1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 /* 116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 118 ** 119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 122 ** with the page number and filename associated with the (MemPage*). 123 */ 124 #ifdef SQLITE_DEBUG 125 int corruptPageError(int lineno, MemPage *p){ 126 char *zMsg; 127 sqlite3BeginBenignMalloc(); 128 zMsg = sqlite3_mprintf("database corruption page %d of %s", 129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 130 ); 131 sqlite3EndBenignMalloc(); 132 if( zMsg ){ 133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 134 } 135 sqlite3_free(zMsg); 136 return SQLITE_CORRUPT_BKPT; 137 } 138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 139 #else 140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 141 #endif 142 143 #ifndef SQLITE_OMIT_SHARED_CACHE 144 145 #ifdef SQLITE_DEBUG 146 /* 147 **** This function is only used as part of an assert() statement. *** 148 ** 149 ** Check to see if pBtree holds the required locks to read or write to the 150 ** table with root page iRoot. Return 1 if it does and 0 if not. 151 ** 152 ** For example, when writing to a table with root-page iRoot via 153 ** Btree connection pBtree: 154 ** 155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 156 ** 157 ** When writing to an index that resides in a sharable database, the 158 ** caller should have first obtained a lock specifying the root page of 159 ** the corresponding table. This makes things a bit more complicated, 160 ** as this module treats each table as a separate structure. To determine 161 ** the table corresponding to the index being written, this 162 ** function has to search through the database schema. 163 ** 164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 165 ** hold a write-lock on the schema table (root page 1). This is also 166 ** acceptable. 167 */ 168 static int hasSharedCacheTableLock( 169 Btree *pBtree, /* Handle that must hold lock */ 170 Pgno iRoot, /* Root page of b-tree */ 171 int isIndex, /* True if iRoot is the root of an index b-tree */ 172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 173 ){ 174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 175 Pgno iTab = 0; 176 BtLock *pLock; 177 178 /* If this database is not shareable, or if the client is reading 179 ** and has the read-uncommitted flag set, then no lock is required. 180 ** Return true immediately. 181 */ 182 if( (pBtree->sharable==0) 183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 184 ){ 185 return 1; 186 } 187 188 /* If the client is reading or writing an index and the schema is 189 ** not loaded, then it is too difficult to actually check to see if 190 ** the correct locks are held. So do not bother - just return true. 191 ** This case does not come up very often anyhow. 192 */ 193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 194 return 1; 195 } 196 197 /* Figure out the root-page that the lock should be held on. For table 198 ** b-trees, this is just the root page of the b-tree being read or 199 ** written. For index b-trees, it is the root page of the associated 200 ** table. */ 201 if( isIndex ){ 202 HashElem *p; 203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 204 Index *pIdx = (Index *)sqliteHashData(p); 205 if( pIdx->tnum==(int)iRoot ){ 206 if( iTab ){ 207 /* Two or more indexes share the same root page. There must 208 ** be imposter tables. So just return true. The assert is not 209 ** useful in that case. */ 210 return 1; 211 } 212 iTab = pIdx->pTable->tnum; 213 } 214 } 215 }else{ 216 iTab = iRoot; 217 } 218 219 /* Search for the required lock. Either a write-lock on root-page iTab, a 220 ** write-lock on the schema table, or (if the client is reading) a 221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 223 if( pLock->pBtree==pBtree 224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 225 && pLock->eLock>=eLockType 226 ){ 227 return 1; 228 } 229 } 230 231 /* Failed to find the required lock. */ 232 return 0; 233 } 234 #endif /* SQLITE_DEBUG */ 235 236 #ifdef SQLITE_DEBUG 237 /* 238 **** This function may be used as part of assert() statements only. **** 239 ** 240 ** Return true if it would be illegal for pBtree to write into the 241 ** table or index rooted at iRoot because other shared connections are 242 ** simultaneously reading that same table or index. 243 ** 244 ** It is illegal for pBtree to write if some other Btree object that 245 ** shares the same BtShared object is currently reading or writing 246 ** the iRoot table. Except, if the other Btree object has the 247 ** read-uncommitted flag set, then it is OK for the other object to 248 ** have a read cursor. 249 ** 250 ** For example, before writing to any part of the table or index 251 ** rooted at page iRoot, one should call: 252 ** 253 ** assert( !hasReadConflicts(pBtree, iRoot) ); 254 */ 255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 256 BtCursor *p; 257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 258 if( p->pgnoRoot==iRoot 259 && p->pBtree!=pBtree 260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 261 ){ 262 return 1; 263 } 264 } 265 return 0; 266 } 267 #endif /* #ifdef SQLITE_DEBUG */ 268 269 /* 270 ** Query to see if Btree handle p may obtain a lock of type eLock 271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 272 ** SQLITE_OK if the lock may be obtained (by calling 273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 274 */ 275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 276 BtShared *pBt = p->pBt; 277 BtLock *pIter; 278 279 assert( sqlite3BtreeHoldsMutex(p) ); 280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 281 assert( p->db!=0 ); 282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 283 284 /* If requesting a write-lock, then the Btree must have an open write 285 ** transaction on this file. And, obviously, for this to be so there 286 ** must be an open write transaction on the file itself. 287 */ 288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 290 291 /* This routine is a no-op if the shared-cache is not enabled */ 292 if( !p->sharable ){ 293 return SQLITE_OK; 294 } 295 296 /* If some other connection is holding an exclusive lock, the 297 ** requested lock may not be obtained. 298 */ 299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 301 return SQLITE_LOCKED_SHAREDCACHE; 302 } 303 304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 305 /* The condition (pIter->eLock!=eLock) in the following if(...) 306 ** statement is a simplification of: 307 ** 308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 309 ** 310 ** since we know that if eLock==WRITE_LOCK, then no other connection 311 ** may hold a WRITE_LOCK on any table in this file (since there can 312 ** only be a single writer). 313 */ 314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 318 if( eLock==WRITE_LOCK ){ 319 assert( p==pBt->pWriter ); 320 pBt->btsFlags |= BTS_PENDING; 321 } 322 return SQLITE_LOCKED_SHAREDCACHE; 323 } 324 } 325 return SQLITE_OK; 326 } 327 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 328 329 #ifndef SQLITE_OMIT_SHARED_CACHE 330 /* 331 ** Add a lock on the table with root-page iTable to the shared-btree used 332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 333 ** WRITE_LOCK. 334 ** 335 ** This function assumes the following: 336 ** 337 ** (a) The specified Btree object p is connected to a sharable 338 ** database (one with the BtShared.sharable flag set), and 339 ** 340 ** (b) No other Btree objects hold a lock that conflicts 341 ** with the requested lock (i.e. querySharedCacheTableLock() has 342 ** already been called and returned SQLITE_OK). 343 ** 344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 345 ** is returned if a malloc attempt fails. 346 */ 347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 348 BtShared *pBt = p->pBt; 349 BtLock *pLock = 0; 350 BtLock *pIter; 351 352 assert( sqlite3BtreeHoldsMutex(p) ); 353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 354 assert( p->db!=0 ); 355 356 /* A connection with the read-uncommitted flag set will never try to 357 ** obtain a read-lock using this function. The only read-lock obtained 358 ** by a connection in read-uncommitted mode is on the sqlite_master 359 ** table, and that lock is obtained in BtreeBeginTrans(). */ 360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 361 362 /* This function should only be called on a sharable b-tree after it 363 ** has been determined that no other b-tree holds a conflicting lock. */ 364 assert( p->sharable ); 365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 366 367 /* First search the list for an existing lock on this table. */ 368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 369 if( pIter->iTable==iTable && pIter->pBtree==p ){ 370 pLock = pIter; 371 break; 372 } 373 } 374 375 /* If the above search did not find a BtLock struct associating Btree p 376 ** with table iTable, allocate one and link it into the list. 377 */ 378 if( !pLock ){ 379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 380 if( !pLock ){ 381 return SQLITE_NOMEM_BKPT; 382 } 383 pLock->iTable = iTable; 384 pLock->pBtree = p; 385 pLock->pNext = pBt->pLock; 386 pBt->pLock = pLock; 387 } 388 389 /* Set the BtLock.eLock variable to the maximum of the current lock 390 ** and the requested lock. This means if a write-lock was already held 391 ** and a read-lock requested, we don't incorrectly downgrade the lock. 392 */ 393 assert( WRITE_LOCK>READ_LOCK ); 394 if( eLock>pLock->eLock ){ 395 pLock->eLock = eLock; 396 } 397 398 return SQLITE_OK; 399 } 400 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 401 402 #ifndef SQLITE_OMIT_SHARED_CACHE 403 /* 404 ** Release all the table locks (locks obtained via calls to 405 ** the setSharedCacheTableLock() procedure) held by Btree object p. 406 ** 407 ** This function assumes that Btree p has an open read or write 408 ** transaction. If it does not, then the BTS_PENDING flag 409 ** may be incorrectly cleared. 410 */ 411 static void clearAllSharedCacheTableLocks(Btree *p){ 412 BtShared *pBt = p->pBt; 413 BtLock **ppIter = &pBt->pLock; 414 415 assert( sqlite3BtreeHoldsMutex(p) ); 416 assert( p->sharable || 0==*ppIter ); 417 assert( p->inTrans>0 ); 418 419 while( *ppIter ){ 420 BtLock *pLock = *ppIter; 421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 422 assert( pLock->pBtree->inTrans>=pLock->eLock ); 423 if( pLock->pBtree==p ){ 424 *ppIter = pLock->pNext; 425 assert( pLock->iTable!=1 || pLock==&p->lock ); 426 if( pLock->iTable!=1 ){ 427 sqlite3_free(pLock); 428 } 429 }else{ 430 ppIter = &pLock->pNext; 431 } 432 } 433 434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 435 if( pBt->pWriter==p ){ 436 pBt->pWriter = 0; 437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 438 }else if( pBt->nTransaction==2 ){ 439 /* This function is called when Btree p is concluding its 440 ** transaction. If there currently exists a writer, and p is not 441 ** that writer, then the number of locks held by connections other 442 ** than the writer must be about to drop to zero. In this case 443 ** set the BTS_PENDING flag to 0. 444 ** 445 ** If there is not currently a writer, then BTS_PENDING must 446 ** be zero already. So this next line is harmless in that case. 447 */ 448 pBt->btsFlags &= ~BTS_PENDING; 449 } 450 } 451 452 /* 453 ** This function changes all write-locks held by Btree p into read-locks. 454 */ 455 static void downgradeAllSharedCacheTableLocks(Btree *p){ 456 BtShared *pBt = p->pBt; 457 if( pBt->pWriter==p ){ 458 BtLock *pLock; 459 pBt->pWriter = 0; 460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 463 pLock->eLock = READ_LOCK; 464 } 465 } 466 } 467 468 #endif /* SQLITE_OMIT_SHARED_CACHE */ 469 470 static void releasePage(MemPage *pPage); /* Forward reference */ 471 static void releasePageOne(MemPage *pPage); /* Forward reference */ 472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 473 474 /* 475 ***** This routine is used inside of assert() only **** 476 ** 477 ** Verify that the cursor holds the mutex on its BtShared 478 */ 479 #ifdef SQLITE_DEBUG 480 static int cursorHoldsMutex(BtCursor *p){ 481 return sqlite3_mutex_held(p->pBt->mutex); 482 } 483 484 /* Verify that the cursor and the BtShared agree about what is the current 485 ** database connetion. This is important in shared-cache mode. If the database 486 ** connection pointers get out-of-sync, it is possible for routines like 487 ** btreeInitPage() to reference an stale connection pointer that references a 488 ** a connection that has already closed. This routine is used inside assert() 489 ** statements only and for the purpose of double-checking that the btree code 490 ** does keep the database connection pointers up-to-date. 491 */ 492 static int cursorOwnsBtShared(BtCursor *p){ 493 assert( cursorHoldsMutex(p) ); 494 return (p->pBtree->db==p->pBt->db); 495 } 496 #endif 497 498 /* 499 ** Invalidate the overflow cache of the cursor passed as the first argument. 500 ** on the shared btree structure pBt. 501 */ 502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 503 504 /* 505 ** Invalidate the overflow page-list cache for all cursors opened 506 ** on the shared btree structure pBt. 507 */ 508 static void invalidateAllOverflowCache(BtShared *pBt){ 509 BtCursor *p; 510 assert( sqlite3_mutex_held(pBt->mutex) ); 511 for(p=pBt->pCursor; p; p=p->pNext){ 512 invalidateOverflowCache(p); 513 } 514 } 515 516 #ifndef SQLITE_OMIT_INCRBLOB 517 /* 518 ** This function is called before modifying the contents of a table 519 ** to invalidate any incrblob cursors that are open on the 520 ** row or one of the rows being modified. 521 ** 522 ** If argument isClearTable is true, then the entire contents of the 523 ** table is about to be deleted. In this case invalidate all incrblob 524 ** cursors open on any row within the table with root-page pgnoRoot. 525 ** 526 ** Otherwise, if argument isClearTable is false, then the row with 527 ** rowid iRow is being replaced or deleted. In this case invalidate 528 ** only those incrblob cursors open on that specific row. 529 */ 530 static void invalidateIncrblobCursors( 531 Btree *pBtree, /* The database file to check */ 532 Pgno pgnoRoot, /* The table that might be changing */ 533 i64 iRow, /* The rowid that might be changing */ 534 int isClearTable /* True if all rows are being deleted */ 535 ){ 536 BtCursor *p; 537 if( pBtree->hasIncrblobCur==0 ) return; 538 assert( sqlite3BtreeHoldsMutex(pBtree) ); 539 pBtree->hasIncrblobCur = 0; 540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 541 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 542 pBtree->hasIncrblobCur = 1; 543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 544 p->eState = CURSOR_INVALID; 545 } 546 } 547 } 548 } 549 550 #else 551 /* Stub function when INCRBLOB is omitted */ 552 #define invalidateIncrblobCursors(w,x,y,z) 553 #endif /* SQLITE_OMIT_INCRBLOB */ 554 555 /* 556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 557 ** when a page that previously contained data becomes a free-list leaf 558 ** page. 559 ** 560 ** The BtShared.pHasContent bitvec exists to work around an obscure 561 ** bug caused by the interaction of two useful IO optimizations surrounding 562 ** free-list leaf pages: 563 ** 564 ** 1) When all data is deleted from a page and the page becomes 565 ** a free-list leaf page, the page is not written to the database 566 ** (as free-list leaf pages contain no meaningful data). Sometimes 567 ** such a page is not even journalled (as it will not be modified, 568 ** why bother journalling it?). 569 ** 570 ** 2) When a free-list leaf page is reused, its content is not read 571 ** from the database or written to the journal file (why should it 572 ** be, if it is not at all meaningful?). 573 ** 574 ** By themselves, these optimizations work fine and provide a handy 575 ** performance boost to bulk delete or insert operations. However, if 576 ** a page is moved to the free-list and then reused within the same 577 ** transaction, a problem comes up. If the page is not journalled when 578 ** it is moved to the free-list and it is also not journalled when it 579 ** is extracted from the free-list and reused, then the original data 580 ** may be lost. In the event of a rollback, it may not be possible 581 ** to restore the database to its original configuration. 582 ** 583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 584 ** moved to become a free-list leaf page, the corresponding bit is 585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 586 ** optimization 2 above is omitted if the corresponding bit is already 587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 588 ** at the end of every transaction. 589 */ 590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 591 int rc = SQLITE_OK; 592 if( !pBt->pHasContent ){ 593 assert( pgno<=pBt->nPage ); 594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 595 if( !pBt->pHasContent ){ 596 rc = SQLITE_NOMEM_BKPT; 597 } 598 } 599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 601 } 602 return rc; 603 } 604 605 /* 606 ** Query the BtShared.pHasContent vector. 607 ** 608 ** This function is called when a free-list leaf page is removed from the 609 ** free-list for reuse. It returns false if it is safe to retrieve the 610 ** page from the pager layer with the 'no-content' flag set. True otherwise. 611 */ 612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 613 Bitvec *p = pBt->pHasContent; 614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 615 } 616 617 /* 618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 619 ** invoked at the conclusion of each write-transaction. 620 */ 621 static void btreeClearHasContent(BtShared *pBt){ 622 sqlite3BitvecDestroy(pBt->pHasContent); 623 pBt->pHasContent = 0; 624 } 625 626 /* 627 ** Release all of the apPage[] pages for a cursor. 628 */ 629 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 630 int i; 631 if( pCur->iPage>=0 ){ 632 for(i=0; i<pCur->iPage; i++){ 633 releasePageNotNull(pCur->apPage[i]); 634 } 635 releasePageNotNull(pCur->pPage); 636 pCur->iPage = -1; 637 } 638 } 639 640 /* 641 ** The cursor passed as the only argument must point to a valid entry 642 ** when this function is called (i.e. have eState==CURSOR_VALID). This 643 ** function saves the current cursor key in variables pCur->nKey and 644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 645 ** code otherwise. 646 ** 647 ** If the cursor is open on an intkey table, then the integer key 648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 650 ** set to point to a malloced buffer pCur->nKey bytes in size containing 651 ** the key. 652 */ 653 static int saveCursorKey(BtCursor *pCur){ 654 int rc = SQLITE_OK; 655 assert( CURSOR_VALID==pCur->eState ); 656 assert( 0==pCur->pKey ); 657 assert( cursorHoldsMutex(pCur) ); 658 659 if( pCur->curIntKey ){ 660 /* Only the rowid is required for a table btree */ 661 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 662 }else{ 663 /* For an index btree, save the complete key content. It is possible 664 ** that the current key is corrupt. In that case, it is possible that 665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 666 ** up to the size of 1 varint plus 1 8-byte value when the cursor 667 ** position is restored. Hence the 17 bytes of padding allocated 668 ** below. */ 669 void *pKey; 670 pCur->nKey = sqlite3BtreePayloadSize(pCur); 671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 672 if( pKey ){ 673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 674 if( rc==SQLITE_OK ){ 675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 676 pCur->pKey = pKey; 677 }else{ 678 sqlite3_free(pKey); 679 } 680 }else{ 681 rc = SQLITE_NOMEM_BKPT; 682 } 683 } 684 assert( !pCur->curIntKey || !pCur->pKey ); 685 return rc; 686 } 687 688 /* 689 ** Save the current cursor position in the variables BtCursor.nKey 690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 691 ** 692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 693 ** prior to calling this routine. 694 */ 695 static int saveCursorPosition(BtCursor *pCur){ 696 int rc; 697 698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 699 assert( 0==pCur->pKey ); 700 assert( cursorHoldsMutex(pCur) ); 701 702 if( pCur->eState==CURSOR_SKIPNEXT ){ 703 pCur->eState = CURSOR_VALID; 704 }else{ 705 pCur->skipNext = 0; 706 } 707 708 rc = saveCursorKey(pCur); 709 if( rc==SQLITE_OK ){ 710 btreeReleaseAllCursorPages(pCur); 711 pCur->eState = CURSOR_REQUIRESEEK; 712 } 713 714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 715 return rc; 716 } 717 718 /* Forward reference */ 719 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 720 721 /* 722 ** Save the positions of all cursors (except pExcept) that are open on 723 ** the table with root-page iRoot. "Saving the cursor position" means that 724 ** the location in the btree is remembered in such a way that it can be 725 ** moved back to the same spot after the btree has been modified. This 726 ** routine is called just before cursor pExcept is used to modify the 727 ** table, for example in BtreeDelete() or BtreeInsert(). 728 ** 729 ** If there are two or more cursors on the same btree, then all such 730 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 731 ** routine enforces that rule. This routine only needs to be called in 732 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 733 ** 734 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 735 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 736 ** pointless call to this routine. 737 ** 738 ** Implementation note: This routine merely checks to see if any cursors 739 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 740 ** event that cursors are in need to being saved. 741 */ 742 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 743 BtCursor *p; 744 assert( sqlite3_mutex_held(pBt->mutex) ); 745 assert( pExcept==0 || pExcept->pBt==pBt ); 746 for(p=pBt->pCursor; p; p=p->pNext){ 747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 748 } 749 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 751 return SQLITE_OK; 752 } 753 754 /* This helper routine to saveAllCursors does the actual work of saving 755 ** the cursors if and when a cursor is found that actually requires saving. 756 ** The common case is that no cursors need to be saved, so this routine is 757 ** broken out from its caller to avoid unnecessary stack pointer movement. 758 */ 759 static int SQLITE_NOINLINE saveCursorsOnList( 760 BtCursor *p, /* The first cursor that needs saving */ 761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 762 BtCursor *pExcept /* Do not save this cursor */ 763 ){ 764 do{ 765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 767 int rc = saveCursorPosition(p); 768 if( SQLITE_OK!=rc ){ 769 return rc; 770 } 771 }else{ 772 testcase( p->iPage>=0 ); 773 btreeReleaseAllCursorPages(p); 774 } 775 } 776 p = p->pNext; 777 }while( p ); 778 return SQLITE_OK; 779 } 780 781 /* 782 ** Clear the current cursor position. 783 */ 784 void sqlite3BtreeClearCursor(BtCursor *pCur){ 785 assert( cursorHoldsMutex(pCur) ); 786 sqlite3_free(pCur->pKey); 787 pCur->pKey = 0; 788 pCur->eState = CURSOR_INVALID; 789 } 790 791 /* 792 ** In this version of BtreeMoveto, pKey is a packed index record 793 ** such as is generated by the OP_MakeRecord opcode. Unpack the 794 ** record and then call BtreeMovetoUnpacked() to do the work. 795 */ 796 static int btreeMoveto( 797 BtCursor *pCur, /* Cursor open on the btree to be searched */ 798 const void *pKey, /* Packed key if the btree is an index */ 799 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 800 int bias, /* Bias search to the high end */ 801 int *pRes /* Write search results here */ 802 ){ 803 int rc; /* Status code */ 804 UnpackedRecord *pIdxKey; /* Unpacked index key */ 805 806 if( pKey ){ 807 KeyInfo *pKeyInfo = pCur->pKeyInfo; 808 assert( nKey==(i64)(int)nKey ); 809 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 810 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 811 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 812 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 813 rc = SQLITE_CORRUPT_BKPT; 814 goto moveto_done; 815 } 816 }else{ 817 pIdxKey = 0; 818 } 819 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 820 moveto_done: 821 if( pIdxKey ){ 822 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 823 } 824 return rc; 825 } 826 827 /* 828 ** Restore the cursor to the position it was in (or as close to as possible) 829 ** when saveCursorPosition() was called. Note that this call deletes the 830 ** saved position info stored by saveCursorPosition(), so there can be 831 ** at most one effective restoreCursorPosition() call after each 832 ** saveCursorPosition(). 833 */ 834 static int btreeRestoreCursorPosition(BtCursor *pCur){ 835 int rc; 836 int skipNext = 0; 837 assert( cursorOwnsBtShared(pCur) ); 838 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 839 if( pCur->eState==CURSOR_FAULT ){ 840 return pCur->skipNext; 841 } 842 pCur->eState = CURSOR_INVALID; 843 if( sqlite3FaultSim(410) ){ 844 rc = SQLITE_IOERR; 845 }else{ 846 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 847 } 848 if( rc==SQLITE_OK ){ 849 sqlite3_free(pCur->pKey); 850 pCur->pKey = 0; 851 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 852 if( skipNext ) pCur->skipNext = skipNext; 853 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 854 pCur->eState = CURSOR_SKIPNEXT; 855 } 856 } 857 return rc; 858 } 859 860 #define restoreCursorPosition(p) \ 861 (p->eState>=CURSOR_REQUIRESEEK ? \ 862 btreeRestoreCursorPosition(p) : \ 863 SQLITE_OK) 864 865 /* 866 ** Determine whether or not a cursor has moved from the position where 867 ** it was last placed, or has been invalidated for any other reason. 868 ** Cursors can move when the row they are pointing at is deleted out 869 ** from under them, for example. Cursor might also move if a btree 870 ** is rebalanced. 871 ** 872 ** Calling this routine with a NULL cursor pointer returns false. 873 ** 874 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 875 ** back to where it ought to be if this routine returns true. 876 */ 877 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 878 assert( EIGHT_BYTE_ALIGNMENT(pCur) 879 || pCur==sqlite3BtreeFakeValidCursor() ); 880 assert( offsetof(BtCursor, eState)==0 ); 881 assert( sizeof(pCur->eState)==1 ); 882 return CURSOR_VALID != *(u8*)pCur; 883 } 884 885 /* 886 ** Return a pointer to a fake BtCursor object that will always answer 887 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 888 ** cursor returned must not be used with any other Btree interface. 889 */ 890 BtCursor *sqlite3BtreeFakeValidCursor(void){ 891 static u8 fakeCursor = CURSOR_VALID; 892 assert( offsetof(BtCursor, eState)==0 ); 893 return (BtCursor*)&fakeCursor; 894 } 895 896 /* 897 ** This routine restores a cursor back to its original position after it 898 ** has been moved by some outside activity (such as a btree rebalance or 899 ** a row having been deleted out from under the cursor). 900 ** 901 ** On success, the *pDifferentRow parameter is false if the cursor is left 902 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 903 ** was pointing to has been deleted, forcing the cursor to point to some 904 ** nearby row. 905 ** 906 ** This routine should only be called for a cursor that just returned 907 ** TRUE from sqlite3BtreeCursorHasMoved(). 908 */ 909 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 910 int rc; 911 912 assert( pCur!=0 ); 913 assert( pCur->eState!=CURSOR_VALID ); 914 rc = restoreCursorPosition(pCur); 915 if( rc ){ 916 *pDifferentRow = 1; 917 return rc; 918 } 919 if( pCur->eState!=CURSOR_VALID ){ 920 *pDifferentRow = 1; 921 }else{ 922 *pDifferentRow = 0; 923 } 924 return SQLITE_OK; 925 } 926 927 #ifdef SQLITE_ENABLE_CURSOR_HINTS 928 /* 929 ** Provide hints to the cursor. The particular hint given (and the type 930 ** and number of the varargs parameters) is determined by the eHintType 931 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 932 */ 933 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 934 /* Used only by system that substitute their own storage engine */ 935 } 936 #endif 937 938 /* 939 ** Provide flag hints to the cursor. 940 */ 941 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 942 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 943 pCur->hints = x; 944 } 945 946 947 #ifndef SQLITE_OMIT_AUTOVACUUM 948 /* 949 ** Given a page number of a regular database page, return the page 950 ** number for the pointer-map page that contains the entry for the 951 ** input page number. 952 ** 953 ** Return 0 (not a valid page) for pgno==1 since there is 954 ** no pointer map associated with page 1. The integrity_check logic 955 ** requires that ptrmapPageno(*,1)!=1. 956 */ 957 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 958 int nPagesPerMapPage; 959 Pgno iPtrMap, ret; 960 assert( sqlite3_mutex_held(pBt->mutex) ); 961 if( pgno<2 ) return 0; 962 nPagesPerMapPage = (pBt->usableSize/5)+1; 963 iPtrMap = (pgno-2)/nPagesPerMapPage; 964 ret = (iPtrMap*nPagesPerMapPage) + 2; 965 if( ret==PENDING_BYTE_PAGE(pBt) ){ 966 ret++; 967 } 968 return ret; 969 } 970 971 /* 972 ** Write an entry into the pointer map. 973 ** 974 ** This routine updates the pointer map entry for page number 'key' 975 ** so that it maps to type 'eType' and parent page number 'pgno'. 976 ** 977 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 978 ** a no-op. If an error occurs, the appropriate error code is written 979 ** into *pRC. 980 */ 981 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 982 DbPage *pDbPage; /* The pointer map page */ 983 u8 *pPtrmap; /* The pointer map data */ 984 Pgno iPtrmap; /* The pointer map page number */ 985 int offset; /* Offset in pointer map page */ 986 int rc; /* Return code from subfunctions */ 987 988 if( *pRC ) return; 989 990 assert( sqlite3_mutex_held(pBt->mutex) ); 991 /* The master-journal page number must never be used as a pointer map page */ 992 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 993 994 assert( pBt->autoVacuum ); 995 if( key==0 ){ 996 *pRC = SQLITE_CORRUPT_BKPT; 997 return; 998 } 999 iPtrmap = PTRMAP_PAGENO(pBt, key); 1000 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1001 if( rc!=SQLITE_OK ){ 1002 *pRC = rc; 1003 return; 1004 } 1005 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1006 /* The first byte of the extra data is the MemPage.isInit byte. 1007 ** If that byte is set, it means this page is also being used 1008 ** as a btree page. */ 1009 *pRC = SQLITE_CORRUPT_BKPT; 1010 goto ptrmap_exit; 1011 } 1012 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1013 if( offset<0 ){ 1014 *pRC = SQLITE_CORRUPT_BKPT; 1015 goto ptrmap_exit; 1016 } 1017 assert( offset <= (int)pBt->usableSize-5 ); 1018 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1019 1020 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1021 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1022 *pRC= rc = sqlite3PagerWrite(pDbPage); 1023 if( rc==SQLITE_OK ){ 1024 pPtrmap[offset] = eType; 1025 put4byte(&pPtrmap[offset+1], parent); 1026 } 1027 } 1028 1029 ptrmap_exit: 1030 sqlite3PagerUnref(pDbPage); 1031 } 1032 1033 /* 1034 ** Read an entry from the pointer map. 1035 ** 1036 ** This routine retrieves the pointer map entry for page 'key', writing 1037 ** the type and parent page number to *pEType and *pPgno respectively. 1038 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1039 */ 1040 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1041 DbPage *pDbPage; /* The pointer map page */ 1042 int iPtrmap; /* Pointer map page index */ 1043 u8 *pPtrmap; /* Pointer map page data */ 1044 int offset; /* Offset of entry in pointer map */ 1045 int rc; 1046 1047 assert( sqlite3_mutex_held(pBt->mutex) ); 1048 1049 iPtrmap = PTRMAP_PAGENO(pBt, key); 1050 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1051 if( rc!=0 ){ 1052 return rc; 1053 } 1054 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1055 1056 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1057 if( offset<0 ){ 1058 sqlite3PagerUnref(pDbPage); 1059 return SQLITE_CORRUPT_BKPT; 1060 } 1061 assert( offset <= (int)pBt->usableSize-5 ); 1062 assert( pEType!=0 ); 1063 *pEType = pPtrmap[offset]; 1064 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1065 1066 sqlite3PagerUnref(pDbPage); 1067 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1068 return SQLITE_OK; 1069 } 1070 1071 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1072 #define ptrmapPut(w,x,y,z,rc) 1073 #define ptrmapGet(w,x,y,z) SQLITE_OK 1074 #define ptrmapPutOvflPtr(x, y, z, rc) 1075 #endif 1076 1077 /* 1078 ** Given a btree page and a cell index (0 means the first cell on 1079 ** the page, 1 means the second cell, and so forth) return a pointer 1080 ** to the cell content. 1081 ** 1082 ** findCellPastPtr() does the same except it skips past the initial 1083 ** 4-byte child pointer found on interior pages, if there is one. 1084 ** 1085 ** This routine works only for pages that do not contain overflow cells. 1086 */ 1087 #define findCell(P,I) \ 1088 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1089 #define findCellPastPtr(P,I) \ 1090 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1091 1092 1093 /* 1094 ** This is common tail processing for btreeParseCellPtr() and 1095 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1096 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1097 ** structure. 1098 */ 1099 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1100 MemPage *pPage, /* Page containing the cell */ 1101 u8 *pCell, /* Pointer to the cell text. */ 1102 CellInfo *pInfo /* Fill in this structure */ 1103 ){ 1104 /* If the payload will not fit completely on the local page, we have 1105 ** to decide how much to store locally and how much to spill onto 1106 ** overflow pages. The strategy is to minimize the amount of unused 1107 ** space on overflow pages while keeping the amount of local storage 1108 ** in between minLocal and maxLocal. 1109 ** 1110 ** Warning: changing the way overflow payload is distributed in any 1111 ** way will result in an incompatible file format. 1112 */ 1113 int minLocal; /* Minimum amount of payload held locally */ 1114 int maxLocal; /* Maximum amount of payload held locally */ 1115 int surplus; /* Overflow payload available for local storage */ 1116 1117 minLocal = pPage->minLocal; 1118 maxLocal = pPage->maxLocal; 1119 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1120 testcase( surplus==maxLocal ); 1121 testcase( surplus==maxLocal+1 ); 1122 if( surplus <= maxLocal ){ 1123 pInfo->nLocal = (u16)surplus; 1124 }else{ 1125 pInfo->nLocal = (u16)minLocal; 1126 } 1127 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1128 } 1129 1130 /* 1131 ** The following routines are implementations of the MemPage.xParseCell() 1132 ** method. 1133 ** 1134 ** Parse a cell content block and fill in the CellInfo structure. 1135 ** 1136 ** btreeParseCellPtr() => table btree leaf nodes 1137 ** btreeParseCellNoPayload() => table btree internal nodes 1138 ** btreeParseCellPtrIndex() => index btree nodes 1139 ** 1140 ** There is also a wrapper function btreeParseCell() that works for 1141 ** all MemPage types and that references the cell by index rather than 1142 ** by pointer. 1143 */ 1144 static void btreeParseCellPtrNoPayload( 1145 MemPage *pPage, /* Page containing the cell */ 1146 u8 *pCell, /* Pointer to the cell text. */ 1147 CellInfo *pInfo /* Fill in this structure */ 1148 ){ 1149 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1150 assert( pPage->leaf==0 ); 1151 assert( pPage->childPtrSize==4 ); 1152 #ifndef SQLITE_DEBUG 1153 UNUSED_PARAMETER(pPage); 1154 #endif 1155 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1156 pInfo->nPayload = 0; 1157 pInfo->nLocal = 0; 1158 pInfo->pPayload = 0; 1159 return; 1160 } 1161 static void btreeParseCellPtr( 1162 MemPage *pPage, /* Page containing the cell */ 1163 u8 *pCell, /* Pointer to the cell text. */ 1164 CellInfo *pInfo /* Fill in this structure */ 1165 ){ 1166 u8 *pIter; /* For scanning through pCell */ 1167 u32 nPayload; /* Number of bytes of cell payload */ 1168 u64 iKey; /* Extracted Key value */ 1169 1170 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1171 assert( pPage->leaf==0 || pPage->leaf==1 ); 1172 assert( pPage->intKeyLeaf ); 1173 assert( pPage->childPtrSize==0 ); 1174 pIter = pCell; 1175 1176 /* The next block of code is equivalent to: 1177 ** 1178 ** pIter += getVarint32(pIter, nPayload); 1179 ** 1180 ** The code is inlined to avoid a function call. 1181 */ 1182 nPayload = *pIter; 1183 if( nPayload>=0x80 ){ 1184 u8 *pEnd = &pIter[8]; 1185 nPayload &= 0x7f; 1186 do{ 1187 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1188 }while( (*pIter)>=0x80 && pIter<pEnd ); 1189 } 1190 pIter++; 1191 1192 /* The next block of code is equivalent to: 1193 ** 1194 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1195 ** 1196 ** The code is inlined to avoid a function call. 1197 */ 1198 iKey = *pIter; 1199 if( iKey>=0x80 ){ 1200 u8 *pEnd = &pIter[7]; 1201 iKey &= 0x7f; 1202 while(1){ 1203 iKey = (iKey<<7) | (*++pIter & 0x7f); 1204 if( (*pIter)<0x80 ) break; 1205 if( pIter>=pEnd ){ 1206 iKey = (iKey<<8) | *++pIter; 1207 break; 1208 } 1209 } 1210 } 1211 pIter++; 1212 1213 pInfo->nKey = *(i64*)&iKey; 1214 pInfo->nPayload = nPayload; 1215 pInfo->pPayload = pIter; 1216 testcase( nPayload==pPage->maxLocal ); 1217 testcase( nPayload==pPage->maxLocal+1 ); 1218 if( nPayload<=pPage->maxLocal ){ 1219 /* This is the (easy) common case where the entire payload fits 1220 ** on the local page. No overflow is required. 1221 */ 1222 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1223 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1224 pInfo->nLocal = (u16)nPayload; 1225 }else{ 1226 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1227 } 1228 } 1229 static void btreeParseCellPtrIndex( 1230 MemPage *pPage, /* Page containing the cell */ 1231 u8 *pCell, /* Pointer to the cell text. */ 1232 CellInfo *pInfo /* Fill in this structure */ 1233 ){ 1234 u8 *pIter; /* For scanning through pCell */ 1235 u32 nPayload; /* Number of bytes of cell payload */ 1236 1237 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1238 assert( pPage->leaf==0 || pPage->leaf==1 ); 1239 assert( pPage->intKeyLeaf==0 ); 1240 pIter = pCell + pPage->childPtrSize; 1241 nPayload = *pIter; 1242 if( nPayload>=0x80 ){ 1243 u8 *pEnd = &pIter[8]; 1244 nPayload &= 0x7f; 1245 do{ 1246 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1247 }while( *(pIter)>=0x80 && pIter<pEnd ); 1248 } 1249 pIter++; 1250 pInfo->nKey = nPayload; 1251 pInfo->nPayload = nPayload; 1252 pInfo->pPayload = pIter; 1253 testcase( nPayload==pPage->maxLocal ); 1254 testcase( nPayload==pPage->maxLocal+1 ); 1255 if( nPayload<=pPage->maxLocal ){ 1256 /* This is the (easy) common case where the entire payload fits 1257 ** on the local page. No overflow is required. 1258 */ 1259 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1260 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1261 pInfo->nLocal = (u16)nPayload; 1262 }else{ 1263 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1264 } 1265 } 1266 static void btreeParseCell( 1267 MemPage *pPage, /* Page containing the cell */ 1268 int iCell, /* The cell index. First cell is 0 */ 1269 CellInfo *pInfo /* Fill in this structure */ 1270 ){ 1271 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1272 } 1273 1274 /* 1275 ** The following routines are implementations of the MemPage.xCellSize 1276 ** method. 1277 ** 1278 ** Compute the total number of bytes that a Cell needs in the cell 1279 ** data area of the btree-page. The return number includes the cell 1280 ** data header and the local payload, but not any overflow page or 1281 ** the space used by the cell pointer. 1282 ** 1283 ** cellSizePtrNoPayload() => table internal nodes 1284 ** cellSizePtr() => all index nodes & table leaf nodes 1285 */ 1286 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1287 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1288 u8 *pEnd; /* End mark for a varint */ 1289 u32 nSize; /* Size value to return */ 1290 1291 #ifdef SQLITE_DEBUG 1292 /* The value returned by this function should always be the same as 1293 ** the (CellInfo.nSize) value found by doing a full parse of the 1294 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1295 ** this function verifies that this invariant is not violated. */ 1296 CellInfo debuginfo; 1297 pPage->xParseCell(pPage, pCell, &debuginfo); 1298 #endif 1299 1300 nSize = *pIter; 1301 if( nSize>=0x80 ){ 1302 pEnd = &pIter[8]; 1303 nSize &= 0x7f; 1304 do{ 1305 nSize = (nSize<<7) | (*++pIter & 0x7f); 1306 }while( *(pIter)>=0x80 && pIter<pEnd ); 1307 } 1308 pIter++; 1309 if( pPage->intKey ){ 1310 /* pIter now points at the 64-bit integer key value, a variable length 1311 ** integer. The following block moves pIter to point at the first byte 1312 ** past the end of the key value. */ 1313 pEnd = &pIter[9]; 1314 while( (*pIter++)&0x80 && pIter<pEnd ); 1315 } 1316 testcase( nSize==pPage->maxLocal ); 1317 testcase( nSize==pPage->maxLocal+1 ); 1318 if( nSize<=pPage->maxLocal ){ 1319 nSize += (u32)(pIter - pCell); 1320 if( nSize<4 ) nSize = 4; 1321 }else{ 1322 int minLocal = pPage->minLocal; 1323 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1324 testcase( nSize==pPage->maxLocal ); 1325 testcase( nSize==pPage->maxLocal+1 ); 1326 if( nSize>pPage->maxLocal ){ 1327 nSize = minLocal; 1328 } 1329 nSize += 4 + (u16)(pIter - pCell); 1330 } 1331 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1332 return (u16)nSize; 1333 } 1334 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1335 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1336 u8 *pEnd; /* End mark for a varint */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #else 1346 UNUSED_PARAMETER(pPage); 1347 #endif 1348 1349 assert( pPage->childPtrSize==4 ); 1350 pEnd = pIter + 9; 1351 while( (*pIter++)&0x80 && pIter<pEnd ); 1352 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1353 return (u16)(pIter - pCell); 1354 } 1355 1356 1357 #ifdef SQLITE_DEBUG 1358 /* This variation on cellSizePtr() is used inside of assert() statements 1359 ** only. */ 1360 static u16 cellSize(MemPage *pPage, int iCell){ 1361 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1362 } 1363 #endif 1364 1365 #ifndef SQLITE_OMIT_AUTOVACUUM 1366 /* 1367 ** The cell pCell is currently part of page pSrc but will ultimately be part 1368 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1369 ** pointer to an overflow page, insert an entry into the pointer-map for 1370 ** the overflow page that will be valid after pCell has been moved to pPage. 1371 */ 1372 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1373 CellInfo info; 1374 if( *pRC ) return; 1375 assert( pCell!=0 ); 1376 pPage->xParseCell(pPage, pCell, &info); 1377 if( info.nLocal<info.nPayload ){ 1378 Pgno ovfl; 1379 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1380 testcase( pSrc!=pPage ); 1381 *pRC = SQLITE_CORRUPT_BKPT; 1382 return; 1383 } 1384 ovfl = get4byte(&pCell[info.nSize-4]); 1385 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1386 } 1387 } 1388 #endif 1389 1390 1391 /* 1392 ** Defragment the page given. This routine reorganizes cells within the 1393 ** page so that there are no free-blocks on the free-block list. 1394 ** 1395 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1396 ** present in the page after this routine returns. 1397 ** 1398 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1399 ** b-tree page so that there are no freeblocks or fragment bytes, all 1400 ** unused bytes are contained in the unallocated space region, and all 1401 ** cells are packed tightly at the end of the page. 1402 */ 1403 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1404 int i; /* Loop counter */ 1405 int pc; /* Address of the i-th cell */ 1406 int hdr; /* Offset to the page header */ 1407 int size; /* Size of a cell */ 1408 int usableSize; /* Number of usable bytes on a page */ 1409 int cellOffset; /* Offset to the cell pointer array */ 1410 int cbrk; /* Offset to the cell content area */ 1411 int nCell; /* Number of cells on the page */ 1412 unsigned char *data; /* The page data */ 1413 unsigned char *temp; /* Temp area for cell content */ 1414 unsigned char *src; /* Source of content */ 1415 int iCellFirst; /* First allowable cell index */ 1416 int iCellLast; /* Last possible cell index */ 1417 1418 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1419 assert( pPage->pBt!=0 ); 1420 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1421 assert( pPage->nOverflow==0 ); 1422 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1423 temp = 0; 1424 src = data = pPage->aData; 1425 hdr = pPage->hdrOffset; 1426 cellOffset = pPage->cellOffset; 1427 nCell = pPage->nCell; 1428 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1429 iCellFirst = cellOffset + 2*nCell; 1430 usableSize = pPage->pBt->usableSize; 1431 1432 /* This block handles pages with two or fewer free blocks and nMaxFrag 1433 ** or fewer fragmented bytes. In this case it is faster to move the 1434 ** two (or one) blocks of cells using memmove() and add the required 1435 ** offsets to each pointer in the cell-pointer array than it is to 1436 ** reconstruct the entire page. */ 1437 if( (int)data[hdr+7]<=nMaxFrag ){ 1438 int iFree = get2byte(&data[hdr+1]); 1439 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1440 if( iFree ){ 1441 int iFree2 = get2byte(&data[iFree]); 1442 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1443 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1444 u8 *pEnd = &data[cellOffset + nCell*2]; 1445 u8 *pAddr; 1446 int sz2 = 0; 1447 int sz = get2byte(&data[iFree+2]); 1448 int top = get2byte(&data[hdr+5]); 1449 if( top>=iFree ){ 1450 return SQLITE_CORRUPT_PAGE(pPage); 1451 } 1452 if( iFree2 ){ 1453 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1454 sz2 = get2byte(&data[iFree2+2]); 1455 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1456 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1457 sz += sz2; 1458 }else if( iFree+sz>usableSize ){ 1459 return SQLITE_CORRUPT_PAGE(pPage); 1460 } 1461 1462 cbrk = top+sz; 1463 assert( cbrk+(iFree-top) <= usableSize ); 1464 memmove(&data[cbrk], &data[top], iFree-top); 1465 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1466 pc = get2byte(pAddr); 1467 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1468 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1469 } 1470 goto defragment_out; 1471 } 1472 } 1473 } 1474 1475 cbrk = usableSize; 1476 iCellLast = usableSize - 4; 1477 for(i=0; i<nCell; i++){ 1478 u8 *pAddr; /* The i-th cell pointer */ 1479 pAddr = &data[cellOffset + i*2]; 1480 pc = get2byte(pAddr); 1481 testcase( pc==iCellFirst ); 1482 testcase( pc==iCellLast ); 1483 /* These conditions have already been verified in btreeInitPage() 1484 ** if PRAGMA cell_size_check=ON. 1485 */ 1486 if( pc<iCellFirst || pc>iCellLast ){ 1487 return SQLITE_CORRUPT_PAGE(pPage); 1488 } 1489 assert( pc>=iCellFirst && pc<=iCellLast ); 1490 size = pPage->xCellSize(pPage, &src[pc]); 1491 cbrk -= size; 1492 if( cbrk<iCellFirst || pc+size>usableSize ){ 1493 return SQLITE_CORRUPT_PAGE(pPage); 1494 } 1495 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1496 testcase( cbrk+size==usableSize ); 1497 testcase( pc+size==usableSize ); 1498 put2byte(pAddr, cbrk); 1499 if( temp==0 ){ 1500 int x; 1501 if( cbrk==pc ) continue; 1502 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1503 x = get2byte(&data[hdr+5]); 1504 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1505 src = temp; 1506 } 1507 memcpy(&data[cbrk], &src[pc], size); 1508 } 1509 data[hdr+7] = 0; 1510 1511 defragment_out: 1512 assert( pPage->nFree>=0 ); 1513 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1514 return SQLITE_CORRUPT_PAGE(pPage); 1515 } 1516 assert( cbrk>=iCellFirst ); 1517 put2byte(&data[hdr+5], cbrk); 1518 data[hdr+1] = 0; 1519 data[hdr+2] = 0; 1520 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1521 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1522 return SQLITE_OK; 1523 } 1524 1525 /* 1526 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1527 ** size. If one can be found, return a pointer to the space and remove it 1528 ** from the free-list. 1529 ** 1530 ** If no suitable space can be found on the free-list, return NULL. 1531 ** 1532 ** This function may detect corruption within pPg. If corruption is 1533 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1534 ** 1535 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1536 ** will be ignored if adding the extra space to the fragmentation count 1537 ** causes the fragmentation count to exceed 60. 1538 */ 1539 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1540 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1541 u8 * const aData = pPg->aData; /* Page data */ 1542 int iAddr = hdr + 1; /* Address of ptr to pc */ 1543 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1544 int x; /* Excess size of the slot */ 1545 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1546 int size; /* Size of the free slot */ 1547 1548 assert( pc>0 ); 1549 while( pc<=maxPC ){ 1550 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1551 ** freeblock form a big-endian integer which is the size of the freeblock 1552 ** in bytes, including the 4-byte header. */ 1553 size = get2byte(&aData[pc+2]); 1554 if( (x = size - nByte)>=0 ){ 1555 testcase( x==4 ); 1556 testcase( x==3 ); 1557 if( x<4 ){ 1558 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1559 ** number of bytes in fragments may not exceed 60. */ 1560 if( aData[hdr+7]>57 ) return 0; 1561 1562 /* Remove the slot from the free-list. Update the number of 1563 ** fragmented bytes within the page. */ 1564 memcpy(&aData[iAddr], &aData[pc], 2); 1565 aData[hdr+7] += (u8)x; 1566 }else if( x+pc > maxPC ){ 1567 /* This slot extends off the end of the usable part of the page */ 1568 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1569 return 0; 1570 }else{ 1571 /* The slot remains on the free-list. Reduce its size to account 1572 ** for the portion used by the new allocation. */ 1573 put2byte(&aData[pc+2], x); 1574 } 1575 return &aData[pc + x]; 1576 } 1577 iAddr = pc; 1578 pc = get2byte(&aData[pc]); 1579 if( pc<=iAddr+size ){ 1580 if( pc ){ 1581 /* The next slot in the chain is not past the end of the current slot */ 1582 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1583 } 1584 return 0; 1585 } 1586 } 1587 if( pc>maxPC+nByte-4 ){ 1588 /* The free slot chain extends off the end of the page */ 1589 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1590 } 1591 return 0; 1592 } 1593 1594 /* 1595 ** Allocate nByte bytes of space from within the B-Tree page passed 1596 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1597 ** of the first byte of allocated space. Return either SQLITE_OK or 1598 ** an error code (usually SQLITE_CORRUPT). 1599 ** 1600 ** The caller guarantees that there is sufficient space to make the 1601 ** allocation. This routine might need to defragment in order to bring 1602 ** all the space together, however. This routine will avoid using 1603 ** the first two bytes past the cell pointer area since presumably this 1604 ** allocation is being made in order to insert a new cell, so we will 1605 ** also end up needing a new cell pointer. 1606 */ 1607 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1608 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1609 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1610 int top; /* First byte of cell content area */ 1611 int rc = SQLITE_OK; /* Integer return code */ 1612 int gap; /* First byte of gap between cell pointers and cell content */ 1613 1614 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1615 assert( pPage->pBt ); 1616 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1617 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1618 assert( pPage->nFree>=nByte ); 1619 assert( pPage->nOverflow==0 ); 1620 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1621 1622 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1623 gap = pPage->cellOffset + 2*pPage->nCell; 1624 assert( gap<=65536 ); 1625 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1626 ** and the reserved space is zero (the usual value for reserved space) 1627 ** then the cell content offset of an empty page wants to be 65536. 1628 ** However, that integer is too large to be stored in a 2-byte unsigned 1629 ** integer, so a value of 0 is used in its place. */ 1630 top = get2byte(&data[hdr+5]); 1631 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1632 if( gap>top ){ 1633 if( top==0 && pPage->pBt->usableSize==65536 ){ 1634 top = 65536; 1635 }else{ 1636 return SQLITE_CORRUPT_PAGE(pPage); 1637 } 1638 } 1639 1640 /* If there is enough space between gap and top for one more cell pointer, 1641 ** and if the freelist is not empty, then search the 1642 ** freelist looking for a slot big enough to satisfy the request. 1643 */ 1644 testcase( gap+2==top ); 1645 testcase( gap+1==top ); 1646 testcase( gap==top ); 1647 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1648 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1649 if( pSpace ){ 1650 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1651 if( (*pIdx = (int)(pSpace-data))<=gap ){ 1652 return SQLITE_CORRUPT_PAGE(pPage); 1653 }else{ 1654 return SQLITE_OK; 1655 } 1656 }else if( rc ){ 1657 return rc; 1658 } 1659 } 1660 1661 /* The request could not be fulfilled using a freelist slot. Check 1662 ** to see if defragmentation is necessary. 1663 */ 1664 testcase( gap+2+nByte==top ); 1665 if( gap+2+nByte>top ){ 1666 assert( pPage->nCell>0 || CORRUPT_DB ); 1667 assert( pPage->nFree>=0 ); 1668 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1669 if( rc ) return rc; 1670 top = get2byteNotZero(&data[hdr+5]); 1671 assert( gap+2+nByte<=top ); 1672 } 1673 1674 1675 /* Allocate memory from the gap in between the cell pointer array 1676 ** and the cell content area. The btreeComputeFreeSpace() call has already 1677 ** validated the freelist. Given that the freelist is valid, there 1678 ** is no way that the allocation can extend off the end of the page. 1679 ** The assert() below verifies the previous sentence. 1680 */ 1681 top -= nByte; 1682 put2byte(&data[hdr+5], top); 1683 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1684 *pIdx = top; 1685 return SQLITE_OK; 1686 } 1687 1688 /* 1689 ** Return a section of the pPage->aData to the freelist. 1690 ** The first byte of the new free block is pPage->aData[iStart] 1691 ** and the size of the block is iSize bytes. 1692 ** 1693 ** Adjacent freeblocks are coalesced. 1694 ** 1695 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1696 ** that routine will not detect overlap between cells or freeblocks. Nor 1697 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1698 ** at the end of the page. So do additional corruption checks inside this 1699 ** routine and return SQLITE_CORRUPT if any problems are found. 1700 */ 1701 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1702 u16 iPtr; /* Address of ptr to next freeblock */ 1703 u16 iFreeBlk; /* Address of the next freeblock */ 1704 u8 hdr; /* Page header size. 0 or 100 */ 1705 u8 nFrag = 0; /* Reduction in fragmentation */ 1706 u16 iOrigSize = iSize; /* Original value of iSize */ 1707 u16 x; /* Offset to cell content area */ 1708 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1709 unsigned char *data = pPage->aData; /* Page content */ 1710 1711 assert( pPage->pBt!=0 ); 1712 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1713 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1714 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1715 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1716 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1717 assert( iStart<=pPage->pBt->usableSize-4 ); 1718 1719 /* The list of freeblocks must be in ascending order. Find the 1720 ** spot on the list where iStart should be inserted. 1721 */ 1722 hdr = pPage->hdrOffset; 1723 iPtr = hdr + 1; 1724 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1725 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1726 }else{ 1727 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1728 if( iFreeBlk<iPtr+4 ){ 1729 if( iFreeBlk==0 ) break; 1730 return SQLITE_CORRUPT_PAGE(pPage); 1731 } 1732 iPtr = iFreeBlk; 1733 } 1734 if( iFreeBlk>pPage->pBt->usableSize-4 ){ 1735 return SQLITE_CORRUPT_PAGE(pPage); 1736 } 1737 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1738 1739 /* At this point: 1740 ** iFreeBlk: First freeblock after iStart, or zero if none 1741 ** iPtr: The address of a pointer to iFreeBlk 1742 ** 1743 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1744 */ 1745 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1746 nFrag = iFreeBlk - iEnd; 1747 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1748 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1749 if( iEnd > pPage->pBt->usableSize ){ 1750 return SQLITE_CORRUPT_PAGE(pPage); 1751 } 1752 iSize = iEnd - iStart; 1753 iFreeBlk = get2byte(&data[iFreeBlk]); 1754 } 1755 1756 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1757 ** pointer in the page header) then check to see if iStart should be 1758 ** coalesced onto the end of iPtr. 1759 */ 1760 if( iPtr>hdr+1 ){ 1761 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1762 if( iPtrEnd+3>=iStart ){ 1763 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1764 nFrag += iStart - iPtrEnd; 1765 iSize = iEnd - iPtr; 1766 iStart = iPtr; 1767 } 1768 } 1769 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1770 data[hdr+7] -= nFrag; 1771 } 1772 x = get2byte(&data[hdr+5]); 1773 if( iStart<=x ){ 1774 /* The new freeblock is at the beginning of the cell content area, 1775 ** so just extend the cell content area rather than create another 1776 ** freelist entry */ 1777 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1778 put2byte(&data[hdr+1], iFreeBlk); 1779 put2byte(&data[hdr+5], iEnd); 1780 }else{ 1781 /* Insert the new freeblock into the freelist */ 1782 put2byte(&data[iPtr], iStart); 1783 } 1784 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1785 /* Overwrite deleted information with zeros when the secure_delete 1786 ** option is enabled */ 1787 memset(&data[iStart], 0, iSize); 1788 } 1789 put2byte(&data[iStart], iFreeBlk); 1790 put2byte(&data[iStart+2], iSize); 1791 pPage->nFree += iOrigSize; 1792 return SQLITE_OK; 1793 } 1794 1795 /* 1796 ** Decode the flags byte (the first byte of the header) for a page 1797 ** and initialize fields of the MemPage structure accordingly. 1798 ** 1799 ** Only the following combinations are supported. Anything different 1800 ** indicates a corrupt database files: 1801 ** 1802 ** PTF_ZERODATA 1803 ** PTF_ZERODATA | PTF_LEAF 1804 ** PTF_LEAFDATA | PTF_INTKEY 1805 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1806 */ 1807 static int decodeFlags(MemPage *pPage, int flagByte){ 1808 BtShared *pBt; /* A copy of pPage->pBt */ 1809 1810 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1811 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1812 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1813 flagByte &= ~PTF_LEAF; 1814 pPage->childPtrSize = 4-4*pPage->leaf; 1815 pPage->xCellSize = cellSizePtr; 1816 pBt = pPage->pBt; 1817 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1818 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1819 ** interior table b-tree page. */ 1820 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1821 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1822 ** leaf table b-tree page. */ 1823 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1824 pPage->intKey = 1; 1825 if( pPage->leaf ){ 1826 pPage->intKeyLeaf = 1; 1827 pPage->xParseCell = btreeParseCellPtr; 1828 }else{ 1829 pPage->intKeyLeaf = 0; 1830 pPage->xCellSize = cellSizePtrNoPayload; 1831 pPage->xParseCell = btreeParseCellPtrNoPayload; 1832 } 1833 pPage->maxLocal = pBt->maxLeaf; 1834 pPage->minLocal = pBt->minLeaf; 1835 }else if( flagByte==PTF_ZERODATA ){ 1836 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1837 ** interior index b-tree page. */ 1838 assert( (PTF_ZERODATA)==2 ); 1839 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1840 ** leaf index b-tree page. */ 1841 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1842 pPage->intKey = 0; 1843 pPage->intKeyLeaf = 0; 1844 pPage->xParseCell = btreeParseCellPtrIndex; 1845 pPage->maxLocal = pBt->maxLocal; 1846 pPage->minLocal = pBt->minLocal; 1847 }else{ 1848 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1849 ** an error. */ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 pPage->max1bytePayload = pBt->max1bytePayload; 1853 return SQLITE_OK; 1854 } 1855 1856 /* 1857 ** Compute the amount of freespace on the page. In other words, fill 1858 ** in the pPage->nFree field. 1859 */ 1860 static int btreeComputeFreeSpace(MemPage *pPage){ 1861 int pc; /* Address of a freeblock within pPage->aData[] */ 1862 u8 hdr; /* Offset to beginning of page header */ 1863 u8 *data; /* Equal to pPage->aData */ 1864 int usableSize; /* Amount of usable space on each page */ 1865 int nFree; /* Number of unused bytes on the page */ 1866 int top; /* First byte of the cell content area */ 1867 int iCellFirst; /* First allowable cell or freeblock offset */ 1868 int iCellLast; /* Last possible cell or freeblock offset */ 1869 1870 assert( pPage->pBt!=0 ); 1871 assert( pPage->pBt->db!=0 ); 1872 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1873 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1874 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1875 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1876 assert( pPage->isInit==1 ); 1877 assert( pPage->nFree<0 ); 1878 1879 usableSize = pPage->pBt->usableSize; 1880 hdr = pPage->hdrOffset; 1881 data = pPage->aData; 1882 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1883 ** the start of the cell content area. A zero value for this integer is 1884 ** interpreted as 65536. */ 1885 top = get2byteNotZero(&data[hdr+5]); 1886 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1887 iCellLast = usableSize - 4; 1888 1889 /* Compute the total free space on the page 1890 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1891 ** start of the first freeblock on the page, or is zero if there are no 1892 ** freeblocks. */ 1893 pc = get2byte(&data[hdr+1]); 1894 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1895 if( pc>0 ){ 1896 u32 next, size; 1897 if( pc<iCellFirst ){ 1898 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1899 ** always be at least one cell before the first freeblock. 1900 */ 1901 return SQLITE_CORRUPT_PAGE(pPage); 1902 } 1903 while( 1 ){ 1904 if( pc>iCellLast ){ 1905 /* Freeblock off the end of the page */ 1906 return SQLITE_CORRUPT_PAGE(pPage); 1907 } 1908 next = get2byte(&data[pc]); 1909 size = get2byte(&data[pc+2]); 1910 nFree = nFree + size; 1911 if( next<=pc+size+3 ) break; 1912 pc = next; 1913 } 1914 if( next>0 ){ 1915 /* Freeblock not in ascending order */ 1916 return SQLITE_CORRUPT_PAGE(pPage); 1917 } 1918 if( pc+size>(unsigned int)usableSize ){ 1919 /* Last freeblock extends past page end */ 1920 return SQLITE_CORRUPT_PAGE(pPage); 1921 } 1922 } 1923 1924 /* At this point, nFree contains the sum of the offset to the start 1925 ** of the cell-content area plus the number of free bytes within 1926 ** the cell-content area. If this is greater than the usable-size 1927 ** of the page, then the page must be corrupted. This check also 1928 ** serves to verify that the offset to the start of the cell-content 1929 ** area, according to the page header, lies within the page. 1930 */ 1931 if( nFree>usableSize || nFree<iCellFirst ){ 1932 return SQLITE_CORRUPT_PAGE(pPage); 1933 } 1934 pPage->nFree = (u16)(nFree - iCellFirst); 1935 return SQLITE_OK; 1936 } 1937 1938 /* 1939 ** Do additional sanity check after btreeInitPage() if 1940 ** PRAGMA cell_size_check=ON 1941 */ 1942 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1943 int iCellFirst; /* First allowable cell or freeblock offset */ 1944 int iCellLast; /* Last possible cell or freeblock offset */ 1945 int i; /* Index into the cell pointer array */ 1946 int sz; /* Size of a cell */ 1947 int pc; /* Address of a freeblock within pPage->aData[] */ 1948 u8 *data; /* Equal to pPage->aData */ 1949 int usableSize; /* Maximum usable space on the page */ 1950 int cellOffset; /* Start of cell content area */ 1951 1952 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 1953 usableSize = pPage->pBt->usableSize; 1954 iCellLast = usableSize - 4; 1955 data = pPage->aData; 1956 cellOffset = pPage->cellOffset; 1957 if( !pPage->leaf ) iCellLast--; 1958 for(i=0; i<pPage->nCell; i++){ 1959 pc = get2byteAligned(&data[cellOffset+i*2]); 1960 testcase( pc==iCellFirst ); 1961 testcase( pc==iCellLast ); 1962 if( pc<iCellFirst || pc>iCellLast ){ 1963 return SQLITE_CORRUPT_PAGE(pPage); 1964 } 1965 sz = pPage->xCellSize(pPage, &data[pc]); 1966 testcase( pc+sz==usableSize ); 1967 if( pc+sz>usableSize ){ 1968 return SQLITE_CORRUPT_PAGE(pPage); 1969 } 1970 } 1971 return SQLITE_OK; 1972 } 1973 1974 /* 1975 ** Initialize the auxiliary information for a disk block. 1976 ** 1977 ** Return SQLITE_OK on success. If we see that the page does 1978 ** not contain a well-formed database page, then return 1979 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1980 ** guarantee that the page is well-formed. It only shows that 1981 ** we failed to detect any corruption. 1982 */ 1983 static int btreeInitPage(MemPage *pPage){ 1984 u8 *data; /* Equal to pPage->aData */ 1985 BtShared *pBt; /* The main btree structure */ 1986 1987 assert( pPage->pBt!=0 ); 1988 assert( pPage->pBt->db!=0 ); 1989 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1990 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1991 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1992 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1993 assert( pPage->isInit==0 ); 1994 1995 pBt = pPage->pBt; 1996 data = pPage->aData + pPage->hdrOffset; 1997 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1998 ** the b-tree page type. */ 1999 if( decodeFlags(pPage, data[0]) ){ 2000 return SQLITE_CORRUPT_PAGE(pPage); 2001 } 2002 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2003 pPage->maskPage = (u16)(pBt->pageSize - 1); 2004 pPage->nOverflow = 0; 2005 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2006 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2007 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2008 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2009 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2010 ** number of cells on the page. */ 2011 pPage->nCell = get2byte(&data[3]); 2012 if( pPage->nCell>MX_CELL(pBt) ){ 2013 /* To many cells for a single page. The page must be corrupt */ 2014 return SQLITE_CORRUPT_PAGE(pPage); 2015 } 2016 testcase( pPage->nCell==MX_CELL(pBt) ); 2017 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2018 ** possible for a root page of a table that contains no rows) then the 2019 ** offset to the cell content area will equal the page size minus the 2020 ** bytes of reserved space. */ 2021 assert( pPage->nCell>0 2022 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2023 || CORRUPT_DB ); 2024 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2025 pPage->isInit = 1; 2026 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2027 return btreeCellSizeCheck(pPage); 2028 } 2029 return SQLITE_OK; 2030 } 2031 2032 /* 2033 ** Set up a raw page so that it looks like a database page holding 2034 ** no entries. 2035 */ 2036 static void zeroPage(MemPage *pPage, int flags){ 2037 unsigned char *data = pPage->aData; 2038 BtShared *pBt = pPage->pBt; 2039 u8 hdr = pPage->hdrOffset; 2040 u16 first; 2041 2042 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2043 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2044 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2045 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2046 assert( sqlite3_mutex_held(pBt->mutex) ); 2047 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2048 memset(&data[hdr], 0, pBt->usableSize - hdr); 2049 } 2050 data[hdr] = (char)flags; 2051 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2052 memset(&data[hdr+1], 0, 4); 2053 data[hdr+7] = 0; 2054 put2byte(&data[hdr+5], pBt->usableSize); 2055 pPage->nFree = (u16)(pBt->usableSize - first); 2056 decodeFlags(pPage, flags); 2057 pPage->cellOffset = first; 2058 pPage->aDataEnd = &data[pBt->usableSize]; 2059 pPage->aCellIdx = &data[first]; 2060 pPage->aDataOfst = &data[pPage->childPtrSize]; 2061 pPage->nOverflow = 0; 2062 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2063 pPage->maskPage = (u16)(pBt->pageSize - 1); 2064 pPage->nCell = 0; 2065 pPage->isInit = 1; 2066 } 2067 2068 2069 /* 2070 ** Convert a DbPage obtained from the pager into a MemPage used by 2071 ** the btree layer. 2072 */ 2073 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2074 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2075 if( pgno!=pPage->pgno ){ 2076 pPage->aData = sqlite3PagerGetData(pDbPage); 2077 pPage->pDbPage = pDbPage; 2078 pPage->pBt = pBt; 2079 pPage->pgno = pgno; 2080 pPage->hdrOffset = pgno==1 ? 100 : 0; 2081 } 2082 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2083 return pPage; 2084 } 2085 2086 /* 2087 ** Get a page from the pager. Initialize the MemPage.pBt and 2088 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2089 ** 2090 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2091 ** about the content of the page at this time. So do not go to the disk 2092 ** to fetch the content. Just fill in the content with zeros for now. 2093 ** If in the future we call sqlite3PagerWrite() on this page, that 2094 ** means we have started to be concerned about content and the disk 2095 ** read should occur at that point. 2096 */ 2097 static int btreeGetPage( 2098 BtShared *pBt, /* The btree */ 2099 Pgno pgno, /* Number of the page to fetch */ 2100 MemPage **ppPage, /* Return the page in this parameter */ 2101 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2102 ){ 2103 int rc; 2104 DbPage *pDbPage; 2105 2106 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2107 assert( sqlite3_mutex_held(pBt->mutex) ); 2108 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2109 if( rc ) return rc; 2110 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2111 return SQLITE_OK; 2112 } 2113 2114 /* 2115 ** Retrieve a page from the pager cache. If the requested page is not 2116 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2117 ** MemPage.aData elements if needed. 2118 */ 2119 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2120 DbPage *pDbPage; 2121 assert( sqlite3_mutex_held(pBt->mutex) ); 2122 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2123 if( pDbPage ){ 2124 return btreePageFromDbPage(pDbPage, pgno, pBt); 2125 } 2126 return 0; 2127 } 2128 2129 /* 2130 ** Return the size of the database file in pages. If there is any kind of 2131 ** error, return ((unsigned int)-1). 2132 */ 2133 static Pgno btreePagecount(BtShared *pBt){ 2134 return pBt->nPage; 2135 } 2136 u32 sqlite3BtreeLastPage(Btree *p){ 2137 assert( sqlite3BtreeHoldsMutex(p) ); 2138 assert( ((p->pBt->nPage)&0x80000000)==0 ); 2139 return btreePagecount(p->pBt); 2140 } 2141 2142 /* 2143 ** Get a page from the pager and initialize it. 2144 ** 2145 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2146 ** call. Do additional sanity checking on the page in this case. 2147 ** And if the fetch fails, this routine must decrement pCur->iPage. 2148 ** 2149 ** The page is fetched as read-write unless pCur is not NULL and is 2150 ** a read-only cursor. 2151 ** 2152 ** If an error occurs, then *ppPage is undefined. It 2153 ** may remain unchanged, or it may be set to an invalid value. 2154 */ 2155 static int getAndInitPage( 2156 BtShared *pBt, /* The database file */ 2157 Pgno pgno, /* Number of the page to get */ 2158 MemPage **ppPage, /* Write the page pointer here */ 2159 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2160 int bReadOnly /* True for a read-only page */ 2161 ){ 2162 int rc; 2163 DbPage *pDbPage; 2164 assert( sqlite3_mutex_held(pBt->mutex) ); 2165 assert( pCur==0 || ppPage==&pCur->pPage ); 2166 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2167 assert( pCur==0 || pCur->iPage>0 ); 2168 2169 if( pgno>btreePagecount(pBt) ){ 2170 rc = SQLITE_CORRUPT_BKPT; 2171 goto getAndInitPage_error1; 2172 } 2173 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2174 if( rc ){ 2175 goto getAndInitPage_error1; 2176 } 2177 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2178 if( (*ppPage)->isInit==0 ){ 2179 btreePageFromDbPage(pDbPage, pgno, pBt); 2180 rc = btreeInitPage(*ppPage); 2181 if( rc!=SQLITE_OK ){ 2182 goto getAndInitPage_error2; 2183 } 2184 } 2185 assert( (*ppPage)->pgno==pgno ); 2186 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2187 2188 /* If obtaining a child page for a cursor, we must verify that the page is 2189 ** compatible with the root page. */ 2190 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2191 rc = SQLITE_CORRUPT_PGNO(pgno); 2192 goto getAndInitPage_error2; 2193 } 2194 return SQLITE_OK; 2195 2196 getAndInitPage_error2: 2197 releasePage(*ppPage); 2198 getAndInitPage_error1: 2199 if( pCur ){ 2200 pCur->iPage--; 2201 pCur->pPage = pCur->apPage[pCur->iPage]; 2202 } 2203 testcase( pgno==0 ); 2204 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2205 return rc; 2206 } 2207 2208 /* 2209 ** Release a MemPage. This should be called once for each prior 2210 ** call to btreeGetPage. 2211 ** 2212 ** Page1 is a special case and must be released using releasePageOne(). 2213 */ 2214 static void releasePageNotNull(MemPage *pPage){ 2215 assert( pPage->aData ); 2216 assert( pPage->pBt ); 2217 assert( pPage->pDbPage!=0 ); 2218 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2219 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2220 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2221 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2222 } 2223 static void releasePage(MemPage *pPage){ 2224 if( pPage ) releasePageNotNull(pPage); 2225 } 2226 static void releasePageOne(MemPage *pPage){ 2227 assert( pPage!=0 ); 2228 assert( pPage->aData ); 2229 assert( pPage->pBt ); 2230 assert( pPage->pDbPage!=0 ); 2231 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2232 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2233 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2234 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2235 } 2236 2237 /* 2238 ** Get an unused page. 2239 ** 2240 ** This works just like btreeGetPage() with the addition: 2241 ** 2242 ** * If the page is already in use for some other purpose, immediately 2243 ** release it and return an SQLITE_CURRUPT error. 2244 ** * Make sure the isInit flag is clear 2245 */ 2246 static int btreeGetUnusedPage( 2247 BtShared *pBt, /* The btree */ 2248 Pgno pgno, /* Number of the page to fetch */ 2249 MemPage **ppPage, /* Return the page in this parameter */ 2250 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2251 ){ 2252 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2253 if( rc==SQLITE_OK ){ 2254 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2255 releasePage(*ppPage); 2256 *ppPage = 0; 2257 return SQLITE_CORRUPT_BKPT; 2258 } 2259 (*ppPage)->isInit = 0; 2260 }else{ 2261 *ppPage = 0; 2262 } 2263 return rc; 2264 } 2265 2266 2267 /* 2268 ** During a rollback, when the pager reloads information into the cache 2269 ** so that the cache is restored to its original state at the start of 2270 ** the transaction, for each page restored this routine is called. 2271 ** 2272 ** This routine needs to reset the extra data section at the end of the 2273 ** page to agree with the restored data. 2274 */ 2275 static void pageReinit(DbPage *pData){ 2276 MemPage *pPage; 2277 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2278 assert( sqlite3PagerPageRefcount(pData)>0 ); 2279 if( pPage->isInit ){ 2280 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2281 pPage->isInit = 0; 2282 if( sqlite3PagerPageRefcount(pData)>1 ){ 2283 /* pPage might not be a btree page; it might be an overflow page 2284 ** or ptrmap page or a free page. In those cases, the following 2285 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2286 ** But no harm is done by this. And it is very important that 2287 ** btreeInitPage() be called on every btree page so we make 2288 ** the call for every page that comes in for re-initing. */ 2289 btreeInitPage(pPage); 2290 } 2291 } 2292 } 2293 2294 /* 2295 ** Invoke the busy handler for a btree. 2296 */ 2297 static int btreeInvokeBusyHandler(void *pArg){ 2298 BtShared *pBt = (BtShared*)pArg; 2299 assert( pBt->db ); 2300 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2301 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler, 2302 sqlite3PagerFile(pBt->pPager)); 2303 } 2304 2305 /* 2306 ** Open a database file. 2307 ** 2308 ** zFilename is the name of the database file. If zFilename is NULL 2309 ** then an ephemeral database is created. The ephemeral database might 2310 ** be exclusively in memory, or it might use a disk-based memory cache. 2311 ** Either way, the ephemeral database will be automatically deleted 2312 ** when sqlite3BtreeClose() is called. 2313 ** 2314 ** If zFilename is ":memory:" then an in-memory database is created 2315 ** that is automatically destroyed when it is closed. 2316 ** 2317 ** The "flags" parameter is a bitmask that might contain bits like 2318 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2319 ** 2320 ** If the database is already opened in the same database connection 2321 ** and we are in shared cache mode, then the open will fail with an 2322 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2323 ** objects in the same database connection since doing so will lead 2324 ** to problems with locking. 2325 */ 2326 int sqlite3BtreeOpen( 2327 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2328 const char *zFilename, /* Name of the file containing the BTree database */ 2329 sqlite3 *db, /* Associated database handle */ 2330 Btree **ppBtree, /* Pointer to new Btree object written here */ 2331 int flags, /* Options */ 2332 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2333 ){ 2334 BtShared *pBt = 0; /* Shared part of btree structure */ 2335 Btree *p; /* Handle to return */ 2336 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2337 int rc = SQLITE_OK; /* Result code from this function */ 2338 u8 nReserve; /* Byte of unused space on each page */ 2339 unsigned char zDbHeader[100]; /* Database header content */ 2340 2341 /* True if opening an ephemeral, temporary database */ 2342 const int isTempDb = zFilename==0 || zFilename[0]==0; 2343 2344 /* Set the variable isMemdb to true for an in-memory database, or 2345 ** false for a file-based database. 2346 */ 2347 #ifdef SQLITE_OMIT_MEMORYDB 2348 const int isMemdb = 0; 2349 #else 2350 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2351 || (isTempDb && sqlite3TempInMemory(db)) 2352 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2353 #endif 2354 2355 assert( db!=0 ); 2356 assert( pVfs!=0 ); 2357 assert( sqlite3_mutex_held(db->mutex) ); 2358 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2359 2360 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2361 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2362 2363 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2364 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2365 2366 if( isMemdb ){ 2367 flags |= BTREE_MEMORY; 2368 } 2369 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2370 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2371 } 2372 p = sqlite3MallocZero(sizeof(Btree)); 2373 if( !p ){ 2374 return SQLITE_NOMEM_BKPT; 2375 } 2376 p->inTrans = TRANS_NONE; 2377 p->db = db; 2378 #ifndef SQLITE_OMIT_SHARED_CACHE 2379 p->lock.pBtree = p; 2380 p->lock.iTable = 1; 2381 #endif 2382 2383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2384 /* 2385 ** If this Btree is a candidate for shared cache, try to find an 2386 ** existing BtShared object that we can share with 2387 */ 2388 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2389 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2390 int nFilename = sqlite3Strlen30(zFilename)+1; 2391 int nFullPathname = pVfs->mxPathname+1; 2392 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2393 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2394 2395 p->sharable = 1; 2396 if( !zFullPathname ){ 2397 sqlite3_free(p); 2398 return SQLITE_NOMEM_BKPT; 2399 } 2400 if( isMemdb ){ 2401 memcpy(zFullPathname, zFilename, nFilename); 2402 }else{ 2403 rc = sqlite3OsFullPathname(pVfs, zFilename, 2404 nFullPathname, zFullPathname); 2405 if( rc ){ 2406 sqlite3_free(zFullPathname); 2407 sqlite3_free(p); 2408 return rc; 2409 } 2410 } 2411 #if SQLITE_THREADSAFE 2412 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2413 sqlite3_mutex_enter(mutexOpen); 2414 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2415 sqlite3_mutex_enter(mutexShared); 2416 #endif 2417 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2418 assert( pBt->nRef>0 ); 2419 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2420 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2421 int iDb; 2422 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2423 Btree *pExisting = db->aDb[iDb].pBt; 2424 if( pExisting && pExisting->pBt==pBt ){ 2425 sqlite3_mutex_leave(mutexShared); 2426 sqlite3_mutex_leave(mutexOpen); 2427 sqlite3_free(zFullPathname); 2428 sqlite3_free(p); 2429 return SQLITE_CONSTRAINT; 2430 } 2431 } 2432 p->pBt = pBt; 2433 pBt->nRef++; 2434 break; 2435 } 2436 } 2437 sqlite3_mutex_leave(mutexShared); 2438 sqlite3_free(zFullPathname); 2439 } 2440 #ifdef SQLITE_DEBUG 2441 else{ 2442 /* In debug mode, we mark all persistent databases as sharable 2443 ** even when they are not. This exercises the locking code and 2444 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2445 ** statements to find locking problems. 2446 */ 2447 p->sharable = 1; 2448 } 2449 #endif 2450 } 2451 #endif 2452 if( pBt==0 ){ 2453 /* 2454 ** The following asserts make sure that structures used by the btree are 2455 ** the right size. This is to guard against size changes that result 2456 ** when compiling on a different architecture. 2457 */ 2458 assert( sizeof(i64)==8 ); 2459 assert( sizeof(u64)==8 ); 2460 assert( sizeof(u32)==4 ); 2461 assert( sizeof(u16)==2 ); 2462 assert( sizeof(Pgno)==4 ); 2463 2464 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2465 if( pBt==0 ){ 2466 rc = SQLITE_NOMEM_BKPT; 2467 goto btree_open_out; 2468 } 2469 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2470 sizeof(MemPage), flags, vfsFlags, pageReinit); 2471 if( rc==SQLITE_OK ){ 2472 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2473 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2474 } 2475 if( rc!=SQLITE_OK ){ 2476 goto btree_open_out; 2477 } 2478 pBt->openFlags = (u8)flags; 2479 pBt->db = db; 2480 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2481 p->pBt = pBt; 2482 2483 pBt->pCursor = 0; 2484 pBt->pPage1 = 0; 2485 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2486 #if defined(SQLITE_SECURE_DELETE) 2487 pBt->btsFlags |= BTS_SECURE_DELETE; 2488 #elif defined(SQLITE_FAST_SECURE_DELETE) 2489 pBt->btsFlags |= BTS_OVERWRITE; 2490 #endif 2491 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2492 ** determined by the 2-byte integer located at an offset of 16 bytes from 2493 ** the beginning of the database file. */ 2494 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2495 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2496 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2497 pBt->pageSize = 0; 2498 #ifndef SQLITE_OMIT_AUTOVACUUM 2499 /* If the magic name ":memory:" will create an in-memory database, then 2500 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2501 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2502 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2503 ** regular file-name. In this case the auto-vacuum applies as per normal. 2504 */ 2505 if( zFilename && !isMemdb ){ 2506 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2507 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2508 } 2509 #endif 2510 nReserve = 0; 2511 }else{ 2512 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2513 ** determined by the one-byte unsigned integer found at an offset of 20 2514 ** into the database file header. */ 2515 nReserve = zDbHeader[20]; 2516 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2517 #ifndef SQLITE_OMIT_AUTOVACUUM 2518 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2519 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2520 #endif 2521 } 2522 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2523 if( rc ) goto btree_open_out; 2524 pBt->usableSize = pBt->pageSize - nReserve; 2525 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2526 2527 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2528 /* Add the new BtShared object to the linked list sharable BtShareds. 2529 */ 2530 pBt->nRef = 1; 2531 if( p->sharable ){ 2532 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2533 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2534 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2535 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2536 if( pBt->mutex==0 ){ 2537 rc = SQLITE_NOMEM_BKPT; 2538 goto btree_open_out; 2539 } 2540 } 2541 sqlite3_mutex_enter(mutexShared); 2542 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2543 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2544 sqlite3_mutex_leave(mutexShared); 2545 } 2546 #endif 2547 } 2548 2549 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2550 /* If the new Btree uses a sharable pBtShared, then link the new 2551 ** Btree into the list of all sharable Btrees for the same connection. 2552 ** The list is kept in ascending order by pBt address. 2553 */ 2554 if( p->sharable ){ 2555 int i; 2556 Btree *pSib; 2557 for(i=0; i<db->nDb; i++){ 2558 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2559 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2560 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2561 p->pNext = pSib; 2562 p->pPrev = 0; 2563 pSib->pPrev = p; 2564 }else{ 2565 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2566 pSib = pSib->pNext; 2567 } 2568 p->pNext = pSib->pNext; 2569 p->pPrev = pSib; 2570 if( p->pNext ){ 2571 p->pNext->pPrev = p; 2572 } 2573 pSib->pNext = p; 2574 } 2575 break; 2576 } 2577 } 2578 } 2579 #endif 2580 *ppBtree = p; 2581 2582 btree_open_out: 2583 if( rc!=SQLITE_OK ){ 2584 if( pBt && pBt->pPager ){ 2585 sqlite3PagerClose(pBt->pPager, 0); 2586 } 2587 sqlite3_free(pBt); 2588 sqlite3_free(p); 2589 *ppBtree = 0; 2590 }else{ 2591 sqlite3_file *pFile; 2592 2593 /* If the B-Tree was successfully opened, set the pager-cache size to the 2594 ** default value. Except, when opening on an existing shared pager-cache, 2595 ** do not change the pager-cache size. 2596 */ 2597 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2598 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2599 } 2600 2601 pFile = sqlite3PagerFile(pBt->pPager); 2602 if( pFile->pMethods ){ 2603 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2604 } 2605 } 2606 if( mutexOpen ){ 2607 assert( sqlite3_mutex_held(mutexOpen) ); 2608 sqlite3_mutex_leave(mutexOpen); 2609 } 2610 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2611 return rc; 2612 } 2613 2614 /* 2615 ** Decrement the BtShared.nRef counter. When it reaches zero, 2616 ** remove the BtShared structure from the sharing list. Return 2617 ** true if the BtShared.nRef counter reaches zero and return 2618 ** false if it is still positive. 2619 */ 2620 static int removeFromSharingList(BtShared *pBt){ 2621 #ifndef SQLITE_OMIT_SHARED_CACHE 2622 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2623 BtShared *pList; 2624 int removed = 0; 2625 2626 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2627 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2628 sqlite3_mutex_enter(pMaster); 2629 pBt->nRef--; 2630 if( pBt->nRef<=0 ){ 2631 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2632 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2633 }else{ 2634 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2635 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2636 pList=pList->pNext; 2637 } 2638 if( ALWAYS(pList) ){ 2639 pList->pNext = pBt->pNext; 2640 } 2641 } 2642 if( SQLITE_THREADSAFE ){ 2643 sqlite3_mutex_free(pBt->mutex); 2644 } 2645 removed = 1; 2646 } 2647 sqlite3_mutex_leave(pMaster); 2648 return removed; 2649 #else 2650 return 1; 2651 #endif 2652 } 2653 2654 /* 2655 ** Make sure pBt->pTmpSpace points to an allocation of 2656 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2657 ** pointer. 2658 */ 2659 static void allocateTempSpace(BtShared *pBt){ 2660 if( !pBt->pTmpSpace ){ 2661 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2662 2663 /* One of the uses of pBt->pTmpSpace is to format cells before 2664 ** inserting them into a leaf page (function fillInCell()). If 2665 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2666 ** by the various routines that manipulate binary cells. Which 2667 ** can mean that fillInCell() only initializes the first 2 or 3 2668 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2669 ** it into a database page. This is not actually a problem, but it 2670 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2671 ** data is passed to system call write(). So to avoid this error, 2672 ** zero the first 4 bytes of temp space here. 2673 ** 2674 ** Also: Provide four bytes of initialized space before the 2675 ** beginning of pTmpSpace as an area available to prepend the 2676 ** left-child pointer to the beginning of a cell. 2677 */ 2678 if( pBt->pTmpSpace ){ 2679 memset(pBt->pTmpSpace, 0, 8); 2680 pBt->pTmpSpace += 4; 2681 } 2682 } 2683 } 2684 2685 /* 2686 ** Free the pBt->pTmpSpace allocation 2687 */ 2688 static void freeTempSpace(BtShared *pBt){ 2689 if( pBt->pTmpSpace ){ 2690 pBt->pTmpSpace -= 4; 2691 sqlite3PageFree(pBt->pTmpSpace); 2692 pBt->pTmpSpace = 0; 2693 } 2694 } 2695 2696 /* 2697 ** Close an open database and invalidate all cursors. 2698 */ 2699 int sqlite3BtreeClose(Btree *p){ 2700 BtShared *pBt = p->pBt; 2701 BtCursor *pCur; 2702 2703 /* Close all cursors opened via this handle. */ 2704 assert( sqlite3_mutex_held(p->db->mutex) ); 2705 sqlite3BtreeEnter(p); 2706 pCur = pBt->pCursor; 2707 while( pCur ){ 2708 BtCursor *pTmp = pCur; 2709 pCur = pCur->pNext; 2710 if( pTmp->pBtree==p ){ 2711 sqlite3BtreeCloseCursor(pTmp); 2712 } 2713 } 2714 2715 /* Rollback any active transaction and free the handle structure. 2716 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2717 ** this handle. 2718 */ 2719 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2720 sqlite3BtreeLeave(p); 2721 2722 /* If there are still other outstanding references to the shared-btree 2723 ** structure, return now. The remainder of this procedure cleans 2724 ** up the shared-btree. 2725 */ 2726 assert( p->wantToLock==0 && p->locked==0 ); 2727 if( !p->sharable || removeFromSharingList(pBt) ){ 2728 /* The pBt is no longer on the sharing list, so we can access 2729 ** it without having to hold the mutex. 2730 ** 2731 ** Clean out and delete the BtShared object. 2732 */ 2733 assert( !pBt->pCursor ); 2734 sqlite3PagerClose(pBt->pPager, p->db); 2735 if( pBt->xFreeSchema && pBt->pSchema ){ 2736 pBt->xFreeSchema(pBt->pSchema); 2737 } 2738 sqlite3DbFree(0, pBt->pSchema); 2739 freeTempSpace(pBt); 2740 sqlite3_free(pBt); 2741 } 2742 2743 #ifndef SQLITE_OMIT_SHARED_CACHE 2744 assert( p->wantToLock==0 ); 2745 assert( p->locked==0 ); 2746 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2747 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2748 #endif 2749 2750 sqlite3_free(p); 2751 return SQLITE_OK; 2752 } 2753 2754 /* 2755 ** Change the "soft" limit on the number of pages in the cache. 2756 ** Unused and unmodified pages will be recycled when the number of 2757 ** pages in the cache exceeds this soft limit. But the size of the 2758 ** cache is allowed to grow larger than this limit if it contains 2759 ** dirty pages or pages still in active use. 2760 */ 2761 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2762 BtShared *pBt = p->pBt; 2763 assert( sqlite3_mutex_held(p->db->mutex) ); 2764 sqlite3BtreeEnter(p); 2765 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2766 sqlite3BtreeLeave(p); 2767 return SQLITE_OK; 2768 } 2769 2770 /* 2771 ** Change the "spill" limit on the number of pages in the cache. 2772 ** If the number of pages exceeds this limit during a write transaction, 2773 ** the pager might attempt to "spill" pages to the journal early in 2774 ** order to free up memory. 2775 ** 2776 ** The value returned is the current spill size. If zero is passed 2777 ** as an argument, no changes are made to the spill size setting, so 2778 ** using mxPage of 0 is a way to query the current spill size. 2779 */ 2780 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2781 BtShared *pBt = p->pBt; 2782 int res; 2783 assert( sqlite3_mutex_held(p->db->mutex) ); 2784 sqlite3BtreeEnter(p); 2785 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2786 sqlite3BtreeLeave(p); 2787 return res; 2788 } 2789 2790 #if SQLITE_MAX_MMAP_SIZE>0 2791 /* 2792 ** Change the limit on the amount of the database file that may be 2793 ** memory mapped. 2794 */ 2795 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2796 BtShared *pBt = p->pBt; 2797 assert( sqlite3_mutex_held(p->db->mutex) ); 2798 sqlite3BtreeEnter(p); 2799 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2800 sqlite3BtreeLeave(p); 2801 return SQLITE_OK; 2802 } 2803 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2804 2805 /* 2806 ** Change the way data is synced to disk in order to increase or decrease 2807 ** how well the database resists damage due to OS crashes and power 2808 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2809 ** there is a high probability of damage) Level 2 is the default. There 2810 ** is a very low but non-zero probability of damage. Level 3 reduces the 2811 ** probability of damage to near zero but with a write performance reduction. 2812 */ 2813 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2814 int sqlite3BtreeSetPagerFlags( 2815 Btree *p, /* The btree to set the safety level on */ 2816 unsigned pgFlags /* Various PAGER_* flags */ 2817 ){ 2818 BtShared *pBt = p->pBt; 2819 assert( sqlite3_mutex_held(p->db->mutex) ); 2820 sqlite3BtreeEnter(p); 2821 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2822 sqlite3BtreeLeave(p); 2823 return SQLITE_OK; 2824 } 2825 #endif 2826 2827 /* 2828 ** Change the default pages size and the number of reserved bytes per page. 2829 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2830 ** without changing anything. 2831 ** 2832 ** The page size must be a power of 2 between 512 and 65536. If the page 2833 ** size supplied does not meet this constraint then the page size is not 2834 ** changed. 2835 ** 2836 ** Page sizes are constrained to be a power of two so that the region 2837 ** of the database file used for locking (beginning at PENDING_BYTE, 2838 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2839 ** at the beginning of a page. 2840 ** 2841 ** If parameter nReserve is less than zero, then the number of reserved 2842 ** bytes per page is left unchanged. 2843 ** 2844 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2845 ** and autovacuum mode can no longer be changed. 2846 */ 2847 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2848 int rc = SQLITE_OK; 2849 BtShared *pBt = p->pBt; 2850 assert( nReserve>=-1 && nReserve<=255 ); 2851 sqlite3BtreeEnter(p); 2852 #if SQLITE_HAS_CODEC 2853 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2854 #endif 2855 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2856 sqlite3BtreeLeave(p); 2857 return SQLITE_READONLY; 2858 } 2859 if( nReserve<0 ){ 2860 nReserve = pBt->pageSize - pBt->usableSize; 2861 } 2862 assert( nReserve>=0 && nReserve<=255 ); 2863 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2864 ((pageSize-1)&pageSize)==0 ){ 2865 assert( (pageSize & 7)==0 ); 2866 assert( !pBt->pCursor ); 2867 pBt->pageSize = (u32)pageSize; 2868 freeTempSpace(pBt); 2869 } 2870 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2871 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2872 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2873 sqlite3BtreeLeave(p); 2874 return rc; 2875 } 2876 2877 /* 2878 ** Return the currently defined page size 2879 */ 2880 int sqlite3BtreeGetPageSize(Btree *p){ 2881 return p->pBt->pageSize; 2882 } 2883 2884 /* 2885 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2886 ** may only be called if it is guaranteed that the b-tree mutex is already 2887 ** held. 2888 ** 2889 ** This is useful in one special case in the backup API code where it is 2890 ** known that the shared b-tree mutex is held, but the mutex on the 2891 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2892 ** were to be called, it might collide with some other operation on the 2893 ** database handle that owns *p, causing undefined behavior. 2894 */ 2895 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2896 int n; 2897 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2898 n = p->pBt->pageSize - p->pBt->usableSize; 2899 return n; 2900 } 2901 2902 /* 2903 ** Return the number of bytes of space at the end of every page that 2904 ** are intentually left unused. This is the "reserved" space that is 2905 ** sometimes used by extensions. 2906 ** 2907 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2908 ** greater of the current reserved space and the maximum requested 2909 ** reserve space. 2910 */ 2911 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2912 int n; 2913 sqlite3BtreeEnter(p); 2914 n = sqlite3BtreeGetReserveNoMutex(p); 2915 #ifdef SQLITE_HAS_CODEC 2916 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2917 #endif 2918 sqlite3BtreeLeave(p); 2919 return n; 2920 } 2921 2922 2923 /* 2924 ** Set the maximum page count for a database if mxPage is positive. 2925 ** No changes are made if mxPage is 0 or negative. 2926 ** Regardless of the value of mxPage, return the maximum page count. 2927 */ 2928 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2929 int n; 2930 sqlite3BtreeEnter(p); 2931 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2932 sqlite3BtreeLeave(p); 2933 return n; 2934 } 2935 2936 /* 2937 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2938 ** 2939 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2940 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2941 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2942 ** newFlag==(-1) No changes 2943 ** 2944 ** This routine acts as a query if newFlag is less than zero 2945 ** 2946 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2947 ** freelist leaf pages are not written back to the database. Thus in-page 2948 ** deleted content is cleared, but freelist deleted content is not. 2949 ** 2950 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2951 ** that freelist leaf pages are written back into the database, increasing 2952 ** the amount of disk I/O. 2953 */ 2954 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2955 int b; 2956 if( p==0 ) return 0; 2957 sqlite3BtreeEnter(p); 2958 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2959 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2960 if( newFlag>=0 ){ 2961 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2962 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2963 } 2964 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2965 sqlite3BtreeLeave(p); 2966 return b; 2967 } 2968 2969 /* 2970 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2971 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2972 ** is disabled. The default value for the auto-vacuum property is 2973 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2974 */ 2975 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2976 #ifdef SQLITE_OMIT_AUTOVACUUM 2977 return SQLITE_READONLY; 2978 #else 2979 BtShared *pBt = p->pBt; 2980 int rc = SQLITE_OK; 2981 u8 av = (u8)autoVacuum; 2982 2983 sqlite3BtreeEnter(p); 2984 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2985 rc = SQLITE_READONLY; 2986 }else{ 2987 pBt->autoVacuum = av ?1:0; 2988 pBt->incrVacuum = av==2 ?1:0; 2989 } 2990 sqlite3BtreeLeave(p); 2991 return rc; 2992 #endif 2993 } 2994 2995 /* 2996 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 2997 ** enabled 1 is returned. Otherwise 0. 2998 */ 2999 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3000 #ifdef SQLITE_OMIT_AUTOVACUUM 3001 return BTREE_AUTOVACUUM_NONE; 3002 #else 3003 int rc; 3004 sqlite3BtreeEnter(p); 3005 rc = ( 3006 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3007 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3008 BTREE_AUTOVACUUM_INCR 3009 ); 3010 sqlite3BtreeLeave(p); 3011 return rc; 3012 #endif 3013 } 3014 3015 /* 3016 ** If the user has not set the safety-level for this database connection 3017 ** using "PRAGMA synchronous", and if the safety-level is not already 3018 ** set to the value passed to this function as the second parameter, 3019 ** set it so. 3020 */ 3021 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3022 && !defined(SQLITE_OMIT_WAL) 3023 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3024 sqlite3 *db; 3025 Db *pDb; 3026 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3027 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3028 if( pDb->bSyncSet==0 3029 && pDb->safety_level!=safety_level 3030 && pDb!=&db->aDb[1] 3031 ){ 3032 pDb->safety_level = safety_level; 3033 sqlite3PagerSetFlags(pBt->pPager, 3034 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3035 } 3036 } 3037 } 3038 #else 3039 # define setDefaultSyncFlag(pBt,safety_level) 3040 #endif 3041 3042 /* Forward declaration */ 3043 static int newDatabase(BtShared*); 3044 3045 3046 /* 3047 ** Get a reference to pPage1 of the database file. This will 3048 ** also acquire a readlock on that file. 3049 ** 3050 ** SQLITE_OK is returned on success. If the file is not a 3051 ** well-formed database file, then SQLITE_CORRUPT is returned. 3052 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3053 ** is returned if we run out of memory. 3054 */ 3055 static int lockBtree(BtShared *pBt){ 3056 int rc; /* Result code from subfunctions */ 3057 MemPage *pPage1; /* Page 1 of the database file */ 3058 u32 nPage; /* Number of pages in the database */ 3059 u32 nPageFile = 0; /* Number of pages in the database file */ 3060 u32 nPageHeader; /* Number of pages in the database according to hdr */ 3061 3062 assert( sqlite3_mutex_held(pBt->mutex) ); 3063 assert( pBt->pPage1==0 ); 3064 rc = sqlite3PagerSharedLock(pBt->pPager); 3065 if( rc!=SQLITE_OK ) return rc; 3066 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3067 if( rc!=SQLITE_OK ) return rc; 3068 3069 /* Do some checking to help insure the file we opened really is 3070 ** a valid database file. 3071 */ 3072 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3073 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3074 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3075 nPage = nPageFile; 3076 } 3077 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3078 nPage = 0; 3079 } 3080 if( nPage>0 ){ 3081 u32 pageSize; 3082 u32 usableSize; 3083 u8 *page1 = pPage1->aData; 3084 rc = SQLITE_NOTADB; 3085 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3086 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3087 ** 61 74 20 33 00. */ 3088 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3089 goto page1_init_failed; 3090 } 3091 3092 #ifdef SQLITE_OMIT_WAL 3093 if( page1[18]>1 ){ 3094 pBt->btsFlags |= BTS_READ_ONLY; 3095 } 3096 if( page1[19]>1 ){ 3097 goto page1_init_failed; 3098 } 3099 #else 3100 if( page1[18]>2 ){ 3101 pBt->btsFlags |= BTS_READ_ONLY; 3102 } 3103 if( page1[19]>2 ){ 3104 goto page1_init_failed; 3105 } 3106 3107 /* If the write version is set to 2, this database should be accessed 3108 ** in WAL mode. If the log is not already open, open it now. Then 3109 ** return SQLITE_OK and return without populating BtShared.pPage1. 3110 ** The caller detects this and calls this function again. This is 3111 ** required as the version of page 1 currently in the page1 buffer 3112 ** may not be the latest version - there may be a newer one in the log 3113 ** file. 3114 */ 3115 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3116 int isOpen = 0; 3117 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3118 if( rc!=SQLITE_OK ){ 3119 goto page1_init_failed; 3120 }else{ 3121 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3122 if( isOpen==0 ){ 3123 releasePageOne(pPage1); 3124 return SQLITE_OK; 3125 } 3126 } 3127 rc = SQLITE_NOTADB; 3128 }else{ 3129 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3130 } 3131 #endif 3132 3133 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3134 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3135 ** 3136 ** The original design allowed these amounts to vary, but as of 3137 ** version 3.6.0, we require them to be fixed. 3138 */ 3139 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3140 goto page1_init_failed; 3141 } 3142 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3143 ** determined by the 2-byte integer located at an offset of 16 bytes from 3144 ** the beginning of the database file. */ 3145 pageSize = (page1[16]<<8) | (page1[17]<<16); 3146 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3147 ** between 512 and 65536 inclusive. */ 3148 if( ((pageSize-1)&pageSize)!=0 3149 || pageSize>SQLITE_MAX_PAGE_SIZE 3150 || pageSize<=256 3151 ){ 3152 goto page1_init_failed; 3153 } 3154 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3155 assert( (pageSize & 7)==0 ); 3156 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3157 ** integer at offset 20 is the number of bytes of space at the end of 3158 ** each page to reserve for extensions. 3159 ** 3160 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3161 ** determined by the one-byte unsigned integer found at an offset of 20 3162 ** into the database file header. */ 3163 usableSize = pageSize - page1[20]; 3164 if( (u32)pageSize!=pBt->pageSize ){ 3165 /* After reading the first page of the database assuming a page size 3166 ** of BtShared.pageSize, we have discovered that the page-size is 3167 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3168 ** zero and return SQLITE_OK. The caller will call this function 3169 ** again with the correct page-size. 3170 */ 3171 releasePageOne(pPage1); 3172 pBt->usableSize = usableSize; 3173 pBt->pageSize = pageSize; 3174 freeTempSpace(pBt); 3175 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3176 pageSize-usableSize); 3177 return rc; 3178 } 3179 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3180 rc = SQLITE_CORRUPT_BKPT; 3181 goto page1_init_failed; 3182 } 3183 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3184 ** be less than 480. In other words, if the page size is 512, then the 3185 ** reserved space size cannot exceed 32. */ 3186 if( usableSize<480 ){ 3187 goto page1_init_failed; 3188 } 3189 pBt->pageSize = pageSize; 3190 pBt->usableSize = usableSize; 3191 #ifndef SQLITE_OMIT_AUTOVACUUM 3192 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3193 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3194 #endif 3195 } 3196 3197 /* maxLocal is the maximum amount of payload to store locally for 3198 ** a cell. Make sure it is small enough so that at least minFanout 3199 ** cells can will fit on one page. We assume a 10-byte page header. 3200 ** Besides the payload, the cell must store: 3201 ** 2-byte pointer to the cell 3202 ** 4-byte child pointer 3203 ** 9-byte nKey value 3204 ** 4-byte nData value 3205 ** 4-byte overflow page pointer 3206 ** So a cell consists of a 2-byte pointer, a header which is as much as 3207 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3208 ** page pointer. 3209 */ 3210 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3211 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3212 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3213 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3214 if( pBt->maxLocal>127 ){ 3215 pBt->max1bytePayload = 127; 3216 }else{ 3217 pBt->max1bytePayload = (u8)pBt->maxLocal; 3218 } 3219 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3220 pBt->pPage1 = pPage1; 3221 pBt->nPage = nPage; 3222 return SQLITE_OK; 3223 3224 page1_init_failed: 3225 releasePageOne(pPage1); 3226 pBt->pPage1 = 0; 3227 return rc; 3228 } 3229 3230 #ifndef NDEBUG 3231 /* 3232 ** Return the number of cursors open on pBt. This is for use 3233 ** in assert() expressions, so it is only compiled if NDEBUG is not 3234 ** defined. 3235 ** 3236 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3237 ** false then all cursors are counted. 3238 ** 3239 ** For the purposes of this routine, a cursor is any cursor that 3240 ** is capable of reading or writing to the database. Cursors that 3241 ** have been tripped into the CURSOR_FAULT state are not counted. 3242 */ 3243 static int countValidCursors(BtShared *pBt, int wrOnly){ 3244 BtCursor *pCur; 3245 int r = 0; 3246 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3247 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3248 && pCur->eState!=CURSOR_FAULT ) r++; 3249 } 3250 return r; 3251 } 3252 #endif 3253 3254 /* 3255 ** If there are no outstanding cursors and we are not in the middle 3256 ** of a transaction but there is a read lock on the database, then 3257 ** this routine unrefs the first page of the database file which 3258 ** has the effect of releasing the read lock. 3259 ** 3260 ** If there is a transaction in progress, this routine is a no-op. 3261 */ 3262 static void unlockBtreeIfUnused(BtShared *pBt){ 3263 assert( sqlite3_mutex_held(pBt->mutex) ); 3264 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3265 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3266 MemPage *pPage1 = pBt->pPage1; 3267 assert( pPage1->aData ); 3268 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3269 pBt->pPage1 = 0; 3270 releasePageOne(pPage1); 3271 } 3272 } 3273 3274 /* 3275 ** If pBt points to an empty file then convert that empty file 3276 ** into a new empty database by initializing the first page of 3277 ** the database. 3278 */ 3279 static int newDatabase(BtShared *pBt){ 3280 MemPage *pP1; 3281 unsigned char *data; 3282 int rc; 3283 3284 assert( sqlite3_mutex_held(pBt->mutex) ); 3285 if( pBt->nPage>0 ){ 3286 return SQLITE_OK; 3287 } 3288 pP1 = pBt->pPage1; 3289 assert( pP1!=0 ); 3290 data = pP1->aData; 3291 rc = sqlite3PagerWrite(pP1->pDbPage); 3292 if( rc ) return rc; 3293 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3294 assert( sizeof(zMagicHeader)==16 ); 3295 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3296 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3297 data[18] = 1; 3298 data[19] = 1; 3299 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3300 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3301 data[21] = 64; 3302 data[22] = 32; 3303 data[23] = 32; 3304 memset(&data[24], 0, 100-24); 3305 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3306 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3307 #ifndef SQLITE_OMIT_AUTOVACUUM 3308 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3309 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3310 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3311 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3312 #endif 3313 pBt->nPage = 1; 3314 data[31] = 1; 3315 return SQLITE_OK; 3316 } 3317 3318 /* 3319 ** Initialize the first page of the database file (creating a database 3320 ** consisting of a single page and no schema objects). Return SQLITE_OK 3321 ** if successful, or an SQLite error code otherwise. 3322 */ 3323 int sqlite3BtreeNewDb(Btree *p){ 3324 int rc; 3325 sqlite3BtreeEnter(p); 3326 p->pBt->nPage = 0; 3327 rc = newDatabase(p->pBt); 3328 sqlite3BtreeLeave(p); 3329 return rc; 3330 } 3331 3332 /* 3333 ** Attempt to start a new transaction. A write-transaction 3334 ** is started if the second argument is nonzero, otherwise a read- 3335 ** transaction. If the second argument is 2 or more and exclusive 3336 ** transaction is started, meaning that no other process is allowed 3337 ** to access the database. A preexisting transaction may not be 3338 ** upgraded to exclusive by calling this routine a second time - the 3339 ** exclusivity flag only works for a new transaction. 3340 ** 3341 ** A write-transaction must be started before attempting any 3342 ** changes to the database. None of the following routines 3343 ** will work unless a transaction is started first: 3344 ** 3345 ** sqlite3BtreeCreateTable() 3346 ** sqlite3BtreeCreateIndex() 3347 ** sqlite3BtreeClearTable() 3348 ** sqlite3BtreeDropTable() 3349 ** sqlite3BtreeInsert() 3350 ** sqlite3BtreeDelete() 3351 ** sqlite3BtreeUpdateMeta() 3352 ** 3353 ** If an initial attempt to acquire the lock fails because of lock contention 3354 ** and the database was previously unlocked, then invoke the busy handler 3355 ** if there is one. But if there was previously a read-lock, do not 3356 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3357 ** returned when there is already a read-lock in order to avoid a deadlock. 3358 ** 3359 ** Suppose there are two processes A and B. A has a read lock and B has 3360 ** a reserved lock. B tries to promote to exclusive but is blocked because 3361 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3362 ** One or the other of the two processes must give way or there can be 3363 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3364 ** when A already has a read lock, we encourage A to give up and let B 3365 ** proceed. 3366 */ 3367 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3368 BtShared *pBt = p->pBt; 3369 int rc = SQLITE_OK; 3370 3371 sqlite3BtreeEnter(p); 3372 btreeIntegrity(p); 3373 3374 /* If the btree is already in a write-transaction, or it 3375 ** is already in a read-transaction and a read-transaction 3376 ** is requested, this is a no-op. 3377 */ 3378 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3379 goto trans_begun; 3380 } 3381 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3382 3383 if( (p->db->flags & SQLITE_ResetDatabase) 3384 && sqlite3PagerIsreadonly(pBt->pPager)==0 3385 ){ 3386 pBt->btsFlags &= ~BTS_READ_ONLY; 3387 } 3388 3389 /* Write transactions are not possible on a read-only database */ 3390 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3391 rc = SQLITE_READONLY; 3392 goto trans_begun; 3393 } 3394 3395 #ifndef SQLITE_OMIT_SHARED_CACHE 3396 { 3397 sqlite3 *pBlock = 0; 3398 /* If another database handle has already opened a write transaction 3399 ** on this shared-btree structure and a second write transaction is 3400 ** requested, return SQLITE_LOCKED. 3401 */ 3402 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3403 || (pBt->btsFlags & BTS_PENDING)!=0 3404 ){ 3405 pBlock = pBt->pWriter->db; 3406 }else if( wrflag>1 ){ 3407 BtLock *pIter; 3408 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3409 if( pIter->pBtree!=p ){ 3410 pBlock = pIter->pBtree->db; 3411 break; 3412 } 3413 } 3414 } 3415 if( pBlock ){ 3416 sqlite3ConnectionBlocked(p->db, pBlock); 3417 rc = SQLITE_LOCKED_SHAREDCACHE; 3418 goto trans_begun; 3419 } 3420 } 3421 #endif 3422 3423 /* Any read-only or read-write transaction implies a read-lock on 3424 ** page 1. So if some other shared-cache client already has a write-lock 3425 ** on page 1, the transaction cannot be opened. */ 3426 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 3427 if( SQLITE_OK!=rc ) goto trans_begun; 3428 3429 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3430 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3431 do { 3432 /* Call lockBtree() until either pBt->pPage1 is populated or 3433 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3434 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3435 ** reading page 1 it discovers that the page-size of the database 3436 ** file is not pBt->pageSize. In this case lockBtree() will update 3437 ** pBt->pageSize to the page-size of the file on disk. 3438 */ 3439 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3440 3441 if( rc==SQLITE_OK && wrflag ){ 3442 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3443 rc = SQLITE_READONLY; 3444 }else{ 3445 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 3446 if( rc==SQLITE_OK ){ 3447 rc = newDatabase(pBt); 3448 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3449 /* if there was no transaction opened when this function was 3450 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3451 ** code to SQLITE_BUSY. */ 3452 rc = SQLITE_BUSY; 3453 } 3454 } 3455 } 3456 3457 if( rc!=SQLITE_OK ){ 3458 unlockBtreeIfUnused(pBt); 3459 } 3460 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3461 btreeInvokeBusyHandler(pBt) ); 3462 sqlite3PagerResetLockTimeout(pBt->pPager); 3463 3464 if( rc==SQLITE_OK ){ 3465 if( p->inTrans==TRANS_NONE ){ 3466 pBt->nTransaction++; 3467 #ifndef SQLITE_OMIT_SHARED_CACHE 3468 if( p->sharable ){ 3469 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3470 p->lock.eLock = READ_LOCK; 3471 p->lock.pNext = pBt->pLock; 3472 pBt->pLock = &p->lock; 3473 } 3474 #endif 3475 } 3476 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3477 if( p->inTrans>pBt->inTransaction ){ 3478 pBt->inTransaction = p->inTrans; 3479 } 3480 if( wrflag ){ 3481 MemPage *pPage1 = pBt->pPage1; 3482 #ifndef SQLITE_OMIT_SHARED_CACHE 3483 assert( !pBt->pWriter ); 3484 pBt->pWriter = p; 3485 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3486 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3487 #endif 3488 3489 /* If the db-size header field is incorrect (as it may be if an old 3490 ** client has been writing the database file), update it now. Doing 3491 ** this sooner rather than later means the database size can safely 3492 ** re-read the database size from page 1 if a savepoint or transaction 3493 ** rollback occurs within the transaction. 3494 */ 3495 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3496 rc = sqlite3PagerWrite(pPage1->pDbPage); 3497 if( rc==SQLITE_OK ){ 3498 put4byte(&pPage1->aData[28], pBt->nPage); 3499 } 3500 } 3501 } 3502 } 3503 3504 trans_begun: 3505 if( rc==SQLITE_OK ){ 3506 if( pSchemaVersion ){ 3507 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3508 } 3509 if( wrflag ){ 3510 /* This call makes sure that the pager has the correct number of 3511 ** open savepoints. If the second parameter is greater than 0 and 3512 ** the sub-journal is not already open, then it will be opened here. 3513 */ 3514 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3515 } 3516 } 3517 3518 btreeIntegrity(p); 3519 sqlite3BtreeLeave(p); 3520 return rc; 3521 } 3522 3523 #ifndef SQLITE_OMIT_AUTOVACUUM 3524 3525 /* 3526 ** Set the pointer-map entries for all children of page pPage. Also, if 3527 ** pPage contains cells that point to overflow pages, set the pointer 3528 ** map entries for the overflow pages as well. 3529 */ 3530 static int setChildPtrmaps(MemPage *pPage){ 3531 int i; /* Counter variable */ 3532 int nCell; /* Number of cells in page pPage */ 3533 int rc; /* Return code */ 3534 BtShared *pBt = pPage->pBt; 3535 Pgno pgno = pPage->pgno; 3536 3537 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3538 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3539 if( rc!=SQLITE_OK ) return rc; 3540 nCell = pPage->nCell; 3541 3542 for(i=0; i<nCell; i++){ 3543 u8 *pCell = findCell(pPage, i); 3544 3545 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3546 3547 if( !pPage->leaf ){ 3548 Pgno childPgno = get4byte(pCell); 3549 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3550 } 3551 } 3552 3553 if( !pPage->leaf ){ 3554 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3555 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3556 } 3557 3558 return rc; 3559 } 3560 3561 /* 3562 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3563 ** that it points to iTo. Parameter eType describes the type of pointer to 3564 ** be modified, as follows: 3565 ** 3566 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3567 ** page of pPage. 3568 ** 3569 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3570 ** page pointed to by one of the cells on pPage. 3571 ** 3572 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3573 ** overflow page in the list. 3574 */ 3575 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3576 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3577 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3578 if( eType==PTRMAP_OVERFLOW2 ){ 3579 /* The pointer is always the first 4 bytes of the page in this case. */ 3580 if( get4byte(pPage->aData)!=iFrom ){ 3581 return SQLITE_CORRUPT_PAGE(pPage); 3582 } 3583 put4byte(pPage->aData, iTo); 3584 }else{ 3585 int i; 3586 int nCell; 3587 int rc; 3588 3589 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3590 if( rc ) return rc; 3591 nCell = pPage->nCell; 3592 3593 for(i=0; i<nCell; i++){ 3594 u8 *pCell = findCell(pPage, i); 3595 if( eType==PTRMAP_OVERFLOW1 ){ 3596 CellInfo info; 3597 pPage->xParseCell(pPage, pCell, &info); 3598 if( info.nLocal<info.nPayload ){ 3599 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3600 return SQLITE_CORRUPT_PAGE(pPage); 3601 } 3602 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3603 put4byte(pCell+info.nSize-4, iTo); 3604 break; 3605 } 3606 } 3607 }else{ 3608 if( get4byte(pCell)==iFrom ){ 3609 put4byte(pCell, iTo); 3610 break; 3611 } 3612 } 3613 } 3614 3615 if( i==nCell ){ 3616 if( eType!=PTRMAP_BTREE || 3617 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3618 return SQLITE_CORRUPT_PAGE(pPage); 3619 } 3620 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3621 } 3622 } 3623 return SQLITE_OK; 3624 } 3625 3626 3627 /* 3628 ** Move the open database page pDbPage to location iFreePage in the 3629 ** database. The pDbPage reference remains valid. 3630 ** 3631 ** The isCommit flag indicates that there is no need to remember that 3632 ** the journal needs to be sync()ed before database page pDbPage->pgno 3633 ** can be written to. The caller has already promised not to write to that 3634 ** page. 3635 */ 3636 static int relocatePage( 3637 BtShared *pBt, /* Btree */ 3638 MemPage *pDbPage, /* Open page to move */ 3639 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3640 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3641 Pgno iFreePage, /* The location to move pDbPage to */ 3642 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3643 ){ 3644 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3645 Pgno iDbPage = pDbPage->pgno; 3646 Pager *pPager = pBt->pPager; 3647 int rc; 3648 3649 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3650 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3651 assert( sqlite3_mutex_held(pBt->mutex) ); 3652 assert( pDbPage->pBt==pBt ); 3653 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3654 3655 /* Move page iDbPage from its current location to page number iFreePage */ 3656 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3657 iDbPage, iFreePage, iPtrPage, eType)); 3658 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3659 if( rc!=SQLITE_OK ){ 3660 return rc; 3661 } 3662 pDbPage->pgno = iFreePage; 3663 3664 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3665 ** that point to overflow pages. The pointer map entries for all these 3666 ** pages need to be changed. 3667 ** 3668 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3669 ** pointer to a subsequent overflow page. If this is the case, then 3670 ** the pointer map needs to be updated for the subsequent overflow page. 3671 */ 3672 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3673 rc = setChildPtrmaps(pDbPage); 3674 if( rc!=SQLITE_OK ){ 3675 return rc; 3676 } 3677 }else{ 3678 Pgno nextOvfl = get4byte(pDbPage->aData); 3679 if( nextOvfl!=0 ){ 3680 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3681 if( rc!=SQLITE_OK ){ 3682 return rc; 3683 } 3684 } 3685 } 3686 3687 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3688 ** that it points at iFreePage. Also fix the pointer map entry for 3689 ** iPtrPage. 3690 */ 3691 if( eType!=PTRMAP_ROOTPAGE ){ 3692 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3693 if( rc!=SQLITE_OK ){ 3694 return rc; 3695 } 3696 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3697 if( rc!=SQLITE_OK ){ 3698 releasePage(pPtrPage); 3699 return rc; 3700 } 3701 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3702 releasePage(pPtrPage); 3703 if( rc==SQLITE_OK ){ 3704 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3705 } 3706 } 3707 return rc; 3708 } 3709 3710 /* Forward declaration required by incrVacuumStep(). */ 3711 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3712 3713 /* 3714 ** Perform a single step of an incremental-vacuum. If successful, return 3715 ** SQLITE_OK. If there is no work to do (and therefore no point in 3716 ** calling this function again), return SQLITE_DONE. Or, if an error 3717 ** occurs, return some other error code. 3718 ** 3719 ** More specifically, this function attempts to re-organize the database so 3720 ** that the last page of the file currently in use is no longer in use. 3721 ** 3722 ** Parameter nFin is the number of pages that this database would contain 3723 ** were this function called until it returns SQLITE_DONE. 3724 ** 3725 ** If the bCommit parameter is non-zero, this function assumes that the 3726 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3727 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3728 ** operation, or false for an incremental vacuum. 3729 */ 3730 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3731 Pgno nFreeList; /* Number of pages still on the free-list */ 3732 int rc; 3733 3734 assert( sqlite3_mutex_held(pBt->mutex) ); 3735 assert( iLastPg>nFin ); 3736 3737 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3738 u8 eType; 3739 Pgno iPtrPage; 3740 3741 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3742 if( nFreeList==0 ){ 3743 return SQLITE_DONE; 3744 } 3745 3746 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3747 if( rc!=SQLITE_OK ){ 3748 return rc; 3749 } 3750 if( eType==PTRMAP_ROOTPAGE ){ 3751 return SQLITE_CORRUPT_BKPT; 3752 } 3753 3754 if( eType==PTRMAP_FREEPAGE ){ 3755 if( bCommit==0 ){ 3756 /* Remove the page from the files free-list. This is not required 3757 ** if bCommit is non-zero. In that case, the free-list will be 3758 ** truncated to zero after this function returns, so it doesn't 3759 ** matter if it still contains some garbage entries. 3760 */ 3761 Pgno iFreePg; 3762 MemPage *pFreePg; 3763 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3764 if( rc!=SQLITE_OK ){ 3765 return rc; 3766 } 3767 assert( iFreePg==iLastPg ); 3768 releasePage(pFreePg); 3769 } 3770 } else { 3771 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3772 MemPage *pLastPg; 3773 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3774 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3775 3776 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3777 if( rc!=SQLITE_OK ){ 3778 return rc; 3779 } 3780 3781 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3782 ** is swapped with the first free page pulled off the free list. 3783 ** 3784 ** On the other hand, if bCommit is greater than zero, then keep 3785 ** looping until a free-page located within the first nFin pages 3786 ** of the file is found. 3787 */ 3788 if( bCommit==0 ){ 3789 eMode = BTALLOC_LE; 3790 iNear = nFin; 3791 } 3792 do { 3793 MemPage *pFreePg; 3794 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3795 if( rc!=SQLITE_OK ){ 3796 releasePage(pLastPg); 3797 return rc; 3798 } 3799 releasePage(pFreePg); 3800 }while( bCommit && iFreePg>nFin ); 3801 assert( iFreePg<iLastPg ); 3802 3803 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3804 releasePage(pLastPg); 3805 if( rc!=SQLITE_OK ){ 3806 return rc; 3807 } 3808 } 3809 } 3810 3811 if( bCommit==0 ){ 3812 do { 3813 iLastPg--; 3814 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3815 pBt->bDoTruncate = 1; 3816 pBt->nPage = iLastPg; 3817 } 3818 return SQLITE_OK; 3819 } 3820 3821 /* 3822 ** The database opened by the first argument is an auto-vacuum database 3823 ** nOrig pages in size containing nFree free pages. Return the expected 3824 ** size of the database in pages following an auto-vacuum operation. 3825 */ 3826 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3827 int nEntry; /* Number of entries on one ptrmap page */ 3828 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3829 Pgno nFin; /* Return value */ 3830 3831 nEntry = pBt->usableSize/5; 3832 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3833 nFin = nOrig - nFree - nPtrmap; 3834 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3835 nFin--; 3836 } 3837 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3838 nFin--; 3839 } 3840 3841 return nFin; 3842 } 3843 3844 /* 3845 ** A write-transaction must be opened before calling this function. 3846 ** It performs a single unit of work towards an incremental vacuum. 3847 ** 3848 ** If the incremental vacuum is finished after this function has run, 3849 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3850 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3851 */ 3852 int sqlite3BtreeIncrVacuum(Btree *p){ 3853 int rc; 3854 BtShared *pBt = p->pBt; 3855 3856 sqlite3BtreeEnter(p); 3857 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3858 if( !pBt->autoVacuum ){ 3859 rc = SQLITE_DONE; 3860 }else{ 3861 Pgno nOrig = btreePagecount(pBt); 3862 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3863 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3864 3865 if( nOrig<nFin ){ 3866 rc = SQLITE_CORRUPT_BKPT; 3867 }else if( nFree>0 ){ 3868 rc = saveAllCursors(pBt, 0, 0); 3869 if( rc==SQLITE_OK ){ 3870 invalidateAllOverflowCache(pBt); 3871 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3872 } 3873 if( rc==SQLITE_OK ){ 3874 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3875 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3876 } 3877 }else{ 3878 rc = SQLITE_DONE; 3879 } 3880 } 3881 sqlite3BtreeLeave(p); 3882 return rc; 3883 } 3884 3885 /* 3886 ** This routine is called prior to sqlite3PagerCommit when a transaction 3887 ** is committed for an auto-vacuum database. 3888 ** 3889 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3890 ** the database file should be truncated to during the commit process. 3891 ** i.e. the database has been reorganized so that only the first *pnTrunc 3892 ** pages are in use. 3893 */ 3894 static int autoVacuumCommit(BtShared *pBt){ 3895 int rc = SQLITE_OK; 3896 Pager *pPager = pBt->pPager; 3897 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3898 3899 assert( sqlite3_mutex_held(pBt->mutex) ); 3900 invalidateAllOverflowCache(pBt); 3901 assert(pBt->autoVacuum); 3902 if( !pBt->incrVacuum ){ 3903 Pgno nFin; /* Number of pages in database after autovacuuming */ 3904 Pgno nFree; /* Number of pages on the freelist initially */ 3905 Pgno iFree; /* The next page to be freed */ 3906 Pgno nOrig; /* Database size before freeing */ 3907 3908 nOrig = btreePagecount(pBt); 3909 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3910 /* It is not possible to create a database for which the final page 3911 ** is either a pointer-map page or the pending-byte page. If one 3912 ** is encountered, this indicates corruption. 3913 */ 3914 return SQLITE_CORRUPT_BKPT; 3915 } 3916 3917 nFree = get4byte(&pBt->pPage1->aData[36]); 3918 nFin = finalDbSize(pBt, nOrig, nFree); 3919 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3920 if( nFin<nOrig ){ 3921 rc = saveAllCursors(pBt, 0, 0); 3922 } 3923 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3924 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3925 } 3926 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3927 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3928 put4byte(&pBt->pPage1->aData[32], 0); 3929 put4byte(&pBt->pPage1->aData[36], 0); 3930 put4byte(&pBt->pPage1->aData[28], nFin); 3931 pBt->bDoTruncate = 1; 3932 pBt->nPage = nFin; 3933 } 3934 if( rc!=SQLITE_OK ){ 3935 sqlite3PagerRollback(pPager); 3936 } 3937 } 3938 3939 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3940 return rc; 3941 } 3942 3943 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3944 # define setChildPtrmaps(x) SQLITE_OK 3945 #endif 3946 3947 /* 3948 ** This routine does the first phase of a two-phase commit. This routine 3949 ** causes a rollback journal to be created (if it does not already exist) 3950 ** and populated with enough information so that if a power loss occurs 3951 ** the database can be restored to its original state by playing back 3952 ** the journal. Then the contents of the journal are flushed out to 3953 ** the disk. After the journal is safely on oxide, the changes to the 3954 ** database are written into the database file and flushed to oxide. 3955 ** At the end of this call, the rollback journal still exists on the 3956 ** disk and we are still holding all locks, so the transaction has not 3957 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3958 ** commit process. 3959 ** 3960 ** This call is a no-op if no write-transaction is currently active on pBt. 3961 ** 3962 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3963 ** the name of a master journal file that should be written into the 3964 ** individual journal file, or is NULL, indicating no master journal file 3965 ** (single database transaction). 3966 ** 3967 ** When this is called, the master journal should already have been 3968 ** created, populated with this journal pointer and synced to disk. 3969 ** 3970 ** Once this is routine has returned, the only thing required to commit 3971 ** the write-transaction for this database file is to delete the journal. 3972 */ 3973 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3974 int rc = SQLITE_OK; 3975 if( p->inTrans==TRANS_WRITE ){ 3976 BtShared *pBt = p->pBt; 3977 sqlite3BtreeEnter(p); 3978 #ifndef SQLITE_OMIT_AUTOVACUUM 3979 if( pBt->autoVacuum ){ 3980 rc = autoVacuumCommit(pBt); 3981 if( rc!=SQLITE_OK ){ 3982 sqlite3BtreeLeave(p); 3983 return rc; 3984 } 3985 } 3986 if( pBt->bDoTruncate ){ 3987 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3988 } 3989 #endif 3990 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3991 sqlite3BtreeLeave(p); 3992 } 3993 return rc; 3994 } 3995 3996 /* 3997 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3998 ** at the conclusion of a transaction. 3999 */ 4000 static void btreeEndTransaction(Btree *p){ 4001 BtShared *pBt = p->pBt; 4002 sqlite3 *db = p->db; 4003 assert( sqlite3BtreeHoldsMutex(p) ); 4004 4005 #ifndef SQLITE_OMIT_AUTOVACUUM 4006 pBt->bDoTruncate = 0; 4007 #endif 4008 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4009 /* If there are other active statements that belong to this database 4010 ** handle, downgrade to a read-only transaction. The other statements 4011 ** may still be reading from the database. */ 4012 downgradeAllSharedCacheTableLocks(p); 4013 p->inTrans = TRANS_READ; 4014 }else{ 4015 /* If the handle had any kind of transaction open, decrement the 4016 ** transaction count of the shared btree. If the transaction count 4017 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4018 ** call below will unlock the pager. */ 4019 if( p->inTrans!=TRANS_NONE ){ 4020 clearAllSharedCacheTableLocks(p); 4021 pBt->nTransaction--; 4022 if( 0==pBt->nTransaction ){ 4023 pBt->inTransaction = TRANS_NONE; 4024 } 4025 } 4026 4027 /* Set the current transaction state to TRANS_NONE and unlock the 4028 ** pager if this call closed the only read or write transaction. */ 4029 p->inTrans = TRANS_NONE; 4030 unlockBtreeIfUnused(pBt); 4031 } 4032 4033 btreeIntegrity(p); 4034 } 4035 4036 /* 4037 ** Commit the transaction currently in progress. 4038 ** 4039 ** This routine implements the second phase of a 2-phase commit. The 4040 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4041 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4042 ** routine did all the work of writing information out to disk and flushing the 4043 ** contents so that they are written onto the disk platter. All this 4044 ** routine has to do is delete or truncate or zero the header in the 4045 ** the rollback journal (which causes the transaction to commit) and 4046 ** drop locks. 4047 ** 4048 ** Normally, if an error occurs while the pager layer is attempting to 4049 ** finalize the underlying journal file, this function returns an error and 4050 ** the upper layer will attempt a rollback. However, if the second argument 4051 ** is non-zero then this b-tree transaction is part of a multi-file 4052 ** transaction. In this case, the transaction has already been committed 4053 ** (by deleting a master journal file) and the caller will ignore this 4054 ** functions return code. So, even if an error occurs in the pager layer, 4055 ** reset the b-tree objects internal state to indicate that the write 4056 ** transaction has been closed. This is quite safe, as the pager will have 4057 ** transitioned to the error state. 4058 ** 4059 ** This will release the write lock on the database file. If there 4060 ** are no active cursors, it also releases the read lock. 4061 */ 4062 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4063 4064 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4065 sqlite3BtreeEnter(p); 4066 btreeIntegrity(p); 4067 4068 /* If the handle has a write-transaction open, commit the shared-btrees 4069 ** transaction and set the shared state to TRANS_READ. 4070 */ 4071 if( p->inTrans==TRANS_WRITE ){ 4072 int rc; 4073 BtShared *pBt = p->pBt; 4074 assert( pBt->inTransaction==TRANS_WRITE ); 4075 assert( pBt->nTransaction>0 ); 4076 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4077 if( rc!=SQLITE_OK && bCleanup==0 ){ 4078 sqlite3BtreeLeave(p); 4079 return rc; 4080 } 4081 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4082 pBt->inTransaction = TRANS_READ; 4083 btreeClearHasContent(pBt); 4084 } 4085 4086 btreeEndTransaction(p); 4087 sqlite3BtreeLeave(p); 4088 return SQLITE_OK; 4089 } 4090 4091 /* 4092 ** Do both phases of a commit. 4093 */ 4094 int sqlite3BtreeCommit(Btree *p){ 4095 int rc; 4096 sqlite3BtreeEnter(p); 4097 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4098 if( rc==SQLITE_OK ){ 4099 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4100 } 4101 sqlite3BtreeLeave(p); 4102 return rc; 4103 } 4104 4105 /* 4106 ** This routine sets the state to CURSOR_FAULT and the error 4107 ** code to errCode for every cursor on any BtShared that pBtree 4108 ** references. Or if the writeOnly flag is set to 1, then only 4109 ** trip write cursors and leave read cursors unchanged. 4110 ** 4111 ** Every cursor is a candidate to be tripped, including cursors 4112 ** that belong to other database connections that happen to be 4113 ** sharing the cache with pBtree. 4114 ** 4115 ** This routine gets called when a rollback occurs. If the writeOnly 4116 ** flag is true, then only write-cursors need be tripped - read-only 4117 ** cursors save their current positions so that they may continue 4118 ** following the rollback. Or, if writeOnly is false, all cursors are 4119 ** tripped. In general, writeOnly is false if the transaction being 4120 ** rolled back modified the database schema. In this case b-tree root 4121 ** pages may be moved or deleted from the database altogether, making 4122 ** it unsafe for read cursors to continue. 4123 ** 4124 ** If the writeOnly flag is true and an error is encountered while 4125 ** saving the current position of a read-only cursor, all cursors, 4126 ** including all read-cursors are tripped. 4127 ** 4128 ** SQLITE_OK is returned if successful, or if an error occurs while 4129 ** saving a cursor position, an SQLite error code. 4130 */ 4131 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4132 BtCursor *p; 4133 int rc = SQLITE_OK; 4134 4135 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4136 if( pBtree ){ 4137 sqlite3BtreeEnter(pBtree); 4138 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4139 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4140 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4141 rc = saveCursorPosition(p); 4142 if( rc!=SQLITE_OK ){ 4143 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4144 break; 4145 } 4146 } 4147 }else{ 4148 sqlite3BtreeClearCursor(p); 4149 p->eState = CURSOR_FAULT; 4150 p->skipNext = errCode; 4151 } 4152 btreeReleaseAllCursorPages(p); 4153 } 4154 sqlite3BtreeLeave(pBtree); 4155 } 4156 return rc; 4157 } 4158 4159 /* 4160 ** Set the pBt->nPage field correctly, according to the current 4161 ** state of the database. Assume pBt->pPage1 is valid. 4162 */ 4163 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4164 int nPage = get4byte(&pPage1->aData[28]); 4165 testcase( nPage==0 ); 4166 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4167 testcase( pBt->nPage!=nPage ); 4168 pBt->nPage = nPage; 4169 } 4170 4171 /* 4172 ** Rollback the transaction in progress. 4173 ** 4174 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4175 ** Only write cursors are tripped if writeOnly is true but all cursors are 4176 ** tripped if writeOnly is false. Any attempt to use 4177 ** a tripped cursor will result in an error. 4178 ** 4179 ** This will release the write lock on the database file. If there 4180 ** are no active cursors, it also releases the read lock. 4181 */ 4182 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4183 int rc; 4184 BtShared *pBt = p->pBt; 4185 MemPage *pPage1; 4186 4187 assert( writeOnly==1 || writeOnly==0 ); 4188 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4189 sqlite3BtreeEnter(p); 4190 if( tripCode==SQLITE_OK ){ 4191 rc = tripCode = saveAllCursors(pBt, 0, 0); 4192 if( rc ) writeOnly = 0; 4193 }else{ 4194 rc = SQLITE_OK; 4195 } 4196 if( tripCode ){ 4197 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4198 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4199 if( rc2!=SQLITE_OK ) rc = rc2; 4200 } 4201 btreeIntegrity(p); 4202 4203 if( p->inTrans==TRANS_WRITE ){ 4204 int rc2; 4205 4206 assert( TRANS_WRITE==pBt->inTransaction ); 4207 rc2 = sqlite3PagerRollback(pBt->pPager); 4208 if( rc2!=SQLITE_OK ){ 4209 rc = rc2; 4210 } 4211 4212 /* The rollback may have destroyed the pPage1->aData value. So 4213 ** call btreeGetPage() on page 1 again to make 4214 ** sure pPage1->aData is set correctly. */ 4215 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4216 btreeSetNPage(pBt, pPage1); 4217 releasePageOne(pPage1); 4218 } 4219 assert( countValidCursors(pBt, 1)==0 ); 4220 pBt->inTransaction = TRANS_READ; 4221 btreeClearHasContent(pBt); 4222 } 4223 4224 btreeEndTransaction(p); 4225 sqlite3BtreeLeave(p); 4226 return rc; 4227 } 4228 4229 /* 4230 ** Start a statement subtransaction. The subtransaction can be rolled 4231 ** back independently of the main transaction. You must start a transaction 4232 ** before starting a subtransaction. The subtransaction is ended automatically 4233 ** if the main transaction commits or rolls back. 4234 ** 4235 ** Statement subtransactions are used around individual SQL statements 4236 ** that are contained within a BEGIN...COMMIT block. If a constraint 4237 ** error occurs within the statement, the effect of that one statement 4238 ** can be rolled back without having to rollback the entire transaction. 4239 ** 4240 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4241 ** value passed as the second parameter is the total number of savepoints, 4242 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4243 ** are no active savepoints and no other statement-transactions open, 4244 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4245 ** using the sqlite3BtreeSavepoint() function. 4246 */ 4247 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4248 int rc; 4249 BtShared *pBt = p->pBt; 4250 sqlite3BtreeEnter(p); 4251 assert( p->inTrans==TRANS_WRITE ); 4252 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4253 assert( iStatement>0 ); 4254 assert( iStatement>p->db->nSavepoint ); 4255 assert( pBt->inTransaction==TRANS_WRITE ); 4256 /* At the pager level, a statement transaction is a savepoint with 4257 ** an index greater than all savepoints created explicitly using 4258 ** SQL statements. It is illegal to open, release or rollback any 4259 ** such savepoints while the statement transaction savepoint is active. 4260 */ 4261 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4262 sqlite3BtreeLeave(p); 4263 return rc; 4264 } 4265 4266 /* 4267 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4268 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4269 ** savepoint identified by parameter iSavepoint, depending on the value 4270 ** of op. 4271 ** 4272 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4273 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4274 ** contents of the entire transaction are rolled back. This is different 4275 ** from a normal transaction rollback, as no locks are released and the 4276 ** transaction remains open. 4277 */ 4278 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4279 int rc = SQLITE_OK; 4280 if( p && p->inTrans==TRANS_WRITE ){ 4281 BtShared *pBt = p->pBt; 4282 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4283 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4284 sqlite3BtreeEnter(p); 4285 if( op==SAVEPOINT_ROLLBACK ){ 4286 rc = saveAllCursors(pBt, 0, 0); 4287 } 4288 if( rc==SQLITE_OK ){ 4289 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4290 } 4291 if( rc==SQLITE_OK ){ 4292 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4293 pBt->nPage = 0; 4294 } 4295 rc = newDatabase(pBt); 4296 btreeSetNPage(pBt, pBt->pPage1); 4297 4298 /* pBt->nPage might be zero if the database was corrupt when 4299 ** the transaction was started. Otherwise, it must be at least 1. */ 4300 assert( CORRUPT_DB || pBt->nPage>0 ); 4301 } 4302 sqlite3BtreeLeave(p); 4303 } 4304 return rc; 4305 } 4306 4307 /* 4308 ** Create a new cursor for the BTree whose root is on the page 4309 ** iTable. If a read-only cursor is requested, it is assumed that 4310 ** the caller already has at least a read-only transaction open 4311 ** on the database already. If a write-cursor is requested, then 4312 ** the caller is assumed to have an open write transaction. 4313 ** 4314 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4315 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4316 ** can be used for reading or for writing if other conditions for writing 4317 ** are also met. These are the conditions that must be met in order 4318 ** for writing to be allowed: 4319 ** 4320 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4321 ** 4322 ** 2: Other database connections that share the same pager cache 4323 ** but which are not in the READ_UNCOMMITTED state may not have 4324 ** cursors open with wrFlag==0 on the same table. Otherwise 4325 ** the changes made by this write cursor would be visible to 4326 ** the read cursors in the other database connection. 4327 ** 4328 ** 3: The database must be writable (not on read-only media) 4329 ** 4330 ** 4: There must be an active transaction. 4331 ** 4332 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4333 ** is set. If FORDELETE is set, that is a hint to the implementation that 4334 ** this cursor will only be used to seek to and delete entries of an index 4335 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4336 ** this implementation. But in a hypothetical alternative storage engine 4337 ** in which index entries are automatically deleted when corresponding table 4338 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4339 ** operations on this cursor can be no-ops and all READ operations can 4340 ** return a null row (2-bytes: 0x01 0x00). 4341 ** 4342 ** No checking is done to make sure that page iTable really is the 4343 ** root page of a b-tree. If it is not, then the cursor acquired 4344 ** will not work correctly. 4345 ** 4346 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4347 ** on pCur to initialize the memory space prior to invoking this routine. 4348 */ 4349 static int btreeCursor( 4350 Btree *p, /* The btree */ 4351 int iTable, /* Root page of table to open */ 4352 int wrFlag, /* 1 to write. 0 read-only */ 4353 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4354 BtCursor *pCur /* Space for new cursor */ 4355 ){ 4356 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4357 BtCursor *pX; /* Looping over other all cursors */ 4358 4359 assert( sqlite3BtreeHoldsMutex(p) ); 4360 assert( wrFlag==0 4361 || wrFlag==BTREE_WRCSR 4362 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4363 ); 4364 4365 /* The following assert statements verify that if this is a sharable 4366 ** b-tree database, the connection is holding the required table locks, 4367 ** and that no other connection has any open cursor that conflicts with 4368 ** this lock. */ 4369 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); 4370 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4371 4372 /* Assert that the caller has opened the required transaction. */ 4373 assert( p->inTrans>TRANS_NONE ); 4374 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4375 assert( pBt->pPage1 && pBt->pPage1->aData ); 4376 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4377 4378 if( wrFlag ){ 4379 allocateTempSpace(pBt); 4380 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4381 } 4382 if( iTable==1 && btreePagecount(pBt)==0 ){ 4383 assert( wrFlag==0 ); 4384 iTable = 0; 4385 } 4386 4387 /* Now that no other errors can occur, finish filling in the BtCursor 4388 ** variables and link the cursor into the BtShared list. */ 4389 pCur->pgnoRoot = (Pgno)iTable; 4390 pCur->iPage = -1; 4391 pCur->pKeyInfo = pKeyInfo; 4392 pCur->pBtree = p; 4393 pCur->pBt = pBt; 4394 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4395 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4396 /* If there are two or more cursors on the same btree, then all such 4397 ** cursors *must* have the BTCF_Multiple flag set. */ 4398 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4399 if( pX->pgnoRoot==(Pgno)iTable ){ 4400 pX->curFlags |= BTCF_Multiple; 4401 pCur->curFlags |= BTCF_Multiple; 4402 } 4403 } 4404 pCur->pNext = pBt->pCursor; 4405 pBt->pCursor = pCur; 4406 pCur->eState = CURSOR_INVALID; 4407 return SQLITE_OK; 4408 } 4409 int sqlite3BtreeCursor( 4410 Btree *p, /* The btree */ 4411 int iTable, /* Root page of table to open */ 4412 int wrFlag, /* 1 to write. 0 read-only */ 4413 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4414 BtCursor *pCur /* Write new cursor here */ 4415 ){ 4416 int rc; 4417 if( iTable<1 ){ 4418 rc = SQLITE_CORRUPT_BKPT; 4419 }else{ 4420 sqlite3BtreeEnter(p); 4421 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4422 sqlite3BtreeLeave(p); 4423 } 4424 return rc; 4425 } 4426 4427 /* 4428 ** Return the size of a BtCursor object in bytes. 4429 ** 4430 ** This interfaces is needed so that users of cursors can preallocate 4431 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4432 ** to users so they cannot do the sizeof() themselves - they must call 4433 ** this routine. 4434 */ 4435 int sqlite3BtreeCursorSize(void){ 4436 return ROUND8(sizeof(BtCursor)); 4437 } 4438 4439 /* 4440 ** Initialize memory that will be converted into a BtCursor object. 4441 ** 4442 ** The simple approach here would be to memset() the entire object 4443 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4444 ** do not need to be zeroed and they are large, so we can save a lot 4445 ** of run-time by skipping the initialization of those elements. 4446 */ 4447 void sqlite3BtreeCursorZero(BtCursor *p){ 4448 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4449 } 4450 4451 /* 4452 ** Close a cursor. The read lock on the database file is released 4453 ** when the last cursor is closed. 4454 */ 4455 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4456 Btree *pBtree = pCur->pBtree; 4457 if( pBtree ){ 4458 BtShared *pBt = pCur->pBt; 4459 sqlite3BtreeEnter(pBtree); 4460 assert( pBt->pCursor!=0 ); 4461 if( pBt->pCursor==pCur ){ 4462 pBt->pCursor = pCur->pNext; 4463 }else{ 4464 BtCursor *pPrev = pBt->pCursor; 4465 do{ 4466 if( pPrev->pNext==pCur ){ 4467 pPrev->pNext = pCur->pNext; 4468 break; 4469 } 4470 pPrev = pPrev->pNext; 4471 }while( ALWAYS(pPrev) ); 4472 } 4473 btreeReleaseAllCursorPages(pCur); 4474 unlockBtreeIfUnused(pBt); 4475 sqlite3_free(pCur->aOverflow); 4476 sqlite3_free(pCur->pKey); 4477 sqlite3BtreeLeave(pBtree); 4478 pCur->pBtree = 0; 4479 } 4480 return SQLITE_OK; 4481 } 4482 4483 /* 4484 ** Make sure the BtCursor* given in the argument has a valid 4485 ** BtCursor.info structure. If it is not already valid, call 4486 ** btreeParseCell() to fill it in. 4487 ** 4488 ** BtCursor.info is a cache of the information in the current cell. 4489 ** Using this cache reduces the number of calls to btreeParseCell(). 4490 */ 4491 #ifndef NDEBUG 4492 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4493 if( a->nKey!=b->nKey ) return 0; 4494 if( a->pPayload!=b->pPayload ) return 0; 4495 if( a->nPayload!=b->nPayload ) return 0; 4496 if( a->nLocal!=b->nLocal ) return 0; 4497 if( a->nSize!=b->nSize ) return 0; 4498 return 1; 4499 } 4500 static void assertCellInfo(BtCursor *pCur){ 4501 CellInfo info; 4502 memset(&info, 0, sizeof(info)); 4503 btreeParseCell(pCur->pPage, pCur->ix, &info); 4504 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4505 } 4506 #else 4507 #define assertCellInfo(x) 4508 #endif 4509 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4510 if( pCur->info.nSize==0 ){ 4511 pCur->curFlags |= BTCF_ValidNKey; 4512 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4513 }else{ 4514 assertCellInfo(pCur); 4515 } 4516 } 4517 4518 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4519 /* 4520 ** Return true if the given BtCursor is valid. A valid cursor is one 4521 ** that is currently pointing to a row in a (non-empty) table. 4522 ** This is a verification routine is used only within assert() statements. 4523 */ 4524 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4525 return pCur && pCur->eState==CURSOR_VALID; 4526 } 4527 #endif /* NDEBUG */ 4528 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4529 assert( pCur!=0 ); 4530 return pCur->eState==CURSOR_VALID; 4531 } 4532 4533 /* 4534 ** Return the value of the integer key or "rowid" for a table btree. 4535 ** This routine is only valid for a cursor that is pointing into a 4536 ** ordinary table btree. If the cursor points to an index btree or 4537 ** is invalid, the result of this routine is undefined. 4538 */ 4539 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4540 assert( cursorHoldsMutex(pCur) ); 4541 assert( pCur->eState==CURSOR_VALID ); 4542 assert( pCur->curIntKey ); 4543 getCellInfo(pCur); 4544 return pCur->info.nKey; 4545 } 4546 4547 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4548 /* 4549 ** Return the offset into the database file for the start of the 4550 ** payload to which the cursor is pointing. 4551 */ 4552 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4553 assert( cursorHoldsMutex(pCur) ); 4554 assert( pCur->eState==CURSOR_VALID ); 4555 getCellInfo(pCur); 4556 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4557 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4558 } 4559 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4560 4561 /* 4562 ** Return the number of bytes of payload for the entry that pCur is 4563 ** currently pointing to. For table btrees, this will be the amount 4564 ** of data. For index btrees, this will be the size of the key. 4565 ** 4566 ** The caller must guarantee that the cursor is pointing to a non-NULL 4567 ** valid entry. In other words, the calling procedure must guarantee 4568 ** that the cursor has Cursor.eState==CURSOR_VALID. 4569 */ 4570 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4571 assert( cursorHoldsMutex(pCur) ); 4572 assert( pCur->eState==CURSOR_VALID ); 4573 getCellInfo(pCur); 4574 return pCur->info.nPayload; 4575 } 4576 4577 /* 4578 ** Return an upper bound on the size of any record for the table 4579 ** that the cursor is pointing into. 4580 ** 4581 ** This is an optimization. Everything will still work if this 4582 ** routine always returns 2147483647 (which is the largest record 4583 ** that SQLite can handle) or more. But returning a smaller value might 4584 ** prevent large memory allocations when trying to interpret a 4585 ** corrupt datrabase. 4586 ** 4587 ** The current implementation merely returns the size of the underlying 4588 ** database file. 4589 */ 4590 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4591 assert( cursorHoldsMutex(pCur) ); 4592 assert( pCur->eState==CURSOR_VALID ); 4593 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4594 } 4595 4596 /* 4597 ** Given the page number of an overflow page in the database (parameter 4598 ** ovfl), this function finds the page number of the next page in the 4599 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4600 ** pointer-map data instead of reading the content of page ovfl to do so. 4601 ** 4602 ** If an error occurs an SQLite error code is returned. Otherwise: 4603 ** 4604 ** The page number of the next overflow page in the linked list is 4605 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4606 ** list, *pPgnoNext is set to zero. 4607 ** 4608 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4609 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4610 ** reference. It is the responsibility of the caller to call releasePage() 4611 ** on *ppPage to free the reference. In no reference was obtained (because 4612 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4613 ** *ppPage is set to zero. 4614 */ 4615 static int getOverflowPage( 4616 BtShared *pBt, /* The database file */ 4617 Pgno ovfl, /* Current overflow page number */ 4618 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4619 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4620 ){ 4621 Pgno next = 0; 4622 MemPage *pPage = 0; 4623 int rc = SQLITE_OK; 4624 4625 assert( sqlite3_mutex_held(pBt->mutex) ); 4626 assert(pPgnoNext); 4627 4628 #ifndef SQLITE_OMIT_AUTOVACUUM 4629 /* Try to find the next page in the overflow list using the 4630 ** autovacuum pointer-map pages. Guess that the next page in 4631 ** the overflow list is page number (ovfl+1). If that guess turns 4632 ** out to be wrong, fall back to loading the data of page 4633 ** number ovfl to determine the next page number. 4634 */ 4635 if( pBt->autoVacuum ){ 4636 Pgno pgno; 4637 Pgno iGuess = ovfl+1; 4638 u8 eType; 4639 4640 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4641 iGuess++; 4642 } 4643 4644 if( iGuess<=btreePagecount(pBt) ){ 4645 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4646 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4647 next = iGuess; 4648 rc = SQLITE_DONE; 4649 } 4650 } 4651 } 4652 #endif 4653 4654 assert( next==0 || rc==SQLITE_DONE ); 4655 if( rc==SQLITE_OK ){ 4656 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4657 assert( rc==SQLITE_OK || pPage==0 ); 4658 if( rc==SQLITE_OK ){ 4659 next = get4byte(pPage->aData); 4660 } 4661 } 4662 4663 *pPgnoNext = next; 4664 if( ppPage ){ 4665 *ppPage = pPage; 4666 }else{ 4667 releasePage(pPage); 4668 } 4669 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4670 } 4671 4672 /* 4673 ** Copy data from a buffer to a page, or from a page to a buffer. 4674 ** 4675 ** pPayload is a pointer to data stored on database page pDbPage. 4676 ** If argument eOp is false, then nByte bytes of data are copied 4677 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4678 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4679 ** of data are copied from the buffer pBuf to pPayload. 4680 ** 4681 ** SQLITE_OK is returned on success, otherwise an error code. 4682 */ 4683 static int copyPayload( 4684 void *pPayload, /* Pointer to page data */ 4685 void *pBuf, /* Pointer to buffer */ 4686 int nByte, /* Number of bytes to copy */ 4687 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4688 DbPage *pDbPage /* Page containing pPayload */ 4689 ){ 4690 if( eOp ){ 4691 /* Copy data from buffer to page (a write operation) */ 4692 int rc = sqlite3PagerWrite(pDbPage); 4693 if( rc!=SQLITE_OK ){ 4694 return rc; 4695 } 4696 memcpy(pPayload, pBuf, nByte); 4697 }else{ 4698 /* Copy data from page to buffer (a read operation) */ 4699 memcpy(pBuf, pPayload, nByte); 4700 } 4701 return SQLITE_OK; 4702 } 4703 4704 /* 4705 ** This function is used to read or overwrite payload information 4706 ** for the entry that the pCur cursor is pointing to. The eOp 4707 ** argument is interpreted as follows: 4708 ** 4709 ** 0: The operation is a read. Populate the overflow cache. 4710 ** 1: The operation is a write. Populate the overflow cache. 4711 ** 4712 ** A total of "amt" bytes are read or written beginning at "offset". 4713 ** Data is read to or from the buffer pBuf. 4714 ** 4715 ** The content being read or written might appear on the main page 4716 ** or be scattered out on multiple overflow pages. 4717 ** 4718 ** If the current cursor entry uses one or more overflow pages 4719 ** this function may allocate space for and lazily populate 4720 ** the overflow page-list cache array (BtCursor.aOverflow). 4721 ** Subsequent calls use this cache to make seeking to the supplied offset 4722 ** more efficient. 4723 ** 4724 ** Once an overflow page-list cache has been allocated, it must be 4725 ** invalidated if some other cursor writes to the same table, or if 4726 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4727 ** mode, the following events may invalidate an overflow page-list cache. 4728 ** 4729 ** * An incremental vacuum, 4730 ** * A commit in auto_vacuum="full" mode, 4731 ** * Creating a table (may require moving an overflow page). 4732 */ 4733 static int accessPayload( 4734 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4735 u32 offset, /* Begin reading this far into payload */ 4736 u32 amt, /* Read this many bytes */ 4737 unsigned char *pBuf, /* Write the bytes into this buffer */ 4738 int eOp /* zero to read. non-zero to write. */ 4739 ){ 4740 unsigned char *aPayload; 4741 int rc = SQLITE_OK; 4742 int iIdx = 0; 4743 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4744 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4745 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4746 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4747 #endif 4748 4749 assert( pPage ); 4750 assert( eOp==0 || eOp==1 ); 4751 assert( pCur->eState==CURSOR_VALID ); 4752 assert( pCur->ix<pPage->nCell ); 4753 assert( cursorHoldsMutex(pCur) ); 4754 4755 getCellInfo(pCur); 4756 aPayload = pCur->info.pPayload; 4757 assert( offset+amt <= pCur->info.nPayload ); 4758 4759 assert( aPayload > pPage->aData ); 4760 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4761 /* Trying to read or write past the end of the data is an error. The 4762 ** conditional above is really: 4763 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4764 ** but is recast into its current form to avoid integer overflow problems 4765 */ 4766 return SQLITE_CORRUPT_PAGE(pPage); 4767 } 4768 4769 /* Check if data must be read/written to/from the btree page itself. */ 4770 if( offset<pCur->info.nLocal ){ 4771 int a = amt; 4772 if( a+offset>pCur->info.nLocal ){ 4773 a = pCur->info.nLocal - offset; 4774 } 4775 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4776 offset = 0; 4777 pBuf += a; 4778 amt -= a; 4779 }else{ 4780 offset -= pCur->info.nLocal; 4781 } 4782 4783 4784 if( rc==SQLITE_OK && amt>0 ){ 4785 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4786 Pgno nextPage; 4787 4788 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4789 4790 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4791 ** 4792 ** The aOverflow[] array is sized at one entry for each overflow page 4793 ** in the overflow chain. The page number of the first overflow page is 4794 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4795 ** means "not yet known" (the cache is lazily populated). 4796 */ 4797 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4798 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4799 if( pCur->aOverflow==0 4800 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4801 ){ 4802 Pgno *aNew = (Pgno*)sqlite3Realloc( 4803 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4804 ); 4805 if( aNew==0 ){ 4806 return SQLITE_NOMEM_BKPT; 4807 }else{ 4808 pCur->aOverflow = aNew; 4809 } 4810 } 4811 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4812 pCur->curFlags |= BTCF_ValidOvfl; 4813 }else{ 4814 /* If the overflow page-list cache has been allocated and the 4815 ** entry for the first required overflow page is valid, skip 4816 ** directly to it. 4817 */ 4818 if( pCur->aOverflow[offset/ovflSize] ){ 4819 iIdx = (offset/ovflSize); 4820 nextPage = pCur->aOverflow[iIdx]; 4821 offset = (offset%ovflSize); 4822 } 4823 } 4824 4825 assert( rc==SQLITE_OK && amt>0 ); 4826 while( nextPage ){ 4827 /* If required, populate the overflow page-list cache. */ 4828 assert( pCur->aOverflow[iIdx]==0 4829 || pCur->aOverflow[iIdx]==nextPage 4830 || CORRUPT_DB ); 4831 pCur->aOverflow[iIdx] = nextPage; 4832 4833 if( offset>=ovflSize ){ 4834 /* The only reason to read this page is to obtain the page 4835 ** number for the next page in the overflow chain. The page 4836 ** data is not required. So first try to lookup the overflow 4837 ** page-list cache, if any, then fall back to the getOverflowPage() 4838 ** function. 4839 */ 4840 assert( pCur->curFlags & BTCF_ValidOvfl ); 4841 assert( pCur->pBtree->db==pBt->db ); 4842 if( pCur->aOverflow[iIdx+1] ){ 4843 nextPage = pCur->aOverflow[iIdx+1]; 4844 }else{ 4845 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4846 } 4847 offset -= ovflSize; 4848 }else{ 4849 /* Need to read this page properly. It contains some of the 4850 ** range of data that is being read (eOp==0) or written (eOp!=0). 4851 */ 4852 int a = amt; 4853 if( a + offset > ovflSize ){ 4854 a = ovflSize - offset; 4855 } 4856 4857 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4858 /* If all the following are true: 4859 ** 4860 ** 1) this is a read operation, and 4861 ** 2) data is required from the start of this overflow page, and 4862 ** 3) there are no dirty pages in the page-cache 4863 ** 4) the database is file-backed, and 4864 ** 5) the page is not in the WAL file 4865 ** 6) at least 4 bytes have already been read into the output buffer 4866 ** 4867 ** then data can be read directly from the database file into the 4868 ** output buffer, bypassing the page-cache altogether. This speeds 4869 ** up loading large records that span many overflow pages. 4870 */ 4871 if( eOp==0 /* (1) */ 4872 && offset==0 /* (2) */ 4873 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4874 && &pBuf[-4]>=pBufStart /* (6) */ 4875 ){ 4876 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4877 u8 aSave[4]; 4878 u8 *aWrite = &pBuf[-4]; 4879 assert( aWrite>=pBufStart ); /* due to (6) */ 4880 memcpy(aSave, aWrite, 4); 4881 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4882 nextPage = get4byte(aWrite); 4883 memcpy(aWrite, aSave, 4); 4884 }else 4885 #endif 4886 4887 { 4888 DbPage *pDbPage; 4889 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4890 (eOp==0 ? PAGER_GET_READONLY : 0) 4891 ); 4892 if( rc==SQLITE_OK ){ 4893 aPayload = sqlite3PagerGetData(pDbPage); 4894 nextPage = get4byte(aPayload); 4895 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4896 sqlite3PagerUnref(pDbPage); 4897 offset = 0; 4898 } 4899 } 4900 amt -= a; 4901 if( amt==0 ) return rc; 4902 pBuf += a; 4903 } 4904 if( rc ) break; 4905 iIdx++; 4906 } 4907 } 4908 4909 if( rc==SQLITE_OK && amt>0 ){ 4910 /* Overflow chain ends prematurely */ 4911 return SQLITE_CORRUPT_PAGE(pPage); 4912 } 4913 return rc; 4914 } 4915 4916 /* 4917 ** Read part of the payload for the row at which that cursor pCur is currently 4918 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4919 ** begins at "offset". 4920 ** 4921 ** pCur can be pointing to either a table or an index b-tree. 4922 ** If pointing to a table btree, then the content section is read. If 4923 ** pCur is pointing to an index b-tree then the key section is read. 4924 ** 4925 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4926 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4927 ** cursor might be invalid or might need to be restored before being read. 4928 ** 4929 ** Return SQLITE_OK on success or an error code if anything goes 4930 ** wrong. An error is returned if "offset+amt" is larger than 4931 ** the available payload. 4932 */ 4933 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4934 assert( cursorHoldsMutex(pCur) ); 4935 assert( pCur->eState==CURSOR_VALID ); 4936 assert( pCur->iPage>=0 && pCur->pPage ); 4937 assert( pCur->ix<pCur->pPage->nCell ); 4938 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4939 } 4940 4941 /* 4942 ** This variant of sqlite3BtreePayload() works even if the cursor has not 4943 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 4944 ** interface. 4945 */ 4946 #ifndef SQLITE_OMIT_INCRBLOB 4947 static SQLITE_NOINLINE int accessPayloadChecked( 4948 BtCursor *pCur, 4949 u32 offset, 4950 u32 amt, 4951 void *pBuf 4952 ){ 4953 int rc; 4954 if ( pCur->eState==CURSOR_INVALID ){ 4955 return SQLITE_ABORT; 4956 } 4957 assert( cursorOwnsBtShared(pCur) ); 4958 rc = btreeRestoreCursorPosition(pCur); 4959 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 4960 } 4961 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4962 if( pCur->eState==CURSOR_VALID ){ 4963 assert( cursorOwnsBtShared(pCur) ); 4964 return accessPayload(pCur, offset, amt, pBuf, 0); 4965 }else{ 4966 return accessPayloadChecked(pCur, offset, amt, pBuf); 4967 } 4968 } 4969 #endif /* SQLITE_OMIT_INCRBLOB */ 4970 4971 /* 4972 ** Return a pointer to payload information from the entry that the 4973 ** pCur cursor is pointing to. The pointer is to the beginning of 4974 ** the key if index btrees (pPage->intKey==0) and is the data for 4975 ** table btrees (pPage->intKey==1). The number of bytes of available 4976 ** key/data is written into *pAmt. If *pAmt==0, then the value 4977 ** returned will not be a valid pointer. 4978 ** 4979 ** This routine is an optimization. It is common for the entire key 4980 ** and data to fit on the local page and for there to be no overflow 4981 ** pages. When that is so, this routine can be used to access the 4982 ** key and data without making a copy. If the key and/or data spills 4983 ** onto overflow pages, then accessPayload() must be used to reassemble 4984 ** the key/data and copy it into a preallocated buffer. 4985 ** 4986 ** The pointer returned by this routine looks directly into the cached 4987 ** page of the database. The data might change or move the next time 4988 ** any btree routine is called. 4989 */ 4990 static const void *fetchPayload( 4991 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4992 u32 *pAmt /* Write the number of available bytes here */ 4993 ){ 4994 int amt; 4995 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 4996 assert( pCur->eState==CURSOR_VALID ); 4997 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4998 assert( cursorOwnsBtShared(pCur) ); 4999 assert( pCur->ix<pCur->pPage->nCell ); 5000 assert( pCur->info.nSize>0 ); 5001 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5002 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5003 amt = pCur->info.nLocal; 5004 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5005 /* There is too little space on the page for the expected amount 5006 ** of local content. Database must be corrupt. */ 5007 assert( CORRUPT_DB ); 5008 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5009 } 5010 *pAmt = (u32)amt; 5011 return (void*)pCur->info.pPayload; 5012 } 5013 5014 5015 /* 5016 ** For the entry that cursor pCur is point to, return as 5017 ** many bytes of the key or data as are available on the local 5018 ** b-tree page. Write the number of available bytes into *pAmt. 5019 ** 5020 ** The pointer returned is ephemeral. The key/data may move 5021 ** or be destroyed on the next call to any Btree routine, 5022 ** including calls from other threads against the same cache. 5023 ** Hence, a mutex on the BtShared should be held prior to calling 5024 ** this routine. 5025 ** 5026 ** These routines is used to get quick access to key and data 5027 ** in the common case where no overflow pages are used. 5028 */ 5029 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5030 return fetchPayload(pCur, pAmt); 5031 } 5032 5033 5034 /* 5035 ** Move the cursor down to a new child page. The newPgno argument is the 5036 ** page number of the child page to move to. 5037 ** 5038 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5039 ** the new child page does not match the flags field of the parent (i.e. 5040 ** if an intkey page appears to be the parent of a non-intkey page, or 5041 ** vice-versa). 5042 */ 5043 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5044 BtShared *pBt = pCur->pBt; 5045 5046 assert( cursorOwnsBtShared(pCur) ); 5047 assert( pCur->eState==CURSOR_VALID ); 5048 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5049 assert( pCur->iPage>=0 ); 5050 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5051 return SQLITE_CORRUPT_BKPT; 5052 } 5053 pCur->info.nSize = 0; 5054 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5055 pCur->aiIdx[pCur->iPage] = pCur->ix; 5056 pCur->apPage[pCur->iPage] = pCur->pPage; 5057 pCur->ix = 0; 5058 pCur->iPage++; 5059 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5060 } 5061 5062 #ifdef SQLITE_DEBUG 5063 /* 5064 ** Page pParent is an internal (non-leaf) tree page. This function 5065 ** asserts that page number iChild is the left-child if the iIdx'th 5066 ** cell in page pParent. Or, if iIdx is equal to the total number of 5067 ** cells in pParent, that page number iChild is the right-child of 5068 ** the page. 5069 */ 5070 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5071 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5072 ** in a corrupt database */ 5073 assert( iIdx<=pParent->nCell ); 5074 if( iIdx==pParent->nCell ){ 5075 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5076 }else{ 5077 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5078 } 5079 } 5080 #else 5081 # define assertParentIndex(x,y,z) 5082 #endif 5083 5084 /* 5085 ** Move the cursor up to the parent page. 5086 ** 5087 ** pCur->idx is set to the cell index that contains the pointer 5088 ** to the page we are coming from. If we are coming from the 5089 ** right-most child page then pCur->idx is set to one more than 5090 ** the largest cell index. 5091 */ 5092 static void moveToParent(BtCursor *pCur){ 5093 MemPage *pLeaf; 5094 assert( cursorOwnsBtShared(pCur) ); 5095 assert( pCur->eState==CURSOR_VALID ); 5096 assert( pCur->iPage>0 ); 5097 assert( pCur->pPage ); 5098 assertParentIndex( 5099 pCur->apPage[pCur->iPage-1], 5100 pCur->aiIdx[pCur->iPage-1], 5101 pCur->pPage->pgno 5102 ); 5103 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5104 pCur->info.nSize = 0; 5105 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5106 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5107 pLeaf = pCur->pPage; 5108 pCur->pPage = pCur->apPage[--pCur->iPage]; 5109 releasePageNotNull(pLeaf); 5110 } 5111 5112 /* 5113 ** Move the cursor to point to the root page of its b-tree structure. 5114 ** 5115 ** If the table has a virtual root page, then the cursor is moved to point 5116 ** to the virtual root page instead of the actual root page. A table has a 5117 ** virtual root page when the actual root page contains no cells and a 5118 ** single child page. This can only happen with the table rooted at page 1. 5119 ** 5120 ** If the b-tree structure is empty, the cursor state is set to 5121 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5122 ** the cursor is set to point to the first cell located on the root 5123 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5124 ** 5125 ** If this function returns successfully, it may be assumed that the 5126 ** page-header flags indicate that the [virtual] root-page is the expected 5127 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5128 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5129 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5130 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5131 ** b-tree). 5132 */ 5133 static int moveToRoot(BtCursor *pCur){ 5134 MemPage *pRoot; 5135 int rc = SQLITE_OK; 5136 5137 assert( cursorOwnsBtShared(pCur) ); 5138 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5139 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5140 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5141 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5142 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5143 5144 if( pCur->iPage>=0 ){ 5145 if( pCur->iPage ){ 5146 releasePageNotNull(pCur->pPage); 5147 while( --pCur->iPage ){ 5148 releasePageNotNull(pCur->apPage[pCur->iPage]); 5149 } 5150 pCur->pPage = pCur->apPage[0]; 5151 goto skip_init; 5152 } 5153 }else if( pCur->pgnoRoot==0 ){ 5154 pCur->eState = CURSOR_INVALID; 5155 return SQLITE_EMPTY; 5156 }else{ 5157 assert( pCur->iPage==(-1) ); 5158 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5159 if( pCur->eState==CURSOR_FAULT ){ 5160 assert( pCur->skipNext!=SQLITE_OK ); 5161 return pCur->skipNext; 5162 } 5163 sqlite3BtreeClearCursor(pCur); 5164 } 5165 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5166 0, pCur->curPagerFlags); 5167 if( rc!=SQLITE_OK ){ 5168 pCur->eState = CURSOR_INVALID; 5169 return rc; 5170 } 5171 pCur->iPage = 0; 5172 pCur->curIntKey = pCur->pPage->intKey; 5173 } 5174 pRoot = pCur->pPage; 5175 assert( pRoot->pgno==pCur->pgnoRoot ); 5176 5177 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5178 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5179 ** NULL, the caller expects a table b-tree. If this is not the case, 5180 ** return an SQLITE_CORRUPT error. 5181 ** 5182 ** Earlier versions of SQLite assumed that this test could not fail 5183 ** if the root page was already loaded when this function was called (i.e. 5184 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5185 ** in such a way that page pRoot is linked into a second b-tree table 5186 ** (or the freelist). */ 5187 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5188 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5189 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5190 } 5191 5192 skip_init: 5193 pCur->ix = 0; 5194 pCur->info.nSize = 0; 5195 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5196 5197 pRoot = pCur->pPage; 5198 if( pRoot->nCell>0 ){ 5199 pCur->eState = CURSOR_VALID; 5200 }else if( !pRoot->leaf ){ 5201 Pgno subpage; 5202 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5203 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5204 pCur->eState = CURSOR_VALID; 5205 rc = moveToChild(pCur, subpage); 5206 }else{ 5207 pCur->eState = CURSOR_INVALID; 5208 rc = SQLITE_EMPTY; 5209 } 5210 return rc; 5211 } 5212 5213 /* 5214 ** Move the cursor down to the left-most leaf entry beneath the 5215 ** entry to which it is currently pointing. 5216 ** 5217 ** The left-most leaf is the one with the smallest key - the first 5218 ** in ascending order. 5219 */ 5220 static int moveToLeftmost(BtCursor *pCur){ 5221 Pgno pgno; 5222 int rc = SQLITE_OK; 5223 MemPage *pPage; 5224 5225 assert( cursorOwnsBtShared(pCur) ); 5226 assert( pCur->eState==CURSOR_VALID ); 5227 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5228 assert( pCur->ix<pPage->nCell ); 5229 pgno = get4byte(findCell(pPage, pCur->ix)); 5230 rc = moveToChild(pCur, pgno); 5231 } 5232 return rc; 5233 } 5234 5235 /* 5236 ** Move the cursor down to the right-most leaf entry beneath the 5237 ** page to which it is currently pointing. Notice the difference 5238 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5239 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5240 ** finds the right-most entry beneath the *page*. 5241 ** 5242 ** The right-most entry is the one with the largest key - the last 5243 ** key in ascending order. 5244 */ 5245 static int moveToRightmost(BtCursor *pCur){ 5246 Pgno pgno; 5247 int rc = SQLITE_OK; 5248 MemPage *pPage = 0; 5249 5250 assert( cursorOwnsBtShared(pCur) ); 5251 assert( pCur->eState==CURSOR_VALID ); 5252 while( !(pPage = pCur->pPage)->leaf ){ 5253 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5254 pCur->ix = pPage->nCell; 5255 rc = moveToChild(pCur, pgno); 5256 if( rc ) return rc; 5257 } 5258 pCur->ix = pPage->nCell-1; 5259 assert( pCur->info.nSize==0 ); 5260 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5261 return SQLITE_OK; 5262 } 5263 5264 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5265 ** on success. Set *pRes to 0 if the cursor actually points to something 5266 ** or set *pRes to 1 if the table is empty. 5267 */ 5268 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5269 int rc; 5270 5271 assert( cursorOwnsBtShared(pCur) ); 5272 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5273 rc = moveToRoot(pCur); 5274 if( rc==SQLITE_OK ){ 5275 assert( pCur->pPage->nCell>0 ); 5276 *pRes = 0; 5277 rc = moveToLeftmost(pCur); 5278 }else if( rc==SQLITE_EMPTY ){ 5279 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5280 *pRes = 1; 5281 rc = SQLITE_OK; 5282 } 5283 return rc; 5284 } 5285 5286 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5287 ** on success. Set *pRes to 0 if the cursor actually points to something 5288 ** or set *pRes to 1 if the table is empty. 5289 */ 5290 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5291 int rc; 5292 5293 assert( cursorOwnsBtShared(pCur) ); 5294 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5295 5296 /* If the cursor already points to the last entry, this is a no-op. */ 5297 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5298 #ifdef SQLITE_DEBUG 5299 /* This block serves to assert() that the cursor really does point 5300 ** to the last entry in the b-tree. */ 5301 int ii; 5302 for(ii=0; ii<pCur->iPage; ii++){ 5303 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5304 } 5305 assert( pCur->ix==pCur->pPage->nCell-1 ); 5306 assert( pCur->pPage->leaf ); 5307 #endif 5308 *pRes = 0; 5309 return SQLITE_OK; 5310 } 5311 5312 rc = moveToRoot(pCur); 5313 if( rc==SQLITE_OK ){ 5314 assert( pCur->eState==CURSOR_VALID ); 5315 *pRes = 0; 5316 rc = moveToRightmost(pCur); 5317 if( rc==SQLITE_OK ){ 5318 pCur->curFlags |= BTCF_AtLast; 5319 }else{ 5320 pCur->curFlags &= ~BTCF_AtLast; 5321 } 5322 }else if( rc==SQLITE_EMPTY ){ 5323 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5324 *pRes = 1; 5325 rc = SQLITE_OK; 5326 } 5327 return rc; 5328 } 5329 5330 /* Move the cursor so that it points to an entry near the key 5331 ** specified by pIdxKey or intKey. Return a success code. 5332 ** 5333 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5334 ** must be NULL. For index tables, pIdxKey is used and intKey 5335 ** is ignored. 5336 ** 5337 ** If an exact match is not found, then the cursor is always 5338 ** left pointing at a leaf page which would hold the entry if it 5339 ** were present. The cursor might point to an entry that comes 5340 ** before or after the key. 5341 ** 5342 ** An integer is written into *pRes which is the result of 5343 ** comparing the key with the entry to which the cursor is 5344 ** pointing. The meaning of the integer written into 5345 ** *pRes is as follows: 5346 ** 5347 ** *pRes<0 The cursor is left pointing at an entry that 5348 ** is smaller than intKey/pIdxKey or if the table is empty 5349 ** and the cursor is therefore left point to nothing. 5350 ** 5351 ** *pRes==0 The cursor is left pointing at an entry that 5352 ** exactly matches intKey/pIdxKey. 5353 ** 5354 ** *pRes>0 The cursor is left pointing at an entry that 5355 ** is larger than intKey/pIdxKey. 5356 ** 5357 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5358 ** exists an entry in the table that exactly matches pIdxKey. 5359 */ 5360 int sqlite3BtreeMovetoUnpacked( 5361 BtCursor *pCur, /* The cursor to be moved */ 5362 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5363 i64 intKey, /* The table key */ 5364 int biasRight, /* If true, bias the search to the high end */ 5365 int *pRes /* Write search results here */ 5366 ){ 5367 int rc; 5368 RecordCompare xRecordCompare; 5369 5370 assert( cursorOwnsBtShared(pCur) ); 5371 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5372 assert( pRes ); 5373 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5374 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5375 5376 /* If the cursor is already positioned at the point we are trying 5377 ** to move to, then just return without doing any work */ 5378 if( pIdxKey==0 5379 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5380 ){ 5381 if( pCur->info.nKey==intKey ){ 5382 *pRes = 0; 5383 return SQLITE_OK; 5384 } 5385 if( pCur->info.nKey<intKey ){ 5386 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5387 *pRes = -1; 5388 return SQLITE_OK; 5389 } 5390 /* If the requested key is one more than the previous key, then 5391 ** try to get there using sqlite3BtreeNext() rather than a full 5392 ** binary search. This is an optimization only. The correct answer 5393 ** is still obtained without this case, only a little more slowely */ 5394 if( pCur->info.nKey+1==intKey ){ 5395 *pRes = 0; 5396 rc = sqlite3BtreeNext(pCur, 0); 5397 if( rc==SQLITE_OK ){ 5398 getCellInfo(pCur); 5399 if( pCur->info.nKey==intKey ){ 5400 return SQLITE_OK; 5401 } 5402 }else if( rc==SQLITE_DONE ){ 5403 rc = SQLITE_OK; 5404 }else{ 5405 return rc; 5406 } 5407 } 5408 } 5409 } 5410 5411 if( pIdxKey ){ 5412 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5413 pIdxKey->errCode = 0; 5414 assert( pIdxKey->default_rc==1 5415 || pIdxKey->default_rc==0 5416 || pIdxKey->default_rc==-1 5417 ); 5418 }else{ 5419 xRecordCompare = 0; /* All keys are integers */ 5420 } 5421 5422 rc = moveToRoot(pCur); 5423 if( rc ){ 5424 if( rc==SQLITE_EMPTY ){ 5425 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5426 *pRes = -1; 5427 return SQLITE_OK; 5428 } 5429 return rc; 5430 } 5431 assert( pCur->pPage ); 5432 assert( pCur->pPage->isInit ); 5433 assert( pCur->eState==CURSOR_VALID ); 5434 assert( pCur->pPage->nCell > 0 ); 5435 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5436 assert( pCur->curIntKey || pIdxKey ); 5437 for(;;){ 5438 int lwr, upr, idx, c; 5439 Pgno chldPg; 5440 MemPage *pPage = pCur->pPage; 5441 u8 *pCell; /* Pointer to current cell in pPage */ 5442 5443 /* pPage->nCell must be greater than zero. If this is the root-page 5444 ** the cursor would have been INVALID above and this for(;;) loop 5445 ** not run. If this is not the root-page, then the moveToChild() routine 5446 ** would have already detected db corruption. Similarly, pPage must 5447 ** be the right kind (index or table) of b-tree page. Otherwise 5448 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5449 assert( pPage->nCell>0 ); 5450 assert( pPage->intKey==(pIdxKey==0) ); 5451 lwr = 0; 5452 upr = pPage->nCell-1; 5453 assert( biasRight==0 || biasRight==1 ); 5454 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5455 pCur->ix = (u16)idx; 5456 if( xRecordCompare==0 ){ 5457 for(;;){ 5458 i64 nCellKey; 5459 pCell = findCellPastPtr(pPage, idx); 5460 if( pPage->intKeyLeaf ){ 5461 while( 0x80 <= *(pCell++) ){ 5462 if( pCell>=pPage->aDataEnd ){ 5463 return SQLITE_CORRUPT_PAGE(pPage); 5464 } 5465 } 5466 } 5467 getVarint(pCell, (u64*)&nCellKey); 5468 if( nCellKey<intKey ){ 5469 lwr = idx+1; 5470 if( lwr>upr ){ c = -1; break; } 5471 }else if( nCellKey>intKey ){ 5472 upr = idx-1; 5473 if( lwr>upr ){ c = +1; break; } 5474 }else{ 5475 assert( nCellKey==intKey ); 5476 pCur->ix = (u16)idx; 5477 if( !pPage->leaf ){ 5478 lwr = idx; 5479 goto moveto_next_layer; 5480 }else{ 5481 pCur->curFlags |= BTCF_ValidNKey; 5482 pCur->info.nKey = nCellKey; 5483 pCur->info.nSize = 0; 5484 *pRes = 0; 5485 return SQLITE_OK; 5486 } 5487 } 5488 assert( lwr+upr>=0 ); 5489 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5490 } 5491 }else{ 5492 for(;;){ 5493 int nCell; /* Size of the pCell cell in bytes */ 5494 pCell = findCellPastPtr(pPage, idx); 5495 5496 /* The maximum supported page-size is 65536 bytes. This means that 5497 ** the maximum number of record bytes stored on an index B-Tree 5498 ** page is less than 16384 bytes and may be stored as a 2-byte 5499 ** varint. This information is used to attempt to avoid parsing 5500 ** the entire cell by checking for the cases where the record is 5501 ** stored entirely within the b-tree page by inspecting the first 5502 ** 2 bytes of the cell. 5503 */ 5504 nCell = pCell[0]; 5505 if( nCell<=pPage->max1bytePayload ){ 5506 /* This branch runs if the record-size field of the cell is a 5507 ** single byte varint and the record fits entirely on the main 5508 ** b-tree page. */ 5509 testcase( pCell+nCell+1==pPage->aDataEnd ); 5510 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5511 }else if( !(pCell[1] & 0x80) 5512 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5513 ){ 5514 /* The record-size field is a 2 byte varint and the record 5515 ** fits entirely on the main b-tree page. */ 5516 testcase( pCell+nCell+2==pPage->aDataEnd ); 5517 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5518 }else{ 5519 /* The record flows over onto one or more overflow pages. In 5520 ** this case the whole cell needs to be parsed, a buffer allocated 5521 ** and accessPayload() used to retrieve the record into the 5522 ** buffer before VdbeRecordCompare() can be called. 5523 ** 5524 ** If the record is corrupt, the xRecordCompare routine may read 5525 ** up to two varints past the end of the buffer. An extra 18 5526 ** bytes of padding is allocated at the end of the buffer in 5527 ** case this happens. */ 5528 void *pCellKey; 5529 u8 * const pCellBody = pCell - pPage->childPtrSize; 5530 const int nOverrun = 18; /* Size of the overrun padding */ 5531 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5532 nCell = (int)pCur->info.nKey; 5533 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5534 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5535 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5536 testcase( nCell==2 ); /* Minimum legal index key size */ 5537 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5538 rc = SQLITE_CORRUPT_PAGE(pPage); 5539 goto moveto_finish; 5540 } 5541 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5542 if( pCellKey==0 ){ 5543 rc = SQLITE_NOMEM_BKPT; 5544 goto moveto_finish; 5545 } 5546 pCur->ix = (u16)idx; 5547 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5548 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5549 pCur->curFlags &= ~BTCF_ValidOvfl; 5550 if( rc ){ 5551 sqlite3_free(pCellKey); 5552 goto moveto_finish; 5553 } 5554 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5555 sqlite3_free(pCellKey); 5556 } 5557 assert( 5558 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5559 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5560 ); 5561 if( c<0 ){ 5562 lwr = idx+1; 5563 }else if( c>0 ){ 5564 upr = idx-1; 5565 }else{ 5566 assert( c==0 ); 5567 *pRes = 0; 5568 rc = SQLITE_OK; 5569 pCur->ix = (u16)idx; 5570 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5571 goto moveto_finish; 5572 } 5573 if( lwr>upr ) break; 5574 assert( lwr+upr>=0 ); 5575 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5576 } 5577 } 5578 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5579 assert( pPage->isInit ); 5580 if( pPage->leaf ){ 5581 assert( pCur->ix<pCur->pPage->nCell ); 5582 pCur->ix = (u16)idx; 5583 *pRes = c; 5584 rc = SQLITE_OK; 5585 goto moveto_finish; 5586 } 5587 moveto_next_layer: 5588 if( lwr>=pPage->nCell ){ 5589 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5590 }else{ 5591 chldPg = get4byte(findCell(pPage, lwr)); 5592 } 5593 pCur->ix = (u16)lwr; 5594 rc = moveToChild(pCur, chldPg); 5595 if( rc ) break; 5596 } 5597 moveto_finish: 5598 pCur->info.nSize = 0; 5599 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5600 return rc; 5601 } 5602 5603 5604 /* 5605 ** Return TRUE if the cursor is not pointing at an entry of the table. 5606 ** 5607 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5608 ** past the last entry in the table or sqlite3BtreePrev() moves past 5609 ** the first entry. TRUE is also returned if the table is empty. 5610 */ 5611 int sqlite3BtreeEof(BtCursor *pCur){ 5612 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5613 ** have been deleted? This API will need to change to return an error code 5614 ** as well as the boolean result value. 5615 */ 5616 return (CURSOR_VALID!=pCur->eState); 5617 } 5618 5619 /* 5620 ** Return an estimate for the number of rows in the table that pCur is 5621 ** pointing to. Return a negative number if no estimate is currently 5622 ** available. 5623 */ 5624 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5625 i64 n; 5626 u8 i; 5627 5628 assert( cursorOwnsBtShared(pCur) ); 5629 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5630 5631 /* Currently this interface is only called by the OP_IfSmaller 5632 ** opcode, and it that case the cursor will always be valid and 5633 ** will always point to a leaf node. */ 5634 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5635 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5636 5637 n = pCur->pPage->nCell; 5638 for(i=0; i<pCur->iPage; i++){ 5639 n *= pCur->apPage[i]->nCell; 5640 } 5641 return n; 5642 } 5643 5644 /* 5645 ** Advance the cursor to the next entry in the database. 5646 ** Return value: 5647 ** 5648 ** SQLITE_OK success 5649 ** SQLITE_DONE cursor is already pointing at the last element 5650 ** otherwise some kind of error occurred 5651 ** 5652 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5653 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5654 ** to the next cell on the current page. The (slower) btreeNext() helper 5655 ** routine is called when it is necessary to move to a different page or 5656 ** to restore the cursor. 5657 ** 5658 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5659 ** cursor corresponds to an SQL index and this routine could have been 5660 ** skipped if the SQL index had been a unique index. The F argument 5661 ** is a hint to the implement. SQLite btree implementation does not use 5662 ** this hint, but COMDB2 does. 5663 */ 5664 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5665 int rc; 5666 int idx; 5667 MemPage *pPage; 5668 5669 assert( cursorOwnsBtShared(pCur) ); 5670 if( pCur->eState!=CURSOR_VALID ){ 5671 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5672 rc = restoreCursorPosition(pCur); 5673 if( rc!=SQLITE_OK ){ 5674 return rc; 5675 } 5676 if( CURSOR_INVALID==pCur->eState ){ 5677 return SQLITE_DONE; 5678 } 5679 if( pCur->eState==CURSOR_SKIPNEXT ){ 5680 pCur->eState = CURSOR_VALID; 5681 if( pCur->skipNext>0 ) return SQLITE_OK; 5682 } 5683 } 5684 5685 pPage = pCur->pPage; 5686 idx = ++pCur->ix; 5687 if( !pPage->isInit ){ 5688 /* The only known way for this to happen is for there to be a 5689 ** recursive SQL function that does a DELETE operation as part of a 5690 ** SELECT which deletes content out from under an active cursor 5691 ** in a corrupt database file where the table being DELETE-ed from 5692 ** has pages in common with the table being queried. See TH3 5693 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5694 ** example. */ 5695 return SQLITE_CORRUPT_BKPT; 5696 } 5697 5698 /* If the database file is corrupt, it is possible for the value of idx 5699 ** to be invalid here. This can only occur if a second cursor modifies 5700 ** the page while cursor pCur is holding a reference to it. Which can 5701 ** only happen if the database is corrupt in such a way as to link the 5702 ** page into more than one b-tree structure. */ 5703 testcase( idx>pPage->nCell ); 5704 5705 if( idx>=pPage->nCell ){ 5706 if( !pPage->leaf ){ 5707 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5708 if( rc ) return rc; 5709 return moveToLeftmost(pCur); 5710 } 5711 do{ 5712 if( pCur->iPage==0 ){ 5713 pCur->eState = CURSOR_INVALID; 5714 return SQLITE_DONE; 5715 } 5716 moveToParent(pCur); 5717 pPage = pCur->pPage; 5718 }while( pCur->ix>=pPage->nCell ); 5719 if( pPage->intKey ){ 5720 return sqlite3BtreeNext(pCur, 0); 5721 }else{ 5722 return SQLITE_OK; 5723 } 5724 } 5725 if( pPage->leaf ){ 5726 return SQLITE_OK; 5727 }else{ 5728 return moveToLeftmost(pCur); 5729 } 5730 } 5731 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5732 MemPage *pPage; 5733 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5734 assert( cursorOwnsBtShared(pCur) ); 5735 assert( flags==0 || flags==1 ); 5736 pCur->info.nSize = 0; 5737 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5738 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5739 pPage = pCur->pPage; 5740 if( (++pCur->ix)>=pPage->nCell ){ 5741 pCur->ix--; 5742 return btreeNext(pCur); 5743 } 5744 if( pPage->leaf ){ 5745 return SQLITE_OK; 5746 }else{ 5747 return moveToLeftmost(pCur); 5748 } 5749 } 5750 5751 /* 5752 ** Step the cursor to the back to the previous entry in the database. 5753 ** Return values: 5754 ** 5755 ** SQLITE_OK success 5756 ** SQLITE_DONE the cursor is already on the first element of the table 5757 ** otherwise some kind of error occurred 5758 ** 5759 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5760 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5761 ** to the previous cell on the current page. The (slower) btreePrevious() 5762 ** helper routine is called when it is necessary to move to a different page 5763 ** or to restore the cursor. 5764 ** 5765 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5766 ** the cursor corresponds to an SQL index and this routine could have been 5767 ** skipped if the SQL index had been a unique index. The F argument is a 5768 ** hint to the implement. The native SQLite btree implementation does not 5769 ** use this hint, but COMDB2 does. 5770 */ 5771 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5772 int rc; 5773 MemPage *pPage; 5774 5775 assert( cursorOwnsBtShared(pCur) ); 5776 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5777 assert( pCur->info.nSize==0 ); 5778 if( pCur->eState!=CURSOR_VALID ){ 5779 rc = restoreCursorPosition(pCur); 5780 if( rc!=SQLITE_OK ){ 5781 return rc; 5782 } 5783 if( CURSOR_INVALID==pCur->eState ){ 5784 return SQLITE_DONE; 5785 } 5786 if( CURSOR_SKIPNEXT==pCur->eState ){ 5787 pCur->eState = CURSOR_VALID; 5788 if( pCur->skipNext<0 ) return SQLITE_OK; 5789 } 5790 } 5791 5792 pPage = pCur->pPage; 5793 assert( pPage->isInit ); 5794 if( !pPage->leaf ){ 5795 int idx = pCur->ix; 5796 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5797 if( rc ) return rc; 5798 rc = moveToRightmost(pCur); 5799 }else{ 5800 while( pCur->ix==0 ){ 5801 if( pCur->iPage==0 ){ 5802 pCur->eState = CURSOR_INVALID; 5803 return SQLITE_DONE; 5804 } 5805 moveToParent(pCur); 5806 } 5807 assert( pCur->info.nSize==0 ); 5808 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5809 5810 pCur->ix--; 5811 pPage = pCur->pPage; 5812 if( pPage->intKey && !pPage->leaf ){ 5813 rc = sqlite3BtreePrevious(pCur, 0); 5814 }else{ 5815 rc = SQLITE_OK; 5816 } 5817 } 5818 return rc; 5819 } 5820 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5821 assert( cursorOwnsBtShared(pCur) ); 5822 assert( flags==0 || flags==1 ); 5823 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5824 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5825 pCur->info.nSize = 0; 5826 if( pCur->eState!=CURSOR_VALID 5827 || pCur->ix==0 5828 || pCur->pPage->leaf==0 5829 ){ 5830 return btreePrevious(pCur); 5831 } 5832 pCur->ix--; 5833 return SQLITE_OK; 5834 } 5835 5836 /* 5837 ** Allocate a new page from the database file. 5838 ** 5839 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5840 ** has already been called on the new page.) The new page has also 5841 ** been referenced and the calling routine is responsible for calling 5842 ** sqlite3PagerUnref() on the new page when it is done. 5843 ** 5844 ** SQLITE_OK is returned on success. Any other return value indicates 5845 ** an error. *ppPage is set to NULL in the event of an error. 5846 ** 5847 ** If the "nearby" parameter is not 0, then an effort is made to 5848 ** locate a page close to the page number "nearby". This can be used in an 5849 ** attempt to keep related pages close to each other in the database file, 5850 ** which in turn can make database access faster. 5851 ** 5852 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5853 ** anywhere on the free-list, then it is guaranteed to be returned. If 5854 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5855 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5856 ** are no restrictions on which page is returned. 5857 */ 5858 static int allocateBtreePage( 5859 BtShared *pBt, /* The btree */ 5860 MemPage **ppPage, /* Store pointer to the allocated page here */ 5861 Pgno *pPgno, /* Store the page number here */ 5862 Pgno nearby, /* Search for a page near this one */ 5863 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5864 ){ 5865 MemPage *pPage1; 5866 int rc; 5867 u32 n; /* Number of pages on the freelist */ 5868 u32 k; /* Number of leaves on the trunk of the freelist */ 5869 MemPage *pTrunk = 0; 5870 MemPage *pPrevTrunk = 0; 5871 Pgno mxPage; /* Total size of the database file */ 5872 5873 assert( sqlite3_mutex_held(pBt->mutex) ); 5874 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5875 pPage1 = pBt->pPage1; 5876 mxPage = btreePagecount(pBt); 5877 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5878 ** stores stores the total number of pages on the freelist. */ 5879 n = get4byte(&pPage1->aData[36]); 5880 testcase( n==mxPage-1 ); 5881 if( n>=mxPage ){ 5882 return SQLITE_CORRUPT_BKPT; 5883 } 5884 if( n>0 ){ 5885 /* There are pages on the freelist. Reuse one of those pages. */ 5886 Pgno iTrunk; 5887 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5888 u32 nSearch = 0; /* Count of the number of search attempts */ 5889 5890 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5891 ** shows that the page 'nearby' is somewhere on the free-list, then 5892 ** the entire-list will be searched for that page. 5893 */ 5894 #ifndef SQLITE_OMIT_AUTOVACUUM 5895 if( eMode==BTALLOC_EXACT ){ 5896 if( nearby<=mxPage ){ 5897 u8 eType; 5898 assert( nearby>0 ); 5899 assert( pBt->autoVacuum ); 5900 rc = ptrmapGet(pBt, nearby, &eType, 0); 5901 if( rc ) return rc; 5902 if( eType==PTRMAP_FREEPAGE ){ 5903 searchList = 1; 5904 } 5905 } 5906 }else if( eMode==BTALLOC_LE ){ 5907 searchList = 1; 5908 } 5909 #endif 5910 5911 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5912 ** first free-list trunk page. iPrevTrunk is initially 1. 5913 */ 5914 rc = sqlite3PagerWrite(pPage1->pDbPage); 5915 if( rc ) return rc; 5916 put4byte(&pPage1->aData[36], n-1); 5917 5918 /* The code within this loop is run only once if the 'searchList' variable 5919 ** is not true. Otherwise, it runs once for each trunk-page on the 5920 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5921 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5922 */ 5923 do { 5924 pPrevTrunk = pTrunk; 5925 if( pPrevTrunk ){ 5926 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5927 ** is the page number of the next freelist trunk page in the list or 5928 ** zero if this is the last freelist trunk page. */ 5929 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5930 }else{ 5931 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5932 ** stores the page number of the first page of the freelist, or zero if 5933 ** the freelist is empty. */ 5934 iTrunk = get4byte(&pPage1->aData[32]); 5935 } 5936 testcase( iTrunk==mxPage ); 5937 if( iTrunk>mxPage || nSearch++ > n ){ 5938 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 5939 }else{ 5940 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 5941 } 5942 if( rc ){ 5943 pTrunk = 0; 5944 goto end_allocate_page; 5945 } 5946 assert( pTrunk!=0 ); 5947 assert( pTrunk->aData!=0 ); 5948 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5949 ** is the number of leaf page pointers to follow. */ 5950 k = get4byte(&pTrunk->aData[4]); 5951 if( k==0 && !searchList ){ 5952 /* The trunk has no leaves and the list is not being searched. 5953 ** So extract the trunk page itself and use it as the newly 5954 ** allocated page */ 5955 assert( pPrevTrunk==0 ); 5956 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5957 if( rc ){ 5958 goto end_allocate_page; 5959 } 5960 *pPgno = iTrunk; 5961 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5962 *ppPage = pTrunk; 5963 pTrunk = 0; 5964 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5965 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5966 /* Value of k is out of range. Database corruption */ 5967 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5968 goto end_allocate_page; 5969 #ifndef SQLITE_OMIT_AUTOVACUUM 5970 }else if( searchList 5971 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5972 ){ 5973 /* The list is being searched and this trunk page is the page 5974 ** to allocate, regardless of whether it has leaves. 5975 */ 5976 *pPgno = iTrunk; 5977 *ppPage = pTrunk; 5978 searchList = 0; 5979 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5980 if( rc ){ 5981 goto end_allocate_page; 5982 } 5983 if( k==0 ){ 5984 if( !pPrevTrunk ){ 5985 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5986 }else{ 5987 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5988 if( rc!=SQLITE_OK ){ 5989 goto end_allocate_page; 5990 } 5991 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 5992 } 5993 }else{ 5994 /* The trunk page is required by the caller but it contains 5995 ** pointers to free-list leaves. The first leaf becomes a trunk 5996 ** page in this case. 5997 */ 5998 MemPage *pNewTrunk; 5999 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6000 if( iNewTrunk>mxPage ){ 6001 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6002 goto end_allocate_page; 6003 } 6004 testcase( iNewTrunk==mxPage ); 6005 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6006 if( rc!=SQLITE_OK ){ 6007 goto end_allocate_page; 6008 } 6009 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6010 if( rc!=SQLITE_OK ){ 6011 releasePage(pNewTrunk); 6012 goto end_allocate_page; 6013 } 6014 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6015 put4byte(&pNewTrunk->aData[4], k-1); 6016 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6017 releasePage(pNewTrunk); 6018 if( !pPrevTrunk ){ 6019 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6020 put4byte(&pPage1->aData[32], iNewTrunk); 6021 }else{ 6022 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6023 if( rc ){ 6024 goto end_allocate_page; 6025 } 6026 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6027 } 6028 } 6029 pTrunk = 0; 6030 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6031 #endif 6032 }else if( k>0 ){ 6033 /* Extract a leaf from the trunk */ 6034 u32 closest; 6035 Pgno iPage; 6036 unsigned char *aData = pTrunk->aData; 6037 if( nearby>0 ){ 6038 u32 i; 6039 closest = 0; 6040 if( eMode==BTALLOC_LE ){ 6041 for(i=0; i<k; i++){ 6042 iPage = get4byte(&aData[8+i*4]); 6043 if( iPage<=nearby ){ 6044 closest = i; 6045 break; 6046 } 6047 } 6048 }else{ 6049 int dist; 6050 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6051 for(i=1; i<k; i++){ 6052 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6053 if( d2<dist ){ 6054 closest = i; 6055 dist = d2; 6056 } 6057 } 6058 } 6059 }else{ 6060 closest = 0; 6061 } 6062 6063 iPage = get4byte(&aData[8+closest*4]); 6064 testcase( iPage==mxPage ); 6065 if( iPage>mxPage ){ 6066 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6067 goto end_allocate_page; 6068 } 6069 testcase( iPage==mxPage ); 6070 if( !searchList 6071 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6072 ){ 6073 int noContent; 6074 *pPgno = iPage; 6075 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6076 ": %d more free pages\n", 6077 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6078 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6079 if( rc ) goto end_allocate_page; 6080 if( closest<k-1 ){ 6081 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6082 } 6083 put4byte(&aData[4], k-1); 6084 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6085 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6086 if( rc==SQLITE_OK ){ 6087 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6088 if( rc!=SQLITE_OK ){ 6089 releasePage(*ppPage); 6090 *ppPage = 0; 6091 } 6092 } 6093 searchList = 0; 6094 } 6095 } 6096 releasePage(pPrevTrunk); 6097 pPrevTrunk = 0; 6098 }while( searchList ); 6099 }else{ 6100 /* There are no pages on the freelist, so append a new page to the 6101 ** database image. 6102 ** 6103 ** Normally, new pages allocated by this block can be requested from the 6104 ** pager layer with the 'no-content' flag set. This prevents the pager 6105 ** from trying to read the pages content from disk. However, if the 6106 ** current transaction has already run one or more incremental-vacuum 6107 ** steps, then the page we are about to allocate may contain content 6108 ** that is required in the event of a rollback. In this case, do 6109 ** not set the no-content flag. This causes the pager to load and journal 6110 ** the current page content before overwriting it. 6111 ** 6112 ** Note that the pager will not actually attempt to load or journal 6113 ** content for any page that really does lie past the end of the database 6114 ** file on disk. So the effects of disabling the no-content optimization 6115 ** here are confined to those pages that lie between the end of the 6116 ** database image and the end of the database file. 6117 */ 6118 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6119 6120 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6121 if( rc ) return rc; 6122 pBt->nPage++; 6123 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6124 6125 #ifndef SQLITE_OMIT_AUTOVACUUM 6126 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6127 /* If *pPgno refers to a pointer-map page, allocate two new pages 6128 ** at the end of the file instead of one. The first allocated page 6129 ** becomes a new pointer-map page, the second is used by the caller. 6130 */ 6131 MemPage *pPg = 0; 6132 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6133 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6134 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6135 if( rc==SQLITE_OK ){ 6136 rc = sqlite3PagerWrite(pPg->pDbPage); 6137 releasePage(pPg); 6138 } 6139 if( rc ) return rc; 6140 pBt->nPage++; 6141 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6142 } 6143 #endif 6144 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6145 *pPgno = pBt->nPage; 6146 6147 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6148 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6149 if( rc ) return rc; 6150 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6151 if( rc!=SQLITE_OK ){ 6152 releasePage(*ppPage); 6153 *ppPage = 0; 6154 } 6155 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6156 } 6157 6158 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6159 6160 end_allocate_page: 6161 releasePage(pTrunk); 6162 releasePage(pPrevTrunk); 6163 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6164 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6165 return rc; 6166 } 6167 6168 /* 6169 ** This function is used to add page iPage to the database file free-list. 6170 ** It is assumed that the page is not already a part of the free-list. 6171 ** 6172 ** The value passed as the second argument to this function is optional. 6173 ** If the caller happens to have a pointer to the MemPage object 6174 ** corresponding to page iPage handy, it may pass it as the second value. 6175 ** Otherwise, it may pass NULL. 6176 ** 6177 ** If a pointer to a MemPage object is passed as the second argument, 6178 ** its reference count is not altered by this function. 6179 */ 6180 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6181 MemPage *pTrunk = 0; /* Free-list trunk page */ 6182 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6183 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6184 MemPage *pPage; /* Page being freed. May be NULL. */ 6185 int rc; /* Return Code */ 6186 u32 nFree; /* Initial number of pages on free-list */ 6187 6188 assert( sqlite3_mutex_held(pBt->mutex) ); 6189 assert( CORRUPT_DB || iPage>1 ); 6190 assert( !pMemPage || pMemPage->pgno==iPage ); 6191 6192 if( iPage<2 || iPage>pBt->nPage ){ 6193 return SQLITE_CORRUPT_BKPT; 6194 } 6195 if( pMemPage ){ 6196 pPage = pMemPage; 6197 sqlite3PagerRef(pPage->pDbPage); 6198 }else{ 6199 pPage = btreePageLookup(pBt, iPage); 6200 } 6201 6202 /* Increment the free page count on pPage1 */ 6203 rc = sqlite3PagerWrite(pPage1->pDbPage); 6204 if( rc ) goto freepage_out; 6205 nFree = get4byte(&pPage1->aData[36]); 6206 put4byte(&pPage1->aData[36], nFree+1); 6207 6208 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6209 /* If the secure_delete option is enabled, then 6210 ** always fully overwrite deleted information with zeros. 6211 */ 6212 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6213 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6214 ){ 6215 goto freepage_out; 6216 } 6217 memset(pPage->aData, 0, pPage->pBt->pageSize); 6218 } 6219 6220 /* If the database supports auto-vacuum, write an entry in the pointer-map 6221 ** to indicate that the page is free. 6222 */ 6223 if( ISAUTOVACUUM ){ 6224 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6225 if( rc ) goto freepage_out; 6226 } 6227 6228 /* Now manipulate the actual database free-list structure. There are two 6229 ** possibilities. If the free-list is currently empty, or if the first 6230 ** trunk page in the free-list is full, then this page will become a 6231 ** new free-list trunk page. Otherwise, it will become a leaf of the 6232 ** first trunk page in the current free-list. This block tests if it 6233 ** is possible to add the page as a new free-list leaf. 6234 */ 6235 if( nFree!=0 ){ 6236 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6237 6238 iTrunk = get4byte(&pPage1->aData[32]); 6239 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6240 if( rc!=SQLITE_OK ){ 6241 goto freepage_out; 6242 } 6243 6244 nLeaf = get4byte(&pTrunk->aData[4]); 6245 assert( pBt->usableSize>32 ); 6246 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6247 rc = SQLITE_CORRUPT_BKPT; 6248 goto freepage_out; 6249 } 6250 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6251 /* In this case there is room on the trunk page to insert the page 6252 ** being freed as a new leaf. 6253 ** 6254 ** Note that the trunk page is not really full until it contains 6255 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6256 ** coded. But due to a coding error in versions of SQLite prior to 6257 ** 3.6.0, databases with freelist trunk pages holding more than 6258 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6259 ** to maintain backwards compatibility with older versions of SQLite, 6260 ** we will continue to restrict the number of entries to usableSize/4 - 8 6261 ** for now. At some point in the future (once everyone has upgraded 6262 ** to 3.6.0 or later) we should consider fixing the conditional above 6263 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6264 ** 6265 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6266 ** avoid using the last six entries in the freelist trunk page array in 6267 ** order that database files created by newer versions of SQLite can be 6268 ** read by older versions of SQLite. 6269 */ 6270 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6271 if( rc==SQLITE_OK ){ 6272 put4byte(&pTrunk->aData[4], nLeaf+1); 6273 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6274 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6275 sqlite3PagerDontWrite(pPage->pDbPage); 6276 } 6277 rc = btreeSetHasContent(pBt, iPage); 6278 } 6279 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6280 goto freepage_out; 6281 } 6282 } 6283 6284 /* If control flows to this point, then it was not possible to add the 6285 ** the page being freed as a leaf page of the first trunk in the free-list. 6286 ** Possibly because the free-list is empty, or possibly because the 6287 ** first trunk in the free-list is full. Either way, the page being freed 6288 ** will become the new first trunk page in the free-list. 6289 */ 6290 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6291 goto freepage_out; 6292 } 6293 rc = sqlite3PagerWrite(pPage->pDbPage); 6294 if( rc!=SQLITE_OK ){ 6295 goto freepage_out; 6296 } 6297 put4byte(pPage->aData, iTrunk); 6298 put4byte(&pPage->aData[4], 0); 6299 put4byte(&pPage1->aData[32], iPage); 6300 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6301 6302 freepage_out: 6303 if( pPage ){ 6304 pPage->isInit = 0; 6305 } 6306 releasePage(pPage); 6307 releasePage(pTrunk); 6308 return rc; 6309 } 6310 static void freePage(MemPage *pPage, int *pRC){ 6311 if( (*pRC)==SQLITE_OK ){ 6312 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6313 } 6314 } 6315 6316 /* 6317 ** Free any overflow pages associated with the given Cell. Store 6318 ** size information about the cell in pInfo. 6319 */ 6320 static int clearCell( 6321 MemPage *pPage, /* The page that contains the Cell */ 6322 unsigned char *pCell, /* First byte of the Cell */ 6323 CellInfo *pInfo /* Size information about the cell */ 6324 ){ 6325 BtShared *pBt; 6326 Pgno ovflPgno; 6327 int rc; 6328 int nOvfl; 6329 u32 ovflPageSize; 6330 6331 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6332 pPage->xParseCell(pPage, pCell, pInfo); 6333 if( pInfo->nLocal==pInfo->nPayload ){ 6334 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6335 } 6336 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6337 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6338 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6339 /* Cell extends past end of page */ 6340 return SQLITE_CORRUPT_PAGE(pPage); 6341 } 6342 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6343 pBt = pPage->pBt; 6344 assert( pBt->usableSize > 4 ); 6345 ovflPageSize = pBt->usableSize - 4; 6346 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6347 assert( nOvfl>0 || 6348 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6349 ); 6350 while( nOvfl-- ){ 6351 Pgno iNext = 0; 6352 MemPage *pOvfl = 0; 6353 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6354 /* 0 is not a legal page number and page 1 cannot be an 6355 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6356 ** file the database must be corrupt. */ 6357 return SQLITE_CORRUPT_BKPT; 6358 } 6359 if( nOvfl ){ 6360 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6361 if( rc ) return rc; 6362 } 6363 6364 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6365 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6366 ){ 6367 /* There is no reason any cursor should have an outstanding reference 6368 ** to an overflow page belonging to a cell that is being deleted/updated. 6369 ** So if there exists more than one reference to this page, then it 6370 ** must not really be an overflow page and the database must be corrupt. 6371 ** It is helpful to detect this before calling freePage2(), as 6372 ** freePage2() may zero the page contents if secure-delete mode is 6373 ** enabled. If this 'overflow' page happens to be a page that the 6374 ** caller is iterating through or using in some other way, this 6375 ** can be problematic. 6376 */ 6377 rc = SQLITE_CORRUPT_BKPT; 6378 }else{ 6379 rc = freePage2(pBt, pOvfl, ovflPgno); 6380 } 6381 6382 if( pOvfl ){ 6383 sqlite3PagerUnref(pOvfl->pDbPage); 6384 } 6385 if( rc ) return rc; 6386 ovflPgno = iNext; 6387 } 6388 return SQLITE_OK; 6389 } 6390 6391 /* 6392 ** Create the byte sequence used to represent a cell on page pPage 6393 ** and write that byte sequence into pCell[]. Overflow pages are 6394 ** allocated and filled in as necessary. The calling procedure 6395 ** is responsible for making sure sufficient space has been allocated 6396 ** for pCell[]. 6397 ** 6398 ** Note that pCell does not necessary need to point to the pPage->aData 6399 ** area. pCell might point to some temporary storage. The cell will 6400 ** be constructed in this temporary area then copied into pPage->aData 6401 ** later. 6402 */ 6403 static int fillInCell( 6404 MemPage *pPage, /* The page that contains the cell */ 6405 unsigned char *pCell, /* Complete text of the cell */ 6406 const BtreePayload *pX, /* Payload with which to construct the cell */ 6407 int *pnSize /* Write cell size here */ 6408 ){ 6409 int nPayload; 6410 const u8 *pSrc; 6411 int nSrc, n, rc, mn; 6412 int spaceLeft; 6413 MemPage *pToRelease; 6414 unsigned char *pPrior; 6415 unsigned char *pPayload; 6416 BtShared *pBt; 6417 Pgno pgnoOvfl; 6418 int nHeader; 6419 6420 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6421 6422 /* pPage is not necessarily writeable since pCell might be auxiliary 6423 ** buffer space that is separate from the pPage buffer area */ 6424 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6425 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6426 6427 /* Fill in the header. */ 6428 nHeader = pPage->childPtrSize; 6429 if( pPage->intKey ){ 6430 nPayload = pX->nData + pX->nZero; 6431 pSrc = pX->pData; 6432 nSrc = pX->nData; 6433 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6434 nHeader += putVarint32(&pCell[nHeader], nPayload); 6435 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6436 }else{ 6437 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6438 nSrc = nPayload = (int)pX->nKey; 6439 pSrc = pX->pKey; 6440 nHeader += putVarint32(&pCell[nHeader], nPayload); 6441 } 6442 6443 /* Fill in the payload */ 6444 pPayload = &pCell[nHeader]; 6445 if( nPayload<=pPage->maxLocal ){ 6446 /* This is the common case where everything fits on the btree page 6447 ** and no overflow pages are required. */ 6448 n = nHeader + nPayload; 6449 testcase( n==3 ); 6450 testcase( n==4 ); 6451 if( n<4 ) n = 4; 6452 *pnSize = n; 6453 assert( nSrc<=nPayload ); 6454 testcase( nSrc<nPayload ); 6455 memcpy(pPayload, pSrc, nSrc); 6456 memset(pPayload+nSrc, 0, nPayload-nSrc); 6457 return SQLITE_OK; 6458 } 6459 6460 /* If we reach this point, it means that some of the content will need 6461 ** to spill onto overflow pages. 6462 */ 6463 mn = pPage->minLocal; 6464 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6465 testcase( n==pPage->maxLocal ); 6466 testcase( n==pPage->maxLocal+1 ); 6467 if( n > pPage->maxLocal ) n = mn; 6468 spaceLeft = n; 6469 *pnSize = n + nHeader + 4; 6470 pPrior = &pCell[nHeader+n]; 6471 pToRelease = 0; 6472 pgnoOvfl = 0; 6473 pBt = pPage->pBt; 6474 6475 /* At this point variables should be set as follows: 6476 ** 6477 ** nPayload Total payload size in bytes 6478 ** pPayload Begin writing payload here 6479 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6480 ** that means content must spill into overflow pages. 6481 ** *pnSize Size of the local cell (not counting overflow pages) 6482 ** pPrior Where to write the pgno of the first overflow page 6483 ** 6484 ** Use a call to btreeParseCellPtr() to verify that the values above 6485 ** were computed correctly. 6486 */ 6487 #ifdef SQLITE_DEBUG 6488 { 6489 CellInfo info; 6490 pPage->xParseCell(pPage, pCell, &info); 6491 assert( nHeader==(int)(info.pPayload - pCell) ); 6492 assert( info.nKey==pX->nKey ); 6493 assert( *pnSize == info.nSize ); 6494 assert( spaceLeft == info.nLocal ); 6495 } 6496 #endif 6497 6498 /* Write the payload into the local Cell and any extra into overflow pages */ 6499 while( 1 ){ 6500 n = nPayload; 6501 if( n>spaceLeft ) n = spaceLeft; 6502 6503 /* If pToRelease is not zero than pPayload points into the data area 6504 ** of pToRelease. Make sure pToRelease is still writeable. */ 6505 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6506 6507 /* If pPayload is part of the data area of pPage, then make sure pPage 6508 ** is still writeable */ 6509 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6510 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6511 6512 if( nSrc>=n ){ 6513 memcpy(pPayload, pSrc, n); 6514 }else if( nSrc>0 ){ 6515 n = nSrc; 6516 memcpy(pPayload, pSrc, n); 6517 }else{ 6518 memset(pPayload, 0, n); 6519 } 6520 nPayload -= n; 6521 if( nPayload<=0 ) break; 6522 pPayload += n; 6523 pSrc += n; 6524 nSrc -= n; 6525 spaceLeft -= n; 6526 if( spaceLeft==0 ){ 6527 MemPage *pOvfl = 0; 6528 #ifndef SQLITE_OMIT_AUTOVACUUM 6529 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6530 if( pBt->autoVacuum ){ 6531 do{ 6532 pgnoOvfl++; 6533 } while( 6534 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6535 ); 6536 } 6537 #endif 6538 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6539 #ifndef SQLITE_OMIT_AUTOVACUUM 6540 /* If the database supports auto-vacuum, and the second or subsequent 6541 ** overflow page is being allocated, add an entry to the pointer-map 6542 ** for that page now. 6543 ** 6544 ** If this is the first overflow page, then write a partial entry 6545 ** to the pointer-map. If we write nothing to this pointer-map slot, 6546 ** then the optimistic overflow chain processing in clearCell() 6547 ** may misinterpret the uninitialized values and delete the 6548 ** wrong pages from the database. 6549 */ 6550 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6551 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6552 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6553 if( rc ){ 6554 releasePage(pOvfl); 6555 } 6556 } 6557 #endif 6558 if( rc ){ 6559 releasePage(pToRelease); 6560 return rc; 6561 } 6562 6563 /* If pToRelease is not zero than pPrior points into the data area 6564 ** of pToRelease. Make sure pToRelease is still writeable. */ 6565 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6566 6567 /* If pPrior is part of the data area of pPage, then make sure pPage 6568 ** is still writeable */ 6569 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6570 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6571 6572 put4byte(pPrior, pgnoOvfl); 6573 releasePage(pToRelease); 6574 pToRelease = pOvfl; 6575 pPrior = pOvfl->aData; 6576 put4byte(pPrior, 0); 6577 pPayload = &pOvfl->aData[4]; 6578 spaceLeft = pBt->usableSize - 4; 6579 } 6580 } 6581 releasePage(pToRelease); 6582 return SQLITE_OK; 6583 } 6584 6585 /* 6586 ** Remove the i-th cell from pPage. This routine effects pPage only. 6587 ** The cell content is not freed or deallocated. It is assumed that 6588 ** the cell content has been copied someplace else. This routine just 6589 ** removes the reference to the cell from pPage. 6590 ** 6591 ** "sz" must be the number of bytes in the cell. 6592 */ 6593 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6594 u32 pc; /* Offset to cell content of cell being deleted */ 6595 u8 *data; /* pPage->aData */ 6596 u8 *ptr; /* Used to move bytes around within data[] */ 6597 int rc; /* The return code */ 6598 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6599 6600 if( *pRC ) return; 6601 assert( idx>=0 && idx<pPage->nCell ); 6602 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6603 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6604 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6605 assert( pPage->nFree>=0 ); 6606 data = pPage->aData; 6607 ptr = &pPage->aCellIdx[2*idx]; 6608 pc = get2byte(ptr); 6609 hdr = pPage->hdrOffset; 6610 testcase( pc==get2byte(&data[hdr+5]) ); 6611 testcase( pc+sz==pPage->pBt->usableSize ); 6612 if( pc+sz > pPage->pBt->usableSize ){ 6613 *pRC = SQLITE_CORRUPT_BKPT; 6614 return; 6615 } 6616 rc = freeSpace(pPage, pc, sz); 6617 if( rc ){ 6618 *pRC = rc; 6619 return; 6620 } 6621 pPage->nCell--; 6622 if( pPage->nCell==0 ){ 6623 memset(&data[hdr+1], 0, 4); 6624 data[hdr+7] = 0; 6625 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6626 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6627 - pPage->childPtrSize - 8; 6628 }else{ 6629 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6630 put2byte(&data[hdr+3], pPage->nCell); 6631 pPage->nFree += 2; 6632 } 6633 } 6634 6635 /* 6636 ** Insert a new cell on pPage at cell index "i". pCell points to the 6637 ** content of the cell. 6638 ** 6639 ** If the cell content will fit on the page, then put it there. If it 6640 ** will not fit, then make a copy of the cell content into pTemp if 6641 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6642 ** in pPage->apOvfl[] and make it point to the cell content (either 6643 ** in pTemp or the original pCell) and also record its index. 6644 ** Allocating a new entry in pPage->aCell[] implies that 6645 ** pPage->nOverflow is incremented. 6646 ** 6647 ** *pRC must be SQLITE_OK when this routine is called. 6648 */ 6649 static void insertCell( 6650 MemPage *pPage, /* Page into which we are copying */ 6651 int i, /* New cell becomes the i-th cell of the page */ 6652 u8 *pCell, /* Content of the new cell */ 6653 int sz, /* Bytes of content in pCell */ 6654 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6655 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6656 int *pRC /* Read and write return code from here */ 6657 ){ 6658 int idx = 0; /* Where to write new cell content in data[] */ 6659 int j; /* Loop counter */ 6660 u8 *data; /* The content of the whole page */ 6661 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6662 6663 assert( *pRC==SQLITE_OK ); 6664 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6665 assert( MX_CELL(pPage->pBt)<=10921 ); 6666 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6667 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6668 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6669 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6670 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6671 assert( pPage->nFree>=0 ); 6672 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6673 if( pTemp ){ 6674 memcpy(pTemp, pCell, sz); 6675 pCell = pTemp; 6676 } 6677 if( iChild ){ 6678 put4byte(pCell, iChild); 6679 } 6680 j = pPage->nOverflow++; 6681 /* Comparison against ArraySize-1 since we hold back one extra slot 6682 ** as a contingency. In other words, never need more than 3 overflow 6683 ** slots but 4 are allocated, just to be safe. */ 6684 assert( j < ArraySize(pPage->apOvfl)-1 ); 6685 pPage->apOvfl[j] = pCell; 6686 pPage->aiOvfl[j] = (u16)i; 6687 6688 /* When multiple overflows occur, they are always sequential and in 6689 ** sorted order. This invariants arise because multiple overflows can 6690 ** only occur when inserting divider cells into the parent page during 6691 ** balancing, and the dividers are adjacent and sorted. 6692 */ 6693 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6694 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6695 }else{ 6696 int rc = sqlite3PagerWrite(pPage->pDbPage); 6697 if( rc!=SQLITE_OK ){ 6698 *pRC = rc; 6699 return; 6700 } 6701 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6702 data = pPage->aData; 6703 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6704 rc = allocateSpace(pPage, sz, &idx); 6705 if( rc ){ *pRC = rc; return; } 6706 /* The allocateSpace() routine guarantees the following properties 6707 ** if it returns successfully */ 6708 assert( idx >= 0 ); 6709 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6710 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6711 pPage->nFree -= (u16)(2 + sz); 6712 if( iChild ){ 6713 /* In a corrupt database where an entry in the cell index section of 6714 ** a btree page has a value of 3 or less, the pCell value might point 6715 ** as many as 4 bytes in front of the start of the aData buffer for 6716 ** the source page. Make sure this does not cause problems by not 6717 ** reading the first 4 bytes */ 6718 memcpy(&data[idx+4], pCell+4, sz-4); 6719 put4byte(&data[idx], iChild); 6720 }else{ 6721 memcpy(&data[idx], pCell, sz); 6722 } 6723 pIns = pPage->aCellIdx + i*2; 6724 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6725 put2byte(pIns, idx); 6726 pPage->nCell++; 6727 /* increment the cell count */ 6728 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6729 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6730 #ifndef SQLITE_OMIT_AUTOVACUUM 6731 if( pPage->pBt->autoVacuum ){ 6732 /* The cell may contain a pointer to an overflow page. If so, write 6733 ** the entry for the overflow page into the pointer map. 6734 */ 6735 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6736 } 6737 #endif 6738 } 6739 } 6740 6741 /* 6742 ** The following parameters determine how many adjacent pages get involved 6743 ** in a balancing operation. NN is the number of neighbors on either side 6744 ** of the page that participate in the balancing operation. NB is the 6745 ** total number of pages that participate, including the target page and 6746 ** NN neighbors on either side. 6747 ** 6748 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6749 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6750 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6751 ** The value of NN appears to give the best results overall. 6752 ** 6753 ** (Later:) The description above makes it seem as if these values are 6754 ** tunable - as if you could change them and recompile and it would all work. 6755 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6756 ** we have never tested any other value. 6757 */ 6758 #define NN 1 /* Number of neighbors on either side of pPage */ 6759 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6760 6761 /* 6762 ** A CellArray object contains a cache of pointers and sizes for a 6763 ** consecutive sequence of cells that might be held on multiple pages. 6764 ** 6765 ** The cells in this array are the divider cell or cells from the pParent 6766 ** page plus up to three child pages. There are a total of nCell cells. 6767 ** 6768 ** pRef is a pointer to one of the pages that contributes cells. This is 6769 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 6770 ** which should be common to all pages that contribute cells to this array. 6771 ** 6772 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 6773 ** cell and the size of each cell. Some of the apCell[] pointers might refer 6774 ** to overflow cells. In other words, some apCel[] pointers might not point 6775 ** to content area of the pages. 6776 ** 6777 ** A szCell[] of zero means the size of that cell has not yet been computed. 6778 ** 6779 ** The cells come from as many as four different pages: 6780 ** 6781 ** ----------- 6782 ** | Parent | 6783 ** ----------- 6784 ** / | \ 6785 ** / | \ 6786 ** --------- --------- --------- 6787 ** |Child-1| |Child-2| |Child-3| 6788 ** --------- --------- --------- 6789 ** 6790 ** The order of cells is in the array is for an index btree is: 6791 ** 6792 ** 1. All cells from Child-1 in order 6793 ** 2. The first divider cell from Parent 6794 ** 3. All cells from Child-2 in order 6795 ** 4. The second divider cell from Parent 6796 ** 5. All cells from Child-3 in order 6797 ** 6798 ** For a table-btree (with rowids) the items 2 and 4 are empty because 6799 ** content exists only in leaves and there are no divider cells. 6800 ** 6801 ** For an index btree, the apEnd[] array holds pointer to the end of page 6802 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 6803 ** respectively. The ixNx[] array holds the number of cells contained in 6804 ** each of these 5 stages, and all stages to the left. Hence: 6805 ** 6806 ** ixNx[0] = Number of cells in Child-1. 6807 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 6808 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 6809 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 6810 ** ixNx[4] = Total number of cells. 6811 ** 6812 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 6813 ** are used and they point to the leaf pages only, and the ixNx value are: 6814 ** 6815 ** ixNx[0] = Number of cells in Child-1. 6816 ** ixNx[1] = Number of cells in Child-1 and Child-2. 6817 ** ixNx[2] = Total number of cells. 6818 ** 6819 ** Sometimes when deleting, a child page can have zero cells. In those 6820 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 6821 ** entries, shift down. The end result is that each ixNx[] entry should 6822 ** be larger than the previous 6823 */ 6824 typedef struct CellArray CellArray; 6825 struct CellArray { 6826 int nCell; /* Number of cells in apCell[] */ 6827 MemPage *pRef; /* Reference page */ 6828 u8 **apCell; /* All cells begin balanced */ 6829 u16 *szCell; /* Local size of all cells in apCell[] */ 6830 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 6831 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 6832 }; 6833 6834 /* 6835 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6836 ** computed. 6837 */ 6838 static void populateCellCache(CellArray *p, int idx, int N){ 6839 assert( idx>=0 && idx+N<=p->nCell ); 6840 while( N>0 ){ 6841 assert( p->apCell[idx]!=0 ); 6842 if( p->szCell[idx]==0 ){ 6843 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6844 }else{ 6845 assert( CORRUPT_DB || 6846 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6847 } 6848 idx++; 6849 N--; 6850 } 6851 } 6852 6853 /* 6854 ** Return the size of the Nth element of the cell array 6855 */ 6856 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6857 assert( N>=0 && N<p->nCell ); 6858 assert( p->szCell[N]==0 ); 6859 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6860 return p->szCell[N]; 6861 } 6862 static u16 cachedCellSize(CellArray *p, int N){ 6863 assert( N>=0 && N<p->nCell ); 6864 if( p->szCell[N] ) return p->szCell[N]; 6865 return computeCellSize(p, N); 6866 } 6867 6868 /* 6869 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6870 ** szCell[] array contains the size in bytes of each cell. This function 6871 ** replaces the current contents of page pPg with the contents of the cell 6872 ** array. 6873 ** 6874 ** Some of the cells in apCell[] may currently be stored in pPg. This 6875 ** function works around problems caused by this by making a copy of any 6876 ** such cells before overwriting the page data. 6877 ** 6878 ** The MemPage.nFree field is invalidated by this function. It is the 6879 ** responsibility of the caller to set it correctly. 6880 */ 6881 static int rebuildPage( 6882 CellArray *pCArray, /* Content to be added to page pPg */ 6883 int iFirst, /* First cell in pCArray to use */ 6884 int nCell, /* Final number of cells on page */ 6885 MemPage *pPg /* The page to be reconstructed */ 6886 ){ 6887 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6888 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6889 const int usableSize = pPg->pBt->usableSize; 6890 u8 * const pEnd = &aData[usableSize]; 6891 int i = iFirst; /* Which cell to copy from pCArray*/ 6892 u32 j; /* Start of cell content area */ 6893 int iEnd = i+nCell; /* Loop terminator */ 6894 u8 *pCellptr = pPg->aCellIdx; 6895 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6896 u8 *pData; 6897 int k; /* Current slot in pCArray->apEnd[] */ 6898 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 6899 6900 assert( i<iEnd ); 6901 j = get2byte(&aData[hdr+5]); 6902 if( j>(u32)usableSize ){ j = 0; } 6903 memcpy(&pTmp[j], &aData[j], usableSize - j); 6904 6905 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 6906 pSrcEnd = pCArray->apEnd[k]; 6907 6908 pData = pEnd; 6909 while( 1/*exit by break*/ ){ 6910 u8 *pCell = pCArray->apCell[i]; 6911 u16 sz = pCArray->szCell[i]; 6912 assert( sz>0 ); 6913 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6914 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 6915 pCell = &pTmp[pCell - aData]; 6916 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 6917 && (uptr)(pCell)<(uptr)pSrcEnd 6918 ){ 6919 return SQLITE_CORRUPT_BKPT; 6920 } 6921 6922 pData -= sz; 6923 put2byte(pCellptr, (pData - aData)); 6924 pCellptr += 2; 6925 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6926 memcpy(pData, pCell, sz); 6927 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 6928 testcase( sz!=pPg->xCellSize(pPg,pCell) ); 6929 i++; 6930 if( i>=iEnd ) break; 6931 if( pCArray->ixNx[k]<=i ){ 6932 k++; 6933 pSrcEnd = pCArray->apEnd[k]; 6934 } 6935 } 6936 6937 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6938 pPg->nCell = nCell; 6939 pPg->nOverflow = 0; 6940 6941 put2byte(&aData[hdr+1], 0); 6942 put2byte(&aData[hdr+3], pPg->nCell); 6943 put2byte(&aData[hdr+5], pData - aData); 6944 aData[hdr+7] = 0x00; 6945 return SQLITE_OK; 6946 } 6947 6948 /* 6949 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 6950 ** This function attempts to add the cells stored in the array to page pPg. 6951 ** If it cannot (because the page needs to be defragmented before the cells 6952 ** will fit), non-zero is returned. Otherwise, if the cells are added 6953 ** successfully, zero is returned. 6954 ** 6955 ** Argument pCellptr points to the first entry in the cell-pointer array 6956 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6957 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6958 ** cell in the array. It is the responsibility of the caller to ensure 6959 ** that it is safe to overwrite this part of the cell-pointer array. 6960 ** 6961 ** When this function is called, *ppData points to the start of the 6962 ** content area on page pPg. If the size of the content area is extended, 6963 ** *ppData is updated to point to the new start of the content area 6964 ** before returning. 6965 ** 6966 ** Finally, argument pBegin points to the byte immediately following the 6967 ** end of the space required by this page for the cell-pointer area (for 6968 ** all cells - not just those inserted by the current call). If the content 6969 ** area must be extended to before this point in order to accomodate all 6970 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6971 */ 6972 static int pageInsertArray( 6973 MemPage *pPg, /* Page to add cells to */ 6974 u8 *pBegin, /* End of cell-pointer array */ 6975 u8 **ppData, /* IN/OUT: Page content-area pointer */ 6976 u8 *pCellptr, /* Pointer to cell-pointer area */ 6977 int iFirst, /* Index of first cell to add */ 6978 int nCell, /* Number of cells to add to pPg */ 6979 CellArray *pCArray /* Array of cells */ 6980 ){ 6981 int i = iFirst; /* Loop counter - cell index to insert */ 6982 u8 *aData = pPg->aData; /* Complete page */ 6983 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 6984 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 6985 int k; /* Current slot in pCArray->apEnd[] */ 6986 u8 *pEnd; /* Maximum extent of cell data */ 6987 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 6988 if( iEnd<=iFirst ) return 0; 6989 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 6990 pEnd = pCArray->apEnd[k]; 6991 while( 1 /*Exit by break*/ ){ 6992 int sz, rc; 6993 u8 *pSlot; 6994 sz = cachedCellSize(pCArray, i); 6995 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 6996 if( (pData - pBegin)<sz ) return 1; 6997 pData -= sz; 6998 pSlot = pData; 6999 } 7000 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7001 ** database. But they might for a corrupt database. Hence use memmove() 7002 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7003 assert( (pSlot+sz)<=pCArray->apCell[i] 7004 || pSlot>=(pCArray->apCell[i]+sz) 7005 || CORRUPT_DB ); 7006 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7007 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7008 ){ 7009 assert( CORRUPT_DB ); 7010 (void)SQLITE_CORRUPT_BKPT; 7011 return 1; 7012 } 7013 memmove(pSlot, pCArray->apCell[i], sz); 7014 put2byte(pCellptr, (pSlot - aData)); 7015 pCellptr += 2; 7016 i++; 7017 if( i>=iEnd ) break; 7018 if( pCArray->ixNx[k]<=i ){ 7019 k++; 7020 pEnd = pCArray->apEnd[k]; 7021 } 7022 } 7023 *ppData = pData; 7024 return 0; 7025 } 7026 7027 /* 7028 ** The pCArray object contains pointers to b-tree cells and their sizes. 7029 ** 7030 ** This function adds the space associated with each cell in the array 7031 ** that is currently stored within the body of pPg to the pPg free-list. 7032 ** The cell-pointers and other fields of the page are not updated. 7033 ** 7034 ** This function returns the total number of cells added to the free-list. 7035 */ 7036 static int pageFreeArray( 7037 MemPage *pPg, /* Page to edit */ 7038 int iFirst, /* First cell to delete */ 7039 int nCell, /* Cells to delete */ 7040 CellArray *pCArray /* Array of cells */ 7041 ){ 7042 u8 * const aData = pPg->aData; 7043 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7044 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7045 int nRet = 0; 7046 int i; 7047 int iEnd = iFirst + nCell; 7048 u8 *pFree = 0; 7049 int szFree = 0; 7050 7051 for(i=iFirst; i<iEnd; i++){ 7052 u8 *pCell = pCArray->apCell[i]; 7053 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7054 int sz; 7055 /* No need to use cachedCellSize() here. The sizes of all cells that 7056 ** are to be freed have already been computing while deciding which 7057 ** cells need freeing */ 7058 sz = pCArray->szCell[i]; assert( sz>0 ); 7059 if( pFree!=(pCell + sz) ){ 7060 if( pFree ){ 7061 assert( pFree>aData && (pFree - aData)<65536 ); 7062 freeSpace(pPg, (u16)(pFree - aData), szFree); 7063 } 7064 pFree = pCell; 7065 szFree = sz; 7066 if( pFree+sz>pEnd ) return 0; 7067 }else{ 7068 pFree = pCell; 7069 szFree += sz; 7070 } 7071 nRet++; 7072 } 7073 } 7074 if( pFree ){ 7075 assert( pFree>aData && (pFree - aData)<65536 ); 7076 freeSpace(pPg, (u16)(pFree - aData), szFree); 7077 } 7078 return nRet; 7079 } 7080 7081 /* 7082 ** pCArray contains pointers to and sizes of all cells in the page being 7083 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7084 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7085 ** starting at apCell[iNew]. 7086 ** 7087 ** This routine makes the necessary adjustments to pPg so that it contains 7088 ** the correct cells after being balanced. 7089 ** 7090 ** The pPg->nFree field is invalid when this function returns. It is the 7091 ** responsibility of the caller to set it correctly. 7092 */ 7093 static int editPage( 7094 MemPage *pPg, /* Edit this page */ 7095 int iOld, /* Index of first cell currently on page */ 7096 int iNew, /* Index of new first cell on page */ 7097 int nNew, /* Final number of cells on page */ 7098 CellArray *pCArray /* Array of cells and sizes */ 7099 ){ 7100 u8 * const aData = pPg->aData; 7101 const int hdr = pPg->hdrOffset; 7102 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7103 int nCell = pPg->nCell; /* Cells stored on pPg */ 7104 u8 *pData; 7105 u8 *pCellptr; 7106 int i; 7107 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7108 int iNewEnd = iNew + nNew; 7109 7110 #ifdef SQLITE_DEBUG 7111 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7112 memcpy(pTmp, aData, pPg->pBt->usableSize); 7113 #endif 7114 7115 /* Remove cells from the start and end of the page */ 7116 assert( nCell>=0 ); 7117 if( iOld<iNew ){ 7118 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7119 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT; 7120 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7121 nCell -= nShift; 7122 } 7123 if( iNewEnd < iOldEnd ){ 7124 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7125 assert( nCell>=nTail ); 7126 nCell -= nTail; 7127 } 7128 7129 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7130 if( pData<pBegin ) goto editpage_fail; 7131 7132 /* Add cells to the start of the page */ 7133 if( iNew<iOld ){ 7134 int nAdd = MIN(nNew,iOld-iNew); 7135 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7136 assert( nAdd>=0 ); 7137 pCellptr = pPg->aCellIdx; 7138 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7139 if( pageInsertArray( 7140 pPg, pBegin, &pData, pCellptr, 7141 iNew, nAdd, pCArray 7142 ) ) goto editpage_fail; 7143 nCell += nAdd; 7144 } 7145 7146 /* Add any overflow cells */ 7147 for(i=0; i<pPg->nOverflow; i++){ 7148 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7149 if( iCell>=0 && iCell<nNew ){ 7150 pCellptr = &pPg->aCellIdx[iCell * 2]; 7151 if( nCell>iCell ){ 7152 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7153 } 7154 nCell++; 7155 if( pageInsertArray( 7156 pPg, pBegin, &pData, pCellptr, 7157 iCell+iNew, 1, pCArray 7158 ) ) goto editpage_fail; 7159 } 7160 } 7161 7162 /* Append cells to the end of the page */ 7163 assert( nCell>=0 ); 7164 pCellptr = &pPg->aCellIdx[nCell*2]; 7165 if( pageInsertArray( 7166 pPg, pBegin, &pData, pCellptr, 7167 iNew+nCell, nNew-nCell, pCArray 7168 ) ) goto editpage_fail; 7169 7170 pPg->nCell = nNew; 7171 pPg->nOverflow = 0; 7172 7173 put2byte(&aData[hdr+3], pPg->nCell); 7174 put2byte(&aData[hdr+5], pData - aData); 7175 7176 #ifdef SQLITE_DEBUG 7177 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7178 u8 *pCell = pCArray->apCell[i+iNew]; 7179 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7180 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7181 pCell = &pTmp[pCell - aData]; 7182 } 7183 assert( 0==memcmp(pCell, &aData[iOff], 7184 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7185 } 7186 #endif 7187 7188 return SQLITE_OK; 7189 editpage_fail: 7190 /* Unable to edit this page. Rebuild it from scratch instead. */ 7191 populateCellCache(pCArray, iNew, nNew); 7192 return rebuildPage(pCArray, iNew, nNew, pPg); 7193 } 7194 7195 7196 #ifndef SQLITE_OMIT_QUICKBALANCE 7197 /* 7198 ** This version of balance() handles the common special case where 7199 ** a new entry is being inserted on the extreme right-end of the 7200 ** tree, in other words, when the new entry will become the largest 7201 ** entry in the tree. 7202 ** 7203 ** Instead of trying to balance the 3 right-most leaf pages, just add 7204 ** a new page to the right-hand side and put the one new entry in 7205 ** that page. This leaves the right side of the tree somewhat 7206 ** unbalanced. But odds are that we will be inserting new entries 7207 ** at the end soon afterwards so the nearly empty page will quickly 7208 ** fill up. On average. 7209 ** 7210 ** pPage is the leaf page which is the right-most page in the tree. 7211 ** pParent is its parent. pPage must have a single overflow entry 7212 ** which is also the right-most entry on the page. 7213 ** 7214 ** The pSpace buffer is used to store a temporary copy of the divider 7215 ** cell that will be inserted into pParent. Such a cell consists of a 4 7216 ** byte page number followed by a variable length integer. In other 7217 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7218 ** least 13 bytes in size. 7219 */ 7220 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7221 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7222 MemPage *pNew; /* Newly allocated page */ 7223 int rc; /* Return Code */ 7224 Pgno pgnoNew; /* Page number of pNew */ 7225 7226 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7227 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7228 assert( pPage->nOverflow==1 ); 7229 7230 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7231 assert( pPage->nFree>=0 ); 7232 assert( pParent->nFree>=0 ); 7233 7234 /* Allocate a new page. This page will become the right-sibling of 7235 ** pPage. Make the parent page writable, so that the new divider cell 7236 ** may be inserted. If both these operations are successful, proceed. 7237 */ 7238 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7239 7240 if( rc==SQLITE_OK ){ 7241 7242 u8 *pOut = &pSpace[4]; 7243 u8 *pCell = pPage->apOvfl[0]; 7244 u16 szCell = pPage->xCellSize(pPage, pCell); 7245 u8 *pStop; 7246 CellArray b; 7247 7248 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7249 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7250 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7251 b.nCell = 1; 7252 b.pRef = pPage; 7253 b.apCell = &pCell; 7254 b.szCell = &szCell; 7255 b.apEnd[0] = pPage->aDataEnd; 7256 b.ixNx[0] = 2; 7257 rc = rebuildPage(&b, 0, 1, pNew); 7258 if( NEVER(rc) ){ 7259 releasePage(pNew); 7260 return rc; 7261 } 7262 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7263 7264 /* If this is an auto-vacuum database, update the pointer map 7265 ** with entries for the new page, and any pointer from the 7266 ** cell on the page to an overflow page. If either of these 7267 ** operations fails, the return code is set, but the contents 7268 ** of the parent page are still manipulated by thh code below. 7269 ** That is Ok, at this point the parent page is guaranteed to 7270 ** be marked as dirty. Returning an error code will cause a 7271 ** rollback, undoing any changes made to the parent page. 7272 */ 7273 if( ISAUTOVACUUM ){ 7274 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7275 if( szCell>pNew->minLocal ){ 7276 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7277 } 7278 } 7279 7280 /* Create a divider cell to insert into pParent. The divider cell 7281 ** consists of a 4-byte page number (the page number of pPage) and 7282 ** a variable length key value (which must be the same value as the 7283 ** largest key on pPage). 7284 ** 7285 ** To find the largest key value on pPage, first find the right-most 7286 ** cell on pPage. The first two fields of this cell are the 7287 ** record-length (a variable length integer at most 32-bits in size) 7288 ** and the key value (a variable length integer, may have any value). 7289 ** The first of the while(...) loops below skips over the record-length 7290 ** field. The second while(...) loop copies the key value from the 7291 ** cell on pPage into the pSpace buffer. 7292 */ 7293 pCell = findCell(pPage, pPage->nCell-1); 7294 pStop = &pCell[9]; 7295 while( (*(pCell++)&0x80) && pCell<pStop ); 7296 pStop = &pCell[9]; 7297 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7298 7299 /* Insert the new divider cell into pParent. */ 7300 if( rc==SQLITE_OK ){ 7301 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7302 0, pPage->pgno, &rc); 7303 } 7304 7305 /* Set the right-child pointer of pParent to point to the new page. */ 7306 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7307 7308 /* Release the reference to the new page. */ 7309 releasePage(pNew); 7310 } 7311 7312 return rc; 7313 } 7314 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7315 7316 #if 0 7317 /* 7318 ** This function does not contribute anything to the operation of SQLite. 7319 ** it is sometimes activated temporarily while debugging code responsible 7320 ** for setting pointer-map entries. 7321 */ 7322 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7323 int i, j; 7324 for(i=0; i<nPage; i++){ 7325 Pgno n; 7326 u8 e; 7327 MemPage *pPage = apPage[i]; 7328 BtShared *pBt = pPage->pBt; 7329 assert( pPage->isInit ); 7330 7331 for(j=0; j<pPage->nCell; j++){ 7332 CellInfo info; 7333 u8 *z; 7334 7335 z = findCell(pPage, j); 7336 pPage->xParseCell(pPage, z, &info); 7337 if( info.nLocal<info.nPayload ){ 7338 Pgno ovfl = get4byte(&z[info.nSize-4]); 7339 ptrmapGet(pBt, ovfl, &e, &n); 7340 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7341 } 7342 if( !pPage->leaf ){ 7343 Pgno child = get4byte(z); 7344 ptrmapGet(pBt, child, &e, &n); 7345 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7346 } 7347 } 7348 if( !pPage->leaf ){ 7349 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7350 ptrmapGet(pBt, child, &e, &n); 7351 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7352 } 7353 } 7354 return 1; 7355 } 7356 #endif 7357 7358 /* 7359 ** This function is used to copy the contents of the b-tree node stored 7360 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7361 ** the pointer-map entries for each child page are updated so that the 7362 ** parent page stored in the pointer map is page pTo. If pFrom contained 7363 ** any cells with overflow page pointers, then the corresponding pointer 7364 ** map entries are also updated so that the parent page is page pTo. 7365 ** 7366 ** If pFrom is currently carrying any overflow cells (entries in the 7367 ** MemPage.apOvfl[] array), they are not copied to pTo. 7368 ** 7369 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7370 ** 7371 ** The performance of this function is not critical. It is only used by 7372 ** the balance_shallower() and balance_deeper() procedures, neither of 7373 ** which are called often under normal circumstances. 7374 */ 7375 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7376 if( (*pRC)==SQLITE_OK ){ 7377 BtShared * const pBt = pFrom->pBt; 7378 u8 * const aFrom = pFrom->aData; 7379 u8 * const aTo = pTo->aData; 7380 int const iFromHdr = pFrom->hdrOffset; 7381 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7382 int rc; 7383 int iData; 7384 7385 7386 assert( pFrom->isInit ); 7387 assert( pFrom->nFree>=iToHdr ); 7388 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7389 7390 /* Copy the b-tree node content from page pFrom to page pTo. */ 7391 iData = get2byte(&aFrom[iFromHdr+5]); 7392 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7393 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7394 7395 /* Reinitialize page pTo so that the contents of the MemPage structure 7396 ** match the new data. The initialization of pTo can actually fail under 7397 ** fairly obscure circumstances, even though it is a copy of initialized 7398 ** page pFrom. 7399 */ 7400 pTo->isInit = 0; 7401 rc = btreeInitPage(pTo); 7402 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7403 if( rc!=SQLITE_OK ){ 7404 *pRC = rc; 7405 return; 7406 } 7407 7408 /* If this is an auto-vacuum database, update the pointer-map entries 7409 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7410 */ 7411 if( ISAUTOVACUUM ){ 7412 *pRC = setChildPtrmaps(pTo); 7413 } 7414 } 7415 } 7416 7417 /* 7418 ** This routine redistributes cells on the iParentIdx'th child of pParent 7419 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7420 ** same amount of free space. Usually a single sibling on either side of the 7421 ** page are used in the balancing, though both siblings might come from one 7422 ** side if the page is the first or last child of its parent. If the page 7423 ** has fewer than 2 siblings (something which can only happen if the page 7424 ** is a root page or a child of a root page) then all available siblings 7425 ** participate in the balancing. 7426 ** 7427 ** The number of siblings of the page might be increased or decreased by 7428 ** one or two in an effort to keep pages nearly full but not over full. 7429 ** 7430 ** Note that when this routine is called, some of the cells on the page 7431 ** might not actually be stored in MemPage.aData[]. This can happen 7432 ** if the page is overfull. This routine ensures that all cells allocated 7433 ** to the page and its siblings fit into MemPage.aData[] before returning. 7434 ** 7435 ** In the course of balancing the page and its siblings, cells may be 7436 ** inserted into or removed from the parent page (pParent). Doing so 7437 ** may cause the parent page to become overfull or underfull. If this 7438 ** happens, it is the responsibility of the caller to invoke the correct 7439 ** balancing routine to fix this problem (see the balance() routine). 7440 ** 7441 ** If this routine fails for any reason, it might leave the database 7442 ** in a corrupted state. So if this routine fails, the database should 7443 ** be rolled back. 7444 ** 7445 ** The third argument to this function, aOvflSpace, is a pointer to a 7446 ** buffer big enough to hold one page. If while inserting cells into the parent 7447 ** page (pParent) the parent page becomes overfull, this buffer is 7448 ** used to store the parent's overflow cells. Because this function inserts 7449 ** a maximum of four divider cells into the parent page, and the maximum 7450 ** size of a cell stored within an internal node is always less than 1/4 7451 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7452 ** enough for all overflow cells. 7453 ** 7454 ** If aOvflSpace is set to a null pointer, this function returns 7455 ** SQLITE_NOMEM. 7456 */ 7457 static int balance_nonroot( 7458 MemPage *pParent, /* Parent page of siblings being balanced */ 7459 int iParentIdx, /* Index of "the page" in pParent */ 7460 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7461 int isRoot, /* True if pParent is a root-page */ 7462 int bBulk /* True if this call is part of a bulk load */ 7463 ){ 7464 BtShared *pBt; /* The whole database */ 7465 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7466 int nNew = 0; /* Number of pages in apNew[] */ 7467 int nOld; /* Number of pages in apOld[] */ 7468 int i, j, k; /* Loop counters */ 7469 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7470 int rc = SQLITE_OK; /* The return code */ 7471 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7472 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7473 int usableSpace; /* Bytes in pPage beyond the header */ 7474 int pageFlags; /* Value of pPage->aData[0] */ 7475 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7476 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7477 int szScratch; /* Size of scratch memory requested */ 7478 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7479 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7480 u8 *pRight; /* Location in parent of right-sibling pointer */ 7481 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7482 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7483 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7484 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7485 u8 *aSpace1; /* Space for copies of dividers cells */ 7486 Pgno pgno; /* Temp var to store a page number in */ 7487 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7488 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7489 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7490 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7491 CellArray b; /* Parsed information on cells being balanced */ 7492 7493 memset(abDone, 0, sizeof(abDone)); 7494 b.nCell = 0; 7495 b.apCell = 0; 7496 pBt = pParent->pBt; 7497 assert( sqlite3_mutex_held(pBt->mutex) ); 7498 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7499 7500 /* At this point pParent may have at most one overflow cell. And if 7501 ** this overflow cell is present, it must be the cell with 7502 ** index iParentIdx. This scenario comes about when this function 7503 ** is called (indirectly) from sqlite3BtreeDelete(). 7504 */ 7505 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7506 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7507 7508 if( !aOvflSpace ){ 7509 return SQLITE_NOMEM_BKPT; 7510 } 7511 assert( pParent->nFree>=0 ); 7512 7513 /* Find the sibling pages to balance. Also locate the cells in pParent 7514 ** that divide the siblings. An attempt is made to find NN siblings on 7515 ** either side of pPage. More siblings are taken from one side, however, 7516 ** if there are fewer than NN siblings on the other side. If pParent 7517 ** has NB or fewer children then all children of pParent are taken. 7518 ** 7519 ** This loop also drops the divider cells from the parent page. This 7520 ** way, the remainder of the function does not have to deal with any 7521 ** overflow cells in the parent page, since if any existed they will 7522 ** have already been removed. 7523 */ 7524 i = pParent->nOverflow + pParent->nCell; 7525 if( i<2 ){ 7526 nxDiv = 0; 7527 }else{ 7528 assert( bBulk==0 || bBulk==1 ); 7529 if( iParentIdx==0 ){ 7530 nxDiv = 0; 7531 }else if( iParentIdx==i ){ 7532 nxDiv = i-2+bBulk; 7533 }else{ 7534 nxDiv = iParentIdx-1; 7535 } 7536 i = 2-bBulk; 7537 } 7538 nOld = i+1; 7539 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7540 pRight = &pParent->aData[pParent->hdrOffset+8]; 7541 }else{ 7542 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7543 } 7544 pgno = get4byte(pRight); 7545 while( 1 ){ 7546 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7547 if( rc ){ 7548 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7549 goto balance_cleanup; 7550 } 7551 if( apOld[i]->nFree<0 ){ 7552 rc = btreeComputeFreeSpace(apOld[i]); 7553 if( rc ){ 7554 memset(apOld, 0, (i)*sizeof(MemPage*)); 7555 goto balance_cleanup; 7556 } 7557 } 7558 if( (i--)==0 ) break; 7559 7560 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7561 apDiv[i] = pParent->apOvfl[0]; 7562 pgno = get4byte(apDiv[i]); 7563 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7564 pParent->nOverflow = 0; 7565 }else{ 7566 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7567 pgno = get4byte(apDiv[i]); 7568 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7569 7570 /* Drop the cell from the parent page. apDiv[i] still points to 7571 ** the cell within the parent, even though it has been dropped. 7572 ** This is safe because dropping a cell only overwrites the first 7573 ** four bytes of it, and this function does not need the first 7574 ** four bytes of the divider cell. So the pointer is safe to use 7575 ** later on. 7576 ** 7577 ** But not if we are in secure-delete mode. In secure-delete mode, 7578 ** the dropCell() routine will overwrite the entire cell with zeroes. 7579 ** In this case, temporarily copy the cell into the aOvflSpace[] 7580 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7581 ** is allocated. */ 7582 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7583 int iOff; 7584 7585 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7586 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7587 rc = SQLITE_CORRUPT_BKPT; 7588 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7589 goto balance_cleanup; 7590 }else{ 7591 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7592 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7593 } 7594 } 7595 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7596 } 7597 } 7598 7599 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7600 ** alignment */ 7601 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl)); 7602 nMaxCells = (nMaxCells + 3)&~3; 7603 7604 /* 7605 ** Allocate space for memory structures 7606 */ 7607 szScratch = 7608 nMaxCells*sizeof(u8*) /* b.apCell */ 7609 + nMaxCells*sizeof(u16) /* b.szCell */ 7610 + pBt->pageSize; /* aSpace1 */ 7611 7612 assert( szScratch<=7*(int)pBt->pageSize ); 7613 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7614 if( b.apCell==0 ){ 7615 rc = SQLITE_NOMEM_BKPT; 7616 goto balance_cleanup; 7617 } 7618 b.szCell = (u16*)&b.apCell[nMaxCells]; 7619 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7620 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7621 7622 /* 7623 ** Load pointers to all cells on sibling pages and the divider cells 7624 ** into the local b.apCell[] array. Make copies of the divider cells 7625 ** into space obtained from aSpace1[]. The divider cells have already 7626 ** been removed from pParent. 7627 ** 7628 ** If the siblings are on leaf pages, then the child pointers of the 7629 ** divider cells are stripped from the cells before they are copied 7630 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7631 ** child pointers. If siblings are not leaves, then all cell in 7632 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7633 ** are alike. 7634 ** 7635 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7636 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7637 */ 7638 b.pRef = apOld[0]; 7639 leafCorrection = b.pRef->leaf*4; 7640 leafData = b.pRef->intKeyLeaf; 7641 for(i=0; i<nOld; i++){ 7642 MemPage *pOld = apOld[i]; 7643 int limit = pOld->nCell; 7644 u8 *aData = pOld->aData; 7645 u16 maskPage = pOld->maskPage; 7646 u8 *piCell = aData + pOld->cellOffset; 7647 u8 *piEnd; 7648 VVA_ONLY( int nCellAtStart = b.nCell; ) 7649 7650 /* Verify that all sibling pages are of the same "type" (table-leaf, 7651 ** table-interior, index-leaf, or index-interior). 7652 */ 7653 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7654 rc = SQLITE_CORRUPT_BKPT; 7655 goto balance_cleanup; 7656 } 7657 7658 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7659 ** contains overflow cells, include them in the b.apCell[] array 7660 ** in the correct spot. 7661 ** 7662 ** Note that when there are multiple overflow cells, it is always the 7663 ** case that they are sequential and adjacent. This invariant arises 7664 ** because multiple overflows can only occurs when inserting divider 7665 ** cells into a parent on a prior balance, and divider cells are always 7666 ** adjacent and are inserted in order. There is an assert() tagged 7667 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7668 ** invariant. 7669 ** 7670 ** This must be done in advance. Once the balance starts, the cell 7671 ** offset section of the btree page will be overwritten and we will no 7672 ** long be able to find the cells if a pointer to each cell is not saved 7673 ** first. 7674 */ 7675 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7676 if( pOld->nOverflow>0 ){ 7677 if( limit<pOld->aiOvfl[0] ){ 7678 rc = SQLITE_CORRUPT_BKPT; 7679 goto balance_cleanup; 7680 } 7681 limit = pOld->aiOvfl[0]; 7682 for(j=0; j<limit; j++){ 7683 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7684 piCell += 2; 7685 b.nCell++; 7686 } 7687 for(k=0; k<pOld->nOverflow; k++){ 7688 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7689 b.apCell[b.nCell] = pOld->apOvfl[k]; 7690 b.nCell++; 7691 } 7692 } 7693 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7694 while( piCell<piEnd ){ 7695 assert( b.nCell<nMaxCells ); 7696 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7697 piCell += 2; 7698 b.nCell++; 7699 } 7700 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7701 7702 cntOld[i] = b.nCell; 7703 if( i<nOld-1 && !leafData){ 7704 u16 sz = (u16)szNew[i]; 7705 u8 *pTemp; 7706 assert( b.nCell<nMaxCells ); 7707 b.szCell[b.nCell] = sz; 7708 pTemp = &aSpace1[iSpace1]; 7709 iSpace1 += sz; 7710 assert( sz<=pBt->maxLocal+23 ); 7711 assert( iSpace1 <= (int)pBt->pageSize ); 7712 memcpy(pTemp, apDiv[i], sz); 7713 b.apCell[b.nCell] = pTemp+leafCorrection; 7714 assert( leafCorrection==0 || leafCorrection==4 ); 7715 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7716 if( !pOld->leaf ){ 7717 assert( leafCorrection==0 ); 7718 assert( pOld->hdrOffset==0 ); 7719 /* The right pointer of the child page pOld becomes the left 7720 ** pointer of the divider cell */ 7721 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7722 }else{ 7723 assert( leafCorrection==4 ); 7724 while( b.szCell[b.nCell]<4 ){ 7725 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7726 ** does exist, pad it with 0x00 bytes. */ 7727 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7728 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7729 aSpace1[iSpace1++] = 0x00; 7730 b.szCell[b.nCell]++; 7731 } 7732 } 7733 b.nCell++; 7734 } 7735 } 7736 7737 /* 7738 ** Figure out the number of pages needed to hold all b.nCell cells. 7739 ** Store this number in "k". Also compute szNew[] which is the total 7740 ** size of all cells on the i-th page and cntNew[] which is the index 7741 ** in b.apCell[] of the cell that divides page i from page i+1. 7742 ** cntNew[k] should equal b.nCell. 7743 ** 7744 ** Values computed by this block: 7745 ** 7746 ** k: The total number of sibling pages 7747 ** szNew[i]: Spaced used on the i-th sibling page. 7748 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7749 ** the right of the i-th sibling page. 7750 ** usableSpace: Number of bytes of space available on each sibling. 7751 ** 7752 */ 7753 usableSpace = pBt->usableSize - 12 + leafCorrection; 7754 for(i=k=0; i<nOld; i++, k++){ 7755 MemPage *p = apOld[i]; 7756 b.apEnd[k] = p->aDataEnd; 7757 b.ixNx[k] = cntOld[i]; 7758 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7759 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7760 } 7761 if( !leafData ){ 7762 k++; 7763 b.apEnd[k] = pParent->aDataEnd; 7764 b.ixNx[k] = cntOld[i]+1; 7765 } 7766 assert( p->nFree>=0 ); 7767 szNew[i] = usableSpace - p->nFree; 7768 for(j=0; j<p->nOverflow; j++){ 7769 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7770 } 7771 cntNew[i] = cntOld[i]; 7772 } 7773 k = nOld; 7774 for(i=0; i<k; i++){ 7775 int sz; 7776 while( szNew[i]>usableSpace ){ 7777 if( i+1>=k ){ 7778 k = i+2; 7779 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7780 szNew[k-1] = 0; 7781 cntNew[k-1] = b.nCell; 7782 } 7783 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7784 szNew[i] -= sz; 7785 if( !leafData ){ 7786 if( cntNew[i]<b.nCell ){ 7787 sz = 2 + cachedCellSize(&b, cntNew[i]); 7788 }else{ 7789 sz = 0; 7790 } 7791 } 7792 szNew[i+1] += sz; 7793 cntNew[i]--; 7794 } 7795 while( cntNew[i]<b.nCell ){ 7796 sz = 2 + cachedCellSize(&b, cntNew[i]); 7797 if( szNew[i]+sz>usableSpace ) break; 7798 szNew[i] += sz; 7799 cntNew[i]++; 7800 if( !leafData ){ 7801 if( cntNew[i]<b.nCell ){ 7802 sz = 2 + cachedCellSize(&b, cntNew[i]); 7803 }else{ 7804 sz = 0; 7805 } 7806 } 7807 szNew[i+1] -= sz; 7808 } 7809 if( cntNew[i]>=b.nCell ){ 7810 k = i+1; 7811 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7812 rc = SQLITE_CORRUPT_BKPT; 7813 goto balance_cleanup; 7814 } 7815 } 7816 7817 /* 7818 ** The packing computed by the previous block is biased toward the siblings 7819 ** on the left side (siblings with smaller keys). The left siblings are 7820 ** always nearly full, while the right-most sibling might be nearly empty. 7821 ** The next block of code attempts to adjust the packing of siblings to 7822 ** get a better balance. 7823 ** 7824 ** This adjustment is more than an optimization. The packing above might 7825 ** be so out of balance as to be illegal. For example, the right-most 7826 ** sibling might be completely empty. This adjustment is not optional. 7827 */ 7828 for(i=k-1; i>0; i--){ 7829 int szRight = szNew[i]; /* Size of sibling on the right */ 7830 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7831 int r; /* Index of right-most cell in left sibling */ 7832 int d; /* Index of first cell to the left of right sibling */ 7833 7834 r = cntNew[i-1] - 1; 7835 d = r + 1 - leafData; 7836 (void)cachedCellSize(&b, d); 7837 do{ 7838 assert( d<nMaxCells ); 7839 assert( r<nMaxCells ); 7840 (void)cachedCellSize(&b, r); 7841 if( szRight!=0 7842 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7843 break; 7844 } 7845 szRight += b.szCell[d] + 2; 7846 szLeft -= b.szCell[r] + 2; 7847 cntNew[i-1] = r; 7848 r--; 7849 d--; 7850 }while( r>=0 ); 7851 szNew[i] = szRight; 7852 szNew[i-1] = szLeft; 7853 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7854 rc = SQLITE_CORRUPT_BKPT; 7855 goto balance_cleanup; 7856 } 7857 } 7858 7859 /* Sanity check: For a non-corrupt database file one of the follwing 7860 ** must be true: 7861 ** (1) We found one or more cells (cntNew[0])>0), or 7862 ** (2) pPage is a virtual root page. A virtual root page is when 7863 ** the real root page is page 1 and we are the only child of 7864 ** that page. 7865 */ 7866 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7867 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7868 apOld[0]->pgno, apOld[0]->nCell, 7869 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7870 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7871 )); 7872 7873 /* 7874 ** Allocate k new pages. Reuse old pages where possible. 7875 */ 7876 pageFlags = apOld[0]->aData[0]; 7877 for(i=0; i<k; i++){ 7878 MemPage *pNew; 7879 if( i<nOld ){ 7880 pNew = apNew[i] = apOld[i]; 7881 apOld[i] = 0; 7882 rc = sqlite3PagerWrite(pNew->pDbPage); 7883 nNew++; 7884 if( rc ) goto balance_cleanup; 7885 }else{ 7886 assert( i>0 ); 7887 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7888 if( rc ) goto balance_cleanup; 7889 zeroPage(pNew, pageFlags); 7890 apNew[i] = pNew; 7891 nNew++; 7892 cntOld[i] = b.nCell; 7893 7894 /* Set the pointer-map entry for the new sibling page. */ 7895 if( ISAUTOVACUUM ){ 7896 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7897 if( rc!=SQLITE_OK ){ 7898 goto balance_cleanup; 7899 } 7900 } 7901 } 7902 } 7903 7904 /* 7905 ** Reassign page numbers so that the new pages are in ascending order. 7906 ** This helps to keep entries in the disk file in order so that a scan 7907 ** of the table is closer to a linear scan through the file. That in turn 7908 ** helps the operating system to deliver pages from the disk more rapidly. 7909 ** 7910 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7911 ** than (NB+2) (a small constant), that should not be a problem. 7912 ** 7913 ** When NB==3, this one optimization makes the database about 25% faster 7914 ** for large insertions and deletions. 7915 */ 7916 for(i=0; i<nNew; i++){ 7917 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7918 aPgFlags[i] = apNew[i]->pDbPage->flags; 7919 for(j=0; j<i; j++){ 7920 if( aPgno[j]==aPgno[i] ){ 7921 /* This branch is taken if the set of sibling pages somehow contains 7922 ** duplicate entries. This can happen if the database is corrupt. 7923 ** It would be simpler to detect this as part of the loop below, but 7924 ** we do the detection here in order to avoid populating the pager 7925 ** cache with two separate objects associated with the same 7926 ** page number. */ 7927 assert( CORRUPT_DB ); 7928 rc = SQLITE_CORRUPT_BKPT; 7929 goto balance_cleanup; 7930 } 7931 } 7932 } 7933 for(i=0; i<nNew; i++){ 7934 int iBest = 0; /* aPgno[] index of page number to use */ 7935 for(j=1; j<nNew; j++){ 7936 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7937 } 7938 pgno = aPgOrder[iBest]; 7939 aPgOrder[iBest] = 0xffffffff; 7940 if( iBest!=i ){ 7941 if( iBest>i ){ 7942 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7943 } 7944 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7945 apNew[i]->pgno = pgno; 7946 } 7947 } 7948 7949 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7950 "%d(%d nc=%d) %d(%d nc=%d)\n", 7951 apNew[0]->pgno, szNew[0], cntNew[0], 7952 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7953 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7954 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7955 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7956 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7957 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7958 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7959 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7960 )); 7961 7962 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7963 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 7964 assert( apNew[nNew-1]!=0 ); 7965 put4byte(pRight, apNew[nNew-1]->pgno); 7966 7967 /* If the sibling pages are not leaves, ensure that the right-child pointer 7968 ** of the right-most new sibling page is set to the value that was 7969 ** originally in the same field of the right-most old sibling page. */ 7970 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7971 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7972 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7973 } 7974 7975 /* Make any required updates to pointer map entries associated with 7976 ** cells stored on sibling pages following the balance operation. Pointer 7977 ** map entries associated with divider cells are set by the insertCell() 7978 ** routine. The associated pointer map entries are: 7979 ** 7980 ** a) if the cell contains a reference to an overflow chain, the 7981 ** entry associated with the first page in the overflow chain, and 7982 ** 7983 ** b) if the sibling pages are not leaves, the child page associated 7984 ** with the cell. 7985 ** 7986 ** If the sibling pages are not leaves, then the pointer map entry 7987 ** associated with the right-child of each sibling may also need to be 7988 ** updated. This happens below, after the sibling pages have been 7989 ** populated, not here. 7990 */ 7991 if( ISAUTOVACUUM ){ 7992 MemPage *pOld; 7993 MemPage *pNew = pOld = apNew[0]; 7994 int cntOldNext = pNew->nCell + pNew->nOverflow; 7995 int iNew = 0; 7996 int iOld = 0; 7997 7998 for(i=0; i<b.nCell; i++){ 7999 u8 *pCell = b.apCell[i]; 8000 while( i==cntOldNext ){ 8001 iOld++; 8002 assert( iOld<nNew || iOld<nOld ); 8003 assert( iOld>=0 && iOld<NB ); 8004 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8005 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8006 } 8007 if( i==cntNew[iNew] ){ 8008 pNew = apNew[++iNew]; 8009 if( !leafData ) continue; 8010 } 8011 8012 /* Cell pCell is destined for new sibling page pNew. Originally, it 8013 ** was either part of sibling page iOld (possibly an overflow cell), 8014 ** or else the divider cell to the left of sibling page iOld. So, 8015 ** if sibling page iOld had the same page number as pNew, and if 8016 ** pCell really was a part of sibling page iOld (not a divider or 8017 ** overflow cell), we can skip updating the pointer map entries. */ 8018 if( iOld>=nNew 8019 || pNew->pgno!=aPgno[iOld] 8020 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8021 ){ 8022 if( !leafCorrection ){ 8023 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8024 } 8025 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8026 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8027 } 8028 if( rc ) goto balance_cleanup; 8029 } 8030 } 8031 } 8032 8033 /* Insert new divider cells into pParent. */ 8034 for(i=0; i<nNew-1; i++){ 8035 u8 *pCell; 8036 u8 *pTemp; 8037 int sz; 8038 MemPage *pNew = apNew[i]; 8039 j = cntNew[i]; 8040 8041 assert( j<nMaxCells ); 8042 assert( b.apCell[j]!=0 ); 8043 pCell = b.apCell[j]; 8044 sz = b.szCell[j] + leafCorrection; 8045 pTemp = &aOvflSpace[iOvflSpace]; 8046 if( !pNew->leaf ){ 8047 memcpy(&pNew->aData[8], pCell, 4); 8048 }else if( leafData ){ 8049 /* If the tree is a leaf-data tree, and the siblings are leaves, 8050 ** then there is no divider cell in b.apCell[]. Instead, the divider 8051 ** cell consists of the integer key for the right-most cell of 8052 ** the sibling-page assembled above only. 8053 */ 8054 CellInfo info; 8055 j--; 8056 pNew->xParseCell(pNew, b.apCell[j], &info); 8057 pCell = pTemp; 8058 sz = 4 + putVarint(&pCell[4], info.nKey); 8059 pTemp = 0; 8060 }else{ 8061 pCell -= 4; 8062 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8063 ** previously stored on a leaf node, and its reported size was 4 8064 ** bytes, then it may actually be smaller than this 8065 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8066 ** any cell). But it is important to pass the correct size to 8067 ** insertCell(), so reparse the cell now. 8068 ** 8069 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8070 ** and WITHOUT ROWID tables with exactly one column which is the 8071 ** primary key. 8072 */ 8073 if( b.szCell[j]==4 ){ 8074 assert(leafCorrection==4); 8075 sz = pParent->xCellSize(pParent, pCell); 8076 } 8077 } 8078 iOvflSpace += sz; 8079 assert( sz<=pBt->maxLocal+23 ); 8080 assert( iOvflSpace <= (int)pBt->pageSize ); 8081 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8082 if( rc!=SQLITE_OK ) goto balance_cleanup; 8083 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8084 } 8085 8086 /* Now update the actual sibling pages. The order in which they are updated 8087 ** is important, as this code needs to avoid disrupting any page from which 8088 ** cells may still to be read. In practice, this means: 8089 ** 8090 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8091 ** then it is not safe to update page apNew[iPg] until after 8092 ** the left-hand sibling apNew[iPg-1] has been updated. 8093 ** 8094 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8095 ** then it is not safe to update page apNew[iPg] until after 8096 ** the right-hand sibling apNew[iPg+1] has been updated. 8097 ** 8098 ** If neither of the above apply, the page is safe to update. 8099 ** 8100 ** The iPg value in the following loop starts at nNew-1 goes down 8101 ** to 0, then back up to nNew-1 again, thus making two passes over 8102 ** the pages. On the initial downward pass, only condition (1) above 8103 ** needs to be tested because (2) will always be true from the previous 8104 ** step. On the upward pass, both conditions are always true, so the 8105 ** upwards pass simply processes pages that were missed on the downward 8106 ** pass. 8107 */ 8108 for(i=1-nNew; i<nNew; i++){ 8109 int iPg = i<0 ? -i : i; 8110 assert( iPg>=0 && iPg<nNew ); 8111 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8112 if( i>=0 /* On the upwards pass, or... */ 8113 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8114 ){ 8115 int iNew; 8116 int iOld; 8117 int nNewCell; 8118 8119 /* Verify condition (1): If cells are moving left, update iPg 8120 ** only after iPg-1 has already been updated. */ 8121 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8122 8123 /* Verify condition (2): If cells are moving right, update iPg 8124 ** only after iPg+1 has already been updated. */ 8125 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8126 8127 if( iPg==0 ){ 8128 iNew = iOld = 0; 8129 nNewCell = cntNew[0]; 8130 }else{ 8131 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8132 iNew = cntNew[iPg-1] + !leafData; 8133 nNewCell = cntNew[iPg] - iNew; 8134 } 8135 8136 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8137 if( rc ) goto balance_cleanup; 8138 abDone[iPg]++; 8139 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8140 assert( apNew[iPg]->nOverflow==0 ); 8141 assert( apNew[iPg]->nCell==nNewCell ); 8142 } 8143 } 8144 8145 /* All pages have been processed exactly once */ 8146 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8147 8148 assert( nOld>0 ); 8149 assert( nNew>0 ); 8150 8151 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8152 /* The root page of the b-tree now contains no cells. The only sibling 8153 ** page is the right-child of the parent. Copy the contents of the 8154 ** child page into the parent, decreasing the overall height of the 8155 ** b-tree structure by one. This is described as the "balance-shallower" 8156 ** sub-algorithm in some documentation. 8157 ** 8158 ** If this is an auto-vacuum database, the call to copyNodeContent() 8159 ** sets all pointer-map entries corresponding to database image pages 8160 ** for which the pointer is stored within the content being copied. 8161 ** 8162 ** It is critical that the child page be defragmented before being 8163 ** copied into the parent, because if the parent is page 1 then it will 8164 ** by smaller than the child due to the database header, and so all the 8165 ** free space needs to be up front. 8166 */ 8167 assert( nNew==1 || CORRUPT_DB ); 8168 rc = defragmentPage(apNew[0], -1); 8169 testcase( rc!=SQLITE_OK ); 8170 assert( apNew[0]->nFree == 8171 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8172 - apNew[0]->nCell*2) 8173 || rc!=SQLITE_OK 8174 ); 8175 copyNodeContent(apNew[0], pParent, &rc); 8176 freePage(apNew[0], &rc); 8177 }else if( ISAUTOVACUUM && !leafCorrection ){ 8178 /* Fix the pointer map entries associated with the right-child of each 8179 ** sibling page. All other pointer map entries have already been taken 8180 ** care of. */ 8181 for(i=0; i<nNew; i++){ 8182 u32 key = get4byte(&apNew[i]->aData[8]); 8183 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8184 } 8185 } 8186 8187 assert( pParent->isInit ); 8188 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8189 nOld, nNew, b.nCell)); 8190 8191 /* Free any old pages that were not reused as new pages. 8192 */ 8193 for(i=nNew; i<nOld; i++){ 8194 freePage(apOld[i], &rc); 8195 } 8196 8197 #if 0 8198 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8199 /* The ptrmapCheckPages() contains assert() statements that verify that 8200 ** all pointer map pages are set correctly. This is helpful while 8201 ** debugging. This is usually disabled because a corrupt database may 8202 ** cause an assert() statement to fail. */ 8203 ptrmapCheckPages(apNew, nNew); 8204 ptrmapCheckPages(&pParent, 1); 8205 } 8206 #endif 8207 8208 /* 8209 ** Cleanup before returning. 8210 */ 8211 balance_cleanup: 8212 sqlite3StackFree(0, b.apCell); 8213 for(i=0; i<nOld; i++){ 8214 releasePage(apOld[i]); 8215 } 8216 for(i=0; i<nNew; i++){ 8217 releasePage(apNew[i]); 8218 } 8219 8220 return rc; 8221 } 8222 8223 8224 /* 8225 ** This function is called when the root page of a b-tree structure is 8226 ** overfull (has one or more overflow pages). 8227 ** 8228 ** A new child page is allocated and the contents of the current root 8229 ** page, including overflow cells, are copied into the child. The root 8230 ** page is then overwritten to make it an empty page with the right-child 8231 ** pointer pointing to the new page. 8232 ** 8233 ** Before returning, all pointer-map entries corresponding to pages 8234 ** that the new child-page now contains pointers to are updated. The 8235 ** entry corresponding to the new right-child pointer of the root 8236 ** page is also updated. 8237 ** 8238 ** If successful, *ppChild is set to contain a reference to the child 8239 ** page and SQLITE_OK is returned. In this case the caller is required 8240 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8241 ** an error code is returned and *ppChild is set to 0. 8242 */ 8243 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8244 int rc; /* Return value from subprocedures */ 8245 MemPage *pChild = 0; /* Pointer to a new child page */ 8246 Pgno pgnoChild = 0; /* Page number of the new child page */ 8247 BtShared *pBt = pRoot->pBt; /* The BTree */ 8248 8249 assert( pRoot->nOverflow>0 ); 8250 assert( sqlite3_mutex_held(pBt->mutex) ); 8251 8252 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8253 ** page that will become the new right-child of pPage. Copy the contents 8254 ** of the node stored on pRoot into the new child page. 8255 */ 8256 rc = sqlite3PagerWrite(pRoot->pDbPage); 8257 if( rc==SQLITE_OK ){ 8258 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8259 copyNodeContent(pRoot, pChild, &rc); 8260 if( ISAUTOVACUUM ){ 8261 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8262 } 8263 } 8264 if( rc ){ 8265 *ppChild = 0; 8266 releasePage(pChild); 8267 return rc; 8268 } 8269 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8270 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8271 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8272 8273 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8274 8275 /* Copy the overflow cells from pRoot to pChild */ 8276 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8277 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8278 memcpy(pChild->apOvfl, pRoot->apOvfl, 8279 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8280 pChild->nOverflow = pRoot->nOverflow; 8281 8282 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8283 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8284 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8285 8286 *ppChild = pChild; 8287 return SQLITE_OK; 8288 } 8289 8290 /* 8291 ** The page that pCur currently points to has just been modified in 8292 ** some way. This function figures out if this modification means the 8293 ** tree needs to be balanced, and if so calls the appropriate balancing 8294 ** routine. Balancing routines are: 8295 ** 8296 ** balance_quick() 8297 ** balance_deeper() 8298 ** balance_nonroot() 8299 */ 8300 static int balance(BtCursor *pCur){ 8301 int rc = SQLITE_OK; 8302 const int nMin = pCur->pBt->usableSize * 2 / 3; 8303 u8 aBalanceQuickSpace[13]; 8304 u8 *pFree = 0; 8305 8306 VVA_ONLY( int balance_quick_called = 0 ); 8307 VVA_ONLY( int balance_deeper_called = 0 ); 8308 8309 do { 8310 int iPage; 8311 MemPage *pPage = pCur->pPage; 8312 8313 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8314 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8315 break; 8316 }else if( (iPage = pCur->iPage)==0 ){ 8317 if( pPage->nOverflow ){ 8318 /* The root page of the b-tree is overfull. In this case call the 8319 ** balance_deeper() function to create a new child for the root-page 8320 ** and copy the current contents of the root-page to it. The 8321 ** next iteration of the do-loop will balance the child page. 8322 */ 8323 assert( balance_deeper_called==0 ); 8324 VVA_ONLY( balance_deeper_called++ ); 8325 rc = balance_deeper(pPage, &pCur->apPage[1]); 8326 if( rc==SQLITE_OK ){ 8327 pCur->iPage = 1; 8328 pCur->ix = 0; 8329 pCur->aiIdx[0] = 0; 8330 pCur->apPage[0] = pPage; 8331 pCur->pPage = pCur->apPage[1]; 8332 assert( pCur->pPage->nOverflow ); 8333 } 8334 }else{ 8335 break; 8336 } 8337 }else{ 8338 MemPage * const pParent = pCur->apPage[iPage-1]; 8339 int const iIdx = pCur->aiIdx[iPage-1]; 8340 8341 rc = sqlite3PagerWrite(pParent->pDbPage); 8342 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8343 rc = btreeComputeFreeSpace(pParent); 8344 } 8345 if( rc==SQLITE_OK ){ 8346 #ifndef SQLITE_OMIT_QUICKBALANCE 8347 if( pPage->intKeyLeaf 8348 && pPage->nOverflow==1 8349 && pPage->aiOvfl[0]==pPage->nCell 8350 && pParent->pgno!=1 8351 && pParent->nCell==iIdx 8352 ){ 8353 /* Call balance_quick() to create a new sibling of pPage on which 8354 ** to store the overflow cell. balance_quick() inserts a new cell 8355 ** into pParent, which may cause pParent overflow. If this 8356 ** happens, the next iteration of the do-loop will balance pParent 8357 ** use either balance_nonroot() or balance_deeper(). Until this 8358 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8359 ** buffer. 8360 ** 8361 ** The purpose of the following assert() is to check that only a 8362 ** single call to balance_quick() is made for each call to this 8363 ** function. If this were not verified, a subtle bug involving reuse 8364 ** of the aBalanceQuickSpace[] might sneak in. 8365 */ 8366 assert( balance_quick_called==0 ); 8367 VVA_ONLY( balance_quick_called++ ); 8368 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8369 }else 8370 #endif 8371 { 8372 /* In this case, call balance_nonroot() to redistribute cells 8373 ** between pPage and up to 2 of its sibling pages. This involves 8374 ** modifying the contents of pParent, which may cause pParent to 8375 ** become overfull or underfull. The next iteration of the do-loop 8376 ** will balance the parent page to correct this. 8377 ** 8378 ** If the parent page becomes overfull, the overflow cell or cells 8379 ** are stored in the pSpace buffer allocated immediately below. 8380 ** A subsequent iteration of the do-loop will deal with this by 8381 ** calling balance_nonroot() (balance_deeper() may be called first, 8382 ** but it doesn't deal with overflow cells - just moves them to a 8383 ** different page). Once this subsequent call to balance_nonroot() 8384 ** has completed, it is safe to release the pSpace buffer used by 8385 ** the previous call, as the overflow cell data will have been 8386 ** copied either into the body of a database page or into the new 8387 ** pSpace buffer passed to the latter call to balance_nonroot(). 8388 */ 8389 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8390 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8391 pCur->hints&BTREE_BULKLOAD); 8392 if( pFree ){ 8393 /* If pFree is not NULL, it points to the pSpace buffer used 8394 ** by a previous call to balance_nonroot(). Its contents are 8395 ** now stored either on real database pages or within the 8396 ** new pSpace buffer, so it may be safely freed here. */ 8397 sqlite3PageFree(pFree); 8398 } 8399 8400 /* The pSpace buffer will be freed after the next call to 8401 ** balance_nonroot(), or just before this function returns, whichever 8402 ** comes first. */ 8403 pFree = pSpace; 8404 } 8405 } 8406 8407 pPage->nOverflow = 0; 8408 8409 /* The next iteration of the do-loop balances the parent page. */ 8410 releasePage(pPage); 8411 pCur->iPage--; 8412 assert( pCur->iPage>=0 ); 8413 pCur->pPage = pCur->apPage[pCur->iPage]; 8414 } 8415 }while( rc==SQLITE_OK ); 8416 8417 if( pFree ){ 8418 sqlite3PageFree(pFree); 8419 } 8420 return rc; 8421 } 8422 8423 /* Overwrite content from pX into pDest. Only do the write if the 8424 ** content is different from what is already there. 8425 */ 8426 static int btreeOverwriteContent( 8427 MemPage *pPage, /* MemPage on which writing will occur */ 8428 u8 *pDest, /* Pointer to the place to start writing */ 8429 const BtreePayload *pX, /* Source of data to write */ 8430 int iOffset, /* Offset of first byte to write */ 8431 int iAmt /* Number of bytes to be written */ 8432 ){ 8433 int nData = pX->nData - iOffset; 8434 if( nData<=0 ){ 8435 /* Overwritting with zeros */ 8436 int i; 8437 for(i=0; i<iAmt && pDest[i]==0; i++){} 8438 if( i<iAmt ){ 8439 int rc = sqlite3PagerWrite(pPage->pDbPage); 8440 if( rc ) return rc; 8441 memset(pDest + i, 0, iAmt - i); 8442 } 8443 }else{ 8444 if( nData<iAmt ){ 8445 /* Mixed read data and zeros at the end. Make a recursive call 8446 ** to write the zeros then fall through to write the real data */ 8447 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8448 iAmt-nData); 8449 if( rc ) return rc; 8450 iAmt = nData; 8451 } 8452 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8453 int rc = sqlite3PagerWrite(pPage->pDbPage); 8454 if( rc ) return rc; 8455 /* In a corrupt database, it is possible for the source and destination 8456 ** buffers to overlap. This is harmless since the database is already 8457 ** corrupt but it does cause valgrind and ASAN warnings. So use 8458 ** memmove(). */ 8459 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8460 } 8461 } 8462 return SQLITE_OK; 8463 } 8464 8465 /* 8466 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8467 ** contained in pX. 8468 */ 8469 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8470 int iOffset; /* Next byte of pX->pData to write */ 8471 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8472 int rc; /* Return code */ 8473 MemPage *pPage = pCur->pPage; /* Page being written */ 8474 BtShared *pBt; /* Btree */ 8475 Pgno ovflPgno; /* Next overflow page to write */ 8476 u32 ovflPageSize; /* Size to write on overflow page */ 8477 8478 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){ 8479 return SQLITE_CORRUPT_BKPT; 8480 } 8481 /* Overwrite the local portion first */ 8482 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8483 0, pCur->info.nLocal); 8484 if( rc ) return rc; 8485 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8486 8487 /* Now overwrite the overflow pages */ 8488 iOffset = pCur->info.nLocal; 8489 assert( nTotal>=0 ); 8490 assert( iOffset>=0 ); 8491 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8492 pBt = pPage->pBt; 8493 ovflPageSize = pBt->usableSize - 4; 8494 do{ 8495 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8496 if( rc ) return rc; 8497 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8498 rc = SQLITE_CORRUPT_BKPT; 8499 }else{ 8500 if( iOffset+ovflPageSize<(u32)nTotal ){ 8501 ovflPgno = get4byte(pPage->aData); 8502 }else{ 8503 ovflPageSize = nTotal - iOffset; 8504 } 8505 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8506 iOffset, ovflPageSize); 8507 } 8508 sqlite3PagerUnref(pPage->pDbPage); 8509 if( rc ) return rc; 8510 iOffset += ovflPageSize; 8511 }while( iOffset<nTotal ); 8512 return SQLITE_OK; 8513 } 8514 8515 8516 /* 8517 ** Insert a new record into the BTree. The content of the new record 8518 ** is described by the pX object. The pCur cursor is used only to 8519 ** define what table the record should be inserted into, and is left 8520 ** pointing at a random location. 8521 ** 8522 ** For a table btree (used for rowid tables), only the pX.nKey value of 8523 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8524 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8525 ** hold the content of the row. 8526 ** 8527 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8528 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8529 ** pX.pData,nData,nZero fields must be zero. 8530 ** 8531 ** If the seekResult parameter is non-zero, then a successful call to 8532 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8533 ** been performed. In other words, if seekResult!=0 then the cursor 8534 ** is currently pointing to a cell that will be adjacent to the cell 8535 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8536 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8537 ** that is larger than (pKey,nKey). 8538 ** 8539 ** If seekResult==0, that means pCur is pointing at some unknown location. 8540 ** In that case, this routine must seek the cursor to the correct insertion 8541 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8542 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8543 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8544 ** to decode the key. 8545 */ 8546 int sqlite3BtreeInsert( 8547 BtCursor *pCur, /* Insert data into the table of this cursor */ 8548 const BtreePayload *pX, /* Content of the row to be inserted */ 8549 int flags, /* True if this is likely an append */ 8550 int seekResult /* Result of prior MovetoUnpacked() call */ 8551 ){ 8552 int rc; 8553 int loc = seekResult; /* -1: before desired location +1: after */ 8554 int szNew = 0; 8555 int idx; 8556 MemPage *pPage; 8557 Btree *p = pCur->pBtree; 8558 BtShared *pBt = p->pBt; 8559 unsigned char *oldCell; 8560 unsigned char *newCell = 0; 8561 8562 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8563 8564 if( pCur->eState==CURSOR_FAULT ){ 8565 assert( pCur->skipNext!=SQLITE_OK ); 8566 return pCur->skipNext; 8567 } 8568 8569 assert( cursorOwnsBtShared(pCur) ); 8570 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8571 && pBt->inTransaction==TRANS_WRITE 8572 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8573 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8574 8575 /* Assert that the caller has been consistent. If this cursor was opened 8576 ** expecting an index b-tree, then the caller should be inserting blob 8577 ** keys with no associated data. If the cursor was opened expecting an 8578 ** intkey table, the caller should be inserting integer keys with a 8579 ** blob of associated data. */ 8580 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8581 8582 /* Save the positions of any other cursors open on this table. 8583 ** 8584 ** In some cases, the call to btreeMoveto() below is a no-op. For 8585 ** example, when inserting data into a table with auto-generated integer 8586 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8587 ** integer key to use. It then calls this function to actually insert the 8588 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8589 ** that the cursor is already where it needs to be and returns without 8590 ** doing any work. To avoid thwarting these optimizations, it is important 8591 ** not to clear the cursor here. 8592 */ 8593 if( pCur->curFlags & BTCF_Multiple ){ 8594 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8595 if( rc ) return rc; 8596 } 8597 8598 if( pCur->pKeyInfo==0 ){ 8599 assert( pX->pKey==0 ); 8600 /* If this is an insert into a table b-tree, invalidate any incrblob 8601 ** cursors open on the row being replaced */ 8602 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8603 8604 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8605 ** to a row with the same key as the new entry being inserted. 8606 */ 8607 #ifdef SQLITE_DEBUG 8608 if( flags & BTREE_SAVEPOSITION ){ 8609 assert( pCur->curFlags & BTCF_ValidNKey ); 8610 assert( pX->nKey==pCur->info.nKey ); 8611 assert( pCur->info.nSize!=0 ); 8612 assert( loc==0 ); 8613 } 8614 #endif 8615 8616 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8617 ** that the cursor is not pointing to a row to be overwritten. 8618 ** So do a complete check. 8619 */ 8620 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8621 /* The cursor is pointing to the entry that is to be 8622 ** overwritten */ 8623 assert( pX->nData>=0 && pX->nZero>=0 ); 8624 if( pCur->info.nSize!=0 8625 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8626 ){ 8627 /* New entry is the same size as the old. Do an overwrite */ 8628 return btreeOverwriteCell(pCur, pX); 8629 } 8630 assert( loc==0 ); 8631 }else if( loc==0 ){ 8632 /* The cursor is *not* pointing to the cell to be overwritten, nor 8633 ** to an adjacent cell. Move the cursor so that it is pointing either 8634 ** to the cell to be overwritten or an adjacent cell. 8635 */ 8636 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8637 if( rc ) return rc; 8638 } 8639 }else{ 8640 /* This is an index or a WITHOUT ROWID table */ 8641 8642 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8643 ** to a row with the same key as the new entry being inserted. 8644 */ 8645 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8646 8647 /* If the cursor is not already pointing either to the cell to be 8648 ** overwritten, or if a new cell is being inserted, if the cursor is 8649 ** not pointing to an immediately adjacent cell, then move the cursor 8650 ** so that it does. 8651 */ 8652 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8653 if( pX->nMem ){ 8654 UnpackedRecord r; 8655 r.pKeyInfo = pCur->pKeyInfo; 8656 r.aMem = pX->aMem; 8657 r.nField = pX->nMem; 8658 r.default_rc = 0; 8659 r.errCode = 0; 8660 r.r1 = 0; 8661 r.r2 = 0; 8662 r.eqSeen = 0; 8663 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8664 }else{ 8665 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8666 } 8667 if( rc ) return rc; 8668 } 8669 8670 /* If the cursor is currently pointing to an entry to be overwritten 8671 ** and the new content is the same as as the old, then use the 8672 ** overwrite optimization. 8673 */ 8674 if( loc==0 ){ 8675 getCellInfo(pCur); 8676 if( pCur->info.nKey==pX->nKey ){ 8677 BtreePayload x2; 8678 x2.pData = pX->pKey; 8679 x2.nData = pX->nKey; 8680 x2.nZero = 0; 8681 return btreeOverwriteCell(pCur, &x2); 8682 } 8683 } 8684 8685 } 8686 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 8687 8688 pPage = pCur->pPage; 8689 assert( pPage->intKey || pX->nKey>=0 ); 8690 assert( pPage->leaf || !pPage->intKey ); 8691 if( pPage->nFree<0 ){ 8692 rc = btreeComputeFreeSpace(pPage); 8693 if( rc ) return rc; 8694 } 8695 8696 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8697 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8698 loc==0 ? "overwrite" : "new entry")); 8699 assert( pPage->isInit ); 8700 newCell = pBt->pTmpSpace; 8701 assert( newCell!=0 ); 8702 rc = fillInCell(pPage, newCell, pX, &szNew); 8703 if( rc ) goto end_insert; 8704 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8705 assert( szNew <= MX_CELL_SIZE(pBt) ); 8706 idx = pCur->ix; 8707 if( loc==0 ){ 8708 CellInfo info; 8709 assert( idx<pPage->nCell ); 8710 rc = sqlite3PagerWrite(pPage->pDbPage); 8711 if( rc ){ 8712 goto end_insert; 8713 } 8714 oldCell = findCell(pPage, idx); 8715 if( !pPage->leaf ){ 8716 memcpy(newCell, oldCell, 4); 8717 } 8718 rc = clearCell(pPage, oldCell, &info); 8719 testcase( pCur->curFlags & BTCF_ValidOvfl ); 8720 invalidateOverflowCache(pCur); 8721 if( info.nSize==szNew && info.nLocal==info.nPayload 8722 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8723 ){ 8724 /* Overwrite the old cell with the new if they are the same size. 8725 ** We could also try to do this if the old cell is smaller, then add 8726 ** the leftover space to the free list. But experiments show that 8727 ** doing that is no faster then skipping this optimization and just 8728 ** calling dropCell() and insertCell(). 8729 ** 8730 ** This optimization cannot be used on an autovacuum database if the 8731 ** new entry uses overflow pages, as the insertCell() call below is 8732 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8733 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8734 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 8735 return SQLITE_CORRUPT_BKPT; 8736 } 8737 if( oldCell+szNew > pPage->aDataEnd ){ 8738 return SQLITE_CORRUPT_BKPT; 8739 } 8740 memcpy(oldCell, newCell, szNew); 8741 return SQLITE_OK; 8742 } 8743 dropCell(pPage, idx, info.nSize, &rc); 8744 if( rc ) goto end_insert; 8745 }else if( loc<0 && pPage->nCell>0 ){ 8746 assert( pPage->leaf ); 8747 idx = ++pCur->ix; 8748 pCur->curFlags &= ~BTCF_ValidNKey; 8749 }else{ 8750 assert( pPage->leaf ); 8751 } 8752 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8753 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8754 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8755 8756 /* If no error has occurred and pPage has an overflow cell, call balance() 8757 ** to redistribute the cells within the tree. Since balance() may move 8758 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8759 ** variables. 8760 ** 8761 ** Previous versions of SQLite called moveToRoot() to move the cursor 8762 ** back to the root page as balance() used to invalidate the contents 8763 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8764 ** set the cursor state to "invalid". This makes common insert operations 8765 ** slightly faster. 8766 ** 8767 ** There is a subtle but important optimization here too. When inserting 8768 ** multiple records into an intkey b-tree using a single cursor (as can 8769 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8770 ** is advantageous to leave the cursor pointing to the last entry in 8771 ** the b-tree if possible. If the cursor is left pointing to the last 8772 ** entry in the table, and the next row inserted has an integer key 8773 ** larger than the largest existing key, it is possible to insert the 8774 ** row without seeking the cursor. This can be a big performance boost. 8775 */ 8776 pCur->info.nSize = 0; 8777 if( pPage->nOverflow ){ 8778 assert( rc==SQLITE_OK ); 8779 pCur->curFlags &= ~(BTCF_ValidNKey); 8780 rc = balance(pCur); 8781 8782 /* Must make sure nOverflow is reset to zero even if the balance() 8783 ** fails. Internal data structure corruption will result otherwise. 8784 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8785 ** from trying to save the current position of the cursor. */ 8786 pCur->pPage->nOverflow = 0; 8787 pCur->eState = CURSOR_INVALID; 8788 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8789 btreeReleaseAllCursorPages(pCur); 8790 if( pCur->pKeyInfo ){ 8791 assert( pCur->pKey==0 ); 8792 pCur->pKey = sqlite3Malloc( pX->nKey ); 8793 if( pCur->pKey==0 ){ 8794 rc = SQLITE_NOMEM; 8795 }else{ 8796 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8797 } 8798 } 8799 pCur->eState = CURSOR_REQUIRESEEK; 8800 pCur->nKey = pX->nKey; 8801 } 8802 } 8803 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8804 8805 end_insert: 8806 return rc; 8807 } 8808 8809 /* 8810 ** Delete the entry that the cursor is pointing to. 8811 ** 8812 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8813 ** the cursor is left pointing at an arbitrary location after the delete. 8814 ** But if that bit is set, then the cursor is left in a state such that 8815 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8816 ** as it would have been on if the call to BtreeDelete() had been omitted. 8817 ** 8818 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8819 ** associated with a single table entry and its indexes. Only one of those 8820 ** deletes is considered the "primary" delete. The primary delete occurs 8821 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8822 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8823 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8824 ** but which might be used by alternative storage engines. 8825 */ 8826 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8827 Btree *p = pCur->pBtree; 8828 BtShared *pBt = p->pBt; 8829 int rc; /* Return code */ 8830 MemPage *pPage; /* Page to delete cell from */ 8831 unsigned char *pCell; /* Pointer to cell to delete */ 8832 int iCellIdx; /* Index of cell to delete */ 8833 int iCellDepth; /* Depth of node containing pCell */ 8834 CellInfo info; /* Size of the cell being deleted */ 8835 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8836 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8837 8838 assert( cursorOwnsBtShared(pCur) ); 8839 assert( pBt->inTransaction==TRANS_WRITE ); 8840 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8841 assert( pCur->curFlags & BTCF_WriteFlag ); 8842 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8843 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8844 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8845 if( pCur->eState==CURSOR_REQUIRESEEK ){ 8846 rc = btreeRestoreCursorPosition(pCur); 8847 if( rc ) return rc; 8848 } 8849 assert( pCur->eState==CURSOR_VALID ); 8850 8851 iCellDepth = pCur->iPage; 8852 iCellIdx = pCur->ix; 8853 pPage = pCur->pPage; 8854 pCell = findCell(pPage, iCellIdx); 8855 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT; 8856 8857 /* If the bPreserve flag is set to true, then the cursor position must 8858 ** be preserved following this delete operation. If the current delete 8859 ** will cause a b-tree rebalance, then this is done by saving the cursor 8860 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8861 ** returning. 8862 ** 8863 ** Or, if the current delete will not cause a rebalance, then the cursor 8864 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8865 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8866 if( bPreserve ){ 8867 if( !pPage->leaf 8868 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8869 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 8870 ){ 8871 /* A b-tree rebalance will be required after deleting this entry. 8872 ** Save the cursor key. */ 8873 rc = saveCursorKey(pCur); 8874 if( rc ) return rc; 8875 }else{ 8876 bSkipnext = 1; 8877 } 8878 } 8879 8880 /* If the page containing the entry to delete is not a leaf page, move 8881 ** the cursor to the largest entry in the tree that is smaller than 8882 ** the entry being deleted. This cell will replace the cell being deleted 8883 ** from the internal node. The 'previous' entry is used for this instead 8884 ** of the 'next' entry, as the previous entry is always a part of the 8885 ** sub-tree headed by the child page of the cell being deleted. This makes 8886 ** balancing the tree following the delete operation easier. */ 8887 if( !pPage->leaf ){ 8888 rc = sqlite3BtreePrevious(pCur, 0); 8889 assert( rc!=SQLITE_DONE ); 8890 if( rc ) return rc; 8891 } 8892 8893 /* Save the positions of any other cursors open on this table before 8894 ** making any modifications. */ 8895 if( pCur->curFlags & BTCF_Multiple ){ 8896 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8897 if( rc ) return rc; 8898 } 8899 8900 /* If this is a delete operation to remove a row from a table b-tree, 8901 ** invalidate any incrblob cursors open on the row being deleted. */ 8902 if( pCur->pKeyInfo==0 ){ 8903 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 8904 } 8905 8906 /* Make the page containing the entry to be deleted writable. Then free any 8907 ** overflow pages associated with the entry and finally remove the cell 8908 ** itself from within the page. */ 8909 rc = sqlite3PagerWrite(pPage->pDbPage); 8910 if( rc ) return rc; 8911 rc = clearCell(pPage, pCell, &info); 8912 dropCell(pPage, iCellIdx, info.nSize, &rc); 8913 if( rc ) return rc; 8914 8915 /* If the cell deleted was not located on a leaf page, then the cursor 8916 ** is currently pointing to the largest entry in the sub-tree headed 8917 ** by the child-page of the cell that was just deleted from an internal 8918 ** node. The cell from the leaf node needs to be moved to the internal 8919 ** node to replace the deleted cell. */ 8920 if( !pPage->leaf ){ 8921 MemPage *pLeaf = pCur->pPage; 8922 int nCell; 8923 Pgno n; 8924 unsigned char *pTmp; 8925 8926 if( pLeaf->nFree<0 ){ 8927 rc = btreeComputeFreeSpace(pLeaf); 8928 if( rc ) return rc; 8929 } 8930 if( iCellDepth<pCur->iPage-1 ){ 8931 n = pCur->apPage[iCellDepth+1]->pgno; 8932 }else{ 8933 n = pCur->pPage->pgno; 8934 } 8935 pCell = findCell(pLeaf, pLeaf->nCell-1); 8936 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 8937 nCell = pLeaf->xCellSize(pLeaf, pCell); 8938 assert( MX_CELL_SIZE(pBt) >= nCell ); 8939 pTmp = pBt->pTmpSpace; 8940 assert( pTmp!=0 ); 8941 rc = sqlite3PagerWrite(pLeaf->pDbPage); 8942 if( rc==SQLITE_OK ){ 8943 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 8944 } 8945 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 8946 if( rc ) return rc; 8947 } 8948 8949 /* Balance the tree. If the entry deleted was located on a leaf page, 8950 ** then the cursor still points to that page. In this case the first 8951 ** call to balance() repairs the tree, and the if(...) condition is 8952 ** never true. 8953 ** 8954 ** Otherwise, if the entry deleted was on an internal node page, then 8955 ** pCur is pointing to the leaf page from which a cell was removed to 8956 ** replace the cell deleted from the internal node. This is slightly 8957 ** tricky as the leaf node may be underfull, and the internal node may 8958 ** be either under or overfull. In this case run the balancing algorithm 8959 ** on the leaf node first. If the balance proceeds far enough up the 8960 ** tree that we can be sure that any problem in the internal node has 8961 ** been corrected, so be it. Otherwise, after balancing the leaf node, 8962 ** walk the cursor up the tree to the internal node and balance it as 8963 ** well. */ 8964 rc = balance(pCur); 8965 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 8966 releasePageNotNull(pCur->pPage); 8967 pCur->iPage--; 8968 while( pCur->iPage>iCellDepth ){ 8969 releasePage(pCur->apPage[pCur->iPage--]); 8970 } 8971 pCur->pPage = pCur->apPage[pCur->iPage]; 8972 rc = balance(pCur); 8973 } 8974 8975 if( rc==SQLITE_OK ){ 8976 if( bSkipnext ){ 8977 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 8978 assert( pPage==pCur->pPage || CORRUPT_DB ); 8979 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 8980 pCur->eState = CURSOR_SKIPNEXT; 8981 if( iCellIdx>=pPage->nCell ){ 8982 pCur->skipNext = -1; 8983 pCur->ix = pPage->nCell-1; 8984 }else{ 8985 pCur->skipNext = 1; 8986 } 8987 }else{ 8988 rc = moveToRoot(pCur); 8989 if( bPreserve ){ 8990 btreeReleaseAllCursorPages(pCur); 8991 pCur->eState = CURSOR_REQUIRESEEK; 8992 } 8993 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 8994 } 8995 } 8996 return rc; 8997 } 8998 8999 /* 9000 ** Create a new BTree table. Write into *piTable the page 9001 ** number for the root page of the new table. 9002 ** 9003 ** The type of type is determined by the flags parameter. Only the 9004 ** following values of flags are currently in use. Other values for 9005 ** flags might not work: 9006 ** 9007 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9008 ** BTREE_ZERODATA Used for SQL indices 9009 */ 9010 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 9011 BtShared *pBt = p->pBt; 9012 MemPage *pRoot; 9013 Pgno pgnoRoot; 9014 int rc; 9015 int ptfFlags; /* Page-type flage for the root page of new table */ 9016 9017 assert( sqlite3BtreeHoldsMutex(p) ); 9018 assert( pBt->inTransaction==TRANS_WRITE ); 9019 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9020 9021 #ifdef SQLITE_OMIT_AUTOVACUUM 9022 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9023 if( rc ){ 9024 return rc; 9025 } 9026 #else 9027 if( pBt->autoVacuum ){ 9028 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9029 MemPage *pPageMove; /* The page to move to. */ 9030 9031 /* Creating a new table may probably require moving an existing database 9032 ** to make room for the new tables root page. In case this page turns 9033 ** out to be an overflow page, delete all overflow page-map caches 9034 ** held by open cursors. 9035 */ 9036 invalidateAllOverflowCache(pBt); 9037 9038 /* Read the value of meta[3] from the database to determine where the 9039 ** root page of the new table should go. meta[3] is the largest root-page 9040 ** created so far, so the new root-page is (meta[3]+1). 9041 */ 9042 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9043 pgnoRoot++; 9044 9045 /* The new root-page may not be allocated on a pointer-map page, or the 9046 ** PENDING_BYTE page. 9047 */ 9048 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9049 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9050 pgnoRoot++; 9051 } 9052 assert( pgnoRoot>=3 || CORRUPT_DB ); 9053 testcase( pgnoRoot<3 ); 9054 9055 /* Allocate a page. The page that currently resides at pgnoRoot will 9056 ** be moved to the allocated page (unless the allocated page happens 9057 ** to reside at pgnoRoot). 9058 */ 9059 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9060 if( rc!=SQLITE_OK ){ 9061 return rc; 9062 } 9063 9064 if( pgnoMove!=pgnoRoot ){ 9065 /* pgnoRoot is the page that will be used for the root-page of 9066 ** the new table (assuming an error did not occur). But we were 9067 ** allocated pgnoMove. If required (i.e. if it was not allocated 9068 ** by extending the file), the current page at position pgnoMove 9069 ** is already journaled. 9070 */ 9071 u8 eType = 0; 9072 Pgno iPtrPage = 0; 9073 9074 /* Save the positions of any open cursors. This is required in 9075 ** case they are holding a reference to an xFetch reference 9076 ** corresponding to page pgnoRoot. */ 9077 rc = saveAllCursors(pBt, 0, 0); 9078 releasePage(pPageMove); 9079 if( rc!=SQLITE_OK ){ 9080 return rc; 9081 } 9082 9083 /* Move the page currently at pgnoRoot to pgnoMove. */ 9084 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9085 if( rc!=SQLITE_OK ){ 9086 return rc; 9087 } 9088 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9089 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9090 rc = SQLITE_CORRUPT_BKPT; 9091 } 9092 if( rc!=SQLITE_OK ){ 9093 releasePage(pRoot); 9094 return rc; 9095 } 9096 assert( eType!=PTRMAP_ROOTPAGE ); 9097 assert( eType!=PTRMAP_FREEPAGE ); 9098 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9099 releasePage(pRoot); 9100 9101 /* Obtain the page at pgnoRoot */ 9102 if( rc!=SQLITE_OK ){ 9103 return rc; 9104 } 9105 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9106 if( rc!=SQLITE_OK ){ 9107 return rc; 9108 } 9109 rc = sqlite3PagerWrite(pRoot->pDbPage); 9110 if( rc!=SQLITE_OK ){ 9111 releasePage(pRoot); 9112 return rc; 9113 } 9114 }else{ 9115 pRoot = pPageMove; 9116 } 9117 9118 /* Update the pointer-map and meta-data with the new root-page number. */ 9119 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9120 if( rc ){ 9121 releasePage(pRoot); 9122 return rc; 9123 } 9124 9125 /* When the new root page was allocated, page 1 was made writable in 9126 ** order either to increase the database filesize, or to decrement the 9127 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9128 */ 9129 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9130 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9131 if( NEVER(rc) ){ 9132 releasePage(pRoot); 9133 return rc; 9134 } 9135 9136 }else{ 9137 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9138 if( rc ) return rc; 9139 } 9140 #endif 9141 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9142 if( createTabFlags & BTREE_INTKEY ){ 9143 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9144 }else{ 9145 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9146 } 9147 zeroPage(pRoot, ptfFlags); 9148 sqlite3PagerUnref(pRoot->pDbPage); 9149 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9150 *piTable = (int)pgnoRoot; 9151 return SQLITE_OK; 9152 } 9153 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 9154 int rc; 9155 sqlite3BtreeEnter(p); 9156 rc = btreeCreateTable(p, piTable, flags); 9157 sqlite3BtreeLeave(p); 9158 return rc; 9159 } 9160 9161 /* 9162 ** Erase the given database page and all its children. Return 9163 ** the page to the freelist. 9164 */ 9165 static int clearDatabasePage( 9166 BtShared *pBt, /* The BTree that contains the table */ 9167 Pgno pgno, /* Page number to clear */ 9168 int freePageFlag, /* Deallocate page if true */ 9169 int *pnChange /* Add number of Cells freed to this counter */ 9170 ){ 9171 MemPage *pPage; 9172 int rc; 9173 unsigned char *pCell; 9174 int i; 9175 int hdr; 9176 CellInfo info; 9177 9178 assert( sqlite3_mutex_held(pBt->mutex) ); 9179 if( pgno>btreePagecount(pBt) ){ 9180 return SQLITE_CORRUPT_BKPT; 9181 } 9182 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9183 if( rc ) return rc; 9184 if( pPage->bBusy ){ 9185 rc = SQLITE_CORRUPT_BKPT; 9186 goto cleardatabasepage_out; 9187 } 9188 pPage->bBusy = 1; 9189 hdr = pPage->hdrOffset; 9190 for(i=0; i<pPage->nCell; i++){ 9191 pCell = findCell(pPage, i); 9192 if( !pPage->leaf ){ 9193 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9194 if( rc ) goto cleardatabasepage_out; 9195 } 9196 rc = clearCell(pPage, pCell, &info); 9197 if( rc ) goto cleardatabasepage_out; 9198 } 9199 if( !pPage->leaf ){ 9200 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9201 if( rc ) goto cleardatabasepage_out; 9202 }else if( pnChange ){ 9203 assert( pPage->intKey || CORRUPT_DB ); 9204 testcase( !pPage->intKey ); 9205 *pnChange += pPage->nCell; 9206 } 9207 if( freePageFlag ){ 9208 freePage(pPage, &rc); 9209 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9210 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9211 } 9212 9213 cleardatabasepage_out: 9214 pPage->bBusy = 0; 9215 releasePage(pPage); 9216 return rc; 9217 } 9218 9219 /* 9220 ** Delete all information from a single table in the database. iTable is 9221 ** the page number of the root of the table. After this routine returns, 9222 ** the root page is empty, but still exists. 9223 ** 9224 ** This routine will fail with SQLITE_LOCKED if there are any open 9225 ** read cursors on the table. Open write cursors are moved to the 9226 ** root of the table. 9227 ** 9228 ** If pnChange is not NULL, then table iTable must be an intkey table. The 9229 ** integer value pointed to by pnChange is incremented by the number of 9230 ** entries in the table. 9231 */ 9232 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 9233 int rc; 9234 BtShared *pBt = p->pBt; 9235 sqlite3BtreeEnter(p); 9236 assert( p->inTrans==TRANS_WRITE ); 9237 9238 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9239 9240 if( SQLITE_OK==rc ){ 9241 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9242 ** is the root of a table b-tree - if it is not, the following call is 9243 ** a no-op). */ 9244 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9245 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9246 } 9247 sqlite3BtreeLeave(p); 9248 return rc; 9249 } 9250 9251 /* 9252 ** Delete all information from the single table that pCur is open on. 9253 ** 9254 ** This routine only work for pCur on an ephemeral table. 9255 */ 9256 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9257 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9258 } 9259 9260 /* 9261 ** Erase all information in a table and add the root of the table to 9262 ** the freelist. Except, the root of the principle table (the one on 9263 ** page 1) is never added to the freelist. 9264 ** 9265 ** This routine will fail with SQLITE_LOCKED if there are any open 9266 ** cursors on the table. 9267 ** 9268 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9269 ** root page in the database file, then the last root page 9270 ** in the database file is moved into the slot formerly occupied by 9271 ** iTable and that last slot formerly occupied by the last root page 9272 ** is added to the freelist instead of iTable. In this say, all 9273 ** root pages are kept at the beginning of the database file, which 9274 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9275 ** page number that used to be the last root page in the file before 9276 ** the move. If no page gets moved, *piMoved is set to 0. 9277 ** The last root page is recorded in meta[3] and the value of 9278 ** meta[3] is updated by this procedure. 9279 */ 9280 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9281 int rc; 9282 MemPage *pPage = 0; 9283 BtShared *pBt = p->pBt; 9284 9285 assert( sqlite3BtreeHoldsMutex(p) ); 9286 assert( p->inTrans==TRANS_WRITE ); 9287 assert( iTable>=2 ); 9288 if( iTable>btreePagecount(pBt) ){ 9289 return SQLITE_CORRUPT_BKPT; 9290 } 9291 9292 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9293 if( rc ) return rc; 9294 rc = sqlite3BtreeClearTable(p, iTable, 0); 9295 if( rc ){ 9296 releasePage(pPage); 9297 return rc; 9298 } 9299 9300 *piMoved = 0; 9301 9302 #ifdef SQLITE_OMIT_AUTOVACUUM 9303 freePage(pPage, &rc); 9304 releasePage(pPage); 9305 #else 9306 if( pBt->autoVacuum ){ 9307 Pgno maxRootPgno; 9308 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9309 9310 if( iTable==maxRootPgno ){ 9311 /* If the table being dropped is the table with the largest root-page 9312 ** number in the database, put the root page on the free list. 9313 */ 9314 freePage(pPage, &rc); 9315 releasePage(pPage); 9316 if( rc!=SQLITE_OK ){ 9317 return rc; 9318 } 9319 }else{ 9320 /* The table being dropped does not have the largest root-page 9321 ** number in the database. So move the page that does into the 9322 ** gap left by the deleted root-page. 9323 */ 9324 MemPage *pMove; 9325 releasePage(pPage); 9326 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9327 if( rc!=SQLITE_OK ){ 9328 return rc; 9329 } 9330 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9331 releasePage(pMove); 9332 if( rc!=SQLITE_OK ){ 9333 return rc; 9334 } 9335 pMove = 0; 9336 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9337 freePage(pMove, &rc); 9338 releasePage(pMove); 9339 if( rc!=SQLITE_OK ){ 9340 return rc; 9341 } 9342 *piMoved = maxRootPgno; 9343 } 9344 9345 /* Set the new 'max-root-page' value in the database header. This 9346 ** is the old value less one, less one more if that happens to 9347 ** be a root-page number, less one again if that is the 9348 ** PENDING_BYTE_PAGE. 9349 */ 9350 maxRootPgno--; 9351 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9352 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9353 maxRootPgno--; 9354 } 9355 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9356 9357 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9358 }else{ 9359 freePage(pPage, &rc); 9360 releasePage(pPage); 9361 } 9362 #endif 9363 return rc; 9364 } 9365 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9366 int rc; 9367 sqlite3BtreeEnter(p); 9368 rc = btreeDropTable(p, iTable, piMoved); 9369 sqlite3BtreeLeave(p); 9370 return rc; 9371 } 9372 9373 9374 /* 9375 ** This function may only be called if the b-tree connection already 9376 ** has a read or write transaction open on the database. 9377 ** 9378 ** Read the meta-information out of a database file. Meta[0] 9379 ** is the number of free pages currently in the database. Meta[1] 9380 ** through meta[15] are available for use by higher layers. Meta[0] 9381 ** is read-only, the others are read/write. 9382 ** 9383 ** The schema layer numbers meta values differently. At the schema 9384 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9385 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9386 ** 9387 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9388 ** of reading the value out of the header, it instead loads the "DataVersion" 9389 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9390 ** database file. It is a number computed by the pager. But its access 9391 ** pattern is the same as header meta values, and so it is convenient to 9392 ** read it from this routine. 9393 */ 9394 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9395 BtShared *pBt = p->pBt; 9396 9397 sqlite3BtreeEnter(p); 9398 assert( p->inTrans>TRANS_NONE ); 9399 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 9400 assert( pBt->pPage1 ); 9401 assert( idx>=0 && idx<=15 ); 9402 9403 if( idx==BTREE_DATA_VERSION ){ 9404 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9405 }else{ 9406 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9407 } 9408 9409 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9410 ** database, mark the database as read-only. */ 9411 #ifdef SQLITE_OMIT_AUTOVACUUM 9412 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9413 pBt->btsFlags |= BTS_READ_ONLY; 9414 } 9415 #endif 9416 9417 sqlite3BtreeLeave(p); 9418 } 9419 9420 /* 9421 ** Write meta-information back into the database. Meta[0] is 9422 ** read-only and may not be written. 9423 */ 9424 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9425 BtShared *pBt = p->pBt; 9426 unsigned char *pP1; 9427 int rc; 9428 assert( idx>=1 && idx<=15 ); 9429 sqlite3BtreeEnter(p); 9430 assert( p->inTrans==TRANS_WRITE ); 9431 assert( pBt->pPage1!=0 ); 9432 pP1 = pBt->pPage1->aData; 9433 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9434 if( rc==SQLITE_OK ){ 9435 put4byte(&pP1[36 + idx*4], iMeta); 9436 #ifndef SQLITE_OMIT_AUTOVACUUM 9437 if( idx==BTREE_INCR_VACUUM ){ 9438 assert( pBt->autoVacuum || iMeta==0 ); 9439 assert( iMeta==0 || iMeta==1 ); 9440 pBt->incrVacuum = (u8)iMeta; 9441 } 9442 #endif 9443 } 9444 sqlite3BtreeLeave(p); 9445 return rc; 9446 } 9447 9448 #ifndef SQLITE_OMIT_BTREECOUNT 9449 /* 9450 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9451 ** number of entries in the b-tree and write the result to *pnEntry. 9452 ** 9453 ** SQLITE_OK is returned if the operation is successfully executed. 9454 ** Otherwise, if an error is encountered (i.e. an IO error or database 9455 ** corruption) an SQLite error code is returned. 9456 */ 9457 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 9458 i64 nEntry = 0; /* Value to return in *pnEntry */ 9459 int rc; /* Return code */ 9460 9461 rc = moveToRoot(pCur); 9462 if( rc==SQLITE_EMPTY ){ 9463 *pnEntry = 0; 9464 return SQLITE_OK; 9465 } 9466 9467 /* Unless an error occurs, the following loop runs one iteration for each 9468 ** page in the B-Tree structure (not including overflow pages). 9469 */ 9470 while( rc==SQLITE_OK ){ 9471 int iIdx; /* Index of child node in parent */ 9472 MemPage *pPage; /* Current page of the b-tree */ 9473 9474 /* If this is a leaf page or the tree is not an int-key tree, then 9475 ** this page contains countable entries. Increment the entry counter 9476 ** accordingly. 9477 */ 9478 pPage = pCur->pPage; 9479 if( pPage->leaf || !pPage->intKey ){ 9480 nEntry += pPage->nCell; 9481 } 9482 9483 /* pPage is a leaf node. This loop navigates the cursor so that it 9484 ** points to the first interior cell that it points to the parent of 9485 ** the next page in the tree that has not yet been visited. The 9486 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9487 ** of the page, or to the number of cells in the page if the next page 9488 ** to visit is the right-child of its parent. 9489 ** 9490 ** If all pages in the tree have been visited, return SQLITE_OK to the 9491 ** caller. 9492 */ 9493 if( pPage->leaf ){ 9494 do { 9495 if( pCur->iPage==0 ){ 9496 /* All pages of the b-tree have been visited. Return successfully. */ 9497 *pnEntry = nEntry; 9498 return moveToRoot(pCur); 9499 } 9500 moveToParent(pCur); 9501 }while ( pCur->ix>=pCur->pPage->nCell ); 9502 9503 pCur->ix++; 9504 pPage = pCur->pPage; 9505 } 9506 9507 /* Descend to the child node of the cell that the cursor currently 9508 ** points at. This is the right-child if (iIdx==pPage->nCell). 9509 */ 9510 iIdx = pCur->ix; 9511 if( iIdx==pPage->nCell ){ 9512 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9513 }else{ 9514 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9515 } 9516 } 9517 9518 /* An error has occurred. Return an error code. */ 9519 return rc; 9520 } 9521 #endif 9522 9523 /* 9524 ** Return the pager associated with a BTree. This routine is used for 9525 ** testing and debugging only. 9526 */ 9527 Pager *sqlite3BtreePager(Btree *p){ 9528 return p->pBt->pPager; 9529 } 9530 9531 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9532 /* 9533 ** Append a message to the error message string. 9534 */ 9535 static void checkAppendMsg( 9536 IntegrityCk *pCheck, 9537 const char *zFormat, 9538 ... 9539 ){ 9540 va_list ap; 9541 if( !pCheck->mxErr ) return; 9542 pCheck->mxErr--; 9543 pCheck->nErr++; 9544 va_start(ap, zFormat); 9545 if( pCheck->errMsg.nChar ){ 9546 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9547 } 9548 if( pCheck->zPfx ){ 9549 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9550 } 9551 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9552 va_end(ap); 9553 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9554 pCheck->mallocFailed = 1; 9555 } 9556 } 9557 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9558 9559 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9560 9561 /* 9562 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9563 ** corresponds to page iPg is already set. 9564 */ 9565 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9566 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9567 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9568 } 9569 9570 /* 9571 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9572 */ 9573 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9574 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9575 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9576 } 9577 9578 9579 /* 9580 ** Add 1 to the reference count for page iPage. If this is the second 9581 ** reference to the page, add an error message to pCheck->zErrMsg. 9582 ** Return 1 if there are 2 or more references to the page and 0 if 9583 ** if this is the first reference to the page. 9584 ** 9585 ** Also check that the page number is in bounds. 9586 */ 9587 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9588 if( iPage>pCheck->nPage || iPage==0 ){ 9589 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9590 return 1; 9591 } 9592 if( getPageReferenced(pCheck, iPage) ){ 9593 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9594 return 1; 9595 } 9596 setPageReferenced(pCheck, iPage); 9597 return 0; 9598 } 9599 9600 #ifndef SQLITE_OMIT_AUTOVACUUM 9601 /* 9602 ** Check that the entry in the pointer-map for page iChild maps to 9603 ** page iParent, pointer type ptrType. If not, append an error message 9604 ** to pCheck. 9605 */ 9606 static void checkPtrmap( 9607 IntegrityCk *pCheck, /* Integrity check context */ 9608 Pgno iChild, /* Child page number */ 9609 u8 eType, /* Expected pointer map type */ 9610 Pgno iParent /* Expected pointer map parent page number */ 9611 ){ 9612 int rc; 9613 u8 ePtrmapType; 9614 Pgno iPtrmapParent; 9615 9616 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9617 if( rc!=SQLITE_OK ){ 9618 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 9619 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9620 return; 9621 } 9622 9623 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9624 checkAppendMsg(pCheck, 9625 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9626 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9627 } 9628 } 9629 #endif 9630 9631 /* 9632 ** Check the integrity of the freelist or of an overflow page list. 9633 ** Verify that the number of pages on the list is N. 9634 */ 9635 static void checkList( 9636 IntegrityCk *pCheck, /* Integrity checking context */ 9637 int isFreeList, /* True for a freelist. False for overflow page list */ 9638 int iPage, /* Page number for first page in the list */ 9639 u32 N /* Expected number of pages in the list */ 9640 ){ 9641 int i; 9642 u32 expected = N; 9643 int nErrAtStart = pCheck->nErr; 9644 while( iPage!=0 && pCheck->mxErr ){ 9645 DbPage *pOvflPage; 9646 unsigned char *pOvflData; 9647 if( checkRef(pCheck, iPage) ) break; 9648 N--; 9649 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9650 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9651 break; 9652 } 9653 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9654 if( isFreeList ){ 9655 u32 n = (u32)get4byte(&pOvflData[4]); 9656 #ifndef SQLITE_OMIT_AUTOVACUUM 9657 if( pCheck->pBt->autoVacuum ){ 9658 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9659 } 9660 #endif 9661 if( n>pCheck->pBt->usableSize/4-2 ){ 9662 checkAppendMsg(pCheck, 9663 "freelist leaf count too big on page %d", iPage); 9664 N--; 9665 }else{ 9666 for(i=0; i<(int)n; i++){ 9667 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9668 #ifndef SQLITE_OMIT_AUTOVACUUM 9669 if( pCheck->pBt->autoVacuum ){ 9670 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9671 } 9672 #endif 9673 checkRef(pCheck, iFreePage); 9674 } 9675 N -= n; 9676 } 9677 } 9678 #ifndef SQLITE_OMIT_AUTOVACUUM 9679 else{ 9680 /* If this database supports auto-vacuum and iPage is not the last 9681 ** page in this overflow list, check that the pointer-map entry for 9682 ** the following page matches iPage. 9683 */ 9684 if( pCheck->pBt->autoVacuum && N>0 ){ 9685 i = get4byte(pOvflData); 9686 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9687 } 9688 } 9689 #endif 9690 iPage = get4byte(pOvflData); 9691 sqlite3PagerUnref(pOvflPage); 9692 } 9693 if( N && nErrAtStart==pCheck->nErr ){ 9694 checkAppendMsg(pCheck, 9695 "%s is %d but should be %d", 9696 isFreeList ? "size" : "overflow list length", 9697 expected-N, expected); 9698 } 9699 } 9700 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9701 9702 /* 9703 ** An implementation of a min-heap. 9704 ** 9705 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9706 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9707 ** and aHeap[N*2+1]. 9708 ** 9709 ** The heap property is this: Every node is less than or equal to both 9710 ** of its daughter nodes. A consequence of the heap property is that the 9711 ** root node aHeap[1] is always the minimum value currently in the heap. 9712 ** 9713 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9714 ** the heap, preserving the heap property. The btreeHeapPull() routine 9715 ** removes the root element from the heap (the minimum value in the heap) 9716 ** and then moves other nodes around as necessary to preserve the heap 9717 ** property. 9718 ** 9719 ** This heap is used for cell overlap and coverage testing. Each u32 9720 ** entry represents the span of a cell or freeblock on a btree page. 9721 ** The upper 16 bits are the index of the first byte of a range and the 9722 ** lower 16 bits are the index of the last byte of that range. 9723 */ 9724 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9725 u32 j, i = ++aHeap[0]; 9726 aHeap[i] = x; 9727 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9728 x = aHeap[j]; 9729 aHeap[j] = aHeap[i]; 9730 aHeap[i] = x; 9731 i = j; 9732 } 9733 } 9734 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9735 u32 j, i, x; 9736 if( (x = aHeap[0])==0 ) return 0; 9737 *pOut = aHeap[1]; 9738 aHeap[1] = aHeap[x]; 9739 aHeap[x] = 0xffffffff; 9740 aHeap[0]--; 9741 i = 1; 9742 while( (j = i*2)<=aHeap[0] ){ 9743 if( aHeap[j]>aHeap[j+1] ) j++; 9744 if( aHeap[i]<aHeap[j] ) break; 9745 x = aHeap[i]; 9746 aHeap[i] = aHeap[j]; 9747 aHeap[j] = x; 9748 i = j; 9749 } 9750 return 1; 9751 } 9752 9753 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9754 /* 9755 ** Do various sanity checks on a single page of a tree. Return 9756 ** the tree depth. Root pages return 0. Parents of root pages 9757 ** return 1, and so forth. 9758 ** 9759 ** These checks are done: 9760 ** 9761 ** 1. Make sure that cells and freeblocks do not overlap 9762 ** but combine to completely cover the page. 9763 ** 2. Make sure integer cell keys are in order. 9764 ** 3. Check the integrity of overflow pages. 9765 ** 4. Recursively call checkTreePage on all children. 9766 ** 5. Verify that the depth of all children is the same. 9767 */ 9768 static int checkTreePage( 9769 IntegrityCk *pCheck, /* Context for the sanity check */ 9770 int iPage, /* Page number of the page to check */ 9771 i64 *piMinKey, /* Write minimum integer primary key here */ 9772 i64 maxKey /* Error if integer primary key greater than this */ 9773 ){ 9774 MemPage *pPage = 0; /* The page being analyzed */ 9775 int i; /* Loop counter */ 9776 int rc; /* Result code from subroutine call */ 9777 int depth = -1, d2; /* Depth of a subtree */ 9778 int pgno; /* Page number */ 9779 int nFrag; /* Number of fragmented bytes on the page */ 9780 int hdr; /* Offset to the page header */ 9781 int cellStart; /* Offset to the start of the cell pointer array */ 9782 int nCell; /* Number of cells */ 9783 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9784 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9785 ** False if IPK must be strictly less than maxKey */ 9786 u8 *data; /* Page content */ 9787 u8 *pCell; /* Cell content */ 9788 u8 *pCellIdx; /* Next element of the cell pointer array */ 9789 BtShared *pBt; /* The BtShared object that owns pPage */ 9790 u32 pc; /* Address of a cell */ 9791 u32 usableSize; /* Usable size of the page */ 9792 u32 contentOffset; /* Offset to the start of the cell content area */ 9793 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9794 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9795 const char *saved_zPfx = pCheck->zPfx; 9796 int saved_v1 = pCheck->v1; 9797 int saved_v2 = pCheck->v2; 9798 u8 savedIsInit = 0; 9799 9800 /* Check that the page exists 9801 */ 9802 pBt = pCheck->pBt; 9803 usableSize = pBt->usableSize; 9804 if( iPage==0 ) return 0; 9805 if( checkRef(pCheck, iPage) ) return 0; 9806 pCheck->zPfx = "Page %d: "; 9807 pCheck->v1 = iPage; 9808 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 9809 checkAppendMsg(pCheck, 9810 "unable to get the page. error code=%d", rc); 9811 goto end_of_check; 9812 } 9813 9814 /* Clear MemPage.isInit to make sure the corruption detection code in 9815 ** btreeInitPage() is executed. */ 9816 savedIsInit = pPage->isInit; 9817 pPage->isInit = 0; 9818 if( (rc = btreeInitPage(pPage))!=0 ){ 9819 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9820 checkAppendMsg(pCheck, 9821 "btreeInitPage() returns error code %d", rc); 9822 goto end_of_check; 9823 } 9824 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 9825 assert( rc==SQLITE_CORRUPT ); 9826 checkAppendMsg(pCheck, "free space corruption", rc); 9827 goto end_of_check; 9828 } 9829 data = pPage->aData; 9830 hdr = pPage->hdrOffset; 9831 9832 /* Set up for cell analysis */ 9833 pCheck->zPfx = "On tree page %d cell %d: "; 9834 contentOffset = get2byteNotZero(&data[hdr+5]); 9835 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9836 9837 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9838 ** number of cells on the page. */ 9839 nCell = get2byte(&data[hdr+3]); 9840 assert( pPage->nCell==nCell ); 9841 9842 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9843 ** immediately follows the b-tree page header. */ 9844 cellStart = hdr + 12 - 4*pPage->leaf; 9845 assert( pPage->aCellIdx==&data[cellStart] ); 9846 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9847 9848 if( !pPage->leaf ){ 9849 /* Analyze the right-child page of internal pages */ 9850 pgno = get4byte(&data[hdr+8]); 9851 #ifndef SQLITE_OMIT_AUTOVACUUM 9852 if( pBt->autoVacuum ){ 9853 pCheck->zPfx = "On page %d at right child: "; 9854 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9855 } 9856 #endif 9857 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9858 keyCanBeEqual = 0; 9859 }else{ 9860 /* For leaf pages, the coverage check will occur in the same loop 9861 ** as the other cell checks, so initialize the heap. */ 9862 heap = pCheck->heap; 9863 heap[0] = 0; 9864 } 9865 9866 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9867 ** integer offsets to the cell contents. */ 9868 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9869 CellInfo info; 9870 9871 /* Check cell size */ 9872 pCheck->v2 = i; 9873 assert( pCellIdx==&data[cellStart + i*2] ); 9874 pc = get2byteAligned(pCellIdx); 9875 pCellIdx -= 2; 9876 if( pc<contentOffset || pc>usableSize-4 ){ 9877 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9878 pc, contentOffset, usableSize-4); 9879 doCoverageCheck = 0; 9880 continue; 9881 } 9882 pCell = &data[pc]; 9883 pPage->xParseCell(pPage, pCell, &info); 9884 if( pc+info.nSize>usableSize ){ 9885 checkAppendMsg(pCheck, "Extends off end of page"); 9886 doCoverageCheck = 0; 9887 continue; 9888 } 9889 9890 /* Check for integer primary key out of range */ 9891 if( pPage->intKey ){ 9892 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 9893 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 9894 } 9895 maxKey = info.nKey; 9896 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 9897 } 9898 9899 /* Check the content overflow list */ 9900 if( info.nPayload>info.nLocal ){ 9901 u32 nPage; /* Number of pages on the overflow chain */ 9902 Pgno pgnoOvfl; /* First page of the overflow chain */ 9903 assert( pc + info.nSize - 4 <= usableSize ); 9904 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 9905 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 9906 #ifndef SQLITE_OMIT_AUTOVACUUM 9907 if( pBt->autoVacuum ){ 9908 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 9909 } 9910 #endif 9911 checkList(pCheck, 0, pgnoOvfl, nPage); 9912 } 9913 9914 if( !pPage->leaf ){ 9915 /* Check sanity of left child page for internal pages */ 9916 pgno = get4byte(pCell); 9917 #ifndef SQLITE_OMIT_AUTOVACUUM 9918 if( pBt->autoVacuum ){ 9919 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9920 } 9921 #endif 9922 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9923 keyCanBeEqual = 0; 9924 if( d2!=depth ){ 9925 checkAppendMsg(pCheck, "Child page depth differs"); 9926 depth = d2; 9927 } 9928 }else{ 9929 /* Populate the coverage-checking heap for leaf pages */ 9930 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 9931 } 9932 } 9933 *piMinKey = maxKey; 9934 9935 /* Check for complete coverage of the page 9936 */ 9937 pCheck->zPfx = 0; 9938 if( doCoverageCheck && pCheck->mxErr>0 ){ 9939 /* For leaf pages, the min-heap has already been initialized and the 9940 ** cells have already been inserted. But for internal pages, that has 9941 ** not yet been done, so do it now */ 9942 if( !pPage->leaf ){ 9943 heap = pCheck->heap; 9944 heap[0] = 0; 9945 for(i=nCell-1; i>=0; i--){ 9946 u32 size; 9947 pc = get2byteAligned(&data[cellStart+i*2]); 9948 size = pPage->xCellSize(pPage, &data[pc]); 9949 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 9950 } 9951 } 9952 /* Add the freeblocks to the min-heap 9953 ** 9954 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 9955 ** is the offset of the first freeblock, or zero if there are no 9956 ** freeblocks on the page. 9957 */ 9958 i = get2byte(&data[hdr+1]); 9959 while( i>0 ){ 9960 int size, j; 9961 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 9962 size = get2byte(&data[i+2]); 9963 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 9964 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 9965 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 9966 ** big-endian integer which is the offset in the b-tree page of the next 9967 ** freeblock in the chain, or zero if the freeblock is the last on the 9968 ** chain. */ 9969 j = get2byte(&data[i]); 9970 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 9971 ** increasing offset. */ 9972 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 9973 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 9974 i = j; 9975 } 9976 /* Analyze the min-heap looking for overlap between cells and/or 9977 ** freeblocks, and counting the number of untracked bytes in nFrag. 9978 ** 9979 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 9980 ** There is an implied first entry the covers the page header, the cell 9981 ** pointer index, and the gap between the cell pointer index and the start 9982 ** of cell content. 9983 ** 9984 ** The loop below pulls entries from the min-heap in order and compares 9985 ** the start_address against the previous end_address. If there is an 9986 ** overlap, that means bytes are used multiple times. If there is a gap, 9987 ** that gap is added to the fragmentation count. 9988 */ 9989 nFrag = 0; 9990 prev = contentOffset - 1; /* Implied first min-heap entry */ 9991 while( btreeHeapPull(heap,&x) ){ 9992 if( (prev&0xffff)>=(x>>16) ){ 9993 checkAppendMsg(pCheck, 9994 "Multiple uses for byte %u of page %d", x>>16, iPage); 9995 break; 9996 }else{ 9997 nFrag += (x>>16) - (prev&0xffff) - 1; 9998 prev = x; 9999 } 10000 } 10001 nFrag += usableSize - (prev&0xffff) - 1; 10002 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10003 ** is stored in the fifth field of the b-tree page header. 10004 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10005 ** number of fragmented free bytes within the cell content area. 10006 */ 10007 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10008 checkAppendMsg(pCheck, 10009 "Fragmentation of %d bytes reported as %d on page %d", 10010 nFrag, data[hdr+7], iPage); 10011 } 10012 } 10013 10014 end_of_check: 10015 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10016 releasePage(pPage); 10017 pCheck->zPfx = saved_zPfx; 10018 pCheck->v1 = saved_v1; 10019 pCheck->v2 = saved_v2; 10020 return depth+1; 10021 } 10022 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10023 10024 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10025 /* 10026 ** This routine does a complete check of the given BTree file. aRoot[] is 10027 ** an array of pages numbers were each page number is the root page of 10028 ** a table. nRoot is the number of entries in aRoot. 10029 ** 10030 ** A read-only or read-write transaction must be opened before calling 10031 ** this function. 10032 ** 10033 ** Write the number of error seen in *pnErr. Except for some memory 10034 ** allocation errors, an error message held in memory obtained from 10035 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10036 ** returned. If a memory allocation error occurs, NULL is returned. 10037 */ 10038 char *sqlite3BtreeIntegrityCheck( 10039 Btree *p, /* The btree to be checked */ 10040 int *aRoot, /* An array of root pages numbers for individual trees */ 10041 int nRoot, /* Number of entries in aRoot[] */ 10042 int mxErr, /* Stop reporting errors after this many */ 10043 int *pnErr /* Write number of errors seen to this variable */ 10044 ){ 10045 Pgno i; 10046 IntegrityCk sCheck; 10047 BtShared *pBt = p->pBt; 10048 u64 savedDbFlags = pBt->db->flags; 10049 char zErr[100]; 10050 VVA_ONLY( int nRef ); 10051 10052 sqlite3BtreeEnter(p); 10053 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10054 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10055 assert( nRef>=0 ); 10056 sCheck.pBt = pBt; 10057 sCheck.pPager = pBt->pPager; 10058 sCheck.nPage = btreePagecount(sCheck.pBt); 10059 sCheck.mxErr = mxErr; 10060 sCheck.nErr = 0; 10061 sCheck.mallocFailed = 0; 10062 sCheck.zPfx = 0; 10063 sCheck.v1 = 0; 10064 sCheck.v2 = 0; 10065 sCheck.aPgRef = 0; 10066 sCheck.heap = 0; 10067 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10068 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10069 if( sCheck.nPage==0 ){ 10070 goto integrity_ck_cleanup; 10071 } 10072 10073 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10074 if( !sCheck.aPgRef ){ 10075 sCheck.mallocFailed = 1; 10076 goto integrity_ck_cleanup; 10077 } 10078 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10079 if( sCheck.heap==0 ){ 10080 sCheck.mallocFailed = 1; 10081 goto integrity_ck_cleanup; 10082 } 10083 10084 i = PENDING_BYTE_PAGE(pBt); 10085 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10086 10087 /* Check the integrity of the freelist 10088 */ 10089 sCheck.zPfx = "Main freelist: "; 10090 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10091 get4byte(&pBt->pPage1->aData[36])); 10092 sCheck.zPfx = 0; 10093 10094 /* Check all the tables. 10095 */ 10096 #ifndef SQLITE_OMIT_AUTOVACUUM 10097 if( pBt->autoVacuum ){ 10098 int mx = 0; 10099 int mxInHdr; 10100 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10101 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10102 if( mx!=mxInHdr ){ 10103 checkAppendMsg(&sCheck, 10104 "max rootpage (%d) disagrees with header (%d)", 10105 mx, mxInHdr 10106 ); 10107 } 10108 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10109 checkAppendMsg(&sCheck, 10110 "incremental_vacuum enabled with a max rootpage of zero" 10111 ); 10112 } 10113 #endif 10114 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10115 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10116 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10117 i64 notUsed; 10118 if( aRoot[i]==0 ) continue; 10119 #ifndef SQLITE_OMIT_AUTOVACUUM 10120 if( pBt->autoVacuum && aRoot[i]>1 ){ 10121 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10122 } 10123 #endif 10124 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10125 } 10126 pBt->db->flags = savedDbFlags; 10127 10128 /* Make sure every page in the file is referenced 10129 */ 10130 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10131 #ifdef SQLITE_OMIT_AUTOVACUUM 10132 if( getPageReferenced(&sCheck, i)==0 ){ 10133 checkAppendMsg(&sCheck, "Page %d is never used", i); 10134 } 10135 #else 10136 /* If the database supports auto-vacuum, make sure no tables contain 10137 ** references to pointer-map pages. 10138 */ 10139 if( getPageReferenced(&sCheck, i)==0 && 10140 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10141 checkAppendMsg(&sCheck, "Page %d is never used", i); 10142 } 10143 if( getPageReferenced(&sCheck, i)!=0 && 10144 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10145 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10146 } 10147 #endif 10148 } 10149 10150 /* Clean up and report errors. 10151 */ 10152 integrity_ck_cleanup: 10153 sqlite3PageFree(sCheck.heap); 10154 sqlite3_free(sCheck.aPgRef); 10155 if( sCheck.mallocFailed ){ 10156 sqlite3_str_reset(&sCheck.errMsg); 10157 sCheck.nErr++; 10158 } 10159 *pnErr = sCheck.nErr; 10160 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10161 /* Make sure this analysis did not leave any unref() pages. */ 10162 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10163 sqlite3BtreeLeave(p); 10164 return sqlite3StrAccumFinish(&sCheck.errMsg); 10165 } 10166 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10167 10168 /* 10169 ** Return the full pathname of the underlying database file. Return 10170 ** an empty string if the database is in-memory or a TEMP database. 10171 ** 10172 ** The pager filename is invariant as long as the pager is 10173 ** open so it is safe to access without the BtShared mutex. 10174 */ 10175 const char *sqlite3BtreeGetFilename(Btree *p){ 10176 assert( p->pBt->pPager!=0 ); 10177 return sqlite3PagerFilename(p->pBt->pPager, 1); 10178 } 10179 10180 /* 10181 ** Return the pathname of the journal file for this database. The return 10182 ** value of this routine is the same regardless of whether the journal file 10183 ** has been created or not. 10184 ** 10185 ** The pager journal filename is invariant as long as the pager is 10186 ** open so it is safe to access without the BtShared mutex. 10187 */ 10188 const char *sqlite3BtreeGetJournalname(Btree *p){ 10189 assert( p->pBt->pPager!=0 ); 10190 return sqlite3PagerJournalname(p->pBt->pPager); 10191 } 10192 10193 /* 10194 ** Return non-zero if a transaction is active. 10195 */ 10196 int sqlite3BtreeIsInTrans(Btree *p){ 10197 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10198 return (p && (p->inTrans==TRANS_WRITE)); 10199 } 10200 10201 #ifndef SQLITE_OMIT_WAL 10202 /* 10203 ** Run a checkpoint on the Btree passed as the first argument. 10204 ** 10205 ** Return SQLITE_LOCKED if this or any other connection has an open 10206 ** transaction on the shared-cache the argument Btree is connected to. 10207 ** 10208 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10209 */ 10210 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10211 int rc = SQLITE_OK; 10212 if( p ){ 10213 BtShared *pBt = p->pBt; 10214 sqlite3BtreeEnter(p); 10215 if( pBt->inTransaction!=TRANS_NONE ){ 10216 rc = SQLITE_LOCKED; 10217 }else{ 10218 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10219 } 10220 sqlite3BtreeLeave(p); 10221 } 10222 return rc; 10223 } 10224 #endif 10225 10226 /* 10227 ** Return non-zero if a read (or write) transaction is active. 10228 */ 10229 int sqlite3BtreeIsInReadTrans(Btree *p){ 10230 assert( p ); 10231 assert( sqlite3_mutex_held(p->db->mutex) ); 10232 return p->inTrans!=TRANS_NONE; 10233 } 10234 10235 int sqlite3BtreeIsInBackup(Btree *p){ 10236 assert( p ); 10237 assert( sqlite3_mutex_held(p->db->mutex) ); 10238 return p->nBackup!=0; 10239 } 10240 10241 /* 10242 ** This function returns a pointer to a blob of memory associated with 10243 ** a single shared-btree. The memory is used by client code for its own 10244 ** purposes (for example, to store a high-level schema associated with 10245 ** the shared-btree). The btree layer manages reference counting issues. 10246 ** 10247 ** The first time this is called on a shared-btree, nBytes bytes of memory 10248 ** are allocated, zeroed, and returned to the caller. For each subsequent 10249 ** call the nBytes parameter is ignored and a pointer to the same blob 10250 ** of memory returned. 10251 ** 10252 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10253 ** allocated, a null pointer is returned. If the blob has already been 10254 ** allocated, it is returned as normal. 10255 ** 10256 ** Just before the shared-btree is closed, the function passed as the 10257 ** xFree argument when the memory allocation was made is invoked on the 10258 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10259 ** on the memory, the btree layer does that. 10260 */ 10261 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10262 BtShared *pBt = p->pBt; 10263 sqlite3BtreeEnter(p); 10264 if( !pBt->pSchema && nBytes ){ 10265 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10266 pBt->xFreeSchema = xFree; 10267 } 10268 sqlite3BtreeLeave(p); 10269 return pBt->pSchema; 10270 } 10271 10272 /* 10273 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10274 ** btree as the argument handle holds an exclusive lock on the 10275 ** sqlite_master table. Otherwise SQLITE_OK. 10276 */ 10277 int sqlite3BtreeSchemaLocked(Btree *p){ 10278 int rc; 10279 assert( sqlite3_mutex_held(p->db->mutex) ); 10280 sqlite3BtreeEnter(p); 10281 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 10282 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10283 sqlite3BtreeLeave(p); 10284 return rc; 10285 } 10286 10287 10288 #ifndef SQLITE_OMIT_SHARED_CACHE 10289 /* 10290 ** Obtain a lock on the table whose root page is iTab. The 10291 ** lock is a write lock if isWritelock is true or a read lock 10292 ** if it is false. 10293 */ 10294 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10295 int rc = SQLITE_OK; 10296 assert( p->inTrans!=TRANS_NONE ); 10297 if( p->sharable ){ 10298 u8 lockType = READ_LOCK + isWriteLock; 10299 assert( READ_LOCK+1==WRITE_LOCK ); 10300 assert( isWriteLock==0 || isWriteLock==1 ); 10301 10302 sqlite3BtreeEnter(p); 10303 rc = querySharedCacheTableLock(p, iTab, lockType); 10304 if( rc==SQLITE_OK ){ 10305 rc = setSharedCacheTableLock(p, iTab, lockType); 10306 } 10307 sqlite3BtreeLeave(p); 10308 } 10309 return rc; 10310 } 10311 #endif 10312 10313 #ifndef SQLITE_OMIT_INCRBLOB 10314 /* 10315 ** Argument pCsr must be a cursor opened for writing on an 10316 ** INTKEY table currently pointing at a valid table entry. 10317 ** This function modifies the data stored as part of that entry. 10318 ** 10319 ** Only the data content may only be modified, it is not possible to 10320 ** change the length of the data stored. If this function is called with 10321 ** parameters that attempt to write past the end of the existing data, 10322 ** no modifications are made and SQLITE_CORRUPT is returned. 10323 */ 10324 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10325 int rc; 10326 assert( cursorOwnsBtShared(pCsr) ); 10327 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10328 assert( pCsr->curFlags & BTCF_Incrblob ); 10329 10330 rc = restoreCursorPosition(pCsr); 10331 if( rc!=SQLITE_OK ){ 10332 return rc; 10333 } 10334 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10335 if( pCsr->eState!=CURSOR_VALID ){ 10336 return SQLITE_ABORT; 10337 } 10338 10339 /* Save the positions of all other cursors open on this table. This is 10340 ** required in case any of them are holding references to an xFetch 10341 ** version of the b-tree page modified by the accessPayload call below. 10342 ** 10343 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10344 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10345 ** saveAllCursors can only return SQLITE_OK. 10346 */ 10347 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10348 assert( rc==SQLITE_OK ); 10349 10350 /* Check some assumptions: 10351 ** (a) the cursor is open for writing, 10352 ** (b) there is a read/write transaction open, 10353 ** (c) the connection holds a write-lock on the table (if required), 10354 ** (d) there are no conflicting read-locks, and 10355 ** (e) the cursor points at a valid row of an intKey table. 10356 */ 10357 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10358 return SQLITE_READONLY; 10359 } 10360 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10361 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10362 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10363 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10364 assert( pCsr->pPage->intKey ); 10365 10366 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10367 } 10368 10369 /* 10370 ** Mark this cursor as an incremental blob cursor. 10371 */ 10372 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10373 pCur->curFlags |= BTCF_Incrblob; 10374 pCur->pBtree->hasIncrblobCur = 1; 10375 } 10376 #endif 10377 10378 /* 10379 ** Set both the "read version" (single byte at byte offset 18) and 10380 ** "write version" (single byte at byte offset 19) fields in the database 10381 ** header to iVersion. 10382 */ 10383 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10384 BtShared *pBt = pBtree->pBt; 10385 int rc; /* Return code */ 10386 10387 assert( iVersion==1 || iVersion==2 ); 10388 10389 /* If setting the version fields to 1, do not automatically open the 10390 ** WAL connection, even if the version fields are currently set to 2. 10391 */ 10392 pBt->btsFlags &= ~BTS_NO_WAL; 10393 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10394 10395 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10396 if( rc==SQLITE_OK ){ 10397 u8 *aData = pBt->pPage1->aData; 10398 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10399 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10400 if( rc==SQLITE_OK ){ 10401 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10402 if( rc==SQLITE_OK ){ 10403 aData[18] = (u8)iVersion; 10404 aData[19] = (u8)iVersion; 10405 } 10406 } 10407 } 10408 } 10409 10410 pBt->btsFlags &= ~BTS_NO_WAL; 10411 return rc; 10412 } 10413 10414 /* 10415 ** Return true if the cursor has a hint specified. This routine is 10416 ** only used from within assert() statements 10417 */ 10418 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10419 return (pCsr->hints & mask)!=0; 10420 } 10421 10422 /* 10423 ** Return true if the given Btree is read-only. 10424 */ 10425 int sqlite3BtreeIsReadonly(Btree *p){ 10426 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10427 } 10428 10429 /* 10430 ** Return the size of the header added to each page by this module. 10431 */ 10432 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10433 10434 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10435 /* 10436 ** Return true if the Btree passed as the only argument is sharable. 10437 */ 10438 int sqlite3BtreeSharable(Btree *p){ 10439 return p->sharable; 10440 } 10441 10442 /* 10443 ** Return the number of connections to the BtShared object accessed by 10444 ** the Btree handle passed as the only argument. For private caches 10445 ** this is always 1. For shared caches it may be 1 or greater. 10446 */ 10447 int sqlite3BtreeConnectionCount(Btree *p){ 10448 testcase( p->sharable ); 10449 return p->pBt->nRef; 10450 } 10451 #endif 10452