1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==(int)iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call BtreeMovetoUnpacked() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined to avoid a function call. 1229 */ 1230 iKey = *pIter; 1231 if( iKey>=0x80 ){ 1232 u8 *pEnd = &pIter[7]; 1233 iKey &= 0x7f; 1234 while(1){ 1235 iKey = (iKey<<7) | (*++pIter & 0x7f); 1236 if( (*pIter)<0x80 ) break; 1237 if( pIter>=pEnd ){ 1238 iKey = (iKey<<8) | *++pIter; 1239 break; 1240 } 1241 } 1242 } 1243 pIter++; 1244 1245 pInfo->nKey = *(i64*)&iKey; 1246 pInfo->nPayload = nPayload; 1247 pInfo->pPayload = pIter; 1248 testcase( nPayload==pPage->maxLocal ); 1249 testcase( nPayload==pPage->maxLocal+1 ); 1250 if( nPayload<=pPage->maxLocal ){ 1251 /* This is the (easy) common case where the entire payload fits 1252 ** on the local page. No overflow is required. 1253 */ 1254 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1255 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1256 pInfo->nLocal = (u16)nPayload; 1257 }else{ 1258 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1259 } 1260 } 1261 static void btreeParseCellPtrIndex( 1262 MemPage *pPage, /* Page containing the cell */ 1263 u8 *pCell, /* Pointer to the cell text. */ 1264 CellInfo *pInfo /* Fill in this structure */ 1265 ){ 1266 u8 *pIter; /* For scanning through pCell */ 1267 u32 nPayload; /* Number of bytes of cell payload */ 1268 1269 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1270 assert( pPage->leaf==0 || pPage->leaf==1 ); 1271 assert( pPage->intKeyLeaf==0 ); 1272 pIter = pCell + pPage->childPtrSize; 1273 nPayload = *pIter; 1274 if( nPayload>=0x80 ){ 1275 u8 *pEnd = &pIter[8]; 1276 nPayload &= 0x7f; 1277 do{ 1278 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1279 }while( *(pIter)>=0x80 && pIter<pEnd ); 1280 } 1281 pIter++; 1282 pInfo->nKey = nPayload; 1283 pInfo->nPayload = nPayload; 1284 pInfo->pPayload = pIter; 1285 testcase( nPayload==pPage->maxLocal ); 1286 testcase( nPayload==pPage->maxLocal+1 ); 1287 if( nPayload<=pPage->maxLocal ){ 1288 /* This is the (easy) common case where the entire payload fits 1289 ** on the local page. No overflow is required. 1290 */ 1291 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1292 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1293 pInfo->nLocal = (u16)nPayload; 1294 }else{ 1295 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1296 } 1297 } 1298 static void btreeParseCell( 1299 MemPage *pPage, /* Page containing the cell */ 1300 int iCell, /* The cell index. First cell is 0 */ 1301 CellInfo *pInfo /* Fill in this structure */ 1302 ){ 1303 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1304 } 1305 1306 /* 1307 ** The following routines are implementations of the MemPage.xCellSize 1308 ** method. 1309 ** 1310 ** Compute the total number of bytes that a Cell needs in the cell 1311 ** data area of the btree-page. The return number includes the cell 1312 ** data header and the local payload, but not any overflow page or 1313 ** the space used by the cell pointer. 1314 ** 1315 ** cellSizePtrNoPayload() => table internal nodes 1316 ** cellSizePtr() => all index nodes & table leaf nodes 1317 */ 1318 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1319 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1320 u8 *pEnd; /* End mark for a varint */ 1321 u32 nSize; /* Size value to return */ 1322 1323 #ifdef SQLITE_DEBUG 1324 /* The value returned by this function should always be the same as 1325 ** the (CellInfo.nSize) value found by doing a full parse of the 1326 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1327 ** this function verifies that this invariant is not violated. */ 1328 CellInfo debuginfo; 1329 pPage->xParseCell(pPage, pCell, &debuginfo); 1330 #endif 1331 1332 nSize = *pIter; 1333 if( nSize>=0x80 ){ 1334 pEnd = &pIter[8]; 1335 nSize &= 0x7f; 1336 do{ 1337 nSize = (nSize<<7) | (*++pIter & 0x7f); 1338 }while( *(pIter)>=0x80 && pIter<pEnd ); 1339 } 1340 pIter++; 1341 if( pPage->intKey ){ 1342 /* pIter now points at the 64-bit integer key value, a variable length 1343 ** integer. The following block moves pIter to point at the first byte 1344 ** past the end of the key value. */ 1345 pEnd = &pIter[9]; 1346 while( (*pIter++)&0x80 && pIter<pEnd ); 1347 } 1348 testcase( nSize==pPage->maxLocal ); 1349 testcase( nSize==pPage->maxLocal+1 ); 1350 if( nSize<=pPage->maxLocal ){ 1351 nSize += (u32)(pIter - pCell); 1352 if( nSize<4 ) nSize = 4; 1353 }else{ 1354 int minLocal = pPage->minLocal; 1355 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==pPage->maxLocal+1 ); 1358 if( nSize>pPage->maxLocal ){ 1359 nSize = minLocal; 1360 } 1361 nSize += 4 + (u16)(pIter - pCell); 1362 } 1363 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1364 return (u16)nSize; 1365 } 1366 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1367 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1368 u8 *pEnd; /* End mark for a varint */ 1369 1370 #ifdef SQLITE_DEBUG 1371 /* The value returned by this function should always be the same as 1372 ** the (CellInfo.nSize) value found by doing a full parse of the 1373 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1374 ** this function verifies that this invariant is not violated. */ 1375 CellInfo debuginfo; 1376 pPage->xParseCell(pPage, pCell, &debuginfo); 1377 #else 1378 UNUSED_PARAMETER(pPage); 1379 #endif 1380 1381 assert( pPage->childPtrSize==4 ); 1382 pEnd = pIter + 9; 1383 while( (*pIter++)&0x80 && pIter<pEnd ); 1384 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1385 return (u16)(pIter - pCell); 1386 } 1387 1388 1389 #ifdef SQLITE_DEBUG 1390 /* This variation on cellSizePtr() is used inside of assert() statements 1391 ** only. */ 1392 static u16 cellSize(MemPage *pPage, int iCell){ 1393 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1394 } 1395 #endif 1396 1397 #ifndef SQLITE_OMIT_AUTOVACUUM 1398 /* 1399 ** The cell pCell is currently part of page pSrc but will ultimately be part 1400 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1401 ** pointer to an overflow page, insert an entry into the pointer-map for 1402 ** the overflow page that will be valid after pCell has been moved to pPage. 1403 */ 1404 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1405 CellInfo info; 1406 if( *pRC ) return; 1407 assert( pCell!=0 ); 1408 pPage->xParseCell(pPage, pCell, &info); 1409 if( info.nLocal<info.nPayload ){ 1410 Pgno ovfl; 1411 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1412 testcase( pSrc!=pPage ); 1413 *pRC = SQLITE_CORRUPT_BKPT; 1414 return; 1415 } 1416 ovfl = get4byte(&pCell[info.nSize-4]); 1417 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1418 } 1419 } 1420 #endif 1421 1422 1423 /* 1424 ** Defragment the page given. This routine reorganizes cells within the 1425 ** page so that there are no free-blocks on the free-block list. 1426 ** 1427 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1428 ** present in the page after this routine returns. 1429 ** 1430 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1431 ** b-tree page so that there are no freeblocks or fragment bytes, all 1432 ** unused bytes are contained in the unallocated space region, and all 1433 ** cells are packed tightly at the end of the page. 1434 */ 1435 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1436 int i; /* Loop counter */ 1437 int pc; /* Address of the i-th cell */ 1438 int hdr; /* Offset to the page header */ 1439 int size; /* Size of a cell */ 1440 int usableSize; /* Number of usable bytes on a page */ 1441 int cellOffset; /* Offset to the cell pointer array */ 1442 int cbrk; /* Offset to the cell content area */ 1443 int nCell; /* Number of cells on the page */ 1444 unsigned char *data; /* The page data */ 1445 unsigned char *temp; /* Temp area for cell content */ 1446 unsigned char *src; /* Source of content */ 1447 int iCellFirst; /* First allowable cell index */ 1448 int iCellLast; /* Last possible cell index */ 1449 int iCellStart; /* First cell offset in input */ 1450 1451 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1452 assert( pPage->pBt!=0 ); 1453 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1454 assert( pPage->nOverflow==0 ); 1455 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1456 temp = 0; 1457 src = data = pPage->aData; 1458 hdr = pPage->hdrOffset; 1459 cellOffset = pPage->cellOffset; 1460 nCell = pPage->nCell; 1461 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1462 iCellFirst = cellOffset + 2*nCell; 1463 usableSize = pPage->pBt->usableSize; 1464 1465 /* This block handles pages with two or fewer free blocks and nMaxFrag 1466 ** or fewer fragmented bytes. In this case it is faster to move the 1467 ** two (or one) blocks of cells using memmove() and add the required 1468 ** offsets to each pointer in the cell-pointer array than it is to 1469 ** reconstruct the entire page. */ 1470 if( (int)data[hdr+7]<=nMaxFrag ){ 1471 int iFree = get2byte(&data[hdr+1]); 1472 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1473 if( iFree ){ 1474 int iFree2 = get2byte(&data[iFree]); 1475 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1476 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1477 u8 *pEnd = &data[cellOffset + nCell*2]; 1478 u8 *pAddr; 1479 int sz2 = 0; 1480 int sz = get2byte(&data[iFree+2]); 1481 int top = get2byte(&data[hdr+5]); 1482 if( top>=iFree ){ 1483 return SQLITE_CORRUPT_PAGE(pPage); 1484 } 1485 if( iFree2 ){ 1486 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1487 sz2 = get2byte(&data[iFree2+2]); 1488 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1489 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1490 sz += sz2; 1491 }else if( NEVER(iFree+sz>usableSize) ){ 1492 return SQLITE_CORRUPT_PAGE(pPage); 1493 } 1494 1495 cbrk = top+sz; 1496 assert( cbrk+(iFree-top) <= usableSize ); 1497 memmove(&data[cbrk], &data[top], iFree-top); 1498 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1499 pc = get2byte(pAddr); 1500 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1501 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1502 } 1503 goto defragment_out; 1504 } 1505 } 1506 } 1507 1508 cbrk = usableSize; 1509 iCellLast = usableSize - 4; 1510 iCellStart = get2byte(&data[hdr+5]); 1511 for(i=0; i<nCell; i++){ 1512 u8 *pAddr; /* The i-th cell pointer */ 1513 pAddr = &data[cellOffset + i*2]; 1514 pc = get2byte(pAddr); 1515 testcase( pc==iCellFirst ); 1516 testcase( pc==iCellLast ); 1517 /* These conditions have already been verified in btreeInitPage() 1518 ** if PRAGMA cell_size_check=ON. 1519 */ 1520 if( pc<iCellStart || pc>iCellLast ){ 1521 return SQLITE_CORRUPT_PAGE(pPage); 1522 } 1523 assert( pc>=iCellStart && pc<=iCellLast ); 1524 size = pPage->xCellSize(pPage, &src[pc]); 1525 cbrk -= size; 1526 if( cbrk<iCellStart || pc+size>usableSize ){ 1527 return SQLITE_CORRUPT_PAGE(pPage); 1528 } 1529 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1530 testcase( cbrk+size==usableSize ); 1531 testcase( pc+size==usableSize ); 1532 put2byte(pAddr, cbrk); 1533 if( temp==0 ){ 1534 if( cbrk==pc ) continue; 1535 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1536 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1537 src = temp; 1538 } 1539 memcpy(&data[cbrk], &src[pc], size); 1540 } 1541 data[hdr+7] = 0; 1542 1543 defragment_out: 1544 assert( pPage->nFree>=0 ); 1545 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1546 return SQLITE_CORRUPT_PAGE(pPage); 1547 } 1548 assert( cbrk>=iCellFirst ); 1549 put2byte(&data[hdr+5], cbrk); 1550 data[hdr+1] = 0; 1551 data[hdr+2] = 0; 1552 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1553 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1554 return SQLITE_OK; 1555 } 1556 1557 /* 1558 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1559 ** size. If one can be found, return a pointer to the space and remove it 1560 ** from the free-list. 1561 ** 1562 ** If no suitable space can be found on the free-list, return NULL. 1563 ** 1564 ** This function may detect corruption within pPg. If corruption is 1565 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1566 ** 1567 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1568 ** will be ignored if adding the extra space to the fragmentation count 1569 ** causes the fragmentation count to exceed 60. 1570 */ 1571 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1572 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1573 u8 * const aData = pPg->aData; /* Page data */ 1574 int iAddr = hdr + 1; /* Address of ptr to pc */ 1575 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1576 int x; /* Excess size of the slot */ 1577 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1578 int size; /* Size of the free slot */ 1579 1580 assert( pc>0 ); 1581 while( pc<=maxPC ){ 1582 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1583 ** freeblock form a big-endian integer which is the size of the freeblock 1584 ** in bytes, including the 4-byte header. */ 1585 size = get2byte(&aData[pc+2]); 1586 if( (x = size - nByte)>=0 ){ 1587 testcase( x==4 ); 1588 testcase( x==3 ); 1589 if( x<4 ){ 1590 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1591 ** number of bytes in fragments may not exceed 60. */ 1592 if( aData[hdr+7]>57 ) return 0; 1593 1594 /* Remove the slot from the free-list. Update the number of 1595 ** fragmented bytes within the page. */ 1596 memcpy(&aData[iAddr], &aData[pc], 2); 1597 aData[hdr+7] += (u8)x; 1598 }else if( x+pc > maxPC ){ 1599 /* This slot extends off the end of the usable part of the page */ 1600 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1601 return 0; 1602 }else{ 1603 /* The slot remains on the free-list. Reduce its size to account 1604 ** for the portion used by the new allocation. */ 1605 put2byte(&aData[pc+2], x); 1606 } 1607 return &aData[pc + x]; 1608 } 1609 iAddr = pc; 1610 pc = get2byte(&aData[pc]); 1611 if( pc<=iAddr+size ){ 1612 if( pc ){ 1613 /* The next slot in the chain is not past the end of the current slot */ 1614 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1615 } 1616 return 0; 1617 } 1618 } 1619 if( pc>maxPC+nByte-4 ){ 1620 /* The free slot chain extends off the end of the page */ 1621 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1622 } 1623 return 0; 1624 } 1625 1626 /* 1627 ** Allocate nByte bytes of space from within the B-Tree page passed 1628 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1629 ** of the first byte of allocated space. Return either SQLITE_OK or 1630 ** an error code (usually SQLITE_CORRUPT). 1631 ** 1632 ** The caller guarantees that there is sufficient space to make the 1633 ** allocation. This routine might need to defragment in order to bring 1634 ** all the space together, however. This routine will avoid using 1635 ** the first two bytes past the cell pointer area since presumably this 1636 ** allocation is being made in order to insert a new cell, so we will 1637 ** also end up needing a new cell pointer. 1638 */ 1639 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1640 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1641 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1642 int top; /* First byte of cell content area */ 1643 int rc = SQLITE_OK; /* Integer return code */ 1644 int gap; /* First byte of gap between cell pointers and cell content */ 1645 1646 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1647 assert( pPage->pBt ); 1648 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1649 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1650 assert( pPage->nFree>=nByte ); 1651 assert( pPage->nOverflow==0 ); 1652 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1653 1654 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1655 gap = pPage->cellOffset + 2*pPage->nCell; 1656 assert( gap<=65536 ); 1657 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1658 ** and the reserved space is zero (the usual value for reserved space) 1659 ** then the cell content offset of an empty page wants to be 65536. 1660 ** However, that integer is too large to be stored in a 2-byte unsigned 1661 ** integer, so a value of 0 is used in its place. */ 1662 top = get2byte(&data[hdr+5]); 1663 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1664 if( gap>top ){ 1665 if( top==0 && pPage->pBt->usableSize==65536 ){ 1666 top = 65536; 1667 }else{ 1668 return SQLITE_CORRUPT_PAGE(pPage); 1669 } 1670 } 1671 1672 /* If there is enough space between gap and top for one more cell pointer, 1673 ** and if the freelist is not empty, then search the 1674 ** freelist looking for a slot big enough to satisfy the request. 1675 */ 1676 testcase( gap+2==top ); 1677 testcase( gap+1==top ); 1678 testcase( gap==top ); 1679 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1680 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1681 if( pSpace ){ 1682 int g2; 1683 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1684 *pIdx = g2 = (int)(pSpace-data); 1685 if( g2<=gap ){ 1686 return SQLITE_CORRUPT_PAGE(pPage); 1687 }else{ 1688 return SQLITE_OK; 1689 } 1690 }else if( rc ){ 1691 return rc; 1692 } 1693 } 1694 1695 /* The request could not be fulfilled using a freelist slot. Check 1696 ** to see if defragmentation is necessary. 1697 */ 1698 testcase( gap+2+nByte==top ); 1699 if( gap+2+nByte>top ){ 1700 assert( pPage->nCell>0 || CORRUPT_DB ); 1701 assert( pPage->nFree>=0 ); 1702 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1703 if( rc ) return rc; 1704 top = get2byteNotZero(&data[hdr+5]); 1705 assert( gap+2+nByte<=top ); 1706 } 1707 1708 1709 /* Allocate memory from the gap in between the cell pointer array 1710 ** and the cell content area. The btreeComputeFreeSpace() call has already 1711 ** validated the freelist. Given that the freelist is valid, there 1712 ** is no way that the allocation can extend off the end of the page. 1713 ** The assert() below verifies the previous sentence. 1714 */ 1715 top -= nByte; 1716 put2byte(&data[hdr+5], top); 1717 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1718 *pIdx = top; 1719 return SQLITE_OK; 1720 } 1721 1722 /* 1723 ** Return a section of the pPage->aData to the freelist. 1724 ** The first byte of the new free block is pPage->aData[iStart] 1725 ** and the size of the block is iSize bytes. 1726 ** 1727 ** Adjacent freeblocks are coalesced. 1728 ** 1729 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1730 ** that routine will not detect overlap between cells or freeblocks. Nor 1731 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1732 ** at the end of the page. So do additional corruption checks inside this 1733 ** routine and return SQLITE_CORRUPT if any problems are found. 1734 */ 1735 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1736 u16 iPtr; /* Address of ptr to next freeblock */ 1737 u16 iFreeBlk; /* Address of the next freeblock */ 1738 u8 hdr; /* Page header size. 0 or 100 */ 1739 u8 nFrag = 0; /* Reduction in fragmentation */ 1740 u16 iOrigSize = iSize; /* Original value of iSize */ 1741 u16 x; /* Offset to cell content area */ 1742 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1743 unsigned char *data = pPage->aData; /* Page content */ 1744 1745 assert( pPage->pBt!=0 ); 1746 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1747 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1748 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1749 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1750 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1751 assert( iStart<=pPage->pBt->usableSize-4 ); 1752 1753 /* The list of freeblocks must be in ascending order. Find the 1754 ** spot on the list where iStart should be inserted. 1755 */ 1756 hdr = pPage->hdrOffset; 1757 iPtr = hdr + 1; 1758 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1759 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1760 }else{ 1761 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1762 if( iFreeBlk<iPtr+4 ){ 1763 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1764 return SQLITE_CORRUPT_PAGE(pPage); 1765 } 1766 iPtr = iFreeBlk; 1767 } 1768 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1769 return SQLITE_CORRUPT_PAGE(pPage); 1770 } 1771 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1772 1773 /* At this point: 1774 ** iFreeBlk: First freeblock after iStart, or zero if none 1775 ** iPtr: The address of a pointer to iFreeBlk 1776 ** 1777 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1778 */ 1779 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1780 nFrag = iFreeBlk - iEnd; 1781 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1782 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1783 if( iEnd > pPage->pBt->usableSize ){ 1784 return SQLITE_CORRUPT_PAGE(pPage); 1785 } 1786 iSize = iEnd - iStart; 1787 iFreeBlk = get2byte(&data[iFreeBlk]); 1788 } 1789 1790 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1791 ** pointer in the page header) then check to see if iStart should be 1792 ** coalesced onto the end of iPtr. 1793 */ 1794 if( iPtr>hdr+1 ){ 1795 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1796 if( iPtrEnd+3>=iStart ){ 1797 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1798 nFrag += iStart - iPtrEnd; 1799 iSize = iEnd - iPtr; 1800 iStart = iPtr; 1801 } 1802 } 1803 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1804 data[hdr+7] -= nFrag; 1805 } 1806 x = get2byte(&data[hdr+5]); 1807 if( iStart<=x ){ 1808 /* The new freeblock is at the beginning of the cell content area, 1809 ** so just extend the cell content area rather than create another 1810 ** freelist entry */ 1811 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1812 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1813 put2byte(&data[hdr+1], iFreeBlk); 1814 put2byte(&data[hdr+5], iEnd); 1815 }else{ 1816 /* Insert the new freeblock into the freelist */ 1817 put2byte(&data[iPtr], iStart); 1818 } 1819 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1820 /* Overwrite deleted information with zeros when the secure_delete 1821 ** option is enabled */ 1822 memset(&data[iStart], 0, iSize); 1823 } 1824 put2byte(&data[iStart], iFreeBlk); 1825 put2byte(&data[iStart+2], iSize); 1826 pPage->nFree += iOrigSize; 1827 return SQLITE_OK; 1828 } 1829 1830 /* 1831 ** Decode the flags byte (the first byte of the header) for a page 1832 ** and initialize fields of the MemPage structure accordingly. 1833 ** 1834 ** Only the following combinations are supported. Anything different 1835 ** indicates a corrupt database files: 1836 ** 1837 ** PTF_ZERODATA 1838 ** PTF_ZERODATA | PTF_LEAF 1839 ** PTF_LEAFDATA | PTF_INTKEY 1840 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1841 */ 1842 static int decodeFlags(MemPage *pPage, int flagByte){ 1843 BtShared *pBt; /* A copy of pPage->pBt */ 1844 1845 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1846 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1847 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1848 flagByte &= ~PTF_LEAF; 1849 pPage->childPtrSize = 4-4*pPage->leaf; 1850 pPage->xCellSize = cellSizePtr; 1851 pBt = pPage->pBt; 1852 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1853 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1854 ** interior table b-tree page. */ 1855 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1856 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1857 ** leaf table b-tree page. */ 1858 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1859 pPage->intKey = 1; 1860 if( pPage->leaf ){ 1861 pPage->intKeyLeaf = 1; 1862 pPage->xParseCell = btreeParseCellPtr; 1863 }else{ 1864 pPage->intKeyLeaf = 0; 1865 pPage->xCellSize = cellSizePtrNoPayload; 1866 pPage->xParseCell = btreeParseCellPtrNoPayload; 1867 } 1868 pPage->maxLocal = pBt->maxLeaf; 1869 pPage->minLocal = pBt->minLeaf; 1870 }else if( flagByte==PTF_ZERODATA ){ 1871 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1872 ** interior index b-tree page. */ 1873 assert( (PTF_ZERODATA)==2 ); 1874 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1875 ** leaf index b-tree page. */ 1876 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1877 pPage->intKey = 0; 1878 pPage->intKeyLeaf = 0; 1879 pPage->xParseCell = btreeParseCellPtrIndex; 1880 pPage->maxLocal = pBt->maxLocal; 1881 pPage->minLocal = pBt->minLocal; 1882 }else{ 1883 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1884 ** an error. */ 1885 return SQLITE_CORRUPT_PAGE(pPage); 1886 } 1887 pPage->max1bytePayload = pBt->max1bytePayload; 1888 return SQLITE_OK; 1889 } 1890 1891 /* 1892 ** Compute the amount of freespace on the page. In other words, fill 1893 ** in the pPage->nFree field. 1894 */ 1895 static int btreeComputeFreeSpace(MemPage *pPage){ 1896 int pc; /* Address of a freeblock within pPage->aData[] */ 1897 u8 hdr; /* Offset to beginning of page header */ 1898 u8 *data; /* Equal to pPage->aData */ 1899 int usableSize; /* Amount of usable space on each page */ 1900 int nFree; /* Number of unused bytes on the page */ 1901 int top; /* First byte of the cell content area */ 1902 int iCellFirst; /* First allowable cell or freeblock offset */ 1903 int iCellLast; /* Last possible cell or freeblock offset */ 1904 1905 assert( pPage->pBt!=0 ); 1906 assert( pPage->pBt->db!=0 ); 1907 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1908 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1909 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1910 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1911 assert( pPage->isInit==1 ); 1912 assert( pPage->nFree<0 ); 1913 1914 usableSize = pPage->pBt->usableSize; 1915 hdr = pPage->hdrOffset; 1916 data = pPage->aData; 1917 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1918 ** the start of the cell content area. A zero value for this integer is 1919 ** interpreted as 65536. */ 1920 top = get2byteNotZero(&data[hdr+5]); 1921 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1922 iCellLast = usableSize - 4; 1923 1924 /* Compute the total free space on the page 1925 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1926 ** start of the first freeblock on the page, or is zero if there are no 1927 ** freeblocks. */ 1928 pc = get2byte(&data[hdr+1]); 1929 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1930 if( pc>0 ){ 1931 u32 next, size; 1932 if( pc<top ){ 1933 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1934 ** always be at least one cell before the first freeblock. 1935 */ 1936 return SQLITE_CORRUPT_PAGE(pPage); 1937 } 1938 while( 1 ){ 1939 if( pc>iCellLast ){ 1940 /* Freeblock off the end of the page */ 1941 return SQLITE_CORRUPT_PAGE(pPage); 1942 } 1943 next = get2byte(&data[pc]); 1944 size = get2byte(&data[pc+2]); 1945 nFree = nFree + size; 1946 if( next<=pc+size+3 ) break; 1947 pc = next; 1948 } 1949 if( next>0 ){ 1950 /* Freeblock not in ascending order */ 1951 return SQLITE_CORRUPT_PAGE(pPage); 1952 } 1953 if( pc+size>(unsigned int)usableSize ){ 1954 /* Last freeblock extends past page end */ 1955 return SQLITE_CORRUPT_PAGE(pPage); 1956 } 1957 } 1958 1959 /* At this point, nFree contains the sum of the offset to the start 1960 ** of the cell-content area plus the number of free bytes within 1961 ** the cell-content area. If this is greater than the usable-size 1962 ** of the page, then the page must be corrupted. This check also 1963 ** serves to verify that the offset to the start of the cell-content 1964 ** area, according to the page header, lies within the page. 1965 */ 1966 if( nFree>usableSize || nFree<iCellFirst ){ 1967 return SQLITE_CORRUPT_PAGE(pPage); 1968 } 1969 pPage->nFree = (u16)(nFree - iCellFirst); 1970 return SQLITE_OK; 1971 } 1972 1973 /* 1974 ** Do additional sanity check after btreeInitPage() if 1975 ** PRAGMA cell_size_check=ON 1976 */ 1977 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1978 int iCellFirst; /* First allowable cell or freeblock offset */ 1979 int iCellLast; /* Last possible cell or freeblock offset */ 1980 int i; /* Index into the cell pointer array */ 1981 int sz; /* Size of a cell */ 1982 int pc; /* Address of a freeblock within pPage->aData[] */ 1983 u8 *data; /* Equal to pPage->aData */ 1984 int usableSize; /* Maximum usable space on the page */ 1985 int cellOffset; /* Start of cell content area */ 1986 1987 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 1988 usableSize = pPage->pBt->usableSize; 1989 iCellLast = usableSize - 4; 1990 data = pPage->aData; 1991 cellOffset = pPage->cellOffset; 1992 if( !pPage->leaf ) iCellLast--; 1993 for(i=0; i<pPage->nCell; i++){ 1994 pc = get2byteAligned(&data[cellOffset+i*2]); 1995 testcase( pc==iCellFirst ); 1996 testcase( pc==iCellLast ); 1997 if( pc<iCellFirst || pc>iCellLast ){ 1998 return SQLITE_CORRUPT_PAGE(pPage); 1999 } 2000 sz = pPage->xCellSize(pPage, &data[pc]); 2001 testcase( pc+sz==usableSize ); 2002 if( pc+sz>usableSize ){ 2003 return SQLITE_CORRUPT_PAGE(pPage); 2004 } 2005 } 2006 return SQLITE_OK; 2007 } 2008 2009 /* 2010 ** Initialize the auxiliary information for a disk block. 2011 ** 2012 ** Return SQLITE_OK on success. If we see that the page does 2013 ** not contain a well-formed database page, then return 2014 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2015 ** guarantee that the page is well-formed. It only shows that 2016 ** we failed to detect any corruption. 2017 */ 2018 static int btreeInitPage(MemPage *pPage){ 2019 u8 *data; /* Equal to pPage->aData */ 2020 BtShared *pBt; /* The main btree structure */ 2021 2022 assert( pPage->pBt!=0 ); 2023 assert( pPage->pBt->db!=0 ); 2024 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2025 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2026 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2027 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2028 assert( pPage->isInit==0 ); 2029 2030 pBt = pPage->pBt; 2031 data = pPage->aData + pPage->hdrOffset; 2032 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2033 ** the b-tree page type. */ 2034 if( decodeFlags(pPage, data[0]) ){ 2035 return SQLITE_CORRUPT_PAGE(pPage); 2036 } 2037 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2038 pPage->maskPage = (u16)(pBt->pageSize - 1); 2039 pPage->nOverflow = 0; 2040 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2041 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2042 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2043 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2044 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2045 ** number of cells on the page. */ 2046 pPage->nCell = get2byte(&data[3]); 2047 if( pPage->nCell>MX_CELL(pBt) ){ 2048 /* To many cells for a single page. The page must be corrupt */ 2049 return SQLITE_CORRUPT_PAGE(pPage); 2050 } 2051 testcase( pPage->nCell==MX_CELL(pBt) ); 2052 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2053 ** possible for a root page of a table that contains no rows) then the 2054 ** offset to the cell content area will equal the page size minus the 2055 ** bytes of reserved space. */ 2056 assert( pPage->nCell>0 2057 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2058 || CORRUPT_DB ); 2059 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2060 pPage->isInit = 1; 2061 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2062 return btreeCellSizeCheck(pPage); 2063 } 2064 return SQLITE_OK; 2065 } 2066 2067 /* 2068 ** Set up a raw page so that it looks like a database page holding 2069 ** no entries. 2070 */ 2071 static void zeroPage(MemPage *pPage, int flags){ 2072 unsigned char *data = pPage->aData; 2073 BtShared *pBt = pPage->pBt; 2074 u8 hdr = pPage->hdrOffset; 2075 u16 first; 2076 2077 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2078 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2079 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2080 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2081 assert( sqlite3_mutex_held(pBt->mutex) ); 2082 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2083 memset(&data[hdr], 0, pBt->usableSize - hdr); 2084 } 2085 data[hdr] = (char)flags; 2086 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2087 memset(&data[hdr+1], 0, 4); 2088 data[hdr+7] = 0; 2089 put2byte(&data[hdr+5], pBt->usableSize); 2090 pPage->nFree = (u16)(pBt->usableSize - first); 2091 decodeFlags(pPage, flags); 2092 pPage->cellOffset = first; 2093 pPage->aDataEnd = &data[pBt->usableSize]; 2094 pPage->aCellIdx = &data[first]; 2095 pPage->aDataOfst = &data[pPage->childPtrSize]; 2096 pPage->nOverflow = 0; 2097 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2098 pPage->maskPage = (u16)(pBt->pageSize - 1); 2099 pPage->nCell = 0; 2100 pPage->isInit = 1; 2101 } 2102 2103 2104 /* 2105 ** Convert a DbPage obtained from the pager into a MemPage used by 2106 ** the btree layer. 2107 */ 2108 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2109 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2110 if( pgno!=pPage->pgno ){ 2111 pPage->aData = sqlite3PagerGetData(pDbPage); 2112 pPage->pDbPage = pDbPage; 2113 pPage->pBt = pBt; 2114 pPage->pgno = pgno; 2115 pPage->hdrOffset = pgno==1 ? 100 : 0; 2116 } 2117 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2118 return pPage; 2119 } 2120 2121 /* 2122 ** Get a page from the pager. Initialize the MemPage.pBt and 2123 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2124 ** 2125 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2126 ** about the content of the page at this time. So do not go to the disk 2127 ** to fetch the content. Just fill in the content with zeros for now. 2128 ** If in the future we call sqlite3PagerWrite() on this page, that 2129 ** means we have started to be concerned about content and the disk 2130 ** read should occur at that point. 2131 */ 2132 static int btreeGetPage( 2133 BtShared *pBt, /* The btree */ 2134 Pgno pgno, /* Number of the page to fetch */ 2135 MemPage **ppPage, /* Return the page in this parameter */ 2136 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2137 ){ 2138 int rc; 2139 DbPage *pDbPage; 2140 2141 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2142 assert( sqlite3_mutex_held(pBt->mutex) ); 2143 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2144 if( rc ) return rc; 2145 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2146 return SQLITE_OK; 2147 } 2148 2149 /* 2150 ** Retrieve a page from the pager cache. If the requested page is not 2151 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2152 ** MemPage.aData elements if needed. 2153 */ 2154 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2155 DbPage *pDbPage; 2156 assert( sqlite3_mutex_held(pBt->mutex) ); 2157 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2158 if( pDbPage ){ 2159 return btreePageFromDbPage(pDbPage, pgno, pBt); 2160 } 2161 return 0; 2162 } 2163 2164 /* 2165 ** Return the size of the database file in pages. If there is any kind of 2166 ** error, return ((unsigned int)-1). 2167 */ 2168 static Pgno btreePagecount(BtShared *pBt){ 2169 return pBt->nPage; 2170 } 2171 Pgno sqlite3BtreeLastPage(Btree *p){ 2172 assert( sqlite3BtreeHoldsMutex(p) ); 2173 return btreePagecount(p->pBt); 2174 } 2175 2176 /* 2177 ** Get a page from the pager and initialize it. 2178 ** 2179 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2180 ** call. Do additional sanity checking on the page in this case. 2181 ** And if the fetch fails, this routine must decrement pCur->iPage. 2182 ** 2183 ** The page is fetched as read-write unless pCur is not NULL and is 2184 ** a read-only cursor. 2185 ** 2186 ** If an error occurs, then *ppPage is undefined. It 2187 ** may remain unchanged, or it may be set to an invalid value. 2188 */ 2189 static int getAndInitPage( 2190 BtShared *pBt, /* The database file */ 2191 Pgno pgno, /* Number of the page to get */ 2192 MemPage **ppPage, /* Write the page pointer here */ 2193 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2194 int bReadOnly /* True for a read-only page */ 2195 ){ 2196 int rc; 2197 DbPage *pDbPage; 2198 assert( sqlite3_mutex_held(pBt->mutex) ); 2199 assert( pCur==0 || ppPage==&pCur->pPage ); 2200 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2201 assert( pCur==0 || pCur->iPage>0 ); 2202 2203 if( pgno>btreePagecount(pBt) ){ 2204 rc = SQLITE_CORRUPT_BKPT; 2205 goto getAndInitPage_error1; 2206 } 2207 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2208 if( rc ){ 2209 goto getAndInitPage_error1; 2210 } 2211 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2212 if( (*ppPage)->isInit==0 ){ 2213 btreePageFromDbPage(pDbPage, pgno, pBt); 2214 rc = btreeInitPage(*ppPage); 2215 if( rc!=SQLITE_OK ){ 2216 goto getAndInitPage_error2; 2217 } 2218 } 2219 assert( (*ppPage)->pgno==pgno ); 2220 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2221 2222 /* If obtaining a child page for a cursor, we must verify that the page is 2223 ** compatible with the root page. */ 2224 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2225 rc = SQLITE_CORRUPT_PGNO(pgno); 2226 goto getAndInitPage_error2; 2227 } 2228 return SQLITE_OK; 2229 2230 getAndInitPage_error2: 2231 releasePage(*ppPage); 2232 getAndInitPage_error1: 2233 if( pCur ){ 2234 pCur->iPage--; 2235 pCur->pPage = pCur->apPage[pCur->iPage]; 2236 } 2237 testcase( pgno==0 ); 2238 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2239 return rc; 2240 } 2241 2242 /* 2243 ** Release a MemPage. This should be called once for each prior 2244 ** call to btreeGetPage. 2245 ** 2246 ** Page1 is a special case and must be released using releasePageOne(). 2247 */ 2248 static void releasePageNotNull(MemPage *pPage){ 2249 assert( pPage->aData ); 2250 assert( pPage->pBt ); 2251 assert( pPage->pDbPage!=0 ); 2252 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2253 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2254 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2255 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2256 } 2257 static void releasePage(MemPage *pPage){ 2258 if( pPage ) releasePageNotNull(pPage); 2259 } 2260 static void releasePageOne(MemPage *pPage){ 2261 assert( pPage!=0 ); 2262 assert( pPage->aData ); 2263 assert( pPage->pBt ); 2264 assert( pPage->pDbPage!=0 ); 2265 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2266 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2267 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2268 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2269 } 2270 2271 /* 2272 ** Get an unused page. 2273 ** 2274 ** This works just like btreeGetPage() with the addition: 2275 ** 2276 ** * If the page is already in use for some other purpose, immediately 2277 ** release it and return an SQLITE_CURRUPT error. 2278 ** * Make sure the isInit flag is clear 2279 */ 2280 static int btreeGetUnusedPage( 2281 BtShared *pBt, /* The btree */ 2282 Pgno pgno, /* Number of the page to fetch */ 2283 MemPage **ppPage, /* Return the page in this parameter */ 2284 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2285 ){ 2286 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2287 if( rc==SQLITE_OK ){ 2288 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2289 releasePage(*ppPage); 2290 *ppPage = 0; 2291 return SQLITE_CORRUPT_BKPT; 2292 } 2293 (*ppPage)->isInit = 0; 2294 }else{ 2295 *ppPage = 0; 2296 } 2297 return rc; 2298 } 2299 2300 2301 /* 2302 ** During a rollback, when the pager reloads information into the cache 2303 ** so that the cache is restored to its original state at the start of 2304 ** the transaction, for each page restored this routine is called. 2305 ** 2306 ** This routine needs to reset the extra data section at the end of the 2307 ** page to agree with the restored data. 2308 */ 2309 static void pageReinit(DbPage *pData){ 2310 MemPage *pPage; 2311 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2312 assert( sqlite3PagerPageRefcount(pData)>0 ); 2313 if( pPage->isInit ){ 2314 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2315 pPage->isInit = 0; 2316 if( sqlite3PagerPageRefcount(pData)>1 ){ 2317 /* pPage might not be a btree page; it might be an overflow page 2318 ** or ptrmap page or a free page. In those cases, the following 2319 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2320 ** But no harm is done by this. And it is very important that 2321 ** btreeInitPage() be called on every btree page so we make 2322 ** the call for every page that comes in for re-initing. */ 2323 btreeInitPage(pPage); 2324 } 2325 } 2326 } 2327 2328 /* 2329 ** Invoke the busy handler for a btree. 2330 */ 2331 static int btreeInvokeBusyHandler(void *pArg){ 2332 BtShared *pBt = (BtShared*)pArg; 2333 assert( pBt->db ); 2334 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2335 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2336 } 2337 2338 /* 2339 ** Open a database file. 2340 ** 2341 ** zFilename is the name of the database file. If zFilename is NULL 2342 ** then an ephemeral database is created. The ephemeral database might 2343 ** be exclusively in memory, or it might use a disk-based memory cache. 2344 ** Either way, the ephemeral database will be automatically deleted 2345 ** when sqlite3BtreeClose() is called. 2346 ** 2347 ** If zFilename is ":memory:" then an in-memory database is created 2348 ** that is automatically destroyed when it is closed. 2349 ** 2350 ** The "flags" parameter is a bitmask that might contain bits like 2351 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2352 ** 2353 ** If the database is already opened in the same database connection 2354 ** and we are in shared cache mode, then the open will fail with an 2355 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2356 ** objects in the same database connection since doing so will lead 2357 ** to problems with locking. 2358 */ 2359 int sqlite3BtreeOpen( 2360 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2361 const char *zFilename, /* Name of the file containing the BTree database */ 2362 sqlite3 *db, /* Associated database handle */ 2363 Btree **ppBtree, /* Pointer to new Btree object written here */ 2364 int flags, /* Options */ 2365 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2366 ){ 2367 BtShared *pBt = 0; /* Shared part of btree structure */ 2368 Btree *p; /* Handle to return */ 2369 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2370 int rc = SQLITE_OK; /* Result code from this function */ 2371 u8 nReserve; /* Byte of unused space on each page */ 2372 unsigned char zDbHeader[100]; /* Database header content */ 2373 2374 /* True if opening an ephemeral, temporary database */ 2375 const int isTempDb = zFilename==0 || zFilename[0]==0; 2376 2377 /* Set the variable isMemdb to true for an in-memory database, or 2378 ** false for a file-based database. 2379 */ 2380 #ifdef SQLITE_OMIT_MEMORYDB 2381 const int isMemdb = 0; 2382 #else 2383 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2384 || (isTempDb && sqlite3TempInMemory(db)) 2385 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2386 #endif 2387 2388 assert( db!=0 ); 2389 assert( pVfs!=0 ); 2390 assert( sqlite3_mutex_held(db->mutex) ); 2391 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2392 2393 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2394 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2395 2396 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2397 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2398 2399 if( isMemdb ){ 2400 flags |= BTREE_MEMORY; 2401 } 2402 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2403 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2404 } 2405 p = sqlite3MallocZero(sizeof(Btree)); 2406 if( !p ){ 2407 return SQLITE_NOMEM_BKPT; 2408 } 2409 p->inTrans = TRANS_NONE; 2410 p->db = db; 2411 #ifndef SQLITE_OMIT_SHARED_CACHE 2412 p->lock.pBtree = p; 2413 p->lock.iTable = 1; 2414 #endif 2415 2416 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2417 /* 2418 ** If this Btree is a candidate for shared cache, try to find an 2419 ** existing BtShared object that we can share with 2420 */ 2421 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2422 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2423 int nFilename = sqlite3Strlen30(zFilename)+1; 2424 int nFullPathname = pVfs->mxPathname+1; 2425 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2426 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2427 2428 p->sharable = 1; 2429 if( !zFullPathname ){ 2430 sqlite3_free(p); 2431 return SQLITE_NOMEM_BKPT; 2432 } 2433 if( isMemdb ){ 2434 memcpy(zFullPathname, zFilename, nFilename); 2435 }else{ 2436 rc = sqlite3OsFullPathname(pVfs, zFilename, 2437 nFullPathname, zFullPathname); 2438 if( rc ){ 2439 if( rc==SQLITE_OK_SYMLINK ){ 2440 rc = SQLITE_OK; 2441 }else{ 2442 sqlite3_free(zFullPathname); 2443 sqlite3_free(p); 2444 return rc; 2445 } 2446 } 2447 } 2448 #if SQLITE_THREADSAFE 2449 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2450 sqlite3_mutex_enter(mutexOpen); 2451 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2452 sqlite3_mutex_enter(mutexShared); 2453 #endif 2454 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2455 assert( pBt->nRef>0 ); 2456 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2457 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2458 int iDb; 2459 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2460 Btree *pExisting = db->aDb[iDb].pBt; 2461 if( pExisting && pExisting->pBt==pBt ){ 2462 sqlite3_mutex_leave(mutexShared); 2463 sqlite3_mutex_leave(mutexOpen); 2464 sqlite3_free(zFullPathname); 2465 sqlite3_free(p); 2466 return SQLITE_CONSTRAINT; 2467 } 2468 } 2469 p->pBt = pBt; 2470 pBt->nRef++; 2471 break; 2472 } 2473 } 2474 sqlite3_mutex_leave(mutexShared); 2475 sqlite3_free(zFullPathname); 2476 } 2477 #ifdef SQLITE_DEBUG 2478 else{ 2479 /* In debug mode, we mark all persistent databases as sharable 2480 ** even when they are not. This exercises the locking code and 2481 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2482 ** statements to find locking problems. 2483 */ 2484 p->sharable = 1; 2485 } 2486 #endif 2487 } 2488 #endif 2489 if( pBt==0 ){ 2490 /* 2491 ** The following asserts make sure that structures used by the btree are 2492 ** the right size. This is to guard against size changes that result 2493 ** when compiling on a different architecture. 2494 */ 2495 assert( sizeof(i64)==8 ); 2496 assert( sizeof(u64)==8 ); 2497 assert( sizeof(u32)==4 ); 2498 assert( sizeof(u16)==2 ); 2499 assert( sizeof(Pgno)==4 ); 2500 2501 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2502 if( pBt==0 ){ 2503 rc = SQLITE_NOMEM_BKPT; 2504 goto btree_open_out; 2505 } 2506 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2507 sizeof(MemPage), flags, vfsFlags, pageReinit); 2508 if( rc==SQLITE_OK ){ 2509 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2510 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2511 } 2512 if( rc!=SQLITE_OK ){ 2513 goto btree_open_out; 2514 } 2515 pBt->openFlags = (u8)flags; 2516 pBt->db = db; 2517 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2518 p->pBt = pBt; 2519 2520 pBt->pCursor = 0; 2521 pBt->pPage1 = 0; 2522 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2523 #if defined(SQLITE_SECURE_DELETE) 2524 pBt->btsFlags |= BTS_SECURE_DELETE; 2525 #elif defined(SQLITE_FAST_SECURE_DELETE) 2526 pBt->btsFlags |= BTS_OVERWRITE; 2527 #endif 2528 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2529 ** determined by the 2-byte integer located at an offset of 16 bytes from 2530 ** the beginning of the database file. */ 2531 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2532 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2533 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2534 pBt->pageSize = 0; 2535 #ifndef SQLITE_OMIT_AUTOVACUUM 2536 /* If the magic name ":memory:" will create an in-memory database, then 2537 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2538 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2539 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2540 ** regular file-name. In this case the auto-vacuum applies as per normal. 2541 */ 2542 if( zFilename && !isMemdb ){ 2543 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2544 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2545 } 2546 #endif 2547 nReserve = 0; 2548 }else{ 2549 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2550 ** determined by the one-byte unsigned integer found at an offset of 20 2551 ** into the database file header. */ 2552 nReserve = zDbHeader[20]; 2553 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2554 #ifndef SQLITE_OMIT_AUTOVACUUM 2555 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2556 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2557 #endif 2558 } 2559 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2560 if( rc ) goto btree_open_out; 2561 pBt->usableSize = pBt->pageSize - nReserve; 2562 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2563 2564 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2565 /* Add the new BtShared object to the linked list sharable BtShareds. 2566 */ 2567 pBt->nRef = 1; 2568 if( p->sharable ){ 2569 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2570 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2571 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2572 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2573 if( pBt->mutex==0 ){ 2574 rc = SQLITE_NOMEM_BKPT; 2575 goto btree_open_out; 2576 } 2577 } 2578 sqlite3_mutex_enter(mutexShared); 2579 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2580 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2581 sqlite3_mutex_leave(mutexShared); 2582 } 2583 #endif 2584 } 2585 2586 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2587 /* If the new Btree uses a sharable pBtShared, then link the new 2588 ** Btree into the list of all sharable Btrees for the same connection. 2589 ** The list is kept in ascending order by pBt address. 2590 */ 2591 if( p->sharable ){ 2592 int i; 2593 Btree *pSib; 2594 for(i=0; i<db->nDb; i++){ 2595 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2596 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2597 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2598 p->pNext = pSib; 2599 p->pPrev = 0; 2600 pSib->pPrev = p; 2601 }else{ 2602 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2603 pSib = pSib->pNext; 2604 } 2605 p->pNext = pSib->pNext; 2606 p->pPrev = pSib; 2607 if( p->pNext ){ 2608 p->pNext->pPrev = p; 2609 } 2610 pSib->pNext = p; 2611 } 2612 break; 2613 } 2614 } 2615 } 2616 #endif 2617 *ppBtree = p; 2618 2619 btree_open_out: 2620 if( rc!=SQLITE_OK ){ 2621 if( pBt && pBt->pPager ){ 2622 sqlite3PagerClose(pBt->pPager, 0); 2623 } 2624 sqlite3_free(pBt); 2625 sqlite3_free(p); 2626 *ppBtree = 0; 2627 }else{ 2628 sqlite3_file *pFile; 2629 2630 /* If the B-Tree was successfully opened, set the pager-cache size to the 2631 ** default value. Except, when opening on an existing shared pager-cache, 2632 ** do not change the pager-cache size. 2633 */ 2634 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2635 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2636 } 2637 2638 pFile = sqlite3PagerFile(pBt->pPager); 2639 if( pFile->pMethods ){ 2640 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2641 } 2642 } 2643 if( mutexOpen ){ 2644 assert( sqlite3_mutex_held(mutexOpen) ); 2645 sqlite3_mutex_leave(mutexOpen); 2646 } 2647 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2648 return rc; 2649 } 2650 2651 /* 2652 ** Decrement the BtShared.nRef counter. When it reaches zero, 2653 ** remove the BtShared structure from the sharing list. Return 2654 ** true if the BtShared.nRef counter reaches zero and return 2655 ** false if it is still positive. 2656 */ 2657 static int removeFromSharingList(BtShared *pBt){ 2658 #ifndef SQLITE_OMIT_SHARED_CACHE 2659 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2660 BtShared *pList; 2661 int removed = 0; 2662 2663 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2664 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2665 sqlite3_mutex_enter(pMainMtx); 2666 pBt->nRef--; 2667 if( pBt->nRef<=0 ){ 2668 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2669 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2670 }else{ 2671 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2672 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2673 pList=pList->pNext; 2674 } 2675 if( ALWAYS(pList) ){ 2676 pList->pNext = pBt->pNext; 2677 } 2678 } 2679 if( SQLITE_THREADSAFE ){ 2680 sqlite3_mutex_free(pBt->mutex); 2681 } 2682 removed = 1; 2683 } 2684 sqlite3_mutex_leave(pMainMtx); 2685 return removed; 2686 #else 2687 return 1; 2688 #endif 2689 } 2690 2691 /* 2692 ** Make sure pBt->pTmpSpace points to an allocation of 2693 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2694 ** pointer. 2695 */ 2696 static void allocateTempSpace(BtShared *pBt){ 2697 if( !pBt->pTmpSpace ){ 2698 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2699 2700 /* One of the uses of pBt->pTmpSpace is to format cells before 2701 ** inserting them into a leaf page (function fillInCell()). If 2702 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2703 ** by the various routines that manipulate binary cells. Which 2704 ** can mean that fillInCell() only initializes the first 2 or 3 2705 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2706 ** it into a database page. This is not actually a problem, but it 2707 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2708 ** data is passed to system call write(). So to avoid this error, 2709 ** zero the first 4 bytes of temp space here. 2710 ** 2711 ** Also: Provide four bytes of initialized space before the 2712 ** beginning of pTmpSpace as an area available to prepend the 2713 ** left-child pointer to the beginning of a cell. 2714 */ 2715 if( pBt->pTmpSpace ){ 2716 memset(pBt->pTmpSpace, 0, 8); 2717 pBt->pTmpSpace += 4; 2718 } 2719 } 2720 } 2721 2722 /* 2723 ** Free the pBt->pTmpSpace allocation 2724 */ 2725 static void freeTempSpace(BtShared *pBt){ 2726 if( pBt->pTmpSpace ){ 2727 pBt->pTmpSpace -= 4; 2728 sqlite3PageFree(pBt->pTmpSpace); 2729 pBt->pTmpSpace = 0; 2730 } 2731 } 2732 2733 /* 2734 ** Close an open database and invalidate all cursors. 2735 */ 2736 int sqlite3BtreeClose(Btree *p){ 2737 BtShared *pBt = p->pBt; 2738 2739 /* Close all cursors opened via this handle. */ 2740 assert( sqlite3_mutex_held(p->db->mutex) ); 2741 sqlite3BtreeEnter(p); 2742 2743 /* Verify that no other cursors have this Btree open */ 2744 #ifdef SQLITE_DEBUG 2745 { 2746 BtCursor *pCur = pBt->pCursor; 2747 while( pCur ){ 2748 BtCursor *pTmp = pCur; 2749 pCur = pCur->pNext; 2750 assert( pTmp->pBtree!=p ); 2751 2752 } 2753 } 2754 #endif 2755 2756 /* Rollback any active transaction and free the handle structure. 2757 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2758 ** this handle. 2759 */ 2760 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2761 sqlite3BtreeLeave(p); 2762 2763 /* If there are still other outstanding references to the shared-btree 2764 ** structure, return now. The remainder of this procedure cleans 2765 ** up the shared-btree. 2766 */ 2767 assert( p->wantToLock==0 && p->locked==0 ); 2768 if( !p->sharable || removeFromSharingList(pBt) ){ 2769 /* The pBt is no longer on the sharing list, so we can access 2770 ** it without having to hold the mutex. 2771 ** 2772 ** Clean out and delete the BtShared object. 2773 */ 2774 assert( !pBt->pCursor ); 2775 sqlite3PagerClose(pBt->pPager, p->db); 2776 if( pBt->xFreeSchema && pBt->pSchema ){ 2777 pBt->xFreeSchema(pBt->pSchema); 2778 } 2779 sqlite3DbFree(0, pBt->pSchema); 2780 freeTempSpace(pBt); 2781 sqlite3_free(pBt); 2782 } 2783 2784 #ifndef SQLITE_OMIT_SHARED_CACHE 2785 assert( p->wantToLock==0 ); 2786 assert( p->locked==0 ); 2787 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2788 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2789 #endif 2790 2791 sqlite3_free(p); 2792 return SQLITE_OK; 2793 } 2794 2795 /* 2796 ** Change the "soft" limit on the number of pages in the cache. 2797 ** Unused and unmodified pages will be recycled when the number of 2798 ** pages in the cache exceeds this soft limit. But the size of the 2799 ** cache is allowed to grow larger than this limit if it contains 2800 ** dirty pages or pages still in active use. 2801 */ 2802 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2803 BtShared *pBt = p->pBt; 2804 assert( sqlite3_mutex_held(p->db->mutex) ); 2805 sqlite3BtreeEnter(p); 2806 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2807 sqlite3BtreeLeave(p); 2808 return SQLITE_OK; 2809 } 2810 2811 /* 2812 ** Change the "spill" limit on the number of pages in the cache. 2813 ** If the number of pages exceeds this limit during a write transaction, 2814 ** the pager might attempt to "spill" pages to the journal early in 2815 ** order to free up memory. 2816 ** 2817 ** The value returned is the current spill size. If zero is passed 2818 ** as an argument, no changes are made to the spill size setting, so 2819 ** using mxPage of 0 is a way to query the current spill size. 2820 */ 2821 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2822 BtShared *pBt = p->pBt; 2823 int res; 2824 assert( sqlite3_mutex_held(p->db->mutex) ); 2825 sqlite3BtreeEnter(p); 2826 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2827 sqlite3BtreeLeave(p); 2828 return res; 2829 } 2830 2831 #if SQLITE_MAX_MMAP_SIZE>0 2832 /* 2833 ** Change the limit on the amount of the database file that may be 2834 ** memory mapped. 2835 */ 2836 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2837 BtShared *pBt = p->pBt; 2838 assert( sqlite3_mutex_held(p->db->mutex) ); 2839 sqlite3BtreeEnter(p); 2840 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2841 sqlite3BtreeLeave(p); 2842 return SQLITE_OK; 2843 } 2844 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2845 2846 /* 2847 ** Change the way data is synced to disk in order to increase or decrease 2848 ** how well the database resists damage due to OS crashes and power 2849 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2850 ** there is a high probability of damage) Level 2 is the default. There 2851 ** is a very low but non-zero probability of damage. Level 3 reduces the 2852 ** probability of damage to near zero but with a write performance reduction. 2853 */ 2854 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2855 int sqlite3BtreeSetPagerFlags( 2856 Btree *p, /* The btree to set the safety level on */ 2857 unsigned pgFlags /* Various PAGER_* flags */ 2858 ){ 2859 BtShared *pBt = p->pBt; 2860 assert( sqlite3_mutex_held(p->db->mutex) ); 2861 sqlite3BtreeEnter(p); 2862 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2863 sqlite3BtreeLeave(p); 2864 return SQLITE_OK; 2865 } 2866 #endif 2867 2868 /* 2869 ** Change the default pages size and the number of reserved bytes per page. 2870 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2871 ** without changing anything. 2872 ** 2873 ** The page size must be a power of 2 between 512 and 65536. If the page 2874 ** size supplied does not meet this constraint then the page size is not 2875 ** changed. 2876 ** 2877 ** Page sizes are constrained to be a power of two so that the region 2878 ** of the database file used for locking (beginning at PENDING_BYTE, 2879 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2880 ** at the beginning of a page. 2881 ** 2882 ** If parameter nReserve is less than zero, then the number of reserved 2883 ** bytes per page is left unchanged. 2884 ** 2885 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2886 ** and autovacuum mode can no longer be changed. 2887 */ 2888 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2889 int rc = SQLITE_OK; 2890 int x; 2891 BtShared *pBt = p->pBt; 2892 assert( nReserve>=0 && nReserve<=255 ); 2893 sqlite3BtreeEnter(p); 2894 pBt->nReserveWanted = nReserve; 2895 x = pBt->pageSize - pBt->usableSize; 2896 if( nReserve<x ) nReserve = x; 2897 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2898 sqlite3BtreeLeave(p); 2899 return SQLITE_READONLY; 2900 } 2901 assert( nReserve>=0 && nReserve<=255 ); 2902 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2903 ((pageSize-1)&pageSize)==0 ){ 2904 assert( (pageSize & 7)==0 ); 2905 assert( !pBt->pCursor ); 2906 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2907 pBt->pageSize = (u32)pageSize; 2908 freeTempSpace(pBt); 2909 } 2910 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2911 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2912 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2913 sqlite3BtreeLeave(p); 2914 return rc; 2915 } 2916 2917 /* 2918 ** Return the currently defined page size 2919 */ 2920 int sqlite3BtreeGetPageSize(Btree *p){ 2921 return p->pBt->pageSize; 2922 } 2923 2924 /* 2925 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2926 ** may only be called if it is guaranteed that the b-tree mutex is already 2927 ** held. 2928 ** 2929 ** This is useful in one special case in the backup API code where it is 2930 ** known that the shared b-tree mutex is held, but the mutex on the 2931 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2932 ** were to be called, it might collide with some other operation on the 2933 ** database handle that owns *p, causing undefined behavior. 2934 */ 2935 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2936 int n; 2937 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2938 n = p->pBt->pageSize - p->pBt->usableSize; 2939 return n; 2940 } 2941 2942 /* 2943 ** Return the number of bytes of space at the end of every page that 2944 ** are intentually left unused. This is the "reserved" space that is 2945 ** sometimes used by extensions. 2946 ** 2947 ** The value returned is the larger of the current reserve size and 2948 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 2949 ** The amount of reserve can only grow - never shrink. 2950 */ 2951 int sqlite3BtreeGetRequestedReserve(Btree *p){ 2952 int n1, n2; 2953 sqlite3BtreeEnter(p); 2954 n1 = (int)p->pBt->nReserveWanted; 2955 n2 = sqlite3BtreeGetReserveNoMutex(p); 2956 sqlite3BtreeLeave(p); 2957 return n1>n2 ? n1 : n2; 2958 } 2959 2960 2961 /* 2962 ** Set the maximum page count for a database if mxPage is positive. 2963 ** No changes are made if mxPage is 0 or negative. 2964 ** Regardless of the value of mxPage, return the maximum page count. 2965 */ 2966 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 2967 Pgno n; 2968 sqlite3BtreeEnter(p); 2969 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2970 sqlite3BtreeLeave(p); 2971 return n; 2972 } 2973 2974 /* 2975 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2976 ** 2977 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2978 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2979 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2980 ** newFlag==(-1) No changes 2981 ** 2982 ** This routine acts as a query if newFlag is less than zero 2983 ** 2984 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2985 ** freelist leaf pages are not written back to the database. Thus in-page 2986 ** deleted content is cleared, but freelist deleted content is not. 2987 ** 2988 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2989 ** that freelist leaf pages are written back into the database, increasing 2990 ** the amount of disk I/O. 2991 */ 2992 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2993 int b; 2994 if( p==0 ) return 0; 2995 sqlite3BtreeEnter(p); 2996 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2997 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2998 if( newFlag>=0 ){ 2999 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3000 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3001 } 3002 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3003 sqlite3BtreeLeave(p); 3004 return b; 3005 } 3006 3007 /* 3008 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3009 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3010 ** is disabled. The default value for the auto-vacuum property is 3011 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3012 */ 3013 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3014 #ifdef SQLITE_OMIT_AUTOVACUUM 3015 return SQLITE_READONLY; 3016 #else 3017 BtShared *pBt = p->pBt; 3018 int rc = SQLITE_OK; 3019 u8 av = (u8)autoVacuum; 3020 3021 sqlite3BtreeEnter(p); 3022 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3023 rc = SQLITE_READONLY; 3024 }else{ 3025 pBt->autoVacuum = av ?1:0; 3026 pBt->incrVacuum = av==2 ?1:0; 3027 } 3028 sqlite3BtreeLeave(p); 3029 return rc; 3030 #endif 3031 } 3032 3033 /* 3034 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3035 ** enabled 1 is returned. Otherwise 0. 3036 */ 3037 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3038 #ifdef SQLITE_OMIT_AUTOVACUUM 3039 return BTREE_AUTOVACUUM_NONE; 3040 #else 3041 int rc; 3042 sqlite3BtreeEnter(p); 3043 rc = ( 3044 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3045 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3046 BTREE_AUTOVACUUM_INCR 3047 ); 3048 sqlite3BtreeLeave(p); 3049 return rc; 3050 #endif 3051 } 3052 3053 /* 3054 ** If the user has not set the safety-level for this database connection 3055 ** using "PRAGMA synchronous", and if the safety-level is not already 3056 ** set to the value passed to this function as the second parameter, 3057 ** set it so. 3058 */ 3059 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3060 && !defined(SQLITE_OMIT_WAL) 3061 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3062 sqlite3 *db; 3063 Db *pDb; 3064 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3065 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3066 if( pDb->bSyncSet==0 3067 && pDb->safety_level!=safety_level 3068 && pDb!=&db->aDb[1] 3069 ){ 3070 pDb->safety_level = safety_level; 3071 sqlite3PagerSetFlags(pBt->pPager, 3072 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3073 } 3074 } 3075 } 3076 #else 3077 # define setDefaultSyncFlag(pBt,safety_level) 3078 #endif 3079 3080 /* Forward declaration */ 3081 static int newDatabase(BtShared*); 3082 3083 3084 /* 3085 ** Get a reference to pPage1 of the database file. This will 3086 ** also acquire a readlock on that file. 3087 ** 3088 ** SQLITE_OK is returned on success. If the file is not a 3089 ** well-formed database file, then SQLITE_CORRUPT is returned. 3090 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3091 ** is returned if we run out of memory. 3092 */ 3093 static int lockBtree(BtShared *pBt){ 3094 int rc; /* Result code from subfunctions */ 3095 MemPage *pPage1; /* Page 1 of the database file */ 3096 u32 nPage; /* Number of pages in the database */ 3097 u32 nPageFile = 0; /* Number of pages in the database file */ 3098 3099 assert( sqlite3_mutex_held(pBt->mutex) ); 3100 assert( pBt->pPage1==0 ); 3101 rc = sqlite3PagerSharedLock(pBt->pPager); 3102 if( rc!=SQLITE_OK ) return rc; 3103 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3104 if( rc!=SQLITE_OK ) return rc; 3105 3106 /* Do some checking to help insure the file we opened really is 3107 ** a valid database file. 3108 */ 3109 nPage = get4byte(28+(u8*)pPage1->aData); 3110 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3111 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3112 nPage = nPageFile; 3113 } 3114 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3115 nPage = 0; 3116 } 3117 if( nPage>0 ){ 3118 u32 pageSize; 3119 u32 usableSize; 3120 u8 *page1 = pPage1->aData; 3121 rc = SQLITE_NOTADB; 3122 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3123 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3124 ** 61 74 20 33 00. */ 3125 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3126 goto page1_init_failed; 3127 } 3128 3129 #ifdef SQLITE_OMIT_WAL 3130 if( page1[18]>1 ){ 3131 pBt->btsFlags |= BTS_READ_ONLY; 3132 } 3133 if( page1[19]>1 ){ 3134 goto page1_init_failed; 3135 } 3136 #else 3137 if( page1[18]>2 ){ 3138 pBt->btsFlags |= BTS_READ_ONLY; 3139 } 3140 if( page1[19]>2 ){ 3141 goto page1_init_failed; 3142 } 3143 3144 /* If the read version is set to 2, this database should be accessed 3145 ** in WAL mode. If the log is not already open, open it now. Then 3146 ** return SQLITE_OK and return without populating BtShared.pPage1. 3147 ** The caller detects this and calls this function again. This is 3148 ** required as the version of page 1 currently in the page1 buffer 3149 ** may not be the latest version - there may be a newer one in the log 3150 ** file. 3151 */ 3152 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3153 int isOpen = 0; 3154 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3155 if( rc!=SQLITE_OK ){ 3156 goto page1_init_failed; 3157 }else{ 3158 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3159 if( isOpen==0 ){ 3160 releasePageOne(pPage1); 3161 return SQLITE_OK; 3162 } 3163 } 3164 rc = SQLITE_NOTADB; 3165 }else{ 3166 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3167 } 3168 #endif 3169 3170 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3171 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3172 ** 3173 ** The original design allowed these amounts to vary, but as of 3174 ** version 3.6.0, we require them to be fixed. 3175 */ 3176 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3177 goto page1_init_failed; 3178 } 3179 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3180 ** determined by the 2-byte integer located at an offset of 16 bytes from 3181 ** the beginning of the database file. */ 3182 pageSize = (page1[16]<<8) | (page1[17]<<16); 3183 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3184 ** between 512 and 65536 inclusive. */ 3185 if( ((pageSize-1)&pageSize)!=0 3186 || pageSize>SQLITE_MAX_PAGE_SIZE 3187 || pageSize<=256 3188 ){ 3189 goto page1_init_failed; 3190 } 3191 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3192 assert( (pageSize & 7)==0 ); 3193 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3194 ** integer at offset 20 is the number of bytes of space at the end of 3195 ** each page to reserve for extensions. 3196 ** 3197 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3198 ** determined by the one-byte unsigned integer found at an offset of 20 3199 ** into the database file header. */ 3200 usableSize = pageSize - page1[20]; 3201 if( (u32)pageSize!=pBt->pageSize ){ 3202 /* After reading the first page of the database assuming a page size 3203 ** of BtShared.pageSize, we have discovered that the page-size is 3204 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3205 ** zero and return SQLITE_OK. The caller will call this function 3206 ** again with the correct page-size. 3207 */ 3208 releasePageOne(pPage1); 3209 pBt->usableSize = usableSize; 3210 pBt->pageSize = pageSize; 3211 freeTempSpace(pBt); 3212 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3213 pageSize-usableSize); 3214 return rc; 3215 } 3216 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3217 rc = SQLITE_CORRUPT_BKPT; 3218 goto page1_init_failed; 3219 } 3220 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3221 ** be less than 480. In other words, if the page size is 512, then the 3222 ** reserved space size cannot exceed 32. */ 3223 if( usableSize<480 ){ 3224 goto page1_init_failed; 3225 } 3226 pBt->pageSize = pageSize; 3227 pBt->usableSize = usableSize; 3228 #ifndef SQLITE_OMIT_AUTOVACUUM 3229 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3230 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3231 #endif 3232 } 3233 3234 /* maxLocal is the maximum amount of payload to store locally for 3235 ** a cell. Make sure it is small enough so that at least minFanout 3236 ** cells can will fit on one page. We assume a 10-byte page header. 3237 ** Besides the payload, the cell must store: 3238 ** 2-byte pointer to the cell 3239 ** 4-byte child pointer 3240 ** 9-byte nKey value 3241 ** 4-byte nData value 3242 ** 4-byte overflow page pointer 3243 ** So a cell consists of a 2-byte pointer, a header which is as much as 3244 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3245 ** page pointer. 3246 */ 3247 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3248 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3249 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3250 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3251 if( pBt->maxLocal>127 ){ 3252 pBt->max1bytePayload = 127; 3253 }else{ 3254 pBt->max1bytePayload = (u8)pBt->maxLocal; 3255 } 3256 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3257 pBt->pPage1 = pPage1; 3258 pBt->nPage = nPage; 3259 return SQLITE_OK; 3260 3261 page1_init_failed: 3262 releasePageOne(pPage1); 3263 pBt->pPage1 = 0; 3264 return rc; 3265 } 3266 3267 #ifndef NDEBUG 3268 /* 3269 ** Return the number of cursors open on pBt. This is for use 3270 ** in assert() expressions, so it is only compiled if NDEBUG is not 3271 ** defined. 3272 ** 3273 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3274 ** false then all cursors are counted. 3275 ** 3276 ** For the purposes of this routine, a cursor is any cursor that 3277 ** is capable of reading or writing to the database. Cursors that 3278 ** have been tripped into the CURSOR_FAULT state are not counted. 3279 */ 3280 static int countValidCursors(BtShared *pBt, int wrOnly){ 3281 BtCursor *pCur; 3282 int r = 0; 3283 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3284 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3285 && pCur->eState!=CURSOR_FAULT ) r++; 3286 } 3287 return r; 3288 } 3289 #endif 3290 3291 /* 3292 ** If there are no outstanding cursors and we are not in the middle 3293 ** of a transaction but there is a read lock on the database, then 3294 ** this routine unrefs the first page of the database file which 3295 ** has the effect of releasing the read lock. 3296 ** 3297 ** If there is a transaction in progress, this routine is a no-op. 3298 */ 3299 static void unlockBtreeIfUnused(BtShared *pBt){ 3300 assert( sqlite3_mutex_held(pBt->mutex) ); 3301 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3302 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3303 MemPage *pPage1 = pBt->pPage1; 3304 assert( pPage1->aData ); 3305 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3306 pBt->pPage1 = 0; 3307 releasePageOne(pPage1); 3308 } 3309 } 3310 3311 /* 3312 ** If pBt points to an empty file then convert that empty file 3313 ** into a new empty database by initializing the first page of 3314 ** the database. 3315 */ 3316 static int newDatabase(BtShared *pBt){ 3317 MemPage *pP1; 3318 unsigned char *data; 3319 int rc; 3320 3321 assert( sqlite3_mutex_held(pBt->mutex) ); 3322 if( pBt->nPage>0 ){ 3323 return SQLITE_OK; 3324 } 3325 pP1 = pBt->pPage1; 3326 assert( pP1!=0 ); 3327 data = pP1->aData; 3328 rc = sqlite3PagerWrite(pP1->pDbPage); 3329 if( rc ) return rc; 3330 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3331 assert( sizeof(zMagicHeader)==16 ); 3332 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3333 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3334 data[18] = 1; 3335 data[19] = 1; 3336 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3337 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3338 data[21] = 64; 3339 data[22] = 32; 3340 data[23] = 32; 3341 memset(&data[24], 0, 100-24); 3342 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3343 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3344 #ifndef SQLITE_OMIT_AUTOVACUUM 3345 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3346 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3347 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3348 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3349 #endif 3350 pBt->nPage = 1; 3351 data[31] = 1; 3352 return SQLITE_OK; 3353 } 3354 3355 /* 3356 ** Initialize the first page of the database file (creating a database 3357 ** consisting of a single page and no schema objects). Return SQLITE_OK 3358 ** if successful, or an SQLite error code otherwise. 3359 */ 3360 int sqlite3BtreeNewDb(Btree *p){ 3361 int rc; 3362 sqlite3BtreeEnter(p); 3363 p->pBt->nPage = 0; 3364 rc = newDatabase(p->pBt); 3365 sqlite3BtreeLeave(p); 3366 return rc; 3367 } 3368 3369 /* 3370 ** Attempt to start a new transaction. A write-transaction 3371 ** is started if the second argument is nonzero, otherwise a read- 3372 ** transaction. If the second argument is 2 or more and exclusive 3373 ** transaction is started, meaning that no other process is allowed 3374 ** to access the database. A preexisting transaction may not be 3375 ** upgraded to exclusive by calling this routine a second time - the 3376 ** exclusivity flag only works for a new transaction. 3377 ** 3378 ** A write-transaction must be started before attempting any 3379 ** changes to the database. None of the following routines 3380 ** will work unless a transaction is started first: 3381 ** 3382 ** sqlite3BtreeCreateTable() 3383 ** sqlite3BtreeCreateIndex() 3384 ** sqlite3BtreeClearTable() 3385 ** sqlite3BtreeDropTable() 3386 ** sqlite3BtreeInsert() 3387 ** sqlite3BtreeDelete() 3388 ** sqlite3BtreeUpdateMeta() 3389 ** 3390 ** If an initial attempt to acquire the lock fails because of lock contention 3391 ** and the database was previously unlocked, then invoke the busy handler 3392 ** if there is one. But if there was previously a read-lock, do not 3393 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3394 ** returned when there is already a read-lock in order to avoid a deadlock. 3395 ** 3396 ** Suppose there are two processes A and B. A has a read lock and B has 3397 ** a reserved lock. B tries to promote to exclusive but is blocked because 3398 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3399 ** One or the other of the two processes must give way or there can be 3400 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3401 ** when A already has a read lock, we encourage A to give up and let B 3402 ** proceed. 3403 */ 3404 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3405 BtShared *pBt = p->pBt; 3406 Pager *pPager = pBt->pPager; 3407 int rc = SQLITE_OK; 3408 3409 sqlite3BtreeEnter(p); 3410 btreeIntegrity(p); 3411 3412 /* If the btree is already in a write-transaction, or it 3413 ** is already in a read-transaction and a read-transaction 3414 ** is requested, this is a no-op. 3415 */ 3416 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3417 goto trans_begun; 3418 } 3419 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3420 3421 if( (p->db->flags & SQLITE_ResetDatabase) 3422 && sqlite3PagerIsreadonly(pPager)==0 3423 ){ 3424 pBt->btsFlags &= ~BTS_READ_ONLY; 3425 } 3426 3427 /* Write transactions are not possible on a read-only database */ 3428 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3429 rc = SQLITE_READONLY; 3430 goto trans_begun; 3431 } 3432 3433 #ifndef SQLITE_OMIT_SHARED_CACHE 3434 { 3435 sqlite3 *pBlock = 0; 3436 /* If another database handle has already opened a write transaction 3437 ** on this shared-btree structure and a second write transaction is 3438 ** requested, return SQLITE_LOCKED. 3439 */ 3440 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3441 || (pBt->btsFlags & BTS_PENDING)!=0 3442 ){ 3443 pBlock = pBt->pWriter->db; 3444 }else if( wrflag>1 ){ 3445 BtLock *pIter; 3446 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3447 if( pIter->pBtree!=p ){ 3448 pBlock = pIter->pBtree->db; 3449 break; 3450 } 3451 } 3452 } 3453 if( pBlock ){ 3454 sqlite3ConnectionBlocked(p->db, pBlock); 3455 rc = SQLITE_LOCKED_SHAREDCACHE; 3456 goto trans_begun; 3457 } 3458 } 3459 #endif 3460 3461 /* Any read-only or read-write transaction implies a read-lock on 3462 ** page 1. So if some other shared-cache client already has a write-lock 3463 ** on page 1, the transaction cannot be opened. */ 3464 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3465 if( SQLITE_OK!=rc ) goto trans_begun; 3466 3467 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3468 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3469 do { 3470 sqlite3PagerWalDb(pPager, p->db); 3471 3472 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3473 /* If transitioning from no transaction directly to a write transaction, 3474 ** block for the WRITER lock first if possible. */ 3475 if( pBt->pPage1==0 && wrflag ){ 3476 assert( pBt->inTransaction==TRANS_NONE ); 3477 rc = sqlite3PagerWalWriteLock(pPager, 1); 3478 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3479 } 3480 #endif 3481 3482 /* Call lockBtree() until either pBt->pPage1 is populated or 3483 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3484 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3485 ** reading page 1 it discovers that the page-size of the database 3486 ** file is not pBt->pageSize. In this case lockBtree() will update 3487 ** pBt->pageSize to the page-size of the file on disk. 3488 */ 3489 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3490 3491 if( rc==SQLITE_OK && wrflag ){ 3492 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3493 rc = SQLITE_READONLY; 3494 }else{ 3495 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3496 if( rc==SQLITE_OK ){ 3497 rc = newDatabase(pBt); 3498 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3499 /* if there was no transaction opened when this function was 3500 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3501 ** code to SQLITE_BUSY. */ 3502 rc = SQLITE_BUSY; 3503 } 3504 } 3505 } 3506 3507 if( rc!=SQLITE_OK ){ 3508 (void)sqlite3PagerWalWriteLock(pPager, 0); 3509 unlockBtreeIfUnused(pBt); 3510 } 3511 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3512 btreeInvokeBusyHandler(pBt) ); 3513 sqlite3PagerWalDb(pPager, 0); 3514 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3515 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3516 #endif 3517 3518 if( rc==SQLITE_OK ){ 3519 if( p->inTrans==TRANS_NONE ){ 3520 pBt->nTransaction++; 3521 #ifndef SQLITE_OMIT_SHARED_CACHE 3522 if( p->sharable ){ 3523 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3524 p->lock.eLock = READ_LOCK; 3525 p->lock.pNext = pBt->pLock; 3526 pBt->pLock = &p->lock; 3527 } 3528 #endif 3529 } 3530 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3531 if( p->inTrans>pBt->inTransaction ){ 3532 pBt->inTransaction = p->inTrans; 3533 } 3534 if( wrflag ){ 3535 MemPage *pPage1 = pBt->pPage1; 3536 #ifndef SQLITE_OMIT_SHARED_CACHE 3537 assert( !pBt->pWriter ); 3538 pBt->pWriter = p; 3539 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3540 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3541 #endif 3542 3543 /* If the db-size header field is incorrect (as it may be if an old 3544 ** client has been writing the database file), update it now. Doing 3545 ** this sooner rather than later means the database size can safely 3546 ** re-read the database size from page 1 if a savepoint or transaction 3547 ** rollback occurs within the transaction. 3548 */ 3549 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3550 rc = sqlite3PagerWrite(pPage1->pDbPage); 3551 if( rc==SQLITE_OK ){ 3552 put4byte(&pPage1->aData[28], pBt->nPage); 3553 } 3554 } 3555 } 3556 } 3557 3558 trans_begun: 3559 if( rc==SQLITE_OK ){ 3560 if( pSchemaVersion ){ 3561 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3562 } 3563 if( wrflag ){ 3564 /* This call makes sure that the pager has the correct number of 3565 ** open savepoints. If the second parameter is greater than 0 and 3566 ** the sub-journal is not already open, then it will be opened here. 3567 */ 3568 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3569 } 3570 } 3571 3572 btreeIntegrity(p); 3573 sqlite3BtreeLeave(p); 3574 return rc; 3575 } 3576 3577 #ifndef SQLITE_OMIT_AUTOVACUUM 3578 3579 /* 3580 ** Set the pointer-map entries for all children of page pPage. Also, if 3581 ** pPage contains cells that point to overflow pages, set the pointer 3582 ** map entries for the overflow pages as well. 3583 */ 3584 static int setChildPtrmaps(MemPage *pPage){ 3585 int i; /* Counter variable */ 3586 int nCell; /* Number of cells in page pPage */ 3587 int rc; /* Return code */ 3588 BtShared *pBt = pPage->pBt; 3589 Pgno pgno = pPage->pgno; 3590 3591 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3592 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3593 if( rc!=SQLITE_OK ) return rc; 3594 nCell = pPage->nCell; 3595 3596 for(i=0; i<nCell; i++){ 3597 u8 *pCell = findCell(pPage, i); 3598 3599 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3600 3601 if( !pPage->leaf ){ 3602 Pgno childPgno = get4byte(pCell); 3603 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3604 } 3605 } 3606 3607 if( !pPage->leaf ){ 3608 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3609 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3610 } 3611 3612 return rc; 3613 } 3614 3615 /* 3616 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3617 ** that it points to iTo. Parameter eType describes the type of pointer to 3618 ** be modified, as follows: 3619 ** 3620 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3621 ** page of pPage. 3622 ** 3623 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3624 ** page pointed to by one of the cells on pPage. 3625 ** 3626 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3627 ** overflow page in the list. 3628 */ 3629 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3630 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3631 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3632 if( eType==PTRMAP_OVERFLOW2 ){ 3633 /* The pointer is always the first 4 bytes of the page in this case. */ 3634 if( get4byte(pPage->aData)!=iFrom ){ 3635 return SQLITE_CORRUPT_PAGE(pPage); 3636 } 3637 put4byte(pPage->aData, iTo); 3638 }else{ 3639 int i; 3640 int nCell; 3641 int rc; 3642 3643 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3644 if( rc ) return rc; 3645 nCell = pPage->nCell; 3646 3647 for(i=0; i<nCell; i++){ 3648 u8 *pCell = findCell(pPage, i); 3649 if( eType==PTRMAP_OVERFLOW1 ){ 3650 CellInfo info; 3651 pPage->xParseCell(pPage, pCell, &info); 3652 if( info.nLocal<info.nPayload ){ 3653 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3654 return SQLITE_CORRUPT_PAGE(pPage); 3655 } 3656 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3657 put4byte(pCell+info.nSize-4, iTo); 3658 break; 3659 } 3660 } 3661 }else{ 3662 if( get4byte(pCell)==iFrom ){ 3663 put4byte(pCell, iTo); 3664 break; 3665 } 3666 } 3667 } 3668 3669 if( i==nCell ){ 3670 if( eType!=PTRMAP_BTREE || 3671 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3672 return SQLITE_CORRUPT_PAGE(pPage); 3673 } 3674 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3675 } 3676 } 3677 return SQLITE_OK; 3678 } 3679 3680 3681 /* 3682 ** Move the open database page pDbPage to location iFreePage in the 3683 ** database. The pDbPage reference remains valid. 3684 ** 3685 ** The isCommit flag indicates that there is no need to remember that 3686 ** the journal needs to be sync()ed before database page pDbPage->pgno 3687 ** can be written to. The caller has already promised not to write to that 3688 ** page. 3689 */ 3690 static int relocatePage( 3691 BtShared *pBt, /* Btree */ 3692 MemPage *pDbPage, /* Open page to move */ 3693 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3694 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3695 Pgno iFreePage, /* The location to move pDbPage to */ 3696 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3697 ){ 3698 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3699 Pgno iDbPage = pDbPage->pgno; 3700 Pager *pPager = pBt->pPager; 3701 int rc; 3702 3703 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3704 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3705 assert( sqlite3_mutex_held(pBt->mutex) ); 3706 assert( pDbPage->pBt==pBt ); 3707 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3708 3709 /* Move page iDbPage from its current location to page number iFreePage */ 3710 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3711 iDbPage, iFreePage, iPtrPage, eType)); 3712 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3713 if( rc!=SQLITE_OK ){ 3714 return rc; 3715 } 3716 pDbPage->pgno = iFreePage; 3717 3718 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3719 ** that point to overflow pages. The pointer map entries for all these 3720 ** pages need to be changed. 3721 ** 3722 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3723 ** pointer to a subsequent overflow page. If this is the case, then 3724 ** the pointer map needs to be updated for the subsequent overflow page. 3725 */ 3726 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3727 rc = setChildPtrmaps(pDbPage); 3728 if( rc!=SQLITE_OK ){ 3729 return rc; 3730 } 3731 }else{ 3732 Pgno nextOvfl = get4byte(pDbPage->aData); 3733 if( nextOvfl!=0 ){ 3734 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3735 if( rc!=SQLITE_OK ){ 3736 return rc; 3737 } 3738 } 3739 } 3740 3741 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3742 ** that it points at iFreePage. Also fix the pointer map entry for 3743 ** iPtrPage. 3744 */ 3745 if( eType!=PTRMAP_ROOTPAGE ){ 3746 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3747 if( rc!=SQLITE_OK ){ 3748 return rc; 3749 } 3750 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3751 if( rc!=SQLITE_OK ){ 3752 releasePage(pPtrPage); 3753 return rc; 3754 } 3755 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3756 releasePage(pPtrPage); 3757 if( rc==SQLITE_OK ){ 3758 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3759 } 3760 } 3761 return rc; 3762 } 3763 3764 /* Forward declaration required by incrVacuumStep(). */ 3765 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3766 3767 /* 3768 ** Perform a single step of an incremental-vacuum. If successful, return 3769 ** SQLITE_OK. If there is no work to do (and therefore no point in 3770 ** calling this function again), return SQLITE_DONE. Or, if an error 3771 ** occurs, return some other error code. 3772 ** 3773 ** More specifically, this function attempts to re-organize the database so 3774 ** that the last page of the file currently in use is no longer in use. 3775 ** 3776 ** Parameter nFin is the number of pages that this database would contain 3777 ** were this function called until it returns SQLITE_DONE. 3778 ** 3779 ** If the bCommit parameter is non-zero, this function assumes that the 3780 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3781 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3782 ** operation, or false for an incremental vacuum. 3783 */ 3784 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3785 Pgno nFreeList; /* Number of pages still on the free-list */ 3786 int rc; 3787 3788 assert( sqlite3_mutex_held(pBt->mutex) ); 3789 assert( iLastPg>nFin ); 3790 3791 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3792 u8 eType; 3793 Pgno iPtrPage; 3794 3795 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3796 if( nFreeList==0 ){ 3797 return SQLITE_DONE; 3798 } 3799 3800 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3801 if( rc!=SQLITE_OK ){ 3802 return rc; 3803 } 3804 if( eType==PTRMAP_ROOTPAGE ){ 3805 return SQLITE_CORRUPT_BKPT; 3806 } 3807 3808 if( eType==PTRMAP_FREEPAGE ){ 3809 if( bCommit==0 ){ 3810 /* Remove the page from the files free-list. This is not required 3811 ** if bCommit is non-zero. In that case, the free-list will be 3812 ** truncated to zero after this function returns, so it doesn't 3813 ** matter if it still contains some garbage entries. 3814 */ 3815 Pgno iFreePg; 3816 MemPage *pFreePg; 3817 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3818 if( rc!=SQLITE_OK ){ 3819 return rc; 3820 } 3821 assert( iFreePg==iLastPg ); 3822 releasePage(pFreePg); 3823 } 3824 } else { 3825 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3826 MemPage *pLastPg; 3827 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3828 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3829 3830 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3831 if( rc!=SQLITE_OK ){ 3832 return rc; 3833 } 3834 3835 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3836 ** is swapped with the first free page pulled off the free list. 3837 ** 3838 ** On the other hand, if bCommit is greater than zero, then keep 3839 ** looping until a free-page located within the first nFin pages 3840 ** of the file is found. 3841 */ 3842 if( bCommit==0 ){ 3843 eMode = BTALLOC_LE; 3844 iNear = nFin; 3845 } 3846 do { 3847 MemPage *pFreePg; 3848 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3849 if( rc!=SQLITE_OK ){ 3850 releasePage(pLastPg); 3851 return rc; 3852 } 3853 releasePage(pFreePg); 3854 }while( bCommit && iFreePg>nFin ); 3855 assert( iFreePg<iLastPg ); 3856 3857 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3858 releasePage(pLastPg); 3859 if( rc!=SQLITE_OK ){ 3860 return rc; 3861 } 3862 } 3863 } 3864 3865 if( bCommit==0 ){ 3866 do { 3867 iLastPg--; 3868 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3869 pBt->bDoTruncate = 1; 3870 pBt->nPage = iLastPg; 3871 } 3872 return SQLITE_OK; 3873 } 3874 3875 /* 3876 ** The database opened by the first argument is an auto-vacuum database 3877 ** nOrig pages in size containing nFree free pages. Return the expected 3878 ** size of the database in pages following an auto-vacuum operation. 3879 */ 3880 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3881 int nEntry; /* Number of entries on one ptrmap page */ 3882 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3883 Pgno nFin; /* Return value */ 3884 3885 nEntry = pBt->usableSize/5; 3886 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3887 nFin = nOrig - nFree - nPtrmap; 3888 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3889 nFin--; 3890 } 3891 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3892 nFin--; 3893 } 3894 3895 return nFin; 3896 } 3897 3898 /* 3899 ** A write-transaction must be opened before calling this function. 3900 ** It performs a single unit of work towards an incremental vacuum. 3901 ** 3902 ** If the incremental vacuum is finished after this function has run, 3903 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3904 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3905 */ 3906 int sqlite3BtreeIncrVacuum(Btree *p){ 3907 int rc; 3908 BtShared *pBt = p->pBt; 3909 3910 sqlite3BtreeEnter(p); 3911 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3912 if( !pBt->autoVacuum ){ 3913 rc = SQLITE_DONE; 3914 }else{ 3915 Pgno nOrig = btreePagecount(pBt); 3916 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3917 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3918 3919 if( nOrig<nFin || nFree>=nOrig ){ 3920 rc = SQLITE_CORRUPT_BKPT; 3921 }else if( nFree>0 ){ 3922 rc = saveAllCursors(pBt, 0, 0); 3923 if( rc==SQLITE_OK ){ 3924 invalidateAllOverflowCache(pBt); 3925 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3926 } 3927 if( rc==SQLITE_OK ){ 3928 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3929 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3930 } 3931 }else{ 3932 rc = SQLITE_DONE; 3933 } 3934 } 3935 sqlite3BtreeLeave(p); 3936 return rc; 3937 } 3938 3939 /* 3940 ** This routine is called prior to sqlite3PagerCommit when a transaction 3941 ** is committed for an auto-vacuum database. 3942 */ 3943 static int autoVacuumCommit(Btree *p){ 3944 int rc = SQLITE_OK; 3945 Pager *pPager; 3946 BtShared *pBt; 3947 sqlite3 *db; 3948 VVA_ONLY( int nRef ); 3949 3950 assert( p!=0 ); 3951 pBt = p->pBt; 3952 pPager = pBt->pPager; 3953 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 3954 3955 assert( sqlite3_mutex_held(pBt->mutex) ); 3956 invalidateAllOverflowCache(pBt); 3957 assert(pBt->autoVacuum); 3958 if( !pBt->incrVacuum ){ 3959 Pgno nFin; /* Number of pages in database after autovacuuming */ 3960 Pgno nFree; /* Number of pages on the freelist initially */ 3961 Pgno nVac; /* Number of pages to vacuum */ 3962 Pgno iFree; /* The next page to be freed */ 3963 Pgno nOrig; /* Database size before freeing */ 3964 3965 nOrig = btreePagecount(pBt); 3966 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3967 /* It is not possible to create a database for which the final page 3968 ** is either a pointer-map page or the pending-byte page. If one 3969 ** is encountered, this indicates corruption. 3970 */ 3971 return SQLITE_CORRUPT_BKPT; 3972 } 3973 3974 nFree = get4byte(&pBt->pPage1->aData[36]); 3975 db = p->db; 3976 if( db->xAutovacPages ){ 3977 int iDb; 3978 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 3979 if( db->aDb[iDb].pBt==p ) break; 3980 } 3981 nVac = db->xAutovacPages( 3982 db->pAutovacPagesArg, 3983 db->aDb[iDb].zDbSName, 3984 nOrig, 3985 nFree, 3986 pBt->pageSize 3987 ); 3988 if( nVac>nFree ){ 3989 nVac = nFree; 3990 } 3991 if( nVac==0 ){ 3992 return SQLITE_OK; 3993 } 3994 }else{ 3995 nVac = nFree; 3996 } 3997 nFin = finalDbSize(pBt, nOrig, nVac); 3998 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3999 if( nFin<nOrig ){ 4000 rc = saveAllCursors(pBt, 0, 0); 4001 } 4002 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4003 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4004 } 4005 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4006 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4007 if( nVac==nFree ){ 4008 put4byte(&pBt->pPage1->aData[32], 0); 4009 put4byte(&pBt->pPage1->aData[36], 0); 4010 } 4011 put4byte(&pBt->pPage1->aData[28], nFin); 4012 pBt->bDoTruncate = 1; 4013 pBt->nPage = nFin; 4014 } 4015 if( rc!=SQLITE_OK ){ 4016 sqlite3PagerRollback(pPager); 4017 } 4018 } 4019 4020 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4021 return rc; 4022 } 4023 4024 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4025 # define setChildPtrmaps(x) SQLITE_OK 4026 #endif 4027 4028 /* 4029 ** This routine does the first phase of a two-phase commit. This routine 4030 ** causes a rollback journal to be created (if it does not already exist) 4031 ** and populated with enough information so that if a power loss occurs 4032 ** the database can be restored to its original state by playing back 4033 ** the journal. Then the contents of the journal are flushed out to 4034 ** the disk. After the journal is safely on oxide, the changes to the 4035 ** database are written into the database file and flushed to oxide. 4036 ** At the end of this call, the rollback journal still exists on the 4037 ** disk and we are still holding all locks, so the transaction has not 4038 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4039 ** commit process. 4040 ** 4041 ** This call is a no-op if no write-transaction is currently active on pBt. 4042 ** 4043 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4044 ** the name of a super-journal file that should be written into the 4045 ** individual journal file, or is NULL, indicating no super-journal file 4046 ** (single database transaction). 4047 ** 4048 ** When this is called, the super-journal should already have been 4049 ** created, populated with this journal pointer and synced to disk. 4050 ** 4051 ** Once this is routine has returned, the only thing required to commit 4052 ** the write-transaction for this database file is to delete the journal. 4053 */ 4054 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4055 int rc = SQLITE_OK; 4056 if( p->inTrans==TRANS_WRITE ){ 4057 BtShared *pBt = p->pBt; 4058 sqlite3BtreeEnter(p); 4059 #ifndef SQLITE_OMIT_AUTOVACUUM 4060 if( pBt->autoVacuum ){ 4061 rc = autoVacuumCommit(p); 4062 if( rc!=SQLITE_OK ){ 4063 sqlite3BtreeLeave(p); 4064 return rc; 4065 } 4066 } 4067 if( pBt->bDoTruncate ){ 4068 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4069 } 4070 #endif 4071 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4072 sqlite3BtreeLeave(p); 4073 } 4074 return rc; 4075 } 4076 4077 /* 4078 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4079 ** at the conclusion of a transaction. 4080 */ 4081 static void btreeEndTransaction(Btree *p){ 4082 BtShared *pBt = p->pBt; 4083 sqlite3 *db = p->db; 4084 assert( sqlite3BtreeHoldsMutex(p) ); 4085 4086 #ifndef SQLITE_OMIT_AUTOVACUUM 4087 pBt->bDoTruncate = 0; 4088 #endif 4089 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4090 /* If there are other active statements that belong to this database 4091 ** handle, downgrade to a read-only transaction. The other statements 4092 ** may still be reading from the database. */ 4093 downgradeAllSharedCacheTableLocks(p); 4094 p->inTrans = TRANS_READ; 4095 }else{ 4096 /* If the handle had any kind of transaction open, decrement the 4097 ** transaction count of the shared btree. If the transaction count 4098 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4099 ** call below will unlock the pager. */ 4100 if( p->inTrans!=TRANS_NONE ){ 4101 clearAllSharedCacheTableLocks(p); 4102 pBt->nTransaction--; 4103 if( 0==pBt->nTransaction ){ 4104 pBt->inTransaction = TRANS_NONE; 4105 } 4106 } 4107 4108 /* Set the current transaction state to TRANS_NONE and unlock the 4109 ** pager if this call closed the only read or write transaction. */ 4110 p->inTrans = TRANS_NONE; 4111 unlockBtreeIfUnused(pBt); 4112 } 4113 4114 btreeIntegrity(p); 4115 } 4116 4117 /* 4118 ** Commit the transaction currently in progress. 4119 ** 4120 ** This routine implements the second phase of a 2-phase commit. The 4121 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4122 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4123 ** routine did all the work of writing information out to disk and flushing the 4124 ** contents so that they are written onto the disk platter. All this 4125 ** routine has to do is delete or truncate or zero the header in the 4126 ** the rollback journal (which causes the transaction to commit) and 4127 ** drop locks. 4128 ** 4129 ** Normally, if an error occurs while the pager layer is attempting to 4130 ** finalize the underlying journal file, this function returns an error and 4131 ** the upper layer will attempt a rollback. However, if the second argument 4132 ** is non-zero then this b-tree transaction is part of a multi-file 4133 ** transaction. In this case, the transaction has already been committed 4134 ** (by deleting a super-journal file) and the caller will ignore this 4135 ** functions return code. So, even if an error occurs in the pager layer, 4136 ** reset the b-tree objects internal state to indicate that the write 4137 ** transaction has been closed. This is quite safe, as the pager will have 4138 ** transitioned to the error state. 4139 ** 4140 ** This will release the write lock on the database file. If there 4141 ** are no active cursors, it also releases the read lock. 4142 */ 4143 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4144 4145 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4146 sqlite3BtreeEnter(p); 4147 btreeIntegrity(p); 4148 4149 /* If the handle has a write-transaction open, commit the shared-btrees 4150 ** transaction and set the shared state to TRANS_READ. 4151 */ 4152 if( p->inTrans==TRANS_WRITE ){ 4153 int rc; 4154 BtShared *pBt = p->pBt; 4155 assert( pBt->inTransaction==TRANS_WRITE ); 4156 assert( pBt->nTransaction>0 ); 4157 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4158 if( rc!=SQLITE_OK && bCleanup==0 ){ 4159 sqlite3BtreeLeave(p); 4160 return rc; 4161 } 4162 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4163 pBt->inTransaction = TRANS_READ; 4164 btreeClearHasContent(pBt); 4165 } 4166 4167 btreeEndTransaction(p); 4168 sqlite3BtreeLeave(p); 4169 return SQLITE_OK; 4170 } 4171 4172 /* 4173 ** Do both phases of a commit. 4174 */ 4175 int sqlite3BtreeCommit(Btree *p){ 4176 int rc; 4177 sqlite3BtreeEnter(p); 4178 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4179 if( rc==SQLITE_OK ){ 4180 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4181 } 4182 sqlite3BtreeLeave(p); 4183 return rc; 4184 } 4185 4186 /* 4187 ** This routine sets the state to CURSOR_FAULT and the error 4188 ** code to errCode for every cursor on any BtShared that pBtree 4189 ** references. Or if the writeOnly flag is set to 1, then only 4190 ** trip write cursors and leave read cursors unchanged. 4191 ** 4192 ** Every cursor is a candidate to be tripped, including cursors 4193 ** that belong to other database connections that happen to be 4194 ** sharing the cache with pBtree. 4195 ** 4196 ** This routine gets called when a rollback occurs. If the writeOnly 4197 ** flag is true, then only write-cursors need be tripped - read-only 4198 ** cursors save their current positions so that they may continue 4199 ** following the rollback. Or, if writeOnly is false, all cursors are 4200 ** tripped. In general, writeOnly is false if the transaction being 4201 ** rolled back modified the database schema. In this case b-tree root 4202 ** pages may be moved or deleted from the database altogether, making 4203 ** it unsafe for read cursors to continue. 4204 ** 4205 ** If the writeOnly flag is true and an error is encountered while 4206 ** saving the current position of a read-only cursor, all cursors, 4207 ** including all read-cursors are tripped. 4208 ** 4209 ** SQLITE_OK is returned if successful, or if an error occurs while 4210 ** saving a cursor position, an SQLite error code. 4211 */ 4212 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4213 BtCursor *p; 4214 int rc = SQLITE_OK; 4215 4216 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4217 if( pBtree ){ 4218 sqlite3BtreeEnter(pBtree); 4219 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4220 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4221 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4222 rc = saveCursorPosition(p); 4223 if( rc!=SQLITE_OK ){ 4224 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4225 break; 4226 } 4227 } 4228 }else{ 4229 sqlite3BtreeClearCursor(p); 4230 p->eState = CURSOR_FAULT; 4231 p->skipNext = errCode; 4232 } 4233 btreeReleaseAllCursorPages(p); 4234 } 4235 sqlite3BtreeLeave(pBtree); 4236 } 4237 return rc; 4238 } 4239 4240 /* 4241 ** Set the pBt->nPage field correctly, according to the current 4242 ** state of the database. Assume pBt->pPage1 is valid. 4243 */ 4244 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4245 int nPage = get4byte(&pPage1->aData[28]); 4246 testcase( nPage==0 ); 4247 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4248 testcase( pBt->nPage!=nPage ); 4249 pBt->nPage = nPage; 4250 } 4251 4252 /* 4253 ** Rollback the transaction in progress. 4254 ** 4255 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4256 ** Only write cursors are tripped if writeOnly is true but all cursors are 4257 ** tripped if writeOnly is false. Any attempt to use 4258 ** a tripped cursor will result in an error. 4259 ** 4260 ** This will release the write lock on the database file. If there 4261 ** are no active cursors, it also releases the read lock. 4262 */ 4263 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4264 int rc; 4265 BtShared *pBt = p->pBt; 4266 MemPage *pPage1; 4267 4268 assert( writeOnly==1 || writeOnly==0 ); 4269 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4270 sqlite3BtreeEnter(p); 4271 if( tripCode==SQLITE_OK ){ 4272 rc = tripCode = saveAllCursors(pBt, 0, 0); 4273 if( rc ) writeOnly = 0; 4274 }else{ 4275 rc = SQLITE_OK; 4276 } 4277 if( tripCode ){ 4278 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4279 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4280 if( rc2!=SQLITE_OK ) rc = rc2; 4281 } 4282 btreeIntegrity(p); 4283 4284 if( p->inTrans==TRANS_WRITE ){ 4285 int rc2; 4286 4287 assert( TRANS_WRITE==pBt->inTransaction ); 4288 rc2 = sqlite3PagerRollback(pBt->pPager); 4289 if( rc2!=SQLITE_OK ){ 4290 rc = rc2; 4291 } 4292 4293 /* The rollback may have destroyed the pPage1->aData value. So 4294 ** call btreeGetPage() on page 1 again to make 4295 ** sure pPage1->aData is set correctly. */ 4296 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4297 btreeSetNPage(pBt, pPage1); 4298 releasePageOne(pPage1); 4299 } 4300 assert( countValidCursors(pBt, 1)==0 ); 4301 pBt->inTransaction = TRANS_READ; 4302 btreeClearHasContent(pBt); 4303 } 4304 4305 btreeEndTransaction(p); 4306 sqlite3BtreeLeave(p); 4307 return rc; 4308 } 4309 4310 /* 4311 ** Start a statement subtransaction. The subtransaction can be rolled 4312 ** back independently of the main transaction. You must start a transaction 4313 ** before starting a subtransaction. The subtransaction is ended automatically 4314 ** if the main transaction commits or rolls back. 4315 ** 4316 ** Statement subtransactions are used around individual SQL statements 4317 ** that are contained within a BEGIN...COMMIT block. If a constraint 4318 ** error occurs within the statement, the effect of that one statement 4319 ** can be rolled back without having to rollback the entire transaction. 4320 ** 4321 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4322 ** value passed as the second parameter is the total number of savepoints, 4323 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4324 ** are no active savepoints and no other statement-transactions open, 4325 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4326 ** using the sqlite3BtreeSavepoint() function. 4327 */ 4328 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4329 int rc; 4330 BtShared *pBt = p->pBt; 4331 sqlite3BtreeEnter(p); 4332 assert( p->inTrans==TRANS_WRITE ); 4333 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4334 assert( iStatement>0 ); 4335 assert( iStatement>p->db->nSavepoint ); 4336 assert( pBt->inTransaction==TRANS_WRITE ); 4337 /* At the pager level, a statement transaction is a savepoint with 4338 ** an index greater than all savepoints created explicitly using 4339 ** SQL statements. It is illegal to open, release or rollback any 4340 ** such savepoints while the statement transaction savepoint is active. 4341 */ 4342 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4343 sqlite3BtreeLeave(p); 4344 return rc; 4345 } 4346 4347 /* 4348 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4349 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4350 ** savepoint identified by parameter iSavepoint, depending on the value 4351 ** of op. 4352 ** 4353 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4354 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4355 ** contents of the entire transaction are rolled back. This is different 4356 ** from a normal transaction rollback, as no locks are released and the 4357 ** transaction remains open. 4358 */ 4359 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4360 int rc = SQLITE_OK; 4361 if( p && p->inTrans==TRANS_WRITE ){ 4362 BtShared *pBt = p->pBt; 4363 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4364 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4365 sqlite3BtreeEnter(p); 4366 if( op==SAVEPOINT_ROLLBACK ){ 4367 rc = saveAllCursors(pBt, 0, 0); 4368 } 4369 if( rc==SQLITE_OK ){ 4370 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4371 } 4372 if( rc==SQLITE_OK ){ 4373 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4374 pBt->nPage = 0; 4375 } 4376 rc = newDatabase(pBt); 4377 btreeSetNPage(pBt, pBt->pPage1); 4378 4379 /* pBt->nPage might be zero if the database was corrupt when 4380 ** the transaction was started. Otherwise, it must be at least 1. */ 4381 assert( CORRUPT_DB || pBt->nPage>0 ); 4382 } 4383 sqlite3BtreeLeave(p); 4384 } 4385 return rc; 4386 } 4387 4388 /* 4389 ** Create a new cursor for the BTree whose root is on the page 4390 ** iTable. If a read-only cursor is requested, it is assumed that 4391 ** the caller already has at least a read-only transaction open 4392 ** on the database already. If a write-cursor is requested, then 4393 ** the caller is assumed to have an open write transaction. 4394 ** 4395 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4396 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4397 ** can be used for reading or for writing if other conditions for writing 4398 ** are also met. These are the conditions that must be met in order 4399 ** for writing to be allowed: 4400 ** 4401 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4402 ** 4403 ** 2: Other database connections that share the same pager cache 4404 ** but which are not in the READ_UNCOMMITTED state may not have 4405 ** cursors open with wrFlag==0 on the same table. Otherwise 4406 ** the changes made by this write cursor would be visible to 4407 ** the read cursors in the other database connection. 4408 ** 4409 ** 3: The database must be writable (not on read-only media) 4410 ** 4411 ** 4: There must be an active transaction. 4412 ** 4413 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4414 ** is set. If FORDELETE is set, that is a hint to the implementation that 4415 ** this cursor will only be used to seek to and delete entries of an index 4416 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4417 ** this implementation. But in a hypothetical alternative storage engine 4418 ** in which index entries are automatically deleted when corresponding table 4419 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4420 ** operations on this cursor can be no-ops and all READ operations can 4421 ** return a null row (2-bytes: 0x01 0x00). 4422 ** 4423 ** No checking is done to make sure that page iTable really is the 4424 ** root page of a b-tree. If it is not, then the cursor acquired 4425 ** will not work correctly. 4426 ** 4427 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4428 ** on pCur to initialize the memory space prior to invoking this routine. 4429 */ 4430 static int btreeCursor( 4431 Btree *p, /* The btree */ 4432 Pgno iTable, /* Root page of table to open */ 4433 int wrFlag, /* 1 to write. 0 read-only */ 4434 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4435 BtCursor *pCur /* Space for new cursor */ 4436 ){ 4437 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4438 BtCursor *pX; /* Looping over other all cursors */ 4439 4440 assert( sqlite3BtreeHoldsMutex(p) ); 4441 assert( wrFlag==0 4442 || wrFlag==BTREE_WRCSR 4443 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4444 ); 4445 4446 /* The following assert statements verify that if this is a sharable 4447 ** b-tree database, the connection is holding the required table locks, 4448 ** and that no other connection has any open cursor that conflicts with 4449 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4450 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4451 || iTable<1 ); 4452 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4453 4454 /* Assert that the caller has opened the required transaction. */ 4455 assert( p->inTrans>TRANS_NONE ); 4456 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4457 assert( pBt->pPage1 && pBt->pPage1->aData ); 4458 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4459 4460 if( wrFlag ){ 4461 allocateTempSpace(pBt); 4462 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4463 } 4464 if( iTable<=1 ){ 4465 if( iTable<1 ){ 4466 return SQLITE_CORRUPT_BKPT; 4467 }else if( btreePagecount(pBt)==0 ){ 4468 assert( wrFlag==0 ); 4469 iTable = 0; 4470 } 4471 } 4472 4473 /* Now that no other errors can occur, finish filling in the BtCursor 4474 ** variables and link the cursor into the BtShared list. */ 4475 pCur->pgnoRoot = iTable; 4476 pCur->iPage = -1; 4477 pCur->pKeyInfo = pKeyInfo; 4478 pCur->pBtree = p; 4479 pCur->pBt = pBt; 4480 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4481 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4482 /* If there are two or more cursors on the same btree, then all such 4483 ** cursors *must* have the BTCF_Multiple flag set. */ 4484 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4485 if( pX->pgnoRoot==iTable ){ 4486 pX->curFlags |= BTCF_Multiple; 4487 pCur->curFlags |= BTCF_Multiple; 4488 } 4489 } 4490 pCur->pNext = pBt->pCursor; 4491 pBt->pCursor = pCur; 4492 pCur->eState = CURSOR_INVALID; 4493 return SQLITE_OK; 4494 } 4495 static int btreeCursorWithLock( 4496 Btree *p, /* The btree */ 4497 Pgno iTable, /* Root page of table to open */ 4498 int wrFlag, /* 1 to write. 0 read-only */ 4499 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4500 BtCursor *pCur /* Space for new cursor */ 4501 ){ 4502 int rc; 4503 sqlite3BtreeEnter(p); 4504 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4505 sqlite3BtreeLeave(p); 4506 return rc; 4507 } 4508 int sqlite3BtreeCursor( 4509 Btree *p, /* The btree */ 4510 Pgno iTable, /* Root page of table to open */ 4511 int wrFlag, /* 1 to write. 0 read-only */ 4512 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4513 BtCursor *pCur /* Write new cursor here */ 4514 ){ 4515 if( p->sharable ){ 4516 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4517 }else{ 4518 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4519 } 4520 } 4521 4522 /* 4523 ** Return the size of a BtCursor object in bytes. 4524 ** 4525 ** This interfaces is needed so that users of cursors can preallocate 4526 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4527 ** to users so they cannot do the sizeof() themselves - they must call 4528 ** this routine. 4529 */ 4530 int sqlite3BtreeCursorSize(void){ 4531 return ROUND8(sizeof(BtCursor)); 4532 } 4533 4534 /* 4535 ** Initialize memory that will be converted into a BtCursor object. 4536 ** 4537 ** The simple approach here would be to memset() the entire object 4538 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4539 ** do not need to be zeroed and they are large, so we can save a lot 4540 ** of run-time by skipping the initialization of those elements. 4541 */ 4542 void sqlite3BtreeCursorZero(BtCursor *p){ 4543 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4544 } 4545 4546 /* 4547 ** Close a cursor. The read lock on the database file is released 4548 ** when the last cursor is closed. 4549 */ 4550 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4551 Btree *pBtree = pCur->pBtree; 4552 if( pBtree ){ 4553 BtShared *pBt = pCur->pBt; 4554 sqlite3BtreeEnter(pBtree); 4555 assert( pBt->pCursor!=0 ); 4556 if( pBt->pCursor==pCur ){ 4557 pBt->pCursor = pCur->pNext; 4558 }else{ 4559 BtCursor *pPrev = pBt->pCursor; 4560 do{ 4561 if( pPrev->pNext==pCur ){ 4562 pPrev->pNext = pCur->pNext; 4563 break; 4564 } 4565 pPrev = pPrev->pNext; 4566 }while( ALWAYS(pPrev) ); 4567 } 4568 btreeReleaseAllCursorPages(pCur); 4569 unlockBtreeIfUnused(pBt); 4570 sqlite3_free(pCur->aOverflow); 4571 sqlite3_free(pCur->pKey); 4572 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4573 /* Since the BtShared is not sharable, there is no need to 4574 ** worry about the missing sqlite3BtreeLeave() call here. */ 4575 assert( pBtree->sharable==0 ); 4576 sqlite3BtreeClose(pBtree); 4577 }else{ 4578 sqlite3BtreeLeave(pBtree); 4579 } 4580 pCur->pBtree = 0; 4581 } 4582 return SQLITE_OK; 4583 } 4584 4585 /* 4586 ** Make sure the BtCursor* given in the argument has a valid 4587 ** BtCursor.info structure. If it is not already valid, call 4588 ** btreeParseCell() to fill it in. 4589 ** 4590 ** BtCursor.info is a cache of the information in the current cell. 4591 ** Using this cache reduces the number of calls to btreeParseCell(). 4592 */ 4593 #ifndef NDEBUG 4594 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4595 if( a->nKey!=b->nKey ) return 0; 4596 if( a->pPayload!=b->pPayload ) return 0; 4597 if( a->nPayload!=b->nPayload ) return 0; 4598 if( a->nLocal!=b->nLocal ) return 0; 4599 if( a->nSize!=b->nSize ) return 0; 4600 return 1; 4601 } 4602 static void assertCellInfo(BtCursor *pCur){ 4603 CellInfo info; 4604 memset(&info, 0, sizeof(info)); 4605 btreeParseCell(pCur->pPage, pCur->ix, &info); 4606 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4607 } 4608 #else 4609 #define assertCellInfo(x) 4610 #endif 4611 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4612 if( pCur->info.nSize==0 ){ 4613 pCur->curFlags |= BTCF_ValidNKey; 4614 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4615 }else{ 4616 assertCellInfo(pCur); 4617 } 4618 } 4619 4620 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4621 /* 4622 ** Return true if the given BtCursor is valid. A valid cursor is one 4623 ** that is currently pointing to a row in a (non-empty) table. 4624 ** This is a verification routine is used only within assert() statements. 4625 */ 4626 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4627 return pCur && pCur->eState==CURSOR_VALID; 4628 } 4629 #endif /* NDEBUG */ 4630 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4631 assert( pCur!=0 ); 4632 return pCur->eState==CURSOR_VALID; 4633 } 4634 4635 /* 4636 ** Return the value of the integer key or "rowid" for a table btree. 4637 ** This routine is only valid for a cursor that is pointing into a 4638 ** ordinary table btree. If the cursor points to an index btree or 4639 ** is invalid, the result of this routine is undefined. 4640 */ 4641 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4642 assert( cursorHoldsMutex(pCur) ); 4643 assert( pCur->eState==CURSOR_VALID ); 4644 assert( pCur->curIntKey ); 4645 getCellInfo(pCur); 4646 return pCur->info.nKey; 4647 } 4648 4649 /* 4650 ** Pin or unpin a cursor. 4651 */ 4652 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4653 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4654 pCur->curFlags |= BTCF_Pinned; 4655 } 4656 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4657 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4658 pCur->curFlags &= ~BTCF_Pinned; 4659 } 4660 4661 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4662 /* 4663 ** Return the offset into the database file for the start of the 4664 ** payload to which the cursor is pointing. 4665 */ 4666 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4667 assert( cursorHoldsMutex(pCur) ); 4668 assert( pCur->eState==CURSOR_VALID ); 4669 getCellInfo(pCur); 4670 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4671 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4672 } 4673 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4674 4675 /* 4676 ** Return the number of bytes of payload for the entry that pCur is 4677 ** currently pointing to. For table btrees, this will be the amount 4678 ** of data. For index btrees, this will be the size of the key. 4679 ** 4680 ** The caller must guarantee that the cursor is pointing to a non-NULL 4681 ** valid entry. In other words, the calling procedure must guarantee 4682 ** that the cursor has Cursor.eState==CURSOR_VALID. 4683 */ 4684 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4685 assert( cursorHoldsMutex(pCur) ); 4686 assert( pCur->eState==CURSOR_VALID ); 4687 getCellInfo(pCur); 4688 return pCur->info.nPayload; 4689 } 4690 4691 /* 4692 ** Return an upper bound on the size of any record for the table 4693 ** that the cursor is pointing into. 4694 ** 4695 ** This is an optimization. Everything will still work if this 4696 ** routine always returns 2147483647 (which is the largest record 4697 ** that SQLite can handle) or more. But returning a smaller value might 4698 ** prevent large memory allocations when trying to interpret a 4699 ** corrupt datrabase. 4700 ** 4701 ** The current implementation merely returns the size of the underlying 4702 ** database file. 4703 */ 4704 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4705 assert( cursorHoldsMutex(pCur) ); 4706 assert( pCur->eState==CURSOR_VALID ); 4707 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4708 } 4709 4710 /* 4711 ** Given the page number of an overflow page in the database (parameter 4712 ** ovfl), this function finds the page number of the next page in the 4713 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4714 ** pointer-map data instead of reading the content of page ovfl to do so. 4715 ** 4716 ** If an error occurs an SQLite error code is returned. Otherwise: 4717 ** 4718 ** The page number of the next overflow page in the linked list is 4719 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4720 ** list, *pPgnoNext is set to zero. 4721 ** 4722 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4723 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4724 ** reference. It is the responsibility of the caller to call releasePage() 4725 ** on *ppPage to free the reference. In no reference was obtained (because 4726 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4727 ** *ppPage is set to zero. 4728 */ 4729 static int getOverflowPage( 4730 BtShared *pBt, /* The database file */ 4731 Pgno ovfl, /* Current overflow page number */ 4732 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4733 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4734 ){ 4735 Pgno next = 0; 4736 MemPage *pPage = 0; 4737 int rc = SQLITE_OK; 4738 4739 assert( sqlite3_mutex_held(pBt->mutex) ); 4740 assert(pPgnoNext); 4741 4742 #ifndef SQLITE_OMIT_AUTOVACUUM 4743 /* Try to find the next page in the overflow list using the 4744 ** autovacuum pointer-map pages. Guess that the next page in 4745 ** the overflow list is page number (ovfl+1). If that guess turns 4746 ** out to be wrong, fall back to loading the data of page 4747 ** number ovfl to determine the next page number. 4748 */ 4749 if( pBt->autoVacuum ){ 4750 Pgno pgno; 4751 Pgno iGuess = ovfl+1; 4752 u8 eType; 4753 4754 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4755 iGuess++; 4756 } 4757 4758 if( iGuess<=btreePagecount(pBt) ){ 4759 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4760 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4761 next = iGuess; 4762 rc = SQLITE_DONE; 4763 } 4764 } 4765 } 4766 #endif 4767 4768 assert( next==0 || rc==SQLITE_DONE ); 4769 if( rc==SQLITE_OK ){ 4770 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4771 assert( rc==SQLITE_OK || pPage==0 ); 4772 if( rc==SQLITE_OK ){ 4773 next = get4byte(pPage->aData); 4774 } 4775 } 4776 4777 *pPgnoNext = next; 4778 if( ppPage ){ 4779 *ppPage = pPage; 4780 }else{ 4781 releasePage(pPage); 4782 } 4783 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4784 } 4785 4786 /* 4787 ** Copy data from a buffer to a page, or from a page to a buffer. 4788 ** 4789 ** pPayload is a pointer to data stored on database page pDbPage. 4790 ** If argument eOp is false, then nByte bytes of data are copied 4791 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4792 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4793 ** of data are copied from the buffer pBuf to pPayload. 4794 ** 4795 ** SQLITE_OK is returned on success, otherwise an error code. 4796 */ 4797 static int copyPayload( 4798 void *pPayload, /* Pointer to page data */ 4799 void *pBuf, /* Pointer to buffer */ 4800 int nByte, /* Number of bytes to copy */ 4801 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4802 DbPage *pDbPage /* Page containing pPayload */ 4803 ){ 4804 if( eOp ){ 4805 /* Copy data from buffer to page (a write operation) */ 4806 int rc = sqlite3PagerWrite(pDbPage); 4807 if( rc!=SQLITE_OK ){ 4808 return rc; 4809 } 4810 memcpy(pPayload, pBuf, nByte); 4811 }else{ 4812 /* Copy data from page to buffer (a read operation) */ 4813 memcpy(pBuf, pPayload, nByte); 4814 } 4815 return SQLITE_OK; 4816 } 4817 4818 /* 4819 ** This function is used to read or overwrite payload information 4820 ** for the entry that the pCur cursor is pointing to. The eOp 4821 ** argument is interpreted as follows: 4822 ** 4823 ** 0: The operation is a read. Populate the overflow cache. 4824 ** 1: The operation is a write. Populate the overflow cache. 4825 ** 4826 ** A total of "amt" bytes are read or written beginning at "offset". 4827 ** Data is read to or from the buffer pBuf. 4828 ** 4829 ** The content being read or written might appear on the main page 4830 ** or be scattered out on multiple overflow pages. 4831 ** 4832 ** If the current cursor entry uses one or more overflow pages 4833 ** this function may allocate space for and lazily populate 4834 ** the overflow page-list cache array (BtCursor.aOverflow). 4835 ** Subsequent calls use this cache to make seeking to the supplied offset 4836 ** more efficient. 4837 ** 4838 ** Once an overflow page-list cache has been allocated, it must be 4839 ** invalidated if some other cursor writes to the same table, or if 4840 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4841 ** mode, the following events may invalidate an overflow page-list cache. 4842 ** 4843 ** * An incremental vacuum, 4844 ** * A commit in auto_vacuum="full" mode, 4845 ** * Creating a table (may require moving an overflow page). 4846 */ 4847 static int accessPayload( 4848 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4849 u32 offset, /* Begin reading this far into payload */ 4850 u32 amt, /* Read this many bytes */ 4851 unsigned char *pBuf, /* Write the bytes into this buffer */ 4852 int eOp /* zero to read. non-zero to write. */ 4853 ){ 4854 unsigned char *aPayload; 4855 int rc = SQLITE_OK; 4856 int iIdx = 0; 4857 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4858 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4859 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4860 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4861 #endif 4862 4863 assert( pPage ); 4864 assert( eOp==0 || eOp==1 ); 4865 assert( pCur->eState==CURSOR_VALID ); 4866 if( pCur->ix>=pPage->nCell ){ 4867 return SQLITE_CORRUPT_PAGE(pPage); 4868 } 4869 assert( cursorHoldsMutex(pCur) ); 4870 4871 getCellInfo(pCur); 4872 aPayload = pCur->info.pPayload; 4873 assert( offset+amt <= pCur->info.nPayload ); 4874 4875 assert( aPayload > pPage->aData ); 4876 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4877 /* Trying to read or write past the end of the data is an error. The 4878 ** conditional above is really: 4879 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4880 ** but is recast into its current form to avoid integer overflow problems 4881 */ 4882 return SQLITE_CORRUPT_PAGE(pPage); 4883 } 4884 4885 /* Check if data must be read/written to/from the btree page itself. */ 4886 if( offset<pCur->info.nLocal ){ 4887 int a = amt; 4888 if( a+offset>pCur->info.nLocal ){ 4889 a = pCur->info.nLocal - offset; 4890 } 4891 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4892 offset = 0; 4893 pBuf += a; 4894 amt -= a; 4895 }else{ 4896 offset -= pCur->info.nLocal; 4897 } 4898 4899 4900 if( rc==SQLITE_OK && amt>0 ){ 4901 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4902 Pgno nextPage; 4903 4904 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4905 4906 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4907 ** 4908 ** The aOverflow[] array is sized at one entry for each overflow page 4909 ** in the overflow chain. The page number of the first overflow page is 4910 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4911 ** means "not yet known" (the cache is lazily populated). 4912 */ 4913 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4914 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4915 if( pCur->aOverflow==0 4916 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4917 ){ 4918 Pgno *aNew = (Pgno*)sqlite3Realloc( 4919 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4920 ); 4921 if( aNew==0 ){ 4922 return SQLITE_NOMEM_BKPT; 4923 }else{ 4924 pCur->aOverflow = aNew; 4925 } 4926 } 4927 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4928 pCur->curFlags |= BTCF_ValidOvfl; 4929 }else{ 4930 /* If the overflow page-list cache has been allocated and the 4931 ** entry for the first required overflow page is valid, skip 4932 ** directly to it. 4933 */ 4934 if( pCur->aOverflow[offset/ovflSize] ){ 4935 iIdx = (offset/ovflSize); 4936 nextPage = pCur->aOverflow[iIdx]; 4937 offset = (offset%ovflSize); 4938 } 4939 } 4940 4941 assert( rc==SQLITE_OK && amt>0 ); 4942 while( nextPage ){ 4943 /* If required, populate the overflow page-list cache. */ 4944 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 4945 assert( pCur->aOverflow[iIdx]==0 4946 || pCur->aOverflow[iIdx]==nextPage 4947 || CORRUPT_DB ); 4948 pCur->aOverflow[iIdx] = nextPage; 4949 4950 if( offset>=ovflSize ){ 4951 /* The only reason to read this page is to obtain the page 4952 ** number for the next page in the overflow chain. The page 4953 ** data is not required. So first try to lookup the overflow 4954 ** page-list cache, if any, then fall back to the getOverflowPage() 4955 ** function. 4956 */ 4957 assert( pCur->curFlags & BTCF_ValidOvfl ); 4958 assert( pCur->pBtree->db==pBt->db ); 4959 if( pCur->aOverflow[iIdx+1] ){ 4960 nextPage = pCur->aOverflow[iIdx+1]; 4961 }else{ 4962 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4963 } 4964 offset -= ovflSize; 4965 }else{ 4966 /* Need to read this page properly. It contains some of the 4967 ** range of data that is being read (eOp==0) or written (eOp!=0). 4968 */ 4969 int a = amt; 4970 if( a + offset > ovflSize ){ 4971 a = ovflSize - offset; 4972 } 4973 4974 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4975 /* If all the following are true: 4976 ** 4977 ** 1) this is a read operation, and 4978 ** 2) data is required from the start of this overflow page, and 4979 ** 3) there are no dirty pages in the page-cache 4980 ** 4) the database is file-backed, and 4981 ** 5) the page is not in the WAL file 4982 ** 6) at least 4 bytes have already been read into the output buffer 4983 ** 4984 ** then data can be read directly from the database file into the 4985 ** output buffer, bypassing the page-cache altogether. This speeds 4986 ** up loading large records that span many overflow pages. 4987 */ 4988 if( eOp==0 /* (1) */ 4989 && offset==0 /* (2) */ 4990 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4991 && &pBuf[-4]>=pBufStart /* (6) */ 4992 ){ 4993 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4994 u8 aSave[4]; 4995 u8 *aWrite = &pBuf[-4]; 4996 assert( aWrite>=pBufStart ); /* due to (6) */ 4997 memcpy(aSave, aWrite, 4); 4998 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4999 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5000 nextPage = get4byte(aWrite); 5001 memcpy(aWrite, aSave, 4); 5002 }else 5003 #endif 5004 5005 { 5006 DbPage *pDbPage; 5007 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5008 (eOp==0 ? PAGER_GET_READONLY : 0) 5009 ); 5010 if( rc==SQLITE_OK ){ 5011 aPayload = sqlite3PagerGetData(pDbPage); 5012 nextPage = get4byte(aPayload); 5013 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5014 sqlite3PagerUnref(pDbPage); 5015 offset = 0; 5016 } 5017 } 5018 amt -= a; 5019 if( amt==0 ) return rc; 5020 pBuf += a; 5021 } 5022 if( rc ) break; 5023 iIdx++; 5024 } 5025 } 5026 5027 if( rc==SQLITE_OK && amt>0 ){ 5028 /* Overflow chain ends prematurely */ 5029 return SQLITE_CORRUPT_PAGE(pPage); 5030 } 5031 return rc; 5032 } 5033 5034 /* 5035 ** Read part of the payload for the row at which that cursor pCur is currently 5036 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5037 ** begins at "offset". 5038 ** 5039 ** pCur can be pointing to either a table or an index b-tree. 5040 ** If pointing to a table btree, then the content section is read. If 5041 ** pCur is pointing to an index b-tree then the key section is read. 5042 ** 5043 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5044 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5045 ** cursor might be invalid or might need to be restored before being read. 5046 ** 5047 ** Return SQLITE_OK on success or an error code if anything goes 5048 ** wrong. An error is returned if "offset+amt" is larger than 5049 ** the available payload. 5050 */ 5051 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5052 assert( cursorHoldsMutex(pCur) ); 5053 assert( pCur->eState==CURSOR_VALID ); 5054 assert( pCur->iPage>=0 && pCur->pPage ); 5055 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5056 } 5057 5058 /* 5059 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5060 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5061 ** interface. 5062 */ 5063 #ifndef SQLITE_OMIT_INCRBLOB 5064 static SQLITE_NOINLINE int accessPayloadChecked( 5065 BtCursor *pCur, 5066 u32 offset, 5067 u32 amt, 5068 void *pBuf 5069 ){ 5070 int rc; 5071 if ( pCur->eState==CURSOR_INVALID ){ 5072 return SQLITE_ABORT; 5073 } 5074 assert( cursorOwnsBtShared(pCur) ); 5075 rc = btreeRestoreCursorPosition(pCur); 5076 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5077 } 5078 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5079 if( pCur->eState==CURSOR_VALID ){ 5080 assert( cursorOwnsBtShared(pCur) ); 5081 return accessPayload(pCur, offset, amt, pBuf, 0); 5082 }else{ 5083 return accessPayloadChecked(pCur, offset, amt, pBuf); 5084 } 5085 } 5086 #endif /* SQLITE_OMIT_INCRBLOB */ 5087 5088 /* 5089 ** Return a pointer to payload information from the entry that the 5090 ** pCur cursor is pointing to. The pointer is to the beginning of 5091 ** the key if index btrees (pPage->intKey==0) and is the data for 5092 ** table btrees (pPage->intKey==1). The number of bytes of available 5093 ** key/data is written into *pAmt. If *pAmt==0, then the value 5094 ** returned will not be a valid pointer. 5095 ** 5096 ** This routine is an optimization. It is common for the entire key 5097 ** and data to fit on the local page and for there to be no overflow 5098 ** pages. When that is so, this routine can be used to access the 5099 ** key and data without making a copy. If the key and/or data spills 5100 ** onto overflow pages, then accessPayload() must be used to reassemble 5101 ** the key/data and copy it into a preallocated buffer. 5102 ** 5103 ** The pointer returned by this routine looks directly into the cached 5104 ** page of the database. The data might change or move the next time 5105 ** any btree routine is called. 5106 */ 5107 static const void *fetchPayload( 5108 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5109 u32 *pAmt /* Write the number of available bytes here */ 5110 ){ 5111 int amt; 5112 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5113 assert( pCur->eState==CURSOR_VALID ); 5114 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5115 assert( cursorOwnsBtShared(pCur) ); 5116 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5117 assert( pCur->info.nSize>0 ); 5118 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5119 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5120 amt = pCur->info.nLocal; 5121 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5122 /* There is too little space on the page for the expected amount 5123 ** of local content. Database must be corrupt. */ 5124 assert( CORRUPT_DB ); 5125 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5126 } 5127 *pAmt = (u32)amt; 5128 return (void*)pCur->info.pPayload; 5129 } 5130 5131 5132 /* 5133 ** For the entry that cursor pCur is point to, return as 5134 ** many bytes of the key or data as are available on the local 5135 ** b-tree page. Write the number of available bytes into *pAmt. 5136 ** 5137 ** The pointer returned is ephemeral. The key/data may move 5138 ** or be destroyed on the next call to any Btree routine, 5139 ** including calls from other threads against the same cache. 5140 ** Hence, a mutex on the BtShared should be held prior to calling 5141 ** this routine. 5142 ** 5143 ** These routines is used to get quick access to key and data 5144 ** in the common case where no overflow pages are used. 5145 */ 5146 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5147 return fetchPayload(pCur, pAmt); 5148 } 5149 5150 5151 /* 5152 ** Move the cursor down to a new child page. The newPgno argument is the 5153 ** page number of the child page to move to. 5154 ** 5155 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5156 ** the new child page does not match the flags field of the parent (i.e. 5157 ** if an intkey page appears to be the parent of a non-intkey page, or 5158 ** vice-versa). 5159 */ 5160 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5161 BtShared *pBt = pCur->pBt; 5162 5163 assert( cursorOwnsBtShared(pCur) ); 5164 assert( pCur->eState==CURSOR_VALID ); 5165 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5166 assert( pCur->iPage>=0 ); 5167 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5168 return SQLITE_CORRUPT_BKPT; 5169 } 5170 pCur->info.nSize = 0; 5171 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5172 pCur->aiIdx[pCur->iPage] = pCur->ix; 5173 pCur->apPage[pCur->iPage] = pCur->pPage; 5174 pCur->ix = 0; 5175 pCur->iPage++; 5176 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5177 } 5178 5179 #ifdef SQLITE_DEBUG 5180 /* 5181 ** Page pParent is an internal (non-leaf) tree page. This function 5182 ** asserts that page number iChild is the left-child if the iIdx'th 5183 ** cell in page pParent. Or, if iIdx is equal to the total number of 5184 ** cells in pParent, that page number iChild is the right-child of 5185 ** the page. 5186 */ 5187 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5188 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5189 ** in a corrupt database */ 5190 assert( iIdx<=pParent->nCell ); 5191 if( iIdx==pParent->nCell ){ 5192 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5193 }else{ 5194 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5195 } 5196 } 5197 #else 5198 # define assertParentIndex(x,y,z) 5199 #endif 5200 5201 /* 5202 ** Move the cursor up to the parent page. 5203 ** 5204 ** pCur->idx is set to the cell index that contains the pointer 5205 ** to the page we are coming from. If we are coming from the 5206 ** right-most child page then pCur->idx is set to one more than 5207 ** the largest cell index. 5208 */ 5209 static void moveToParent(BtCursor *pCur){ 5210 MemPage *pLeaf; 5211 assert( cursorOwnsBtShared(pCur) ); 5212 assert( pCur->eState==CURSOR_VALID ); 5213 assert( pCur->iPage>0 ); 5214 assert( pCur->pPage ); 5215 assertParentIndex( 5216 pCur->apPage[pCur->iPage-1], 5217 pCur->aiIdx[pCur->iPage-1], 5218 pCur->pPage->pgno 5219 ); 5220 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5221 pCur->info.nSize = 0; 5222 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5223 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5224 pLeaf = pCur->pPage; 5225 pCur->pPage = pCur->apPage[--pCur->iPage]; 5226 releasePageNotNull(pLeaf); 5227 } 5228 5229 /* 5230 ** Move the cursor to point to the root page of its b-tree structure. 5231 ** 5232 ** If the table has a virtual root page, then the cursor is moved to point 5233 ** to the virtual root page instead of the actual root page. A table has a 5234 ** virtual root page when the actual root page contains no cells and a 5235 ** single child page. This can only happen with the table rooted at page 1. 5236 ** 5237 ** If the b-tree structure is empty, the cursor state is set to 5238 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5239 ** the cursor is set to point to the first cell located on the root 5240 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5241 ** 5242 ** If this function returns successfully, it may be assumed that the 5243 ** page-header flags indicate that the [virtual] root-page is the expected 5244 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5245 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5246 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5247 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5248 ** b-tree). 5249 */ 5250 static int moveToRoot(BtCursor *pCur){ 5251 MemPage *pRoot; 5252 int rc = SQLITE_OK; 5253 5254 assert( cursorOwnsBtShared(pCur) ); 5255 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5256 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5257 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5258 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5259 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5260 5261 if( pCur->iPage>=0 ){ 5262 if( pCur->iPage ){ 5263 releasePageNotNull(pCur->pPage); 5264 while( --pCur->iPage ){ 5265 releasePageNotNull(pCur->apPage[pCur->iPage]); 5266 } 5267 pCur->pPage = pCur->apPage[0]; 5268 goto skip_init; 5269 } 5270 }else if( pCur->pgnoRoot==0 ){ 5271 pCur->eState = CURSOR_INVALID; 5272 return SQLITE_EMPTY; 5273 }else{ 5274 assert( pCur->iPage==(-1) ); 5275 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5276 if( pCur->eState==CURSOR_FAULT ){ 5277 assert( pCur->skipNext!=SQLITE_OK ); 5278 return pCur->skipNext; 5279 } 5280 sqlite3BtreeClearCursor(pCur); 5281 } 5282 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5283 0, pCur->curPagerFlags); 5284 if( rc!=SQLITE_OK ){ 5285 pCur->eState = CURSOR_INVALID; 5286 return rc; 5287 } 5288 pCur->iPage = 0; 5289 pCur->curIntKey = pCur->pPage->intKey; 5290 } 5291 pRoot = pCur->pPage; 5292 assert( pRoot->pgno==pCur->pgnoRoot ); 5293 5294 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5295 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5296 ** NULL, the caller expects a table b-tree. If this is not the case, 5297 ** return an SQLITE_CORRUPT error. 5298 ** 5299 ** Earlier versions of SQLite assumed that this test could not fail 5300 ** if the root page was already loaded when this function was called (i.e. 5301 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5302 ** in such a way that page pRoot is linked into a second b-tree table 5303 ** (or the freelist). */ 5304 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5305 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5306 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5307 } 5308 5309 skip_init: 5310 pCur->ix = 0; 5311 pCur->info.nSize = 0; 5312 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5313 5314 pRoot = pCur->pPage; 5315 if( pRoot->nCell>0 ){ 5316 pCur->eState = CURSOR_VALID; 5317 }else if( !pRoot->leaf ){ 5318 Pgno subpage; 5319 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5320 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5321 pCur->eState = CURSOR_VALID; 5322 rc = moveToChild(pCur, subpage); 5323 }else{ 5324 pCur->eState = CURSOR_INVALID; 5325 rc = SQLITE_EMPTY; 5326 } 5327 return rc; 5328 } 5329 5330 /* 5331 ** Move the cursor down to the left-most leaf entry beneath the 5332 ** entry to which it is currently pointing. 5333 ** 5334 ** The left-most leaf is the one with the smallest key - the first 5335 ** in ascending order. 5336 */ 5337 static int moveToLeftmost(BtCursor *pCur){ 5338 Pgno pgno; 5339 int rc = SQLITE_OK; 5340 MemPage *pPage; 5341 5342 assert( cursorOwnsBtShared(pCur) ); 5343 assert( pCur->eState==CURSOR_VALID ); 5344 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5345 assert( pCur->ix<pPage->nCell ); 5346 pgno = get4byte(findCell(pPage, pCur->ix)); 5347 rc = moveToChild(pCur, pgno); 5348 } 5349 return rc; 5350 } 5351 5352 /* 5353 ** Move the cursor down to the right-most leaf entry beneath the 5354 ** page to which it is currently pointing. Notice the difference 5355 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5356 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5357 ** finds the right-most entry beneath the *page*. 5358 ** 5359 ** The right-most entry is the one with the largest key - the last 5360 ** key in ascending order. 5361 */ 5362 static int moveToRightmost(BtCursor *pCur){ 5363 Pgno pgno; 5364 int rc = SQLITE_OK; 5365 MemPage *pPage = 0; 5366 5367 assert( cursorOwnsBtShared(pCur) ); 5368 assert( pCur->eState==CURSOR_VALID ); 5369 while( !(pPage = pCur->pPage)->leaf ){ 5370 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5371 pCur->ix = pPage->nCell; 5372 rc = moveToChild(pCur, pgno); 5373 if( rc ) return rc; 5374 } 5375 pCur->ix = pPage->nCell-1; 5376 assert( pCur->info.nSize==0 ); 5377 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5378 return SQLITE_OK; 5379 } 5380 5381 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5382 ** on success. Set *pRes to 0 if the cursor actually points to something 5383 ** or set *pRes to 1 if the table is empty. 5384 */ 5385 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5386 int rc; 5387 5388 assert( cursorOwnsBtShared(pCur) ); 5389 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5390 rc = moveToRoot(pCur); 5391 if( rc==SQLITE_OK ){ 5392 assert( pCur->pPage->nCell>0 ); 5393 *pRes = 0; 5394 rc = moveToLeftmost(pCur); 5395 }else if( rc==SQLITE_EMPTY ){ 5396 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5397 *pRes = 1; 5398 rc = SQLITE_OK; 5399 } 5400 return rc; 5401 } 5402 5403 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5404 ** on success. Set *pRes to 0 if the cursor actually points to something 5405 ** or set *pRes to 1 if the table is empty. 5406 */ 5407 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5408 int rc; 5409 5410 assert( cursorOwnsBtShared(pCur) ); 5411 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5412 5413 /* If the cursor already points to the last entry, this is a no-op. */ 5414 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5415 #ifdef SQLITE_DEBUG 5416 /* This block serves to assert() that the cursor really does point 5417 ** to the last entry in the b-tree. */ 5418 int ii; 5419 for(ii=0; ii<pCur->iPage; ii++){ 5420 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5421 } 5422 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5423 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5424 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5425 assert( pCur->pPage->leaf ); 5426 #endif 5427 *pRes = 0; 5428 return SQLITE_OK; 5429 } 5430 5431 rc = moveToRoot(pCur); 5432 if( rc==SQLITE_OK ){ 5433 assert( pCur->eState==CURSOR_VALID ); 5434 *pRes = 0; 5435 rc = moveToRightmost(pCur); 5436 if( rc==SQLITE_OK ){ 5437 pCur->curFlags |= BTCF_AtLast; 5438 }else{ 5439 pCur->curFlags &= ~BTCF_AtLast; 5440 } 5441 }else if( rc==SQLITE_EMPTY ){ 5442 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5443 *pRes = 1; 5444 rc = SQLITE_OK; 5445 } 5446 return rc; 5447 } 5448 5449 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5450 ** table near the key intKey. Return a success code. 5451 ** 5452 ** If an exact match is not found, then the cursor is always 5453 ** left pointing at a leaf page which would hold the entry if it 5454 ** were present. The cursor might point to an entry that comes 5455 ** before or after the key. 5456 ** 5457 ** An integer is written into *pRes which is the result of 5458 ** comparing the key with the entry to which the cursor is 5459 ** pointing. The meaning of the integer written into 5460 ** *pRes is as follows: 5461 ** 5462 ** *pRes<0 The cursor is left pointing at an entry that 5463 ** is smaller than intKey or if the table is empty 5464 ** and the cursor is therefore left point to nothing. 5465 ** 5466 ** *pRes==0 The cursor is left pointing at an entry that 5467 ** exactly matches intKey. 5468 ** 5469 ** *pRes>0 The cursor is left pointing at an entry that 5470 ** is larger than intKey. 5471 */ 5472 int sqlite3BtreeTableMoveto( 5473 BtCursor *pCur, /* The cursor to be moved */ 5474 i64 intKey, /* The table key */ 5475 int biasRight, /* If true, bias the search to the high end */ 5476 int *pRes /* Write search results here */ 5477 ){ 5478 int rc; 5479 5480 assert( cursorOwnsBtShared(pCur) ); 5481 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5482 assert( pRes ); 5483 assert( pCur->pKeyInfo==0 ); 5484 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5485 5486 /* If the cursor is already positioned at the point we are trying 5487 ** to move to, then just return without doing any work */ 5488 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5489 if( pCur->info.nKey==intKey ){ 5490 *pRes = 0; 5491 return SQLITE_OK; 5492 } 5493 if( pCur->info.nKey<intKey ){ 5494 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5495 *pRes = -1; 5496 return SQLITE_OK; 5497 } 5498 /* If the requested key is one more than the previous key, then 5499 ** try to get there using sqlite3BtreeNext() rather than a full 5500 ** binary search. This is an optimization only. The correct answer 5501 ** is still obtained without this case, only a little more slowely */ 5502 if( pCur->info.nKey+1==intKey ){ 5503 *pRes = 0; 5504 rc = sqlite3BtreeNext(pCur, 0); 5505 if( rc==SQLITE_OK ){ 5506 getCellInfo(pCur); 5507 if( pCur->info.nKey==intKey ){ 5508 return SQLITE_OK; 5509 } 5510 }else if( rc!=SQLITE_DONE ){ 5511 return rc; 5512 } 5513 } 5514 } 5515 } 5516 5517 #ifdef SQLITE_DEBUG 5518 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5519 #endif 5520 5521 rc = moveToRoot(pCur); 5522 if( rc ){ 5523 if( rc==SQLITE_EMPTY ){ 5524 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5525 *pRes = -1; 5526 return SQLITE_OK; 5527 } 5528 return rc; 5529 } 5530 assert( pCur->pPage ); 5531 assert( pCur->pPage->isInit ); 5532 assert( pCur->eState==CURSOR_VALID ); 5533 assert( pCur->pPage->nCell > 0 ); 5534 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5535 assert( pCur->curIntKey ); 5536 5537 for(;;){ 5538 int lwr, upr, idx, c; 5539 Pgno chldPg; 5540 MemPage *pPage = pCur->pPage; 5541 u8 *pCell; /* Pointer to current cell in pPage */ 5542 5543 /* pPage->nCell must be greater than zero. If this is the root-page 5544 ** the cursor would have been INVALID above and this for(;;) loop 5545 ** not run. If this is not the root-page, then the moveToChild() routine 5546 ** would have already detected db corruption. Similarly, pPage must 5547 ** be the right kind (index or table) of b-tree page. Otherwise 5548 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5549 assert( pPage->nCell>0 ); 5550 assert( pPage->intKey ); 5551 lwr = 0; 5552 upr = pPage->nCell-1; 5553 assert( biasRight==0 || biasRight==1 ); 5554 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5555 pCur->ix = (u16)idx; 5556 for(;;){ 5557 i64 nCellKey; 5558 pCell = findCellPastPtr(pPage, idx); 5559 if( pPage->intKeyLeaf ){ 5560 while( 0x80 <= *(pCell++) ){ 5561 if( pCell>=pPage->aDataEnd ){ 5562 return SQLITE_CORRUPT_PAGE(pPage); 5563 } 5564 } 5565 } 5566 getVarint(pCell, (u64*)&nCellKey); 5567 if( nCellKey<intKey ){ 5568 lwr = idx+1; 5569 if( lwr>upr ){ c = -1; break; } 5570 }else if( nCellKey>intKey ){ 5571 upr = idx-1; 5572 if( lwr>upr ){ c = +1; break; } 5573 }else{ 5574 assert( nCellKey==intKey ); 5575 pCur->ix = (u16)idx; 5576 if( !pPage->leaf ){ 5577 lwr = idx; 5578 goto moveto_table_next_layer; 5579 }else{ 5580 pCur->curFlags |= BTCF_ValidNKey; 5581 pCur->info.nKey = nCellKey; 5582 pCur->info.nSize = 0; 5583 *pRes = 0; 5584 return SQLITE_OK; 5585 } 5586 } 5587 assert( lwr+upr>=0 ); 5588 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5589 } 5590 assert( lwr==upr+1 || !pPage->leaf ); 5591 assert( pPage->isInit ); 5592 if( pPage->leaf ){ 5593 assert( pCur->ix<pCur->pPage->nCell ); 5594 pCur->ix = (u16)idx; 5595 *pRes = c; 5596 rc = SQLITE_OK; 5597 goto moveto_table_finish; 5598 } 5599 moveto_table_next_layer: 5600 if( lwr>=pPage->nCell ){ 5601 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5602 }else{ 5603 chldPg = get4byte(findCell(pPage, lwr)); 5604 } 5605 pCur->ix = (u16)lwr; 5606 rc = moveToChild(pCur, chldPg); 5607 if( rc ) break; 5608 } 5609 moveto_table_finish: 5610 pCur->info.nSize = 0; 5611 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5612 return rc; 5613 } 5614 5615 /* Move the cursor so that it points to an entry in an index table 5616 ** near the key pIdxKey. Return a success code. 5617 ** 5618 ** If an exact match is not found, then the cursor is always 5619 ** left pointing at a leaf page which would hold the entry if it 5620 ** were present. The cursor might point to an entry that comes 5621 ** before or after the key. 5622 ** 5623 ** An integer is written into *pRes which is the result of 5624 ** comparing the key with the entry to which the cursor is 5625 ** pointing. The meaning of the integer written into 5626 ** *pRes is as follows: 5627 ** 5628 ** *pRes<0 The cursor is left pointing at an entry that 5629 ** is smaller than pIdxKey or if the table is empty 5630 ** and the cursor is therefore left point to nothing. 5631 ** 5632 ** *pRes==0 The cursor is left pointing at an entry that 5633 ** exactly matches pIdxKey. 5634 ** 5635 ** *pRes>0 The cursor is left pointing at an entry that 5636 ** is larger than pIdxKey. 5637 ** 5638 ** The pIdxKey->eqSeen field is set to 1 if there 5639 ** exists an entry in the table that exactly matches pIdxKey. 5640 */ 5641 int sqlite3BtreeIndexMoveto( 5642 BtCursor *pCur, /* The cursor to be moved */ 5643 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5644 int *pRes /* Write search results here */ 5645 ){ 5646 int rc; 5647 RecordCompare xRecordCompare; 5648 5649 assert( cursorOwnsBtShared(pCur) ); 5650 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5651 assert( pRes ); 5652 assert( pCur->pKeyInfo!=0 ); 5653 5654 #ifdef SQLITE_DEBUG 5655 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5656 #endif 5657 5658 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5659 pIdxKey->errCode = 0; 5660 assert( pIdxKey->default_rc==1 5661 || pIdxKey->default_rc==0 5662 || pIdxKey->default_rc==-1 5663 ); 5664 5665 rc = moveToRoot(pCur); 5666 if( rc ){ 5667 if( rc==SQLITE_EMPTY ){ 5668 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5669 *pRes = -1; 5670 return SQLITE_OK; 5671 } 5672 return rc; 5673 } 5674 assert( pCur->pPage ); 5675 assert( pCur->pPage->isInit ); 5676 assert( pCur->eState==CURSOR_VALID ); 5677 assert( pCur->pPage->nCell > 0 ); 5678 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5679 assert( pCur->curIntKey || pIdxKey ); 5680 for(;;){ 5681 int lwr, upr, idx, c; 5682 Pgno chldPg; 5683 MemPage *pPage = pCur->pPage; 5684 u8 *pCell; /* Pointer to current cell in pPage */ 5685 5686 /* pPage->nCell must be greater than zero. If this is the root-page 5687 ** the cursor would have been INVALID above and this for(;;) loop 5688 ** not run. If this is not the root-page, then the moveToChild() routine 5689 ** would have already detected db corruption. Similarly, pPage must 5690 ** be the right kind (index or table) of b-tree page. Otherwise 5691 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5692 assert( pPage->nCell>0 ); 5693 assert( pPage->intKey==(pIdxKey==0) ); 5694 lwr = 0; 5695 upr = pPage->nCell-1; 5696 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5697 pCur->ix = (u16)idx; 5698 for(;;){ 5699 int nCell; /* Size of the pCell cell in bytes */ 5700 pCell = findCellPastPtr(pPage, idx); 5701 5702 /* The maximum supported page-size is 65536 bytes. This means that 5703 ** the maximum number of record bytes stored on an index B-Tree 5704 ** page is less than 16384 bytes and may be stored as a 2-byte 5705 ** varint. This information is used to attempt to avoid parsing 5706 ** the entire cell by checking for the cases where the record is 5707 ** stored entirely within the b-tree page by inspecting the first 5708 ** 2 bytes of the cell. 5709 */ 5710 nCell = pCell[0]; 5711 if( nCell<=pPage->max1bytePayload ){ 5712 /* This branch runs if the record-size field of the cell is a 5713 ** single byte varint and the record fits entirely on the main 5714 ** b-tree page. */ 5715 testcase( pCell+nCell+1==pPage->aDataEnd ); 5716 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5717 }else if( !(pCell[1] & 0x80) 5718 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5719 ){ 5720 /* The record-size field is a 2 byte varint and the record 5721 ** fits entirely on the main b-tree page. */ 5722 testcase( pCell+nCell+2==pPage->aDataEnd ); 5723 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5724 }else{ 5725 /* The record flows over onto one or more overflow pages. In 5726 ** this case the whole cell needs to be parsed, a buffer allocated 5727 ** and accessPayload() used to retrieve the record into the 5728 ** buffer before VdbeRecordCompare() can be called. 5729 ** 5730 ** If the record is corrupt, the xRecordCompare routine may read 5731 ** up to two varints past the end of the buffer. An extra 18 5732 ** bytes of padding is allocated at the end of the buffer in 5733 ** case this happens. */ 5734 void *pCellKey; 5735 u8 * const pCellBody = pCell - pPage->childPtrSize; 5736 const int nOverrun = 18; /* Size of the overrun padding */ 5737 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5738 nCell = (int)pCur->info.nKey; 5739 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5740 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5741 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5742 testcase( nCell==2 ); /* Minimum legal index key size */ 5743 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5744 rc = SQLITE_CORRUPT_PAGE(pPage); 5745 goto moveto_index_finish; 5746 } 5747 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5748 if( pCellKey==0 ){ 5749 rc = SQLITE_NOMEM_BKPT; 5750 goto moveto_index_finish; 5751 } 5752 pCur->ix = (u16)idx; 5753 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5754 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5755 pCur->curFlags &= ~BTCF_ValidOvfl; 5756 if( rc ){ 5757 sqlite3_free(pCellKey); 5758 goto moveto_index_finish; 5759 } 5760 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5761 sqlite3_free(pCellKey); 5762 } 5763 assert( 5764 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5765 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5766 ); 5767 if( c<0 ){ 5768 lwr = idx+1; 5769 }else if( c>0 ){ 5770 upr = idx-1; 5771 }else{ 5772 assert( c==0 ); 5773 *pRes = 0; 5774 rc = SQLITE_OK; 5775 pCur->ix = (u16)idx; 5776 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5777 goto moveto_index_finish; 5778 } 5779 if( lwr>upr ) break; 5780 assert( lwr+upr>=0 ); 5781 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5782 } 5783 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5784 assert( pPage->isInit ); 5785 if( pPage->leaf ){ 5786 assert( pCur->ix<pCur->pPage->nCell ); 5787 pCur->ix = (u16)idx; 5788 *pRes = c; 5789 rc = SQLITE_OK; 5790 goto moveto_index_finish; 5791 } 5792 if( lwr>=pPage->nCell ){ 5793 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5794 }else{ 5795 chldPg = get4byte(findCell(pPage, lwr)); 5796 } 5797 pCur->ix = (u16)lwr; 5798 rc = moveToChild(pCur, chldPg); 5799 if( rc ) break; 5800 } 5801 moveto_index_finish: 5802 pCur->info.nSize = 0; 5803 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5804 return rc; 5805 } 5806 5807 5808 /* 5809 ** Return TRUE if the cursor is not pointing at an entry of the table. 5810 ** 5811 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5812 ** past the last entry in the table or sqlite3BtreePrev() moves past 5813 ** the first entry. TRUE is also returned if the table is empty. 5814 */ 5815 int sqlite3BtreeEof(BtCursor *pCur){ 5816 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5817 ** have been deleted? This API will need to change to return an error code 5818 ** as well as the boolean result value. 5819 */ 5820 return (CURSOR_VALID!=pCur->eState); 5821 } 5822 5823 /* 5824 ** Return an estimate for the number of rows in the table that pCur is 5825 ** pointing to. Return a negative number if no estimate is currently 5826 ** available. 5827 */ 5828 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5829 i64 n; 5830 u8 i; 5831 5832 assert( cursorOwnsBtShared(pCur) ); 5833 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5834 5835 /* Currently this interface is only called by the OP_IfSmaller 5836 ** opcode, and it that case the cursor will always be valid and 5837 ** will always point to a leaf node. */ 5838 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5839 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5840 5841 n = pCur->pPage->nCell; 5842 for(i=0; i<pCur->iPage; i++){ 5843 n *= pCur->apPage[i]->nCell; 5844 } 5845 return n; 5846 } 5847 5848 /* 5849 ** Advance the cursor to the next entry in the database. 5850 ** Return value: 5851 ** 5852 ** SQLITE_OK success 5853 ** SQLITE_DONE cursor is already pointing at the last element 5854 ** otherwise some kind of error occurred 5855 ** 5856 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5857 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5858 ** to the next cell on the current page. The (slower) btreeNext() helper 5859 ** routine is called when it is necessary to move to a different page or 5860 ** to restore the cursor. 5861 ** 5862 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5863 ** cursor corresponds to an SQL index and this routine could have been 5864 ** skipped if the SQL index had been a unique index. The F argument 5865 ** is a hint to the implement. SQLite btree implementation does not use 5866 ** this hint, but COMDB2 does. 5867 */ 5868 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5869 int rc; 5870 int idx; 5871 MemPage *pPage; 5872 5873 assert( cursorOwnsBtShared(pCur) ); 5874 if( pCur->eState!=CURSOR_VALID ){ 5875 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5876 rc = restoreCursorPosition(pCur); 5877 if( rc!=SQLITE_OK ){ 5878 return rc; 5879 } 5880 if( CURSOR_INVALID==pCur->eState ){ 5881 return SQLITE_DONE; 5882 } 5883 if( pCur->eState==CURSOR_SKIPNEXT ){ 5884 pCur->eState = CURSOR_VALID; 5885 if( pCur->skipNext>0 ) return SQLITE_OK; 5886 } 5887 } 5888 5889 pPage = pCur->pPage; 5890 idx = ++pCur->ix; 5891 if( !pPage->isInit || sqlite3FaultSim(412) ){ 5892 /* The only known way for this to happen is for there to be a 5893 ** recursive SQL function that does a DELETE operation as part of a 5894 ** SELECT which deletes content out from under an active cursor 5895 ** in a corrupt database file where the table being DELETE-ed from 5896 ** has pages in common with the table being queried. See TH3 5897 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5898 ** example. */ 5899 return SQLITE_CORRUPT_BKPT; 5900 } 5901 5902 if( idx>=pPage->nCell ){ 5903 if( !pPage->leaf ){ 5904 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5905 if( rc ) return rc; 5906 return moveToLeftmost(pCur); 5907 } 5908 do{ 5909 if( pCur->iPage==0 ){ 5910 pCur->eState = CURSOR_INVALID; 5911 return SQLITE_DONE; 5912 } 5913 moveToParent(pCur); 5914 pPage = pCur->pPage; 5915 }while( pCur->ix>=pPage->nCell ); 5916 if( pPage->intKey ){ 5917 return sqlite3BtreeNext(pCur, 0); 5918 }else{ 5919 return SQLITE_OK; 5920 } 5921 } 5922 if( pPage->leaf ){ 5923 return SQLITE_OK; 5924 }else{ 5925 return moveToLeftmost(pCur); 5926 } 5927 } 5928 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5929 MemPage *pPage; 5930 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5931 assert( cursorOwnsBtShared(pCur) ); 5932 assert( flags==0 || flags==1 ); 5933 pCur->info.nSize = 0; 5934 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5935 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5936 pPage = pCur->pPage; 5937 if( (++pCur->ix)>=pPage->nCell ){ 5938 pCur->ix--; 5939 return btreeNext(pCur); 5940 } 5941 if( pPage->leaf ){ 5942 return SQLITE_OK; 5943 }else{ 5944 return moveToLeftmost(pCur); 5945 } 5946 } 5947 5948 /* 5949 ** Step the cursor to the back to the previous entry in the database. 5950 ** Return values: 5951 ** 5952 ** SQLITE_OK success 5953 ** SQLITE_DONE the cursor is already on the first element of the table 5954 ** otherwise some kind of error occurred 5955 ** 5956 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5957 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5958 ** to the previous cell on the current page. The (slower) btreePrevious() 5959 ** helper routine is called when it is necessary to move to a different page 5960 ** or to restore the cursor. 5961 ** 5962 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5963 ** the cursor corresponds to an SQL index and this routine could have been 5964 ** skipped if the SQL index had been a unique index. The F argument is a 5965 ** hint to the implement. The native SQLite btree implementation does not 5966 ** use this hint, but COMDB2 does. 5967 */ 5968 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5969 int rc; 5970 MemPage *pPage; 5971 5972 assert( cursorOwnsBtShared(pCur) ); 5973 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5974 assert( pCur->info.nSize==0 ); 5975 if( pCur->eState!=CURSOR_VALID ){ 5976 rc = restoreCursorPosition(pCur); 5977 if( rc!=SQLITE_OK ){ 5978 return rc; 5979 } 5980 if( CURSOR_INVALID==pCur->eState ){ 5981 return SQLITE_DONE; 5982 } 5983 if( CURSOR_SKIPNEXT==pCur->eState ){ 5984 pCur->eState = CURSOR_VALID; 5985 if( pCur->skipNext<0 ) return SQLITE_OK; 5986 } 5987 } 5988 5989 pPage = pCur->pPage; 5990 assert( pPage->isInit ); 5991 if( !pPage->leaf ){ 5992 int idx = pCur->ix; 5993 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5994 if( rc ) return rc; 5995 rc = moveToRightmost(pCur); 5996 }else{ 5997 while( pCur->ix==0 ){ 5998 if( pCur->iPage==0 ){ 5999 pCur->eState = CURSOR_INVALID; 6000 return SQLITE_DONE; 6001 } 6002 moveToParent(pCur); 6003 } 6004 assert( pCur->info.nSize==0 ); 6005 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6006 6007 pCur->ix--; 6008 pPage = pCur->pPage; 6009 if( pPage->intKey && !pPage->leaf ){ 6010 rc = sqlite3BtreePrevious(pCur, 0); 6011 }else{ 6012 rc = SQLITE_OK; 6013 } 6014 } 6015 return rc; 6016 } 6017 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6018 assert( cursorOwnsBtShared(pCur) ); 6019 assert( flags==0 || flags==1 ); 6020 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6021 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6022 pCur->info.nSize = 0; 6023 if( pCur->eState!=CURSOR_VALID 6024 || pCur->ix==0 6025 || pCur->pPage->leaf==0 6026 ){ 6027 return btreePrevious(pCur); 6028 } 6029 pCur->ix--; 6030 return SQLITE_OK; 6031 } 6032 6033 /* 6034 ** Allocate a new page from the database file. 6035 ** 6036 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6037 ** has already been called on the new page.) The new page has also 6038 ** been referenced and the calling routine is responsible for calling 6039 ** sqlite3PagerUnref() on the new page when it is done. 6040 ** 6041 ** SQLITE_OK is returned on success. Any other return value indicates 6042 ** an error. *ppPage is set to NULL in the event of an error. 6043 ** 6044 ** If the "nearby" parameter is not 0, then an effort is made to 6045 ** locate a page close to the page number "nearby". This can be used in an 6046 ** attempt to keep related pages close to each other in the database file, 6047 ** which in turn can make database access faster. 6048 ** 6049 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6050 ** anywhere on the free-list, then it is guaranteed to be returned. If 6051 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6052 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6053 ** are no restrictions on which page is returned. 6054 */ 6055 static int allocateBtreePage( 6056 BtShared *pBt, /* The btree */ 6057 MemPage **ppPage, /* Store pointer to the allocated page here */ 6058 Pgno *pPgno, /* Store the page number here */ 6059 Pgno nearby, /* Search for a page near this one */ 6060 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6061 ){ 6062 MemPage *pPage1; 6063 int rc; 6064 u32 n; /* Number of pages on the freelist */ 6065 u32 k; /* Number of leaves on the trunk of the freelist */ 6066 MemPage *pTrunk = 0; 6067 MemPage *pPrevTrunk = 0; 6068 Pgno mxPage; /* Total size of the database file */ 6069 6070 assert( sqlite3_mutex_held(pBt->mutex) ); 6071 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6072 pPage1 = pBt->pPage1; 6073 mxPage = btreePagecount(pBt); 6074 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6075 ** stores stores the total number of pages on the freelist. */ 6076 n = get4byte(&pPage1->aData[36]); 6077 testcase( n==mxPage-1 ); 6078 if( n>=mxPage ){ 6079 return SQLITE_CORRUPT_BKPT; 6080 } 6081 if( n>0 ){ 6082 /* There are pages on the freelist. Reuse one of those pages. */ 6083 Pgno iTrunk; 6084 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6085 u32 nSearch = 0; /* Count of the number of search attempts */ 6086 6087 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6088 ** shows that the page 'nearby' is somewhere on the free-list, then 6089 ** the entire-list will be searched for that page. 6090 */ 6091 #ifndef SQLITE_OMIT_AUTOVACUUM 6092 if( eMode==BTALLOC_EXACT ){ 6093 if( nearby<=mxPage ){ 6094 u8 eType; 6095 assert( nearby>0 ); 6096 assert( pBt->autoVacuum ); 6097 rc = ptrmapGet(pBt, nearby, &eType, 0); 6098 if( rc ) return rc; 6099 if( eType==PTRMAP_FREEPAGE ){ 6100 searchList = 1; 6101 } 6102 } 6103 }else if( eMode==BTALLOC_LE ){ 6104 searchList = 1; 6105 } 6106 #endif 6107 6108 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6109 ** first free-list trunk page. iPrevTrunk is initially 1. 6110 */ 6111 rc = sqlite3PagerWrite(pPage1->pDbPage); 6112 if( rc ) return rc; 6113 put4byte(&pPage1->aData[36], n-1); 6114 6115 /* The code within this loop is run only once if the 'searchList' variable 6116 ** is not true. Otherwise, it runs once for each trunk-page on the 6117 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6118 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6119 */ 6120 do { 6121 pPrevTrunk = pTrunk; 6122 if( pPrevTrunk ){ 6123 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6124 ** is the page number of the next freelist trunk page in the list or 6125 ** zero if this is the last freelist trunk page. */ 6126 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6127 }else{ 6128 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6129 ** stores the page number of the first page of the freelist, or zero if 6130 ** the freelist is empty. */ 6131 iTrunk = get4byte(&pPage1->aData[32]); 6132 } 6133 testcase( iTrunk==mxPage ); 6134 if( iTrunk>mxPage || nSearch++ > n ){ 6135 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6136 }else{ 6137 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6138 } 6139 if( rc ){ 6140 pTrunk = 0; 6141 goto end_allocate_page; 6142 } 6143 assert( pTrunk!=0 ); 6144 assert( pTrunk->aData!=0 ); 6145 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6146 ** is the number of leaf page pointers to follow. */ 6147 k = get4byte(&pTrunk->aData[4]); 6148 if( k==0 && !searchList ){ 6149 /* The trunk has no leaves and the list is not being searched. 6150 ** So extract the trunk page itself and use it as the newly 6151 ** allocated page */ 6152 assert( pPrevTrunk==0 ); 6153 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6154 if( rc ){ 6155 goto end_allocate_page; 6156 } 6157 *pPgno = iTrunk; 6158 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6159 *ppPage = pTrunk; 6160 pTrunk = 0; 6161 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6162 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6163 /* Value of k is out of range. Database corruption */ 6164 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6165 goto end_allocate_page; 6166 #ifndef SQLITE_OMIT_AUTOVACUUM 6167 }else if( searchList 6168 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6169 ){ 6170 /* The list is being searched and this trunk page is the page 6171 ** to allocate, regardless of whether it has leaves. 6172 */ 6173 *pPgno = iTrunk; 6174 *ppPage = pTrunk; 6175 searchList = 0; 6176 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6177 if( rc ){ 6178 goto end_allocate_page; 6179 } 6180 if( k==0 ){ 6181 if( !pPrevTrunk ){ 6182 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6183 }else{ 6184 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6185 if( rc!=SQLITE_OK ){ 6186 goto end_allocate_page; 6187 } 6188 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6189 } 6190 }else{ 6191 /* The trunk page is required by the caller but it contains 6192 ** pointers to free-list leaves. The first leaf becomes a trunk 6193 ** page in this case. 6194 */ 6195 MemPage *pNewTrunk; 6196 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6197 if( iNewTrunk>mxPage ){ 6198 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6199 goto end_allocate_page; 6200 } 6201 testcase( iNewTrunk==mxPage ); 6202 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6203 if( rc!=SQLITE_OK ){ 6204 goto end_allocate_page; 6205 } 6206 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6207 if( rc!=SQLITE_OK ){ 6208 releasePage(pNewTrunk); 6209 goto end_allocate_page; 6210 } 6211 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6212 put4byte(&pNewTrunk->aData[4], k-1); 6213 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6214 releasePage(pNewTrunk); 6215 if( !pPrevTrunk ){ 6216 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6217 put4byte(&pPage1->aData[32], iNewTrunk); 6218 }else{ 6219 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6220 if( rc ){ 6221 goto end_allocate_page; 6222 } 6223 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6224 } 6225 } 6226 pTrunk = 0; 6227 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6228 #endif 6229 }else if( k>0 ){ 6230 /* Extract a leaf from the trunk */ 6231 u32 closest; 6232 Pgno iPage; 6233 unsigned char *aData = pTrunk->aData; 6234 if( nearby>0 ){ 6235 u32 i; 6236 closest = 0; 6237 if( eMode==BTALLOC_LE ){ 6238 for(i=0; i<k; i++){ 6239 iPage = get4byte(&aData[8+i*4]); 6240 if( iPage<=nearby ){ 6241 closest = i; 6242 break; 6243 } 6244 } 6245 }else{ 6246 int dist; 6247 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6248 for(i=1; i<k; i++){ 6249 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6250 if( d2<dist ){ 6251 closest = i; 6252 dist = d2; 6253 } 6254 } 6255 } 6256 }else{ 6257 closest = 0; 6258 } 6259 6260 iPage = get4byte(&aData[8+closest*4]); 6261 testcase( iPage==mxPage ); 6262 if( iPage>mxPage || iPage<2 ){ 6263 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6264 goto end_allocate_page; 6265 } 6266 testcase( iPage==mxPage ); 6267 if( !searchList 6268 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6269 ){ 6270 int noContent; 6271 *pPgno = iPage; 6272 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6273 ": %d more free pages\n", 6274 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6275 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6276 if( rc ) goto end_allocate_page; 6277 if( closest<k-1 ){ 6278 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6279 } 6280 put4byte(&aData[4], k-1); 6281 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6282 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6283 if( rc==SQLITE_OK ){ 6284 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6285 if( rc!=SQLITE_OK ){ 6286 releasePage(*ppPage); 6287 *ppPage = 0; 6288 } 6289 } 6290 searchList = 0; 6291 } 6292 } 6293 releasePage(pPrevTrunk); 6294 pPrevTrunk = 0; 6295 }while( searchList ); 6296 }else{ 6297 /* There are no pages on the freelist, so append a new page to the 6298 ** database image. 6299 ** 6300 ** Normally, new pages allocated by this block can be requested from the 6301 ** pager layer with the 'no-content' flag set. This prevents the pager 6302 ** from trying to read the pages content from disk. However, if the 6303 ** current transaction has already run one or more incremental-vacuum 6304 ** steps, then the page we are about to allocate may contain content 6305 ** that is required in the event of a rollback. In this case, do 6306 ** not set the no-content flag. This causes the pager to load and journal 6307 ** the current page content before overwriting it. 6308 ** 6309 ** Note that the pager will not actually attempt to load or journal 6310 ** content for any page that really does lie past the end of the database 6311 ** file on disk. So the effects of disabling the no-content optimization 6312 ** here are confined to those pages that lie between the end of the 6313 ** database image and the end of the database file. 6314 */ 6315 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6316 6317 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6318 if( rc ) return rc; 6319 pBt->nPage++; 6320 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6321 6322 #ifndef SQLITE_OMIT_AUTOVACUUM 6323 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6324 /* If *pPgno refers to a pointer-map page, allocate two new pages 6325 ** at the end of the file instead of one. The first allocated page 6326 ** becomes a new pointer-map page, the second is used by the caller. 6327 */ 6328 MemPage *pPg = 0; 6329 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6330 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6331 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6332 if( rc==SQLITE_OK ){ 6333 rc = sqlite3PagerWrite(pPg->pDbPage); 6334 releasePage(pPg); 6335 } 6336 if( rc ) return rc; 6337 pBt->nPage++; 6338 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6339 } 6340 #endif 6341 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6342 *pPgno = pBt->nPage; 6343 6344 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6345 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6346 if( rc ) return rc; 6347 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6348 if( rc!=SQLITE_OK ){ 6349 releasePage(*ppPage); 6350 *ppPage = 0; 6351 } 6352 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6353 } 6354 6355 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6356 6357 end_allocate_page: 6358 releasePage(pTrunk); 6359 releasePage(pPrevTrunk); 6360 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6361 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6362 return rc; 6363 } 6364 6365 /* 6366 ** This function is used to add page iPage to the database file free-list. 6367 ** It is assumed that the page is not already a part of the free-list. 6368 ** 6369 ** The value passed as the second argument to this function is optional. 6370 ** If the caller happens to have a pointer to the MemPage object 6371 ** corresponding to page iPage handy, it may pass it as the second value. 6372 ** Otherwise, it may pass NULL. 6373 ** 6374 ** If a pointer to a MemPage object is passed as the second argument, 6375 ** its reference count is not altered by this function. 6376 */ 6377 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6378 MemPage *pTrunk = 0; /* Free-list trunk page */ 6379 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6380 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6381 MemPage *pPage; /* Page being freed. May be NULL. */ 6382 int rc; /* Return Code */ 6383 u32 nFree; /* Initial number of pages on free-list */ 6384 6385 assert( sqlite3_mutex_held(pBt->mutex) ); 6386 assert( CORRUPT_DB || iPage>1 ); 6387 assert( !pMemPage || pMemPage->pgno==iPage ); 6388 6389 if( NEVER(iPage<2) || iPage>pBt->nPage ){ 6390 return SQLITE_CORRUPT_BKPT; 6391 } 6392 if( pMemPage ){ 6393 pPage = pMemPage; 6394 sqlite3PagerRef(pPage->pDbPage); 6395 }else{ 6396 pPage = btreePageLookup(pBt, iPage); 6397 } 6398 6399 /* Increment the free page count on pPage1 */ 6400 rc = sqlite3PagerWrite(pPage1->pDbPage); 6401 if( rc ) goto freepage_out; 6402 nFree = get4byte(&pPage1->aData[36]); 6403 put4byte(&pPage1->aData[36], nFree+1); 6404 6405 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6406 /* If the secure_delete option is enabled, then 6407 ** always fully overwrite deleted information with zeros. 6408 */ 6409 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6410 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6411 ){ 6412 goto freepage_out; 6413 } 6414 memset(pPage->aData, 0, pPage->pBt->pageSize); 6415 } 6416 6417 /* If the database supports auto-vacuum, write an entry in the pointer-map 6418 ** to indicate that the page is free. 6419 */ 6420 if( ISAUTOVACUUM ){ 6421 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6422 if( rc ) goto freepage_out; 6423 } 6424 6425 /* Now manipulate the actual database free-list structure. There are two 6426 ** possibilities. If the free-list is currently empty, or if the first 6427 ** trunk page in the free-list is full, then this page will become a 6428 ** new free-list trunk page. Otherwise, it will become a leaf of the 6429 ** first trunk page in the current free-list. This block tests if it 6430 ** is possible to add the page as a new free-list leaf. 6431 */ 6432 if( nFree!=0 ){ 6433 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6434 6435 iTrunk = get4byte(&pPage1->aData[32]); 6436 if( iTrunk>btreePagecount(pBt) ){ 6437 rc = SQLITE_CORRUPT_BKPT; 6438 goto freepage_out; 6439 } 6440 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6441 if( rc!=SQLITE_OK ){ 6442 goto freepage_out; 6443 } 6444 6445 nLeaf = get4byte(&pTrunk->aData[4]); 6446 assert( pBt->usableSize>32 ); 6447 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6448 rc = SQLITE_CORRUPT_BKPT; 6449 goto freepage_out; 6450 } 6451 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6452 /* In this case there is room on the trunk page to insert the page 6453 ** being freed as a new leaf. 6454 ** 6455 ** Note that the trunk page is not really full until it contains 6456 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6457 ** coded. But due to a coding error in versions of SQLite prior to 6458 ** 3.6.0, databases with freelist trunk pages holding more than 6459 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6460 ** to maintain backwards compatibility with older versions of SQLite, 6461 ** we will continue to restrict the number of entries to usableSize/4 - 8 6462 ** for now. At some point in the future (once everyone has upgraded 6463 ** to 3.6.0 or later) we should consider fixing the conditional above 6464 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6465 ** 6466 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6467 ** avoid using the last six entries in the freelist trunk page array in 6468 ** order that database files created by newer versions of SQLite can be 6469 ** read by older versions of SQLite. 6470 */ 6471 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6472 if( rc==SQLITE_OK ){ 6473 put4byte(&pTrunk->aData[4], nLeaf+1); 6474 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6475 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6476 sqlite3PagerDontWrite(pPage->pDbPage); 6477 } 6478 rc = btreeSetHasContent(pBt, iPage); 6479 } 6480 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6481 goto freepage_out; 6482 } 6483 } 6484 6485 /* If control flows to this point, then it was not possible to add the 6486 ** the page being freed as a leaf page of the first trunk in the free-list. 6487 ** Possibly because the free-list is empty, or possibly because the 6488 ** first trunk in the free-list is full. Either way, the page being freed 6489 ** will become the new first trunk page in the free-list. 6490 */ 6491 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6492 goto freepage_out; 6493 } 6494 rc = sqlite3PagerWrite(pPage->pDbPage); 6495 if( rc!=SQLITE_OK ){ 6496 goto freepage_out; 6497 } 6498 put4byte(pPage->aData, iTrunk); 6499 put4byte(&pPage->aData[4], 0); 6500 put4byte(&pPage1->aData[32], iPage); 6501 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6502 6503 freepage_out: 6504 if( pPage ){ 6505 pPage->isInit = 0; 6506 } 6507 releasePage(pPage); 6508 releasePage(pTrunk); 6509 return rc; 6510 } 6511 static void freePage(MemPage *pPage, int *pRC){ 6512 if( (*pRC)==SQLITE_OK ){ 6513 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6514 } 6515 } 6516 6517 /* 6518 ** Free the overflow pages associated with the given Cell. 6519 */ 6520 static SQLITE_NOINLINE int clearCellOverflow( 6521 MemPage *pPage, /* The page that contains the Cell */ 6522 unsigned char *pCell, /* First byte of the Cell */ 6523 CellInfo *pInfo /* Size information about the cell */ 6524 ){ 6525 BtShared *pBt; 6526 Pgno ovflPgno; 6527 int rc; 6528 int nOvfl; 6529 u32 ovflPageSize; 6530 6531 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6532 assert( pInfo->nLocal!=pInfo->nPayload ); 6533 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6534 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6535 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6536 /* Cell extends past end of page */ 6537 return SQLITE_CORRUPT_PAGE(pPage); 6538 } 6539 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6540 pBt = pPage->pBt; 6541 assert( pBt->usableSize > 4 ); 6542 ovflPageSize = pBt->usableSize - 4; 6543 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6544 assert( nOvfl>0 || 6545 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6546 ); 6547 while( nOvfl-- ){ 6548 Pgno iNext = 0; 6549 MemPage *pOvfl = 0; 6550 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6551 /* 0 is not a legal page number and page 1 cannot be an 6552 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6553 ** file the database must be corrupt. */ 6554 return SQLITE_CORRUPT_BKPT; 6555 } 6556 if( nOvfl ){ 6557 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6558 if( rc ) return rc; 6559 } 6560 6561 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6562 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6563 ){ 6564 /* There is no reason any cursor should have an outstanding reference 6565 ** to an overflow page belonging to a cell that is being deleted/updated. 6566 ** So if there exists more than one reference to this page, then it 6567 ** must not really be an overflow page and the database must be corrupt. 6568 ** It is helpful to detect this before calling freePage2(), as 6569 ** freePage2() may zero the page contents if secure-delete mode is 6570 ** enabled. If this 'overflow' page happens to be a page that the 6571 ** caller is iterating through or using in some other way, this 6572 ** can be problematic. 6573 */ 6574 rc = SQLITE_CORRUPT_BKPT; 6575 }else{ 6576 rc = freePage2(pBt, pOvfl, ovflPgno); 6577 } 6578 6579 if( pOvfl ){ 6580 sqlite3PagerUnref(pOvfl->pDbPage); 6581 } 6582 if( rc ) return rc; 6583 ovflPgno = iNext; 6584 } 6585 return SQLITE_OK; 6586 } 6587 6588 /* Call xParseCell to compute the size of a cell. If the cell contains 6589 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6590 ** STore the result code (SQLITE_OK or some error code) in rc. 6591 ** 6592 ** Implemented as macro to force inlining for performance. 6593 */ 6594 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6595 pPage->xParseCell(pPage, pCell, &sInfo); \ 6596 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6597 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6598 }else{ \ 6599 rc = SQLITE_OK; \ 6600 } 6601 6602 6603 /* 6604 ** Create the byte sequence used to represent a cell on page pPage 6605 ** and write that byte sequence into pCell[]. Overflow pages are 6606 ** allocated and filled in as necessary. The calling procedure 6607 ** is responsible for making sure sufficient space has been allocated 6608 ** for pCell[]. 6609 ** 6610 ** Note that pCell does not necessary need to point to the pPage->aData 6611 ** area. pCell might point to some temporary storage. The cell will 6612 ** be constructed in this temporary area then copied into pPage->aData 6613 ** later. 6614 */ 6615 static int fillInCell( 6616 MemPage *pPage, /* The page that contains the cell */ 6617 unsigned char *pCell, /* Complete text of the cell */ 6618 const BtreePayload *pX, /* Payload with which to construct the cell */ 6619 int *pnSize /* Write cell size here */ 6620 ){ 6621 int nPayload; 6622 const u8 *pSrc; 6623 int nSrc, n, rc, mn; 6624 int spaceLeft; 6625 MemPage *pToRelease; 6626 unsigned char *pPrior; 6627 unsigned char *pPayload; 6628 BtShared *pBt; 6629 Pgno pgnoOvfl; 6630 int nHeader; 6631 6632 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6633 6634 /* pPage is not necessarily writeable since pCell might be auxiliary 6635 ** buffer space that is separate from the pPage buffer area */ 6636 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6637 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6638 6639 /* Fill in the header. */ 6640 nHeader = pPage->childPtrSize; 6641 if( pPage->intKey ){ 6642 nPayload = pX->nData + pX->nZero; 6643 pSrc = pX->pData; 6644 nSrc = pX->nData; 6645 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6646 nHeader += putVarint32(&pCell[nHeader], nPayload); 6647 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6648 }else{ 6649 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6650 nSrc = nPayload = (int)pX->nKey; 6651 pSrc = pX->pKey; 6652 nHeader += putVarint32(&pCell[nHeader], nPayload); 6653 } 6654 6655 /* Fill in the payload */ 6656 pPayload = &pCell[nHeader]; 6657 if( nPayload<=pPage->maxLocal ){ 6658 /* This is the common case where everything fits on the btree page 6659 ** and no overflow pages are required. */ 6660 n = nHeader + nPayload; 6661 testcase( n==3 ); 6662 testcase( n==4 ); 6663 if( n<4 ) n = 4; 6664 *pnSize = n; 6665 assert( nSrc<=nPayload ); 6666 testcase( nSrc<nPayload ); 6667 memcpy(pPayload, pSrc, nSrc); 6668 memset(pPayload+nSrc, 0, nPayload-nSrc); 6669 return SQLITE_OK; 6670 } 6671 6672 /* If we reach this point, it means that some of the content will need 6673 ** to spill onto overflow pages. 6674 */ 6675 mn = pPage->minLocal; 6676 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6677 testcase( n==pPage->maxLocal ); 6678 testcase( n==pPage->maxLocal+1 ); 6679 if( n > pPage->maxLocal ) n = mn; 6680 spaceLeft = n; 6681 *pnSize = n + nHeader + 4; 6682 pPrior = &pCell[nHeader+n]; 6683 pToRelease = 0; 6684 pgnoOvfl = 0; 6685 pBt = pPage->pBt; 6686 6687 /* At this point variables should be set as follows: 6688 ** 6689 ** nPayload Total payload size in bytes 6690 ** pPayload Begin writing payload here 6691 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6692 ** that means content must spill into overflow pages. 6693 ** *pnSize Size of the local cell (not counting overflow pages) 6694 ** pPrior Where to write the pgno of the first overflow page 6695 ** 6696 ** Use a call to btreeParseCellPtr() to verify that the values above 6697 ** were computed correctly. 6698 */ 6699 #ifdef SQLITE_DEBUG 6700 { 6701 CellInfo info; 6702 pPage->xParseCell(pPage, pCell, &info); 6703 assert( nHeader==(int)(info.pPayload - pCell) ); 6704 assert( info.nKey==pX->nKey ); 6705 assert( *pnSize == info.nSize ); 6706 assert( spaceLeft == info.nLocal ); 6707 } 6708 #endif 6709 6710 /* Write the payload into the local Cell and any extra into overflow pages */ 6711 while( 1 ){ 6712 n = nPayload; 6713 if( n>spaceLeft ) n = spaceLeft; 6714 6715 /* If pToRelease is not zero than pPayload points into the data area 6716 ** of pToRelease. Make sure pToRelease is still writeable. */ 6717 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6718 6719 /* If pPayload is part of the data area of pPage, then make sure pPage 6720 ** is still writeable */ 6721 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6722 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6723 6724 if( nSrc>=n ){ 6725 memcpy(pPayload, pSrc, n); 6726 }else if( nSrc>0 ){ 6727 n = nSrc; 6728 memcpy(pPayload, pSrc, n); 6729 }else{ 6730 memset(pPayload, 0, n); 6731 } 6732 nPayload -= n; 6733 if( nPayload<=0 ) break; 6734 pPayload += n; 6735 pSrc += n; 6736 nSrc -= n; 6737 spaceLeft -= n; 6738 if( spaceLeft==0 ){ 6739 MemPage *pOvfl = 0; 6740 #ifndef SQLITE_OMIT_AUTOVACUUM 6741 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6742 if( pBt->autoVacuum ){ 6743 do{ 6744 pgnoOvfl++; 6745 } while( 6746 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6747 ); 6748 } 6749 #endif 6750 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6751 #ifndef SQLITE_OMIT_AUTOVACUUM 6752 /* If the database supports auto-vacuum, and the second or subsequent 6753 ** overflow page is being allocated, add an entry to the pointer-map 6754 ** for that page now. 6755 ** 6756 ** If this is the first overflow page, then write a partial entry 6757 ** to the pointer-map. If we write nothing to this pointer-map slot, 6758 ** then the optimistic overflow chain processing in clearCell() 6759 ** may misinterpret the uninitialized values and delete the 6760 ** wrong pages from the database. 6761 */ 6762 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6763 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6764 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6765 if( rc ){ 6766 releasePage(pOvfl); 6767 } 6768 } 6769 #endif 6770 if( rc ){ 6771 releasePage(pToRelease); 6772 return rc; 6773 } 6774 6775 /* If pToRelease is not zero than pPrior points into the data area 6776 ** of pToRelease. Make sure pToRelease is still writeable. */ 6777 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6778 6779 /* If pPrior is part of the data area of pPage, then make sure pPage 6780 ** is still writeable */ 6781 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6782 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6783 6784 put4byte(pPrior, pgnoOvfl); 6785 releasePage(pToRelease); 6786 pToRelease = pOvfl; 6787 pPrior = pOvfl->aData; 6788 put4byte(pPrior, 0); 6789 pPayload = &pOvfl->aData[4]; 6790 spaceLeft = pBt->usableSize - 4; 6791 } 6792 } 6793 releasePage(pToRelease); 6794 return SQLITE_OK; 6795 } 6796 6797 /* 6798 ** Remove the i-th cell from pPage. This routine effects pPage only. 6799 ** The cell content is not freed or deallocated. It is assumed that 6800 ** the cell content has been copied someplace else. This routine just 6801 ** removes the reference to the cell from pPage. 6802 ** 6803 ** "sz" must be the number of bytes in the cell. 6804 */ 6805 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6806 u32 pc; /* Offset to cell content of cell being deleted */ 6807 u8 *data; /* pPage->aData */ 6808 u8 *ptr; /* Used to move bytes around within data[] */ 6809 int rc; /* The return code */ 6810 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6811 6812 if( *pRC ) return; 6813 assert( idx>=0 && idx<pPage->nCell ); 6814 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6815 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6816 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6817 assert( pPage->nFree>=0 ); 6818 data = pPage->aData; 6819 ptr = &pPage->aCellIdx[2*idx]; 6820 pc = get2byte(ptr); 6821 hdr = pPage->hdrOffset; 6822 testcase( pc==get2byte(&data[hdr+5]) ); 6823 testcase( pc+sz==pPage->pBt->usableSize ); 6824 if( pc+sz > pPage->pBt->usableSize ){ 6825 *pRC = SQLITE_CORRUPT_BKPT; 6826 return; 6827 } 6828 rc = freeSpace(pPage, pc, sz); 6829 if( rc ){ 6830 *pRC = rc; 6831 return; 6832 } 6833 pPage->nCell--; 6834 if( pPage->nCell==0 ){ 6835 memset(&data[hdr+1], 0, 4); 6836 data[hdr+7] = 0; 6837 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6838 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6839 - pPage->childPtrSize - 8; 6840 }else{ 6841 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6842 put2byte(&data[hdr+3], pPage->nCell); 6843 pPage->nFree += 2; 6844 } 6845 } 6846 6847 /* 6848 ** Insert a new cell on pPage at cell index "i". pCell points to the 6849 ** content of the cell. 6850 ** 6851 ** If the cell content will fit on the page, then put it there. If it 6852 ** will not fit, then make a copy of the cell content into pTemp if 6853 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6854 ** in pPage->apOvfl[] and make it point to the cell content (either 6855 ** in pTemp or the original pCell) and also record its index. 6856 ** Allocating a new entry in pPage->aCell[] implies that 6857 ** pPage->nOverflow is incremented. 6858 ** 6859 ** *pRC must be SQLITE_OK when this routine is called. 6860 */ 6861 static void insertCell( 6862 MemPage *pPage, /* Page into which we are copying */ 6863 int i, /* New cell becomes the i-th cell of the page */ 6864 u8 *pCell, /* Content of the new cell */ 6865 int sz, /* Bytes of content in pCell */ 6866 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6867 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6868 int *pRC /* Read and write return code from here */ 6869 ){ 6870 int idx = 0; /* Where to write new cell content in data[] */ 6871 int j; /* Loop counter */ 6872 u8 *data; /* The content of the whole page */ 6873 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6874 6875 assert( *pRC==SQLITE_OK ); 6876 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6877 assert( MX_CELL(pPage->pBt)<=10921 ); 6878 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6879 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6880 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6881 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6882 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6883 assert( pPage->nFree>=0 ); 6884 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6885 if( pTemp ){ 6886 memcpy(pTemp, pCell, sz); 6887 pCell = pTemp; 6888 } 6889 if( iChild ){ 6890 put4byte(pCell, iChild); 6891 } 6892 j = pPage->nOverflow++; 6893 /* Comparison against ArraySize-1 since we hold back one extra slot 6894 ** as a contingency. In other words, never need more than 3 overflow 6895 ** slots but 4 are allocated, just to be safe. */ 6896 assert( j < ArraySize(pPage->apOvfl)-1 ); 6897 pPage->apOvfl[j] = pCell; 6898 pPage->aiOvfl[j] = (u16)i; 6899 6900 /* When multiple overflows occur, they are always sequential and in 6901 ** sorted order. This invariants arise because multiple overflows can 6902 ** only occur when inserting divider cells into the parent page during 6903 ** balancing, and the dividers are adjacent and sorted. 6904 */ 6905 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6906 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6907 }else{ 6908 int rc = sqlite3PagerWrite(pPage->pDbPage); 6909 if( rc!=SQLITE_OK ){ 6910 *pRC = rc; 6911 return; 6912 } 6913 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6914 data = pPage->aData; 6915 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6916 rc = allocateSpace(pPage, sz, &idx); 6917 if( rc ){ *pRC = rc; return; } 6918 /* The allocateSpace() routine guarantees the following properties 6919 ** if it returns successfully */ 6920 assert( idx >= 0 ); 6921 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6922 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6923 pPage->nFree -= (u16)(2 + sz); 6924 if( iChild ){ 6925 /* In a corrupt database where an entry in the cell index section of 6926 ** a btree page has a value of 3 or less, the pCell value might point 6927 ** as many as 4 bytes in front of the start of the aData buffer for 6928 ** the source page. Make sure this does not cause problems by not 6929 ** reading the first 4 bytes */ 6930 memcpy(&data[idx+4], pCell+4, sz-4); 6931 put4byte(&data[idx], iChild); 6932 }else{ 6933 memcpy(&data[idx], pCell, sz); 6934 } 6935 pIns = pPage->aCellIdx + i*2; 6936 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6937 put2byte(pIns, idx); 6938 pPage->nCell++; 6939 /* increment the cell count */ 6940 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6941 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6942 #ifndef SQLITE_OMIT_AUTOVACUUM 6943 if( pPage->pBt->autoVacuum ){ 6944 /* The cell may contain a pointer to an overflow page. If so, write 6945 ** the entry for the overflow page into the pointer map. 6946 */ 6947 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6948 } 6949 #endif 6950 } 6951 } 6952 6953 /* 6954 ** The following parameters determine how many adjacent pages get involved 6955 ** in a balancing operation. NN is the number of neighbors on either side 6956 ** of the page that participate in the balancing operation. NB is the 6957 ** total number of pages that participate, including the target page and 6958 ** NN neighbors on either side. 6959 ** 6960 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6961 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6962 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6963 ** The value of NN appears to give the best results overall. 6964 ** 6965 ** (Later:) The description above makes it seem as if these values are 6966 ** tunable - as if you could change them and recompile and it would all work. 6967 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6968 ** we have never tested any other value. 6969 */ 6970 #define NN 1 /* Number of neighbors on either side of pPage */ 6971 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6972 6973 /* 6974 ** A CellArray object contains a cache of pointers and sizes for a 6975 ** consecutive sequence of cells that might be held on multiple pages. 6976 ** 6977 ** The cells in this array are the divider cell or cells from the pParent 6978 ** page plus up to three child pages. There are a total of nCell cells. 6979 ** 6980 ** pRef is a pointer to one of the pages that contributes cells. This is 6981 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 6982 ** which should be common to all pages that contribute cells to this array. 6983 ** 6984 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 6985 ** cell and the size of each cell. Some of the apCell[] pointers might refer 6986 ** to overflow cells. In other words, some apCel[] pointers might not point 6987 ** to content area of the pages. 6988 ** 6989 ** A szCell[] of zero means the size of that cell has not yet been computed. 6990 ** 6991 ** The cells come from as many as four different pages: 6992 ** 6993 ** ----------- 6994 ** | Parent | 6995 ** ----------- 6996 ** / | \ 6997 ** / | \ 6998 ** --------- --------- --------- 6999 ** |Child-1| |Child-2| |Child-3| 7000 ** --------- --------- --------- 7001 ** 7002 ** The order of cells is in the array is for an index btree is: 7003 ** 7004 ** 1. All cells from Child-1 in order 7005 ** 2. The first divider cell from Parent 7006 ** 3. All cells from Child-2 in order 7007 ** 4. The second divider cell from Parent 7008 ** 5. All cells from Child-3 in order 7009 ** 7010 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7011 ** content exists only in leaves and there are no divider cells. 7012 ** 7013 ** For an index btree, the apEnd[] array holds pointer to the end of page 7014 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7015 ** respectively. The ixNx[] array holds the number of cells contained in 7016 ** each of these 5 stages, and all stages to the left. Hence: 7017 ** 7018 ** ixNx[0] = Number of cells in Child-1. 7019 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7020 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7021 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7022 ** ixNx[4] = Total number of cells. 7023 ** 7024 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7025 ** are used and they point to the leaf pages only, and the ixNx value are: 7026 ** 7027 ** ixNx[0] = Number of cells in Child-1. 7028 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7029 ** ixNx[2] = Total number of cells. 7030 ** 7031 ** Sometimes when deleting, a child page can have zero cells. In those 7032 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7033 ** entries, shift down. The end result is that each ixNx[] entry should 7034 ** be larger than the previous 7035 */ 7036 typedef struct CellArray CellArray; 7037 struct CellArray { 7038 int nCell; /* Number of cells in apCell[] */ 7039 MemPage *pRef; /* Reference page */ 7040 u8 **apCell; /* All cells begin balanced */ 7041 u16 *szCell; /* Local size of all cells in apCell[] */ 7042 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7043 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7044 }; 7045 7046 /* 7047 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7048 ** computed. 7049 */ 7050 static void populateCellCache(CellArray *p, int idx, int N){ 7051 assert( idx>=0 && idx+N<=p->nCell ); 7052 while( N>0 ){ 7053 assert( p->apCell[idx]!=0 ); 7054 if( p->szCell[idx]==0 ){ 7055 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7056 }else{ 7057 assert( CORRUPT_DB || 7058 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7059 } 7060 idx++; 7061 N--; 7062 } 7063 } 7064 7065 /* 7066 ** Return the size of the Nth element of the cell array 7067 */ 7068 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7069 assert( N>=0 && N<p->nCell ); 7070 assert( p->szCell[N]==0 ); 7071 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7072 return p->szCell[N]; 7073 } 7074 static u16 cachedCellSize(CellArray *p, int N){ 7075 assert( N>=0 && N<p->nCell ); 7076 if( p->szCell[N] ) return p->szCell[N]; 7077 return computeCellSize(p, N); 7078 } 7079 7080 /* 7081 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7082 ** szCell[] array contains the size in bytes of each cell. This function 7083 ** replaces the current contents of page pPg with the contents of the cell 7084 ** array. 7085 ** 7086 ** Some of the cells in apCell[] may currently be stored in pPg. This 7087 ** function works around problems caused by this by making a copy of any 7088 ** such cells before overwriting the page data. 7089 ** 7090 ** The MemPage.nFree field is invalidated by this function. It is the 7091 ** responsibility of the caller to set it correctly. 7092 */ 7093 static int rebuildPage( 7094 CellArray *pCArray, /* Content to be added to page pPg */ 7095 int iFirst, /* First cell in pCArray to use */ 7096 int nCell, /* Final number of cells on page */ 7097 MemPage *pPg /* The page to be reconstructed */ 7098 ){ 7099 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7100 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7101 const int usableSize = pPg->pBt->usableSize; 7102 u8 * const pEnd = &aData[usableSize]; 7103 int i = iFirst; /* Which cell to copy from pCArray*/ 7104 u32 j; /* Start of cell content area */ 7105 int iEnd = i+nCell; /* Loop terminator */ 7106 u8 *pCellptr = pPg->aCellIdx; 7107 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7108 u8 *pData; 7109 int k; /* Current slot in pCArray->apEnd[] */ 7110 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7111 7112 assert( i<iEnd ); 7113 j = get2byte(&aData[hdr+5]); 7114 if( NEVER(j>(u32)usableSize) ){ j = 0; } 7115 memcpy(&pTmp[j], &aData[j], usableSize - j); 7116 7117 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7118 pSrcEnd = pCArray->apEnd[k]; 7119 7120 pData = pEnd; 7121 while( 1/*exit by break*/ ){ 7122 u8 *pCell = pCArray->apCell[i]; 7123 u16 sz = pCArray->szCell[i]; 7124 assert( sz>0 ); 7125 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7126 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7127 pCell = &pTmp[pCell - aData]; 7128 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7129 && (uptr)(pCell)<(uptr)pSrcEnd 7130 ){ 7131 return SQLITE_CORRUPT_BKPT; 7132 } 7133 7134 pData -= sz; 7135 put2byte(pCellptr, (pData - aData)); 7136 pCellptr += 2; 7137 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7138 memmove(pData, pCell, sz); 7139 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7140 i++; 7141 if( i>=iEnd ) break; 7142 if( pCArray->ixNx[k]<=i ){ 7143 k++; 7144 pSrcEnd = pCArray->apEnd[k]; 7145 } 7146 } 7147 7148 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7149 pPg->nCell = nCell; 7150 pPg->nOverflow = 0; 7151 7152 put2byte(&aData[hdr+1], 0); 7153 put2byte(&aData[hdr+3], pPg->nCell); 7154 put2byte(&aData[hdr+5], pData - aData); 7155 aData[hdr+7] = 0x00; 7156 return SQLITE_OK; 7157 } 7158 7159 /* 7160 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7161 ** This function attempts to add the cells stored in the array to page pPg. 7162 ** If it cannot (because the page needs to be defragmented before the cells 7163 ** will fit), non-zero is returned. Otherwise, if the cells are added 7164 ** successfully, zero is returned. 7165 ** 7166 ** Argument pCellptr points to the first entry in the cell-pointer array 7167 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7168 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7169 ** cell in the array. It is the responsibility of the caller to ensure 7170 ** that it is safe to overwrite this part of the cell-pointer array. 7171 ** 7172 ** When this function is called, *ppData points to the start of the 7173 ** content area on page pPg. If the size of the content area is extended, 7174 ** *ppData is updated to point to the new start of the content area 7175 ** before returning. 7176 ** 7177 ** Finally, argument pBegin points to the byte immediately following the 7178 ** end of the space required by this page for the cell-pointer area (for 7179 ** all cells - not just those inserted by the current call). If the content 7180 ** area must be extended to before this point in order to accomodate all 7181 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7182 */ 7183 static int pageInsertArray( 7184 MemPage *pPg, /* Page to add cells to */ 7185 u8 *pBegin, /* End of cell-pointer array */ 7186 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7187 u8 *pCellptr, /* Pointer to cell-pointer area */ 7188 int iFirst, /* Index of first cell to add */ 7189 int nCell, /* Number of cells to add to pPg */ 7190 CellArray *pCArray /* Array of cells */ 7191 ){ 7192 int i = iFirst; /* Loop counter - cell index to insert */ 7193 u8 *aData = pPg->aData; /* Complete page */ 7194 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7195 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7196 int k; /* Current slot in pCArray->apEnd[] */ 7197 u8 *pEnd; /* Maximum extent of cell data */ 7198 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7199 if( iEnd<=iFirst ) return 0; 7200 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7201 pEnd = pCArray->apEnd[k]; 7202 while( 1 /*Exit by break*/ ){ 7203 int sz, rc; 7204 u8 *pSlot; 7205 assert( pCArray->szCell[i]!=0 ); 7206 sz = pCArray->szCell[i]; 7207 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7208 if( (pData - pBegin)<sz ) return 1; 7209 pData -= sz; 7210 pSlot = pData; 7211 } 7212 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7213 ** database. But they might for a corrupt database. Hence use memmove() 7214 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7215 assert( (pSlot+sz)<=pCArray->apCell[i] 7216 || pSlot>=(pCArray->apCell[i]+sz) 7217 || CORRUPT_DB ); 7218 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7219 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7220 ){ 7221 assert( CORRUPT_DB ); 7222 (void)SQLITE_CORRUPT_BKPT; 7223 return 1; 7224 } 7225 memmove(pSlot, pCArray->apCell[i], sz); 7226 put2byte(pCellptr, (pSlot - aData)); 7227 pCellptr += 2; 7228 i++; 7229 if( i>=iEnd ) break; 7230 if( pCArray->ixNx[k]<=i ){ 7231 k++; 7232 pEnd = pCArray->apEnd[k]; 7233 } 7234 } 7235 *ppData = pData; 7236 return 0; 7237 } 7238 7239 /* 7240 ** The pCArray object contains pointers to b-tree cells and their sizes. 7241 ** 7242 ** This function adds the space associated with each cell in the array 7243 ** that is currently stored within the body of pPg to the pPg free-list. 7244 ** The cell-pointers and other fields of the page are not updated. 7245 ** 7246 ** This function returns the total number of cells added to the free-list. 7247 */ 7248 static int pageFreeArray( 7249 MemPage *pPg, /* Page to edit */ 7250 int iFirst, /* First cell to delete */ 7251 int nCell, /* Cells to delete */ 7252 CellArray *pCArray /* Array of cells */ 7253 ){ 7254 u8 * const aData = pPg->aData; 7255 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7256 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7257 int nRet = 0; 7258 int i; 7259 int iEnd = iFirst + nCell; 7260 u8 *pFree = 0; 7261 int szFree = 0; 7262 7263 for(i=iFirst; i<iEnd; i++){ 7264 u8 *pCell = pCArray->apCell[i]; 7265 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7266 int sz; 7267 /* No need to use cachedCellSize() here. The sizes of all cells that 7268 ** are to be freed have already been computing while deciding which 7269 ** cells need freeing */ 7270 sz = pCArray->szCell[i]; assert( sz>0 ); 7271 if( pFree!=(pCell + sz) ){ 7272 if( pFree ){ 7273 assert( pFree>aData && (pFree - aData)<65536 ); 7274 freeSpace(pPg, (u16)(pFree - aData), szFree); 7275 } 7276 pFree = pCell; 7277 szFree = sz; 7278 if( pFree+sz>pEnd ){ 7279 return 0; 7280 } 7281 }else{ 7282 pFree = pCell; 7283 szFree += sz; 7284 } 7285 nRet++; 7286 } 7287 } 7288 if( pFree ){ 7289 assert( pFree>aData && (pFree - aData)<65536 ); 7290 freeSpace(pPg, (u16)(pFree - aData), szFree); 7291 } 7292 return nRet; 7293 } 7294 7295 /* 7296 ** pCArray contains pointers to and sizes of all cells in the page being 7297 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7298 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7299 ** starting at apCell[iNew]. 7300 ** 7301 ** This routine makes the necessary adjustments to pPg so that it contains 7302 ** the correct cells after being balanced. 7303 ** 7304 ** The pPg->nFree field is invalid when this function returns. It is the 7305 ** responsibility of the caller to set it correctly. 7306 */ 7307 static int editPage( 7308 MemPage *pPg, /* Edit this page */ 7309 int iOld, /* Index of first cell currently on page */ 7310 int iNew, /* Index of new first cell on page */ 7311 int nNew, /* Final number of cells on page */ 7312 CellArray *pCArray /* Array of cells and sizes */ 7313 ){ 7314 u8 * const aData = pPg->aData; 7315 const int hdr = pPg->hdrOffset; 7316 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7317 int nCell = pPg->nCell; /* Cells stored on pPg */ 7318 u8 *pData; 7319 u8 *pCellptr; 7320 int i; 7321 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7322 int iNewEnd = iNew + nNew; 7323 7324 #ifdef SQLITE_DEBUG 7325 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7326 memcpy(pTmp, aData, pPg->pBt->usableSize); 7327 #endif 7328 7329 /* Remove cells from the start and end of the page */ 7330 assert( nCell>=0 ); 7331 if( iOld<iNew ){ 7332 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7333 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7334 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7335 nCell -= nShift; 7336 } 7337 if( iNewEnd < iOldEnd ){ 7338 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7339 assert( nCell>=nTail ); 7340 nCell -= nTail; 7341 } 7342 7343 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7344 if( pData<pBegin ) goto editpage_fail; 7345 if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail; 7346 7347 /* Add cells to the start of the page */ 7348 if( iNew<iOld ){ 7349 int nAdd = MIN(nNew,iOld-iNew); 7350 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7351 assert( nAdd>=0 ); 7352 pCellptr = pPg->aCellIdx; 7353 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7354 if( pageInsertArray( 7355 pPg, pBegin, &pData, pCellptr, 7356 iNew, nAdd, pCArray 7357 ) ) goto editpage_fail; 7358 nCell += nAdd; 7359 } 7360 7361 /* Add any overflow cells */ 7362 for(i=0; i<pPg->nOverflow; i++){ 7363 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7364 if( iCell>=0 && iCell<nNew ){ 7365 pCellptr = &pPg->aCellIdx[iCell * 2]; 7366 if( nCell>iCell ){ 7367 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7368 } 7369 nCell++; 7370 cachedCellSize(pCArray, iCell+iNew); 7371 if( pageInsertArray( 7372 pPg, pBegin, &pData, pCellptr, 7373 iCell+iNew, 1, pCArray 7374 ) ) goto editpage_fail; 7375 } 7376 } 7377 7378 /* Append cells to the end of the page */ 7379 assert( nCell>=0 ); 7380 pCellptr = &pPg->aCellIdx[nCell*2]; 7381 if( pageInsertArray( 7382 pPg, pBegin, &pData, pCellptr, 7383 iNew+nCell, nNew-nCell, pCArray 7384 ) ) goto editpage_fail; 7385 7386 pPg->nCell = nNew; 7387 pPg->nOverflow = 0; 7388 7389 put2byte(&aData[hdr+3], pPg->nCell); 7390 put2byte(&aData[hdr+5], pData - aData); 7391 7392 #ifdef SQLITE_DEBUG 7393 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7394 u8 *pCell = pCArray->apCell[i+iNew]; 7395 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7396 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7397 pCell = &pTmp[pCell - aData]; 7398 } 7399 assert( 0==memcmp(pCell, &aData[iOff], 7400 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7401 } 7402 #endif 7403 7404 return SQLITE_OK; 7405 editpage_fail: 7406 /* Unable to edit this page. Rebuild it from scratch instead. */ 7407 populateCellCache(pCArray, iNew, nNew); 7408 return rebuildPage(pCArray, iNew, nNew, pPg); 7409 } 7410 7411 7412 #ifndef SQLITE_OMIT_QUICKBALANCE 7413 /* 7414 ** This version of balance() handles the common special case where 7415 ** a new entry is being inserted on the extreme right-end of the 7416 ** tree, in other words, when the new entry will become the largest 7417 ** entry in the tree. 7418 ** 7419 ** Instead of trying to balance the 3 right-most leaf pages, just add 7420 ** a new page to the right-hand side and put the one new entry in 7421 ** that page. This leaves the right side of the tree somewhat 7422 ** unbalanced. But odds are that we will be inserting new entries 7423 ** at the end soon afterwards so the nearly empty page will quickly 7424 ** fill up. On average. 7425 ** 7426 ** pPage is the leaf page which is the right-most page in the tree. 7427 ** pParent is its parent. pPage must have a single overflow entry 7428 ** which is also the right-most entry on the page. 7429 ** 7430 ** The pSpace buffer is used to store a temporary copy of the divider 7431 ** cell that will be inserted into pParent. Such a cell consists of a 4 7432 ** byte page number followed by a variable length integer. In other 7433 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7434 ** least 13 bytes in size. 7435 */ 7436 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7437 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7438 MemPage *pNew; /* Newly allocated page */ 7439 int rc; /* Return Code */ 7440 Pgno pgnoNew; /* Page number of pNew */ 7441 7442 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7443 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7444 assert( pPage->nOverflow==1 ); 7445 7446 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7447 assert( pPage->nFree>=0 ); 7448 assert( pParent->nFree>=0 ); 7449 7450 /* Allocate a new page. This page will become the right-sibling of 7451 ** pPage. Make the parent page writable, so that the new divider cell 7452 ** may be inserted. If both these operations are successful, proceed. 7453 */ 7454 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7455 7456 if( rc==SQLITE_OK ){ 7457 7458 u8 *pOut = &pSpace[4]; 7459 u8 *pCell = pPage->apOvfl[0]; 7460 u16 szCell = pPage->xCellSize(pPage, pCell); 7461 u8 *pStop; 7462 CellArray b; 7463 7464 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7465 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7466 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7467 b.nCell = 1; 7468 b.pRef = pPage; 7469 b.apCell = &pCell; 7470 b.szCell = &szCell; 7471 b.apEnd[0] = pPage->aDataEnd; 7472 b.ixNx[0] = 2; 7473 rc = rebuildPage(&b, 0, 1, pNew); 7474 if( NEVER(rc) ){ 7475 releasePage(pNew); 7476 return rc; 7477 } 7478 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7479 7480 /* If this is an auto-vacuum database, update the pointer map 7481 ** with entries for the new page, and any pointer from the 7482 ** cell on the page to an overflow page. If either of these 7483 ** operations fails, the return code is set, but the contents 7484 ** of the parent page are still manipulated by thh code below. 7485 ** That is Ok, at this point the parent page is guaranteed to 7486 ** be marked as dirty. Returning an error code will cause a 7487 ** rollback, undoing any changes made to the parent page. 7488 */ 7489 if( ISAUTOVACUUM ){ 7490 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7491 if( szCell>pNew->minLocal ){ 7492 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7493 } 7494 } 7495 7496 /* Create a divider cell to insert into pParent. The divider cell 7497 ** consists of a 4-byte page number (the page number of pPage) and 7498 ** a variable length key value (which must be the same value as the 7499 ** largest key on pPage). 7500 ** 7501 ** To find the largest key value on pPage, first find the right-most 7502 ** cell on pPage. The first two fields of this cell are the 7503 ** record-length (a variable length integer at most 32-bits in size) 7504 ** and the key value (a variable length integer, may have any value). 7505 ** The first of the while(...) loops below skips over the record-length 7506 ** field. The second while(...) loop copies the key value from the 7507 ** cell on pPage into the pSpace buffer. 7508 */ 7509 pCell = findCell(pPage, pPage->nCell-1); 7510 pStop = &pCell[9]; 7511 while( (*(pCell++)&0x80) && pCell<pStop ); 7512 pStop = &pCell[9]; 7513 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7514 7515 /* Insert the new divider cell into pParent. */ 7516 if( rc==SQLITE_OK ){ 7517 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7518 0, pPage->pgno, &rc); 7519 } 7520 7521 /* Set the right-child pointer of pParent to point to the new page. */ 7522 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7523 7524 /* Release the reference to the new page. */ 7525 releasePage(pNew); 7526 } 7527 7528 return rc; 7529 } 7530 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7531 7532 #if 0 7533 /* 7534 ** This function does not contribute anything to the operation of SQLite. 7535 ** it is sometimes activated temporarily while debugging code responsible 7536 ** for setting pointer-map entries. 7537 */ 7538 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7539 int i, j; 7540 for(i=0; i<nPage; i++){ 7541 Pgno n; 7542 u8 e; 7543 MemPage *pPage = apPage[i]; 7544 BtShared *pBt = pPage->pBt; 7545 assert( pPage->isInit ); 7546 7547 for(j=0; j<pPage->nCell; j++){ 7548 CellInfo info; 7549 u8 *z; 7550 7551 z = findCell(pPage, j); 7552 pPage->xParseCell(pPage, z, &info); 7553 if( info.nLocal<info.nPayload ){ 7554 Pgno ovfl = get4byte(&z[info.nSize-4]); 7555 ptrmapGet(pBt, ovfl, &e, &n); 7556 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7557 } 7558 if( !pPage->leaf ){ 7559 Pgno child = get4byte(z); 7560 ptrmapGet(pBt, child, &e, &n); 7561 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7562 } 7563 } 7564 if( !pPage->leaf ){ 7565 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7566 ptrmapGet(pBt, child, &e, &n); 7567 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7568 } 7569 } 7570 return 1; 7571 } 7572 #endif 7573 7574 /* 7575 ** This function is used to copy the contents of the b-tree node stored 7576 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7577 ** the pointer-map entries for each child page are updated so that the 7578 ** parent page stored in the pointer map is page pTo. If pFrom contained 7579 ** any cells with overflow page pointers, then the corresponding pointer 7580 ** map entries are also updated so that the parent page is page pTo. 7581 ** 7582 ** If pFrom is currently carrying any overflow cells (entries in the 7583 ** MemPage.apOvfl[] array), they are not copied to pTo. 7584 ** 7585 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7586 ** 7587 ** The performance of this function is not critical. It is only used by 7588 ** the balance_shallower() and balance_deeper() procedures, neither of 7589 ** which are called often under normal circumstances. 7590 */ 7591 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7592 if( (*pRC)==SQLITE_OK ){ 7593 BtShared * const pBt = pFrom->pBt; 7594 u8 * const aFrom = pFrom->aData; 7595 u8 * const aTo = pTo->aData; 7596 int const iFromHdr = pFrom->hdrOffset; 7597 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7598 int rc; 7599 int iData; 7600 7601 7602 assert( pFrom->isInit ); 7603 assert( pFrom->nFree>=iToHdr ); 7604 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7605 7606 /* Copy the b-tree node content from page pFrom to page pTo. */ 7607 iData = get2byte(&aFrom[iFromHdr+5]); 7608 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7609 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7610 7611 /* Reinitialize page pTo so that the contents of the MemPage structure 7612 ** match the new data. The initialization of pTo can actually fail under 7613 ** fairly obscure circumstances, even though it is a copy of initialized 7614 ** page pFrom. 7615 */ 7616 pTo->isInit = 0; 7617 rc = btreeInitPage(pTo); 7618 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7619 if( rc!=SQLITE_OK ){ 7620 *pRC = rc; 7621 return; 7622 } 7623 7624 /* If this is an auto-vacuum database, update the pointer-map entries 7625 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7626 */ 7627 if( ISAUTOVACUUM ){ 7628 *pRC = setChildPtrmaps(pTo); 7629 } 7630 } 7631 } 7632 7633 /* 7634 ** This routine redistributes cells on the iParentIdx'th child of pParent 7635 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7636 ** same amount of free space. Usually a single sibling on either side of the 7637 ** page are used in the balancing, though both siblings might come from one 7638 ** side if the page is the first or last child of its parent. If the page 7639 ** has fewer than 2 siblings (something which can only happen if the page 7640 ** is a root page or a child of a root page) then all available siblings 7641 ** participate in the balancing. 7642 ** 7643 ** The number of siblings of the page might be increased or decreased by 7644 ** one or two in an effort to keep pages nearly full but not over full. 7645 ** 7646 ** Note that when this routine is called, some of the cells on the page 7647 ** might not actually be stored in MemPage.aData[]. This can happen 7648 ** if the page is overfull. This routine ensures that all cells allocated 7649 ** to the page and its siblings fit into MemPage.aData[] before returning. 7650 ** 7651 ** In the course of balancing the page and its siblings, cells may be 7652 ** inserted into or removed from the parent page (pParent). Doing so 7653 ** may cause the parent page to become overfull or underfull. If this 7654 ** happens, it is the responsibility of the caller to invoke the correct 7655 ** balancing routine to fix this problem (see the balance() routine). 7656 ** 7657 ** If this routine fails for any reason, it might leave the database 7658 ** in a corrupted state. So if this routine fails, the database should 7659 ** be rolled back. 7660 ** 7661 ** The third argument to this function, aOvflSpace, is a pointer to a 7662 ** buffer big enough to hold one page. If while inserting cells into the parent 7663 ** page (pParent) the parent page becomes overfull, this buffer is 7664 ** used to store the parent's overflow cells. Because this function inserts 7665 ** a maximum of four divider cells into the parent page, and the maximum 7666 ** size of a cell stored within an internal node is always less than 1/4 7667 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7668 ** enough for all overflow cells. 7669 ** 7670 ** If aOvflSpace is set to a null pointer, this function returns 7671 ** SQLITE_NOMEM. 7672 */ 7673 static int balance_nonroot( 7674 MemPage *pParent, /* Parent page of siblings being balanced */ 7675 int iParentIdx, /* Index of "the page" in pParent */ 7676 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7677 int isRoot, /* True if pParent is a root-page */ 7678 int bBulk /* True if this call is part of a bulk load */ 7679 ){ 7680 BtShared *pBt; /* The whole database */ 7681 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7682 int nNew = 0; /* Number of pages in apNew[] */ 7683 int nOld; /* Number of pages in apOld[] */ 7684 int i, j, k; /* Loop counters */ 7685 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7686 int rc = SQLITE_OK; /* The return code */ 7687 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7688 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7689 int usableSpace; /* Bytes in pPage beyond the header */ 7690 int pageFlags; /* Value of pPage->aData[0] */ 7691 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7692 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7693 int szScratch; /* Size of scratch memory requested */ 7694 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7695 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7696 u8 *pRight; /* Location in parent of right-sibling pointer */ 7697 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7698 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7699 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7700 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7701 u8 *aSpace1; /* Space for copies of dividers cells */ 7702 Pgno pgno; /* Temp var to store a page number in */ 7703 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7704 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7705 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7706 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7707 CellArray b; /* Parsed information on cells being balanced */ 7708 7709 memset(abDone, 0, sizeof(abDone)); 7710 memset(&b, 0, sizeof(b)); 7711 pBt = pParent->pBt; 7712 assert( sqlite3_mutex_held(pBt->mutex) ); 7713 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7714 7715 /* At this point pParent may have at most one overflow cell. And if 7716 ** this overflow cell is present, it must be the cell with 7717 ** index iParentIdx. This scenario comes about when this function 7718 ** is called (indirectly) from sqlite3BtreeDelete(). 7719 */ 7720 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7721 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7722 7723 if( !aOvflSpace ){ 7724 return SQLITE_NOMEM_BKPT; 7725 } 7726 assert( pParent->nFree>=0 ); 7727 7728 /* Find the sibling pages to balance. Also locate the cells in pParent 7729 ** that divide the siblings. An attempt is made to find NN siblings on 7730 ** either side of pPage. More siblings are taken from one side, however, 7731 ** if there are fewer than NN siblings on the other side. If pParent 7732 ** has NB or fewer children then all children of pParent are taken. 7733 ** 7734 ** This loop also drops the divider cells from the parent page. This 7735 ** way, the remainder of the function does not have to deal with any 7736 ** overflow cells in the parent page, since if any existed they will 7737 ** have already been removed. 7738 */ 7739 i = pParent->nOverflow + pParent->nCell; 7740 if( i<2 ){ 7741 nxDiv = 0; 7742 }else{ 7743 assert( bBulk==0 || bBulk==1 ); 7744 if( iParentIdx==0 ){ 7745 nxDiv = 0; 7746 }else if( iParentIdx==i ){ 7747 nxDiv = i-2+bBulk; 7748 }else{ 7749 nxDiv = iParentIdx-1; 7750 } 7751 i = 2-bBulk; 7752 } 7753 nOld = i+1; 7754 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7755 pRight = &pParent->aData[pParent->hdrOffset+8]; 7756 }else{ 7757 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7758 } 7759 pgno = get4byte(pRight); 7760 while( 1 ){ 7761 if( rc==SQLITE_OK ){ 7762 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7763 } 7764 if( rc ){ 7765 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7766 goto balance_cleanup; 7767 } 7768 if( apOld[i]->nFree<0 ){ 7769 rc = btreeComputeFreeSpace(apOld[i]); 7770 if( rc ){ 7771 memset(apOld, 0, (i)*sizeof(MemPage*)); 7772 goto balance_cleanup; 7773 } 7774 } 7775 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7776 if( (i--)==0 ) break; 7777 7778 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7779 apDiv[i] = pParent->apOvfl[0]; 7780 pgno = get4byte(apDiv[i]); 7781 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7782 pParent->nOverflow = 0; 7783 }else{ 7784 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7785 pgno = get4byte(apDiv[i]); 7786 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7787 7788 /* Drop the cell from the parent page. apDiv[i] still points to 7789 ** the cell within the parent, even though it has been dropped. 7790 ** This is safe because dropping a cell only overwrites the first 7791 ** four bytes of it, and this function does not need the first 7792 ** four bytes of the divider cell. So the pointer is safe to use 7793 ** later on. 7794 ** 7795 ** But not if we are in secure-delete mode. In secure-delete mode, 7796 ** the dropCell() routine will overwrite the entire cell with zeroes. 7797 ** In this case, temporarily copy the cell into the aOvflSpace[] 7798 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7799 ** is allocated. */ 7800 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7801 int iOff; 7802 7803 /* If the following if() condition is not true, the db is corrupted. 7804 ** The call to dropCell() below will detect this. */ 7805 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7806 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7807 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7808 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7809 } 7810 } 7811 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7812 } 7813 } 7814 7815 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7816 ** alignment */ 7817 nMaxCells = (nMaxCells + 3)&~3; 7818 7819 /* 7820 ** Allocate space for memory structures 7821 */ 7822 szScratch = 7823 nMaxCells*sizeof(u8*) /* b.apCell */ 7824 + nMaxCells*sizeof(u16) /* b.szCell */ 7825 + pBt->pageSize; /* aSpace1 */ 7826 7827 assert( szScratch<=7*(int)pBt->pageSize ); 7828 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7829 if( b.apCell==0 ){ 7830 rc = SQLITE_NOMEM_BKPT; 7831 goto balance_cleanup; 7832 } 7833 b.szCell = (u16*)&b.apCell[nMaxCells]; 7834 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7835 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7836 7837 /* 7838 ** Load pointers to all cells on sibling pages and the divider cells 7839 ** into the local b.apCell[] array. Make copies of the divider cells 7840 ** into space obtained from aSpace1[]. The divider cells have already 7841 ** been removed from pParent. 7842 ** 7843 ** If the siblings are on leaf pages, then the child pointers of the 7844 ** divider cells are stripped from the cells before they are copied 7845 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7846 ** child pointers. If siblings are not leaves, then all cell in 7847 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7848 ** are alike. 7849 ** 7850 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7851 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7852 */ 7853 b.pRef = apOld[0]; 7854 leafCorrection = b.pRef->leaf*4; 7855 leafData = b.pRef->intKeyLeaf; 7856 for(i=0; i<nOld; i++){ 7857 MemPage *pOld = apOld[i]; 7858 int limit = pOld->nCell; 7859 u8 *aData = pOld->aData; 7860 u16 maskPage = pOld->maskPage; 7861 u8 *piCell = aData + pOld->cellOffset; 7862 u8 *piEnd; 7863 VVA_ONLY( int nCellAtStart = b.nCell; ) 7864 7865 /* Verify that all sibling pages are of the same "type" (table-leaf, 7866 ** table-interior, index-leaf, or index-interior). 7867 */ 7868 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7869 rc = SQLITE_CORRUPT_BKPT; 7870 goto balance_cleanup; 7871 } 7872 7873 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7874 ** contains overflow cells, include them in the b.apCell[] array 7875 ** in the correct spot. 7876 ** 7877 ** Note that when there are multiple overflow cells, it is always the 7878 ** case that they are sequential and adjacent. This invariant arises 7879 ** because multiple overflows can only occurs when inserting divider 7880 ** cells into a parent on a prior balance, and divider cells are always 7881 ** adjacent and are inserted in order. There is an assert() tagged 7882 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7883 ** invariant. 7884 ** 7885 ** This must be done in advance. Once the balance starts, the cell 7886 ** offset section of the btree page will be overwritten and we will no 7887 ** long be able to find the cells if a pointer to each cell is not saved 7888 ** first. 7889 */ 7890 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7891 if( pOld->nOverflow>0 ){ 7892 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7893 rc = SQLITE_CORRUPT_BKPT; 7894 goto balance_cleanup; 7895 } 7896 limit = pOld->aiOvfl[0]; 7897 for(j=0; j<limit; j++){ 7898 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7899 piCell += 2; 7900 b.nCell++; 7901 } 7902 for(k=0; k<pOld->nOverflow; k++){ 7903 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7904 b.apCell[b.nCell] = pOld->apOvfl[k]; 7905 b.nCell++; 7906 } 7907 } 7908 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7909 while( piCell<piEnd ){ 7910 assert( b.nCell<nMaxCells ); 7911 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7912 piCell += 2; 7913 b.nCell++; 7914 } 7915 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7916 7917 cntOld[i] = b.nCell; 7918 if( i<nOld-1 && !leafData){ 7919 u16 sz = (u16)szNew[i]; 7920 u8 *pTemp; 7921 assert( b.nCell<nMaxCells ); 7922 b.szCell[b.nCell] = sz; 7923 pTemp = &aSpace1[iSpace1]; 7924 iSpace1 += sz; 7925 assert( sz<=pBt->maxLocal+23 ); 7926 assert( iSpace1 <= (int)pBt->pageSize ); 7927 memcpy(pTemp, apDiv[i], sz); 7928 b.apCell[b.nCell] = pTemp+leafCorrection; 7929 assert( leafCorrection==0 || leafCorrection==4 ); 7930 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7931 if( !pOld->leaf ){ 7932 assert( leafCorrection==0 ); 7933 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 7934 /* The right pointer of the child page pOld becomes the left 7935 ** pointer of the divider cell */ 7936 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7937 }else{ 7938 assert( leafCorrection==4 ); 7939 while( b.szCell[b.nCell]<4 ){ 7940 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7941 ** does exist, pad it with 0x00 bytes. */ 7942 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7943 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7944 aSpace1[iSpace1++] = 0x00; 7945 b.szCell[b.nCell]++; 7946 } 7947 } 7948 b.nCell++; 7949 } 7950 } 7951 7952 /* 7953 ** Figure out the number of pages needed to hold all b.nCell cells. 7954 ** Store this number in "k". Also compute szNew[] which is the total 7955 ** size of all cells on the i-th page and cntNew[] which is the index 7956 ** in b.apCell[] of the cell that divides page i from page i+1. 7957 ** cntNew[k] should equal b.nCell. 7958 ** 7959 ** Values computed by this block: 7960 ** 7961 ** k: The total number of sibling pages 7962 ** szNew[i]: Spaced used on the i-th sibling page. 7963 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7964 ** the right of the i-th sibling page. 7965 ** usableSpace: Number of bytes of space available on each sibling. 7966 ** 7967 */ 7968 usableSpace = pBt->usableSize - 12 + leafCorrection; 7969 for(i=k=0; i<nOld; i++, k++){ 7970 MemPage *p = apOld[i]; 7971 b.apEnd[k] = p->aDataEnd; 7972 b.ixNx[k] = cntOld[i]; 7973 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7974 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7975 } 7976 if( !leafData ){ 7977 k++; 7978 b.apEnd[k] = pParent->aDataEnd; 7979 b.ixNx[k] = cntOld[i]+1; 7980 } 7981 assert( p->nFree>=0 ); 7982 szNew[i] = usableSpace - p->nFree; 7983 for(j=0; j<p->nOverflow; j++){ 7984 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7985 } 7986 cntNew[i] = cntOld[i]; 7987 } 7988 k = nOld; 7989 for(i=0; i<k; i++){ 7990 int sz; 7991 while( szNew[i]>usableSpace ){ 7992 if( i+1>=k ){ 7993 k = i+2; 7994 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7995 szNew[k-1] = 0; 7996 cntNew[k-1] = b.nCell; 7997 } 7998 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7999 szNew[i] -= sz; 8000 if( !leafData ){ 8001 if( cntNew[i]<b.nCell ){ 8002 sz = 2 + cachedCellSize(&b, cntNew[i]); 8003 }else{ 8004 sz = 0; 8005 } 8006 } 8007 szNew[i+1] += sz; 8008 cntNew[i]--; 8009 } 8010 while( cntNew[i]<b.nCell ){ 8011 sz = 2 + cachedCellSize(&b, cntNew[i]); 8012 if( szNew[i]+sz>usableSpace ) break; 8013 szNew[i] += sz; 8014 cntNew[i]++; 8015 if( !leafData ){ 8016 if( cntNew[i]<b.nCell ){ 8017 sz = 2 + cachedCellSize(&b, cntNew[i]); 8018 }else{ 8019 sz = 0; 8020 } 8021 } 8022 szNew[i+1] -= sz; 8023 } 8024 if( cntNew[i]>=b.nCell ){ 8025 k = i+1; 8026 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8027 rc = SQLITE_CORRUPT_BKPT; 8028 goto balance_cleanup; 8029 } 8030 } 8031 8032 /* 8033 ** The packing computed by the previous block is biased toward the siblings 8034 ** on the left side (siblings with smaller keys). The left siblings are 8035 ** always nearly full, while the right-most sibling might be nearly empty. 8036 ** The next block of code attempts to adjust the packing of siblings to 8037 ** get a better balance. 8038 ** 8039 ** This adjustment is more than an optimization. The packing above might 8040 ** be so out of balance as to be illegal. For example, the right-most 8041 ** sibling might be completely empty. This adjustment is not optional. 8042 */ 8043 for(i=k-1; i>0; i--){ 8044 int szRight = szNew[i]; /* Size of sibling on the right */ 8045 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8046 int r; /* Index of right-most cell in left sibling */ 8047 int d; /* Index of first cell to the left of right sibling */ 8048 8049 r = cntNew[i-1] - 1; 8050 d = r + 1 - leafData; 8051 (void)cachedCellSize(&b, d); 8052 do{ 8053 assert( d<nMaxCells ); 8054 assert( r<nMaxCells ); 8055 (void)cachedCellSize(&b, r); 8056 if( szRight!=0 8057 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8058 break; 8059 } 8060 szRight += b.szCell[d] + 2; 8061 szLeft -= b.szCell[r] + 2; 8062 cntNew[i-1] = r; 8063 r--; 8064 d--; 8065 }while( r>=0 ); 8066 szNew[i] = szRight; 8067 szNew[i-1] = szLeft; 8068 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8069 rc = SQLITE_CORRUPT_BKPT; 8070 goto balance_cleanup; 8071 } 8072 } 8073 8074 /* Sanity check: For a non-corrupt database file one of the follwing 8075 ** must be true: 8076 ** (1) We found one or more cells (cntNew[0])>0), or 8077 ** (2) pPage is a virtual root page. A virtual root page is when 8078 ** the real root page is page 1 and we are the only child of 8079 ** that page. 8080 */ 8081 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8082 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8083 apOld[0]->pgno, apOld[0]->nCell, 8084 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8085 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8086 )); 8087 8088 /* 8089 ** Allocate k new pages. Reuse old pages where possible. 8090 */ 8091 pageFlags = apOld[0]->aData[0]; 8092 for(i=0; i<k; i++){ 8093 MemPage *pNew; 8094 if( i<nOld ){ 8095 pNew = apNew[i] = apOld[i]; 8096 apOld[i] = 0; 8097 rc = sqlite3PagerWrite(pNew->pDbPage); 8098 nNew++; 8099 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8100 && rc==SQLITE_OK 8101 ){ 8102 rc = SQLITE_CORRUPT_BKPT; 8103 } 8104 if( rc ) goto balance_cleanup; 8105 }else{ 8106 assert( i>0 ); 8107 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8108 if( rc ) goto balance_cleanup; 8109 zeroPage(pNew, pageFlags); 8110 apNew[i] = pNew; 8111 nNew++; 8112 cntOld[i] = b.nCell; 8113 8114 /* Set the pointer-map entry for the new sibling page. */ 8115 if( ISAUTOVACUUM ){ 8116 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8117 if( rc!=SQLITE_OK ){ 8118 goto balance_cleanup; 8119 } 8120 } 8121 } 8122 } 8123 8124 /* 8125 ** Reassign page numbers so that the new pages are in ascending order. 8126 ** This helps to keep entries in the disk file in order so that a scan 8127 ** of the table is closer to a linear scan through the file. That in turn 8128 ** helps the operating system to deliver pages from the disk more rapidly. 8129 ** 8130 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8131 ** than (NB+2) (a small constant), that should not be a problem. 8132 ** 8133 ** When NB==3, this one optimization makes the database about 25% faster 8134 ** for large insertions and deletions. 8135 */ 8136 for(i=0; i<nNew; i++){ 8137 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8138 aPgFlags[i] = apNew[i]->pDbPage->flags; 8139 for(j=0; j<i; j++){ 8140 if( NEVER(aPgno[j]==aPgno[i]) ){ 8141 /* This branch is taken if the set of sibling pages somehow contains 8142 ** duplicate entries. This can happen if the database is corrupt. 8143 ** It would be simpler to detect this as part of the loop below, but 8144 ** we do the detection here in order to avoid populating the pager 8145 ** cache with two separate objects associated with the same 8146 ** page number. */ 8147 assert( CORRUPT_DB ); 8148 rc = SQLITE_CORRUPT_BKPT; 8149 goto balance_cleanup; 8150 } 8151 } 8152 } 8153 for(i=0; i<nNew; i++){ 8154 int iBest = 0; /* aPgno[] index of page number to use */ 8155 for(j=1; j<nNew; j++){ 8156 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8157 } 8158 pgno = aPgOrder[iBest]; 8159 aPgOrder[iBest] = 0xffffffff; 8160 if( iBest!=i ){ 8161 if( iBest>i ){ 8162 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8163 } 8164 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8165 apNew[i]->pgno = pgno; 8166 } 8167 } 8168 8169 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8170 "%d(%d nc=%d) %d(%d nc=%d)\n", 8171 apNew[0]->pgno, szNew[0], cntNew[0], 8172 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8173 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8174 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8175 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8176 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8177 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8178 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8179 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8180 )); 8181 8182 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8183 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8184 assert( apNew[nNew-1]!=0 ); 8185 put4byte(pRight, apNew[nNew-1]->pgno); 8186 8187 /* If the sibling pages are not leaves, ensure that the right-child pointer 8188 ** of the right-most new sibling page is set to the value that was 8189 ** originally in the same field of the right-most old sibling page. */ 8190 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8191 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8192 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8193 } 8194 8195 /* Make any required updates to pointer map entries associated with 8196 ** cells stored on sibling pages following the balance operation. Pointer 8197 ** map entries associated with divider cells are set by the insertCell() 8198 ** routine. The associated pointer map entries are: 8199 ** 8200 ** a) if the cell contains a reference to an overflow chain, the 8201 ** entry associated with the first page in the overflow chain, and 8202 ** 8203 ** b) if the sibling pages are not leaves, the child page associated 8204 ** with the cell. 8205 ** 8206 ** If the sibling pages are not leaves, then the pointer map entry 8207 ** associated with the right-child of each sibling may also need to be 8208 ** updated. This happens below, after the sibling pages have been 8209 ** populated, not here. 8210 */ 8211 if( ISAUTOVACUUM ){ 8212 MemPage *pOld; 8213 MemPage *pNew = pOld = apNew[0]; 8214 int cntOldNext = pNew->nCell + pNew->nOverflow; 8215 int iNew = 0; 8216 int iOld = 0; 8217 8218 for(i=0; i<b.nCell; i++){ 8219 u8 *pCell = b.apCell[i]; 8220 while( i==cntOldNext ){ 8221 iOld++; 8222 assert( iOld<nNew || iOld<nOld ); 8223 assert( iOld>=0 && iOld<NB ); 8224 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8225 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8226 } 8227 if( i==cntNew[iNew] ){ 8228 pNew = apNew[++iNew]; 8229 if( !leafData ) continue; 8230 } 8231 8232 /* Cell pCell is destined for new sibling page pNew. Originally, it 8233 ** was either part of sibling page iOld (possibly an overflow cell), 8234 ** or else the divider cell to the left of sibling page iOld. So, 8235 ** if sibling page iOld had the same page number as pNew, and if 8236 ** pCell really was a part of sibling page iOld (not a divider or 8237 ** overflow cell), we can skip updating the pointer map entries. */ 8238 if( iOld>=nNew 8239 || pNew->pgno!=aPgno[iOld] 8240 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8241 ){ 8242 if( !leafCorrection ){ 8243 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8244 } 8245 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8246 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8247 } 8248 if( rc ) goto balance_cleanup; 8249 } 8250 } 8251 } 8252 8253 /* Insert new divider cells into pParent. */ 8254 for(i=0; i<nNew-1; i++){ 8255 u8 *pCell; 8256 u8 *pTemp; 8257 int sz; 8258 u8 *pSrcEnd; 8259 MemPage *pNew = apNew[i]; 8260 j = cntNew[i]; 8261 8262 assert( j<nMaxCells ); 8263 assert( b.apCell[j]!=0 ); 8264 pCell = b.apCell[j]; 8265 sz = b.szCell[j] + leafCorrection; 8266 pTemp = &aOvflSpace[iOvflSpace]; 8267 if( !pNew->leaf ){ 8268 memcpy(&pNew->aData[8], pCell, 4); 8269 }else if( leafData ){ 8270 /* If the tree is a leaf-data tree, and the siblings are leaves, 8271 ** then there is no divider cell in b.apCell[]. Instead, the divider 8272 ** cell consists of the integer key for the right-most cell of 8273 ** the sibling-page assembled above only. 8274 */ 8275 CellInfo info; 8276 j--; 8277 pNew->xParseCell(pNew, b.apCell[j], &info); 8278 pCell = pTemp; 8279 sz = 4 + putVarint(&pCell[4], info.nKey); 8280 pTemp = 0; 8281 }else{ 8282 pCell -= 4; 8283 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8284 ** previously stored on a leaf node, and its reported size was 4 8285 ** bytes, then it may actually be smaller than this 8286 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8287 ** any cell). But it is important to pass the correct size to 8288 ** insertCell(), so reparse the cell now. 8289 ** 8290 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8291 ** and WITHOUT ROWID tables with exactly one column which is the 8292 ** primary key. 8293 */ 8294 if( b.szCell[j]==4 ){ 8295 assert(leafCorrection==4); 8296 sz = pParent->xCellSize(pParent, pCell); 8297 } 8298 } 8299 iOvflSpace += sz; 8300 assert( sz<=pBt->maxLocal+23 ); 8301 assert( iOvflSpace <= (int)pBt->pageSize ); 8302 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 8303 pSrcEnd = b.apEnd[k]; 8304 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8305 rc = SQLITE_CORRUPT_BKPT; 8306 goto balance_cleanup; 8307 } 8308 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8309 if( rc!=SQLITE_OK ) goto balance_cleanup; 8310 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8311 } 8312 8313 /* Now update the actual sibling pages. The order in which they are updated 8314 ** is important, as this code needs to avoid disrupting any page from which 8315 ** cells may still to be read. In practice, this means: 8316 ** 8317 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8318 ** then it is not safe to update page apNew[iPg] until after 8319 ** the left-hand sibling apNew[iPg-1] has been updated. 8320 ** 8321 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8322 ** then it is not safe to update page apNew[iPg] until after 8323 ** the right-hand sibling apNew[iPg+1] has been updated. 8324 ** 8325 ** If neither of the above apply, the page is safe to update. 8326 ** 8327 ** The iPg value in the following loop starts at nNew-1 goes down 8328 ** to 0, then back up to nNew-1 again, thus making two passes over 8329 ** the pages. On the initial downward pass, only condition (1) above 8330 ** needs to be tested because (2) will always be true from the previous 8331 ** step. On the upward pass, both conditions are always true, so the 8332 ** upwards pass simply processes pages that were missed on the downward 8333 ** pass. 8334 */ 8335 for(i=1-nNew; i<nNew; i++){ 8336 int iPg = i<0 ? -i : i; 8337 assert( iPg>=0 && iPg<nNew ); 8338 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8339 if( i>=0 /* On the upwards pass, or... */ 8340 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8341 ){ 8342 int iNew; 8343 int iOld; 8344 int nNewCell; 8345 8346 /* Verify condition (1): If cells are moving left, update iPg 8347 ** only after iPg-1 has already been updated. */ 8348 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8349 8350 /* Verify condition (2): If cells are moving right, update iPg 8351 ** only after iPg+1 has already been updated. */ 8352 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8353 8354 if( iPg==0 ){ 8355 iNew = iOld = 0; 8356 nNewCell = cntNew[0]; 8357 }else{ 8358 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8359 iNew = cntNew[iPg-1] + !leafData; 8360 nNewCell = cntNew[iPg] - iNew; 8361 } 8362 8363 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8364 if( rc ) goto balance_cleanup; 8365 abDone[iPg]++; 8366 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8367 assert( apNew[iPg]->nOverflow==0 ); 8368 assert( apNew[iPg]->nCell==nNewCell ); 8369 } 8370 } 8371 8372 /* All pages have been processed exactly once */ 8373 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8374 8375 assert( nOld>0 ); 8376 assert( nNew>0 ); 8377 8378 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8379 /* The root page of the b-tree now contains no cells. The only sibling 8380 ** page is the right-child of the parent. Copy the contents of the 8381 ** child page into the parent, decreasing the overall height of the 8382 ** b-tree structure by one. This is described as the "balance-shallower" 8383 ** sub-algorithm in some documentation. 8384 ** 8385 ** If this is an auto-vacuum database, the call to copyNodeContent() 8386 ** sets all pointer-map entries corresponding to database image pages 8387 ** for which the pointer is stored within the content being copied. 8388 ** 8389 ** It is critical that the child page be defragmented before being 8390 ** copied into the parent, because if the parent is page 1 then it will 8391 ** by smaller than the child due to the database header, and so all the 8392 ** free space needs to be up front. 8393 */ 8394 assert( nNew==1 || CORRUPT_DB ); 8395 rc = defragmentPage(apNew[0], -1); 8396 testcase( rc!=SQLITE_OK ); 8397 assert( apNew[0]->nFree == 8398 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8399 - apNew[0]->nCell*2) 8400 || rc!=SQLITE_OK 8401 ); 8402 copyNodeContent(apNew[0], pParent, &rc); 8403 freePage(apNew[0], &rc); 8404 }else if( ISAUTOVACUUM && !leafCorrection ){ 8405 /* Fix the pointer map entries associated with the right-child of each 8406 ** sibling page. All other pointer map entries have already been taken 8407 ** care of. */ 8408 for(i=0; i<nNew; i++){ 8409 u32 key = get4byte(&apNew[i]->aData[8]); 8410 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8411 } 8412 } 8413 8414 assert( pParent->isInit ); 8415 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8416 nOld, nNew, b.nCell)); 8417 8418 /* Free any old pages that were not reused as new pages. 8419 */ 8420 for(i=nNew; i<nOld; i++){ 8421 freePage(apOld[i], &rc); 8422 } 8423 8424 #if 0 8425 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8426 /* The ptrmapCheckPages() contains assert() statements that verify that 8427 ** all pointer map pages are set correctly. This is helpful while 8428 ** debugging. This is usually disabled because a corrupt database may 8429 ** cause an assert() statement to fail. */ 8430 ptrmapCheckPages(apNew, nNew); 8431 ptrmapCheckPages(&pParent, 1); 8432 } 8433 #endif 8434 8435 /* 8436 ** Cleanup before returning. 8437 */ 8438 balance_cleanup: 8439 sqlite3StackFree(0, b.apCell); 8440 for(i=0; i<nOld; i++){ 8441 releasePage(apOld[i]); 8442 } 8443 for(i=0; i<nNew; i++){ 8444 releasePage(apNew[i]); 8445 } 8446 8447 return rc; 8448 } 8449 8450 8451 /* 8452 ** This function is called when the root page of a b-tree structure is 8453 ** overfull (has one or more overflow pages). 8454 ** 8455 ** A new child page is allocated and the contents of the current root 8456 ** page, including overflow cells, are copied into the child. The root 8457 ** page is then overwritten to make it an empty page with the right-child 8458 ** pointer pointing to the new page. 8459 ** 8460 ** Before returning, all pointer-map entries corresponding to pages 8461 ** that the new child-page now contains pointers to are updated. The 8462 ** entry corresponding to the new right-child pointer of the root 8463 ** page is also updated. 8464 ** 8465 ** If successful, *ppChild is set to contain a reference to the child 8466 ** page and SQLITE_OK is returned. In this case the caller is required 8467 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8468 ** an error code is returned and *ppChild is set to 0. 8469 */ 8470 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8471 int rc; /* Return value from subprocedures */ 8472 MemPage *pChild = 0; /* Pointer to a new child page */ 8473 Pgno pgnoChild = 0; /* Page number of the new child page */ 8474 BtShared *pBt = pRoot->pBt; /* The BTree */ 8475 8476 assert( pRoot->nOverflow>0 ); 8477 assert( sqlite3_mutex_held(pBt->mutex) ); 8478 8479 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8480 ** page that will become the new right-child of pPage. Copy the contents 8481 ** of the node stored on pRoot into the new child page. 8482 */ 8483 rc = sqlite3PagerWrite(pRoot->pDbPage); 8484 if( rc==SQLITE_OK ){ 8485 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8486 copyNodeContent(pRoot, pChild, &rc); 8487 if( ISAUTOVACUUM ){ 8488 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8489 } 8490 } 8491 if( rc ){ 8492 *ppChild = 0; 8493 releasePage(pChild); 8494 return rc; 8495 } 8496 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8497 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8498 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8499 8500 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8501 8502 /* Copy the overflow cells from pRoot to pChild */ 8503 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8504 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8505 memcpy(pChild->apOvfl, pRoot->apOvfl, 8506 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8507 pChild->nOverflow = pRoot->nOverflow; 8508 8509 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8510 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8511 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8512 8513 *ppChild = pChild; 8514 return SQLITE_OK; 8515 } 8516 8517 /* 8518 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8519 ** on the same B-tree as pCur. 8520 ** 8521 ** This can occur if a database is corrupt with two or more SQL tables 8522 ** pointing to the same b-tree. If an insert occurs on one SQL table 8523 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8524 ** table linked to the same b-tree. If the secondary insert causes a 8525 ** rebalance, that can change content out from under the cursor on the 8526 ** first SQL table, violating invariants on the first insert. 8527 */ 8528 static int anotherValidCursor(BtCursor *pCur){ 8529 BtCursor *pOther; 8530 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8531 if( pOther!=pCur 8532 && pOther->eState==CURSOR_VALID 8533 && pOther->pPage==pCur->pPage 8534 ){ 8535 return SQLITE_CORRUPT_BKPT; 8536 } 8537 } 8538 return SQLITE_OK; 8539 } 8540 8541 /* 8542 ** The page that pCur currently points to has just been modified in 8543 ** some way. This function figures out if this modification means the 8544 ** tree needs to be balanced, and if so calls the appropriate balancing 8545 ** routine. Balancing routines are: 8546 ** 8547 ** balance_quick() 8548 ** balance_deeper() 8549 ** balance_nonroot() 8550 */ 8551 static int balance(BtCursor *pCur){ 8552 int rc = SQLITE_OK; 8553 const int nMin = pCur->pBt->usableSize * 2 / 3; 8554 u8 aBalanceQuickSpace[13]; 8555 u8 *pFree = 0; 8556 8557 VVA_ONLY( int balance_quick_called = 0 ); 8558 VVA_ONLY( int balance_deeper_called = 0 ); 8559 8560 do { 8561 int iPage; 8562 MemPage *pPage = pCur->pPage; 8563 8564 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8565 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8566 break; 8567 }else if( (iPage = pCur->iPage)==0 ){ 8568 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8569 /* The root page of the b-tree is overfull. In this case call the 8570 ** balance_deeper() function to create a new child for the root-page 8571 ** and copy the current contents of the root-page to it. The 8572 ** next iteration of the do-loop will balance the child page. 8573 */ 8574 assert( balance_deeper_called==0 ); 8575 VVA_ONLY( balance_deeper_called++ ); 8576 rc = balance_deeper(pPage, &pCur->apPage[1]); 8577 if( rc==SQLITE_OK ){ 8578 pCur->iPage = 1; 8579 pCur->ix = 0; 8580 pCur->aiIdx[0] = 0; 8581 pCur->apPage[0] = pPage; 8582 pCur->pPage = pCur->apPage[1]; 8583 assert( pCur->pPage->nOverflow ); 8584 } 8585 }else{ 8586 break; 8587 } 8588 }else{ 8589 MemPage * const pParent = pCur->apPage[iPage-1]; 8590 int const iIdx = pCur->aiIdx[iPage-1]; 8591 8592 rc = sqlite3PagerWrite(pParent->pDbPage); 8593 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8594 rc = btreeComputeFreeSpace(pParent); 8595 } 8596 if( rc==SQLITE_OK ){ 8597 #ifndef SQLITE_OMIT_QUICKBALANCE 8598 if( pPage->intKeyLeaf 8599 && pPage->nOverflow==1 8600 && pPage->aiOvfl[0]==pPage->nCell 8601 && pParent->pgno!=1 8602 && pParent->nCell==iIdx 8603 ){ 8604 /* Call balance_quick() to create a new sibling of pPage on which 8605 ** to store the overflow cell. balance_quick() inserts a new cell 8606 ** into pParent, which may cause pParent overflow. If this 8607 ** happens, the next iteration of the do-loop will balance pParent 8608 ** use either balance_nonroot() or balance_deeper(). Until this 8609 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8610 ** buffer. 8611 ** 8612 ** The purpose of the following assert() is to check that only a 8613 ** single call to balance_quick() is made for each call to this 8614 ** function. If this were not verified, a subtle bug involving reuse 8615 ** of the aBalanceQuickSpace[] might sneak in. 8616 */ 8617 assert( balance_quick_called==0 ); 8618 VVA_ONLY( balance_quick_called++ ); 8619 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8620 }else 8621 #endif 8622 { 8623 /* In this case, call balance_nonroot() to redistribute cells 8624 ** between pPage and up to 2 of its sibling pages. This involves 8625 ** modifying the contents of pParent, which may cause pParent to 8626 ** become overfull or underfull. The next iteration of the do-loop 8627 ** will balance the parent page to correct this. 8628 ** 8629 ** If the parent page becomes overfull, the overflow cell or cells 8630 ** are stored in the pSpace buffer allocated immediately below. 8631 ** A subsequent iteration of the do-loop will deal with this by 8632 ** calling balance_nonroot() (balance_deeper() may be called first, 8633 ** but it doesn't deal with overflow cells - just moves them to a 8634 ** different page). Once this subsequent call to balance_nonroot() 8635 ** has completed, it is safe to release the pSpace buffer used by 8636 ** the previous call, as the overflow cell data will have been 8637 ** copied either into the body of a database page or into the new 8638 ** pSpace buffer passed to the latter call to balance_nonroot(). 8639 */ 8640 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8641 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8642 pCur->hints&BTREE_BULKLOAD); 8643 if( pFree ){ 8644 /* If pFree is not NULL, it points to the pSpace buffer used 8645 ** by a previous call to balance_nonroot(). Its contents are 8646 ** now stored either on real database pages or within the 8647 ** new pSpace buffer, so it may be safely freed here. */ 8648 sqlite3PageFree(pFree); 8649 } 8650 8651 /* The pSpace buffer will be freed after the next call to 8652 ** balance_nonroot(), or just before this function returns, whichever 8653 ** comes first. */ 8654 pFree = pSpace; 8655 } 8656 } 8657 8658 pPage->nOverflow = 0; 8659 8660 /* The next iteration of the do-loop balances the parent page. */ 8661 releasePage(pPage); 8662 pCur->iPage--; 8663 assert( pCur->iPage>=0 ); 8664 pCur->pPage = pCur->apPage[pCur->iPage]; 8665 } 8666 }while( rc==SQLITE_OK ); 8667 8668 if( pFree ){ 8669 sqlite3PageFree(pFree); 8670 } 8671 return rc; 8672 } 8673 8674 /* Overwrite content from pX into pDest. Only do the write if the 8675 ** content is different from what is already there. 8676 */ 8677 static int btreeOverwriteContent( 8678 MemPage *pPage, /* MemPage on which writing will occur */ 8679 u8 *pDest, /* Pointer to the place to start writing */ 8680 const BtreePayload *pX, /* Source of data to write */ 8681 int iOffset, /* Offset of first byte to write */ 8682 int iAmt /* Number of bytes to be written */ 8683 ){ 8684 int nData = pX->nData - iOffset; 8685 if( nData<=0 ){ 8686 /* Overwritting with zeros */ 8687 int i; 8688 for(i=0; i<iAmt && pDest[i]==0; i++){} 8689 if( i<iAmt ){ 8690 int rc = sqlite3PagerWrite(pPage->pDbPage); 8691 if( rc ) return rc; 8692 memset(pDest + i, 0, iAmt - i); 8693 } 8694 }else{ 8695 if( nData<iAmt ){ 8696 /* Mixed read data and zeros at the end. Make a recursive call 8697 ** to write the zeros then fall through to write the real data */ 8698 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8699 iAmt-nData); 8700 if( rc ) return rc; 8701 iAmt = nData; 8702 } 8703 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8704 int rc = sqlite3PagerWrite(pPage->pDbPage); 8705 if( rc ) return rc; 8706 /* In a corrupt database, it is possible for the source and destination 8707 ** buffers to overlap. This is harmless since the database is already 8708 ** corrupt but it does cause valgrind and ASAN warnings. So use 8709 ** memmove(). */ 8710 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8711 } 8712 } 8713 return SQLITE_OK; 8714 } 8715 8716 /* 8717 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8718 ** contained in pX. 8719 */ 8720 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8721 int iOffset; /* Next byte of pX->pData to write */ 8722 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8723 int rc; /* Return code */ 8724 MemPage *pPage = pCur->pPage; /* Page being written */ 8725 BtShared *pBt; /* Btree */ 8726 Pgno ovflPgno; /* Next overflow page to write */ 8727 u32 ovflPageSize; /* Size to write on overflow page */ 8728 8729 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8730 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8731 ){ 8732 return SQLITE_CORRUPT_BKPT; 8733 } 8734 /* Overwrite the local portion first */ 8735 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8736 0, pCur->info.nLocal); 8737 if( rc ) return rc; 8738 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8739 8740 /* Now overwrite the overflow pages */ 8741 iOffset = pCur->info.nLocal; 8742 assert( nTotal>=0 ); 8743 assert( iOffset>=0 ); 8744 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8745 pBt = pPage->pBt; 8746 ovflPageSize = pBt->usableSize - 4; 8747 do{ 8748 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8749 if( rc ) return rc; 8750 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8751 rc = SQLITE_CORRUPT_BKPT; 8752 }else{ 8753 if( iOffset+ovflPageSize<(u32)nTotal ){ 8754 ovflPgno = get4byte(pPage->aData); 8755 }else{ 8756 ovflPageSize = nTotal - iOffset; 8757 } 8758 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8759 iOffset, ovflPageSize); 8760 } 8761 sqlite3PagerUnref(pPage->pDbPage); 8762 if( rc ) return rc; 8763 iOffset += ovflPageSize; 8764 }while( iOffset<nTotal ); 8765 return SQLITE_OK; 8766 } 8767 8768 8769 /* 8770 ** Insert a new record into the BTree. The content of the new record 8771 ** is described by the pX object. The pCur cursor is used only to 8772 ** define what table the record should be inserted into, and is left 8773 ** pointing at a random location. 8774 ** 8775 ** For a table btree (used for rowid tables), only the pX.nKey value of 8776 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8777 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8778 ** hold the content of the row. 8779 ** 8780 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8781 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8782 ** pX.pData,nData,nZero fields must be zero. 8783 ** 8784 ** If the seekResult parameter is non-zero, then a successful call to 8785 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8786 ** been performed. In other words, if seekResult!=0 then the cursor 8787 ** is currently pointing to a cell that will be adjacent to the cell 8788 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8789 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8790 ** that is larger than (pKey,nKey). 8791 ** 8792 ** If seekResult==0, that means pCur is pointing at some unknown location. 8793 ** In that case, this routine must seek the cursor to the correct insertion 8794 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8795 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8796 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8797 ** to decode the key. 8798 */ 8799 int sqlite3BtreeInsert( 8800 BtCursor *pCur, /* Insert data into the table of this cursor */ 8801 const BtreePayload *pX, /* Content of the row to be inserted */ 8802 int flags, /* True if this is likely an append */ 8803 int seekResult /* Result of prior MovetoUnpacked() call */ 8804 ){ 8805 int rc; 8806 int loc = seekResult; /* -1: before desired location +1: after */ 8807 int szNew = 0; 8808 int idx; 8809 MemPage *pPage; 8810 Btree *p = pCur->pBtree; 8811 BtShared *pBt = p->pBt; 8812 unsigned char *oldCell; 8813 unsigned char *newCell = 0; 8814 8815 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 8816 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 8817 8818 if( pCur->eState==CURSOR_FAULT ){ 8819 assert( pCur->skipNext!=SQLITE_OK ); 8820 return pCur->skipNext; 8821 } 8822 8823 assert( cursorOwnsBtShared(pCur) ); 8824 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8825 && pBt->inTransaction==TRANS_WRITE 8826 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8827 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8828 8829 /* Assert that the caller has been consistent. If this cursor was opened 8830 ** expecting an index b-tree, then the caller should be inserting blob 8831 ** keys with no associated data. If the cursor was opened expecting an 8832 ** intkey table, the caller should be inserting integer keys with a 8833 ** blob of associated data. */ 8834 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8835 8836 /* Save the positions of any other cursors open on this table. 8837 ** 8838 ** In some cases, the call to btreeMoveto() below is a no-op. For 8839 ** example, when inserting data into a table with auto-generated integer 8840 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8841 ** integer key to use. It then calls this function to actually insert the 8842 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8843 ** that the cursor is already where it needs to be and returns without 8844 ** doing any work. To avoid thwarting these optimizations, it is important 8845 ** not to clear the cursor here. 8846 */ 8847 if( pCur->curFlags & BTCF_Multiple ){ 8848 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8849 if( rc ) return rc; 8850 if( loc && pCur->iPage<0 ){ 8851 /* This can only happen if the schema is corrupt such that there is more 8852 ** than one table or index with the same root page as used by the cursor. 8853 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 8854 ** the schema was loaded. This cannot be asserted though, as a user might 8855 ** set the flag, load the schema, and then unset the flag. */ 8856 return SQLITE_CORRUPT_BKPT; 8857 } 8858 } 8859 8860 if( pCur->pKeyInfo==0 ){ 8861 assert( pX->pKey==0 ); 8862 /* If this is an insert into a table b-tree, invalidate any incrblob 8863 ** cursors open on the row being replaced */ 8864 if( p->hasIncrblobCur ){ 8865 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8866 } 8867 8868 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8869 ** to a row with the same key as the new entry being inserted. 8870 */ 8871 #ifdef SQLITE_DEBUG 8872 if( flags & BTREE_SAVEPOSITION ){ 8873 assert( pCur->curFlags & BTCF_ValidNKey ); 8874 assert( pX->nKey==pCur->info.nKey ); 8875 assert( loc==0 ); 8876 } 8877 #endif 8878 8879 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8880 ** that the cursor is not pointing to a row to be overwritten. 8881 ** So do a complete check. 8882 */ 8883 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8884 /* The cursor is pointing to the entry that is to be 8885 ** overwritten */ 8886 assert( pX->nData>=0 && pX->nZero>=0 ); 8887 if( pCur->info.nSize!=0 8888 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8889 ){ 8890 /* New entry is the same size as the old. Do an overwrite */ 8891 return btreeOverwriteCell(pCur, pX); 8892 } 8893 assert( loc==0 ); 8894 }else if( loc==0 ){ 8895 /* The cursor is *not* pointing to the cell to be overwritten, nor 8896 ** to an adjacent cell. Move the cursor so that it is pointing either 8897 ** to the cell to be overwritten or an adjacent cell. 8898 */ 8899 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 8900 (flags & BTREE_APPEND)!=0, &loc); 8901 if( rc ) return rc; 8902 } 8903 }else{ 8904 /* This is an index or a WITHOUT ROWID table */ 8905 8906 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8907 ** to a row with the same key as the new entry being inserted. 8908 */ 8909 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8910 8911 /* If the cursor is not already pointing either to the cell to be 8912 ** overwritten, or if a new cell is being inserted, if the cursor is 8913 ** not pointing to an immediately adjacent cell, then move the cursor 8914 ** so that it does. 8915 */ 8916 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8917 if( pX->nMem ){ 8918 UnpackedRecord r; 8919 r.pKeyInfo = pCur->pKeyInfo; 8920 r.aMem = pX->aMem; 8921 r.nField = pX->nMem; 8922 r.default_rc = 0; 8923 r.eqSeen = 0; 8924 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 8925 }else{ 8926 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 8927 (flags & BTREE_APPEND)!=0, &loc); 8928 } 8929 if( rc ) return rc; 8930 } 8931 8932 /* If the cursor is currently pointing to an entry to be overwritten 8933 ** and the new content is the same as as the old, then use the 8934 ** overwrite optimization. 8935 */ 8936 if( loc==0 ){ 8937 getCellInfo(pCur); 8938 if( pCur->info.nKey==pX->nKey ){ 8939 BtreePayload x2; 8940 x2.pData = pX->pKey; 8941 x2.nData = pX->nKey; 8942 x2.nZero = 0; 8943 return btreeOverwriteCell(pCur, &x2); 8944 } 8945 } 8946 } 8947 assert( pCur->eState==CURSOR_VALID 8948 || (pCur->eState==CURSOR_INVALID && loc) 8949 || CORRUPT_DB ); 8950 8951 pPage = pCur->pPage; 8952 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 8953 assert( pPage->leaf || !pPage->intKey ); 8954 if( pPage->nFree<0 ){ 8955 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 8956 rc = SQLITE_CORRUPT_BKPT; 8957 }else{ 8958 rc = btreeComputeFreeSpace(pPage); 8959 } 8960 if( rc ) return rc; 8961 } 8962 8963 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8964 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8965 loc==0 ? "overwrite" : "new entry")); 8966 assert( pPage->isInit ); 8967 newCell = pBt->pTmpSpace; 8968 assert( newCell!=0 ); 8969 if( flags & BTREE_PREFORMAT ){ 8970 rc = SQLITE_OK; 8971 szNew = pBt->nPreformatSize; 8972 if( szNew<4 ) szNew = 4; 8973 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 8974 CellInfo info; 8975 pPage->xParseCell(pPage, newCell, &info); 8976 if( info.nPayload!=info.nLocal ){ 8977 Pgno ovfl = get4byte(&newCell[szNew-4]); 8978 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 8979 } 8980 } 8981 }else{ 8982 rc = fillInCell(pPage, newCell, pX, &szNew); 8983 } 8984 if( rc ) goto end_insert; 8985 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8986 assert( szNew <= MX_CELL_SIZE(pBt) ); 8987 idx = pCur->ix; 8988 if( loc==0 ){ 8989 CellInfo info; 8990 assert( idx>=0 ); 8991 if( idx>=pPage->nCell ){ 8992 return SQLITE_CORRUPT_BKPT; 8993 } 8994 rc = sqlite3PagerWrite(pPage->pDbPage); 8995 if( rc ){ 8996 goto end_insert; 8997 } 8998 oldCell = findCell(pPage, idx); 8999 if( !pPage->leaf ){ 9000 memcpy(newCell, oldCell, 4); 9001 } 9002 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9003 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9004 invalidateOverflowCache(pCur); 9005 if( info.nSize==szNew && info.nLocal==info.nPayload 9006 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9007 ){ 9008 /* Overwrite the old cell with the new if they are the same size. 9009 ** We could also try to do this if the old cell is smaller, then add 9010 ** the leftover space to the free list. But experiments show that 9011 ** doing that is no faster then skipping this optimization and just 9012 ** calling dropCell() and insertCell(). 9013 ** 9014 ** This optimization cannot be used on an autovacuum database if the 9015 ** new entry uses overflow pages, as the insertCell() call below is 9016 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9017 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9018 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9019 return SQLITE_CORRUPT_BKPT; 9020 } 9021 if( oldCell+szNew > pPage->aDataEnd ){ 9022 return SQLITE_CORRUPT_BKPT; 9023 } 9024 memcpy(oldCell, newCell, szNew); 9025 return SQLITE_OK; 9026 } 9027 dropCell(pPage, idx, info.nSize, &rc); 9028 if( rc ) goto end_insert; 9029 }else if( loc<0 && pPage->nCell>0 ){ 9030 assert( pPage->leaf ); 9031 idx = ++pCur->ix; 9032 pCur->curFlags &= ~BTCF_ValidNKey; 9033 }else{ 9034 assert( pPage->leaf ); 9035 } 9036 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9037 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9038 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9039 9040 /* If no error has occurred and pPage has an overflow cell, call balance() 9041 ** to redistribute the cells within the tree. Since balance() may move 9042 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9043 ** variables. 9044 ** 9045 ** Previous versions of SQLite called moveToRoot() to move the cursor 9046 ** back to the root page as balance() used to invalidate the contents 9047 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9048 ** set the cursor state to "invalid". This makes common insert operations 9049 ** slightly faster. 9050 ** 9051 ** There is a subtle but important optimization here too. When inserting 9052 ** multiple records into an intkey b-tree using a single cursor (as can 9053 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9054 ** is advantageous to leave the cursor pointing to the last entry in 9055 ** the b-tree if possible. If the cursor is left pointing to the last 9056 ** entry in the table, and the next row inserted has an integer key 9057 ** larger than the largest existing key, it is possible to insert the 9058 ** row without seeking the cursor. This can be a big performance boost. 9059 */ 9060 pCur->info.nSize = 0; 9061 if( pPage->nOverflow ){ 9062 assert( rc==SQLITE_OK ); 9063 pCur->curFlags &= ~(BTCF_ValidNKey); 9064 rc = balance(pCur); 9065 9066 /* Must make sure nOverflow is reset to zero even if the balance() 9067 ** fails. Internal data structure corruption will result otherwise. 9068 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9069 ** from trying to save the current position of the cursor. */ 9070 pCur->pPage->nOverflow = 0; 9071 pCur->eState = CURSOR_INVALID; 9072 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9073 btreeReleaseAllCursorPages(pCur); 9074 if( pCur->pKeyInfo ){ 9075 assert( pCur->pKey==0 ); 9076 pCur->pKey = sqlite3Malloc( pX->nKey ); 9077 if( pCur->pKey==0 ){ 9078 rc = SQLITE_NOMEM; 9079 }else{ 9080 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9081 } 9082 } 9083 pCur->eState = CURSOR_REQUIRESEEK; 9084 pCur->nKey = pX->nKey; 9085 } 9086 } 9087 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9088 9089 end_insert: 9090 return rc; 9091 } 9092 9093 /* 9094 ** This function is used as part of copying the current row from cursor 9095 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9096 ** parameter iKey is used as the rowid value when the record is copied 9097 ** into pDest. Otherwise, the record is copied verbatim. 9098 ** 9099 ** This function does not actually write the new value to cursor pDest. 9100 ** Instead, it creates and populates any required overflow pages and 9101 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9102 ** for the destination database. The size of the cell, in bytes, is left 9103 ** in BtShared.nPreformatSize. The caller completes the insertion by 9104 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9105 ** 9106 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9107 */ 9108 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9109 int rc = SQLITE_OK; 9110 BtShared *pBt = pDest->pBt; 9111 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9112 const u8 *aIn; /* Pointer to next input buffer */ 9113 u32 nIn; /* Size of input buffer aIn[] */ 9114 u32 nRem; /* Bytes of data still to copy */ 9115 9116 getCellInfo(pSrc); 9117 aOut += putVarint32(aOut, pSrc->info.nPayload); 9118 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9119 nIn = pSrc->info.nLocal; 9120 aIn = pSrc->info.pPayload; 9121 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9122 return SQLITE_CORRUPT_BKPT; 9123 } 9124 nRem = pSrc->info.nPayload; 9125 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9126 memcpy(aOut, aIn, nIn); 9127 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9128 }else{ 9129 Pager *pSrcPager = pSrc->pBt->pPager; 9130 u8 *pPgnoOut = 0; 9131 Pgno ovflIn = 0; 9132 DbPage *pPageIn = 0; 9133 MemPage *pPageOut = 0; 9134 u32 nOut; /* Size of output buffer aOut[] */ 9135 9136 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9137 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9138 if( nOut<pSrc->info.nPayload ){ 9139 pPgnoOut = &aOut[nOut]; 9140 pBt->nPreformatSize += 4; 9141 } 9142 9143 if( nRem>nIn ){ 9144 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9145 return SQLITE_CORRUPT_BKPT; 9146 } 9147 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9148 } 9149 9150 do { 9151 nRem -= nOut; 9152 do{ 9153 assert( nOut>0 ); 9154 if( nIn>0 ){ 9155 int nCopy = MIN(nOut, nIn); 9156 memcpy(aOut, aIn, nCopy); 9157 nOut -= nCopy; 9158 nIn -= nCopy; 9159 aOut += nCopy; 9160 aIn += nCopy; 9161 } 9162 if( nOut>0 ){ 9163 sqlite3PagerUnref(pPageIn); 9164 pPageIn = 0; 9165 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9166 if( rc==SQLITE_OK ){ 9167 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9168 ovflIn = get4byte(aIn); 9169 aIn += 4; 9170 nIn = pSrc->pBt->usableSize - 4; 9171 } 9172 } 9173 }while( rc==SQLITE_OK && nOut>0 ); 9174 9175 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9176 Pgno pgnoNew; 9177 MemPage *pNew = 0; 9178 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9179 put4byte(pPgnoOut, pgnoNew); 9180 if( ISAUTOVACUUM && pPageOut ){ 9181 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9182 } 9183 releasePage(pPageOut); 9184 pPageOut = pNew; 9185 if( pPageOut ){ 9186 pPgnoOut = pPageOut->aData; 9187 put4byte(pPgnoOut, 0); 9188 aOut = &pPgnoOut[4]; 9189 nOut = MIN(pBt->usableSize - 4, nRem); 9190 } 9191 } 9192 }while( nRem>0 && rc==SQLITE_OK ); 9193 9194 releasePage(pPageOut); 9195 sqlite3PagerUnref(pPageIn); 9196 } 9197 9198 return rc; 9199 } 9200 9201 /* 9202 ** Delete the entry that the cursor is pointing to. 9203 ** 9204 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9205 ** the cursor is left pointing at an arbitrary location after the delete. 9206 ** But if that bit is set, then the cursor is left in a state such that 9207 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9208 ** as it would have been on if the call to BtreeDelete() had been omitted. 9209 ** 9210 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9211 ** associated with a single table entry and its indexes. Only one of those 9212 ** deletes is considered the "primary" delete. The primary delete occurs 9213 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9214 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9215 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9216 ** but which might be used by alternative storage engines. 9217 */ 9218 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9219 Btree *p = pCur->pBtree; 9220 BtShared *pBt = p->pBt; 9221 int rc; /* Return code */ 9222 MemPage *pPage; /* Page to delete cell from */ 9223 unsigned char *pCell; /* Pointer to cell to delete */ 9224 int iCellIdx; /* Index of cell to delete */ 9225 int iCellDepth; /* Depth of node containing pCell */ 9226 CellInfo info; /* Size of the cell being deleted */ 9227 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 9228 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 9229 9230 assert( cursorOwnsBtShared(pCur) ); 9231 assert( pBt->inTransaction==TRANS_WRITE ); 9232 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9233 assert( pCur->curFlags & BTCF_WriteFlag ); 9234 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9235 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9236 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9237 if( pCur->eState==CURSOR_REQUIRESEEK ){ 9238 rc = btreeRestoreCursorPosition(pCur); 9239 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9240 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9241 } 9242 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9243 9244 iCellDepth = pCur->iPage; 9245 iCellIdx = pCur->ix; 9246 pPage = pCur->pPage; 9247 pCell = findCell(pPage, iCellIdx); 9248 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT; 9249 9250 /* If the bPreserve flag is set to true, then the cursor position must 9251 ** be preserved following this delete operation. If the current delete 9252 ** will cause a b-tree rebalance, then this is done by saving the cursor 9253 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9254 ** returning. 9255 ** 9256 ** Or, if the current delete will not cause a rebalance, then the cursor 9257 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9258 ** before or after the deleted entry. In this case set bSkipnext to true. */ 9259 if( bPreserve ){ 9260 if( !pPage->leaf 9261 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 9262 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9263 ){ 9264 /* A b-tree rebalance will be required after deleting this entry. 9265 ** Save the cursor key. */ 9266 rc = saveCursorKey(pCur); 9267 if( rc ) return rc; 9268 }else{ 9269 bSkipnext = 1; 9270 } 9271 } 9272 9273 /* If the page containing the entry to delete is not a leaf page, move 9274 ** the cursor to the largest entry in the tree that is smaller than 9275 ** the entry being deleted. This cell will replace the cell being deleted 9276 ** from the internal node. The 'previous' entry is used for this instead 9277 ** of the 'next' entry, as the previous entry is always a part of the 9278 ** sub-tree headed by the child page of the cell being deleted. This makes 9279 ** balancing the tree following the delete operation easier. */ 9280 if( !pPage->leaf ){ 9281 rc = sqlite3BtreePrevious(pCur, 0); 9282 assert( rc!=SQLITE_DONE ); 9283 if( rc ) return rc; 9284 } 9285 9286 /* Save the positions of any other cursors open on this table before 9287 ** making any modifications. */ 9288 if( pCur->curFlags & BTCF_Multiple ){ 9289 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9290 if( rc ) return rc; 9291 } 9292 9293 /* If this is a delete operation to remove a row from a table b-tree, 9294 ** invalidate any incrblob cursors open on the row being deleted. */ 9295 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9296 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9297 } 9298 9299 /* Make the page containing the entry to be deleted writable. Then free any 9300 ** overflow pages associated with the entry and finally remove the cell 9301 ** itself from within the page. */ 9302 rc = sqlite3PagerWrite(pPage->pDbPage); 9303 if( rc ) return rc; 9304 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9305 dropCell(pPage, iCellIdx, info.nSize, &rc); 9306 if( rc ) return rc; 9307 9308 /* If the cell deleted was not located on a leaf page, then the cursor 9309 ** is currently pointing to the largest entry in the sub-tree headed 9310 ** by the child-page of the cell that was just deleted from an internal 9311 ** node. The cell from the leaf node needs to be moved to the internal 9312 ** node to replace the deleted cell. */ 9313 if( !pPage->leaf ){ 9314 MemPage *pLeaf = pCur->pPage; 9315 int nCell; 9316 Pgno n; 9317 unsigned char *pTmp; 9318 9319 if( pLeaf->nFree<0 ){ 9320 rc = btreeComputeFreeSpace(pLeaf); 9321 if( rc ) return rc; 9322 } 9323 if( iCellDepth<pCur->iPage-1 ){ 9324 n = pCur->apPage[iCellDepth+1]->pgno; 9325 }else{ 9326 n = pCur->pPage->pgno; 9327 } 9328 pCell = findCell(pLeaf, pLeaf->nCell-1); 9329 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9330 nCell = pLeaf->xCellSize(pLeaf, pCell); 9331 assert( MX_CELL_SIZE(pBt) >= nCell ); 9332 pTmp = pBt->pTmpSpace; 9333 assert( pTmp!=0 ); 9334 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9335 if( rc==SQLITE_OK ){ 9336 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9337 } 9338 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9339 if( rc ) return rc; 9340 } 9341 9342 /* Balance the tree. If the entry deleted was located on a leaf page, 9343 ** then the cursor still points to that page. In this case the first 9344 ** call to balance() repairs the tree, and the if(...) condition is 9345 ** never true. 9346 ** 9347 ** Otherwise, if the entry deleted was on an internal node page, then 9348 ** pCur is pointing to the leaf page from which a cell was removed to 9349 ** replace the cell deleted from the internal node. This is slightly 9350 ** tricky as the leaf node may be underfull, and the internal node may 9351 ** be either under or overfull. In this case run the balancing algorithm 9352 ** on the leaf node first. If the balance proceeds far enough up the 9353 ** tree that we can be sure that any problem in the internal node has 9354 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9355 ** walk the cursor up the tree to the internal node and balance it as 9356 ** well. */ 9357 rc = balance(pCur); 9358 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9359 releasePageNotNull(pCur->pPage); 9360 pCur->iPage--; 9361 while( pCur->iPage>iCellDepth ){ 9362 releasePage(pCur->apPage[pCur->iPage--]); 9363 } 9364 pCur->pPage = pCur->apPage[pCur->iPage]; 9365 rc = balance(pCur); 9366 } 9367 9368 if( rc==SQLITE_OK ){ 9369 if( bSkipnext ){ 9370 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9371 assert( pPage==pCur->pPage || CORRUPT_DB ); 9372 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9373 pCur->eState = CURSOR_SKIPNEXT; 9374 if( iCellIdx>=pPage->nCell ){ 9375 pCur->skipNext = -1; 9376 pCur->ix = pPage->nCell-1; 9377 }else{ 9378 pCur->skipNext = 1; 9379 } 9380 }else{ 9381 rc = moveToRoot(pCur); 9382 if( bPreserve ){ 9383 btreeReleaseAllCursorPages(pCur); 9384 pCur->eState = CURSOR_REQUIRESEEK; 9385 } 9386 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9387 } 9388 } 9389 return rc; 9390 } 9391 9392 /* 9393 ** Create a new BTree table. Write into *piTable the page 9394 ** number for the root page of the new table. 9395 ** 9396 ** The type of type is determined by the flags parameter. Only the 9397 ** following values of flags are currently in use. Other values for 9398 ** flags might not work: 9399 ** 9400 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9401 ** BTREE_ZERODATA Used for SQL indices 9402 */ 9403 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9404 BtShared *pBt = p->pBt; 9405 MemPage *pRoot; 9406 Pgno pgnoRoot; 9407 int rc; 9408 int ptfFlags; /* Page-type flage for the root page of new table */ 9409 9410 assert( sqlite3BtreeHoldsMutex(p) ); 9411 assert( pBt->inTransaction==TRANS_WRITE ); 9412 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9413 9414 #ifdef SQLITE_OMIT_AUTOVACUUM 9415 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9416 if( rc ){ 9417 return rc; 9418 } 9419 #else 9420 if( pBt->autoVacuum ){ 9421 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9422 MemPage *pPageMove; /* The page to move to. */ 9423 9424 /* Creating a new table may probably require moving an existing database 9425 ** to make room for the new tables root page. In case this page turns 9426 ** out to be an overflow page, delete all overflow page-map caches 9427 ** held by open cursors. 9428 */ 9429 invalidateAllOverflowCache(pBt); 9430 9431 /* Read the value of meta[3] from the database to determine where the 9432 ** root page of the new table should go. meta[3] is the largest root-page 9433 ** created so far, so the new root-page is (meta[3]+1). 9434 */ 9435 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9436 if( pgnoRoot>btreePagecount(pBt) ){ 9437 return SQLITE_CORRUPT_BKPT; 9438 } 9439 pgnoRoot++; 9440 9441 /* The new root-page may not be allocated on a pointer-map page, or the 9442 ** PENDING_BYTE page. 9443 */ 9444 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9445 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9446 pgnoRoot++; 9447 } 9448 assert( pgnoRoot>=3 ); 9449 9450 /* Allocate a page. The page that currently resides at pgnoRoot will 9451 ** be moved to the allocated page (unless the allocated page happens 9452 ** to reside at pgnoRoot). 9453 */ 9454 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9455 if( rc!=SQLITE_OK ){ 9456 return rc; 9457 } 9458 9459 if( pgnoMove!=pgnoRoot ){ 9460 /* pgnoRoot is the page that will be used for the root-page of 9461 ** the new table (assuming an error did not occur). But we were 9462 ** allocated pgnoMove. If required (i.e. if it was not allocated 9463 ** by extending the file), the current page at position pgnoMove 9464 ** is already journaled. 9465 */ 9466 u8 eType = 0; 9467 Pgno iPtrPage = 0; 9468 9469 /* Save the positions of any open cursors. This is required in 9470 ** case they are holding a reference to an xFetch reference 9471 ** corresponding to page pgnoRoot. */ 9472 rc = saveAllCursors(pBt, 0, 0); 9473 releasePage(pPageMove); 9474 if( rc!=SQLITE_OK ){ 9475 return rc; 9476 } 9477 9478 /* Move the page currently at pgnoRoot to pgnoMove. */ 9479 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9480 if( rc!=SQLITE_OK ){ 9481 return rc; 9482 } 9483 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9484 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9485 rc = SQLITE_CORRUPT_BKPT; 9486 } 9487 if( rc!=SQLITE_OK ){ 9488 releasePage(pRoot); 9489 return rc; 9490 } 9491 assert( eType!=PTRMAP_ROOTPAGE ); 9492 assert( eType!=PTRMAP_FREEPAGE ); 9493 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9494 releasePage(pRoot); 9495 9496 /* Obtain the page at pgnoRoot */ 9497 if( rc!=SQLITE_OK ){ 9498 return rc; 9499 } 9500 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9501 if( rc!=SQLITE_OK ){ 9502 return rc; 9503 } 9504 rc = sqlite3PagerWrite(pRoot->pDbPage); 9505 if( rc!=SQLITE_OK ){ 9506 releasePage(pRoot); 9507 return rc; 9508 } 9509 }else{ 9510 pRoot = pPageMove; 9511 } 9512 9513 /* Update the pointer-map and meta-data with the new root-page number. */ 9514 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9515 if( rc ){ 9516 releasePage(pRoot); 9517 return rc; 9518 } 9519 9520 /* When the new root page was allocated, page 1 was made writable in 9521 ** order either to increase the database filesize, or to decrement the 9522 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9523 */ 9524 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9525 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9526 if( NEVER(rc) ){ 9527 releasePage(pRoot); 9528 return rc; 9529 } 9530 9531 }else{ 9532 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9533 if( rc ) return rc; 9534 } 9535 #endif 9536 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9537 if( createTabFlags & BTREE_INTKEY ){ 9538 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9539 }else{ 9540 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9541 } 9542 zeroPage(pRoot, ptfFlags); 9543 sqlite3PagerUnref(pRoot->pDbPage); 9544 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9545 *piTable = pgnoRoot; 9546 return SQLITE_OK; 9547 } 9548 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9549 int rc; 9550 sqlite3BtreeEnter(p); 9551 rc = btreeCreateTable(p, piTable, flags); 9552 sqlite3BtreeLeave(p); 9553 return rc; 9554 } 9555 9556 /* 9557 ** Erase the given database page and all its children. Return 9558 ** the page to the freelist. 9559 */ 9560 static int clearDatabasePage( 9561 BtShared *pBt, /* The BTree that contains the table */ 9562 Pgno pgno, /* Page number to clear */ 9563 int freePageFlag, /* Deallocate page if true */ 9564 i64 *pnChange /* Add number of Cells freed to this counter */ 9565 ){ 9566 MemPage *pPage; 9567 int rc; 9568 unsigned char *pCell; 9569 int i; 9570 int hdr; 9571 CellInfo info; 9572 9573 assert( sqlite3_mutex_held(pBt->mutex) ); 9574 if( pgno>btreePagecount(pBt) ){ 9575 return SQLITE_CORRUPT_BKPT; 9576 } 9577 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9578 if( rc ) return rc; 9579 if( (pBt->openFlags & BTREE_SINGLE)==0 9580 && sqlite3PagerPageRefcount(pPage->pDbPage)!=1 9581 ){ 9582 rc = SQLITE_CORRUPT_BKPT; 9583 goto cleardatabasepage_out; 9584 } 9585 hdr = pPage->hdrOffset; 9586 for(i=0; i<pPage->nCell; i++){ 9587 pCell = findCell(pPage, i); 9588 if( !pPage->leaf ){ 9589 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9590 if( rc ) goto cleardatabasepage_out; 9591 } 9592 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9593 if( rc ) goto cleardatabasepage_out; 9594 } 9595 if( !pPage->leaf ){ 9596 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9597 if( rc ) goto cleardatabasepage_out; 9598 if( pPage->intKey ) pnChange = 0; 9599 } 9600 if( pnChange ){ 9601 testcase( !pPage->intKey ); 9602 *pnChange += pPage->nCell; 9603 } 9604 if( freePageFlag ){ 9605 freePage(pPage, &rc); 9606 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9607 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9608 } 9609 9610 cleardatabasepage_out: 9611 releasePage(pPage); 9612 return rc; 9613 } 9614 9615 /* 9616 ** Delete all information from a single table in the database. iTable is 9617 ** the page number of the root of the table. After this routine returns, 9618 ** the root page is empty, but still exists. 9619 ** 9620 ** This routine will fail with SQLITE_LOCKED if there are any open 9621 ** read cursors on the table. Open write cursors are moved to the 9622 ** root of the table. 9623 ** 9624 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9625 ** is incremented by the number of entries in the table. 9626 */ 9627 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9628 int rc; 9629 BtShared *pBt = p->pBt; 9630 sqlite3BtreeEnter(p); 9631 assert( p->inTrans==TRANS_WRITE ); 9632 9633 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9634 9635 if( SQLITE_OK==rc ){ 9636 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9637 ** is the root of a table b-tree - if it is not, the following call is 9638 ** a no-op). */ 9639 if( p->hasIncrblobCur ){ 9640 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9641 } 9642 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9643 } 9644 sqlite3BtreeLeave(p); 9645 return rc; 9646 } 9647 9648 /* 9649 ** Delete all information from the single table that pCur is open on. 9650 ** 9651 ** This routine only work for pCur on an ephemeral table. 9652 */ 9653 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9654 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9655 } 9656 9657 /* 9658 ** Erase all information in a table and add the root of the table to 9659 ** the freelist. Except, the root of the principle table (the one on 9660 ** page 1) is never added to the freelist. 9661 ** 9662 ** This routine will fail with SQLITE_LOCKED if there are any open 9663 ** cursors on the table. 9664 ** 9665 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9666 ** root page in the database file, then the last root page 9667 ** in the database file is moved into the slot formerly occupied by 9668 ** iTable and that last slot formerly occupied by the last root page 9669 ** is added to the freelist instead of iTable. In this say, all 9670 ** root pages are kept at the beginning of the database file, which 9671 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9672 ** page number that used to be the last root page in the file before 9673 ** the move. If no page gets moved, *piMoved is set to 0. 9674 ** The last root page is recorded in meta[3] and the value of 9675 ** meta[3] is updated by this procedure. 9676 */ 9677 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9678 int rc; 9679 MemPage *pPage = 0; 9680 BtShared *pBt = p->pBt; 9681 9682 assert( sqlite3BtreeHoldsMutex(p) ); 9683 assert( p->inTrans==TRANS_WRITE ); 9684 assert( iTable>=2 ); 9685 if( iTable>btreePagecount(pBt) ){ 9686 return SQLITE_CORRUPT_BKPT; 9687 } 9688 9689 rc = sqlite3BtreeClearTable(p, iTable, 0); 9690 if( rc ) return rc; 9691 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9692 if( NEVER(rc) ){ 9693 releasePage(pPage); 9694 return rc; 9695 } 9696 9697 *piMoved = 0; 9698 9699 #ifdef SQLITE_OMIT_AUTOVACUUM 9700 freePage(pPage, &rc); 9701 releasePage(pPage); 9702 #else 9703 if( pBt->autoVacuum ){ 9704 Pgno maxRootPgno; 9705 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9706 9707 if( iTable==maxRootPgno ){ 9708 /* If the table being dropped is the table with the largest root-page 9709 ** number in the database, put the root page on the free list. 9710 */ 9711 freePage(pPage, &rc); 9712 releasePage(pPage); 9713 if( rc!=SQLITE_OK ){ 9714 return rc; 9715 } 9716 }else{ 9717 /* The table being dropped does not have the largest root-page 9718 ** number in the database. So move the page that does into the 9719 ** gap left by the deleted root-page. 9720 */ 9721 MemPage *pMove; 9722 releasePage(pPage); 9723 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9724 if( rc!=SQLITE_OK ){ 9725 return rc; 9726 } 9727 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9728 releasePage(pMove); 9729 if( rc!=SQLITE_OK ){ 9730 return rc; 9731 } 9732 pMove = 0; 9733 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9734 freePage(pMove, &rc); 9735 releasePage(pMove); 9736 if( rc!=SQLITE_OK ){ 9737 return rc; 9738 } 9739 *piMoved = maxRootPgno; 9740 } 9741 9742 /* Set the new 'max-root-page' value in the database header. This 9743 ** is the old value less one, less one more if that happens to 9744 ** be a root-page number, less one again if that is the 9745 ** PENDING_BYTE_PAGE. 9746 */ 9747 maxRootPgno--; 9748 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9749 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9750 maxRootPgno--; 9751 } 9752 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9753 9754 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9755 }else{ 9756 freePage(pPage, &rc); 9757 releasePage(pPage); 9758 } 9759 #endif 9760 return rc; 9761 } 9762 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9763 int rc; 9764 sqlite3BtreeEnter(p); 9765 rc = btreeDropTable(p, iTable, piMoved); 9766 sqlite3BtreeLeave(p); 9767 return rc; 9768 } 9769 9770 9771 /* 9772 ** This function may only be called if the b-tree connection already 9773 ** has a read or write transaction open on the database. 9774 ** 9775 ** Read the meta-information out of a database file. Meta[0] 9776 ** is the number of free pages currently in the database. Meta[1] 9777 ** through meta[15] are available for use by higher layers. Meta[0] 9778 ** is read-only, the others are read/write. 9779 ** 9780 ** The schema layer numbers meta values differently. At the schema 9781 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9782 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9783 ** 9784 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9785 ** of reading the value out of the header, it instead loads the "DataVersion" 9786 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9787 ** database file. It is a number computed by the pager. But its access 9788 ** pattern is the same as header meta values, and so it is convenient to 9789 ** read it from this routine. 9790 */ 9791 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9792 BtShared *pBt = p->pBt; 9793 9794 sqlite3BtreeEnter(p); 9795 assert( p->inTrans>TRANS_NONE ); 9796 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 9797 assert( pBt->pPage1 ); 9798 assert( idx>=0 && idx<=15 ); 9799 9800 if( idx==BTREE_DATA_VERSION ){ 9801 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 9802 }else{ 9803 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9804 } 9805 9806 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9807 ** database, mark the database as read-only. */ 9808 #ifdef SQLITE_OMIT_AUTOVACUUM 9809 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9810 pBt->btsFlags |= BTS_READ_ONLY; 9811 } 9812 #endif 9813 9814 sqlite3BtreeLeave(p); 9815 } 9816 9817 /* 9818 ** Write meta-information back into the database. Meta[0] is 9819 ** read-only and may not be written. 9820 */ 9821 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9822 BtShared *pBt = p->pBt; 9823 unsigned char *pP1; 9824 int rc; 9825 assert( idx>=1 && idx<=15 ); 9826 sqlite3BtreeEnter(p); 9827 assert( p->inTrans==TRANS_WRITE ); 9828 assert( pBt->pPage1!=0 ); 9829 pP1 = pBt->pPage1->aData; 9830 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9831 if( rc==SQLITE_OK ){ 9832 put4byte(&pP1[36 + idx*4], iMeta); 9833 #ifndef SQLITE_OMIT_AUTOVACUUM 9834 if( idx==BTREE_INCR_VACUUM ){ 9835 assert( pBt->autoVacuum || iMeta==0 ); 9836 assert( iMeta==0 || iMeta==1 ); 9837 pBt->incrVacuum = (u8)iMeta; 9838 } 9839 #endif 9840 } 9841 sqlite3BtreeLeave(p); 9842 return rc; 9843 } 9844 9845 /* 9846 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9847 ** number of entries in the b-tree and write the result to *pnEntry. 9848 ** 9849 ** SQLITE_OK is returned if the operation is successfully executed. 9850 ** Otherwise, if an error is encountered (i.e. an IO error or database 9851 ** corruption) an SQLite error code is returned. 9852 */ 9853 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9854 i64 nEntry = 0; /* Value to return in *pnEntry */ 9855 int rc; /* Return code */ 9856 9857 rc = moveToRoot(pCur); 9858 if( rc==SQLITE_EMPTY ){ 9859 *pnEntry = 0; 9860 return SQLITE_OK; 9861 } 9862 9863 /* Unless an error occurs, the following loop runs one iteration for each 9864 ** page in the B-Tree structure (not including overflow pages). 9865 */ 9866 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 9867 int iIdx; /* Index of child node in parent */ 9868 MemPage *pPage; /* Current page of the b-tree */ 9869 9870 /* If this is a leaf page or the tree is not an int-key tree, then 9871 ** this page contains countable entries. Increment the entry counter 9872 ** accordingly. 9873 */ 9874 pPage = pCur->pPage; 9875 if( pPage->leaf || !pPage->intKey ){ 9876 nEntry += pPage->nCell; 9877 } 9878 9879 /* pPage is a leaf node. This loop navigates the cursor so that it 9880 ** points to the first interior cell that it points to the parent of 9881 ** the next page in the tree that has not yet been visited. The 9882 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9883 ** of the page, or to the number of cells in the page if the next page 9884 ** to visit is the right-child of its parent. 9885 ** 9886 ** If all pages in the tree have been visited, return SQLITE_OK to the 9887 ** caller. 9888 */ 9889 if( pPage->leaf ){ 9890 do { 9891 if( pCur->iPage==0 ){ 9892 /* All pages of the b-tree have been visited. Return successfully. */ 9893 *pnEntry = nEntry; 9894 return moveToRoot(pCur); 9895 } 9896 moveToParent(pCur); 9897 }while ( pCur->ix>=pCur->pPage->nCell ); 9898 9899 pCur->ix++; 9900 pPage = pCur->pPage; 9901 } 9902 9903 /* Descend to the child node of the cell that the cursor currently 9904 ** points at. This is the right-child if (iIdx==pPage->nCell). 9905 */ 9906 iIdx = pCur->ix; 9907 if( iIdx==pPage->nCell ){ 9908 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9909 }else{ 9910 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9911 } 9912 } 9913 9914 /* An error has occurred. Return an error code. */ 9915 return rc; 9916 } 9917 9918 /* 9919 ** Return the pager associated with a BTree. This routine is used for 9920 ** testing and debugging only. 9921 */ 9922 Pager *sqlite3BtreePager(Btree *p){ 9923 return p->pBt->pPager; 9924 } 9925 9926 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9927 /* 9928 ** Append a message to the error message string. 9929 */ 9930 static void checkAppendMsg( 9931 IntegrityCk *pCheck, 9932 const char *zFormat, 9933 ... 9934 ){ 9935 va_list ap; 9936 if( !pCheck->mxErr ) return; 9937 pCheck->mxErr--; 9938 pCheck->nErr++; 9939 va_start(ap, zFormat); 9940 if( pCheck->errMsg.nChar ){ 9941 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9942 } 9943 if( pCheck->zPfx ){ 9944 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9945 } 9946 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9947 va_end(ap); 9948 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9949 pCheck->bOomFault = 1; 9950 } 9951 } 9952 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9953 9954 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9955 9956 /* 9957 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9958 ** corresponds to page iPg is already set. 9959 */ 9960 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9961 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9962 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9963 } 9964 9965 /* 9966 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9967 */ 9968 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9969 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9970 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9971 } 9972 9973 9974 /* 9975 ** Add 1 to the reference count for page iPage. If this is the second 9976 ** reference to the page, add an error message to pCheck->zErrMsg. 9977 ** Return 1 if there are 2 or more references to the page and 0 if 9978 ** if this is the first reference to the page. 9979 ** 9980 ** Also check that the page number is in bounds. 9981 */ 9982 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9983 if( iPage>pCheck->nPage || iPage==0 ){ 9984 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9985 return 1; 9986 } 9987 if( getPageReferenced(pCheck, iPage) ){ 9988 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9989 return 1; 9990 } 9991 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 9992 setPageReferenced(pCheck, iPage); 9993 return 0; 9994 } 9995 9996 #ifndef SQLITE_OMIT_AUTOVACUUM 9997 /* 9998 ** Check that the entry in the pointer-map for page iChild maps to 9999 ** page iParent, pointer type ptrType. If not, append an error message 10000 ** to pCheck. 10001 */ 10002 static void checkPtrmap( 10003 IntegrityCk *pCheck, /* Integrity check context */ 10004 Pgno iChild, /* Child page number */ 10005 u8 eType, /* Expected pointer map type */ 10006 Pgno iParent /* Expected pointer map parent page number */ 10007 ){ 10008 int rc; 10009 u8 ePtrmapType; 10010 Pgno iPtrmapParent; 10011 10012 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10013 if( rc!=SQLITE_OK ){ 10014 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10015 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10016 return; 10017 } 10018 10019 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10020 checkAppendMsg(pCheck, 10021 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10022 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10023 } 10024 } 10025 #endif 10026 10027 /* 10028 ** Check the integrity of the freelist or of an overflow page list. 10029 ** Verify that the number of pages on the list is N. 10030 */ 10031 static void checkList( 10032 IntegrityCk *pCheck, /* Integrity checking context */ 10033 int isFreeList, /* True for a freelist. False for overflow page list */ 10034 Pgno iPage, /* Page number for first page in the list */ 10035 u32 N /* Expected number of pages in the list */ 10036 ){ 10037 int i; 10038 u32 expected = N; 10039 int nErrAtStart = pCheck->nErr; 10040 while( iPage!=0 && pCheck->mxErr ){ 10041 DbPage *pOvflPage; 10042 unsigned char *pOvflData; 10043 if( checkRef(pCheck, iPage) ) break; 10044 N--; 10045 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10046 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10047 break; 10048 } 10049 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10050 if( isFreeList ){ 10051 u32 n = (u32)get4byte(&pOvflData[4]); 10052 #ifndef SQLITE_OMIT_AUTOVACUUM 10053 if( pCheck->pBt->autoVacuum ){ 10054 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10055 } 10056 #endif 10057 if( n>pCheck->pBt->usableSize/4-2 ){ 10058 checkAppendMsg(pCheck, 10059 "freelist leaf count too big on page %d", iPage); 10060 N--; 10061 }else{ 10062 for(i=0; i<(int)n; i++){ 10063 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10064 #ifndef SQLITE_OMIT_AUTOVACUUM 10065 if( pCheck->pBt->autoVacuum ){ 10066 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10067 } 10068 #endif 10069 checkRef(pCheck, iFreePage); 10070 } 10071 N -= n; 10072 } 10073 } 10074 #ifndef SQLITE_OMIT_AUTOVACUUM 10075 else{ 10076 /* If this database supports auto-vacuum and iPage is not the last 10077 ** page in this overflow list, check that the pointer-map entry for 10078 ** the following page matches iPage. 10079 */ 10080 if( pCheck->pBt->autoVacuum && N>0 ){ 10081 i = get4byte(pOvflData); 10082 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10083 } 10084 } 10085 #endif 10086 iPage = get4byte(pOvflData); 10087 sqlite3PagerUnref(pOvflPage); 10088 } 10089 if( N && nErrAtStart==pCheck->nErr ){ 10090 checkAppendMsg(pCheck, 10091 "%s is %d but should be %d", 10092 isFreeList ? "size" : "overflow list length", 10093 expected-N, expected); 10094 } 10095 } 10096 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10097 10098 /* 10099 ** An implementation of a min-heap. 10100 ** 10101 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10102 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10103 ** and aHeap[N*2+1]. 10104 ** 10105 ** The heap property is this: Every node is less than or equal to both 10106 ** of its daughter nodes. A consequence of the heap property is that the 10107 ** root node aHeap[1] is always the minimum value currently in the heap. 10108 ** 10109 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10110 ** the heap, preserving the heap property. The btreeHeapPull() routine 10111 ** removes the root element from the heap (the minimum value in the heap) 10112 ** and then moves other nodes around as necessary to preserve the heap 10113 ** property. 10114 ** 10115 ** This heap is used for cell overlap and coverage testing. Each u32 10116 ** entry represents the span of a cell or freeblock on a btree page. 10117 ** The upper 16 bits are the index of the first byte of a range and the 10118 ** lower 16 bits are the index of the last byte of that range. 10119 */ 10120 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10121 u32 j, i = ++aHeap[0]; 10122 aHeap[i] = x; 10123 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10124 x = aHeap[j]; 10125 aHeap[j] = aHeap[i]; 10126 aHeap[i] = x; 10127 i = j; 10128 } 10129 } 10130 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10131 u32 j, i, x; 10132 if( (x = aHeap[0])==0 ) return 0; 10133 *pOut = aHeap[1]; 10134 aHeap[1] = aHeap[x]; 10135 aHeap[x] = 0xffffffff; 10136 aHeap[0]--; 10137 i = 1; 10138 while( (j = i*2)<=aHeap[0] ){ 10139 if( aHeap[j]>aHeap[j+1] ) j++; 10140 if( aHeap[i]<aHeap[j] ) break; 10141 x = aHeap[i]; 10142 aHeap[i] = aHeap[j]; 10143 aHeap[j] = x; 10144 i = j; 10145 } 10146 return 1; 10147 } 10148 10149 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10150 /* 10151 ** Do various sanity checks on a single page of a tree. Return 10152 ** the tree depth. Root pages return 0. Parents of root pages 10153 ** return 1, and so forth. 10154 ** 10155 ** These checks are done: 10156 ** 10157 ** 1. Make sure that cells and freeblocks do not overlap 10158 ** but combine to completely cover the page. 10159 ** 2. Make sure integer cell keys are in order. 10160 ** 3. Check the integrity of overflow pages. 10161 ** 4. Recursively call checkTreePage on all children. 10162 ** 5. Verify that the depth of all children is the same. 10163 */ 10164 static int checkTreePage( 10165 IntegrityCk *pCheck, /* Context for the sanity check */ 10166 Pgno iPage, /* Page number of the page to check */ 10167 i64 *piMinKey, /* Write minimum integer primary key here */ 10168 i64 maxKey /* Error if integer primary key greater than this */ 10169 ){ 10170 MemPage *pPage = 0; /* The page being analyzed */ 10171 int i; /* Loop counter */ 10172 int rc; /* Result code from subroutine call */ 10173 int depth = -1, d2; /* Depth of a subtree */ 10174 int pgno; /* Page number */ 10175 int nFrag; /* Number of fragmented bytes on the page */ 10176 int hdr; /* Offset to the page header */ 10177 int cellStart; /* Offset to the start of the cell pointer array */ 10178 int nCell; /* Number of cells */ 10179 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10180 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10181 ** False if IPK must be strictly less than maxKey */ 10182 u8 *data; /* Page content */ 10183 u8 *pCell; /* Cell content */ 10184 u8 *pCellIdx; /* Next element of the cell pointer array */ 10185 BtShared *pBt; /* The BtShared object that owns pPage */ 10186 u32 pc; /* Address of a cell */ 10187 u32 usableSize; /* Usable size of the page */ 10188 u32 contentOffset; /* Offset to the start of the cell content area */ 10189 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10190 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10191 const char *saved_zPfx = pCheck->zPfx; 10192 int saved_v1 = pCheck->v1; 10193 int saved_v2 = pCheck->v2; 10194 u8 savedIsInit = 0; 10195 10196 /* Check that the page exists 10197 */ 10198 pBt = pCheck->pBt; 10199 usableSize = pBt->usableSize; 10200 if( iPage==0 ) return 0; 10201 if( checkRef(pCheck, iPage) ) return 0; 10202 pCheck->zPfx = "Page %u: "; 10203 pCheck->v1 = iPage; 10204 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10205 checkAppendMsg(pCheck, 10206 "unable to get the page. error code=%d", rc); 10207 goto end_of_check; 10208 } 10209 10210 /* Clear MemPage.isInit to make sure the corruption detection code in 10211 ** btreeInitPage() is executed. */ 10212 savedIsInit = pPage->isInit; 10213 pPage->isInit = 0; 10214 if( (rc = btreeInitPage(pPage))!=0 ){ 10215 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10216 checkAppendMsg(pCheck, 10217 "btreeInitPage() returns error code %d", rc); 10218 goto end_of_check; 10219 } 10220 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10221 assert( rc==SQLITE_CORRUPT ); 10222 checkAppendMsg(pCheck, "free space corruption", rc); 10223 goto end_of_check; 10224 } 10225 data = pPage->aData; 10226 hdr = pPage->hdrOffset; 10227 10228 /* Set up for cell analysis */ 10229 pCheck->zPfx = "On tree page %u cell %d: "; 10230 contentOffset = get2byteNotZero(&data[hdr+5]); 10231 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10232 10233 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10234 ** number of cells on the page. */ 10235 nCell = get2byte(&data[hdr+3]); 10236 assert( pPage->nCell==nCell ); 10237 10238 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10239 ** immediately follows the b-tree page header. */ 10240 cellStart = hdr + 12 - 4*pPage->leaf; 10241 assert( pPage->aCellIdx==&data[cellStart] ); 10242 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10243 10244 if( !pPage->leaf ){ 10245 /* Analyze the right-child page of internal pages */ 10246 pgno = get4byte(&data[hdr+8]); 10247 #ifndef SQLITE_OMIT_AUTOVACUUM 10248 if( pBt->autoVacuum ){ 10249 pCheck->zPfx = "On page %u at right child: "; 10250 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10251 } 10252 #endif 10253 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10254 keyCanBeEqual = 0; 10255 }else{ 10256 /* For leaf pages, the coverage check will occur in the same loop 10257 ** as the other cell checks, so initialize the heap. */ 10258 heap = pCheck->heap; 10259 heap[0] = 0; 10260 } 10261 10262 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10263 ** integer offsets to the cell contents. */ 10264 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10265 CellInfo info; 10266 10267 /* Check cell size */ 10268 pCheck->v2 = i; 10269 assert( pCellIdx==&data[cellStart + i*2] ); 10270 pc = get2byteAligned(pCellIdx); 10271 pCellIdx -= 2; 10272 if( pc<contentOffset || pc>usableSize-4 ){ 10273 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10274 pc, contentOffset, usableSize-4); 10275 doCoverageCheck = 0; 10276 continue; 10277 } 10278 pCell = &data[pc]; 10279 pPage->xParseCell(pPage, pCell, &info); 10280 if( pc+info.nSize>usableSize ){ 10281 checkAppendMsg(pCheck, "Extends off end of page"); 10282 doCoverageCheck = 0; 10283 continue; 10284 } 10285 10286 /* Check for integer primary key out of range */ 10287 if( pPage->intKey ){ 10288 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10289 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10290 } 10291 maxKey = info.nKey; 10292 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10293 } 10294 10295 /* Check the content overflow list */ 10296 if( info.nPayload>info.nLocal ){ 10297 u32 nPage; /* Number of pages on the overflow chain */ 10298 Pgno pgnoOvfl; /* First page of the overflow chain */ 10299 assert( pc + info.nSize - 4 <= usableSize ); 10300 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10301 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10302 #ifndef SQLITE_OMIT_AUTOVACUUM 10303 if( pBt->autoVacuum ){ 10304 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10305 } 10306 #endif 10307 checkList(pCheck, 0, pgnoOvfl, nPage); 10308 } 10309 10310 if( !pPage->leaf ){ 10311 /* Check sanity of left child page for internal pages */ 10312 pgno = get4byte(pCell); 10313 #ifndef SQLITE_OMIT_AUTOVACUUM 10314 if( pBt->autoVacuum ){ 10315 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10316 } 10317 #endif 10318 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10319 keyCanBeEqual = 0; 10320 if( d2!=depth ){ 10321 checkAppendMsg(pCheck, "Child page depth differs"); 10322 depth = d2; 10323 } 10324 }else{ 10325 /* Populate the coverage-checking heap for leaf pages */ 10326 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10327 } 10328 } 10329 *piMinKey = maxKey; 10330 10331 /* Check for complete coverage of the page 10332 */ 10333 pCheck->zPfx = 0; 10334 if( doCoverageCheck && pCheck->mxErr>0 ){ 10335 /* For leaf pages, the min-heap has already been initialized and the 10336 ** cells have already been inserted. But for internal pages, that has 10337 ** not yet been done, so do it now */ 10338 if( !pPage->leaf ){ 10339 heap = pCheck->heap; 10340 heap[0] = 0; 10341 for(i=nCell-1; i>=0; i--){ 10342 u32 size; 10343 pc = get2byteAligned(&data[cellStart+i*2]); 10344 size = pPage->xCellSize(pPage, &data[pc]); 10345 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10346 } 10347 } 10348 /* Add the freeblocks to the min-heap 10349 ** 10350 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10351 ** is the offset of the first freeblock, or zero if there are no 10352 ** freeblocks on the page. 10353 */ 10354 i = get2byte(&data[hdr+1]); 10355 while( i>0 ){ 10356 int size, j; 10357 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10358 size = get2byte(&data[i+2]); 10359 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10360 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10361 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10362 ** big-endian integer which is the offset in the b-tree page of the next 10363 ** freeblock in the chain, or zero if the freeblock is the last on the 10364 ** chain. */ 10365 j = get2byte(&data[i]); 10366 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10367 ** increasing offset. */ 10368 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10369 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10370 i = j; 10371 } 10372 /* Analyze the min-heap looking for overlap between cells and/or 10373 ** freeblocks, and counting the number of untracked bytes in nFrag. 10374 ** 10375 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10376 ** There is an implied first entry the covers the page header, the cell 10377 ** pointer index, and the gap between the cell pointer index and the start 10378 ** of cell content. 10379 ** 10380 ** The loop below pulls entries from the min-heap in order and compares 10381 ** the start_address against the previous end_address. If there is an 10382 ** overlap, that means bytes are used multiple times. If there is a gap, 10383 ** that gap is added to the fragmentation count. 10384 */ 10385 nFrag = 0; 10386 prev = contentOffset - 1; /* Implied first min-heap entry */ 10387 while( btreeHeapPull(heap,&x) ){ 10388 if( (prev&0xffff)>=(x>>16) ){ 10389 checkAppendMsg(pCheck, 10390 "Multiple uses for byte %u of page %u", x>>16, iPage); 10391 break; 10392 }else{ 10393 nFrag += (x>>16) - (prev&0xffff) - 1; 10394 prev = x; 10395 } 10396 } 10397 nFrag += usableSize - (prev&0xffff) - 1; 10398 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10399 ** is stored in the fifth field of the b-tree page header. 10400 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10401 ** number of fragmented free bytes within the cell content area. 10402 */ 10403 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10404 checkAppendMsg(pCheck, 10405 "Fragmentation of %d bytes reported as %d on page %u", 10406 nFrag, data[hdr+7], iPage); 10407 } 10408 } 10409 10410 end_of_check: 10411 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10412 releasePage(pPage); 10413 pCheck->zPfx = saved_zPfx; 10414 pCheck->v1 = saved_v1; 10415 pCheck->v2 = saved_v2; 10416 return depth+1; 10417 } 10418 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10419 10420 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10421 /* 10422 ** This routine does a complete check of the given BTree file. aRoot[] is 10423 ** an array of pages numbers were each page number is the root page of 10424 ** a table. nRoot is the number of entries in aRoot. 10425 ** 10426 ** A read-only or read-write transaction must be opened before calling 10427 ** this function. 10428 ** 10429 ** Write the number of error seen in *pnErr. Except for some memory 10430 ** allocation errors, an error message held in memory obtained from 10431 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10432 ** returned. If a memory allocation error occurs, NULL is returned. 10433 ** 10434 ** If the first entry in aRoot[] is 0, that indicates that the list of 10435 ** root pages is incomplete. This is a "partial integrity-check". This 10436 ** happens when performing an integrity check on a single table. The 10437 ** zero is skipped, of course. But in addition, the freelist checks 10438 ** and the checks to make sure every page is referenced are also skipped, 10439 ** since obviously it is not possible to know which pages are covered by 10440 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10441 ** checks are still performed. 10442 */ 10443 char *sqlite3BtreeIntegrityCheck( 10444 sqlite3 *db, /* Database connection that is running the check */ 10445 Btree *p, /* The btree to be checked */ 10446 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10447 int nRoot, /* Number of entries in aRoot[] */ 10448 int mxErr, /* Stop reporting errors after this many */ 10449 int *pnErr /* Write number of errors seen to this variable */ 10450 ){ 10451 Pgno i; 10452 IntegrityCk sCheck; 10453 BtShared *pBt = p->pBt; 10454 u64 savedDbFlags = pBt->db->flags; 10455 char zErr[100]; 10456 int bPartial = 0; /* True if not checking all btrees */ 10457 int bCkFreelist = 1; /* True to scan the freelist */ 10458 VVA_ONLY( int nRef ); 10459 assert( nRoot>0 ); 10460 10461 /* aRoot[0]==0 means this is a partial check */ 10462 if( aRoot[0]==0 ){ 10463 assert( nRoot>1 ); 10464 bPartial = 1; 10465 if( aRoot[1]!=1 ) bCkFreelist = 0; 10466 } 10467 10468 sqlite3BtreeEnter(p); 10469 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10470 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10471 assert( nRef>=0 ); 10472 sCheck.db = db; 10473 sCheck.pBt = pBt; 10474 sCheck.pPager = pBt->pPager; 10475 sCheck.nPage = btreePagecount(sCheck.pBt); 10476 sCheck.mxErr = mxErr; 10477 sCheck.nErr = 0; 10478 sCheck.bOomFault = 0; 10479 sCheck.zPfx = 0; 10480 sCheck.v1 = 0; 10481 sCheck.v2 = 0; 10482 sCheck.aPgRef = 0; 10483 sCheck.heap = 0; 10484 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10485 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10486 if( sCheck.nPage==0 ){ 10487 goto integrity_ck_cleanup; 10488 } 10489 10490 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10491 if( !sCheck.aPgRef ){ 10492 sCheck.bOomFault = 1; 10493 goto integrity_ck_cleanup; 10494 } 10495 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10496 if( sCheck.heap==0 ){ 10497 sCheck.bOomFault = 1; 10498 goto integrity_ck_cleanup; 10499 } 10500 10501 i = PENDING_BYTE_PAGE(pBt); 10502 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10503 10504 /* Check the integrity of the freelist 10505 */ 10506 if( bCkFreelist ){ 10507 sCheck.zPfx = "Main freelist: "; 10508 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10509 get4byte(&pBt->pPage1->aData[36])); 10510 sCheck.zPfx = 0; 10511 } 10512 10513 /* Check all the tables. 10514 */ 10515 #ifndef SQLITE_OMIT_AUTOVACUUM 10516 if( !bPartial ){ 10517 if( pBt->autoVacuum ){ 10518 Pgno mx = 0; 10519 Pgno mxInHdr; 10520 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10521 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10522 if( mx!=mxInHdr ){ 10523 checkAppendMsg(&sCheck, 10524 "max rootpage (%d) disagrees with header (%d)", 10525 mx, mxInHdr 10526 ); 10527 } 10528 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10529 checkAppendMsg(&sCheck, 10530 "incremental_vacuum enabled with a max rootpage of zero" 10531 ); 10532 } 10533 } 10534 #endif 10535 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10536 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10537 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10538 i64 notUsed; 10539 if( aRoot[i]==0 ) continue; 10540 #ifndef SQLITE_OMIT_AUTOVACUUM 10541 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10542 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10543 } 10544 #endif 10545 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10546 } 10547 pBt->db->flags = savedDbFlags; 10548 10549 /* Make sure every page in the file is referenced 10550 */ 10551 if( !bPartial ){ 10552 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10553 #ifdef SQLITE_OMIT_AUTOVACUUM 10554 if( getPageReferenced(&sCheck, i)==0 ){ 10555 checkAppendMsg(&sCheck, "Page %d is never used", i); 10556 } 10557 #else 10558 /* If the database supports auto-vacuum, make sure no tables contain 10559 ** references to pointer-map pages. 10560 */ 10561 if( getPageReferenced(&sCheck, i)==0 && 10562 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10563 checkAppendMsg(&sCheck, "Page %d is never used", i); 10564 } 10565 if( getPageReferenced(&sCheck, i)!=0 && 10566 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10567 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10568 } 10569 #endif 10570 } 10571 } 10572 10573 /* Clean up and report errors. 10574 */ 10575 integrity_ck_cleanup: 10576 sqlite3PageFree(sCheck.heap); 10577 sqlite3_free(sCheck.aPgRef); 10578 if( sCheck.bOomFault ){ 10579 sqlite3_str_reset(&sCheck.errMsg); 10580 sCheck.nErr++; 10581 } 10582 *pnErr = sCheck.nErr; 10583 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10584 /* Make sure this analysis did not leave any unref() pages. */ 10585 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10586 sqlite3BtreeLeave(p); 10587 return sqlite3StrAccumFinish(&sCheck.errMsg); 10588 } 10589 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10590 10591 /* 10592 ** Return the full pathname of the underlying database file. Return 10593 ** an empty string if the database is in-memory or a TEMP database. 10594 ** 10595 ** The pager filename is invariant as long as the pager is 10596 ** open so it is safe to access without the BtShared mutex. 10597 */ 10598 const char *sqlite3BtreeGetFilename(Btree *p){ 10599 assert( p->pBt->pPager!=0 ); 10600 return sqlite3PagerFilename(p->pBt->pPager, 1); 10601 } 10602 10603 /* 10604 ** Return the pathname of the journal file for this database. The return 10605 ** value of this routine is the same regardless of whether the journal file 10606 ** has been created or not. 10607 ** 10608 ** The pager journal filename is invariant as long as the pager is 10609 ** open so it is safe to access without the BtShared mutex. 10610 */ 10611 const char *sqlite3BtreeGetJournalname(Btree *p){ 10612 assert( p->pBt->pPager!=0 ); 10613 return sqlite3PagerJournalname(p->pBt->pPager); 10614 } 10615 10616 /* 10617 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10618 ** to describe the current transaction state of Btree p. 10619 */ 10620 int sqlite3BtreeTxnState(Btree *p){ 10621 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10622 return p ? p->inTrans : 0; 10623 } 10624 10625 #ifndef SQLITE_OMIT_WAL 10626 /* 10627 ** Run a checkpoint on the Btree passed as the first argument. 10628 ** 10629 ** Return SQLITE_LOCKED if this or any other connection has an open 10630 ** transaction on the shared-cache the argument Btree is connected to. 10631 ** 10632 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10633 */ 10634 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10635 int rc = SQLITE_OK; 10636 if( p ){ 10637 BtShared *pBt = p->pBt; 10638 sqlite3BtreeEnter(p); 10639 if( pBt->inTransaction!=TRANS_NONE ){ 10640 rc = SQLITE_LOCKED; 10641 }else{ 10642 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10643 } 10644 sqlite3BtreeLeave(p); 10645 } 10646 return rc; 10647 } 10648 #endif 10649 10650 /* 10651 ** Return true if there is currently a backup running on Btree p. 10652 */ 10653 int sqlite3BtreeIsInBackup(Btree *p){ 10654 assert( p ); 10655 assert( sqlite3_mutex_held(p->db->mutex) ); 10656 return p->nBackup!=0; 10657 } 10658 10659 /* 10660 ** This function returns a pointer to a blob of memory associated with 10661 ** a single shared-btree. The memory is used by client code for its own 10662 ** purposes (for example, to store a high-level schema associated with 10663 ** the shared-btree). The btree layer manages reference counting issues. 10664 ** 10665 ** The first time this is called on a shared-btree, nBytes bytes of memory 10666 ** are allocated, zeroed, and returned to the caller. For each subsequent 10667 ** call the nBytes parameter is ignored and a pointer to the same blob 10668 ** of memory returned. 10669 ** 10670 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10671 ** allocated, a null pointer is returned. If the blob has already been 10672 ** allocated, it is returned as normal. 10673 ** 10674 ** Just before the shared-btree is closed, the function passed as the 10675 ** xFree argument when the memory allocation was made is invoked on the 10676 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10677 ** on the memory, the btree layer does that. 10678 */ 10679 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10680 BtShared *pBt = p->pBt; 10681 sqlite3BtreeEnter(p); 10682 if( !pBt->pSchema && nBytes ){ 10683 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10684 pBt->xFreeSchema = xFree; 10685 } 10686 sqlite3BtreeLeave(p); 10687 return pBt->pSchema; 10688 } 10689 10690 /* 10691 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10692 ** btree as the argument handle holds an exclusive lock on the 10693 ** sqlite_schema table. Otherwise SQLITE_OK. 10694 */ 10695 int sqlite3BtreeSchemaLocked(Btree *p){ 10696 int rc; 10697 assert( sqlite3_mutex_held(p->db->mutex) ); 10698 sqlite3BtreeEnter(p); 10699 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10700 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10701 sqlite3BtreeLeave(p); 10702 return rc; 10703 } 10704 10705 10706 #ifndef SQLITE_OMIT_SHARED_CACHE 10707 /* 10708 ** Obtain a lock on the table whose root page is iTab. The 10709 ** lock is a write lock if isWritelock is true or a read lock 10710 ** if it is false. 10711 */ 10712 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10713 int rc = SQLITE_OK; 10714 assert( p->inTrans!=TRANS_NONE ); 10715 if( p->sharable ){ 10716 u8 lockType = READ_LOCK + isWriteLock; 10717 assert( READ_LOCK+1==WRITE_LOCK ); 10718 assert( isWriteLock==0 || isWriteLock==1 ); 10719 10720 sqlite3BtreeEnter(p); 10721 rc = querySharedCacheTableLock(p, iTab, lockType); 10722 if( rc==SQLITE_OK ){ 10723 rc = setSharedCacheTableLock(p, iTab, lockType); 10724 } 10725 sqlite3BtreeLeave(p); 10726 } 10727 return rc; 10728 } 10729 #endif 10730 10731 #ifndef SQLITE_OMIT_INCRBLOB 10732 /* 10733 ** Argument pCsr must be a cursor opened for writing on an 10734 ** INTKEY table currently pointing at a valid table entry. 10735 ** This function modifies the data stored as part of that entry. 10736 ** 10737 ** Only the data content may only be modified, it is not possible to 10738 ** change the length of the data stored. If this function is called with 10739 ** parameters that attempt to write past the end of the existing data, 10740 ** no modifications are made and SQLITE_CORRUPT is returned. 10741 */ 10742 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10743 int rc; 10744 assert( cursorOwnsBtShared(pCsr) ); 10745 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10746 assert( pCsr->curFlags & BTCF_Incrblob ); 10747 10748 rc = restoreCursorPosition(pCsr); 10749 if( rc!=SQLITE_OK ){ 10750 return rc; 10751 } 10752 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10753 if( pCsr->eState!=CURSOR_VALID ){ 10754 return SQLITE_ABORT; 10755 } 10756 10757 /* Save the positions of all other cursors open on this table. This is 10758 ** required in case any of them are holding references to an xFetch 10759 ** version of the b-tree page modified by the accessPayload call below. 10760 ** 10761 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10762 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10763 ** saveAllCursors can only return SQLITE_OK. 10764 */ 10765 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10766 assert( rc==SQLITE_OK ); 10767 10768 /* Check some assumptions: 10769 ** (a) the cursor is open for writing, 10770 ** (b) there is a read/write transaction open, 10771 ** (c) the connection holds a write-lock on the table (if required), 10772 ** (d) there are no conflicting read-locks, and 10773 ** (e) the cursor points at a valid row of an intKey table. 10774 */ 10775 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10776 return SQLITE_READONLY; 10777 } 10778 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10779 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10780 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10781 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10782 assert( pCsr->pPage->intKey ); 10783 10784 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10785 } 10786 10787 /* 10788 ** Mark this cursor as an incremental blob cursor. 10789 */ 10790 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10791 pCur->curFlags |= BTCF_Incrblob; 10792 pCur->pBtree->hasIncrblobCur = 1; 10793 } 10794 #endif 10795 10796 /* 10797 ** Set both the "read version" (single byte at byte offset 18) and 10798 ** "write version" (single byte at byte offset 19) fields in the database 10799 ** header to iVersion. 10800 */ 10801 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10802 BtShared *pBt = pBtree->pBt; 10803 int rc; /* Return code */ 10804 10805 assert( iVersion==1 || iVersion==2 ); 10806 10807 /* If setting the version fields to 1, do not automatically open the 10808 ** WAL connection, even if the version fields are currently set to 2. 10809 */ 10810 pBt->btsFlags &= ~BTS_NO_WAL; 10811 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10812 10813 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10814 if( rc==SQLITE_OK ){ 10815 u8 *aData = pBt->pPage1->aData; 10816 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10817 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10818 if( rc==SQLITE_OK ){ 10819 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10820 if( rc==SQLITE_OK ){ 10821 aData[18] = (u8)iVersion; 10822 aData[19] = (u8)iVersion; 10823 } 10824 } 10825 } 10826 } 10827 10828 pBt->btsFlags &= ~BTS_NO_WAL; 10829 return rc; 10830 } 10831 10832 /* 10833 ** Return true if the cursor has a hint specified. This routine is 10834 ** only used from within assert() statements 10835 */ 10836 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10837 return (pCsr->hints & mask)!=0; 10838 } 10839 10840 /* 10841 ** Return true if the given Btree is read-only. 10842 */ 10843 int sqlite3BtreeIsReadonly(Btree *p){ 10844 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10845 } 10846 10847 /* 10848 ** Return the size of the header added to each page by this module. 10849 */ 10850 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10851 10852 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10853 /* 10854 ** Return true if the Btree passed as the only argument is sharable. 10855 */ 10856 int sqlite3BtreeSharable(Btree *p){ 10857 return p->sharable; 10858 } 10859 10860 /* 10861 ** Return the number of connections to the BtShared object accessed by 10862 ** the Btree handle passed as the only argument. For private caches 10863 ** this is always 1. For shared caches it may be 1 or greater. 10864 */ 10865 int sqlite3BtreeConnectionCount(Btree *p){ 10866 testcase( p->sharable ); 10867 return p->pBt->nRef; 10868 } 10869 #endif 10870