xref: /sqlite-3.40.0/src/btree.c (revision b8a8d523)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content. It is possible
664     ** that the current key is corrupt. In that case, it is possible that
665     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666     ** up to the size of 1 varint plus 1 8-byte value when the cursor
667     ** position is restored. Hence the 17 bytes of padding allocated
668     ** below. */
669     void *pKey;
670     pCur->nKey = sqlite3BtreePayloadSize(pCur);
671     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672     if( pKey ){
673       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674       if( rc==SQLITE_OK ){
675         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
676         pCur->pKey = pKey;
677       }else{
678         sqlite3_free(pKey);
679       }
680     }else{
681       rc = SQLITE_NOMEM_BKPT;
682     }
683   }
684   assert( !pCur->curIntKey || !pCur->pKey );
685   return rc;
686 }
687 
688 /*
689 ** Save the current cursor position in the variables BtCursor.nKey
690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
691 **
692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693 ** prior to calling this routine.
694 */
695 static int saveCursorPosition(BtCursor *pCur){
696   int rc;
697 
698   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
699   assert( 0==pCur->pKey );
700   assert( cursorHoldsMutex(pCur) );
701 
702   if( pCur->eState==CURSOR_SKIPNEXT ){
703     pCur->eState = CURSOR_VALID;
704   }else{
705     pCur->skipNext = 0;
706   }
707 
708   rc = saveCursorKey(pCur);
709   if( rc==SQLITE_OK ){
710     btreeReleaseAllCursorPages(pCur);
711     pCur->eState = CURSOR_REQUIRESEEK;
712   }
713 
714   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
715   return rc;
716 }
717 
718 /* Forward reference */
719 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720 
721 /*
722 ** Save the positions of all cursors (except pExcept) that are open on
723 ** the table with root-page iRoot.  "Saving the cursor position" means that
724 ** the location in the btree is remembered in such a way that it can be
725 ** moved back to the same spot after the btree has been modified.  This
726 ** routine is called just before cursor pExcept is used to modify the
727 ** table, for example in BtreeDelete() or BtreeInsert().
728 **
729 ** If there are two or more cursors on the same btree, then all such
730 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
731 ** routine enforces that rule.  This routine only needs to be called in
732 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
733 **
734 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
735 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736 ** pointless call to this routine.
737 **
738 ** Implementation note:  This routine merely checks to see if any cursors
739 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
740 ** event that cursors are in need to being saved.
741 */
742 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743   BtCursor *p;
744   assert( sqlite3_mutex_held(pBt->mutex) );
745   assert( pExcept==0 || pExcept->pBt==pBt );
746   for(p=pBt->pCursor; p; p=p->pNext){
747     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748   }
749   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751   return SQLITE_OK;
752 }
753 
754 /* This helper routine to saveAllCursors does the actual work of saving
755 ** the cursors if and when a cursor is found that actually requires saving.
756 ** The common case is that no cursors need to be saved, so this routine is
757 ** broken out from its caller to avoid unnecessary stack pointer movement.
758 */
759 static int SQLITE_NOINLINE saveCursorsOnList(
760   BtCursor *p,         /* The first cursor that needs saving */
761   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
762   BtCursor *pExcept    /* Do not save this cursor */
763 ){
764   do{
765     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
766       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
767         int rc = saveCursorPosition(p);
768         if( SQLITE_OK!=rc ){
769           return rc;
770         }
771       }else{
772         testcase( p->iPage>=0 );
773         btreeReleaseAllCursorPages(p);
774       }
775     }
776     p = p->pNext;
777   }while( p );
778   return SQLITE_OK;
779 }
780 
781 /*
782 ** Clear the current cursor position.
783 */
784 void sqlite3BtreeClearCursor(BtCursor *pCur){
785   assert( cursorHoldsMutex(pCur) );
786   sqlite3_free(pCur->pKey);
787   pCur->pKey = 0;
788   pCur->eState = CURSOR_INVALID;
789 }
790 
791 /*
792 ** In this version of BtreeMoveto, pKey is a packed index record
793 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
794 ** record and then call BtreeMovetoUnpacked() to do the work.
795 */
796 static int btreeMoveto(
797   BtCursor *pCur,     /* Cursor open on the btree to be searched */
798   const void *pKey,   /* Packed key if the btree is an index */
799   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
800   int bias,           /* Bias search to the high end */
801   int *pRes           /* Write search results here */
802 ){
803   int rc;                    /* Status code */
804   UnpackedRecord *pIdxKey;   /* Unpacked index key */
805 
806   if( pKey ){
807     KeyInfo *pKeyInfo = pCur->pKeyInfo;
808     assert( nKey==(i64)(int)nKey );
809     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
810     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
811     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
812     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
813       rc = SQLITE_CORRUPT_BKPT;
814       goto moveto_done;
815     }
816   }else{
817     pIdxKey = 0;
818   }
819   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
820 moveto_done:
821   if( pIdxKey ){
822     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
823   }
824   return rc;
825 }
826 
827 /*
828 ** Restore the cursor to the position it was in (or as close to as possible)
829 ** when saveCursorPosition() was called. Note that this call deletes the
830 ** saved position info stored by saveCursorPosition(), so there can be
831 ** at most one effective restoreCursorPosition() call after each
832 ** saveCursorPosition().
833 */
834 static int btreeRestoreCursorPosition(BtCursor *pCur){
835   int rc;
836   int skipNext = 0;
837   assert( cursorOwnsBtShared(pCur) );
838   assert( pCur->eState>=CURSOR_REQUIRESEEK );
839   if( pCur->eState==CURSOR_FAULT ){
840     return pCur->skipNext;
841   }
842   pCur->eState = CURSOR_INVALID;
843   if( sqlite3FaultSim(410) ){
844     rc = SQLITE_IOERR;
845   }else{
846     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
847   }
848   if( rc==SQLITE_OK ){
849     sqlite3_free(pCur->pKey);
850     pCur->pKey = 0;
851     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
852     if( skipNext ) pCur->skipNext = skipNext;
853     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
854       pCur->eState = CURSOR_SKIPNEXT;
855     }
856   }
857   return rc;
858 }
859 
860 #define restoreCursorPosition(p) \
861   (p->eState>=CURSOR_REQUIRESEEK ? \
862          btreeRestoreCursorPosition(p) : \
863          SQLITE_OK)
864 
865 /*
866 ** Determine whether or not a cursor has moved from the position where
867 ** it was last placed, or has been invalidated for any other reason.
868 ** Cursors can move when the row they are pointing at is deleted out
869 ** from under them, for example.  Cursor might also move if a btree
870 ** is rebalanced.
871 **
872 ** Calling this routine with a NULL cursor pointer returns false.
873 **
874 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
875 ** back to where it ought to be if this routine returns true.
876 */
877 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
878   assert( EIGHT_BYTE_ALIGNMENT(pCur)
879        || pCur==sqlite3BtreeFakeValidCursor() );
880   assert( offsetof(BtCursor, eState)==0 );
881   assert( sizeof(pCur->eState)==1 );
882   return CURSOR_VALID != *(u8*)pCur;
883 }
884 
885 /*
886 ** Return a pointer to a fake BtCursor object that will always answer
887 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
888 ** cursor returned must not be used with any other Btree interface.
889 */
890 BtCursor *sqlite3BtreeFakeValidCursor(void){
891   static u8 fakeCursor = CURSOR_VALID;
892   assert( offsetof(BtCursor, eState)==0 );
893   return (BtCursor*)&fakeCursor;
894 }
895 
896 /*
897 ** This routine restores a cursor back to its original position after it
898 ** has been moved by some outside activity (such as a btree rebalance or
899 ** a row having been deleted out from under the cursor).
900 **
901 ** On success, the *pDifferentRow parameter is false if the cursor is left
902 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
903 ** was pointing to has been deleted, forcing the cursor to point to some
904 ** nearby row.
905 **
906 ** This routine should only be called for a cursor that just returned
907 ** TRUE from sqlite3BtreeCursorHasMoved().
908 */
909 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
910   int rc;
911 
912   assert( pCur!=0 );
913   assert( pCur->eState!=CURSOR_VALID );
914   rc = restoreCursorPosition(pCur);
915   if( rc ){
916     *pDifferentRow = 1;
917     return rc;
918   }
919   if( pCur->eState!=CURSOR_VALID ){
920     *pDifferentRow = 1;
921   }else{
922     *pDifferentRow = 0;
923   }
924   return SQLITE_OK;
925 }
926 
927 #ifdef SQLITE_ENABLE_CURSOR_HINTS
928 /*
929 ** Provide hints to the cursor.  The particular hint given (and the type
930 ** and number of the varargs parameters) is determined by the eHintType
931 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
932 */
933 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
934   /* Used only by system that substitute their own storage engine */
935 }
936 #endif
937 
938 /*
939 ** Provide flag hints to the cursor.
940 */
941 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
942   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
943   pCur->hints = x;
944 }
945 
946 
947 #ifndef SQLITE_OMIT_AUTOVACUUM
948 /*
949 ** Given a page number of a regular database page, return the page
950 ** number for the pointer-map page that contains the entry for the
951 ** input page number.
952 **
953 ** Return 0 (not a valid page) for pgno==1 since there is
954 ** no pointer map associated with page 1.  The integrity_check logic
955 ** requires that ptrmapPageno(*,1)!=1.
956 */
957 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
958   int nPagesPerMapPage;
959   Pgno iPtrMap, ret;
960   assert( sqlite3_mutex_held(pBt->mutex) );
961   if( pgno<2 ) return 0;
962   nPagesPerMapPage = (pBt->usableSize/5)+1;
963   iPtrMap = (pgno-2)/nPagesPerMapPage;
964   ret = (iPtrMap*nPagesPerMapPage) + 2;
965   if( ret==PENDING_BYTE_PAGE(pBt) ){
966     ret++;
967   }
968   return ret;
969 }
970 
971 /*
972 ** Write an entry into the pointer map.
973 **
974 ** This routine updates the pointer map entry for page number 'key'
975 ** so that it maps to type 'eType' and parent page number 'pgno'.
976 **
977 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
978 ** a no-op.  If an error occurs, the appropriate error code is written
979 ** into *pRC.
980 */
981 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
982   DbPage *pDbPage;  /* The pointer map page */
983   u8 *pPtrmap;      /* The pointer map data */
984   Pgno iPtrmap;     /* The pointer map page number */
985   int offset;       /* Offset in pointer map page */
986   int rc;           /* Return code from subfunctions */
987 
988   if( *pRC ) return;
989 
990   assert( sqlite3_mutex_held(pBt->mutex) );
991   /* The master-journal page number must never be used as a pointer map page */
992   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
993 
994   assert( pBt->autoVacuum );
995   if( key==0 ){
996     *pRC = SQLITE_CORRUPT_BKPT;
997     return;
998   }
999   iPtrmap = PTRMAP_PAGENO(pBt, key);
1000   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1001   if( rc!=SQLITE_OK ){
1002     *pRC = rc;
1003     return;
1004   }
1005   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1006     /* The first byte of the extra data is the MemPage.isInit byte.
1007     ** If that byte is set, it means this page is also being used
1008     ** as a btree page. */
1009     *pRC = SQLITE_CORRUPT_BKPT;
1010     goto ptrmap_exit;
1011   }
1012   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1013   if( offset<0 ){
1014     *pRC = SQLITE_CORRUPT_BKPT;
1015     goto ptrmap_exit;
1016   }
1017   assert( offset <= (int)pBt->usableSize-5 );
1018   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1019 
1020   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1021     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1022     *pRC= rc = sqlite3PagerWrite(pDbPage);
1023     if( rc==SQLITE_OK ){
1024       pPtrmap[offset] = eType;
1025       put4byte(&pPtrmap[offset+1], parent);
1026     }
1027   }
1028 
1029 ptrmap_exit:
1030   sqlite3PagerUnref(pDbPage);
1031 }
1032 
1033 /*
1034 ** Read an entry from the pointer map.
1035 **
1036 ** This routine retrieves the pointer map entry for page 'key', writing
1037 ** the type and parent page number to *pEType and *pPgno respectively.
1038 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1039 */
1040 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1041   DbPage *pDbPage;   /* The pointer map page */
1042   int iPtrmap;       /* Pointer map page index */
1043   u8 *pPtrmap;       /* Pointer map page data */
1044   int offset;        /* Offset of entry in pointer map */
1045   int rc;
1046 
1047   assert( sqlite3_mutex_held(pBt->mutex) );
1048 
1049   iPtrmap = PTRMAP_PAGENO(pBt, key);
1050   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1051   if( rc!=0 ){
1052     return rc;
1053   }
1054   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1055 
1056   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1057   if( offset<0 ){
1058     sqlite3PagerUnref(pDbPage);
1059     return SQLITE_CORRUPT_BKPT;
1060   }
1061   assert( offset <= (int)pBt->usableSize-5 );
1062   assert( pEType!=0 );
1063   *pEType = pPtrmap[offset];
1064   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1065 
1066   sqlite3PagerUnref(pDbPage);
1067   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1068   return SQLITE_OK;
1069 }
1070 
1071 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1072   #define ptrmapPut(w,x,y,z,rc)
1073   #define ptrmapGet(w,x,y,z) SQLITE_OK
1074   #define ptrmapPutOvflPtr(x, y, z, rc)
1075 #endif
1076 
1077 /*
1078 ** Given a btree page and a cell index (0 means the first cell on
1079 ** the page, 1 means the second cell, and so forth) return a pointer
1080 ** to the cell content.
1081 **
1082 ** findCellPastPtr() does the same except it skips past the initial
1083 ** 4-byte child pointer found on interior pages, if there is one.
1084 **
1085 ** This routine works only for pages that do not contain overflow cells.
1086 */
1087 #define findCell(P,I) \
1088   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1089 #define findCellPastPtr(P,I) \
1090   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1091 
1092 
1093 /*
1094 ** This is common tail processing for btreeParseCellPtr() and
1095 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1096 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1097 ** structure.
1098 */
1099 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1100   MemPage *pPage,         /* Page containing the cell */
1101   u8 *pCell,              /* Pointer to the cell text. */
1102   CellInfo *pInfo         /* Fill in this structure */
1103 ){
1104   /* If the payload will not fit completely on the local page, we have
1105   ** to decide how much to store locally and how much to spill onto
1106   ** overflow pages.  The strategy is to minimize the amount of unused
1107   ** space on overflow pages while keeping the amount of local storage
1108   ** in between minLocal and maxLocal.
1109   **
1110   ** Warning:  changing the way overflow payload is distributed in any
1111   ** way will result in an incompatible file format.
1112   */
1113   int minLocal;  /* Minimum amount of payload held locally */
1114   int maxLocal;  /* Maximum amount of payload held locally */
1115   int surplus;   /* Overflow payload available for local storage */
1116 
1117   minLocal = pPage->minLocal;
1118   maxLocal = pPage->maxLocal;
1119   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1120   testcase( surplus==maxLocal );
1121   testcase( surplus==maxLocal+1 );
1122   if( surplus <= maxLocal ){
1123     pInfo->nLocal = (u16)surplus;
1124   }else{
1125     pInfo->nLocal = (u16)minLocal;
1126   }
1127   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1128 }
1129 
1130 /*
1131 ** The following routines are implementations of the MemPage.xParseCell()
1132 ** method.
1133 **
1134 ** Parse a cell content block and fill in the CellInfo structure.
1135 **
1136 ** btreeParseCellPtr()        =>   table btree leaf nodes
1137 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1138 ** btreeParseCellPtrIndex()   =>   index btree nodes
1139 **
1140 ** There is also a wrapper function btreeParseCell() that works for
1141 ** all MemPage types and that references the cell by index rather than
1142 ** by pointer.
1143 */
1144 static void btreeParseCellPtrNoPayload(
1145   MemPage *pPage,         /* Page containing the cell */
1146   u8 *pCell,              /* Pointer to the cell text. */
1147   CellInfo *pInfo         /* Fill in this structure */
1148 ){
1149   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150   assert( pPage->leaf==0 );
1151   assert( pPage->childPtrSize==4 );
1152 #ifndef SQLITE_DEBUG
1153   UNUSED_PARAMETER(pPage);
1154 #endif
1155   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1156   pInfo->nPayload = 0;
1157   pInfo->nLocal = 0;
1158   pInfo->pPayload = 0;
1159   return;
1160 }
1161 static void btreeParseCellPtr(
1162   MemPage *pPage,         /* Page containing the cell */
1163   u8 *pCell,              /* Pointer to the cell text. */
1164   CellInfo *pInfo         /* Fill in this structure */
1165 ){
1166   u8 *pIter;              /* For scanning through pCell */
1167   u32 nPayload;           /* Number of bytes of cell payload */
1168   u64 iKey;               /* Extracted Key value */
1169 
1170   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1171   assert( pPage->leaf==0 || pPage->leaf==1 );
1172   assert( pPage->intKeyLeaf );
1173   assert( pPage->childPtrSize==0 );
1174   pIter = pCell;
1175 
1176   /* The next block of code is equivalent to:
1177   **
1178   **     pIter += getVarint32(pIter, nPayload);
1179   **
1180   ** The code is inlined to avoid a function call.
1181   */
1182   nPayload = *pIter;
1183   if( nPayload>=0x80 ){
1184     u8 *pEnd = &pIter[8];
1185     nPayload &= 0x7f;
1186     do{
1187       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1188     }while( (*pIter)>=0x80 && pIter<pEnd );
1189   }
1190   pIter++;
1191 
1192   /* The next block of code is equivalent to:
1193   **
1194   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1195   **
1196   ** The code is inlined to avoid a function call.
1197   */
1198   iKey = *pIter;
1199   if( iKey>=0x80 ){
1200     u8 *pEnd = &pIter[7];
1201     iKey &= 0x7f;
1202     while(1){
1203       iKey = (iKey<<7) | (*++pIter & 0x7f);
1204       if( (*pIter)<0x80 ) break;
1205       if( pIter>=pEnd ){
1206         iKey = (iKey<<8) | *++pIter;
1207         break;
1208       }
1209     }
1210   }
1211   pIter++;
1212 
1213   pInfo->nKey = *(i64*)&iKey;
1214   pInfo->nPayload = nPayload;
1215   pInfo->pPayload = pIter;
1216   testcase( nPayload==pPage->maxLocal );
1217   testcase( nPayload==pPage->maxLocal+1 );
1218   if( nPayload<=pPage->maxLocal ){
1219     /* This is the (easy) common case where the entire payload fits
1220     ** on the local page.  No overflow is required.
1221     */
1222     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1223     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1224     pInfo->nLocal = (u16)nPayload;
1225   }else{
1226     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1227   }
1228 }
1229 static void btreeParseCellPtrIndex(
1230   MemPage *pPage,         /* Page containing the cell */
1231   u8 *pCell,              /* Pointer to the cell text. */
1232   CellInfo *pInfo         /* Fill in this structure */
1233 ){
1234   u8 *pIter;              /* For scanning through pCell */
1235   u32 nPayload;           /* Number of bytes of cell payload */
1236 
1237   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1238   assert( pPage->leaf==0 || pPage->leaf==1 );
1239   assert( pPage->intKeyLeaf==0 );
1240   pIter = pCell + pPage->childPtrSize;
1241   nPayload = *pIter;
1242   if( nPayload>=0x80 ){
1243     u8 *pEnd = &pIter[8];
1244     nPayload &= 0x7f;
1245     do{
1246       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1247     }while( *(pIter)>=0x80 && pIter<pEnd );
1248   }
1249   pIter++;
1250   pInfo->nKey = nPayload;
1251   pInfo->nPayload = nPayload;
1252   pInfo->pPayload = pIter;
1253   testcase( nPayload==pPage->maxLocal );
1254   testcase( nPayload==pPage->maxLocal+1 );
1255   if( nPayload<=pPage->maxLocal ){
1256     /* This is the (easy) common case where the entire payload fits
1257     ** on the local page.  No overflow is required.
1258     */
1259     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1260     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1261     pInfo->nLocal = (u16)nPayload;
1262   }else{
1263     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1264   }
1265 }
1266 static void btreeParseCell(
1267   MemPage *pPage,         /* Page containing the cell */
1268   int iCell,              /* The cell index.  First cell is 0 */
1269   CellInfo *pInfo         /* Fill in this structure */
1270 ){
1271   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1272 }
1273 
1274 /*
1275 ** The following routines are implementations of the MemPage.xCellSize
1276 ** method.
1277 **
1278 ** Compute the total number of bytes that a Cell needs in the cell
1279 ** data area of the btree-page.  The return number includes the cell
1280 ** data header and the local payload, but not any overflow page or
1281 ** the space used by the cell pointer.
1282 **
1283 ** cellSizePtrNoPayload()    =>   table internal nodes
1284 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1285 */
1286 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1287   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1288   u8 *pEnd;                                /* End mark for a varint */
1289   u32 nSize;                               /* Size value to return */
1290 
1291 #ifdef SQLITE_DEBUG
1292   /* The value returned by this function should always be the same as
1293   ** the (CellInfo.nSize) value found by doing a full parse of the
1294   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1295   ** this function verifies that this invariant is not violated. */
1296   CellInfo debuginfo;
1297   pPage->xParseCell(pPage, pCell, &debuginfo);
1298 #endif
1299 
1300   nSize = *pIter;
1301   if( nSize>=0x80 ){
1302     pEnd = &pIter[8];
1303     nSize &= 0x7f;
1304     do{
1305       nSize = (nSize<<7) | (*++pIter & 0x7f);
1306     }while( *(pIter)>=0x80 && pIter<pEnd );
1307   }
1308   pIter++;
1309   if( pPage->intKey ){
1310     /* pIter now points at the 64-bit integer key value, a variable length
1311     ** integer. The following block moves pIter to point at the first byte
1312     ** past the end of the key value. */
1313     pEnd = &pIter[9];
1314     while( (*pIter++)&0x80 && pIter<pEnd );
1315   }
1316   testcase( nSize==pPage->maxLocal );
1317   testcase( nSize==pPage->maxLocal+1 );
1318   if( nSize<=pPage->maxLocal ){
1319     nSize += (u32)(pIter - pCell);
1320     if( nSize<4 ) nSize = 4;
1321   }else{
1322     int minLocal = pPage->minLocal;
1323     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1324     testcase( nSize==pPage->maxLocal );
1325     testcase( nSize==pPage->maxLocal+1 );
1326     if( nSize>pPage->maxLocal ){
1327       nSize = minLocal;
1328     }
1329     nSize += 4 + (u16)(pIter - pCell);
1330   }
1331   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1332   return (u16)nSize;
1333 }
1334 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1335   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1336   u8 *pEnd;              /* End mark for a varint */
1337 
1338 #ifdef SQLITE_DEBUG
1339   /* The value returned by this function should always be the same as
1340   ** the (CellInfo.nSize) value found by doing a full parse of the
1341   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342   ** this function verifies that this invariant is not violated. */
1343   CellInfo debuginfo;
1344   pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #else
1346   UNUSED_PARAMETER(pPage);
1347 #endif
1348 
1349   assert( pPage->childPtrSize==4 );
1350   pEnd = pIter + 9;
1351   while( (*pIter++)&0x80 && pIter<pEnd );
1352   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1353   return (u16)(pIter - pCell);
1354 }
1355 
1356 
1357 #ifdef SQLITE_DEBUG
1358 /* This variation on cellSizePtr() is used inside of assert() statements
1359 ** only. */
1360 static u16 cellSize(MemPage *pPage, int iCell){
1361   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1362 }
1363 #endif
1364 
1365 #ifndef SQLITE_OMIT_AUTOVACUUM
1366 /*
1367 ** The cell pCell is currently part of page pSrc but will ultimately be part
1368 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1369 ** pointer to an overflow page, insert an entry into the pointer-map for
1370 ** the overflow page that will be valid after pCell has been moved to pPage.
1371 */
1372 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1373   CellInfo info;
1374   if( *pRC ) return;
1375   assert( pCell!=0 );
1376   pPage->xParseCell(pPage, pCell, &info);
1377   if( info.nLocal<info.nPayload ){
1378     Pgno ovfl;
1379     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1380       testcase( pSrc!=pPage );
1381       *pRC = SQLITE_CORRUPT_BKPT;
1382       return;
1383     }
1384     ovfl = get4byte(&pCell[info.nSize-4]);
1385     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1386   }
1387 }
1388 #endif
1389 
1390 
1391 /*
1392 ** Defragment the page given. This routine reorganizes cells within the
1393 ** page so that there are no free-blocks on the free-block list.
1394 **
1395 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1396 ** present in the page after this routine returns.
1397 **
1398 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1399 ** b-tree page so that there are no freeblocks or fragment bytes, all
1400 ** unused bytes are contained in the unallocated space region, and all
1401 ** cells are packed tightly at the end of the page.
1402 */
1403 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1404   int i;                     /* Loop counter */
1405   int pc;                    /* Address of the i-th cell */
1406   int hdr;                   /* Offset to the page header */
1407   int size;                  /* Size of a cell */
1408   int usableSize;            /* Number of usable bytes on a page */
1409   int cellOffset;            /* Offset to the cell pointer array */
1410   int cbrk;                  /* Offset to the cell content area */
1411   int nCell;                 /* Number of cells on the page */
1412   unsigned char *data;       /* The page data */
1413   unsigned char *temp;       /* Temp area for cell content */
1414   unsigned char *src;        /* Source of content */
1415   int iCellFirst;            /* First allowable cell index */
1416   int iCellLast;             /* Last possible cell index */
1417 
1418   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1419   assert( pPage->pBt!=0 );
1420   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1421   assert( pPage->nOverflow==0 );
1422   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1423   temp = 0;
1424   src = data = pPage->aData;
1425   hdr = pPage->hdrOffset;
1426   cellOffset = pPage->cellOffset;
1427   nCell = pPage->nCell;
1428   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1429   iCellFirst = cellOffset + 2*nCell;
1430   usableSize = pPage->pBt->usableSize;
1431 
1432   /* This block handles pages with two or fewer free blocks and nMaxFrag
1433   ** or fewer fragmented bytes. In this case it is faster to move the
1434   ** two (or one) blocks of cells using memmove() and add the required
1435   ** offsets to each pointer in the cell-pointer array than it is to
1436   ** reconstruct the entire page.  */
1437   if( (int)data[hdr+7]<=nMaxFrag ){
1438     int iFree = get2byte(&data[hdr+1]);
1439     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1440     if( iFree ){
1441       int iFree2 = get2byte(&data[iFree]);
1442       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1443       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1444         u8 *pEnd = &data[cellOffset + nCell*2];
1445         u8 *pAddr;
1446         int sz2 = 0;
1447         int sz = get2byte(&data[iFree+2]);
1448         int top = get2byte(&data[hdr+5]);
1449         if( top>=iFree ){
1450           return SQLITE_CORRUPT_PAGE(pPage);
1451         }
1452         if( iFree2 ){
1453           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1454           sz2 = get2byte(&data[iFree2+2]);
1455           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1456           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1457           sz += sz2;
1458         }else if( iFree+sz>usableSize ){
1459           return SQLITE_CORRUPT_PAGE(pPage);
1460         }
1461 
1462         cbrk = top+sz;
1463         assert( cbrk+(iFree-top) <= usableSize );
1464         memmove(&data[cbrk], &data[top], iFree-top);
1465         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1466           pc = get2byte(pAddr);
1467           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1468           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1469         }
1470         goto defragment_out;
1471       }
1472     }
1473   }
1474 
1475   cbrk = usableSize;
1476   iCellLast = usableSize - 4;
1477   for(i=0; i<nCell; i++){
1478     u8 *pAddr;     /* The i-th cell pointer */
1479     pAddr = &data[cellOffset + i*2];
1480     pc = get2byte(pAddr);
1481     testcase( pc==iCellFirst );
1482     testcase( pc==iCellLast );
1483     /* These conditions have already been verified in btreeInitPage()
1484     ** if PRAGMA cell_size_check=ON.
1485     */
1486     if( pc<iCellFirst || pc>iCellLast ){
1487       return SQLITE_CORRUPT_PAGE(pPage);
1488     }
1489     assert( pc>=iCellFirst && pc<=iCellLast );
1490     size = pPage->xCellSize(pPage, &src[pc]);
1491     cbrk -= size;
1492     if( cbrk<iCellFirst || pc+size>usableSize ){
1493       return SQLITE_CORRUPT_PAGE(pPage);
1494     }
1495     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1496     testcase( cbrk+size==usableSize );
1497     testcase( pc+size==usableSize );
1498     put2byte(pAddr, cbrk);
1499     if( temp==0 ){
1500       int x;
1501       if( cbrk==pc ) continue;
1502       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1503       x = get2byte(&data[hdr+5]);
1504       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1505       src = temp;
1506     }
1507     memcpy(&data[cbrk], &src[pc], size);
1508   }
1509   data[hdr+7] = 0;
1510 
1511  defragment_out:
1512   assert( pPage->nFree>=0 );
1513   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1514     return SQLITE_CORRUPT_PAGE(pPage);
1515   }
1516   assert( cbrk>=iCellFirst );
1517   put2byte(&data[hdr+5], cbrk);
1518   data[hdr+1] = 0;
1519   data[hdr+2] = 0;
1520   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1521   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1522   return SQLITE_OK;
1523 }
1524 
1525 /*
1526 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1527 ** size. If one can be found, return a pointer to the space and remove it
1528 ** from the free-list.
1529 **
1530 ** If no suitable space can be found on the free-list, return NULL.
1531 **
1532 ** This function may detect corruption within pPg.  If corruption is
1533 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1534 **
1535 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1536 ** will be ignored if adding the extra space to the fragmentation count
1537 ** causes the fragmentation count to exceed 60.
1538 */
1539 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1540   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1541   u8 * const aData = pPg->aData;             /* Page data */
1542   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1543   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1544   int x;                                     /* Excess size of the slot */
1545   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1546   int size;                                  /* Size of the free slot */
1547 
1548   assert( pc>0 );
1549   while( pc<=maxPC ){
1550     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1551     ** freeblock form a big-endian integer which is the size of the freeblock
1552     ** in bytes, including the 4-byte header. */
1553     size = get2byte(&aData[pc+2]);
1554     if( (x = size - nByte)>=0 ){
1555       testcase( x==4 );
1556       testcase( x==3 );
1557       if( x<4 ){
1558         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1559         ** number of bytes in fragments may not exceed 60. */
1560         if( aData[hdr+7]>57 ) return 0;
1561 
1562         /* Remove the slot from the free-list. Update the number of
1563         ** fragmented bytes within the page. */
1564         memcpy(&aData[iAddr], &aData[pc], 2);
1565         aData[hdr+7] += (u8)x;
1566       }else if( x+pc > maxPC ){
1567         /* This slot extends off the end of the usable part of the page */
1568         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1569         return 0;
1570       }else{
1571         /* The slot remains on the free-list. Reduce its size to account
1572         ** for the portion used by the new allocation. */
1573         put2byte(&aData[pc+2], x);
1574       }
1575       return &aData[pc + x];
1576     }
1577     iAddr = pc;
1578     pc = get2byte(&aData[pc]);
1579     if( pc<=iAddr+size ){
1580       if( pc ){
1581         /* The next slot in the chain is not past the end of the current slot */
1582         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1583       }
1584       return 0;
1585     }
1586   }
1587   if( pc>maxPC+nByte-4 ){
1588     /* The free slot chain extends off the end of the page */
1589     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1590   }
1591   return 0;
1592 }
1593 
1594 /*
1595 ** Allocate nByte bytes of space from within the B-Tree page passed
1596 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1597 ** of the first byte of allocated space. Return either SQLITE_OK or
1598 ** an error code (usually SQLITE_CORRUPT).
1599 **
1600 ** The caller guarantees that there is sufficient space to make the
1601 ** allocation.  This routine might need to defragment in order to bring
1602 ** all the space together, however.  This routine will avoid using
1603 ** the first two bytes past the cell pointer area since presumably this
1604 ** allocation is being made in order to insert a new cell, so we will
1605 ** also end up needing a new cell pointer.
1606 */
1607 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1608   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1609   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1610   int top;                             /* First byte of cell content area */
1611   int rc = SQLITE_OK;                  /* Integer return code */
1612   int gap;        /* First byte of gap between cell pointers and cell content */
1613 
1614   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1615   assert( pPage->pBt );
1616   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1617   assert( nByte>=0 );  /* Minimum cell size is 4 */
1618   assert( pPage->nFree>=nByte );
1619   assert( pPage->nOverflow==0 );
1620   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1621 
1622   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1623   gap = pPage->cellOffset + 2*pPage->nCell;
1624   assert( gap<=65536 );
1625   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1626   ** and the reserved space is zero (the usual value for reserved space)
1627   ** then the cell content offset of an empty page wants to be 65536.
1628   ** However, that integer is too large to be stored in a 2-byte unsigned
1629   ** integer, so a value of 0 is used in its place. */
1630   top = get2byte(&data[hdr+5]);
1631   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1632   if( gap>top ){
1633     if( top==0 && pPage->pBt->usableSize==65536 ){
1634       top = 65536;
1635     }else{
1636       return SQLITE_CORRUPT_PAGE(pPage);
1637     }
1638   }
1639 
1640   /* If there is enough space between gap and top for one more cell pointer,
1641   ** and if the freelist is not empty, then search the
1642   ** freelist looking for a slot big enough to satisfy the request.
1643   */
1644   testcase( gap+2==top );
1645   testcase( gap+1==top );
1646   testcase( gap==top );
1647   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1648     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1649     if( pSpace ){
1650       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1651       if( (*pIdx = (int)(pSpace-data))<=gap ){
1652         return SQLITE_CORRUPT_PAGE(pPage);
1653       }else{
1654         return SQLITE_OK;
1655       }
1656     }else if( rc ){
1657       return rc;
1658     }
1659   }
1660 
1661   /* The request could not be fulfilled using a freelist slot.  Check
1662   ** to see if defragmentation is necessary.
1663   */
1664   testcase( gap+2+nByte==top );
1665   if( gap+2+nByte>top ){
1666     assert( pPage->nCell>0 || CORRUPT_DB );
1667     assert( pPage->nFree>=0 );
1668     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1669     if( rc ) return rc;
1670     top = get2byteNotZero(&data[hdr+5]);
1671     assert( gap+2+nByte<=top );
1672   }
1673 
1674 
1675   /* Allocate memory from the gap in between the cell pointer array
1676   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1677   ** validated the freelist.  Given that the freelist is valid, there
1678   ** is no way that the allocation can extend off the end of the page.
1679   ** The assert() below verifies the previous sentence.
1680   */
1681   top -= nByte;
1682   put2byte(&data[hdr+5], top);
1683   assert( top+nByte <= (int)pPage->pBt->usableSize );
1684   *pIdx = top;
1685   return SQLITE_OK;
1686 }
1687 
1688 /*
1689 ** Return a section of the pPage->aData to the freelist.
1690 ** The first byte of the new free block is pPage->aData[iStart]
1691 ** and the size of the block is iSize bytes.
1692 **
1693 ** Adjacent freeblocks are coalesced.
1694 **
1695 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1696 ** that routine will not detect overlap between cells or freeblocks.  Nor
1697 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1698 ** at the end of the page.  So do additional corruption checks inside this
1699 ** routine and return SQLITE_CORRUPT if any problems are found.
1700 */
1701 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1702   u16 iPtr;                             /* Address of ptr to next freeblock */
1703   u16 iFreeBlk;                         /* Address of the next freeblock */
1704   u8 hdr;                               /* Page header size.  0 or 100 */
1705   u8 nFrag = 0;                         /* Reduction in fragmentation */
1706   u16 iOrigSize = iSize;                /* Original value of iSize */
1707   u16 x;                                /* Offset to cell content area */
1708   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1709   unsigned char *data = pPage->aData;   /* Page content */
1710 
1711   assert( pPage->pBt!=0 );
1712   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1713   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1714   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1715   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1716   assert( iSize>=4 );   /* Minimum cell size is 4 */
1717   assert( iStart<=pPage->pBt->usableSize-4 );
1718 
1719   /* The list of freeblocks must be in ascending order.  Find the
1720   ** spot on the list where iStart should be inserted.
1721   */
1722   hdr = pPage->hdrOffset;
1723   iPtr = hdr + 1;
1724   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1725     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1726   }else{
1727     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1728       if( iFreeBlk<iPtr+4 ){
1729         if( iFreeBlk==0 ) break;
1730         return SQLITE_CORRUPT_PAGE(pPage);
1731       }
1732       iPtr = iFreeBlk;
1733     }
1734     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1735       return SQLITE_CORRUPT_PAGE(pPage);
1736     }
1737     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1738 
1739     /* At this point:
1740     **    iFreeBlk:   First freeblock after iStart, or zero if none
1741     **    iPtr:       The address of a pointer to iFreeBlk
1742     **
1743     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1744     */
1745     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1746       nFrag = iFreeBlk - iEnd;
1747       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1748       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1749       if( iEnd > pPage->pBt->usableSize ){
1750         return SQLITE_CORRUPT_PAGE(pPage);
1751       }
1752       iSize = iEnd - iStart;
1753       iFreeBlk = get2byte(&data[iFreeBlk]);
1754     }
1755 
1756     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1757     ** pointer in the page header) then check to see if iStart should be
1758     ** coalesced onto the end of iPtr.
1759     */
1760     if( iPtr>hdr+1 ){
1761       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1762       if( iPtrEnd+3>=iStart ){
1763         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1764         nFrag += iStart - iPtrEnd;
1765         iSize = iEnd - iPtr;
1766         iStart = iPtr;
1767       }
1768     }
1769     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1770     data[hdr+7] -= nFrag;
1771   }
1772   x = get2byte(&data[hdr+5]);
1773   if( iStart<=x ){
1774     /* The new freeblock is at the beginning of the cell content area,
1775     ** so just extend the cell content area rather than create another
1776     ** freelist entry */
1777     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1778     put2byte(&data[hdr+1], iFreeBlk);
1779     put2byte(&data[hdr+5], iEnd);
1780   }else{
1781     /* Insert the new freeblock into the freelist */
1782     put2byte(&data[iPtr], iStart);
1783   }
1784   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1785     /* Overwrite deleted information with zeros when the secure_delete
1786     ** option is enabled */
1787     memset(&data[iStart], 0, iSize);
1788   }
1789   put2byte(&data[iStart], iFreeBlk);
1790   put2byte(&data[iStart+2], iSize);
1791   pPage->nFree += iOrigSize;
1792   return SQLITE_OK;
1793 }
1794 
1795 /*
1796 ** Decode the flags byte (the first byte of the header) for a page
1797 ** and initialize fields of the MemPage structure accordingly.
1798 **
1799 ** Only the following combinations are supported.  Anything different
1800 ** indicates a corrupt database files:
1801 **
1802 **         PTF_ZERODATA
1803 **         PTF_ZERODATA | PTF_LEAF
1804 **         PTF_LEAFDATA | PTF_INTKEY
1805 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1806 */
1807 static int decodeFlags(MemPage *pPage, int flagByte){
1808   BtShared *pBt;     /* A copy of pPage->pBt */
1809 
1810   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1811   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1812   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1813   flagByte &= ~PTF_LEAF;
1814   pPage->childPtrSize = 4-4*pPage->leaf;
1815   pPage->xCellSize = cellSizePtr;
1816   pBt = pPage->pBt;
1817   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1818     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1819     ** interior table b-tree page. */
1820     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1821     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1822     ** leaf table b-tree page. */
1823     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1824     pPage->intKey = 1;
1825     if( pPage->leaf ){
1826       pPage->intKeyLeaf = 1;
1827       pPage->xParseCell = btreeParseCellPtr;
1828     }else{
1829       pPage->intKeyLeaf = 0;
1830       pPage->xCellSize = cellSizePtrNoPayload;
1831       pPage->xParseCell = btreeParseCellPtrNoPayload;
1832     }
1833     pPage->maxLocal = pBt->maxLeaf;
1834     pPage->minLocal = pBt->minLeaf;
1835   }else if( flagByte==PTF_ZERODATA ){
1836     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1837     ** interior index b-tree page. */
1838     assert( (PTF_ZERODATA)==2 );
1839     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1840     ** leaf index b-tree page. */
1841     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1842     pPage->intKey = 0;
1843     pPage->intKeyLeaf = 0;
1844     pPage->xParseCell = btreeParseCellPtrIndex;
1845     pPage->maxLocal = pBt->maxLocal;
1846     pPage->minLocal = pBt->minLocal;
1847   }else{
1848     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1849     ** an error. */
1850     return SQLITE_CORRUPT_PAGE(pPage);
1851   }
1852   pPage->max1bytePayload = pBt->max1bytePayload;
1853   return SQLITE_OK;
1854 }
1855 
1856 /*
1857 ** Compute the amount of freespace on the page.  In other words, fill
1858 ** in the pPage->nFree field.
1859 */
1860 static int btreeComputeFreeSpace(MemPage *pPage){
1861   int pc;            /* Address of a freeblock within pPage->aData[] */
1862   u8 hdr;            /* Offset to beginning of page header */
1863   u8 *data;          /* Equal to pPage->aData */
1864   int usableSize;    /* Amount of usable space on each page */
1865   int nFree;         /* Number of unused bytes on the page */
1866   int top;           /* First byte of the cell content area */
1867   int iCellFirst;    /* First allowable cell or freeblock offset */
1868   int iCellLast;     /* Last possible cell or freeblock offset */
1869 
1870   assert( pPage->pBt!=0 );
1871   assert( pPage->pBt->db!=0 );
1872   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1873   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1874   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1875   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1876   assert( pPage->isInit==1 );
1877   assert( pPage->nFree<0 );
1878 
1879   usableSize = pPage->pBt->usableSize;
1880   hdr = pPage->hdrOffset;
1881   data = pPage->aData;
1882   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1883   ** the start of the cell content area. A zero value for this integer is
1884   ** interpreted as 65536. */
1885   top = get2byteNotZero(&data[hdr+5]);
1886   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1887   iCellLast = usableSize - 4;
1888 
1889   /* Compute the total free space on the page
1890   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1891   ** start of the first freeblock on the page, or is zero if there are no
1892   ** freeblocks. */
1893   pc = get2byte(&data[hdr+1]);
1894   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1895   if( pc>0 ){
1896     u32 next, size;
1897     if( pc<iCellFirst ){
1898       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1899       ** always be at least one cell before the first freeblock.
1900       */
1901       return SQLITE_CORRUPT_PAGE(pPage);
1902     }
1903     while( 1 ){
1904       if( pc>iCellLast ){
1905         /* Freeblock off the end of the page */
1906         return SQLITE_CORRUPT_PAGE(pPage);
1907       }
1908       next = get2byte(&data[pc]);
1909       size = get2byte(&data[pc+2]);
1910       nFree = nFree + size;
1911       if( next<=pc+size+3 ) break;
1912       pc = next;
1913     }
1914     if( next>0 ){
1915       /* Freeblock not in ascending order */
1916       return SQLITE_CORRUPT_PAGE(pPage);
1917     }
1918     if( pc+size>(unsigned int)usableSize ){
1919       /* Last freeblock extends past page end */
1920       return SQLITE_CORRUPT_PAGE(pPage);
1921     }
1922   }
1923 
1924   /* At this point, nFree contains the sum of the offset to the start
1925   ** of the cell-content area plus the number of free bytes within
1926   ** the cell-content area. If this is greater than the usable-size
1927   ** of the page, then the page must be corrupted. This check also
1928   ** serves to verify that the offset to the start of the cell-content
1929   ** area, according to the page header, lies within the page.
1930   */
1931   if( nFree>usableSize || nFree<iCellFirst ){
1932     return SQLITE_CORRUPT_PAGE(pPage);
1933   }
1934   pPage->nFree = (u16)(nFree - iCellFirst);
1935   return SQLITE_OK;
1936 }
1937 
1938 /*
1939 ** Do additional sanity check after btreeInitPage() if
1940 ** PRAGMA cell_size_check=ON
1941 */
1942 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1943   int iCellFirst;    /* First allowable cell or freeblock offset */
1944   int iCellLast;     /* Last possible cell or freeblock offset */
1945   int i;             /* Index into the cell pointer array */
1946   int sz;            /* Size of a cell */
1947   int pc;            /* Address of a freeblock within pPage->aData[] */
1948   u8 *data;          /* Equal to pPage->aData */
1949   int usableSize;    /* Maximum usable space on the page */
1950   int cellOffset;    /* Start of cell content area */
1951 
1952   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1953   usableSize = pPage->pBt->usableSize;
1954   iCellLast = usableSize - 4;
1955   data = pPage->aData;
1956   cellOffset = pPage->cellOffset;
1957   if( !pPage->leaf ) iCellLast--;
1958   for(i=0; i<pPage->nCell; i++){
1959     pc = get2byteAligned(&data[cellOffset+i*2]);
1960     testcase( pc==iCellFirst );
1961     testcase( pc==iCellLast );
1962     if( pc<iCellFirst || pc>iCellLast ){
1963       return SQLITE_CORRUPT_PAGE(pPage);
1964     }
1965     sz = pPage->xCellSize(pPage, &data[pc]);
1966     testcase( pc+sz==usableSize );
1967     if( pc+sz>usableSize ){
1968       return SQLITE_CORRUPT_PAGE(pPage);
1969     }
1970   }
1971   return SQLITE_OK;
1972 }
1973 
1974 /*
1975 ** Initialize the auxiliary information for a disk block.
1976 **
1977 ** Return SQLITE_OK on success.  If we see that the page does
1978 ** not contain a well-formed database page, then return
1979 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1980 ** guarantee that the page is well-formed.  It only shows that
1981 ** we failed to detect any corruption.
1982 */
1983 static int btreeInitPage(MemPage *pPage){
1984   u8 *data;          /* Equal to pPage->aData */
1985   BtShared *pBt;        /* The main btree structure */
1986 
1987   assert( pPage->pBt!=0 );
1988   assert( pPage->pBt->db!=0 );
1989   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1990   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1991   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1992   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1993   assert( pPage->isInit==0 );
1994 
1995   pBt = pPage->pBt;
1996   data = pPage->aData + pPage->hdrOffset;
1997   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1998   ** the b-tree page type. */
1999   if( decodeFlags(pPage, data[0]) ){
2000     return SQLITE_CORRUPT_PAGE(pPage);
2001   }
2002   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2003   pPage->maskPage = (u16)(pBt->pageSize - 1);
2004   pPage->nOverflow = 0;
2005   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2006   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2007   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2008   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2009   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2010   ** number of cells on the page. */
2011   pPage->nCell = get2byte(&data[3]);
2012   if( pPage->nCell>MX_CELL(pBt) ){
2013     /* To many cells for a single page.  The page must be corrupt */
2014     return SQLITE_CORRUPT_PAGE(pPage);
2015   }
2016   testcase( pPage->nCell==MX_CELL(pBt) );
2017   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2018   ** possible for a root page of a table that contains no rows) then the
2019   ** offset to the cell content area will equal the page size minus the
2020   ** bytes of reserved space. */
2021   assert( pPage->nCell>0
2022        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2023        || CORRUPT_DB );
2024   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2025   pPage->isInit = 1;
2026   if( pBt->db->flags & SQLITE_CellSizeCk ){
2027     return btreeCellSizeCheck(pPage);
2028   }
2029   return SQLITE_OK;
2030 }
2031 
2032 /*
2033 ** Set up a raw page so that it looks like a database page holding
2034 ** no entries.
2035 */
2036 static void zeroPage(MemPage *pPage, int flags){
2037   unsigned char *data = pPage->aData;
2038   BtShared *pBt = pPage->pBt;
2039   u8 hdr = pPage->hdrOffset;
2040   u16 first;
2041 
2042   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2043   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2044   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2045   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2046   assert( sqlite3_mutex_held(pBt->mutex) );
2047   if( pBt->btsFlags & BTS_FAST_SECURE ){
2048     memset(&data[hdr], 0, pBt->usableSize - hdr);
2049   }
2050   data[hdr] = (char)flags;
2051   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2052   memset(&data[hdr+1], 0, 4);
2053   data[hdr+7] = 0;
2054   put2byte(&data[hdr+5], pBt->usableSize);
2055   pPage->nFree = (u16)(pBt->usableSize - first);
2056   decodeFlags(pPage, flags);
2057   pPage->cellOffset = first;
2058   pPage->aDataEnd = &data[pBt->usableSize];
2059   pPage->aCellIdx = &data[first];
2060   pPage->aDataOfst = &data[pPage->childPtrSize];
2061   pPage->nOverflow = 0;
2062   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2063   pPage->maskPage = (u16)(pBt->pageSize - 1);
2064   pPage->nCell = 0;
2065   pPage->isInit = 1;
2066 }
2067 
2068 
2069 /*
2070 ** Convert a DbPage obtained from the pager into a MemPage used by
2071 ** the btree layer.
2072 */
2073 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2074   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2075   if( pgno!=pPage->pgno ){
2076     pPage->aData = sqlite3PagerGetData(pDbPage);
2077     pPage->pDbPage = pDbPage;
2078     pPage->pBt = pBt;
2079     pPage->pgno = pgno;
2080     pPage->hdrOffset = pgno==1 ? 100 : 0;
2081   }
2082   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2083   return pPage;
2084 }
2085 
2086 /*
2087 ** Get a page from the pager.  Initialize the MemPage.pBt and
2088 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2089 **
2090 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2091 ** about the content of the page at this time.  So do not go to the disk
2092 ** to fetch the content.  Just fill in the content with zeros for now.
2093 ** If in the future we call sqlite3PagerWrite() on this page, that
2094 ** means we have started to be concerned about content and the disk
2095 ** read should occur at that point.
2096 */
2097 static int btreeGetPage(
2098   BtShared *pBt,       /* The btree */
2099   Pgno pgno,           /* Number of the page to fetch */
2100   MemPage **ppPage,    /* Return the page in this parameter */
2101   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2102 ){
2103   int rc;
2104   DbPage *pDbPage;
2105 
2106   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2107   assert( sqlite3_mutex_held(pBt->mutex) );
2108   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2109   if( rc ) return rc;
2110   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2111   return SQLITE_OK;
2112 }
2113 
2114 /*
2115 ** Retrieve a page from the pager cache. If the requested page is not
2116 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2117 ** MemPage.aData elements if needed.
2118 */
2119 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2120   DbPage *pDbPage;
2121   assert( sqlite3_mutex_held(pBt->mutex) );
2122   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2123   if( pDbPage ){
2124     return btreePageFromDbPage(pDbPage, pgno, pBt);
2125   }
2126   return 0;
2127 }
2128 
2129 /*
2130 ** Return the size of the database file in pages. If there is any kind of
2131 ** error, return ((unsigned int)-1).
2132 */
2133 static Pgno btreePagecount(BtShared *pBt){
2134   return pBt->nPage;
2135 }
2136 u32 sqlite3BtreeLastPage(Btree *p){
2137   assert( sqlite3BtreeHoldsMutex(p) );
2138   assert( ((p->pBt->nPage)&0x80000000)==0 );
2139   return btreePagecount(p->pBt);
2140 }
2141 
2142 /*
2143 ** Get a page from the pager and initialize it.
2144 **
2145 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2146 ** call.  Do additional sanity checking on the page in this case.
2147 ** And if the fetch fails, this routine must decrement pCur->iPage.
2148 **
2149 ** The page is fetched as read-write unless pCur is not NULL and is
2150 ** a read-only cursor.
2151 **
2152 ** If an error occurs, then *ppPage is undefined. It
2153 ** may remain unchanged, or it may be set to an invalid value.
2154 */
2155 static int getAndInitPage(
2156   BtShared *pBt,                  /* The database file */
2157   Pgno pgno,                      /* Number of the page to get */
2158   MemPage **ppPage,               /* Write the page pointer here */
2159   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2160   int bReadOnly                   /* True for a read-only page */
2161 ){
2162   int rc;
2163   DbPage *pDbPage;
2164   assert( sqlite3_mutex_held(pBt->mutex) );
2165   assert( pCur==0 || ppPage==&pCur->pPage );
2166   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2167   assert( pCur==0 || pCur->iPage>0 );
2168 
2169   if( pgno>btreePagecount(pBt) ){
2170     rc = SQLITE_CORRUPT_BKPT;
2171     goto getAndInitPage_error1;
2172   }
2173   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2174   if( rc ){
2175     goto getAndInitPage_error1;
2176   }
2177   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2178   if( (*ppPage)->isInit==0 ){
2179     btreePageFromDbPage(pDbPage, pgno, pBt);
2180     rc = btreeInitPage(*ppPage);
2181     if( rc!=SQLITE_OK ){
2182       goto getAndInitPage_error2;
2183     }
2184   }
2185   assert( (*ppPage)->pgno==pgno );
2186   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2187 
2188   /* If obtaining a child page for a cursor, we must verify that the page is
2189   ** compatible with the root page. */
2190   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2191     rc = SQLITE_CORRUPT_PGNO(pgno);
2192     goto getAndInitPage_error2;
2193   }
2194   return SQLITE_OK;
2195 
2196 getAndInitPage_error2:
2197   releasePage(*ppPage);
2198 getAndInitPage_error1:
2199   if( pCur ){
2200     pCur->iPage--;
2201     pCur->pPage = pCur->apPage[pCur->iPage];
2202   }
2203   testcase( pgno==0 );
2204   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2205   return rc;
2206 }
2207 
2208 /*
2209 ** Release a MemPage.  This should be called once for each prior
2210 ** call to btreeGetPage.
2211 **
2212 ** Page1 is a special case and must be released using releasePageOne().
2213 */
2214 static void releasePageNotNull(MemPage *pPage){
2215   assert( pPage->aData );
2216   assert( pPage->pBt );
2217   assert( pPage->pDbPage!=0 );
2218   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2219   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2220   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2221   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2222 }
2223 static void releasePage(MemPage *pPage){
2224   if( pPage ) releasePageNotNull(pPage);
2225 }
2226 static void releasePageOne(MemPage *pPage){
2227   assert( pPage!=0 );
2228   assert( pPage->aData );
2229   assert( pPage->pBt );
2230   assert( pPage->pDbPage!=0 );
2231   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2232   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2233   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2234   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2235 }
2236 
2237 /*
2238 ** Get an unused page.
2239 **
2240 ** This works just like btreeGetPage() with the addition:
2241 **
2242 **   *  If the page is already in use for some other purpose, immediately
2243 **      release it and return an SQLITE_CURRUPT error.
2244 **   *  Make sure the isInit flag is clear
2245 */
2246 static int btreeGetUnusedPage(
2247   BtShared *pBt,       /* The btree */
2248   Pgno pgno,           /* Number of the page to fetch */
2249   MemPage **ppPage,    /* Return the page in this parameter */
2250   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2251 ){
2252   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2253   if( rc==SQLITE_OK ){
2254     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2255       releasePage(*ppPage);
2256       *ppPage = 0;
2257       return SQLITE_CORRUPT_BKPT;
2258     }
2259     (*ppPage)->isInit = 0;
2260   }else{
2261     *ppPage = 0;
2262   }
2263   return rc;
2264 }
2265 
2266 
2267 /*
2268 ** During a rollback, when the pager reloads information into the cache
2269 ** so that the cache is restored to its original state at the start of
2270 ** the transaction, for each page restored this routine is called.
2271 **
2272 ** This routine needs to reset the extra data section at the end of the
2273 ** page to agree with the restored data.
2274 */
2275 static void pageReinit(DbPage *pData){
2276   MemPage *pPage;
2277   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2278   assert( sqlite3PagerPageRefcount(pData)>0 );
2279   if( pPage->isInit ){
2280     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2281     pPage->isInit = 0;
2282     if( sqlite3PagerPageRefcount(pData)>1 ){
2283       /* pPage might not be a btree page;  it might be an overflow page
2284       ** or ptrmap page or a free page.  In those cases, the following
2285       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2286       ** But no harm is done by this.  And it is very important that
2287       ** btreeInitPage() be called on every btree page so we make
2288       ** the call for every page that comes in for re-initing. */
2289       btreeInitPage(pPage);
2290     }
2291   }
2292 }
2293 
2294 /*
2295 ** Invoke the busy handler for a btree.
2296 */
2297 static int btreeInvokeBusyHandler(void *pArg){
2298   BtShared *pBt = (BtShared*)pArg;
2299   assert( pBt->db );
2300   assert( sqlite3_mutex_held(pBt->db->mutex) );
2301   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2302                                   sqlite3PagerFile(pBt->pPager));
2303 }
2304 
2305 /*
2306 ** Open a database file.
2307 **
2308 ** zFilename is the name of the database file.  If zFilename is NULL
2309 ** then an ephemeral database is created.  The ephemeral database might
2310 ** be exclusively in memory, or it might use a disk-based memory cache.
2311 ** Either way, the ephemeral database will be automatically deleted
2312 ** when sqlite3BtreeClose() is called.
2313 **
2314 ** If zFilename is ":memory:" then an in-memory database is created
2315 ** that is automatically destroyed when it is closed.
2316 **
2317 ** The "flags" parameter is a bitmask that might contain bits like
2318 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2319 **
2320 ** If the database is already opened in the same database connection
2321 ** and we are in shared cache mode, then the open will fail with an
2322 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2323 ** objects in the same database connection since doing so will lead
2324 ** to problems with locking.
2325 */
2326 int sqlite3BtreeOpen(
2327   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2328   const char *zFilename,  /* Name of the file containing the BTree database */
2329   sqlite3 *db,            /* Associated database handle */
2330   Btree **ppBtree,        /* Pointer to new Btree object written here */
2331   int flags,              /* Options */
2332   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2333 ){
2334   BtShared *pBt = 0;             /* Shared part of btree structure */
2335   Btree *p;                      /* Handle to return */
2336   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2337   int rc = SQLITE_OK;            /* Result code from this function */
2338   u8 nReserve;                   /* Byte of unused space on each page */
2339   unsigned char zDbHeader[100];  /* Database header content */
2340 
2341   /* True if opening an ephemeral, temporary database */
2342   const int isTempDb = zFilename==0 || zFilename[0]==0;
2343 
2344   /* Set the variable isMemdb to true for an in-memory database, or
2345   ** false for a file-based database.
2346   */
2347 #ifdef SQLITE_OMIT_MEMORYDB
2348   const int isMemdb = 0;
2349 #else
2350   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2351                        || (isTempDb && sqlite3TempInMemory(db))
2352                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2353 #endif
2354 
2355   assert( db!=0 );
2356   assert( pVfs!=0 );
2357   assert( sqlite3_mutex_held(db->mutex) );
2358   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2359 
2360   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2361   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2362 
2363   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2364   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2365 
2366   if( isMemdb ){
2367     flags |= BTREE_MEMORY;
2368   }
2369   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2370     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2371   }
2372   p = sqlite3MallocZero(sizeof(Btree));
2373   if( !p ){
2374     return SQLITE_NOMEM_BKPT;
2375   }
2376   p->inTrans = TRANS_NONE;
2377   p->db = db;
2378 #ifndef SQLITE_OMIT_SHARED_CACHE
2379   p->lock.pBtree = p;
2380   p->lock.iTable = 1;
2381 #endif
2382 
2383 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2384   /*
2385   ** If this Btree is a candidate for shared cache, try to find an
2386   ** existing BtShared object that we can share with
2387   */
2388   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2389     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2390       int nFilename = sqlite3Strlen30(zFilename)+1;
2391       int nFullPathname = pVfs->mxPathname+1;
2392       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2393       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2394 
2395       p->sharable = 1;
2396       if( !zFullPathname ){
2397         sqlite3_free(p);
2398         return SQLITE_NOMEM_BKPT;
2399       }
2400       if( isMemdb ){
2401         memcpy(zFullPathname, zFilename, nFilename);
2402       }else{
2403         rc = sqlite3OsFullPathname(pVfs, zFilename,
2404                                    nFullPathname, zFullPathname);
2405         if( rc ){
2406           sqlite3_free(zFullPathname);
2407           sqlite3_free(p);
2408           return rc;
2409         }
2410       }
2411 #if SQLITE_THREADSAFE
2412       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2413       sqlite3_mutex_enter(mutexOpen);
2414       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2415       sqlite3_mutex_enter(mutexShared);
2416 #endif
2417       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2418         assert( pBt->nRef>0 );
2419         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2420                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2421           int iDb;
2422           for(iDb=db->nDb-1; iDb>=0; iDb--){
2423             Btree *pExisting = db->aDb[iDb].pBt;
2424             if( pExisting && pExisting->pBt==pBt ){
2425               sqlite3_mutex_leave(mutexShared);
2426               sqlite3_mutex_leave(mutexOpen);
2427               sqlite3_free(zFullPathname);
2428               sqlite3_free(p);
2429               return SQLITE_CONSTRAINT;
2430             }
2431           }
2432           p->pBt = pBt;
2433           pBt->nRef++;
2434           break;
2435         }
2436       }
2437       sqlite3_mutex_leave(mutexShared);
2438       sqlite3_free(zFullPathname);
2439     }
2440 #ifdef SQLITE_DEBUG
2441     else{
2442       /* In debug mode, we mark all persistent databases as sharable
2443       ** even when they are not.  This exercises the locking code and
2444       ** gives more opportunity for asserts(sqlite3_mutex_held())
2445       ** statements to find locking problems.
2446       */
2447       p->sharable = 1;
2448     }
2449 #endif
2450   }
2451 #endif
2452   if( pBt==0 ){
2453     /*
2454     ** The following asserts make sure that structures used by the btree are
2455     ** the right size.  This is to guard against size changes that result
2456     ** when compiling on a different architecture.
2457     */
2458     assert( sizeof(i64)==8 );
2459     assert( sizeof(u64)==8 );
2460     assert( sizeof(u32)==4 );
2461     assert( sizeof(u16)==2 );
2462     assert( sizeof(Pgno)==4 );
2463 
2464     pBt = sqlite3MallocZero( sizeof(*pBt) );
2465     if( pBt==0 ){
2466       rc = SQLITE_NOMEM_BKPT;
2467       goto btree_open_out;
2468     }
2469     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2470                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2471     if( rc==SQLITE_OK ){
2472       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2473       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2474     }
2475     if( rc!=SQLITE_OK ){
2476       goto btree_open_out;
2477     }
2478     pBt->openFlags = (u8)flags;
2479     pBt->db = db;
2480     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2481     p->pBt = pBt;
2482 
2483     pBt->pCursor = 0;
2484     pBt->pPage1 = 0;
2485     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2486 #if defined(SQLITE_SECURE_DELETE)
2487     pBt->btsFlags |= BTS_SECURE_DELETE;
2488 #elif defined(SQLITE_FAST_SECURE_DELETE)
2489     pBt->btsFlags |= BTS_OVERWRITE;
2490 #endif
2491     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2492     ** determined by the 2-byte integer located at an offset of 16 bytes from
2493     ** the beginning of the database file. */
2494     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2495     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2496          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2497       pBt->pageSize = 0;
2498 #ifndef SQLITE_OMIT_AUTOVACUUM
2499       /* If the magic name ":memory:" will create an in-memory database, then
2500       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2501       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2502       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2503       ** regular file-name. In this case the auto-vacuum applies as per normal.
2504       */
2505       if( zFilename && !isMemdb ){
2506         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2507         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2508       }
2509 #endif
2510       nReserve = 0;
2511     }else{
2512       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2513       ** determined by the one-byte unsigned integer found at an offset of 20
2514       ** into the database file header. */
2515       nReserve = zDbHeader[20];
2516       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2517 #ifndef SQLITE_OMIT_AUTOVACUUM
2518       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2519       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2520 #endif
2521     }
2522     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2523     if( rc ) goto btree_open_out;
2524     pBt->usableSize = pBt->pageSize - nReserve;
2525     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2526 
2527 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2528     /* Add the new BtShared object to the linked list sharable BtShareds.
2529     */
2530     pBt->nRef = 1;
2531     if( p->sharable ){
2532       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2533       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2534       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2535         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2536         if( pBt->mutex==0 ){
2537           rc = SQLITE_NOMEM_BKPT;
2538           goto btree_open_out;
2539         }
2540       }
2541       sqlite3_mutex_enter(mutexShared);
2542       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2543       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2544       sqlite3_mutex_leave(mutexShared);
2545     }
2546 #endif
2547   }
2548 
2549 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2550   /* If the new Btree uses a sharable pBtShared, then link the new
2551   ** Btree into the list of all sharable Btrees for the same connection.
2552   ** The list is kept in ascending order by pBt address.
2553   */
2554   if( p->sharable ){
2555     int i;
2556     Btree *pSib;
2557     for(i=0; i<db->nDb; i++){
2558       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2559         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2560         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2561           p->pNext = pSib;
2562           p->pPrev = 0;
2563           pSib->pPrev = p;
2564         }else{
2565           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2566             pSib = pSib->pNext;
2567           }
2568           p->pNext = pSib->pNext;
2569           p->pPrev = pSib;
2570           if( p->pNext ){
2571             p->pNext->pPrev = p;
2572           }
2573           pSib->pNext = p;
2574         }
2575         break;
2576       }
2577     }
2578   }
2579 #endif
2580   *ppBtree = p;
2581 
2582 btree_open_out:
2583   if( rc!=SQLITE_OK ){
2584     if( pBt && pBt->pPager ){
2585       sqlite3PagerClose(pBt->pPager, 0);
2586     }
2587     sqlite3_free(pBt);
2588     sqlite3_free(p);
2589     *ppBtree = 0;
2590   }else{
2591     sqlite3_file *pFile;
2592 
2593     /* If the B-Tree was successfully opened, set the pager-cache size to the
2594     ** default value. Except, when opening on an existing shared pager-cache,
2595     ** do not change the pager-cache size.
2596     */
2597     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2598       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2599     }
2600 
2601     pFile = sqlite3PagerFile(pBt->pPager);
2602     if( pFile->pMethods ){
2603       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2604     }
2605   }
2606   if( mutexOpen ){
2607     assert( sqlite3_mutex_held(mutexOpen) );
2608     sqlite3_mutex_leave(mutexOpen);
2609   }
2610   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2611   return rc;
2612 }
2613 
2614 /*
2615 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2616 ** remove the BtShared structure from the sharing list.  Return
2617 ** true if the BtShared.nRef counter reaches zero and return
2618 ** false if it is still positive.
2619 */
2620 static int removeFromSharingList(BtShared *pBt){
2621 #ifndef SQLITE_OMIT_SHARED_CACHE
2622   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2623   BtShared *pList;
2624   int removed = 0;
2625 
2626   assert( sqlite3_mutex_notheld(pBt->mutex) );
2627   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2628   sqlite3_mutex_enter(pMaster);
2629   pBt->nRef--;
2630   if( pBt->nRef<=0 ){
2631     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2632       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2633     }else{
2634       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2635       while( ALWAYS(pList) && pList->pNext!=pBt ){
2636         pList=pList->pNext;
2637       }
2638       if( ALWAYS(pList) ){
2639         pList->pNext = pBt->pNext;
2640       }
2641     }
2642     if( SQLITE_THREADSAFE ){
2643       sqlite3_mutex_free(pBt->mutex);
2644     }
2645     removed = 1;
2646   }
2647   sqlite3_mutex_leave(pMaster);
2648   return removed;
2649 #else
2650   return 1;
2651 #endif
2652 }
2653 
2654 /*
2655 ** Make sure pBt->pTmpSpace points to an allocation of
2656 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2657 ** pointer.
2658 */
2659 static void allocateTempSpace(BtShared *pBt){
2660   if( !pBt->pTmpSpace ){
2661     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2662 
2663     /* One of the uses of pBt->pTmpSpace is to format cells before
2664     ** inserting them into a leaf page (function fillInCell()). If
2665     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2666     ** by the various routines that manipulate binary cells. Which
2667     ** can mean that fillInCell() only initializes the first 2 or 3
2668     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2669     ** it into a database page. This is not actually a problem, but it
2670     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2671     ** data is passed to system call write(). So to avoid this error,
2672     ** zero the first 4 bytes of temp space here.
2673     **
2674     ** Also:  Provide four bytes of initialized space before the
2675     ** beginning of pTmpSpace as an area available to prepend the
2676     ** left-child pointer to the beginning of a cell.
2677     */
2678     if( pBt->pTmpSpace ){
2679       memset(pBt->pTmpSpace, 0, 8);
2680       pBt->pTmpSpace += 4;
2681     }
2682   }
2683 }
2684 
2685 /*
2686 ** Free the pBt->pTmpSpace allocation
2687 */
2688 static void freeTempSpace(BtShared *pBt){
2689   if( pBt->pTmpSpace ){
2690     pBt->pTmpSpace -= 4;
2691     sqlite3PageFree(pBt->pTmpSpace);
2692     pBt->pTmpSpace = 0;
2693   }
2694 }
2695 
2696 /*
2697 ** Close an open database and invalidate all cursors.
2698 */
2699 int sqlite3BtreeClose(Btree *p){
2700   BtShared *pBt = p->pBt;
2701   BtCursor *pCur;
2702 
2703   /* Close all cursors opened via this handle.  */
2704   assert( sqlite3_mutex_held(p->db->mutex) );
2705   sqlite3BtreeEnter(p);
2706   pCur = pBt->pCursor;
2707   while( pCur ){
2708     BtCursor *pTmp = pCur;
2709     pCur = pCur->pNext;
2710     if( pTmp->pBtree==p ){
2711       sqlite3BtreeCloseCursor(pTmp);
2712     }
2713   }
2714 
2715   /* Rollback any active transaction and free the handle structure.
2716   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2717   ** this handle.
2718   */
2719   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2720   sqlite3BtreeLeave(p);
2721 
2722   /* If there are still other outstanding references to the shared-btree
2723   ** structure, return now. The remainder of this procedure cleans
2724   ** up the shared-btree.
2725   */
2726   assert( p->wantToLock==0 && p->locked==0 );
2727   if( !p->sharable || removeFromSharingList(pBt) ){
2728     /* The pBt is no longer on the sharing list, so we can access
2729     ** it without having to hold the mutex.
2730     **
2731     ** Clean out and delete the BtShared object.
2732     */
2733     assert( !pBt->pCursor );
2734     sqlite3PagerClose(pBt->pPager, p->db);
2735     if( pBt->xFreeSchema && pBt->pSchema ){
2736       pBt->xFreeSchema(pBt->pSchema);
2737     }
2738     sqlite3DbFree(0, pBt->pSchema);
2739     freeTempSpace(pBt);
2740     sqlite3_free(pBt);
2741   }
2742 
2743 #ifndef SQLITE_OMIT_SHARED_CACHE
2744   assert( p->wantToLock==0 );
2745   assert( p->locked==0 );
2746   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2747   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2748 #endif
2749 
2750   sqlite3_free(p);
2751   return SQLITE_OK;
2752 }
2753 
2754 /*
2755 ** Change the "soft" limit on the number of pages in the cache.
2756 ** Unused and unmodified pages will be recycled when the number of
2757 ** pages in the cache exceeds this soft limit.  But the size of the
2758 ** cache is allowed to grow larger than this limit if it contains
2759 ** dirty pages or pages still in active use.
2760 */
2761 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2762   BtShared *pBt = p->pBt;
2763   assert( sqlite3_mutex_held(p->db->mutex) );
2764   sqlite3BtreeEnter(p);
2765   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2766   sqlite3BtreeLeave(p);
2767   return SQLITE_OK;
2768 }
2769 
2770 /*
2771 ** Change the "spill" limit on the number of pages in the cache.
2772 ** If the number of pages exceeds this limit during a write transaction,
2773 ** the pager might attempt to "spill" pages to the journal early in
2774 ** order to free up memory.
2775 **
2776 ** The value returned is the current spill size.  If zero is passed
2777 ** as an argument, no changes are made to the spill size setting, so
2778 ** using mxPage of 0 is a way to query the current spill size.
2779 */
2780 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2781   BtShared *pBt = p->pBt;
2782   int res;
2783   assert( sqlite3_mutex_held(p->db->mutex) );
2784   sqlite3BtreeEnter(p);
2785   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2786   sqlite3BtreeLeave(p);
2787   return res;
2788 }
2789 
2790 #if SQLITE_MAX_MMAP_SIZE>0
2791 /*
2792 ** Change the limit on the amount of the database file that may be
2793 ** memory mapped.
2794 */
2795 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2796   BtShared *pBt = p->pBt;
2797   assert( sqlite3_mutex_held(p->db->mutex) );
2798   sqlite3BtreeEnter(p);
2799   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2800   sqlite3BtreeLeave(p);
2801   return SQLITE_OK;
2802 }
2803 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2804 
2805 /*
2806 ** Change the way data is synced to disk in order to increase or decrease
2807 ** how well the database resists damage due to OS crashes and power
2808 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2809 ** there is a high probability of damage)  Level 2 is the default.  There
2810 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2811 ** probability of damage to near zero but with a write performance reduction.
2812 */
2813 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2814 int sqlite3BtreeSetPagerFlags(
2815   Btree *p,              /* The btree to set the safety level on */
2816   unsigned pgFlags       /* Various PAGER_* flags */
2817 ){
2818   BtShared *pBt = p->pBt;
2819   assert( sqlite3_mutex_held(p->db->mutex) );
2820   sqlite3BtreeEnter(p);
2821   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2822   sqlite3BtreeLeave(p);
2823   return SQLITE_OK;
2824 }
2825 #endif
2826 
2827 /*
2828 ** Change the default pages size and the number of reserved bytes per page.
2829 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2830 ** without changing anything.
2831 **
2832 ** The page size must be a power of 2 between 512 and 65536.  If the page
2833 ** size supplied does not meet this constraint then the page size is not
2834 ** changed.
2835 **
2836 ** Page sizes are constrained to be a power of two so that the region
2837 ** of the database file used for locking (beginning at PENDING_BYTE,
2838 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2839 ** at the beginning of a page.
2840 **
2841 ** If parameter nReserve is less than zero, then the number of reserved
2842 ** bytes per page is left unchanged.
2843 **
2844 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2845 ** and autovacuum mode can no longer be changed.
2846 */
2847 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2848   int rc = SQLITE_OK;
2849   BtShared *pBt = p->pBt;
2850   assert( nReserve>=-1 && nReserve<=255 );
2851   sqlite3BtreeEnter(p);
2852 #if SQLITE_HAS_CODEC
2853   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2854 #endif
2855   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2856     sqlite3BtreeLeave(p);
2857     return SQLITE_READONLY;
2858   }
2859   if( nReserve<0 ){
2860     nReserve = pBt->pageSize - pBt->usableSize;
2861   }
2862   assert( nReserve>=0 && nReserve<=255 );
2863   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2864         ((pageSize-1)&pageSize)==0 ){
2865     assert( (pageSize & 7)==0 );
2866     assert( !pBt->pCursor );
2867     pBt->pageSize = (u32)pageSize;
2868     freeTempSpace(pBt);
2869   }
2870   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2871   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2872   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2873   sqlite3BtreeLeave(p);
2874   return rc;
2875 }
2876 
2877 /*
2878 ** Return the currently defined page size
2879 */
2880 int sqlite3BtreeGetPageSize(Btree *p){
2881   return p->pBt->pageSize;
2882 }
2883 
2884 /*
2885 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2886 ** may only be called if it is guaranteed that the b-tree mutex is already
2887 ** held.
2888 **
2889 ** This is useful in one special case in the backup API code where it is
2890 ** known that the shared b-tree mutex is held, but the mutex on the
2891 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2892 ** were to be called, it might collide with some other operation on the
2893 ** database handle that owns *p, causing undefined behavior.
2894 */
2895 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2896   int n;
2897   assert( sqlite3_mutex_held(p->pBt->mutex) );
2898   n = p->pBt->pageSize - p->pBt->usableSize;
2899   return n;
2900 }
2901 
2902 /*
2903 ** Return the number of bytes of space at the end of every page that
2904 ** are intentually left unused.  This is the "reserved" space that is
2905 ** sometimes used by extensions.
2906 **
2907 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2908 ** greater of the current reserved space and the maximum requested
2909 ** reserve space.
2910 */
2911 int sqlite3BtreeGetOptimalReserve(Btree *p){
2912   int n;
2913   sqlite3BtreeEnter(p);
2914   n = sqlite3BtreeGetReserveNoMutex(p);
2915 #ifdef SQLITE_HAS_CODEC
2916   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2917 #endif
2918   sqlite3BtreeLeave(p);
2919   return n;
2920 }
2921 
2922 
2923 /*
2924 ** Set the maximum page count for a database if mxPage is positive.
2925 ** No changes are made if mxPage is 0 or negative.
2926 ** Regardless of the value of mxPage, return the maximum page count.
2927 */
2928 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2929   int n;
2930   sqlite3BtreeEnter(p);
2931   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2932   sqlite3BtreeLeave(p);
2933   return n;
2934 }
2935 
2936 /*
2937 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2938 **
2939 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2940 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2941 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2942 **    newFlag==(-1)    No changes
2943 **
2944 ** This routine acts as a query if newFlag is less than zero
2945 **
2946 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2947 ** freelist leaf pages are not written back to the database.  Thus in-page
2948 ** deleted content is cleared, but freelist deleted content is not.
2949 **
2950 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2951 ** that freelist leaf pages are written back into the database, increasing
2952 ** the amount of disk I/O.
2953 */
2954 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2955   int b;
2956   if( p==0 ) return 0;
2957   sqlite3BtreeEnter(p);
2958   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2959   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2960   if( newFlag>=0 ){
2961     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2962     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2963   }
2964   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2965   sqlite3BtreeLeave(p);
2966   return b;
2967 }
2968 
2969 /*
2970 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2971 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2972 ** is disabled. The default value for the auto-vacuum property is
2973 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2974 */
2975 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2976 #ifdef SQLITE_OMIT_AUTOVACUUM
2977   return SQLITE_READONLY;
2978 #else
2979   BtShared *pBt = p->pBt;
2980   int rc = SQLITE_OK;
2981   u8 av = (u8)autoVacuum;
2982 
2983   sqlite3BtreeEnter(p);
2984   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2985     rc = SQLITE_READONLY;
2986   }else{
2987     pBt->autoVacuum = av ?1:0;
2988     pBt->incrVacuum = av==2 ?1:0;
2989   }
2990   sqlite3BtreeLeave(p);
2991   return rc;
2992 #endif
2993 }
2994 
2995 /*
2996 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2997 ** enabled 1 is returned. Otherwise 0.
2998 */
2999 int sqlite3BtreeGetAutoVacuum(Btree *p){
3000 #ifdef SQLITE_OMIT_AUTOVACUUM
3001   return BTREE_AUTOVACUUM_NONE;
3002 #else
3003   int rc;
3004   sqlite3BtreeEnter(p);
3005   rc = (
3006     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3007     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3008     BTREE_AUTOVACUUM_INCR
3009   );
3010   sqlite3BtreeLeave(p);
3011   return rc;
3012 #endif
3013 }
3014 
3015 /*
3016 ** If the user has not set the safety-level for this database connection
3017 ** using "PRAGMA synchronous", and if the safety-level is not already
3018 ** set to the value passed to this function as the second parameter,
3019 ** set it so.
3020 */
3021 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3022     && !defined(SQLITE_OMIT_WAL)
3023 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3024   sqlite3 *db;
3025   Db *pDb;
3026   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3027     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3028     if( pDb->bSyncSet==0
3029      && pDb->safety_level!=safety_level
3030      && pDb!=&db->aDb[1]
3031     ){
3032       pDb->safety_level = safety_level;
3033       sqlite3PagerSetFlags(pBt->pPager,
3034           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3035     }
3036   }
3037 }
3038 #else
3039 # define setDefaultSyncFlag(pBt,safety_level)
3040 #endif
3041 
3042 /* Forward declaration */
3043 static int newDatabase(BtShared*);
3044 
3045 
3046 /*
3047 ** Get a reference to pPage1 of the database file.  This will
3048 ** also acquire a readlock on that file.
3049 **
3050 ** SQLITE_OK is returned on success.  If the file is not a
3051 ** well-formed database file, then SQLITE_CORRUPT is returned.
3052 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3053 ** is returned if we run out of memory.
3054 */
3055 static int lockBtree(BtShared *pBt){
3056   int rc;              /* Result code from subfunctions */
3057   MemPage *pPage1;     /* Page 1 of the database file */
3058   u32 nPage;           /* Number of pages in the database */
3059   u32 nPageFile = 0;   /* Number of pages in the database file */
3060   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3061 
3062   assert( sqlite3_mutex_held(pBt->mutex) );
3063   assert( pBt->pPage1==0 );
3064   rc = sqlite3PagerSharedLock(pBt->pPager);
3065   if( rc!=SQLITE_OK ) return rc;
3066   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3067   if( rc!=SQLITE_OK ) return rc;
3068 
3069   /* Do some checking to help insure the file we opened really is
3070   ** a valid database file.
3071   */
3072   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3073   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3074   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3075     nPage = nPageFile;
3076   }
3077   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3078     nPage = 0;
3079   }
3080   if( nPage>0 ){
3081     u32 pageSize;
3082     u32 usableSize;
3083     u8 *page1 = pPage1->aData;
3084     rc = SQLITE_NOTADB;
3085     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3086     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3087     ** 61 74 20 33 00. */
3088     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3089       goto page1_init_failed;
3090     }
3091 
3092 #ifdef SQLITE_OMIT_WAL
3093     if( page1[18]>1 ){
3094       pBt->btsFlags |= BTS_READ_ONLY;
3095     }
3096     if( page1[19]>1 ){
3097       goto page1_init_failed;
3098     }
3099 #else
3100     if( page1[18]>2 ){
3101       pBt->btsFlags |= BTS_READ_ONLY;
3102     }
3103     if( page1[19]>2 ){
3104       goto page1_init_failed;
3105     }
3106 
3107     /* If the write version is set to 2, this database should be accessed
3108     ** in WAL mode. If the log is not already open, open it now. Then
3109     ** return SQLITE_OK and return without populating BtShared.pPage1.
3110     ** The caller detects this and calls this function again. This is
3111     ** required as the version of page 1 currently in the page1 buffer
3112     ** may not be the latest version - there may be a newer one in the log
3113     ** file.
3114     */
3115     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3116       int isOpen = 0;
3117       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3118       if( rc!=SQLITE_OK ){
3119         goto page1_init_failed;
3120       }else{
3121         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3122         if( isOpen==0 ){
3123           releasePageOne(pPage1);
3124           return SQLITE_OK;
3125         }
3126       }
3127       rc = SQLITE_NOTADB;
3128     }else{
3129       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3130     }
3131 #endif
3132 
3133     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3134     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3135     **
3136     ** The original design allowed these amounts to vary, but as of
3137     ** version 3.6.0, we require them to be fixed.
3138     */
3139     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3140       goto page1_init_failed;
3141     }
3142     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3143     ** determined by the 2-byte integer located at an offset of 16 bytes from
3144     ** the beginning of the database file. */
3145     pageSize = (page1[16]<<8) | (page1[17]<<16);
3146     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3147     ** between 512 and 65536 inclusive. */
3148     if( ((pageSize-1)&pageSize)!=0
3149      || pageSize>SQLITE_MAX_PAGE_SIZE
3150      || pageSize<=256
3151     ){
3152       goto page1_init_failed;
3153     }
3154     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3155     assert( (pageSize & 7)==0 );
3156     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3157     ** integer at offset 20 is the number of bytes of space at the end of
3158     ** each page to reserve for extensions.
3159     **
3160     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3161     ** determined by the one-byte unsigned integer found at an offset of 20
3162     ** into the database file header. */
3163     usableSize = pageSize - page1[20];
3164     if( (u32)pageSize!=pBt->pageSize ){
3165       /* After reading the first page of the database assuming a page size
3166       ** of BtShared.pageSize, we have discovered that the page-size is
3167       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3168       ** zero and return SQLITE_OK. The caller will call this function
3169       ** again with the correct page-size.
3170       */
3171       releasePageOne(pPage1);
3172       pBt->usableSize = usableSize;
3173       pBt->pageSize = pageSize;
3174       freeTempSpace(pBt);
3175       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3176                                    pageSize-usableSize);
3177       return rc;
3178     }
3179     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3180       rc = SQLITE_CORRUPT_BKPT;
3181       goto page1_init_failed;
3182     }
3183     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3184     ** be less than 480. In other words, if the page size is 512, then the
3185     ** reserved space size cannot exceed 32. */
3186     if( usableSize<480 ){
3187       goto page1_init_failed;
3188     }
3189     pBt->pageSize = pageSize;
3190     pBt->usableSize = usableSize;
3191 #ifndef SQLITE_OMIT_AUTOVACUUM
3192     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3193     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3194 #endif
3195   }
3196 
3197   /* maxLocal is the maximum amount of payload to store locally for
3198   ** a cell.  Make sure it is small enough so that at least minFanout
3199   ** cells can will fit on one page.  We assume a 10-byte page header.
3200   ** Besides the payload, the cell must store:
3201   **     2-byte pointer to the cell
3202   **     4-byte child pointer
3203   **     9-byte nKey value
3204   **     4-byte nData value
3205   **     4-byte overflow page pointer
3206   ** So a cell consists of a 2-byte pointer, a header which is as much as
3207   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3208   ** page pointer.
3209   */
3210   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3211   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3212   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3213   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3214   if( pBt->maxLocal>127 ){
3215     pBt->max1bytePayload = 127;
3216   }else{
3217     pBt->max1bytePayload = (u8)pBt->maxLocal;
3218   }
3219   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3220   pBt->pPage1 = pPage1;
3221   pBt->nPage = nPage;
3222   return SQLITE_OK;
3223 
3224 page1_init_failed:
3225   releasePageOne(pPage1);
3226   pBt->pPage1 = 0;
3227   return rc;
3228 }
3229 
3230 #ifndef NDEBUG
3231 /*
3232 ** Return the number of cursors open on pBt. This is for use
3233 ** in assert() expressions, so it is only compiled if NDEBUG is not
3234 ** defined.
3235 **
3236 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3237 ** false then all cursors are counted.
3238 **
3239 ** For the purposes of this routine, a cursor is any cursor that
3240 ** is capable of reading or writing to the database.  Cursors that
3241 ** have been tripped into the CURSOR_FAULT state are not counted.
3242 */
3243 static int countValidCursors(BtShared *pBt, int wrOnly){
3244   BtCursor *pCur;
3245   int r = 0;
3246   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3247     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3248      && pCur->eState!=CURSOR_FAULT ) r++;
3249   }
3250   return r;
3251 }
3252 #endif
3253 
3254 /*
3255 ** If there are no outstanding cursors and we are not in the middle
3256 ** of a transaction but there is a read lock on the database, then
3257 ** this routine unrefs the first page of the database file which
3258 ** has the effect of releasing the read lock.
3259 **
3260 ** If there is a transaction in progress, this routine is a no-op.
3261 */
3262 static void unlockBtreeIfUnused(BtShared *pBt){
3263   assert( sqlite3_mutex_held(pBt->mutex) );
3264   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3265   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3266     MemPage *pPage1 = pBt->pPage1;
3267     assert( pPage1->aData );
3268     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3269     pBt->pPage1 = 0;
3270     releasePageOne(pPage1);
3271   }
3272 }
3273 
3274 /*
3275 ** If pBt points to an empty file then convert that empty file
3276 ** into a new empty database by initializing the first page of
3277 ** the database.
3278 */
3279 static int newDatabase(BtShared *pBt){
3280   MemPage *pP1;
3281   unsigned char *data;
3282   int rc;
3283 
3284   assert( sqlite3_mutex_held(pBt->mutex) );
3285   if( pBt->nPage>0 ){
3286     return SQLITE_OK;
3287   }
3288   pP1 = pBt->pPage1;
3289   assert( pP1!=0 );
3290   data = pP1->aData;
3291   rc = sqlite3PagerWrite(pP1->pDbPage);
3292   if( rc ) return rc;
3293   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3294   assert( sizeof(zMagicHeader)==16 );
3295   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3296   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3297   data[18] = 1;
3298   data[19] = 1;
3299   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3300   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3301   data[21] = 64;
3302   data[22] = 32;
3303   data[23] = 32;
3304   memset(&data[24], 0, 100-24);
3305   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3306   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3307 #ifndef SQLITE_OMIT_AUTOVACUUM
3308   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3309   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3310   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3311   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3312 #endif
3313   pBt->nPage = 1;
3314   data[31] = 1;
3315   return SQLITE_OK;
3316 }
3317 
3318 /*
3319 ** Initialize the first page of the database file (creating a database
3320 ** consisting of a single page and no schema objects). Return SQLITE_OK
3321 ** if successful, or an SQLite error code otherwise.
3322 */
3323 int sqlite3BtreeNewDb(Btree *p){
3324   int rc;
3325   sqlite3BtreeEnter(p);
3326   p->pBt->nPage = 0;
3327   rc = newDatabase(p->pBt);
3328   sqlite3BtreeLeave(p);
3329   return rc;
3330 }
3331 
3332 /*
3333 ** Attempt to start a new transaction. A write-transaction
3334 ** is started if the second argument is nonzero, otherwise a read-
3335 ** transaction.  If the second argument is 2 or more and exclusive
3336 ** transaction is started, meaning that no other process is allowed
3337 ** to access the database.  A preexisting transaction may not be
3338 ** upgraded to exclusive by calling this routine a second time - the
3339 ** exclusivity flag only works for a new transaction.
3340 **
3341 ** A write-transaction must be started before attempting any
3342 ** changes to the database.  None of the following routines
3343 ** will work unless a transaction is started first:
3344 **
3345 **      sqlite3BtreeCreateTable()
3346 **      sqlite3BtreeCreateIndex()
3347 **      sqlite3BtreeClearTable()
3348 **      sqlite3BtreeDropTable()
3349 **      sqlite3BtreeInsert()
3350 **      sqlite3BtreeDelete()
3351 **      sqlite3BtreeUpdateMeta()
3352 **
3353 ** If an initial attempt to acquire the lock fails because of lock contention
3354 ** and the database was previously unlocked, then invoke the busy handler
3355 ** if there is one.  But if there was previously a read-lock, do not
3356 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3357 ** returned when there is already a read-lock in order to avoid a deadlock.
3358 **
3359 ** Suppose there are two processes A and B.  A has a read lock and B has
3360 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3361 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3362 ** One or the other of the two processes must give way or there can be
3363 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3364 ** when A already has a read lock, we encourage A to give up and let B
3365 ** proceed.
3366 */
3367 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3368   BtShared *pBt = p->pBt;
3369   int rc = SQLITE_OK;
3370 
3371   sqlite3BtreeEnter(p);
3372   btreeIntegrity(p);
3373 
3374   /* If the btree is already in a write-transaction, or it
3375   ** is already in a read-transaction and a read-transaction
3376   ** is requested, this is a no-op.
3377   */
3378   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3379     goto trans_begun;
3380   }
3381   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3382 
3383   if( (p->db->flags & SQLITE_ResetDatabase)
3384    && sqlite3PagerIsreadonly(pBt->pPager)==0
3385   ){
3386     pBt->btsFlags &= ~BTS_READ_ONLY;
3387   }
3388 
3389   /* Write transactions are not possible on a read-only database */
3390   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3391     rc = SQLITE_READONLY;
3392     goto trans_begun;
3393   }
3394 
3395 #ifndef SQLITE_OMIT_SHARED_CACHE
3396   {
3397     sqlite3 *pBlock = 0;
3398     /* If another database handle has already opened a write transaction
3399     ** on this shared-btree structure and a second write transaction is
3400     ** requested, return SQLITE_LOCKED.
3401     */
3402     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3403      || (pBt->btsFlags & BTS_PENDING)!=0
3404     ){
3405       pBlock = pBt->pWriter->db;
3406     }else if( wrflag>1 ){
3407       BtLock *pIter;
3408       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3409         if( pIter->pBtree!=p ){
3410           pBlock = pIter->pBtree->db;
3411           break;
3412         }
3413       }
3414     }
3415     if( pBlock ){
3416       sqlite3ConnectionBlocked(p->db, pBlock);
3417       rc = SQLITE_LOCKED_SHAREDCACHE;
3418       goto trans_begun;
3419     }
3420   }
3421 #endif
3422 
3423   /* Any read-only or read-write transaction implies a read-lock on
3424   ** page 1. So if some other shared-cache client already has a write-lock
3425   ** on page 1, the transaction cannot be opened. */
3426   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3427   if( SQLITE_OK!=rc ) goto trans_begun;
3428 
3429   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3430   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3431   do {
3432     /* Call lockBtree() until either pBt->pPage1 is populated or
3433     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3434     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3435     ** reading page 1 it discovers that the page-size of the database
3436     ** file is not pBt->pageSize. In this case lockBtree() will update
3437     ** pBt->pageSize to the page-size of the file on disk.
3438     */
3439     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3440 
3441     if( rc==SQLITE_OK && wrflag ){
3442       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3443         rc = SQLITE_READONLY;
3444       }else{
3445         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3446         if( rc==SQLITE_OK ){
3447           rc = newDatabase(pBt);
3448         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3449           /* if there was no transaction opened when this function was
3450           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3451           ** code to SQLITE_BUSY. */
3452           rc = SQLITE_BUSY;
3453         }
3454       }
3455     }
3456 
3457     if( rc!=SQLITE_OK ){
3458       unlockBtreeIfUnused(pBt);
3459     }
3460   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3461           btreeInvokeBusyHandler(pBt) );
3462   sqlite3PagerResetLockTimeout(pBt->pPager);
3463 
3464   if( rc==SQLITE_OK ){
3465     if( p->inTrans==TRANS_NONE ){
3466       pBt->nTransaction++;
3467 #ifndef SQLITE_OMIT_SHARED_CACHE
3468       if( p->sharable ){
3469         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3470         p->lock.eLock = READ_LOCK;
3471         p->lock.pNext = pBt->pLock;
3472         pBt->pLock = &p->lock;
3473       }
3474 #endif
3475     }
3476     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3477     if( p->inTrans>pBt->inTransaction ){
3478       pBt->inTransaction = p->inTrans;
3479     }
3480     if( wrflag ){
3481       MemPage *pPage1 = pBt->pPage1;
3482 #ifndef SQLITE_OMIT_SHARED_CACHE
3483       assert( !pBt->pWriter );
3484       pBt->pWriter = p;
3485       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3486       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3487 #endif
3488 
3489       /* If the db-size header field is incorrect (as it may be if an old
3490       ** client has been writing the database file), update it now. Doing
3491       ** this sooner rather than later means the database size can safely
3492       ** re-read the database size from page 1 if a savepoint or transaction
3493       ** rollback occurs within the transaction.
3494       */
3495       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3496         rc = sqlite3PagerWrite(pPage1->pDbPage);
3497         if( rc==SQLITE_OK ){
3498           put4byte(&pPage1->aData[28], pBt->nPage);
3499         }
3500       }
3501     }
3502   }
3503 
3504 trans_begun:
3505   if( rc==SQLITE_OK ){
3506     if( pSchemaVersion ){
3507       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3508     }
3509     if( wrflag ){
3510       /* This call makes sure that the pager has the correct number of
3511       ** open savepoints. If the second parameter is greater than 0 and
3512       ** the sub-journal is not already open, then it will be opened here.
3513       */
3514       rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3515     }
3516   }
3517 
3518   btreeIntegrity(p);
3519   sqlite3BtreeLeave(p);
3520   return rc;
3521 }
3522 
3523 #ifndef SQLITE_OMIT_AUTOVACUUM
3524 
3525 /*
3526 ** Set the pointer-map entries for all children of page pPage. Also, if
3527 ** pPage contains cells that point to overflow pages, set the pointer
3528 ** map entries for the overflow pages as well.
3529 */
3530 static int setChildPtrmaps(MemPage *pPage){
3531   int i;                             /* Counter variable */
3532   int nCell;                         /* Number of cells in page pPage */
3533   int rc;                            /* Return code */
3534   BtShared *pBt = pPage->pBt;
3535   Pgno pgno = pPage->pgno;
3536 
3537   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3538   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3539   if( rc!=SQLITE_OK ) return rc;
3540   nCell = pPage->nCell;
3541 
3542   for(i=0; i<nCell; i++){
3543     u8 *pCell = findCell(pPage, i);
3544 
3545     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3546 
3547     if( !pPage->leaf ){
3548       Pgno childPgno = get4byte(pCell);
3549       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3550     }
3551   }
3552 
3553   if( !pPage->leaf ){
3554     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3555     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3556   }
3557 
3558   return rc;
3559 }
3560 
3561 /*
3562 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3563 ** that it points to iTo. Parameter eType describes the type of pointer to
3564 ** be modified, as  follows:
3565 **
3566 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3567 **                   page of pPage.
3568 **
3569 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3570 **                   page pointed to by one of the cells on pPage.
3571 **
3572 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3573 **                   overflow page in the list.
3574 */
3575 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3576   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3577   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3578   if( eType==PTRMAP_OVERFLOW2 ){
3579     /* The pointer is always the first 4 bytes of the page in this case.  */
3580     if( get4byte(pPage->aData)!=iFrom ){
3581       return SQLITE_CORRUPT_PAGE(pPage);
3582     }
3583     put4byte(pPage->aData, iTo);
3584   }else{
3585     int i;
3586     int nCell;
3587     int rc;
3588 
3589     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3590     if( rc ) return rc;
3591     nCell = pPage->nCell;
3592 
3593     for(i=0; i<nCell; i++){
3594       u8 *pCell = findCell(pPage, i);
3595       if( eType==PTRMAP_OVERFLOW1 ){
3596         CellInfo info;
3597         pPage->xParseCell(pPage, pCell, &info);
3598         if( info.nLocal<info.nPayload ){
3599           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3600             return SQLITE_CORRUPT_PAGE(pPage);
3601           }
3602           if( iFrom==get4byte(pCell+info.nSize-4) ){
3603             put4byte(pCell+info.nSize-4, iTo);
3604             break;
3605           }
3606         }
3607       }else{
3608         if( get4byte(pCell)==iFrom ){
3609           put4byte(pCell, iTo);
3610           break;
3611         }
3612       }
3613     }
3614 
3615     if( i==nCell ){
3616       if( eType!=PTRMAP_BTREE ||
3617           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3618         return SQLITE_CORRUPT_PAGE(pPage);
3619       }
3620       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3621     }
3622   }
3623   return SQLITE_OK;
3624 }
3625 
3626 
3627 /*
3628 ** Move the open database page pDbPage to location iFreePage in the
3629 ** database. The pDbPage reference remains valid.
3630 **
3631 ** The isCommit flag indicates that there is no need to remember that
3632 ** the journal needs to be sync()ed before database page pDbPage->pgno
3633 ** can be written to. The caller has already promised not to write to that
3634 ** page.
3635 */
3636 static int relocatePage(
3637   BtShared *pBt,           /* Btree */
3638   MemPage *pDbPage,        /* Open page to move */
3639   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3640   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3641   Pgno iFreePage,          /* The location to move pDbPage to */
3642   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3643 ){
3644   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3645   Pgno iDbPage = pDbPage->pgno;
3646   Pager *pPager = pBt->pPager;
3647   int rc;
3648 
3649   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3650       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3651   assert( sqlite3_mutex_held(pBt->mutex) );
3652   assert( pDbPage->pBt==pBt );
3653   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3654 
3655   /* Move page iDbPage from its current location to page number iFreePage */
3656   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3657       iDbPage, iFreePage, iPtrPage, eType));
3658   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3659   if( rc!=SQLITE_OK ){
3660     return rc;
3661   }
3662   pDbPage->pgno = iFreePage;
3663 
3664   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3665   ** that point to overflow pages. The pointer map entries for all these
3666   ** pages need to be changed.
3667   **
3668   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3669   ** pointer to a subsequent overflow page. If this is the case, then
3670   ** the pointer map needs to be updated for the subsequent overflow page.
3671   */
3672   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3673     rc = setChildPtrmaps(pDbPage);
3674     if( rc!=SQLITE_OK ){
3675       return rc;
3676     }
3677   }else{
3678     Pgno nextOvfl = get4byte(pDbPage->aData);
3679     if( nextOvfl!=0 ){
3680       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3681       if( rc!=SQLITE_OK ){
3682         return rc;
3683       }
3684     }
3685   }
3686 
3687   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3688   ** that it points at iFreePage. Also fix the pointer map entry for
3689   ** iPtrPage.
3690   */
3691   if( eType!=PTRMAP_ROOTPAGE ){
3692     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3693     if( rc!=SQLITE_OK ){
3694       return rc;
3695     }
3696     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3697     if( rc!=SQLITE_OK ){
3698       releasePage(pPtrPage);
3699       return rc;
3700     }
3701     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3702     releasePage(pPtrPage);
3703     if( rc==SQLITE_OK ){
3704       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3705     }
3706   }
3707   return rc;
3708 }
3709 
3710 /* Forward declaration required by incrVacuumStep(). */
3711 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3712 
3713 /*
3714 ** Perform a single step of an incremental-vacuum. If successful, return
3715 ** SQLITE_OK. If there is no work to do (and therefore no point in
3716 ** calling this function again), return SQLITE_DONE. Or, if an error
3717 ** occurs, return some other error code.
3718 **
3719 ** More specifically, this function attempts to re-organize the database so
3720 ** that the last page of the file currently in use is no longer in use.
3721 **
3722 ** Parameter nFin is the number of pages that this database would contain
3723 ** were this function called until it returns SQLITE_DONE.
3724 **
3725 ** If the bCommit parameter is non-zero, this function assumes that the
3726 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3727 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3728 ** operation, or false for an incremental vacuum.
3729 */
3730 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3731   Pgno nFreeList;           /* Number of pages still on the free-list */
3732   int rc;
3733 
3734   assert( sqlite3_mutex_held(pBt->mutex) );
3735   assert( iLastPg>nFin );
3736 
3737   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3738     u8 eType;
3739     Pgno iPtrPage;
3740 
3741     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3742     if( nFreeList==0 ){
3743       return SQLITE_DONE;
3744     }
3745 
3746     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3747     if( rc!=SQLITE_OK ){
3748       return rc;
3749     }
3750     if( eType==PTRMAP_ROOTPAGE ){
3751       return SQLITE_CORRUPT_BKPT;
3752     }
3753 
3754     if( eType==PTRMAP_FREEPAGE ){
3755       if( bCommit==0 ){
3756         /* Remove the page from the files free-list. This is not required
3757         ** if bCommit is non-zero. In that case, the free-list will be
3758         ** truncated to zero after this function returns, so it doesn't
3759         ** matter if it still contains some garbage entries.
3760         */
3761         Pgno iFreePg;
3762         MemPage *pFreePg;
3763         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3764         if( rc!=SQLITE_OK ){
3765           return rc;
3766         }
3767         assert( iFreePg==iLastPg );
3768         releasePage(pFreePg);
3769       }
3770     } else {
3771       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3772       MemPage *pLastPg;
3773       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3774       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3775 
3776       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3777       if( rc!=SQLITE_OK ){
3778         return rc;
3779       }
3780 
3781       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3782       ** is swapped with the first free page pulled off the free list.
3783       **
3784       ** On the other hand, if bCommit is greater than zero, then keep
3785       ** looping until a free-page located within the first nFin pages
3786       ** of the file is found.
3787       */
3788       if( bCommit==0 ){
3789         eMode = BTALLOC_LE;
3790         iNear = nFin;
3791       }
3792       do {
3793         MemPage *pFreePg;
3794         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3795         if( rc!=SQLITE_OK ){
3796           releasePage(pLastPg);
3797           return rc;
3798         }
3799         releasePage(pFreePg);
3800       }while( bCommit && iFreePg>nFin );
3801       assert( iFreePg<iLastPg );
3802 
3803       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3804       releasePage(pLastPg);
3805       if( rc!=SQLITE_OK ){
3806         return rc;
3807       }
3808     }
3809   }
3810 
3811   if( bCommit==0 ){
3812     do {
3813       iLastPg--;
3814     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3815     pBt->bDoTruncate = 1;
3816     pBt->nPage = iLastPg;
3817   }
3818   return SQLITE_OK;
3819 }
3820 
3821 /*
3822 ** The database opened by the first argument is an auto-vacuum database
3823 ** nOrig pages in size containing nFree free pages. Return the expected
3824 ** size of the database in pages following an auto-vacuum operation.
3825 */
3826 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3827   int nEntry;                     /* Number of entries on one ptrmap page */
3828   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3829   Pgno nFin;                      /* Return value */
3830 
3831   nEntry = pBt->usableSize/5;
3832   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3833   nFin = nOrig - nFree - nPtrmap;
3834   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3835     nFin--;
3836   }
3837   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3838     nFin--;
3839   }
3840 
3841   return nFin;
3842 }
3843 
3844 /*
3845 ** A write-transaction must be opened before calling this function.
3846 ** It performs a single unit of work towards an incremental vacuum.
3847 **
3848 ** If the incremental vacuum is finished after this function has run,
3849 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3850 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3851 */
3852 int sqlite3BtreeIncrVacuum(Btree *p){
3853   int rc;
3854   BtShared *pBt = p->pBt;
3855 
3856   sqlite3BtreeEnter(p);
3857   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3858   if( !pBt->autoVacuum ){
3859     rc = SQLITE_DONE;
3860   }else{
3861     Pgno nOrig = btreePagecount(pBt);
3862     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3863     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3864 
3865     if( nOrig<nFin ){
3866       rc = SQLITE_CORRUPT_BKPT;
3867     }else if( nFree>0 ){
3868       rc = saveAllCursors(pBt, 0, 0);
3869       if( rc==SQLITE_OK ){
3870         invalidateAllOverflowCache(pBt);
3871         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3872       }
3873       if( rc==SQLITE_OK ){
3874         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3875         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3876       }
3877     }else{
3878       rc = SQLITE_DONE;
3879     }
3880   }
3881   sqlite3BtreeLeave(p);
3882   return rc;
3883 }
3884 
3885 /*
3886 ** This routine is called prior to sqlite3PagerCommit when a transaction
3887 ** is committed for an auto-vacuum database.
3888 **
3889 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3890 ** the database file should be truncated to during the commit process.
3891 ** i.e. the database has been reorganized so that only the first *pnTrunc
3892 ** pages are in use.
3893 */
3894 static int autoVacuumCommit(BtShared *pBt){
3895   int rc = SQLITE_OK;
3896   Pager *pPager = pBt->pPager;
3897   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3898 
3899   assert( sqlite3_mutex_held(pBt->mutex) );
3900   invalidateAllOverflowCache(pBt);
3901   assert(pBt->autoVacuum);
3902   if( !pBt->incrVacuum ){
3903     Pgno nFin;         /* Number of pages in database after autovacuuming */
3904     Pgno nFree;        /* Number of pages on the freelist initially */
3905     Pgno iFree;        /* The next page to be freed */
3906     Pgno nOrig;        /* Database size before freeing */
3907 
3908     nOrig = btreePagecount(pBt);
3909     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3910       /* It is not possible to create a database for which the final page
3911       ** is either a pointer-map page or the pending-byte page. If one
3912       ** is encountered, this indicates corruption.
3913       */
3914       return SQLITE_CORRUPT_BKPT;
3915     }
3916 
3917     nFree = get4byte(&pBt->pPage1->aData[36]);
3918     nFin = finalDbSize(pBt, nOrig, nFree);
3919     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3920     if( nFin<nOrig ){
3921       rc = saveAllCursors(pBt, 0, 0);
3922     }
3923     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3924       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3925     }
3926     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3927       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3928       put4byte(&pBt->pPage1->aData[32], 0);
3929       put4byte(&pBt->pPage1->aData[36], 0);
3930       put4byte(&pBt->pPage1->aData[28], nFin);
3931       pBt->bDoTruncate = 1;
3932       pBt->nPage = nFin;
3933     }
3934     if( rc!=SQLITE_OK ){
3935       sqlite3PagerRollback(pPager);
3936     }
3937   }
3938 
3939   assert( nRef>=sqlite3PagerRefcount(pPager) );
3940   return rc;
3941 }
3942 
3943 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3944 # define setChildPtrmaps(x) SQLITE_OK
3945 #endif
3946 
3947 /*
3948 ** This routine does the first phase of a two-phase commit.  This routine
3949 ** causes a rollback journal to be created (if it does not already exist)
3950 ** and populated with enough information so that if a power loss occurs
3951 ** the database can be restored to its original state by playing back
3952 ** the journal.  Then the contents of the journal are flushed out to
3953 ** the disk.  After the journal is safely on oxide, the changes to the
3954 ** database are written into the database file and flushed to oxide.
3955 ** At the end of this call, the rollback journal still exists on the
3956 ** disk and we are still holding all locks, so the transaction has not
3957 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3958 ** commit process.
3959 **
3960 ** This call is a no-op if no write-transaction is currently active on pBt.
3961 **
3962 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3963 ** the name of a master journal file that should be written into the
3964 ** individual journal file, or is NULL, indicating no master journal file
3965 ** (single database transaction).
3966 **
3967 ** When this is called, the master journal should already have been
3968 ** created, populated with this journal pointer and synced to disk.
3969 **
3970 ** Once this is routine has returned, the only thing required to commit
3971 ** the write-transaction for this database file is to delete the journal.
3972 */
3973 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3974   int rc = SQLITE_OK;
3975   if( p->inTrans==TRANS_WRITE ){
3976     BtShared *pBt = p->pBt;
3977     sqlite3BtreeEnter(p);
3978 #ifndef SQLITE_OMIT_AUTOVACUUM
3979     if( pBt->autoVacuum ){
3980       rc = autoVacuumCommit(pBt);
3981       if( rc!=SQLITE_OK ){
3982         sqlite3BtreeLeave(p);
3983         return rc;
3984       }
3985     }
3986     if( pBt->bDoTruncate ){
3987       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3988     }
3989 #endif
3990     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3991     sqlite3BtreeLeave(p);
3992   }
3993   return rc;
3994 }
3995 
3996 /*
3997 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3998 ** at the conclusion of a transaction.
3999 */
4000 static void btreeEndTransaction(Btree *p){
4001   BtShared *pBt = p->pBt;
4002   sqlite3 *db = p->db;
4003   assert( sqlite3BtreeHoldsMutex(p) );
4004 
4005 #ifndef SQLITE_OMIT_AUTOVACUUM
4006   pBt->bDoTruncate = 0;
4007 #endif
4008   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4009     /* If there are other active statements that belong to this database
4010     ** handle, downgrade to a read-only transaction. The other statements
4011     ** may still be reading from the database.  */
4012     downgradeAllSharedCacheTableLocks(p);
4013     p->inTrans = TRANS_READ;
4014   }else{
4015     /* If the handle had any kind of transaction open, decrement the
4016     ** transaction count of the shared btree. If the transaction count
4017     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4018     ** call below will unlock the pager.  */
4019     if( p->inTrans!=TRANS_NONE ){
4020       clearAllSharedCacheTableLocks(p);
4021       pBt->nTransaction--;
4022       if( 0==pBt->nTransaction ){
4023         pBt->inTransaction = TRANS_NONE;
4024       }
4025     }
4026 
4027     /* Set the current transaction state to TRANS_NONE and unlock the
4028     ** pager if this call closed the only read or write transaction.  */
4029     p->inTrans = TRANS_NONE;
4030     unlockBtreeIfUnused(pBt);
4031   }
4032 
4033   btreeIntegrity(p);
4034 }
4035 
4036 /*
4037 ** Commit the transaction currently in progress.
4038 **
4039 ** This routine implements the second phase of a 2-phase commit.  The
4040 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4041 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4042 ** routine did all the work of writing information out to disk and flushing the
4043 ** contents so that they are written onto the disk platter.  All this
4044 ** routine has to do is delete or truncate or zero the header in the
4045 ** the rollback journal (which causes the transaction to commit) and
4046 ** drop locks.
4047 **
4048 ** Normally, if an error occurs while the pager layer is attempting to
4049 ** finalize the underlying journal file, this function returns an error and
4050 ** the upper layer will attempt a rollback. However, if the second argument
4051 ** is non-zero then this b-tree transaction is part of a multi-file
4052 ** transaction. In this case, the transaction has already been committed
4053 ** (by deleting a master journal file) and the caller will ignore this
4054 ** functions return code. So, even if an error occurs in the pager layer,
4055 ** reset the b-tree objects internal state to indicate that the write
4056 ** transaction has been closed. This is quite safe, as the pager will have
4057 ** transitioned to the error state.
4058 **
4059 ** This will release the write lock on the database file.  If there
4060 ** are no active cursors, it also releases the read lock.
4061 */
4062 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4063 
4064   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4065   sqlite3BtreeEnter(p);
4066   btreeIntegrity(p);
4067 
4068   /* If the handle has a write-transaction open, commit the shared-btrees
4069   ** transaction and set the shared state to TRANS_READ.
4070   */
4071   if( p->inTrans==TRANS_WRITE ){
4072     int rc;
4073     BtShared *pBt = p->pBt;
4074     assert( pBt->inTransaction==TRANS_WRITE );
4075     assert( pBt->nTransaction>0 );
4076     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4077     if( rc!=SQLITE_OK && bCleanup==0 ){
4078       sqlite3BtreeLeave(p);
4079       return rc;
4080     }
4081     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4082     pBt->inTransaction = TRANS_READ;
4083     btreeClearHasContent(pBt);
4084   }
4085 
4086   btreeEndTransaction(p);
4087   sqlite3BtreeLeave(p);
4088   return SQLITE_OK;
4089 }
4090 
4091 /*
4092 ** Do both phases of a commit.
4093 */
4094 int sqlite3BtreeCommit(Btree *p){
4095   int rc;
4096   sqlite3BtreeEnter(p);
4097   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4098   if( rc==SQLITE_OK ){
4099     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4100   }
4101   sqlite3BtreeLeave(p);
4102   return rc;
4103 }
4104 
4105 /*
4106 ** This routine sets the state to CURSOR_FAULT and the error
4107 ** code to errCode for every cursor on any BtShared that pBtree
4108 ** references.  Or if the writeOnly flag is set to 1, then only
4109 ** trip write cursors and leave read cursors unchanged.
4110 **
4111 ** Every cursor is a candidate to be tripped, including cursors
4112 ** that belong to other database connections that happen to be
4113 ** sharing the cache with pBtree.
4114 **
4115 ** This routine gets called when a rollback occurs. If the writeOnly
4116 ** flag is true, then only write-cursors need be tripped - read-only
4117 ** cursors save their current positions so that they may continue
4118 ** following the rollback. Or, if writeOnly is false, all cursors are
4119 ** tripped. In general, writeOnly is false if the transaction being
4120 ** rolled back modified the database schema. In this case b-tree root
4121 ** pages may be moved or deleted from the database altogether, making
4122 ** it unsafe for read cursors to continue.
4123 **
4124 ** If the writeOnly flag is true and an error is encountered while
4125 ** saving the current position of a read-only cursor, all cursors,
4126 ** including all read-cursors are tripped.
4127 **
4128 ** SQLITE_OK is returned if successful, or if an error occurs while
4129 ** saving a cursor position, an SQLite error code.
4130 */
4131 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4132   BtCursor *p;
4133   int rc = SQLITE_OK;
4134 
4135   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4136   if( pBtree ){
4137     sqlite3BtreeEnter(pBtree);
4138     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4139       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4140         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4141           rc = saveCursorPosition(p);
4142           if( rc!=SQLITE_OK ){
4143             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4144             break;
4145           }
4146         }
4147       }else{
4148         sqlite3BtreeClearCursor(p);
4149         p->eState = CURSOR_FAULT;
4150         p->skipNext = errCode;
4151       }
4152       btreeReleaseAllCursorPages(p);
4153     }
4154     sqlite3BtreeLeave(pBtree);
4155   }
4156   return rc;
4157 }
4158 
4159 /*
4160 ** Set the pBt->nPage field correctly, according to the current
4161 ** state of the database.  Assume pBt->pPage1 is valid.
4162 */
4163 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4164   int nPage = get4byte(&pPage1->aData[28]);
4165   testcase( nPage==0 );
4166   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4167   testcase( pBt->nPage!=nPage );
4168   pBt->nPage = nPage;
4169 }
4170 
4171 /*
4172 ** Rollback the transaction in progress.
4173 **
4174 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4175 ** Only write cursors are tripped if writeOnly is true but all cursors are
4176 ** tripped if writeOnly is false.  Any attempt to use
4177 ** a tripped cursor will result in an error.
4178 **
4179 ** This will release the write lock on the database file.  If there
4180 ** are no active cursors, it also releases the read lock.
4181 */
4182 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4183   int rc;
4184   BtShared *pBt = p->pBt;
4185   MemPage *pPage1;
4186 
4187   assert( writeOnly==1 || writeOnly==0 );
4188   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4189   sqlite3BtreeEnter(p);
4190   if( tripCode==SQLITE_OK ){
4191     rc = tripCode = saveAllCursors(pBt, 0, 0);
4192     if( rc ) writeOnly = 0;
4193   }else{
4194     rc = SQLITE_OK;
4195   }
4196   if( tripCode ){
4197     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4198     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4199     if( rc2!=SQLITE_OK ) rc = rc2;
4200   }
4201   btreeIntegrity(p);
4202 
4203   if( p->inTrans==TRANS_WRITE ){
4204     int rc2;
4205 
4206     assert( TRANS_WRITE==pBt->inTransaction );
4207     rc2 = sqlite3PagerRollback(pBt->pPager);
4208     if( rc2!=SQLITE_OK ){
4209       rc = rc2;
4210     }
4211 
4212     /* The rollback may have destroyed the pPage1->aData value.  So
4213     ** call btreeGetPage() on page 1 again to make
4214     ** sure pPage1->aData is set correctly. */
4215     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4216       btreeSetNPage(pBt, pPage1);
4217       releasePageOne(pPage1);
4218     }
4219     assert( countValidCursors(pBt, 1)==0 );
4220     pBt->inTransaction = TRANS_READ;
4221     btreeClearHasContent(pBt);
4222   }
4223 
4224   btreeEndTransaction(p);
4225   sqlite3BtreeLeave(p);
4226   return rc;
4227 }
4228 
4229 /*
4230 ** Start a statement subtransaction. The subtransaction can be rolled
4231 ** back independently of the main transaction. You must start a transaction
4232 ** before starting a subtransaction. The subtransaction is ended automatically
4233 ** if the main transaction commits or rolls back.
4234 **
4235 ** Statement subtransactions are used around individual SQL statements
4236 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4237 ** error occurs within the statement, the effect of that one statement
4238 ** can be rolled back without having to rollback the entire transaction.
4239 **
4240 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4241 ** value passed as the second parameter is the total number of savepoints,
4242 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4243 ** are no active savepoints and no other statement-transactions open,
4244 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4245 ** using the sqlite3BtreeSavepoint() function.
4246 */
4247 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4248   int rc;
4249   BtShared *pBt = p->pBt;
4250   sqlite3BtreeEnter(p);
4251   assert( p->inTrans==TRANS_WRITE );
4252   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4253   assert( iStatement>0 );
4254   assert( iStatement>p->db->nSavepoint );
4255   assert( pBt->inTransaction==TRANS_WRITE );
4256   /* At the pager level, a statement transaction is a savepoint with
4257   ** an index greater than all savepoints created explicitly using
4258   ** SQL statements. It is illegal to open, release or rollback any
4259   ** such savepoints while the statement transaction savepoint is active.
4260   */
4261   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4262   sqlite3BtreeLeave(p);
4263   return rc;
4264 }
4265 
4266 /*
4267 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4268 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4269 ** savepoint identified by parameter iSavepoint, depending on the value
4270 ** of op.
4271 **
4272 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4273 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4274 ** contents of the entire transaction are rolled back. This is different
4275 ** from a normal transaction rollback, as no locks are released and the
4276 ** transaction remains open.
4277 */
4278 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4279   int rc = SQLITE_OK;
4280   if( p && p->inTrans==TRANS_WRITE ){
4281     BtShared *pBt = p->pBt;
4282     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4283     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4284     sqlite3BtreeEnter(p);
4285     if( op==SAVEPOINT_ROLLBACK ){
4286       rc = saveAllCursors(pBt, 0, 0);
4287     }
4288     if( rc==SQLITE_OK ){
4289       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4290     }
4291     if( rc==SQLITE_OK ){
4292       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4293         pBt->nPage = 0;
4294       }
4295       rc = newDatabase(pBt);
4296       btreeSetNPage(pBt, pBt->pPage1);
4297 
4298       /* pBt->nPage might be zero if the database was corrupt when
4299       ** the transaction was started. Otherwise, it must be at least 1.  */
4300       assert( CORRUPT_DB || pBt->nPage>0 );
4301     }
4302     sqlite3BtreeLeave(p);
4303   }
4304   return rc;
4305 }
4306 
4307 /*
4308 ** Create a new cursor for the BTree whose root is on the page
4309 ** iTable. If a read-only cursor is requested, it is assumed that
4310 ** the caller already has at least a read-only transaction open
4311 ** on the database already. If a write-cursor is requested, then
4312 ** the caller is assumed to have an open write transaction.
4313 **
4314 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4315 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4316 ** can be used for reading or for writing if other conditions for writing
4317 ** are also met.  These are the conditions that must be met in order
4318 ** for writing to be allowed:
4319 **
4320 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4321 **
4322 ** 2:  Other database connections that share the same pager cache
4323 **     but which are not in the READ_UNCOMMITTED state may not have
4324 **     cursors open with wrFlag==0 on the same table.  Otherwise
4325 **     the changes made by this write cursor would be visible to
4326 **     the read cursors in the other database connection.
4327 **
4328 ** 3:  The database must be writable (not on read-only media)
4329 **
4330 ** 4:  There must be an active transaction.
4331 **
4332 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4333 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4334 ** this cursor will only be used to seek to and delete entries of an index
4335 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4336 ** this implementation.  But in a hypothetical alternative storage engine
4337 ** in which index entries are automatically deleted when corresponding table
4338 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4339 ** operations on this cursor can be no-ops and all READ operations can
4340 ** return a null row (2-bytes: 0x01 0x00).
4341 **
4342 ** No checking is done to make sure that page iTable really is the
4343 ** root page of a b-tree.  If it is not, then the cursor acquired
4344 ** will not work correctly.
4345 **
4346 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4347 ** on pCur to initialize the memory space prior to invoking this routine.
4348 */
4349 static int btreeCursor(
4350   Btree *p,                              /* The btree */
4351   int iTable,                            /* Root page of table to open */
4352   int wrFlag,                            /* 1 to write. 0 read-only */
4353   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4354   BtCursor *pCur                         /* Space for new cursor */
4355 ){
4356   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4357   BtCursor *pX;                          /* Looping over other all cursors */
4358 
4359   assert( sqlite3BtreeHoldsMutex(p) );
4360   assert( wrFlag==0
4361        || wrFlag==BTREE_WRCSR
4362        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4363   );
4364 
4365   /* The following assert statements verify that if this is a sharable
4366   ** b-tree database, the connection is holding the required table locks,
4367   ** and that no other connection has any open cursor that conflicts with
4368   ** this lock.  */
4369   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4370   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4371 
4372   /* Assert that the caller has opened the required transaction. */
4373   assert( p->inTrans>TRANS_NONE );
4374   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4375   assert( pBt->pPage1 && pBt->pPage1->aData );
4376   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4377 
4378   if( wrFlag ){
4379     allocateTempSpace(pBt);
4380     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4381   }
4382   if( iTable==1 && btreePagecount(pBt)==0 ){
4383     assert( wrFlag==0 );
4384     iTable = 0;
4385   }
4386 
4387   /* Now that no other errors can occur, finish filling in the BtCursor
4388   ** variables and link the cursor into the BtShared list.  */
4389   pCur->pgnoRoot = (Pgno)iTable;
4390   pCur->iPage = -1;
4391   pCur->pKeyInfo = pKeyInfo;
4392   pCur->pBtree = p;
4393   pCur->pBt = pBt;
4394   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4395   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4396   /* If there are two or more cursors on the same btree, then all such
4397   ** cursors *must* have the BTCF_Multiple flag set. */
4398   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4399     if( pX->pgnoRoot==(Pgno)iTable ){
4400       pX->curFlags |= BTCF_Multiple;
4401       pCur->curFlags |= BTCF_Multiple;
4402     }
4403   }
4404   pCur->pNext = pBt->pCursor;
4405   pBt->pCursor = pCur;
4406   pCur->eState = CURSOR_INVALID;
4407   return SQLITE_OK;
4408 }
4409 int sqlite3BtreeCursor(
4410   Btree *p,                                   /* The btree */
4411   int iTable,                                 /* Root page of table to open */
4412   int wrFlag,                                 /* 1 to write. 0 read-only */
4413   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4414   BtCursor *pCur                              /* Write new cursor here */
4415 ){
4416   int rc;
4417   if( iTable<1 ){
4418     rc = SQLITE_CORRUPT_BKPT;
4419   }else{
4420     sqlite3BtreeEnter(p);
4421     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4422     sqlite3BtreeLeave(p);
4423   }
4424   return rc;
4425 }
4426 
4427 /*
4428 ** Return the size of a BtCursor object in bytes.
4429 **
4430 ** This interfaces is needed so that users of cursors can preallocate
4431 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4432 ** to users so they cannot do the sizeof() themselves - they must call
4433 ** this routine.
4434 */
4435 int sqlite3BtreeCursorSize(void){
4436   return ROUND8(sizeof(BtCursor));
4437 }
4438 
4439 /*
4440 ** Initialize memory that will be converted into a BtCursor object.
4441 **
4442 ** The simple approach here would be to memset() the entire object
4443 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4444 ** do not need to be zeroed and they are large, so we can save a lot
4445 ** of run-time by skipping the initialization of those elements.
4446 */
4447 void sqlite3BtreeCursorZero(BtCursor *p){
4448   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4449 }
4450 
4451 /*
4452 ** Close a cursor.  The read lock on the database file is released
4453 ** when the last cursor is closed.
4454 */
4455 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4456   Btree *pBtree = pCur->pBtree;
4457   if( pBtree ){
4458     BtShared *pBt = pCur->pBt;
4459     sqlite3BtreeEnter(pBtree);
4460     assert( pBt->pCursor!=0 );
4461     if( pBt->pCursor==pCur ){
4462       pBt->pCursor = pCur->pNext;
4463     }else{
4464       BtCursor *pPrev = pBt->pCursor;
4465       do{
4466         if( pPrev->pNext==pCur ){
4467           pPrev->pNext = pCur->pNext;
4468           break;
4469         }
4470         pPrev = pPrev->pNext;
4471       }while( ALWAYS(pPrev) );
4472     }
4473     btreeReleaseAllCursorPages(pCur);
4474     unlockBtreeIfUnused(pBt);
4475     sqlite3_free(pCur->aOverflow);
4476     sqlite3_free(pCur->pKey);
4477     sqlite3BtreeLeave(pBtree);
4478     pCur->pBtree = 0;
4479   }
4480   return SQLITE_OK;
4481 }
4482 
4483 /*
4484 ** Make sure the BtCursor* given in the argument has a valid
4485 ** BtCursor.info structure.  If it is not already valid, call
4486 ** btreeParseCell() to fill it in.
4487 **
4488 ** BtCursor.info is a cache of the information in the current cell.
4489 ** Using this cache reduces the number of calls to btreeParseCell().
4490 */
4491 #ifndef NDEBUG
4492   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4493     if( a->nKey!=b->nKey ) return 0;
4494     if( a->pPayload!=b->pPayload ) return 0;
4495     if( a->nPayload!=b->nPayload ) return 0;
4496     if( a->nLocal!=b->nLocal ) return 0;
4497     if( a->nSize!=b->nSize ) return 0;
4498     return 1;
4499   }
4500   static void assertCellInfo(BtCursor *pCur){
4501     CellInfo info;
4502     memset(&info, 0, sizeof(info));
4503     btreeParseCell(pCur->pPage, pCur->ix, &info);
4504     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4505   }
4506 #else
4507   #define assertCellInfo(x)
4508 #endif
4509 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4510   if( pCur->info.nSize==0 ){
4511     pCur->curFlags |= BTCF_ValidNKey;
4512     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4513   }else{
4514     assertCellInfo(pCur);
4515   }
4516 }
4517 
4518 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4519 /*
4520 ** Return true if the given BtCursor is valid.  A valid cursor is one
4521 ** that is currently pointing to a row in a (non-empty) table.
4522 ** This is a verification routine is used only within assert() statements.
4523 */
4524 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4525   return pCur && pCur->eState==CURSOR_VALID;
4526 }
4527 #endif /* NDEBUG */
4528 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4529   assert( pCur!=0 );
4530   return pCur->eState==CURSOR_VALID;
4531 }
4532 
4533 /*
4534 ** Return the value of the integer key or "rowid" for a table btree.
4535 ** This routine is only valid for a cursor that is pointing into a
4536 ** ordinary table btree.  If the cursor points to an index btree or
4537 ** is invalid, the result of this routine is undefined.
4538 */
4539 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4540   assert( cursorHoldsMutex(pCur) );
4541   assert( pCur->eState==CURSOR_VALID );
4542   assert( pCur->curIntKey );
4543   getCellInfo(pCur);
4544   return pCur->info.nKey;
4545 }
4546 
4547 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4548 /*
4549 ** Return the offset into the database file for the start of the
4550 ** payload to which the cursor is pointing.
4551 */
4552 i64 sqlite3BtreeOffset(BtCursor *pCur){
4553   assert( cursorHoldsMutex(pCur) );
4554   assert( pCur->eState==CURSOR_VALID );
4555   getCellInfo(pCur);
4556   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4557          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4558 }
4559 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4560 
4561 /*
4562 ** Return the number of bytes of payload for the entry that pCur is
4563 ** currently pointing to.  For table btrees, this will be the amount
4564 ** of data.  For index btrees, this will be the size of the key.
4565 **
4566 ** The caller must guarantee that the cursor is pointing to a non-NULL
4567 ** valid entry.  In other words, the calling procedure must guarantee
4568 ** that the cursor has Cursor.eState==CURSOR_VALID.
4569 */
4570 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4571   assert( cursorHoldsMutex(pCur) );
4572   assert( pCur->eState==CURSOR_VALID );
4573   getCellInfo(pCur);
4574   return pCur->info.nPayload;
4575 }
4576 
4577 /*
4578 ** Return an upper bound on the size of any record for the table
4579 ** that the cursor is pointing into.
4580 **
4581 ** This is an optimization.  Everything will still work if this
4582 ** routine always returns 2147483647 (which is the largest record
4583 ** that SQLite can handle) or more.  But returning a smaller value might
4584 ** prevent large memory allocations when trying to interpret a
4585 ** corrupt datrabase.
4586 **
4587 ** The current implementation merely returns the size of the underlying
4588 ** database file.
4589 */
4590 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4591   assert( cursorHoldsMutex(pCur) );
4592   assert( pCur->eState==CURSOR_VALID );
4593   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4594 }
4595 
4596 /*
4597 ** Given the page number of an overflow page in the database (parameter
4598 ** ovfl), this function finds the page number of the next page in the
4599 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4600 ** pointer-map data instead of reading the content of page ovfl to do so.
4601 **
4602 ** If an error occurs an SQLite error code is returned. Otherwise:
4603 **
4604 ** The page number of the next overflow page in the linked list is
4605 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4606 ** list, *pPgnoNext is set to zero.
4607 **
4608 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4609 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4610 ** reference. It is the responsibility of the caller to call releasePage()
4611 ** on *ppPage to free the reference. In no reference was obtained (because
4612 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4613 ** *ppPage is set to zero.
4614 */
4615 static int getOverflowPage(
4616   BtShared *pBt,               /* The database file */
4617   Pgno ovfl,                   /* Current overflow page number */
4618   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4619   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4620 ){
4621   Pgno next = 0;
4622   MemPage *pPage = 0;
4623   int rc = SQLITE_OK;
4624 
4625   assert( sqlite3_mutex_held(pBt->mutex) );
4626   assert(pPgnoNext);
4627 
4628 #ifndef SQLITE_OMIT_AUTOVACUUM
4629   /* Try to find the next page in the overflow list using the
4630   ** autovacuum pointer-map pages. Guess that the next page in
4631   ** the overflow list is page number (ovfl+1). If that guess turns
4632   ** out to be wrong, fall back to loading the data of page
4633   ** number ovfl to determine the next page number.
4634   */
4635   if( pBt->autoVacuum ){
4636     Pgno pgno;
4637     Pgno iGuess = ovfl+1;
4638     u8 eType;
4639 
4640     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4641       iGuess++;
4642     }
4643 
4644     if( iGuess<=btreePagecount(pBt) ){
4645       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4646       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4647         next = iGuess;
4648         rc = SQLITE_DONE;
4649       }
4650     }
4651   }
4652 #endif
4653 
4654   assert( next==0 || rc==SQLITE_DONE );
4655   if( rc==SQLITE_OK ){
4656     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4657     assert( rc==SQLITE_OK || pPage==0 );
4658     if( rc==SQLITE_OK ){
4659       next = get4byte(pPage->aData);
4660     }
4661   }
4662 
4663   *pPgnoNext = next;
4664   if( ppPage ){
4665     *ppPage = pPage;
4666   }else{
4667     releasePage(pPage);
4668   }
4669   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4670 }
4671 
4672 /*
4673 ** Copy data from a buffer to a page, or from a page to a buffer.
4674 **
4675 ** pPayload is a pointer to data stored on database page pDbPage.
4676 ** If argument eOp is false, then nByte bytes of data are copied
4677 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4678 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4679 ** of data are copied from the buffer pBuf to pPayload.
4680 **
4681 ** SQLITE_OK is returned on success, otherwise an error code.
4682 */
4683 static int copyPayload(
4684   void *pPayload,           /* Pointer to page data */
4685   void *pBuf,               /* Pointer to buffer */
4686   int nByte,                /* Number of bytes to copy */
4687   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4688   DbPage *pDbPage           /* Page containing pPayload */
4689 ){
4690   if( eOp ){
4691     /* Copy data from buffer to page (a write operation) */
4692     int rc = sqlite3PagerWrite(pDbPage);
4693     if( rc!=SQLITE_OK ){
4694       return rc;
4695     }
4696     memcpy(pPayload, pBuf, nByte);
4697   }else{
4698     /* Copy data from page to buffer (a read operation) */
4699     memcpy(pBuf, pPayload, nByte);
4700   }
4701   return SQLITE_OK;
4702 }
4703 
4704 /*
4705 ** This function is used to read or overwrite payload information
4706 ** for the entry that the pCur cursor is pointing to. The eOp
4707 ** argument is interpreted as follows:
4708 **
4709 **   0: The operation is a read. Populate the overflow cache.
4710 **   1: The operation is a write. Populate the overflow cache.
4711 **
4712 ** A total of "amt" bytes are read or written beginning at "offset".
4713 ** Data is read to or from the buffer pBuf.
4714 **
4715 ** The content being read or written might appear on the main page
4716 ** or be scattered out on multiple overflow pages.
4717 **
4718 ** If the current cursor entry uses one or more overflow pages
4719 ** this function may allocate space for and lazily populate
4720 ** the overflow page-list cache array (BtCursor.aOverflow).
4721 ** Subsequent calls use this cache to make seeking to the supplied offset
4722 ** more efficient.
4723 **
4724 ** Once an overflow page-list cache has been allocated, it must be
4725 ** invalidated if some other cursor writes to the same table, or if
4726 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4727 ** mode, the following events may invalidate an overflow page-list cache.
4728 **
4729 **   * An incremental vacuum,
4730 **   * A commit in auto_vacuum="full" mode,
4731 **   * Creating a table (may require moving an overflow page).
4732 */
4733 static int accessPayload(
4734   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4735   u32 offset,          /* Begin reading this far into payload */
4736   u32 amt,             /* Read this many bytes */
4737   unsigned char *pBuf, /* Write the bytes into this buffer */
4738   int eOp              /* zero to read. non-zero to write. */
4739 ){
4740   unsigned char *aPayload;
4741   int rc = SQLITE_OK;
4742   int iIdx = 0;
4743   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4744   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4745 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4746   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4747 #endif
4748 
4749   assert( pPage );
4750   assert( eOp==0 || eOp==1 );
4751   assert( pCur->eState==CURSOR_VALID );
4752   assert( pCur->ix<pPage->nCell );
4753   assert( cursorHoldsMutex(pCur) );
4754 
4755   getCellInfo(pCur);
4756   aPayload = pCur->info.pPayload;
4757   assert( offset+amt <= pCur->info.nPayload );
4758 
4759   assert( aPayload > pPage->aData );
4760   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4761     /* Trying to read or write past the end of the data is an error.  The
4762     ** conditional above is really:
4763     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4764     ** but is recast into its current form to avoid integer overflow problems
4765     */
4766     return SQLITE_CORRUPT_PAGE(pPage);
4767   }
4768 
4769   /* Check if data must be read/written to/from the btree page itself. */
4770   if( offset<pCur->info.nLocal ){
4771     int a = amt;
4772     if( a+offset>pCur->info.nLocal ){
4773       a = pCur->info.nLocal - offset;
4774     }
4775     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4776     offset = 0;
4777     pBuf += a;
4778     amt -= a;
4779   }else{
4780     offset -= pCur->info.nLocal;
4781   }
4782 
4783 
4784   if( rc==SQLITE_OK && amt>0 ){
4785     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4786     Pgno nextPage;
4787 
4788     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4789 
4790     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4791     **
4792     ** The aOverflow[] array is sized at one entry for each overflow page
4793     ** in the overflow chain. The page number of the first overflow page is
4794     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4795     ** means "not yet known" (the cache is lazily populated).
4796     */
4797     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4798       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4799       if( pCur->aOverflow==0
4800        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4801       ){
4802         Pgno *aNew = (Pgno*)sqlite3Realloc(
4803             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4804         );
4805         if( aNew==0 ){
4806           return SQLITE_NOMEM_BKPT;
4807         }else{
4808           pCur->aOverflow = aNew;
4809         }
4810       }
4811       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4812       pCur->curFlags |= BTCF_ValidOvfl;
4813     }else{
4814       /* If the overflow page-list cache has been allocated and the
4815       ** entry for the first required overflow page is valid, skip
4816       ** directly to it.
4817       */
4818       if( pCur->aOverflow[offset/ovflSize] ){
4819         iIdx = (offset/ovflSize);
4820         nextPage = pCur->aOverflow[iIdx];
4821         offset = (offset%ovflSize);
4822       }
4823     }
4824 
4825     assert( rc==SQLITE_OK && amt>0 );
4826     while( nextPage ){
4827       /* If required, populate the overflow page-list cache. */
4828       assert( pCur->aOverflow[iIdx]==0
4829               || pCur->aOverflow[iIdx]==nextPage
4830               || CORRUPT_DB );
4831       pCur->aOverflow[iIdx] = nextPage;
4832 
4833       if( offset>=ovflSize ){
4834         /* The only reason to read this page is to obtain the page
4835         ** number for the next page in the overflow chain. The page
4836         ** data is not required. So first try to lookup the overflow
4837         ** page-list cache, if any, then fall back to the getOverflowPage()
4838         ** function.
4839         */
4840         assert( pCur->curFlags & BTCF_ValidOvfl );
4841         assert( pCur->pBtree->db==pBt->db );
4842         if( pCur->aOverflow[iIdx+1] ){
4843           nextPage = pCur->aOverflow[iIdx+1];
4844         }else{
4845           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4846         }
4847         offset -= ovflSize;
4848       }else{
4849         /* Need to read this page properly. It contains some of the
4850         ** range of data that is being read (eOp==0) or written (eOp!=0).
4851         */
4852         int a = amt;
4853         if( a + offset > ovflSize ){
4854           a = ovflSize - offset;
4855         }
4856 
4857 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4858         /* If all the following are true:
4859         **
4860         **   1) this is a read operation, and
4861         **   2) data is required from the start of this overflow page, and
4862         **   3) there are no dirty pages in the page-cache
4863         **   4) the database is file-backed, and
4864         **   5) the page is not in the WAL file
4865         **   6) at least 4 bytes have already been read into the output buffer
4866         **
4867         ** then data can be read directly from the database file into the
4868         ** output buffer, bypassing the page-cache altogether. This speeds
4869         ** up loading large records that span many overflow pages.
4870         */
4871         if( eOp==0                                             /* (1) */
4872          && offset==0                                          /* (2) */
4873          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4874          && &pBuf[-4]>=pBufStart                               /* (6) */
4875         ){
4876           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4877           u8 aSave[4];
4878           u8 *aWrite = &pBuf[-4];
4879           assert( aWrite>=pBufStart );                         /* due to (6) */
4880           memcpy(aSave, aWrite, 4);
4881           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4882           nextPage = get4byte(aWrite);
4883           memcpy(aWrite, aSave, 4);
4884         }else
4885 #endif
4886 
4887         {
4888           DbPage *pDbPage;
4889           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4890               (eOp==0 ? PAGER_GET_READONLY : 0)
4891           );
4892           if( rc==SQLITE_OK ){
4893             aPayload = sqlite3PagerGetData(pDbPage);
4894             nextPage = get4byte(aPayload);
4895             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4896             sqlite3PagerUnref(pDbPage);
4897             offset = 0;
4898           }
4899         }
4900         amt -= a;
4901         if( amt==0 ) return rc;
4902         pBuf += a;
4903       }
4904       if( rc ) break;
4905       iIdx++;
4906     }
4907   }
4908 
4909   if( rc==SQLITE_OK && amt>0 ){
4910     /* Overflow chain ends prematurely */
4911     return SQLITE_CORRUPT_PAGE(pPage);
4912   }
4913   return rc;
4914 }
4915 
4916 /*
4917 ** Read part of the payload for the row at which that cursor pCur is currently
4918 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4919 ** begins at "offset".
4920 **
4921 ** pCur can be pointing to either a table or an index b-tree.
4922 ** If pointing to a table btree, then the content section is read.  If
4923 ** pCur is pointing to an index b-tree then the key section is read.
4924 **
4925 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4926 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4927 ** cursor might be invalid or might need to be restored before being read.
4928 **
4929 ** Return SQLITE_OK on success or an error code if anything goes
4930 ** wrong.  An error is returned if "offset+amt" is larger than
4931 ** the available payload.
4932 */
4933 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4934   assert( cursorHoldsMutex(pCur) );
4935   assert( pCur->eState==CURSOR_VALID );
4936   assert( pCur->iPage>=0 && pCur->pPage );
4937   assert( pCur->ix<pCur->pPage->nCell );
4938   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4939 }
4940 
4941 /*
4942 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4943 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4944 ** interface.
4945 */
4946 #ifndef SQLITE_OMIT_INCRBLOB
4947 static SQLITE_NOINLINE int accessPayloadChecked(
4948   BtCursor *pCur,
4949   u32 offset,
4950   u32 amt,
4951   void *pBuf
4952 ){
4953   int rc;
4954   if ( pCur->eState==CURSOR_INVALID ){
4955     return SQLITE_ABORT;
4956   }
4957   assert( cursorOwnsBtShared(pCur) );
4958   rc = btreeRestoreCursorPosition(pCur);
4959   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4960 }
4961 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4962   if( pCur->eState==CURSOR_VALID ){
4963     assert( cursorOwnsBtShared(pCur) );
4964     return accessPayload(pCur, offset, amt, pBuf, 0);
4965   }else{
4966     return accessPayloadChecked(pCur, offset, amt, pBuf);
4967   }
4968 }
4969 #endif /* SQLITE_OMIT_INCRBLOB */
4970 
4971 /*
4972 ** Return a pointer to payload information from the entry that the
4973 ** pCur cursor is pointing to.  The pointer is to the beginning of
4974 ** the key if index btrees (pPage->intKey==0) and is the data for
4975 ** table btrees (pPage->intKey==1). The number of bytes of available
4976 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4977 ** returned will not be a valid pointer.
4978 **
4979 ** This routine is an optimization.  It is common for the entire key
4980 ** and data to fit on the local page and for there to be no overflow
4981 ** pages.  When that is so, this routine can be used to access the
4982 ** key and data without making a copy.  If the key and/or data spills
4983 ** onto overflow pages, then accessPayload() must be used to reassemble
4984 ** the key/data and copy it into a preallocated buffer.
4985 **
4986 ** The pointer returned by this routine looks directly into the cached
4987 ** page of the database.  The data might change or move the next time
4988 ** any btree routine is called.
4989 */
4990 static const void *fetchPayload(
4991   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4992   u32 *pAmt            /* Write the number of available bytes here */
4993 ){
4994   int amt;
4995   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4996   assert( pCur->eState==CURSOR_VALID );
4997   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4998   assert( cursorOwnsBtShared(pCur) );
4999   assert( pCur->ix<pCur->pPage->nCell );
5000   assert( pCur->info.nSize>0 );
5001   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5002   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5003   amt = pCur->info.nLocal;
5004   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5005     /* There is too little space on the page for the expected amount
5006     ** of local content. Database must be corrupt. */
5007     assert( CORRUPT_DB );
5008     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5009   }
5010   *pAmt = (u32)amt;
5011   return (void*)pCur->info.pPayload;
5012 }
5013 
5014 
5015 /*
5016 ** For the entry that cursor pCur is point to, return as
5017 ** many bytes of the key or data as are available on the local
5018 ** b-tree page.  Write the number of available bytes into *pAmt.
5019 **
5020 ** The pointer returned is ephemeral.  The key/data may move
5021 ** or be destroyed on the next call to any Btree routine,
5022 ** including calls from other threads against the same cache.
5023 ** Hence, a mutex on the BtShared should be held prior to calling
5024 ** this routine.
5025 **
5026 ** These routines is used to get quick access to key and data
5027 ** in the common case where no overflow pages are used.
5028 */
5029 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5030   return fetchPayload(pCur, pAmt);
5031 }
5032 
5033 
5034 /*
5035 ** Move the cursor down to a new child page.  The newPgno argument is the
5036 ** page number of the child page to move to.
5037 **
5038 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5039 ** the new child page does not match the flags field of the parent (i.e.
5040 ** if an intkey page appears to be the parent of a non-intkey page, or
5041 ** vice-versa).
5042 */
5043 static int moveToChild(BtCursor *pCur, u32 newPgno){
5044   BtShared *pBt = pCur->pBt;
5045 
5046   assert( cursorOwnsBtShared(pCur) );
5047   assert( pCur->eState==CURSOR_VALID );
5048   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5049   assert( pCur->iPage>=0 );
5050   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5051     return SQLITE_CORRUPT_BKPT;
5052   }
5053   pCur->info.nSize = 0;
5054   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5055   pCur->aiIdx[pCur->iPage] = pCur->ix;
5056   pCur->apPage[pCur->iPage] = pCur->pPage;
5057   pCur->ix = 0;
5058   pCur->iPage++;
5059   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5060 }
5061 
5062 #ifdef SQLITE_DEBUG
5063 /*
5064 ** Page pParent is an internal (non-leaf) tree page. This function
5065 ** asserts that page number iChild is the left-child if the iIdx'th
5066 ** cell in page pParent. Or, if iIdx is equal to the total number of
5067 ** cells in pParent, that page number iChild is the right-child of
5068 ** the page.
5069 */
5070 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5071   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5072                             ** in a corrupt database */
5073   assert( iIdx<=pParent->nCell );
5074   if( iIdx==pParent->nCell ){
5075     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5076   }else{
5077     assert( get4byte(findCell(pParent, iIdx))==iChild );
5078   }
5079 }
5080 #else
5081 #  define assertParentIndex(x,y,z)
5082 #endif
5083 
5084 /*
5085 ** Move the cursor up to the parent page.
5086 **
5087 ** pCur->idx is set to the cell index that contains the pointer
5088 ** to the page we are coming from.  If we are coming from the
5089 ** right-most child page then pCur->idx is set to one more than
5090 ** the largest cell index.
5091 */
5092 static void moveToParent(BtCursor *pCur){
5093   MemPage *pLeaf;
5094   assert( cursorOwnsBtShared(pCur) );
5095   assert( pCur->eState==CURSOR_VALID );
5096   assert( pCur->iPage>0 );
5097   assert( pCur->pPage );
5098   assertParentIndex(
5099     pCur->apPage[pCur->iPage-1],
5100     pCur->aiIdx[pCur->iPage-1],
5101     pCur->pPage->pgno
5102   );
5103   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5104   pCur->info.nSize = 0;
5105   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5106   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5107   pLeaf = pCur->pPage;
5108   pCur->pPage = pCur->apPage[--pCur->iPage];
5109   releasePageNotNull(pLeaf);
5110 }
5111 
5112 /*
5113 ** Move the cursor to point to the root page of its b-tree structure.
5114 **
5115 ** If the table has a virtual root page, then the cursor is moved to point
5116 ** to the virtual root page instead of the actual root page. A table has a
5117 ** virtual root page when the actual root page contains no cells and a
5118 ** single child page. This can only happen with the table rooted at page 1.
5119 **
5120 ** If the b-tree structure is empty, the cursor state is set to
5121 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5122 ** the cursor is set to point to the first cell located on the root
5123 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5124 **
5125 ** If this function returns successfully, it may be assumed that the
5126 ** page-header flags indicate that the [virtual] root-page is the expected
5127 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5128 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5129 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5130 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5131 ** b-tree).
5132 */
5133 static int moveToRoot(BtCursor *pCur){
5134   MemPage *pRoot;
5135   int rc = SQLITE_OK;
5136 
5137   assert( cursorOwnsBtShared(pCur) );
5138   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5139   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5140   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5141   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5142   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5143 
5144   if( pCur->iPage>=0 ){
5145     if( pCur->iPage ){
5146       releasePageNotNull(pCur->pPage);
5147       while( --pCur->iPage ){
5148         releasePageNotNull(pCur->apPage[pCur->iPage]);
5149       }
5150       pCur->pPage = pCur->apPage[0];
5151       goto skip_init;
5152     }
5153   }else if( pCur->pgnoRoot==0 ){
5154     pCur->eState = CURSOR_INVALID;
5155     return SQLITE_EMPTY;
5156   }else{
5157     assert( pCur->iPage==(-1) );
5158     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5159       if( pCur->eState==CURSOR_FAULT ){
5160         assert( pCur->skipNext!=SQLITE_OK );
5161         return pCur->skipNext;
5162       }
5163       sqlite3BtreeClearCursor(pCur);
5164     }
5165     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5166                         0, pCur->curPagerFlags);
5167     if( rc!=SQLITE_OK ){
5168       pCur->eState = CURSOR_INVALID;
5169       return rc;
5170     }
5171     pCur->iPage = 0;
5172     pCur->curIntKey = pCur->pPage->intKey;
5173   }
5174   pRoot = pCur->pPage;
5175   assert( pRoot->pgno==pCur->pgnoRoot );
5176 
5177   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5178   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5179   ** NULL, the caller expects a table b-tree. If this is not the case,
5180   ** return an SQLITE_CORRUPT error.
5181   **
5182   ** Earlier versions of SQLite assumed that this test could not fail
5183   ** if the root page was already loaded when this function was called (i.e.
5184   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5185   ** in such a way that page pRoot is linked into a second b-tree table
5186   ** (or the freelist).  */
5187   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5188   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5189     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5190   }
5191 
5192 skip_init:
5193   pCur->ix = 0;
5194   pCur->info.nSize = 0;
5195   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5196 
5197   pRoot = pCur->pPage;
5198   if( pRoot->nCell>0 ){
5199     pCur->eState = CURSOR_VALID;
5200   }else if( !pRoot->leaf ){
5201     Pgno subpage;
5202     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5203     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5204     pCur->eState = CURSOR_VALID;
5205     rc = moveToChild(pCur, subpage);
5206   }else{
5207     pCur->eState = CURSOR_INVALID;
5208     rc = SQLITE_EMPTY;
5209   }
5210   return rc;
5211 }
5212 
5213 /*
5214 ** Move the cursor down to the left-most leaf entry beneath the
5215 ** entry to which it is currently pointing.
5216 **
5217 ** The left-most leaf is the one with the smallest key - the first
5218 ** in ascending order.
5219 */
5220 static int moveToLeftmost(BtCursor *pCur){
5221   Pgno pgno;
5222   int rc = SQLITE_OK;
5223   MemPage *pPage;
5224 
5225   assert( cursorOwnsBtShared(pCur) );
5226   assert( pCur->eState==CURSOR_VALID );
5227   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5228     assert( pCur->ix<pPage->nCell );
5229     pgno = get4byte(findCell(pPage, pCur->ix));
5230     rc = moveToChild(pCur, pgno);
5231   }
5232   return rc;
5233 }
5234 
5235 /*
5236 ** Move the cursor down to the right-most leaf entry beneath the
5237 ** page to which it is currently pointing.  Notice the difference
5238 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5239 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5240 ** finds the right-most entry beneath the *page*.
5241 **
5242 ** The right-most entry is the one with the largest key - the last
5243 ** key in ascending order.
5244 */
5245 static int moveToRightmost(BtCursor *pCur){
5246   Pgno pgno;
5247   int rc = SQLITE_OK;
5248   MemPage *pPage = 0;
5249 
5250   assert( cursorOwnsBtShared(pCur) );
5251   assert( pCur->eState==CURSOR_VALID );
5252   while( !(pPage = pCur->pPage)->leaf ){
5253     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5254     pCur->ix = pPage->nCell;
5255     rc = moveToChild(pCur, pgno);
5256     if( rc ) return rc;
5257   }
5258   pCur->ix = pPage->nCell-1;
5259   assert( pCur->info.nSize==0 );
5260   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5261   return SQLITE_OK;
5262 }
5263 
5264 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5265 ** on success.  Set *pRes to 0 if the cursor actually points to something
5266 ** or set *pRes to 1 if the table is empty.
5267 */
5268 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5269   int rc;
5270 
5271   assert( cursorOwnsBtShared(pCur) );
5272   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5273   rc = moveToRoot(pCur);
5274   if( rc==SQLITE_OK ){
5275     assert( pCur->pPage->nCell>0 );
5276     *pRes = 0;
5277     rc = moveToLeftmost(pCur);
5278   }else if( rc==SQLITE_EMPTY ){
5279     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5280     *pRes = 1;
5281     rc = SQLITE_OK;
5282   }
5283   return rc;
5284 }
5285 
5286 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5287 ** on success.  Set *pRes to 0 if the cursor actually points to something
5288 ** or set *pRes to 1 if the table is empty.
5289 */
5290 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5291   int rc;
5292 
5293   assert( cursorOwnsBtShared(pCur) );
5294   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5295 
5296   /* If the cursor already points to the last entry, this is a no-op. */
5297   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5298 #ifdef SQLITE_DEBUG
5299     /* This block serves to assert() that the cursor really does point
5300     ** to the last entry in the b-tree. */
5301     int ii;
5302     for(ii=0; ii<pCur->iPage; ii++){
5303       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5304     }
5305     assert( pCur->ix==pCur->pPage->nCell-1 );
5306     assert( pCur->pPage->leaf );
5307 #endif
5308     *pRes = 0;
5309     return SQLITE_OK;
5310   }
5311 
5312   rc = moveToRoot(pCur);
5313   if( rc==SQLITE_OK ){
5314     assert( pCur->eState==CURSOR_VALID );
5315     *pRes = 0;
5316     rc = moveToRightmost(pCur);
5317     if( rc==SQLITE_OK ){
5318       pCur->curFlags |= BTCF_AtLast;
5319     }else{
5320       pCur->curFlags &= ~BTCF_AtLast;
5321     }
5322   }else if( rc==SQLITE_EMPTY ){
5323     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5324     *pRes = 1;
5325     rc = SQLITE_OK;
5326   }
5327   return rc;
5328 }
5329 
5330 /* Move the cursor so that it points to an entry near the key
5331 ** specified by pIdxKey or intKey.   Return a success code.
5332 **
5333 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5334 ** must be NULL.  For index tables, pIdxKey is used and intKey
5335 ** is ignored.
5336 **
5337 ** If an exact match is not found, then the cursor is always
5338 ** left pointing at a leaf page which would hold the entry if it
5339 ** were present.  The cursor might point to an entry that comes
5340 ** before or after the key.
5341 **
5342 ** An integer is written into *pRes which is the result of
5343 ** comparing the key with the entry to which the cursor is
5344 ** pointing.  The meaning of the integer written into
5345 ** *pRes is as follows:
5346 **
5347 **     *pRes<0      The cursor is left pointing at an entry that
5348 **                  is smaller than intKey/pIdxKey or if the table is empty
5349 **                  and the cursor is therefore left point to nothing.
5350 **
5351 **     *pRes==0     The cursor is left pointing at an entry that
5352 **                  exactly matches intKey/pIdxKey.
5353 **
5354 **     *pRes>0      The cursor is left pointing at an entry that
5355 **                  is larger than intKey/pIdxKey.
5356 **
5357 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5358 ** exists an entry in the table that exactly matches pIdxKey.
5359 */
5360 int sqlite3BtreeMovetoUnpacked(
5361   BtCursor *pCur,          /* The cursor to be moved */
5362   UnpackedRecord *pIdxKey, /* Unpacked index key */
5363   i64 intKey,              /* The table key */
5364   int biasRight,           /* If true, bias the search to the high end */
5365   int *pRes                /* Write search results here */
5366 ){
5367   int rc;
5368   RecordCompare xRecordCompare;
5369 
5370   assert( cursorOwnsBtShared(pCur) );
5371   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5372   assert( pRes );
5373   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5374   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5375 
5376   /* If the cursor is already positioned at the point we are trying
5377   ** to move to, then just return without doing any work */
5378   if( pIdxKey==0
5379    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5380   ){
5381     if( pCur->info.nKey==intKey ){
5382       *pRes = 0;
5383       return SQLITE_OK;
5384     }
5385     if( pCur->info.nKey<intKey ){
5386       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5387         *pRes = -1;
5388         return SQLITE_OK;
5389       }
5390       /* If the requested key is one more than the previous key, then
5391       ** try to get there using sqlite3BtreeNext() rather than a full
5392       ** binary search.  This is an optimization only.  The correct answer
5393       ** is still obtained without this case, only a little more slowely */
5394       if( pCur->info.nKey+1==intKey ){
5395         *pRes = 0;
5396         rc = sqlite3BtreeNext(pCur, 0);
5397         if( rc==SQLITE_OK ){
5398           getCellInfo(pCur);
5399           if( pCur->info.nKey==intKey ){
5400             return SQLITE_OK;
5401           }
5402         }else if( rc==SQLITE_DONE ){
5403           rc = SQLITE_OK;
5404         }else{
5405           return rc;
5406         }
5407       }
5408     }
5409   }
5410 
5411   if( pIdxKey ){
5412     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5413     pIdxKey->errCode = 0;
5414     assert( pIdxKey->default_rc==1
5415          || pIdxKey->default_rc==0
5416          || pIdxKey->default_rc==-1
5417     );
5418   }else{
5419     xRecordCompare = 0; /* All keys are integers */
5420   }
5421 
5422   rc = moveToRoot(pCur);
5423   if( rc ){
5424     if( rc==SQLITE_EMPTY ){
5425       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5426       *pRes = -1;
5427       return SQLITE_OK;
5428     }
5429     return rc;
5430   }
5431   assert( pCur->pPage );
5432   assert( pCur->pPage->isInit );
5433   assert( pCur->eState==CURSOR_VALID );
5434   assert( pCur->pPage->nCell > 0 );
5435   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5436   assert( pCur->curIntKey || pIdxKey );
5437   for(;;){
5438     int lwr, upr, idx, c;
5439     Pgno chldPg;
5440     MemPage *pPage = pCur->pPage;
5441     u8 *pCell;                          /* Pointer to current cell in pPage */
5442 
5443     /* pPage->nCell must be greater than zero. If this is the root-page
5444     ** the cursor would have been INVALID above and this for(;;) loop
5445     ** not run. If this is not the root-page, then the moveToChild() routine
5446     ** would have already detected db corruption. Similarly, pPage must
5447     ** be the right kind (index or table) of b-tree page. Otherwise
5448     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5449     assert( pPage->nCell>0 );
5450     assert( pPage->intKey==(pIdxKey==0) );
5451     lwr = 0;
5452     upr = pPage->nCell-1;
5453     assert( biasRight==0 || biasRight==1 );
5454     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5455     pCur->ix = (u16)idx;
5456     if( xRecordCompare==0 ){
5457       for(;;){
5458         i64 nCellKey;
5459         pCell = findCellPastPtr(pPage, idx);
5460         if( pPage->intKeyLeaf ){
5461           while( 0x80 <= *(pCell++) ){
5462             if( pCell>=pPage->aDataEnd ){
5463               return SQLITE_CORRUPT_PAGE(pPage);
5464             }
5465           }
5466         }
5467         getVarint(pCell, (u64*)&nCellKey);
5468         if( nCellKey<intKey ){
5469           lwr = idx+1;
5470           if( lwr>upr ){ c = -1; break; }
5471         }else if( nCellKey>intKey ){
5472           upr = idx-1;
5473           if( lwr>upr ){ c = +1; break; }
5474         }else{
5475           assert( nCellKey==intKey );
5476           pCur->ix = (u16)idx;
5477           if( !pPage->leaf ){
5478             lwr = idx;
5479             goto moveto_next_layer;
5480           }else{
5481             pCur->curFlags |= BTCF_ValidNKey;
5482             pCur->info.nKey = nCellKey;
5483             pCur->info.nSize = 0;
5484             *pRes = 0;
5485             return SQLITE_OK;
5486           }
5487         }
5488         assert( lwr+upr>=0 );
5489         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5490       }
5491     }else{
5492       for(;;){
5493         int nCell;  /* Size of the pCell cell in bytes */
5494         pCell = findCellPastPtr(pPage, idx);
5495 
5496         /* The maximum supported page-size is 65536 bytes. This means that
5497         ** the maximum number of record bytes stored on an index B-Tree
5498         ** page is less than 16384 bytes and may be stored as a 2-byte
5499         ** varint. This information is used to attempt to avoid parsing
5500         ** the entire cell by checking for the cases where the record is
5501         ** stored entirely within the b-tree page by inspecting the first
5502         ** 2 bytes of the cell.
5503         */
5504         nCell = pCell[0];
5505         if( nCell<=pPage->max1bytePayload ){
5506           /* This branch runs if the record-size field of the cell is a
5507           ** single byte varint and the record fits entirely on the main
5508           ** b-tree page.  */
5509           testcase( pCell+nCell+1==pPage->aDataEnd );
5510           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5511         }else if( !(pCell[1] & 0x80)
5512           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5513         ){
5514           /* The record-size field is a 2 byte varint and the record
5515           ** fits entirely on the main b-tree page.  */
5516           testcase( pCell+nCell+2==pPage->aDataEnd );
5517           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5518         }else{
5519           /* The record flows over onto one or more overflow pages. In
5520           ** this case the whole cell needs to be parsed, a buffer allocated
5521           ** and accessPayload() used to retrieve the record into the
5522           ** buffer before VdbeRecordCompare() can be called.
5523           **
5524           ** If the record is corrupt, the xRecordCompare routine may read
5525           ** up to two varints past the end of the buffer. An extra 18
5526           ** bytes of padding is allocated at the end of the buffer in
5527           ** case this happens.  */
5528           void *pCellKey;
5529           u8 * const pCellBody = pCell - pPage->childPtrSize;
5530           const int nOverrun = 18;  /* Size of the overrun padding */
5531           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5532           nCell = (int)pCur->info.nKey;
5533           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5534           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5535           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5536           testcase( nCell==2 );  /* Minimum legal index key size */
5537           if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5538             rc = SQLITE_CORRUPT_PAGE(pPage);
5539             goto moveto_finish;
5540           }
5541           pCellKey = sqlite3Malloc( nCell+nOverrun );
5542           if( pCellKey==0 ){
5543             rc = SQLITE_NOMEM_BKPT;
5544             goto moveto_finish;
5545           }
5546           pCur->ix = (u16)idx;
5547           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5548           memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5549           pCur->curFlags &= ~BTCF_ValidOvfl;
5550           if( rc ){
5551             sqlite3_free(pCellKey);
5552             goto moveto_finish;
5553           }
5554           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5555           sqlite3_free(pCellKey);
5556         }
5557         assert(
5558             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5559          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5560         );
5561         if( c<0 ){
5562           lwr = idx+1;
5563         }else if( c>0 ){
5564           upr = idx-1;
5565         }else{
5566           assert( c==0 );
5567           *pRes = 0;
5568           rc = SQLITE_OK;
5569           pCur->ix = (u16)idx;
5570           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5571           goto moveto_finish;
5572         }
5573         if( lwr>upr ) break;
5574         assert( lwr+upr>=0 );
5575         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5576       }
5577     }
5578     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5579     assert( pPage->isInit );
5580     if( pPage->leaf ){
5581       assert( pCur->ix<pCur->pPage->nCell );
5582       pCur->ix = (u16)idx;
5583       *pRes = c;
5584       rc = SQLITE_OK;
5585       goto moveto_finish;
5586     }
5587 moveto_next_layer:
5588     if( lwr>=pPage->nCell ){
5589       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5590     }else{
5591       chldPg = get4byte(findCell(pPage, lwr));
5592     }
5593     pCur->ix = (u16)lwr;
5594     rc = moveToChild(pCur, chldPg);
5595     if( rc ) break;
5596   }
5597 moveto_finish:
5598   pCur->info.nSize = 0;
5599   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5600   return rc;
5601 }
5602 
5603 
5604 /*
5605 ** Return TRUE if the cursor is not pointing at an entry of the table.
5606 **
5607 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5608 ** past the last entry in the table or sqlite3BtreePrev() moves past
5609 ** the first entry.  TRUE is also returned if the table is empty.
5610 */
5611 int sqlite3BtreeEof(BtCursor *pCur){
5612   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5613   ** have been deleted? This API will need to change to return an error code
5614   ** as well as the boolean result value.
5615   */
5616   return (CURSOR_VALID!=pCur->eState);
5617 }
5618 
5619 /*
5620 ** Return an estimate for the number of rows in the table that pCur is
5621 ** pointing to.  Return a negative number if no estimate is currently
5622 ** available.
5623 */
5624 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5625   i64 n;
5626   u8 i;
5627 
5628   assert( cursorOwnsBtShared(pCur) );
5629   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5630 
5631   /* Currently this interface is only called by the OP_IfSmaller
5632   ** opcode, and it that case the cursor will always be valid and
5633   ** will always point to a leaf node. */
5634   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5635   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5636 
5637   n = pCur->pPage->nCell;
5638   for(i=0; i<pCur->iPage; i++){
5639     n *= pCur->apPage[i]->nCell;
5640   }
5641   return n;
5642 }
5643 
5644 /*
5645 ** Advance the cursor to the next entry in the database.
5646 ** Return value:
5647 **
5648 **    SQLITE_OK        success
5649 **    SQLITE_DONE      cursor is already pointing at the last element
5650 **    otherwise        some kind of error occurred
5651 **
5652 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5653 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5654 ** to the next cell on the current page.  The (slower) btreeNext() helper
5655 ** routine is called when it is necessary to move to a different page or
5656 ** to restore the cursor.
5657 **
5658 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5659 ** cursor corresponds to an SQL index and this routine could have been
5660 ** skipped if the SQL index had been a unique index.  The F argument
5661 ** is a hint to the implement.  SQLite btree implementation does not use
5662 ** this hint, but COMDB2 does.
5663 */
5664 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5665   int rc;
5666   int idx;
5667   MemPage *pPage;
5668 
5669   assert( cursorOwnsBtShared(pCur) );
5670   if( pCur->eState!=CURSOR_VALID ){
5671     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5672     rc = restoreCursorPosition(pCur);
5673     if( rc!=SQLITE_OK ){
5674       return rc;
5675     }
5676     if( CURSOR_INVALID==pCur->eState ){
5677       return SQLITE_DONE;
5678     }
5679     if( pCur->eState==CURSOR_SKIPNEXT ){
5680       pCur->eState = CURSOR_VALID;
5681       if( pCur->skipNext>0 ) return SQLITE_OK;
5682     }
5683   }
5684 
5685   pPage = pCur->pPage;
5686   idx = ++pCur->ix;
5687   if( !pPage->isInit ){
5688     /* The only known way for this to happen is for there to be a
5689     ** recursive SQL function that does a DELETE operation as part of a
5690     ** SELECT which deletes content out from under an active cursor
5691     ** in a corrupt database file where the table being DELETE-ed from
5692     ** has pages in common with the table being queried.  See TH3
5693     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5694     ** example. */
5695     return SQLITE_CORRUPT_BKPT;
5696   }
5697 
5698   /* If the database file is corrupt, it is possible for the value of idx
5699   ** to be invalid here. This can only occur if a second cursor modifies
5700   ** the page while cursor pCur is holding a reference to it. Which can
5701   ** only happen if the database is corrupt in such a way as to link the
5702   ** page into more than one b-tree structure. */
5703   testcase( idx>pPage->nCell );
5704 
5705   if( idx>=pPage->nCell ){
5706     if( !pPage->leaf ){
5707       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5708       if( rc ) return rc;
5709       return moveToLeftmost(pCur);
5710     }
5711     do{
5712       if( pCur->iPage==0 ){
5713         pCur->eState = CURSOR_INVALID;
5714         return SQLITE_DONE;
5715       }
5716       moveToParent(pCur);
5717       pPage = pCur->pPage;
5718     }while( pCur->ix>=pPage->nCell );
5719     if( pPage->intKey ){
5720       return sqlite3BtreeNext(pCur, 0);
5721     }else{
5722       return SQLITE_OK;
5723     }
5724   }
5725   if( pPage->leaf ){
5726     return SQLITE_OK;
5727   }else{
5728     return moveToLeftmost(pCur);
5729   }
5730 }
5731 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5732   MemPage *pPage;
5733   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5734   assert( cursorOwnsBtShared(pCur) );
5735   assert( flags==0 || flags==1 );
5736   pCur->info.nSize = 0;
5737   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5738   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5739   pPage = pCur->pPage;
5740   if( (++pCur->ix)>=pPage->nCell ){
5741     pCur->ix--;
5742     return btreeNext(pCur);
5743   }
5744   if( pPage->leaf ){
5745     return SQLITE_OK;
5746   }else{
5747     return moveToLeftmost(pCur);
5748   }
5749 }
5750 
5751 /*
5752 ** Step the cursor to the back to the previous entry in the database.
5753 ** Return values:
5754 **
5755 **     SQLITE_OK     success
5756 **     SQLITE_DONE   the cursor is already on the first element of the table
5757 **     otherwise     some kind of error occurred
5758 **
5759 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5760 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5761 ** to the previous cell on the current page.  The (slower) btreePrevious()
5762 ** helper routine is called when it is necessary to move to a different page
5763 ** or to restore the cursor.
5764 **
5765 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5766 ** the cursor corresponds to an SQL index and this routine could have been
5767 ** skipped if the SQL index had been a unique index.  The F argument is a
5768 ** hint to the implement.  The native SQLite btree implementation does not
5769 ** use this hint, but COMDB2 does.
5770 */
5771 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5772   int rc;
5773   MemPage *pPage;
5774 
5775   assert( cursorOwnsBtShared(pCur) );
5776   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5777   assert( pCur->info.nSize==0 );
5778   if( pCur->eState!=CURSOR_VALID ){
5779     rc = restoreCursorPosition(pCur);
5780     if( rc!=SQLITE_OK ){
5781       return rc;
5782     }
5783     if( CURSOR_INVALID==pCur->eState ){
5784       return SQLITE_DONE;
5785     }
5786     if( CURSOR_SKIPNEXT==pCur->eState ){
5787       pCur->eState = CURSOR_VALID;
5788       if( pCur->skipNext<0 ) return SQLITE_OK;
5789     }
5790   }
5791 
5792   pPage = pCur->pPage;
5793   assert( pPage->isInit );
5794   if( !pPage->leaf ){
5795     int idx = pCur->ix;
5796     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5797     if( rc ) return rc;
5798     rc = moveToRightmost(pCur);
5799   }else{
5800     while( pCur->ix==0 ){
5801       if( pCur->iPage==0 ){
5802         pCur->eState = CURSOR_INVALID;
5803         return SQLITE_DONE;
5804       }
5805       moveToParent(pCur);
5806     }
5807     assert( pCur->info.nSize==0 );
5808     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5809 
5810     pCur->ix--;
5811     pPage = pCur->pPage;
5812     if( pPage->intKey && !pPage->leaf ){
5813       rc = sqlite3BtreePrevious(pCur, 0);
5814     }else{
5815       rc = SQLITE_OK;
5816     }
5817   }
5818   return rc;
5819 }
5820 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5821   assert( cursorOwnsBtShared(pCur) );
5822   assert( flags==0 || flags==1 );
5823   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5824   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5825   pCur->info.nSize = 0;
5826   if( pCur->eState!=CURSOR_VALID
5827    || pCur->ix==0
5828    || pCur->pPage->leaf==0
5829   ){
5830     return btreePrevious(pCur);
5831   }
5832   pCur->ix--;
5833   return SQLITE_OK;
5834 }
5835 
5836 /*
5837 ** Allocate a new page from the database file.
5838 **
5839 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5840 ** has already been called on the new page.)  The new page has also
5841 ** been referenced and the calling routine is responsible for calling
5842 ** sqlite3PagerUnref() on the new page when it is done.
5843 **
5844 ** SQLITE_OK is returned on success.  Any other return value indicates
5845 ** an error.  *ppPage is set to NULL in the event of an error.
5846 **
5847 ** If the "nearby" parameter is not 0, then an effort is made to
5848 ** locate a page close to the page number "nearby".  This can be used in an
5849 ** attempt to keep related pages close to each other in the database file,
5850 ** which in turn can make database access faster.
5851 **
5852 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5853 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5854 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5855 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5856 ** are no restrictions on which page is returned.
5857 */
5858 static int allocateBtreePage(
5859   BtShared *pBt,         /* The btree */
5860   MemPage **ppPage,      /* Store pointer to the allocated page here */
5861   Pgno *pPgno,           /* Store the page number here */
5862   Pgno nearby,           /* Search for a page near this one */
5863   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5864 ){
5865   MemPage *pPage1;
5866   int rc;
5867   u32 n;     /* Number of pages on the freelist */
5868   u32 k;     /* Number of leaves on the trunk of the freelist */
5869   MemPage *pTrunk = 0;
5870   MemPage *pPrevTrunk = 0;
5871   Pgno mxPage;     /* Total size of the database file */
5872 
5873   assert( sqlite3_mutex_held(pBt->mutex) );
5874   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5875   pPage1 = pBt->pPage1;
5876   mxPage = btreePagecount(pBt);
5877   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5878   ** stores stores the total number of pages on the freelist. */
5879   n = get4byte(&pPage1->aData[36]);
5880   testcase( n==mxPage-1 );
5881   if( n>=mxPage ){
5882     return SQLITE_CORRUPT_BKPT;
5883   }
5884   if( n>0 ){
5885     /* There are pages on the freelist.  Reuse one of those pages. */
5886     Pgno iTrunk;
5887     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5888     u32 nSearch = 0;   /* Count of the number of search attempts */
5889 
5890     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5891     ** shows that the page 'nearby' is somewhere on the free-list, then
5892     ** the entire-list will be searched for that page.
5893     */
5894 #ifndef SQLITE_OMIT_AUTOVACUUM
5895     if( eMode==BTALLOC_EXACT ){
5896       if( nearby<=mxPage ){
5897         u8 eType;
5898         assert( nearby>0 );
5899         assert( pBt->autoVacuum );
5900         rc = ptrmapGet(pBt, nearby, &eType, 0);
5901         if( rc ) return rc;
5902         if( eType==PTRMAP_FREEPAGE ){
5903           searchList = 1;
5904         }
5905       }
5906     }else if( eMode==BTALLOC_LE ){
5907       searchList = 1;
5908     }
5909 #endif
5910 
5911     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5912     ** first free-list trunk page. iPrevTrunk is initially 1.
5913     */
5914     rc = sqlite3PagerWrite(pPage1->pDbPage);
5915     if( rc ) return rc;
5916     put4byte(&pPage1->aData[36], n-1);
5917 
5918     /* The code within this loop is run only once if the 'searchList' variable
5919     ** is not true. Otherwise, it runs once for each trunk-page on the
5920     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5921     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5922     */
5923     do {
5924       pPrevTrunk = pTrunk;
5925       if( pPrevTrunk ){
5926         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5927         ** is the page number of the next freelist trunk page in the list or
5928         ** zero if this is the last freelist trunk page. */
5929         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5930       }else{
5931         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5932         ** stores the page number of the first page of the freelist, or zero if
5933         ** the freelist is empty. */
5934         iTrunk = get4byte(&pPage1->aData[32]);
5935       }
5936       testcase( iTrunk==mxPage );
5937       if( iTrunk>mxPage || nSearch++ > n ){
5938         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5939       }else{
5940         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5941       }
5942       if( rc ){
5943         pTrunk = 0;
5944         goto end_allocate_page;
5945       }
5946       assert( pTrunk!=0 );
5947       assert( pTrunk->aData!=0 );
5948       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5949       ** is the number of leaf page pointers to follow. */
5950       k = get4byte(&pTrunk->aData[4]);
5951       if( k==0 && !searchList ){
5952         /* The trunk has no leaves and the list is not being searched.
5953         ** So extract the trunk page itself and use it as the newly
5954         ** allocated page */
5955         assert( pPrevTrunk==0 );
5956         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5957         if( rc ){
5958           goto end_allocate_page;
5959         }
5960         *pPgno = iTrunk;
5961         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5962         *ppPage = pTrunk;
5963         pTrunk = 0;
5964         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5965       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5966         /* Value of k is out of range.  Database corruption */
5967         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5968         goto end_allocate_page;
5969 #ifndef SQLITE_OMIT_AUTOVACUUM
5970       }else if( searchList
5971             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5972       ){
5973         /* The list is being searched and this trunk page is the page
5974         ** to allocate, regardless of whether it has leaves.
5975         */
5976         *pPgno = iTrunk;
5977         *ppPage = pTrunk;
5978         searchList = 0;
5979         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5980         if( rc ){
5981           goto end_allocate_page;
5982         }
5983         if( k==0 ){
5984           if( !pPrevTrunk ){
5985             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5986           }else{
5987             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5988             if( rc!=SQLITE_OK ){
5989               goto end_allocate_page;
5990             }
5991             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5992           }
5993         }else{
5994           /* The trunk page is required by the caller but it contains
5995           ** pointers to free-list leaves. The first leaf becomes a trunk
5996           ** page in this case.
5997           */
5998           MemPage *pNewTrunk;
5999           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6000           if( iNewTrunk>mxPage ){
6001             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6002             goto end_allocate_page;
6003           }
6004           testcase( iNewTrunk==mxPage );
6005           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6006           if( rc!=SQLITE_OK ){
6007             goto end_allocate_page;
6008           }
6009           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6010           if( rc!=SQLITE_OK ){
6011             releasePage(pNewTrunk);
6012             goto end_allocate_page;
6013           }
6014           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6015           put4byte(&pNewTrunk->aData[4], k-1);
6016           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6017           releasePage(pNewTrunk);
6018           if( !pPrevTrunk ){
6019             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6020             put4byte(&pPage1->aData[32], iNewTrunk);
6021           }else{
6022             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6023             if( rc ){
6024               goto end_allocate_page;
6025             }
6026             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6027           }
6028         }
6029         pTrunk = 0;
6030         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6031 #endif
6032       }else if( k>0 ){
6033         /* Extract a leaf from the trunk */
6034         u32 closest;
6035         Pgno iPage;
6036         unsigned char *aData = pTrunk->aData;
6037         if( nearby>0 ){
6038           u32 i;
6039           closest = 0;
6040           if( eMode==BTALLOC_LE ){
6041             for(i=0; i<k; i++){
6042               iPage = get4byte(&aData[8+i*4]);
6043               if( iPage<=nearby ){
6044                 closest = i;
6045                 break;
6046               }
6047             }
6048           }else{
6049             int dist;
6050             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6051             for(i=1; i<k; i++){
6052               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6053               if( d2<dist ){
6054                 closest = i;
6055                 dist = d2;
6056               }
6057             }
6058           }
6059         }else{
6060           closest = 0;
6061         }
6062 
6063         iPage = get4byte(&aData[8+closest*4]);
6064         testcase( iPage==mxPage );
6065         if( iPage>mxPage ){
6066           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6067           goto end_allocate_page;
6068         }
6069         testcase( iPage==mxPage );
6070         if( !searchList
6071          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6072         ){
6073           int noContent;
6074           *pPgno = iPage;
6075           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6076                  ": %d more free pages\n",
6077                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6078           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6079           if( rc ) goto end_allocate_page;
6080           if( closest<k-1 ){
6081             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6082           }
6083           put4byte(&aData[4], k-1);
6084           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6085           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6086           if( rc==SQLITE_OK ){
6087             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6088             if( rc!=SQLITE_OK ){
6089               releasePage(*ppPage);
6090               *ppPage = 0;
6091             }
6092           }
6093           searchList = 0;
6094         }
6095       }
6096       releasePage(pPrevTrunk);
6097       pPrevTrunk = 0;
6098     }while( searchList );
6099   }else{
6100     /* There are no pages on the freelist, so append a new page to the
6101     ** database image.
6102     **
6103     ** Normally, new pages allocated by this block can be requested from the
6104     ** pager layer with the 'no-content' flag set. This prevents the pager
6105     ** from trying to read the pages content from disk. However, if the
6106     ** current transaction has already run one or more incremental-vacuum
6107     ** steps, then the page we are about to allocate may contain content
6108     ** that is required in the event of a rollback. In this case, do
6109     ** not set the no-content flag. This causes the pager to load and journal
6110     ** the current page content before overwriting it.
6111     **
6112     ** Note that the pager will not actually attempt to load or journal
6113     ** content for any page that really does lie past the end of the database
6114     ** file on disk. So the effects of disabling the no-content optimization
6115     ** here are confined to those pages that lie between the end of the
6116     ** database image and the end of the database file.
6117     */
6118     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6119 
6120     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6121     if( rc ) return rc;
6122     pBt->nPage++;
6123     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6124 
6125 #ifndef SQLITE_OMIT_AUTOVACUUM
6126     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6127       /* If *pPgno refers to a pointer-map page, allocate two new pages
6128       ** at the end of the file instead of one. The first allocated page
6129       ** becomes a new pointer-map page, the second is used by the caller.
6130       */
6131       MemPage *pPg = 0;
6132       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6133       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6134       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6135       if( rc==SQLITE_OK ){
6136         rc = sqlite3PagerWrite(pPg->pDbPage);
6137         releasePage(pPg);
6138       }
6139       if( rc ) return rc;
6140       pBt->nPage++;
6141       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6142     }
6143 #endif
6144     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6145     *pPgno = pBt->nPage;
6146 
6147     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6148     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6149     if( rc ) return rc;
6150     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6151     if( rc!=SQLITE_OK ){
6152       releasePage(*ppPage);
6153       *ppPage = 0;
6154     }
6155     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6156   }
6157 
6158   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6159 
6160 end_allocate_page:
6161   releasePage(pTrunk);
6162   releasePage(pPrevTrunk);
6163   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6164   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6165   return rc;
6166 }
6167 
6168 /*
6169 ** This function is used to add page iPage to the database file free-list.
6170 ** It is assumed that the page is not already a part of the free-list.
6171 **
6172 ** The value passed as the second argument to this function is optional.
6173 ** If the caller happens to have a pointer to the MemPage object
6174 ** corresponding to page iPage handy, it may pass it as the second value.
6175 ** Otherwise, it may pass NULL.
6176 **
6177 ** If a pointer to a MemPage object is passed as the second argument,
6178 ** its reference count is not altered by this function.
6179 */
6180 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6181   MemPage *pTrunk = 0;                /* Free-list trunk page */
6182   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6183   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6184   MemPage *pPage;                     /* Page being freed. May be NULL. */
6185   int rc;                             /* Return Code */
6186   u32 nFree;                          /* Initial number of pages on free-list */
6187 
6188   assert( sqlite3_mutex_held(pBt->mutex) );
6189   assert( CORRUPT_DB || iPage>1 );
6190   assert( !pMemPage || pMemPage->pgno==iPage );
6191 
6192   if( iPage<2 || iPage>pBt->nPage ){
6193     return SQLITE_CORRUPT_BKPT;
6194   }
6195   if( pMemPage ){
6196     pPage = pMemPage;
6197     sqlite3PagerRef(pPage->pDbPage);
6198   }else{
6199     pPage = btreePageLookup(pBt, iPage);
6200   }
6201 
6202   /* Increment the free page count on pPage1 */
6203   rc = sqlite3PagerWrite(pPage1->pDbPage);
6204   if( rc ) goto freepage_out;
6205   nFree = get4byte(&pPage1->aData[36]);
6206   put4byte(&pPage1->aData[36], nFree+1);
6207 
6208   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6209     /* If the secure_delete option is enabled, then
6210     ** always fully overwrite deleted information with zeros.
6211     */
6212     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6213      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6214     ){
6215       goto freepage_out;
6216     }
6217     memset(pPage->aData, 0, pPage->pBt->pageSize);
6218   }
6219 
6220   /* If the database supports auto-vacuum, write an entry in the pointer-map
6221   ** to indicate that the page is free.
6222   */
6223   if( ISAUTOVACUUM ){
6224     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6225     if( rc ) goto freepage_out;
6226   }
6227 
6228   /* Now manipulate the actual database free-list structure. There are two
6229   ** possibilities. If the free-list is currently empty, or if the first
6230   ** trunk page in the free-list is full, then this page will become a
6231   ** new free-list trunk page. Otherwise, it will become a leaf of the
6232   ** first trunk page in the current free-list. This block tests if it
6233   ** is possible to add the page as a new free-list leaf.
6234   */
6235   if( nFree!=0 ){
6236     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6237 
6238     iTrunk = get4byte(&pPage1->aData[32]);
6239     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6240     if( rc!=SQLITE_OK ){
6241       goto freepage_out;
6242     }
6243 
6244     nLeaf = get4byte(&pTrunk->aData[4]);
6245     assert( pBt->usableSize>32 );
6246     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6247       rc = SQLITE_CORRUPT_BKPT;
6248       goto freepage_out;
6249     }
6250     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6251       /* In this case there is room on the trunk page to insert the page
6252       ** being freed as a new leaf.
6253       **
6254       ** Note that the trunk page is not really full until it contains
6255       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6256       ** coded.  But due to a coding error in versions of SQLite prior to
6257       ** 3.6.0, databases with freelist trunk pages holding more than
6258       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6259       ** to maintain backwards compatibility with older versions of SQLite,
6260       ** we will continue to restrict the number of entries to usableSize/4 - 8
6261       ** for now.  At some point in the future (once everyone has upgraded
6262       ** to 3.6.0 or later) we should consider fixing the conditional above
6263       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6264       **
6265       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6266       ** avoid using the last six entries in the freelist trunk page array in
6267       ** order that database files created by newer versions of SQLite can be
6268       ** read by older versions of SQLite.
6269       */
6270       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6271       if( rc==SQLITE_OK ){
6272         put4byte(&pTrunk->aData[4], nLeaf+1);
6273         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6274         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6275           sqlite3PagerDontWrite(pPage->pDbPage);
6276         }
6277         rc = btreeSetHasContent(pBt, iPage);
6278       }
6279       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6280       goto freepage_out;
6281     }
6282   }
6283 
6284   /* If control flows to this point, then it was not possible to add the
6285   ** the page being freed as a leaf page of the first trunk in the free-list.
6286   ** Possibly because the free-list is empty, or possibly because the
6287   ** first trunk in the free-list is full. Either way, the page being freed
6288   ** will become the new first trunk page in the free-list.
6289   */
6290   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6291     goto freepage_out;
6292   }
6293   rc = sqlite3PagerWrite(pPage->pDbPage);
6294   if( rc!=SQLITE_OK ){
6295     goto freepage_out;
6296   }
6297   put4byte(pPage->aData, iTrunk);
6298   put4byte(&pPage->aData[4], 0);
6299   put4byte(&pPage1->aData[32], iPage);
6300   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6301 
6302 freepage_out:
6303   if( pPage ){
6304     pPage->isInit = 0;
6305   }
6306   releasePage(pPage);
6307   releasePage(pTrunk);
6308   return rc;
6309 }
6310 static void freePage(MemPage *pPage, int *pRC){
6311   if( (*pRC)==SQLITE_OK ){
6312     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6313   }
6314 }
6315 
6316 /*
6317 ** Free any overflow pages associated with the given Cell.  Store
6318 ** size information about the cell in pInfo.
6319 */
6320 static int clearCell(
6321   MemPage *pPage,          /* The page that contains the Cell */
6322   unsigned char *pCell,    /* First byte of the Cell */
6323   CellInfo *pInfo          /* Size information about the cell */
6324 ){
6325   BtShared *pBt;
6326   Pgno ovflPgno;
6327   int rc;
6328   int nOvfl;
6329   u32 ovflPageSize;
6330 
6331   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6332   pPage->xParseCell(pPage, pCell, pInfo);
6333   if( pInfo->nLocal==pInfo->nPayload ){
6334     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6335   }
6336   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6337   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6338   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6339     /* Cell extends past end of page */
6340     return SQLITE_CORRUPT_PAGE(pPage);
6341   }
6342   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6343   pBt = pPage->pBt;
6344   assert( pBt->usableSize > 4 );
6345   ovflPageSize = pBt->usableSize - 4;
6346   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6347   assert( nOvfl>0 ||
6348     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6349   );
6350   while( nOvfl-- ){
6351     Pgno iNext = 0;
6352     MemPage *pOvfl = 0;
6353     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6354       /* 0 is not a legal page number and page 1 cannot be an
6355       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6356       ** file the database must be corrupt. */
6357       return SQLITE_CORRUPT_BKPT;
6358     }
6359     if( nOvfl ){
6360       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6361       if( rc ) return rc;
6362     }
6363 
6364     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6365      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6366     ){
6367       /* There is no reason any cursor should have an outstanding reference
6368       ** to an overflow page belonging to a cell that is being deleted/updated.
6369       ** So if there exists more than one reference to this page, then it
6370       ** must not really be an overflow page and the database must be corrupt.
6371       ** It is helpful to detect this before calling freePage2(), as
6372       ** freePage2() may zero the page contents if secure-delete mode is
6373       ** enabled. If this 'overflow' page happens to be a page that the
6374       ** caller is iterating through or using in some other way, this
6375       ** can be problematic.
6376       */
6377       rc = SQLITE_CORRUPT_BKPT;
6378     }else{
6379       rc = freePage2(pBt, pOvfl, ovflPgno);
6380     }
6381 
6382     if( pOvfl ){
6383       sqlite3PagerUnref(pOvfl->pDbPage);
6384     }
6385     if( rc ) return rc;
6386     ovflPgno = iNext;
6387   }
6388   return SQLITE_OK;
6389 }
6390 
6391 /*
6392 ** Create the byte sequence used to represent a cell on page pPage
6393 ** and write that byte sequence into pCell[].  Overflow pages are
6394 ** allocated and filled in as necessary.  The calling procedure
6395 ** is responsible for making sure sufficient space has been allocated
6396 ** for pCell[].
6397 **
6398 ** Note that pCell does not necessary need to point to the pPage->aData
6399 ** area.  pCell might point to some temporary storage.  The cell will
6400 ** be constructed in this temporary area then copied into pPage->aData
6401 ** later.
6402 */
6403 static int fillInCell(
6404   MemPage *pPage,                /* The page that contains the cell */
6405   unsigned char *pCell,          /* Complete text of the cell */
6406   const BtreePayload *pX,        /* Payload with which to construct the cell */
6407   int *pnSize                    /* Write cell size here */
6408 ){
6409   int nPayload;
6410   const u8 *pSrc;
6411   int nSrc, n, rc, mn;
6412   int spaceLeft;
6413   MemPage *pToRelease;
6414   unsigned char *pPrior;
6415   unsigned char *pPayload;
6416   BtShared *pBt;
6417   Pgno pgnoOvfl;
6418   int nHeader;
6419 
6420   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6421 
6422   /* pPage is not necessarily writeable since pCell might be auxiliary
6423   ** buffer space that is separate from the pPage buffer area */
6424   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6425             || sqlite3PagerIswriteable(pPage->pDbPage) );
6426 
6427   /* Fill in the header. */
6428   nHeader = pPage->childPtrSize;
6429   if( pPage->intKey ){
6430     nPayload = pX->nData + pX->nZero;
6431     pSrc = pX->pData;
6432     nSrc = pX->nData;
6433     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6434     nHeader += putVarint32(&pCell[nHeader], nPayload);
6435     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6436   }else{
6437     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6438     nSrc = nPayload = (int)pX->nKey;
6439     pSrc = pX->pKey;
6440     nHeader += putVarint32(&pCell[nHeader], nPayload);
6441   }
6442 
6443   /* Fill in the payload */
6444   pPayload = &pCell[nHeader];
6445   if( nPayload<=pPage->maxLocal ){
6446     /* This is the common case where everything fits on the btree page
6447     ** and no overflow pages are required. */
6448     n = nHeader + nPayload;
6449     testcase( n==3 );
6450     testcase( n==4 );
6451     if( n<4 ) n = 4;
6452     *pnSize = n;
6453     assert( nSrc<=nPayload );
6454     testcase( nSrc<nPayload );
6455     memcpy(pPayload, pSrc, nSrc);
6456     memset(pPayload+nSrc, 0, nPayload-nSrc);
6457     return SQLITE_OK;
6458   }
6459 
6460   /* If we reach this point, it means that some of the content will need
6461   ** to spill onto overflow pages.
6462   */
6463   mn = pPage->minLocal;
6464   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6465   testcase( n==pPage->maxLocal );
6466   testcase( n==pPage->maxLocal+1 );
6467   if( n > pPage->maxLocal ) n = mn;
6468   spaceLeft = n;
6469   *pnSize = n + nHeader + 4;
6470   pPrior = &pCell[nHeader+n];
6471   pToRelease = 0;
6472   pgnoOvfl = 0;
6473   pBt = pPage->pBt;
6474 
6475   /* At this point variables should be set as follows:
6476   **
6477   **   nPayload           Total payload size in bytes
6478   **   pPayload           Begin writing payload here
6479   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6480   **                      that means content must spill into overflow pages.
6481   **   *pnSize            Size of the local cell (not counting overflow pages)
6482   **   pPrior             Where to write the pgno of the first overflow page
6483   **
6484   ** Use a call to btreeParseCellPtr() to verify that the values above
6485   ** were computed correctly.
6486   */
6487 #ifdef SQLITE_DEBUG
6488   {
6489     CellInfo info;
6490     pPage->xParseCell(pPage, pCell, &info);
6491     assert( nHeader==(int)(info.pPayload - pCell) );
6492     assert( info.nKey==pX->nKey );
6493     assert( *pnSize == info.nSize );
6494     assert( spaceLeft == info.nLocal );
6495   }
6496 #endif
6497 
6498   /* Write the payload into the local Cell and any extra into overflow pages */
6499   while( 1 ){
6500     n = nPayload;
6501     if( n>spaceLeft ) n = spaceLeft;
6502 
6503     /* If pToRelease is not zero than pPayload points into the data area
6504     ** of pToRelease.  Make sure pToRelease is still writeable. */
6505     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6506 
6507     /* If pPayload is part of the data area of pPage, then make sure pPage
6508     ** is still writeable */
6509     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6510             || sqlite3PagerIswriteable(pPage->pDbPage) );
6511 
6512     if( nSrc>=n ){
6513       memcpy(pPayload, pSrc, n);
6514     }else if( nSrc>0 ){
6515       n = nSrc;
6516       memcpy(pPayload, pSrc, n);
6517     }else{
6518       memset(pPayload, 0, n);
6519     }
6520     nPayload -= n;
6521     if( nPayload<=0 ) break;
6522     pPayload += n;
6523     pSrc += n;
6524     nSrc -= n;
6525     spaceLeft -= n;
6526     if( spaceLeft==0 ){
6527       MemPage *pOvfl = 0;
6528 #ifndef SQLITE_OMIT_AUTOVACUUM
6529       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6530       if( pBt->autoVacuum ){
6531         do{
6532           pgnoOvfl++;
6533         } while(
6534           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6535         );
6536       }
6537 #endif
6538       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6539 #ifndef SQLITE_OMIT_AUTOVACUUM
6540       /* If the database supports auto-vacuum, and the second or subsequent
6541       ** overflow page is being allocated, add an entry to the pointer-map
6542       ** for that page now.
6543       **
6544       ** If this is the first overflow page, then write a partial entry
6545       ** to the pointer-map. If we write nothing to this pointer-map slot,
6546       ** then the optimistic overflow chain processing in clearCell()
6547       ** may misinterpret the uninitialized values and delete the
6548       ** wrong pages from the database.
6549       */
6550       if( pBt->autoVacuum && rc==SQLITE_OK ){
6551         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6552         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6553         if( rc ){
6554           releasePage(pOvfl);
6555         }
6556       }
6557 #endif
6558       if( rc ){
6559         releasePage(pToRelease);
6560         return rc;
6561       }
6562 
6563       /* If pToRelease is not zero than pPrior points into the data area
6564       ** of pToRelease.  Make sure pToRelease is still writeable. */
6565       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6566 
6567       /* If pPrior is part of the data area of pPage, then make sure pPage
6568       ** is still writeable */
6569       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6570             || sqlite3PagerIswriteable(pPage->pDbPage) );
6571 
6572       put4byte(pPrior, pgnoOvfl);
6573       releasePage(pToRelease);
6574       pToRelease = pOvfl;
6575       pPrior = pOvfl->aData;
6576       put4byte(pPrior, 0);
6577       pPayload = &pOvfl->aData[4];
6578       spaceLeft = pBt->usableSize - 4;
6579     }
6580   }
6581   releasePage(pToRelease);
6582   return SQLITE_OK;
6583 }
6584 
6585 /*
6586 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6587 ** The cell content is not freed or deallocated.  It is assumed that
6588 ** the cell content has been copied someplace else.  This routine just
6589 ** removes the reference to the cell from pPage.
6590 **
6591 ** "sz" must be the number of bytes in the cell.
6592 */
6593 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6594   u32 pc;         /* Offset to cell content of cell being deleted */
6595   u8 *data;       /* pPage->aData */
6596   u8 *ptr;        /* Used to move bytes around within data[] */
6597   int rc;         /* The return code */
6598   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6599 
6600   if( *pRC ) return;
6601   assert( idx>=0 && idx<pPage->nCell );
6602   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6603   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6604   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6605   assert( pPage->nFree>=0 );
6606   data = pPage->aData;
6607   ptr = &pPage->aCellIdx[2*idx];
6608   pc = get2byte(ptr);
6609   hdr = pPage->hdrOffset;
6610   testcase( pc==get2byte(&data[hdr+5]) );
6611   testcase( pc+sz==pPage->pBt->usableSize );
6612   if( pc+sz > pPage->pBt->usableSize ){
6613     *pRC = SQLITE_CORRUPT_BKPT;
6614     return;
6615   }
6616   rc = freeSpace(pPage, pc, sz);
6617   if( rc ){
6618     *pRC = rc;
6619     return;
6620   }
6621   pPage->nCell--;
6622   if( pPage->nCell==0 ){
6623     memset(&data[hdr+1], 0, 4);
6624     data[hdr+7] = 0;
6625     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6626     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6627                        - pPage->childPtrSize - 8;
6628   }else{
6629     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6630     put2byte(&data[hdr+3], pPage->nCell);
6631     pPage->nFree += 2;
6632   }
6633 }
6634 
6635 /*
6636 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6637 ** content of the cell.
6638 **
6639 ** If the cell content will fit on the page, then put it there.  If it
6640 ** will not fit, then make a copy of the cell content into pTemp if
6641 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6642 ** in pPage->apOvfl[] and make it point to the cell content (either
6643 ** in pTemp or the original pCell) and also record its index.
6644 ** Allocating a new entry in pPage->aCell[] implies that
6645 ** pPage->nOverflow is incremented.
6646 **
6647 ** *pRC must be SQLITE_OK when this routine is called.
6648 */
6649 static void insertCell(
6650   MemPage *pPage,   /* Page into which we are copying */
6651   int i,            /* New cell becomes the i-th cell of the page */
6652   u8 *pCell,        /* Content of the new cell */
6653   int sz,           /* Bytes of content in pCell */
6654   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6655   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6656   int *pRC          /* Read and write return code from here */
6657 ){
6658   int idx = 0;      /* Where to write new cell content in data[] */
6659   int j;            /* Loop counter */
6660   u8 *data;         /* The content of the whole page */
6661   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6662 
6663   assert( *pRC==SQLITE_OK );
6664   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6665   assert( MX_CELL(pPage->pBt)<=10921 );
6666   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6667   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6668   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6669   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6670   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6671   assert( pPage->nFree>=0 );
6672   if( pPage->nOverflow || sz+2>pPage->nFree ){
6673     if( pTemp ){
6674       memcpy(pTemp, pCell, sz);
6675       pCell = pTemp;
6676     }
6677     if( iChild ){
6678       put4byte(pCell, iChild);
6679     }
6680     j = pPage->nOverflow++;
6681     /* Comparison against ArraySize-1 since we hold back one extra slot
6682     ** as a contingency.  In other words, never need more than 3 overflow
6683     ** slots but 4 are allocated, just to be safe. */
6684     assert( j < ArraySize(pPage->apOvfl)-1 );
6685     pPage->apOvfl[j] = pCell;
6686     pPage->aiOvfl[j] = (u16)i;
6687 
6688     /* When multiple overflows occur, they are always sequential and in
6689     ** sorted order.  This invariants arise because multiple overflows can
6690     ** only occur when inserting divider cells into the parent page during
6691     ** balancing, and the dividers are adjacent and sorted.
6692     */
6693     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6694     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6695   }else{
6696     int rc = sqlite3PagerWrite(pPage->pDbPage);
6697     if( rc!=SQLITE_OK ){
6698       *pRC = rc;
6699       return;
6700     }
6701     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6702     data = pPage->aData;
6703     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6704     rc = allocateSpace(pPage, sz, &idx);
6705     if( rc ){ *pRC = rc; return; }
6706     /* The allocateSpace() routine guarantees the following properties
6707     ** if it returns successfully */
6708     assert( idx >= 0 );
6709     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6710     assert( idx+sz <= (int)pPage->pBt->usableSize );
6711     pPage->nFree -= (u16)(2 + sz);
6712     if( iChild ){
6713       /* In a corrupt database where an entry in the cell index section of
6714       ** a btree page has a value of 3 or less, the pCell value might point
6715       ** as many as 4 bytes in front of the start of the aData buffer for
6716       ** the source page.  Make sure this does not cause problems by not
6717       ** reading the first 4 bytes */
6718       memcpy(&data[idx+4], pCell+4, sz-4);
6719       put4byte(&data[idx], iChild);
6720     }else{
6721       memcpy(&data[idx], pCell, sz);
6722     }
6723     pIns = pPage->aCellIdx + i*2;
6724     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6725     put2byte(pIns, idx);
6726     pPage->nCell++;
6727     /* increment the cell count */
6728     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6729     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6730 #ifndef SQLITE_OMIT_AUTOVACUUM
6731     if( pPage->pBt->autoVacuum ){
6732       /* The cell may contain a pointer to an overflow page. If so, write
6733       ** the entry for the overflow page into the pointer map.
6734       */
6735       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6736     }
6737 #endif
6738   }
6739 }
6740 
6741 /*
6742 ** The following parameters determine how many adjacent pages get involved
6743 ** in a balancing operation.  NN is the number of neighbors on either side
6744 ** of the page that participate in the balancing operation.  NB is the
6745 ** total number of pages that participate, including the target page and
6746 ** NN neighbors on either side.
6747 **
6748 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6749 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6750 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6751 ** The value of NN appears to give the best results overall.
6752 **
6753 ** (Later:) The description above makes it seem as if these values are
6754 ** tunable - as if you could change them and recompile and it would all work.
6755 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6756 ** we have never tested any other value.
6757 */
6758 #define NN 1             /* Number of neighbors on either side of pPage */
6759 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6760 
6761 /*
6762 ** A CellArray object contains a cache of pointers and sizes for a
6763 ** consecutive sequence of cells that might be held on multiple pages.
6764 **
6765 ** The cells in this array are the divider cell or cells from the pParent
6766 ** page plus up to three child pages.  There are a total of nCell cells.
6767 **
6768 ** pRef is a pointer to one of the pages that contributes cells.  This is
6769 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6770 ** which should be common to all pages that contribute cells to this array.
6771 **
6772 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6773 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6774 ** to overflow cells.  In other words, some apCel[] pointers might not point
6775 ** to content area of the pages.
6776 **
6777 ** A szCell[] of zero means the size of that cell has not yet been computed.
6778 **
6779 ** The cells come from as many as four different pages:
6780 **
6781 **             -----------
6782 **             | Parent  |
6783 **             -----------
6784 **            /     |     \
6785 **           /      |      \
6786 **  ---------   ---------   ---------
6787 **  |Child-1|   |Child-2|   |Child-3|
6788 **  ---------   ---------   ---------
6789 **
6790 ** The order of cells is in the array is for an index btree is:
6791 **
6792 **       1.  All cells from Child-1 in order
6793 **       2.  The first divider cell from Parent
6794 **       3.  All cells from Child-2 in order
6795 **       4.  The second divider cell from Parent
6796 **       5.  All cells from Child-3 in order
6797 **
6798 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6799 ** content exists only in leaves and there are no divider cells.
6800 **
6801 ** For an index btree, the apEnd[] array holds pointer to the end of page
6802 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6803 ** respectively. The ixNx[] array holds the number of cells contained in
6804 ** each of these 5 stages, and all stages to the left.  Hence:
6805 **
6806 **    ixNx[0] = Number of cells in Child-1.
6807 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6808 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6809 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6810 **    ixNx[4] = Total number of cells.
6811 **
6812 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6813 ** are used and they point to the leaf pages only, and the ixNx value are:
6814 **
6815 **    ixNx[0] = Number of cells in Child-1.
6816 **    ixNx[1] = Number of cells in Child-1 and Child-2.
6817 **    ixNx[2] = Total number of cells.
6818 **
6819 ** Sometimes when deleting, a child page can have zero cells.  In those
6820 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6821 ** entries, shift down.  The end result is that each ixNx[] entry should
6822 ** be larger than the previous
6823 */
6824 typedef struct CellArray CellArray;
6825 struct CellArray {
6826   int nCell;              /* Number of cells in apCell[] */
6827   MemPage *pRef;          /* Reference page */
6828   u8 **apCell;            /* All cells begin balanced */
6829   u16 *szCell;            /* Local size of all cells in apCell[] */
6830   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
6831   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
6832 };
6833 
6834 /*
6835 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6836 ** computed.
6837 */
6838 static void populateCellCache(CellArray *p, int idx, int N){
6839   assert( idx>=0 && idx+N<=p->nCell );
6840   while( N>0 ){
6841     assert( p->apCell[idx]!=0 );
6842     if( p->szCell[idx]==0 ){
6843       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6844     }else{
6845       assert( CORRUPT_DB ||
6846               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6847     }
6848     idx++;
6849     N--;
6850   }
6851 }
6852 
6853 /*
6854 ** Return the size of the Nth element of the cell array
6855 */
6856 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6857   assert( N>=0 && N<p->nCell );
6858   assert( p->szCell[N]==0 );
6859   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6860   return p->szCell[N];
6861 }
6862 static u16 cachedCellSize(CellArray *p, int N){
6863   assert( N>=0 && N<p->nCell );
6864   if( p->szCell[N] ) return p->szCell[N];
6865   return computeCellSize(p, N);
6866 }
6867 
6868 /*
6869 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6870 ** szCell[] array contains the size in bytes of each cell. This function
6871 ** replaces the current contents of page pPg with the contents of the cell
6872 ** array.
6873 **
6874 ** Some of the cells in apCell[] may currently be stored in pPg. This
6875 ** function works around problems caused by this by making a copy of any
6876 ** such cells before overwriting the page data.
6877 **
6878 ** The MemPage.nFree field is invalidated by this function. It is the
6879 ** responsibility of the caller to set it correctly.
6880 */
6881 static int rebuildPage(
6882   CellArray *pCArray,             /* Content to be added to page pPg */
6883   int iFirst,                     /* First cell in pCArray to use */
6884   int nCell,                      /* Final number of cells on page */
6885   MemPage *pPg                    /* The page to be reconstructed */
6886 ){
6887   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6888   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6889   const int usableSize = pPg->pBt->usableSize;
6890   u8 * const pEnd = &aData[usableSize];
6891   int i = iFirst;                 /* Which cell to copy from pCArray*/
6892   u32 j;                          /* Start of cell content area */
6893   int iEnd = i+nCell;             /* Loop terminator */
6894   u8 *pCellptr = pPg->aCellIdx;
6895   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6896   u8 *pData;
6897   int k;                          /* Current slot in pCArray->apEnd[] */
6898   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
6899 
6900   assert( i<iEnd );
6901   j = get2byte(&aData[hdr+5]);
6902   if( j>(u32)usableSize ){ j = 0; }
6903   memcpy(&pTmp[j], &aData[j], usableSize - j);
6904 
6905   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6906   pSrcEnd = pCArray->apEnd[k];
6907 
6908   pData = pEnd;
6909   while( 1/*exit by break*/ ){
6910     u8 *pCell = pCArray->apCell[i];
6911     u16 sz = pCArray->szCell[i];
6912     assert( sz>0 );
6913     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6914       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6915       pCell = &pTmp[pCell - aData];
6916     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6917            && (uptr)(pCell)<(uptr)pSrcEnd
6918     ){
6919       return SQLITE_CORRUPT_BKPT;
6920     }
6921 
6922     pData -= sz;
6923     put2byte(pCellptr, (pData - aData));
6924     pCellptr += 2;
6925     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6926     memcpy(pData, pCell, sz);
6927     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6928     testcase( sz!=pPg->xCellSize(pPg,pCell) );
6929     i++;
6930     if( i>=iEnd ) break;
6931     if( pCArray->ixNx[k]<=i ){
6932       k++;
6933       pSrcEnd = pCArray->apEnd[k];
6934     }
6935   }
6936 
6937   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6938   pPg->nCell = nCell;
6939   pPg->nOverflow = 0;
6940 
6941   put2byte(&aData[hdr+1], 0);
6942   put2byte(&aData[hdr+3], pPg->nCell);
6943   put2byte(&aData[hdr+5], pData - aData);
6944   aData[hdr+7] = 0x00;
6945   return SQLITE_OK;
6946 }
6947 
6948 /*
6949 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6950 ** This function attempts to add the cells stored in the array to page pPg.
6951 ** If it cannot (because the page needs to be defragmented before the cells
6952 ** will fit), non-zero is returned. Otherwise, if the cells are added
6953 ** successfully, zero is returned.
6954 **
6955 ** Argument pCellptr points to the first entry in the cell-pointer array
6956 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6957 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6958 ** cell in the array. It is the responsibility of the caller to ensure
6959 ** that it is safe to overwrite this part of the cell-pointer array.
6960 **
6961 ** When this function is called, *ppData points to the start of the
6962 ** content area on page pPg. If the size of the content area is extended,
6963 ** *ppData is updated to point to the new start of the content area
6964 ** before returning.
6965 **
6966 ** Finally, argument pBegin points to the byte immediately following the
6967 ** end of the space required by this page for the cell-pointer area (for
6968 ** all cells - not just those inserted by the current call). If the content
6969 ** area must be extended to before this point in order to accomodate all
6970 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6971 */
6972 static int pageInsertArray(
6973   MemPage *pPg,                   /* Page to add cells to */
6974   u8 *pBegin,                     /* End of cell-pointer array */
6975   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
6976   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6977   int iFirst,                     /* Index of first cell to add */
6978   int nCell,                      /* Number of cells to add to pPg */
6979   CellArray *pCArray              /* Array of cells */
6980 ){
6981   int i = iFirst;                 /* Loop counter - cell index to insert */
6982   u8 *aData = pPg->aData;         /* Complete page */
6983   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
6984   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
6985   int k;                          /* Current slot in pCArray->apEnd[] */
6986   u8 *pEnd;                       /* Maximum extent of cell data */
6987   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6988   if( iEnd<=iFirst ) return 0;
6989   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6990   pEnd = pCArray->apEnd[k];
6991   while( 1 /*Exit by break*/ ){
6992     int sz, rc;
6993     u8 *pSlot;
6994     sz = cachedCellSize(pCArray, i);
6995     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6996       if( (pData - pBegin)<sz ) return 1;
6997       pData -= sz;
6998       pSlot = pData;
6999     }
7000     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7001     ** database.  But they might for a corrupt database.  Hence use memmove()
7002     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7003     assert( (pSlot+sz)<=pCArray->apCell[i]
7004          || pSlot>=(pCArray->apCell[i]+sz)
7005          || CORRUPT_DB );
7006     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7007      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7008     ){
7009       assert( CORRUPT_DB );
7010       (void)SQLITE_CORRUPT_BKPT;
7011       return 1;
7012     }
7013     memmove(pSlot, pCArray->apCell[i], sz);
7014     put2byte(pCellptr, (pSlot - aData));
7015     pCellptr += 2;
7016     i++;
7017     if( i>=iEnd ) break;
7018     if( pCArray->ixNx[k]<=i ){
7019       k++;
7020       pEnd = pCArray->apEnd[k];
7021     }
7022   }
7023   *ppData = pData;
7024   return 0;
7025 }
7026 
7027 /*
7028 ** The pCArray object contains pointers to b-tree cells and their sizes.
7029 **
7030 ** This function adds the space associated with each cell in the array
7031 ** that is currently stored within the body of pPg to the pPg free-list.
7032 ** The cell-pointers and other fields of the page are not updated.
7033 **
7034 ** This function returns the total number of cells added to the free-list.
7035 */
7036 static int pageFreeArray(
7037   MemPage *pPg,                   /* Page to edit */
7038   int iFirst,                     /* First cell to delete */
7039   int nCell,                      /* Cells to delete */
7040   CellArray *pCArray              /* Array of cells */
7041 ){
7042   u8 * const aData = pPg->aData;
7043   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7044   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7045   int nRet = 0;
7046   int i;
7047   int iEnd = iFirst + nCell;
7048   u8 *pFree = 0;
7049   int szFree = 0;
7050 
7051   for(i=iFirst; i<iEnd; i++){
7052     u8 *pCell = pCArray->apCell[i];
7053     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7054       int sz;
7055       /* No need to use cachedCellSize() here.  The sizes of all cells that
7056       ** are to be freed have already been computing while deciding which
7057       ** cells need freeing */
7058       sz = pCArray->szCell[i];  assert( sz>0 );
7059       if( pFree!=(pCell + sz) ){
7060         if( pFree ){
7061           assert( pFree>aData && (pFree - aData)<65536 );
7062           freeSpace(pPg, (u16)(pFree - aData), szFree);
7063         }
7064         pFree = pCell;
7065         szFree = sz;
7066         if( pFree+sz>pEnd ) return 0;
7067       }else{
7068         pFree = pCell;
7069         szFree += sz;
7070       }
7071       nRet++;
7072     }
7073   }
7074   if( pFree ){
7075     assert( pFree>aData && (pFree - aData)<65536 );
7076     freeSpace(pPg, (u16)(pFree - aData), szFree);
7077   }
7078   return nRet;
7079 }
7080 
7081 /*
7082 ** pCArray contains pointers to and sizes of all cells in the page being
7083 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7084 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7085 ** starting at apCell[iNew].
7086 **
7087 ** This routine makes the necessary adjustments to pPg so that it contains
7088 ** the correct cells after being balanced.
7089 **
7090 ** The pPg->nFree field is invalid when this function returns. It is the
7091 ** responsibility of the caller to set it correctly.
7092 */
7093 static int editPage(
7094   MemPage *pPg,                   /* Edit this page */
7095   int iOld,                       /* Index of first cell currently on page */
7096   int iNew,                       /* Index of new first cell on page */
7097   int nNew,                       /* Final number of cells on page */
7098   CellArray *pCArray              /* Array of cells and sizes */
7099 ){
7100   u8 * const aData = pPg->aData;
7101   const int hdr = pPg->hdrOffset;
7102   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7103   int nCell = pPg->nCell;       /* Cells stored on pPg */
7104   u8 *pData;
7105   u8 *pCellptr;
7106   int i;
7107   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7108   int iNewEnd = iNew + nNew;
7109 
7110 #ifdef SQLITE_DEBUG
7111   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7112   memcpy(pTmp, aData, pPg->pBt->usableSize);
7113 #endif
7114 
7115   /* Remove cells from the start and end of the page */
7116   assert( nCell>=0 );
7117   if( iOld<iNew ){
7118     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7119     if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
7120     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7121     nCell -= nShift;
7122   }
7123   if( iNewEnd < iOldEnd ){
7124     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7125     assert( nCell>=nTail );
7126     nCell -= nTail;
7127   }
7128 
7129   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7130   if( pData<pBegin ) goto editpage_fail;
7131 
7132   /* Add cells to the start of the page */
7133   if( iNew<iOld ){
7134     int nAdd = MIN(nNew,iOld-iNew);
7135     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7136     assert( nAdd>=0 );
7137     pCellptr = pPg->aCellIdx;
7138     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7139     if( pageInsertArray(
7140           pPg, pBegin, &pData, pCellptr,
7141           iNew, nAdd, pCArray
7142     ) ) goto editpage_fail;
7143     nCell += nAdd;
7144   }
7145 
7146   /* Add any overflow cells */
7147   for(i=0; i<pPg->nOverflow; i++){
7148     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7149     if( iCell>=0 && iCell<nNew ){
7150       pCellptr = &pPg->aCellIdx[iCell * 2];
7151       if( nCell>iCell ){
7152         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7153       }
7154       nCell++;
7155       if( pageInsertArray(
7156             pPg, pBegin, &pData, pCellptr,
7157             iCell+iNew, 1, pCArray
7158       ) ) goto editpage_fail;
7159     }
7160   }
7161 
7162   /* Append cells to the end of the page */
7163   assert( nCell>=0 );
7164   pCellptr = &pPg->aCellIdx[nCell*2];
7165   if( pageInsertArray(
7166         pPg, pBegin, &pData, pCellptr,
7167         iNew+nCell, nNew-nCell, pCArray
7168   ) ) goto editpage_fail;
7169 
7170   pPg->nCell = nNew;
7171   pPg->nOverflow = 0;
7172 
7173   put2byte(&aData[hdr+3], pPg->nCell);
7174   put2byte(&aData[hdr+5], pData - aData);
7175 
7176 #ifdef SQLITE_DEBUG
7177   for(i=0; i<nNew && !CORRUPT_DB; i++){
7178     u8 *pCell = pCArray->apCell[i+iNew];
7179     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7180     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7181       pCell = &pTmp[pCell - aData];
7182     }
7183     assert( 0==memcmp(pCell, &aData[iOff],
7184             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7185   }
7186 #endif
7187 
7188   return SQLITE_OK;
7189  editpage_fail:
7190   /* Unable to edit this page. Rebuild it from scratch instead. */
7191   populateCellCache(pCArray, iNew, nNew);
7192   return rebuildPage(pCArray, iNew, nNew, pPg);
7193 }
7194 
7195 
7196 #ifndef SQLITE_OMIT_QUICKBALANCE
7197 /*
7198 ** This version of balance() handles the common special case where
7199 ** a new entry is being inserted on the extreme right-end of the
7200 ** tree, in other words, when the new entry will become the largest
7201 ** entry in the tree.
7202 **
7203 ** Instead of trying to balance the 3 right-most leaf pages, just add
7204 ** a new page to the right-hand side and put the one new entry in
7205 ** that page.  This leaves the right side of the tree somewhat
7206 ** unbalanced.  But odds are that we will be inserting new entries
7207 ** at the end soon afterwards so the nearly empty page will quickly
7208 ** fill up.  On average.
7209 **
7210 ** pPage is the leaf page which is the right-most page in the tree.
7211 ** pParent is its parent.  pPage must have a single overflow entry
7212 ** which is also the right-most entry on the page.
7213 **
7214 ** The pSpace buffer is used to store a temporary copy of the divider
7215 ** cell that will be inserted into pParent. Such a cell consists of a 4
7216 ** byte page number followed by a variable length integer. In other
7217 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7218 ** least 13 bytes in size.
7219 */
7220 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7221   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7222   MemPage *pNew;                       /* Newly allocated page */
7223   int rc;                              /* Return Code */
7224   Pgno pgnoNew;                        /* Page number of pNew */
7225 
7226   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7227   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7228   assert( pPage->nOverflow==1 );
7229 
7230   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7231   assert( pPage->nFree>=0 );
7232   assert( pParent->nFree>=0 );
7233 
7234   /* Allocate a new page. This page will become the right-sibling of
7235   ** pPage. Make the parent page writable, so that the new divider cell
7236   ** may be inserted. If both these operations are successful, proceed.
7237   */
7238   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7239 
7240   if( rc==SQLITE_OK ){
7241 
7242     u8 *pOut = &pSpace[4];
7243     u8 *pCell = pPage->apOvfl[0];
7244     u16 szCell = pPage->xCellSize(pPage, pCell);
7245     u8 *pStop;
7246     CellArray b;
7247 
7248     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7249     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7250     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7251     b.nCell = 1;
7252     b.pRef = pPage;
7253     b.apCell = &pCell;
7254     b.szCell = &szCell;
7255     b.apEnd[0] = pPage->aDataEnd;
7256     b.ixNx[0] = 2;
7257     rc = rebuildPage(&b, 0, 1, pNew);
7258     if( NEVER(rc) ){
7259       releasePage(pNew);
7260       return rc;
7261     }
7262     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7263 
7264     /* If this is an auto-vacuum database, update the pointer map
7265     ** with entries for the new page, and any pointer from the
7266     ** cell on the page to an overflow page. If either of these
7267     ** operations fails, the return code is set, but the contents
7268     ** of the parent page are still manipulated by thh code below.
7269     ** That is Ok, at this point the parent page is guaranteed to
7270     ** be marked as dirty. Returning an error code will cause a
7271     ** rollback, undoing any changes made to the parent page.
7272     */
7273     if( ISAUTOVACUUM ){
7274       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7275       if( szCell>pNew->minLocal ){
7276         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7277       }
7278     }
7279 
7280     /* Create a divider cell to insert into pParent. The divider cell
7281     ** consists of a 4-byte page number (the page number of pPage) and
7282     ** a variable length key value (which must be the same value as the
7283     ** largest key on pPage).
7284     **
7285     ** To find the largest key value on pPage, first find the right-most
7286     ** cell on pPage. The first two fields of this cell are the
7287     ** record-length (a variable length integer at most 32-bits in size)
7288     ** and the key value (a variable length integer, may have any value).
7289     ** The first of the while(...) loops below skips over the record-length
7290     ** field. The second while(...) loop copies the key value from the
7291     ** cell on pPage into the pSpace buffer.
7292     */
7293     pCell = findCell(pPage, pPage->nCell-1);
7294     pStop = &pCell[9];
7295     while( (*(pCell++)&0x80) && pCell<pStop );
7296     pStop = &pCell[9];
7297     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7298 
7299     /* Insert the new divider cell into pParent. */
7300     if( rc==SQLITE_OK ){
7301       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7302                    0, pPage->pgno, &rc);
7303     }
7304 
7305     /* Set the right-child pointer of pParent to point to the new page. */
7306     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7307 
7308     /* Release the reference to the new page. */
7309     releasePage(pNew);
7310   }
7311 
7312   return rc;
7313 }
7314 #endif /* SQLITE_OMIT_QUICKBALANCE */
7315 
7316 #if 0
7317 /*
7318 ** This function does not contribute anything to the operation of SQLite.
7319 ** it is sometimes activated temporarily while debugging code responsible
7320 ** for setting pointer-map entries.
7321 */
7322 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7323   int i, j;
7324   for(i=0; i<nPage; i++){
7325     Pgno n;
7326     u8 e;
7327     MemPage *pPage = apPage[i];
7328     BtShared *pBt = pPage->pBt;
7329     assert( pPage->isInit );
7330 
7331     for(j=0; j<pPage->nCell; j++){
7332       CellInfo info;
7333       u8 *z;
7334 
7335       z = findCell(pPage, j);
7336       pPage->xParseCell(pPage, z, &info);
7337       if( info.nLocal<info.nPayload ){
7338         Pgno ovfl = get4byte(&z[info.nSize-4]);
7339         ptrmapGet(pBt, ovfl, &e, &n);
7340         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7341       }
7342       if( !pPage->leaf ){
7343         Pgno child = get4byte(z);
7344         ptrmapGet(pBt, child, &e, &n);
7345         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7346       }
7347     }
7348     if( !pPage->leaf ){
7349       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7350       ptrmapGet(pBt, child, &e, &n);
7351       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7352     }
7353   }
7354   return 1;
7355 }
7356 #endif
7357 
7358 /*
7359 ** This function is used to copy the contents of the b-tree node stored
7360 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7361 ** the pointer-map entries for each child page are updated so that the
7362 ** parent page stored in the pointer map is page pTo. If pFrom contained
7363 ** any cells with overflow page pointers, then the corresponding pointer
7364 ** map entries are also updated so that the parent page is page pTo.
7365 **
7366 ** If pFrom is currently carrying any overflow cells (entries in the
7367 ** MemPage.apOvfl[] array), they are not copied to pTo.
7368 **
7369 ** Before returning, page pTo is reinitialized using btreeInitPage().
7370 **
7371 ** The performance of this function is not critical. It is only used by
7372 ** the balance_shallower() and balance_deeper() procedures, neither of
7373 ** which are called often under normal circumstances.
7374 */
7375 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7376   if( (*pRC)==SQLITE_OK ){
7377     BtShared * const pBt = pFrom->pBt;
7378     u8 * const aFrom = pFrom->aData;
7379     u8 * const aTo = pTo->aData;
7380     int const iFromHdr = pFrom->hdrOffset;
7381     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7382     int rc;
7383     int iData;
7384 
7385 
7386     assert( pFrom->isInit );
7387     assert( pFrom->nFree>=iToHdr );
7388     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7389 
7390     /* Copy the b-tree node content from page pFrom to page pTo. */
7391     iData = get2byte(&aFrom[iFromHdr+5]);
7392     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7393     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7394 
7395     /* Reinitialize page pTo so that the contents of the MemPage structure
7396     ** match the new data. The initialization of pTo can actually fail under
7397     ** fairly obscure circumstances, even though it is a copy of initialized
7398     ** page pFrom.
7399     */
7400     pTo->isInit = 0;
7401     rc = btreeInitPage(pTo);
7402     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7403     if( rc!=SQLITE_OK ){
7404       *pRC = rc;
7405       return;
7406     }
7407 
7408     /* If this is an auto-vacuum database, update the pointer-map entries
7409     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7410     */
7411     if( ISAUTOVACUUM ){
7412       *pRC = setChildPtrmaps(pTo);
7413     }
7414   }
7415 }
7416 
7417 /*
7418 ** This routine redistributes cells on the iParentIdx'th child of pParent
7419 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7420 ** same amount of free space. Usually a single sibling on either side of the
7421 ** page are used in the balancing, though both siblings might come from one
7422 ** side if the page is the first or last child of its parent. If the page
7423 ** has fewer than 2 siblings (something which can only happen if the page
7424 ** is a root page or a child of a root page) then all available siblings
7425 ** participate in the balancing.
7426 **
7427 ** The number of siblings of the page might be increased or decreased by
7428 ** one or two in an effort to keep pages nearly full but not over full.
7429 **
7430 ** Note that when this routine is called, some of the cells on the page
7431 ** might not actually be stored in MemPage.aData[]. This can happen
7432 ** if the page is overfull. This routine ensures that all cells allocated
7433 ** to the page and its siblings fit into MemPage.aData[] before returning.
7434 **
7435 ** In the course of balancing the page and its siblings, cells may be
7436 ** inserted into or removed from the parent page (pParent). Doing so
7437 ** may cause the parent page to become overfull or underfull. If this
7438 ** happens, it is the responsibility of the caller to invoke the correct
7439 ** balancing routine to fix this problem (see the balance() routine).
7440 **
7441 ** If this routine fails for any reason, it might leave the database
7442 ** in a corrupted state. So if this routine fails, the database should
7443 ** be rolled back.
7444 **
7445 ** The third argument to this function, aOvflSpace, is a pointer to a
7446 ** buffer big enough to hold one page. If while inserting cells into the parent
7447 ** page (pParent) the parent page becomes overfull, this buffer is
7448 ** used to store the parent's overflow cells. Because this function inserts
7449 ** a maximum of four divider cells into the parent page, and the maximum
7450 ** size of a cell stored within an internal node is always less than 1/4
7451 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7452 ** enough for all overflow cells.
7453 **
7454 ** If aOvflSpace is set to a null pointer, this function returns
7455 ** SQLITE_NOMEM.
7456 */
7457 static int balance_nonroot(
7458   MemPage *pParent,               /* Parent page of siblings being balanced */
7459   int iParentIdx,                 /* Index of "the page" in pParent */
7460   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7461   int isRoot,                     /* True if pParent is a root-page */
7462   int bBulk                       /* True if this call is part of a bulk load */
7463 ){
7464   BtShared *pBt;               /* The whole database */
7465   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7466   int nNew = 0;                /* Number of pages in apNew[] */
7467   int nOld;                    /* Number of pages in apOld[] */
7468   int i, j, k;                 /* Loop counters */
7469   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7470   int rc = SQLITE_OK;          /* The return code */
7471   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7472   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7473   int usableSpace;             /* Bytes in pPage beyond the header */
7474   int pageFlags;               /* Value of pPage->aData[0] */
7475   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7476   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7477   int szScratch;               /* Size of scratch memory requested */
7478   MemPage *apOld[NB];          /* pPage and up to two siblings */
7479   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7480   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7481   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7482   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7483   int cntOld[NB+2];            /* Old index in b.apCell[] */
7484   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7485   u8 *aSpace1;                 /* Space for copies of dividers cells */
7486   Pgno pgno;                   /* Temp var to store a page number in */
7487   u8 abDone[NB+2];             /* True after i'th new page is populated */
7488   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7489   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7490   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7491   CellArray b;                  /* Parsed information on cells being balanced */
7492 
7493   memset(abDone, 0, sizeof(abDone));
7494   b.nCell = 0;
7495   b.apCell = 0;
7496   pBt = pParent->pBt;
7497   assert( sqlite3_mutex_held(pBt->mutex) );
7498   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7499 
7500   /* At this point pParent may have at most one overflow cell. And if
7501   ** this overflow cell is present, it must be the cell with
7502   ** index iParentIdx. This scenario comes about when this function
7503   ** is called (indirectly) from sqlite3BtreeDelete().
7504   */
7505   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7506   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7507 
7508   if( !aOvflSpace ){
7509     return SQLITE_NOMEM_BKPT;
7510   }
7511   assert( pParent->nFree>=0 );
7512 
7513   /* Find the sibling pages to balance. Also locate the cells in pParent
7514   ** that divide the siblings. An attempt is made to find NN siblings on
7515   ** either side of pPage. More siblings are taken from one side, however,
7516   ** if there are fewer than NN siblings on the other side. If pParent
7517   ** has NB or fewer children then all children of pParent are taken.
7518   **
7519   ** This loop also drops the divider cells from the parent page. This
7520   ** way, the remainder of the function does not have to deal with any
7521   ** overflow cells in the parent page, since if any existed they will
7522   ** have already been removed.
7523   */
7524   i = pParent->nOverflow + pParent->nCell;
7525   if( i<2 ){
7526     nxDiv = 0;
7527   }else{
7528     assert( bBulk==0 || bBulk==1 );
7529     if( iParentIdx==0 ){
7530       nxDiv = 0;
7531     }else if( iParentIdx==i ){
7532       nxDiv = i-2+bBulk;
7533     }else{
7534       nxDiv = iParentIdx-1;
7535     }
7536     i = 2-bBulk;
7537   }
7538   nOld = i+1;
7539   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7540     pRight = &pParent->aData[pParent->hdrOffset+8];
7541   }else{
7542     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7543   }
7544   pgno = get4byte(pRight);
7545   while( 1 ){
7546     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7547     if( rc ){
7548       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7549       goto balance_cleanup;
7550     }
7551     if( apOld[i]->nFree<0 ){
7552       rc = btreeComputeFreeSpace(apOld[i]);
7553       if( rc ){
7554         memset(apOld, 0, (i)*sizeof(MemPage*));
7555         goto balance_cleanup;
7556       }
7557     }
7558     if( (i--)==0 ) break;
7559 
7560     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7561       apDiv[i] = pParent->apOvfl[0];
7562       pgno = get4byte(apDiv[i]);
7563       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7564       pParent->nOverflow = 0;
7565     }else{
7566       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7567       pgno = get4byte(apDiv[i]);
7568       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7569 
7570       /* Drop the cell from the parent page. apDiv[i] still points to
7571       ** the cell within the parent, even though it has been dropped.
7572       ** This is safe because dropping a cell only overwrites the first
7573       ** four bytes of it, and this function does not need the first
7574       ** four bytes of the divider cell. So the pointer is safe to use
7575       ** later on.
7576       **
7577       ** But not if we are in secure-delete mode. In secure-delete mode,
7578       ** the dropCell() routine will overwrite the entire cell with zeroes.
7579       ** In this case, temporarily copy the cell into the aOvflSpace[]
7580       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7581       ** is allocated.  */
7582       if( pBt->btsFlags & BTS_FAST_SECURE ){
7583         int iOff;
7584 
7585         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7586         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7587           rc = SQLITE_CORRUPT_BKPT;
7588           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7589           goto balance_cleanup;
7590         }else{
7591           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7592           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7593         }
7594       }
7595       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7596     }
7597   }
7598 
7599   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7600   ** alignment */
7601   nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7602   nMaxCells = (nMaxCells + 3)&~3;
7603 
7604   /*
7605   ** Allocate space for memory structures
7606   */
7607   szScratch =
7608        nMaxCells*sizeof(u8*)                       /* b.apCell */
7609      + nMaxCells*sizeof(u16)                       /* b.szCell */
7610      + pBt->pageSize;                              /* aSpace1 */
7611 
7612   assert( szScratch<=7*(int)pBt->pageSize );
7613   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7614   if( b.apCell==0 ){
7615     rc = SQLITE_NOMEM_BKPT;
7616     goto balance_cleanup;
7617   }
7618   b.szCell = (u16*)&b.apCell[nMaxCells];
7619   aSpace1 = (u8*)&b.szCell[nMaxCells];
7620   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7621 
7622   /*
7623   ** Load pointers to all cells on sibling pages and the divider cells
7624   ** into the local b.apCell[] array.  Make copies of the divider cells
7625   ** into space obtained from aSpace1[]. The divider cells have already
7626   ** been removed from pParent.
7627   **
7628   ** If the siblings are on leaf pages, then the child pointers of the
7629   ** divider cells are stripped from the cells before they are copied
7630   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7631   ** child pointers.  If siblings are not leaves, then all cell in
7632   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7633   ** are alike.
7634   **
7635   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7636   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7637   */
7638   b.pRef = apOld[0];
7639   leafCorrection = b.pRef->leaf*4;
7640   leafData = b.pRef->intKeyLeaf;
7641   for(i=0; i<nOld; i++){
7642     MemPage *pOld = apOld[i];
7643     int limit = pOld->nCell;
7644     u8 *aData = pOld->aData;
7645     u16 maskPage = pOld->maskPage;
7646     u8 *piCell = aData + pOld->cellOffset;
7647     u8 *piEnd;
7648     VVA_ONLY( int nCellAtStart = b.nCell; )
7649 
7650     /* Verify that all sibling pages are of the same "type" (table-leaf,
7651     ** table-interior, index-leaf, or index-interior).
7652     */
7653     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7654       rc = SQLITE_CORRUPT_BKPT;
7655       goto balance_cleanup;
7656     }
7657 
7658     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7659     ** contains overflow cells, include them in the b.apCell[] array
7660     ** in the correct spot.
7661     **
7662     ** Note that when there are multiple overflow cells, it is always the
7663     ** case that they are sequential and adjacent.  This invariant arises
7664     ** because multiple overflows can only occurs when inserting divider
7665     ** cells into a parent on a prior balance, and divider cells are always
7666     ** adjacent and are inserted in order.  There is an assert() tagged
7667     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7668     ** invariant.
7669     **
7670     ** This must be done in advance.  Once the balance starts, the cell
7671     ** offset section of the btree page will be overwritten and we will no
7672     ** long be able to find the cells if a pointer to each cell is not saved
7673     ** first.
7674     */
7675     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7676     if( pOld->nOverflow>0 ){
7677       if( limit<pOld->aiOvfl[0] ){
7678         rc = SQLITE_CORRUPT_BKPT;
7679         goto balance_cleanup;
7680       }
7681       limit = pOld->aiOvfl[0];
7682       for(j=0; j<limit; j++){
7683         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7684         piCell += 2;
7685         b.nCell++;
7686       }
7687       for(k=0; k<pOld->nOverflow; k++){
7688         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7689         b.apCell[b.nCell] = pOld->apOvfl[k];
7690         b.nCell++;
7691       }
7692     }
7693     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7694     while( piCell<piEnd ){
7695       assert( b.nCell<nMaxCells );
7696       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7697       piCell += 2;
7698       b.nCell++;
7699     }
7700     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7701 
7702     cntOld[i] = b.nCell;
7703     if( i<nOld-1 && !leafData){
7704       u16 sz = (u16)szNew[i];
7705       u8 *pTemp;
7706       assert( b.nCell<nMaxCells );
7707       b.szCell[b.nCell] = sz;
7708       pTemp = &aSpace1[iSpace1];
7709       iSpace1 += sz;
7710       assert( sz<=pBt->maxLocal+23 );
7711       assert( iSpace1 <= (int)pBt->pageSize );
7712       memcpy(pTemp, apDiv[i], sz);
7713       b.apCell[b.nCell] = pTemp+leafCorrection;
7714       assert( leafCorrection==0 || leafCorrection==4 );
7715       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7716       if( !pOld->leaf ){
7717         assert( leafCorrection==0 );
7718         assert( pOld->hdrOffset==0 );
7719         /* The right pointer of the child page pOld becomes the left
7720         ** pointer of the divider cell */
7721         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7722       }else{
7723         assert( leafCorrection==4 );
7724         while( b.szCell[b.nCell]<4 ){
7725           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7726           ** does exist, pad it with 0x00 bytes. */
7727           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7728           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7729           aSpace1[iSpace1++] = 0x00;
7730           b.szCell[b.nCell]++;
7731         }
7732       }
7733       b.nCell++;
7734     }
7735   }
7736 
7737   /*
7738   ** Figure out the number of pages needed to hold all b.nCell cells.
7739   ** Store this number in "k".  Also compute szNew[] which is the total
7740   ** size of all cells on the i-th page and cntNew[] which is the index
7741   ** in b.apCell[] of the cell that divides page i from page i+1.
7742   ** cntNew[k] should equal b.nCell.
7743   **
7744   ** Values computed by this block:
7745   **
7746   **           k: The total number of sibling pages
7747   **    szNew[i]: Spaced used on the i-th sibling page.
7748   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7749   **              the right of the i-th sibling page.
7750   ** usableSpace: Number of bytes of space available on each sibling.
7751   **
7752   */
7753   usableSpace = pBt->usableSize - 12 + leafCorrection;
7754   for(i=k=0; i<nOld; i++, k++){
7755     MemPage *p = apOld[i];
7756     b.apEnd[k] = p->aDataEnd;
7757     b.ixNx[k] = cntOld[i];
7758     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7759       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7760     }
7761     if( !leafData ){
7762       k++;
7763       b.apEnd[k] = pParent->aDataEnd;
7764       b.ixNx[k] = cntOld[i]+1;
7765     }
7766     assert( p->nFree>=0 );
7767     szNew[i] = usableSpace - p->nFree;
7768     for(j=0; j<p->nOverflow; j++){
7769       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7770     }
7771     cntNew[i] = cntOld[i];
7772   }
7773   k = nOld;
7774   for(i=0; i<k; i++){
7775     int sz;
7776     while( szNew[i]>usableSpace ){
7777       if( i+1>=k ){
7778         k = i+2;
7779         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7780         szNew[k-1] = 0;
7781         cntNew[k-1] = b.nCell;
7782       }
7783       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7784       szNew[i] -= sz;
7785       if( !leafData ){
7786         if( cntNew[i]<b.nCell ){
7787           sz = 2 + cachedCellSize(&b, cntNew[i]);
7788         }else{
7789           sz = 0;
7790         }
7791       }
7792       szNew[i+1] += sz;
7793       cntNew[i]--;
7794     }
7795     while( cntNew[i]<b.nCell ){
7796       sz = 2 + cachedCellSize(&b, cntNew[i]);
7797       if( szNew[i]+sz>usableSpace ) break;
7798       szNew[i] += sz;
7799       cntNew[i]++;
7800       if( !leafData ){
7801         if( cntNew[i]<b.nCell ){
7802           sz = 2 + cachedCellSize(&b, cntNew[i]);
7803         }else{
7804           sz = 0;
7805         }
7806       }
7807       szNew[i+1] -= sz;
7808     }
7809     if( cntNew[i]>=b.nCell ){
7810       k = i+1;
7811     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7812       rc = SQLITE_CORRUPT_BKPT;
7813       goto balance_cleanup;
7814     }
7815   }
7816 
7817   /*
7818   ** The packing computed by the previous block is biased toward the siblings
7819   ** on the left side (siblings with smaller keys). The left siblings are
7820   ** always nearly full, while the right-most sibling might be nearly empty.
7821   ** The next block of code attempts to adjust the packing of siblings to
7822   ** get a better balance.
7823   **
7824   ** This adjustment is more than an optimization.  The packing above might
7825   ** be so out of balance as to be illegal.  For example, the right-most
7826   ** sibling might be completely empty.  This adjustment is not optional.
7827   */
7828   for(i=k-1; i>0; i--){
7829     int szRight = szNew[i];  /* Size of sibling on the right */
7830     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7831     int r;              /* Index of right-most cell in left sibling */
7832     int d;              /* Index of first cell to the left of right sibling */
7833 
7834     r = cntNew[i-1] - 1;
7835     d = r + 1 - leafData;
7836     (void)cachedCellSize(&b, d);
7837     do{
7838       assert( d<nMaxCells );
7839       assert( r<nMaxCells );
7840       (void)cachedCellSize(&b, r);
7841       if( szRight!=0
7842        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7843         break;
7844       }
7845       szRight += b.szCell[d] + 2;
7846       szLeft -= b.szCell[r] + 2;
7847       cntNew[i-1] = r;
7848       r--;
7849       d--;
7850     }while( r>=0 );
7851     szNew[i] = szRight;
7852     szNew[i-1] = szLeft;
7853     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7854       rc = SQLITE_CORRUPT_BKPT;
7855       goto balance_cleanup;
7856     }
7857   }
7858 
7859   /* Sanity check:  For a non-corrupt database file one of the follwing
7860   ** must be true:
7861   **    (1) We found one or more cells (cntNew[0])>0), or
7862   **    (2) pPage is a virtual root page.  A virtual root page is when
7863   **        the real root page is page 1 and we are the only child of
7864   **        that page.
7865   */
7866   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7867   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7868     apOld[0]->pgno, apOld[0]->nCell,
7869     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7870     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7871   ));
7872 
7873   /*
7874   ** Allocate k new pages.  Reuse old pages where possible.
7875   */
7876   pageFlags = apOld[0]->aData[0];
7877   for(i=0; i<k; i++){
7878     MemPage *pNew;
7879     if( i<nOld ){
7880       pNew = apNew[i] = apOld[i];
7881       apOld[i] = 0;
7882       rc = sqlite3PagerWrite(pNew->pDbPage);
7883       nNew++;
7884       if( rc ) goto balance_cleanup;
7885     }else{
7886       assert( i>0 );
7887       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7888       if( rc ) goto balance_cleanup;
7889       zeroPage(pNew, pageFlags);
7890       apNew[i] = pNew;
7891       nNew++;
7892       cntOld[i] = b.nCell;
7893 
7894       /* Set the pointer-map entry for the new sibling page. */
7895       if( ISAUTOVACUUM ){
7896         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7897         if( rc!=SQLITE_OK ){
7898           goto balance_cleanup;
7899         }
7900       }
7901     }
7902   }
7903 
7904   /*
7905   ** Reassign page numbers so that the new pages are in ascending order.
7906   ** This helps to keep entries in the disk file in order so that a scan
7907   ** of the table is closer to a linear scan through the file. That in turn
7908   ** helps the operating system to deliver pages from the disk more rapidly.
7909   **
7910   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7911   ** than (NB+2) (a small constant), that should not be a problem.
7912   **
7913   ** When NB==3, this one optimization makes the database about 25% faster
7914   ** for large insertions and deletions.
7915   */
7916   for(i=0; i<nNew; i++){
7917     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7918     aPgFlags[i] = apNew[i]->pDbPage->flags;
7919     for(j=0; j<i; j++){
7920       if( aPgno[j]==aPgno[i] ){
7921         /* This branch is taken if the set of sibling pages somehow contains
7922         ** duplicate entries. This can happen if the database is corrupt.
7923         ** It would be simpler to detect this as part of the loop below, but
7924         ** we do the detection here in order to avoid populating the pager
7925         ** cache with two separate objects associated with the same
7926         ** page number.  */
7927         assert( CORRUPT_DB );
7928         rc = SQLITE_CORRUPT_BKPT;
7929         goto balance_cleanup;
7930       }
7931     }
7932   }
7933   for(i=0; i<nNew; i++){
7934     int iBest = 0;                /* aPgno[] index of page number to use */
7935     for(j=1; j<nNew; j++){
7936       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7937     }
7938     pgno = aPgOrder[iBest];
7939     aPgOrder[iBest] = 0xffffffff;
7940     if( iBest!=i ){
7941       if( iBest>i ){
7942         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7943       }
7944       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7945       apNew[i]->pgno = pgno;
7946     }
7947   }
7948 
7949   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7950          "%d(%d nc=%d) %d(%d nc=%d)\n",
7951     apNew[0]->pgno, szNew[0], cntNew[0],
7952     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7953     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7954     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7955     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7956     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7957     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7958     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7959     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7960   ));
7961 
7962   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7963   assert( nNew>=1 && nNew<=ArraySize(apNew) );
7964   assert( apNew[nNew-1]!=0 );
7965   put4byte(pRight, apNew[nNew-1]->pgno);
7966 
7967   /* If the sibling pages are not leaves, ensure that the right-child pointer
7968   ** of the right-most new sibling page is set to the value that was
7969   ** originally in the same field of the right-most old sibling page. */
7970   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7971     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7972     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7973   }
7974 
7975   /* Make any required updates to pointer map entries associated with
7976   ** cells stored on sibling pages following the balance operation. Pointer
7977   ** map entries associated with divider cells are set by the insertCell()
7978   ** routine. The associated pointer map entries are:
7979   **
7980   **   a) if the cell contains a reference to an overflow chain, the
7981   **      entry associated with the first page in the overflow chain, and
7982   **
7983   **   b) if the sibling pages are not leaves, the child page associated
7984   **      with the cell.
7985   **
7986   ** If the sibling pages are not leaves, then the pointer map entry
7987   ** associated with the right-child of each sibling may also need to be
7988   ** updated. This happens below, after the sibling pages have been
7989   ** populated, not here.
7990   */
7991   if( ISAUTOVACUUM ){
7992     MemPage *pOld;
7993     MemPage *pNew = pOld = apNew[0];
7994     int cntOldNext = pNew->nCell + pNew->nOverflow;
7995     int iNew = 0;
7996     int iOld = 0;
7997 
7998     for(i=0; i<b.nCell; i++){
7999       u8 *pCell = b.apCell[i];
8000       while( i==cntOldNext ){
8001         iOld++;
8002         assert( iOld<nNew || iOld<nOld );
8003         assert( iOld>=0 && iOld<NB );
8004         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8005         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8006       }
8007       if( i==cntNew[iNew] ){
8008         pNew = apNew[++iNew];
8009         if( !leafData ) continue;
8010       }
8011 
8012       /* Cell pCell is destined for new sibling page pNew. Originally, it
8013       ** was either part of sibling page iOld (possibly an overflow cell),
8014       ** or else the divider cell to the left of sibling page iOld. So,
8015       ** if sibling page iOld had the same page number as pNew, and if
8016       ** pCell really was a part of sibling page iOld (not a divider or
8017       ** overflow cell), we can skip updating the pointer map entries.  */
8018       if( iOld>=nNew
8019        || pNew->pgno!=aPgno[iOld]
8020        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8021       ){
8022         if( !leafCorrection ){
8023           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8024         }
8025         if( cachedCellSize(&b,i)>pNew->minLocal ){
8026           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8027         }
8028         if( rc ) goto balance_cleanup;
8029       }
8030     }
8031   }
8032 
8033   /* Insert new divider cells into pParent. */
8034   for(i=0; i<nNew-1; i++){
8035     u8 *pCell;
8036     u8 *pTemp;
8037     int sz;
8038     MemPage *pNew = apNew[i];
8039     j = cntNew[i];
8040 
8041     assert( j<nMaxCells );
8042     assert( b.apCell[j]!=0 );
8043     pCell = b.apCell[j];
8044     sz = b.szCell[j] + leafCorrection;
8045     pTemp = &aOvflSpace[iOvflSpace];
8046     if( !pNew->leaf ){
8047       memcpy(&pNew->aData[8], pCell, 4);
8048     }else if( leafData ){
8049       /* If the tree is a leaf-data tree, and the siblings are leaves,
8050       ** then there is no divider cell in b.apCell[]. Instead, the divider
8051       ** cell consists of the integer key for the right-most cell of
8052       ** the sibling-page assembled above only.
8053       */
8054       CellInfo info;
8055       j--;
8056       pNew->xParseCell(pNew, b.apCell[j], &info);
8057       pCell = pTemp;
8058       sz = 4 + putVarint(&pCell[4], info.nKey);
8059       pTemp = 0;
8060     }else{
8061       pCell -= 4;
8062       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8063       ** previously stored on a leaf node, and its reported size was 4
8064       ** bytes, then it may actually be smaller than this
8065       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8066       ** any cell). But it is important to pass the correct size to
8067       ** insertCell(), so reparse the cell now.
8068       **
8069       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8070       ** and WITHOUT ROWID tables with exactly one column which is the
8071       ** primary key.
8072       */
8073       if( b.szCell[j]==4 ){
8074         assert(leafCorrection==4);
8075         sz = pParent->xCellSize(pParent, pCell);
8076       }
8077     }
8078     iOvflSpace += sz;
8079     assert( sz<=pBt->maxLocal+23 );
8080     assert( iOvflSpace <= (int)pBt->pageSize );
8081     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8082     if( rc!=SQLITE_OK ) goto balance_cleanup;
8083     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8084   }
8085 
8086   /* Now update the actual sibling pages. The order in which they are updated
8087   ** is important, as this code needs to avoid disrupting any page from which
8088   ** cells may still to be read. In practice, this means:
8089   **
8090   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8091   **      then it is not safe to update page apNew[iPg] until after
8092   **      the left-hand sibling apNew[iPg-1] has been updated.
8093   **
8094   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8095   **      then it is not safe to update page apNew[iPg] until after
8096   **      the right-hand sibling apNew[iPg+1] has been updated.
8097   **
8098   ** If neither of the above apply, the page is safe to update.
8099   **
8100   ** The iPg value in the following loop starts at nNew-1 goes down
8101   ** to 0, then back up to nNew-1 again, thus making two passes over
8102   ** the pages.  On the initial downward pass, only condition (1) above
8103   ** needs to be tested because (2) will always be true from the previous
8104   ** step.  On the upward pass, both conditions are always true, so the
8105   ** upwards pass simply processes pages that were missed on the downward
8106   ** pass.
8107   */
8108   for(i=1-nNew; i<nNew; i++){
8109     int iPg = i<0 ? -i : i;
8110     assert( iPg>=0 && iPg<nNew );
8111     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8112     if( i>=0                            /* On the upwards pass, or... */
8113      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8114     ){
8115       int iNew;
8116       int iOld;
8117       int nNewCell;
8118 
8119       /* Verify condition (1):  If cells are moving left, update iPg
8120       ** only after iPg-1 has already been updated. */
8121       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8122 
8123       /* Verify condition (2):  If cells are moving right, update iPg
8124       ** only after iPg+1 has already been updated. */
8125       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8126 
8127       if( iPg==0 ){
8128         iNew = iOld = 0;
8129         nNewCell = cntNew[0];
8130       }else{
8131         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8132         iNew = cntNew[iPg-1] + !leafData;
8133         nNewCell = cntNew[iPg] - iNew;
8134       }
8135 
8136       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8137       if( rc ) goto balance_cleanup;
8138       abDone[iPg]++;
8139       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8140       assert( apNew[iPg]->nOverflow==0 );
8141       assert( apNew[iPg]->nCell==nNewCell );
8142     }
8143   }
8144 
8145   /* All pages have been processed exactly once */
8146   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8147 
8148   assert( nOld>0 );
8149   assert( nNew>0 );
8150 
8151   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8152     /* The root page of the b-tree now contains no cells. The only sibling
8153     ** page is the right-child of the parent. Copy the contents of the
8154     ** child page into the parent, decreasing the overall height of the
8155     ** b-tree structure by one. This is described as the "balance-shallower"
8156     ** sub-algorithm in some documentation.
8157     **
8158     ** If this is an auto-vacuum database, the call to copyNodeContent()
8159     ** sets all pointer-map entries corresponding to database image pages
8160     ** for which the pointer is stored within the content being copied.
8161     **
8162     ** It is critical that the child page be defragmented before being
8163     ** copied into the parent, because if the parent is page 1 then it will
8164     ** by smaller than the child due to the database header, and so all the
8165     ** free space needs to be up front.
8166     */
8167     assert( nNew==1 || CORRUPT_DB );
8168     rc = defragmentPage(apNew[0], -1);
8169     testcase( rc!=SQLITE_OK );
8170     assert( apNew[0]->nFree ==
8171         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8172           - apNew[0]->nCell*2)
8173       || rc!=SQLITE_OK
8174     );
8175     copyNodeContent(apNew[0], pParent, &rc);
8176     freePage(apNew[0], &rc);
8177   }else if( ISAUTOVACUUM && !leafCorrection ){
8178     /* Fix the pointer map entries associated with the right-child of each
8179     ** sibling page. All other pointer map entries have already been taken
8180     ** care of.  */
8181     for(i=0; i<nNew; i++){
8182       u32 key = get4byte(&apNew[i]->aData[8]);
8183       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8184     }
8185   }
8186 
8187   assert( pParent->isInit );
8188   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8189           nOld, nNew, b.nCell));
8190 
8191   /* Free any old pages that were not reused as new pages.
8192   */
8193   for(i=nNew; i<nOld; i++){
8194     freePage(apOld[i], &rc);
8195   }
8196 
8197 #if 0
8198   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8199     /* The ptrmapCheckPages() contains assert() statements that verify that
8200     ** all pointer map pages are set correctly. This is helpful while
8201     ** debugging. This is usually disabled because a corrupt database may
8202     ** cause an assert() statement to fail.  */
8203     ptrmapCheckPages(apNew, nNew);
8204     ptrmapCheckPages(&pParent, 1);
8205   }
8206 #endif
8207 
8208   /*
8209   ** Cleanup before returning.
8210   */
8211 balance_cleanup:
8212   sqlite3StackFree(0, b.apCell);
8213   for(i=0; i<nOld; i++){
8214     releasePage(apOld[i]);
8215   }
8216   for(i=0; i<nNew; i++){
8217     releasePage(apNew[i]);
8218   }
8219 
8220   return rc;
8221 }
8222 
8223 
8224 /*
8225 ** This function is called when the root page of a b-tree structure is
8226 ** overfull (has one or more overflow pages).
8227 **
8228 ** A new child page is allocated and the contents of the current root
8229 ** page, including overflow cells, are copied into the child. The root
8230 ** page is then overwritten to make it an empty page with the right-child
8231 ** pointer pointing to the new page.
8232 **
8233 ** Before returning, all pointer-map entries corresponding to pages
8234 ** that the new child-page now contains pointers to are updated. The
8235 ** entry corresponding to the new right-child pointer of the root
8236 ** page is also updated.
8237 **
8238 ** If successful, *ppChild is set to contain a reference to the child
8239 ** page and SQLITE_OK is returned. In this case the caller is required
8240 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8241 ** an error code is returned and *ppChild is set to 0.
8242 */
8243 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8244   int rc;                        /* Return value from subprocedures */
8245   MemPage *pChild = 0;           /* Pointer to a new child page */
8246   Pgno pgnoChild = 0;            /* Page number of the new child page */
8247   BtShared *pBt = pRoot->pBt;    /* The BTree */
8248 
8249   assert( pRoot->nOverflow>0 );
8250   assert( sqlite3_mutex_held(pBt->mutex) );
8251 
8252   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8253   ** page that will become the new right-child of pPage. Copy the contents
8254   ** of the node stored on pRoot into the new child page.
8255   */
8256   rc = sqlite3PagerWrite(pRoot->pDbPage);
8257   if( rc==SQLITE_OK ){
8258     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8259     copyNodeContent(pRoot, pChild, &rc);
8260     if( ISAUTOVACUUM ){
8261       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8262     }
8263   }
8264   if( rc ){
8265     *ppChild = 0;
8266     releasePage(pChild);
8267     return rc;
8268   }
8269   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8270   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8271   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8272 
8273   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8274 
8275   /* Copy the overflow cells from pRoot to pChild */
8276   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8277          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8278   memcpy(pChild->apOvfl, pRoot->apOvfl,
8279          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8280   pChild->nOverflow = pRoot->nOverflow;
8281 
8282   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8283   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8284   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8285 
8286   *ppChild = pChild;
8287   return SQLITE_OK;
8288 }
8289 
8290 /*
8291 ** The page that pCur currently points to has just been modified in
8292 ** some way. This function figures out if this modification means the
8293 ** tree needs to be balanced, and if so calls the appropriate balancing
8294 ** routine. Balancing routines are:
8295 **
8296 **   balance_quick()
8297 **   balance_deeper()
8298 **   balance_nonroot()
8299 */
8300 static int balance(BtCursor *pCur){
8301   int rc = SQLITE_OK;
8302   const int nMin = pCur->pBt->usableSize * 2 / 3;
8303   u8 aBalanceQuickSpace[13];
8304   u8 *pFree = 0;
8305 
8306   VVA_ONLY( int balance_quick_called = 0 );
8307   VVA_ONLY( int balance_deeper_called = 0 );
8308 
8309   do {
8310     int iPage;
8311     MemPage *pPage = pCur->pPage;
8312 
8313     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8314     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8315       break;
8316     }else if( (iPage = pCur->iPage)==0 ){
8317       if( pPage->nOverflow ){
8318         /* The root page of the b-tree is overfull. In this case call the
8319         ** balance_deeper() function to create a new child for the root-page
8320         ** and copy the current contents of the root-page to it. The
8321         ** next iteration of the do-loop will balance the child page.
8322         */
8323         assert( balance_deeper_called==0 );
8324         VVA_ONLY( balance_deeper_called++ );
8325         rc = balance_deeper(pPage, &pCur->apPage[1]);
8326         if( rc==SQLITE_OK ){
8327           pCur->iPage = 1;
8328           pCur->ix = 0;
8329           pCur->aiIdx[0] = 0;
8330           pCur->apPage[0] = pPage;
8331           pCur->pPage = pCur->apPage[1];
8332           assert( pCur->pPage->nOverflow );
8333         }
8334       }else{
8335         break;
8336       }
8337     }else{
8338       MemPage * const pParent = pCur->apPage[iPage-1];
8339       int const iIdx = pCur->aiIdx[iPage-1];
8340 
8341       rc = sqlite3PagerWrite(pParent->pDbPage);
8342       if( rc==SQLITE_OK && pParent->nFree<0 ){
8343         rc = btreeComputeFreeSpace(pParent);
8344       }
8345       if( rc==SQLITE_OK ){
8346 #ifndef SQLITE_OMIT_QUICKBALANCE
8347         if( pPage->intKeyLeaf
8348          && pPage->nOverflow==1
8349          && pPage->aiOvfl[0]==pPage->nCell
8350          && pParent->pgno!=1
8351          && pParent->nCell==iIdx
8352         ){
8353           /* Call balance_quick() to create a new sibling of pPage on which
8354           ** to store the overflow cell. balance_quick() inserts a new cell
8355           ** into pParent, which may cause pParent overflow. If this
8356           ** happens, the next iteration of the do-loop will balance pParent
8357           ** use either balance_nonroot() or balance_deeper(). Until this
8358           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8359           ** buffer.
8360           **
8361           ** The purpose of the following assert() is to check that only a
8362           ** single call to balance_quick() is made for each call to this
8363           ** function. If this were not verified, a subtle bug involving reuse
8364           ** of the aBalanceQuickSpace[] might sneak in.
8365           */
8366           assert( balance_quick_called==0 );
8367           VVA_ONLY( balance_quick_called++ );
8368           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8369         }else
8370 #endif
8371         {
8372           /* In this case, call balance_nonroot() to redistribute cells
8373           ** between pPage and up to 2 of its sibling pages. This involves
8374           ** modifying the contents of pParent, which may cause pParent to
8375           ** become overfull or underfull. The next iteration of the do-loop
8376           ** will balance the parent page to correct this.
8377           **
8378           ** If the parent page becomes overfull, the overflow cell or cells
8379           ** are stored in the pSpace buffer allocated immediately below.
8380           ** A subsequent iteration of the do-loop will deal with this by
8381           ** calling balance_nonroot() (balance_deeper() may be called first,
8382           ** but it doesn't deal with overflow cells - just moves them to a
8383           ** different page). Once this subsequent call to balance_nonroot()
8384           ** has completed, it is safe to release the pSpace buffer used by
8385           ** the previous call, as the overflow cell data will have been
8386           ** copied either into the body of a database page or into the new
8387           ** pSpace buffer passed to the latter call to balance_nonroot().
8388           */
8389           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8390           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8391                                pCur->hints&BTREE_BULKLOAD);
8392           if( pFree ){
8393             /* If pFree is not NULL, it points to the pSpace buffer used
8394             ** by a previous call to balance_nonroot(). Its contents are
8395             ** now stored either on real database pages or within the
8396             ** new pSpace buffer, so it may be safely freed here. */
8397             sqlite3PageFree(pFree);
8398           }
8399 
8400           /* The pSpace buffer will be freed after the next call to
8401           ** balance_nonroot(), or just before this function returns, whichever
8402           ** comes first. */
8403           pFree = pSpace;
8404         }
8405       }
8406 
8407       pPage->nOverflow = 0;
8408 
8409       /* The next iteration of the do-loop balances the parent page. */
8410       releasePage(pPage);
8411       pCur->iPage--;
8412       assert( pCur->iPage>=0 );
8413       pCur->pPage = pCur->apPage[pCur->iPage];
8414     }
8415   }while( rc==SQLITE_OK );
8416 
8417   if( pFree ){
8418     sqlite3PageFree(pFree);
8419   }
8420   return rc;
8421 }
8422 
8423 /* Overwrite content from pX into pDest.  Only do the write if the
8424 ** content is different from what is already there.
8425 */
8426 static int btreeOverwriteContent(
8427   MemPage *pPage,           /* MemPage on which writing will occur */
8428   u8 *pDest,                /* Pointer to the place to start writing */
8429   const BtreePayload *pX,   /* Source of data to write */
8430   int iOffset,              /* Offset of first byte to write */
8431   int iAmt                  /* Number of bytes to be written */
8432 ){
8433   int nData = pX->nData - iOffset;
8434   if( nData<=0 ){
8435     /* Overwritting with zeros */
8436     int i;
8437     for(i=0; i<iAmt && pDest[i]==0; i++){}
8438     if( i<iAmt ){
8439       int rc = sqlite3PagerWrite(pPage->pDbPage);
8440       if( rc ) return rc;
8441       memset(pDest + i, 0, iAmt - i);
8442     }
8443   }else{
8444     if( nData<iAmt ){
8445       /* Mixed read data and zeros at the end.  Make a recursive call
8446       ** to write the zeros then fall through to write the real data */
8447       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8448                                  iAmt-nData);
8449       if( rc ) return rc;
8450       iAmt = nData;
8451     }
8452     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8453       int rc = sqlite3PagerWrite(pPage->pDbPage);
8454       if( rc ) return rc;
8455       /* In a corrupt database, it is possible for the source and destination
8456       ** buffers to overlap.  This is harmless since the database is already
8457       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8458       ** memmove(). */
8459       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8460     }
8461   }
8462   return SQLITE_OK;
8463 }
8464 
8465 /*
8466 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8467 ** contained in pX.
8468 */
8469 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8470   int iOffset;                        /* Next byte of pX->pData to write */
8471   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8472   int rc;                             /* Return code */
8473   MemPage *pPage = pCur->pPage;       /* Page being written */
8474   BtShared *pBt;                      /* Btree */
8475   Pgno ovflPgno;                      /* Next overflow page to write */
8476   u32 ovflPageSize;                   /* Size to write on overflow page */
8477 
8478   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8479     return SQLITE_CORRUPT_BKPT;
8480   }
8481   /* Overwrite the local portion first */
8482   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8483                              0, pCur->info.nLocal);
8484   if( rc ) return rc;
8485   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8486 
8487   /* Now overwrite the overflow pages */
8488   iOffset = pCur->info.nLocal;
8489   assert( nTotal>=0 );
8490   assert( iOffset>=0 );
8491   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8492   pBt = pPage->pBt;
8493   ovflPageSize = pBt->usableSize - 4;
8494   do{
8495     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8496     if( rc ) return rc;
8497     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8498       rc = SQLITE_CORRUPT_BKPT;
8499     }else{
8500       if( iOffset+ovflPageSize<(u32)nTotal ){
8501         ovflPgno = get4byte(pPage->aData);
8502       }else{
8503         ovflPageSize = nTotal - iOffset;
8504       }
8505       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8506                                  iOffset, ovflPageSize);
8507     }
8508     sqlite3PagerUnref(pPage->pDbPage);
8509     if( rc ) return rc;
8510     iOffset += ovflPageSize;
8511   }while( iOffset<nTotal );
8512   return SQLITE_OK;
8513 }
8514 
8515 
8516 /*
8517 ** Insert a new record into the BTree.  The content of the new record
8518 ** is described by the pX object.  The pCur cursor is used only to
8519 ** define what table the record should be inserted into, and is left
8520 ** pointing at a random location.
8521 **
8522 ** For a table btree (used for rowid tables), only the pX.nKey value of
8523 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8524 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8525 ** hold the content of the row.
8526 **
8527 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8528 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8529 ** pX.pData,nData,nZero fields must be zero.
8530 **
8531 ** If the seekResult parameter is non-zero, then a successful call to
8532 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8533 ** been performed.  In other words, if seekResult!=0 then the cursor
8534 ** is currently pointing to a cell that will be adjacent to the cell
8535 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8536 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8537 ** that is larger than (pKey,nKey).
8538 **
8539 ** If seekResult==0, that means pCur is pointing at some unknown location.
8540 ** In that case, this routine must seek the cursor to the correct insertion
8541 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8542 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8543 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8544 ** to decode the key.
8545 */
8546 int sqlite3BtreeInsert(
8547   BtCursor *pCur,                /* Insert data into the table of this cursor */
8548   const BtreePayload *pX,        /* Content of the row to be inserted */
8549   int flags,                     /* True if this is likely an append */
8550   int seekResult                 /* Result of prior MovetoUnpacked() call */
8551 ){
8552   int rc;
8553   int loc = seekResult;          /* -1: before desired location  +1: after */
8554   int szNew = 0;
8555   int idx;
8556   MemPage *pPage;
8557   Btree *p = pCur->pBtree;
8558   BtShared *pBt = p->pBt;
8559   unsigned char *oldCell;
8560   unsigned char *newCell = 0;
8561 
8562   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8563 
8564   if( pCur->eState==CURSOR_FAULT ){
8565     assert( pCur->skipNext!=SQLITE_OK );
8566     return pCur->skipNext;
8567   }
8568 
8569   assert( cursorOwnsBtShared(pCur) );
8570   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8571               && pBt->inTransaction==TRANS_WRITE
8572               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8573   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8574 
8575   /* Assert that the caller has been consistent. If this cursor was opened
8576   ** expecting an index b-tree, then the caller should be inserting blob
8577   ** keys with no associated data. If the cursor was opened expecting an
8578   ** intkey table, the caller should be inserting integer keys with a
8579   ** blob of associated data.  */
8580   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8581 
8582   /* Save the positions of any other cursors open on this table.
8583   **
8584   ** In some cases, the call to btreeMoveto() below is a no-op. For
8585   ** example, when inserting data into a table with auto-generated integer
8586   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8587   ** integer key to use. It then calls this function to actually insert the
8588   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8589   ** that the cursor is already where it needs to be and returns without
8590   ** doing any work. To avoid thwarting these optimizations, it is important
8591   ** not to clear the cursor here.
8592   */
8593   if( pCur->curFlags & BTCF_Multiple ){
8594     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8595     if( rc ) return rc;
8596   }
8597 
8598   if( pCur->pKeyInfo==0 ){
8599     assert( pX->pKey==0 );
8600     /* If this is an insert into a table b-tree, invalidate any incrblob
8601     ** cursors open on the row being replaced */
8602     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8603 
8604     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8605     ** to a row with the same key as the new entry being inserted.
8606     */
8607 #ifdef SQLITE_DEBUG
8608     if( flags & BTREE_SAVEPOSITION ){
8609       assert( pCur->curFlags & BTCF_ValidNKey );
8610       assert( pX->nKey==pCur->info.nKey );
8611       assert( pCur->info.nSize!=0 );
8612       assert( loc==0 );
8613     }
8614 #endif
8615 
8616     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8617     ** that the cursor is not pointing to a row to be overwritten.
8618     ** So do a complete check.
8619     */
8620     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8621       /* The cursor is pointing to the entry that is to be
8622       ** overwritten */
8623       assert( pX->nData>=0 && pX->nZero>=0 );
8624       if( pCur->info.nSize!=0
8625        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8626       ){
8627         /* New entry is the same size as the old.  Do an overwrite */
8628         return btreeOverwriteCell(pCur, pX);
8629       }
8630       assert( loc==0 );
8631     }else if( loc==0 ){
8632       /* The cursor is *not* pointing to the cell to be overwritten, nor
8633       ** to an adjacent cell.  Move the cursor so that it is pointing either
8634       ** to the cell to be overwritten or an adjacent cell.
8635       */
8636       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8637       if( rc ) return rc;
8638     }
8639   }else{
8640     /* This is an index or a WITHOUT ROWID table */
8641 
8642     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8643     ** to a row with the same key as the new entry being inserted.
8644     */
8645     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8646 
8647     /* If the cursor is not already pointing either to the cell to be
8648     ** overwritten, or if a new cell is being inserted, if the cursor is
8649     ** not pointing to an immediately adjacent cell, then move the cursor
8650     ** so that it does.
8651     */
8652     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8653       if( pX->nMem ){
8654         UnpackedRecord r;
8655         r.pKeyInfo = pCur->pKeyInfo;
8656         r.aMem = pX->aMem;
8657         r.nField = pX->nMem;
8658         r.default_rc = 0;
8659         r.errCode = 0;
8660         r.r1 = 0;
8661         r.r2 = 0;
8662         r.eqSeen = 0;
8663         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8664       }else{
8665         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8666       }
8667       if( rc ) return rc;
8668     }
8669 
8670     /* If the cursor is currently pointing to an entry to be overwritten
8671     ** and the new content is the same as as the old, then use the
8672     ** overwrite optimization.
8673     */
8674     if( loc==0 ){
8675       getCellInfo(pCur);
8676       if( pCur->info.nKey==pX->nKey ){
8677         BtreePayload x2;
8678         x2.pData = pX->pKey;
8679         x2.nData = pX->nKey;
8680         x2.nZero = 0;
8681         return btreeOverwriteCell(pCur, &x2);
8682       }
8683     }
8684 
8685   }
8686   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8687 
8688   pPage = pCur->pPage;
8689   assert( pPage->intKey || pX->nKey>=0 );
8690   assert( pPage->leaf || !pPage->intKey );
8691   if( pPage->nFree<0 ){
8692     rc = btreeComputeFreeSpace(pPage);
8693     if( rc ) return rc;
8694   }
8695 
8696   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8697           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8698           loc==0 ? "overwrite" : "new entry"));
8699   assert( pPage->isInit );
8700   newCell = pBt->pTmpSpace;
8701   assert( newCell!=0 );
8702   rc = fillInCell(pPage, newCell, pX, &szNew);
8703   if( rc ) goto end_insert;
8704   assert( szNew==pPage->xCellSize(pPage, newCell) );
8705   assert( szNew <= MX_CELL_SIZE(pBt) );
8706   idx = pCur->ix;
8707   if( loc==0 ){
8708     CellInfo info;
8709     assert( idx<pPage->nCell );
8710     rc = sqlite3PagerWrite(pPage->pDbPage);
8711     if( rc ){
8712       goto end_insert;
8713     }
8714     oldCell = findCell(pPage, idx);
8715     if( !pPage->leaf ){
8716       memcpy(newCell, oldCell, 4);
8717     }
8718     rc = clearCell(pPage, oldCell, &info);
8719     testcase( pCur->curFlags & BTCF_ValidOvfl );
8720     invalidateOverflowCache(pCur);
8721     if( info.nSize==szNew && info.nLocal==info.nPayload
8722      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8723     ){
8724       /* Overwrite the old cell with the new if they are the same size.
8725       ** We could also try to do this if the old cell is smaller, then add
8726       ** the leftover space to the free list.  But experiments show that
8727       ** doing that is no faster then skipping this optimization and just
8728       ** calling dropCell() and insertCell().
8729       **
8730       ** This optimization cannot be used on an autovacuum database if the
8731       ** new entry uses overflow pages, as the insertCell() call below is
8732       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8733       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8734       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8735         return SQLITE_CORRUPT_BKPT;
8736       }
8737       if( oldCell+szNew > pPage->aDataEnd ){
8738         return SQLITE_CORRUPT_BKPT;
8739       }
8740       memcpy(oldCell, newCell, szNew);
8741       return SQLITE_OK;
8742     }
8743     dropCell(pPage, idx, info.nSize, &rc);
8744     if( rc ) goto end_insert;
8745   }else if( loc<0 && pPage->nCell>0 ){
8746     assert( pPage->leaf );
8747     idx = ++pCur->ix;
8748     pCur->curFlags &= ~BTCF_ValidNKey;
8749   }else{
8750     assert( pPage->leaf );
8751   }
8752   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8753   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8754   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8755 
8756   /* If no error has occurred and pPage has an overflow cell, call balance()
8757   ** to redistribute the cells within the tree. Since balance() may move
8758   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8759   ** variables.
8760   **
8761   ** Previous versions of SQLite called moveToRoot() to move the cursor
8762   ** back to the root page as balance() used to invalidate the contents
8763   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8764   ** set the cursor state to "invalid". This makes common insert operations
8765   ** slightly faster.
8766   **
8767   ** There is a subtle but important optimization here too. When inserting
8768   ** multiple records into an intkey b-tree using a single cursor (as can
8769   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8770   ** is advantageous to leave the cursor pointing to the last entry in
8771   ** the b-tree if possible. If the cursor is left pointing to the last
8772   ** entry in the table, and the next row inserted has an integer key
8773   ** larger than the largest existing key, it is possible to insert the
8774   ** row without seeking the cursor. This can be a big performance boost.
8775   */
8776   pCur->info.nSize = 0;
8777   if( pPage->nOverflow ){
8778     assert( rc==SQLITE_OK );
8779     pCur->curFlags &= ~(BTCF_ValidNKey);
8780     rc = balance(pCur);
8781 
8782     /* Must make sure nOverflow is reset to zero even if the balance()
8783     ** fails. Internal data structure corruption will result otherwise.
8784     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8785     ** from trying to save the current position of the cursor.  */
8786     pCur->pPage->nOverflow = 0;
8787     pCur->eState = CURSOR_INVALID;
8788     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8789       btreeReleaseAllCursorPages(pCur);
8790       if( pCur->pKeyInfo ){
8791         assert( pCur->pKey==0 );
8792         pCur->pKey = sqlite3Malloc( pX->nKey );
8793         if( pCur->pKey==0 ){
8794           rc = SQLITE_NOMEM;
8795         }else{
8796           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8797         }
8798       }
8799       pCur->eState = CURSOR_REQUIRESEEK;
8800       pCur->nKey = pX->nKey;
8801     }
8802   }
8803   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8804 
8805 end_insert:
8806   return rc;
8807 }
8808 
8809 /*
8810 ** Delete the entry that the cursor is pointing to.
8811 **
8812 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8813 ** the cursor is left pointing at an arbitrary location after the delete.
8814 ** But if that bit is set, then the cursor is left in a state such that
8815 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8816 ** as it would have been on if the call to BtreeDelete() had been omitted.
8817 **
8818 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8819 ** associated with a single table entry and its indexes.  Only one of those
8820 ** deletes is considered the "primary" delete.  The primary delete occurs
8821 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8822 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8823 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8824 ** but which might be used by alternative storage engines.
8825 */
8826 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8827   Btree *p = pCur->pBtree;
8828   BtShared *pBt = p->pBt;
8829   int rc;                              /* Return code */
8830   MemPage *pPage;                      /* Page to delete cell from */
8831   unsigned char *pCell;                /* Pointer to cell to delete */
8832   int iCellIdx;                        /* Index of cell to delete */
8833   int iCellDepth;                      /* Depth of node containing pCell */
8834   CellInfo info;                       /* Size of the cell being deleted */
8835   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8836   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8837 
8838   assert( cursorOwnsBtShared(pCur) );
8839   assert( pBt->inTransaction==TRANS_WRITE );
8840   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8841   assert( pCur->curFlags & BTCF_WriteFlag );
8842   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8843   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8844   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8845   if( pCur->eState==CURSOR_REQUIRESEEK ){
8846     rc = btreeRestoreCursorPosition(pCur);
8847     if( rc ) return rc;
8848   }
8849   assert( pCur->eState==CURSOR_VALID );
8850 
8851   iCellDepth = pCur->iPage;
8852   iCellIdx = pCur->ix;
8853   pPage = pCur->pPage;
8854   pCell = findCell(pPage, iCellIdx);
8855   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
8856 
8857   /* If the bPreserve flag is set to true, then the cursor position must
8858   ** be preserved following this delete operation. If the current delete
8859   ** will cause a b-tree rebalance, then this is done by saving the cursor
8860   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8861   ** returning.
8862   **
8863   ** Or, if the current delete will not cause a rebalance, then the cursor
8864   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8865   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8866   if( bPreserve ){
8867     if( !pPage->leaf
8868      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8869      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
8870     ){
8871       /* A b-tree rebalance will be required after deleting this entry.
8872       ** Save the cursor key.  */
8873       rc = saveCursorKey(pCur);
8874       if( rc ) return rc;
8875     }else{
8876       bSkipnext = 1;
8877     }
8878   }
8879 
8880   /* If the page containing the entry to delete is not a leaf page, move
8881   ** the cursor to the largest entry in the tree that is smaller than
8882   ** the entry being deleted. This cell will replace the cell being deleted
8883   ** from the internal node. The 'previous' entry is used for this instead
8884   ** of the 'next' entry, as the previous entry is always a part of the
8885   ** sub-tree headed by the child page of the cell being deleted. This makes
8886   ** balancing the tree following the delete operation easier.  */
8887   if( !pPage->leaf ){
8888     rc = sqlite3BtreePrevious(pCur, 0);
8889     assert( rc!=SQLITE_DONE );
8890     if( rc ) return rc;
8891   }
8892 
8893   /* Save the positions of any other cursors open on this table before
8894   ** making any modifications.  */
8895   if( pCur->curFlags & BTCF_Multiple ){
8896     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8897     if( rc ) return rc;
8898   }
8899 
8900   /* If this is a delete operation to remove a row from a table b-tree,
8901   ** invalidate any incrblob cursors open on the row being deleted.  */
8902   if( pCur->pKeyInfo==0 ){
8903     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8904   }
8905 
8906   /* Make the page containing the entry to be deleted writable. Then free any
8907   ** overflow pages associated with the entry and finally remove the cell
8908   ** itself from within the page.  */
8909   rc = sqlite3PagerWrite(pPage->pDbPage);
8910   if( rc ) return rc;
8911   rc = clearCell(pPage, pCell, &info);
8912   dropCell(pPage, iCellIdx, info.nSize, &rc);
8913   if( rc ) return rc;
8914 
8915   /* If the cell deleted was not located on a leaf page, then the cursor
8916   ** is currently pointing to the largest entry in the sub-tree headed
8917   ** by the child-page of the cell that was just deleted from an internal
8918   ** node. The cell from the leaf node needs to be moved to the internal
8919   ** node to replace the deleted cell.  */
8920   if( !pPage->leaf ){
8921     MemPage *pLeaf = pCur->pPage;
8922     int nCell;
8923     Pgno n;
8924     unsigned char *pTmp;
8925 
8926     if( pLeaf->nFree<0 ){
8927       rc = btreeComputeFreeSpace(pLeaf);
8928       if( rc ) return rc;
8929     }
8930     if( iCellDepth<pCur->iPage-1 ){
8931       n = pCur->apPage[iCellDepth+1]->pgno;
8932     }else{
8933       n = pCur->pPage->pgno;
8934     }
8935     pCell = findCell(pLeaf, pLeaf->nCell-1);
8936     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8937     nCell = pLeaf->xCellSize(pLeaf, pCell);
8938     assert( MX_CELL_SIZE(pBt) >= nCell );
8939     pTmp = pBt->pTmpSpace;
8940     assert( pTmp!=0 );
8941     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8942     if( rc==SQLITE_OK ){
8943       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8944     }
8945     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8946     if( rc ) return rc;
8947   }
8948 
8949   /* Balance the tree. If the entry deleted was located on a leaf page,
8950   ** then the cursor still points to that page. In this case the first
8951   ** call to balance() repairs the tree, and the if(...) condition is
8952   ** never true.
8953   **
8954   ** Otherwise, if the entry deleted was on an internal node page, then
8955   ** pCur is pointing to the leaf page from which a cell was removed to
8956   ** replace the cell deleted from the internal node. This is slightly
8957   ** tricky as the leaf node may be underfull, and the internal node may
8958   ** be either under or overfull. In this case run the balancing algorithm
8959   ** on the leaf node first. If the balance proceeds far enough up the
8960   ** tree that we can be sure that any problem in the internal node has
8961   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8962   ** walk the cursor up the tree to the internal node and balance it as
8963   ** well.  */
8964   rc = balance(pCur);
8965   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8966     releasePageNotNull(pCur->pPage);
8967     pCur->iPage--;
8968     while( pCur->iPage>iCellDepth ){
8969       releasePage(pCur->apPage[pCur->iPage--]);
8970     }
8971     pCur->pPage = pCur->apPage[pCur->iPage];
8972     rc = balance(pCur);
8973   }
8974 
8975   if( rc==SQLITE_OK ){
8976     if( bSkipnext ){
8977       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8978       assert( pPage==pCur->pPage || CORRUPT_DB );
8979       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8980       pCur->eState = CURSOR_SKIPNEXT;
8981       if( iCellIdx>=pPage->nCell ){
8982         pCur->skipNext = -1;
8983         pCur->ix = pPage->nCell-1;
8984       }else{
8985         pCur->skipNext = 1;
8986       }
8987     }else{
8988       rc = moveToRoot(pCur);
8989       if( bPreserve ){
8990         btreeReleaseAllCursorPages(pCur);
8991         pCur->eState = CURSOR_REQUIRESEEK;
8992       }
8993       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8994     }
8995   }
8996   return rc;
8997 }
8998 
8999 /*
9000 ** Create a new BTree table.  Write into *piTable the page
9001 ** number for the root page of the new table.
9002 **
9003 ** The type of type is determined by the flags parameter.  Only the
9004 ** following values of flags are currently in use.  Other values for
9005 ** flags might not work:
9006 **
9007 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9008 **     BTREE_ZERODATA                  Used for SQL indices
9009 */
9010 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
9011   BtShared *pBt = p->pBt;
9012   MemPage *pRoot;
9013   Pgno pgnoRoot;
9014   int rc;
9015   int ptfFlags;          /* Page-type flage for the root page of new table */
9016 
9017   assert( sqlite3BtreeHoldsMutex(p) );
9018   assert( pBt->inTransaction==TRANS_WRITE );
9019   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9020 
9021 #ifdef SQLITE_OMIT_AUTOVACUUM
9022   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9023   if( rc ){
9024     return rc;
9025   }
9026 #else
9027   if( pBt->autoVacuum ){
9028     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9029     MemPage *pPageMove; /* The page to move to. */
9030 
9031     /* Creating a new table may probably require moving an existing database
9032     ** to make room for the new tables root page. In case this page turns
9033     ** out to be an overflow page, delete all overflow page-map caches
9034     ** held by open cursors.
9035     */
9036     invalidateAllOverflowCache(pBt);
9037 
9038     /* Read the value of meta[3] from the database to determine where the
9039     ** root page of the new table should go. meta[3] is the largest root-page
9040     ** created so far, so the new root-page is (meta[3]+1).
9041     */
9042     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9043     pgnoRoot++;
9044 
9045     /* The new root-page may not be allocated on a pointer-map page, or the
9046     ** PENDING_BYTE page.
9047     */
9048     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9049         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9050       pgnoRoot++;
9051     }
9052     assert( pgnoRoot>=3 || CORRUPT_DB );
9053     testcase( pgnoRoot<3 );
9054 
9055     /* Allocate a page. The page that currently resides at pgnoRoot will
9056     ** be moved to the allocated page (unless the allocated page happens
9057     ** to reside at pgnoRoot).
9058     */
9059     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9060     if( rc!=SQLITE_OK ){
9061       return rc;
9062     }
9063 
9064     if( pgnoMove!=pgnoRoot ){
9065       /* pgnoRoot is the page that will be used for the root-page of
9066       ** the new table (assuming an error did not occur). But we were
9067       ** allocated pgnoMove. If required (i.e. if it was not allocated
9068       ** by extending the file), the current page at position pgnoMove
9069       ** is already journaled.
9070       */
9071       u8 eType = 0;
9072       Pgno iPtrPage = 0;
9073 
9074       /* Save the positions of any open cursors. This is required in
9075       ** case they are holding a reference to an xFetch reference
9076       ** corresponding to page pgnoRoot.  */
9077       rc = saveAllCursors(pBt, 0, 0);
9078       releasePage(pPageMove);
9079       if( rc!=SQLITE_OK ){
9080         return rc;
9081       }
9082 
9083       /* Move the page currently at pgnoRoot to pgnoMove. */
9084       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9085       if( rc!=SQLITE_OK ){
9086         return rc;
9087       }
9088       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9089       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9090         rc = SQLITE_CORRUPT_BKPT;
9091       }
9092       if( rc!=SQLITE_OK ){
9093         releasePage(pRoot);
9094         return rc;
9095       }
9096       assert( eType!=PTRMAP_ROOTPAGE );
9097       assert( eType!=PTRMAP_FREEPAGE );
9098       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9099       releasePage(pRoot);
9100 
9101       /* Obtain the page at pgnoRoot */
9102       if( rc!=SQLITE_OK ){
9103         return rc;
9104       }
9105       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9106       if( rc!=SQLITE_OK ){
9107         return rc;
9108       }
9109       rc = sqlite3PagerWrite(pRoot->pDbPage);
9110       if( rc!=SQLITE_OK ){
9111         releasePage(pRoot);
9112         return rc;
9113       }
9114     }else{
9115       pRoot = pPageMove;
9116     }
9117 
9118     /* Update the pointer-map and meta-data with the new root-page number. */
9119     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9120     if( rc ){
9121       releasePage(pRoot);
9122       return rc;
9123     }
9124 
9125     /* When the new root page was allocated, page 1 was made writable in
9126     ** order either to increase the database filesize, or to decrement the
9127     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9128     */
9129     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9130     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9131     if( NEVER(rc) ){
9132       releasePage(pRoot);
9133       return rc;
9134     }
9135 
9136   }else{
9137     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9138     if( rc ) return rc;
9139   }
9140 #endif
9141   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9142   if( createTabFlags & BTREE_INTKEY ){
9143     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9144   }else{
9145     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9146   }
9147   zeroPage(pRoot, ptfFlags);
9148   sqlite3PagerUnref(pRoot->pDbPage);
9149   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9150   *piTable = (int)pgnoRoot;
9151   return SQLITE_OK;
9152 }
9153 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9154   int rc;
9155   sqlite3BtreeEnter(p);
9156   rc = btreeCreateTable(p, piTable, flags);
9157   sqlite3BtreeLeave(p);
9158   return rc;
9159 }
9160 
9161 /*
9162 ** Erase the given database page and all its children.  Return
9163 ** the page to the freelist.
9164 */
9165 static int clearDatabasePage(
9166   BtShared *pBt,           /* The BTree that contains the table */
9167   Pgno pgno,               /* Page number to clear */
9168   int freePageFlag,        /* Deallocate page if true */
9169   int *pnChange            /* Add number of Cells freed to this counter */
9170 ){
9171   MemPage *pPage;
9172   int rc;
9173   unsigned char *pCell;
9174   int i;
9175   int hdr;
9176   CellInfo info;
9177 
9178   assert( sqlite3_mutex_held(pBt->mutex) );
9179   if( pgno>btreePagecount(pBt) ){
9180     return SQLITE_CORRUPT_BKPT;
9181   }
9182   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9183   if( rc ) return rc;
9184   if( pPage->bBusy ){
9185     rc = SQLITE_CORRUPT_BKPT;
9186     goto cleardatabasepage_out;
9187   }
9188   pPage->bBusy = 1;
9189   hdr = pPage->hdrOffset;
9190   for(i=0; i<pPage->nCell; i++){
9191     pCell = findCell(pPage, i);
9192     if( !pPage->leaf ){
9193       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9194       if( rc ) goto cleardatabasepage_out;
9195     }
9196     rc = clearCell(pPage, pCell, &info);
9197     if( rc ) goto cleardatabasepage_out;
9198   }
9199   if( !pPage->leaf ){
9200     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9201     if( rc ) goto cleardatabasepage_out;
9202   }else if( pnChange ){
9203     assert( pPage->intKey || CORRUPT_DB );
9204     testcase( !pPage->intKey );
9205     *pnChange += pPage->nCell;
9206   }
9207   if( freePageFlag ){
9208     freePage(pPage, &rc);
9209   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9210     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9211   }
9212 
9213 cleardatabasepage_out:
9214   pPage->bBusy = 0;
9215   releasePage(pPage);
9216   return rc;
9217 }
9218 
9219 /*
9220 ** Delete all information from a single table in the database.  iTable is
9221 ** the page number of the root of the table.  After this routine returns,
9222 ** the root page is empty, but still exists.
9223 **
9224 ** This routine will fail with SQLITE_LOCKED if there are any open
9225 ** read cursors on the table.  Open write cursors are moved to the
9226 ** root of the table.
9227 **
9228 ** If pnChange is not NULL, then table iTable must be an intkey table. The
9229 ** integer value pointed to by pnChange is incremented by the number of
9230 ** entries in the table.
9231 */
9232 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9233   int rc;
9234   BtShared *pBt = p->pBt;
9235   sqlite3BtreeEnter(p);
9236   assert( p->inTrans==TRANS_WRITE );
9237 
9238   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9239 
9240   if( SQLITE_OK==rc ){
9241     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9242     ** is the root of a table b-tree - if it is not, the following call is
9243     ** a no-op).  */
9244     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9245     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9246   }
9247   sqlite3BtreeLeave(p);
9248   return rc;
9249 }
9250 
9251 /*
9252 ** Delete all information from the single table that pCur is open on.
9253 **
9254 ** This routine only work for pCur on an ephemeral table.
9255 */
9256 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9257   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9258 }
9259 
9260 /*
9261 ** Erase all information in a table and add the root of the table to
9262 ** the freelist.  Except, the root of the principle table (the one on
9263 ** page 1) is never added to the freelist.
9264 **
9265 ** This routine will fail with SQLITE_LOCKED if there are any open
9266 ** cursors on the table.
9267 **
9268 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9269 ** root page in the database file, then the last root page
9270 ** in the database file is moved into the slot formerly occupied by
9271 ** iTable and that last slot formerly occupied by the last root page
9272 ** is added to the freelist instead of iTable.  In this say, all
9273 ** root pages are kept at the beginning of the database file, which
9274 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9275 ** page number that used to be the last root page in the file before
9276 ** the move.  If no page gets moved, *piMoved is set to 0.
9277 ** The last root page is recorded in meta[3] and the value of
9278 ** meta[3] is updated by this procedure.
9279 */
9280 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9281   int rc;
9282   MemPage *pPage = 0;
9283   BtShared *pBt = p->pBt;
9284 
9285   assert( sqlite3BtreeHoldsMutex(p) );
9286   assert( p->inTrans==TRANS_WRITE );
9287   assert( iTable>=2 );
9288   if( iTable>btreePagecount(pBt) ){
9289     return SQLITE_CORRUPT_BKPT;
9290   }
9291 
9292   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9293   if( rc ) return rc;
9294   rc = sqlite3BtreeClearTable(p, iTable, 0);
9295   if( rc ){
9296     releasePage(pPage);
9297     return rc;
9298   }
9299 
9300   *piMoved = 0;
9301 
9302 #ifdef SQLITE_OMIT_AUTOVACUUM
9303   freePage(pPage, &rc);
9304   releasePage(pPage);
9305 #else
9306   if( pBt->autoVacuum ){
9307     Pgno maxRootPgno;
9308     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9309 
9310     if( iTable==maxRootPgno ){
9311       /* If the table being dropped is the table with the largest root-page
9312       ** number in the database, put the root page on the free list.
9313       */
9314       freePage(pPage, &rc);
9315       releasePage(pPage);
9316       if( rc!=SQLITE_OK ){
9317         return rc;
9318       }
9319     }else{
9320       /* The table being dropped does not have the largest root-page
9321       ** number in the database. So move the page that does into the
9322       ** gap left by the deleted root-page.
9323       */
9324       MemPage *pMove;
9325       releasePage(pPage);
9326       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9327       if( rc!=SQLITE_OK ){
9328         return rc;
9329       }
9330       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9331       releasePage(pMove);
9332       if( rc!=SQLITE_OK ){
9333         return rc;
9334       }
9335       pMove = 0;
9336       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9337       freePage(pMove, &rc);
9338       releasePage(pMove);
9339       if( rc!=SQLITE_OK ){
9340         return rc;
9341       }
9342       *piMoved = maxRootPgno;
9343     }
9344 
9345     /* Set the new 'max-root-page' value in the database header. This
9346     ** is the old value less one, less one more if that happens to
9347     ** be a root-page number, less one again if that is the
9348     ** PENDING_BYTE_PAGE.
9349     */
9350     maxRootPgno--;
9351     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9352            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9353       maxRootPgno--;
9354     }
9355     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9356 
9357     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9358   }else{
9359     freePage(pPage, &rc);
9360     releasePage(pPage);
9361   }
9362 #endif
9363   return rc;
9364 }
9365 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9366   int rc;
9367   sqlite3BtreeEnter(p);
9368   rc = btreeDropTable(p, iTable, piMoved);
9369   sqlite3BtreeLeave(p);
9370   return rc;
9371 }
9372 
9373 
9374 /*
9375 ** This function may only be called if the b-tree connection already
9376 ** has a read or write transaction open on the database.
9377 **
9378 ** Read the meta-information out of a database file.  Meta[0]
9379 ** is the number of free pages currently in the database.  Meta[1]
9380 ** through meta[15] are available for use by higher layers.  Meta[0]
9381 ** is read-only, the others are read/write.
9382 **
9383 ** The schema layer numbers meta values differently.  At the schema
9384 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9385 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9386 **
9387 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9388 ** of reading the value out of the header, it instead loads the "DataVersion"
9389 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9390 ** database file.  It is a number computed by the pager.  But its access
9391 ** pattern is the same as header meta values, and so it is convenient to
9392 ** read it from this routine.
9393 */
9394 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9395   BtShared *pBt = p->pBt;
9396 
9397   sqlite3BtreeEnter(p);
9398   assert( p->inTrans>TRANS_NONE );
9399   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9400   assert( pBt->pPage1 );
9401   assert( idx>=0 && idx<=15 );
9402 
9403   if( idx==BTREE_DATA_VERSION ){
9404     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9405   }else{
9406     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9407   }
9408 
9409   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9410   ** database, mark the database as read-only.  */
9411 #ifdef SQLITE_OMIT_AUTOVACUUM
9412   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9413     pBt->btsFlags |= BTS_READ_ONLY;
9414   }
9415 #endif
9416 
9417   sqlite3BtreeLeave(p);
9418 }
9419 
9420 /*
9421 ** Write meta-information back into the database.  Meta[0] is
9422 ** read-only and may not be written.
9423 */
9424 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9425   BtShared *pBt = p->pBt;
9426   unsigned char *pP1;
9427   int rc;
9428   assert( idx>=1 && idx<=15 );
9429   sqlite3BtreeEnter(p);
9430   assert( p->inTrans==TRANS_WRITE );
9431   assert( pBt->pPage1!=0 );
9432   pP1 = pBt->pPage1->aData;
9433   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9434   if( rc==SQLITE_OK ){
9435     put4byte(&pP1[36 + idx*4], iMeta);
9436 #ifndef SQLITE_OMIT_AUTOVACUUM
9437     if( idx==BTREE_INCR_VACUUM ){
9438       assert( pBt->autoVacuum || iMeta==0 );
9439       assert( iMeta==0 || iMeta==1 );
9440       pBt->incrVacuum = (u8)iMeta;
9441     }
9442 #endif
9443   }
9444   sqlite3BtreeLeave(p);
9445   return rc;
9446 }
9447 
9448 #ifndef SQLITE_OMIT_BTREECOUNT
9449 /*
9450 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9451 ** number of entries in the b-tree and write the result to *pnEntry.
9452 **
9453 ** SQLITE_OK is returned if the operation is successfully executed.
9454 ** Otherwise, if an error is encountered (i.e. an IO error or database
9455 ** corruption) an SQLite error code is returned.
9456 */
9457 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9458   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9459   int rc;                              /* Return code */
9460 
9461   rc = moveToRoot(pCur);
9462   if( rc==SQLITE_EMPTY ){
9463     *pnEntry = 0;
9464     return SQLITE_OK;
9465   }
9466 
9467   /* Unless an error occurs, the following loop runs one iteration for each
9468   ** page in the B-Tree structure (not including overflow pages).
9469   */
9470   while( rc==SQLITE_OK ){
9471     int iIdx;                          /* Index of child node in parent */
9472     MemPage *pPage;                    /* Current page of the b-tree */
9473 
9474     /* If this is a leaf page or the tree is not an int-key tree, then
9475     ** this page contains countable entries. Increment the entry counter
9476     ** accordingly.
9477     */
9478     pPage = pCur->pPage;
9479     if( pPage->leaf || !pPage->intKey ){
9480       nEntry += pPage->nCell;
9481     }
9482 
9483     /* pPage is a leaf node. This loop navigates the cursor so that it
9484     ** points to the first interior cell that it points to the parent of
9485     ** the next page in the tree that has not yet been visited. The
9486     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9487     ** of the page, or to the number of cells in the page if the next page
9488     ** to visit is the right-child of its parent.
9489     **
9490     ** If all pages in the tree have been visited, return SQLITE_OK to the
9491     ** caller.
9492     */
9493     if( pPage->leaf ){
9494       do {
9495         if( pCur->iPage==0 ){
9496           /* All pages of the b-tree have been visited. Return successfully. */
9497           *pnEntry = nEntry;
9498           return moveToRoot(pCur);
9499         }
9500         moveToParent(pCur);
9501       }while ( pCur->ix>=pCur->pPage->nCell );
9502 
9503       pCur->ix++;
9504       pPage = pCur->pPage;
9505     }
9506 
9507     /* Descend to the child node of the cell that the cursor currently
9508     ** points at. This is the right-child if (iIdx==pPage->nCell).
9509     */
9510     iIdx = pCur->ix;
9511     if( iIdx==pPage->nCell ){
9512       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9513     }else{
9514       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9515     }
9516   }
9517 
9518   /* An error has occurred. Return an error code. */
9519   return rc;
9520 }
9521 #endif
9522 
9523 /*
9524 ** Return the pager associated with a BTree.  This routine is used for
9525 ** testing and debugging only.
9526 */
9527 Pager *sqlite3BtreePager(Btree *p){
9528   return p->pBt->pPager;
9529 }
9530 
9531 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9532 /*
9533 ** Append a message to the error message string.
9534 */
9535 static void checkAppendMsg(
9536   IntegrityCk *pCheck,
9537   const char *zFormat,
9538   ...
9539 ){
9540   va_list ap;
9541   if( !pCheck->mxErr ) return;
9542   pCheck->mxErr--;
9543   pCheck->nErr++;
9544   va_start(ap, zFormat);
9545   if( pCheck->errMsg.nChar ){
9546     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9547   }
9548   if( pCheck->zPfx ){
9549     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9550   }
9551   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9552   va_end(ap);
9553   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9554     pCheck->mallocFailed = 1;
9555   }
9556 }
9557 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9558 
9559 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9560 
9561 /*
9562 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9563 ** corresponds to page iPg is already set.
9564 */
9565 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9566   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9567   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9568 }
9569 
9570 /*
9571 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9572 */
9573 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9574   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9575   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9576 }
9577 
9578 
9579 /*
9580 ** Add 1 to the reference count for page iPage.  If this is the second
9581 ** reference to the page, add an error message to pCheck->zErrMsg.
9582 ** Return 1 if there are 2 or more references to the page and 0 if
9583 ** if this is the first reference to the page.
9584 **
9585 ** Also check that the page number is in bounds.
9586 */
9587 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9588   if( iPage>pCheck->nPage || iPage==0 ){
9589     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9590     return 1;
9591   }
9592   if( getPageReferenced(pCheck, iPage) ){
9593     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9594     return 1;
9595   }
9596   setPageReferenced(pCheck, iPage);
9597   return 0;
9598 }
9599 
9600 #ifndef SQLITE_OMIT_AUTOVACUUM
9601 /*
9602 ** Check that the entry in the pointer-map for page iChild maps to
9603 ** page iParent, pointer type ptrType. If not, append an error message
9604 ** to pCheck.
9605 */
9606 static void checkPtrmap(
9607   IntegrityCk *pCheck,   /* Integrity check context */
9608   Pgno iChild,           /* Child page number */
9609   u8 eType,              /* Expected pointer map type */
9610   Pgno iParent           /* Expected pointer map parent page number */
9611 ){
9612   int rc;
9613   u8 ePtrmapType;
9614   Pgno iPtrmapParent;
9615 
9616   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9617   if( rc!=SQLITE_OK ){
9618     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9619     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9620     return;
9621   }
9622 
9623   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9624     checkAppendMsg(pCheck,
9625       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9626       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9627   }
9628 }
9629 #endif
9630 
9631 /*
9632 ** Check the integrity of the freelist or of an overflow page list.
9633 ** Verify that the number of pages on the list is N.
9634 */
9635 static void checkList(
9636   IntegrityCk *pCheck,  /* Integrity checking context */
9637   int isFreeList,       /* True for a freelist.  False for overflow page list */
9638   int iPage,            /* Page number for first page in the list */
9639   u32 N                 /* Expected number of pages in the list */
9640 ){
9641   int i;
9642   u32 expected = N;
9643   int nErrAtStart = pCheck->nErr;
9644   while( iPage!=0 && pCheck->mxErr ){
9645     DbPage *pOvflPage;
9646     unsigned char *pOvflData;
9647     if( checkRef(pCheck, iPage) ) break;
9648     N--;
9649     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9650       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9651       break;
9652     }
9653     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9654     if( isFreeList ){
9655       u32 n = (u32)get4byte(&pOvflData[4]);
9656 #ifndef SQLITE_OMIT_AUTOVACUUM
9657       if( pCheck->pBt->autoVacuum ){
9658         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9659       }
9660 #endif
9661       if( n>pCheck->pBt->usableSize/4-2 ){
9662         checkAppendMsg(pCheck,
9663            "freelist leaf count too big on page %d", iPage);
9664         N--;
9665       }else{
9666         for(i=0; i<(int)n; i++){
9667           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9668 #ifndef SQLITE_OMIT_AUTOVACUUM
9669           if( pCheck->pBt->autoVacuum ){
9670             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9671           }
9672 #endif
9673           checkRef(pCheck, iFreePage);
9674         }
9675         N -= n;
9676       }
9677     }
9678 #ifndef SQLITE_OMIT_AUTOVACUUM
9679     else{
9680       /* If this database supports auto-vacuum and iPage is not the last
9681       ** page in this overflow list, check that the pointer-map entry for
9682       ** the following page matches iPage.
9683       */
9684       if( pCheck->pBt->autoVacuum && N>0 ){
9685         i = get4byte(pOvflData);
9686         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9687       }
9688     }
9689 #endif
9690     iPage = get4byte(pOvflData);
9691     sqlite3PagerUnref(pOvflPage);
9692   }
9693   if( N && nErrAtStart==pCheck->nErr ){
9694     checkAppendMsg(pCheck,
9695       "%s is %d but should be %d",
9696       isFreeList ? "size" : "overflow list length",
9697       expected-N, expected);
9698   }
9699 }
9700 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9701 
9702 /*
9703 ** An implementation of a min-heap.
9704 **
9705 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9706 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9707 ** and aHeap[N*2+1].
9708 **
9709 ** The heap property is this:  Every node is less than or equal to both
9710 ** of its daughter nodes.  A consequence of the heap property is that the
9711 ** root node aHeap[1] is always the minimum value currently in the heap.
9712 **
9713 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9714 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9715 ** removes the root element from the heap (the minimum value in the heap)
9716 ** and then moves other nodes around as necessary to preserve the heap
9717 ** property.
9718 **
9719 ** This heap is used for cell overlap and coverage testing.  Each u32
9720 ** entry represents the span of a cell or freeblock on a btree page.
9721 ** The upper 16 bits are the index of the first byte of a range and the
9722 ** lower 16 bits are the index of the last byte of that range.
9723 */
9724 static void btreeHeapInsert(u32 *aHeap, u32 x){
9725   u32 j, i = ++aHeap[0];
9726   aHeap[i] = x;
9727   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9728     x = aHeap[j];
9729     aHeap[j] = aHeap[i];
9730     aHeap[i] = x;
9731     i = j;
9732   }
9733 }
9734 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9735   u32 j, i, x;
9736   if( (x = aHeap[0])==0 ) return 0;
9737   *pOut = aHeap[1];
9738   aHeap[1] = aHeap[x];
9739   aHeap[x] = 0xffffffff;
9740   aHeap[0]--;
9741   i = 1;
9742   while( (j = i*2)<=aHeap[0] ){
9743     if( aHeap[j]>aHeap[j+1] ) j++;
9744     if( aHeap[i]<aHeap[j] ) break;
9745     x = aHeap[i];
9746     aHeap[i] = aHeap[j];
9747     aHeap[j] = x;
9748     i = j;
9749   }
9750   return 1;
9751 }
9752 
9753 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9754 /*
9755 ** Do various sanity checks on a single page of a tree.  Return
9756 ** the tree depth.  Root pages return 0.  Parents of root pages
9757 ** return 1, and so forth.
9758 **
9759 ** These checks are done:
9760 **
9761 **      1.  Make sure that cells and freeblocks do not overlap
9762 **          but combine to completely cover the page.
9763 **      2.  Make sure integer cell keys are in order.
9764 **      3.  Check the integrity of overflow pages.
9765 **      4.  Recursively call checkTreePage on all children.
9766 **      5.  Verify that the depth of all children is the same.
9767 */
9768 static int checkTreePage(
9769   IntegrityCk *pCheck,  /* Context for the sanity check */
9770   int iPage,            /* Page number of the page to check */
9771   i64 *piMinKey,        /* Write minimum integer primary key here */
9772   i64 maxKey            /* Error if integer primary key greater than this */
9773 ){
9774   MemPage *pPage = 0;      /* The page being analyzed */
9775   int i;                   /* Loop counter */
9776   int rc;                  /* Result code from subroutine call */
9777   int depth = -1, d2;      /* Depth of a subtree */
9778   int pgno;                /* Page number */
9779   int nFrag;               /* Number of fragmented bytes on the page */
9780   int hdr;                 /* Offset to the page header */
9781   int cellStart;           /* Offset to the start of the cell pointer array */
9782   int nCell;               /* Number of cells */
9783   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9784   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9785                            ** False if IPK must be strictly less than maxKey */
9786   u8 *data;                /* Page content */
9787   u8 *pCell;               /* Cell content */
9788   u8 *pCellIdx;            /* Next element of the cell pointer array */
9789   BtShared *pBt;           /* The BtShared object that owns pPage */
9790   u32 pc;                  /* Address of a cell */
9791   u32 usableSize;          /* Usable size of the page */
9792   u32 contentOffset;       /* Offset to the start of the cell content area */
9793   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9794   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9795   const char *saved_zPfx = pCheck->zPfx;
9796   int saved_v1 = pCheck->v1;
9797   int saved_v2 = pCheck->v2;
9798   u8 savedIsInit = 0;
9799 
9800   /* Check that the page exists
9801   */
9802   pBt = pCheck->pBt;
9803   usableSize = pBt->usableSize;
9804   if( iPage==0 ) return 0;
9805   if( checkRef(pCheck, iPage) ) return 0;
9806   pCheck->zPfx = "Page %d: ";
9807   pCheck->v1 = iPage;
9808   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9809     checkAppendMsg(pCheck,
9810        "unable to get the page. error code=%d", rc);
9811     goto end_of_check;
9812   }
9813 
9814   /* Clear MemPage.isInit to make sure the corruption detection code in
9815   ** btreeInitPage() is executed.  */
9816   savedIsInit = pPage->isInit;
9817   pPage->isInit = 0;
9818   if( (rc = btreeInitPage(pPage))!=0 ){
9819     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9820     checkAppendMsg(pCheck,
9821                    "btreeInitPage() returns error code %d", rc);
9822     goto end_of_check;
9823   }
9824   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9825     assert( rc==SQLITE_CORRUPT );
9826     checkAppendMsg(pCheck, "free space corruption", rc);
9827     goto end_of_check;
9828   }
9829   data = pPage->aData;
9830   hdr = pPage->hdrOffset;
9831 
9832   /* Set up for cell analysis */
9833   pCheck->zPfx = "On tree page %d cell %d: ";
9834   contentOffset = get2byteNotZero(&data[hdr+5]);
9835   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9836 
9837   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9838   ** number of cells on the page. */
9839   nCell = get2byte(&data[hdr+3]);
9840   assert( pPage->nCell==nCell );
9841 
9842   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9843   ** immediately follows the b-tree page header. */
9844   cellStart = hdr + 12 - 4*pPage->leaf;
9845   assert( pPage->aCellIdx==&data[cellStart] );
9846   pCellIdx = &data[cellStart + 2*(nCell-1)];
9847 
9848   if( !pPage->leaf ){
9849     /* Analyze the right-child page of internal pages */
9850     pgno = get4byte(&data[hdr+8]);
9851 #ifndef SQLITE_OMIT_AUTOVACUUM
9852     if( pBt->autoVacuum ){
9853       pCheck->zPfx = "On page %d at right child: ";
9854       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9855     }
9856 #endif
9857     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9858     keyCanBeEqual = 0;
9859   }else{
9860     /* For leaf pages, the coverage check will occur in the same loop
9861     ** as the other cell checks, so initialize the heap.  */
9862     heap = pCheck->heap;
9863     heap[0] = 0;
9864   }
9865 
9866   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9867   ** integer offsets to the cell contents. */
9868   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9869     CellInfo info;
9870 
9871     /* Check cell size */
9872     pCheck->v2 = i;
9873     assert( pCellIdx==&data[cellStart + i*2] );
9874     pc = get2byteAligned(pCellIdx);
9875     pCellIdx -= 2;
9876     if( pc<contentOffset || pc>usableSize-4 ){
9877       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9878                              pc, contentOffset, usableSize-4);
9879       doCoverageCheck = 0;
9880       continue;
9881     }
9882     pCell = &data[pc];
9883     pPage->xParseCell(pPage, pCell, &info);
9884     if( pc+info.nSize>usableSize ){
9885       checkAppendMsg(pCheck, "Extends off end of page");
9886       doCoverageCheck = 0;
9887       continue;
9888     }
9889 
9890     /* Check for integer primary key out of range */
9891     if( pPage->intKey ){
9892       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9893         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9894       }
9895       maxKey = info.nKey;
9896       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9897     }
9898 
9899     /* Check the content overflow list */
9900     if( info.nPayload>info.nLocal ){
9901       u32 nPage;       /* Number of pages on the overflow chain */
9902       Pgno pgnoOvfl;   /* First page of the overflow chain */
9903       assert( pc + info.nSize - 4 <= usableSize );
9904       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9905       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9906 #ifndef SQLITE_OMIT_AUTOVACUUM
9907       if( pBt->autoVacuum ){
9908         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9909       }
9910 #endif
9911       checkList(pCheck, 0, pgnoOvfl, nPage);
9912     }
9913 
9914     if( !pPage->leaf ){
9915       /* Check sanity of left child page for internal pages */
9916       pgno = get4byte(pCell);
9917 #ifndef SQLITE_OMIT_AUTOVACUUM
9918       if( pBt->autoVacuum ){
9919         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9920       }
9921 #endif
9922       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9923       keyCanBeEqual = 0;
9924       if( d2!=depth ){
9925         checkAppendMsg(pCheck, "Child page depth differs");
9926         depth = d2;
9927       }
9928     }else{
9929       /* Populate the coverage-checking heap for leaf pages */
9930       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9931     }
9932   }
9933   *piMinKey = maxKey;
9934 
9935   /* Check for complete coverage of the page
9936   */
9937   pCheck->zPfx = 0;
9938   if( doCoverageCheck && pCheck->mxErr>0 ){
9939     /* For leaf pages, the min-heap has already been initialized and the
9940     ** cells have already been inserted.  But for internal pages, that has
9941     ** not yet been done, so do it now */
9942     if( !pPage->leaf ){
9943       heap = pCheck->heap;
9944       heap[0] = 0;
9945       for(i=nCell-1; i>=0; i--){
9946         u32 size;
9947         pc = get2byteAligned(&data[cellStart+i*2]);
9948         size = pPage->xCellSize(pPage, &data[pc]);
9949         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9950       }
9951     }
9952     /* Add the freeblocks to the min-heap
9953     **
9954     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9955     ** is the offset of the first freeblock, or zero if there are no
9956     ** freeblocks on the page.
9957     */
9958     i = get2byte(&data[hdr+1]);
9959     while( i>0 ){
9960       int size, j;
9961       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
9962       size = get2byte(&data[i+2]);
9963       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
9964       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9965       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9966       ** big-endian integer which is the offset in the b-tree page of the next
9967       ** freeblock in the chain, or zero if the freeblock is the last on the
9968       ** chain. */
9969       j = get2byte(&data[i]);
9970       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9971       ** increasing offset. */
9972       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
9973       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
9974       i = j;
9975     }
9976     /* Analyze the min-heap looking for overlap between cells and/or
9977     ** freeblocks, and counting the number of untracked bytes in nFrag.
9978     **
9979     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9980     ** There is an implied first entry the covers the page header, the cell
9981     ** pointer index, and the gap between the cell pointer index and the start
9982     ** of cell content.
9983     **
9984     ** The loop below pulls entries from the min-heap in order and compares
9985     ** the start_address against the previous end_address.  If there is an
9986     ** overlap, that means bytes are used multiple times.  If there is a gap,
9987     ** that gap is added to the fragmentation count.
9988     */
9989     nFrag = 0;
9990     prev = contentOffset - 1;   /* Implied first min-heap entry */
9991     while( btreeHeapPull(heap,&x) ){
9992       if( (prev&0xffff)>=(x>>16) ){
9993         checkAppendMsg(pCheck,
9994           "Multiple uses for byte %u of page %d", x>>16, iPage);
9995         break;
9996       }else{
9997         nFrag += (x>>16) - (prev&0xffff) - 1;
9998         prev = x;
9999       }
10000     }
10001     nFrag += usableSize - (prev&0xffff) - 1;
10002     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10003     ** is stored in the fifth field of the b-tree page header.
10004     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10005     ** number of fragmented free bytes within the cell content area.
10006     */
10007     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10008       checkAppendMsg(pCheck,
10009           "Fragmentation of %d bytes reported as %d on page %d",
10010           nFrag, data[hdr+7], iPage);
10011     }
10012   }
10013 
10014 end_of_check:
10015   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10016   releasePage(pPage);
10017   pCheck->zPfx = saved_zPfx;
10018   pCheck->v1 = saved_v1;
10019   pCheck->v2 = saved_v2;
10020   return depth+1;
10021 }
10022 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10023 
10024 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10025 /*
10026 ** This routine does a complete check of the given BTree file.  aRoot[] is
10027 ** an array of pages numbers were each page number is the root page of
10028 ** a table.  nRoot is the number of entries in aRoot.
10029 **
10030 ** A read-only or read-write transaction must be opened before calling
10031 ** this function.
10032 **
10033 ** Write the number of error seen in *pnErr.  Except for some memory
10034 ** allocation errors,  an error message held in memory obtained from
10035 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10036 ** returned.  If a memory allocation error occurs, NULL is returned.
10037 */
10038 char *sqlite3BtreeIntegrityCheck(
10039   Btree *p,     /* The btree to be checked */
10040   int *aRoot,   /* An array of root pages numbers for individual trees */
10041   int nRoot,    /* Number of entries in aRoot[] */
10042   int mxErr,    /* Stop reporting errors after this many */
10043   int *pnErr    /* Write number of errors seen to this variable */
10044 ){
10045   Pgno i;
10046   IntegrityCk sCheck;
10047   BtShared *pBt = p->pBt;
10048   u64 savedDbFlags = pBt->db->flags;
10049   char zErr[100];
10050   VVA_ONLY( int nRef );
10051 
10052   sqlite3BtreeEnter(p);
10053   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10054   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10055   assert( nRef>=0 );
10056   sCheck.pBt = pBt;
10057   sCheck.pPager = pBt->pPager;
10058   sCheck.nPage = btreePagecount(sCheck.pBt);
10059   sCheck.mxErr = mxErr;
10060   sCheck.nErr = 0;
10061   sCheck.mallocFailed = 0;
10062   sCheck.zPfx = 0;
10063   sCheck.v1 = 0;
10064   sCheck.v2 = 0;
10065   sCheck.aPgRef = 0;
10066   sCheck.heap = 0;
10067   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10068   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10069   if( sCheck.nPage==0 ){
10070     goto integrity_ck_cleanup;
10071   }
10072 
10073   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10074   if( !sCheck.aPgRef ){
10075     sCheck.mallocFailed = 1;
10076     goto integrity_ck_cleanup;
10077   }
10078   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10079   if( sCheck.heap==0 ){
10080     sCheck.mallocFailed = 1;
10081     goto integrity_ck_cleanup;
10082   }
10083 
10084   i = PENDING_BYTE_PAGE(pBt);
10085   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10086 
10087   /* Check the integrity of the freelist
10088   */
10089   sCheck.zPfx = "Main freelist: ";
10090   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10091             get4byte(&pBt->pPage1->aData[36]));
10092   sCheck.zPfx = 0;
10093 
10094   /* Check all the tables.
10095   */
10096 #ifndef SQLITE_OMIT_AUTOVACUUM
10097   if( pBt->autoVacuum ){
10098     int mx = 0;
10099     int mxInHdr;
10100     for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10101     mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10102     if( mx!=mxInHdr ){
10103       checkAppendMsg(&sCheck,
10104         "max rootpage (%d) disagrees with header (%d)",
10105         mx, mxInHdr
10106       );
10107     }
10108   }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10109     checkAppendMsg(&sCheck,
10110       "incremental_vacuum enabled with a max rootpage of zero"
10111     );
10112   }
10113 #endif
10114   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10115   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10116   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10117     i64 notUsed;
10118     if( aRoot[i]==0 ) continue;
10119 #ifndef SQLITE_OMIT_AUTOVACUUM
10120     if( pBt->autoVacuum && aRoot[i]>1 ){
10121       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10122     }
10123 #endif
10124     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10125   }
10126   pBt->db->flags = savedDbFlags;
10127 
10128   /* Make sure every page in the file is referenced
10129   */
10130   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10131 #ifdef SQLITE_OMIT_AUTOVACUUM
10132     if( getPageReferenced(&sCheck, i)==0 ){
10133       checkAppendMsg(&sCheck, "Page %d is never used", i);
10134     }
10135 #else
10136     /* If the database supports auto-vacuum, make sure no tables contain
10137     ** references to pointer-map pages.
10138     */
10139     if( getPageReferenced(&sCheck, i)==0 &&
10140        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10141       checkAppendMsg(&sCheck, "Page %d is never used", i);
10142     }
10143     if( getPageReferenced(&sCheck, i)!=0 &&
10144        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10145       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10146     }
10147 #endif
10148   }
10149 
10150   /* Clean  up and report errors.
10151   */
10152 integrity_ck_cleanup:
10153   sqlite3PageFree(sCheck.heap);
10154   sqlite3_free(sCheck.aPgRef);
10155   if( sCheck.mallocFailed ){
10156     sqlite3_str_reset(&sCheck.errMsg);
10157     sCheck.nErr++;
10158   }
10159   *pnErr = sCheck.nErr;
10160   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10161   /* Make sure this analysis did not leave any unref() pages. */
10162   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10163   sqlite3BtreeLeave(p);
10164   return sqlite3StrAccumFinish(&sCheck.errMsg);
10165 }
10166 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10167 
10168 /*
10169 ** Return the full pathname of the underlying database file.  Return
10170 ** an empty string if the database is in-memory or a TEMP database.
10171 **
10172 ** The pager filename is invariant as long as the pager is
10173 ** open so it is safe to access without the BtShared mutex.
10174 */
10175 const char *sqlite3BtreeGetFilename(Btree *p){
10176   assert( p->pBt->pPager!=0 );
10177   return sqlite3PagerFilename(p->pBt->pPager, 1);
10178 }
10179 
10180 /*
10181 ** Return the pathname of the journal file for this database. The return
10182 ** value of this routine is the same regardless of whether the journal file
10183 ** has been created or not.
10184 **
10185 ** The pager journal filename is invariant as long as the pager is
10186 ** open so it is safe to access without the BtShared mutex.
10187 */
10188 const char *sqlite3BtreeGetJournalname(Btree *p){
10189   assert( p->pBt->pPager!=0 );
10190   return sqlite3PagerJournalname(p->pBt->pPager);
10191 }
10192 
10193 /*
10194 ** Return non-zero if a transaction is active.
10195 */
10196 int sqlite3BtreeIsInTrans(Btree *p){
10197   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10198   return (p && (p->inTrans==TRANS_WRITE));
10199 }
10200 
10201 #ifndef SQLITE_OMIT_WAL
10202 /*
10203 ** Run a checkpoint on the Btree passed as the first argument.
10204 **
10205 ** Return SQLITE_LOCKED if this or any other connection has an open
10206 ** transaction on the shared-cache the argument Btree is connected to.
10207 **
10208 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10209 */
10210 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10211   int rc = SQLITE_OK;
10212   if( p ){
10213     BtShared *pBt = p->pBt;
10214     sqlite3BtreeEnter(p);
10215     if( pBt->inTransaction!=TRANS_NONE ){
10216       rc = SQLITE_LOCKED;
10217     }else{
10218       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10219     }
10220     sqlite3BtreeLeave(p);
10221   }
10222   return rc;
10223 }
10224 #endif
10225 
10226 /*
10227 ** Return non-zero if a read (or write) transaction is active.
10228 */
10229 int sqlite3BtreeIsInReadTrans(Btree *p){
10230   assert( p );
10231   assert( sqlite3_mutex_held(p->db->mutex) );
10232   return p->inTrans!=TRANS_NONE;
10233 }
10234 
10235 int sqlite3BtreeIsInBackup(Btree *p){
10236   assert( p );
10237   assert( sqlite3_mutex_held(p->db->mutex) );
10238   return p->nBackup!=0;
10239 }
10240 
10241 /*
10242 ** This function returns a pointer to a blob of memory associated with
10243 ** a single shared-btree. The memory is used by client code for its own
10244 ** purposes (for example, to store a high-level schema associated with
10245 ** the shared-btree). The btree layer manages reference counting issues.
10246 **
10247 ** The first time this is called on a shared-btree, nBytes bytes of memory
10248 ** are allocated, zeroed, and returned to the caller. For each subsequent
10249 ** call the nBytes parameter is ignored and a pointer to the same blob
10250 ** of memory returned.
10251 **
10252 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10253 ** allocated, a null pointer is returned. If the blob has already been
10254 ** allocated, it is returned as normal.
10255 **
10256 ** Just before the shared-btree is closed, the function passed as the
10257 ** xFree argument when the memory allocation was made is invoked on the
10258 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10259 ** on the memory, the btree layer does that.
10260 */
10261 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10262   BtShared *pBt = p->pBt;
10263   sqlite3BtreeEnter(p);
10264   if( !pBt->pSchema && nBytes ){
10265     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10266     pBt->xFreeSchema = xFree;
10267   }
10268   sqlite3BtreeLeave(p);
10269   return pBt->pSchema;
10270 }
10271 
10272 /*
10273 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10274 ** btree as the argument handle holds an exclusive lock on the
10275 ** sqlite_master table. Otherwise SQLITE_OK.
10276 */
10277 int sqlite3BtreeSchemaLocked(Btree *p){
10278   int rc;
10279   assert( sqlite3_mutex_held(p->db->mutex) );
10280   sqlite3BtreeEnter(p);
10281   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10282   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10283   sqlite3BtreeLeave(p);
10284   return rc;
10285 }
10286 
10287 
10288 #ifndef SQLITE_OMIT_SHARED_CACHE
10289 /*
10290 ** Obtain a lock on the table whose root page is iTab.  The
10291 ** lock is a write lock if isWritelock is true or a read lock
10292 ** if it is false.
10293 */
10294 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10295   int rc = SQLITE_OK;
10296   assert( p->inTrans!=TRANS_NONE );
10297   if( p->sharable ){
10298     u8 lockType = READ_LOCK + isWriteLock;
10299     assert( READ_LOCK+1==WRITE_LOCK );
10300     assert( isWriteLock==0 || isWriteLock==1 );
10301 
10302     sqlite3BtreeEnter(p);
10303     rc = querySharedCacheTableLock(p, iTab, lockType);
10304     if( rc==SQLITE_OK ){
10305       rc = setSharedCacheTableLock(p, iTab, lockType);
10306     }
10307     sqlite3BtreeLeave(p);
10308   }
10309   return rc;
10310 }
10311 #endif
10312 
10313 #ifndef SQLITE_OMIT_INCRBLOB
10314 /*
10315 ** Argument pCsr must be a cursor opened for writing on an
10316 ** INTKEY table currently pointing at a valid table entry.
10317 ** This function modifies the data stored as part of that entry.
10318 **
10319 ** Only the data content may only be modified, it is not possible to
10320 ** change the length of the data stored. If this function is called with
10321 ** parameters that attempt to write past the end of the existing data,
10322 ** no modifications are made and SQLITE_CORRUPT is returned.
10323 */
10324 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10325   int rc;
10326   assert( cursorOwnsBtShared(pCsr) );
10327   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10328   assert( pCsr->curFlags & BTCF_Incrblob );
10329 
10330   rc = restoreCursorPosition(pCsr);
10331   if( rc!=SQLITE_OK ){
10332     return rc;
10333   }
10334   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10335   if( pCsr->eState!=CURSOR_VALID ){
10336     return SQLITE_ABORT;
10337   }
10338 
10339   /* Save the positions of all other cursors open on this table. This is
10340   ** required in case any of them are holding references to an xFetch
10341   ** version of the b-tree page modified by the accessPayload call below.
10342   **
10343   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10344   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10345   ** saveAllCursors can only return SQLITE_OK.
10346   */
10347   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10348   assert( rc==SQLITE_OK );
10349 
10350   /* Check some assumptions:
10351   **   (a) the cursor is open for writing,
10352   **   (b) there is a read/write transaction open,
10353   **   (c) the connection holds a write-lock on the table (if required),
10354   **   (d) there are no conflicting read-locks, and
10355   **   (e) the cursor points at a valid row of an intKey table.
10356   */
10357   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10358     return SQLITE_READONLY;
10359   }
10360   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10361               && pCsr->pBt->inTransaction==TRANS_WRITE );
10362   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10363   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10364   assert( pCsr->pPage->intKey );
10365 
10366   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10367 }
10368 
10369 /*
10370 ** Mark this cursor as an incremental blob cursor.
10371 */
10372 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10373   pCur->curFlags |= BTCF_Incrblob;
10374   pCur->pBtree->hasIncrblobCur = 1;
10375 }
10376 #endif
10377 
10378 /*
10379 ** Set both the "read version" (single byte at byte offset 18) and
10380 ** "write version" (single byte at byte offset 19) fields in the database
10381 ** header to iVersion.
10382 */
10383 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10384   BtShared *pBt = pBtree->pBt;
10385   int rc;                         /* Return code */
10386 
10387   assert( iVersion==1 || iVersion==2 );
10388 
10389   /* If setting the version fields to 1, do not automatically open the
10390   ** WAL connection, even if the version fields are currently set to 2.
10391   */
10392   pBt->btsFlags &= ~BTS_NO_WAL;
10393   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10394 
10395   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10396   if( rc==SQLITE_OK ){
10397     u8 *aData = pBt->pPage1->aData;
10398     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10399       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10400       if( rc==SQLITE_OK ){
10401         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10402         if( rc==SQLITE_OK ){
10403           aData[18] = (u8)iVersion;
10404           aData[19] = (u8)iVersion;
10405         }
10406       }
10407     }
10408   }
10409 
10410   pBt->btsFlags &= ~BTS_NO_WAL;
10411   return rc;
10412 }
10413 
10414 /*
10415 ** Return true if the cursor has a hint specified.  This routine is
10416 ** only used from within assert() statements
10417 */
10418 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10419   return (pCsr->hints & mask)!=0;
10420 }
10421 
10422 /*
10423 ** Return true if the given Btree is read-only.
10424 */
10425 int sqlite3BtreeIsReadonly(Btree *p){
10426   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10427 }
10428 
10429 /*
10430 ** Return the size of the header added to each page by this module.
10431 */
10432 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10433 
10434 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10435 /*
10436 ** Return true if the Btree passed as the only argument is sharable.
10437 */
10438 int sqlite3BtreeSharable(Btree *p){
10439   return p->sharable;
10440 }
10441 
10442 /*
10443 ** Return the number of connections to the BtShared object accessed by
10444 ** the Btree handle passed as the only argument. For private caches
10445 ** this is always 1. For shared caches it may be 1 or greater.
10446 */
10447 int sqlite3BtreeConnectionCount(Btree *p){
10448   testcase( p->sharable );
10449   return p->pBt->nRef;
10450 }
10451 #endif
10452