /* Copy data from page to buffer (a read operation) */ 4789 memcpy(pBuf, pPayload, nByte); 4790 } 4791 return SQLITE_OK; 4792 } 4793 4794 /* 4795 ** This function is used to read or overwrite payload information 4796 ** for the entry that the pCur cursor is pointing to. The eOp 4797 ** argument is interpreted as follows: 4798 ** 4799 ** 0: The operation is a read. Populate the overflow cache. 4800 ** 1: The operation is a write. Populate the overflow cache. 4801 ** 4802 ** A total of "amt" bytes are read or written beginning at "offset". 4803 ** Data is read to or from the buffer pBuf. 4804 ** 4805 ** The content being read or written might appear on the main page 4806 ** or be scattered out on multiple overflow pages. 4807 ** 4808 ** If the current cursor entry uses one or more overflow pages 4809 ** this function may allocate space for and lazily populate 4810 ** the overflow page-list cache array (BtCursor.aOverflow). 4811 ** Subsequent calls use this cache to make seeking to the supplied offset 4812 ** more efficient. 4813 ** 4814 ** Once an overflow page-list cache has been allocated, it must be 4815 ** invalidated if some other cursor writes to the same table, or if 4816 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4817 ** mode, the following events may invalidate an overflow page-list cache. 4818 ** 4819 ** * An incremental vacuum, 4820 ** * A commit in auto_vacuum="full" mode, 4821 ** * Creating a table (may require moving an overflow page). 4822 */ 4823 static int accessPayload( 4824 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4825 u32 offset, /* Begin reading this far into payload */ 4826 u32 amt, /* Read this many bytes */ 4827 unsigned char *pBuf, /* Write the bytes into this buffer */ 4828 int eOp /* zero to read. non-zero to write. */ 4829 ){ 4830 unsigned char *aPayload; 4831 int rc = SQLITE_OK; 4832 int iIdx = 0; 4833 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4834 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4835 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4836 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4837 #endif 4838 4839 assert( pPage ); 4840 assert( eOp==0 || eOp==1 ); 4841 assert( pCur->eState==CURSOR_VALID ); 4842 assert( pCur->ix<pPage->nCell ); 4843 assert( cursorHoldsMutex(pCur) ); 4844 4845 getCellInfo(pCur); 4846 aPayload = pCur->info.pPayload; 4847 assert( offset+amt <= pCur->info.nPayload ); 4848 4849 assert( aPayload > pPage->aData ); 4850 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4851 /* Trying to read or write past the end of the data is an error. The 4852 ** conditional above is really: 4853 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4854 ** but is recast into its current form to avoid integer overflow problems 4855 */ 4856 return SQLITE_CORRUPT_PAGE(pPage); 4857 } 4858 4859 /* Check if data must be read/written to/from the btree page itself. */ 4860 if( offset<pCur->info.nLocal ){ 4861 int a = amt; 4862 if( a+offset>pCur->info.nLocal ){ 4863 a = pCur->info.nLocal - offset; 4864 } 4865 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4866 offset = 0; 4867 pBuf += a; 4868 amt -= a; 4869 }else{ 4870 offset -= pCur->info.nLocal; 4871 } 4872 4873 4874 if( rc==SQLITE_OK && amt>0 ){ 4875 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4876 Pgno nextPage; 4877 4878 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4879 4880 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4881 ** 4882 ** The aOverflow[] array is sized at one entry for each overflow page 4883 ** in the overflow chain. The page number of the first overflow page is 4884 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4885 ** means "not yet known" (the cache is lazily populated). 4886 */ 4887 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4888 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4889 if( pCur->aOverflow==0 4890 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4891 ){ 4892 Pgno *aNew = (Pgno*)sqlite3Realloc( 4893 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4894 ); 4895 if( aNew==0 ){ 4896 return SQLITE_NOMEM_BKPT; 4897 }else{ 4898 pCur->aOverflow = aNew; 4899 } 4900 } 4901 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4902 pCur->curFlags |= BTCF_ValidOvfl; 4903 }else{ 4904 /* If the overflow page-list cache has been allocated and the 4905 ** entry for the first required overflow page is valid, skip 4906 ** directly to it. 4907 */ 4908 if( pCur->aOverflow[offset/ovflSize] ){ 4909 iIdx = (offset/ovflSize); 4910 nextPage = pCur->aOverflow[iIdx]; 4911 offset = (offset%ovflSize); 4912 } 4913 } 4914 4915 assert( rc==SQLITE_OK && amt>0 ); 4916 while( nextPage ){ 4917 /* If required, populate the overflow page-list cache. */ 4918 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 4919 assert( pCur->aOverflow[iIdx]==0 4920 || pCur->aOverflow[iIdx]==nextPage 4921 || CORRUPT_DB ); 4922 pCur->aOverflow[iIdx] = nextPage; 4923 4924 if( offset>=ovflSize ){ 4925 /* The only reason to read this page is to obtain the page 4926 ** number for the next page in the overflow chain. The page 4927 ** data is not required. So first try to lookup the overflow 4928 ** page-list cache, if any, then fall back to the getOverflowPage() 4929 ** function. 4930 */ 4931 assert( pCur->curFlags & BTCF_ValidOvfl ); 4932 assert( pCur->pBtree->db==pBt->db ); 4933 if( pCur->aOverflow[iIdx+1] ){ 4934 nextPage = pCur->aOverflow[iIdx+1]; 4935 }else{ 4936 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4937 } 4938 offset -= ovflSize; 4939 }else{ 4940 /* Need to read this page properly. It contains some of the 4941 ** range of data that is being read (eOp==0) or written (eOp!=0). 4942 */ 4943 int a = amt; 4944 if( a + offset > ovflSize ){ 4945 a = ovflSize - offset; 4946 } 4947 4948 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4949 /* If all the following are true: 4950 ** 4951 ** 1) this is a read operation, and 4952 ** 2) data is required from the start of this overflow page, and 4953 ** 3) there are no dirty pages in the page-cache 4954 ** 4) the database is file-backed, and 4955 ** 5) the page is not in the WAL file 4956 ** 6) at least 4 bytes have already been read into the output buffer 4957 ** 4958 ** then data can be read directly from the database file into the 4959 ** output buffer, bypassing the page-cache altogether. This speeds 4960 ** up loading large records that span many overflow pages. 4961 */ 4962 if( eOp==0 /* (1) */ 4963 && offset==0 /* (2) */ 4964 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4965 && &pBuf[-4]>=pBufStart /* (6) */ 4966 ){ 4967 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4968 u8 aSave[4]; 4969 u8 *aWrite = &pBuf[-4]; 4970 assert( aWrite>=pBufStart ); /* due to (6) */ 4971 memcpy(aSave, aWrite, 4); 4972 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4973 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 4974 nextPage = get4byte(aWrite); 4975 memcpy(aWrite, aSave, 4); 4976 }else 4977 #endif 4978 4979 { 4980 DbPage *pDbPage; 4981 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4982 (eOp==0 ? PAGER_GET_READONLY : 0) 4983 ); 4984 if( rc==SQLITE_OK ){ 4985 aPayload = sqlite3PagerGetData(pDbPage); 4986 nextPage = get4byte(aPayload); 4987 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4988 sqlite3PagerUnref(pDbPage); 4989 offset = 0; 4990 } 4991 } 4992 amt -= a; 4993 if( amt==0 ) return rc; 4994 pBuf += a; 4995 } 4996 if( rc ) break; 4997 iIdx++; 4998 } 4999 } 5000 5001 if( rc==SQLITE_OK && amt>0 ){ 5002 /* Overflow chain ends prematurely */ 5003 return SQLITE_CORRUPT_PAGE(pPage); 5004 } 5005 return rc; 5006 } 5007 5008 /* 5009 ** Read part of the payload for the row at which that cursor pCur is currently 5010 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5011 ** begins at "offset". 5012 ** 5013 ** pCur can be pointing to either a table or an index b-tree. 5014 ** If pointing to a table btree, then the content section is read. If 5015 ** pCur is pointing to an index b-tree then the key section is read. 5016 ** 5017 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5018 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5019 ** cursor might be invalid or might need to be restored before being read. 5020 ** 5021 ** Return SQLITE_OK on success or an error code if anything goes 5022 ** wrong. An error is returned if "offset+amt" is larger than 5023 ** the available payload. 5024 */ 5025 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5026 assert( cursorHoldsMutex(pCur) ); 5027 assert( pCur->eState==CURSOR_VALID ); 5028 assert( pCur->iPage>=0 && pCur->pPage ); 5029 assert( pCur->ix<pCur->pPage->nCell ); 5030 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5031 } 5032 5033 /* 5034 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5035 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5036 ** interface. 5037 */ 5038 #ifndef SQLITE_OMIT_INCRBLOB 5039 static SQLITE_NOINLINE int accessPayloadChecked( 5040 BtCursor *pCur, 5041 u32 offset, 5042 u32 amt, 5043 void *pBuf 5044 ){ 5045 int rc; 5046 if ( pCur->eState==CURSOR_INVALID ){ 5047 return SQLITE_ABORT; 5048 } 5049 assert( cursorOwnsBtShared(pCur) ); 5050 rc = btreeRestoreCursorPosition(pCur); 5051 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5052 } 5053 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5054 if( pCur->eState==CURSOR_VALID ){ 5055 assert( cursorOwnsBtShared(pCur) ); 5056 return accessPayload(pCur, offset, amt, pBuf, 0); 5057 }else{ 5058 return accessPayloadChecked(pCur, offset, amt, pBuf); 5059 } 5060 } 5061 #endif /* SQLITE_OMIT_INCRBLOB */ 5062 5063 /* 5064 ** Return a pointer to payload information from the entry that the 5065 ** pCur cursor is pointing to. The pointer is to the beginning of 5066 ** the key if index btrees (pPage->intKey==0) and is the data for 5067 ** table btrees (pPage->intKey==1). The number of bytes of available 5068 ** key/data is written into *pAmt. If *pAmt==0, then the value 5069 ** returned will not be a valid pointer. 5070 ** 5071 ** This routine is an optimization. It is common for the entire key 5072 ** and data to fit on the local page and for there to be no overflow 5073 ** pages. When that is so, this routine can be used to access the 5074 ** key and data without making a copy. If the key and/or data spills 5075 ** onto overflow pages, then accessPayload() must be used to reassemble 5076 ** the key/data and copy it into a preallocated buffer. 5077 ** 5078 ** The pointer returned by this routine looks directly into the cached 5079 ** page of the database. The data might change or move the next time 5080 ** any btree routine is called. 5081 */ 5082 static const void *fetchPayload( 5083 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5084 u32 *pAmt /* Write the number of available bytes here */ 5085 ){ 5086 int amt; 5087 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5088 assert( pCur->eState==CURSOR_VALID ); 5089 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5090 assert( cursorOwnsBtShared(pCur) ); 5091 assert( pCur->ix<pCur->pPage->nCell ); 5092 assert( pCur->info.nSize>0 ); 5093 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5094 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5095 amt = pCur->info.nLocal; 5096 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5097 /* There is too little space on the page for the expected amount 5098 ** of local content. Database must be corrupt. */ 5099 assert( CORRUPT_DB ); 5100 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5101 } 5102 *pAmt = (u32)amt; 5103 return (void*)pCur->info.pPayload; 5104 } 5105 5106 5107 /* 5108 ** For the entry that cursor pCur is point to, return as 5109 ** many bytes of the key or data as are available on the local 5110 ** b-tree page. Write the number of available bytes into *pAmt. 5111 ** 5112 ** The pointer returned is ephemeral. The key/data may move 5113 ** or be destroyed on the next call to any Btree routine, 5114 ** including calls from other threads against the same cache. 5115 ** Hence, a mutex on the BtShared should be held prior to calling 5116 ** this routine. 5117 ** 5118 ** These routines is used to get quick access to key and data 5119 ** in the common case where no overflow pages are used. 5120 */ 5121 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5122 return fetchPayload(pCur, pAmt); 5123 } 5124 5125 5126 /* 5127 ** Move the cursor down to a new child page. The newPgno argument is the 5128 ** page number of the child page to move to. 5129 ** 5130 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5131 ** the new child page does not match the flags field of the parent (i.e. 5132 ** if an intkey page appears to be the parent of a non-intkey page, or 5133 ** vice-versa). 5134 */ 5135 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5136 BtShared *pBt = pCur->pBt; 5137 5138 assert( cursorOwnsBtShared(pCur) ); 5139 assert( pCur->eState==CURSOR_VALID ); 5140 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5141 assert( pCur->iPage>=0 ); 5142 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5143 return SQLITE_CORRUPT_BKPT; 5144 } 5145 pCur->info.nSize = 0; 5146 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5147 pCur->aiIdx[pCur->iPage] = pCur->ix; 5148 pCur->apPage[pCur->iPage] = pCur->pPage; 5149 pCur->ix = 0; 5150 pCur->iPage++; 5151 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5152 } 5153 5154 #ifdef SQLITE_DEBUG 5155 /* 5156 ** Page pParent is an internal (non-leaf) tree page. This function 5157 ** asserts that page number iChild is the left-child if the iIdx'th 5158 ** cell in page pParent. Or, if iIdx is equal to the total number of 5159 ** cells in pParent, that page number iChild is the right-child of 5160 ** the page. 5161 */ 5162 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5163 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5164 ** in a corrupt database */ 5165 assert( iIdx<=pParent->nCell ); 5166 if( iIdx==pParent->nCell ){ 5167 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5168 }else{ 5169 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5170 } 5171 } 5172 #else 5173 # define assertParentIndex(x,y,z) 5174 #endif 5175 5176 /* 5177 ** Move the cursor up to the parent page. 5178 ** 5179 ** pCur->idx is set to the cell index that contains the pointer 5180 ** to the page we are coming from. If we are coming from the 5181 ** right-most child page then pCur->idx is set to one more than 5182 ** the largest cell index. 5183 */ 5184 static void moveToParent(BtCursor *pCur){ 5185 MemPage *pLeaf; 5186 assert( cursorOwnsBtShared(pCur) ); 5187 assert( pCur->eState==CURSOR_VALID ); 5188 assert( pCur->iPage>0 ); 5189 assert( pCur->pPage ); 5190 assertParentIndex( 5191 pCur->apPage[pCur->iPage-1], 5192 pCur->aiIdx[pCur->iPage-1], 5193 pCur->pPage->pgno 5194 ); 5195 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5196 pCur->info.nSize = 0; 5197 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5198 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5199 pLeaf = pCur->pPage; 5200 pCur->pPage = pCur->apPage[--pCur->iPage]; 5201 releasePageNotNull(pLeaf); 5202 } 5203 5204 /* 5205 ** Move the cursor to point to the root page of its b-tree structure. 5206 ** 5207 ** If the table has a virtual root page, then the cursor is moved to point 5208 ** to the virtual root page instead of the actual root page. A table has a 5209 ** virtual root page when the actual root page contains no cells and a 5210 ** single child page. This can only happen with the table rooted at page 1. 5211 ** 5212 ** If the b-tree structure is empty, the cursor state is set to 5213 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5214 ** the cursor is set to point to the first cell located on the root 5215 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5216 ** 5217 ** If this function returns successfully, it may be assumed that the 5218 ** page-header flags indicate that the [virtual] root-page is the expected 5219 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5220 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5221 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5222 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5223 ** b-tree). 5224 */ 5225 static int moveToRoot(BtCursor *pCur){ 5226 MemPage *pRoot; 5227 int rc = SQLITE_OK; 5228 5229 assert( cursorOwnsBtShared(pCur) ); 5230 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5231 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5232 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5233 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5234 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5235 5236 if( pCur->iPage>=0 ){ 5237 if( pCur->iPage ){ 5238 releasePageNotNull(pCur->pPage); 5239 while( --pCur->iPage ){ 5240 releasePageNotNull(pCur->apPage[pCur->iPage]); 5241 } 5242 pCur->pPage = pCur->apPage[0]; 5243 goto skip_init; 5244 } 5245 }else if( pCur->pgnoRoot==0 ){ 5246 pCur->eState = CURSOR_INVALID; 5247 return SQLITE_EMPTY; 5248 }else{ 5249 assert( pCur->iPage==(-1) ); 5250 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5251 if( pCur->eState==CURSOR_FAULT ){ 5252 assert( pCur->skipNext!=SQLITE_OK ); 5253 return pCur->skipNext; 5254 } 5255 sqlite3BtreeClearCursor(pCur); 5256 } 5257 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5258 0, pCur->curPagerFlags); 5259 if( rc!=SQLITE_OK ){ 5260 pCur->eState = CURSOR_INVALID; 5261 return rc; 5262 } 5263 pCur->iPage = 0; 5264 pCur->curIntKey = pCur->pPage->intKey; 5265 } 5266 pRoot = pCur->pPage; 5267 assert( pRoot->pgno==pCur->pgnoRoot ); 5268 5269 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5270 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5271 ** NULL, the caller expects a table b-tree. If this is not the case, 5272 ** return an SQLITE_CORRUPT error. 5273 ** 5274 ** Earlier versions of SQLite assumed that this test could not fail 5275 ** if the root page was already loaded when this function was called (i.e. 5276 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5277 ** in such a way that page pRoot is linked into a second b-tree table 5278 ** (or the freelist). */ 5279 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5280 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5281 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5282 } 5283 5284 skip_init: 5285 pCur->ix = 0; 5286 pCur->info.nSize = 0; 5287 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5288 5289 pRoot = pCur->pPage; 5290 if( pRoot->nCell>0 ){ 5291 pCur->eState = CURSOR_VALID; 5292 }else if( !pRoot->leaf ){ 5293 Pgno subpage; 5294 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5295 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5296 pCur->eState = CURSOR_VALID; 5297 rc = moveToChild(pCur, subpage); 5298 }else{ 5299 pCur->eState = CURSOR_INVALID; 5300 rc = SQLITE_EMPTY; 5301 } 5302 return rc; 5303 } 5304 5305 /* 5306 ** Move the cursor down to the left-most leaf entry beneath the 5307 ** entry to which it is currently pointing. 5308 ** 5309 ** The left-most leaf is the one with the smallest key - the first 5310 ** in ascending order. 5311 */ 5312 static int moveToLeftmost(BtCursor *pCur){ 5313 Pgno pgno; 5314 int rc = SQLITE_OK; 5315 MemPage *pPage; 5316 5317 assert( cursorOwnsBtShared(pCur) ); 5318 assert( pCur->eState==CURSOR_VALID ); 5319 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5320 assert( pCur->ix<pPage->nCell ); 5321 pgno = get4byte(findCell(pPage, pCur->ix)); 5322 rc = moveToChild(pCur, pgno); 5323 } 5324 return rc; 5325 } 5326 5327 /* 5328 ** Move the cursor down to the right-most leaf entry beneath the 5329 ** page to which it is currently pointing. Notice the difference 5330 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5331 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5332 ** finds the right-most entry beneath the *page*. 5333 ** 5334 ** The right-most entry is the one with the largest key - the last 5335 ** key in ascending order. 5336 */ 5337 static int moveToRightmost(BtCursor *pCur){ 5338 Pgno pgno; 5339 int rc = SQLITE_OK; 5340 MemPage *pPage = 0; 5341 5342 assert( cursorOwnsBtShared(pCur) ); 5343 assert( pCur->eState==CURSOR_VALID ); 5344 while( !(pPage = pCur->pPage)->leaf ){ 5345 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5346 pCur->ix = pPage->nCell; 5347 rc = moveToChild(pCur, pgno); 5348 if( rc ) return rc; 5349 } 5350 pCur->ix = pPage->nCell-1; 5351 assert( pCur->info.nSize==0 ); 5352 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5353 return SQLITE_OK; 5354 } 5355 5356 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5357 ** on success. Set *pRes to 0 if the cursor actually points to something 5358 ** or set *pRes to 1 if the table is empty. 5359 */ 5360 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5361 int rc; 5362 5363 assert( cursorOwnsBtShared(pCur) ); 5364 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5365 rc = moveToRoot(pCur); 5366 if( rc==SQLITE_OK ){ 5367 assert( pCur->pPage->nCell>0 ); 5368 *pRes = 0; 5369 rc = moveToLeftmost(pCur); 5370 }else if( rc==SQLITE_EMPTY ){ 5371 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5372 *pRes = 1; 5373 rc = SQLITE_OK; 5374 } 5375 return rc; 5376 } 5377 5378 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5379 ** on success. Set *pRes to 0 if the cursor actually points to something 5380 ** or set *pRes to 1 if the table is empty. 5381 */ 5382 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5383 int rc; 5384 5385 assert( cursorOwnsBtShared(pCur) ); 5386 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5387 5388 /* If the cursor already points to the last entry, this is a no-op. */ 5389 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5390 #ifdef SQLITE_DEBUG 5391 /* This block serves to assert() that the cursor really does point 5392 ** to the last entry in the b-tree. */ 5393 int ii; 5394 for(ii=0; ii<pCur->iPage; ii++){ 5395 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5396 } 5397 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5398 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5399 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5400 assert( pCur->pPage->leaf ); 5401 #endif 5402 *pRes = 0; 5403 return SQLITE_OK; 5404 } 5405 5406 rc = moveToRoot(pCur); 5407 if( rc==SQLITE_OK ){ 5408 assert( pCur->eState==CURSOR_VALID ); 5409 *pRes = 0; 5410 rc = moveToRightmost(pCur); 5411 if( rc==SQLITE_OK ){ 5412 pCur->curFlags |= BTCF_AtLast; 5413 }else{ 5414 pCur->curFlags &= ~BTCF_AtLast; 5415 } 5416 }else if( rc==SQLITE_EMPTY ){ 5417 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5418 *pRes = 1; 5419 rc = SQLITE_OK; 5420 } 5421 return rc; 5422 } 5423 5424 /* Move the cursor so that it points to an entry near the key 5425 ** specified by pIdxKey or intKey. Return a success code. 5426 ** 5427 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5428 ** must be NULL. For index tables, pIdxKey is used and intKey 5429 ** is ignored. 5430 ** 5431 ** If an exact match is not found, then the cursor is always 5432 ** left pointing at a leaf page which would hold the entry if it 5433 ** were present. The cursor might point to an entry that comes 5434 ** before or after the key. 5435 ** 5436 ** An integer is written into *pRes which is the result of 5437 ** comparing the key with the entry to which the cursor is 5438 ** pointing. The meaning of the integer written into 5439 ** *pRes is as follows: 5440 ** 5441 ** *pRes<0 The cursor is left pointing at an entry that 5442 ** is smaller than intKey/pIdxKey or if the table is empty 5443 ** and the cursor is therefore left point to nothing. 5444 ** 5445 ** *pRes==0 The cursor is left pointing at an entry that 5446 ** exactly matches intKey/pIdxKey. 5447 ** 5448 ** *pRes>0 The cursor is left pointing at an entry that 5449 ** is larger than intKey/pIdxKey. 5450 ** 5451 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5452 ** exists an entry in the table that exactly matches pIdxKey. 5453 */ 5454 int sqlite3BtreeMovetoUnpacked( 5455 BtCursor *pCur, /* The cursor to be moved */ 5456 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5457 i64 intKey, /* The table key */ 5458 int biasRight, /* If true, bias the search to the high end */ 5459 int *pRes /* Write search results here */ 5460 ){ 5461 int rc; 5462 RecordCompare xRecordCompare; 5463 5464 assert( cursorOwnsBtShared(pCur) ); 5465 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5466 assert( pRes ); 5467 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5468 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5469 5470 /* If the cursor is already positioned at the point we are trying 5471 ** to move to, then just return without doing any work */ 5472 if( pIdxKey==0 5473 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5474 ){ 5475 if( pCur->info.nKey==intKey ){ 5476 *pRes = 0; 5477 return SQLITE_OK; 5478 } 5479 if( pCur->info.nKey<intKey ){ 5480 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5481 *pRes = -1; 5482 return SQLITE_OK; 5483 } 5484 /* If the requested key is one more than the previous key, then 5485 ** try to get there using sqlite3BtreeNext() rather than a full 5486 ** binary search. This is an optimization only. The correct answer 5487 ** is still obtained without this case, only a little more slowely */ 5488 if( pCur->info.nKey+1==intKey ){ 5489 *pRes = 0; 5490 rc = sqlite3BtreeNext(pCur, 0); 5491 if( rc==SQLITE_OK ){ 5492 getCellInfo(pCur); 5493 if( pCur->info.nKey==intKey ){ 5494 return SQLITE_OK; 5495 } 5496 }else if( rc==SQLITE_DONE ){ 5497 rc = SQLITE_OK; 5498 }else{ 5499 return rc; 5500 } 5501 } 5502 } 5503 } 5504 5505 #ifdef SQLITE_DEBUG 5506 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5507 #endif 5508 5509 if( pIdxKey ){ 5510 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5511 pIdxKey->errCode = 0; 5512 assert( pIdxKey->default_rc==1 5513 || pIdxKey->default_rc==0 5514 || pIdxKey->default_rc==-1 5515 ); 5516 }else{ 5517 xRecordCompare = 0; /* All keys are integers */ 5518 } 5519 5520 rc = moveToRoot(pCur); 5521 if( rc ){ 5522 if( rc==SQLITE_EMPTY ){ 5523 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5524 *pRes = -1; 5525 return SQLITE_OK; 5526 } 5527 return rc; 5528 } 5529 assert( pCur->pPage ); 5530 assert( pCur->pPage->isInit ); 5531 assert( pCur->eState==CURSOR_VALID ); 5532 assert( pCur->pPage->nCell > 0 ); 5533 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5534 assert( pCur->curIntKey || pIdxKey ); 5535 for(;;){ 5536 int lwr, upr, idx, c; 5537 Pgno chldPg; 5538 MemPage *pPage = pCur->pPage; 5539 u8 *pCell; /* Pointer to current cell in pPage */ 5540 5541 /* pPage->nCell must be greater than zero. If this is the root-page 5542 ** the cursor would have been INVALID above and this for(;;) loop 5543 ** not run. If this is not the root-page, then the moveToChild() routine 5544 ** would have already detected db corruption. Similarly, pPage must 5545 ** be the right kind (index or table) of b-tree page. Otherwise 5546 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5547 assert( pPage->nCell>0 ); 5548 assert( pPage->intKey==(pIdxKey==0) ); 5549 lwr = 0; 5550 upr = pPage->nCell-1; 5551 assert( biasRight==0 || biasRight==1 ); 5552 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5553 pCur->ix = (u16)idx; 5554 if( xRecordCompare==0 ){ 5555 for(;;){ 5556 i64 nCellKey; 5557 pCell = findCellPastPtr(pPage, idx); 5558 if( pPage->intKeyLeaf ){ 5559 while( 0x80 <= *(pCell++) ){ 5560 if( pCell>=pPage->aDataEnd ){ 5561 return SQLITE_CORRUPT_PAGE(pPage); 5562 } 5563 } 5564 } 5565 getVarint(pCell, (u64*)&nCellKey); 5566 if( nCellKey<intKey ){ 5567 lwr = idx+1; 5568 if( lwr>upr ){ c = -1; break; } 5569 }else if( nCellKey>intKey ){ 5570 upr = idx-1; 5571 if( lwr>upr ){ c = +1; break; } 5572 }else{ 5573 assert( nCellKey==intKey ); 5574 pCur->ix = (u16)idx; 5575 if( !pPage->leaf ){ 5576 lwr = idx; 5577 goto moveto_next_layer; 5578 }else{ 5579 pCur->curFlags |= BTCF_ValidNKey; 5580 pCur->info.nKey = nCellKey; 5581 pCur->info.nSize = 0; 5582 *pRes = 0; 5583 return SQLITE_OK; 5584 } 5585 } 5586 assert( lwr+upr>=0 ); 5587 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5588 } 5589 }else{ 5590 for(;;){ 5591 int nCell; /* Size of the pCell cell in bytes */ 5592 pCell = findCellPastPtr(pPage, idx); 5593 5594 /* The maximum supported page-size is 65536 bytes. This means that 5595 ** the maximum number of record bytes stored on an index B-Tree 5596 ** page is less than 16384 bytes and may be stored as a 2-byte 5597 ** varint. This information is used to attempt to avoid parsing 5598 ** the entire cell by checking for the cases where the record is 5599 ** stored entirely within the b-tree page by inspecting the first 5600 ** 2 bytes of the cell. 5601 */ 5602 nCell = pCell[0]; 5603 if( nCell<=pPage->max1bytePayload ){ 5604 /* This branch runs if the record-size field of the cell is a 5605 ** single byte varint and the record fits entirely on the main 5606 ** b-tree page. */ 5607 testcase( pCell+nCell+1==pPage->aDataEnd ); 5608 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5609 }else if( !(pCell[1] & 0x80) 5610 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5611 ){ 5612 /* The record-size field is a 2 byte varint and the record 5613 ** fits entirely on the main b-tree page. */ 5614 testcase( pCell+nCell+2==pPage->aDataEnd ); 5615 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5616 }else{ 5617 /* The record flows over onto one or more overflow pages. In 5618 ** this case the whole cell needs to be parsed, a buffer allocated 5619 ** and accessPayload() used to retrieve the record into the 5620 ** buffer before VdbeRecordCompare() can be called. 5621 ** 5622 ** If the record is corrupt, the xRecordCompare routine may read 5623 ** up to two varints past the end of the buffer. An extra 18 5624 ** bytes of padding is allocated at the end of the buffer in 5625 ** case this happens. */ 5626 void *pCellKey; 5627 u8 * const pCellBody = pCell - pPage->childPtrSize; 5628 const int nOverrun = 18; /* Size of the overrun padding */ 5629 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5630 nCell = (int)pCur->info.nKey; 5631 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5632 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5633 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5634 testcase( nCell==2 ); /* Minimum legal index key size */ 5635 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5636 rc = SQLITE_CORRUPT_PAGE(pPage); 5637 goto moveto_finish; 5638 } 5639 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5640 if( pCellKey==0 ){ 5641 rc = SQLITE_NOMEM_BKPT; 5642 goto moveto_finish; 5643 } 5644 pCur->ix = (u16)idx; 5645 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5646 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5647 pCur->curFlags &= ~BTCF_ValidOvfl; 5648 if( rc ){ 5649 sqlite3_free(pCellKey); 5650 goto moveto_finish; 5651 } 5652 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5653 sqlite3_free(pCellKey); 5654 } 5655 assert( 5656 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5657 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5658 ); 5659 if( c<0 ){ 5660 lwr = idx+1; 5661 }else if( c>0 ){ 5662 upr = idx-1; 5663 }else{ 5664 assert( c==0 ); 5665 *pRes = 0; 5666 rc = SQLITE_OK; 5667 pCur->ix = (u16)idx; 5668 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5669 goto moveto_finish; 5670 } 5671 if( lwr>upr ) break; 5672 assert( lwr+upr>=0 ); 5673 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5674 } 5675 } 5676 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5677 assert( pPage->isInit ); 5678 if( pPage->leaf ){ 5679 assert( pCur->ix<pCur->pPage->nCell ); 5680 pCur->ix = (u16)idx; 5681 *pRes = c; 5682 rc = SQLITE_OK; 5683 goto moveto_finish; 5684 } 5685 moveto_next_layer: 5686 if( lwr>=pPage->nCell ){ 5687 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5688 }else{ 5689 chldPg = get4byte(findCell(pPage, lwr)); 5690 } 5691 pCur->ix = (u16)lwr; 5692 rc = moveToChild(pCur, chldPg); 5693 if( rc ) break; 5694 } 5695 moveto_finish: 5696 pCur->info.nSize = 0; 5697 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5698 return rc; 5699 } 5700 5701 5702 /* 5703 ** Return TRUE if the cursor is not pointing at an entry of the table. 5704 ** 5705 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5706 ** past the last entry in the table or sqlite3BtreePrev() moves past 5707 ** the first entry. TRUE is also returned if the table is empty. 5708 */ 5709 int sqlite3BtreeEof(BtCursor *pCur){ 5710 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5711 ** have been deleted? This API will need to change to return an error code 5712 ** as well as the boolean result value. 5713 */ 5714 return (CURSOR_VALID!=pCur->eState); 5715 } 5716 5717 /* 5718 ** Return an estimate for the number of rows in the table that pCur is 5719 ** pointing to. Return a negative number if no estimate is currently 5720 ** available. 5721 */ 5722 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5723 i64 n; 5724 u8 i; 5725 5726 assert( cursorOwnsBtShared(pCur) ); 5727 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5728 5729 /* Currently this interface is only called by the OP_IfSmaller 5730 ** opcode, and it that case the cursor will always be valid and 5731 ** will always point to a leaf node. */ 5732 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5733 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5734 5735 n = pCur->pPage->nCell; 5736 for(i=0; i<pCur->iPage; i++){ 5737 n *= pCur->apPage[i]->nCell; 5738 } 5739 return n; 5740 } 5741 5742 /* 5743 ** Advance the cursor to the next entry in the database. 5744 ** Return value: 5745 ** 5746 ** SQLITE_OK success 5747 ** SQLITE_DONE cursor is already pointing at the last element 5748 ** otherwise some kind of error occurred 5749 ** 5750 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5751 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5752 ** to the next cell on the current page. The (slower) btreeNext() helper 5753 ** routine is called when it is necessary to move to a different page or 5754 ** to restore the cursor. 5755 ** 5756 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5757 ** cursor corresponds to an SQL index and this routine could have been 5758 ** skipped if the SQL index had been a unique index. The F argument 5759 ** is a hint to the implement. SQLite btree implementation does not use 5760 ** this hint, but COMDB2 does. 5761 */ 5762 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5763 int rc; 5764 int idx; 5765 MemPage *pPage; 5766 5767 assert( cursorOwnsBtShared(pCur) ); 5768 if( pCur->eState!=CURSOR_VALID ){ 5769 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5770 rc = restoreCursorPosition(pCur); 5771 if( rc!=SQLITE_OK ){ 5772 return rc; 5773 } 5774 if( CURSOR_INVALID==pCur->eState ){ 5775 return SQLITE_DONE; 5776 } 5777 if( pCur->eState==CURSOR_SKIPNEXT ){ 5778 pCur->eState = CURSOR_VALID; 5779 if( pCur->skipNext>0 ) return SQLITE_OK; 5780 } 5781 } 5782 5783 pPage = pCur->pPage; 5784 idx = ++pCur->ix; 5785 if( !pPage->isInit || sqlite3FaultSim(412) ){ 5786 /* The only known way for this to happen is for there to be a 5787 ** recursive SQL function that does a DELETE operation as part of a 5788 ** SELECT which deletes content out from under an active cursor 5789 ** in a corrupt database file where the table being DELETE-ed from 5790 ** has pages in common with the table being queried. See TH3 5791 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5792 ** example. */ 5793 return SQLITE_CORRUPT_BKPT; 5794 } 5795 5796 /* If the database file is corrupt, it is possible for the value of idx 5797 ** to be invalid here. This can only occur if a second cursor modifies 5798 ** the page while cursor pCur is holding a reference to it. Which can 5799 ** only happen if the database is corrupt in such a way as to link the 5800 ** page into more than one b-tree structure. 5801 ** 5802 ** Update 2019-12-23: appears to long longer be possible after the 5803 ** addition of anotherValidCursor() condition on balance_deeper(). */ 5804 harmless( idx>pPage->nCell ); 5805 5806 if( idx>=pPage->nCell ){ 5807 if( !pPage->leaf ){ 5808 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5809 if( rc ) return rc; 5810 return moveToLeftmost(pCur); 5811 } 5812 do{ 5813 if( pCur->iPage==0 ){ 5814 pCur->eState = CURSOR_INVALID; 5815 return SQLITE_DONE; 5816 } 5817 moveToParent(pCur); 5818 pPage = pCur->pPage; 5819 }while( pCur->ix>=pPage->nCell ); 5820 if( pPage->intKey ){ 5821 return sqlite3BtreeNext(pCur, 0); 5822 }else{ 5823 return SQLITE_OK; 5824 } 5825 } 5826 if( pPage->leaf ){ 5827 return SQLITE_OK; 5828 }else{ 5829 return moveToLeftmost(pCur); 5830 } 5831 } 5832 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5833 MemPage *pPage; 5834 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5835 assert( cursorOwnsBtShared(pCur) ); 5836 assert( flags==0 || flags==1 ); 5837 pCur->info.nSize = 0; 5838 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5839 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5840 pPage = pCur->pPage; 5841 if( (++pCur->ix)>=pPage->nCell ){ 5842 pCur->ix--; 5843 return btreeNext(pCur); 5844 } 5845 if( pPage->leaf ){ 5846 return SQLITE_OK; 5847 }else{ 5848 return moveToLeftmost(pCur); 5849 } 5850 } 5851 5852 /* 5853 ** Step the cursor to the back to the previous entry in the database. 5854 ** Return values: 5855 ** 5856 ** SQLITE_OK success 5857 ** SQLITE_DONE the cursor is already on the first element of the table 5858 ** otherwise some kind of error occurred 5859 ** 5860 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5861 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5862 ** to the previous cell on the current page. The (slower) btreePrevious() 5863 ** helper routine is called when it is necessary to move to a different page 5864 ** or to restore the cursor. 5865 ** 5866 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5867 ** the cursor corresponds to an SQL index and this routine could have been 5868 ** skipped if the SQL index had been a unique index. The F argument is a 5869 ** hint to the implement. The native SQLite btree implementation does not 5870 ** use this hint, but COMDB2 does. 5871 */ 5872 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5873 int rc; 5874 MemPage *pPage; 5875 5876 assert( cursorOwnsBtShared(pCur) ); 5877 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5878 assert( pCur->info.nSize==0 ); 5879 if( pCur->eState!=CURSOR_VALID ){ 5880 rc = restoreCursorPosition(pCur); 5881 if( rc!=SQLITE_OK ){ 5882 return rc; 5883 } 5884 if( CURSOR_INVALID==pCur->eState ){ 5885 return SQLITE_DONE; 5886 } 5887 if( CURSOR_SKIPNEXT==pCur->eState ){ 5888 pCur->eState = CURSOR_VALID; 5889 if( pCur->skipNext<0 ) return SQLITE_OK; 5890 } 5891 } 5892 5893 pPage = pCur->pPage; 5894 assert( pPage->isInit ); 5895 if( !pPage->leaf ){ 5896 int idx = pCur->ix; 5897 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5898 if( rc ) return rc; 5899 rc = moveToRightmost(pCur); 5900 }else{ 5901 while( pCur->ix==0 ){ 5902 if( pCur->iPage==0 ){ 5903 pCur->eState = CURSOR_INVALID; 5904 return SQLITE_DONE; 5905 } 5906 moveToParent(pCur); 5907 } 5908 assert( pCur->info.nSize==0 ); 5909 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5910 5911 pCur->ix--; 5912 pPage = pCur->pPage; 5913 if( pPage->intKey && !pPage->leaf ){ 5914 rc = sqlite3BtreePrevious(pCur, 0); 5915 }else{ 5916 rc = SQLITE_OK; 5917 } 5918 } 5919 return rc; 5920 } 5921 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5922 assert( cursorOwnsBtShared(pCur) ); 5923 assert( flags==0 || flags==1 ); 5924 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5925 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5926 pCur->info.nSize = 0; 5927 if( pCur->eState!=CURSOR_VALID 5928 || pCur->ix==0 5929 || pCur->pPage->leaf==0 5930 ){ 5931 return btreePrevious(pCur); 5932 } 5933 pCur->ix--; 5934 return SQLITE_OK; 5935 } 5936 5937 /* 5938 ** Allocate a new page from the database file. 5939 ** 5940 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5941 ** has already been called on the new page.) The new page has also 5942 ** been referenced and the calling routine is responsible for calling 5943 ** sqlite3PagerUnref() on the new page when it is done. 5944 ** 5945 ** SQLITE_OK is returned on success. Any other return value indicates 5946 ** an error. *ppPage is set to NULL in the event of an error. 5947 ** 5948 ** If the "nearby" parameter is not 0, then an effort is made to 5949 ** locate a page close to the page number "nearby". This can be used in an 5950 ** attempt to keep related pages close to each other in the database file, 5951 ** which in turn can make database access faster. 5952 ** 5953 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5954 ** anywhere on the free-list, then it is guaranteed to be returned. If 5955 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5956 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5957 ** are no restrictions on which page is returned. 5958 */ 5959 static int allocateBtreePage( 5960 BtShared *pBt, /* The btree */ 5961 MemPage **ppPage, /* Store pointer to the allocated page here */ 5962 Pgno *pPgno, /* Store the page number here */ 5963 Pgno nearby, /* Search for a page near this one */ 5964 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5965 ){ 5966 MemPage *pPage1; 5967 int rc; 5968 u32 n; /* Number of pages on the freelist */ 5969 u32 k; /* Number of leaves on the trunk of the freelist */ 5970 MemPage *pTrunk = 0; 5971 MemPage *pPrevTrunk = 0; 5972 Pgno mxPage; /* Total size of the database file */ 5973 5974 assert( sqlite3_mutex_held(pBt->mutex) ); 5975 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5976 pPage1 = pBt->pPage1; 5977 mxPage = btreePagecount(pBt); 5978 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5979 ** stores stores the total number of pages on the freelist. */ 5980 n = get4byte(&pPage1->aData[36]); 5981 testcase( n==mxPage-1 ); 5982 if( n>=mxPage ){ 5983 return SQLITE_CORRUPT_BKPT; 5984 } 5985 if( n>0 ){ 5986 /* There are pages on the freelist. Reuse one of those pages. */ 5987 Pgno iTrunk; 5988 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5989 u32 nSearch = 0; /* Count of the number of search attempts */ 5990 5991 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5992 ** shows that the page 'nearby' is somewhere on the free-list, then 5993 ** the entire-list will be searched for that page. 5994 */ 5995 #ifndef SQLITE_OMIT_AUTOVACUUM 5996 if( eMode==BTALLOC_EXACT ){ 5997 if( nearby<=mxPage ){ 5998 u8 eType; 5999 assert( nearby>0 ); 6000 assert( pBt->autoVacuum ); 6001 rc = ptrmapGet(pBt, nearby, &eType, 0); 6002 if( rc ) return rc; 6003 if( eType==PTRMAP_FREEPAGE ){ 6004 searchList = 1; 6005 } 6006 } 6007 }else if( eMode==BTALLOC_LE ){ 6008 searchList = 1; 6009 } 6010 #endif 6011 6012 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6013 ** first free-list trunk page. iPrevTrunk is initially 1. 6014 */ 6015 rc = sqlite3PagerWrite(pPage1->pDbPage); 6016 if( rc ) return rc; 6017 put4byte(&pPage1->aData[36], n-1); 6018 6019 /* The code within this loop is run only once if the 'searchList' variable 6020 ** is not true. Otherwise, it runs once for each trunk-page on the 6021 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6022 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6023 */ 6024 do { 6025 pPrevTrunk = pTrunk; 6026 if( pPrevTrunk ){ 6027 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6028 ** is the page number of the next freelist trunk page in the list or 6029 ** zero if this is the last freelist trunk page. */ 6030 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6031 }else{ 6032 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6033 ** stores the page number of the first page of the freelist, or zero if 6034 ** the freelist is empty. */ 6035 iTrunk = get4byte(&pPage1->aData[32]); 6036 } 6037 testcase( iTrunk==mxPage ); 6038 if( iTrunk>mxPage || nSearch++ > n ){ 6039 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6040 }else{ 6041 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6042 } 6043 if( rc ){ 6044 pTrunk = 0; 6045 goto end_allocate_page; 6046 } 6047 assert( pTrunk!=0 ); 6048 assert( pTrunk->aData!=0 ); 6049 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6050 ** is the number of leaf page pointers to follow. */ 6051 k = get4byte(&pTrunk->aData[4]); 6052 if( k==0 && !searchList ){ 6053 /* The trunk has no leaves and the list is not being searched. 6054 ** So extract the trunk page itself and use it as the newly 6055 ** allocated page */ 6056 assert( pPrevTrunk==0 ); 6057 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6058 if( rc ){ 6059 goto end_allocate_page; 6060 } 6061 *pPgno = iTrunk; 6062 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6063 *ppPage = pTrunk; 6064 pTrunk = 0; 6065 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6066 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6067 /* Value of k is out of range. Database corruption */ 6068 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6069 goto end_allocate_page; 6070 #ifndef SQLITE_OMIT_AUTOVACUUM 6071 }else if( searchList 6072 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6073 ){ 6074 /* The list is being searched and this trunk page is the page 6075 ** to allocate, regardless of whether it has leaves. 6076 */ 6077 *pPgno = iTrunk; 6078 *ppPage = pTrunk; 6079 searchList = 0; 6080 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6081 if( rc ){ 6082 goto end_allocate_page; 6083 } 6084 if( k==0 ){ 6085 if( !pPrevTrunk ){ 6086 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6087 }else{ 6088 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6089 if( rc!=SQLITE_OK ){ 6090 goto end_allocate_page; 6091 } 6092 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6093 } 6094 }else{ 6095 /* The trunk page is required by the caller but it contains 6096 ** pointers to free-list leaves. The first leaf becomes a trunk 6097 ** page in this case. 6098 */ 6099 MemPage *pNewTrunk; 6100 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6101 if( iNewTrunk>mxPage ){ 6102 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6103 goto end_allocate_page; 6104 } 6105 testcase( iNewTrunk==mxPage ); 6106 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6107 if( rc!=SQLITE_OK ){ 6108 goto end_allocate_page; 6109 } 6110 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6111 if( rc!=SQLITE_OK ){ 6112 releasePage(pNewTrunk); 6113 goto end_allocate_page; 6114 } 6115 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6116 put4byte(&pNewTrunk->aData[4], k-1); 6117 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6118 releasePage(pNewTrunk); 6119 if( !pPrevTrunk ){ 6120 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6121 put4byte(&pPage1->aData[32], iNewTrunk); 6122 }else{ 6123 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6124 if( rc ){ 6125 goto end_allocate_page; 6126 } 6127 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6128 } 6129 } 6130 pTrunk = 0; 6131 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6132 #endif 6133 }else if( k>0 ){ 6134 /* Extract a leaf from the trunk */ 6135 u32 closest; 6136 Pgno iPage; 6137 unsigned char *aData = pTrunk->aData; 6138 if( nearby>0 ){ 6139 u32 i; 6140 closest = 0; 6141 if( eMode==BTALLOC_LE ){ 6142 for(i=0; i<k; i++){ 6143 iPage = get4byte(&aData[8+i*4]); 6144 if( iPage<=nearby ){ 6145 closest = i; 6146 break; 6147 } 6148 } 6149 }else{ 6150 int dist; 6151 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6152 for(i=1; i<k; i++){ 6153 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6154 if( d2<dist ){ 6155 closest = i; 6156 dist = d2; 6157 } 6158 } 6159 } 6160 }else{ 6161 closest = 0; 6162 } 6163 6164 iPage = get4byte(&aData[8+closest*4]); 6165 testcase( iPage==mxPage ); 6166 if( iPage>mxPage || iPage<2 ){ 6167 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6168 goto end_allocate_page; 6169 } 6170 testcase( iPage==mxPage ); 6171 if( !searchList 6172 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6173 ){ 6174 int noContent; 6175 *pPgno = iPage; 6176 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6177 ": %d more free pages\n", 6178 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6179 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6180 if( rc ) goto end_allocate_page; 6181 if( closest<k-1 ){ 6182 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6183 } 6184 put4byte(&aData[4], k-1); 6185 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6186 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6187 if( rc==SQLITE_OK ){ 6188 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6189 if( rc!=SQLITE_OK ){ 6190 releasePage(*ppPage); 6191 *ppPage = 0; 6192 } 6193 } 6194 searchList = 0; 6195 } 6196 } 6197 releasePage(pPrevTrunk); 6198 pPrevTrunk = 0; 6199 }while( searchList ); 6200 }else{ 6201 /* There are no pages on the freelist, so append a new page to the 6202 ** database image. 6203 ** 6204 ** Normally, new pages allocated by this block can be requested from the 6205 ** pager layer with the 'no-content' flag set. This prevents the pager 6206 ** from trying to read the pages content from disk. However, if the 6207 ** current transaction has already run one or more incremental-vacuum 6208 ** steps, then the page we are about to allocate may contain content 6209 ** that is required in the event of a rollback. In this case, do 6210 ** not set the no-content flag. This causes the pager to load and journal 6211 ** the current page content before overwriting it. 6212 ** 6213 ** Note that the pager will not actually attempt to load or journal 6214 ** content for any page that really does lie past the end of the database 6215 ** file on disk. So the effects of disabling the no-content optimization 6216 ** here are confined to those pages that lie between the end of the 6217 ** database image and the end of the database file. 6218 */ 6219 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6220 6221 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6222 if( rc ) return rc; 6223 pBt->nPage++; 6224 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6225 6226 #ifndef SQLITE_OMIT_AUTOVACUUM 6227 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6228 /* If *pPgno refers to a pointer-map page, allocate two new pages 6229 ** at the end of the file instead of one. The first allocated page 6230 ** becomes a new pointer-map page, the second is used by the caller. 6231 */ 6232 MemPage *pPg = 0; 6233 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6234 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6235 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6236 if( rc==SQLITE_OK ){ 6237 rc = sqlite3PagerWrite(pPg->pDbPage); 6238 releasePage(pPg); 6239 } 6240 if( rc ) return rc; 6241 pBt->nPage++; 6242 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6243 } 6244 #endif 6245 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6246 *pPgno = pBt->nPage; 6247 6248 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6249 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6250 if( rc ) return rc; 6251 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6252 if( rc!=SQLITE_OK ){ 6253 releasePage(*ppPage); 6254 *ppPage = 0; 6255 } 6256 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6257 } 6258 6259 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6260 6261 end_allocate_page: 6262 releasePage(pTrunk); 6263 releasePage(pPrevTrunk); 6264 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6265 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6266 return rc; 6267 } 6268 6269 /* 6270 ** This function is used to add page iPage to the database file free-list. 6271 ** It is assumed that the page is not already a part of the free-list. 6272 ** 6273 ** The value passed as the second argument to this function is optional. 6274 ** If the caller happens to have a pointer to the MemPage object 6275 ** corresponding to page iPage handy, it may pass it as the second value. 6276 ** Otherwise, it may pass NULL. 6277 ** 6278 ** If a pointer to a MemPage object is passed as the second argument, 6279 ** its reference count is not altered by this function. 6280 */ 6281 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6282 MemPage *pTrunk = 0; /* Free-list trunk page */ 6283 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6284 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6285 MemPage *pPage; /* Page being freed. May be NULL. */ 6286 int rc; /* Return Code */ 6287 u32 nFree; /* Initial number of pages on free-list */ 6288 6289 assert( sqlite3_mutex_held(pBt->mutex) ); 6290 assert( CORRUPT_DB || iPage>1 ); 6291 assert( !pMemPage || pMemPage->pgno==iPage ); 6292 6293 if( iPage<2 || iPage>pBt->nPage ){ 6294 return SQLITE_CORRUPT_BKPT; 6295 } 6296 if( pMemPage ){ 6297 pPage = pMemPage; 6298 sqlite3PagerRef(pPage->pDbPage); 6299 }else{ 6300 pPage = btreePageLookup(pBt, iPage); 6301 } 6302 6303 /* Increment the free page count on pPage1 */ 6304 rc = sqlite3PagerWrite(pPage1->pDbPage); 6305 if( rc ) goto freepage_out; 6306 nFree = get4byte(&pPage1->aData[36]); 6307 put4byte(&pPage1->aData[36], nFree+1); 6308 6309 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6310 /* If the secure_delete option is enabled, then 6311 ** always fully overwrite deleted information with zeros. 6312 */ 6313 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6314 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6315 ){ 6316 goto freepage_out; 6317 } 6318 memset(pPage->aData, 0, pPage->pBt->pageSize); 6319 } 6320 6321 /* If the database supports auto-vacuum, write an entry in the pointer-map 6322 ** to indicate that the page is free. 6323 */ 6324 if( ISAUTOVACUUM ){ 6325 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6326 if( rc ) goto freepage_out; 6327 } 6328 6329 /* Now manipulate the actual database free-list structure. There are two 6330 ** possibilities. If the free-list is currently empty, or if the first 6331 ** trunk page in the free-list is full, then this page will become a 6332 ** new free-list trunk page. Otherwise, it will become a leaf of the 6333 ** first trunk page in the current free-list. This block tests if it 6334 ** is possible to add the page as a new free-list leaf. 6335 */ 6336 if( nFree!=0 ){ 6337 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6338 6339 iTrunk = get4byte(&pPage1->aData[32]); 6340 if( iTrunk>btreePagecount(pBt) ){ 6341 rc = SQLITE_CORRUPT_BKPT; 6342 goto freepage_out; 6343 } 6344 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6345 if( rc!=SQLITE_OK ){ 6346 goto freepage_out; 6347 } 6348 6349 nLeaf = get4byte(&pTrunk->aData[4]); 6350 assert( pBt->usableSize>32 ); 6351 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6352 rc = SQLITE_CORRUPT_BKPT; 6353 goto freepage_out; 6354 } 6355 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6356 /* In this case there is room on the trunk page to insert the page 6357 ** being freed as a new leaf. 6358 ** 6359 ** Note that the trunk page is not really full until it contains 6360 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6361 ** coded. But due to a coding error in versions of SQLite prior to 6362 ** 3.6.0, databases with freelist trunk pages holding more than 6363 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6364 ** to maintain backwards compatibility with older versions of SQLite, 6365 ** we will continue to restrict the number of entries to usableSize/4 - 8 6366 ** for now. At some point in the future (once everyone has upgraded 6367 ** to 3.6.0 or later) we should consider fixing the conditional above 6368 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6369 ** 6370 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6371 ** avoid using the last six entries in the freelist trunk page array in 6372 ** order that database files created by newer versions of SQLite can be 6373 ** read by older versions of SQLite. 6374 */ 6375 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6376 if( rc==SQLITE_OK ){ 6377 put4byte(&pTrunk->aData[4], nLeaf+1); 6378 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6379 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6380 sqlite3PagerDontWrite(pPage->pDbPage); 6381 } 6382 rc = btreeSetHasContent(pBt, iPage); 6383 } 6384 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6385 goto freepage_out; 6386 } 6387 } 6388 6389 /* If control flows to this point, then it was not possible to add the 6390 ** the page being freed as a leaf page of the first trunk in the free-list. 6391 ** Possibly because the free-list is empty, or possibly because the 6392 ** first trunk in the free-list is full. Either way, the page being freed 6393 ** will become the new first trunk page in the free-list. 6394 */ 6395 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6396 goto freepage_out; 6397 } 6398 rc = sqlite3PagerWrite(pPage->pDbPage); 6399 if( rc!=SQLITE_OK ){ 6400 goto freepage_out; 6401 } 6402 put4byte(pPage->aData, iTrunk); 6403 put4byte(&pPage->aData[4], 0); 6404 put4byte(&pPage1->aData[32], iPage); 6405 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6406 6407 freepage_out: 6408 if( pPage ){ 6409 pPage->isInit = 0; 6410 } 6411 releasePage(pPage); 6412 releasePage(pTrunk); 6413 return rc; 6414 } 6415 static void freePage(MemPage *pPage, int *pRC){ 6416 if( (*pRC)==SQLITE_OK ){ 6417 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6418 } 6419 } 6420 6421 /* 6422 ** Free the overflow pages associated with the given Cell. 6423 */ 6424 static SQLITE_NOINLINE int clearCellOverflow( 6425 MemPage *pPage, /* The page that contains the Cell */ 6426 unsigned char *pCell, /* First byte of the Cell */ 6427 CellInfo *pInfo /* Size information about the cell */ 6428 ){ 6429 BtShared *pBt; 6430 Pgno ovflPgno; 6431 int rc; 6432 int nOvfl; 6433 u32 ovflPageSize; 6434 6435 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6436 assert( pInfo->nLocal!=pInfo->nPayload ); 6437 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6438 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6439 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6440 /* Cell extends past end of page */ 6441 return SQLITE_CORRUPT_PAGE(pPage); 6442 } 6443 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6444 pBt = pPage->pBt; 6445 assert( pBt->usableSize > 4 ); 6446 ovflPageSize = pBt->usableSize - 4; 6447 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6448 assert( nOvfl>0 || 6449 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6450 ); 6451 while( nOvfl-- ){ 6452 Pgno iNext = 0; 6453 MemPage *pOvfl = 0; 6454 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6455 /* 0 is not a legal page number and page 1 cannot be an 6456 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6457 ** file the database must be corrupt. */ 6458 return SQLITE_CORRUPT_BKPT; 6459 } 6460 if( nOvfl ){ 6461 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6462 if( rc ) return rc; 6463 } 6464 6465 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6466 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6467 ){ 6468 /* There is no reason any cursor should have an outstanding reference 6469 ** to an overflow page belonging to a cell that is being deleted/updated. 6470 ** So if there exists more than one reference to this page, then it 6471 ** must not really be an overflow page and the database must be corrupt. 6472 ** It is helpful to detect this before calling freePage2(), as 6473 ** freePage2() may zero the page contents if secure-delete mode is 6474 ** enabled. If this 'overflow' page happens to be a page that the 6475 ** caller is iterating through or using in some other way, this 6476 ** can be problematic. 6477 */ 6478 rc = SQLITE_CORRUPT_BKPT; 6479 }else{ 6480 rc = freePage2(pBt, pOvfl, ovflPgno); 6481 } 6482 6483 if( pOvfl ){ 6484 sqlite3PagerUnref(pOvfl->pDbPage); 6485 } 6486 if( rc ) return rc; 6487 ovflPgno = iNext; 6488 } 6489 return SQLITE_OK; 6490 } 6491 6492 /* Call xParseCell to compute the size of a cell. If the cell contains 6493 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6494 ** STore the result code (SQLITE_OK or some error code) in rc. 6495 ** 6496 ** Implemented as macro to force inlining for performance. 6497 */ 6498 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6499 pPage->xParseCell(pPage, pCell, &sInfo); \ 6500 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6501 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6502 }else{ \ 6503 rc = SQLITE_OK; \ 6504 } 6505 6506 6507 /* 6508 ** Create the byte sequence used to represent a cell on page pPage 6509 ** and write that byte sequence into pCell[]. Overflow pages are 6510 ** allocated and filled in as necessary. The calling procedure 6511 ** is responsible for making sure sufficient space has been allocated 6512 ** for pCell[]. 6513 ** 6514 ** Note that pCell does not necessary need to point to the pPage->aData 6515 ** area. pCell might point to some temporary storage. The cell will 6516 ** be constructed in this temporary area then copied into pPage->aData 6517 ** later. 6518 */ 6519 static int fillInCell( 6520 MemPage *pPage, /* The page that contains the cell */ 6521 unsigned char *pCell, /* Complete text of the cell */ 6522 const BtreePayload *pX, /* Payload with which to construct the cell */ 6523 int *pnSize /* Write cell size here */ 6524 ){ 6525 int nPayload; 6526 const u8 *pSrc; 6527 int nSrc, n, rc, mn; 6528 int spaceLeft; 6529 MemPage *pToRelease; 6530 unsigned char *pPrior; 6531 unsigned char *pPayload; 6532 BtShared *pBt; 6533 Pgno pgnoOvfl; 6534 int nHeader; 6535 6536 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6537 6538 /* pPage is not necessarily writeable since pCell might be auxiliary 6539 ** buffer space that is separate from the pPage buffer area */ 6540 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6541 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6542 6543 /* Fill in the header. */ 6544 nHeader = pPage->childPtrSize; 6545 if( pPage->intKey ){ 6546 nPayload = pX->nData + pX->nZero; 6547 pSrc = pX->pData; 6548 nSrc = pX->nData; 6549 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6550 nHeader += putVarint32(&pCell[nHeader], nPayload); 6551 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6552 }else{ 6553 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6554 nSrc = nPayload = (int)pX->nKey; 6555 pSrc = pX->pKey; 6556 nHeader += putVarint32(&pCell[nHeader], nPayload); 6557 } 6558 6559 /* Fill in the payload */ 6560 pPayload = &pCell[nHeader]; 6561 if( nPayload<=pPage->maxLocal ){ 6562 /* This is the common case where everything fits on the btree page 6563 ** and no overflow pages are required. */ 6564 n = nHeader + nPayload; 6565 testcase( n==3 ); 6566 testcase( n==4 ); 6567 if( n<4 ) n = 4; 6568 *pnSize = n; 6569 assert( nSrc<=nPayload ); 6570 testcase( nSrc<nPayload ); 6571 memcpy(pPayload, pSrc, nSrc); 6572 memset(pPayload+nSrc, 0, nPayload-nSrc); 6573 return SQLITE_OK; 6574 } 6575 6576 /* If we reach this point, it means that some of the content will need 6577 ** to spill onto overflow pages. 6578 */ 6579 mn = pPage->minLocal; 6580 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6581 testcase( n==pPage->maxLocal ); 6582 testcase( n==pPage->maxLocal+1 ); 6583 if( n > pPage->maxLocal ) n = mn; 6584 spaceLeft = n; 6585 *pnSize = n + nHeader + 4; 6586 pPrior = &pCell[nHeader+n]; 6587 pToRelease = 0; 6588 pgnoOvfl = 0; 6589 pBt = pPage->pBt; 6590 6591 /* At this point variables should be set as follows: 6592 ** 6593 ** nPayload Total payload size in bytes 6594 ** pPayload Begin writing payload here 6595 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6596 ** that means content must spill into overflow pages. 6597 ** *pnSize Size of the local cell (not counting overflow pages) 6598 ** pPrior Where to write the pgno of the first overflow page 6599 ** 6600 ** Use a call to btreeParseCellPtr() to verify that the values above 6601 ** were computed correctly. 6602 */ 6603 #ifdef SQLITE_DEBUG 6604 { 6605 CellInfo info; 6606 pPage->xParseCell(pPage, pCell, &info); 6607 assert( nHeader==(int)(info.pPayload - pCell) ); 6608 assert( info.nKey==pX->nKey ); 6609 assert( *pnSize == info.nSize ); 6610 assert( spaceLeft == info.nLocal ); 6611 } 6612 #endif 6613 6614 /* Write the payload into the local Cell and any extra into overflow pages */ 6615 while( 1 ){ 6616 n = nPayload; 6617 if( n>spaceLeft ) n = spaceLeft; 6618 6619 /* If pToRelease is not zero than pPayload points into the data area 6620 ** of pToRelease. Make sure pToRelease is still writeable. */ 6621 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6622 6623 /* If pPayload is part of the data area of pPage, then make sure pPage 6624 ** is still writeable */ 6625 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6626 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6627 6628 if( nSrc>=n ){ 6629 memcpy(pPayload, pSrc, n); 6630 }else if( nSrc>0 ){ 6631 n = nSrc; 6632 memcpy(pPayload, pSrc, n); 6633 }else{ 6634 memset(pPayload, 0, n); 6635 } 6636 nPayload -= n; 6637 if( nPayload<=0 ) break; 6638 pPayload += n; 6639 pSrc += n; 6640 nSrc -= n; 6641 spaceLeft -= n; 6642 if( spaceLeft==0 ){ 6643 MemPage *pOvfl = 0; 6644 #ifndef SQLITE_OMIT_AUTOVACUUM 6645 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6646 if( pBt->autoVacuum ){ 6647 do{ 6648 pgnoOvfl++; 6649 } while( 6650 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6651 ); 6652 } 6653 #endif 6654 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6655 #ifndef SQLITE_OMIT_AUTOVACUUM 6656 /* If the database supports auto-vacuum, and the second or subsequent 6657 ** overflow page is being allocated, add an entry to the pointer-map 6658 ** for that page now. 6659 ** 6660 ** If this is the first overflow page, then write a partial entry 6661 ** to the pointer-map. If we write nothing to this pointer-map slot, 6662 ** then the optimistic overflow chain processing in clearCell() 6663 ** may misinterpret the uninitialized values and delete the 6664 ** wrong pages from the database. 6665 */ 6666 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6667 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6668 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6669 if( rc ){ 6670 releasePage(pOvfl); 6671 } 6672 } 6673 #endif 6674 if( rc ){ 6675 releasePage(pToRelease); 6676 return rc; 6677 } 6678 6679 /* If pToRelease is not zero than pPrior points into the data area 6680 ** of pToRelease. Make sure pToRelease is still writeable. */ 6681 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6682 6683 /* If pPrior is part of the data area of pPage, then make sure pPage 6684 ** is still writeable */ 6685 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6686 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6687 6688 put4byte(pPrior, pgnoOvfl); 6689 releasePage(pToRelease); 6690 pToRelease = pOvfl; 6691 pPrior = pOvfl->aData; 6692 put4byte(pPrior, 0); 6693 pPayload = &pOvfl->aData[4]; 6694 spaceLeft = pBt->usableSize - 4; 6695 } 6696 } 6697 releasePage(pToRelease); 6698 return SQLITE_OK; 6699 } 6700 6701 /* 6702 ** Remove the i-th cell from pPage. This routine effects pPage only. 6703 ** The cell content is not freed or deallocated. It is assumed that 6704 ** the cell content has been copied someplace else. This routine just 6705 ** removes the reference to the cell from pPage. 6706 ** 6707 ** "sz" must be the number of bytes in the cell. 6708 */ 6709 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6710 u32 pc; /* Offset to cell content of cell being deleted */ 6711 u8 *data; /* pPage->aData */ 6712 u8 *ptr; /* Used to move bytes around within data[] */ 6713 int rc; /* The return code */ 6714 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6715 6716 if( *pRC ) return; 6717 assert( idx>=0 && idx<pPage->nCell ); 6718 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6719 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6720 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6721 assert( pPage->nFree>=0 ); 6722 data = pPage->aData; 6723 ptr = &pPage->aCellIdx[2*idx]; 6724 pc = get2byte(ptr); 6725 hdr = pPage->hdrOffset; 6726 testcase( pc==get2byte(&data[hdr+5]) ); 6727 testcase( pc+sz==pPage->pBt->usableSize ); 6728 if( pc+sz > pPage->pBt->usableSize ){ 6729 *pRC = SQLITE_CORRUPT_BKPT; 6730 return; 6731 } 6732 rc = freeSpace(pPage, pc, sz); 6733 if( rc ){ 6734 *pRC = rc; 6735 return; 6736 } 6737 pPage->nCell--; 6738 if( pPage->nCell==0 ){ 6739 memset(&data[hdr+1], 0, 4); 6740 data[hdr+7] = 0; 6741 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6742 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6743 - pPage->childPtrSize - 8; 6744 }else{ 6745 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6746 put2byte(&data[hdr+3], pPage->nCell); 6747 pPage->nFree += 2; 6748 } 6749 } 6750 6751 /* 6752 ** Insert a new cell on pPage at cell index "i". pCell points to the 6753 ** content of the cell. 6754 ** 6755 ** If the cell content will fit on the page, then put it there. If it 6756 ** will not fit, then make a copy of the cell content into pTemp if 6757 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6758 ** in pPage->apOvfl[] and make it point to the cell content (either 6759 ** in pTemp or the original pCell) and also record its index. 6760 ** Allocating a new entry in pPage->aCell[] implies that 6761 ** pPage->nOverflow is incremented. 6762 ** 6763 ** *pRC must be SQLITE_OK when this routine is called. 6764 */ 6765 static void insertCell( 6766 MemPage *pPage, /* Page into which we are copying */ 6767 int i, /* New cell becomes the i-th cell of the page */ 6768 u8 *pCell, /* Content of the new cell */ 6769 int sz, /* Bytes of content in pCell */ 6770 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6771 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6772 int *pRC /* Read and write return code from here */ 6773 ){ 6774 int idx = 0; /* Where to write new cell content in data[] */ 6775 int j; /* Loop counter */ 6776 u8 *data; /* The content of the whole page */ 6777 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6778 6779 assert( *pRC==SQLITE_OK ); 6780 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6781 assert( MX_CELL(pPage->pBt)<=10921 ); 6782 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6783 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6784 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6785 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6786 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6787 assert( pPage->nFree>=0 ); 6788 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6789 if( pTemp ){ 6790 memcpy(pTemp, pCell, sz); 6791 pCell = pTemp; 6792 } 6793 if( iChild ){ 6794 put4byte(pCell, iChild); 6795 } 6796 j = pPage->nOverflow++; 6797 /* Comparison against ArraySize-1 since we hold back one extra slot 6798 ** as a contingency. In other words, never need more than 3 overflow 6799 ** slots but 4 are allocated, just to be safe. */ 6800 assert( j < ArraySize(pPage->apOvfl)-1 ); 6801 pPage->apOvfl[j] = pCell; 6802 pPage->aiOvfl[j] = (u16)i; 6803 6804 /* When multiple overflows occur, they are always sequential and in 6805 ** sorted order. This invariants arise because multiple overflows can 6806 ** only occur when inserting divider cells into the parent page during 6807 ** balancing, and the dividers are adjacent and sorted. 6808 */ 6809 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6810 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6811 }else{ 6812 int rc = sqlite3PagerWrite(pPage->pDbPage); 6813 if( rc!=SQLITE_OK ){ 6814 *pRC = rc; 6815 return; 6816 } 6817 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6818 data = pPage->aData; 6819 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6820 rc = allocateSpace(pPage, sz, &idx); 6821 if( rc ){ *pRC = rc; return; } 6822 /* The allocateSpace() routine guarantees the following properties 6823 ** if it returns successfully */ 6824 assert( idx >= 0 ); 6825 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6826 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6827 pPage->nFree -= (u16)(2 + sz); 6828 if( iChild ){ 6829 /* In a corrupt database where an entry in the cell index section of 6830 ** a btree page has a value of 3 or less, the pCell value might point 6831 ** as many as 4 bytes in front of the start of the aData buffer for 6832 ** the source page. Make sure this does not cause problems by not 6833 ** reading the first 4 bytes */ 6834 memcpy(&data[idx+4], pCell+4, sz-4); 6835 put4byte(&data[idx], iChild); 6836 }else{ 6837 memcpy(&data[idx], pCell, sz); 6838 } 6839 pIns = pPage->aCellIdx + i*2; 6840 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6841 put2byte(pIns, idx); 6842 pPage->nCell++; 6843 /* increment the cell count */ 6844 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6845 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6846 #ifndef SQLITE_OMIT_AUTOVACUUM 6847 if( pPage->pBt->autoVacuum ){ 6848 /* The cell may contain a pointer to an overflow page. If so, write 6849 ** the entry for the overflow page into the pointer map. 6850 */ 6851 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6852 } 6853 #endif 6854 } 6855 } 6856 6857 /* 6858 ** The following parameters determine how many adjacent pages get involved 6859 ** in a balancing operation. NN is the number of neighbors on either side 6860 ** of the page that participate in the balancing operation. NB is the 6861 ** total number of pages that participate, including the target page and 6862 ** NN neighbors on either side. 6863 ** 6864 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6865 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6866 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6867 ** The value of NN appears to give the best results overall. 6868 ** 6869 ** (Later:) The description above makes it seem as if these values are 6870 ** tunable - as if you could change them and recompile and it would all work. 6871 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6872 ** we have never tested any other value. 6873 */ 6874 #define NN 1 /* Number of neighbors on either side of pPage */ 6875 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6876 6877 /* 6878 ** A CellArray object contains a cache of pointers and sizes for a 6879 ** consecutive sequence of cells that might be held on multiple pages. 6880 ** 6881 ** The cells in this array are the divider cell or cells from the pParent 6882 ** page plus up to three child pages. There are a total of nCell cells. 6883 ** 6884 ** pRef is a pointer to one of the pages that contributes cells. This is 6885 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 6886 ** which should be common to all pages that contribute cells to this array. 6887 ** 6888 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 6889 ** cell and the size of each cell. Some of the apCell[] pointers might refer 6890 ** to overflow cells. In other words, some apCel[] pointers might not point 6891 ** to content area of the pages. 6892 ** 6893 ** A szCell[] of zero means the size of that cell has not yet been computed. 6894 ** 6895 ** The cells come from as many as four different pages: 6896 ** 6897 ** ----------- 6898 ** | Parent | 6899 ** ----------- 6900 ** / | \ 6901 ** / | \ 6902 ** --------- --------- --------- 6903 ** |Child-1| |Child-2| |Child-3| 6904 ** --------- --------- --------- 6905 ** 6906 ** The order of cells is in the array is for an index btree is: 6907 ** 6908 ** 1. All cells from Child-1 in order 6909 ** 2. The first divider cell from Parent 6910 ** 3. All cells from Child-2 in order 6911 ** 4. The second divider cell from Parent 6912 ** 5. All cells from Child-3 in order 6913 ** 6914 ** For a table-btree (with rowids) the items 2 and 4 are empty because 6915 ** content exists only in leaves and there are no divider cells. 6916 ** 6917 ** For an index btree, the apEnd[] array holds pointer to the end of page 6918 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 6919 ** respectively. The ixNx[] array holds the number of cells contained in 6920 ** each of these 5 stages, and all stages to the left. Hence: 6921 ** 6922 ** ixNx[0] = Number of cells in Child-1. 6923 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 6924 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 6925 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 6926 ** ixNx[4] = Total number of cells. 6927 ** 6928 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 6929 ** are used and they point to the leaf pages only, and the ixNx value are: 6930 ** 6931 ** ixNx[0] = Number of cells in Child-1. 6932 ** ixNx[1] = Number of cells in Child-1 and Child-2. 6933 ** ixNx[2] = Total number of cells. 6934 ** 6935 ** Sometimes when deleting, a child page can have zero cells. In those 6936 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 6937 ** entries, shift down. The end result is that each ixNx[] entry should 6938 ** be larger than the previous 6939 */ 6940 typedef struct CellArray CellArray; 6941 struct CellArray { 6942 int nCell; /* Number of cells in apCell[] */ 6943 MemPage *pRef; /* Reference page */ 6944 u8 **apCell; /* All cells begin balanced */ 6945 u16 *szCell; /* Local size of all cells in apCell[] */ 6946 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 6947 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 6948 }; 6949 6950 /* 6951 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6952 ** computed. 6953 */ 6954 static void populateCellCache(CellArray *p, int idx, int N){ 6955 assert( idx>=0 && idx+N<=p->nCell ); 6956 while( N>0 ){ 6957 assert( p->apCell[idx]!=0 ); 6958 if( p->szCell[idx]==0 ){ 6959 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6960 }else{ 6961 assert( CORRUPT_DB || 6962 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6963 } 6964 idx++; 6965 N--; 6966 } 6967 } 6968 6969 /* 6970 ** Return the size of the Nth element of the cell array 6971 */ 6972 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6973 assert( N>=0 && N<p->nCell ); 6974 assert( p->szCell[N]==0 ); 6975 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6976 return p->szCell[N]; 6977 } 6978 static u16 cachedCellSize(CellArray *p, int N){ 6979 assert( N>=0 && N<p->nCell ); 6980 if( p->szCell[N] ) return p->szCell[N]; 6981 return computeCellSize(p, N); 6982 } 6983 6984 /* 6985 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6986 ** szCell[] array contains the size in bytes of each cell. This function 6987 ** replaces the current contents of page pPg with the contents of the cell 6988 ** array. 6989 ** 6990 ** Some of the cells in apCell[] may currently be stored in pPg. This 6991 ** function works around problems caused by this by making a copy of any 6992 ** such cells before overwriting the page data. 6993 ** 6994 ** The MemPage.nFree field is invalidated by this function. It is the 6995 ** responsibility of the caller to set it correctly. 6996 */ 6997 static int rebuildPage( 6998 CellArray *pCArray, /* Content to be added to page pPg */ 6999 int iFirst, /* First cell in pCArray to use */ 7000 int nCell, /* Final number of cells on page */ 7001 MemPage *pPg /* The page to be reconstructed */ 7002 ){ 7003 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7004 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7005 const int usableSize = pPg->pBt->usableSize; 7006 u8 * const pEnd = &aData[usableSize]; 7007 int i = iFirst; /* Which cell to copy from pCArray*/ 7008 u32 j; /* Start of cell content area */ 7009 int iEnd = i+nCell; /* Loop terminator */ 7010 u8 *pCellptr = pPg->aCellIdx; 7011 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7012 u8 *pData; 7013 int k; /* Current slot in pCArray->apEnd[] */ 7014 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7015 7016 assert( i<iEnd ); 7017 j = get2byte(&aData[hdr+5]); 7018 if( NEVER(j>(u32)usableSize) ){ j = 0; } 7019 memcpy(&pTmp[j], &aData[j], usableSize - j); 7020 7021 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7022 pSrcEnd = pCArray->apEnd[k]; 7023 7024 pData = pEnd; 7025 while( 1/*exit by break*/ ){ 7026 u8 *pCell = pCArray->apCell[i]; 7027 u16 sz = pCArray->szCell[i]; 7028 assert( sz>0 ); 7029 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7030 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7031 pCell = &pTmp[pCell - aData]; 7032 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7033 && (uptr)(pCell)<(uptr)pSrcEnd 7034 ){ 7035 return SQLITE_CORRUPT_BKPT; 7036 } 7037 7038 pData -= sz; 7039 put2byte(pCellptr, (pData - aData)); 7040 pCellptr += 2; 7041 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7042 memmove(pData, pCell, sz); 7043 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7044 i++; 7045 if( i>=iEnd ) break; 7046 if( pCArray->ixNx[k]<=i ){ 7047 k++; 7048 pSrcEnd = pCArray->apEnd[k]; 7049 } 7050 } 7051 7052 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7053 pPg->nCell = nCell; 7054 pPg->nOverflow = 0; 7055 7056 put2byte(&aData[hdr+1], 0); 7057 put2byte(&aData[hdr+3], pPg->nCell); 7058 put2byte(&aData[hdr+5], pData - aData); 7059 aData[hdr+7] = 0x00; 7060 return SQLITE_OK; 7061 } 7062 7063 /* 7064 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7065 ** This function attempts to add the cells stored in the array to page pPg. 7066 ** If it cannot (because the page needs to be defragmented before the cells 7067 ** will fit), non-zero is returned. Otherwise, if the cells are added 7068 ** successfully, zero is returned. 7069 ** 7070 ** Argument pCellptr points to the first entry in the cell-pointer array 7071 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7072 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7073 ** cell in the array. It is the responsibility of the caller to ensure 7074 ** that it is safe to overwrite this part of the cell-pointer array. 7075 ** 7076 ** When this function is called, *ppData points to the start of the 7077 ** content area on page pPg. If the size of the content area is extended, 7078 ** *ppData is updated to point to the new start of the content area 7079 ** before returning. 7080 ** 7081 ** Finally, argument pBegin points to the byte immediately following the 7082 ** end of the space required by this page for the cell-pointer area (for 7083 ** all cells - not just those inserted by the current call). If the content 7084 ** area must be extended to before this point in order to accomodate all 7085 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7086 */ 7087 static int pageInsertArray( 7088 MemPage *pPg, /* Page to add cells to */ 7089 u8 *pBegin, /* End of cell-pointer array */ 7090 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7091 u8 *pCellptr, /* Pointer to cell-pointer area */ 7092 int iFirst, /* Index of first cell to add */ 7093 int nCell, /* Number of cells to add to pPg */ 7094 CellArray *pCArray /* Array of cells */ 7095 ){ 7096 int i = iFirst; /* Loop counter - cell index to insert */ 7097 u8 *aData = pPg->aData; /* Complete page */ 7098 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7099 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7100 int k; /* Current slot in pCArray->apEnd[] */ 7101 u8 *pEnd; /* Maximum extent of cell data */ 7102 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7103 if( iEnd<=iFirst ) return 0; 7104 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7105 pEnd = pCArray->apEnd[k]; 7106 while( 1 /*Exit by break*/ ){ 7107 int sz, rc; 7108 u8 *pSlot; 7109 assert( pCArray->szCell[i]!=0 ); 7110 sz = pCArray->szCell[i]; 7111 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7112 if( (pData - pBegin)<sz ) return 1; 7113 pData -= sz; 7114 pSlot = pData; 7115 } 7116 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7117 ** database. But they might for a corrupt database. Hence use memmove() 7118 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7119 assert( (pSlot+sz)<=pCArray->apCell[i] 7120 || pSlot>=(pCArray->apCell[i]+sz) 7121 || CORRUPT_DB ); 7122 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7123 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7124 ){ 7125 assert( CORRUPT_DB ); 7126 (void)SQLITE_CORRUPT_BKPT; 7127 return 1; 7128 } 7129 memmove(pSlot, pCArray->apCell[i], sz); 7130 put2byte(pCellptr, (pSlot - aData)); 7131 pCellptr += 2; 7132 i++; 7133 if( i>=iEnd ) break; 7134 if( pCArray->ixNx[k]<=i ){ 7135 k++; 7136 pEnd = pCArray->apEnd[k]; 7137 } 7138 } 7139 *ppData = pData; 7140 return 0; 7141 } 7142 7143 /* 7144 ** The pCArray object contains pointers to b-tree cells and their sizes. 7145 ** 7146 ** This function adds the space associated with each cell in the array 7147 ** that is currently stored within the body of pPg to the pPg free-list. 7148 ** The cell-pointers and other fields of the page are not updated. 7149 ** 7150 ** This function returns the total number of cells added to the free-list. 7151 */ 7152 static int pageFreeArray( 7153 MemPage *pPg, /* Page to edit */ 7154 int iFirst, /* First cell to delete */ 7155 int nCell, /* Cells to delete */ 7156 CellArray *pCArray /* Array of cells */ 7157 ){ 7158 u8 * const aData = pPg->aData; 7159 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7160 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7161 int nRet = 0; 7162 int i; 7163 int iEnd = iFirst + nCell; 7164 u8 *pFree = 0; 7165 int szFree = 0; 7166 7167 for(i=iFirst; i<iEnd; i++){ 7168 u8 *pCell = pCArray->apCell[i]; 7169 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7170 int sz; 7171 /* No need to use cachedCellSize() here. The sizes of all cells that 7172 ** are to be freed have already been computing while deciding which 7173 ** cells need freeing */ 7174 sz = pCArray->szCell[i]; assert( sz>0 ); 7175 if( pFree!=(pCell + sz) ){ 7176 if( pFree ){ 7177 assert( pFree>aData && (pFree - aData)<65536 ); 7178 freeSpace(pPg, (u16)(pFree - aData), szFree); 7179 } 7180 pFree = pCell; 7181 szFree = sz; 7182 if( pFree+sz>pEnd ){ 7183 return 0; 7184 } 7185 }else{ 7186 pFree = pCell; 7187 szFree += sz; 7188 } 7189 nRet++; 7190 } 7191 } 7192 if( pFree ){ 7193 assert( pFree>aData && (pFree - aData)<65536 ); 7194 freeSpace(pPg, (u16)(pFree - aData), szFree); 7195 } 7196 return nRet; 7197 } 7198 7199 /* 7200 ** pCArray contains pointers to and sizes of all cells in the page being 7201 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7202 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7203 ** starting at apCell[iNew]. 7204 ** 7205 ** This routine makes the necessary adjustments to pPg so that it contains 7206 ** the correct cells after being balanced. 7207 ** 7208 ** The pPg->nFree field is invalid when this function returns. It is the 7209 ** responsibility of the caller to set it correctly. 7210 */ 7211 static int editPage( 7212 MemPage *pPg, /* Edit this page */ 7213 int iOld, /* Index of first cell currently on page */ 7214 int iNew, /* Index of new first cell on page */ 7215 int nNew, /* Final number of cells on page */ 7216 CellArray *pCArray /* Array of cells and sizes */ 7217 ){ 7218 u8 * const aData = pPg->aData; 7219 const int hdr = pPg->hdrOffset; 7220 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7221 int nCell = pPg->nCell; /* Cells stored on pPg */ 7222 u8 *pData; 7223 u8 *pCellptr; 7224 int i; 7225 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7226 int iNewEnd = iNew + nNew; 7227 7228 #ifdef SQLITE_DEBUG 7229 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7230 memcpy(pTmp, aData, pPg->pBt->usableSize); 7231 #endif 7232 7233 /* Remove cells from the start and end of the page */ 7234 assert( nCell>=0 ); 7235 if( iOld<iNew ){ 7236 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7237 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7238 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7239 nCell -= nShift; 7240 } 7241 if( iNewEnd < iOldEnd ){ 7242 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7243 assert( nCell>=nTail ); 7244 nCell -= nTail; 7245 } 7246 7247 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7248 if( pData<pBegin ) goto editpage_fail; 7249 7250 /* Add cells to the start of the page */ 7251 if( iNew<iOld ){ 7252 int nAdd = MIN(nNew,iOld-iNew); 7253 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7254 assert( nAdd>=0 ); 7255 pCellptr = pPg->aCellIdx; 7256 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7257 if( pageInsertArray( 7258 pPg, pBegin, &pData, pCellptr, 7259 iNew, nAdd, pCArray 7260 ) ) goto editpage_fail; 7261 nCell += nAdd; 7262 } 7263 7264 /* Add any overflow cells */ 7265 for(i=0; i<pPg->nOverflow; i++){ 7266 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7267 if( iCell>=0 && iCell<nNew ){ 7268 pCellptr = &pPg->aCellIdx[iCell * 2]; 7269 if( nCell>iCell ){ 7270 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7271 } 7272 nCell++; 7273 cachedCellSize(pCArray, iCell+iNew); 7274 if( pageInsertArray( 7275 pPg, pBegin, &pData, pCellptr, 7276 iCell+iNew, 1, pCArray 7277 ) ) goto editpage_fail; 7278 } 7279 } 7280 7281 /* Append cells to the end of the page */ 7282 assert( nCell>=0 ); 7283 pCellptr = &pPg->aCellIdx[nCell*2]; 7284 if( pageInsertArray( 7285 pPg, pBegin, &pData, pCellptr, 7286 iNew+nCell, nNew-nCell, pCArray 7287 ) ) goto editpage_fail; 7288 7289 pPg->nCell = nNew; 7290 pPg->nOverflow = 0; 7291 7292 put2byte(&aData[hdr+3], pPg->nCell); 7293 put2byte(&aData[hdr+5], pData - aData); 7294 7295 #ifdef SQLITE_DEBUG 7296 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7297 u8 *pCell = pCArray->apCell[i+iNew]; 7298 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7299 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7300 pCell = &pTmp[pCell - aData]; 7301 } 7302 assert( 0==memcmp(pCell, &aData[iOff], 7303 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7304 } 7305 #endif 7306 7307 return SQLITE_OK; 7308 editpage_fail: 7309 /* Unable to edit this page. Rebuild it from scratch instead. */ 7310 populateCellCache(pCArray, iNew, nNew); 7311 return rebuildPage(pCArray, iNew, nNew, pPg); 7312 } 7313 7314 7315 #ifndef SQLITE_OMIT_QUICKBALANCE 7316 /* 7317 ** This version of balance() handles the common special case where 7318 ** a new entry is being inserted on the extreme right-end of the 7319 ** tree, in other words, when the new entry will become the largest 7320 ** entry in the tree. 7321 ** 7322 ** Instead of trying to balance the 3 right-most leaf pages, just add 7323 ** a new page to the right-hand side and put the one new entry in 7324 ** that page. This leaves the right side of the tree somewhat 7325 ** unbalanced. But odds are that we will be inserting new entries 7326 ** at the end soon afterwards so the nearly empty page will quickly 7327 ** fill up. On average. 7328 ** 7329 ** pPage is the leaf page which is the right-most page in the tree. 7330 ** pParent is its parent. pPage must have a single overflow entry 7331 ** which is also the right-most entry on the page. 7332 ** 7333 ** The pSpace buffer is used to store a temporary copy of the divider 7334 ** cell that will be inserted into pParent. Such a cell consists of a 4 7335 ** byte page number followed by a variable length integer. In other 7336 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7337 ** least 13 bytes in size. 7338 */ 7339 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7340 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7341 MemPage *pNew; /* Newly allocated page */ 7342 int rc; /* Return Code */ 7343 Pgno pgnoNew; /* Page number of pNew */ 7344 7345 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7346 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7347 assert( pPage->nOverflow==1 ); 7348 7349 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7350 assert( pPage->nFree>=0 ); 7351 assert( pParent->nFree>=0 ); 7352 7353 /* Allocate a new page. This page will become the right-sibling of 7354 ** pPage. Make the parent page writable, so that the new divider cell 7355 ** may be inserted. If both these operations are successful, proceed. 7356 */ 7357 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7358 7359 if( rc==SQLITE_OK ){ 7360 7361 u8 *pOut = &pSpace[4]; 7362 u8 *pCell = pPage->apOvfl[0]; 7363 u16 szCell = pPage->xCellSize(pPage, pCell); 7364 u8 *pStop; 7365 CellArray b; 7366 7367 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7368 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7369 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7370 b.nCell = 1; 7371 b.pRef = pPage; 7372 b.apCell = &pCell; 7373 b.szCell = &szCell; 7374 b.apEnd[0] = pPage->aDataEnd; 7375 b.ixNx[0] = 2; 7376 rc = rebuildPage(&b, 0, 1, pNew); 7377 if( NEVER(rc) ){ 7378 releasePage(pNew); 7379 return rc; 7380 } 7381 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7382 7383 /* If this is an auto-vacuum database, update the pointer map 7384 ** with entries for the new page, and any pointer from the 7385 ** cell on the page to an overflow page. If either of these 7386 ** operations fails, the return code is set, but the contents 7387 ** of the parent page are still manipulated by thh code below. 7388 ** That is Ok, at this point the parent page is guaranteed to 7389 ** be marked as dirty. Returning an error code will cause a 7390 ** rollback, undoing any changes made to the parent page. 7391 */ 7392 if( ISAUTOVACUUM ){ 7393 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7394 if( szCell>pNew->minLocal ){ 7395 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7396 } 7397 } 7398 7399 /* Create a divider cell to insert into pParent. The divider cell 7400 ** consists of a 4-byte page number (the page number of pPage) and 7401 ** a variable length key value (which must be the same value as the 7402 ** largest key on pPage). 7403 ** 7404 ** To find the largest key value on pPage, first find the right-most 7405 ** cell on pPage. The first two fields of this cell are the 7406 ** record-length (a variable length integer at most 32-bits in size) 7407 ** and the key value (a variable length integer, may have any value). 7408 ** The first of the while(...) loops below skips over the record-length 7409 ** field. The second while(...) loop copies the key value from the 7410 ** cell on pPage into the pSpace buffer. 7411 */ 7412 pCell = findCell(pPage, pPage->nCell-1); 7413 pStop = &pCell[9]; 7414 while( (*(pCell++)&0x80) && pCell<pStop ); 7415 pStop = &pCell[9]; 7416 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7417 7418 /* Insert the new divider cell into pParent. */ 7419 if( rc==SQLITE_OK ){ 7420 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7421 0, pPage->pgno, &rc); 7422 } 7423 7424 /* Set the right-child pointer of pParent to point to the new page. */ 7425 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7426 7427 /* Release the reference to the new page. */ 7428 releasePage(pNew); 7429 } 7430 7431 return rc; 7432 } 7433 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7434 7435 #if 0 7436 /* 7437 ** This function does not contribute anything to the operation of SQLite. 7438 ** it is sometimes activated temporarily while debugging code responsible 7439 ** for setting pointer-map entries. 7440 */ 7441 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7442 int i, j; 7443 for(i=0; i<nPage; i++){ 7444 Pgno n; 7445 u8 e; 7446 MemPage *pPage = apPage[i]; 7447 BtShared *pBt = pPage->pBt; 7448 assert( pPage->isInit ); 7449 7450 for(j=0; j<pPage->nCell; j++){ 7451 CellInfo info; 7452 u8 *z; 7453 7454 z = findCell(pPage, j); 7455 pPage->xParseCell(pPage, z, &info); 7456 if( info.nLocal<info.nPayload ){ 7457 Pgno ovfl = get4byte(&z[info.nSize-4]); 7458 ptrmapGet(pBt, ovfl, &e, &n); 7459 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7460 } 7461 if( !pPage->leaf ){ 7462 Pgno child = get4byte(z); 7463 ptrmapGet(pBt, child, &e, &n); 7464 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7465 } 7466 } 7467 if( !pPage->leaf ){ 7468 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7469 ptrmapGet(pBt, child, &e, &n); 7470 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7471 } 7472 } 7473 return 1; 7474 } 7475 #endif 7476 7477 /* 7478 ** This function is used to copy the contents of the b-tree node stored 7479 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7480 ** the pointer-map entries for each child page are updated so that the 7481 ** parent page stored in the pointer map is page pTo. If pFrom contained 7482 ** any cells with overflow page pointers, then the corresponding pointer 7483 ** map entries are also updated so that the parent page is page pTo. 7484 ** 7485 ** If pFrom is currently carrying any overflow cells (entries in the 7486 ** MemPage.apOvfl[] array), they are not copied to pTo. 7487 ** 7488 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7489 ** 7490 ** The performance of this function is not critical. It is only used by 7491 ** the balance_shallower() and balance_deeper() procedures, neither of 7492 ** which are called often under normal circumstances. 7493 */ 7494 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7495 if( (*pRC)==SQLITE_OK ){ 7496 BtShared * const pBt = pFrom->pBt; 7497 u8 * const aFrom = pFrom->aData; 7498 u8 * const aTo = pTo->aData; 7499 int const iFromHdr = pFrom->hdrOffset; 7500 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7501 int rc; 7502 int iData; 7503 7504 7505 assert( pFrom->isInit ); 7506 assert( pFrom->nFree>=iToHdr ); 7507 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7508 7509 /* Copy the b-tree node content from page pFrom to page pTo. */ 7510 iData = get2byte(&aFrom[iFromHdr+5]); 7511 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7512 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7513 7514 /* Reinitialize page pTo so that the contents of the MemPage structure 7515 ** match the new data. The initialization of pTo can actually fail under 7516 ** fairly obscure circumstances, even though it is a copy of initialized 7517 ** page pFrom. 7518 */ 7519 pTo->isInit = 0; 7520 rc = btreeInitPage(pTo); 7521 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7522 if( rc!=SQLITE_OK ){ 7523 *pRC = rc; 7524 return; 7525 } 7526 7527 /* If this is an auto-vacuum database, update the pointer-map entries 7528 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7529 */ 7530 if( ISAUTOVACUUM ){ 7531 *pRC = setChildPtrmaps(pTo); 7532 } 7533 } 7534 } 7535 7536 /* 7537 ** This routine redistributes cells on the iParentIdx'th child of pParent 7538 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7539 ** same amount of free space. Usually a single sibling on either side of the 7540 ** page are used in the balancing, though both siblings might come from one 7541 ** side if the page is the first or last child of its parent. If the page 7542 ** has fewer than 2 siblings (something which can only happen if the page 7543 ** is a root page or a child of a root page) then all available siblings 7544 ** participate in the balancing. 7545 ** 7546 ** The number of siblings of the page might be increased or decreased by 7547 ** one or two in an effort to keep pages nearly full but not over full. 7548 ** 7549 ** Note that when this routine is called, some of the cells on the page 7550 ** might not actually be stored in MemPage.aData[]. This can happen 7551 ** if the page is overfull. This routine ensures that all cells allocated 7552 ** to the page and its siblings fit into MemPage.aData[] before returning. 7553 ** 7554 ** In the course of balancing the page and its siblings, cells may be 7555 ** inserted into or removed from the parent page (pParent). Doing so 7556 ** may cause the parent page to become overfull or underfull. If this 7557 ** happens, it is the responsibility of the caller to invoke the correct 7558 ** balancing routine to fix this problem (see the balance() routine). 7559 ** 7560 ** If this routine fails for any reason, it might leave the database 7561 ** in a corrupted state. So if this routine fails, the database should 7562 ** be rolled back. 7563 ** 7564 ** The third argument to this function, aOvflSpace, is a pointer to a 7565 ** buffer big enough to hold one page. If while inserting cells into the parent 7566 ** page (pParent) the parent page becomes overfull, this buffer is 7567 ** used to store the parent's overflow cells. Because this function inserts 7568 ** a maximum of four divider cells into the parent page, and the maximum 7569 ** size of a cell stored within an internal node is always less than 1/4 7570 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7571 ** enough for all overflow cells. 7572 ** 7573 ** If aOvflSpace is set to a null pointer, this function returns 7574 ** SQLITE_NOMEM. 7575 */ 7576 static int balance_nonroot( 7577 MemPage *pParent, /* Parent page of siblings being balanced */ 7578 int iParentIdx, /* Index of "the page" in pParent */ 7579 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7580 int isRoot, /* True if pParent is a root-page */ 7581 int bBulk /* True if this call is part of a bulk load */ 7582 ){ 7583 BtShared *pBt; /* The whole database */ 7584 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7585 int nNew = 0; /* Number of pages in apNew[] */ 7586 int nOld; /* Number of pages in apOld[] */ 7587 int i, j, k; /* Loop counters */ 7588 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7589 int rc = SQLITE_OK; /* The return code */ 7590 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7591 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7592 int usableSpace; /* Bytes in pPage beyond the header */ 7593 int pageFlags; /* Value of pPage->aData[0] */ 7594 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7595 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7596 int szScratch; /* Size of scratch memory requested */ 7597 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7598 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7599 u8 *pRight; /* Location in parent of right-sibling pointer */ 7600 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7601 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7602 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7603 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7604 u8 *aSpace1; /* Space for copies of dividers cells */ 7605 Pgno pgno; /* Temp var to store a page number in */ 7606 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7607 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7608 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7609 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7610 CellArray b; /* Parsed information on cells being balanced */ 7611 7612 memset(abDone, 0, sizeof(abDone)); 7613 b.nCell = 0; 7614 b.apCell = 0; 7615 pBt = pParent->pBt; 7616 assert( sqlite3_mutex_held(pBt->mutex) ); 7617 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7618 7619 /* At this point pParent may have at most one overflow cell. And if 7620 ** this overflow cell is present, it must be the cell with 7621 ** index iParentIdx. This scenario comes about when this function 7622 ** is called (indirectly) from sqlite3BtreeDelete(). 7623 */ 7624 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7625 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7626 7627 if( !aOvflSpace ){ 7628 return SQLITE_NOMEM_BKPT; 7629 } 7630 assert( pParent->nFree>=0 ); 7631 7632 /* Find the sibling pages to balance. Also locate the cells in pParent 7633 ** that divide the siblings. An attempt is made to find NN siblings on 7634 ** either side of pPage. More siblings are taken from one side, however, 7635 ** if there are fewer than NN siblings on the other side. If pParent 7636 ** has NB or fewer children then all children of pParent are taken. 7637 ** 7638 ** This loop also drops the divider cells from the parent page. This 7639 ** way, the remainder of the function does not have to deal with any 7640 ** overflow cells in the parent page, since if any existed they will 7641 ** have already been removed. 7642 */ 7643 i = pParent->nOverflow + pParent->nCell; 7644 if( i<2 ){ 7645 nxDiv = 0; 7646 }else{ 7647 assert( bBulk==0 || bBulk==1 ); 7648 if( iParentIdx==0 ){ 7649 nxDiv = 0; 7650 }else if( iParentIdx==i ){ 7651 nxDiv = i-2+bBulk; 7652 }else{ 7653 nxDiv = iParentIdx-1; 7654 } 7655 i = 2-bBulk; 7656 } 7657 nOld = i+1; 7658 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7659 pRight = &pParent->aData[pParent->hdrOffset+8]; 7660 }else{ 7661 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7662 } 7663 pgno = get4byte(pRight); 7664 while( 1 ){ 7665 if( rc==SQLITE_OK ){ 7666 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7667 } 7668 if( rc ){ 7669 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7670 goto balance_cleanup; 7671 } 7672 if( apOld[i]->nFree<0 ){ 7673 rc = btreeComputeFreeSpace(apOld[i]); 7674 if( rc ){ 7675 memset(apOld, 0, (i)*sizeof(MemPage*)); 7676 goto balance_cleanup; 7677 } 7678 } 7679 if( (i--)==0 ) break; 7680 7681 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7682 apDiv[i] = pParent->apOvfl[0]; 7683 pgno = get4byte(apDiv[i]); 7684 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7685 pParent->nOverflow = 0; 7686 }else{ 7687 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7688 pgno = get4byte(apDiv[i]); 7689 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7690 7691 /* Drop the cell from the parent page. apDiv[i] still points to 7692 ** the cell within the parent, even though it has been dropped. 7693 ** This is safe because dropping a cell only overwrites the first 7694 ** four bytes of it, and this function does not need the first 7695 ** four bytes of the divider cell. So the pointer is safe to use 7696 ** later on. 7697 ** 7698 ** But not if we are in secure-delete mode. In secure-delete mode, 7699 ** the dropCell() routine will overwrite the entire cell with zeroes. 7700 ** In this case, temporarily copy the cell into the aOvflSpace[] 7701 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7702 ** is allocated. */ 7703 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7704 int iOff; 7705 7706 /* If the following if() condition is not true, the db is corrupted. 7707 ** The call to dropCell() below will detect this. */ 7708 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7709 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7710 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7711 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7712 } 7713 } 7714 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7715 } 7716 } 7717 7718 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7719 ** alignment */ 7720 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl)); 7721 nMaxCells = (nMaxCells + 3)&~3; 7722 7723 /* 7724 ** Allocate space for memory structures 7725 */ 7726 szScratch = 7727 nMaxCells*sizeof(u8*) /* b.apCell */ 7728 + nMaxCells*sizeof(u16) /* b.szCell */ 7729 + pBt->pageSize; /* aSpace1 */ 7730 7731 assert( szScratch<=7*(int)pBt->pageSize ); 7732 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7733 if( b.apCell==0 ){ 7734 rc = SQLITE_NOMEM_BKPT; 7735 goto balance_cleanup; 7736 } 7737 b.szCell = (u16*)&b.apCell[nMaxCells]; 7738 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7739 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7740 7741 /* 7742 ** Load pointers to all cells on sibling pages and the divider cells 7743 ** into the local b.apCell[] array. Make copies of the divider cells 7744 ** into space obtained from aSpace1[]. The divider cells have already 7745 ** been removed from pParent. 7746 ** 7747 ** If the siblings are on leaf pages, then the child pointers of the 7748 ** divider cells are stripped from the cells before they are copied 7749 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7750 ** child pointers. If siblings are not leaves, then all cell in 7751 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7752 ** are alike. 7753 ** 7754 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7755 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7756 */ 7757 b.pRef = apOld[0]; 7758 leafCorrection = b.pRef->leaf*4; 7759 leafData = b.pRef->intKeyLeaf; 7760 for(i=0; i<nOld; i++){ 7761 MemPage *pOld = apOld[i]; 7762 int limit = pOld->nCell; 7763 u8 *aData = pOld->aData; 7764 u16 maskPage = pOld->maskPage; 7765 u8 *piCell = aData + pOld->cellOffset; 7766 u8 *piEnd; 7767 VVA_ONLY( int nCellAtStart = b.nCell; ) 7768 7769 /* Verify that all sibling pages are of the same "type" (table-leaf, 7770 ** table-interior, index-leaf, or index-interior). 7771 */ 7772 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7773 rc = SQLITE_CORRUPT_BKPT; 7774 goto balance_cleanup; 7775 } 7776 7777 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7778 ** contains overflow cells, include them in the b.apCell[] array 7779 ** in the correct spot. 7780 ** 7781 ** Note that when there are multiple overflow cells, it is always the 7782 ** case that they are sequential and adjacent. This invariant arises 7783 ** because multiple overflows can only occurs when inserting divider 7784 ** cells into a parent on a prior balance, and divider cells are always 7785 ** adjacent and are inserted in order. There is an assert() tagged 7786 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7787 ** invariant. 7788 ** 7789 ** This must be done in advance. Once the balance starts, the cell 7790 ** offset section of the btree page will be overwritten and we will no 7791 ** long be able to find the cells if a pointer to each cell is not saved 7792 ** first. 7793 */ 7794 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7795 if( pOld->nOverflow>0 ){ 7796 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7797 rc = SQLITE_CORRUPT_BKPT; 7798 goto balance_cleanup; 7799 } 7800 limit = pOld->aiOvfl[0]; 7801 for(j=0; j<limit; j++){ 7802 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7803 piCell += 2; 7804 b.nCell++; 7805 } 7806 for(k=0; k<pOld->nOverflow; k++){ 7807 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7808 b.apCell[b.nCell] = pOld->apOvfl[k]; 7809 b.nCell++; 7810 } 7811 } 7812 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7813 while( piCell<piEnd ){ 7814 assert( b.nCell<nMaxCells ); 7815 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7816 piCell += 2; 7817 b.nCell++; 7818 } 7819 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7820 7821 cntOld[i] = b.nCell; 7822 if( i<nOld-1 && !leafData){ 7823 u16 sz = (u16)szNew[i]; 7824 u8 *pTemp; 7825 assert( b.nCell<nMaxCells ); 7826 b.szCell[b.nCell] = sz; 7827 pTemp = &aSpace1[iSpace1]; 7828 iSpace1 += sz; 7829 assert( sz<=pBt->maxLocal+23 ); 7830 assert( iSpace1 <= (int)pBt->pageSize ); 7831 memcpy(pTemp, apDiv[i], sz); 7832 b.apCell[b.nCell] = pTemp+leafCorrection; 7833 assert( leafCorrection==0 || leafCorrection==4 ); 7834 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7835 if( !pOld->leaf ){ 7836 assert( leafCorrection==0 ); 7837 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 7838 /* The right pointer of the child page pOld becomes the left 7839 ** pointer of the divider cell */ 7840 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7841 }else{ 7842 assert( leafCorrection==4 ); 7843 while( b.szCell[b.nCell]<4 ){ 7844 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7845 ** does exist, pad it with 0x00 bytes. */ 7846 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7847 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7848 aSpace1[iSpace1++] = 0x00; 7849 b.szCell[b.nCell]++; 7850 } 7851 } 7852 b.nCell++; 7853 } 7854 } 7855 7856 /* 7857 ** Figure out the number of pages needed to hold all b.nCell cells. 7858 ** Store this number in "k". Also compute szNew[] which is the total 7859 ** size of all cells on the i-th page and cntNew[] which is the index 7860 ** in b.apCell[] of the cell that divides page i from page i+1. 7861 ** cntNew[k] should equal b.nCell. 7862 ** 7863 ** Values computed by this block: 7864 ** 7865 ** k: The total number of sibling pages 7866 ** szNew[i]: Spaced used on the i-th sibling page. 7867 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7868 ** the right of the i-th sibling page. 7869 ** usableSpace: Number of bytes of space available on each sibling. 7870 ** 7871 */ 7872 usableSpace = pBt->usableSize - 12 + leafCorrection; 7873 for(i=k=0; i<nOld; i++, k++){ 7874 MemPage *p = apOld[i]; 7875 b.apEnd[k] = p->aDataEnd; 7876 b.ixNx[k] = cntOld[i]; 7877 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7878 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7879 } 7880 if( !leafData ){ 7881 k++; 7882 b.apEnd[k] = pParent->aDataEnd; 7883 b.ixNx[k] = cntOld[i]+1; 7884 } 7885 assert( p->nFree>=0 ); 7886 szNew[i] = usableSpace - p->nFree; 7887 for(j=0; j<p->nOverflow; j++){ 7888 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7889 } 7890 cntNew[i] = cntOld[i]; 7891 } 7892 k = nOld; 7893 for(i=0; i<k; i++){ 7894 int sz; 7895 while( szNew[i]>usableSpace ){ 7896 if( i+1>=k ){ 7897 k = i+2; 7898 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7899 szNew[k-1] = 0; 7900 cntNew[k-1] = b.nCell; 7901 } 7902 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7903 szNew[i] -= sz; 7904 if( !leafData ){ 7905 if( cntNew[i]<b.nCell ){ 7906 sz = 2 + cachedCellSize(&b, cntNew[i]); 7907 }else{ 7908 sz = 0; 7909 } 7910 } 7911 szNew[i+1] += sz; 7912 cntNew[i]--; 7913 } 7914 while( cntNew[i]<b.nCell ){ 7915 sz = 2 + cachedCellSize(&b, cntNew[i]); 7916 if( szNew[i]+sz>usableSpace ) break; 7917 szNew[i] += sz; 7918 cntNew[i]++; 7919 if( !leafData ){ 7920 if( cntNew[i]<b.nCell ){ 7921 sz = 2 + cachedCellSize(&b, cntNew[i]); 7922 }else{ 7923 sz = 0; 7924 } 7925 } 7926 szNew[i+1] -= sz; 7927 } 7928 if( cntNew[i]>=b.nCell ){ 7929 k = i+1; 7930 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7931 rc = SQLITE_CORRUPT_BKPT; 7932 goto balance_cleanup; 7933 } 7934 } 7935 7936 /* 7937 ** The packing computed by the previous block is biased toward the siblings 7938 ** on the left side (siblings with smaller keys). The left siblings are 7939 ** always nearly full, while the right-most sibling might be nearly empty. 7940 ** The next block of code attempts to adjust the packing of siblings to 7941 ** get a better balance. 7942 ** 7943 ** This adjustment is more than an optimization. The packing above might 7944 ** be so out of balance as to be illegal. For example, the right-most 7945 ** sibling might be completely empty. This adjustment is not optional. 7946 */ 7947 for(i=k-1; i>0; i--){ 7948 int szRight = szNew[i]; /* Size of sibling on the right */ 7949 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7950 int r; /* Index of right-most cell in left sibling */ 7951 int d; /* Index of first cell to the left of right sibling */ 7952 7953 r = cntNew[i-1] - 1; 7954 d = r + 1 - leafData; 7955 (void)cachedCellSize(&b, d); 7956 do{ 7957 assert( d<nMaxCells ); 7958 assert( r<nMaxCells ); 7959 (void)cachedCellSize(&b, r); 7960 if( szRight!=0 7961 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7962 break; 7963 } 7964 szRight += b.szCell[d] + 2; 7965 szLeft -= b.szCell[r] + 2; 7966 cntNew[i-1] = r; 7967 r--; 7968 d--; 7969 }while( r>=0 ); 7970 szNew[i] = szRight; 7971 szNew[i-1] = szLeft; 7972 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7973 rc = SQLITE_CORRUPT_BKPT; 7974 goto balance_cleanup; 7975 } 7976 } 7977 7978 /* Sanity check: For a non-corrupt database file one of the follwing 7979 ** must be true: 7980 ** (1) We found one or more cells (cntNew[0])>0), or 7981 ** (2) pPage is a virtual root page. A virtual root page is when 7982 ** the real root page is page 1 and we are the only child of 7983 ** that page. 7984 */ 7985 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7986 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7987 apOld[0]->pgno, apOld[0]->nCell, 7988 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7989 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7990 )); 7991 7992 /* 7993 ** Allocate k new pages. Reuse old pages where possible. 7994 */ 7995 pageFlags = apOld[0]->aData[0]; 7996 for(i=0; i<k; i++){ 7997 MemPage *pNew; 7998 if( i<nOld ){ 7999 pNew = apNew[i] = apOld[i]; 8000 apOld[i] = 0; 8001 rc = sqlite3PagerWrite(pNew->pDbPage); 8002 nNew++; 8003 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) ){ 8004 rc = SQLITE_CORRUPT_BKPT; 8005 } 8006 if( rc ) goto balance_cleanup; 8007 }else{ 8008 assert( i>0 ); 8009 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8010 if( rc ) goto balance_cleanup; 8011 zeroPage(pNew, pageFlags); 8012 apNew[i] = pNew; 8013 nNew++; 8014 cntOld[i] = b.nCell; 8015 8016 /* Set the pointer-map entry for the new sibling page. */ 8017 if( ISAUTOVACUUM ){ 8018 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8019 if( rc!=SQLITE_OK ){ 8020 goto balance_cleanup; 8021 } 8022 } 8023 } 8024 } 8025 8026 /* 8027 ** Reassign page numbers so that the new pages are in ascending order. 8028 ** This helps to keep entries in the disk file in order so that a scan 8029 ** of the table is closer to a linear scan through the file. That in turn 8030 ** helps the operating system to deliver pages from the disk more rapidly. 8031 ** 8032 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8033 ** than (NB+2) (a small constant), that should not be a problem. 8034 ** 8035 ** When NB==3, this one optimization makes the database about 25% faster 8036 ** for large insertions and deletions. 8037 */ 8038 for(i=0; i<nNew; i++){ 8039 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8040 aPgFlags[i] = apNew[i]->pDbPage->flags; 8041 for(j=0; j<i; j++){ 8042 if( NEVER(aPgno[j]==aPgno[i]) ){ 8043 /* This branch is taken if the set of sibling pages somehow contains 8044 ** duplicate entries. This can happen if the database is corrupt. 8045 ** It would be simpler to detect this as part of the loop below, but 8046 ** we do the detection here in order to avoid populating the pager 8047 ** cache with two separate objects associated with the same 8048 ** page number. */ 8049 assert( CORRUPT_DB ); 8050 rc = SQLITE_CORRUPT_BKPT; 8051 goto balance_cleanup; 8052 } 8053 } 8054 } 8055 for(i=0; i<nNew; i++){ 8056 int iBest = 0; /* aPgno[] index of page number to use */ 8057 for(j=1; j<nNew; j++){ 8058 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8059 } 8060 pgno = aPgOrder[iBest]; 8061 aPgOrder[iBest] = 0xffffffff; 8062 if( iBest!=i ){ 8063 if( iBest>i ){ 8064 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8065 } 8066 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8067 apNew[i]->pgno = pgno; 8068 } 8069 } 8070 8071 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8072 "%d(%d nc=%d) %d(%d nc=%d)\n", 8073 apNew[0]->pgno, szNew[0], cntNew[0], 8074 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8075 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8076 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8077 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8078 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8079 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8080 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8081 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8082 )); 8083 8084 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8085 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8086 assert( apNew[nNew-1]!=0 ); 8087 put4byte(pRight, apNew[nNew-1]->pgno); 8088 8089 /* If the sibling pages are not leaves, ensure that the right-child pointer 8090 ** of the right-most new sibling page is set to the value that was 8091 ** originally in the same field of the right-most old sibling page. */ 8092 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8093 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8094 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8095 } 8096 8097 /* Make any required updates to pointer map entries associated with 8098 ** cells stored on sibling pages following the balance operation. Pointer 8099 ** map entries associated with divider cells are set by the insertCell() 8100 ** routine. The associated pointer map entries are: 8101 ** 8102 ** a) if the cell contains a reference to an overflow chain, the 8103 ** entry associated with the first page in the overflow chain, and 8104 ** 8105 ** b) if the sibling pages are not leaves, the child page associated 8106 ** with the cell. 8107 ** 8108 ** If the sibling pages are not leaves, then the pointer map entry 8109 ** associated with the right-child of each sibling may also need to be 8110 ** updated. This happens below, after the sibling pages have been 8111 ** populated, not here. 8112 */ 8113 if( ISAUTOVACUUM ){ 8114 MemPage *pOld; 8115 MemPage *pNew = pOld = apNew[0]; 8116 int cntOldNext = pNew->nCell + pNew->nOverflow; 8117 int iNew = 0; 8118 int iOld = 0; 8119 8120 for(i=0; i<b.nCell; i++){ 8121 u8 *pCell = b.apCell[i]; 8122 while( i==cntOldNext ){ 8123 iOld++; 8124 assert( iOld<nNew || iOld<nOld ); 8125 assert( iOld>=0 && iOld<NB ); 8126 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8127 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8128 } 8129 if( i==cntNew[iNew] ){ 8130 pNew = apNew[++iNew]; 8131 if( !leafData ) continue; 8132 } 8133 8134 /* Cell pCell is destined for new sibling page pNew. Originally, it 8135 ** was either part of sibling page iOld (possibly an overflow cell), 8136 ** or else the divider cell to the left of sibling page iOld. So, 8137 ** if sibling page iOld had the same page number as pNew, and if 8138 ** pCell really was a part of sibling page iOld (not a divider or 8139 ** overflow cell), we can skip updating the pointer map entries. */ 8140 if( iOld>=nNew 8141 || pNew->pgno!=aPgno[iOld] 8142 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8143 ){ 8144 if( !leafCorrection ){ 8145 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8146 } 8147 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8148 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8149 } 8150 if( rc ) goto balance_cleanup; 8151 } 8152 } 8153 } 8154 8155 /* Insert new divider cells into pParent. */ 8156 for(i=0; i<nNew-1; i++){ 8157 u8 *pCell; 8158 u8 *pTemp; 8159 int sz; 8160 u8 *pSrcEnd; 8161 MemPage *pNew = apNew[i]; 8162 j = cntNew[i]; 8163 8164 assert( j<nMaxCells ); 8165 assert( b.apCell[j]!=0 ); 8166 pCell = b.apCell[j]; 8167 sz = b.szCell[j] + leafCorrection; 8168 pTemp = &aOvflSpace[iOvflSpace]; 8169 if( !pNew->leaf ){ 8170 memcpy(&pNew->aData[8], pCell, 4); 8171 }else if( leafData ){ 8172 /* If the tree is a leaf-data tree, and the siblings are leaves, 8173 ** then there is no divider cell in b.apCell[]. Instead, the divider 8174 ** cell consists of the integer key for the right-most cell of 8175 ** the sibling-page assembled above only. 8176 */ 8177 CellInfo info; 8178 j--; 8179 pNew->xParseCell(pNew, b.apCell[j], &info); 8180 pCell = pTemp; 8181 sz = 4 + putVarint(&pCell[4], info.nKey); 8182 pTemp = 0; 8183 }else{ 8184 pCell -= 4; 8185 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8186 ** previously stored on a leaf node, and its reported size was 4 8187 ** bytes, then it may actually be smaller than this 8188 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8189 ** any cell). But it is important to pass the correct size to 8190 ** insertCell(), so reparse the cell now. 8191 ** 8192 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8193 ** and WITHOUT ROWID tables with exactly one column which is the 8194 ** primary key. 8195 */ 8196 if( b.szCell[j]==4 ){ 8197 assert(leafCorrection==4); 8198 sz = pParent->xCellSize(pParent, pCell); 8199 } 8200 } 8201 iOvflSpace += sz; 8202 assert( sz<=pBt->maxLocal+23 ); 8203 assert( iOvflSpace <= (int)pBt->pageSize ); 8204 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 8205 pSrcEnd = b.apEnd[k]; 8206 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8207 rc = SQLITE_CORRUPT_BKPT; 8208 goto balance_cleanup; 8209 } 8210 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8211 if( rc!=SQLITE_OK ) goto balance_cleanup; 8212 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8213 } 8214 8215 /* Now update the actual sibling pages. The order in which they are updated 8216 ** is important, as this code needs to avoid disrupting any page from which 8217 ** cells may still to be read. In practice, this means: 8218 ** 8219 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8220 ** then it is not safe to update page apNew[iPg] until after 8221 ** the left-hand sibling apNew[iPg-1] has been updated. 8222 ** 8223 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8224 ** then it is not safe to update page apNew[iPg] until after 8225 ** the right-hand sibling apNew[iPg+1] has been updated. 8226 ** 8227 ** If neither of the above apply, the page is safe to update. 8228 ** 8229 ** The iPg value in the following loop starts at nNew-1 goes down 8230 ** to 0, then back up to nNew-1 again, thus making two passes over 8231 ** the pages. On the initial downward pass, only condition (1) above 8232 ** needs to be tested because (2) will always be true from the previous 8233 ** step. On the upward pass, both conditions are always true, so the 8234 ** upwards pass simply processes pages that were missed on the downward 8235 ** pass. 8236 */ 8237 for(i=1-nNew; i<nNew; i++){ 8238 int iPg = i<0 ? -i : i; 8239 assert( iPg>=0 && iPg<nNew ); 8240 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8241 if( i>=0 /* On the upwards pass, or... */ 8242 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8243 ){ 8244 int iNew; 8245 int iOld; 8246 int nNewCell; 8247 8248 /* Verify condition (1): If cells are moving left, update iPg 8249 ** only after iPg-1 has already been updated. */ 8250 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8251 8252 /* Verify condition (2): If cells are moving right, update iPg 8253 ** only after iPg+1 has already been updated. */ 8254 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8255 8256 if( iPg==0 ){ 8257 iNew = iOld = 0; 8258 nNewCell = cntNew[0]; 8259 }else{ 8260 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8261 iNew = cntNew[iPg-1] + !leafData; 8262 nNewCell = cntNew[iPg] - iNew; 8263 } 8264 8265 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8266 if( rc ) goto balance_cleanup; 8267 abDone[iPg]++; 8268 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8269 assert( apNew[iPg]->nOverflow==0 ); 8270 assert( apNew[iPg]->nCell==nNewCell ); 8271 } 8272 } 8273 8274 /* All pages have been processed exactly once */ 8275 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8276 8277 assert( nOld>0 ); 8278 assert( nNew>0 ); 8279 8280 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8281 /* The root page of the b-tree now contains no cells. The only sibling 8282 ** page is the right-child of the parent. Copy the contents of the 8283 ** child page into the parent, decreasing the overall height of the 8284 ** b-tree structure by one. This is described as the "balance-shallower" 8285 ** sub-algorithm in some documentation. 8286 ** 8287 ** If this is an auto-vacuum database, the call to copyNodeContent() 8288 ** sets all pointer-map entries corresponding to database image pages 8289 ** for which the pointer is stored within the content being copied. 8290 ** 8291 ** It is critical that the child page be defragmented before being 8292 ** copied into the parent, because if the parent is page 1 then it will 8293 ** by smaller than the child due to the database header, and so all the 8294 ** free space needs to be up front. 8295 */ 8296 assert( nNew==1 || CORRUPT_DB ); 8297 rc = defragmentPage(apNew[0], -1); 8298 testcase( rc!=SQLITE_OK ); 8299 assert( apNew[0]->nFree == 8300 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8301 - apNew[0]->nCell*2) 8302 || rc!=SQLITE_OK 8303 ); 8304 copyNodeContent(apNew[0], pParent, &rc); 8305 freePage(apNew[0], &rc); 8306 }else if( ISAUTOVACUUM && !leafCorrection ){ 8307 /* Fix the pointer map entries associated with the right-child of each 8308 ** sibling page. All other pointer map entries have already been taken 8309 ** care of. */ 8310 for(i=0; i<nNew; i++){ 8311 u32 key = get4byte(&apNew[i]->aData[8]); 8312 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8313 } 8314 } 8315 8316 assert( pParent->isInit ); 8317 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8318 nOld, nNew, b.nCell)); 8319 8320 /* Free any old pages that were not reused as new pages. 8321 */ 8322 for(i=nNew; i<nOld; i++){ 8323 freePage(apOld[i], &rc); 8324 } 8325 8326 #if 0 8327 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8328 /* The ptrmapCheckPages() contains assert() statements that verify that 8329 ** all pointer map pages are set correctly. This is helpful while 8330 ** debugging. This is usually disabled because a corrupt database may 8331 ** cause an assert() statement to fail. */ 8332 ptrmapCheckPages(apNew, nNew); 8333 ptrmapCheckPages(&pParent, 1); 8334 } 8335 #endif 8336 8337 /* 8338 ** Cleanup before returning. 8339 */ 8340 balance_cleanup: 8341 sqlite3StackFree(0, b.apCell); 8342 for(i=0; i<nOld; i++){ 8343 releasePage(apOld[i]); 8344 } 8345 for(i=0; i<nNew; i++){ 8346 releasePage(apNew[i]); 8347 } 8348 8349 return rc; 8350 } 8351 8352 8353 /* 8354 ** This function is called when the root page of a b-tree structure is 8355 ** overfull (has one or more overflow pages). 8356 ** 8357 ** A new child page is allocated and the contents of the current root 8358 ** page, including overflow cells, are copied into the child. The root 8359 ** page is then overwritten to make it an empty page with the right-child 8360 ** pointer pointing to the new page. 8361 ** 8362 ** Before returning, all pointer-map entries corresponding to pages 8363 ** that the new child-page now contains pointers to are updated. The 8364 ** entry corresponding to the new right-child pointer of the root 8365 ** page is also updated. 8366 ** 8367 ** If successful, *ppChild is set to contain a reference to the child 8368 ** page and SQLITE_OK is returned. In this case the caller is required 8369 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8370 ** an error code is returned and *ppChild is set to 0. 8371 */ 8372 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8373 int rc; /* Return value from subprocedures */ 8374 MemPage *pChild = 0; /* Pointer to a new child page */ 8375 Pgno pgnoChild = 0; /* Page number of the new child page */ 8376 BtShared *pBt = pRoot->pBt; /* The BTree */ 8377 8378 assert( pRoot->nOverflow>0 ); 8379 assert( sqlite3_mutex_held(pBt->mutex) ); 8380 8381 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8382 ** page that will become the new right-child of pPage. Copy the contents 8383 ** of the node stored on pRoot into the new child page. 8384 */ 8385 rc = sqlite3PagerWrite(pRoot->pDbPage); 8386 if( rc==SQLITE_OK ){ 8387 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8388 copyNodeContent(pRoot, pChild, &rc); 8389 if( ISAUTOVACUUM ){ 8390 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8391 } 8392 } 8393 if( rc ){ 8394 *ppChild = 0; 8395 releasePage(pChild); 8396 return rc; 8397 } 8398 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8399 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8400 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8401 8402 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8403 8404 /* Copy the overflow cells from pRoot to pChild */ 8405 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8406 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8407 memcpy(pChild->apOvfl, pRoot->apOvfl, 8408 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8409 pChild->nOverflow = pRoot->nOverflow; 8410 8411 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8412 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8413 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8414 8415 *ppChild = pChild; 8416 return SQLITE_OK; 8417 } 8418 8419 /* 8420 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8421 ** on the same B-tree as pCur. 8422 ** 8423 ** This can if a database is corrupt with two or more SQL tables 8424 ** pointing to the same b-tree. If an insert occurs on one SQL table 8425 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8426 ** table linked to the same b-tree. If the secondary insert causes a 8427 ** rebalance, that can change content out from under the cursor on the 8428 ** first SQL table, violating invariants on the first insert. 8429 */ 8430 static int anotherValidCursor(BtCursor *pCur){ 8431 BtCursor *pOther; 8432 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8433 if( pOther!=pCur 8434 && pOther->eState==CURSOR_VALID 8435 && pOther->pPage==pCur->pPage 8436 ){ 8437 return SQLITE_CORRUPT_BKPT; 8438 } 8439 } 8440 return SQLITE_OK; 8441 } 8442 8443 /* 8444 ** The page that pCur currently points to has just been modified in 8445 ** some way. This function figures out if this modification means the 8446 ** tree needs to be balanced, and if so calls the appropriate balancing 8447 ** routine. Balancing routines are: 8448 ** 8449 ** balance_quick() 8450 ** balance_deeper() 8451 ** balance_nonroot() 8452 */ 8453 static int balance(BtCursor *pCur){ 8454 int rc = SQLITE_OK; 8455 const int nMin = pCur->pBt->usableSize * 2 / 3; 8456 u8 aBalanceQuickSpace[13]; 8457 u8 *pFree = 0; 8458 8459 VVA_ONLY( int balance_quick_called = 0 ); 8460 VVA_ONLY( int balance_deeper_called = 0 ); 8461 8462 do { 8463 int iPage; 8464 MemPage *pPage = pCur->pPage; 8465 8466 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8467 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8468 break; 8469 }else if( (iPage = pCur->iPage)==0 ){ 8470 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8471 /* The root page of the b-tree is overfull. In this case call the 8472 ** balance_deeper() function to create a new child for the root-page 8473 ** and copy the current contents of the root-page to it. The 8474 ** next iteration of the do-loop will balance the child page. 8475 */ 8476 assert( balance_deeper_called==0 ); 8477 VVA_ONLY( balance_deeper_called++ ); 8478 rc = balance_deeper(pPage, &pCur->apPage[1]); 8479 if( rc==SQLITE_OK ){ 8480 pCur->iPage = 1; 8481 pCur->ix = 0; 8482 pCur->aiIdx[0] = 0; 8483 pCur->apPage[0] = pPage; 8484 pCur->pPage = pCur->apPage[1]; 8485 assert( pCur->pPage->nOverflow ); 8486 } 8487 }else{ 8488 break; 8489 } 8490 }else{ 8491 MemPage * const pParent = pCur->apPage[iPage-1]; 8492 int const iIdx = pCur->aiIdx[iPage-1]; 8493 8494 rc = sqlite3PagerWrite(pParent->pDbPage); 8495 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8496 rc = btreeComputeFreeSpace(pParent); 8497 } 8498 if( rc==SQLITE_OK ){ 8499 #ifndef SQLITE_OMIT_QUICKBALANCE 8500 if( pPage->intKeyLeaf 8501 && pPage->nOverflow==1 8502 && pPage->aiOvfl[0]==pPage->nCell 8503 && pParent->pgno!=1 8504 && pParent->nCell==iIdx 8505 ){ 8506 /* Call balance_quick() to create a new sibling of pPage on which 8507 ** to store the overflow cell. balance_quick() inserts a new cell 8508 ** into pParent, which may cause pParent overflow. If this 8509 ** happens, the next iteration of the do-loop will balance pParent 8510 ** use either balance_nonroot() or balance_deeper(). Until this 8511 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8512 ** buffer. 8513 ** 8514 ** The purpose of the following assert() is to check that only a 8515 ** single call to balance_quick() is made for each call to this 8516 ** function. If this were not verified, a subtle bug involving reuse 8517 ** of the aBalanceQuickSpace[] might sneak in. 8518 */ 8519 assert( balance_quick_called==0 ); 8520 VVA_ONLY( balance_quick_called++ ); 8521 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8522 }else 8523 #endif 8524 { 8525 /* In this case, call balance_nonroot() to redistribute cells 8526 ** between pPage and up to 2 of its sibling pages. This involves 8527 ** modifying the contents of pParent, which may cause pParent to 8528 ** become overfull or underfull. The next iteration of the do-loop 8529 ** will balance the parent page to correct this. 8530 ** 8531 ** If the parent page becomes overfull, the overflow cell or cells 8532 ** are stored in the pSpace buffer allocated immediately below. 8533 ** A subsequent iteration of the do-loop will deal with this by 8534 ** calling balance_nonroot() (balance_deeper() may be called first, 8535 ** but it doesn't deal with overflow cells - just moves them to a 8536 ** different page). Once this subsequent call to balance_nonroot() 8537 ** has completed, it is safe to release the pSpace buffer used by 8538 ** the previous call, as the overflow cell data will have been 8539 ** copied either into the body of a database page or into the new 8540 ** pSpace buffer passed to the latter call to balance_nonroot(). 8541 */ 8542 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8543 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8544 pCur->hints&BTREE_BULKLOAD); 8545 if( pFree ){ 8546 /* If pFree is not NULL, it points to the pSpace buffer used 8547 ** by a previous call to balance_nonroot(). Its contents are 8548 ** now stored either on real database pages or within the 8549 ** new pSpace buffer, so it may be safely freed here. */ 8550 sqlite3PageFree(pFree); 8551 } 8552 8553 /* The pSpace buffer will be freed after the next call to 8554 ** balance_nonroot(), or just before this function returns, whichever 8555 ** comes first. */ 8556 pFree = pSpace; 8557 } 8558 } 8559 8560 pPage->nOverflow = 0; 8561 8562 /* The next iteration of the do-loop balances the parent page. */ 8563 releasePage(pPage); 8564 pCur->iPage--; 8565 assert( pCur->iPage>=0 ); 8566 pCur->pPage = pCur->apPage[pCur->iPage]; 8567 } 8568 }while( rc==SQLITE_OK ); 8569 8570 if( pFree ){ 8571 sqlite3PageFree(pFree); 8572 } 8573 return rc; 8574 } 8575 8576 /* Overwrite content from pX into pDest. Only do the write if the 8577 ** content is different from what is already there. 8578 */ 8579 static int btreeOverwriteContent( 8580 MemPage *pPage, /* MemPage on which writing will occur */ 8581 u8 *pDest, /* Pointer to the place to start writing */ 8582 const BtreePayload *pX, /* Source of data to write */ 8583 int iOffset, /* Offset of first byte to write */ 8584 int iAmt /* Number of bytes to be written */ 8585 ){ 8586 int nData = pX->nData - iOffset; 8587 if( nData<=0 ){ 8588 /* Overwritting with zeros */ 8589 int i; 8590 for(i=0; i<iAmt && pDest[i]==0; i++){} 8591 if( i<iAmt ){ 8592 int rc = sqlite3PagerWrite(pPage->pDbPage); 8593 if( rc ) return rc; 8594 memset(pDest + i, 0, iAmt - i); 8595 } 8596 }else{ 8597 if( nData<iAmt ){ 8598 /* Mixed read data and zeros at the end. Make a recursive call 8599 ** to write the zeros then fall through to write the real data */ 8600 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8601 iAmt-nData); 8602 if( rc ) return rc; 8603 iAmt = nData; 8604 } 8605 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8606 int rc = sqlite3PagerWrite(pPage->pDbPage); 8607 if( rc ) return rc; 8608 /* In a corrupt database, it is possible for the source and destination 8609 ** buffers to overlap. This is harmless since the database is already 8610 ** corrupt but it does cause valgrind and ASAN warnings. So use 8611 ** memmove(). */ 8612 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8613 } 8614 } 8615 return SQLITE_OK; 8616 } 8617 8618 /* 8619 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8620 ** contained in pX. 8621 */ 8622 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8623 int iOffset; /* Next byte of pX->pData to write */ 8624 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8625 int rc; /* Return code */ 8626 MemPage *pPage = pCur->pPage; /* Page being written */ 8627 BtShared *pBt; /* Btree */ 8628 Pgno ovflPgno; /* Next overflow page to write */ 8629 u32 ovflPageSize; /* Size to write on overflow page */ 8630 8631 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8632 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8633 ){ 8634 return SQLITE_CORRUPT_BKPT; 8635 } 8636 /* Overwrite the local portion first */ 8637 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8638 0, pCur->info.nLocal); 8639 if( rc ) return rc; 8640 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8641 8642 /* Now overwrite the overflow pages */ 8643 iOffset = pCur->info.nLocal; 8644 assert( nTotal>=0 ); 8645 assert( iOffset>=0 ); 8646 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8647 pBt = pPage->pBt; 8648 ovflPageSize = pBt->usableSize - 4; 8649 do{ 8650 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8651 if( rc ) return rc; 8652 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8653 rc = SQLITE_CORRUPT_BKPT; 8654 }else{ 8655 if( iOffset+ovflPageSize<(u32)nTotal ){ 8656 ovflPgno = get4byte(pPage->aData); 8657 }else{ 8658 ovflPageSize = nTotal - iOffset; 8659 } 8660 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8661 iOffset, ovflPageSize); 8662 } 8663 sqlite3PagerUnref(pPage->pDbPage); 8664 if( rc ) return rc; 8665 iOffset += ovflPageSize; 8666 }while( iOffset<nTotal ); 8667 return SQLITE_OK; 8668 } 8669 8670 8671 /* 8672 ** Insert a new record into the BTree. The content of the new record 8673 ** is described by the pX object. The pCur cursor is used only to 8674 ** define what table the record should be inserted into, and is left 8675 ** pointing at a random location. 8676 ** 8677 ** For a table btree (used for rowid tables), only the pX.nKey value of 8678 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8679 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8680 ** hold the content of the row. 8681 ** 8682 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8683 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8684 ** pX.pData,nData,nZero fields must be zero. 8685 ** 8686 ** If the seekResult parameter is non-zero, then a successful call to 8687 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8688 ** been performed. In other words, if seekResult!=0 then the cursor 8689 ** is currently pointing to a cell that will be adjacent to the cell 8690 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8691 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8692 ** that is larger than (pKey,nKey). 8693 ** 8694 ** If seekResult==0, that means pCur is pointing at some unknown location. 8695 ** In that case, this routine must seek the cursor to the correct insertion 8696 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8697 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8698 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8699 ** to decode the key. 8700 */ 8701 int sqlite3BtreeInsert( 8702 BtCursor *pCur, /* Insert data into the table of this cursor */ 8703 const BtreePayload *pX, /* Content of the row to be inserted */ 8704 int flags, /* True if this is likely an append */ 8705 int seekResult /* Result of prior MovetoUnpacked() call */ 8706 ){ 8707 int rc; 8708 int loc = seekResult; /* -1: before desired location +1: after */ 8709 int szNew = 0; 8710 int idx; 8711 MemPage *pPage; 8712 Btree *p = pCur->pBtree; 8713 BtShared *pBt = p->pBt; 8714 unsigned char *oldCell; 8715 unsigned char *newCell = 0; 8716 8717 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 8718 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 8719 8720 if( pCur->eState==CURSOR_FAULT ){ 8721 assert( pCur->skipNext!=SQLITE_OK ); 8722 return pCur->skipNext; 8723 } 8724 8725 assert( cursorOwnsBtShared(pCur) ); 8726 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8727 && pBt->inTransaction==TRANS_WRITE 8728 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8729 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8730 8731 /* Assert that the caller has been consistent. If this cursor was opened 8732 ** expecting an index b-tree, then the caller should be inserting blob 8733 ** keys with no associated data. If the cursor was opened expecting an 8734 ** intkey table, the caller should be inserting integer keys with a 8735 ** blob of associated data. */ 8736 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8737 8738 /* Save the positions of any other cursors open on this table. 8739 ** 8740 ** In some cases, the call to btreeMoveto() below is a no-op. For 8741 ** example, when inserting data into a table with auto-generated integer 8742 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8743 ** integer key to use. It then calls this function to actually insert the 8744 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8745 ** that the cursor is already where it needs to be and returns without 8746 ** doing any work. To avoid thwarting these optimizations, it is important 8747 ** not to clear the cursor here. 8748 */ 8749 if( pCur->curFlags & BTCF_Multiple ){ 8750 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8751 if( rc ) return rc; 8752 if( loc && pCur->iPage<0 ){ 8753 /* This can only happen if the schema is corrupt such that there is more 8754 ** than one table or index with the same root page as used by the cursor. 8755 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 8756 ** the schema was loaded. This cannot be asserted though, as a user might 8757 ** set the flag, load the schema, and then unset the flag. */ 8758 return SQLITE_CORRUPT_BKPT; 8759 } 8760 } 8761 8762 if( pCur->pKeyInfo==0 ){ 8763 assert( pX->pKey==0 ); 8764 /* If this is an insert into a table b-tree, invalidate any incrblob 8765 ** cursors open on the row being replaced */ 8766 if( p->hasIncrblobCur ){ 8767 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8768 } 8769 8770 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8771 ** to a row with the same key as the new entry being inserted. 8772 */ 8773 #ifdef SQLITE_DEBUG 8774 if( flags & BTREE_SAVEPOSITION ){ 8775 assert( pCur->curFlags & BTCF_ValidNKey ); 8776 assert( pX->nKey==pCur->info.nKey ); 8777 assert( loc==0 ); 8778 } 8779 #endif 8780 8781 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8782 ** that the cursor is not pointing to a row to be overwritten. 8783 ** So do a complete check. 8784 */ 8785 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8786 /* The cursor is pointing to the entry that is to be 8787 ** overwritten */ 8788 assert( pX->nData>=0 && pX->nZero>=0 ); 8789 if( pCur->info.nSize!=0 8790 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8791 ){ 8792 /* New entry is the same size as the old. Do an overwrite */ 8793 return btreeOverwriteCell(pCur, pX); 8794 } 8795 assert( loc==0 ); 8796 }else if( loc==0 ){ 8797 /* The cursor is *not* pointing to the cell to be overwritten, nor 8798 ** to an adjacent cell. Move the cursor so that it is pointing either 8799 ** to the cell to be overwritten or an adjacent cell. 8800 */ 8801 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8802 if( rc ) return rc; 8803 } 8804 }else{ 8805 /* This is an index or a WITHOUT ROWID table */ 8806 8807 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8808 ** to a row with the same key as the new entry being inserted. 8809 */ 8810 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8811 8812 /* If the cursor is not already pointing either to the cell to be 8813 ** overwritten, or if a new cell is being inserted, if the cursor is 8814 ** not pointing to an immediately adjacent cell, then move the cursor 8815 ** so that it does. 8816 */ 8817 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8818 if( pX->nMem ){ 8819 UnpackedRecord r; 8820 r.pKeyInfo = pCur->pKeyInfo; 8821 r.aMem = pX->aMem; 8822 r.nField = pX->nMem; 8823 r.default_rc = 0; 8824 r.errCode = 0; 8825 r.r1 = 0; 8826 r.r2 = 0; 8827 r.eqSeen = 0; 8828 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8829 }else{ 8830 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8831 } 8832 if( rc ) return rc; 8833 } 8834 8835 /* If the cursor is currently pointing to an entry to be overwritten 8836 ** and the new content is the same as as the old, then use the 8837 ** overwrite optimization. 8838 */ 8839 if( loc==0 ){ 8840 getCellInfo(pCur); 8841 if( pCur->info.nKey==pX->nKey ){ 8842 BtreePayload x2; 8843 x2.pData = pX->pKey; 8844 x2.nData = pX->nKey; 8845 x2.nZero = 0; 8846 return btreeOverwriteCell(pCur, &x2); 8847 } 8848 } 8849 } 8850 assert( pCur->eState==CURSOR_VALID 8851 || (pCur->eState==CURSOR_INVALID && loc) 8852 || CORRUPT_DB ); 8853 8854 pPage = pCur->pPage; 8855 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 8856 assert( pPage->leaf || !pPage->intKey ); 8857 if( pPage->nFree<0 ){ 8858 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 8859 rc = SQLITE_CORRUPT_BKPT; 8860 }else{ 8861 rc = btreeComputeFreeSpace(pPage); 8862 } 8863 if( rc ) return rc; 8864 } 8865 8866 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8867 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8868 loc==0 ? "overwrite" : "new entry")); 8869 assert( pPage->isInit ); 8870 newCell = pBt->pTmpSpace; 8871 assert( newCell!=0 ); 8872 if( flags & BTREE_PREFORMAT ){ 8873 rc = SQLITE_OK; 8874 szNew = pBt->nPreformatSize; 8875 if( szNew<4 ) szNew = 4; 8876 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 8877 CellInfo info; 8878 pPage->xParseCell(pPage, newCell, &info); 8879 if( info.nPayload!=info.nLocal ){ 8880 Pgno ovfl = get4byte(&newCell[szNew-4]); 8881 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 8882 } 8883 } 8884 }else{ 8885 rc = fillInCell(pPage, newCell, pX, &szNew); 8886 } 8887 if( rc ) goto end_insert; 8888 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8889 assert( szNew <= MX_CELL_SIZE(pBt) ); 8890 idx = pCur->ix; 8891 if( loc==0 ){ 8892 CellInfo info; 8893 assert( idx<pPage->nCell ); 8894 rc = sqlite3PagerWrite(pPage->pDbPage); 8895 if( rc ){ 8896 goto end_insert; 8897 } 8898 oldCell = findCell(pPage, idx); 8899 if( !pPage->leaf ){ 8900 memcpy(newCell, oldCell, 4); 8901 } 8902 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 8903 testcase( pCur->curFlags & BTCF_ValidOvfl ); 8904 invalidateOverflowCache(pCur); 8905 if( info.nSize==szNew && info.nLocal==info.nPayload 8906 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8907 ){ 8908 /* Overwrite the old cell with the new if they are the same size. 8909 ** We could also try to do this if the old cell is smaller, then add 8910 ** the leftover space to the free list. But experiments show that 8911 ** doing that is no faster then skipping this optimization and just 8912 ** calling dropCell() and insertCell(). 8913 ** 8914 ** This optimization cannot be used on an autovacuum database if the 8915 ** new entry uses overflow pages, as the insertCell() call below is 8916 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8917 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8918 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 8919 return SQLITE_CORRUPT_BKPT; 8920 } 8921 if( oldCell+szNew > pPage->aDataEnd ){ 8922 return SQLITE_CORRUPT_BKPT; 8923 } 8924 memcpy(oldCell, newCell, szNew); 8925 return SQLITE_OK; 8926 } 8927 dropCell(pPage, idx, info.nSize, &rc); 8928 if( rc ) goto end_insert; 8929 }else if( loc<0 && pPage->nCell>0 ){ 8930 assert( pPage->leaf ); 8931 idx = ++pCur->ix; 8932 pCur->curFlags &= ~BTCF_ValidNKey; 8933 }else{ 8934 assert( pPage->leaf ); 8935 } 8936 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8937 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8938 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8939 8940 /* If no error has occurred and pPage has an overflow cell, call balance() 8941 ** to redistribute the cells within the tree. Since balance() may move 8942 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8943 ** variables. 8944 ** 8945 ** Previous versions of SQLite called moveToRoot() to move the cursor 8946 ** back to the root page as balance() used to invalidate the contents 8947 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8948 ** set the cursor state to "invalid". This makes common insert operations 8949 ** slightly faster. 8950 ** 8951 ** There is a subtle but important optimization here too. When inserting 8952 ** multiple records into an intkey b-tree using a single cursor (as can 8953 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8954 ** is advantageous to leave the cursor pointing to the last entry in 8955 ** the b-tree if possible. If the cursor is left pointing to the last 8956 ** entry in the table, and the next row inserted has an integer key 8957 ** larger than the largest existing key, it is possible to insert the 8958 ** row without seeking the cursor. This can be a big performance boost. 8959 */ 8960 pCur->info.nSize = 0; 8961 if( pPage->nOverflow ){ 8962 assert( rc==SQLITE_OK ); 8963 pCur->curFlags &= ~(BTCF_ValidNKey); 8964 rc = balance(pCur); 8965 8966 /* Must make sure nOverflow is reset to zero even if the balance() 8967 ** fails. Internal data structure corruption will result otherwise. 8968 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8969 ** from trying to save the current position of the cursor. */ 8970 pCur->pPage->nOverflow = 0; 8971 pCur->eState = CURSOR_INVALID; 8972 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8973 btreeReleaseAllCursorPages(pCur); 8974 if( pCur->pKeyInfo ){ 8975 assert( pCur->pKey==0 ); 8976 pCur->pKey = sqlite3Malloc( pX->nKey ); 8977 if( pCur->pKey==0 ){ 8978 rc = SQLITE_NOMEM; 8979 }else{ 8980 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8981 } 8982 } 8983 pCur->eState = CURSOR_REQUIRESEEK; 8984 pCur->nKey = pX->nKey; 8985 } 8986 } 8987 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8988 8989 end_insert: 8990 return rc; 8991 } 8992 8993 /* 8994 ** This function is used as part of copying the current row from cursor 8995 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 8996 ** parameter iKey is used as the rowid value when the record is copied 8997 ** into pDest. Otherwise, the record is copied verbatim. 8998 ** 8999 ** This function does not actually write the new value to cursor pDest. 9000 ** Instead, it creates and populates any required overflow pages and 9001 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9002 ** for the destination database. The size of the cell, in bytes, is left 9003 ** in BtShared.nPreformatSize. The caller completes the insertion by 9004 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9005 ** 9006 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9007 */ 9008 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9009 int rc = SQLITE_OK; 9010 BtShared *pBt = pDest->pBt; 9011 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9012 const u8 *aIn; /* Pointer to next input buffer */ 9013 u32 nIn; /* Size of input buffer aIn[] */ 9014 u32 nRem; /* Bytes of data still to copy */ 9015 9016 getCellInfo(pSrc); 9017 aOut += putVarint32(aOut, pSrc->info.nPayload); 9018 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9019 nIn = pSrc->info.nLocal; 9020 aIn = pSrc->info.pPayload; 9021 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9022 return SQLITE_CORRUPT_BKPT; 9023 } 9024 nRem = pSrc->info.nPayload; 9025 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9026 memcpy(aOut, aIn, nIn); 9027 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9028 }else{ 9029 Pager *pSrcPager = pSrc->pBt->pPager; 9030 u8 *pPgnoOut = 0; 9031 Pgno ovflIn = 0; 9032 DbPage *pPageIn = 0; 9033 MemPage *pPageOut = 0; 9034 u32 nOut; /* Size of output buffer aOut[] */ 9035 9036 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9037 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9038 if( nOut<pSrc->info.nPayload ){ 9039 pPgnoOut = &aOut[nOut]; 9040 pBt->nPreformatSize += 4; 9041 } 9042 9043 if( nRem>nIn ){ 9044 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9045 return SQLITE_CORRUPT_BKPT; 9046 } 9047 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9048 } 9049 9050 do { 9051 nRem -= nOut; 9052 do{ 9053 assert( nOut>0 ); 9054 if( nIn>0 ){ 9055 int nCopy = MIN(nOut, nIn); 9056 memcpy(aOut, aIn, nCopy); 9057 nOut -= nCopy; 9058 nIn -= nCopy; 9059 aOut += nCopy; 9060 aIn += nCopy; 9061 } 9062 if( nOut>0 ){ 9063 sqlite3PagerUnref(pPageIn); 9064 pPageIn = 0; 9065 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9066 if( rc==SQLITE_OK ){ 9067 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9068 ovflIn = get4byte(aIn); 9069 aIn += 4; 9070 nIn = pSrc->pBt->usableSize - 4; 9071 } 9072 } 9073 }while( rc==SQLITE_OK && nOut>0 ); 9074 9075 if( rc==SQLITE_OK && nRem>0 ){ 9076 Pgno pgnoNew; 9077 MemPage *pNew = 0; 9078 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9079 put4byte(pPgnoOut, pgnoNew); 9080 if( ISAUTOVACUUM && pPageOut ){ 9081 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9082 } 9083 releasePage(pPageOut); 9084 pPageOut = pNew; 9085 if( pPageOut ){ 9086 pPgnoOut = pPageOut->aData; 9087 put4byte(pPgnoOut, 0); 9088 aOut = &pPgnoOut[4]; 9089 nOut = MIN(pBt->usableSize - 4, nRem); 9090 } 9091 } 9092 }while( nRem>0 && rc==SQLITE_OK ); 9093 9094 releasePage(pPageOut); 9095 sqlite3PagerUnref(pPageIn); 9096 } 9097 9098 return rc; 9099 } 9100 9101 /* 9102 ** Delete the entry that the cursor is pointing to. 9103 ** 9104 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9105 ** the cursor is left pointing at an arbitrary location after the delete. 9106 ** But if that bit is set, then the cursor is left in a state such that 9107 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9108 ** as it would have been on if the call to BtreeDelete() had been omitted. 9109 ** 9110 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9111 ** associated with a single table entry and its indexes. Only one of those 9112 ** deletes is considered the "primary" delete. The primary delete occurs 9113 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9114 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9115 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9116 ** but which might be used by alternative storage engines. 9117 */ 9118 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9119 Btree *p = pCur->pBtree; 9120 BtShared *pBt = p->pBt; 9121 int rc; /* Return code */ 9122 MemPage *pPage; /* Page to delete cell from */ 9123 unsigned char *pCell; /* Pointer to cell to delete */ 9124 int iCellIdx; /* Index of cell to delete */ 9125 int iCellDepth; /* Depth of node containing pCell */ 9126 CellInfo info; /* Size of the cell being deleted */ 9127 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 9128 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 9129 9130 assert( cursorOwnsBtShared(pCur) ); 9131 assert( pBt->inTransaction==TRANS_WRITE ); 9132 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9133 assert( pCur->curFlags & BTCF_WriteFlag ); 9134 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9135 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9136 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9137 if( pCur->eState==CURSOR_REQUIRESEEK ){ 9138 rc = btreeRestoreCursorPosition(pCur); 9139 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9140 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9141 } 9142 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9143 9144 iCellDepth = pCur->iPage; 9145 iCellIdx = pCur->ix; 9146 pPage = pCur->pPage; 9147 pCell = findCell(pPage, iCellIdx); 9148 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT; 9149 9150 /* If the bPreserve flag is set to true, then the cursor position must 9151 ** be preserved following this delete operation. If the current delete 9152 ** will cause a b-tree rebalance, then this is done by saving the cursor 9153 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9154 ** returning. 9155 ** 9156 ** Or, if the current delete will not cause a rebalance, then the cursor 9157 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9158 ** before or after the deleted entry. In this case set bSkipnext to true. */ 9159 if( bPreserve ){ 9160 if( !pPage->leaf 9161 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 9162 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9163 ){ 9164 /* A b-tree rebalance will be required after deleting this entry. 9165 ** Save the cursor key. */ 9166 rc = saveCursorKey(pCur); 9167 if( rc ) return rc; 9168 }else{ 9169 bSkipnext = 1; 9170 } 9171 } 9172 9173 /* If the page containing the entry to delete is not a leaf page, move 9174 ** the cursor to the largest entry in the tree that is smaller than 9175 ** the entry being deleted. This cell will replace the cell being deleted 9176 ** from the internal node. The 'previous' entry is used for this instead 9177 ** of the 'next' entry, as the previous entry is always a part of the 9178 ** sub-tree headed by the child page of the cell being deleted. This makes 9179 ** balancing the tree following the delete operation easier. */ 9180 if( !pPage->leaf ){ 9181 rc = sqlite3BtreePrevious(pCur, 0); 9182 assert( rc!=SQLITE_DONE ); 9183 if( rc ) return rc; 9184 } 9185 9186 /* Save the positions of any other cursors open on this table before 9187 ** making any modifications. */ 9188 if( pCur->curFlags & BTCF_Multiple ){ 9189 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9190 if( rc ) return rc; 9191 } 9192 9193 /* If this is a delete operation to remove a row from a table b-tree, 9194 ** invalidate any incrblob cursors open on the row being deleted. */ 9195 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9196 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9197 } 9198 9199 /* Make the page containing the entry to be deleted writable. Then free any 9200 ** overflow pages associated with the entry and finally remove the cell 9201 ** itself from within the page. */ 9202 rc = sqlite3PagerWrite(pPage->pDbPage); 9203 if( rc ) return rc; 9204 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9205 dropCell(pPage, iCellIdx, info.nSize, &rc); 9206 if( rc ) return rc; 9207 9208 /* If the cell deleted was not located on a leaf page, then the cursor 9209 ** is currently pointing to the largest entry in the sub-tree headed 9210 ** by the child-page of the cell that was just deleted from an internal 9211 ** node. The cell from the leaf node needs to be moved to the internal 9212 ** node to replace the deleted cell. */ 9213 if( !pPage->leaf ){ 9214 MemPage *pLeaf = pCur->pPage; 9215 int nCell; 9216 Pgno n; 9217 unsigned char *pTmp; 9218 9219 if( pLeaf->nFree<0 ){ 9220 rc = btreeComputeFreeSpace(pLeaf); 9221 if( rc ) return rc; 9222 } 9223 if( iCellDepth<pCur->iPage-1 ){ 9224 n = pCur->apPage[iCellDepth+1]->pgno; 9225 }else{ 9226 n = pCur->pPage->pgno; 9227 } 9228 pCell = findCell(pLeaf, pLeaf->nCell-1); 9229 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9230 nCell = pLeaf->xCellSize(pLeaf, pCell); 9231 assert( MX_CELL_SIZE(pBt) >= nCell ); 9232 pTmp = pBt->pTmpSpace; 9233 assert( pTmp!=0 ); 9234 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9235 if( rc==SQLITE_OK ){ 9236 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9237 } 9238 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9239 if( rc ) return rc; 9240 } 9241 9242 /* Balance the tree. If the entry deleted was located on a leaf page, 9243 ** then the cursor still points to that page. In this case the first 9244 ** call to balance() repairs the tree, and the if(...) condition is 9245 ** never true. 9246 ** 9247 ** Otherwise, if the entry deleted was on an internal node page, then 9248 ** pCur is pointing to the leaf page from which a cell was removed to 9249 ** replace the cell deleted from the internal node. This is slightly 9250 ** tricky as the leaf node may be underfull, and the internal node may 9251 ** be either under or overfull. In this case run the balancing algorithm 9252 ** on the leaf node first. If the balance proceeds far enough up the 9253 ** tree that we can be sure that any problem in the internal node has 9254 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9255 ** walk the cursor up the tree to the internal node and balance it as 9256 ** well. */ 9257 rc = balance(pCur); 9258 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9259 releasePageNotNull(pCur->pPage); 9260 pCur->iPage--; 9261 while( pCur->iPage>iCellDepth ){ 9262 releasePage(pCur->apPage[pCur->iPage--]); 9263 } 9264 pCur->pPage = pCur->apPage[pCur->iPage]; 9265 rc = balance(pCur); 9266 } 9267 9268 if( rc==SQLITE_OK ){ 9269 if( bSkipnext ){ 9270 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9271 assert( pPage==pCur->pPage || CORRUPT_DB ); 9272 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9273 pCur->eState = CURSOR_SKIPNEXT; 9274 if( iCellIdx>=pPage->nCell ){ 9275 pCur->skipNext = -1; 9276 pCur->ix = pPage->nCell-1; 9277 }else{ 9278 pCur->skipNext = 1; 9279 } 9280 }else{ 9281 rc = moveToRoot(pCur); 9282 if( bPreserve ){ 9283 btreeReleaseAllCursorPages(pCur); 9284 pCur->eState = CURSOR_REQUIRESEEK; 9285 } 9286 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9287 } 9288 } 9289 return rc; 9290 } 9291 9292 /* 9293 ** Create a new BTree table. Write into *piTable the page 9294 ** number for the root page of the new table. 9295 ** 9296 ** The type of type is determined by the flags parameter. Only the 9297 ** following values of flags are currently in use. Other values for 9298 ** flags might not work: 9299 ** 9300 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9301 ** BTREE_ZERODATA Used for SQL indices 9302 */ 9303 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9304 BtShared *pBt = p->pBt; 9305 MemPage *pRoot; 9306 Pgno pgnoRoot; 9307 int rc; 9308 int ptfFlags; /* Page-type flage for the root page of new table */ 9309 9310 assert( sqlite3BtreeHoldsMutex(p) ); 9311 assert( pBt->inTransaction==TRANS_WRITE ); 9312 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9313 9314 #ifdef SQLITE_OMIT_AUTOVACUUM 9315 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9316 if( rc ){ 9317 return rc; 9318 } 9319 #else 9320 if( pBt->autoVacuum ){ 9321 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9322 MemPage *pPageMove; /* The page to move to. */ 9323 9324 /* Creating a new table may probably require moving an existing database 9325 ** to make room for the new tables root page. In case this page turns 9326 ** out to be an overflow page, delete all overflow page-map caches 9327 ** held by open cursors. 9328 */ 9329 invalidateAllOverflowCache(pBt); 9330 9331 /* Read the value of meta[3] from the database to determine where the 9332 ** root page of the new table should go. meta[3] is the largest root-page 9333 ** created so far, so the new root-page is (meta[3]+1). 9334 */ 9335 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9336 if( pgnoRoot>btreePagecount(pBt) ){ 9337 return SQLITE_CORRUPT_BKPT; 9338 } 9339 pgnoRoot++; 9340 9341 /* The new root-page may not be allocated on a pointer-map page, or the 9342 ** PENDING_BYTE page. 9343 */ 9344 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9345 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9346 pgnoRoot++; 9347 } 9348 assert( pgnoRoot>=3 ); 9349 9350 /* Allocate a page. The page that currently resides at pgnoRoot will 9351 ** be moved to the allocated page (unless the allocated page happens 9352 ** to reside at pgnoRoot). 9353 */ 9354 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9355 if( rc!=SQLITE_OK ){ 9356 return rc; 9357 } 9358 9359 if( pgnoMove!=pgnoRoot ){ 9360 /* pgnoRoot is the page that will be used for the root-page of 9361 ** the new table (assuming an error did not occur). But we were 9362 ** allocated pgnoMove. If required (i.e. if it was not allocated 9363 ** by extending the file), the current page at position pgnoMove 9364 ** is already journaled. 9365 */ 9366 u8 eType = 0; 9367 Pgno iPtrPage = 0; 9368 9369 /* Save the positions of any open cursors. This is required in 9370 ** case they are holding a reference to an xFetch reference 9371 ** corresponding to page pgnoRoot. */ 9372 rc = saveAllCursors(pBt, 0, 0); 9373 releasePage(pPageMove); 9374 if( rc!=SQLITE_OK ){ 9375 return rc; 9376 } 9377 9378 /* Move the page currently at pgnoRoot to pgnoMove. */ 9379 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9380 if( rc!=SQLITE_OK ){ 9381 return rc; 9382 } 9383 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9384 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9385 rc = SQLITE_CORRUPT_BKPT; 9386 } 9387 if( rc!=SQLITE_OK ){ 9388 releasePage(pRoot); 9389 return rc; 9390 } 9391 assert( eType!=PTRMAP_ROOTPAGE ); 9392 assert( eType!=PTRMAP_FREEPAGE ); 9393 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9394 releasePage(pRoot); 9395 9396 /* Obtain the page at pgnoRoot */ 9397 if( rc!=SQLITE_OK ){ 9398 return rc; 9399 } 9400 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9401 if( rc!=SQLITE_OK ){ 9402 return rc; 9403 } 9404 rc = sqlite3PagerWrite(pRoot->pDbPage); 9405 if( rc!=SQLITE_OK ){ 9406 releasePage(pRoot); 9407 return rc; 9408 } 9409 }else{ 9410 pRoot = pPageMove; 9411 } 9412 9413 /* Update the pointer-map and meta-data with the new root-page number. */ 9414 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9415 if( rc ){ 9416 releasePage(pRoot); 9417 return rc; 9418 } 9419 9420 /* When the new root page was allocated, page 1 was made writable in 9421 ** order either to increase the database filesize, or to decrement the 9422 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9423 */ 9424 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9425 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9426 if( NEVER(rc) ){ 9427 releasePage(pRoot); 9428 return rc; 9429 } 9430 9431 }else{ 9432 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9433 if( rc ) return rc; 9434 } 9435 #endif 9436 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9437 if( createTabFlags & BTREE_INTKEY ){ 9438 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9439 }else{ 9440 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9441 } 9442 zeroPage(pRoot, ptfFlags); 9443 sqlite3PagerUnref(pRoot->pDbPage); 9444 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9445 *piTable = pgnoRoot; 9446 return SQLITE_OK; 9447 } 9448 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9449 int rc; 9450 sqlite3BtreeEnter(p); 9451 rc = btreeCreateTable(p, piTable, flags); 9452 sqlite3BtreeLeave(p); 9453 return rc; 9454 } 9455 9456 /* 9457 ** Erase the given database page and all its children. Return 9458 ** the page to the freelist. 9459 */ 9460 static int clearDatabasePage( 9461 BtShared *pBt, /* The BTree that contains the table */ 9462 Pgno pgno, /* Page number to clear */ 9463 int freePageFlag, /* Deallocate page if true */ 9464 int *pnChange /* Add number of Cells freed to this counter */ 9465 ){ 9466 MemPage *pPage; 9467 int rc; 9468 unsigned char *pCell; 9469 int i; 9470 int hdr; 9471 CellInfo info; 9472 9473 assert( sqlite3_mutex_held(pBt->mutex) ); 9474 if( pgno>btreePagecount(pBt) ){ 9475 return SQLITE_CORRUPT_BKPT; 9476 } 9477 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9478 if( rc ) return rc; 9479 if( pPage->bBusy ){ 9480 rc = SQLITE_CORRUPT_BKPT; 9481 goto cleardatabasepage_out; 9482 } 9483 pPage->bBusy = 1; 9484 hdr = pPage->hdrOffset; 9485 for(i=0; i<pPage->nCell; i++){ 9486 pCell = findCell(pPage, i); 9487 if( !pPage->leaf ){ 9488 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9489 if( rc ) goto cleardatabasepage_out; 9490 } 9491 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9492 if( rc ) goto cleardatabasepage_out; 9493 } 9494 if( !pPage->leaf ){ 9495 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9496 if( rc ) goto cleardatabasepage_out; 9497 } 9498 if( pnChange ){ 9499 testcase( !pPage->intKey ); 9500 *pnChange += pPage->nCell; 9501 } 9502 if( freePageFlag ){ 9503 freePage(pPage, &rc); 9504 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9505 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9506 } 9507 9508 cleardatabasepage_out: 9509 pPage->bBusy = 0; 9510 releasePage(pPage); 9511 return rc; 9512 } 9513 9514 /* 9515 ** Delete all information from a single table in the database. iTable is 9516 ** the page number of the root of the table. After this routine returns, 9517 ** the root page is empty, but still exists. 9518 ** 9519 ** This routine will fail with SQLITE_LOCKED if there are any open 9520 ** read cursors on the table. Open write cursors are moved to the 9521 ** root of the table. 9522 ** 9523 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9524 ** is incremented by the number of entries in the table. 9525 */ 9526 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 9527 int rc; 9528 BtShared *pBt = p->pBt; 9529 sqlite3BtreeEnter(p); 9530 assert( p->inTrans==TRANS_WRITE ); 9531 9532 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9533 9534 if( SQLITE_OK==rc ){ 9535 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9536 ** is the root of a table b-tree - if it is not, the following call is 9537 ** a no-op). */ 9538 if( p->hasIncrblobCur ){ 9539 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9540 } 9541 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9542 } 9543 sqlite3BtreeLeave(p); 9544 return rc; 9545 } 9546 9547 /* 9548 ** Delete all information from the single table that pCur is open on. 9549 ** 9550 ** This routine only work for pCur on an ephemeral table. 9551 */ 9552 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9553 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9554 } 9555 9556 /* 9557 ** Erase all information in a table and add the root of the table to 9558 ** the freelist. Except, the root of the principle table (the one on 9559 ** page 1) is never added to the freelist. 9560 ** 9561 ** This routine will fail with SQLITE_LOCKED if there are any open 9562 ** cursors on the table. 9563 ** 9564 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9565 ** root page in the database file, then the last root page 9566 ** in the database file is moved into the slot formerly occupied by 9567 ** iTable and that last slot formerly occupied by the last root page 9568 ** is added to the freelist instead of iTable. In this say, all 9569 ** root pages are kept at the beginning of the database file, which 9570 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9571 ** page number that used to be the last root page in the file before 9572 ** the move. If no page gets moved, *piMoved is set to 0. 9573 ** The last root page is recorded in meta[3] and the value of 9574 ** meta[3] is updated by this procedure. 9575 */ 9576 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9577 int rc; 9578 MemPage *pPage = 0; 9579 BtShared *pBt = p->pBt; 9580 9581 assert( sqlite3BtreeHoldsMutex(p) ); 9582 assert( p->inTrans==TRANS_WRITE ); 9583 assert( iTable>=2 ); 9584 if( iTable>btreePagecount(pBt) ){ 9585 return SQLITE_CORRUPT_BKPT; 9586 } 9587 9588 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9589 if( rc ) return rc; 9590 rc = sqlite3BtreeClearTable(p, iTable, 0); 9591 if( rc ){ 9592 releasePage(pPage); 9593 return rc; 9594 } 9595 9596 *piMoved = 0; 9597 9598 #ifdef SQLITE_OMIT_AUTOVACUUM 9599 freePage(pPage, &rc); 9600 releasePage(pPage); 9601 #else 9602 if( pBt->autoVacuum ){ 9603 Pgno maxRootPgno; 9604 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9605 9606 if( iTable==maxRootPgno ){ 9607 /* If the table being dropped is the table with the largest root-page 9608 ** number in the database, put the root page on the free list. 9609 */ 9610 freePage(pPage, &rc); 9611 releasePage(pPage); 9612 if( rc!=SQLITE_OK ){ 9613 return rc; 9614 } 9615 }else{ 9616 /* The table being dropped does not have the largest root-page 9617 ** number in the database. So move the page that does into the 9618 ** gap left by the deleted root-page. 9619 */ 9620 MemPage *pMove; 9621 releasePage(pPage); 9622 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9623 if( rc!=SQLITE_OK ){ 9624 return rc; 9625 } 9626 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9627 releasePage(pMove); 9628 if( rc!=SQLITE_OK ){ 9629 return rc; 9630 } 9631 pMove = 0; 9632 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9633 freePage(pMove, &rc); 9634 releasePage(pMove); 9635 if( rc!=SQLITE_OK ){ 9636 return rc; 9637 } 9638 *piMoved = maxRootPgno; 9639 } 9640 9641 /* Set the new 'max-root-page' value in the database header. This 9642 ** is the old value less one, less one more if that happens to 9643 ** be a root-page number, less one again if that is the 9644 ** PENDING_BYTE_PAGE. 9645 */ 9646 maxRootPgno--; 9647 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9648 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9649 maxRootPgno--; 9650 } 9651 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9652 9653 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9654 }else{ 9655 freePage(pPage, &rc); 9656 releasePage(pPage); 9657 } 9658 #endif 9659 return rc; 9660 } 9661 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9662 int rc; 9663 sqlite3BtreeEnter(p); 9664 rc = btreeDropTable(p, iTable, piMoved); 9665 sqlite3BtreeLeave(p); 9666 return rc; 9667 } 9668 9669 9670 /* 9671 ** This function may only be called if the b-tree connection already 9672 ** has a read or write transaction open on the database. 9673 ** 9674 ** Read the meta-information out of a database file. Meta[0] 9675 ** is the number of free pages currently in the database. Meta[1] 9676 ** through meta[15] are available for use by higher layers. Meta[0] 9677 ** is read-only, the others are read/write. 9678 ** 9679 ** The schema layer numbers meta values differently. At the schema 9680 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9681 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9682 ** 9683 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9684 ** of reading the value out of the header, it instead loads the "DataVersion" 9685 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9686 ** database file. It is a number computed by the pager. But its access 9687 ** pattern is the same as header meta values, and so it is convenient to 9688 ** read it from this routine. 9689 */ 9690 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9691 BtShared *pBt = p->pBt; 9692 9693 sqlite3BtreeEnter(p); 9694 assert( p->inTrans>TRANS_NONE ); 9695 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 9696 assert( pBt->pPage1 ); 9697 assert( idx>=0 && idx<=15 ); 9698 9699 if( idx==BTREE_DATA_VERSION ){ 9700 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 9701 }else{ 9702 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9703 } 9704 9705 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9706 ** database, mark the database as read-only. */ 9707 #ifdef SQLITE_OMIT_AUTOVACUUM 9708 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9709 pBt->btsFlags |= BTS_READ_ONLY; 9710 } 9711 #endif 9712 9713 sqlite3BtreeLeave(p); 9714 } 9715 9716 /* 9717 ** Write meta-information back into the database. Meta[0] is 9718 ** read-only and may not be written. 9719 */ 9720 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9721 BtShared *pBt = p->pBt; 9722 unsigned char *pP1; 9723 int rc; 9724 assert( idx>=1 && idx<=15 ); 9725 sqlite3BtreeEnter(p); 9726 assert( p->inTrans==TRANS_WRITE ); 9727 assert( pBt->pPage1!=0 ); 9728 pP1 = pBt->pPage1->aData; 9729 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9730 if( rc==SQLITE_OK ){ 9731 put4byte(&pP1[36 + idx*4], iMeta); 9732 #ifndef SQLITE_OMIT_AUTOVACUUM 9733 if( idx==BTREE_INCR_VACUUM ){ 9734 assert( pBt->autoVacuum || iMeta==0 ); 9735 assert( iMeta==0 || iMeta==1 ); 9736 pBt->incrVacuum = (u8)iMeta; 9737 } 9738 #endif 9739 } 9740 sqlite3BtreeLeave(p); 9741 return rc; 9742 } 9743 9744 /* 9745 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9746 ** number of entries in the b-tree and write the result to *pnEntry. 9747 ** 9748 ** SQLITE_OK is returned if the operation is successfully executed. 9749 ** Otherwise, if an error is encountered (i.e. an IO error or database 9750 ** corruption) an SQLite error code is returned. 9751 */ 9752 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9753 i64 nEntry = 0; /* Value to return in *pnEntry */ 9754 int rc; /* Return code */ 9755 9756 rc = moveToRoot(pCur); 9757 if( rc==SQLITE_EMPTY ){ 9758 *pnEntry = 0; 9759 return SQLITE_OK; 9760 } 9761 9762 /* Unless an error occurs, the following loop runs one iteration for each 9763 ** page in the B-Tree structure (not including overflow pages). 9764 */ 9765 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 9766 int iIdx; /* Index of child node in parent */ 9767 MemPage *pPage; /* Current page of the b-tree */ 9768 9769 /* If this is a leaf page or the tree is not an int-key tree, then 9770 ** this page contains countable entries. Increment the entry counter 9771 ** accordingly. 9772 */ 9773 pPage = pCur->pPage; 9774 if( pPage->leaf || !pPage->intKey ){ 9775 nEntry += pPage->nCell; 9776 } 9777 9778 /* pPage is a leaf node. This loop navigates the cursor so that it 9779 ** points to the first interior cell that it points to the parent of 9780 ** the next page in the tree that has not yet been visited. The 9781 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9782 ** of the page, or to the number of cells in the page if the next page 9783 ** to visit is the right-child of its parent. 9784 ** 9785 ** If all pages in the tree have been visited, return SQLITE_OK to the 9786 ** caller. 9787 */ 9788 if( pPage->leaf ){ 9789 do { 9790 if( pCur->iPage==0 ){ 9791 /* All pages of the b-tree have been visited. Return successfully. */ 9792 *pnEntry = nEntry; 9793 return moveToRoot(pCur); 9794 } 9795 moveToParent(pCur); 9796 }while ( pCur->ix>=pCur->pPage->nCell ); 9797 9798 pCur->ix++; 9799 pPage = pCur->pPage; 9800 } 9801 9802 /* Descend to the child node of the cell that the cursor currently 9803 ** points at. This is the right-child if (iIdx==pPage->nCell). 9804 */ 9805 iIdx = pCur->ix; 9806 if( iIdx==pPage->nCell ){ 9807 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9808 }else{ 9809 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9810 } 9811 } 9812 9813 /* An error has occurred. Return an error code. */ 9814 return rc; 9815 } 9816 9817 /* 9818 ** Return the pager associated with a BTree. This routine is used for 9819 ** testing and debugging only. 9820 */ 9821 Pager *sqlite3BtreePager(Btree *p){ 9822 return p->pBt->pPager; 9823 } 9824 9825 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9826 /* 9827 ** Append a message to the error message string. 9828 */ 9829 static void checkAppendMsg( 9830 IntegrityCk *pCheck, 9831 const char *zFormat, 9832 ... 9833 ){ 9834 va_list ap; 9835 if( !pCheck->mxErr ) return; 9836 pCheck->mxErr--; 9837 pCheck->nErr++; 9838 va_start(ap, zFormat); 9839 if( pCheck->errMsg.nChar ){ 9840 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9841 } 9842 if( pCheck->zPfx ){ 9843 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9844 } 9845 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9846 va_end(ap); 9847 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9848 pCheck->bOomFault = 1; 9849 } 9850 } 9851 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9852 9853 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9854 9855 /* 9856 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9857 ** corresponds to page iPg is already set. 9858 */ 9859 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9860 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9861 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9862 } 9863 9864 /* 9865 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9866 */ 9867 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9868 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9869 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9870 } 9871 9872 9873 /* 9874 ** Add 1 to the reference count for page iPage. If this is the second 9875 ** reference to the page, add an error message to pCheck->zErrMsg. 9876 ** Return 1 if there are 2 or more references to the page and 0 if 9877 ** if this is the first reference to the page. 9878 ** 9879 ** Also check that the page number is in bounds. 9880 */ 9881 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9882 if( iPage>pCheck->nPage || iPage==0 ){ 9883 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9884 return 1; 9885 } 9886 if( getPageReferenced(pCheck, iPage) ){ 9887 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9888 return 1; 9889 } 9890 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 9891 setPageReferenced(pCheck, iPage); 9892 return 0; 9893 } 9894 9895 #ifndef SQLITE_OMIT_AUTOVACUUM 9896 /* 9897 ** Check that the entry in the pointer-map for page iChild maps to 9898 ** page iParent, pointer type ptrType. If not, append an error message 9899 ** to pCheck. 9900 */ 9901 static void checkPtrmap( 9902 IntegrityCk *pCheck, /* Integrity check context */ 9903 Pgno iChild, /* Child page number */ 9904 u8 eType, /* Expected pointer map type */ 9905 Pgno iParent /* Expected pointer map parent page number */ 9906 ){ 9907 int rc; 9908 u8 ePtrmapType; 9909 Pgno iPtrmapParent; 9910 9911 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9912 if( rc!=SQLITE_OK ){ 9913 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 9914 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9915 return; 9916 } 9917 9918 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9919 checkAppendMsg(pCheck, 9920 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9921 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9922 } 9923 } 9924 #endif 9925 9926 /* 9927 ** Check the integrity of the freelist or of an overflow page list. 9928 ** Verify that the number of pages on the list is N. 9929 */ 9930 static void checkList( 9931 IntegrityCk *pCheck, /* Integrity checking context */ 9932 int isFreeList, /* True for a freelist. False for overflow page list */ 9933 Pgno iPage, /* Page number for first page in the list */ 9934 u32 N /* Expected number of pages in the list */ 9935 ){ 9936 int i; 9937 u32 expected = N; 9938 int nErrAtStart = pCheck->nErr; 9939 while( iPage!=0 && pCheck->mxErr ){ 9940 DbPage *pOvflPage; 9941 unsigned char *pOvflData; 9942 if( checkRef(pCheck, iPage) ) break; 9943 N--; 9944 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9945 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9946 break; 9947 } 9948 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9949 if( isFreeList ){ 9950 u32 n = (u32)get4byte(&pOvflData[4]); 9951 #ifndef SQLITE_OMIT_AUTOVACUUM 9952 if( pCheck->pBt->autoVacuum ){ 9953 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9954 } 9955 #endif 9956 if( n>pCheck->pBt->usableSize/4-2 ){ 9957 checkAppendMsg(pCheck, 9958 "freelist leaf count too big on page %d", iPage); 9959 N--; 9960 }else{ 9961 for(i=0; i<(int)n; i++){ 9962 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9963 #ifndef SQLITE_OMIT_AUTOVACUUM 9964 if( pCheck->pBt->autoVacuum ){ 9965 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9966 } 9967 #endif 9968 checkRef(pCheck, iFreePage); 9969 } 9970 N -= n; 9971 } 9972 } 9973 #ifndef SQLITE_OMIT_AUTOVACUUM 9974 else{ 9975 /* If this database supports auto-vacuum and iPage is not the last 9976 ** page in this overflow list, check that the pointer-map entry for 9977 ** the following page matches iPage. 9978 */ 9979 if( pCheck->pBt->autoVacuum && N>0 ){ 9980 i = get4byte(pOvflData); 9981 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9982 } 9983 } 9984 #endif 9985 iPage = get4byte(pOvflData); 9986 sqlite3PagerUnref(pOvflPage); 9987 } 9988 if( N && nErrAtStart==pCheck->nErr ){ 9989 checkAppendMsg(pCheck, 9990 "%s is %d but should be %d", 9991 isFreeList ? "size" : "overflow list length", 9992 expected-N, expected); 9993 } 9994 } 9995 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9996 9997 /* 9998 ** An implementation of a min-heap. 9999 ** 10000 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10001 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10002 ** and aHeap[N*2+1]. 10003 ** 10004 ** The heap property is this: Every node is less than or equal to both 10005 ** of its daughter nodes. A consequence of the heap property is that the 10006 ** root node aHeap[1] is always the minimum value currently in the heap. 10007 ** 10008 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10009 ** the heap, preserving the heap property. The btreeHeapPull() routine 10010 ** removes the root element from the heap (the minimum value in the heap) 10011 ** and then moves other nodes around as necessary to preserve the heap 10012 ** property. 10013 ** 10014 ** This heap is used for cell overlap and coverage testing. Each u32 10015 ** entry represents the span of a cell or freeblock on a btree page. 10016 ** The upper 16 bits are the index of the first byte of a range and the 10017 ** lower 16 bits are the index of the last byte of that range. 10018 */ 10019 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10020 u32 j, i = ++aHeap[0]; 10021 aHeap[i] = x; 10022 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10023 x = aHeap[j]; 10024 aHeap[j] = aHeap[i]; 10025 aHeap[i] = x; 10026 i = j; 10027 } 10028 } 10029 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10030 u32 j, i, x; 10031 if( (x = aHeap[0])==0 ) return 0; 10032 *pOut = aHeap[1]; 10033 aHeap[1] = aHeap[x]; 10034 aHeap[x] = 0xffffffff; 10035 aHeap[0]--; 10036 i = 1; 10037 while( (j = i*2)<=aHeap[0] ){ 10038 if( aHeap[j]>aHeap[j+1] ) j++; 10039 if( aHeap[i]<aHeap[j] ) break; 10040 x = aHeap[i]; 10041 aHeap[i] = aHeap[j]; 10042 aHeap[j] = x; 10043 i = j; 10044 } 10045 return 1; 10046 } 10047 10048 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10049 /* 10050 ** Do various sanity checks on a single page of a tree. Return 10051 ** the tree depth. Root pages return 0. Parents of root pages 10052 ** return 1, and so forth. 10053 ** 10054 ** These checks are done: 10055 ** 10056 ** 1. Make sure that cells and freeblocks do not overlap 10057 ** but combine to completely cover the page. 10058 ** 2. Make sure integer cell keys are in order. 10059 ** 3. Check the integrity of overflow pages. 10060 ** 4. Recursively call checkTreePage on all children. 10061 ** 5. Verify that the depth of all children is the same. 10062 */ 10063 static int checkTreePage( 10064 IntegrityCk *pCheck, /* Context for the sanity check */ 10065 Pgno iPage, /* Page number of the page to check */ 10066 i64 *piMinKey, /* Write minimum integer primary key here */ 10067 i64 maxKey /* Error if integer primary key greater than this */ 10068 ){ 10069 MemPage *pPage = 0; /* The page being analyzed */ 10070 int i; /* Loop counter */ 10071 int rc; /* Result code from subroutine call */ 10072 int depth = -1, d2; /* Depth of a subtree */ 10073 int pgno; /* Page number */ 10074 int nFrag; /* Number of fragmented bytes on the page */ 10075 int hdr; /* Offset to the page header */ 10076 int cellStart; /* Offset to the start of the cell pointer array */ 10077 int nCell; /* Number of cells */ 10078 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10079 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10080 ** False if IPK must be strictly less than maxKey */ 10081 u8 *data; /* Page content */ 10082 u8 *pCell; /* Cell content */ 10083 u8 *pCellIdx; /* Next element of the cell pointer array */ 10084 BtShared *pBt; /* The BtShared object that owns pPage */ 10085 u32 pc; /* Address of a cell */ 10086 u32 usableSize; /* Usable size of the page */ 10087 u32 contentOffset; /* Offset to the start of the cell content area */ 10088 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10089 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10090 const char *saved_zPfx = pCheck->zPfx; 10091 int saved_v1 = pCheck->v1; 10092 int saved_v2 = pCheck->v2; 10093 u8 savedIsInit = 0; 10094 10095 /* Check that the page exists 10096 */ 10097 pBt = pCheck->pBt; 10098 usableSize = pBt->usableSize; 10099 if( iPage==0 ) return 0; 10100 if( checkRef(pCheck, iPage) ) return 0; 10101 pCheck->zPfx = "Page %u: "; 10102 pCheck->v1 = iPage; 10103 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10104 checkAppendMsg(pCheck, 10105 "unable to get the page. error code=%d", rc); 10106 goto end_of_check; 10107 } 10108 10109 /* Clear MemPage.isInit to make sure the corruption detection code in 10110 ** btreeInitPage() is executed. */ 10111 savedIsInit = pPage->isInit; 10112 pPage->isInit = 0; 10113 if( (rc = btreeInitPage(pPage))!=0 ){ 10114 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10115 checkAppendMsg(pCheck, 10116 "btreeInitPage() returns error code %d", rc); 10117 goto end_of_check; 10118 } 10119 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10120 assert( rc==SQLITE_CORRUPT ); 10121 checkAppendMsg(pCheck, "free space corruption", rc); 10122 goto end_of_check; 10123 } 10124 data = pPage->aData; 10125 hdr = pPage->hdrOffset; 10126 10127 /* Set up for cell analysis */ 10128 pCheck->zPfx = "On tree page %u cell %d: "; 10129 contentOffset = get2byteNotZero(&data[hdr+5]); 10130 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10131 10132 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10133 ** number of cells on the page. */ 10134 nCell = get2byte(&data[hdr+3]); 10135 assert( pPage->nCell==nCell ); 10136 10137 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10138 ** immediately follows the b-tree page header. */ 10139 cellStart = hdr + 12 - 4*pPage->leaf; 10140 assert( pPage->aCellIdx==&data[cellStart] ); 10141 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10142 10143 if( !pPage->leaf ){ 10144 /* Analyze the right-child page of internal pages */ 10145 pgno = get4byte(&data[hdr+8]); 10146 #ifndef SQLITE_OMIT_AUTOVACUUM 10147 if( pBt->autoVacuum ){ 10148 pCheck->zPfx = "On page %u at right child: "; 10149 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10150 } 10151 #endif 10152 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10153 keyCanBeEqual = 0; 10154 }else{ 10155 /* For leaf pages, the coverage check will occur in the same loop 10156 ** as the other cell checks, so initialize the heap. */ 10157 heap = pCheck->heap; 10158 heap[0] = 0; 10159 } 10160 10161 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10162 ** integer offsets to the cell contents. */ 10163 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10164 CellInfo info; 10165 10166 /* Check cell size */ 10167 pCheck->v2 = i; 10168 assert( pCellIdx==&data[cellStart + i*2] ); 10169 pc = get2byteAligned(pCellIdx); 10170 pCellIdx -= 2; 10171 if( pc<contentOffset || pc>usableSize-4 ){ 10172 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10173 pc, contentOffset, usableSize-4); 10174 doCoverageCheck = 0; 10175 continue; 10176 } 10177 pCell = &data[pc]; 10178 pPage->xParseCell(pPage, pCell, &info); 10179 if( pc+info.nSize>usableSize ){ 10180 checkAppendMsg(pCheck, "Extends off end of page"); 10181 doCoverageCheck = 0; 10182 continue; 10183 } 10184 10185 /* Check for integer primary key out of range */ 10186 if( pPage->intKey ){ 10187 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10188 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10189 } 10190 maxKey = info.nKey; 10191 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10192 } 10193 10194 /* Check the content overflow list */ 10195 if( info.nPayload>info.nLocal ){ 10196 u32 nPage; /* Number of pages on the overflow chain */ 10197 Pgno pgnoOvfl; /* First page of the overflow chain */ 10198 assert( pc + info.nSize - 4 <= usableSize ); 10199 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10200 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10201 #ifndef SQLITE_OMIT_AUTOVACUUM 10202 if( pBt->autoVacuum ){ 10203 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10204 } 10205 #endif 10206 checkList(pCheck, 0, pgnoOvfl, nPage); 10207 } 10208 10209 if( !pPage->leaf ){ 10210 /* Check sanity of left child page for internal pages */ 10211 pgno = get4byte(pCell); 10212 #ifndef SQLITE_OMIT_AUTOVACUUM 10213 if( pBt->autoVacuum ){ 10214 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10215 } 10216 #endif 10217 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10218 keyCanBeEqual = 0; 10219 if( d2!=depth ){ 10220 checkAppendMsg(pCheck, "Child page depth differs"); 10221 depth = d2; 10222 } 10223 }else{ 10224 /* Populate the coverage-checking heap for leaf pages */ 10225 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10226 } 10227 } 10228 *piMinKey = maxKey; 10229 10230 /* Check for complete coverage of the page 10231 */ 10232 pCheck->zPfx = 0; 10233 if( doCoverageCheck && pCheck->mxErr>0 ){ 10234 /* For leaf pages, the min-heap has already been initialized and the 10235 ** cells have already been inserted. But for internal pages, that has 10236 ** not yet been done, so do it now */ 10237 if( !pPage->leaf ){ 10238 heap = pCheck->heap; 10239 heap[0] = 0; 10240 for(i=nCell-1; i>=0; i--){ 10241 u32 size; 10242 pc = get2byteAligned(&data[cellStart+i*2]); 10243 size = pPage->xCellSize(pPage, &data[pc]); 10244 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10245 } 10246 } 10247 /* Add the freeblocks to the min-heap 10248 ** 10249 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10250 ** is the offset of the first freeblock, or zero if there are no 10251 ** freeblocks on the page. 10252 */ 10253 i = get2byte(&data[hdr+1]); 10254 while( i>0 ){ 10255 int size, j; 10256 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10257 size = get2byte(&data[i+2]); 10258 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10259 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10260 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10261 ** big-endian integer which is the offset in the b-tree page of the next 10262 ** freeblock in the chain, or zero if the freeblock is the last on the 10263 ** chain. */ 10264 j = get2byte(&data[i]); 10265 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10266 ** increasing offset. */ 10267 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10268 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10269 i = j; 10270 } 10271 /* Analyze the min-heap looking for overlap between cells and/or 10272 ** freeblocks, and counting the number of untracked bytes in nFrag. 10273 ** 10274 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10275 ** There is an implied first entry the covers the page header, the cell 10276 ** pointer index, and the gap between the cell pointer index and the start 10277 ** of cell content. 10278 ** 10279 ** The loop below pulls entries from the min-heap in order and compares 10280 ** the start_address against the previous end_address. If there is an 10281 ** overlap, that means bytes are used multiple times. If there is a gap, 10282 ** that gap is added to the fragmentation count. 10283 */ 10284 nFrag = 0; 10285 prev = contentOffset - 1; /* Implied first min-heap entry */ 10286 while( btreeHeapPull(heap,&x) ){ 10287 if( (prev&0xffff)>=(x>>16) ){ 10288 checkAppendMsg(pCheck, 10289 "Multiple uses for byte %u of page %u", x>>16, iPage); 10290 break; 10291 }else{ 10292 nFrag += (x>>16) - (prev&0xffff) - 1; 10293 prev = x; 10294 } 10295 } 10296 nFrag += usableSize - (prev&0xffff) - 1; 10297 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10298 ** is stored in the fifth field of the b-tree page header. 10299 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10300 ** number of fragmented free bytes within the cell content area. 10301 */ 10302 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10303 checkAppendMsg(pCheck, 10304 "Fragmentation of %d bytes reported as %d on page %u", 10305 nFrag, data[hdr+7], iPage); 10306 } 10307 } 10308 10309 end_of_check: 10310 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10311 releasePage(pPage); 10312 pCheck->zPfx = saved_zPfx; 10313 pCheck->v1 = saved_v1; 10314 pCheck->v2 = saved_v2; 10315 return depth+1; 10316 } 10317 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10318 10319 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10320 /* 10321 ** This routine does a complete check of the given BTree file. aRoot[] is 10322 ** an array of pages numbers were each page number is the root page of 10323 ** a table. nRoot is the number of entries in aRoot. 10324 ** 10325 ** A read-only or read-write transaction must be opened before calling 10326 ** this function. 10327 ** 10328 ** Write the number of error seen in *pnErr. Except for some memory 10329 ** allocation errors, an error message held in memory obtained from 10330 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10331 ** returned. If a memory allocation error occurs, NULL is returned. 10332 ** 10333 ** If the first entry in aRoot[] is 0, that indicates that the list of 10334 ** root pages is incomplete. This is a "partial integrity-check". This 10335 ** happens when performing an integrity check on a single table. The 10336 ** zero is skipped, of course. But in addition, the freelist checks 10337 ** and the checks to make sure every page is referenced are also skipped, 10338 ** since obviously it is not possible to know which pages are covered by 10339 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10340 ** checks are still performed. 10341 */ 10342 char *sqlite3BtreeIntegrityCheck( 10343 sqlite3 *db, /* Database connection that is running the check */ 10344 Btree *p, /* The btree to be checked */ 10345 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10346 int nRoot, /* Number of entries in aRoot[] */ 10347 int mxErr, /* Stop reporting errors after this many */ 10348 int *pnErr /* Write number of errors seen to this variable */ 10349 ){ 10350 Pgno i; 10351 IntegrityCk sCheck; 10352 BtShared *pBt = p->pBt; 10353 u64 savedDbFlags = pBt->db->flags; 10354 char zErr[100]; 10355 int bPartial = 0; /* True if not checking all btrees */ 10356 int bCkFreelist = 1; /* True to scan the freelist */ 10357 VVA_ONLY( int nRef ); 10358 assert( nRoot>0 ); 10359 10360 /* aRoot[0]==0 means this is a partial check */ 10361 if( aRoot[0]==0 ){ 10362 assert( nRoot>1 ); 10363 bPartial = 1; 10364 if( aRoot[1]!=1 ) bCkFreelist = 0; 10365 } 10366 10367 sqlite3BtreeEnter(p); 10368 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10369 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10370 assert( nRef>=0 ); 10371 sCheck.db = db; 10372 sCheck.pBt = pBt; 10373 sCheck.pPager = pBt->pPager; 10374 sCheck.nPage = btreePagecount(sCheck.pBt); 10375 sCheck.mxErr = mxErr; 10376 sCheck.nErr = 0; 10377 sCheck.bOomFault = 0; 10378 sCheck.zPfx = 0; 10379 sCheck.v1 = 0; 10380 sCheck.v2 = 0; 10381 sCheck.aPgRef = 0; 10382 sCheck.heap = 0; 10383 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10384 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10385 if( sCheck.nPage==0 ){ 10386 goto integrity_ck_cleanup; 10387 } 10388 10389 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10390 if( !sCheck.aPgRef ){ 10391 sCheck.bOomFault = 1; 10392 goto integrity_ck_cleanup; 10393 } 10394 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10395 if( sCheck.heap==0 ){ 10396 sCheck.bOomFault = 1; 10397 goto integrity_ck_cleanup; 10398 } 10399 10400 i = PENDING_BYTE_PAGE(pBt); 10401 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10402 10403 /* Check the integrity of the freelist 10404 */ 10405 if( bCkFreelist ){ 10406 sCheck.zPfx = "Main freelist: "; 10407 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10408 get4byte(&pBt->pPage1->aData[36])); 10409 sCheck.zPfx = 0; 10410 } 10411 10412 /* Check all the tables. 10413 */ 10414 #ifndef SQLITE_OMIT_AUTOVACUUM 10415 if( !bPartial ){ 10416 if( pBt->autoVacuum ){ 10417 Pgno mx = 0; 10418 Pgno mxInHdr; 10419 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10420 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10421 if( mx!=mxInHdr ){ 10422 checkAppendMsg(&sCheck, 10423 "max rootpage (%d) disagrees with header (%d)", 10424 mx, mxInHdr 10425 ); 10426 } 10427 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10428 checkAppendMsg(&sCheck, 10429 "incremental_vacuum enabled with a max rootpage of zero" 10430 ); 10431 } 10432 } 10433 #endif 10434 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10435 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10436 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10437 i64 notUsed; 10438 if( aRoot[i]==0 ) continue; 10439 #ifndef SQLITE_OMIT_AUTOVACUUM 10440 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10441 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10442 } 10443 #endif 10444 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10445 } 10446 pBt->db->flags = savedDbFlags; 10447 10448 /* Make sure every page in the file is referenced 10449 */ 10450 if( !bPartial ){ 10451 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10452 #ifdef SQLITE_OMIT_AUTOVACUUM 10453 if( getPageReferenced(&sCheck, i)==0 ){ 10454 checkAppendMsg(&sCheck, "Page %d is never used", i); 10455 } 10456 #else 10457 /* If the database supports auto-vacuum, make sure no tables contain 10458 ** references to pointer-map pages. 10459 */ 10460 if( getPageReferenced(&sCheck, i)==0 && 10461 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10462 checkAppendMsg(&sCheck, "Page %d is never used", i); 10463 } 10464 if( getPageReferenced(&sCheck, i)!=0 && 10465 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10466 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10467 } 10468 #endif 10469 } 10470 } 10471 10472 /* Clean up and report errors. 10473 */ 10474 integrity_ck_cleanup: 10475 sqlite3PageFree(sCheck.heap); 10476 sqlite3_free(sCheck.aPgRef); 10477 if( sCheck.bOomFault ){ 10478 sqlite3_str_reset(&sCheck.errMsg); 10479 sCheck.nErr++; 10480 } 10481 *pnErr = sCheck.nErr; 10482 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10483 /* Make sure this analysis did not leave any unref() pages. */ 10484 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10485 sqlite3BtreeLeave(p); 10486 return sqlite3StrAccumFinish(&sCheck.errMsg); 10487 } 10488 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10489 10490 /* 10491 ** Return the full pathname of the underlying database file. Return 10492 ** an empty string if the database is in-memory or a TEMP database. 10493 ** 10494 ** The pager filename is invariant as long as the pager is 10495 ** open so it is safe to access without the BtShared mutex. 10496 */ 10497 const char *sqlite3BtreeGetFilename(Btree *p){ 10498 assert( p->pBt->pPager!=0 ); 10499 return sqlite3PagerFilename(p->pBt->pPager, 1); 10500 } 10501 10502 /* 10503 ** Return the pathname of the journal file for this database. The return 10504 ** value of this routine is the same regardless of whether the journal file 10505 ** has been created or not. 10506 ** 10507 ** The pager journal filename is invariant as long as the pager is 10508 ** open so it is safe to access without the BtShared mutex. 10509 */ 10510 const char *sqlite3BtreeGetJournalname(Btree *p){ 10511 assert( p->pBt->pPager!=0 ); 10512 return sqlite3PagerJournalname(p->pBt->pPager); 10513 } 10514 10515 /* 10516 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10517 ** to describe the current transaction state of Btree p. 10518 */ 10519 int sqlite3BtreeTxnState(Btree *p){ 10520 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10521 return p ? p->inTrans : 0; 10522 } 10523 10524 #ifndef SQLITE_OMIT_WAL 10525 /* 10526 ** Run a checkpoint on the Btree passed as the first argument. 10527 ** 10528 ** Return SQLITE_LOCKED if this or any other connection has an open 10529 ** transaction on the shared-cache the argument Btree is connected to. 10530 ** 10531 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10532 */ 10533 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10534 int rc = SQLITE_OK; 10535 if( p ){ 10536 BtShared *pBt = p->pBt; 10537 sqlite3BtreeEnter(p); 10538 if( pBt->inTransaction!=TRANS_NONE ){ 10539 rc = SQLITE_LOCKED; 10540 }else{ 10541 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10542 } 10543 sqlite3BtreeLeave(p); 10544 } 10545 return rc; 10546 } 10547 #endif 10548 10549 /* 10550 ** Return true if there is currently a backup running on Btree p. 10551 */ 10552 int sqlite3BtreeIsInBackup(Btree *p){ 10553 assert( p ); 10554 assert( sqlite3_mutex_held(p->db->mutex) ); 10555 return p->nBackup!=0; 10556 } 10557 10558 /* 10559 ** This function returns a pointer to a blob of memory associated with 10560 ** a single shared-btree. The memory is used by client code for its own 10561 ** purposes (for example, to store a high-level schema associated with 10562 ** the shared-btree). The btree layer manages reference counting issues. 10563 ** 10564 ** The first time this is called on a shared-btree, nBytes bytes of memory 10565 ** are allocated, zeroed, and returned to the caller. For each subsequent 10566 ** call the nBytes parameter is ignored and a pointer to the same blob 10567 ** of memory returned. 10568 ** 10569 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10570 ** allocated, a null pointer is returned. If the blob has already been 10571 ** allocated, it is returned as normal. 10572 ** 10573 ** Just before the shared-btree is closed, the function passed as the 10574 ** xFree argument when the memory allocation was made is invoked on the 10575 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10576 ** on the memory, the btree layer does that. 10577 */ 10578 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10579 BtShared *pBt = p->pBt; 10580 sqlite3BtreeEnter(p); 10581 if( !pBt->pSchema && nBytes ){ 10582 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10583 pBt->xFreeSchema = xFree; 10584 } 10585 sqlite3BtreeLeave(p); 10586 return pBt->pSchema; 10587 } 10588 10589 /* 10590 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10591 ** btree as the argument handle holds an exclusive lock on the 10592 ** sqlite_schema table. Otherwise SQLITE_OK. 10593 */ 10594 int sqlite3BtreeSchemaLocked(Btree *p){ 10595 int rc; 10596 assert( sqlite3_mutex_held(p->db->mutex) ); 10597 sqlite3BtreeEnter(p); 10598 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10599 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10600 sqlite3BtreeLeave(p); 10601 return rc; 10602 } 10603 10604 10605 #ifndef SQLITE_OMIT_SHARED_CACHE 10606 /* 10607 ** Obtain a lock on the table whose root page is iTab. The 10608 ** lock is a write lock if isWritelock is true or a read lock 10609 ** if it is false. 10610 */ 10611 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10612 int rc = SQLITE_OK; 10613 assert( p->inTrans!=TRANS_NONE ); 10614 if( p->sharable ){ 10615 u8 lockType = READ_LOCK + isWriteLock; 10616 assert( READ_LOCK+1==WRITE_LOCK ); 10617 assert( isWriteLock==0 || isWriteLock==1 ); 10618 10619 sqlite3BtreeEnter(p); 10620 rc = querySharedCacheTableLock(p, iTab, lockType); 10621 if( rc==SQLITE_OK ){ 10622 rc = setSharedCacheTableLock(p, iTab, lockType); 10623 } 10624 sqlite3BtreeLeave(p); 10625 } 10626 return rc; 10627 } 10628 #endif 10629 10630 #ifndef SQLITE_OMIT_INCRBLOB 10631 /* 10632 ** Argument pCsr must be a cursor opened for writing on an 10633 ** INTKEY table currently pointing at a valid table entry. 10634 ** This function modifies the data stored as part of that entry. 10635 ** 10636 ** Only the data content may only be modified, it is not possible to 10637 ** change the length of the data stored. If this function is called with 10638 ** parameters that attempt to write past the end of the existing data, 10639 ** no modifications are made and SQLITE_CORRUPT is returned. 10640 */ 10641 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10642 int rc; 10643 assert( cursorOwnsBtShared(pCsr) ); 10644 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10645 assert( pCsr->curFlags & BTCF_Incrblob ); 10646 10647 rc = restoreCursorPosition(pCsr); 10648 if( rc!=SQLITE_OK ){ 10649 return rc; 10650 } 10651 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10652 if( pCsr->eState!=CURSOR_VALID ){ 10653 return SQLITE_ABORT; 10654 } 10655 10656 /* Save the positions of all other cursors open on this table. This is 10657 ** required in case any of them are holding references to an xFetch 10658 ** version of the b-tree page modified by the accessPayload call below. 10659 ** 10660 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10661 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10662 ** saveAllCursors can only return SQLITE_OK. 10663 */ 10664 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10665 assert( rc==SQLITE_OK ); 10666 10667 /* Check some assumptions: 10668 ** (a) the cursor is open for writing, 10669 ** (b) there is a read/write transaction open, 10670 ** (c) the connection holds a write-lock on the table (if required), 10671 ** (d) there are no conflicting read-locks, and 10672 ** (e) the cursor points at a valid row of an intKey table. 10673 */ 10674 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10675 return SQLITE_READONLY; 10676 } 10677 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10678 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10679 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10680 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10681 assert( pCsr->pPage->intKey ); 10682 10683 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10684 } 10685 10686 /* 10687 ** Mark this cursor as an incremental blob cursor. 10688 */ 10689 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10690 pCur->curFlags |= BTCF_Incrblob; 10691 pCur->pBtree->hasIncrblobCur = 1; 10692 } 10693 #endif 10694 10695 /* 10696 ** Set both the "read version" (single byte at byte offset 18) and 10697 ** "write version" (single byte at byte offset 19) fields in the database 10698 ** header to iVersion. 10699 */ 10700 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10701 BtShared *pBt = pBtree->pBt; 10702 int rc; /* Return code */ 10703 10704 assert( iVersion==1 || iVersion==2 ); 10705 10706 /* If setting the version fields to 1, do not automatically open the 10707 ** WAL connection, even if the version fields are currently set to 2. 10708 */ 10709 pBt->btsFlags &= ~BTS_NO_WAL; 10710 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10711 10712 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10713 if( rc==SQLITE_OK ){ 10714 u8 *aData = pBt->pPage1->aData; 10715 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10716 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10717 if( rc==SQLITE_OK ){ 10718 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10719 if( rc==SQLITE_OK ){ 10720 aData[18] = (u8)iVersion; 10721 aData[19] = (u8)iVersion; 10722 } 10723 } 10724 } 10725 } 10726 10727 pBt->btsFlags &= ~BTS_NO_WAL; 10728 return rc; 10729 } 10730 10731 /* 10732 ** Return true if the cursor has a hint specified. This routine is 10733 ** only used from within assert() statements 10734 */ 10735 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10736 return (pCsr->hints & mask)!=0; 10737 } 10738 10739 /* 10740 ** Return true if the given Btree is read-only. 10741 */ 10742 int sqlite3BtreeIsReadonly(Btree *p){ 10743 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10744 } 10745 10746 /* 10747 ** Return the size of the header added to each page by this module. 10748 */ 10749 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10750 10751 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10752 /* 10753 ** Return true if the Btree passed as the only argument is sharable. 10754 */ 10755 int sqlite3BtreeSharable(Btree *p){ 10756 return p->sharable; 10757 } 10758 10759 /* 10760 ** Return the number of connections to the BtShared object accessed by 10761 ** the Btree handle passed as the only argument. For private caches 10762 ** this is always 1. For shared caches it may be 1 or greater. 10763 */ 10764 int sqlite3BtreeConnectionCount(Btree *p){ 10765 testcase( p->sharable ); 10766 return p->pBt->nRef; 10767 } 10768 #endif 10769