xref: /sqlite-3.40.0/src/btree.c (revision bc85a515)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==(int)iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
811 */
812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830       goto moveto_done;
831     }
832   }else{
833     pIdxKey = 0;
834   }
835   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
836 moveto_done:
837   if( pIdxKey ){
838     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
839   }
840   return rc;
841 }
842 
843 /*
844 ** Restore the cursor to the position it was in (or as close to as possible)
845 ** when saveCursorPosition() was called. Note that this call deletes the
846 ** saved position info stored by saveCursorPosition(), so there can be
847 ** at most one effective restoreCursorPosition() call after each
848 ** saveCursorPosition().
849 */
850 static int btreeRestoreCursorPosition(BtCursor *pCur){
851   int rc;
852   int skipNext = 0;
853   assert( cursorOwnsBtShared(pCur) );
854   assert( pCur->eState>=CURSOR_REQUIRESEEK );
855   if( pCur->eState==CURSOR_FAULT ){
856     return pCur->skipNext;
857   }
858   pCur->eState = CURSOR_INVALID;
859   if( sqlite3FaultSim(410) ){
860     rc = SQLITE_IOERR;
861   }else{
862     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
863   }
864   if( rc==SQLITE_OK ){
865     sqlite3_free(pCur->pKey);
866     pCur->pKey = 0;
867     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
868     if( skipNext ) pCur->skipNext = skipNext;
869     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
870       pCur->eState = CURSOR_SKIPNEXT;
871     }
872   }
873   return rc;
874 }
875 
876 #define restoreCursorPosition(p) \
877   (p->eState>=CURSOR_REQUIRESEEK ? \
878          btreeRestoreCursorPosition(p) : \
879          SQLITE_OK)
880 
881 /*
882 ** Determine whether or not a cursor has moved from the position where
883 ** it was last placed, or has been invalidated for any other reason.
884 ** Cursors can move when the row they are pointing at is deleted out
885 ** from under them, for example.  Cursor might also move if a btree
886 ** is rebalanced.
887 **
888 ** Calling this routine with a NULL cursor pointer returns false.
889 **
890 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
891 ** back to where it ought to be if this routine returns true.
892 */
893 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
894   assert( EIGHT_BYTE_ALIGNMENT(pCur)
895        || pCur==sqlite3BtreeFakeValidCursor() );
896   assert( offsetof(BtCursor, eState)==0 );
897   assert( sizeof(pCur->eState)==1 );
898   return CURSOR_VALID != *(u8*)pCur;
899 }
900 
901 /*
902 ** Return a pointer to a fake BtCursor object that will always answer
903 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
904 ** cursor returned must not be used with any other Btree interface.
905 */
906 BtCursor *sqlite3BtreeFakeValidCursor(void){
907   static u8 fakeCursor = CURSOR_VALID;
908   assert( offsetof(BtCursor, eState)==0 );
909   return (BtCursor*)&fakeCursor;
910 }
911 
912 /*
913 ** This routine restores a cursor back to its original position after it
914 ** has been moved by some outside activity (such as a btree rebalance or
915 ** a row having been deleted out from under the cursor).
916 **
917 ** On success, the *pDifferentRow parameter is false if the cursor is left
918 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
919 ** was pointing to has been deleted, forcing the cursor to point to some
920 ** nearby row.
921 **
922 ** This routine should only be called for a cursor that just returned
923 ** TRUE from sqlite3BtreeCursorHasMoved().
924 */
925 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
926   int rc;
927 
928   assert( pCur!=0 );
929   assert( pCur->eState!=CURSOR_VALID );
930   rc = restoreCursorPosition(pCur);
931   if( rc ){
932     *pDifferentRow = 1;
933     return rc;
934   }
935   if( pCur->eState!=CURSOR_VALID ){
936     *pDifferentRow = 1;
937   }else{
938     *pDifferentRow = 0;
939   }
940   return SQLITE_OK;
941 }
942 
943 #ifdef SQLITE_ENABLE_CURSOR_HINTS
944 /*
945 ** Provide hints to the cursor.  The particular hint given (and the type
946 ** and number of the varargs parameters) is determined by the eHintType
947 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
948 */
949 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
950   /* Used only by system that substitute their own storage engine */
951 }
952 #endif
953 
954 /*
955 ** Provide flag hints to the cursor.
956 */
957 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
958   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
959   pCur->hints = x;
960 }
961 
962 
963 #ifndef SQLITE_OMIT_AUTOVACUUM
964 /*
965 ** Given a page number of a regular database page, return the page
966 ** number for the pointer-map page that contains the entry for the
967 ** input page number.
968 **
969 ** Return 0 (not a valid page) for pgno==1 since there is
970 ** no pointer map associated with page 1.  The integrity_check logic
971 ** requires that ptrmapPageno(*,1)!=1.
972 */
973 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
974   int nPagesPerMapPage;
975   Pgno iPtrMap, ret;
976   assert( sqlite3_mutex_held(pBt->mutex) );
977   if( pgno<2 ) return 0;
978   nPagesPerMapPage = (pBt->usableSize/5)+1;
979   iPtrMap = (pgno-2)/nPagesPerMapPage;
980   ret = (iPtrMap*nPagesPerMapPage) + 2;
981   if( ret==PENDING_BYTE_PAGE(pBt) ){
982     ret++;
983   }
984   return ret;
985 }
986 
987 /*
988 ** Write an entry into the pointer map.
989 **
990 ** This routine updates the pointer map entry for page number 'key'
991 ** so that it maps to type 'eType' and parent page number 'pgno'.
992 **
993 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
994 ** a no-op.  If an error occurs, the appropriate error code is written
995 ** into *pRC.
996 */
997 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
998   DbPage *pDbPage;  /* The pointer map page */
999   u8 *pPtrmap;      /* The pointer map data */
1000   Pgno iPtrmap;     /* The pointer map page number */
1001   int offset;       /* Offset in pointer map page */
1002   int rc;           /* Return code from subfunctions */
1003 
1004   if( *pRC ) return;
1005 
1006   assert( sqlite3_mutex_held(pBt->mutex) );
1007   /* The super-journal page number must never be used as a pointer map page */
1008   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1009 
1010   assert( pBt->autoVacuum );
1011   if( key==0 ){
1012     *pRC = SQLITE_CORRUPT_BKPT;
1013     return;
1014   }
1015   iPtrmap = PTRMAP_PAGENO(pBt, key);
1016   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1017   if( rc!=SQLITE_OK ){
1018     *pRC = rc;
1019     return;
1020   }
1021   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1022     /* The first byte of the extra data is the MemPage.isInit byte.
1023     ** If that byte is set, it means this page is also being used
1024     ** as a btree page. */
1025     *pRC = SQLITE_CORRUPT_BKPT;
1026     goto ptrmap_exit;
1027   }
1028   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1029   if( offset<0 ){
1030     *pRC = SQLITE_CORRUPT_BKPT;
1031     goto ptrmap_exit;
1032   }
1033   assert( offset <= (int)pBt->usableSize-5 );
1034   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1035 
1036   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1037     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1038     *pRC= rc = sqlite3PagerWrite(pDbPage);
1039     if( rc==SQLITE_OK ){
1040       pPtrmap[offset] = eType;
1041       put4byte(&pPtrmap[offset+1], parent);
1042     }
1043   }
1044 
1045 ptrmap_exit:
1046   sqlite3PagerUnref(pDbPage);
1047 }
1048 
1049 /*
1050 ** Read an entry from the pointer map.
1051 **
1052 ** This routine retrieves the pointer map entry for page 'key', writing
1053 ** the type and parent page number to *pEType and *pPgno respectively.
1054 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1055 */
1056 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1057   DbPage *pDbPage;   /* The pointer map page */
1058   int iPtrmap;       /* Pointer map page index */
1059   u8 *pPtrmap;       /* Pointer map page data */
1060   int offset;        /* Offset of entry in pointer map */
1061   int rc;
1062 
1063   assert( sqlite3_mutex_held(pBt->mutex) );
1064 
1065   iPtrmap = PTRMAP_PAGENO(pBt, key);
1066   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1067   if( rc!=0 ){
1068     return rc;
1069   }
1070   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1071 
1072   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1073   if( offset<0 ){
1074     sqlite3PagerUnref(pDbPage);
1075     return SQLITE_CORRUPT_BKPT;
1076   }
1077   assert( offset <= (int)pBt->usableSize-5 );
1078   assert( pEType!=0 );
1079   *pEType = pPtrmap[offset];
1080   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1081 
1082   sqlite3PagerUnref(pDbPage);
1083   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1084   return SQLITE_OK;
1085 }
1086 
1087 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1088   #define ptrmapPut(w,x,y,z,rc)
1089   #define ptrmapGet(w,x,y,z) SQLITE_OK
1090   #define ptrmapPutOvflPtr(x, y, z, rc)
1091 #endif
1092 
1093 /*
1094 ** Given a btree page and a cell index (0 means the first cell on
1095 ** the page, 1 means the second cell, and so forth) return a pointer
1096 ** to the cell content.
1097 **
1098 ** findCellPastPtr() does the same except it skips past the initial
1099 ** 4-byte child pointer found on interior pages, if there is one.
1100 **
1101 ** This routine works only for pages that do not contain overflow cells.
1102 */
1103 #define findCell(P,I) \
1104   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 #define findCellPastPtr(P,I) \
1106   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1107 
1108 
1109 /*
1110 ** This is common tail processing for btreeParseCellPtr() and
1111 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1112 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1113 ** structure.
1114 */
1115 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1116   MemPage *pPage,         /* Page containing the cell */
1117   u8 *pCell,              /* Pointer to the cell text. */
1118   CellInfo *pInfo         /* Fill in this structure */
1119 ){
1120   /* If the payload will not fit completely on the local page, we have
1121   ** to decide how much to store locally and how much to spill onto
1122   ** overflow pages.  The strategy is to minimize the amount of unused
1123   ** space on overflow pages while keeping the amount of local storage
1124   ** in between minLocal and maxLocal.
1125   **
1126   ** Warning:  changing the way overflow payload is distributed in any
1127   ** way will result in an incompatible file format.
1128   */
1129   int minLocal;  /* Minimum amount of payload held locally */
1130   int maxLocal;  /* Maximum amount of payload held locally */
1131   int surplus;   /* Overflow payload available for local storage */
1132 
1133   minLocal = pPage->minLocal;
1134   maxLocal = pPage->maxLocal;
1135   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1136   testcase( surplus==maxLocal );
1137   testcase( surplus==maxLocal+1 );
1138   if( surplus <= maxLocal ){
1139     pInfo->nLocal = (u16)surplus;
1140   }else{
1141     pInfo->nLocal = (u16)minLocal;
1142   }
1143   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1144 }
1145 
1146 /*
1147 ** Given a record with nPayload bytes of payload stored within btree
1148 ** page pPage, return the number of bytes of payload stored locally.
1149 */
1150 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1151   int maxLocal;  /* Maximum amount of payload held locally */
1152   maxLocal = pPage->maxLocal;
1153   if( nPayload<=maxLocal ){
1154     return nPayload;
1155   }else{
1156     int minLocal;  /* Minimum amount of payload held locally */
1157     int surplus;   /* Overflow payload available for local storage */
1158     minLocal = pPage->minLocal;
1159     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1160     return ( surplus <= maxLocal ) ? surplus : minLocal;
1161   }
1162 }
1163 
1164 /*
1165 ** The following routines are implementations of the MemPage.xParseCell()
1166 ** method.
1167 **
1168 ** Parse a cell content block and fill in the CellInfo structure.
1169 **
1170 ** btreeParseCellPtr()        =>   table btree leaf nodes
1171 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1172 ** btreeParseCellPtrIndex()   =>   index btree nodes
1173 **
1174 ** There is also a wrapper function btreeParseCell() that works for
1175 ** all MemPage types and that references the cell by index rather than
1176 ** by pointer.
1177 */
1178 static void btreeParseCellPtrNoPayload(
1179   MemPage *pPage,         /* Page containing the cell */
1180   u8 *pCell,              /* Pointer to the cell text. */
1181   CellInfo *pInfo         /* Fill in this structure */
1182 ){
1183   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1184   assert( pPage->leaf==0 );
1185   assert( pPage->childPtrSize==4 );
1186 #ifndef SQLITE_DEBUG
1187   UNUSED_PARAMETER(pPage);
1188 #endif
1189   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1190   pInfo->nPayload = 0;
1191   pInfo->nLocal = 0;
1192   pInfo->pPayload = 0;
1193   return;
1194 }
1195 static void btreeParseCellPtr(
1196   MemPage *pPage,         /* Page containing the cell */
1197   u8 *pCell,              /* Pointer to the cell text. */
1198   CellInfo *pInfo         /* Fill in this structure */
1199 ){
1200   u8 *pIter;              /* For scanning through pCell */
1201   u32 nPayload;           /* Number of bytes of cell payload */
1202   u64 iKey;               /* Extracted Key value */
1203 
1204   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1205   assert( pPage->leaf==0 || pPage->leaf==1 );
1206   assert( pPage->intKeyLeaf );
1207   assert( pPage->childPtrSize==0 );
1208   pIter = pCell;
1209 
1210   /* The next block of code is equivalent to:
1211   **
1212   **     pIter += getVarint32(pIter, nPayload);
1213   **
1214   ** The code is inlined to avoid a function call.
1215   */
1216   nPayload = *pIter;
1217   if( nPayload>=0x80 ){
1218     u8 *pEnd = &pIter[8];
1219     nPayload &= 0x7f;
1220     do{
1221       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1222     }while( (*pIter)>=0x80 && pIter<pEnd );
1223   }
1224   pIter++;
1225 
1226   /* The next block of code is equivalent to:
1227   **
1228   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1229   **
1230   ** The code is inlined to avoid a function call.
1231   */
1232   iKey = *pIter;
1233   if( iKey>=0x80 ){
1234     u8 *pEnd = &pIter[7];
1235     iKey &= 0x7f;
1236     while(1){
1237       iKey = (iKey<<7) | (*++pIter & 0x7f);
1238       if( (*pIter)<0x80 ) break;
1239       if( pIter>=pEnd ){
1240         iKey = (iKey<<8) | *++pIter;
1241         break;
1242       }
1243     }
1244   }
1245   pIter++;
1246 
1247   pInfo->nKey = *(i64*)&iKey;
1248   pInfo->nPayload = nPayload;
1249   pInfo->pPayload = pIter;
1250   testcase( nPayload==pPage->maxLocal );
1251   testcase( nPayload==pPage->maxLocal+1 );
1252   if( nPayload<=pPage->maxLocal ){
1253     /* This is the (easy) common case where the entire payload fits
1254     ** on the local page.  No overflow is required.
1255     */
1256     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1257     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1258     pInfo->nLocal = (u16)nPayload;
1259   }else{
1260     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1261   }
1262 }
1263 static void btreeParseCellPtrIndex(
1264   MemPage *pPage,         /* Page containing the cell */
1265   u8 *pCell,              /* Pointer to the cell text. */
1266   CellInfo *pInfo         /* Fill in this structure */
1267 ){
1268   u8 *pIter;              /* For scanning through pCell */
1269   u32 nPayload;           /* Number of bytes of cell payload */
1270 
1271   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1272   assert( pPage->leaf==0 || pPage->leaf==1 );
1273   assert( pPage->intKeyLeaf==0 );
1274   pIter = pCell + pPage->childPtrSize;
1275   nPayload = *pIter;
1276   if( nPayload>=0x80 ){
1277     u8 *pEnd = &pIter[8];
1278     nPayload &= 0x7f;
1279     do{
1280       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1281     }while( *(pIter)>=0x80 && pIter<pEnd );
1282   }
1283   pIter++;
1284   pInfo->nKey = nPayload;
1285   pInfo->nPayload = nPayload;
1286   pInfo->pPayload = pIter;
1287   testcase( nPayload==pPage->maxLocal );
1288   testcase( nPayload==pPage->maxLocal+1 );
1289   if( nPayload<=pPage->maxLocal ){
1290     /* This is the (easy) common case where the entire payload fits
1291     ** on the local page.  No overflow is required.
1292     */
1293     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1294     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1295     pInfo->nLocal = (u16)nPayload;
1296   }else{
1297     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1298   }
1299 }
1300 static void btreeParseCell(
1301   MemPage *pPage,         /* Page containing the cell */
1302   int iCell,              /* The cell index.  First cell is 0 */
1303   CellInfo *pInfo         /* Fill in this structure */
1304 ){
1305   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1306 }
1307 
1308 /*
1309 ** The following routines are implementations of the MemPage.xCellSize
1310 ** method.
1311 **
1312 ** Compute the total number of bytes that a Cell needs in the cell
1313 ** data area of the btree-page.  The return number includes the cell
1314 ** data header and the local payload, but not any overflow page or
1315 ** the space used by the cell pointer.
1316 **
1317 ** cellSizePtrNoPayload()    =>   table internal nodes
1318 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1319 */
1320 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1321   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1322   u8 *pEnd;                                /* End mark for a varint */
1323   u32 nSize;                               /* Size value to return */
1324 
1325 #ifdef SQLITE_DEBUG
1326   /* The value returned by this function should always be the same as
1327   ** the (CellInfo.nSize) value found by doing a full parse of the
1328   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1329   ** this function verifies that this invariant is not violated. */
1330   CellInfo debuginfo;
1331   pPage->xParseCell(pPage, pCell, &debuginfo);
1332 #endif
1333 
1334   nSize = *pIter;
1335   if( nSize>=0x80 ){
1336     pEnd = &pIter[8];
1337     nSize &= 0x7f;
1338     do{
1339       nSize = (nSize<<7) | (*++pIter & 0x7f);
1340     }while( *(pIter)>=0x80 && pIter<pEnd );
1341   }
1342   pIter++;
1343   if( pPage->intKey ){
1344     /* pIter now points at the 64-bit integer key value, a variable length
1345     ** integer. The following block moves pIter to point at the first byte
1346     ** past the end of the key value. */
1347     pEnd = &pIter[9];
1348     while( (*pIter++)&0x80 && pIter<pEnd );
1349   }
1350   testcase( nSize==pPage->maxLocal );
1351   testcase( nSize==pPage->maxLocal+1 );
1352   if( nSize<=pPage->maxLocal ){
1353     nSize += (u32)(pIter - pCell);
1354     if( nSize<4 ) nSize = 4;
1355   }else{
1356     int minLocal = pPage->minLocal;
1357     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1358     testcase( nSize==pPage->maxLocal );
1359     testcase( nSize==pPage->maxLocal+1 );
1360     if( nSize>pPage->maxLocal ){
1361       nSize = minLocal;
1362     }
1363     nSize += 4 + (u16)(pIter - pCell);
1364   }
1365   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1366   return (u16)nSize;
1367 }
1368 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1369   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1370   u8 *pEnd;              /* End mark for a varint */
1371 
1372 #ifdef SQLITE_DEBUG
1373   /* The value returned by this function should always be the same as
1374   ** the (CellInfo.nSize) value found by doing a full parse of the
1375   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1376   ** this function verifies that this invariant is not violated. */
1377   CellInfo debuginfo;
1378   pPage->xParseCell(pPage, pCell, &debuginfo);
1379 #else
1380   UNUSED_PARAMETER(pPage);
1381 #endif
1382 
1383   assert( pPage->childPtrSize==4 );
1384   pEnd = pIter + 9;
1385   while( (*pIter++)&0x80 && pIter<pEnd );
1386   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1387   return (u16)(pIter - pCell);
1388 }
1389 
1390 
1391 #ifdef SQLITE_DEBUG
1392 /* This variation on cellSizePtr() is used inside of assert() statements
1393 ** only. */
1394 static u16 cellSize(MemPage *pPage, int iCell){
1395   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1396 }
1397 #endif
1398 
1399 #ifndef SQLITE_OMIT_AUTOVACUUM
1400 /*
1401 ** The cell pCell is currently part of page pSrc but will ultimately be part
1402 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1403 ** pointer to an overflow page, insert an entry into the pointer-map for
1404 ** the overflow page that will be valid after pCell has been moved to pPage.
1405 */
1406 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1407   CellInfo info;
1408   if( *pRC ) return;
1409   assert( pCell!=0 );
1410   pPage->xParseCell(pPage, pCell, &info);
1411   if( info.nLocal<info.nPayload ){
1412     Pgno ovfl;
1413     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1414       testcase( pSrc!=pPage );
1415       *pRC = SQLITE_CORRUPT_BKPT;
1416       return;
1417     }
1418     ovfl = get4byte(&pCell[info.nSize-4]);
1419     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1420   }
1421 }
1422 #endif
1423 
1424 
1425 /*
1426 ** Defragment the page given. This routine reorganizes cells within the
1427 ** page so that there are no free-blocks on the free-block list.
1428 **
1429 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1430 ** present in the page after this routine returns.
1431 **
1432 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1433 ** b-tree page so that there are no freeblocks or fragment bytes, all
1434 ** unused bytes are contained in the unallocated space region, and all
1435 ** cells are packed tightly at the end of the page.
1436 */
1437 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1438   int i;                     /* Loop counter */
1439   int pc;                    /* Address of the i-th cell */
1440   int hdr;                   /* Offset to the page header */
1441   int size;                  /* Size of a cell */
1442   int usableSize;            /* Number of usable bytes on a page */
1443   int cellOffset;            /* Offset to the cell pointer array */
1444   int cbrk;                  /* Offset to the cell content area */
1445   int nCell;                 /* Number of cells on the page */
1446   unsigned char *data;       /* The page data */
1447   unsigned char *temp;       /* Temp area for cell content */
1448   unsigned char *src;        /* Source of content */
1449   int iCellFirst;            /* First allowable cell index */
1450   int iCellLast;             /* Last possible cell index */
1451   int iCellStart;            /* First cell offset in input */
1452 
1453   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1454   assert( pPage->pBt!=0 );
1455   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1456   assert( pPage->nOverflow==0 );
1457   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1458   temp = 0;
1459   src = data = pPage->aData;
1460   hdr = pPage->hdrOffset;
1461   cellOffset = pPage->cellOffset;
1462   nCell = pPage->nCell;
1463   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1464   iCellFirst = cellOffset + 2*nCell;
1465   usableSize = pPage->pBt->usableSize;
1466 
1467   /* This block handles pages with two or fewer free blocks and nMaxFrag
1468   ** or fewer fragmented bytes. In this case it is faster to move the
1469   ** two (or one) blocks of cells using memmove() and add the required
1470   ** offsets to each pointer in the cell-pointer array than it is to
1471   ** reconstruct the entire page.  */
1472   if( (int)data[hdr+7]<=nMaxFrag ){
1473     int iFree = get2byte(&data[hdr+1]);
1474     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1475     if( iFree ){
1476       int iFree2 = get2byte(&data[iFree]);
1477       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1478       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1479         u8 *pEnd = &data[cellOffset + nCell*2];
1480         u8 *pAddr;
1481         int sz2 = 0;
1482         int sz = get2byte(&data[iFree+2]);
1483         int top = get2byte(&data[hdr+5]);
1484         if( top>=iFree ){
1485           return SQLITE_CORRUPT_PAGE(pPage);
1486         }
1487         if( iFree2 ){
1488           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1489           sz2 = get2byte(&data[iFree2+2]);
1490           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1491           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1492           sz += sz2;
1493         }else if( iFree+sz>usableSize ){
1494           return SQLITE_CORRUPT_PAGE(pPage);
1495         }
1496 
1497         cbrk = top+sz;
1498         assert( cbrk+(iFree-top) <= usableSize );
1499         memmove(&data[cbrk], &data[top], iFree-top);
1500         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1501           pc = get2byte(pAddr);
1502           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1503           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1504         }
1505         goto defragment_out;
1506       }
1507     }
1508   }
1509 
1510   cbrk = usableSize;
1511   iCellLast = usableSize - 4;
1512   iCellStart = get2byte(&data[hdr+5]);
1513   for(i=0; i<nCell; i++){
1514     u8 *pAddr;     /* The i-th cell pointer */
1515     pAddr = &data[cellOffset + i*2];
1516     pc = get2byte(pAddr);
1517     testcase( pc==iCellFirst );
1518     testcase( pc==iCellLast );
1519     /* These conditions have already been verified in btreeInitPage()
1520     ** if PRAGMA cell_size_check=ON.
1521     */
1522     if( pc<iCellStart || pc>iCellLast ){
1523       return SQLITE_CORRUPT_PAGE(pPage);
1524     }
1525     assert( pc>=iCellStart && pc<=iCellLast );
1526     size = pPage->xCellSize(pPage, &src[pc]);
1527     cbrk -= size;
1528     if( cbrk<iCellStart || pc+size>usableSize ){
1529       return SQLITE_CORRUPT_PAGE(pPage);
1530     }
1531     assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1532     testcase( cbrk+size==usableSize );
1533     testcase( pc+size==usableSize );
1534     put2byte(pAddr, cbrk);
1535     if( temp==0 ){
1536       if( cbrk==pc ) continue;
1537       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1538       memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1539       src = temp;
1540     }
1541     memcpy(&data[cbrk], &src[pc], size);
1542   }
1543   data[hdr+7] = 0;
1544 
1545  defragment_out:
1546   assert( pPage->nFree>=0 );
1547   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1548     return SQLITE_CORRUPT_PAGE(pPage);
1549   }
1550   assert( cbrk>=iCellFirst );
1551   put2byte(&data[hdr+5], cbrk);
1552   data[hdr+1] = 0;
1553   data[hdr+2] = 0;
1554   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1555   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1556   return SQLITE_OK;
1557 }
1558 
1559 /*
1560 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1561 ** size. If one can be found, return a pointer to the space and remove it
1562 ** from the free-list.
1563 **
1564 ** If no suitable space can be found on the free-list, return NULL.
1565 **
1566 ** This function may detect corruption within pPg.  If corruption is
1567 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1568 **
1569 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1570 ** will be ignored if adding the extra space to the fragmentation count
1571 ** causes the fragmentation count to exceed 60.
1572 */
1573 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1574   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1575   u8 * const aData = pPg->aData;             /* Page data */
1576   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1577   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1578   int x;                                     /* Excess size of the slot */
1579   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1580   int size;                                  /* Size of the free slot */
1581 
1582   assert( pc>0 );
1583   while( pc<=maxPC ){
1584     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1585     ** freeblock form a big-endian integer which is the size of the freeblock
1586     ** in bytes, including the 4-byte header. */
1587     size = get2byte(&aData[pc+2]);
1588     if( (x = size - nByte)>=0 ){
1589       testcase( x==4 );
1590       testcase( x==3 );
1591       if( x<4 ){
1592         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1593         ** number of bytes in fragments may not exceed 60. */
1594         if( aData[hdr+7]>57 ) return 0;
1595 
1596         /* Remove the slot from the free-list. Update the number of
1597         ** fragmented bytes within the page. */
1598         memcpy(&aData[iAddr], &aData[pc], 2);
1599         aData[hdr+7] += (u8)x;
1600       }else if( x+pc > maxPC ){
1601         /* This slot extends off the end of the usable part of the page */
1602         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1603         return 0;
1604       }else{
1605         /* The slot remains on the free-list. Reduce its size to account
1606         ** for the portion used by the new allocation. */
1607         put2byte(&aData[pc+2], x);
1608       }
1609       return &aData[pc + x];
1610     }
1611     iAddr = pc;
1612     pc = get2byte(&aData[pc]);
1613     if( pc<=iAddr+size ){
1614       if( pc ){
1615         /* The next slot in the chain is not past the end of the current slot */
1616         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1617       }
1618       return 0;
1619     }
1620   }
1621   if( pc>maxPC+nByte-4 ){
1622     /* The free slot chain extends off the end of the page */
1623     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1624   }
1625   return 0;
1626 }
1627 
1628 /*
1629 ** Allocate nByte bytes of space from within the B-Tree page passed
1630 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1631 ** of the first byte of allocated space. Return either SQLITE_OK or
1632 ** an error code (usually SQLITE_CORRUPT).
1633 **
1634 ** The caller guarantees that there is sufficient space to make the
1635 ** allocation.  This routine might need to defragment in order to bring
1636 ** all the space together, however.  This routine will avoid using
1637 ** the first two bytes past the cell pointer area since presumably this
1638 ** allocation is being made in order to insert a new cell, so we will
1639 ** also end up needing a new cell pointer.
1640 */
1641 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1642   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1643   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1644   int top;                             /* First byte of cell content area */
1645   int rc = SQLITE_OK;                  /* Integer return code */
1646   int gap;        /* First byte of gap between cell pointers and cell content */
1647 
1648   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1649   assert( pPage->pBt );
1650   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1651   assert( nByte>=0 );  /* Minimum cell size is 4 */
1652   assert( pPage->nFree>=nByte );
1653   assert( pPage->nOverflow==0 );
1654   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1655 
1656   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1657   gap = pPage->cellOffset + 2*pPage->nCell;
1658   assert( gap<=65536 );
1659   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1660   ** and the reserved space is zero (the usual value for reserved space)
1661   ** then the cell content offset of an empty page wants to be 65536.
1662   ** However, that integer is too large to be stored in a 2-byte unsigned
1663   ** integer, so a value of 0 is used in its place. */
1664   top = get2byte(&data[hdr+5]);
1665   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1666   if( gap>top ){
1667     if( top==0 && pPage->pBt->usableSize==65536 ){
1668       top = 65536;
1669     }else{
1670       return SQLITE_CORRUPT_PAGE(pPage);
1671     }
1672   }
1673 
1674   /* If there is enough space between gap and top for one more cell pointer,
1675   ** and if the freelist is not empty, then search the
1676   ** freelist looking for a slot big enough to satisfy the request.
1677   */
1678   testcase( gap+2==top );
1679   testcase( gap+1==top );
1680   testcase( gap==top );
1681   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1682     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1683     if( pSpace ){
1684       int g2;
1685       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1686       *pIdx = g2 = (int)(pSpace-data);
1687       if( NEVER(g2<=gap) ){
1688         return SQLITE_CORRUPT_PAGE(pPage);
1689       }else{
1690         return SQLITE_OK;
1691       }
1692     }else if( rc ){
1693       return rc;
1694     }
1695   }
1696 
1697   /* The request could not be fulfilled using a freelist slot.  Check
1698   ** to see if defragmentation is necessary.
1699   */
1700   testcase( gap+2+nByte==top );
1701   if( gap+2+nByte>top ){
1702     assert( pPage->nCell>0 || CORRUPT_DB );
1703     assert( pPage->nFree>=0 );
1704     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1705     if( rc ) return rc;
1706     top = get2byteNotZero(&data[hdr+5]);
1707     assert( gap+2+nByte<=top );
1708   }
1709 
1710 
1711   /* Allocate memory from the gap in between the cell pointer array
1712   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1713   ** validated the freelist.  Given that the freelist is valid, there
1714   ** is no way that the allocation can extend off the end of the page.
1715   ** The assert() below verifies the previous sentence.
1716   */
1717   top -= nByte;
1718   put2byte(&data[hdr+5], top);
1719   assert( top+nByte <= (int)pPage->pBt->usableSize );
1720   *pIdx = top;
1721   return SQLITE_OK;
1722 }
1723 
1724 /*
1725 ** Return a section of the pPage->aData to the freelist.
1726 ** The first byte of the new free block is pPage->aData[iStart]
1727 ** and the size of the block is iSize bytes.
1728 **
1729 ** Adjacent freeblocks are coalesced.
1730 **
1731 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1732 ** that routine will not detect overlap between cells or freeblocks.  Nor
1733 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1734 ** at the end of the page.  So do additional corruption checks inside this
1735 ** routine and return SQLITE_CORRUPT if any problems are found.
1736 */
1737 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1738   u16 iPtr;                             /* Address of ptr to next freeblock */
1739   u16 iFreeBlk;                         /* Address of the next freeblock */
1740   u8 hdr;                               /* Page header size.  0 or 100 */
1741   u8 nFrag = 0;                         /* Reduction in fragmentation */
1742   u16 iOrigSize = iSize;                /* Original value of iSize */
1743   u16 x;                                /* Offset to cell content area */
1744   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1745   unsigned char *data = pPage->aData;   /* Page content */
1746 
1747   assert( pPage->pBt!=0 );
1748   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1749   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1750   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1751   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1752   assert( iSize>=4 );   /* Minimum cell size is 4 */
1753   assert( iStart<=pPage->pBt->usableSize-4 );
1754 
1755   /* The list of freeblocks must be in ascending order.  Find the
1756   ** spot on the list where iStart should be inserted.
1757   */
1758   hdr = pPage->hdrOffset;
1759   iPtr = hdr + 1;
1760   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1761     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1762   }else{
1763     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1764       if( iFreeBlk<iPtr+4 ){
1765         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1766         return SQLITE_CORRUPT_PAGE(pPage);
1767       }
1768       iPtr = iFreeBlk;
1769     }
1770     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1771       return SQLITE_CORRUPT_PAGE(pPage);
1772     }
1773     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1774 
1775     /* At this point:
1776     **    iFreeBlk:   First freeblock after iStart, or zero if none
1777     **    iPtr:       The address of a pointer to iFreeBlk
1778     **
1779     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1780     */
1781     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1782       nFrag = iFreeBlk - iEnd;
1783       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1784       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1785       if( iEnd > pPage->pBt->usableSize ){
1786         return SQLITE_CORRUPT_PAGE(pPage);
1787       }
1788       iSize = iEnd - iStart;
1789       iFreeBlk = get2byte(&data[iFreeBlk]);
1790     }
1791 
1792     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1793     ** pointer in the page header) then check to see if iStart should be
1794     ** coalesced onto the end of iPtr.
1795     */
1796     if( iPtr>hdr+1 ){
1797       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1798       if( iPtrEnd+3>=iStart ){
1799         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1800         nFrag += iStart - iPtrEnd;
1801         iSize = iEnd - iPtr;
1802         iStart = iPtr;
1803       }
1804     }
1805     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1806     data[hdr+7] -= nFrag;
1807   }
1808   x = get2byte(&data[hdr+5]);
1809   if( iStart<=x ){
1810     /* The new freeblock is at the beginning of the cell content area,
1811     ** so just extend the cell content area rather than create another
1812     ** freelist entry */
1813     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1814     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1815     put2byte(&data[hdr+1], iFreeBlk);
1816     put2byte(&data[hdr+5], iEnd);
1817   }else{
1818     /* Insert the new freeblock into the freelist */
1819     put2byte(&data[iPtr], iStart);
1820   }
1821   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1822     /* Overwrite deleted information with zeros when the secure_delete
1823     ** option is enabled */
1824     memset(&data[iStart], 0, iSize);
1825   }
1826   put2byte(&data[iStart], iFreeBlk);
1827   put2byte(&data[iStart+2], iSize);
1828   pPage->nFree += iOrigSize;
1829   return SQLITE_OK;
1830 }
1831 
1832 /*
1833 ** Decode the flags byte (the first byte of the header) for a page
1834 ** and initialize fields of the MemPage structure accordingly.
1835 **
1836 ** Only the following combinations are supported.  Anything different
1837 ** indicates a corrupt database files:
1838 **
1839 **         PTF_ZERODATA
1840 **         PTF_ZERODATA | PTF_LEAF
1841 **         PTF_LEAFDATA | PTF_INTKEY
1842 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1843 */
1844 static int decodeFlags(MemPage *pPage, int flagByte){
1845   BtShared *pBt;     /* A copy of pPage->pBt */
1846 
1847   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1848   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1849   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1850   flagByte &= ~PTF_LEAF;
1851   pPage->childPtrSize = 4-4*pPage->leaf;
1852   pPage->xCellSize = cellSizePtr;
1853   pBt = pPage->pBt;
1854   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1855     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1856     ** interior table b-tree page. */
1857     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1858     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1859     ** leaf table b-tree page. */
1860     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1861     pPage->intKey = 1;
1862     if( pPage->leaf ){
1863       pPage->intKeyLeaf = 1;
1864       pPage->xParseCell = btreeParseCellPtr;
1865     }else{
1866       pPage->intKeyLeaf = 0;
1867       pPage->xCellSize = cellSizePtrNoPayload;
1868       pPage->xParseCell = btreeParseCellPtrNoPayload;
1869     }
1870     pPage->maxLocal = pBt->maxLeaf;
1871     pPage->minLocal = pBt->minLeaf;
1872   }else if( flagByte==PTF_ZERODATA ){
1873     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1874     ** interior index b-tree page. */
1875     assert( (PTF_ZERODATA)==2 );
1876     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1877     ** leaf index b-tree page. */
1878     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1879     pPage->intKey = 0;
1880     pPage->intKeyLeaf = 0;
1881     pPage->xParseCell = btreeParseCellPtrIndex;
1882     pPage->maxLocal = pBt->maxLocal;
1883     pPage->minLocal = pBt->minLocal;
1884   }else{
1885     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1886     ** an error. */
1887     return SQLITE_CORRUPT_PAGE(pPage);
1888   }
1889   pPage->max1bytePayload = pBt->max1bytePayload;
1890   return SQLITE_OK;
1891 }
1892 
1893 /*
1894 ** Compute the amount of freespace on the page.  In other words, fill
1895 ** in the pPage->nFree field.
1896 */
1897 static int btreeComputeFreeSpace(MemPage *pPage){
1898   int pc;            /* Address of a freeblock within pPage->aData[] */
1899   u8 hdr;            /* Offset to beginning of page header */
1900   u8 *data;          /* Equal to pPage->aData */
1901   int usableSize;    /* Amount of usable space on each page */
1902   int nFree;         /* Number of unused bytes on the page */
1903   int top;           /* First byte of the cell content area */
1904   int iCellFirst;    /* First allowable cell or freeblock offset */
1905   int iCellLast;     /* Last possible cell or freeblock offset */
1906 
1907   assert( pPage->pBt!=0 );
1908   assert( pPage->pBt->db!=0 );
1909   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1910   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1911   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1912   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1913   assert( pPage->isInit==1 );
1914   assert( pPage->nFree<0 );
1915 
1916   usableSize = pPage->pBt->usableSize;
1917   hdr = pPage->hdrOffset;
1918   data = pPage->aData;
1919   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1920   ** the start of the cell content area. A zero value for this integer is
1921   ** interpreted as 65536. */
1922   top = get2byteNotZero(&data[hdr+5]);
1923   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1924   iCellLast = usableSize - 4;
1925 
1926   /* Compute the total free space on the page
1927   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1928   ** start of the first freeblock on the page, or is zero if there are no
1929   ** freeblocks. */
1930   pc = get2byte(&data[hdr+1]);
1931   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1932   if( pc>0 ){
1933     u32 next, size;
1934     if( pc<top ){
1935       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1936       ** always be at least one cell before the first freeblock.
1937       */
1938       return SQLITE_CORRUPT_PAGE(pPage);
1939     }
1940     while( 1 ){
1941       if( pc>iCellLast ){
1942         /* Freeblock off the end of the page */
1943         return SQLITE_CORRUPT_PAGE(pPage);
1944       }
1945       next = get2byte(&data[pc]);
1946       size = get2byte(&data[pc+2]);
1947       nFree = nFree + size;
1948       if( next<=pc+size+3 ) break;
1949       pc = next;
1950     }
1951     if( next>0 ){
1952       /* Freeblock not in ascending order */
1953       return SQLITE_CORRUPT_PAGE(pPage);
1954     }
1955     if( pc+size>(unsigned int)usableSize ){
1956       /* Last freeblock extends past page end */
1957       return SQLITE_CORRUPT_PAGE(pPage);
1958     }
1959   }
1960 
1961   /* At this point, nFree contains the sum of the offset to the start
1962   ** of the cell-content area plus the number of free bytes within
1963   ** the cell-content area. If this is greater than the usable-size
1964   ** of the page, then the page must be corrupted. This check also
1965   ** serves to verify that the offset to the start of the cell-content
1966   ** area, according to the page header, lies within the page.
1967   */
1968   if( nFree>usableSize || nFree<iCellFirst ){
1969     return SQLITE_CORRUPT_PAGE(pPage);
1970   }
1971   pPage->nFree = (u16)(nFree - iCellFirst);
1972   return SQLITE_OK;
1973 }
1974 
1975 /*
1976 ** Do additional sanity check after btreeInitPage() if
1977 ** PRAGMA cell_size_check=ON
1978 */
1979 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1980   int iCellFirst;    /* First allowable cell or freeblock offset */
1981   int iCellLast;     /* Last possible cell or freeblock offset */
1982   int i;             /* Index into the cell pointer array */
1983   int sz;            /* Size of a cell */
1984   int pc;            /* Address of a freeblock within pPage->aData[] */
1985   u8 *data;          /* Equal to pPage->aData */
1986   int usableSize;    /* Maximum usable space on the page */
1987   int cellOffset;    /* Start of cell content area */
1988 
1989   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1990   usableSize = pPage->pBt->usableSize;
1991   iCellLast = usableSize - 4;
1992   data = pPage->aData;
1993   cellOffset = pPage->cellOffset;
1994   if( !pPage->leaf ) iCellLast--;
1995   for(i=0; i<pPage->nCell; i++){
1996     pc = get2byteAligned(&data[cellOffset+i*2]);
1997     testcase( pc==iCellFirst );
1998     testcase( pc==iCellLast );
1999     if( pc<iCellFirst || pc>iCellLast ){
2000       return SQLITE_CORRUPT_PAGE(pPage);
2001     }
2002     sz = pPage->xCellSize(pPage, &data[pc]);
2003     testcase( pc+sz==usableSize );
2004     if( pc+sz>usableSize ){
2005       return SQLITE_CORRUPT_PAGE(pPage);
2006     }
2007   }
2008   return SQLITE_OK;
2009 }
2010 
2011 /*
2012 ** Initialize the auxiliary information for a disk block.
2013 **
2014 ** Return SQLITE_OK on success.  If we see that the page does
2015 ** not contain a well-formed database page, then return
2016 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2017 ** guarantee that the page is well-formed.  It only shows that
2018 ** we failed to detect any corruption.
2019 */
2020 static int btreeInitPage(MemPage *pPage){
2021   u8 *data;          /* Equal to pPage->aData */
2022   BtShared *pBt;        /* The main btree structure */
2023 
2024   assert( pPage->pBt!=0 );
2025   assert( pPage->pBt->db!=0 );
2026   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2027   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2028   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2029   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2030   assert( pPage->isInit==0 );
2031 
2032   pBt = pPage->pBt;
2033   data = pPage->aData + pPage->hdrOffset;
2034   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2035   ** the b-tree page type. */
2036   if( decodeFlags(pPage, data[0]) ){
2037     return SQLITE_CORRUPT_PAGE(pPage);
2038   }
2039   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2040   pPage->maskPage = (u16)(pBt->pageSize - 1);
2041   pPage->nOverflow = 0;
2042   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2043   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2044   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2045   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2046   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2047   ** number of cells on the page. */
2048   pPage->nCell = get2byte(&data[3]);
2049   if( pPage->nCell>MX_CELL(pBt) ){
2050     /* To many cells for a single page.  The page must be corrupt */
2051     return SQLITE_CORRUPT_PAGE(pPage);
2052   }
2053   testcase( pPage->nCell==MX_CELL(pBt) );
2054   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2055   ** possible for a root page of a table that contains no rows) then the
2056   ** offset to the cell content area will equal the page size minus the
2057   ** bytes of reserved space. */
2058   assert( pPage->nCell>0
2059        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2060        || CORRUPT_DB );
2061   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2062   pPage->isInit = 1;
2063   if( pBt->db->flags & SQLITE_CellSizeCk ){
2064     return btreeCellSizeCheck(pPage);
2065   }
2066   return SQLITE_OK;
2067 }
2068 
2069 /*
2070 ** Set up a raw page so that it looks like a database page holding
2071 ** no entries.
2072 */
2073 static void zeroPage(MemPage *pPage, int flags){
2074   unsigned char *data = pPage->aData;
2075   BtShared *pBt = pPage->pBt;
2076   u8 hdr = pPage->hdrOffset;
2077   u16 first;
2078 
2079   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2080   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2081   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2082   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2083   assert( sqlite3_mutex_held(pBt->mutex) );
2084   if( pBt->btsFlags & BTS_FAST_SECURE ){
2085     memset(&data[hdr], 0, pBt->usableSize - hdr);
2086   }
2087   data[hdr] = (char)flags;
2088   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2089   memset(&data[hdr+1], 0, 4);
2090   data[hdr+7] = 0;
2091   put2byte(&data[hdr+5], pBt->usableSize);
2092   pPage->nFree = (u16)(pBt->usableSize - first);
2093   decodeFlags(pPage, flags);
2094   pPage->cellOffset = first;
2095   pPage->aDataEnd = &data[pBt->usableSize];
2096   pPage->aCellIdx = &data[first];
2097   pPage->aDataOfst = &data[pPage->childPtrSize];
2098   pPage->nOverflow = 0;
2099   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2100   pPage->maskPage = (u16)(pBt->pageSize - 1);
2101   pPage->nCell = 0;
2102   pPage->isInit = 1;
2103 }
2104 
2105 
2106 /*
2107 ** Convert a DbPage obtained from the pager into a MemPage used by
2108 ** the btree layer.
2109 */
2110 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2111   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2112   if( pgno!=pPage->pgno ){
2113     pPage->aData = sqlite3PagerGetData(pDbPage);
2114     pPage->pDbPage = pDbPage;
2115     pPage->pBt = pBt;
2116     pPage->pgno = pgno;
2117     pPage->hdrOffset = pgno==1 ? 100 : 0;
2118   }
2119   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2120   return pPage;
2121 }
2122 
2123 /*
2124 ** Get a page from the pager.  Initialize the MemPage.pBt and
2125 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2126 **
2127 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2128 ** about the content of the page at this time.  So do not go to the disk
2129 ** to fetch the content.  Just fill in the content with zeros for now.
2130 ** If in the future we call sqlite3PagerWrite() on this page, that
2131 ** means we have started to be concerned about content and the disk
2132 ** read should occur at that point.
2133 */
2134 static int btreeGetPage(
2135   BtShared *pBt,       /* The btree */
2136   Pgno pgno,           /* Number of the page to fetch */
2137   MemPage **ppPage,    /* Return the page in this parameter */
2138   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2139 ){
2140   int rc;
2141   DbPage *pDbPage;
2142 
2143   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2144   assert( sqlite3_mutex_held(pBt->mutex) );
2145   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2146   if( rc ) return rc;
2147   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2148   return SQLITE_OK;
2149 }
2150 
2151 /*
2152 ** Retrieve a page from the pager cache. If the requested page is not
2153 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2154 ** MemPage.aData elements if needed.
2155 */
2156 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2157   DbPage *pDbPage;
2158   assert( sqlite3_mutex_held(pBt->mutex) );
2159   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2160   if( pDbPage ){
2161     return btreePageFromDbPage(pDbPage, pgno, pBt);
2162   }
2163   return 0;
2164 }
2165 
2166 /*
2167 ** Return the size of the database file in pages. If there is any kind of
2168 ** error, return ((unsigned int)-1).
2169 */
2170 static Pgno btreePagecount(BtShared *pBt){
2171   return pBt->nPage;
2172 }
2173 Pgno sqlite3BtreeLastPage(Btree *p){
2174   assert( sqlite3BtreeHoldsMutex(p) );
2175   return btreePagecount(p->pBt);
2176 }
2177 
2178 /*
2179 ** Get a page from the pager and initialize it.
2180 **
2181 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2182 ** call.  Do additional sanity checking on the page in this case.
2183 ** And if the fetch fails, this routine must decrement pCur->iPage.
2184 **
2185 ** The page is fetched as read-write unless pCur is not NULL and is
2186 ** a read-only cursor.
2187 **
2188 ** If an error occurs, then *ppPage is undefined. It
2189 ** may remain unchanged, or it may be set to an invalid value.
2190 */
2191 static int getAndInitPage(
2192   BtShared *pBt,                  /* The database file */
2193   Pgno pgno,                      /* Number of the page to get */
2194   MemPage **ppPage,               /* Write the page pointer here */
2195   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2196   int bReadOnly                   /* True for a read-only page */
2197 ){
2198   int rc;
2199   DbPage *pDbPage;
2200   assert( sqlite3_mutex_held(pBt->mutex) );
2201   assert( pCur==0 || ppPage==&pCur->pPage );
2202   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2203   assert( pCur==0 || pCur->iPage>0 );
2204 
2205   if( pgno>btreePagecount(pBt) ){
2206     rc = SQLITE_CORRUPT_BKPT;
2207     goto getAndInitPage_error1;
2208   }
2209   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2210   if( rc ){
2211     goto getAndInitPage_error1;
2212   }
2213   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2214   if( (*ppPage)->isInit==0 ){
2215     btreePageFromDbPage(pDbPage, pgno, pBt);
2216     rc = btreeInitPage(*ppPage);
2217     if( rc!=SQLITE_OK ){
2218       goto getAndInitPage_error2;
2219     }
2220   }
2221   assert( (*ppPage)->pgno==pgno );
2222   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2223 
2224   /* If obtaining a child page for a cursor, we must verify that the page is
2225   ** compatible with the root page. */
2226   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2227     rc = SQLITE_CORRUPT_PGNO(pgno);
2228     goto getAndInitPage_error2;
2229   }
2230   return SQLITE_OK;
2231 
2232 getAndInitPage_error2:
2233   releasePage(*ppPage);
2234 getAndInitPage_error1:
2235   if( pCur ){
2236     pCur->iPage--;
2237     pCur->pPage = pCur->apPage[pCur->iPage];
2238   }
2239   testcase( pgno==0 );
2240   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2241   return rc;
2242 }
2243 
2244 /*
2245 ** Release a MemPage.  This should be called once for each prior
2246 ** call to btreeGetPage.
2247 **
2248 ** Page1 is a special case and must be released using releasePageOne().
2249 */
2250 static void releasePageNotNull(MemPage *pPage){
2251   assert( pPage->aData );
2252   assert( pPage->pBt );
2253   assert( pPage->pDbPage!=0 );
2254   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2255   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2256   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2257   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2258 }
2259 static void releasePage(MemPage *pPage){
2260   if( pPage ) releasePageNotNull(pPage);
2261 }
2262 static void releasePageOne(MemPage *pPage){
2263   assert( pPage!=0 );
2264   assert( pPage->aData );
2265   assert( pPage->pBt );
2266   assert( pPage->pDbPage!=0 );
2267   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2268   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2269   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2270   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2271 }
2272 
2273 /*
2274 ** Get an unused page.
2275 **
2276 ** This works just like btreeGetPage() with the addition:
2277 **
2278 **   *  If the page is already in use for some other purpose, immediately
2279 **      release it and return an SQLITE_CURRUPT error.
2280 **   *  Make sure the isInit flag is clear
2281 */
2282 static int btreeGetUnusedPage(
2283   BtShared *pBt,       /* The btree */
2284   Pgno pgno,           /* Number of the page to fetch */
2285   MemPage **ppPage,    /* Return the page in this parameter */
2286   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2287 ){
2288   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2289   if( rc==SQLITE_OK ){
2290     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2291       releasePage(*ppPage);
2292       *ppPage = 0;
2293       return SQLITE_CORRUPT_BKPT;
2294     }
2295     (*ppPage)->isInit = 0;
2296   }else{
2297     *ppPage = 0;
2298   }
2299   return rc;
2300 }
2301 
2302 
2303 /*
2304 ** During a rollback, when the pager reloads information into the cache
2305 ** so that the cache is restored to its original state at the start of
2306 ** the transaction, for each page restored this routine is called.
2307 **
2308 ** This routine needs to reset the extra data section at the end of the
2309 ** page to agree with the restored data.
2310 */
2311 static void pageReinit(DbPage *pData){
2312   MemPage *pPage;
2313   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2314   assert( sqlite3PagerPageRefcount(pData)>0 );
2315   if( pPage->isInit ){
2316     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2317     pPage->isInit = 0;
2318     if( sqlite3PagerPageRefcount(pData)>1 ){
2319       /* pPage might not be a btree page;  it might be an overflow page
2320       ** or ptrmap page or a free page.  In those cases, the following
2321       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2322       ** But no harm is done by this.  And it is very important that
2323       ** btreeInitPage() be called on every btree page so we make
2324       ** the call for every page that comes in for re-initing. */
2325       btreeInitPage(pPage);
2326     }
2327   }
2328 }
2329 
2330 /*
2331 ** Invoke the busy handler for a btree.
2332 */
2333 static int btreeInvokeBusyHandler(void *pArg){
2334   BtShared *pBt = (BtShared*)pArg;
2335   assert( pBt->db );
2336   assert( sqlite3_mutex_held(pBt->db->mutex) );
2337   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2338 }
2339 
2340 /*
2341 ** Open a database file.
2342 **
2343 ** zFilename is the name of the database file.  If zFilename is NULL
2344 ** then an ephemeral database is created.  The ephemeral database might
2345 ** be exclusively in memory, or it might use a disk-based memory cache.
2346 ** Either way, the ephemeral database will be automatically deleted
2347 ** when sqlite3BtreeClose() is called.
2348 **
2349 ** If zFilename is ":memory:" then an in-memory database is created
2350 ** that is automatically destroyed when it is closed.
2351 **
2352 ** The "flags" parameter is a bitmask that might contain bits like
2353 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2354 **
2355 ** If the database is already opened in the same database connection
2356 ** and we are in shared cache mode, then the open will fail with an
2357 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2358 ** objects in the same database connection since doing so will lead
2359 ** to problems with locking.
2360 */
2361 int sqlite3BtreeOpen(
2362   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2363   const char *zFilename,  /* Name of the file containing the BTree database */
2364   sqlite3 *db,            /* Associated database handle */
2365   Btree **ppBtree,        /* Pointer to new Btree object written here */
2366   int flags,              /* Options */
2367   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2368 ){
2369   BtShared *pBt = 0;             /* Shared part of btree structure */
2370   Btree *p;                      /* Handle to return */
2371   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2372   int rc = SQLITE_OK;            /* Result code from this function */
2373   u8 nReserve;                   /* Byte of unused space on each page */
2374   unsigned char zDbHeader[100];  /* Database header content */
2375 
2376   /* True if opening an ephemeral, temporary database */
2377   const int isTempDb = zFilename==0 || zFilename[0]==0;
2378 
2379   /* Set the variable isMemdb to true for an in-memory database, or
2380   ** false for a file-based database.
2381   */
2382 #ifdef SQLITE_OMIT_MEMORYDB
2383   const int isMemdb = 0;
2384 #else
2385   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2386                        || (isTempDb && sqlite3TempInMemory(db))
2387                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2388 #endif
2389 
2390   assert( db!=0 );
2391   assert( pVfs!=0 );
2392   assert( sqlite3_mutex_held(db->mutex) );
2393   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2394 
2395   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2396   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2397 
2398   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2399   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2400 
2401   if( isMemdb ){
2402     flags |= BTREE_MEMORY;
2403   }
2404   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2405     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2406   }
2407   p = sqlite3MallocZero(sizeof(Btree));
2408   if( !p ){
2409     return SQLITE_NOMEM_BKPT;
2410   }
2411   p->inTrans = TRANS_NONE;
2412   p->db = db;
2413 #ifndef SQLITE_OMIT_SHARED_CACHE
2414   p->lock.pBtree = p;
2415   p->lock.iTable = 1;
2416 #endif
2417 
2418 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2419   /*
2420   ** If this Btree is a candidate for shared cache, try to find an
2421   ** existing BtShared object that we can share with
2422   */
2423   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2424     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2425       int nFilename = sqlite3Strlen30(zFilename)+1;
2426       int nFullPathname = pVfs->mxPathname+1;
2427       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2428       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2429 
2430       p->sharable = 1;
2431       if( !zFullPathname ){
2432         sqlite3_free(p);
2433         return SQLITE_NOMEM_BKPT;
2434       }
2435       if( isMemdb ){
2436         memcpy(zFullPathname, zFilename, nFilename);
2437       }else{
2438         rc = sqlite3OsFullPathname(pVfs, zFilename,
2439                                    nFullPathname, zFullPathname);
2440         if( rc ){
2441           if( rc==SQLITE_OK_SYMLINK ){
2442             rc = SQLITE_OK;
2443           }else{
2444             sqlite3_free(zFullPathname);
2445             sqlite3_free(p);
2446             return rc;
2447           }
2448         }
2449       }
2450 #if SQLITE_THREADSAFE
2451       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2452       sqlite3_mutex_enter(mutexOpen);
2453       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2454       sqlite3_mutex_enter(mutexShared);
2455 #endif
2456       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2457         assert( pBt->nRef>0 );
2458         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2459                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2460           int iDb;
2461           for(iDb=db->nDb-1; iDb>=0; iDb--){
2462             Btree *pExisting = db->aDb[iDb].pBt;
2463             if( pExisting && pExisting->pBt==pBt ){
2464               sqlite3_mutex_leave(mutexShared);
2465               sqlite3_mutex_leave(mutexOpen);
2466               sqlite3_free(zFullPathname);
2467               sqlite3_free(p);
2468               return SQLITE_CONSTRAINT;
2469             }
2470           }
2471           p->pBt = pBt;
2472           pBt->nRef++;
2473           break;
2474         }
2475       }
2476       sqlite3_mutex_leave(mutexShared);
2477       sqlite3_free(zFullPathname);
2478     }
2479 #ifdef SQLITE_DEBUG
2480     else{
2481       /* In debug mode, we mark all persistent databases as sharable
2482       ** even when they are not.  This exercises the locking code and
2483       ** gives more opportunity for asserts(sqlite3_mutex_held())
2484       ** statements to find locking problems.
2485       */
2486       p->sharable = 1;
2487     }
2488 #endif
2489   }
2490 #endif
2491   if( pBt==0 ){
2492     /*
2493     ** The following asserts make sure that structures used by the btree are
2494     ** the right size.  This is to guard against size changes that result
2495     ** when compiling on a different architecture.
2496     */
2497     assert( sizeof(i64)==8 );
2498     assert( sizeof(u64)==8 );
2499     assert( sizeof(u32)==4 );
2500     assert( sizeof(u16)==2 );
2501     assert( sizeof(Pgno)==4 );
2502 
2503     pBt = sqlite3MallocZero( sizeof(*pBt) );
2504     if( pBt==0 ){
2505       rc = SQLITE_NOMEM_BKPT;
2506       goto btree_open_out;
2507     }
2508     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2509                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2510     if( rc==SQLITE_OK ){
2511       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2512       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2513     }
2514     if( rc!=SQLITE_OK ){
2515       goto btree_open_out;
2516     }
2517     pBt->openFlags = (u8)flags;
2518     pBt->db = db;
2519     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2520     p->pBt = pBt;
2521 
2522     pBt->pCursor = 0;
2523     pBt->pPage1 = 0;
2524     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2525 #if defined(SQLITE_SECURE_DELETE)
2526     pBt->btsFlags |= BTS_SECURE_DELETE;
2527 #elif defined(SQLITE_FAST_SECURE_DELETE)
2528     pBt->btsFlags |= BTS_OVERWRITE;
2529 #endif
2530     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2531     ** determined by the 2-byte integer located at an offset of 16 bytes from
2532     ** the beginning of the database file. */
2533     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2534     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2535          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2536       pBt->pageSize = 0;
2537 #ifndef SQLITE_OMIT_AUTOVACUUM
2538       /* If the magic name ":memory:" will create an in-memory database, then
2539       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2540       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2541       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2542       ** regular file-name. In this case the auto-vacuum applies as per normal.
2543       */
2544       if( zFilename && !isMemdb ){
2545         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2546         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2547       }
2548 #endif
2549       nReserve = 0;
2550     }else{
2551       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2552       ** determined by the one-byte unsigned integer found at an offset of 20
2553       ** into the database file header. */
2554       nReserve = zDbHeader[20];
2555       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2556 #ifndef SQLITE_OMIT_AUTOVACUUM
2557       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2558       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2559 #endif
2560     }
2561     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2562     if( rc ) goto btree_open_out;
2563     pBt->usableSize = pBt->pageSize - nReserve;
2564     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2565 
2566 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2567     /* Add the new BtShared object to the linked list sharable BtShareds.
2568     */
2569     pBt->nRef = 1;
2570     if( p->sharable ){
2571       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2572       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2573       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2574         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2575         if( pBt->mutex==0 ){
2576           rc = SQLITE_NOMEM_BKPT;
2577           goto btree_open_out;
2578         }
2579       }
2580       sqlite3_mutex_enter(mutexShared);
2581       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2582       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2583       sqlite3_mutex_leave(mutexShared);
2584     }
2585 #endif
2586   }
2587 
2588 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2589   /* If the new Btree uses a sharable pBtShared, then link the new
2590   ** Btree into the list of all sharable Btrees for the same connection.
2591   ** The list is kept in ascending order by pBt address.
2592   */
2593   if( p->sharable ){
2594     int i;
2595     Btree *pSib;
2596     for(i=0; i<db->nDb; i++){
2597       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2598         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2599         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2600           p->pNext = pSib;
2601           p->pPrev = 0;
2602           pSib->pPrev = p;
2603         }else{
2604           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2605             pSib = pSib->pNext;
2606           }
2607           p->pNext = pSib->pNext;
2608           p->pPrev = pSib;
2609           if( p->pNext ){
2610             p->pNext->pPrev = p;
2611           }
2612           pSib->pNext = p;
2613         }
2614         break;
2615       }
2616     }
2617   }
2618 #endif
2619   *ppBtree = p;
2620 
2621 btree_open_out:
2622   if( rc!=SQLITE_OK ){
2623     if( pBt && pBt->pPager ){
2624       sqlite3PagerClose(pBt->pPager, 0);
2625     }
2626     sqlite3_free(pBt);
2627     sqlite3_free(p);
2628     *ppBtree = 0;
2629   }else{
2630     sqlite3_file *pFile;
2631 
2632     /* If the B-Tree was successfully opened, set the pager-cache size to the
2633     ** default value. Except, when opening on an existing shared pager-cache,
2634     ** do not change the pager-cache size.
2635     */
2636     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2637       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2638     }
2639 
2640     pFile = sqlite3PagerFile(pBt->pPager);
2641     if( pFile->pMethods ){
2642       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2643     }
2644   }
2645   if( mutexOpen ){
2646     assert( sqlite3_mutex_held(mutexOpen) );
2647     sqlite3_mutex_leave(mutexOpen);
2648   }
2649   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2650   return rc;
2651 }
2652 
2653 /*
2654 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2655 ** remove the BtShared structure from the sharing list.  Return
2656 ** true if the BtShared.nRef counter reaches zero and return
2657 ** false if it is still positive.
2658 */
2659 static int removeFromSharingList(BtShared *pBt){
2660 #ifndef SQLITE_OMIT_SHARED_CACHE
2661   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2662   BtShared *pList;
2663   int removed = 0;
2664 
2665   assert( sqlite3_mutex_notheld(pBt->mutex) );
2666   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2667   sqlite3_mutex_enter(pMainMtx);
2668   pBt->nRef--;
2669   if( pBt->nRef<=0 ){
2670     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2671       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2672     }else{
2673       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2674       while( ALWAYS(pList) && pList->pNext!=pBt ){
2675         pList=pList->pNext;
2676       }
2677       if( ALWAYS(pList) ){
2678         pList->pNext = pBt->pNext;
2679       }
2680     }
2681     if( SQLITE_THREADSAFE ){
2682       sqlite3_mutex_free(pBt->mutex);
2683     }
2684     removed = 1;
2685   }
2686   sqlite3_mutex_leave(pMainMtx);
2687   return removed;
2688 #else
2689   return 1;
2690 #endif
2691 }
2692 
2693 /*
2694 ** Make sure pBt->pTmpSpace points to an allocation of
2695 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2696 ** pointer.
2697 */
2698 static void allocateTempSpace(BtShared *pBt){
2699   if( !pBt->pTmpSpace ){
2700     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2701 
2702     /* One of the uses of pBt->pTmpSpace is to format cells before
2703     ** inserting them into a leaf page (function fillInCell()). If
2704     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2705     ** by the various routines that manipulate binary cells. Which
2706     ** can mean that fillInCell() only initializes the first 2 or 3
2707     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2708     ** it into a database page. This is not actually a problem, but it
2709     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2710     ** data is passed to system call write(). So to avoid this error,
2711     ** zero the first 4 bytes of temp space here.
2712     **
2713     ** Also:  Provide four bytes of initialized space before the
2714     ** beginning of pTmpSpace as an area available to prepend the
2715     ** left-child pointer to the beginning of a cell.
2716     */
2717     if( pBt->pTmpSpace ){
2718       memset(pBt->pTmpSpace, 0, 8);
2719       pBt->pTmpSpace += 4;
2720     }
2721   }
2722 }
2723 
2724 /*
2725 ** Free the pBt->pTmpSpace allocation
2726 */
2727 static void freeTempSpace(BtShared *pBt){
2728   if( pBt->pTmpSpace ){
2729     pBt->pTmpSpace -= 4;
2730     sqlite3PageFree(pBt->pTmpSpace);
2731     pBt->pTmpSpace = 0;
2732   }
2733 }
2734 
2735 /*
2736 ** Close an open database and invalidate all cursors.
2737 */
2738 int sqlite3BtreeClose(Btree *p){
2739   BtShared *pBt = p->pBt;
2740 
2741   /* Close all cursors opened via this handle.  */
2742   assert( sqlite3_mutex_held(p->db->mutex) );
2743   sqlite3BtreeEnter(p);
2744 
2745   /* Verify that no other cursors have this Btree open */
2746 #ifdef SQLITE_DEBUG
2747   {
2748     BtCursor *pCur = pBt->pCursor;
2749     while( pCur ){
2750       BtCursor *pTmp = pCur;
2751       pCur = pCur->pNext;
2752       assert( pTmp->pBtree!=p );
2753 
2754     }
2755   }
2756 #endif
2757 
2758   /* Rollback any active transaction and free the handle structure.
2759   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2760   ** this handle.
2761   */
2762   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2763   sqlite3BtreeLeave(p);
2764 
2765   /* If there are still other outstanding references to the shared-btree
2766   ** structure, return now. The remainder of this procedure cleans
2767   ** up the shared-btree.
2768   */
2769   assert( p->wantToLock==0 && p->locked==0 );
2770   if( !p->sharable || removeFromSharingList(pBt) ){
2771     /* The pBt is no longer on the sharing list, so we can access
2772     ** it without having to hold the mutex.
2773     **
2774     ** Clean out and delete the BtShared object.
2775     */
2776     assert( !pBt->pCursor );
2777     sqlite3PagerClose(pBt->pPager, p->db);
2778     if( pBt->xFreeSchema && pBt->pSchema ){
2779       pBt->xFreeSchema(pBt->pSchema);
2780     }
2781     sqlite3DbFree(0, pBt->pSchema);
2782     freeTempSpace(pBt);
2783     sqlite3_free(pBt);
2784   }
2785 
2786 #ifndef SQLITE_OMIT_SHARED_CACHE
2787   assert( p->wantToLock==0 );
2788   assert( p->locked==0 );
2789   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2790   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2791 #endif
2792 
2793   sqlite3_free(p);
2794   return SQLITE_OK;
2795 }
2796 
2797 /*
2798 ** Change the "soft" limit on the number of pages in the cache.
2799 ** Unused and unmodified pages will be recycled when the number of
2800 ** pages in the cache exceeds this soft limit.  But the size of the
2801 ** cache is allowed to grow larger than this limit if it contains
2802 ** dirty pages or pages still in active use.
2803 */
2804 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2805   BtShared *pBt = p->pBt;
2806   assert( sqlite3_mutex_held(p->db->mutex) );
2807   sqlite3BtreeEnter(p);
2808   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2809   sqlite3BtreeLeave(p);
2810   return SQLITE_OK;
2811 }
2812 
2813 /*
2814 ** Change the "spill" limit on the number of pages in the cache.
2815 ** If the number of pages exceeds this limit during a write transaction,
2816 ** the pager might attempt to "spill" pages to the journal early in
2817 ** order to free up memory.
2818 **
2819 ** The value returned is the current spill size.  If zero is passed
2820 ** as an argument, no changes are made to the spill size setting, so
2821 ** using mxPage of 0 is a way to query the current spill size.
2822 */
2823 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2824   BtShared *pBt = p->pBt;
2825   int res;
2826   assert( sqlite3_mutex_held(p->db->mutex) );
2827   sqlite3BtreeEnter(p);
2828   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2829   sqlite3BtreeLeave(p);
2830   return res;
2831 }
2832 
2833 #if SQLITE_MAX_MMAP_SIZE>0
2834 /*
2835 ** Change the limit on the amount of the database file that may be
2836 ** memory mapped.
2837 */
2838 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2839   BtShared *pBt = p->pBt;
2840   assert( sqlite3_mutex_held(p->db->mutex) );
2841   sqlite3BtreeEnter(p);
2842   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2843   sqlite3BtreeLeave(p);
2844   return SQLITE_OK;
2845 }
2846 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2847 
2848 /*
2849 ** Change the way data is synced to disk in order to increase or decrease
2850 ** how well the database resists damage due to OS crashes and power
2851 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2852 ** there is a high probability of damage)  Level 2 is the default.  There
2853 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2854 ** probability of damage to near zero but with a write performance reduction.
2855 */
2856 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2857 int sqlite3BtreeSetPagerFlags(
2858   Btree *p,              /* The btree to set the safety level on */
2859   unsigned pgFlags       /* Various PAGER_* flags */
2860 ){
2861   BtShared *pBt = p->pBt;
2862   assert( sqlite3_mutex_held(p->db->mutex) );
2863   sqlite3BtreeEnter(p);
2864   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2865   sqlite3BtreeLeave(p);
2866   return SQLITE_OK;
2867 }
2868 #endif
2869 
2870 /*
2871 ** Change the default pages size and the number of reserved bytes per page.
2872 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2873 ** without changing anything.
2874 **
2875 ** The page size must be a power of 2 between 512 and 65536.  If the page
2876 ** size supplied does not meet this constraint then the page size is not
2877 ** changed.
2878 **
2879 ** Page sizes are constrained to be a power of two so that the region
2880 ** of the database file used for locking (beginning at PENDING_BYTE,
2881 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2882 ** at the beginning of a page.
2883 **
2884 ** If parameter nReserve is less than zero, then the number of reserved
2885 ** bytes per page is left unchanged.
2886 **
2887 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2888 ** and autovacuum mode can no longer be changed.
2889 */
2890 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2891   int rc = SQLITE_OK;
2892   int x;
2893   BtShared *pBt = p->pBt;
2894   assert( nReserve>=0 && nReserve<=255 );
2895   sqlite3BtreeEnter(p);
2896   pBt->nReserveWanted = nReserve;
2897   x = pBt->pageSize - pBt->usableSize;
2898   if( nReserve<x ) nReserve = x;
2899   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2900     sqlite3BtreeLeave(p);
2901     return SQLITE_READONLY;
2902   }
2903   assert( nReserve>=0 && nReserve<=255 );
2904   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2905         ((pageSize-1)&pageSize)==0 ){
2906     assert( (pageSize & 7)==0 );
2907     assert( !pBt->pCursor );
2908     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2909     pBt->pageSize = (u32)pageSize;
2910     freeTempSpace(pBt);
2911   }
2912   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2913   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2914   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2915   sqlite3BtreeLeave(p);
2916   return rc;
2917 }
2918 
2919 /*
2920 ** Return the currently defined page size
2921 */
2922 int sqlite3BtreeGetPageSize(Btree *p){
2923   return p->pBt->pageSize;
2924 }
2925 
2926 /*
2927 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2928 ** may only be called if it is guaranteed that the b-tree mutex is already
2929 ** held.
2930 **
2931 ** This is useful in one special case in the backup API code where it is
2932 ** known that the shared b-tree mutex is held, but the mutex on the
2933 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2934 ** were to be called, it might collide with some other operation on the
2935 ** database handle that owns *p, causing undefined behavior.
2936 */
2937 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2938   int n;
2939   assert( sqlite3_mutex_held(p->pBt->mutex) );
2940   n = p->pBt->pageSize - p->pBt->usableSize;
2941   return n;
2942 }
2943 
2944 /*
2945 ** Return the number of bytes of space at the end of every page that
2946 ** are intentually left unused.  This is the "reserved" space that is
2947 ** sometimes used by extensions.
2948 **
2949 ** The value returned is the larger of the current reserve size and
2950 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2951 ** The amount of reserve can only grow - never shrink.
2952 */
2953 int sqlite3BtreeGetRequestedReserve(Btree *p){
2954   int n1, n2;
2955   sqlite3BtreeEnter(p);
2956   n1 = (int)p->pBt->nReserveWanted;
2957   n2 = sqlite3BtreeGetReserveNoMutex(p);
2958   sqlite3BtreeLeave(p);
2959   return n1>n2 ? n1 : n2;
2960 }
2961 
2962 
2963 /*
2964 ** Set the maximum page count for a database if mxPage is positive.
2965 ** No changes are made if mxPage is 0 or negative.
2966 ** Regardless of the value of mxPage, return the maximum page count.
2967 */
2968 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2969   Pgno n;
2970   sqlite3BtreeEnter(p);
2971   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2972   sqlite3BtreeLeave(p);
2973   return n;
2974 }
2975 
2976 /*
2977 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2978 **
2979 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2980 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2981 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2982 **    newFlag==(-1)    No changes
2983 **
2984 ** This routine acts as a query if newFlag is less than zero
2985 **
2986 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2987 ** freelist leaf pages are not written back to the database.  Thus in-page
2988 ** deleted content is cleared, but freelist deleted content is not.
2989 **
2990 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2991 ** that freelist leaf pages are written back into the database, increasing
2992 ** the amount of disk I/O.
2993 */
2994 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2995   int b;
2996   if( p==0 ) return 0;
2997   sqlite3BtreeEnter(p);
2998   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2999   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3000   if( newFlag>=0 ){
3001     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3002     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3003   }
3004   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3005   sqlite3BtreeLeave(p);
3006   return b;
3007 }
3008 
3009 /*
3010 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3011 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3012 ** is disabled. The default value for the auto-vacuum property is
3013 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3014 */
3015 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3016 #ifdef SQLITE_OMIT_AUTOVACUUM
3017   return SQLITE_READONLY;
3018 #else
3019   BtShared *pBt = p->pBt;
3020   int rc = SQLITE_OK;
3021   u8 av = (u8)autoVacuum;
3022 
3023   sqlite3BtreeEnter(p);
3024   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3025     rc = SQLITE_READONLY;
3026   }else{
3027     pBt->autoVacuum = av ?1:0;
3028     pBt->incrVacuum = av==2 ?1:0;
3029   }
3030   sqlite3BtreeLeave(p);
3031   return rc;
3032 #endif
3033 }
3034 
3035 /*
3036 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3037 ** enabled 1 is returned. Otherwise 0.
3038 */
3039 int sqlite3BtreeGetAutoVacuum(Btree *p){
3040 #ifdef SQLITE_OMIT_AUTOVACUUM
3041   return BTREE_AUTOVACUUM_NONE;
3042 #else
3043   int rc;
3044   sqlite3BtreeEnter(p);
3045   rc = (
3046     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3047     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3048     BTREE_AUTOVACUUM_INCR
3049   );
3050   sqlite3BtreeLeave(p);
3051   return rc;
3052 #endif
3053 }
3054 
3055 /*
3056 ** If the user has not set the safety-level for this database connection
3057 ** using "PRAGMA synchronous", and if the safety-level is not already
3058 ** set to the value passed to this function as the second parameter,
3059 ** set it so.
3060 */
3061 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3062     && !defined(SQLITE_OMIT_WAL)
3063 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3064   sqlite3 *db;
3065   Db *pDb;
3066   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3067     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3068     if( pDb->bSyncSet==0
3069      && pDb->safety_level!=safety_level
3070      && pDb!=&db->aDb[1]
3071     ){
3072       pDb->safety_level = safety_level;
3073       sqlite3PagerSetFlags(pBt->pPager,
3074           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3075     }
3076   }
3077 }
3078 #else
3079 # define setDefaultSyncFlag(pBt,safety_level)
3080 #endif
3081 
3082 /* Forward declaration */
3083 static int newDatabase(BtShared*);
3084 
3085 
3086 /*
3087 ** Get a reference to pPage1 of the database file.  This will
3088 ** also acquire a readlock on that file.
3089 **
3090 ** SQLITE_OK is returned on success.  If the file is not a
3091 ** well-formed database file, then SQLITE_CORRUPT is returned.
3092 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3093 ** is returned if we run out of memory.
3094 */
3095 static int lockBtree(BtShared *pBt){
3096   int rc;              /* Result code from subfunctions */
3097   MemPage *pPage1;     /* Page 1 of the database file */
3098   u32 nPage;           /* Number of pages in the database */
3099   u32 nPageFile = 0;   /* Number of pages in the database file */
3100   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3101 
3102   assert( sqlite3_mutex_held(pBt->mutex) );
3103   assert( pBt->pPage1==0 );
3104   rc = sqlite3PagerSharedLock(pBt->pPager);
3105   if( rc!=SQLITE_OK ) return rc;
3106   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3107   if( rc!=SQLITE_OK ) return rc;
3108 
3109   /* Do some checking to help insure the file we opened really is
3110   ** a valid database file.
3111   */
3112   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3113   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3114   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3115     nPage = nPageFile;
3116   }
3117   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3118     nPage = 0;
3119   }
3120   if( nPage>0 ){
3121     u32 pageSize;
3122     u32 usableSize;
3123     u8 *page1 = pPage1->aData;
3124     rc = SQLITE_NOTADB;
3125     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3126     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3127     ** 61 74 20 33 00. */
3128     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3129       goto page1_init_failed;
3130     }
3131 
3132 #ifdef SQLITE_OMIT_WAL
3133     if( page1[18]>1 ){
3134       pBt->btsFlags |= BTS_READ_ONLY;
3135     }
3136     if( page1[19]>1 ){
3137       goto page1_init_failed;
3138     }
3139 #else
3140     if( page1[18]>2 ){
3141       pBt->btsFlags |= BTS_READ_ONLY;
3142     }
3143     if( page1[19]>2 ){
3144       goto page1_init_failed;
3145     }
3146 
3147     /* If the write version is set to 2, this database should be accessed
3148     ** in WAL mode. If the log is not already open, open it now. Then
3149     ** return SQLITE_OK and return without populating BtShared.pPage1.
3150     ** The caller detects this and calls this function again. This is
3151     ** required as the version of page 1 currently in the page1 buffer
3152     ** may not be the latest version - there may be a newer one in the log
3153     ** file.
3154     */
3155     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3156       int isOpen = 0;
3157       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3158       if( rc!=SQLITE_OK ){
3159         goto page1_init_failed;
3160       }else{
3161         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3162         if( isOpen==0 ){
3163           releasePageOne(pPage1);
3164           return SQLITE_OK;
3165         }
3166       }
3167       rc = SQLITE_NOTADB;
3168     }else{
3169       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3170     }
3171 #endif
3172 
3173     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3174     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3175     **
3176     ** The original design allowed these amounts to vary, but as of
3177     ** version 3.6.0, we require them to be fixed.
3178     */
3179     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3180       goto page1_init_failed;
3181     }
3182     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3183     ** determined by the 2-byte integer located at an offset of 16 bytes from
3184     ** the beginning of the database file. */
3185     pageSize = (page1[16]<<8) | (page1[17]<<16);
3186     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3187     ** between 512 and 65536 inclusive. */
3188     if( ((pageSize-1)&pageSize)!=0
3189      || pageSize>SQLITE_MAX_PAGE_SIZE
3190      || pageSize<=256
3191     ){
3192       goto page1_init_failed;
3193     }
3194     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3195     assert( (pageSize & 7)==0 );
3196     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3197     ** integer at offset 20 is the number of bytes of space at the end of
3198     ** each page to reserve for extensions.
3199     **
3200     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3201     ** determined by the one-byte unsigned integer found at an offset of 20
3202     ** into the database file header. */
3203     usableSize = pageSize - page1[20];
3204     if( (u32)pageSize!=pBt->pageSize ){
3205       /* After reading the first page of the database assuming a page size
3206       ** of BtShared.pageSize, we have discovered that the page-size is
3207       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3208       ** zero and return SQLITE_OK. The caller will call this function
3209       ** again with the correct page-size.
3210       */
3211       releasePageOne(pPage1);
3212       pBt->usableSize = usableSize;
3213       pBt->pageSize = pageSize;
3214       freeTempSpace(pBt);
3215       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3216                                    pageSize-usableSize);
3217       return rc;
3218     }
3219     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3220       rc = SQLITE_CORRUPT_BKPT;
3221       goto page1_init_failed;
3222     }
3223     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3224     ** be less than 480. In other words, if the page size is 512, then the
3225     ** reserved space size cannot exceed 32. */
3226     if( usableSize<480 ){
3227       goto page1_init_failed;
3228     }
3229     pBt->pageSize = pageSize;
3230     pBt->usableSize = usableSize;
3231 #ifndef SQLITE_OMIT_AUTOVACUUM
3232     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3233     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3234 #endif
3235   }
3236 
3237   /* maxLocal is the maximum amount of payload to store locally for
3238   ** a cell.  Make sure it is small enough so that at least minFanout
3239   ** cells can will fit on one page.  We assume a 10-byte page header.
3240   ** Besides the payload, the cell must store:
3241   **     2-byte pointer to the cell
3242   **     4-byte child pointer
3243   **     9-byte nKey value
3244   **     4-byte nData value
3245   **     4-byte overflow page pointer
3246   ** So a cell consists of a 2-byte pointer, a header which is as much as
3247   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3248   ** page pointer.
3249   */
3250   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3251   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3252   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3253   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3254   if( pBt->maxLocal>127 ){
3255     pBt->max1bytePayload = 127;
3256   }else{
3257     pBt->max1bytePayload = (u8)pBt->maxLocal;
3258   }
3259   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3260   pBt->pPage1 = pPage1;
3261   pBt->nPage = nPage;
3262   return SQLITE_OK;
3263 
3264 page1_init_failed:
3265   releasePageOne(pPage1);
3266   pBt->pPage1 = 0;
3267   return rc;
3268 }
3269 
3270 #ifndef NDEBUG
3271 /*
3272 ** Return the number of cursors open on pBt. This is for use
3273 ** in assert() expressions, so it is only compiled if NDEBUG is not
3274 ** defined.
3275 **
3276 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3277 ** false then all cursors are counted.
3278 **
3279 ** For the purposes of this routine, a cursor is any cursor that
3280 ** is capable of reading or writing to the database.  Cursors that
3281 ** have been tripped into the CURSOR_FAULT state are not counted.
3282 */
3283 static int countValidCursors(BtShared *pBt, int wrOnly){
3284   BtCursor *pCur;
3285   int r = 0;
3286   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3287     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3288      && pCur->eState!=CURSOR_FAULT ) r++;
3289   }
3290   return r;
3291 }
3292 #endif
3293 
3294 /*
3295 ** If there are no outstanding cursors and we are not in the middle
3296 ** of a transaction but there is a read lock on the database, then
3297 ** this routine unrefs the first page of the database file which
3298 ** has the effect of releasing the read lock.
3299 **
3300 ** If there is a transaction in progress, this routine is a no-op.
3301 */
3302 static void unlockBtreeIfUnused(BtShared *pBt){
3303   assert( sqlite3_mutex_held(pBt->mutex) );
3304   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3305   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3306     MemPage *pPage1 = pBt->pPage1;
3307     assert( pPage1->aData );
3308     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3309     pBt->pPage1 = 0;
3310     releasePageOne(pPage1);
3311   }
3312 }
3313 
3314 /*
3315 ** If pBt points to an empty file then convert that empty file
3316 ** into a new empty database by initializing the first page of
3317 ** the database.
3318 */
3319 static int newDatabase(BtShared *pBt){
3320   MemPage *pP1;
3321   unsigned char *data;
3322   int rc;
3323 
3324   assert( sqlite3_mutex_held(pBt->mutex) );
3325   if( pBt->nPage>0 ){
3326     return SQLITE_OK;
3327   }
3328   pP1 = pBt->pPage1;
3329   assert( pP1!=0 );
3330   data = pP1->aData;
3331   rc = sqlite3PagerWrite(pP1->pDbPage);
3332   if( rc ) return rc;
3333   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3334   assert( sizeof(zMagicHeader)==16 );
3335   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3336   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3337   data[18] = 1;
3338   data[19] = 1;
3339   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3340   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3341   data[21] = 64;
3342   data[22] = 32;
3343   data[23] = 32;
3344   memset(&data[24], 0, 100-24);
3345   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3346   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3347 #ifndef SQLITE_OMIT_AUTOVACUUM
3348   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3349   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3350   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3351   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3352 #endif
3353   pBt->nPage = 1;
3354   data[31] = 1;
3355   return SQLITE_OK;
3356 }
3357 
3358 /*
3359 ** Initialize the first page of the database file (creating a database
3360 ** consisting of a single page and no schema objects). Return SQLITE_OK
3361 ** if successful, or an SQLite error code otherwise.
3362 */
3363 int sqlite3BtreeNewDb(Btree *p){
3364   int rc;
3365   sqlite3BtreeEnter(p);
3366   p->pBt->nPage = 0;
3367   rc = newDatabase(p->pBt);
3368   sqlite3BtreeLeave(p);
3369   return rc;
3370 }
3371 
3372 /*
3373 ** Attempt to start a new transaction. A write-transaction
3374 ** is started if the second argument is nonzero, otherwise a read-
3375 ** transaction.  If the second argument is 2 or more and exclusive
3376 ** transaction is started, meaning that no other process is allowed
3377 ** to access the database.  A preexisting transaction may not be
3378 ** upgraded to exclusive by calling this routine a second time - the
3379 ** exclusivity flag only works for a new transaction.
3380 **
3381 ** A write-transaction must be started before attempting any
3382 ** changes to the database.  None of the following routines
3383 ** will work unless a transaction is started first:
3384 **
3385 **      sqlite3BtreeCreateTable()
3386 **      sqlite3BtreeCreateIndex()
3387 **      sqlite3BtreeClearTable()
3388 **      sqlite3BtreeDropTable()
3389 **      sqlite3BtreeInsert()
3390 **      sqlite3BtreeDelete()
3391 **      sqlite3BtreeUpdateMeta()
3392 **
3393 ** If an initial attempt to acquire the lock fails because of lock contention
3394 ** and the database was previously unlocked, then invoke the busy handler
3395 ** if there is one.  But if there was previously a read-lock, do not
3396 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3397 ** returned when there is already a read-lock in order to avoid a deadlock.
3398 **
3399 ** Suppose there are two processes A and B.  A has a read lock and B has
3400 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3401 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3402 ** One or the other of the two processes must give way or there can be
3403 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3404 ** when A already has a read lock, we encourage A to give up and let B
3405 ** proceed.
3406 */
3407 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3408   BtShared *pBt = p->pBt;
3409   Pager *pPager = pBt->pPager;
3410   int rc = SQLITE_OK;
3411 
3412   sqlite3BtreeEnter(p);
3413   btreeIntegrity(p);
3414 
3415   /* If the btree is already in a write-transaction, or it
3416   ** is already in a read-transaction and a read-transaction
3417   ** is requested, this is a no-op.
3418   */
3419   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3420     goto trans_begun;
3421   }
3422   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3423 
3424   if( (p->db->flags & SQLITE_ResetDatabase)
3425    && sqlite3PagerIsreadonly(pPager)==0
3426   ){
3427     pBt->btsFlags &= ~BTS_READ_ONLY;
3428   }
3429 
3430   /* Write transactions are not possible on a read-only database */
3431   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3432     rc = SQLITE_READONLY;
3433     goto trans_begun;
3434   }
3435 
3436 #ifndef SQLITE_OMIT_SHARED_CACHE
3437   {
3438     sqlite3 *pBlock = 0;
3439     /* If another database handle has already opened a write transaction
3440     ** on this shared-btree structure and a second write transaction is
3441     ** requested, return SQLITE_LOCKED.
3442     */
3443     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3444      || (pBt->btsFlags & BTS_PENDING)!=0
3445     ){
3446       pBlock = pBt->pWriter->db;
3447     }else if( wrflag>1 ){
3448       BtLock *pIter;
3449       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3450         if( pIter->pBtree!=p ){
3451           pBlock = pIter->pBtree->db;
3452           break;
3453         }
3454       }
3455     }
3456     if( pBlock ){
3457       sqlite3ConnectionBlocked(p->db, pBlock);
3458       rc = SQLITE_LOCKED_SHAREDCACHE;
3459       goto trans_begun;
3460     }
3461   }
3462 #endif
3463 
3464   /* Any read-only or read-write transaction implies a read-lock on
3465   ** page 1. So if some other shared-cache client already has a write-lock
3466   ** on page 1, the transaction cannot be opened. */
3467   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3468   if( SQLITE_OK!=rc ) goto trans_begun;
3469 
3470   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3471   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3472   do {
3473     sqlite3PagerWalDb(pPager, p->db);
3474 
3475 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3476     /* If transitioning from no transaction directly to a write transaction,
3477     ** block for the WRITER lock first if possible. */
3478     if( pBt->pPage1==0 && wrflag ){
3479       assert( pBt->inTransaction==TRANS_NONE );
3480       rc = sqlite3PagerWalWriteLock(pPager, 1);
3481       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3482     }
3483 #endif
3484 
3485     /* Call lockBtree() until either pBt->pPage1 is populated or
3486     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3487     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3488     ** reading page 1 it discovers that the page-size of the database
3489     ** file is not pBt->pageSize. In this case lockBtree() will update
3490     ** pBt->pageSize to the page-size of the file on disk.
3491     */
3492     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3493 
3494     if( rc==SQLITE_OK && wrflag ){
3495       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3496         rc = SQLITE_READONLY;
3497       }else{
3498         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3499         if( rc==SQLITE_OK ){
3500           rc = newDatabase(pBt);
3501         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3502           /* if there was no transaction opened when this function was
3503           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3504           ** code to SQLITE_BUSY. */
3505           rc = SQLITE_BUSY;
3506         }
3507       }
3508     }
3509 
3510     if( rc!=SQLITE_OK ){
3511       (void)sqlite3PagerWalWriteLock(pPager, 0);
3512       unlockBtreeIfUnused(pBt);
3513     }
3514   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3515           btreeInvokeBusyHandler(pBt) );
3516   sqlite3PagerWalDb(pPager, 0);
3517 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3518   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3519 #endif
3520 
3521   if( rc==SQLITE_OK ){
3522     if( p->inTrans==TRANS_NONE ){
3523       pBt->nTransaction++;
3524 #ifndef SQLITE_OMIT_SHARED_CACHE
3525       if( p->sharable ){
3526         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3527         p->lock.eLock = READ_LOCK;
3528         p->lock.pNext = pBt->pLock;
3529         pBt->pLock = &p->lock;
3530       }
3531 #endif
3532     }
3533     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3534     if( p->inTrans>pBt->inTransaction ){
3535       pBt->inTransaction = p->inTrans;
3536     }
3537     if( wrflag ){
3538       MemPage *pPage1 = pBt->pPage1;
3539 #ifndef SQLITE_OMIT_SHARED_CACHE
3540       assert( !pBt->pWriter );
3541       pBt->pWriter = p;
3542       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3543       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3544 #endif
3545 
3546       /* If the db-size header field is incorrect (as it may be if an old
3547       ** client has been writing the database file), update it now. Doing
3548       ** this sooner rather than later means the database size can safely
3549       ** re-read the database size from page 1 if a savepoint or transaction
3550       ** rollback occurs within the transaction.
3551       */
3552       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3553         rc = sqlite3PagerWrite(pPage1->pDbPage);
3554         if( rc==SQLITE_OK ){
3555           put4byte(&pPage1->aData[28], pBt->nPage);
3556         }
3557       }
3558     }
3559   }
3560 
3561 trans_begun:
3562   if( rc==SQLITE_OK ){
3563     if( pSchemaVersion ){
3564       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3565     }
3566     if( wrflag ){
3567       /* This call makes sure that the pager has the correct number of
3568       ** open savepoints. If the second parameter is greater than 0 and
3569       ** the sub-journal is not already open, then it will be opened here.
3570       */
3571       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3572     }
3573   }
3574 
3575   btreeIntegrity(p);
3576   sqlite3BtreeLeave(p);
3577   return rc;
3578 }
3579 
3580 #ifndef SQLITE_OMIT_AUTOVACUUM
3581 
3582 /*
3583 ** Set the pointer-map entries for all children of page pPage. Also, if
3584 ** pPage contains cells that point to overflow pages, set the pointer
3585 ** map entries for the overflow pages as well.
3586 */
3587 static int setChildPtrmaps(MemPage *pPage){
3588   int i;                             /* Counter variable */
3589   int nCell;                         /* Number of cells in page pPage */
3590   int rc;                            /* Return code */
3591   BtShared *pBt = pPage->pBt;
3592   Pgno pgno = pPage->pgno;
3593 
3594   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3595   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3596   if( rc!=SQLITE_OK ) return rc;
3597   nCell = pPage->nCell;
3598 
3599   for(i=0; i<nCell; i++){
3600     u8 *pCell = findCell(pPage, i);
3601 
3602     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3603 
3604     if( !pPage->leaf ){
3605       Pgno childPgno = get4byte(pCell);
3606       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3607     }
3608   }
3609 
3610   if( !pPage->leaf ){
3611     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3612     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3613   }
3614 
3615   return rc;
3616 }
3617 
3618 /*
3619 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3620 ** that it points to iTo. Parameter eType describes the type of pointer to
3621 ** be modified, as  follows:
3622 **
3623 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3624 **                   page of pPage.
3625 **
3626 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3627 **                   page pointed to by one of the cells on pPage.
3628 **
3629 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3630 **                   overflow page in the list.
3631 */
3632 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3633   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3634   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3635   if( eType==PTRMAP_OVERFLOW2 ){
3636     /* The pointer is always the first 4 bytes of the page in this case.  */
3637     if( get4byte(pPage->aData)!=iFrom ){
3638       return SQLITE_CORRUPT_PAGE(pPage);
3639     }
3640     put4byte(pPage->aData, iTo);
3641   }else{
3642     int i;
3643     int nCell;
3644     int rc;
3645 
3646     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3647     if( rc ) return rc;
3648     nCell = pPage->nCell;
3649 
3650     for(i=0; i<nCell; i++){
3651       u8 *pCell = findCell(pPage, i);
3652       if( eType==PTRMAP_OVERFLOW1 ){
3653         CellInfo info;
3654         pPage->xParseCell(pPage, pCell, &info);
3655         if( info.nLocal<info.nPayload ){
3656           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3657             return SQLITE_CORRUPT_PAGE(pPage);
3658           }
3659           if( iFrom==get4byte(pCell+info.nSize-4) ){
3660             put4byte(pCell+info.nSize-4, iTo);
3661             break;
3662           }
3663         }
3664       }else{
3665         if( get4byte(pCell)==iFrom ){
3666           put4byte(pCell, iTo);
3667           break;
3668         }
3669       }
3670     }
3671 
3672     if( i==nCell ){
3673       if( eType!=PTRMAP_BTREE ||
3674           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3675         return SQLITE_CORRUPT_PAGE(pPage);
3676       }
3677       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3678     }
3679   }
3680   return SQLITE_OK;
3681 }
3682 
3683 
3684 /*
3685 ** Move the open database page pDbPage to location iFreePage in the
3686 ** database. The pDbPage reference remains valid.
3687 **
3688 ** The isCommit flag indicates that there is no need to remember that
3689 ** the journal needs to be sync()ed before database page pDbPage->pgno
3690 ** can be written to. The caller has already promised not to write to that
3691 ** page.
3692 */
3693 static int relocatePage(
3694   BtShared *pBt,           /* Btree */
3695   MemPage *pDbPage,        /* Open page to move */
3696   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3697   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3698   Pgno iFreePage,          /* The location to move pDbPage to */
3699   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3700 ){
3701   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3702   Pgno iDbPage = pDbPage->pgno;
3703   Pager *pPager = pBt->pPager;
3704   int rc;
3705 
3706   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3707       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3708   assert( sqlite3_mutex_held(pBt->mutex) );
3709   assert( pDbPage->pBt==pBt );
3710   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3711 
3712   /* Move page iDbPage from its current location to page number iFreePage */
3713   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3714       iDbPage, iFreePage, iPtrPage, eType));
3715   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3716   if( rc!=SQLITE_OK ){
3717     return rc;
3718   }
3719   pDbPage->pgno = iFreePage;
3720 
3721   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3722   ** that point to overflow pages. The pointer map entries for all these
3723   ** pages need to be changed.
3724   **
3725   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3726   ** pointer to a subsequent overflow page. If this is the case, then
3727   ** the pointer map needs to be updated for the subsequent overflow page.
3728   */
3729   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3730     rc = setChildPtrmaps(pDbPage);
3731     if( rc!=SQLITE_OK ){
3732       return rc;
3733     }
3734   }else{
3735     Pgno nextOvfl = get4byte(pDbPage->aData);
3736     if( nextOvfl!=0 ){
3737       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3738       if( rc!=SQLITE_OK ){
3739         return rc;
3740       }
3741     }
3742   }
3743 
3744   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3745   ** that it points at iFreePage. Also fix the pointer map entry for
3746   ** iPtrPage.
3747   */
3748   if( eType!=PTRMAP_ROOTPAGE ){
3749     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3750     if( rc!=SQLITE_OK ){
3751       return rc;
3752     }
3753     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3754     if( rc!=SQLITE_OK ){
3755       releasePage(pPtrPage);
3756       return rc;
3757     }
3758     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3759     releasePage(pPtrPage);
3760     if( rc==SQLITE_OK ){
3761       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3762     }
3763   }
3764   return rc;
3765 }
3766 
3767 /* Forward declaration required by incrVacuumStep(). */
3768 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3769 
3770 /*
3771 ** Perform a single step of an incremental-vacuum. If successful, return
3772 ** SQLITE_OK. If there is no work to do (and therefore no point in
3773 ** calling this function again), return SQLITE_DONE. Or, if an error
3774 ** occurs, return some other error code.
3775 **
3776 ** More specifically, this function attempts to re-organize the database so
3777 ** that the last page of the file currently in use is no longer in use.
3778 **
3779 ** Parameter nFin is the number of pages that this database would contain
3780 ** were this function called until it returns SQLITE_DONE.
3781 **
3782 ** If the bCommit parameter is non-zero, this function assumes that the
3783 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3784 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3785 ** operation, or false for an incremental vacuum.
3786 */
3787 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3788   Pgno nFreeList;           /* Number of pages still on the free-list */
3789   int rc;
3790 
3791   assert( sqlite3_mutex_held(pBt->mutex) );
3792   assert( iLastPg>nFin );
3793 
3794   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3795     u8 eType;
3796     Pgno iPtrPage;
3797 
3798     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3799     if( nFreeList==0 ){
3800       return SQLITE_DONE;
3801     }
3802 
3803     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3804     if( rc!=SQLITE_OK ){
3805       return rc;
3806     }
3807     if( eType==PTRMAP_ROOTPAGE ){
3808       return SQLITE_CORRUPT_BKPT;
3809     }
3810 
3811     if( eType==PTRMAP_FREEPAGE ){
3812       if( bCommit==0 ){
3813         /* Remove the page from the files free-list. This is not required
3814         ** if bCommit is non-zero. In that case, the free-list will be
3815         ** truncated to zero after this function returns, so it doesn't
3816         ** matter if it still contains some garbage entries.
3817         */
3818         Pgno iFreePg;
3819         MemPage *pFreePg;
3820         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3821         if( rc!=SQLITE_OK ){
3822           return rc;
3823         }
3824         assert( iFreePg==iLastPg );
3825         releasePage(pFreePg);
3826       }
3827     } else {
3828       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3829       MemPage *pLastPg;
3830       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3831       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3832 
3833       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3834       if( rc!=SQLITE_OK ){
3835         return rc;
3836       }
3837 
3838       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3839       ** is swapped with the first free page pulled off the free list.
3840       **
3841       ** On the other hand, if bCommit is greater than zero, then keep
3842       ** looping until a free-page located within the first nFin pages
3843       ** of the file is found.
3844       */
3845       if( bCommit==0 ){
3846         eMode = BTALLOC_LE;
3847         iNear = nFin;
3848       }
3849       do {
3850         MemPage *pFreePg;
3851         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3852         if( rc!=SQLITE_OK ){
3853           releasePage(pLastPg);
3854           return rc;
3855         }
3856         releasePage(pFreePg);
3857       }while( bCommit && iFreePg>nFin );
3858       assert( iFreePg<iLastPg );
3859 
3860       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3861       releasePage(pLastPg);
3862       if( rc!=SQLITE_OK ){
3863         return rc;
3864       }
3865     }
3866   }
3867 
3868   if( bCommit==0 ){
3869     do {
3870       iLastPg--;
3871     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3872     pBt->bDoTruncate = 1;
3873     pBt->nPage = iLastPg;
3874   }
3875   return SQLITE_OK;
3876 }
3877 
3878 /*
3879 ** The database opened by the first argument is an auto-vacuum database
3880 ** nOrig pages in size containing nFree free pages. Return the expected
3881 ** size of the database in pages following an auto-vacuum operation.
3882 */
3883 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3884   int nEntry;                     /* Number of entries on one ptrmap page */
3885   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3886   Pgno nFin;                      /* Return value */
3887 
3888   nEntry = pBt->usableSize/5;
3889   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3890   nFin = nOrig - nFree - nPtrmap;
3891   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3892     nFin--;
3893   }
3894   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3895     nFin--;
3896   }
3897 
3898   return nFin;
3899 }
3900 
3901 /*
3902 ** A write-transaction must be opened before calling this function.
3903 ** It performs a single unit of work towards an incremental vacuum.
3904 **
3905 ** If the incremental vacuum is finished after this function has run,
3906 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3907 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3908 */
3909 int sqlite3BtreeIncrVacuum(Btree *p){
3910   int rc;
3911   BtShared *pBt = p->pBt;
3912 
3913   sqlite3BtreeEnter(p);
3914   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3915   if( !pBt->autoVacuum ){
3916     rc = SQLITE_DONE;
3917   }else{
3918     Pgno nOrig = btreePagecount(pBt);
3919     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3920     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3921 
3922     if( nOrig<nFin || nFree>=nOrig ){
3923       rc = SQLITE_CORRUPT_BKPT;
3924     }else if( nFree>0 ){
3925       rc = saveAllCursors(pBt, 0, 0);
3926       if( rc==SQLITE_OK ){
3927         invalidateAllOverflowCache(pBt);
3928         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3929       }
3930       if( rc==SQLITE_OK ){
3931         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3932         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3933       }
3934     }else{
3935       rc = SQLITE_DONE;
3936     }
3937   }
3938   sqlite3BtreeLeave(p);
3939   return rc;
3940 }
3941 
3942 /*
3943 ** This routine is called prior to sqlite3PagerCommit when a transaction
3944 ** is committed for an auto-vacuum database.
3945 **
3946 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3947 ** the database file should be truncated to during the commit process.
3948 ** i.e. the database has been reorganized so that only the first *pnTrunc
3949 ** pages are in use.
3950 */
3951 static int autoVacuumCommit(BtShared *pBt){
3952   int rc = SQLITE_OK;
3953   Pager *pPager = pBt->pPager;
3954   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3955 
3956   assert( sqlite3_mutex_held(pBt->mutex) );
3957   invalidateAllOverflowCache(pBt);
3958   assert(pBt->autoVacuum);
3959   if( !pBt->incrVacuum ){
3960     Pgno nFin;         /* Number of pages in database after autovacuuming */
3961     Pgno nFree;        /* Number of pages on the freelist initially */
3962     Pgno iFree;        /* The next page to be freed */
3963     Pgno nOrig;        /* Database size before freeing */
3964 
3965     nOrig = btreePagecount(pBt);
3966     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3967       /* It is not possible to create a database for which the final page
3968       ** is either a pointer-map page or the pending-byte page. If one
3969       ** is encountered, this indicates corruption.
3970       */
3971       return SQLITE_CORRUPT_BKPT;
3972     }
3973 
3974     nFree = get4byte(&pBt->pPage1->aData[36]);
3975     nFin = finalDbSize(pBt, nOrig, nFree);
3976     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3977     if( nFin<nOrig ){
3978       rc = saveAllCursors(pBt, 0, 0);
3979     }
3980     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3981       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3982     }
3983     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3984       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3985       put4byte(&pBt->pPage1->aData[32], 0);
3986       put4byte(&pBt->pPage1->aData[36], 0);
3987       put4byte(&pBt->pPage1->aData[28], nFin);
3988       pBt->bDoTruncate = 1;
3989       pBt->nPage = nFin;
3990     }
3991     if( rc!=SQLITE_OK ){
3992       sqlite3PagerRollback(pPager);
3993     }
3994   }
3995 
3996   assert( nRef>=sqlite3PagerRefcount(pPager) );
3997   return rc;
3998 }
3999 
4000 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4001 # define setChildPtrmaps(x) SQLITE_OK
4002 #endif
4003 
4004 /*
4005 ** This routine does the first phase of a two-phase commit.  This routine
4006 ** causes a rollback journal to be created (if it does not already exist)
4007 ** and populated with enough information so that if a power loss occurs
4008 ** the database can be restored to its original state by playing back
4009 ** the journal.  Then the contents of the journal are flushed out to
4010 ** the disk.  After the journal is safely on oxide, the changes to the
4011 ** database are written into the database file and flushed to oxide.
4012 ** At the end of this call, the rollback journal still exists on the
4013 ** disk and we are still holding all locks, so the transaction has not
4014 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4015 ** commit process.
4016 **
4017 ** This call is a no-op if no write-transaction is currently active on pBt.
4018 **
4019 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4020 ** the name of a super-journal file that should be written into the
4021 ** individual journal file, or is NULL, indicating no super-journal file
4022 ** (single database transaction).
4023 **
4024 ** When this is called, the super-journal should already have been
4025 ** created, populated with this journal pointer and synced to disk.
4026 **
4027 ** Once this is routine has returned, the only thing required to commit
4028 ** the write-transaction for this database file is to delete the journal.
4029 */
4030 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4031   int rc = SQLITE_OK;
4032   if( p->inTrans==TRANS_WRITE ){
4033     BtShared *pBt = p->pBt;
4034     sqlite3BtreeEnter(p);
4035 #ifndef SQLITE_OMIT_AUTOVACUUM
4036     if( pBt->autoVacuum ){
4037       rc = autoVacuumCommit(pBt);
4038       if( rc!=SQLITE_OK ){
4039         sqlite3BtreeLeave(p);
4040         return rc;
4041       }
4042     }
4043     if( pBt->bDoTruncate ){
4044       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4045     }
4046 #endif
4047     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4048     sqlite3BtreeLeave(p);
4049   }
4050   return rc;
4051 }
4052 
4053 /*
4054 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4055 ** at the conclusion of a transaction.
4056 */
4057 static void btreeEndTransaction(Btree *p){
4058   BtShared *pBt = p->pBt;
4059   sqlite3 *db = p->db;
4060   assert( sqlite3BtreeHoldsMutex(p) );
4061 
4062 #ifndef SQLITE_OMIT_AUTOVACUUM
4063   pBt->bDoTruncate = 0;
4064 #endif
4065   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4066     /* If there are other active statements that belong to this database
4067     ** handle, downgrade to a read-only transaction. The other statements
4068     ** may still be reading from the database.  */
4069     downgradeAllSharedCacheTableLocks(p);
4070     p->inTrans = TRANS_READ;
4071   }else{
4072     /* If the handle had any kind of transaction open, decrement the
4073     ** transaction count of the shared btree. If the transaction count
4074     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4075     ** call below will unlock the pager.  */
4076     if( p->inTrans!=TRANS_NONE ){
4077       clearAllSharedCacheTableLocks(p);
4078       pBt->nTransaction--;
4079       if( 0==pBt->nTransaction ){
4080         pBt->inTransaction = TRANS_NONE;
4081       }
4082     }
4083 
4084     /* Set the current transaction state to TRANS_NONE and unlock the
4085     ** pager if this call closed the only read or write transaction.  */
4086     p->inTrans = TRANS_NONE;
4087     unlockBtreeIfUnused(pBt);
4088   }
4089 
4090   btreeIntegrity(p);
4091 }
4092 
4093 /*
4094 ** Commit the transaction currently in progress.
4095 **
4096 ** This routine implements the second phase of a 2-phase commit.  The
4097 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4098 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4099 ** routine did all the work of writing information out to disk and flushing the
4100 ** contents so that they are written onto the disk platter.  All this
4101 ** routine has to do is delete or truncate or zero the header in the
4102 ** the rollback journal (which causes the transaction to commit) and
4103 ** drop locks.
4104 **
4105 ** Normally, if an error occurs while the pager layer is attempting to
4106 ** finalize the underlying journal file, this function returns an error and
4107 ** the upper layer will attempt a rollback. However, if the second argument
4108 ** is non-zero then this b-tree transaction is part of a multi-file
4109 ** transaction. In this case, the transaction has already been committed
4110 ** (by deleting a super-journal file) and the caller will ignore this
4111 ** functions return code. So, even if an error occurs in the pager layer,
4112 ** reset the b-tree objects internal state to indicate that the write
4113 ** transaction has been closed. This is quite safe, as the pager will have
4114 ** transitioned to the error state.
4115 **
4116 ** This will release the write lock on the database file.  If there
4117 ** are no active cursors, it also releases the read lock.
4118 */
4119 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4120 
4121   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4122   sqlite3BtreeEnter(p);
4123   btreeIntegrity(p);
4124 
4125   /* If the handle has a write-transaction open, commit the shared-btrees
4126   ** transaction and set the shared state to TRANS_READ.
4127   */
4128   if( p->inTrans==TRANS_WRITE ){
4129     int rc;
4130     BtShared *pBt = p->pBt;
4131     assert( pBt->inTransaction==TRANS_WRITE );
4132     assert( pBt->nTransaction>0 );
4133     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4134     if( rc!=SQLITE_OK && bCleanup==0 ){
4135       sqlite3BtreeLeave(p);
4136       return rc;
4137     }
4138     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4139     pBt->inTransaction = TRANS_READ;
4140     btreeClearHasContent(pBt);
4141   }
4142 
4143   btreeEndTransaction(p);
4144   sqlite3BtreeLeave(p);
4145   return SQLITE_OK;
4146 }
4147 
4148 /*
4149 ** Do both phases of a commit.
4150 */
4151 int sqlite3BtreeCommit(Btree *p){
4152   int rc;
4153   sqlite3BtreeEnter(p);
4154   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4155   if( rc==SQLITE_OK ){
4156     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4157   }
4158   sqlite3BtreeLeave(p);
4159   return rc;
4160 }
4161 
4162 /*
4163 ** This routine sets the state to CURSOR_FAULT and the error
4164 ** code to errCode for every cursor on any BtShared that pBtree
4165 ** references.  Or if the writeOnly flag is set to 1, then only
4166 ** trip write cursors and leave read cursors unchanged.
4167 **
4168 ** Every cursor is a candidate to be tripped, including cursors
4169 ** that belong to other database connections that happen to be
4170 ** sharing the cache with pBtree.
4171 **
4172 ** This routine gets called when a rollback occurs. If the writeOnly
4173 ** flag is true, then only write-cursors need be tripped - read-only
4174 ** cursors save their current positions so that they may continue
4175 ** following the rollback. Or, if writeOnly is false, all cursors are
4176 ** tripped. In general, writeOnly is false if the transaction being
4177 ** rolled back modified the database schema. In this case b-tree root
4178 ** pages may be moved or deleted from the database altogether, making
4179 ** it unsafe for read cursors to continue.
4180 **
4181 ** If the writeOnly flag is true and an error is encountered while
4182 ** saving the current position of a read-only cursor, all cursors,
4183 ** including all read-cursors are tripped.
4184 **
4185 ** SQLITE_OK is returned if successful, or if an error occurs while
4186 ** saving a cursor position, an SQLite error code.
4187 */
4188 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4189   BtCursor *p;
4190   int rc = SQLITE_OK;
4191 
4192   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4193   if( pBtree ){
4194     sqlite3BtreeEnter(pBtree);
4195     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4196       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4197         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4198           rc = saveCursorPosition(p);
4199           if( rc!=SQLITE_OK ){
4200             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4201             break;
4202           }
4203         }
4204       }else{
4205         sqlite3BtreeClearCursor(p);
4206         p->eState = CURSOR_FAULT;
4207         p->skipNext = errCode;
4208       }
4209       btreeReleaseAllCursorPages(p);
4210     }
4211     sqlite3BtreeLeave(pBtree);
4212   }
4213   return rc;
4214 }
4215 
4216 /*
4217 ** Set the pBt->nPage field correctly, according to the current
4218 ** state of the database.  Assume pBt->pPage1 is valid.
4219 */
4220 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4221   int nPage = get4byte(&pPage1->aData[28]);
4222   testcase( nPage==0 );
4223   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4224   testcase( pBt->nPage!=nPage );
4225   pBt->nPage = nPage;
4226 }
4227 
4228 /*
4229 ** Rollback the transaction in progress.
4230 **
4231 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4232 ** Only write cursors are tripped if writeOnly is true but all cursors are
4233 ** tripped if writeOnly is false.  Any attempt to use
4234 ** a tripped cursor will result in an error.
4235 **
4236 ** This will release the write lock on the database file.  If there
4237 ** are no active cursors, it also releases the read lock.
4238 */
4239 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4240   int rc;
4241   BtShared *pBt = p->pBt;
4242   MemPage *pPage1;
4243 
4244   assert( writeOnly==1 || writeOnly==0 );
4245   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4246   sqlite3BtreeEnter(p);
4247   if( tripCode==SQLITE_OK ){
4248     rc = tripCode = saveAllCursors(pBt, 0, 0);
4249     if( rc ) writeOnly = 0;
4250   }else{
4251     rc = SQLITE_OK;
4252   }
4253   if( tripCode ){
4254     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4255     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4256     if( rc2!=SQLITE_OK ) rc = rc2;
4257   }
4258   btreeIntegrity(p);
4259 
4260   if( p->inTrans==TRANS_WRITE ){
4261     int rc2;
4262 
4263     assert( TRANS_WRITE==pBt->inTransaction );
4264     rc2 = sqlite3PagerRollback(pBt->pPager);
4265     if( rc2!=SQLITE_OK ){
4266       rc = rc2;
4267     }
4268 
4269     /* The rollback may have destroyed the pPage1->aData value.  So
4270     ** call btreeGetPage() on page 1 again to make
4271     ** sure pPage1->aData is set correctly. */
4272     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4273       btreeSetNPage(pBt, pPage1);
4274       releasePageOne(pPage1);
4275     }
4276     assert( countValidCursors(pBt, 1)==0 );
4277     pBt->inTransaction = TRANS_READ;
4278     btreeClearHasContent(pBt);
4279   }
4280 
4281   btreeEndTransaction(p);
4282   sqlite3BtreeLeave(p);
4283   return rc;
4284 }
4285 
4286 /*
4287 ** Start a statement subtransaction. The subtransaction can be rolled
4288 ** back independently of the main transaction. You must start a transaction
4289 ** before starting a subtransaction. The subtransaction is ended automatically
4290 ** if the main transaction commits or rolls back.
4291 **
4292 ** Statement subtransactions are used around individual SQL statements
4293 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4294 ** error occurs within the statement, the effect of that one statement
4295 ** can be rolled back without having to rollback the entire transaction.
4296 **
4297 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4298 ** value passed as the second parameter is the total number of savepoints,
4299 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4300 ** are no active savepoints and no other statement-transactions open,
4301 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4302 ** using the sqlite3BtreeSavepoint() function.
4303 */
4304 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4305   int rc;
4306   BtShared *pBt = p->pBt;
4307   sqlite3BtreeEnter(p);
4308   assert( p->inTrans==TRANS_WRITE );
4309   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4310   assert( iStatement>0 );
4311   assert( iStatement>p->db->nSavepoint );
4312   assert( pBt->inTransaction==TRANS_WRITE );
4313   /* At the pager level, a statement transaction is a savepoint with
4314   ** an index greater than all savepoints created explicitly using
4315   ** SQL statements. It is illegal to open, release or rollback any
4316   ** such savepoints while the statement transaction savepoint is active.
4317   */
4318   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4319   sqlite3BtreeLeave(p);
4320   return rc;
4321 }
4322 
4323 /*
4324 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4325 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4326 ** savepoint identified by parameter iSavepoint, depending on the value
4327 ** of op.
4328 **
4329 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4330 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4331 ** contents of the entire transaction are rolled back. This is different
4332 ** from a normal transaction rollback, as no locks are released and the
4333 ** transaction remains open.
4334 */
4335 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4336   int rc = SQLITE_OK;
4337   if( p && p->inTrans==TRANS_WRITE ){
4338     BtShared *pBt = p->pBt;
4339     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4340     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4341     sqlite3BtreeEnter(p);
4342     if( op==SAVEPOINT_ROLLBACK ){
4343       rc = saveAllCursors(pBt, 0, 0);
4344     }
4345     if( rc==SQLITE_OK ){
4346       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4347     }
4348     if( rc==SQLITE_OK ){
4349       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4350         pBt->nPage = 0;
4351       }
4352       rc = newDatabase(pBt);
4353       btreeSetNPage(pBt, pBt->pPage1);
4354 
4355       /* pBt->nPage might be zero if the database was corrupt when
4356       ** the transaction was started. Otherwise, it must be at least 1.  */
4357       assert( CORRUPT_DB || pBt->nPage>0 );
4358     }
4359     sqlite3BtreeLeave(p);
4360   }
4361   return rc;
4362 }
4363 
4364 /*
4365 ** Create a new cursor for the BTree whose root is on the page
4366 ** iTable. If a read-only cursor is requested, it is assumed that
4367 ** the caller already has at least a read-only transaction open
4368 ** on the database already. If a write-cursor is requested, then
4369 ** the caller is assumed to have an open write transaction.
4370 **
4371 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4372 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4373 ** can be used for reading or for writing if other conditions for writing
4374 ** are also met.  These are the conditions that must be met in order
4375 ** for writing to be allowed:
4376 **
4377 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4378 **
4379 ** 2:  Other database connections that share the same pager cache
4380 **     but which are not in the READ_UNCOMMITTED state may not have
4381 **     cursors open with wrFlag==0 on the same table.  Otherwise
4382 **     the changes made by this write cursor would be visible to
4383 **     the read cursors in the other database connection.
4384 **
4385 ** 3:  The database must be writable (not on read-only media)
4386 **
4387 ** 4:  There must be an active transaction.
4388 **
4389 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4390 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4391 ** this cursor will only be used to seek to and delete entries of an index
4392 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4393 ** this implementation.  But in a hypothetical alternative storage engine
4394 ** in which index entries are automatically deleted when corresponding table
4395 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4396 ** operations on this cursor can be no-ops and all READ operations can
4397 ** return a null row (2-bytes: 0x01 0x00).
4398 **
4399 ** No checking is done to make sure that page iTable really is the
4400 ** root page of a b-tree.  If it is not, then the cursor acquired
4401 ** will not work correctly.
4402 **
4403 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4404 ** on pCur to initialize the memory space prior to invoking this routine.
4405 */
4406 static int btreeCursor(
4407   Btree *p,                              /* The btree */
4408   Pgno iTable,                           /* Root page of table to open */
4409   int wrFlag,                            /* 1 to write. 0 read-only */
4410   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4411   BtCursor *pCur                         /* Space for new cursor */
4412 ){
4413   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4414   BtCursor *pX;                          /* Looping over other all cursors */
4415 
4416   assert( sqlite3BtreeHoldsMutex(p) );
4417   assert( wrFlag==0
4418        || wrFlag==BTREE_WRCSR
4419        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4420   );
4421 
4422   /* The following assert statements verify that if this is a sharable
4423   ** b-tree database, the connection is holding the required table locks,
4424   ** and that no other connection has any open cursor that conflicts with
4425   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4426   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4427           || iTable<1 );
4428   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4429 
4430   /* Assert that the caller has opened the required transaction. */
4431   assert( p->inTrans>TRANS_NONE );
4432   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4433   assert( pBt->pPage1 && pBt->pPage1->aData );
4434   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4435 
4436   if( wrFlag ){
4437     allocateTempSpace(pBt);
4438     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4439   }
4440   if( iTable<=1 ){
4441     if( iTable<1 ){
4442       return SQLITE_CORRUPT_BKPT;
4443     }else if( btreePagecount(pBt)==0 ){
4444       assert( wrFlag==0 );
4445       iTable = 0;
4446     }
4447   }
4448 
4449   /* Now that no other errors can occur, finish filling in the BtCursor
4450   ** variables and link the cursor into the BtShared list.  */
4451   pCur->pgnoRoot = iTable;
4452   pCur->iPage = -1;
4453   pCur->pKeyInfo = pKeyInfo;
4454   pCur->pBtree = p;
4455   pCur->pBt = pBt;
4456   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4457   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4458   /* If there are two or more cursors on the same btree, then all such
4459   ** cursors *must* have the BTCF_Multiple flag set. */
4460   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4461     if( pX->pgnoRoot==iTable ){
4462       pX->curFlags |= BTCF_Multiple;
4463       pCur->curFlags |= BTCF_Multiple;
4464     }
4465   }
4466   pCur->pNext = pBt->pCursor;
4467   pBt->pCursor = pCur;
4468   pCur->eState = CURSOR_INVALID;
4469   return SQLITE_OK;
4470 }
4471 static int btreeCursorWithLock(
4472   Btree *p,                              /* The btree */
4473   Pgno iTable,                           /* Root page of table to open */
4474   int wrFlag,                            /* 1 to write. 0 read-only */
4475   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4476   BtCursor *pCur                         /* Space for new cursor */
4477 ){
4478   int rc;
4479   sqlite3BtreeEnter(p);
4480   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4481   sqlite3BtreeLeave(p);
4482   return rc;
4483 }
4484 int sqlite3BtreeCursor(
4485   Btree *p,                                   /* The btree */
4486   Pgno iTable,                                /* Root page of table to open */
4487   int wrFlag,                                 /* 1 to write. 0 read-only */
4488   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4489   BtCursor *pCur                              /* Write new cursor here */
4490 ){
4491   if( p->sharable ){
4492     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4493   }else{
4494     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4495   }
4496 }
4497 
4498 /*
4499 ** Return the size of a BtCursor object in bytes.
4500 **
4501 ** This interfaces is needed so that users of cursors can preallocate
4502 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4503 ** to users so they cannot do the sizeof() themselves - they must call
4504 ** this routine.
4505 */
4506 int sqlite3BtreeCursorSize(void){
4507   return ROUND8(sizeof(BtCursor));
4508 }
4509 
4510 /*
4511 ** Initialize memory that will be converted into a BtCursor object.
4512 **
4513 ** The simple approach here would be to memset() the entire object
4514 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4515 ** do not need to be zeroed and they are large, so we can save a lot
4516 ** of run-time by skipping the initialization of those elements.
4517 */
4518 void sqlite3BtreeCursorZero(BtCursor *p){
4519   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4520 }
4521 
4522 /*
4523 ** Close a cursor.  The read lock on the database file is released
4524 ** when the last cursor is closed.
4525 */
4526 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4527   Btree *pBtree = pCur->pBtree;
4528   if( pBtree ){
4529     BtShared *pBt = pCur->pBt;
4530     sqlite3BtreeEnter(pBtree);
4531     assert( pBt->pCursor!=0 );
4532     if( pBt->pCursor==pCur ){
4533       pBt->pCursor = pCur->pNext;
4534     }else{
4535       BtCursor *pPrev = pBt->pCursor;
4536       do{
4537         if( pPrev->pNext==pCur ){
4538           pPrev->pNext = pCur->pNext;
4539           break;
4540         }
4541         pPrev = pPrev->pNext;
4542       }while( ALWAYS(pPrev) );
4543     }
4544     btreeReleaseAllCursorPages(pCur);
4545     unlockBtreeIfUnused(pBt);
4546     sqlite3_free(pCur->aOverflow);
4547     sqlite3_free(pCur->pKey);
4548     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4549       /* Since the BtShared is not sharable, there is no need to
4550       ** worry about the missing sqlite3BtreeLeave() call here.  */
4551       assert( pBtree->sharable==0 );
4552       sqlite3BtreeClose(pBtree);
4553     }else{
4554       sqlite3BtreeLeave(pBtree);
4555     }
4556     pCur->pBtree = 0;
4557   }
4558   return SQLITE_OK;
4559 }
4560 
4561 /*
4562 ** Make sure the BtCursor* given in the argument has a valid
4563 ** BtCursor.info structure.  If it is not already valid, call
4564 ** btreeParseCell() to fill it in.
4565 **
4566 ** BtCursor.info is a cache of the information in the current cell.
4567 ** Using this cache reduces the number of calls to btreeParseCell().
4568 */
4569 #ifndef NDEBUG
4570   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4571     if( a->nKey!=b->nKey ) return 0;
4572     if( a->pPayload!=b->pPayload ) return 0;
4573     if( a->nPayload!=b->nPayload ) return 0;
4574     if( a->nLocal!=b->nLocal ) return 0;
4575     if( a->nSize!=b->nSize ) return 0;
4576     return 1;
4577   }
4578   static void assertCellInfo(BtCursor *pCur){
4579     CellInfo info;
4580     memset(&info, 0, sizeof(info));
4581     btreeParseCell(pCur->pPage, pCur->ix, &info);
4582     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4583   }
4584 #else
4585   #define assertCellInfo(x)
4586 #endif
4587 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4588   if( pCur->info.nSize==0 ){
4589     pCur->curFlags |= BTCF_ValidNKey;
4590     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4591   }else{
4592     assertCellInfo(pCur);
4593   }
4594 }
4595 
4596 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4597 /*
4598 ** Return true if the given BtCursor is valid.  A valid cursor is one
4599 ** that is currently pointing to a row in a (non-empty) table.
4600 ** This is a verification routine is used only within assert() statements.
4601 */
4602 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4603   return pCur && pCur->eState==CURSOR_VALID;
4604 }
4605 #endif /* NDEBUG */
4606 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4607   assert( pCur!=0 );
4608   return pCur->eState==CURSOR_VALID;
4609 }
4610 
4611 /*
4612 ** Return the value of the integer key or "rowid" for a table btree.
4613 ** This routine is only valid for a cursor that is pointing into a
4614 ** ordinary table btree.  If the cursor points to an index btree or
4615 ** is invalid, the result of this routine is undefined.
4616 */
4617 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4618   assert( cursorHoldsMutex(pCur) );
4619   assert( pCur->eState==CURSOR_VALID );
4620   assert( pCur->curIntKey );
4621   getCellInfo(pCur);
4622   return pCur->info.nKey;
4623 }
4624 
4625 /*
4626 ** Pin or unpin a cursor.
4627 */
4628 void sqlite3BtreeCursorPin(BtCursor *pCur){
4629   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4630   pCur->curFlags |= BTCF_Pinned;
4631 }
4632 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4633   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4634   pCur->curFlags &= ~BTCF_Pinned;
4635 }
4636 
4637 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4638 /*
4639 ** Return the offset into the database file for the start of the
4640 ** payload to which the cursor is pointing.
4641 */
4642 i64 sqlite3BtreeOffset(BtCursor *pCur){
4643   assert( cursorHoldsMutex(pCur) );
4644   assert( pCur->eState==CURSOR_VALID );
4645   getCellInfo(pCur);
4646   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4647          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4648 }
4649 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4650 
4651 /*
4652 ** Return the number of bytes of payload for the entry that pCur is
4653 ** currently pointing to.  For table btrees, this will be the amount
4654 ** of data.  For index btrees, this will be the size of the key.
4655 **
4656 ** The caller must guarantee that the cursor is pointing to a non-NULL
4657 ** valid entry.  In other words, the calling procedure must guarantee
4658 ** that the cursor has Cursor.eState==CURSOR_VALID.
4659 */
4660 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4661   assert( cursorHoldsMutex(pCur) );
4662   assert( pCur->eState==CURSOR_VALID );
4663   getCellInfo(pCur);
4664   return pCur->info.nPayload;
4665 }
4666 
4667 /*
4668 ** Return an upper bound on the size of any record for the table
4669 ** that the cursor is pointing into.
4670 **
4671 ** This is an optimization.  Everything will still work if this
4672 ** routine always returns 2147483647 (which is the largest record
4673 ** that SQLite can handle) or more.  But returning a smaller value might
4674 ** prevent large memory allocations when trying to interpret a
4675 ** corrupt datrabase.
4676 **
4677 ** The current implementation merely returns the size of the underlying
4678 ** database file.
4679 */
4680 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4681   assert( cursorHoldsMutex(pCur) );
4682   assert( pCur->eState==CURSOR_VALID );
4683   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4684 }
4685 
4686 /*
4687 ** Given the page number of an overflow page in the database (parameter
4688 ** ovfl), this function finds the page number of the next page in the
4689 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4690 ** pointer-map data instead of reading the content of page ovfl to do so.
4691 **
4692 ** If an error occurs an SQLite error code is returned. Otherwise:
4693 **
4694 ** The page number of the next overflow page in the linked list is
4695 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4696 ** list, *pPgnoNext is set to zero.
4697 **
4698 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4699 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4700 ** reference. It is the responsibility of the caller to call releasePage()
4701 ** on *ppPage to free the reference. In no reference was obtained (because
4702 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4703 ** *ppPage is set to zero.
4704 */
4705 static int getOverflowPage(
4706   BtShared *pBt,               /* The database file */
4707   Pgno ovfl,                   /* Current overflow page number */
4708   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4709   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4710 ){
4711   Pgno next = 0;
4712   MemPage *pPage = 0;
4713   int rc = SQLITE_OK;
4714 
4715   assert( sqlite3_mutex_held(pBt->mutex) );
4716   assert(pPgnoNext);
4717 
4718 #ifndef SQLITE_OMIT_AUTOVACUUM
4719   /* Try to find the next page in the overflow list using the
4720   ** autovacuum pointer-map pages. Guess that the next page in
4721   ** the overflow list is page number (ovfl+1). If that guess turns
4722   ** out to be wrong, fall back to loading the data of page
4723   ** number ovfl to determine the next page number.
4724   */
4725   if( pBt->autoVacuum ){
4726     Pgno pgno;
4727     Pgno iGuess = ovfl+1;
4728     u8 eType;
4729 
4730     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4731       iGuess++;
4732     }
4733 
4734     if( iGuess<=btreePagecount(pBt) ){
4735       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4736       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4737         next = iGuess;
4738         rc = SQLITE_DONE;
4739       }
4740     }
4741   }
4742 #endif
4743 
4744   assert( next==0 || rc==SQLITE_DONE );
4745   if( rc==SQLITE_OK ){
4746     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4747     assert( rc==SQLITE_OK || pPage==0 );
4748     if( rc==SQLITE_OK ){
4749       next = get4byte(pPage->aData);
4750     }
4751   }
4752 
4753   *pPgnoNext = next;
4754   if( ppPage ){
4755     *ppPage = pPage;
4756   }else{
4757     releasePage(pPage);
4758   }
4759   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4760 }
4761 
4762 /*
4763 ** Copy data from a buffer to a page, or from a page to a buffer.
4764 **
4765 ** pPayload is a pointer to data stored on database page pDbPage.
4766 ** If argument eOp is false, then nByte bytes of data are copied
4767 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4768 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4769 ** of data are copied from the buffer pBuf to pPayload.
4770 **
4771 ** SQLITE_OK is returned on success, otherwise an error code.
4772 */
4773 static int copyPayload(
4774   void *pPayload,           /* Pointer to page data */
4775   void *pBuf,               /* Pointer to buffer */
4776   int nByte,                /* Number of bytes to copy */
4777   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4778   DbPage *pDbPage           /* Page containing pPayload */
4779 ){
4780   if( eOp ){
4781     /* Copy data from buffer to page (a write operation) */
4782     int rc = sqlite3PagerWrite(pDbPage);
4783     if( rc!=SQLITE_OK ){
4784       return rc;
4785     }
4786     memcpy(pPayload, pBuf, nByte);
4787   }else{
4788     /* Copy data from page to buffer (a read operation) */
4789     memcpy(pBuf, pPayload, nByte);
4790   }
4791   return SQLITE_OK;
4792 }
4793 
4794 /*
4795 ** This function is used to read or overwrite payload information
4796 ** for the entry that the pCur cursor is pointing to. The eOp
4797 ** argument is interpreted as follows:
4798 **
4799 **   0: The operation is a read. Populate the overflow cache.
4800 **   1: The operation is a write. Populate the overflow cache.
4801 **
4802 ** A total of "amt" bytes are read or written beginning at "offset".
4803 ** Data is read to or from the buffer pBuf.
4804 **
4805 ** The content being read or written might appear on the main page
4806 ** or be scattered out on multiple overflow pages.
4807 **
4808 ** If the current cursor entry uses one or more overflow pages
4809 ** this function may allocate space for and lazily populate
4810 ** the overflow page-list cache array (BtCursor.aOverflow).
4811 ** Subsequent calls use this cache to make seeking to the supplied offset
4812 ** more efficient.
4813 **
4814 ** Once an overflow page-list cache has been allocated, it must be
4815 ** invalidated if some other cursor writes to the same table, or if
4816 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4817 ** mode, the following events may invalidate an overflow page-list cache.
4818 **
4819 **   * An incremental vacuum,
4820 **   * A commit in auto_vacuum="full" mode,
4821 **   * Creating a table (may require moving an overflow page).
4822 */
4823 static int accessPayload(
4824   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4825   u32 offset,          /* Begin reading this far into payload */
4826   u32 amt,             /* Read this many bytes */
4827   unsigned char *pBuf, /* Write the bytes into this buffer */
4828   int eOp              /* zero to read. non-zero to write. */
4829 ){
4830   unsigned char *aPayload;
4831   int rc = SQLITE_OK;
4832   int iIdx = 0;
4833   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4834   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4835 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4836   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4837 #endif
4838 
4839   assert( pPage );
4840   assert( eOp==0 || eOp==1 );
4841   assert( pCur->eState==CURSOR_VALID );
4842   assert( pCur->ix<pPage->nCell );
4843   assert( cursorHoldsMutex(pCur) );
4844 
4845   getCellInfo(pCur);
4846   aPayload = pCur->info.pPayload;
4847   assert( offset+amt <= pCur->info.nPayload );
4848 
4849   assert( aPayload > pPage->aData );
4850   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4851     /* Trying to read or write past the end of the data is an error.  The
4852     ** conditional above is really:
4853     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4854     ** but is recast into its current form to avoid integer overflow problems
4855     */
4856     return SQLITE_CORRUPT_PAGE(pPage);
4857   }
4858 
4859   /* Check if data must be read/written to/from the btree page itself. */
4860   if( offset<pCur->info.nLocal ){
4861     int a = amt;
4862     if( a+offset>pCur->info.nLocal ){
4863       a = pCur->info.nLocal - offset;
4864     }
4865     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4866     offset = 0;
4867     pBuf += a;
4868     amt -= a;
4869   }else{
4870     offset -= pCur->info.nLocal;
4871   }
4872 
4873 
4874   if( rc==SQLITE_OK && amt>0 ){
4875     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4876     Pgno nextPage;
4877 
4878     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4879 
4880     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4881     **
4882     ** The aOverflow[] array is sized at one entry for each overflow page
4883     ** in the overflow chain. The page number of the first overflow page is
4884     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4885     ** means "not yet known" (the cache is lazily populated).
4886     */
4887     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4888       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4889       if( pCur->aOverflow==0
4890        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4891       ){
4892         Pgno *aNew = (Pgno*)sqlite3Realloc(
4893             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4894         );
4895         if( aNew==0 ){
4896           return SQLITE_NOMEM_BKPT;
4897         }else{
4898           pCur->aOverflow = aNew;
4899         }
4900       }
4901       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4902       pCur->curFlags |= BTCF_ValidOvfl;
4903     }else{
4904       /* If the overflow page-list cache has been allocated and the
4905       ** entry for the first required overflow page is valid, skip
4906       ** directly to it.
4907       */
4908       if( pCur->aOverflow[offset/ovflSize] ){
4909         iIdx = (offset/ovflSize);
4910         nextPage = pCur->aOverflow[iIdx];
4911         offset = (offset%ovflSize);
4912       }
4913     }
4914 
4915     assert( rc==SQLITE_OK && amt>0 );
4916     while( nextPage ){
4917       /* If required, populate the overflow page-list cache. */
4918       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
4919       assert( pCur->aOverflow[iIdx]==0
4920               || pCur->aOverflow[iIdx]==nextPage
4921               || CORRUPT_DB );
4922       pCur->aOverflow[iIdx] = nextPage;
4923 
4924       if( offset>=ovflSize ){
4925         /* The only reason to read this page is to obtain the page
4926         ** number for the next page in the overflow chain. The page
4927         ** data is not required. So first try to lookup the overflow
4928         ** page-list cache, if any, then fall back to the getOverflowPage()
4929         ** function.
4930         */
4931         assert( pCur->curFlags & BTCF_ValidOvfl );
4932         assert( pCur->pBtree->db==pBt->db );
4933         if( pCur->aOverflow[iIdx+1] ){
4934           nextPage = pCur->aOverflow[iIdx+1];
4935         }else{
4936           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4937         }
4938         offset -= ovflSize;
4939       }else{
4940         /* Need to read this page properly. It contains some of the
4941         ** range of data that is being read (eOp==0) or written (eOp!=0).
4942         */
4943         int a = amt;
4944         if( a + offset > ovflSize ){
4945           a = ovflSize - offset;
4946         }
4947 
4948 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4949         /* If all the following are true:
4950         **
4951         **   1) this is a read operation, and
4952         **   2) data is required from the start of this overflow page, and
4953         **   3) there are no dirty pages in the page-cache
4954         **   4) the database is file-backed, and
4955         **   5) the page is not in the WAL file
4956         **   6) at least 4 bytes have already been read into the output buffer
4957         **
4958         ** then data can be read directly from the database file into the
4959         ** output buffer, bypassing the page-cache altogether. This speeds
4960         ** up loading large records that span many overflow pages.
4961         */
4962         if( eOp==0                                             /* (1) */
4963          && offset==0                                          /* (2) */
4964          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4965          && &pBuf[-4]>=pBufStart                               /* (6) */
4966         ){
4967           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4968           u8 aSave[4];
4969           u8 *aWrite = &pBuf[-4];
4970           assert( aWrite>=pBufStart );                         /* due to (6) */
4971           memcpy(aSave, aWrite, 4);
4972           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4973           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4974           nextPage = get4byte(aWrite);
4975           memcpy(aWrite, aSave, 4);
4976         }else
4977 #endif
4978 
4979         {
4980           DbPage *pDbPage;
4981           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4982               (eOp==0 ? PAGER_GET_READONLY : 0)
4983           );
4984           if( rc==SQLITE_OK ){
4985             aPayload = sqlite3PagerGetData(pDbPage);
4986             nextPage = get4byte(aPayload);
4987             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4988             sqlite3PagerUnref(pDbPage);
4989             offset = 0;
4990           }
4991         }
4992         amt -= a;
4993         if( amt==0 ) return rc;
4994         pBuf += a;
4995       }
4996       if( rc ) break;
4997       iIdx++;
4998     }
4999   }
5000 
5001   if( rc==SQLITE_OK && amt>0 ){
5002     /* Overflow chain ends prematurely */
5003     return SQLITE_CORRUPT_PAGE(pPage);
5004   }
5005   return rc;
5006 }
5007 
5008 /*
5009 ** Read part of the payload for the row at which that cursor pCur is currently
5010 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5011 ** begins at "offset".
5012 **
5013 ** pCur can be pointing to either a table or an index b-tree.
5014 ** If pointing to a table btree, then the content section is read.  If
5015 ** pCur is pointing to an index b-tree then the key section is read.
5016 **
5017 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5018 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5019 ** cursor might be invalid or might need to be restored before being read.
5020 **
5021 ** Return SQLITE_OK on success or an error code if anything goes
5022 ** wrong.  An error is returned if "offset+amt" is larger than
5023 ** the available payload.
5024 */
5025 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5026   assert( cursorHoldsMutex(pCur) );
5027   assert( pCur->eState==CURSOR_VALID );
5028   assert( pCur->iPage>=0 && pCur->pPage );
5029   assert( pCur->ix<pCur->pPage->nCell );
5030   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5031 }
5032 
5033 /*
5034 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5035 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5036 ** interface.
5037 */
5038 #ifndef SQLITE_OMIT_INCRBLOB
5039 static SQLITE_NOINLINE int accessPayloadChecked(
5040   BtCursor *pCur,
5041   u32 offset,
5042   u32 amt,
5043   void *pBuf
5044 ){
5045   int rc;
5046   if ( pCur->eState==CURSOR_INVALID ){
5047     return SQLITE_ABORT;
5048   }
5049   assert( cursorOwnsBtShared(pCur) );
5050   rc = btreeRestoreCursorPosition(pCur);
5051   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5052 }
5053 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5054   if( pCur->eState==CURSOR_VALID ){
5055     assert( cursorOwnsBtShared(pCur) );
5056     return accessPayload(pCur, offset, amt, pBuf, 0);
5057   }else{
5058     return accessPayloadChecked(pCur, offset, amt, pBuf);
5059   }
5060 }
5061 #endif /* SQLITE_OMIT_INCRBLOB */
5062 
5063 /*
5064 ** Return a pointer to payload information from the entry that the
5065 ** pCur cursor is pointing to.  The pointer is to the beginning of
5066 ** the key if index btrees (pPage->intKey==0) and is the data for
5067 ** table btrees (pPage->intKey==1). The number of bytes of available
5068 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5069 ** returned will not be a valid pointer.
5070 **
5071 ** This routine is an optimization.  It is common for the entire key
5072 ** and data to fit on the local page and for there to be no overflow
5073 ** pages.  When that is so, this routine can be used to access the
5074 ** key and data without making a copy.  If the key and/or data spills
5075 ** onto overflow pages, then accessPayload() must be used to reassemble
5076 ** the key/data and copy it into a preallocated buffer.
5077 **
5078 ** The pointer returned by this routine looks directly into the cached
5079 ** page of the database.  The data might change or move the next time
5080 ** any btree routine is called.
5081 */
5082 static const void *fetchPayload(
5083   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5084   u32 *pAmt            /* Write the number of available bytes here */
5085 ){
5086   int amt;
5087   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5088   assert( pCur->eState==CURSOR_VALID );
5089   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5090   assert( cursorOwnsBtShared(pCur) );
5091   assert( pCur->ix<pCur->pPage->nCell );
5092   assert( pCur->info.nSize>0 );
5093   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5094   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5095   amt = pCur->info.nLocal;
5096   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5097     /* There is too little space on the page for the expected amount
5098     ** of local content. Database must be corrupt. */
5099     assert( CORRUPT_DB );
5100     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5101   }
5102   *pAmt = (u32)amt;
5103   return (void*)pCur->info.pPayload;
5104 }
5105 
5106 
5107 /*
5108 ** For the entry that cursor pCur is point to, return as
5109 ** many bytes of the key or data as are available on the local
5110 ** b-tree page.  Write the number of available bytes into *pAmt.
5111 **
5112 ** The pointer returned is ephemeral.  The key/data may move
5113 ** or be destroyed on the next call to any Btree routine,
5114 ** including calls from other threads against the same cache.
5115 ** Hence, a mutex on the BtShared should be held prior to calling
5116 ** this routine.
5117 **
5118 ** These routines is used to get quick access to key and data
5119 ** in the common case where no overflow pages are used.
5120 */
5121 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5122   return fetchPayload(pCur, pAmt);
5123 }
5124 
5125 
5126 /*
5127 ** Move the cursor down to a new child page.  The newPgno argument is the
5128 ** page number of the child page to move to.
5129 **
5130 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5131 ** the new child page does not match the flags field of the parent (i.e.
5132 ** if an intkey page appears to be the parent of a non-intkey page, or
5133 ** vice-versa).
5134 */
5135 static int moveToChild(BtCursor *pCur, u32 newPgno){
5136   BtShared *pBt = pCur->pBt;
5137 
5138   assert( cursorOwnsBtShared(pCur) );
5139   assert( pCur->eState==CURSOR_VALID );
5140   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5141   assert( pCur->iPage>=0 );
5142   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5143     return SQLITE_CORRUPT_BKPT;
5144   }
5145   pCur->info.nSize = 0;
5146   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5147   pCur->aiIdx[pCur->iPage] = pCur->ix;
5148   pCur->apPage[pCur->iPage] = pCur->pPage;
5149   pCur->ix = 0;
5150   pCur->iPage++;
5151   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5152 }
5153 
5154 #ifdef SQLITE_DEBUG
5155 /*
5156 ** Page pParent is an internal (non-leaf) tree page. This function
5157 ** asserts that page number iChild is the left-child if the iIdx'th
5158 ** cell in page pParent. Or, if iIdx is equal to the total number of
5159 ** cells in pParent, that page number iChild is the right-child of
5160 ** the page.
5161 */
5162 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5163   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5164                             ** in a corrupt database */
5165   assert( iIdx<=pParent->nCell );
5166   if( iIdx==pParent->nCell ){
5167     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5168   }else{
5169     assert( get4byte(findCell(pParent, iIdx))==iChild );
5170   }
5171 }
5172 #else
5173 #  define assertParentIndex(x,y,z)
5174 #endif
5175 
5176 /*
5177 ** Move the cursor up to the parent page.
5178 **
5179 ** pCur->idx is set to the cell index that contains the pointer
5180 ** to the page we are coming from.  If we are coming from the
5181 ** right-most child page then pCur->idx is set to one more than
5182 ** the largest cell index.
5183 */
5184 static void moveToParent(BtCursor *pCur){
5185   MemPage *pLeaf;
5186   assert( cursorOwnsBtShared(pCur) );
5187   assert( pCur->eState==CURSOR_VALID );
5188   assert( pCur->iPage>0 );
5189   assert( pCur->pPage );
5190   assertParentIndex(
5191     pCur->apPage[pCur->iPage-1],
5192     pCur->aiIdx[pCur->iPage-1],
5193     pCur->pPage->pgno
5194   );
5195   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5196   pCur->info.nSize = 0;
5197   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5198   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5199   pLeaf = pCur->pPage;
5200   pCur->pPage = pCur->apPage[--pCur->iPage];
5201   releasePageNotNull(pLeaf);
5202 }
5203 
5204 /*
5205 ** Move the cursor to point to the root page of its b-tree structure.
5206 **
5207 ** If the table has a virtual root page, then the cursor is moved to point
5208 ** to the virtual root page instead of the actual root page. A table has a
5209 ** virtual root page when the actual root page contains no cells and a
5210 ** single child page. This can only happen with the table rooted at page 1.
5211 **
5212 ** If the b-tree structure is empty, the cursor state is set to
5213 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5214 ** the cursor is set to point to the first cell located on the root
5215 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5216 **
5217 ** If this function returns successfully, it may be assumed that the
5218 ** page-header flags indicate that the [virtual] root-page is the expected
5219 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5220 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5221 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5222 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5223 ** b-tree).
5224 */
5225 static int moveToRoot(BtCursor *pCur){
5226   MemPage *pRoot;
5227   int rc = SQLITE_OK;
5228 
5229   assert( cursorOwnsBtShared(pCur) );
5230   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5231   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5232   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5233   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5234   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5235 
5236   if( pCur->iPage>=0 ){
5237     if( pCur->iPage ){
5238       releasePageNotNull(pCur->pPage);
5239       while( --pCur->iPage ){
5240         releasePageNotNull(pCur->apPage[pCur->iPage]);
5241       }
5242       pCur->pPage = pCur->apPage[0];
5243       goto skip_init;
5244     }
5245   }else if( pCur->pgnoRoot==0 ){
5246     pCur->eState = CURSOR_INVALID;
5247     return SQLITE_EMPTY;
5248   }else{
5249     assert( pCur->iPage==(-1) );
5250     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5251       if( pCur->eState==CURSOR_FAULT ){
5252         assert( pCur->skipNext!=SQLITE_OK );
5253         return pCur->skipNext;
5254       }
5255       sqlite3BtreeClearCursor(pCur);
5256     }
5257     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5258                         0, pCur->curPagerFlags);
5259     if( rc!=SQLITE_OK ){
5260       pCur->eState = CURSOR_INVALID;
5261       return rc;
5262     }
5263     pCur->iPage = 0;
5264     pCur->curIntKey = pCur->pPage->intKey;
5265   }
5266   pRoot = pCur->pPage;
5267   assert( pRoot->pgno==pCur->pgnoRoot );
5268 
5269   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5270   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5271   ** NULL, the caller expects a table b-tree. If this is not the case,
5272   ** return an SQLITE_CORRUPT error.
5273   **
5274   ** Earlier versions of SQLite assumed that this test could not fail
5275   ** if the root page was already loaded when this function was called (i.e.
5276   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5277   ** in such a way that page pRoot is linked into a second b-tree table
5278   ** (or the freelist).  */
5279   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5280   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5281     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5282   }
5283 
5284 skip_init:
5285   pCur->ix = 0;
5286   pCur->info.nSize = 0;
5287   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5288 
5289   pRoot = pCur->pPage;
5290   if( pRoot->nCell>0 ){
5291     pCur->eState = CURSOR_VALID;
5292   }else if( !pRoot->leaf ){
5293     Pgno subpage;
5294     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5295     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5296     pCur->eState = CURSOR_VALID;
5297     rc = moveToChild(pCur, subpage);
5298   }else{
5299     pCur->eState = CURSOR_INVALID;
5300     rc = SQLITE_EMPTY;
5301   }
5302   return rc;
5303 }
5304 
5305 /*
5306 ** Move the cursor down to the left-most leaf entry beneath the
5307 ** entry to which it is currently pointing.
5308 **
5309 ** The left-most leaf is the one with the smallest key - the first
5310 ** in ascending order.
5311 */
5312 static int moveToLeftmost(BtCursor *pCur){
5313   Pgno pgno;
5314   int rc = SQLITE_OK;
5315   MemPage *pPage;
5316 
5317   assert( cursorOwnsBtShared(pCur) );
5318   assert( pCur->eState==CURSOR_VALID );
5319   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5320     assert( pCur->ix<pPage->nCell );
5321     pgno = get4byte(findCell(pPage, pCur->ix));
5322     rc = moveToChild(pCur, pgno);
5323   }
5324   return rc;
5325 }
5326 
5327 /*
5328 ** Move the cursor down to the right-most leaf entry beneath the
5329 ** page to which it is currently pointing.  Notice the difference
5330 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5331 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5332 ** finds the right-most entry beneath the *page*.
5333 **
5334 ** The right-most entry is the one with the largest key - the last
5335 ** key in ascending order.
5336 */
5337 static int moveToRightmost(BtCursor *pCur){
5338   Pgno pgno;
5339   int rc = SQLITE_OK;
5340   MemPage *pPage = 0;
5341 
5342   assert( cursorOwnsBtShared(pCur) );
5343   assert( pCur->eState==CURSOR_VALID );
5344   while( !(pPage = pCur->pPage)->leaf ){
5345     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5346     pCur->ix = pPage->nCell;
5347     rc = moveToChild(pCur, pgno);
5348     if( rc ) return rc;
5349   }
5350   pCur->ix = pPage->nCell-1;
5351   assert( pCur->info.nSize==0 );
5352   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5353   return SQLITE_OK;
5354 }
5355 
5356 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5357 ** on success.  Set *pRes to 0 if the cursor actually points to something
5358 ** or set *pRes to 1 if the table is empty.
5359 */
5360 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5361   int rc;
5362 
5363   assert( cursorOwnsBtShared(pCur) );
5364   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5365   rc = moveToRoot(pCur);
5366   if( rc==SQLITE_OK ){
5367     assert( pCur->pPage->nCell>0 );
5368     *pRes = 0;
5369     rc = moveToLeftmost(pCur);
5370   }else if( rc==SQLITE_EMPTY ){
5371     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5372     *pRes = 1;
5373     rc = SQLITE_OK;
5374   }
5375   return rc;
5376 }
5377 
5378 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5379 ** on success.  Set *pRes to 0 if the cursor actually points to something
5380 ** or set *pRes to 1 if the table is empty.
5381 */
5382 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5383   int rc;
5384 
5385   assert( cursorOwnsBtShared(pCur) );
5386   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5387 
5388   /* If the cursor already points to the last entry, this is a no-op. */
5389   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5390 #ifdef SQLITE_DEBUG
5391     /* This block serves to assert() that the cursor really does point
5392     ** to the last entry in the b-tree. */
5393     int ii;
5394     for(ii=0; ii<pCur->iPage; ii++){
5395       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5396     }
5397     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5398     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5399     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5400     assert( pCur->pPage->leaf );
5401 #endif
5402     *pRes = 0;
5403     return SQLITE_OK;
5404   }
5405 
5406   rc = moveToRoot(pCur);
5407   if( rc==SQLITE_OK ){
5408     assert( pCur->eState==CURSOR_VALID );
5409     *pRes = 0;
5410     rc = moveToRightmost(pCur);
5411     if( rc==SQLITE_OK ){
5412       pCur->curFlags |= BTCF_AtLast;
5413     }else{
5414       pCur->curFlags &= ~BTCF_AtLast;
5415     }
5416   }else if( rc==SQLITE_EMPTY ){
5417     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5418     *pRes = 1;
5419     rc = SQLITE_OK;
5420   }
5421   return rc;
5422 }
5423 
5424 /* Move the cursor so that it points to an entry near the key
5425 ** specified by pIdxKey or intKey.   Return a success code.
5426 **
5427 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5428 ** must be NULL.  For index tables, pIdxKey is used and intKey
5429 ** is ignored.
5430 **
5431 ** If an exact match is not found, then the cursor is always
5432 ** left pointing at a leaf page which would hold the entry if it
5433 ** were present.  The cursor might point to an entry that comes
5434 ** before or after the key.
5435 **
5436 ** An integer is written into *pRes which is the result of
5437 ** comparing the key with the entry to which the cursor is
5438 ** pointing.  The meaning of the integer written into
5439 ** *pRes is as follows:
5440 **
5441 **     *pRes<0      The cursor is left pointing at an entry that
5442 **                  is smaller than intKey/pIdxKey or if the table is empty
5443 **                  and the cursor is therefore left point to nothing.
5444 **
5445 **     *pRes==0     The cursor is left pointing at an entry that
5446 **                  exactly matches intKey/pIdxKey.
5447 **
5448 **     *pRes>0      The cursor is left pointing at an entry that
5449 **                  is larger than intKey/pIdxKey.
5450 **
5451 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5452 ** exists an entry in the table that exactly matches pIdxKey.
5453 */
5454 int sqlite3BtreeMovetoUnpacked(
5455   BtCursor *pCur,          /* The cursor to be moved */
5456   UnpackedRecord *pIdxKey, /* Unpacked index key */
5457   i64 intKey,              /* The table key */
5458   int biasRight,           /* If true, bias the search to the high end */
5459   int *pRes                /* Write search results here */
5460 ){
5461   int rc;
5462   RecordCompare xRecordCompare;
5463 
5464   assert( cursorOwnsBtShared(pCur) );
5465   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5466   assert( pRes );
5467   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5468   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5469 
5470   /* If the cursor is already positioned at the point we are trying
5471   ** to move to, then just return without doing any work */
5472   if( pIdxKey==0
5473    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5474   ){
5475     if( pCur->info.nKey==intKey ){
5476       *pRes = 0;
5477       return SQLITE_OK;
5478     }
5479     if( pCur->info.nKey<intKey ){
5480       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5481         *pRes = -1;
5482         return SQLITE_OK;
5483       }
5484       /* If the requested key is one more than the previous key, then
5485       ** try to get there using sqlite3BtreeNext() rather than a full
5486       ** binary search.  This is an optimization only.  The correct answer
5487       ** is still obtained without this case, only a little more slowely */
5488       if( pCur->info.nKey+1==intKey ){
5489         *pRes = 0;
5490         rc = sqlite3BtreeNext(pCur, 0);
5491         if( rc==SQLITE_OK ){
5492           getCellInfo(pCur);
5493           if( pCur->info.nKey==intKey ){
5494             return SQLITE_OK;
5495           }
5496         }else if( rc==SQLITE_DONE ){
5497           rc = SQLITE_OK;
5498         }else{
5499           return rc;
5500         }
5501       }
5502     }
5503   }
5504 
5505 #ifdef SQLITE_DEBUG
5506   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5507 #endif
5508 
5509   if( pIdxKey ){
5510     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5511     pIdxKey->errCode = 0;
5512     assert( pIdxKey->default_rc==1
5513          || pIdxKey->default_rc==0
5514          || pIdxKey->default_rc==-1
5515     );
5516   }else{
5517     xRecordCompare = 0; /* All keys are integers */
5518   }
5519 
5520   rc = moveToRoot(pCur);
5521   if( rc ){
5522     if( rc==SQLITE_EMPTY ){
5523       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5524       *pRes = -1;
5525       return SQLITE_OK;
5526     }
5527     return rc;
5528   }
5529   assert( pCur->pPage );
5530   assert( pCur->pPage->isInit );
5531   assert( pCur->eState==CURSOR_VALID );
5532   assert( pCur->pPage->nCell > 0 );
5533   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5534   assert( pCur->curIntKey || pIdxKey );
5535   for(;;){
5536     int lwr, upr, idx, c;
5537     Pgno chldPg;
5538     MemPage *pPage = pCur->pPage;
5539     u8 *pCell;                          /* Pointer to current cell in pPage */
5540 
5541     /* pPage->nCell must be greater than zero. If this is the root-page
5542     ** the cursor would have been INVALID above and this for(;;) loop
5543     ** not run. If this is not the root-page, then the moveToChild() routine
5544     ** would have already detected db corruption. Similarly, pPage must
5545     ** be the right kind (index or table) of b-tree page. Otherwise
5546     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5547     assert( pPage->nCell>0 );
5548     assert( pPage->intKey==(pIdxKey==0) );
5549     lwr = 0;
5550     upr = pPage->nCell-1;
5551     assert( biasRight==0 || biasRight==1 );
5552     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5553     pCur->ix = (u16)idx;
5554     if( xRecordCompare==0 ){
5555       for(;;){
5556         i64 nCellKey;
5557         pCell = findCellPastPtr(pPage, idx);
5558         if( pPage->intKeyLeaf ){
5559           while( 0x80 <= *(pCell++) ){
5560             if( pCell>=pPage->aDataEnd ){
5561               return SQLITE_CORRUPT_PAGE(pPage);
5562             }
5563           }
5564         }
5565         getVarint(pCell, (u64*)&nCellKey);
5566         if( nCellKey<intKey ){
5567           lwr = idx+1;
5568           if( lwr>upr ){ c = -1; break; }
5569         }else if( nCellKey>intKey ){
5570           upr = idx-1;
5571           if( lwr>upr ){ c = +1; break; }
5572         }else{
5573           assert( nCellKey==intKey );
5574           pCur->ix = (u16)idx;
5575           if( !pPage->leaf ){
5576             lwr = idx;
5577             goto moveto_next_layer;
5578           }else{
5579             pCur->curFlags |= BTCF_ValidNKey;
5580             pCur->info.nKey = nCellKey;
5581             pCur->info.nSize = 0;
5582             *pRes = 0;
5583             return SQLITE_OK;
5584           }
5585         }
5586         assert( lwr+upr>=0 );
5587         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5588       }
5589     }else{
5590       for(;;){
5591         int nCell;  /* Size of the pCell cell in bytes */
5592         pCell = findCellPastPtr(pPage, idx);
5593 
5594         /* The maximum supported page-size is 65536 bytes. This means that
5595         ** the maximum number of record bytes stored on an index B-Tree
5596         ** page is less than 16384 bytes and may be stored as a 2-byte
5597         ** varint. This information is used to attempt to avoid parsing
5598         ** the entire cell by checking for the cases where the record is
5599         ** stored entirely within the b-tree page by inspecting the first
5600         ** 2 bytes of the cell.
5601         */
5602         nCell = pCell[0];
5603         if( nCell<=pPage->max1bytePayload ){
5604           /* This branch runs if the record-size field of the cell is a
5605           ** single byte varint and the record fits entirely on the main
5606           ** b-tree page.  */
5607           testcase( pCell+nCell+1==pPage->aDataEnd );
5608           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5609         }else if( !(pCell[1] & 0x80)
5610           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5611         ){
5612           /* The record-size field is a 2 byte varint and the record
5613           ** fits entirely on the main b-tree page.  */
5614           testcase( pCell+nCell+2==pPage->aDataEnd );
5615           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5616         }else{
5617           /* The record flows over onto one or more overflow pages. In
5618           ** this case the whole cell needs to be parsed, a buffer allocated
5619           ** and accessPayload() used to retrieve the record into the
5620           ** buffer before VdbeRecordCompare() can be called.
5621           **
5622           ** If the record is corrupt, the xRecordCompare routine may read
5623           ** up to two varints past the end of the buffer. An extra 18
5624           ** bytes of padding is allocated at the end of the buffer in
5625           ** case this happens.  */
5626           void *pCellKey;
5627           u8 * const pCellBody = pCell - pPage->childPtrSize;
5628           const int nOverrun = 18;  /* Size of the overrun padding */
5629           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5630           nCell = (int)pCur->info.nKey;
5631           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5632           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5633           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5634           testcase( nCell==2 );  /* Minimum legal index key size */
5635           if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5636             rc = SQLITE_CORRUPT_PAGE(pPage);
5637             goto moveto_finish;
5638           }
5639           pCellKey = sqlite3Malloc( nCell+nOverrun );
5640           if( pCellKey==0 ){
5641             rc = SQLITE_NOMEM_BKPT;
5642             goto moveto_finish;
5643           }
5644           pCur->ix = (u16)idx;
5645           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5646           memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5647           pCur->curFlags &= ~BTCF_ValidOvfl;
5648           if( rc ){
5649             sqlite3_free(pCellKey);
5650             goto moveto_finish;
5651           }
5652           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5653           sqlite3_free(pCellKey);
5654         }
5655         assert(
5656             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5657          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5658         );
5659         if( c<0 ){
5660           lwr = idx+1;
5661         }else if( c>0 ){
5662           upr = idx-1;
5663         }else{
5664           assert( c==0 );
5665           *pRes = 0;
5666           rc = SQLITE_OK;
5667           pCur->ix = (u16)idx;
5668           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5669           goto moveto_finish;
5670         }
5671         if( lwr>upr ) break;
5672         assert( lwr+upr>=0 );
5673         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5674       }
5675     }
5676     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5677     assert( pPage->isInit );
5678     if( pPage->leaf ){
5679       assert( pCur->ix<pCur->pPage->nCell );
5680       pCur->ix = (u16)idx;
5681       *pRes = c;
5682       rc = SQLITE_OK;
5683       goto moveto_finish;
5684     }
5685 moveto_next_layer:
5686     if( lwr>=pPage->nCell ){
5687       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5688     }else{
5689       chldPg = get4byte(findCell(pPage, lwr));
5690     }
5691     pCur->ix = (u16)lwr;
5692     rc = moveToChild(pCur, chldPg);
5693     if( rc ) break;
5694   }
5695 moveto_finish:
5696   pCur->info.nSize = 0;
5697   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5698   return rc;
5699 }
5700 
5701 
5702 /*
5703 ** Return TRUE if the cursor is not pointing at an entry of the table.
5704 **
5705 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5706 ** past the last entry in the table or sqlite3BtreePrev() moves past
5707 ** the first entry.  TRUE is also returned if the table is empty.
5708 */
5709 int sqlite3BtreeEof(BtCursor *pCur){
5710   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5711   ** have been deleted? This API will need to change to return an error code
5712   ** as well as the boolean result value.
5713   */
5714   return (CURSOR_VALID!=pCur->eState);
5715 }
5716 
5717 /*
5718 ** Return an estimate for the number of rows in the table that pCur is
5719 ** pointing to.  Return a negative number if no estimate is currently
5720 ** available.
5721 */
5722 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5723   i64 n;
5724   u8 i;
5725 
5726   assert( cursorOwnsBtShared(pCur) );
5727   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5728 
5729   /* Currently this interface is only called by the OP_IfSmaller
5730   ** opcode, and it that case the cursor will always be valid and
5731   ** will always point to a leaf node. */
5732   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5733   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5734 
5735   n = pCur->pPage->nCell;
5736   for(i=0; i<pCur->iPage; i++){
5737     n *= pCur->apPage[i]->nCell;
5738   }
5739   return n;
5740 }
5741 
5742 /*
5743 ** Advance the cursor to the next entry in the database.
5744 ** Return value:
5745 **
5746 **    SQLITE_OK        success
5747 **    SQLITE_DONE      cursor is already pointing at the last element
5748 **    otherwise        some kind of error occurred
5749 **
5750 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5751 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5752 ** to the next cell on the current page.  The (slower) btreeNext() helper
5753 ** routine is called when it is necessary to move to a different page or
5754 ** to restore the cursor.
5755 **
5756 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5757 ** cursor corresponds to an SQL index and this routine could have been
5758 ** skipped if the SQL index had been a unique index.  The F argument
5759 ** is a hint to the implement.  SQLite btree implementation does not use
5760 ** this hint, but COMDB2 does.
5761 */
5762 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5763   int rc;
5764   int idx;
5765   MemPage *pPage;
5766 
5767   assert( cursorOwnsBtShared(pCur) );
5768   if( pCur->eState!=CURSOR_VALID ){
5769     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5770     rc = restoreCursorPosition(pCur);
5771     if( rc!=SQLITE_OK ){
5772       return rc;
5773     }
5774     if( CURSOR_INVALID==pCur->eState ){
5775       return SQLITE_DONE;
5776     }
5777     if( pCur->eState==CURSOR_SKIPNEXT ){
5778       pCur->eState = CURSOR_VALID;
5779       if( pCur->skipNext>0 ) return SQLITE_OK;
5780     }
5781   }
5782 
5783   pPage = pCur->pPage;
5784   idx = ++pCur->ix;
5785   if( !pPage->isInit || sqlite3FaultSim(412) ){
5786     /* The only known way for this to happen is for there to be a
5787     ** recursive SQL function that does a DELETE operation as part of a
5788     ** SELECT which deletes content out from under an active cursor
5789     ** in a corrupt database file where the table being DELETE-ed from
5790     ** has pages in common with the table being queried.  See TH3
5791     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5792     ** example. */
5793     return SQLITE_CORRUPT_BKPT;
5794   }
5795 
5796   /* If the database file is corrupt, it is possible for the value of idx
5797   ** to be invalid here. This can only occur if a second cursor modifies
5798   ** the page while cursor pCur is holding a reference to it. Which can
5799   ** only happen if the database is corrupt in such a way as to link the
5800   ** page into more than one b-tree structure.
5801   **
5802   ** Update 2019-12-23: appears to long longer be possible after the
5803   ** addition of anotherValidCursor() condition on balance_deeper().  */
5804   harmless( idx>pPage->nCell );
5805 
5806   if( idx>=pPage->nCell ){
5807     if( !pPage->leaf ){
5808       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5809       if( rc ) return rc;
5810       return moveToLeftmost(pCur);
5811     }
5812     do{
5813       if( pCur->iPage==0 ){
5814         pCur->eState = CURSOR_INVALID;
5815         return SQLITE_DONE;
5816       }
5817       moveToParent(pCur);
5818       pPage = pCur->pPage;
5819     }while( pCur->ix>=pPage->nCell );
5820     if( pPage->intKey ){
5821       return sqlite3BtreeNext(pCur, 0);
5822     }else{
5823       return SQLITE_OK;
5824     }
5825   }
5826   if( pPage->leaf ){
5827     return SQLITE_OK;
5828   }else{
5829     return moveToLeftmost(pCur);
5830   }
5831 }
5832 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5833   MemPage *pPage;
5834   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5835   assert( cursorOwnsBtShared(pCur) );
5836   assert( flags==0 || flags==1 );
5837   pCur->info.nSize = 0;
5838   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5839   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5840   pPage = pCur->pPage;
5841   if( (++pCur->ix)>=pPage->nCell ){
5842     pCur->ix--;
5843     return btreeNext(pCur);
5844   }
5845   if( pPage->leaf ){
5846     return SQLITE_OK;
5847   }else{
5848     return moveToLeftmost(pCur);
5849   }
5850 }
5851 
5852 /*
5853 ** Step the cursor to the back to the previous entry in the database.
5854 ** Return values:
5855 **
5856 **     SQLITE_OK     success
5857 **     SQLITE_DONE   the cursor is already on the first element of the table
5858 **     otherwise     some kind of error occurred
5859 **
5860 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5861 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5862 ** to the previous cell on the current page.  The (slower) btreePrevious()
5863 ** helper routine is called when it is necessary to move to a different page
5864 ** or to restore the cursor.
5865 **
5866 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5867 ** the cursor corresponds to an SQL index and this routine could have been
5868 ** skipped if the SQL index had been a unique index.  The F argument is a
5869 ** hint to the implement.  The native SQLite btree implementation does not
5870 ** use this hint, but COMDB2 does.
5871 */
5872 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5873   int rc;
5874   MemPage *pPage;
5875 
5876   assert( cursorOwnsBtShared(pCur) );
5877   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5878   assert( pCur->info.nSize==0 );
5879   if( pCur->eState!=CURSOR_VALID ){
5880     rc = restoreCursorPosition(pCur);
5881     if( rc!=SQLITE_OK ){
5882       return rc;
5883     }
5884     if( CURSOR_INVALID==pCur->eState ){
5885       return SQLITE_DONE;
5886     }
5887     if( CURSOR_SKIPNEXT==pCur->eState ){
5888       pCur->eState = CURSOR_VALID;
5889       if( pCur->skipNext<0 ) return SQLITE_OK;
5890     }
5891   }
5892 
5893   pPage = pCur->pPage;
5894   assert( pPage->isInit );
5895   if( !pPage->leaf ){
5896     int idx = pCur->ix;
5897     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5898     if( rc ) return rc;
5899     rc = moveToRightmost(pCur);
5900   }else{
5901     while( pCur->ix==0 ){
5902       if( pCur->iPage==0 ){
5903         pCur->eState = CURSOR_INVALID;
5904         return SQLITE_DONE;
5905       }
5906       moveToParent(pCur);
5907     }
5908     assert( pCur->info.nSize==0 );
5909     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5910 
5911     pCur->ix--;
5912     pPage = pCur->pPage;
5913     if( pPage->intKey && !pPage->leaf ){
5914       rc = sqlite3BtreePrevious(pCur, 0);
5915     }else{
5916       rc = SQLITE_OK;
5917     }
5918   }
5919   return rc;
5920 }
5921 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5922   assert( cursorOwnsBtShared(pCur) );
5923   assert( flags==0 || flags==1 );
5924   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5925   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5926   pCur->info.nSize = 0;
5927   if( pCur->eState!=CURSOR_VALID
5928    || pCur->ix==0
5929    || pCur->pPage->leaf==0
5930   ){
5931     return btreePrevious(pCur);
5932   }
5933   pCur->ix--;
5934   return SQLITE_OK;
5935 }
5936 
5937 /*
5938 ** Allocate a new page from the database file.
5939 **
5940 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5941 ** has already been called on the new page.)  The new page has also
5942 ** been referenced and the calling routine is responsible for calling
5943 ** sqlite3PagerUnref() on the new page when it is done.
5944 **
5945 ** SQLITE_OK is returned on success.  Any other return value indicates
5946 ** an error.  *ppPage is set to NULL in the event of an error.
5947 **
5948 ** If the "nearby" parameter is not 0, then an effort is made to
5949 ** locate a page close to the page number "nearby".  This can be used in an
5950 ** attempt to keep related pages close to each other in the database file,
5951 ** which in turn can make database access faster.
5952 **
5953 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5954 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5955 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5956 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5957 ** are no restrictions on which page is returned.
5958 */
5959 static int allocateBtreePage(
5960   BtShared *pBt,         /* The btree */
5961   MemPage **ppPage,      /* Store pointer to the allocated page here */
5962   Pgno *pPgno,           /* Store the page number here */
5963   Pgno nearby,           /* Search for a page near this one */
5964   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5965 ){
5966   MemPage *pPage1;
5967   int rc;
5968   u32 n;     /* Number of pages on the freelist */
5969   u32 k;     /* Number of leaves on the trunk of the freelist */
5970   MemPage *pTrunk = 0;
5971   MemPage *pPrevTrunk = 0;
5972   Pgno mxPage;     /* Total size of the database file */
5973 
5974   assert( sqlite3_mutex_held(pBt->mutex) );
5975   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5976   pPage1 = pBt->pPage1;
5977   mxPage = btreePagecount(pBt);
5978   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5979   ** stores stores the total number of pages on the freelist. */
5980   n = get4byte(&pPage1->aData[36]);
5981   testcase( n==mxPage-1 );
5982   if( n>=mxPage ){
5983     return SQLITE_CORRUPT_BKPT;
5984   }
5985   if( n>0 ){
5986     /* There are pages on the freelist.  Reuse one of those pages. */
5987     Pgno iTrunk;
5988     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5989     u32 nSearch = 0;   /* Count of the number of search attempts */
5990 
5991     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5992     ** shows that the page 'nearby' is somewhere on the free-list, then
5993     ** the entire-list will be searched for that page.
5994     */
5995 #ifndef SQLITE_OMIT_AUTOVACUUM
5996     if( eMode==BTALLOC_EXACT ){
5997       if( nearby<=mxPage ){
5998         u8 eType;
5999         assert( nearby>0 );
6000         assert( pBt->autoVacuum );
6001         rc = ptrmapGet(pBt, nearby, &eType, 0);
6002         if( rc ) return rc;
6003         if( eType==PTRMAP_FREEPAGE ){
6004           searchList = 1;
6005         }
6006       }
6007     }else if( eMode==BTALLOC_LE ){
6008       searchList = 1;
6009     }
6010 #endif
6011 
6012     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6013     ** first free-list trunk page. iPrevTrunk is initially 1.
6014     */
6015     rc = sqlite3PagerWrite(pPage1->pDbPage);
6016     if( rc ) return rc;
6017     put4byte(&pPage1->aData[36], n-1);
6018 
6019     /* The code within this loop is run only once if the 'searchList' variable
6020     ** is not true. Otherwise, it runs once for each trunk-page on the
6021     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6022     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6023     */
6024     do {
6025       pPrevTrunk = pTrunk;
6026       if( pPrevTrunk ){
6027         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6028         ** is the page number of the next freelist trunk page in the list or
6029         ** zero if this is the last freelist trunk page. */
6030         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6031       }else{
6032         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6033         ** stores the page number of the first page of the freelist, or zero if
6034         ** the freelist is empty. */
6035         iTrunk = get4byte(&pPage1->aData[32]);
6036       }
6037       testcase( iTrunk==mxPage );
6038       if( iTrunk>mxPage || nSearch++ > n ){
6039         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6040       }else{
6041         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6042       }
6043       if( rc ){
6044         pTrunk = 0;
6045         goto end_allocate_page;
6046       }
6047       assert( pTrunk!=0 );
6048       assert( pTrunk->aData!=0 );
6049       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6050       ** is the number of leaf page pointers to follow. */
6051       k = get4byte(&pTrunk->aData[4]);
6052       if( k==0 && !searchList ){
6053         /* The trunk has no leaves and the list is not being searched.
6054         ** So extract the trunk page itself and use it as the newly
6055         ** allocated page */
6056         assert( pPrevTrunk==0 );
6057         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6058         if( rc ){
6059           goto end_allocate_page;
6060         }
6061         *pPgno = iTrunk;
6062         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6063         *ppPage = pTrunk;
6064         pTrunk = 0;
6065         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6066       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6067         /* Value of k is out of range.  Database corruption */
6068         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6069         goto end_allocate_page;
6070 #ifndef SQLITE_OMIT_AUTOVACUUM
6071       }else if( searchList
6072             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6073       ){
6074         /* The list is being searched and this trunk page is the page
6075         ** to allocate, regardless of whether it has leaves.
6076         */
6077         *pPgno = iTrunk;
6078         *ppPage = pTrunk;
6079         searchList = 0;
6080         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6081         if( rc ){
6082           goto end_allocate_page;
6083         }
6084         if( k==0 ){
6085           if( !pPrevTrunk ){
6086             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6087           }else{
6088             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6089             if( rc!=SQLITE_OK ){
6090               goto end_allocate_page;
6091             }
6092             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6093           }
6094         }else{
6095           /* The trunk page is required by the caller but it contains
6096           ** pointers to free-list leaves. The first leaf becomes a trunk
6097           ** page in this case.
6098           */
6099           MemPage *pNewTrunk;
6100           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6101           if( iNewTrunk>mxPage ){
6102             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6103             goto end_allocate_page;
6104           }
6105           testcase( iNewTrunk==mxPage );
6106           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6107           if( rc!=SQLITE_OK ){
6108             goto end_allocate_page;
6109           }
6110           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6111           if( rc!=SQLITE_OK ){
6112             releasePage(pNewTrunk);
6113             goto end_allocate_page;
6114           }
6115           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6116           put4byte(&pNewTrunk->aData[4], k-1);
6117           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6118           releasePage(pNewTrunk);
6119           if( !pPrevTrunk ){
6120             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6121             put4byte(&pPage1->aData[32], iNewTrunk);
6122           }else{
6123             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6124             if( rc ){
6125               goto end_allocate_page;
6126             }
6127             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6128           }
6129         }
6130         pTrunk = 0;
6131         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6132 #endif
6133       }else if( k>0 ){
6134         /* Extract a leaf from the trunk */
6135         u32 closest;
6136         Pgno iPage;
6137         unsigned char *aData = pTrunk->aData;
6138         if( nearby>0 ){
6139           u32 i;
6140           closest = 0;
6141           if( eMode==BTALLOC_LE ){
6142             for(i=0; i<k; i++){
6143               iPage = get4byte(&aData[8+i*4]);
6144               if( iPage<=nearby ){
6145                 closest = i;
6146                 break;
6147               }
6148             }
6149           }else{
6150             int dist;
6151             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6152             for(i=1; i<k; i++){
6153               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6154               if( d2<dist ){
6155                 closest = i;
6156                 dist = d2;
6157               }
6158             }
6159           }
6160         }else{
6161           closest = 0;
6162         }
6163 
6164         iPage = get4byte(&aData[8+closest*4]);
6165         testcase( iPage==mxPage );
6166         if( iPage>mxPage || iPage<2 ){
6167           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6168           goto end_allocate_page;
6169         }
6170         testcase( iPage==mxPage );
6171         if( !searchList
6172          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6173         ){
6174           int noContent;
6175           *pPgno = iPage;
6176           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6177                  ": %d more free pages\n",
6178                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6179           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6180           if( rc ) goto end_allocate_page;
6181           if( closest<k-1 ){
6182             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6183           }
6184           put4byte(&aData[4], k-1);
6185           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6186           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6187           if( rc==SQLITE_OK ){
6188             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6189             if( rc!=SQLITE_OK ){
6190               releasePage(*ppPage);
6191               *ppPage = 0;
6192             }
6193           }
6194           searchList = 0;
6195         }
6196       }
6197       releasePage(pPrevTrunk);
6198       pPrevTrunk = 0;
6199     }while( searchList );
6200   }else{
6201     /* There are no pages on the freelist, so append a new page to the
6202     ** database image.
6203     **
6204     ** Normally, new pages allocated by this block can be requested from the
6205     ** pager layer with the 'no-content' flag set. This prevents the pager
6206     ** from trying to read the pages content from disk. However, if the
6207     ** current transaction has already run one or more incremental-vacuum
6208     ** steps, then the page we are about to allocate may contain content
6209     ** that is required in the event of a rollback. In this case, do
6210     ** not set the no-content flag. This causes the pager to load and journal
6211     ** the current page content before overwriting it.
6212     **
6213     ** Note that the pager will not actually attempt to load or journal
6214     ** content for any page that really does lie past the end of the database
6215     ** file on disk. So the effects of disabling the no-content optimization
6216     ** here are confined to those pages that lie between the end of the
6217     ** database image and the end of the database file.
6218     */
6219     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6220 
6221     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6222     if( rc ) return rc;
6223     pBt->nPage++;
6224     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6225 
6226 #ifndef SQLITE_OMIT_AUTOVACUUM
6227     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6228       /* If *pPgno refers to a pointer-map page, allocate two new pages
6229       ** at the end of the file instead of one. The first allocated page
6230       ** becomes a new pointer-map page, the second is used by the caller.
6231       */
6232       MemPage *pPg = 0;
6233       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6234       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6235       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6236       if( rc==SQLITE_OK ){
6237         rc = sqlite3PagerWrite(pPg->pDbPage);
6238         releasePage(pPg);
6239       }
6240       if( rc ) return rc;
6241       pBt->nPage++;
6242       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6243     }
6244 #endif
6245     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6246     *pPgno = pBt->nPage;
6247 
6248     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6249     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6250     if( rc ) return rc;
6251     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6252     if( rc!=SQLITE_OK ){
6253       releasePage(*ppPage);
6254       *ppPage = 0;
6255     }
6256     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6257   }
6258 
6259   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6260 
6261 end_allocate_page:
6262   releasePage(pTrunk);
6263   releasePage(pPrevTrunk);
6264   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6265   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6266   return rc;
6267 }
6268 
6269 /*
6270 ** This function is used to add page iPage to the database file free-list.
6271 ** It is assumed that the page is not already a part of the free-list.
6272 **
6273 ** The value passed as the second argument to this function is optional.
6274 ** If the caller happens to have a pointer to the MemPage object
6275 ** corresponding to page iPage handy, it may pass it as the second value.
6276 ** Otherwise, it may pass NULL.
6277 **
6278 ** If a pointer to a MemPage object is passed as the second argument,
6279 ** its reference count is not altered by this function.
6280 */
6281 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6282   MemPage *pTrunk = 0;                /* Free-list trunk page */
6283   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6284   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6285   MemPage *pPage;                     /* Page being freed. May be NULL. */
6286   int rc;                             /* Return Code */
6287   u32 nFree;                          /* Initial number of pages on free-list */
6288 
6289   assert( sqlite3_mutex_held(pBt->mutex) );
6290   assert( CORRUPT_DB || iPage>1 );
6291   assert( !pMemPage || pMemPage->pgno==iPage );
6292 
6293   if( iPage<2 || iPage>pBt->nPage ){
6294     return SQLITE_CORRUPT_BKPT;
6295   }
6296   if( pMemPage ){
6297     pPage = pMemPage;
6298     sqlite3PagerRef(pPage->pDbPage);
6299   }else{
6300     pPage = btreePageLookup(pBt, iPage);
6301   }
6302 
6303   /* Increment the free page count on pPage1 */
6304   rc = sqlite3PagerWrite(pPage1->pDbPage);
6305   if( rc ) goto freepage_out;
6306   nFree = get4byte(&pPage1->aData[36]);
6307   put4byte(&pPage1->aData[36], nFree+1);
6308 
6309   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6310     /* If the secure_delete option is enabled, then
6311     ** always fully overwrite deleted information with zeros.
6312     */
6313     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6314      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6315     ){
6316       goto freepage_out;
6317     }
6318     memset(pPage->aData, 0, pPage->pBt->pageSize);
6319   }
6320 
6321   /* If the database supports auto-vacuum, write an entry in the pointer-map
6322   ** to indicate that the page is free.
6323   */
6324   if( ISAUTOVACUUM ){
6325     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6326     if( rc ) goto freepage_out;
6327   }
6328 
6329   /* Now manipulate the actual database free-list structure. There are two
6330   ** possibilities. If the free-list is currently empty, or if the first
6331   ** trunk page in the free-list is full, then this page will become a
6332   ** new free-list trunk page. Otherwise, it will become a leaf of the
6333   ** first trunk page in the current free-list. This block tests if it
6334   ** is possible to add the page as a new free-list leaf.
6335   */
6336   if( nFree!=0 ){
6337     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6338 
6339     iTrunk = get4byte(&pPage1->aData[32]);
6340     if( iTrunk>btreePagecount(pBt) ){
6341       rc = SQLITE_CORRUPT_BKPT;
6342       goto freepage_out;
6343     }
6344     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6345     if( rc!=SQLITE_OK ){
6346       goto freepage_out;
6347     }
6348 
6349     nLeaf = get4byte(&pTrunk->aData[4]);
6350     assert( pBt->usableSize>32 );
6351     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6352       rc = SQLITE_CORRUPT_BKPT;
6353       goto freepage_out;
6354     }
6355     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6356       /* In this case there is room on the trunk page to insert the page
6357       ** being freed as a new leaf.
6358       **
6359       ** Note that the trunk page is not really full until it contains
6360       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6361       ** coded.  But due to a coding error in versions of SQLite prior to
6362       ** 3.6.0, databases with freelist trunk pages holding more than
6363       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6364       ** to maintain backwards compatibility with older versions of SQLite,
6365       ** we will continue to restrict the number of entries to usableSize/4 - 8
6366       ** for now.  At some point in the future (once everyone has upgraded
6367       ** to 3.6.0 or later) we should consider fixing the conditional above
6368       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6369       **
6370       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6371       ** avoid using the last six entries in the freelist trunk page array in
6372       ** order that database files created by newer versions of SQLite can be
6373       ** read by older versions of SQLite.
6374       */
6375       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6376       if( rc==SQLITE_OK ){
6377         put4byte(&pTrunk->aData[4], nLeaf+1);
6378         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6379         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6380           sqlite3PagerDontWrite(pPage->pDbPage);
6381         }
6382         rc = btreeSetHasContent(pBt, iPage);
6383       }
6384       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6385       goto freepage_out;
6386     }
6387   }
6388 
6389   /* If control flows to this point, then it was not possible to add the
6390   ** the page being freed as a leaf page of the first trunk in the free-list.
6391   ** Possibly because the free-list is empty, or possibly because the
6392   ** first trunk in the free-list is full. Either way, the page being freed
6393   ** will become the new first trunk page in the free-list.
6394   */
6395   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6396     goto freepage_out;
6397   }
6398   rc = sqlite3PagerWrite(pPage->pDbPage);
6399   if( rc!=SQLITE_OK ){
6400     goto freepage_out;
6401   }
6402   put4byte(pPage->aData, iTrunk);
6403   put4byte(&pPage->aData[4], 0);
6404   put4byte(&pPage1->aData[32], iPage);
6405   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6406 
6407 freepage_out:
6408   if( pPage ){
6409     pPage->isInit = 0;
6410   }
6411   releasePage(pPage);
6412   releasePage(pTrunk);
6413   return rc;
6414 }
6415 static void freePage(MemPage *pPage, int *pRC){
6416   if( (*pRC)==SQLITE_OK ){
6417     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6418   }
6419 }
6420 
6421 /*
6422 ** Free the overflow pages associated with the given Cell.
6423 */
6424 static SQLITE_NOINLINE int clearCellOverflow(
6425   MemPage *pPage,          /* The page that contains the Cell */
6426   unsigned char *pCell,    /* First byte of the Cell */
6427   CellInfo *pInfo          /* Size information about the cell */
6428 ){
6429   BtShared *pBt;
6430   Pgno ovflPgno;
6431   int rc;
6432   int nOvfl;
6433   u32 ovflPageSize;
6434 
6435   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6436   assert( pInfo->nLocal!=pInfo->nPayload );
6437   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6438   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6439   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6440     /* Cell extends past end of page */
6441     return SQLITE_CORRUPT_PAGE(pPage);
6442   }
6443   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6444   pBt = pPage->pBt;
6445   assert( pBt->usableSize > 4 );
6446   ovflPageSize = pBt->usableSize - 4;
6447   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6448   assert( nOvfl>0 ||
6449     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6450   );
6451   while( nOvfl-- ){
6452     Pgno iNext = 0;
6453     MemPage *pOvfl = 0;
6454     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6455       /* 0 is not a legal page number and page 1 cannot be an
6456       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6457       ** file the database must be corrupt. */
6458       return SQLITE_CORRUPT_BKPT;
6459     }
6460     if( nOvfl ){
6461       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6462       if( rc ) return rc;
6463     }
6464 
6465     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6466      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6467     ){
6468       /* There is no reason any cursor should have an outstanding reference
6469       ** to an overflow page belonging to a cell that is being deleted/updated.
6470       ** So if there exists more than one reference to this page, then it
6471       ** must not really be an overflow page and the database must be corrupt.
6472       ** It is helpful to detect this before calling freePage2(), as
6473       ** freePage2() may zero the page contents if secure-delete mode is
6474       ** enabled. If this 'overflow' page happens to be a page that the
6475       ** caller is iterating through or using in some other way, this
6476       ** can be problematic.
6477       */
6478       rc = SQLITE_CORRUPT_BKPT;
6479     }else{
6480       rc = freePage2(pBt, pOvfl, ovflPgno);
6481     }
6482 
6483     if( pOvfl ){
6484       sqlite3PagerUnref(pOvfl->pDbPage);
6485     }
6486     if( rc ) return rc;
6487     ovflPgno = iNext;
6488   }
6489   return SQLITE_OK;
6490 }
6491 
6492 /* Call xParseCell to compute the size of a cell.  If the cell contains
6493 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6494 ** STore the result code (SQLITE_OK or some error code) in rc.
6495 **
6496 ** Implemented as macro to force inlining for performance.
6497 */
6498 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6499   pPage->xParseCell(pPage, pCell, &sInfo);          \
6500   if( sInfo.nLocal!=sInfo.nPayload ){               \
6501     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6502   }else{                                            \
6503     rc = SQLITE_OK;                                 \
6504   }
6505 
6506 
6507 /*
6508 ** Create the byte sequence used to represent a cell on page pPage
6509 ** and write that byte sequence into pCell[].  Overflow pages are
6510 ** allocated and filled in as necessary.  The calling procedure
6511 ** is responsible for making sure sufficient space has been allocated
6512 ** for pCell[].
6513 **
6514 ** Note that pCell does not necessary need to point to the pPage->aData
6515 ** area.  pCell might point to some temporary storage.  The cell will
6516 ** be constructed in this temporary area then copied into pPage->aData
6517 ** later.
6518 */
6519 static int fillInCell(
6520   MemPage *pPage,                /* The page that contains the cell */
6521   unsigned char *pCell,          /* Complete text of the cell */
6522   const BtreePayload *pX,        /* Payload with which to construct the cell */
6523   int *pnSize                    /* Write cell size here */
6524 ){
6525   int nPayload;
6526   const u8 *pSrc;
6527   int nSrc, n, rc, mn;
6528   int spaceLeft;
6529   MemPage *pToRelease;
6530   unsigned char *pPrior;
6531   unsigned char *pPayload;
6532   BtShared *pBt;
6533   Pgno pgnoOvfl;
6534   int nHeader;
6535 
6536   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6537 
6538   /* pPage is not necessarily writeable since pCell might be auxiliary
6539   ** buffer space that is separate from the pPage buffer area */
6540   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6541             || sqlite3PagerIswriteable(pPage->pDbPage) );
6542 
6543   /* Fill in the header. */
6544   nHeader = pPage->childPtrSize;
6545   if( pPage->intKey ){
6546     nPayload = pX->nData + pX->nZero;
6547     pSrc = pX->pData;
6548     nSrc = pX->nData;
6549     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6550     nHeader += putVarint32(&pCell[nHeader], nPayload);
6551     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6552   }else{
6553     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6554     nSrc = nPayload = (int)pX->nKey;
6555     pSrc = pX->pKey;
6556     nHeader += putVarint32(&pCell[nHeader], nPayload);
6557   }
6558 
6559   /* Fill in the payload */
6560   pPayload = &pCell[nHeader];
6561   if( nPayload<=pPage->maxLocal ){
6562     /* This is the common case where everything fits on the btree page
6563     ** and no overflow pages are required. */
6564     n = nHeader + nPayload;
6565     testcase( n==3 );
6566     testcase( n==4 );
6567     if( n<4 ) n = 4;
6568     *pnSize = n;
6569     assert( nSrc<=nPayload );
6570     testcase( nSrc<nPayload );
6571     memcpy(pPayload, pSrc, nSrc);
6572     memset(pPayload+nSrc, 0, nPayload-nSrc);
6573     return SQLITE_OK;
6574   }
6575 
6576   /* If we reach this point, it means that some of the content will need
6577   ** to spill onto overflow pages.
6578   */
6579   mn = pPage->minLocal;
6580   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6581   testcase( n==pPage->maxLocal );
6582   testcase( n==pPage->maxLocal+1 );
6583   if( n > pPage->maxLocal ) n = mn;
6584   spaceLeft = n;
6585   *pnSize = n + nHeader + 4;
6586   pPrior = &pCell[nHeader+n];
6587   pToRelease = 0;
6588   pgnoOvfl = 0;
6589   pBt = pPage->pBt;
6590 
6591   /* At this point variables should be set as follows:
6592   **
6593   **   nPayload           Total payload size in bytes
6594   **   pPayload           Begin writing payload here
6595   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6596   **                      that means content must spill into overflow pages.
6597   **   *pnSize            Size of the local cell (not counting overflow pages)
6598   **   pPrior             Where to write the pgno of the first overflow page
6599   **
6600   ** Use a call to btreeParseCellPtr() to verify that the values above
6601   ** were computed correctly.
6602   */
6603 #ifdef SQLITE_DEBUG
6604   {
6605     CellInfo info;
6606     pPage->xParseCell(pPage, pCell, &info);
6607     assert( nHeader==(int)(info.pPayload - pCell) );
6608     assert( info.nKey==pX->nKey );
6609     assert( *pnSize == info.nSize );
6610     assert( spaceLeft == info.nLocal );
6611   }
6612 #endif
6613 
6614   /* Write the payload into the local Cell and any extra into overflow pages */
6615   while( 1 ){
6616     n = nPayload;
6617     if( n>spaceLeft ) n = spaceLeft;
6618 
6619     /* If pToRelease is not zero than pPayload points into the data area
6620     ** of pToRelease.  Make sure pToRelease is still writeable. */
6621     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6622 
6623     /* If pPayload is part of the data area of pPage, then make sure pPage
6624     ** is still writeable */
6625     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6626             || sqlite3PagerIswriteable(pPage->pDbPage) );
6627 
6628     if( nSrc>=n ){
6629       memcpy(pPayload, pSrc, n);
6630     }else if( nSrc>0 ){
6631       n = nSrc;
6632       memcpy(pPayload, pSrc, n);
6633     }else{
6634       memset(pPayload, 0, n);
6635     }
6636     nPayload -= n;
6637     if( nPayload<=0 ) break;
6638     pPayload += n;
6639     pSrc += n;
6640     nSrc -= n;
6641     spaceLeft -= n;
6642     if( spaceLeft==0 ){
6643       MemPage *pOvfl = 0;
6644 #ifndef SQLITE_OMIT_AUTOVACUUM
6645       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6646       if( pBt->autoVacuum ){
6647         do{
6648           pgnoOvfl++;
6649         } while(
6650           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6651         );
6652       }
6653 #endif
6654       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6655 #ifndef SQLITE_OMIT_AUTOVACUUM
6656       /* If the database supports auto-vacuum, and the second or subsequent
6657       ** overflow page is being allocated, add an entry to the pointer-map
6658       ** for that page now.
6659       **
6660       ** If this is the first overflow page, then write a partial entry
6661       ** to the pointer-map. If we write nothing to this pointer-map slot,
6662       ** then the optimistic overflow chain processing in clearCell()
6663       ** may misinterpret the uninitialized values and delete the
6664       ** wrong pages from the database.
6665       */
6666       if( pBt->autoVacuum && rc==SQLITE_OK ){
6667         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6668         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6669         if( rc ){
6670           releasePage(pOvfl);
6671         }
6672       }
6673 #endif
6674       if( rc ){
6675         releasePage(pToRelease);
6676         return rc;
6677       }
6678 
6679       /* If pToRelease is not zero than pPrior points into the data area
6680       ** of pToRelease.  Make sure pToRelease is still writeable. */
6681       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6682 
6683       /* If pPrior is part of the data area of pPage, then make sure pPage
6684       ** is still writeable */
6685       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6686             || sqlite3PagerIswriteable(pPage->pDbPage) );
6687 
6688       put4byte(pPrior, pgnoOvfl);
6689       releasePage(pToRelease);
6690       pToRelease = pOvfl;
6691       pPrior = pOvfl->aData;
6692       put4byte(pPrior, 0);
6693       pPayload = &pOvfl->aData[4];
6694       spaceLeft = pBt->usableSize - 4;
6695     }
6696   }
6697   releasePage(pToRelease);
6698   return SQLITE_OK;
6699 }
6700 
6701 /*
6702 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6703 ** The cell content is not freed or deallocated.  It is assumed that
6704 ** the cell content has been copied someplace else.  This routine just
6705 ** removes the reference to the cell from pPage.
6706 **
6707 ** "sz" must be the number of bytes in the cell.
6708 */
6709 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6710   u32 pc;         /* Offset to cell content of cell being deleted */
6711   u8 *data;       /* pPage->aData */
6712   u8 *ptr;        /* Used to move bytes around within data[] */
6713   int rc;         /* The return code */
6714   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6715 
6716   if( *pRC ) return;
6717   assert( idx>=0 && idx<pPage->nCell );
6718   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6719   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6720   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6721   assert( pPage->nFree>=0 );
6722   data = pPage->aData;
6723   ptr = &pPage->aCellIdx[2*idx];
6724   pc = get2byte(ptr);
6725   hdr = pPage->hdrOffset;
6726   testcase( pc==get2byte(&data[hdr+5]) );
6727   testcase( pc+sz==pPage->pBt->usableSize );
6728   if( pc+sz > pPage->pBt->usableSize ){
6729     *pRC = SQLITE_CORRUPT_BKPT;
6730     return;
6731   }
6732   rc = freeSpace(pPage, pc, sz);
6733   if( rc ){
6734     *pRC = rc;
6735     return;
6736   }
6737   pPage->nCell--;
6738   if( pPage->nCell==0 ){
6739     memset(&data[hdr+1], 0, 4);
6740     data[hdr+7] = 0;
6741     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6742     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6743                        - pPage->childPtrSize - 8;
6744   }else{
6745     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6746     put2byte(&data[hdr+3], pPage->nCell);
6747     pPage->nFree += 2;
6748   }
6749 }
6750 
6751 /*
6752 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6753 ** content of the cell.
6754 **
6755 ** If the cell content will fit on the page, then put it there.  If it
6756 ** will not fit, then make a copy of the cell content into pTemp if
6757 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6758 ** in pPage->apOvfl[] and make it point to the cell content (either
6759 ** in pTemp or the original pCell) and also record its index.
6760 ** Allocating a new entry in pPage->aCell[] implies that
6761 ** pPage->nOverflow is incremented.
6762 **
6763 ** *pRC must be SQLITE_OK when this routine is called.
6764 */
6765 static void insertCell(
6766   MemPage *pPage,   /* Page into which we are copying */
6767   int i,            /* New cell becomes the i-th cell of the page */
6768   u8 *pCell,        /* Content of the new cell */
6769   int sz,           /* Bytes of content in pCell */
6770   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6771   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6772   int *pRC          /* Read and write return code from here */
6773 ){
6774   int idx = 0;      /* Where to write new cell content in data[] */
6775   int j;            /* Loop counter */
6776   u8 *data;         /* The content of the whole page */
6777   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6778 
6779   assert( *pRC==SQLITE_OK );
6780   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6781   assert( MX_CELL(pPage->pBt)<=10921 );
6782   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6783   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6784   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6785   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6786   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6787   assert( pPage->nFree>=0 );
6788   if( pPage->nOverflow || sz+2>pPage->nFree ){
6789     if( pTemp ){
6790       memcpy(pTemp, pCell, sz);
6791       pCell = pTemp;
6792     }
6793     if( iChild ){
6794       put4byte(pCell, iChild);
6795     }
6796     j = pPage->nOverflow++;
6797     /* Comparison against ArraySize-1 since we hold back one extra slot
6798     ** as a contingency.  In other words, never need more than 3 overflow
6799     ** slots but 4 are allocated, just to be safe. */
6800     assert( j < ArraySize(pPage->apOvfl)-1 );
6801     pPage->apOvfl[j] = pCell;
6802     pPage->aiOvfl[j] = (u16)i;
6803 
6804     /* When multiple overflows occur, they are always sequential and in
6805     ** sorted order.  This invariants arise because multiple overflows can
6806     ** only occur when inserting divider cells into the parent page during
6807     ** balancing, and the dividers are adjacent and sorted.
6808     */
6809     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6810     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6811   }else{
6812     int rc = sqlite3PagerWrite(pPage->pDbPage);
6813     if( rc!=SQLITE_OK ){
6814       *pRC = rc;
6815       return;
6816     }
6817     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6818     data = pPage->aData;
6819     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6820     rc = allocateSpace(pPage, sz, &idx);
6821     if( rc ){ *pRC = rc; return; }
6822     /* The allocateSpace() routine guarantees the following properties
6823     ** if it returns successfully */
6824     assert( idx >= 0 );
6825     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6826     assert( idx+sz <= (int)pPage->pBt->usableSize );
6827     pPage->nFree -= (u16)(2 + sz);
6828     if( iChild ){
6829       /* In a corrupt database where an entry in the cell index section of
6830       ** a btree page has a value of 3 or less, the pCell value might point
6831       ** as many as 4 bytes in front of the start of the aData buffer for
6832       ** the source page.  Make sure this does not cause problems by not
6833       ** reading the first 4 bytes */
6834       memcpy(&data[idx+4], pCell+4, sz-4);
6835       put4byte(&data[idx], iChild);
6836     }else{
6837       memcpy(&data[idx], pCell, sz);
6838     }
6839     pIns = pPage->aCellIdx + i*2;
6840     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6841     put2byte(pIns, idx);
6842     pPage->nCell++;
6843     /* increment the cell count */
6844     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6845     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6846 #ifndef SQLITE_OMIT_AUTOVACUUM
6847     if( pPage->pBt->autoVacuum ){
6848       /* The cell may contain a pointer to an overflow page. If so, write
6849       ** the entry for the overflow page into the pointer map.
6850       */
6851       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6852     }
6853 #endif
6854   }
6855 }
6856 
6857 /*
6858 ** The following parameters determine how many adjacent pages get involved
6859 ** in a balancing operation.  NN is the number of neighbors on either side
6860 ** of the page that participate in the balancing operation.  NB is the
6861 ** total number of pages that participate, including the target page and
6862 ** NN neighbors on either side.
6863 **
6864 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6865 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6866 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6867 ** The value of NN appears to give the best results overall.
6868 **
6869 ** (Later:) The description above makes it seem as if these values are
6870 ** tunable - as if you could change them and recompile and it would all work.
6871 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6872 ** we have never tested any other value.
6873 */
6874 #define NN 1             /* Number of neighbors on either side of pPage */
6875 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6876 
6877 /*
6878 ** A CellArray object contains a cache of pointers and sizes for a
6879 ** consecutive sequence of cells that might be held on multiple pages.
6880 **
6881 ** The cells in this array are the divider cell or cells from the pParent
6882 ** page plus up to three child pages.  There are a total of nCell cells.
6883 **
6884 ** pRef is a pointer to one of the pages that contributes cells.  This is
6885 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6886 ** which should be common to all pages that contribute cells to this array.
6887 **
6888 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6889 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6890 ** to overflow cells.  In other words, some apCel[] pointers might not point
6891 ** to content area of the pages.
6892 **
6893 ** A szCell[] of zero means the size of that cell has not yet been computed.
6894 **
6895 ** The cells come from as many as four different pages:
6896 **
6897 **             -----------
6898 **             | Parent  |
6899 **             -----------
6900 **            /     |     \
6901 **           /      |      \
6902 **  ---------   ---------   ---------
6903 **  |Child-1|   |Child-2|   |Child-3|
6904 **  ---------   ---------   ---------
6905 **
6906 ** The order of cells is in the array is for an index btree is:
6907 **
6908 **       1.  All cells from Child-1 in order
6909 **       2.  The first divider cell from Parent
6910 **       3.  All cells from Child-2 in order
6911 **       4.  The second divider cell from Parent
6912 **       5.  All cells from Child-3 in order
6913 **
6914 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6915 ** content exists only in leaves and there are no divider cells.
6916 **
6917 ** For an index btree, the apEnd[] array holds pointer to the end of page
6918 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6919 ** respectively. The ixNx[] array holds the number of cells contained in
6920 ** each of these 5 stages, and all stages to the left.  Hence:
6921 **
6922 **    ixNx[0] = Number of cells in Child-1.
6923 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6924 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6925 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6926 **    ixNx[4] = Total number of cells.
6927 **
6928 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6929 ** are used and they point to the leaf pages only, and the ixNx value are:
6930 **
6931 **    ixNx[0] = Number of cells in Child-1.
6932 **    ixNx[1] = Number of cells in Child-1 and Child-2.
6933 **    ixNx[2] = Total number of cells.
6934 **
6935 ** Sometimes when deleting, a child page can have zero cells.  In those
6936 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6937 ** entries, shift down.  The end result is that each ixNx[] entry should
6938 ** be larger than the previous
6939 */
6940 typedef struct CellArray CellArray;
6941 struct CellArray {
6942   int nCell;              /* Number of cells in apCell[] */
6943   MemPage *pRef;          /* Reference page */
6944   u8 **apCell;            /* All cells begin balanced */
6945   u16 *szCell;            /* Local size of all cells in apCell[] */
6946   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
6947   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
6948 };
6949 
6950 /*
6951 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6952 ** computed.
6953 */
6954 static void populateCellCache(CellArray *p, int idx, int N){
6955   assert( idx>=0 && idx+N<=p->nCell );
6956   while( N>0 ){
6957     assert( p->apCell[idx]!=0 );
6958     if( p->szCell[idx]==0 ){
6959       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6960     }else{
6961       assert( CORRUPT_DB ||
6962               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6963     }
6964     idx++;
6965     N--;
6966   }
6967 }
6968 
6969 /*
6970 ** Return the size of the Nth element of the cell array
6971 */
6972 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6973   assert( N>=0 && N<p->nCell );
6974   assert( p->szCell[N]==0 );
6975   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6976   return p->szCell[N];
6977 }
6978 static u16 cachedCellSize(CellArray *p, int N){
6979   assert( N>=0 && N<p->nCell );
6980   if( p->szCell[N] ) return p->szCell[N];
6981   return computeCellSize(p, N);
6982 }
6983 
6984 /*
6985 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6986 ** szCell[] array contains the size in bytes of each cell. This function
6987 ** replaces the current contents of page pPg with the contents of the cell
6988 ** array.
6989 **
6990 ** Some of the cells in apCell[] may currently be stored in pPg. This
6991 ** function works around problems caused by this by making a copy of any
6992 ** such cells before overwriting the page data.
6993 **
6994 ** The MemPage.nFree field is invalidated by this function. It is the
6995 ** responsibility of the caller to set it correctly.
6996 */
6997 static int rebuildPage(
6998   CellArray *pCArray,             /* Content to be added to page pPg */
6999   int iFirst,                     /* First cell in pCArray to use */
7000   int nCell,                      /* Final number of cells on page */
7001   MemPage *pPg                    /* The page to be reconstructed */
7002 ){
7003   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7004   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7005   const int usableSize = pPg->pBt->usableSize;
7006   u8 * const pEnd = &aData[usableSize];
7007   int i = iFirst;                 /* Which cell to copy from pCArray*/
7008   u32 j;                          /* Start of cell content area */
7009   int iEnd = i+nCell;             /* Loop terminator */
7010   u8 *pCellptr = pPg->aCellIdx;
7011   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7012   u8 *pData;
7013   int k;                          /* Current slot in pCArray->apEnd[] */
7014   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7015 
7016   assert( i<iEnd );
7017   j = get2byte(&aData[hdr+5]);
7018   if( NEVER(j>(u32)usableSize) ){ j = 0; }
7019   memcpy(&pTmp[j], &aData[j], usableSize - j);
7020 
7021   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7022   pSrcEnd = pCArray->apEnd[k];
7023 
7024   pData = pEnd;
7025   while( 1/*exit by break*/ ){
7026     u8 *pCell = pCArray->apCell[i];
7027     u16 sz = pCArray->szCell[i];
7028     assert( sz>0 );
7029     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7030       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7031       pCell = &pTmp[pCell - aData];
7032     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7033            && (uptr)(pCell)<(uptr)pSrcEnd
7034     ){
7035       return SQLITE_CORRUPT_BKPT;
7036     }
7037 
7038     pData -= sz;
7039     put2byte(pCellptr, (pData - aData));
7040     pCellptr += 2;
7041     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7042     memmove(pData, pCell, sz);
7043     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7044     i++;
7045     if( i>=iEnd ) break;
7046     if( pCArray->ixNx[k]<=i ){
7047       k++;
7048       pSrcEnd = pCArray->apEnd[k];
7049     }
7050   }
7051 
7052   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7053   pPg->nCell = nCell;
7054   pPg->nOverflow = 0;
7055 
7056   put2byte(&aData[hdr+1], 0);
7057   put2byte(&aData[hdr+3], pPg->nCell);
7058   put2byte(&aData[hdr+5], pData - aData);
7059   aData[hdr+7] = 0x00;
7060   return SQLITE_OK;
7061 }
7062 
7063 /*
7064 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7065 ** This function attempts to add the cells stored in the array to page pPg.
7066 ** If it cannot (because the page needs to be defragmented before the cells
7067 ** will fit), non-zero is returned. Otherwise, if the cells are added
7068 ** successfully, zero is returned.
7069 **
7070 ** Argument pCellptr points to the first entry in the cell-pointer array
7071 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7072 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7073 ** cell in the array. It is the responsibility of the caller to ensure
7074 ** that it is safe to overwrite this part of the cell-pointer array.
7075 **
7076 ** When this function is called, *ppData points to the start of the
7077 ** content area on page pPg. If the size of the content area is extended,
7078 ** *ppData is updated to point to the new start of the content area
7079 ** before returning.
7080 **
7081 ** Finally, argument pBegin points to the byte immediately following the
7082 ** end of the space required by this page for the cell-pointer area (for
7083 ** all cells - not just those inserted by the current call). If the content
7084 ** area must be extended to before this point in order to accomodate all
7085 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7086 */
7087 static int pageInsertArray(
7088   MemPage *pPg,                   /* Page to add cells to */
7089   u8 *pBegin,                     /* End of cell-pointer array */
7090   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7091   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7092   int iFirst,                     /* Index of first cell to add */
7093   int nCell,                      /* Number of cells to add to pPg */
7094   CellArray *pCArray              /* Array of cells */
7095 ){
7096   int i = iFirst;                 /* Loop counter - cell index to insert */
7097   u8 *aData = pPg->aData;         /* Complete page */
7098   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7099   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7100   int k;                          /* Current slot in pCArray->apEnd[] */
7101   u8 *pEnd;                       /* Maximum extent of cell data */
7102   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7103   if( iEnd<=iFirst ) return 0;
7104   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7105   pEnd = pCArray->apEnd[k];
7106   while( 1 /*Exit by break*/ ){
7107     int sz, rc;
7108     u8 *pSlot;
7109     assert( pCArray->szCell[i]!=0 );
7110     sz = pCArray->szCell[i];
7111     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7112       if( (pData - pBegin)<sz ) return 1;
7113       pData -= sz;
7114       pSlot = pData;
7115     }
7116     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7117     ** database.  But they might for a corrupt database.  Hence use memmove()
7118     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7119     assert( (pSlot+sz)<=pCArray->apCell[i]
7120          || pSlot>=(pCArray->apCell[i]+sz)
7121          || CORRUPT_DB );
7122     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7123      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7124     ){
7125       assert( CORRUPT_DB );
7126       (void)SQLITE_CORRUPT_BKPT;
7127       return 1;
7128     }
7129     memmove(pSlot, pCArray->apCell[i], sz);
7130     put2byte(pCellptr, (pSlot - aData));
7131     pCellptr += 2;
7132     i++;
7133     if( i>=iEnd ) break;
7134     if( pCArray->ixNx[k]<=i ){
7135       k++;
7136       pEnd = pCArray->apEnd[k];
7137     }
7138   }
7139   *ppData = pData;
7140   return 0;
7141 }
7142 
7143 /*
7144 ** The pCArray object contains pointers to b-tree cells and their sizes.
7145 **
7146 ** This function adds the space associated with each cell in the array
7147 ** that is currently stored within the body of pPg to the pPg free-list.
7148 ** The cell-pointers and other fields of the page are not updated.
7149 **
7150 ** This function returns the total number of cells added to the free-list.
7151 */
7152 static int pageFreeArray(
7153   MemPage *pPg,                   /* Page to edit */
7154   int iFirst,                     /* First cell to delete */
7155   int nCell,                      /* Cells to delete */
7156   CellArray *pCArray              /* Array of cells */
7157 ){
7158   u8 * const aData = pPg->aData;
7159   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7160   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7161   int nRet = 0;
7162   int i;
7163   int iEnd = iFirst + nCell;
7164   u8 *pFree = 0;
7165   int szFree = 0;
7166 
7167   for(i=iFirst; i<iEnd; i++){
7168     u8 *pCell = pCArray->apCell[i];
7169     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7170       int sz;
7171       /* No need to use cachedCellSize() here.  The sizes of all cells that
7172       ** are to be freed have already been computing while deciding which
7173       ** cells need freeing */
7174       sz = pCArray->szCell[i];  assert( sz>0 );
7175       if( pFree!=(pCell + sz) ){
7176         if( pFree ){
7177           assert( pFree>aData && (pFree - aData)<65536 );
7178           freeSpace(pPg, (u16)(pFree - aData), szFree);
7179         }
7180         pFree = pCell;
7181         szFree = sz;
7182         if( pFree+sz>pEnd ){
7183           return 0;
7184         }
7185       }else{
7186         pFree = pCell;
7187         szFree += sz;
7188       }
7189       nRet++;
7190     }
7191   }
7192   if( pFree ){
7193     assert( pFree>aData && (pFree - aData)<65536 );
7194     freeSpace(pPg, (u16)(pFree - aData), szFree);
7195   }
7196   return nRet;
7197 }
7198 
7199 /*
7200 ** pCArray contains pointers to and sizes of all cells in the page being
7201 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7202 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7203 ** starting at apCell[iNew].
7204 **
7205 ** This routine makes the necessary adjustments to pPg so that it contains
7206 ** the correct cells after being balanced.
7207 **
7208 ** The pPg->nFree field is invalid when this function returns. It is the
7209 ** responsibility of the caller to set it correctly.
7210 */
7211 static int editPage(
7212   MemPage *pPg,                   /* Edit this page */
7213   int iOld,                       /* Index of first cell currently on page */
7214   int iNew,                       /* Index of new first cell on page */
7215   int nNew,                       /* Final number of cells on page */
7216   CellArray *pCArray              /* Array of cells and sizes */
7217 ){
7218   u8 * const aData = pPg->aData;
7219   const int hdr = pPg->hdrOffset;
7220   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7221   int nCell = pPg->nCell;       /* Cells stored on pPg */
7222   u8 *pData;
7223   u8 *pCellptr;
7224   int i;
7225   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7226   int iNewEnd = iNew + nNew;
7227 
7228 #ifdef SQLITE_DEBUG
7229   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7230   memcpy(pTmp, aData, pPg->pBt->usableSize);
7231 #endif
7232 
7233   /* Remove cells from the start and end of the page */
7234   assert( nCell>=0 );
7235   if( iOld<iNew ){
7236     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7237     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7238     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7239     nCell -= nShift;
7240   }
7241   if( iNewEnd < iOldEnd ){
7242     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7243     assert( nCell>=nTail );
7244     nCell -= nTail;
7245   }
7246 
7247   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7248   if( pData<pBegin ) goto editpage_fail;
7249 
7250   /* Add cells to the start of the page */
7251   if( iNew<iOld ){
7252     int nAdd = MIN(nNew,iOld-iNew);
7253     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7254     assert( nAdd>=0 );
7255     pCellptr = pPg->aCellIdx;
7256     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7257     if( pageInsertArray(
7258           pPg, pBegin, &pData, pCellptr,
7259           iNew, nAdd, pCArray
7260     ) ) goto editpage_fail;
7261     nCell += nAdd;
7262   }
7263 
7264   /* Add any overflow cells */
7265   for(i=0; i<pPg->nOverflow; i++){
7266     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7267     if( iCell>=0 && iCell<nNew ){
7268       pCellptr = &pPg->aCellIdx[iCell * 2];
7269       if( nCell>iCell ){
7270         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7271       }
7272       nCell++;
7273       cachedCellSize(pCArray, iCell+iNew);
7274       if( pageInsertArray(
7275             pPg, pBegin, &pData, pCellptr,
7276             iCell+iNew, 1, pCArray
7277       ) ) goto editpage_fail;
7278     }
7279   }
7280 
7281   /* Append cells to the end of the page */
7282   assert( nCell>=0 );
7283   pCellptr = &pPg->aCellIdx[nCell*2];
7284   if( pageInsertArray(
7285         pPg, pBegin, &pData, pCellptr,
7286         iNew+nCell, nNew-nCell, pCArray
7287   ) ) goto editpage_fail;
7288 
7289   pPg->nCell = nNew;
7290   pPg->nOverflow = 0;
7291 
7292   put2byte(&aData[hdr+3], pPg->nCell);
7293   put2byte(&aData[hdr+5], pData - aData);
7294 
7295 #ifdef SQLITE_DEBUG
7296   for(i=0; i<nNew && !CORRUPT_DB; i++){
7297     u8 *pCell = pCArray->apCell[i+iNew];
7298     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7299     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7300       pCell = &pTmp[pCell - aData];
7301     }
7302     assert( 0==memcmp(pCell, &aData[iOff],
7303             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7304   }
7305 #endif
7306 
7307   return SQLITE_OK;
7308  editpage_fail:
7309   /* Unable to edit this page. Rebuild it from scratch instead. */
7310   populateCellCache(pCArray, iNew, nNew);
7311   return rebuildPage(pCArray, iNew, nNew, pPg);
7312 }
7313 
7314 
7315 #ifndef SQLITE_OMIT_QUICKBALANCE
7316 /*
7317 ** This version of balance() handles the common special case where
7318 ** a new entry is being inserted on the extreme right-end of the
7319 ** tree, in other words, when the new entry will become the largest
7320 ** entry in the tree.
7321 **
7322 ** Instead of trying to balance the 3 right-most leaf pages, just add
7323 ** a new page to the right-hand side and put the one new entry in
7324 ** that page.  This leaves the right side of the tree somewhat
7325 ** unbalanced.  But odds are that we will be inserting new entries
7326 ** at the end soon afterwards so the nearly empty page will quickly
7327 ** fill up.  On average.
7328 **
7329 ** pPage is the leaf page which is the right-most page in the tree.
7330 ** pParent is its parent.  pPage must have a single overflow entry
7331 ** which is also the right-most entry on the page.
7332 **
7333 ** The pSpace buffer is used to store a temporary copy of the divider
7334 ** cell that will be inserted into pParent. Such a cell consists of a 4
7335 ** byte page number followed by a variable length integer. In other
7336 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7337 ** least 13 bytes in size.
7338 */
7339 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7340   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7341   MemPage *pNew;                       /* Newly allocated page */
7342   int rc;                              /* Return Code */
7343   Pgno pgnoNew;                        /* Page number of pNew */
7344 
7345   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7346   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7347   assert( pPage->nOverflow==1 );
7348 
7349   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7350   assert( pPage->nFree>=0 );
7351   assert( pParent->nFree>=0 );
7352 
7353   /* Allocate a new page. This page will become the right-sibling of
7354   ** pPage. Make the parent page writable, so that the new divider cell
7355   ** may be inserted. If both these operations are successful, proceed.
7356   */
7357   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7358 
7359   if( rc==SQLITE_OK ){
7360 
7361     u8 *pOut = &pSpace[4];
7362     u8 *pCell = pPage->apOvfl[0];
7363     u16 szCell = pPage->xCellSize(pPage, pCell);
7364     u8 *pStop;
7365     CellArray b;
7366 
7367     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7368     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7369     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7370     b.nCell = 1;
7371     b.pRef = pPage;
7372     b.apCell = &pCell;
7373     b.szCell = &szCell;
7374     b.apEnd[0] = pPage->aDataEnd;
7375     b.ixNx[0] = 2;
7376     rc = rebuildPage(&b, 0, 1, pNew);
7377     if( NEVER(rc) ){
7378       releasePage(pNew);
7379       return rc;
7380     }
7381     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7382 
7383     /* If this is an auto-vacuum database, update the pointer map
7384     ** with entries for the new page, and any pointer from the
7385     ** cell on the page to an overflow page. If either of these
7386     ** operations fails, the return code is set, but the contents
7387     ** of the parent page are still manipulated by thh code below.
7388     ** That is Ok, at this point the parent page is guaranteed to
7389     ** be marked as dirty. Returning an error code will cause a
7390     ** rollback, undoing any changes made to the parent page.
7391     */
7392     if( ISAUTOVACUUM ){
7393       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7394       if( szCell>pNew->minLocal ){
7395         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7396       }
7397     }
7398 
7399     /* Create a divider cell to insert into pParent. The divider cell
7400     ** consists of a 4-byte page number (the page number of pPage) and
7401     ** a variable length key value (which must be the same value as the
7402     ** largest key on pPage).
7403     **
7404     ** To find the largest key value on pPage, first find the right-most
7405     ** cell on pPage. The first two fields of this cell are the
7406     ** record-length (a variable length integer at most 32-bits in size)
7407     ** and the key value (a variable length integer, may have any value).
7408     ** The first of the while(...) loops below skips over the record-length
7409     ** field. The second while(...) loop copies the key value from the
7410     ** cell on pPage into the pSpace buffer.
7411     */
7412     pCell = findCell(pPage, pPage->nCell-1);
7413     pStop = &pCell[9];
7414     while( (*(pCell++)&0x80) && pCell<pStop );
7415     pStop = &pCell[9];
7416     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7417 
7418     /* Insert the new divider cell into pParent. */
7419     if( rc==SQLITE_OK ){
7420       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7421                    0, pPage->pgno, &rc);
7422     }
7423 
7424     /* Set the right-child pointer of pParent to point to the new page. */
7425     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7426 
7427     /* Release the reference to the new page. */
7428     releasePage(pNew);
7429   }
7430 
7431   return rc;
7432 }
7433 #endif /* SQLITE_OMIT_QUICKBALANCE */
7434 
7435 #if 0
7436 /*
7437 ** This function does not contribute anything to the operation of SQLite.
7438 ** it is sometimes activated temporarily while debugging code responsible
7439 ** for setting pointer-map entries.
7440 */
7441 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7442   int i, j;
7443   for(i=0; i<nPage; i++){
7444     Pgno n;
7445     u8 e;
7446     MemPage *pPage = apPage[i];
7447     BtShared *pBt = pPage->pBt;
7448     assert( pPage->isInit );
7449 
7450     for(j=0; j<pPage->nCell; j++){
7451       CellInfo info;
7452       u8 *z;
7453 
7454       z = findCell(pPage, j);
7455       pPage->xParseCell(pPage, z, &info);
7456       if( info.nLocal<info.nPayload ){
7457         Pgno ovfl = get4byte(&z[info.nSize-4]);
7458         ptrmapGet(pBt, ovfl, &e, &n);
7459         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7460       }
7461       if( !pPage->leaf ){
7462         Pgno child = get4byte(z);
7463         ptrmapGet(pBt, child, &e, &n);
7464         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7465       }
7466     }
7467     if( !pPage->leaf ){
7468       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7469       ptrmapGet(pBt, child, &e, &n);
7470       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7471     }
7472   }
7473   return 1;
7474 }
7475 #endif
7476 
7477 /*
7478 ** This function is used to copy the contents of the b-tree node stored
7479 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7480 ** the pointer-map entries for each child page are updated so that the
7481 ** parent page stored in the pointer map is page pTo. If pFrom contained
7482 ** any cells with overflow page pointers, then the corresponding pointer
7483 ** map entries are also updated so that the parent page is page pTo.
7484 **
7485 ** If pFrom is currently carrying any overflow cells (entries in the
7486 ** MemPage.apOvfl[] array), they are not copied to pTo.
7487 **
7488 ** Before returning, page pTo is reinitialized using btreeInitPage().
7489 **
7490 ** The performance of this function is not critical. It is only used by
7491 ** the balance_shallower() and balance_deeper() procedures, neither of
7492 ** which are called often under normal circumstances.
7493 */
7494 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7495   if( (*pRC)==SQLITE_OK ){
7496     BtShared * const pBt = pFrom->pBt;
7497     u8 * const aFrom = pFrom->aData;
7498     u8 * const aTo = pTo->aData;
7499     int const iFromHdr = pFrom->hdrOffset;
7500     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7501     int rc;
7502     int iData;
7503 
7504 
7505     assert( pFrom->isInit );
7506     assert( pFrom->nFree>=iToHdr );
7507     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7508 
7509     /* Copy the b-tree node content from page pFrom to page pTo. */
7510     iData = get2byte(&aFrom[iFromHdr+5]);
7511     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7512     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7513 
7514     /* Reinitialize page pTo so that the contents of the MemPage structure
7515     ** match the new data. The initialization of pTo can actually fail under
7516     ** fairly obscure circumstances, even though it is a copy of initialized
7517     ** page pFrom.
7518     */
7519     pTo->isInit = 0;
7520     rc = btreeInitPage(pTo);
7521     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7522     if( rc!=SQLITE_OK ){
7523       *pRC = rc;
7524       return;
7525     }
7526 
7527     /* If this is an auto-vacuum database, update the pointer-map entries
7528     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7529     */
7530     if( ISAUTOVACUUM ){
7531       *pRC = setChildPtrmaps(pTo);
7532     }
7533   }
7534 }
7535 
7536 /*
7537 ** This routine redistributes cells on the iParentIdx'th child of pParent
7538 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7539 ** same amount of free space. Usually a single sibling on either side of the
7540 ** page are used in the balancing, though both siblings might come from one
7541 ** side if the page is the first or last child of its parent. If the page
7542 ** has fewer than 2 siblings (something which can only happen if the page
7543 ** is a root page or a child of a root page) then all available siblings
7544 ** participate in the balancing.
7545 **
7546 ** The number of siblings of the page might be increased or decreased by
7547 ** one or two in an effort to keep pages nearly full but not over full.
7548 **
7549 ** Note that when this routine is called, some of the cells on the page
7550 ** might not actually be stored in MemPage.aData[]. This can happen
7551 ** if the page is overfull. This routine ensures that all cells allocated
7552 ** to the page and its siblings fit into MemPage.aData[] before returning.
7553 **
7554 ** In the course of balancing the page and its siblings, cells may be
7555 ** inserted into or removed from the parent page (pParent). Doing so
7556 ** may cause the parent page to become overfull or underfull. If this
7557 ** happens, it is the responsibility of the caller to invoke the correct
7558 ** balancing routine to fix this problem (see the balance() routine).
7559 **
7560 ** If this routine fails for any reason, it might leave the database
7561 ** in a corrupted state. So if this routine fails, the database should
7562 ** be rolled back.
7563 **
7564 ** The third argument to this function, aOvflSpace, is a pointer to a
7565 ** buffer big enough to hold one page. If while inserting cells into the parent
7566 ** page (pParent) the parent page becomes overfull, this buffer is
7567 ** used to store the parent's overflow cells. Because this function inserts
7568 ** a maximum of four divider cells into the parent page, and the maximum
7569 ** size of a cell stored within an internal node is always less than 1/4
7570 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7571 ** enough for all overflow cells.
7572 **
7573 ** If aOvflSpace is set to a null pointer, this function returns
7574 ** SQLITE_NOMEM.
7575 */
7576 static int balance_nonroot(
7577   MemPage *pParent,               /* Parent page of siblings being balanced */
7578   int iParentIdx,                 /* Index of "the page" in pParent */
7579   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7580   int isRoot,                     /* True if pParent is a root-page */
7581   int bBulk                       /* True if this call is part of a bulk load */
7582 ){
7583   BtShared *pBt;               /* The whole database */
7584   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7585   int nNew = 0;                /* Number of pages in apNew[] */
7586   int nOld;                    /* Number of pages in apOld[] */
7587   int i, j, k;                 /* Loop counters */
7588   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7589   int rc = SQLITE_OK;          /* The return code */
7590   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7591   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7592   int usableSpace;             /* Bytes in pPage beyond the header */
7593   int pageFlags;               /* Value of pPage->aData[0] */
7594   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7595   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7596   int szScratch;               /* Size of scratch memory requested */
7597   MemPage *apOld[NB];          /* pPage and up to two siblings */
7598   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7599   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7600   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7601   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7602   int cntOld[NB+2];            /* Old index in b.apCell[] */
7603   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7604   u8 *aSpace1;                 /* Space for copies of dividers cells */
7605   Pgno pgno;                   /* Temp var to store a page number in */
7606   u8 abDone[NB+2];             /* True after i'th new page is populated */
7607   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7608   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7609   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7610   CellArray b;                  /* Parsed information on cells being balanced */
7611 
7612   memset(abDone, 0, sizeof(abDone));
7613   b.nCell = 0;
7614   b.apCell = 0;
7615   pBt = pParent->pBt;
7616   assert( sqlite3_mutex_held(pBt->mutex) );
7617   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7618 
7619   /* At this point pParent may have at most one overflow cell. And if
7620   ** this overflow cell is present, it must be the cell with
7621   ** index iParentIdx. This scenario comes about when this function
7622   ** is called (indirectly) from sqlite3BtreeDelete().
7623   */
7624   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7625   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7626 
7627   if( !aOvflSpace ){
7628     return SQLITE_NOMEM_BKPT;
7629   }
7630   assert( pParent->nFree>=0 );
7631 
7632   /* Find the sibling pages to balance. Also locate the cells in pParent
7633   ** that divide the siblings. An attempt is made to find NN siblings on
7634   ** either side of pPage. More siblings are taken from one side, however,
7635   ** if there are fewer than NN siblings on the other side. If pParent
7636   ** has NB or fewer children then all children of pParent are taken.
7637   **
7638   ** This loop also drops the divider cells from the parent page. This
7639   ** way, the remainder of the function does not have to deal with any
7640   ** overflow cells in the parent page, since if any existed they will
7641   ** have already been removed.
7642   */
7643   i = pParent->nOverflow + pParent->nCell;
7644   if( i<2 ){
7645     nxDiv = 0;
7646   }else{
7647     assert( bBulk==0 || bBulk==1 );
7648     if( iParentIdx==0 ){
7649       nxDiv = 0;
7650     }else if( iParentIdx==i ){
7651       nxDiv = i-2+bBulk;
7652     }else{
7653       nxDiv = iParentIdx-1;
7654     }
7655     i = 2-bBulk;
7656   }
7657   nOld = i+1;
7658   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7659     pRight = &pParent->aData[pParent->hdrOffset+8];
7660   }else{
7661     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7662   }
7663   pgno = get4byte(pRight);
7664   while( 1 ){
7665     if( rc==SQLITE_OK ){
7666       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7667     }
7668     if( rc ){
7669       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7670       goto balance_cleanup;
7671     }
7672     if( apOld[i]->nFree<0 ){
7673       rc = btreeComputeFreeSpace(apOld[i]);
7674       if( rc ){
7675         memset(apOld, 0, (i)*sizeof(MemPage*));
7676         goto balance_cleanup;
7677       }
7678     }
7679     if( (i--)==0 ) break;
7680 
7681     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7682       apDiv[i] = pParent->apOvfl[0];
7683       pgno = get4byte(apDiv[i]);
7684       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7685       pParent->nOverflow = 0;
7686     }else{
7687       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7688       pgno = get4byte(apDiv[i]);
7689       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7690 
7691       /* Drop the cell from the parent page. apDiv[i] still points to
7692       ** the cell within the parent, even though it has been dropped.
7693       ** This is safe because dropping a cell only overwrites the first
7694       ** four bytes of it, and this function does not need the first
7695       ** four bytes of the divider cell. So the pointer is safe to use
7696       ** later on.
7697       **
7698       ** But not if we are in secure-delete mode. In secure-delete mode,
7699       ** the dropCell() routine will overwrite the entire cell with zeroes.
7700       ** In this case, temporarily copy the cell into the aOvflSpace[]
7701       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7702       ** is allocated.  */
7703       if( pBt->btsFlags & BTS_FAST_SECURE ){
7704         int iOff;
7705 
7706         /* If the following if() condition is not true, the db is corrupted.
7707         ** The call to dropCell() below will detect this.  */
7708         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7709         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7710           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7711           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7712         }
7713       }
7714       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7715     }
7716   }
7717 
7718   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7719   ** alignment */
7720   nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7721   nMaxCells = (nMaxCells + 3)&~3;
7722 
7723   /*
7724   ** Allocate space for memory structures
7725   */
7726   szScratch =
7727        nMaxCells*sizeof(u8*)                       /* b.apCell */
7728      + nMaxCells*sizeof(u16)                       /* b.szCell */
7729      + pBt->pageSize;                              /* aSpace1 */
7730 
7731   assert( szScratch<=7*(int)pBt->pageSize );
7732   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7733   if( b.apCell==0 ){
7734     rc = SQLITE_NOMEM_BKPT;
7735     goto balance_cleanup;
7736   }
7737   b.szCell = (u16*)&b.apCell[nMaxCells];
7738   aSpace1 = (u8*)&b.szCell[nMaxCells];
7739   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7740 
7741   /*
7742   ** Load pointers to all cells on sibling pages and the divider cells
7743   ** into the local b.apCell[] array.  Make copies of the divider cells
7744   ** into space obtained from aSpace1[]. The divider cells have already
7745   ** been removed from pParent.
7746   **
7747   ** If the siblings are on leaf pages, then the child pointers of the
7748   ** divider cells are stripped from the cells before they are copied
7749   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7750   ** child pointers.  If siblings are not leaves, then all cell in
7751   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7752   ** are alike.
7753   **
7754   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7755   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7756   */
7757   b.pRef = apOld[0];
7758   leafCorrection = b.pRef->leaf*4;
7759   leafData = b.pRef->intKeyLeaf;
7760   for(i=0; i<nOld; i++){
7761     MemPage *pOld = apOld[i];
7762     int limit = pOld->nCell;
7763     u8 *aData = pOld->aData;
7764     u16 maskPage = pOld->maskPage;
7765     u8 *piCell = aData + pOld->cellOffset;
7766     u8 *piEnd;
7767     VVA_ONLY( int nCellAtStart = b.nCell; )
7768 
7769     /* Verify that all sibling pages are of the same "type" (table-leaf,
7770     ** table-interior, index-leaf, or index-interior).
7771     */
7772     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7773       rc = SQLITE_CORRUPT_BKPT;
7774       goto balance_cleanup;
7775     }
7776 
7777     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7778     ** contains overflow cells, include them in the b.apCell[] array
7779     ** in the correct spot.
7780     **
7781     ** Note that when there are multiple overflow cells, it is always the
7782     ** case that they are sequential and adjacent.  This invariant arises
7783     ** because multiple overflows can only occurs when inserting divider
7784     ** cells into a parent on a prior balance, and divider cells are always
7785     ** adjacent and are inserted in order.  There is an assert() tagged
7786     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7787     ** invariant.
7788     **
7789     ** This must be done in advance.  Once the balance starts, the cell
7790     ** offset section of the btree page will be overwritten and we will no
7791     ** long be able to find the cells if a pointer to each cell is not saved
7792     ** first.
7793     */
7794     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7795     if( pOld->nOverflow>0 ){
7796       if( NEVER(limit<pOld->aiOvfl[0]) ){
7797         rc = SQLITE_CORRUPT_BKPT;
7798         goto balance_cleanup;
7799       }
7800       limit = pOld->aiOvfl[0];
7801       for(j=0; j<limit; j++){
7802         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7803         piCell += 2;
7804         b.nCell++;
7805       }
7806       for(k=0; k<pOld->nOverflow; k++){
7807         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7808         b.apCell[b.nCell] = pOld->apOvfl[k];
7809         b.nCell++;
7810       }
7811     }
7812     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7813     while( piCell<piEnd ){
7814       assert( b.nCell<nMaxCells );
7815       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7816       piCell += 2;
7817       b.nCell++;
7818     }
7819     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7820 
7821     cntOld[i] = b.nCell;
7822     if( i<nOld-1 && !leafData){
7823       u16 sz = (u16)szNew[i];
7824       u8 *pTemp;
7825       assert( b.nCell<nMaxCells );
7826       b.szCell[b.nCell] = sz;
7827       pTemp = &aSpace1[iSpace1];
7828       iSpace1 += sz;
7829       assert( sz<=pBt->maxLocal+23 );
7830       assert( iSpace1 <= (int)pBt->pageSize );
7831       memcpy(pTemp, apDiv[i], sz);
7832       b.apCell[b.nCell] = pTemp+leafCorrection;
7833       assert( leafCorrection==0 || leafCorrection==4 );
7834       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7835       if( !pOld->leaf ){
7836         assert( leafCorrection==0 );
7837         assert( pOld->hdrOffset==0 || CORRUPT_DB );
7838         /* The right pointer of the child page pOld becomes the left
7839         ** pointer of the divider cell */
7840         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7841       }else{
7842         assert( leafCorrection==4 );
7843         while( b.szCell[b.nCell]<4 ){
7844           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7845           ** does exist, pad it with 0x00 bytes. */
7846           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7847           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7848           aSpace1[iSpace1++] = 0x00;
7849           b.szCell[b.nCell]++;
7850         }
7851       }
7852       b.nCell++;
7853     }
7854   }
7855 
7856   /*
7857   ** Figure out the number of pages needed to hold all b.nCell cells.
7858   ** Store this number in "k".  Also compute szNew[] which is the total
7859   ** size of all cells on the i-th page and cntNew[] which is the index
7860   ** in b.apCell[] of the cell that divides page i from page i+1.
7861   ** cntNew[k] should equal b.nCell.
7862   **
7863   ** Values computed by this block:
7864   **
7865   **           k: The total number of sibling pages
7866   **    szNew[i]: Spaced used on the i-th sibling page.
7867   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7868   **              the right of the i-th sibling page.
7869   ** usableSpace: Number of bytes of space available on each sibling.
7870   **
7871   */
7872   usableSpace = pBt->usableSize - 12 + leafCorrection;
7873   for(i=k=0; i<nOld; i++, k++){
7874     MemPage *p = apOld[i];
7875     b.apEnd[k] = p->aDataEnd;
7876     b.ixNx[k] = cntOld[i];
7877     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7878       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7879     }
7880     if( !leafData ){
7881       k++;
7882       b.apEnd[k] = pParent->aDataEnd;
7883       b.ixNx[k] = cntOld[i]+1;
7884     }
7885     assert( p->nFree>=0 );
7886     szNew[i] = usableSpace - p->nFree;
7887     for(j=0; j<p->nOverflow; j++){
7888       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7889     }
7890     cntNew[i] = cntOld[i];
7891   }
7892   k = nOld;
7893   for(i=0; i<k; i++){
7894     int sz;
7895     while( szNew[i]>usableSpace ){
7896       if( i+1>=k ){
7897         k = i+2;
7898         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7899         szNew[k-1] = 0;
7900         cntNew[k-1] = b.nCell;
7901       }
7902       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7903       szNew[i] -= sz;
7904       if( !leafData ){
7905         if( cntNew[i]<b.nCell ){
7906           sz = 2 + cachedCellSize(&b, cntNew[i]);
7907         }else{
7908           sz = 0;
7909         }
7910       }
7911       szNew[i+1] += sz;
7912       cntNew[i]--;
7913     }
7914     while( cntNew[i]<b.nCell ){
7915       sz = 2 + cachedCellSize(&b, cntNew[i]);
7916       if( szNew[i]+sz>usableSpace ) break;
7917       szNew[i] += sz;
7918       cntNew[i]++;
7919       if( !leafData ){
7920         if( cntNew[i]<b.nCell ){
7921           sz = 2 + cachedCellSize(&b, cntNew[i]);
7922         }else{
7923           sz = 0;
7924         }
7925       }
7926       szNew[i+1] -= sz;
7927     }
7928     if( cntNew[i]>=b.nCell ){
7929       k = i+1;
7930     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7931       rc = SQLITE_CORRUPT_BKPT;
7932       goto balance_cleanup;
7933     }
7934   }
7935 
7936   /*
7937   ** The packing computed by the previous block is biased toward the siblings
7938   ** on the left side (siblings with smaller keys). The left siblings are
7939   ** always nearly full, while the right-most sibling might be nearly empty.
7940   ** The next block of code attempts to adjust the packing of siblings to
7941   ** get a better balance.
7942   **
7943   ** This adjustment is more than an optimization.  The packing above might
7944   ** be so out of balance as to be illegal.  For example, the right-most
7945   ** sibling might be completely empty.  This adjustment is not optional.
7946   */
7947   for(i=k-1; i>0; i--){
7948     int szRight = szNew[i];  /* Size of sibling on the right */
7949     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7950     int r;              /* Index of right-most cell in left sibling */
7951     int d;              /* Index of first cell to the left of right sibling */
7952 
7953     r = cntNew[i-1] - 1;
7954     d = r + 1 - leafData;
7955     (void)cachedCellSize(&b, d);
7956     do{
7957       assert( d<nMaxCells );
7958       assert( r<nMaxCells );
7959       (void)cachedCellSize(&b, r);
7960       if( szRight!=0
7961        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7962         break;
7963       }
7964       szRight += b.szCell[d] + 2;
7965       szLeft -= b.szCell[r] + 2;
7966       cntNew[i-1] = r;
7967       r--;
7968       d--;
7969     }while( r>=0 );
7970     szNew[i] = szRight;
7971     szNew[i-1] = szLeft;
7972     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7973       rc = SQLITE_CORRUPT_BKPT;
7974       goto balance_cleanup;
7975     }
7976   }
7977 
7978   /* Sanity check:  For a non-corrupt database file one of the follwing
7979   ** must be true:
7980   **    (1) We found one or more cells (cntNew[0])>0), or
7981   **    (2) pPage is a virtual root page.  A virtual root page is when
7982   **        the real root page is page 1 and we are the only child of
7983   **        that page.
7984   */
7985   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7986   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7987     apOld[0]->pgno, apOld[0]->nCell,
7988     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7989     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7990   ));
7991 
7992   /*
7993   ** Allocate k new pages.  Reuse old pages where possible.
7994   */
7995   pageFlags = apOld[0]->aData[0];
7996   for(i=0; i<k; i++){
7997     MemPage *pNew;
7998     if( i<nOld ){
7999       pNew = apNew[i] = apOld[i];
8000       apOld[i] = 0;
8001       rc = sqlite3PagerWrite(pNew->pDbPage);
8002       nNew++;
8003       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) ){
8004         rc = SQLITE_CORRUPT_BKPT;
8005       }
8006       if( rc ) goto balance_cleanup;
8007     }else{
8008       assert( i>0 );
8009       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8010       if( rc ) goto balance_cleanup;
8011       zeroPage(pNew, pageFlags);
8012       apNew[i] = pNew;
8013       nNew++;
8014       cntOld[i] = b.nCell;
8015 
8016       /* Set the pointer-map entry for the new sibling page. */
8017       if( ISAUTOVACUUM ){
8018         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8019         if( rc!=SQLITE_OK ){
8020           goto balance_cleanup;
8021         }
8022       }
8023     }
8024   }
8025 
8026   /*
8027   ** Reassign page numbers so that the new pages are in ascending order.
8028   ** This helps to keep entries in the disk file in order so that a scan
8029   ** of the table is closer to a linear scan through the file. That in turn
8030   ** helps the operating system to deliver pages from the disk more rapidly.
8031   **
8032   ** An O(n^2) insertion sort algorithm is used, but since n is never more
8033   ** than (NB+2) (a small constant), that should not be a problem.
8034   **
8035   ** When NB==3, this one optimization makes the database about 25% faster
8036   ** for large insertions and deletions.
8037   */
8038   for(i=0; i<nNew; i++){
8039     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8040     aPgFlags[i] = apNew[i]->pDbPage->flags;
8041     for(j=0; j<i; j++){
8042       if( NEVER(aPgno[j]==aPgno[i]) ){
8043         /* This branch is taken if the set of sibling pages somehow contains
8044         ** duplicate entries. This can happen if the database is corrupt.
8045         ** It would be simpler to detect this as part of the loop below, but
8046         ** we do the detection here in order to avoid populating the pager
8047         ** cache with two separate objects associated with the same
8048         ** page number.  */
8049         assert( CORRUPT_DB );
8050         rc = SQLITE_CORRUPT_BKPT;
8051         goto balance_cleanup;
8052       }
8053     }
8054   }
8055   for(i=0; i<nNew; i++){
8056     int iBest = 0;                /* aPgno[] index of page number to use */
8057     for(j=1; j<nNew; j++){
8058       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8059     }
8060     pgno = aPgOrder[iBest];
8061     aPgOrder[iBest] = 0xffffffff;
8062     if( iBest!=i ){
8063       if( iBest>i ){
8064         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8065       }
8066       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8067       apNew[i]->pgno = pgno;
8068     }
8069   }
8070 
8071   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8072          "%d(%d nc=%d) %d(%d nc=%d)\n",
8073     apNew[0]->pgno, szNew[0], cntNew[0],
8074     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8075     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8076     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8077     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8078     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8079     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8080     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8081     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8082   ));
8083 
8084   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8085   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8086   assert( apNew[nNew-1]!=0 );
8087   put4byte(pRight, apNew[nNew-1]->pgno);
8088 
8089   /* If the sibling pages are not leaves, ensure that the right-child pointer
8090   ** of the right-most new sibling page is set to the value that was
8091   ** originally in the same field of the right-most old sibling page. */
8092   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8093     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8094     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8095   }
8096 
8097   /* Make any required updates to pointer map entries associated with
8098   ** cells stored on sibling pages following the balance operation. Pointer
8099   ** map entries associated with divider cells are set by the insertCell()
8100   ** routine. The associated pointer map entries are:
8101   **
8102   **   a) if the cell contains a reference to an overflow chain, the
8103   **      entry associated with the first page in the overflow chain, and
8104   **
8105   **   b) if the sibling pages are not leaves, the child page associated
8106   **      with the cell.
8107   **
8108   ** If the sibling pages are not leaves, then the pointer map entry
8109   ** associated with the right-child of each sibling may also need to be
8110   ** updated. This happens below, after the sibling pages have been
8111   ** populated, not here.
8112   */
8113   if( ISAUTOVACUUM ){
8114     MemPage *pOld;
8115     MemPage *pNew = pOld = apNew[0];
8116     int cntOldNext = pNew->nCell + pNew->nOverflow;
8117     int iNew = 0;
8118     int iOld = 0;
8119 
8120     for(i=0; i<b.nCell; i++){
8121       u8 *pCell = b.apCell[i];
8122       while( i==cntOldNext ){
8123         iOld++;
8124         assert( iOld<nNew || iOld<nOld );
8125         assert( iOld>=0 && iOld<NB );
8126         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8127         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8128       }
8129       if( i==cntNew[iNew] ){
8130         pNew = apNew[++iNew];
8131         if( !leafData ) continue;
8132       }
8133 
8134       /* Cell pCell is destined for new sibling page pNew. Originally, it
8135       ** was either part of sibling page iOld (possibly an overflow cell),
8136       ** or else the divider cell to the left of sibling page iOld. So,
8137       ** if sibling page iOld had the same page number as pNew, and if
8138       ** pCell really was a part of sibling page iOld (not a divider or
8139       ** overflow cell), we can skip updating the pointer map entries.  */
8140       if( iOld>=nNew
8141        || pNew->pgno!=aPgno[iOld]
8142        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8143       ){
8144         if( !leafCorrection ){
8145           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8146         }
8147         if( cachedCellSize(&b,i)>pNew->minLocal ){
8148           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8149         }
8150         if( rc ) goto balance_cleanup;
8151       }
8152     }
8153   }
8154 
8155   /* Insert new divider cells into pParent. */
8156   for(i=0; i<nNew-1; i++){
8157     u8 *pCell;
8158     u8 *pTemp;
8159     int sz;
8160     u8 *pSrcEnd;
8161     MemPage *pNew = apNew[i];
8162     j = cntNew[i];
8163 
8164     assert( j<nMaxCells );
8165     assert( b.apCell[j]!=0 );
8166     pCell = b.apCell[j];
8167     sz = b.szCell[j] + leafCorrection;
8168     pTemp = &aOvflSpace[iOvflSpace];
8169     if( !pNew->leaf ){
8170       memcpy(&pNew->aData[8], pCell, 4);
8171     }else if( leafData ){
8172       /* If the tree is a leaf-data tree, and the siblings are leaves,
8173       ** then there is no divider cell in b.apCell[]. Instead, the divider
8174       ** cell consists of the integer key for the right-most cell of
8175       ** the sibling-page assembled above only.
8176       */
8177       CellInfo info;
8178       j--;
8179       pNew->xParseCell(pNew, b.apCell[j], &info);
8180       pCell = pTemp;
8181       sz = 4 + putVarint(&pCell[4], info.nKey);
8182       pTemp = 0;
8183     }else{
8184       pCell -= 4;
8185       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8186       ** previously stored on a leaf node, and its reported size was 4
8187       ** bytes, then it may actually be smaller than this
8188       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8189       ** any cell). But it is important to pass the correct size to
8190       ** insertCell(), so reparse the cell now.
8191       **
8192       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8193       ** and WITHOUT ROWID tables with exactly one column which is the
8194       ** primary key.
8195       */
8196       if( b.szCell[j]==4 ){
8197         assert(leafCorrection==4);
8198         sz = pParent->xCellSize(pParent, pCell);
8199       }
8200     }
8201     iOvflSpace += sz;
8202     assert( sz<=pBt->maxLocal+23 );
8203     assert( iOvflSpace <= (int)pBt->pageSize );
8204     for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8205     pSrcEnd = b.apEnd[k];
8206     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8207       rc = SQLITE_CORRUPT_BKPT;
8208       goto balance_cleanup;
8209     }
8210     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8211     if( rc!=SQLITE_OK ) goto balance_cleanup;
8212     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8213   }
8214 
8215   /* Now update the actual sibling pages. The order in which they are updated
8216   ** is important, as this code needs to avoid disrupting any page from which
8217   ** cells may still to be read. In practice, this means:
8218   **
8219   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8220   **      then it is not safe to update page apNew[iPg] until after
8221   **      the left-hand sibling apNew[iPg-1] has been updated.
8222   **
8223   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8224   **      then it is not safe to update page apNew[iPg] until after
8225   **      the right-hand sibling apNew[iPg+1] has been updated.
8226   **
8227   ** If neither of the above apply, the page is safe to update.
8228   **
8229   ** The iPg value in the following loop starts at nNew-1 goes down
8230   ** to 0, then back up to nNew-1 again, thus making two passes over
8231   ** the pages.  On the initial downward pass, only condition (1) above
8232   ** needs to be tested because (2) will always be true from the previous
8233   ** step.  On the upward pass, both conditions are always true, so the
8234   ** upwards pass simply processes pages that were missed on the downward
8235   ** pass.
8236   */
8237   for(i=1-nNew; i<nNew; i++){
8238     int iPg = i<0 ? -i : i;
8239     assert( iPg>=0 && iPg<nNew );
8240     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8241     if( i>=0                            /* On the upwards pass, or... */
8242      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8243     ){
8244       int iNew;
8245       int iOld;
8246       int nNewCell;
8247 
8248       /* Verify condition (1):  If cells are moving left, update iPg
8249       ** only after iPg-1 has already been updated. */
8250       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8251 
8252       /* Verify condition (2):  If cells are moving right, update iPg
8253       ** only after iPg+1 has already been updated. */
8254       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8255 
8256       if( iPg==0 ){
8257         iNew = iOld = 0;
8258         nNewCell = cntNew[0];
8259       }else{
8260         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8261         iNew = cntNew[iPg-1] + !leafData;
8262         nNewCell = cntNew[iPg] - iNew;
8263       }
8264 
8265       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8266       if( rc ) goto balance_cleanup;
8267       abDone[iPg]++;
8268       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8269       assert( apNew[iPg]->nOverflow==0 );
8270       assert( apNew[iPg]->nCell==nNewCell );
8271     }
8272   }
8273 
8274   /* All pages have been processed exactly once */
8275   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8276 
8277   assert( nOld>0 );
8278   assert( nNew>0 );
8279 
8280   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8281     /* The root page of the b-tree now contains no cells. The only sibling
8282     ** page is the right-child of the parent. Copy the contents of the
8283     ** child page into the parent, decreasing the overall height of the
8284     ** b-tree structure by one. This is described as the "balance-shallower"
8285     ** sub-algorithm in some documentation.
8286     **
8287     ** If this is an auto-vacuum database, the call to copyNodeContent()
8288     ** sets all pointer-map entries corresponding to database image pages
8289     ** for which the pointer is stored within the content being copied.
8290     **
8291     ** It is critical that the child page be defragmented before being
8292     ** copied into the parent, because if the parent is page 1 then it will
8293     ** by smaller than the child due to the database header, and so all the
8294     ** free space needs to be up front.
8295     */
8296     assert( nNew==1 || CORRUPT_DB );
8297     rc = defragmentPage(apNew[0], -1);
8298     testcase( rc!=SQLITE_OK );
8299     assert( apNew[0]->nFree ==
8300         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8301           - apNew[0]->nCell*2)
8302       || rc!=SQLITE_OK
8303     );
8304     copyNodeContent(apNew[0], pParent, &rc);
8305     freePage(apNew[0], &rc);
8306   }else if( ISAUTOVACUUM && !leafCorrection ){
8307     /* Fix the pointer map entries associated with the right-child of each
8308     ** sibling page. All other pointer map entries have already been taken
8309     ** care of.  */
8310     for(i=0; i<nNew; i++){
8311       u32 key = get4byte(&apNew[i]->aData[8]);
8312       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8313     }
8314   }
8315 
8316   assert( pParent->isInit );
8317   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8318           nOld, nNew, b.nCell));
8319 
8320   /* Free any old pages that were not reused as new pages.
8321   */
8322   for(i=nNew; i<nOld; i++){
8323     freePage(apOld[i], &rc);
8324   }
8325 
8326 #if 0
8327   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8328     /* The ptrmapCheckPages() contains assert() statements that verify that
8329     ** all pointer map pages are set correctly. This is helpful while
8330     ** debugging. This is usually disabled because a corrupt database may
8331     ** cause an assert() statement to fail.  */
8332     ptrmapCheckPages(apNew, nNew);
8333     ptrmapCheckPages(&pParent, 1);
8334   }
8335 #endif
8336 
8337   /*
8338   ** Cleanup before returning.
8339   */
8340 balance_cleanup:
8341   sqlite3StackFree(0, b.apCell);
8342   for(i=0; i<nOld; i++){
8343     releasePage(apOld[i]);
8344   }
8345   for(i=0; i<nNew; i++){
8346     releasePage(apNew[i]);
8347   }
8348 
8349   return rc;
8350 }
8351 
8352 
8353 /*
8354 ** This function is called when the root page of a b-tree structure is
8355 ** overfull (has one or more overflow pages).
8356 **
8357 ** A new child page is allocated and the contents of the current root
8358 ** page, including overflow cells, are copied into the child. The root
8359 ** page is then overwritten to make it an empty page with the right-child
8360 ** pointer pointing to the new page.
8361 **
8362 ** Before returning, all pointer-map entries corresponding to pages
8363 ** that the new child-page now contains pointers to are updated. The
8364 ** entry corresponding to the new right-child pointer of the root
8365 ** page is also updated.
8366 **
8367 ** If successful, *ppChild is set to contain a reference to the child
8368 ** page and SQLITE_OK is returned. In this case the caller is required
8369 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8370 ** an error code is returned and *ppChild is set to 0.
8371 */
8372 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8373   int rc;                        /* Return value from subprocedures */
8374   MemPage *pChild = 0;           /* Pointer to a new child page */
8375   Pgno pgnoChild = 0;            /* Page number of the new child page */
8376   BtShared *pBt = pRoot->pBt;    /* The BTree */
8377 
8378   assert( pRoot->nOverflow>0 );
8379   assert( sqlite3_mutex_held(pBt->mutex) );
8380 
8381   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8382   ** page that will become the new right-child of pPage. Copy the contents
8383   ** of the node stored on pRoot into the new child page.
8384   */
8385   rc = sqlite3PagerWrite(pRoot->pDbPage);
8386   if( rc==SQLITE_OK ){
8387     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8388     copyNodeContent(pRoot, pChild, &rc);
8389     if( ISAUTOVACUUM ){
8390       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8391     }
8392   }
8393   if( rc ){
8394     *ppChild = 0;
8395     releasePage(pChild);
8396     return rc;
8397   }
8398   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8399   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8400   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8401 
8402   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8403 
8404   /* Copy the overflow cells from pRoot to pChild */
8405   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8406          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8407   memcpy(pChild->apOvfl, pRoot->apOvfl,
8408          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8409   pChild->nOverflow = pRoot->nOverflow;
8410 
8411   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8412   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8413   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8414 
8415   *ppChild = pChild;
8416   return SQLITE_OK;
8417 }
8418 
8419 /*
8420 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8421 ** on the same B-tree as pCur.
8422 **
8423 ** This can if a database is corrupt with two or more SQL tables
8424 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8425 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8426 ** table linked to the same b-tree.  If the secondary insert causes a
8427 ** rebalance, that can change content out from under the cursor on the
8428 ** first SQL table, violating invariants on the first insert.
8429 */
8430 static int anotherValidCursor(BtCursor *pCur){
8431   BtCursor *pOther;
8432   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8433     if( pOther!=pCur
8434      && pOther->eState==CURSOR_VALID
8435      && pOther->pPage==pCur->pPage
8436     ){
8437       return SQLITE_CORRUPT_BKPT;
8438     }
8439   }
8440   return SQLITE_OK;
8441 }
8442 
8443 /*
8444 ** The page that pCur currently points to has just been modified in
8445 ** some way. This function figures out if this modification means the
8446 ** tree needs to be balanced, and if so calls the appropriate balancing
8447 ** routine. Balancing routines are:
8448 **
8449 **   balance_quick()
8450 **   balance_deeper()
8451 **   balance_nonroot()
8452 */
8453 static int balance(BtCursor *pCur){
8454   int rc = SQLITE_OK;
8455   const int nMin = pCur->pBt->usableSize * 2 / 3;
8456   u8 aBalanceQuickSpace[13];
8457   u8 *pFree = 0;
8458 
8459   VVA_ONLY( int balance_quick_called = 0 );
8460   VVA_ONLY( int balance_deeper_called = 0 );
8461 
8462   do {
8463     int iPage;
8464     MemPage *pPage = pCur->pPage;
8465 
8466     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8467     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8468       break;
8469     }else if( (iPage = pCur->iPage)==0 ){
8470       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8471         /* The root page of the b-tree is overfull. In this case call the
8472         ** balance_deeper() function to create a new child for the root-page
8473         ** and copy the current contents of the root-page to it. The
8474         ** next iteration of the do-loop will balance the child page.
8475         */
8476         assert( balance_deeper_called==0 );
8477         VVA_ONLY( balance_deeper_called++ );
8478         rc = balance_deeper(pPage, &pCur->apPage[1]);
8479         if( rc==SQLITE_OK ){
8480           pCur->iPage = 1;
8481           pCur->ix = 0;
8482           pCur->aiIdx[0] = 0;
8483           pCur->apPage[0] = pPage;
8484           pCur->pPage = pCur->apPage[1];
8485           assert( pCur->pPage->nOverflow );
8486         }
8487       }else{
8488         break;
8489       }
8490     }else{
8491       MemPage * const pParent = pCur->apPage[iPage-1];
8492       int const iIdx = pCur->aiIdx[iPage-1];
8493 
8494       rc = sqlite3PagerWrite(pParent->pDbPage);
8495       if( rc==SQLITE_OK && pParent->nFree<0 ){
8496         rc = btreeComputeFreeSpace(pParent);
8497       }
8498       if( rc==SQLITE_OK ){
8499 #ifndef SQLITE_OMIT_QUICKBALANCE
8500         if( pPage->intKeyLeaf
8501          && pPage->nOverflow==1
8502          && pPage->aiOvfl[0]==pPage->nCell
8503          && pParent->pgno!=1
8504          && pParent->nCell==iIdx
8505         ){
8506           /* Call balance_quick() to create a new sibling of pPage on which
8507           ** to store the overflow cell. balance_quick() inserts a new cell
8508           ** into pParent, which may cause pParent overflow. If this
8509           ** happens, the next iteration of the do-loop will balance pParent
8510           ** use either balance_nonroot() or balance_deeper(). Until this
8511           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8512           ** buffer.
8513           **
8514           ** The purpose of the following assert() is to check that only a
8515           ** single call to balance_quick() is made for each call to this
8516           ** function. If this were not verified, a subtle bug involving reuse
8517           ** of the aBalanceQuickSpace[] might sneak in.
8518           */
8519           assert( balance_quick_called==0 );
8520           VVA_ONLY( balance_quick_called++ );
8521           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8522         }else
8523 #endif
8524         {
8525           /* In this case, call balance_nonroot() to redistribute cells
8526           ** between pPage and up to 2 of its sibling pages. This involves
8527           ** modifying the contents of pParent, which may cause pParent to
8528           ** become overfull or underfull. The next iteration of the do-loop
8529           ** will balance the parent page to correct this.
8530           **
8531           ** If the parent page becomes overfull, the overflow cell or cells
8532           ** are stored in the pSpace buffer allocated immediately below.
8533           ** A subsequent iteration of the do-loop will deal with this by
8534           ** calling balance_nonroot() (balance_deeper() may be called first,
8535           ** but it doesn't deal with overflow cells - just moves them to a
8536           ** different page). Once this subsequent call to balance_nonroot()
8537           ** has completed, it is safe to release the pSpace buffer used by
8538           ** the previous call, as the overflow cell data will have been
8539           ** copied either into the body of a database page or into the new
8540           ** pSpace buffer passed to the latter call to balance_nonroot().
8541           */
8542           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8543           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8544                                pCur->hints&BTREE_BULKLOAD);
8545           if( pFree ){
8546             /* If pFree is not NULL, it points to the pSpace buffer used
8547             ** by a previous call to balance_nonroot(). Its contents are
8548             ** now stored either on real database pages or within the
8549             ** new pSpace buffer, so it may be safely freed here. */
8550             sqlite3PageFree(pFree);
8551           }
8552 
8553           /* The pSpace buffer will be freed after the next call to
8554           ** balance_nonroot(), or just before this function returns, whichever
8555           ** comes first. */
8556           pFree = pSpace;
8557         }
8558       }
8559 
8560       pPage->nOverflow = 0;
8561 
8562       /* The next iteration of the do-loop balances the parent page. */
8563       releasePage(pPage);
8564       pCur->iPage--;
8565       assert( pCur->iPage>=0 );
8566       pCur->pPage = pCur->apPage[pCur->iPage];
8567     }
8568   }while( rc==SQLITE_OK );
8569 
8570   if( pFree ){
8571     sqlite3PageFree(pFree);
8572   }
8573   return rc;
8574 }
8575 
8576 /* Overwrite content from pX into pDest.  Only do the write if the
8577 ** content is different from what is already there.
8578 */
8579 static int btreeOverwriteContent(
8580   MemPage *pPage,           /* MemPage on which writing will occur */
8581   u8 *pDest,                /* Pointer to the place to start writing */
8582   const BtreePayload *pX,   /* Source of data to write */
8583   int iOffset,              /* Offset of first byte to write */
8584   int iAmt                  /* Number of bytes to be written */
8585 ){
8586   int nData = pX->nData - iOffset;
8587   if( nData<=0 ){
8588     /* Overwritting with zeros */
8589     int i;
8590     for(i=0; i<iAmt && pDest[i]==0; i++){}
8591     if( i<iAmt ){
8592       int rc = sqlite3PagerWrite(pPage->pDbPage);
8593       if( rc ) return rc;
8594       memset(pDest + i, 0, iAmt - i);
8595     }
8596   }else{
8597     if( nData<iAmt ){
8598       /* Mixed read data and zeros at the end.  Make a recursive call
8599       ** to write the zeros then fall through to write the real data */
8600       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8601                                  iAmt-nData);
8602       if( rc ) return rc;
8603       iAmt = nData;
8604     }
8605     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8606       int rc = sqlite3PagerWrite(pPage->pDbPage);
8607       if( rc ) return rc;
8608       /* In a corrupt database, it is possible for the source and destination
8609       ** buffers to overlap.  This is harmless since the database is already
8610       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8611       ** memmove(). */
8612       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8613     }
8614   }
8615   return SQLITE_OK;
8616 }
8617 
8618 /*
8619 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8620 ** contained in pX.
8621 */
8622 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8623   int iOffset;                        /* Next byte of pX->pData to write */
8624   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8625   int rc;                             /* Return code */
8626   MemPage *pPage = pCur->pPage;       /* Page being written */
8627   BtShared *pBt;                      /* Btree */
8628   Pgno ovflPgno;                      /* Next overflow page to write */
8629   u32 ovflPageSize;                   /* Size to write on overflow page */
8630 
8631   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8632    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8633   ){
8634     return SQLITE_CORRUPT_BKPT;
8635   }
8636   /* Overwrite the local portion first */
8637   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8638                              0, pCur->info.nLocal);
8639   if( rc ) return rc;
8640   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8641 
8642   /* Now overwrite the overflow pages */
8643   iOffset = pCur->info.nLocal;
8644   assert( nTotal>=0 );
8645   assert( iOffset>=0 );
8646   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8647   pBt = pPage->pBt;
8648   ovflPageSize = pBt->usableSize - 4;
8649   do{
8650     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8651     if( rc ) return rc;
8652     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8653       rc = SQLITE_CORRUPT_BKPT;
8654     }else{
8655       if( iOffset+ovflPageSize<(u32)nTotal ){
8656         ovflPgno = get4byte(pPage->aData);
8657       }else{
8658         ovflPageSize = nTotal - iOffset;
8659       }
8660       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8661                                  iOffset, ovflPageSize);
8662     }
8663     sqlite3PagerUnref(pPage->pDbPage);
8664     if( rc ) return rc;
8665     iOffset += ovflPageSize;
8666   }while( iOffset<nTotal );
8667   return SQLITE_OK;
8668 }
8669 
8670 
8671 /*
8672 ** Insert a new record into the BTree.  The content of the new record
8673 ** is described by the pX object.  The pCur cursor is used only to
8674 ** define what table the record should be inserted into, and is left
8675 ** pointing at a random location.
8676 **
8677 ** For a table btree (used for rowid tables), only the pX.nKey value of
8678 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8679 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8680 ** hold the content of the row.
8681 **
8682 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8683 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8684 ** pX.pData,nData,nZero fields must be zero.
8685 **
8686 ** If the seekResult parameter is non-zero, then a successful call to
8687 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8688 ** been performed.  In other words, if seekResult!=0 then the cursor
8689 ** is currently pointing to a cell that will be adjacent to the cell
8690 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8691 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8692 ** that is larger than (pKey,nKey).
8693 **
8694 ** If seekResult==0, that means pCur is pointing at some unknown location.
8695 ** In that case, this routine must seek the cursor to the correct insertion
8696 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8697 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8698 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8699 ** to decode the key.
8700 */
8701 int sqlite3BtreeInsert(
8702   BtCursor *pCur,                /* Insert data into the table of this cursor */
8703   const BtreePayload *pX,        /* Content of the row to be inserted */
8704   int flags,                     /* True if this is likely an append */
8705   int seekResult                 /* Result of prior MovetoUnpacked() call */
8706 ){
8707   int rc;
8708   int loc = seekResult;          /* -1: before desired location  +1: after */
8709   int szNew = 0;
8710   int idx;
8711   MemPage *pPage;
8712   Btree *p = pCur->pBtree;
8713   BtShared *pBt = p->pBt;
8714   unsigned char *oldCell;
8715   unsigned char *newCell = 0;
8716 
8717   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
8718   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
8719 
8720   if( pCur->eState==CURSOR_FAULT ){
8721     assert( pCur->skipNext!=SQLITE_OK );
8722     return pCur->skipNext;
8723   }
8724 
8725   assert( cursorOwnsBtShared(pCur) );
8726   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8727               && pBt->inTransaction==TRANS_WRITE
8728               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8729   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8730 
8731   /* Assert that the caller has been consistent. If this cursor was opened
8732   ** expecting an index b-tree, then the caller should be inserting blob
8733   ** keys with no associated data. If the cursor was opened expecting an
8734   ** intkey table, the caller should be inserting integer keys with a
8735   ** blob of associated data.  */
8736   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
8737 
8738   /* Save the positions of any other cursors open on this table.
8739   **
8740   ** In some cases, the call to btreeMoveto() below is a no-op. For
8741   ** example, when inserting data into a table with auto-generated integer
8742   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8743   ** integer key to use. It then calls this function to actually insert the
8744   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8745   ** that the cursor is already where it needs to be and returns without
8746   ** doing any work. To avoid thwarting these optimizations, it is important
8747   ** not to clear the cursor here.
8748   */
8749   if( pCur->curFlags & BTCF_Multiple ){
8750     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8751     if( rc ) return rc;
8752     if( loc && pCur->iPage<0 ){
8753       /* This can only happen if the schema is corrupt such that there is more
8754       ** than one table or index with the same root page as used by the cursor.
8755       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8756       ** the schema was loaded. This cannot be asserted though, as a user might
8757       ** set the flag, load the schema, and then unset the flag.  */
8758       return SQLITE_CORRUPT_BKPT;
8759     }
8760   }
8761 
8762   if( pCur->pKeyInfo==0 ){
8763     assert( pX->pKey==0 );
8764     /* If this is an insert into a table b-tree, invalidate any incrblob
8765     ** cursors open on the row being replaced */
8766     if( p->hasIncrblobCur ){
8767       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8768     }
8769 
8770     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8771     ** to a row with the same key as the new entry being inserted.
8772     */
8773 #ifdef SQLITE_DEBUG
8774     if( flags & BTREE_SAVEPOSITION ){
8775       assert( pCur->curFlags & BTCF_ValidNKey );
8776       assert( pX->nKey==pCur->info.nKey );
8777       assert( loc==0 );
8778     }
8779 #endif
8780 
8781     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8782     ** that the cursor is not pointing to a row to be overwritten.
8783     ** So do a complete check.
8784     */
8785     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8786       /* The cursor is pointing to the entry that is to be
8787       ** overwritten */
8788       assert( pX->nData>=0 && pX->nZero>=0 );
8789       if( pCur->info.nSize!=0
8790        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8791       ){
8792         /* New entry is the same size as the old.  Do an overwrite */
8793         return btreeOverwriteCell(pCur, pX);
8794       }
8795       assert( loc==0 );
8796     }else if( loc==0 ){
8797       /* The cursor is *not* pointing to the cell to be overwritten, nor
8798       ** to an adjacent cell.  Move the cursor so that it is pointing either
8799       ** to the cell to be overwritten or an adjacent cell.
8800       */
8801       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8802       if( rc ) return rc;
8803     }
8804   }else{
8805     /* This is an index or a WITHOUT ROWID table */
8806 
8807     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8808     ** to a row with the same key as the new entry being inserted.
8809     */
8810     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8811 
8812     /* If the cursor is not already pointing either to the cell to be
8813     ** overwritten, or if a new cell is being inserted, if the cursor is
8814     ** not pointing to an immediately adjacent cell, then move the cursor
8815     ** so that it does.
8816     */
8817     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8818       if( pX->nMem ){
8819         UnpackedRecord r;
8820         r.pKeyInfo = pCur->pKeyInfo;
8821         r.aMem = pX->aMem;
8822         r.nField = pX->nMem;
8823         r.default_rc = 0;
8824         r.errCode = 0;
8825         r.r1 = 0;
8826         r.r2 = 0;
8827         r.eqSeen = 0;
8828         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8829       }else{
8830         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8831       }
8832       if( rc ) return rc;
8833     }
8834 
8835     /* If the cursor is currently pointing to an entry to be overwritten
8836     ** and the new content is the same as as the old, then use the
8837     ** overwrite optimization.
8838     */
8839     if( loc==0 ){
8840       getCellInfo(pCur);
8841       if( pCur->info.nKey==pX->nKey ){
8842         BtreePayload x2;
8843         x2.pData = pX->pKey;
8844         x2.nData = pX->nKey;
8845         x2.nZero = 0;
8846         return btreeOverwriteCell(pCur, &x2);
8847       }
8848     }
8849   }
8850   assert( pCur->eState==CURSOR_VALID
8851        || (pCur->eState==CURSOR_INVALID && loc)
8852        || CORRUPT_DB );
8853 
8854   pPage = pCur->pPage;
8855   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
8856   assert( pPage->leaf || !pPage->intKey );
8857   if( pPage->nFree<0 ){
8858     if( NEVER(pCur->eState>CURSOR_INVALID) ){
8859       rc = SQLITE_CORRUPT_BKPT;
8860     }else{
8861       rc = btreeComputeFreeSpace(pPage);
8862     }
8863     if( rc ) return rc;
8864   }
8865 
8866   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8867           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8868           loc==0 ? "overwrite" : "new entry"));
8869   assert( pPage->isInit );
8870   newCell = pBt->pTmpSpace;
8871   assert( newCell!=0 );
8872   if( flags & BTREE_PREFORMAT ){
8873     rc = SQLITE_OK;
8874     szNew = pBt->nPreformatSize;
8875     if( szNew<4 ) szNew = 4;
8876     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8877       CellInfo info;
8878       pPage->xParseCell(pPage, newCell, &info);
8879       if( info.nPayload!=info.nLocal ){
8880         Pgno ovfl = get4byte(&newCell[szNew-4]);
8881         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
8882       }
8883     }
8884   }else{
8885     rc = fillInCell(pPage, newCell, pX, &szNew);
8886   }
8887   if( rc ) goto end_insert;
8888   assert( szNew==pPage->xCellSize(pPage, newCell) );
8889   assert( szNew <= MX_CELL_SIZE(pBt) );
8890   idx = pCur->ix;
8891   if( loc==0 ){
8892     CellInfo info;
8893     assert( idx<pPage->nCell );
8894     rc = sqlite3PagerWrite(pPage->pDbPage);
8895     if( rc ){
8896       goto end_insert;
8897     }
8898     oldCell = findCell(pPage, idx);
8899     if( !pPage->leaf ){
8900       memcpy(newCell, oldCell, 4);
8901     }
8902     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
8903     testcase( pCur->curFlags & BTCF_ValidOvfl );
8904     invalidateOverflowCache(pCur);
8905     if( info.nSize==szNew && info.nLocal==info.nPayload
8906      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8907     ){
8908       /* Overwrite the old cell with the new if they are the same size.
8909       ** We could also try to do this if the old cell is smaller, then add
8910       ** the leftover space to the free list.  But experiments show that
8911       ** doing that is no faster then skipping this optimization and just
8912       ** calling dropCell() and insertCell().
8913       **
8914       ** This optimization cannot be used on an autovacuum database if the
8915       ** new entry uses overflow pages, as the insertCell() call below is
8916       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8917       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8918       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8919         return SQLITE_CORRUPT_BKPT;
8920       }
8921       if( oldCell+szNew > pPage->aDataEnd ){
8922         return SQLITE_CORRUPT_BKPT;
8923       }
8924       memcpy(oldCell, newCell, szNew);
8925       return SQLITE_OK;
8926     }
8927     dropCell(pPage, idx, info.nSize, &rc);
8928     if( rc ) goto end_insert;
8929   }else if( loc<0 && pPage->nCell>0 ){
8930     assert( pPage->leaf );
8931     idx = ++pCur->ix;
8932     pCur->curFlags &= ~BTCF_ValidNKey;
8933   }else{
8934     assert( pPage->leaf );
8935   }
8936   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8937   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8938   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8939 
8940   /* If no error has occurred and pPage has an overflow cell, call balance()
8941   ** to redistribute the cells within the tree. Since balance() may move
8942   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8943   ** variables.
8944   **
8945   ** Previous versions of SQLite called moveToRoot() to move the cursor
8946   ** back to the root page as balance() used to invalidate the contents
8947   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8948   ** set the cursor state to "invalid". This makes common insert operations
8949   ** slightly faster.
8950   **
8951   ** There is a subtle but important optimization here too. When inserting
8952   ** multiple records into an intkey b-tree using a single cursor (as can
8953   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8954   ** is advantageous to leave the cursor pointing to the last entry in
8955   ** the b-tree if possible. If the cursor is left pointing to the last
8956   ** entry in the table, and the next row inserted has an integer key
8957   ** larger than the largest existing key, it is possible to insert the
8958   ** row without seeking the cursor. This can be a big performance boost.
8959   */
8960   pCur->info.nSize = 0;
8961   if( pPage->nOverflow ){
8962     assert( rc==SQLITE_OK );
8963     pCur->curFlags &= ~(BTCF_ValidNKey);
8964     rc = balance(pCur);
8965 
8966     /* Must make sure nOverflow is reset to zero even if the balance()
8967     ** fails. Internal data structure corruption will result otherwise.
8968     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8969     ** from trying to save the current position of the cursor.  */
8970     pCur->pPage->nOverflow = 0;
8971     pCur->eState = CURSOR_INVALID;
8972     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8973       btreeReleaseAllCursorPages(pCur);
8974       if( pCur->pKeyInfo ){
8975         assert( pCur->pKey==0 );
8976         pCur->pKey = sqlite3Malloc( pX->nKey );
8977         if( pCur->pKey==0 ){
8978           rc = SQLITE_NOMEM;
8979         }else{
8980           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8981         }
8982       }
8983       pCur->eState = CURSOR_REQUIRESEEK;
8984       pCur->nKey = pX->nKey;
8985     }
8986   }
8987   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8988 
8989 end_insert:
8990   return rc;
8991 }
8992 
8993 /*
8994 ** This function is used as part of copying the current row from cursor
8995 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
8996 ** parameter iKey is used as the rowid value when the record is copied
8997 ** into pDest. Otherwise, the record is copied verbatim.
8998 **
8999 ** This function does not actually write the new value to cursor pDest.
9000 ** Instead, it creates and populates any required overflow pages and
9001 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9002 ** for the destination database. The size of the cell, in bytes, is left
9003 ** in BtShared.nPreformatSize. The caller completes the insertion by
9004 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9005 **
9006 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9007 */
9008 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9009   int rc = SQLITE_OK;
9010   BtShared *pBt = pDest->pBt;
9011   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9012   const u8 *aIn;                /* Pointer to next input buffer */
9013   u32 nIn;                      /* Size of input buffer aIn[] */
9014   u32 nRem;                     /* Bytes of data still to copy */
9015 
9016   getCellInfo(pSrc);
9017   aOut += putVarint32(aOut, pSrc->info.nPayload);
9018   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9019   nIn = pSrc->info.nLocal;
9020   aIn = pSrc->info.pPayload;
9021   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9022     return SQLITE_CORRUPT_BKPT;
9023   }
9024   nRem = pSrc->info.nPayload;
9025   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9026     memcpy(aOut, aIn, nIn);
9027     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9028   }else{
9029     Pager *pSrcPager = pSrc->pBt->pPager;
9030     u8 *pPgnoOut = 0;
9031     Pgno ovflIn = 0;
9032     DbPage *pPageIn = 0;
9033     MemPage *pPageOut = 0;
9034     u32 nOut;                     /* Size of output buffer aOut[] */
9035 
9036     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9037     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9038     if( nOut<pSrc->info.nPayload ){
9039       pPgnoOut = &aOut[nOut];
9040       pBt->nPreformatSize += 4;
9041     }
9042 
9043     if( nRem>nIn ){
9044       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9045         return SQLITE_CORRUPT_BKPT;
9046       }
9047       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9048     }
9049 
9050     do {
9051       nRem -= nOut;
9052       do{
9053         assert( nOut>0 );
9054         if( nIn>0 ){
9055           int nCopy = MIN(nOut, nIn);
9056           memcpy(aOut, aIn, nCopy);
9057           nOut -= nCopy;
9058           nIn -= nCopy;
9059           aOut += nCopy;
9060           aIn += nCopy;
9061         }
9062         if( nOut>0 ){
9063           sqlite3PagerUnref(pPageIn);
9064           pPageIn = 0;
9065           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9066           if( rc==SQLITE_OK ){
9067             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9068             ovflIn = get4byte(aIn);
9069             aIn += 4;
9070             nIn = pSrc->pBt->usableSize - 4;
9071           }
9072         }
9073       }while( rc==SQLITE_OK && nOut>0 );
9074 
9075       if( rc==SQLITE_OK && nRem>0 ){
9076         Pgno pgnoNew;
9077         MemPage *pNew = 0;
9078         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9079         put4byte(pPgnoOut, pgnoNew);
9080         if( ISAUTOVACUUM && pPageOut ){
9081           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9082         }
9083         releasePage(pPageOut);
9084         pPageOut = pNew;
9085         if( pPageOut ){
9086           pPgnoOut = pPageOut->aData;
9087           put4byte(pPgnoOut, 0);
9088           aOut = &pPgnoOut[4];
9089           nOut = MIN(pBt->usableSize - 4, nRem);
9090         }
9091       }
9092     }while( nRem>0 && rc==SQLITE_OK );
9093 
9094     releasePage(pPageOut);
9095     sqlite3PagerUnref(pPageIn);
9096   }
9097 
9098   return rc;
9099 }
9100 
9101 /*
9102 ** Delete the entry that the cursor is pointing to.
9103 **
9104 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9105 ** the cursor is left pointing at an arbitrary location after the delete.
9106 ** But if that bit is set, then the cursor is left in a state such that
9107 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9108 ** as it would have been on if the call to BtreeDelete() had been omitted.
9109 **
9110 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9111 ** associated with a single table entry and its indexes.  Only one of those
9112 ** deletes is considered the "primary" delete.  The primary delete occurs
9113 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9114 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9115 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9116 ** but which might be used by alternative storage engines.
9117 */
9118 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9119   Btree *p = pCur->pBtree;
9120   BtShared *pBt = p->pBt;
9121   int rc;                              /* Return code */
9122   MemPage *pPage;                      /* Page to delete cell from */
9123   unsigned char *pCell;                /* Pointer to cell to delete */
9124   int iCellIdx;                        /* Index of cell to delete */
9125   int iCellDepth;                      /* Depth of node containing pCell */
9126   CellInfo info;                       /* Size of the cell being deleted */
9127   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
9128   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
9129 
9130   assert( cursorOwnsBtShared(pCur) );
9131   assert( pBt->inTransaction==TRANS_WRITE );
9132   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9133   assert( pCur->curFlags & BTCF_WriteFlag );
9134   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9135   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9136   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9137   if( pCur->eState==CURSOR_REQUIRESEEK ){
9138     rc = btreeRestoreCursorPosition(pCur);
9139     assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9140     if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9141   }
9142   assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
9143 
9144   iCellDepth = pCur->iPage;
9145   iCellIdx = pCur->ix;
9146   pPage = pCur->pPage;
9147   pCell = findCell(pPage, iCellIdx);
9148   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
9149 
9150   /* If the bPreserve flag is set to true, then the cursor position must
9151   ** be preserved following this delete operation. If the current delete
9152   ** will cause a b-tree rebalance, then this is done by saving the cursor
9153   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9154   ** returning.
9155   **
9156   ** Or, if the current delete will not cause a rebalance, then the cursor
9157   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9158   ** before or after the deleted entry. In this case set bSkipnext to true.  */
9159   if( bPreserve ){
9160     if( !pPage->leaf
9161      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
9162      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9163     ){
9164       /* A b-tree rebalance will be required after deleting this entry.
9165       ** Save the cursor key.  */
9166       rc = saveCursorKey(pCur);
9167       if( rc ) return rc;
9168     }else{
9169       bSkipnext = 1;
9170     }
9171   }
9172 
9173   /* If the page containing the entry to delete is not a leaf page, move
9174   ** the cursor to the largest entry in the tree that is smaller than
9175   ** the entry being deleted. This cell will replace the cell being deleted
9176   ** from the internal node. The 'previous' entry is used for this instead
9177   ** of the 'next' entry, as the previous entry is always a part of the
9178   ** sub-tree headed by the child page of the cell being deleted. This makes
9179   ** balancing the tree following the delete operation easier.  */
9180   if( !pPage->leaf ){
9181     rc = sqlite3BtreePrevious(pCur, 0);
9182     assert( rc!=SQLITE_DONE );
9183     if( rc ) return rc;
9184   }
9185 
9186   /* Save the positions of any other cursors open on this table before
9187   ** making any modifications.  */
9188   if( pCur->curFlags & BTCF_Multiple ){
9189     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9190     if( rc ) return rc;
9191   }
9192 
9193   /* If this is a delete operation to remove a row from a table b-tree,
9194   ** invalidate any incrblob cursors open on the row being deleted.  */
9195   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9196     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9197   }
9198 
9199   /* Make the page containing the entry to be deleted writable. Then free any
9200   ** overflow pages associated with the entry and finally remove the cell
9201   ** itself from within the page.  */
9202   rc = sqlite3PagerWrite(pPage->pDbPage);
9203   if( rc ) return rc;
9204   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9205   dropCell(pPage, iCellIdx, info.nSize, &rc);
9206   if( rc ) return rc;
9207 
9208   /* If the cell deleted was not located on a leaf page, then the cursor
9209   ** is currently pointing to the largest entry in the sub-tree headed
9210   ** by the child-page of the cell that was just deleted from an internal
9211   ** node. The cell from the leaf node needs to be moved to the internal
9212   ** node to replace the deleted cell.  */
9213   if( !pPage->leaf ){
9214     MemPage *pLeaf = pCur->pPage;
9215     int nCell;
9216     Pgno n;
9217     unsigned char *pTmp;
9218 
9219     if( pLeaf->nFree<0 ){
9220       rc = btreeComputeFreeSpace(pLeaf);
9221       if( rc ) return rc;
9222     }
9223     if( iCellDepth<pCur->iPage-1 ){
9224       n = pCur->apPage[iCellDepth+1]->pgno;
9225     }else{
9226       n = pCur->pPage->pgno;
9227     }
9228     pCell = findCell(pLeaf, pLeaf->nCell-1);
9229     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9230     nCell = pLeaf->xCellSize(pLeaf, pCell);
9231     assert( MX_CELL_SIZE(pBt) >= nCell );
9232     pTmp = pBt->pTmpSpace;
9233     assert( pTmp!=0 );
9234     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9235     if( rc==SQLITE_OK ){
9236       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9237     }
9238     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9239     if( rc ) return rc;
9240   }
9241 
9242   /* Balance the tree. If the entry deleted was located on a leaf page,
9243   ** then the cursor still points to that page. In this case the first
9244   ** call to balance() repairs the tree, and the if(...) condition is
9245   ** never true.
9246   **
9247   ** Otherwise, if the entry deleted was on an internal node page, then
9248   ** pCur is pointing to the leaf page from which a cell was removed to
9249   ** replace the cell deleted from the internal node. This is slightly
9250   ** tricky as the leaf node may be underfull, and the internal node may
9251   ** be either under or overfull. In this case run the balancing algorithm
9252   ** on the leaf node first. If the balance proceeds far enough up the
9253   ** tree that we can be sure that any problem in the internal node has
9254   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9255   ** walk the cursor up the tree to the internal node and balance it as
9256   ** well.  */
9257   rc = balance(pCur);
9258   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9259     releasePageNotNull(pCur->pPage);
9260     pCur->iPage--;
9261     while( pCur->iPage>iCellDepth ){
9262       releasePage(pCur->apPage[pCur->iPage--]);
9263     }
9264     pCur->pPage = pCur->apPage[pCur->iPage];
9265     rc = balance(pCur);
9266   }
9267 
9268   if( rc==SQLITE_OK ){
9269     if( bSkipnext ){
9270       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9271       assert( pPage==pCur->pPage || CORRUPT_DB );
9272       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9273       pCur->eState = CURSOR_SKIPNEXT;
9274       if( iCellIdx>=pPage->nCell ){
9275         pCur->skipNext = -1;
9276         pCur->ix = pPage->nCell-1;
9277       }else{
9278         pCur->skipNext = 1;
9279       }
9280     }else{
9281       rc = moveToRoot(pCur);
9282       if( bPreserve ){
9283         btreeReleaseAllCursorPages(pCur);
9284         pCur->eState = CURSOR_REQUIRESEEK;
9285       }
9286       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9287     }
9288   }
9289   return rc;
9290 }
9291 
9292 /*
9293 ** Create a new BTree table.  Write into *piTable the page
9294 ** number for the root page of the new table.
9295 **
9296 ** The type of type is determined by the flags parameter.  Only the
9297 ** following values of flags are currently in use.  Other values for
9298 ** flags might not work:
9299 **
9300 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9301 **     BTREE_ZERODATA                  Used for SQL indices
9302 */
9303 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9304   BtShared *pBt = p->pBt;
9305   MemPage *pRoot;
9306   Pgno pgnoRoot;
9307   int rc;
9308   int ptfFlags;          /* Page-type flage for the root page of new table */
9309 
9310   assert( sqlite3BtreeHoldsMutex(p) );
9311   assert( pBt->inTransaction==TRANS_WRITE );
9312   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9313 
9314 #ifdef SQLITE_OMIT_AUTOVACUUM
9315   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9316   if( rc ){
9317     return rc;
9318   }
9319 #else
9320   if( pBt->autoVacuum ){
9321     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9322     MemPage *pPageMove; /* The page to move to. */
9323 
9324     /* Creating a new table may probably require moving an existing database
9325     ** to make room for the new tables root page. In case this page turns
9326     ** out to be an overflow page, delete all overflow page-map caches
9327     ** held by open cursors.
9328     */
9329     invalidateAllOverflowCache(pBt);
9330 
9331     /* Read the value of meta[3] from the database to determine where the
9332     ** root page of the new table should go. meta[3] is the largest root-page
9333     ** created so far, so the new root-page is (meta[3]+1).
9334     */
9335     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9336     if( pgnoRoot>btreePagecount(pBt) ){
9337       return SQLITE_CORRUPT_BKPT;
9338     }
9339     pgnoRoot++;
9340 
9341     /* The new root-page may not be allocated on a pointer-map page, or the
9342     ** PENDING_BYTE page.
9343     */
9344     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9345         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9346       pgnoRoot++;
9347     }
9348     assert( pgnoRoot>=3 );
9349 
9350     /* Allocate a page. The page that currently resides at pgnoRoot will
9351     ** be moved to the allocated page (unless the allocated page happens
9352     ** to reside at pgnoRoot).
9353     */
9354     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9355     if( rc!=SQLITE_OK ){
9356       return rc;
9357     }
9358 
9359     if( pgnoMove!=pgnoRoot ){
9360       /* pgnoRoot is the page that will be used for the root-page of
9361       ** the new table (assuming an error did not occur). But we were
9362       ** allocated pgnoMove. If required (i.e. if it was not allocated
9363       ** by extending the file), the current page at position pgnoMove
9364       ** is already journaled.
9365       */
9366       u8 eType = 0;
9367       Pgno iPtrPage = 0;
9368 
9369       /* Save the positions of any open cursors. This is required in
9370       ** case they are holding a reference to an xFetch reference
9371       ** corresponding to page pgnoRoot.  */
9372       rc = saveAllCursors(pBt, 0, 0);
9373       releasePage(pPageMove);
9374       if( rc!=SQLITE_OK ){
9375         return rc;
9376       }
9377 
9378       /* Move the page currently at pgnoRoot to pgnoMove. */
9379       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9380       if( rc!=SQLITE_OK ){
9381         return rc;
9382       }
9383       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9384       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9385         rc = SQLITE_CORRUPT_BKPT;
9386       }
9387       if( rc!=SQLITE_OK ){
9388         releasePage(pRoot);
9389         return rc;
9390       }
9391       assert( eType!=PTRMAP_ROOTPAGE );
9392       assert( eType!=PTRMAP_FREEPAGE );
9393       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9394       releasePage(pRoot);
9395 
9396       /* Obtain the page at pgnoRoot */
9397       if( rc!=SQLITE_OK ){
9398         return rc;
9399       }
9400       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9401       if( rc!=SQLITE_OK ){
9402         return rc;
9403       }
9404       rc = sqlite3PagerWrite(pRoot->pDbPage);
9405       if( rc!=SQLITE_OK ){
9406         releasePage(pRoot);
9407         return rc;
9408       }
9409     }else{
9410       pRoot = pPageMove;
9411     }
9412 
9413     /* Update the pointer-map and meta-data with the new root-page number. */
9414     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9415     if( rc ){
9416       releasePage(pRoot);
9417       return rc;
9418     }
9419 
9420     /* When the new root page was allocated, page 1 was made writable in
9421     ** order either to increase the database filesize, or to decrement the
9422     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9423     */
9424     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9425     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9426     if( NEVER(rc) ){
9427       releasePage(pRoot);
9428       return rc;
9429     }
9430 
9431   }else{
9432     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9433     if( rc ) return rc;
9434   }
9435 #endif
9436   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9437   if( createTabFlags & BTREE_INTKEY ){
9438     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9439   }else{
9440     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9441   }
9442   zeroPage(pRoot, ptfFlags);
9443   sqlite3PagerUnref(pRoot->pDbPage);
9444   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9445   *piTable = pgnoRoot;
9446   return SQLITE_OK;
9447 }
9448 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9449   int rc;
9450   sqlite3BtreeEnter(p);
9451   rc = btreeCreateTable(p, piTable, flags);
9452   sqlite3BtreeLeave(p);
9453   return rc;
9454 }
9455 
9456 /*
9457 ** Erase the given database page and all its children.  Return
9458 ** the page to the freelist.
9459 */
9460 static int clearDatabasePage(
9461   BtShared *pBt,           /* The BTree that contains the table */
9462   Pgno pgno,               /* Page number to clear */
9463   int freePageFlag,        /* Deallocate page if true */
9464   int *pnChange            /* Add number of Cells freed to this counter */
9465 ){
9466   MemPage *pPage;
9467   int rc;
9468   unsigned char *pCell;
9469   int i;
9470   int hdr;
9471   CellInfo info;
9472 
9473   assert( sqlite3_mutex_held(pBt->mutex) );
9474   if( pgno>btreePagecount(pBt) ){
9475     return SQLITE_CORRUPT_BKPT;
9476   }
9477   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9478   if( rc ) return rc;
9479   if( pPage->bBusy ){
9480     rc = SQLITE_CORRUPT_BKPT;
9481     goto cleardatabasepage_out;
9482   }
9483   pPage->bBusy = 1;
9484   hdr = pPage->hdrOffset;
9485   for(i=0; i<pPage->nCell; i++){
9486     pCell = findCell(pPage, i);
9487     if( !pPage->leaf ){
9488       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9489       if( rc ) goto cleardatabasepage_out;
9490     }
9491     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9492     if( rc ) goto cleardatabasepage_out;
9493   }
9494   if( !pPage->leaf ){
9495     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9496     if( rc ) goto cleardatabasepage_out;
9497   }
9498   if( pnChange ){
9499     testcase( !pPage->intKey );
9500     *pnChange += pPage->nCell;
9501   }
9502   if( freePageFlag ){
9503     freePage(pPage, &rc);
9504   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9505     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9506   }
9507 
9508 cleardatabasepage_out:
9509   pPage->bBusy = 0;
9510   releasePage(pPage);
9511   return rc;
9512 }
9513 
9514 /*
9515 ** Delete all information from a single table in the database.  iTable is
9516 ** the page number of the root of the table.  After this routine returns,
9517 ** the root page is empty, but still exists.
9518 **
9519 ** This routine will fail with SQLITE_LOCKED if there are any open
9520 ** read cursors on the table.  Open write cursors are moved to the
9521 ** root of the table.
9522 **
9523 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9524 ** is incremented by the number of entries in the table.
9525 */
9526 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9527   int rc;
9528   BtShared *pBt = p->pBt;
9529   sqlite3BtreeEnter(p);
9530   assert( p->inTrans==TRANS_WRITE );
9531 
9532   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9533 
9534   if( SQLITE_OK==rc ){
9535     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9536     ** is the root of a table b-tree - if it is not, the following call is
9537     ** a no-op).  */
9538     if( p->hasIncrblobCur ){
9539       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9540     }
9541     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9542   }
9543   sqlite3BtreeLeave(p);
9544   return rc;
9545 }
9546 
9547 /*
9548 ** Delete all information from the single table that pCur is open on.
9549 **
9550 ** This routine only work for pCur on an ephemeral table.
9551 */
9552 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9553   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9554 }
9555 
9556 /*
9557 ** Erase all information in a table and add the root of the table to
9558 ** the freelist.  Except, the root of the principle table (the one on
9559 ** page 1) is never added to the freelist.
9560 **
9561 ** This routine will fail with SQLITE_LOCKED if there are any open
9562 ** cursors on the table.
9563 **
9564 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9565 ** root page in the database file, then the last root page
9566 ** in the database file is moved into the slot formerly occupied by
9567 ** iTable and that last slot formerly occupied by the last root page
9568 ** is added to the freelist instead of iTable.  In this say, all
9569 ** root pages are kept at the beginning of the database file, which
9570 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9571 ** page number that used to be the last root page in the file before
9572 ** the move.  If no page gets moved, *piMoved is set to 0.
9573 ** The last root page is recorded in meta[3] and the value of
9574 ** meta[3] is updated by this procedure.
9575 */
9576 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9577   int rc;
9578   MemPage *pPage = 0;
9579   BtShared *pBt = p->pBt;
9580 
9581   assert( sqlite3BtreeHoldsMutex(p) );
9582   assert( p->inTrans==TRANS_WRITE );
9583   assert( iTable>=2 );
9584   if( iTable>btreePagecount(pBt) ){
9585     return SQLITE_CORRUPT_BKPT;
9586   }
9587 
9588   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9589   if( rc ) return rc;
9590   rc = sqlite3BtreeClearTable(p, iTable, 0);
9591   if( rc ){
9592     releasePage(pPage);
9593     return rc;
9594   }
9595 
9596   *piMoved = 0;
9597 
9598 #ifdef SQLITE_OMIT_AUTOVACUUM
9599   freePage(pPage, &rc);
9600   releasePage(pPage);
9601 #else
9602   if( pBt->autoVacuum ){
9603     Pgno maxRootPgno;
9604     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9605 
9606     if( iTable==maxRootPgno ){
9607       /* If the table being dropped is the table with the largest root-page
9608       ** number in the database, put the root page on the free list.
9609       */
9610       freePage(pPage, &rc);
9611       releasePage(pPage);
9612       if( rc!=SQLITE_OK ){
9613         return rc;
9614       }
9615     }else{
9616       /* The table being dropped does not have the largest root-page
9617       ** number in the database. So move the page that does into the
9618       ** gap left by the deleted root-page.
9619       */
9620       MemPage *pMove;
9621       releasePage(pPage);
9622       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9623       if( rc!=SQLITE_OK ){
9624         return rc;
9625       }
9626       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9627       releasePage(pMove);
9628       if( rc!=SQLITE_OK ){
9629         return rc;
9630       }
9631       pMove = 0;
9632       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9633       freePage(pMove, &rc);
9634       releasePage(pMove);
9635       if( rc!=SQLITE_OK ){
9636         return rc;
9637       }
9638       *piMoved = maxRootPgno;
9639     }
9640 
9641     /* Set the new 'max-root-page' value in the database header. This
9642     ** is the old value less one, less one more if that happens to
9643     ** be a root-page number, less one again if that is the
9644     ** PENDING_BYTE_PAGE.
9645     */
9646     maxRootPgno--;
9647     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9648            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9649       maxRootPgno--;
9650     }
9651     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9652 
9653     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9654   }else{
9655     freePage(pPage, &rc);
9656     releasePage(pPage);
9657   }
9658 #endif
9659   return rc;
9660 }
9661 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9662   int rc;
9663   sqlite3BtreeEnter(p);
9664   rc = btreeDropTable(p, iTable, piMoved);
9665   sqlite3BtreeLeave(p);
9666   return rc;
9667 }
9668 
9669 
9670 /*
9671 ** This function may only be called if the b-tree connection already
9672 ** has a read or write transaction open on the database.
9673 **
9674 ** Read the meta-information out of a database file.  Meta[0]
9675 ** is the number of free pages currently in the database.  Meta[1]
9676 ** through meta[15] are available for use by higher layers.  Meta[0]
9677 ** is read-only, the others are read/write.
9678 **
9679 ** The schema layer numbers meta values differently.  At the schema
9680 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9681 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9682 **
9683 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9684 ** of reading the value out of the header, it instead loads the "DataVersion"
9685 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9686 ** database file.  It is a number computed by the pager.  But its access
9687 ** pattern is the same as header meta values, and so it is convenient to
9688 ** read it from this routine.
9689 */
9690 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9691   BtShared *pBt = p->pBt;
9692 
9693   sqlite3BtreeEnter(p);
9694   assert( p->inTrans>TRANS_NONE );
9695   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9696   assert( pBt->pPage1 );
9697   assert( idx>=0 && idx<=15 );
9698 
9699   if( idx==BTREE_DATA_VERSION ){
9700     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
9701   }else{
9702     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9703   }
9704 
9705   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9706   ** database, mark the database as read-only.  */
9707 #ifdef SQLITE_OMIT_AUTOVACUUM
9708   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9709     pBt->btsFlags |= BTS_READ_ONLY;
9710   }
9711 #endif
9712 
9713   sqlite3BtreeLeave(p);
9714 }
9715 
9716 /*
9717 ** Write meta-information back into the database.  Meta[0] is
9718 ** read-only and may not be written.
9719 */
9720 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9721   BtShared *pBt = p->pBt;
9722   unsigned char *pP1;
9723   int rc;
9724   assert( idx>=1 && idx<=15 );
9725   sqlite3BtreeEnter(p);
9726   assert( p->inTrans==TRANS_WRITE );
9727   assert( pBt->pPage1!=0 );
9728   pP1 = pBt->pPage1->aData;
9729   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9730   if( rc==SQLITE_OK ){
9731     put4byte(&pP1[36 + idx*4], iMeta);
9732 #ifndef SQLITE_OMIT_AUTOVACUUM
9733     if( idx==BTREE_INCR_VACUUM ){
9734       assert( pBt->autoVacuum || iMeta==0 );
9735       assert( iMeta==0 || iMeta==1 );
9736       pBt->incrVacuum = (u8)iMeta;
9737     }
9738 #endif
9739   }
9740   sqlite3BtreeLeave(p);
9741   return rc;
9742 }
9743 
9744 /*
9745 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9746 ** number of entries in the b-tree and write the result to *pnEntry.
9747 **
9748 ** SQLITE_OK is returned if the operation is successfully executed.
9749 ** Otherwise, if an error is encountered (i.e. an IO error or database
9750 ** corruption) an SQLite error code is returned.
9751 */
9752 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9753   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9754   int rc;                              /* Return code */
9755 
9756   rc = moveToRoot(pCur);
9757   if( rc==SQLITE_EMPTY ){
9758     *pnEntry = 0;
9759     return SQLITE_OK;
9760   }
9761 
9762   /* Unless an error occurs, the following loop runs one iteration for each
9763   ** page in the B-Tree structure (not including overflow pages).
9764   */
9765   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9766     int iIdx;                          /* Index of child node in parent */
9767     MemPage *pPage;                    /* Current page of the b-tree */
9768 
9769     /* If this is a leaf page or the tree is not an int-key tree, then
9770     ** this page contains countable entries. Increment the entry counter
9771     ** accordingly.
9772     */
9773     pPage = pCur->pPage;
9774     if( pPage->leaf || !pPage->intKey ){
9775       nEntry += pPage->nCell;
9776     }
9777 
9778     /* pPage is a leaf node. This loop navigates the cursor so that it
9779     ** points to the first interior cell that it points to the parent of
9780     ** the next page in the tree that has not yet been visited. The
9781     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9782     ** of the page, or to the number of cells in the page if the next page
9783     ** to visit is the right-child of its parent.
9784     **
9785     ** If all pages in the tree have been visited, return SQLITE_OK to the
9786     ** caller.
9787     */
9788     if( pPage->leaf ){
9789       do {
9790         if( pCur->iPage==0 ){
9791           /* All pages of the b-tree have been visited. Return successfully. */
9792           *pnEntry = nEntry;
9793           return moveToRoot(pCur);
9794         }
9795         moveToParent(pCur);
9796       }while ( pCur->ix>=pCur->pPage->nCell );
9797 
9798       pCur->ix++;
9799       pPage = pCur->pPage;
9800     }
9801 
9802     /* Descend to the child node of the cell that the cursor currently
9803     ** points at. This is the right-child if (iIdx==pPage->nCell).
9804     */
9805     iIdx = pCur->ix;
9806     if( iIdx==pPage->nCell ){
9807       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9808     }else{
9809       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9810     }
9811   }
9812 
9813   /* An error has occurred. Return an error code. */
9814   return rc;
9815 }
9816 
9817 /*
9818 ** Return the pager associated with a BTree.  This routine is used for
9819 ** testing and debugging only.
9820 */
9821 Pager *sqlite3BtreePager(Btree *p){
9822   return p->pBt->pPager;
9823 }
9824 
9825 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9826 /*
9827 ** Append a message to the error message string.
9828 */
9829 static void checkAppendMsg(
9830   IntegrityCk *pCheck,
9831   const char *zFormat,
9832   ...
9833 ){
9834   va_list ap;
9835   if( !pCheck->mxErr ) return;
9836   pCheck->mxErr--;
9837   pCheck->nErr++;
9838   va_start(ap, zFormat);
9839   if( pCheck->errMsg.nChar ){
9840     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9841   }
9842   if( pCheck->zPfx ){
9843     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9844   }
9845   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9846   va_end(ap);
9847   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9848     pCheck->bOomFault = 1;
9849   }
9850 }
9851 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9852 
9853 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9854 
9855 /*
9856 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9857 ** corresponds to page iPg is already set.
9858 */
9859 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9860   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9861   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9862 }
9863 
9864 /*
9865 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9866 */
9867 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9868   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9869   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9870 }
9871 
9872 
9873 /*
9874 ** Add 1 to the reference count for page iPage.  If this is the second
9875 ** reference to the page, add an error message to pCheck->zErrMsg.
9876 ** Return 1 if there are 2 or more references to the page and 0 if
9877 ** if this is the first reference to the page.
9878 **
9879 ** Also check that the page number is in bounds.
9880 */
9881 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9882   if( iPage>pCheck->nPage || iPage==0 ){
9883     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9884     return 1;
9885   }
9886   if( getPageReferenced(pCheck, iPage) ){
9887     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9888     return 1;
9889   }
9890   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
9891   setPageReferenced(pCheck, iPage);
9892   return 0;
9893 }
9894 
9895 #ifndef SQLITE_OMIT_AUTOVACUUM
9896 /*
9897 ** Check that the entry in the pointer-map for page iChild maps to
9898 ** page iParent, pointer type ptrType. If not, append an error message
9899 ** to pCheck.
9900 */
9901 static void checkPtrmap(
9902   IntegrityCk *pCheck,   /* Integrity check context */
9903   Pgno iChild,           /* Child page number */
9904   u8 eType,              /* Expected pointer map type */
9905   Pgno iParent           /* Expected pointer map parent page number */
9906 ){
9907   int rc;
9908   u8 ePtrmapType;
9909   Pgno iPtrmapParent;
9910 
9911   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9912   if( rc!=SQLITE_OK ){
9913     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
9914     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9915     return;
9916   }
9917 
9918   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9919     checkAppendMsg(pCheck,
9920       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9921       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9922   }
9923 }
9924 #endif
9925 
9926 /*
9927 ** Check the integrity of the freelist or of an overflow page list.
9928 ** Verify that the number of pages on the list is N.
9929 */
9930 static void checkList(
9931   IntegrityCk *pCheck,  /* Integrity checking context */
9932   int isFreeList,       /* True for a freelist.  False for overflow page list */
9933   Pgno iPage,           /* Page number for first page in the list */
9934   u32 N                 /* Expected number of pages in the list */
9935 ){
9936   int i;
9937   u32 expected = N;
9938   int nErrAtStart = pCheck->nErr;
9939   while( iPage!=0 && pCheck->mxErr ){
9940     DbPage *pOvflPage;
9941     unsigned char *pOvflData;
9942     if( checkRef(pCheck, iPage) ) break;
9943     N--;
9944     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9945       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9946       break;
9947     }
9948     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9949     if( isFreeList ){
9950       u32 n = (u32)get4byte(&pOvflData[4]);
9951 #ifndef SQLITE_OMIT_AUTOVACUUM
9952       if( pCheck->pBt->autoVacuum ){
9953         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9954       }
9955 #endif
9956       if( n>pCheck->pBt->usableSize/4-2 ){
9957         checkAppendMsg(pCheck,
9958            "freelist leaf count too big on page %d", iPage);
9959         N--;
9960       }else{
9961         for(i=0; i<(int)n; i++){
9962           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9963 #ifndef SQLITE_OMIT_AUTOVACUUM
9964           if( pCheck->pBt->autoVacuum ){
9965             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9966           }
9967 #endif
9968           checkRef(pCheck, iFreePage);
9969         }
9970         N -= n;
9971       }
9972     }
9973 #ifndef SQLITE_OMIT_AUTOVACUUM
9974     else{
9975       /* If this database supports auto-vacuum and iPage is not the last
9976       ** page in this overflow list, check that the pointer-map entry for
9977       ** the following page matches iPage.
9978       */
9979       if( pCheck->pBt->autoVacuum && N>0 ){
9980         i = get4byte(pOvflData);
9981         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9982       }
9983     }
9984 #endif
9985     iPage = get4byte(pOvflData);
9986     sqlite3PagerUnref(pOvflPage);
9987   }
9988   if( N && nErrAtStart==pCheck->nErr ){
9989     checkAppendMsg(pCheck,
9990       "%s is %d but should be %d",
9991       isFreeList ? "size" : "overflow list length",
9992       expected-N, expected);
9993   }
9994 }
9995 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9996 
9997 /*
9998 ** An implementation of a min-heap.
9999 **
10000 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10001 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10002 ** and aHeap[N*2+1].
10003 **
10004 ** The heap property is this:  Every node is less than or equal to both
10005 ** of its daughter nodes.  A consequence of the heap property is that the
10006 ** root node aHeap[1] is always the minimum value currently in the heap.
10007 **
10008 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10009 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10010 ** removes the root element from the heap (the minimum value in the heap)
10011 ** and then moves other nodes around as necessary to preserve the heap
10012 ** property.
10013 **
10014 ** This heap is used for cell overlap and coverage testing.  Each u32
10015 ** entry represents the span of a cell or freeblock on a btree page.
10016 ** The upper 16 bits are the index of the first byte of a range and the
10017 ** lower 16 bits are the index of the last byte of that range.
10018 */
10019 static void btreeHeapInsert(u32 *aHeap, u32 x){
10020   u32 j, i = ++aHeap[0];
10021   aHeap[i] = x;
10022   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10023     x = aHeap[j];
10024     aHeap[j] = aHeap[i];
10025     aHeap[i] = x;
10026     i = j;
10027   }
10028 }
10029 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10030   u32 j, i, x;
10031   if( (x = aHeap[0])==0 ) return 0;
10032   *pOut = aHeap[1];
10033   aHeap[1] = aHeap[x];
10034   aHeap[x] = 0xffffffff;
10035   aHeap[0]--;
10036   i = 1;
10037   while( (j = i*2)<=aHeap[0] ){
10038     if( aHeap[j]>aHeap[j+1] ) j++;
10039     if( aHeap[i]<aHeap[j] ) break;
10040     x = aHeap[i];
10041     aHeap[i] = aHeap[j];
10042     aHeap[j] = x;
10043     i = j;
10044   }
10045   return 1;
10046 }
10047 
10048 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10049 /*
10050 ** Do various sanity checks on a single page of a tree.  Return
10051 ** the tree depth.  Root pages return 0.  Parents of root pages
10052 ** return 1, and so forth.
10053 **
10054 ** These checks are done:
10055 **
10056 **      1.  Make sure that cells and freeblocks do not overlap
10057 **          but combine to completely cover the page.
10058 **      2.  Make sure integer cell keys are in order.
10059 **      3.  Check the integrity of overflow pages.
10060 **      4.  Recursively call checkTreePage on all children.
10061 **      5.  Verify that the depth of all children is the same.
10062 */
10063 static int checkTreePage(
10064   IntegrityCk *pCheck,  /* Context for the sanity check */
10065   Pgno iPage,           /* Page number of the page to check */
10066   i64 *piMinKey,        /* Write minimum integer primary key here */
10067   i64 maxKey            /* Error if integer primary key greater than this */
10068 ){
10069   MemPage *pPage = 0;      /* The page being analyzed */
10070   int i;                   /* Loop counter */
10071   int rc;                  /* Result code from subroutine call */
10072   int depth = -1, d2;      /* Depth of a subtree */
10073   int pgno;                /* Page number */
10074   int nFrag;               /* Number of fragmented bytes on the page */
10075   int hdr;                 /* Offset to the page header */
10076   int cellStart;           /* Offset to the start of the cell pointer array */
10077   int nCell;               /* Number of cells */
10078   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10079   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10080                            ** False if IPK must be strictly less than maxKey */
10081   u8 *data;                /* Page content */
10082   u8 *pCell;               /* Cell content */
10083   u8 *pCellIdx;            /* Next element of the cell pointer array */
10084   BtShared *pBt;           /* The BtShared object that owns pPage */
10085   u32 pc;                  /* Address of a cell */
10086   u32 usableSize;          /* Usable size of the page */
10087   u32 contentOffset;       /* Offset to the start of the cell content area */
10088   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10089   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10090   const char *saved_zPfx = pCheck->zPfx;
10091   int saved_v1 = pCheck->v1;
10092   int saved_v2 = pCheck->v2;
10093   u8 savedIsInit = 0;
10094 
10095   /* Check that the page exists
10096   */
10097   pBt = pCheck->pBt;
10098   usableSize = pBt->usableSize;
10099   if( iPage==0 ) return 0;
10100   if( checkRef(pCheck, iPage) ) return 0;
10101   pCheck->zPfx = "Page %u: ";
10102   pCheck->v1 = iPage;
10103   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10104     checkAppendMsg(pCheck,
10105        "unable to get the page. error code=%d", rc);
10106     goto end_of_check;
10107   }
10108 
10109   /* Clear MemPage.isInit to make sure the corruption detection code in
10110   ** btreeInitPage() is executed.  */
10111   savedIsInit = pPage->isInit;
10112   pPage->isInit = 0;
10113   if( (rc = btreeInitPage(pPage))!=0 ){
10114     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10115     checkAppendMsg(pCheck,
10116                    "btreeInitPage() returns error code %d", rc);
10117     goto end_of_check;
10118   }
10119   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10120     assert( rc==SQLITE_CORRUPT );
10121     checkAppendMsg(pCheck, "free space corruption", rc);
10122     goto end_of_check;
10123   }
10124   data = pPage->aData;
10125   hdr = pPage->hdrOffset;
10126 
10127   /* Set up for cell analysis */
10128   pCheck->zPfx = "On tree page %u cell %d: ";
10129   contentOffset = get2byteNotZero(&data[hdr+5]);
10130   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10131 
10132   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10133   ** number of cells on the page. */
10134   nCell = get2byte(&data[hdr+3]);
10135   assert( pPage->nCell==nCell );
10136 
10137   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10138   ** immediately follows the b-tree page header. */
10139   cellStart = hdr + 12 - 4*pPage->leaf;
10140   assert( pPage->aCellIdx==&data[cellStart] );
10141   pCellIdx = &data[cellStart + 2*(nCell-1)];
10142 
10143   if( !pPage->leaf ){
10144     /* Analyze the right-child page of internal pages */
10145     pgno = get4byte(&data[hdr+8]);
10146 #ifndef SQLITE_OMIT_AUTOVACUUM
10147     if( pBt->autoVacuum ){
10148       pCheck->zPfx = "On page %u at right child: ";
10149       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10150     }
10151 #endif
10152     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10153     keyCanBeEqual = 0;
10154   }else{
10155     /* For leaf pages, the coverage check will occur in the same loop
10156     ** as the other cell checks, so initialize the heap.  */
10157     heap = pCheck->heap;
10158     heap[0] = 0;
10159   }
10160 
10161   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10162   ** integer offsets to the cell contents. */
10163   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10164     CellInfo info;
10165 
10166     /* Check cell size */
10167     pCheck->v2 = i;
10168     assert( pCellIdx==&data[cellStart + i*2] );
10169     pc = get2byteAligned(pCellIdx);
10170     pCellIdx -= 2;
10171     if( pc<contentOffset || pc>usableSize-4 ){
10172       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10173                              pc, contentOffset, usableSize-4);
10174       doCoverageCheck = 0;
10175       continue;
10176     }
10177     pCell = &data[pc];
10178     pPage->xParseCell(pPage, pCell, &info);
10179     if( pc+info.nSize>usableSize ){
10180       checkAppendMsg(pCheck, "Extends off end of page");
10181       doCoverageCheck = 0;
10182       continue;
10183     }
10184 
10185     /* Check for integer primary key out of range */
10186     if( pPage->intKey ){
10187       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10188         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10189       }
10190       maxKey = info.nKey;
10191       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10192     }
10193 
10194     /* Check the content overflow list */
10195     if( info.nPayload>info.nLocal ){
10196       u32 nPage;       /* Number of pages on the overflow chain */
10197       Pgno pgnoOvfl;   /* First page of the overflow chain */
10198       assert( pc + info.nSize - 4 <= usableSize );
10199       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10200       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10201 #ifndef SQLITE_OMIT_AUTOVACUUM
10202       if( pBt->autoVacuum ){
10203         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10204       }
10205 #endif
10206       checkList(pCheck, 0, pgnoOvfl, nPage);
10207     }
10208 
10209     if( !pPage->leaf ){
10210       /* Check sanity of left child page for internal pages */
10211       pgno = get4byte(pCell);
10212 #ifndef SQLITE_OMIT_AUTOVACUUM
10213       if( pBt->autoVacuum ){
10214         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10215       }
10216 #endif
10217       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10218       keyCanBeEqual = 0;
10219       if( d2!=depth ){
10220         checkAppendMsg(pCheck, "Child page depth differs");
10221         depth = d2;
10222       }
10223     }else{
10224       /* Populate the coverage-checking heap for leaf pages */
10225       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10226     }
10227   }
10228   *piMinKey = maxKey;
10229 
10230   /* Check for complete coverage of the page
10231   */
10232   pCheck->zPfx = 0;
10233   if( doCoverageCheck && pCheck->mxErr>0 ){
10234     /* For leaf pages, the min-heap has already been initialized and the
10235     ** cells have already been inserted.  But for internal pages, that has
10236     ** not yet been done, so do it now */
10237     if( !pPage->leaf ){
10238       heap = pCheck->heap;
10239       heap[0] = 0;
10240       for(i=nCell-1; i>=0; i--){
10241         u32 size;
10242         pc = get2byteAligned(&data[cellStart+i*2]);
10243         size = pPage->xCellSize(pPage, &data[pc]);
10244         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10245       }
10246     }
10247     /* Add the freeblocks to the min-heap
10248     **
10249     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10250     ** is the offset of the first freeblock, or zero if there are no
10251     ** freeblocks on the page.
10252     */
10253     i = get2byte(&data[hdr+1]);
10254     while( i>0 ){
10255       int size, j;
10256       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10257       size = get2byte(&data[i+2]);
10258       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10259       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10260       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10261       ** big-endian integer which is the offset in the b-tree page of the next
10262       ** freeblock in the chain, or zero if the freeblock is the last on the
10263       ** chain. */
10264       j = get2byte(&data[i]);
10265       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10266       ** increasing offset. */
10267       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10268       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10269       i = j;
10270     }
10271     /* Analyze the min-heap looking for overlap between cells and/or
10272     ** freeblocks, and counting the number of untracked bytes in nFrag.
10273     **
10274     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10275     ** There is an implied first entry the covers the page header, the cell
10276     ** pointer index, and the gap between the cell pointer index and the start
10277     ** of cell content.
10278     **
10279     ** The loop below pulls entries from the min-heap in order and compares
10280     ** the start_address against the previous end_address.  If there is an
10281     ** overlap, that means bytes are used multiple times.  If there is a gap,
10282     ** that gap is added to the fragmentation count.
10283     */
10284     nFrag = 0;
10285     prev = contentOffset - 1;   /* Implied first min-heap entry */
10286     while( btreeHeapPull(heap,&x) ){
10287       if( (prev&0xffff)>=(x>>16) ){
10288         checkAppendMsg(pCheck,
10289           "Multiple uses for byte %u of page %u", x>>16, iPage);
10290         break;
10291       }else{
10292         nFrag += (x>>16) - (prev&0xffff) - 1;
10293         prev = x;
10294       }
10295     }
10296     nFrag += usableSize - (prev&0xffff) - 1;
10297     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10298     ** is stored in the fifth field of the b-tree page header.
10299     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10300     ** number of fragmented free bytes within the cell content area.
10301     */
10302     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10303       checkAppendMsg(pCheck,
10304           "Fragmentation of %d bytes reported as %d on page %u",
10305           nFrag, data[hdr+7], iPage);
10306     }
10307   }
10308 
10309 end_of_check:
10310   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10311   releasePage(pPage);
10312   pCheck->zPfx = saved_zPfx;
10313   pCheck->v1 = saved_v1;
10314   pCheck->v2 = saved_v2;
10315   return depth+1;
10316 }
10317 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10318 
10319 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10320 /*
10321 ** This routine does a complete check of the given BTree file.  aRoot[] is
10322 ** an array of pages numbers were each page number is the root page of
10323 ** a table.  nRoot is the number of entries in aRoot.
10324 **
10325 ** A read-only or read-write transaction must be opened before calling
10326 ** this function.
10327 **
10328 ** Write the number of error seen in *pnErr.  Except for some memory
10329 ** allocation errors,  an error message held in memory obtained from
10330 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10331 ** returned.  If a memory allocation error occurs, NULL is returned.
10332 **
10333 ** If the first entry in aRoot[] is 0, that indicates that the list of
10334 ** root pages is incomplete.  This is a "partial integrity-check".  This
10335 ** happens when performing an integrity check on a single table.  The
10336 ** zero is skipped, of course.  But in addition, the freelist checks
10337 ** and the checks to make sure every page is referenced are also skipped,
10338 ** since obviously it is not possible to know which pages are covered by
10339 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10340 ** checks are still performed.
10341 */
10342 char *sqlite3BtreeIntegrityCheck(
10343   sqlite3 *db,  /* Database connection that is running the check */
10344   Btree *p,     /* The btree to be checked */
10345   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10346   int nRoot,    /* Number of entries in aRoot[] */
10347   int mxErr,    /* Stop reporting errors after this many */
10348   int *pnErr    /* Write number of errors seen to this variable */
10349 ){
10350   Pgno i;
10351   IntegrityCk sCheck;
10352   BtShared *pBt = p->pBt;
10353   u64 savedDbFlags = pBt->db->flags;
10354   char zErr[100];
10355   int bPartial = 0;            /* True if not checking all btrees */
10356   int bCkFreelist = 1;         /* True to scan the freelist */
10357   VVA_ONLY( int nRef );
10358   assert( nRoot>0 );
10359 
10360   /* aRoot[0]==0 means this is a partial check */
10361   if( aRoot[0]==0 ){
10362     assert( nRoot>1 );
10363     bPartial = 1;
10364     if( aRoot[1]!=1 ) bCkFreelist = 0;
10365   }
10366 
10367   sqlite3BtreeEnter(p);
10368   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10369   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10370   assert( nRef>=0 );
10371   sCheck.db = db;
10372   sCheck.pBt = pBt;
10373   sCheck.pPager = pBt->pPager;
10374   sCheck.nPage = btreePagecount(sCheck.pBt);
10375   sCheck.mxErr = mxErr;
10376   sCheck.nErr = 0;
10377   sCheck.bOomFault = 0;
10378   sCheck.zPfx = 0;
10379   sCheck.v1 = 0;
10380   sCheck.v2 = 0;
10381   sCheck.aPgRef = 0;
10382   sCheck.heap = 0;
10383   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10384   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10385   if( sCheck.nPage==0 ){
10386     goto integrity_ck_cleanup;
10387   }
10388 
10389   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10390   if( !sCheck.aPgRef ){
10391     sCheck.bOomFault = 1;
10392     goto integrity_ck_cleanup;
10393   }
10394   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10395   if( sCheck.heap==0 ){
10396     sCheck.bOomFault = 1;
10397     goto integrity_ck_cleanup;
10398   }
10399 
10400   i = PENDING_BYTE_PAGE(pBt);
10401   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10402 
10403   /* Check the integrity of the freelist
10404   */
10405   if( bCkFreelist ){
10406     sCheck.zPfx = "Main freelist: ";
10407     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10408               get4byte(&pBt->pPage1->aData[36]));
10409     sCheck.zPfx = 0;
10410   }
10411 
10412   /* Check all the tables.
10413   */
10414 #ifndef SQLITE_OMIT_AUTOVACUUM
10415   if( !bPartial ){
10416     if( pBt->autoVacuum ){
10417       Pgno mx = 0;
10418       Pgno mxInHdr;
10419       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10420       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10421       if( mx!=mxInHdr ){
10422         checkAppendMsg(&sCheck,
10423           "max rootpage (%d) disagrees with header (%d)",
10424           mx, mxInHdr
10425         );
10426       }
10427     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10428       checkAppendMsg(&sCheck,
10429         "incremental_vacuum enabled with a max rootpage of zero"
10430       );
10431     }
10432   }
10433 #endif
10434   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10435   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10436   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10437     i64 notUsed;
10438     if( aRoot[i]==0 ) continue;
10439 #ifndef SQLITE_OMIT_AUTOVACUUM
10440     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10441       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10442     }
10443 #endif
10444     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10445   }
10446   pBt->db->flags = savedDbFlags;
10447 
10448   /* Make sure every page in the file is referenced
10449   */
10450   if( !bPartial ){
10451     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10452 #ifdef SQLITE_OMIT_AUTOVACUUM
10453       if( getPageReferenced(&sCheck, i)==0 ){
10454         checkAppendMsg(&sCheck, "Page %d is never used", i);
10455       }
10456 #else
10457       /* If the database supports auto-vacuum, make sure no tables contain
10458       ** references to pointer-map pages.
10459       */
10460       if( getPageReferenced(&sCheck, i)==0 &&
10461          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10462         checkAppendMsg(&sCheck, "Page %d is never used", i);
10463       }
10464       if( getPageReferenced(&sCheck, i)!=0 &&
10465          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10466         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10467       }
10468 #endif
10469     }
10470   }
10471 
10472   /* Clean  up and report errors.
10473   */
10474 integrity_ck_cleanup:
10475   sqlite3PageFree(sCheck.heap);
10476   sqlite3_free(sCheck.aPgRef);
10477   if( sCheck.bOomFault ){
10478     sqlite3_str_reset(&sCheck.errMsg);
10479     sCheck.nErr++;
10480   }
10481   *pnErr = sCheck.nErr;
10482   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10483   /* Make sure this analysis did not leave any unref() pages. */
10484   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10485   sqlite3BtreeLeave(p);
10486   return sqlite3StrAccumFinish(&sCheck.errMsg);
10487 }
10488 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10489 
10490 /*
10491 ** Return the full pathname of the underlying database file.  Return
10492 ** an empty string if the database is in-memory or a TEMP database.
10493 **
10494 ** The pager filename is invariant as long as the pager is
10495 ** open so it is safe to access without the BtShared mutex.
10496 */
10497 const char *sqlite3BtreeGetFilename(Btree *p){
10498   assert( p->pBt->pPager!=0 );
10499   return sqlite3PagerFilename(p->pBt->pPager, 1);
10500 }
10501 
10502 /*
10503 ** Return the pathname of the journal file for this database. The return
10504 ** value of this routine is the same regardless of whether the journal file
10505 ** has been created or not.
10506 **
10507 ** The pager journal filename is invariant as long as the pager is
10508 ** open so it is safe to access without the BtShared mutex.
10509 */
10510 const char *sqlite3BtreeGetJournalname(Btree *p){
10511   assert( p->pBt->pPager!=0 );
10512   return sqlite3PagerJournalname(p->pBt->pPager);
10513 }
10514 
10515 /*
10516 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10517 ** to describe the current transaction state of Btree p.
10518 */
10519 int sqlite3BtreeTxnState(Btree *p){
10520   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10521   return p ? p->inTrans : 0;
10522 }
10523 
10524 #ifndef SQLITE_OMIT_WAL
10525 /*
10526 ** Run a checkpoint on the Btree passed as the first argument.
10527 **
10528 ** Return SQLITE_LOCKED if this or any other connection has an open
10529 ** transaction on the shared-cache the argument Btree is connected to.
10530 **
10531 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10532 */
10533 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10534   int rc = SQLITE_OK;
10535   if( p ){
10536     BtShared *pBt = p->pBt;
10537     sqlite3BtreeEnter(p);
10538     if( pBt->inTransaction!=TRANS_NONE ){
10539       rc = SQLITE_LOCKED;
10540     }else{
10541       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10542     }
10543     sqlite3BtreeLeave(p);
10544   }
10545   return rc;
10546 }
10547 #endif
10548 
10549 /*
10550 ** Return true if there is currently a backup running on Btree p.
10551 */
10552 int sqlite3BtreeIsInBackup(Btree *p){
10553   assert( p );
10554   assert( sqlite3_mutex_held(p->db->mutex) );
10555   return p->nBackup!=0;
10556 }
10557 
10558 /*
10559 ** This function returns a pointer to a blob of memory associated with
10560 ** a single shared-btree. The memory is used by client code for its own
10561 ** purposes (for example, to store a high-level schema associated with
10562 ** the shared-btree). The btree layer manages reference counting issues.
10563 **
10564 ** The first time this is called on a shared-btree, nBytes bytes of memory
10565 ** are allocated, zeroed, and returned to the caller. For each subsequent
10566 ** call the nBytes parameter is ignored and a pointer to the same blob
10567 ** of memory returned.
10568 **
10569 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10570 ** allocated, a null pointer is returned. If the blob has already been
10571 ** allocated, it is returned as normal.
10572 **
10573 ** Just before the shared-btree is closed, the function passed as the
10574 ** xFree argument when the memory allocation was made is invoked on the
10575 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10576 ** on the memory, the btree layer does that.
10577 */
10578 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10579   BtShared *pBt = p->pBt;
10580   sqlite3BtreeEnter(p);
10581   if( !pBt->pSchema && nBytes ){
10582     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10583     pBt->xFreeSchema = xFree;
10584   }
10585   sqlite3BtreeLeave(p);
10586   return pBt->pSchema;
10587 }
10588 
10589 /*
10590 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10591 ** btree as the argument handle holds an exclusive lock on the
10592 ** sqlite_schema table. Otherwise SQLITE_OK.
10593 */
10594 int sqlite3BtreeSchemaLocked(Btree *p){
10595   int rc;
10596   assert( sqlite3_mutex_held(p->db->mutex) );
10597   sqlite3BtreeEnter(p);
10598   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10599   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10600   sqlite3BtreeLeave(p);
10601   return rc;
10602 }
10603 
10604 
10605 #ifndef SQLITE_OMIT_SHARED_CACHE
10606 /*
10607 ** Obtain a lock on the table whose root page is iTab.  The
10608 ** lock is a write lock if isWritelock is true or a read lock
10609 ** if it is false.
10610 */
10611 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10612   int rc = SQLITE_OK;
10613   assert( p->inTrans!=TRANS_NONE );
10614   if( p->sharable ){
10615     u8 lockType = READ_LOCK + isWriteLock;
10616     assert( READ_LOCK+1==WRITE_LOCK );
10617     assert( isWriteLock==0 || isWriteLock==1 );
10618 
10619     sqlite3BtreeEnter(p);
10620     rc = querySharedCacheTableLock(p, iTab, lockType);
10621     if( rc==SQLITE_OK ){
10622       rc = setSharedCacheTableLock(p, iTab, lockType);
10623     }
10624     sqlite3BtreeLeave(p);
10625   }
10626   return rc;
10627 }
10628 #endif
10629 
10630 #ifndef SQLITE_OMIT_INCRBLOB
10631 /*
10632 ** Argument pCsr must be a cursor opened for writing on an
10633 ** INTKEY table currently pointing at a valid table entry.
10634 ** This function modifies the data stored as part of that entry.
10635 **
10636 ** Only the data content may only be modified, it is not possible to
10637 ** change the length of the data stored. If this function is called with
10638 ** parameters that attempt to write past the end of the existing data,
10639 ** no modifications are made and SQLITE_CORRUPT is returned.
10640 */
10641 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10642   int rc;
10643   assert( cursorOwnsBtShared(pCsr) );
10644   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10645   assert( pCsr->curFlags & BTCF_Incrblob );
10646 
10647   rc = restoreCursorPosition(pCsr);
10648   if( rc!=SQLITE_OK ){
10649     return rc;
10650   }
10651   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10652   if( pCsr->eState!=CURSOR_VALID ){
10653     return SQLITE_ABORT;
10654   }
10655 
10656   /* Save the positions of all other cursors open on this table. This is
10657   ** required in case any of them are holding references to an xFetch
10658   ** version of the b-tree page modified by the accessPayload call below.
10659   **
10660   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10661   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10662   ** saveAllCursors can only return SQLITE_OK.
10663   */
10664   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10665   assert( rc==SQLITE_OK );
10666 
10667   /* Check some assumptions:
10668   **   (a) the cursor is open for writing,
10669   **   (b) there is a read/write transaction open,
10670   **   (c) the connection holds a write-lock on the table (if required),
10671   **   (d) there are no conflicting read-locks, and
10672   **   (e) the cursor points at a valid row of an intKey table.
10673   */
10674   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10675     return SQLITE_READONLY;
10676   }
10677   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10678               && pCsr->pBt->inTransaction==TRANS_WRITE );
10679   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10680   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10681   assert( pCsr->pPage->intKey );
10682 
10683   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10684 }
10685 
10686 /*
10687 ** Mark this cursor as an incremental blob cursor.
10688 */
10689 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10690   pCur->curFlags |= BTCF_Incrblob;
10691   pCur->pBtree->hasIncrblobCur = 1;
10692 }
10693 #endif
10694 
10695 /*
10696 ** Set both the "read version" (single byte at byte offset 18) and
10697 ** "write version" (single byte at byte offset 19) fields in the database
10698 ** header to iVersion.
10699 */
10700 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10701   BtShared *pBt = pBtree->pBt;
10702   int rc;                         /* Return code */
10703 
10704   assert( iVersion==1 || iVersion==2 );
10705 
10706   /* If setting the version fields to 1, do not automatically open the
10707   ** WAL connection, even if the version fields are currently set to 2.
10708   */
10709   pBt->btsFlags &= ~BTS_NO_WAL;
10710   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10711 
10712   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10713   if( rc==SQLITE_OK ){
10714     u8 *aData = pBt->pPage1->aData;
10715     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10716       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10717       if( rc==SQLITE_OK ){
10718         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10719         if( rc==SQLITE_OK ){
10720           aData[18] = (u8)iVersion;
10721           aData[19] = (u8)iVersion;
10722         }
10723       }
10724     }
10725   }
10726 
10727   pBt->btsFlags &= ~BTS_NO_WAL;
10728   return rc;
10729 }
10730 
10731 /*
10732 ** Return true if the cursor has a hint specified.  This routine is
10733 ** only used from within assert() statements
10734 */
10735 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10736   return (pCsr->hints & mask)!=0;
10737 }
10738 
10739 /*
10740 ** Return true if the given Btree is read-only.
10741 */
10742 int sqlite3BtreeIsReadonly(Btree *p){
10743   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10744 }
10745 
10746 /*
10747 ** Return the size of the header added to each page by this module.
10748 */
10749 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10750 
10751 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10752 /*
10753 ** Return true if the Btree passed as the only argument is sharable.
10754 */
10755 int sqlite3BtreeSharable(Btree *p){
10756   return p->sharable;
10757 }
10758 
10759 /*
10760 ** Return the number of connections to the BtShared object accessed by
10761 ** the Btree handle passed as the only argument. For private caches
10762 ** this is always 1. For shared caches it may be 1 or greater.
10763 */
10764 int sqlite3BtreeConnectionCount(Btree *p){
10765   testcase( p->sharable );
10766   return p->pBt->nRef;
10767 }
10768 #endif
10769