1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==(int)iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 if( pBtree->hasIncrblobCur==0 ) return; 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call BtreeMovetoUnpacked() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 goto moveto_done; 831 } 832 }else{ 833 pIdxKey = 0; 834 } 835 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 836 moveto_done: 837 if( pIdxKey ){ 838 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 839 } 840 return rc; 841 } 842 843 /* 844 ** Restore the cursor to the position it was in (or as close to as possible) 845 ** when saveCursorPosition() was called. Note that this call deletes the 846 ** saved position info stored by saveCursorPosition(), so there can be 847 ** at most one effective restoreCursorPosition() call after each 848 ** saveCursorPosition(). 849 */ 850 static int btreeRestoreCursorPosition(BtCursor *pCur){ 851 int rc; 852 int skipNext = 0; 853 assert( cursorOwnsBtShared(pCur) ); 854 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 855 if( pCur->eState==CURSOR_FAULT ){ 856 return pCur->skipNext; 857 } 858 pCur->eState = CURSOR_INVALID; 859 if( sqlite3FaultSim(410) ){ 860 rc = SQLITE_IOERR; 861 }else{ 862 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 863 } 864 if( rc==SQLITE_OK ){ 865 sqlite3_free(pCur->pKey); 866 pCur->pKey = 0; 867 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 868 if( skipNext ) pCur->skipNext = skipNext; 869 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 870 pCur->eState = CURSOR_SKIPNEXT; 871 } 872 } 873 return rc; 874 } 875 876 #define restoreCursorPosition(p) \ 877 (p->eState>=CURSOR_REQUIRESEEK ? \ 878 btreeRestoreCursorPosition(p) : \ 879 SQLITE_OK) 880 881 /* 882 ** Determine whether or not a cursor has moved from the position where 883 ** it was last placed, or has been invalidated for any other reason. 884 ** Cursors can move when the row they are pointing at is deleted out 885 ** from under them, for example. Cursor might also move if a btree 886 ** is rebalanced. 887 ** 888 ** Calling this routine with a NULL cursor pointer returns false. 889 ** 890 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 891 ** back to where it ought to be if this routine returns true. 892 */ 893 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 894 assert( EIGHT_BYTE_ALIGNMENT(pCur) 895 || pCur==sqlite3BtreeFakeValidCursor() ); 896 assert( offsetof(BtCursor, eState)==0 ); 897 assert( sizeof(pCur->eState)==1 ); 898 return CURSOR_VALID != *(u8*)pCur; 899 } 900 901 /* 902 ** Return a pointer to a fake BtCursor object that will always answer 903 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 904 ** cursor returned must not be used with any other Btree interface. 905 */ 906 BtCursor *sqlite3BtreeFakeValidCursor(void){ 907 static u8 fakeCursor = CURSOR_VALID; 908 assert( offsetof(BtCursor, eState)==0 ); 909 return (BtCursor*)&fakeCursor; 910 } 911 912 /* 913 ** This routine restores a cursor back to its original position after it 914 ** has been moved by some outside activity (such as a btree rebalance or 915 ** a row having been deleted out from under the cursor). 916 ** 917 ** On success, the *pDifferentRow parameter is false if the cursor is left 918 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 919 ** was pointing to has been deleted, forcing the cursor to point to some 920 ** nearby row. 921 ** 922 ** This routine should only be called for a cursor that just returned 923 ** TRUE from sqlite3BtreeCursorHasMoved(). 924 */ 925 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 926 int rc; 927 928 assert( pCur!=0 ); 929 assert( pCur->eState!=CURSOR_VALID ); 930 rc = restoreCursorPosition(pCur); 931 if( rc ){ 932 *pDifferentRow = 1; 933 return rc; 934 } 935 if( pCur->eState!=CURSOR_VALID ){ 936 *pDifferentRow = 1; 937 }else{ 938 *pDifferentRow = 0; 939 } 940 return SQLITE_OK; 941 } 942 943 #ifdef SQLITE_ENABLE_CURSOR_HINTS 944 /* 945 ** Provide hints to the cursor. The particular hint given (and the type 946 ** and number of the varargs parameters) is determined by the eHintType 947 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 948 */ 949 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 950 /* Used only by system that substitute their own storage engine */ 951 } 952 #endif 953 954 /* 955 ** Provide flag hints to the cursor. 956 */ 957 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 958 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 959 pCur->hints = x; 960 } 961 962 963 #ifndef SQLITE_OMIT_AUTOVACUUM 964 /* 965 ** Given a page number of a regular database page, return the page 966 ** number for the pointer-map page that contains the entry for the 967 ** input page number. 968 ** 969 ** Return 0 (not a valid page) for pgno==1 since there is 970 ** no pointer map associated with page 1. The integrity_check logic 971 ** requires that ptrmapPageno(*,1)!=1. 972 */ 973 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 974 int nPagesPerMapPage; 975 Pgno iPtrMap, ret; 976 assert( sqlite3_mutex_held(pBt->mutex) ); 977 if( pgno<2 ) return 0; 978 nPagesPerMapPage = (pBt->usableSize/5)+1; 979 iPtrMap = (pgno-2)/nPagesPerMapPage; 980 ret = (iPtrMap*nPagesPerMapPage) + 2; 981 if( ret==PENDING_BYTE_PAGE(pBt) ){ 982 ret++; 983 } 984 return ret; 985 } 986 987 /* 988 ** Write an entry into the pointer map. 989 ** 990 ** This routine updates the pointer map entry for page number 'key' 991 ** so that it maps to type 'eType' and parent page number 'pgno'. 992 ** 993 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 994 ** a no-op. If an error occurs, the appropriate error code is written 995 ** into *pRC. 996 */ 997 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 998 DbPage *pDbPage; /* The pointer map page */ 999 u8 *pPtrmap; /* The pointer map data */ 1000 Pgno iPtrmap; /* The pointer map page number */ 1001 int offset; /* Offset in pointer map page */ 1002 int rc; /* Return code from subfunctions */ 1003 1004 if( *pRC ) return; 1005 1006 assert( sqlite3_mutex_held(pBt->mutex) ); 1007 /* The super-journal page number must never be used as a pointer map page */ 1008 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1009 1010 assert( pBt->autoVacuum ); 1011 if( key==0 ){ 1012 *pRC = SQLITE_CORRUPT_BKPT; 1013 return; 1014 } 1015 iPtrmap = PTRMAP_PAGENO(pBt, key); 1016 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1017 if( rc!=SQLITE_OK ){ 1018 *pRC = rc; 1019 return; 1020 } 1021 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1022 /* The first byte of the extra data is the MemPage.isInit byte. 1023 ** If that byte is set, it means this page is also being used 1024 ** as a btree page. */ 1025 *pRC = SQLITE_CORRUPT_BKPT; 1026 goto ptrmap_exit; 1027 } 1028 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1029 if( offset<0 ){ 1030 *pRC = SQLITE_CORRUPT_BKPT; 1031 goto ptrmap_exit; 1032 } 1033 assert( offset <= (int)pBt->usableSize-5 ); 1034 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1035 1036 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1037 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1038 *pRC= rc = sqlite3PagerWrite(pDbPage); 1039 if( rc==SQLITE_OK ){ 1040 pPtrmap[offset] = eType; 1041 put4byte(&pPtrmap[offset+1], parent); 1042 } 1043 } 1044 1045 ptrmap_exit: 1046 sqlite3PagerUnref(pDbPage); 1047 } 1048 1049 /* 1050 ** Read an entry from the pointer map. 1051 ** 1052 ** This routine retrieves the pointer map entry for page 'key', writing 1053 ** the type and parent page number to *pEType and *pPgno respectively. 1054 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1055 */ 1056 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1057 DbPage *pDbPage; /* The pointer map page */ 1058 int iPtrmap; /* Pointer map page index */ 1059 u8 *pPtrmap; /* Pointer map page data */ 1060 int offset; /* Offset of entry in pointer map */ 1061 int rc; 1062 1063 assert( sqlite3_mutex_held(pBt->mutex) ); 1064 1065 iPtrmap = PTRMAP_PAGENO(pBt, key); 1066 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1067 if( rc!=0 ){ 1068 return rc; 1069 } 1070 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1071 1072 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1073 if( offset<0 ){ 1074 sqlite3PagerUnref(pDbPage); 1075 return SQLITE_CORRUPT_BKPT; 1076 } 1077 assert( offset <= (int)pBt->usableSize-5 ); 1078 assert( pEType!=0 ); 1079 *pEType = pPtrmap[offset]; 1080 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1081 1082 sqlite3PagerUnref(pDbPage); 1083 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1084 return SQLITE_OK; 1085 } 1086 1087 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1088 #define ptrmapPut(w,x,y,z,rc) 1089 #define ptrmapGet(w,x,y,z) SQLITE_OK 1090 #define ptrmapPutOvflPtr(x, y, z, rc) 1091 #endif 1092 1093 /* 1094 ** Given a btree page and a cell index (0 means the first cell on 1095 ** the page, 1 means the second cell, and so forth) return a pointer 1096 ** to the cell content. 1097 ** 1098 ** findCellPastPtr() does the same except it skips past the initial 1099 ** 4-byte child pointer found on interior pages, if there is one. 1100 ** 1101 ** This routine works only for pages that do not contain overflow cells. 1102 */ 1103 #define findCell(P,I) \ 1104 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 #define findCellPastPtr(P,I) \ 1106 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1107 1108 1109 /* 1110 ** This is common tail processing for btreeParseCellPtr() and 1111 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1112 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1113 ** structure. 1114 */ 1115 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1116 MemPage *pPage, /* Page containing the cell */ 1117 u8 *pCell, /* Pointer to the cell text. */ 1118 CellInfo *pInfo /* Fill in this structure */ 1119 ){ 1120 /* If the payload will not fit completely on the local page, we have 1121 ** to decide how much to store locally and how much to spill onto 1122 ** overflow pages. The strategy is to minimize the amount of unused 1123 ** space on overflow pages while keeping the amount of local storage 1124 ** in between minLocal and maxLocal. 1125 ** 1126 ** Warning: changing the way overflow payload is distributed in any 1127 ** way will result in an incompatible file format. 1128 */ 1129 int minLocal; /* Minimum amount of payload held locally */ 1130 int maxLocal; /* Maximum amount of payload held locally */ 1131 int surplus; /* Overflow payload available for local storage */ 1132 1133 minLocal = pPage->minLocal; 1134 maxLocal = pPage->maxLocal; 1135 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1136 testcase( surplus==maxLocal ); 1137 testcase( surplus==maxLocal+1 ); 1138 if( surplus <= maxLocal ){ 1139 pInfo->nLocal = (u16)surplus; 1140 }else{ 1141 pInfo->nLocal = (u16)minLocal; 1142 } 1143 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1144 } 1145 1146 /* 1147 ** The following routines are implementations of the MemPage.xParseCell() 1148 ** method. 1149 ** 1150 ** Parse a cell content block and fill in the CellInfo structure. 1151 ** 1152 ** btreeParseCellPtr() => table btree leaf nodes 1153 ** btreeParseCellNoPayload() => table btree internal nodes 1154 ** btreeParseCellPtrIndex() => index btree nodes 1155 ** 1156 ** There is also a wrapper function btreeParseCell() that works for 1157 ** all MemPage types and that references the cell by index rather than 1158 ** by pointer. 1159 */ 1160 static void btreeParseCellPtrNoPayload( 1161 MemPage *pPage, /* Page containing the cell */ 1162 u8 *pCell, /* Pointer to the cell text. */ 1163 CellInfo *pInfo /* Fill in this structure */ 1164 ){ 1165 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1166 assert( pPage->leaf==0 ); 1167 assert( pPage->childPtrSize==4 ); 1168 #ifndef SQLITE_DEBUG 1169 UNUSED_PARAMETER(pPage); 1170 #endif 1171 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1172 pInfo->nPayload = 0; 1173 pInfo->nLocal = 0; 1174 pInfo->pPayload = 0; 1175 return; 1176 } 1177 static void btreeParseCellPtr( 1178 MemPage *pPage, /* Page containing the cell */ 1179 u8 *pCell, /* Pointer to the cell text. */ 1180 CellInfo *pInfo /* Fill in this structure */ 1181 ){ 1182 u8 *pIter; /* For scanning through pCell */ 1183 u32 nPayload; /* Number of bytes of cell payload */ 1184 u64 iKey; /* Extracted Key value */ 1185 1186 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1187 assert( pPage->leaf==0 || pPage->leaf==1 ); 1188 assert( pPage->intKeyLeaf ); 1189 assert( pPage->childPtrSize==0 ); 1190 pIter = pCell; 1191 1192 /* The next block of code is equivalent to: 1193 ** 1194 ** pIter += getVarint32(pIter, nPayload); 1195 ** 1196 ** The code is inlined to avoid a function call. 1197 */ 1198 nPayload = *pIter; 1199 if( nPayload>=0x80 ){ 1200 u8 *pEnd = &pIter[8]; 1201 nPayload &= 0x7f; 1202 do{ 1203 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1204 }while( (*pIter)>=0x80 && pIter<pEnd ); 1205 } 1206 pIter++; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 iKey = *pIter; 1215 if( iKey>=0x80 ){ 1216 u8 *pEnd = &pIter[7]; 1217 iKey &= 0x7f; 1218 while(1){ 1219 iKey = (iKey<<7) | (*++pIter & 0x7f); 1220 if( (*pIter)<0x80 ) break; 1221 if( pIter>=pEnd ){ 1222 iKey = (iKey<<8) | *++pIter; 1223 break; 1224 } 1225 } 1226 } 1227 pIter++; 1228 1229 pInfo->nKey = *(i64*)&iKey; 1230 pInfo->nPayload = nPayload; 1231 pInfo->pPayload = pIter; 1232 testcase( nPayload==pPage->maxLocal ); 1233 testcase( nPayload==pPage->maxLocal+1 ); 1234 if( nPayload<=pPage->maxLocal ){ 1235 /* This is the (easy) common case where the entire payload fits 1236 ** on the local page. No overflow is required. 1237 */ 1238 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1239 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1240 pInfo->nLocal = (u16)nPayload; 1241 }else{ 1242 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1243 } 1244 } 1245 static void btreeParseCellPtrIndex( 1246 MemPage *pPage, /* Page containing the cell */ 1247 u8 *pCell, /* Pointer to the cell text. */ 1248 CellInfo *pInfo /* Fill in this structure */ 1249 ){ 1250 u8 *pIter; /* For scanning through pCell */ 1251 u32 nPayload; /* Number of bytes of cell payload */ 1252 1253 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1254 assert( pPage->leaf==0 || pPage->leaf==1 ); 1255 assert( pPage->intKeyLeaf==0 ); 1256 pIter = pCell + pPage->childPtrSize; 1257 nPayload = *pIter; 1258 if( nPayload>=0x80 ){ 1259 u8 *pEnd = &pIter[8]; 1260 nPayload &= 0x7f; 1261 do{ 1262 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1263 }while( *(pIter)>=0x80 && pIter<pEnd ); 1264 } 1265 pIter++; 1266 pInfo->nKey = nPayload; 1267 pInfo->nPayload = nPayload; 1268 pInfo->pPayload = pIter; 1269 testcase( nPayload==pPage->maxLocal ); 1270 testcase( nPayload==pPage->maxLocal+1 ); 1271 if( nPayload<=pPage->maxLocal ){ 1272 /* This is the (easy) common case where the entire payload fits 1273 ** on the local page. No overflow is required. 1274 */ 1275 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1276 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1277 pInfo->nLocal = (u16)nPayload; 1278 }else{ 1279 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1280 } 1281 } 1282 static void btreeParseCell( 1283 MemPage *pPage, /* Page containing the cell */ 1284 int iCell, /* The cell index. First cell is 0 */ 1285 CellInfo *pInfo /* Fill in this structure */ 1286 ){ 1287 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1288 } 1289 1290 /* 1291 ** The following routines are implementations of the MemPage.xCellSize 1292 ** method. 1293 ** 1294 ** Compute the total number of bytes that a Cell needs in the cell 1295 ** data area of the btree-page. The return number includes the cell 1296 ** data header and the local payload, but not any overflow page or 1297 ** the space used by the cell pointer. 1298 ** 1299 ** cellSizePtrNoPayload() => table internal nodes 1300 ** cellSizePtr() => all index nodes & table leaf nodes 1301 */ 1302 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1303 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1304 u8 *pEnd; /* End mark for a varint */ 1305 u32 nSize; /* Size value to return */ 1306 1307 #ifdef SQLITE_DEBUG 1308 /* The value returned by this function should always be the same as 1309 ** the (CellInfo.nSize) value found by doing a full parse of the 1310 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1311 ** this function verifies that this invariant is not violated. */ 1312 CellInfo debuginfo; 1313 pPage->xParseCell(pPage, pCell, &debuginfo); 1314 #endif 1315 1316 nSize = *pIter; 1317 if( nSize>=0x80 ){ 1318 pEnd = &pIter[8]; 1319 nSize &= 0x7f; 1320 do{ 1321 nSize = (nSize<<7) | (*++pIter & 0x7f); 1322 }while( *(pIter)>=0x80 && pIter<pEnd ); 1323 } 1324 pIter++; 1325 if( pPage->intKey ){ 1326 /* pIter now points at the 64-bit integer key value, a variable length 1327 ** integer. The following block moves pIter to point at the first byte 1328 ** past the end of the key value. */ 1329 pEnd = &pIter[9]; 1330 while( (*pIter++)&0x80 && pIter<pEnd ); 1331 } 1332 testcase( nSize==pPage->maxLocal ); 1333 testcase( nSize==pPage->maxLocal+1 ); 1334 if( nSize<=pPage->maxLocal ){ 1335 nSize += (u32)(pIter - pCell); 1336 if( nSize<4 ) nSize = 4; 1337 }else{ 1338 int minLocal = pPage->minLocal; 1339 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1340 testcase( nSize==pPage->maxLocal ); 1341 testcase( nSize==pPage->maxLocal+1 ); 1342 if( nSize>pPage->maxLocal ){ 1343 nSize = minLocal; 1344 } 1345 nSize += 4 + (u16)(pIter - pCell); 1346 } 1347 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1348 return (u16)nSize; 1349 } 1350 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1351 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1352 u8 *pEnd; /* End mark for a varint */ 1353 1354 #ifdef SQLITE_DEBUG 1355 /* The value returned by this function should always be the same as 1356 ** the (CellInfo.nSize) value found by doing a full parse of the 1357 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1358 ** this function verifies that this invariant is not violated. */ 1359 CellInfo debuginfo; 1360 pPage->xParseCell(pPage, pCell, &debuginfo); 1361 #else 1362 UNUSED_PARAMETER(pPage); 1363 #endif 1364 1365 assert( pPage->childPtrSize==4 ); 1366 pEnd = pIter + 9; 1367 while( (*pIter++)&0x80 && pIter<pEnd ); 1368 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1369 return (u16)(pIter - pCell); 1370 } 1371 1372 1373 #ifdef SQLITE_DEBUG 1374 /* This variation on cellSizePtr() is used inside of assert() statements 1375 ** only. */ 1376 static u16 cellSize(MemPage *pPage, int iCell){ 1377 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1378 } 1379 #endif 1380 1381 #ifndef SQLITE_OMIT_AUTOVACUUM 1382 /* 1383 ** The cell pCell is currently part of page pSrc but will ultimately be part 1384 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1385 ** pointer to an overflow page, insert an entry into the pointer-map for 1386 ** the overflow page that will be valid after pCell has been moved to pPage. 1387 */ 1388 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1389 CellInfo info; 1390 if( *pRC ) return; 1391 assert( pCell!=0 ); 1392 pPage->xParseCell(pPage, pCell, &info); 1393 if( info.nLocal<info.nPayload ){ 1394 Pgno ovfl; 1395 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1396 testcase( pSrc!=pPage ); 1397 *pRC = SQLITE_CORRUPT_BKPT; 1398 return; 1399 } 1400 ovfl = get4byte(&pCell[info.nSize-4]); 1401 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1402 } 1403 } 1404 #endif 1405 1406 1407 /* 1408 ** Defragment the page given. This routine reorganizes cells within the 1409 ** page so that there are no free-blocks on the free-block list. 1410 ** 1411 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1412 ** present in the page after this routine returns. 1413 ** 1414 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1415 ** b-tree page so that there are no freeblocks or fragment bytes, all 1416 ** unused bytes are contained in the unallocated space region, and all 1417 ** cells are packed tightly at the end of the page. 1418 */ 1419 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1420 int i; /* Loop counter */ 1421 int pc; /* Address of the i-th cell */ 1422 int hdr; /* Offset to the page header */ 1423 int size; /* Size of a cell */ 1424 int usableSize; /* Number of usable bytes on a page */ 1425 int cellOffset; /* Offset to the cell pointer array */ 1426 int cbrk; /* Offset to the cell content area */ 1427 int nCell; /* Number of cells on the page */ 1428 unsigned char *data; /* The page data */ 1429 unsigned char *temp; /* Temp area for cell content */ 1430 unsigned char *src; /* Source of content */ 1431 int iCellFirst; /* First allowable cell index */ 1432 int iCellLast; /* Last possible cell index */ 1433 1434 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1435 assert( pPage->pBt!=0 ); 1436 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1437 assert( pPage->nOverflow==0 ); 1438 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1439 temp = 0; 1440 src = data = pPage->aData; 1441 hdr = pPage->hdrOffset; 1442 cellOffset = pPage->cellOffset; 1443 nCell = pPage->nCell; 1444 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1445 iCellFirst = cellOffset + 2*nCell; 1446 usableSize = pPage->pBt->usableSize; 1447 1448 /* This block handles pages with two or fewer free blocks and nMaxFrag 1449 ** or fewer fragmented bytes. In this case it is faster to move the 1450 ** two (or one) blocks of cells using memmove() and add the required 1451 ** offsets to each pointer in the cell-pointer array than it is to 1452 ** reconstruct the entire page. */ 1453 if( (int)data[hdr+7]<=nMaxFrag ){ 1454 int iFree = get2byte(&data[hdr+1]); 1455 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1456 if( iFree ){ 1457 int iFree2 = get2byte(&data[iFree]); 1458 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1459 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1460 u8 *pEnd = &data[cellOffset + nCell*2]; 1461 u8 *pAddr; 1462 int sz2 = 0; 1463 int sz = get2byte(&data[iFree+2]); 1464 int top = get2byte(&data[hdr+5]); 1465 if( top>=iFree ){ 1466 return SQLITE_CORRUPT_PAGE(pPage); 1467 } 1468 if( iFree2 ){ 1469 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1470 sz2 = get2byte(&data[iFree2+2]); 1471 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1472 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1473 sz += sz2; 1474 }else if( NEVER(iFree+sz>usableSize) ){ 1475 return SQLITE_CORRUPT_PAGE(pPage); 1476 } 1477 1478 cbrk = top+sz; 1479 assert( cbrk+(iFree-top) <= usableSize ); 1480 memmove(&data[cbrk], &data[top], iFree-top); 1481 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1482 pc = get2byte(pAddr); 1483 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1484 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1485 } 1486 goto defragment_out; 1487 } 1488 } 1489 } 1490 1491 cbrk = usableSize; 1492 iCellLast = usableSize - 4; 1493 for(i=0; i<nCell; i++){ 1494 u8 *pAddr; /* The i-th cell pointer */ 1495 pAddr = &data[cellOffset + i*2]; 1496 pc = get2byte(pAddr); 1497 testcase( pc==iCellFirst ); 1498 testcase( pc==iCellLast ); 1499 /* These conditions have already been verified in btreeInitPage() 1500 ** if PRAGMA cell_size_check=ON. 1501 */ 1502 if( pc<iCellFirst || pc>iCellLast ){ 1503 return SQLITE_CORRUPT_PAGE(pPage); 1504 } 1505 assert( pc>=iCellFirst && pc<=iCellLast ); 1506 size = pPage->xCellSize(pPage, &src[pc]); 1507 cbrk -= size; 1508 if( cbrk<iCellFirst || pc+size>usableSize ){ 1509 return SQLITE_CORRUPT_PAGE(pPage); 1510 } 1511 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1512 testcase( cbrk+size==usableSize ); 1513 testcase( pc+size==usableSize ); 1514 put2byte(pAddr, cbrk); 1515 if( temp==0 ){ 1516 int x; 1517 if( cbrk==pc ) continue; 1518 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1519 x = get2byte(&data[hdr+5]); 1520 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1521 src = temp; 1522 } 1523 memcpy(&data[cbrk], &src[pc], size); 1524 } 1525 data[hdr+7] = 0; 1526 1527 defragment_out: 1528 assert( pPage->nFree>=0 ); 1529 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1530 return SQLITE_CORRUPT_PAGE(pPage); 1531 } 1532 assert( cbrk>=iCellFirst ); 1533 put2byte(&data[hdr+5], cbrk); 1534 data[hdr+1] = 0; 1535 data[hdr+2] = 0; 1536 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1537 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1538 return SQLITE_OK; 1539 } 1540 1541 /* 1542 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1543 ** size. If one can be found, return a pointer to the space and remove it 1544 ** from the free-list. 1545 ** 1546 ** If no suitable space can be found on the free-list, return NULL. 1547 ** 1548 ** This function may detect corruption within pPg. If corruption is 1549 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1550 ** 1551 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1552 ** will be ignored if adding the extra space to the fragmentation count 1553 ** causes the fragmentation count to exceed 60. 1554 */ 1555 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1556 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1557 u8 * const aData = pPg->aData; /* Page data */ 1558 int iAddr = hdr + 1; /* Address of ptr to pc */ 1559 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1560 int x; /* Excess size of the slot */ 1561 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1562 int size; /* Size of the free slot */ 1563 1564 assert( pc>0 ); 1565 while( pc<=maxPC ){ 1566 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1567 ** freeblock form a big-endian integer which is the size of the freeblock 1568 ** in bytes, including the 4-byte header. */ 1569 size = get2byte(&aData[pc+2]); 1570 if( (x = size - nByte)>=0 ){ 1571 testcase( x==4 ); 1572 testcase( x==3 ); 1573 if( x<4 ){ 1574 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1575 ** number of bytes in fragments may not exceed 60. */ 1576 if( aData[hdr+7]>57 ) return 0; 1577 1578 /* Remove the slot from the free-list. Update the number of 1579 ** fragmented bytes within the page. */ 1580 memcpy(&aData[iAddr], &aData[pc], 2); 1581 aData[hdr+7] += (u8)x; 1582 }else if( x+pc > maxPC ){ 1583 /* This slot extends off the end of the usable part of the page */ 1584 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1585 return 0; 1586 }else{ 1587 /* The slot remains on the free-list. Reduce its size to account 1588 ** for the portion used by the new allocation. */ 1589 put2byte(&aData[pc+2], x); 1590 } 1591 return &aData[pc + x]; 1592 } 1593 iAddr = pc; 1594 pc = get2byte(&aData[pc]); 1595 if( pc<=iAddr+size ){ 1596 if( pc ){ 1597 /* The next slot in the chain is not past the end of the current slot */ 1598 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1599 } 1600 return 0; 1601 } 1602 } 1603 if( pc>maxPC+nByte-4 ){ 1604 /* The free slot chain extends off the end of the page */ 1605 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1606 } 1607 return 0; 1608 } 1609 1610 /* 1611 ** Allocate nByte bytes of space from within the B-Tree page passed 1612 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1613 ** of the first byte of allocated space. Return either SQLITE_OK or 1614 ** an error code (usually SQLITE_CORRUPT). 1615 ** 1616 ** The caller guarantees that there is sufficient space to make the 1617 ** allocation. This routine might need to defragment in order to bring 1618 ** all the space together, however. This routine will avoid using 1619 ** the first two bytes past the cell pointer area since presumably this 1620 ** allocation is being made in order to insert a new cell, so we will 1621 ** also end up needing a new cell pointer. 1622 */ 1623 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1624 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1625 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1626 int top; /* First byte of cell content area */ 1627 int rc = SQLITE_OK; /* Integer return code */ 1628 int gap; /* First byte of gap between cell pointers and cell content */ 1629 1630 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1631 assert( pPage->pBt ); 1632 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1633 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1634 assert( pPage->nFree>=nByte ); 1635 assert( pPage->nOverflow==0 ); 1636 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1637 1638 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1639 gap = pPage->cellOffset + 2*pPage->nCell; 1640 assert( gap<=65536 ); 1641 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1642 ** and the reserved space is zero (the usual value for reserved space) 1643 ** then the cell content offset of an empty page wants to be 65536. 1644 ** However, that integer is too large to be stored in a 2-byte unsigned 1645 ** integer, so a value of 0 is used in its place. */ 1646 top = get2byte(&data[hdr+5]); 1647 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1648 if( gap>top ){ 1649 if( top==0 && pPage->pBt->usableSize==65536 ){ 1650 top = 65536; 1651 }else{ 1652 return SQLITE_CORRUPT_PAGE(pPage); 1653 } 1654 } 1655 1656 /* If there is enough space between gap and top for one more cell pointer, 1657 ** and if the freelist is not empty, then search the 1658 ** freelist looking for a slot big enough to satisfy the request. 1659 */ 1660 testcase( gap+2==top ); 1661 testcase( gap+1==top ); 1662 testcase( gap==top ); 1663 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1664 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1665 if( pSpace ){ 1666 int g2; 1667 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1668 *pIdx = g2 = (int)(pSpace-data); 1669 if( NEVER(g2<=gap) ){ 1670 return SQLITE_CORRUPT_PAGE(pPage); 1671 }else{ 1672 return SQLITE_OK; 1673 } 1674 }else if( rc ){ 1675 return rc; 1676 } 1677 } 1678 1679 /* The request could not be fulfilled using a freelist slot. Check 1680 ** to see if defragmentation is necessary. 1681 */ 1682 testcase( gap+2+nByte==top ); 1683 if( gap+2+nByte>top ){ 1684 assert( pPage->nCell>0 || CORRUPT_DB ); 1685 assert( pPage->nFree>=0 ); 1686 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1687 if( rc ) return rc; 1688 top = get2byteNotZero(&data[hdr+5]); 1689 assert( gap+2+nByte<=top ); 1690 } 1691 1692 1693 /* Allocate memory from the gap in between the cell pointer array 1694 ** and the cell content area. The btreeComputeFreeSpace() call has already 1695 ** validated the freelist. Given that the freelist is valid, there 1696 ** is no way that the allocation can extend off the end of the page. 1697 ** The assert() below verifies the previous sentence. 1698 */ 1699 top -= nByte; 1700 put2byte(&data[hdr+5], top); 1701 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1702 *pIdx = top; 1703 return SQLITE_OK; 1704 } 1705 1706 /* 1707 ** Return a section of the pPage->aData to the freelist. 1708 ** The first byte of the new free block is pPage->aData[iStart] 1709 ** and the size of the block is iSize bytes. 1710 ** 1711 ** Adjacent freeblocks are coalesced. 1712 ** 1713 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1714 ** that routine will not detect overlap between cells or freeblocks. Nor 1715 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1716 ** at the end of the page. So do additional corruption checks inside this 1717 ** routine and return SQLITE_CORRUPT if any problems are found. 1718 */ 1719 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1720 u16 iPtr; /* Address of ptr to next freeblock */ 1721 u16 iFreeBlk; /* Address of the next freeblock */ 1722 u8 hdr; /* Page header size. 0 or 100 */ 1723 u8 nFrag = 0; /* Reduction in fragmentation */ 1724 u16 iOrigSize = iSize; /* Original value of iSize */ 1725 u16 x; /* Offset to cell content area */ 1726 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1727 unsigned char *data = pPage->aData; /* Page content */ 1728 1729 assert( pPage->pBt!=0 ); 1730 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1731 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1732 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1733 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1734 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1735 assert( iStart<=pPage->pBt->usableSize-4 ); 1736 1737 /* The list of freeblocks must be in ascending order. Find the 1738 ** spot on the list where iStart should be inserted. 1739 */ 1740 hdr = pPage->hdrOffset; 1741 iPtr = hdr + 1; 1742 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1743 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1744 }else{ 1745 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1746 if( iFreeBlk<iPtr+4 ){ 1747 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1748 return SQLITE_CORRUPT_PAGE(pPage); 1749 } 1750 iPtr = iFreeBlk; 1751 } 1752 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1753 return SQLITE_CORRUPT_PAGE(pPage); 1754 } 1755 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1756 1757 /* At this point: 1758 ** iFreeBlk: First freeblock after iStart, or zero if none 1759 ** iPtr: The address of a pointer to iFreeBlk 1760 ** 1761 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1762 */ 1763 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1764 nFrag = iFreeBlk - iEnd; 1765 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1766 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1767 if( iEnd > pPage->pBt->usableSize ){ 1768 return SQLITE_CORRUPT_PAGE(pPage); 1769 } 1770 iSize = iEnd - iStart; 1771 iFreeBlk = get2byte(&data[iFreeBlk]); 1772 } 1773 1774 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1775 ** pointer in the page header) then check to see if iStart should be 1776 ** coalesced onto the end of iPtr. 1777 */ 1778 if( iPtr>hdr+1 ){ 1779 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1780 if( iPtrEnd+3>=iStart ){ 1781 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1782 nFrag += iStart - iPtrEnd; 1783 iSize = iEnd - iPtr; 1784 iStart = iPtr; 1785 } 1786 } 1787 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1788 data[hdr+7] -= nFrag; 1789 } 1790 x = get2byte(&data[hdr+5]); 1791 if( iStart<=x ){ 1792 /* The new freeblock is at the beginning of the cell content area, 1793 ** so just extend the cell content area rather than create another 1794 ** freelist entry */ 1795 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1796 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1797 put2byte(&data[hdr+1], iFreeBlk); 1798 put2byte(&data[hdr+5], iEnd); 1799 }else{ 1800 /* Insert the new freeblock into the freelist */ 1801 put2byte(&data[iPtr], iStart); 1802 } 1803 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1804 /* Overwrite deleted information with zeros when the secure_delete 1805 ** option is enabled */ 1806 memset(&data[iStart], 0, iSize); 1807 } 1808 put2byte(&data[iStart], iFreeBlk); 1809 put2byte(&data[iStart+2], iSize); 1810 pPage->nFree += iOrigSize; 1811 return SQLITE_OK; 1812 } 1813 1814 /* 1815 ** Decode the flags byte (the first byte of the header) for a page 1816 ** and initialize fields of the MemPage structure accordingly. 1817 ** 1818 ** Only the following combinations are supported. Anything different 1819 ** indicates a corrupt database files: 1820 ** 1821 ** PTF_ZERODATA 1822 ** PTF_ZERODATA | PTF_LEAF 1823 ** PTF_LEAFDATA | PTF_INTKEY 1824 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1825 */ 1826 static int decodeFlags(MemPage *pPage, int flagByte){ 1827 BtShared *pBt; /* A copy of pPage->pBt */ 1828 1829 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1830 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1831 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1832 flagByte &= ~PTF_LEAF; 1833 pPage->childPtrSize = 4-4*pPage->leaf; 1834 pPage->xCellSize = cellSizePtr; 1835 pBt = pPage->pBt; 1836 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1837 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1838 ** interior table b-tree page. */ 1839 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1840 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1841 ** leaf table b-tree page. */ 1842 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1843 pPage->intKey = 1; 1844 if( pPage->leaf ){ 1845 pPage->intKeyLeaf = 1; 1846 pPage->xParseCell = btreeParseCellPtr; 1847 }else{ 1848 pPage->intKeyLeaf = 0; 1849 pPage->xCellSize = cellSizePtrNoPayload; 1850 pPage->xParseCell = btreeParseCellPtrNoPayload; 1851 } 1852 pPage->maxLocal = pBt->maxLeaf; 1853 pPage->minLocal = pBt->minLeaf; 1854 }else if( flagByte==PTF_ZERODATA ){ 1855 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1856 ** interior index b-tree page. */ 1857 assert( (PTF_ZERODATA)==2 ); 1858 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1859 ** leaf index b-tree page. */ 1860 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1861 pPage->intKey = 0; 1862 pPage->intKeyLeaf = 0; 1863 pPage->xParseCell = btreeParseCellPtrIndex; 1864 pPage->maxLocal = pBt->maxLocal; 1865 pPage->minLocal = pBt->minLocal; 1866 }else{ 1867 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1868 ** an error. */ 1869 return SQLITE_CORRUPT_PAGE(pPage); 1870 } 1871 pPage->max1bytePayload = pBt->max1bytePayload; 1872 return SQLITE_OK; 1873 } 1874 1875 /* 1876 ** Compute the amount of freespace on the page. In other words, fill 1877 ** in the pPage->nFree field. 1878 */ 1879 static int btreeComputeFreeSpace(MemPage *pPage){ 1880 int pc; /* Address of a freeblock within pPage->aData[] */ 1881 u8 hdr; /* Offset to beginning of page header */ 1882 u8 *data; /* Equal to pPage->aData */ 1883 int usableSize; /* Amount of usable space on each page */ 1884 int nFree; /* Number of unused bytes on the page */ 1885 int top; /* First byte of the cell content area */ 1886 int iCellFirst; /* First allowable cell or freeblock offset */ 1887 int iCellLast; /* Last possible cell or freeblock offset */ 1888 1889 assert( pPage->pBt!=0 ); 1890 assert( pPage->pBt->db!=0 ); 1891 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1892 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1893 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1894 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1895 assert( pPage->isInit==1 ); 1896 assert( pPage->nFree<0 ); 1897 1898 usableSize = pPage->pBt->usableSize; 1899 hdr = pPage->hdrOffset; 1900 data = pPage->aData; 1901 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1902 ** the start of the cell content area. A zero value for this integer is 1903 ** interpreted as 65536. */ 1904 top = get2byteNotZero(&data[hdr+5]); 1905 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1906 iCellLast = usableSize - 4; 1907 1908 /* Compute the total free space on the page 1909 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1910 ** start of the first freeblock on the page, or is zero if there are no 1911 ** freeblocks. */ 1912 pc = get2byte(&data[hdr+1]); 1913 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1914 if( pc>0 ){ 1915 u32 next, size; 1916 if( pc<top ){ 1917 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1918 ** always be at least one cell before the first freeblock. 1919 */ 1920 return SQLITE_CORRUPT_PAGE(pPage); 1921 } 1922 while( 1 ){ 1923 if( pc>iCellLast ){ 1924 /* Freeblock off the end of the page */ 1925 return SQLITE_CORRUPT_PAGE(pPage); 1926 } 1927 next = get2byte(&data[pc]); 1928 size = get2byte(&data[pc+2]); 1929 nFree = nFree + size; 1930 if( next<=pc+size+3 ) break; 1931 pc = next; 1932 } 1933 if( next>0 ){ 1934 /* Freeblock not in ascending order */ 1935 return SQLITE_CORRUPT_PAGE(pPage); 1936 } 1937 if( pc+size>(unsigned int)usableSize ){ 1938 /* Last freeblock extends past page end */ 1939 return SQLITE_CORRUPT_PAGE(pPage); 1940 } 1941 } 1942 1943 /* At this point, nFree contains the sum of the offset to the start 1944 ** of the cell-content area plus the number of free bytes within 1945 ** the cell-content area. If this is greater than the usable-size 1946 ** of the page, then the page must be corrupted. This check also 1947 ** serves to verify that the offset to the start of the cell-content 1948 ** area, according to the page header, lies within the page. 1949 */ 1950 if( nFree>usableSize || nFree<iCellFirst ){ 1951 return SQLITE_CORRUPT_PAGE(pPage); 1952 } 1953 pPage->nFree = (u16)(nFree - iCellFirst); 1954 return SQLITE_OK; 1955 } 1956 1957 /* 1958 ** Do additional sanity check after btreeInitPage() if 1959 ** PRAGMA cell_size_check=ON 1960 */ 1961 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1962 int iCellFirst; /* First allowable cell or freeblock offset */ 1963 int iCellLast; /* Last possible cell or freeblock offset */ 1964 int i; /* Index into the cell pointer array */ 1965 int sz; /* Size of a cell */ 1966 int pc; /* Address of a freeblock within pPage->aData[] */ 1967 u8 *data; /* Equal to pPage->aData */ 1968 int usableSize; /* Maximum usable space on the page */ 1969 int cellOffset; /* Start of cell content area */ 1970 1971 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 1972 usableSize = pPage->pBt->usableSize; 1973 iCellLast = usableSize - 4; 1974 data = pPage->aData; 1975 cellOffset = pPage->cellOffset; 1976 if( !pPage->leaf ) iCellLast--; 1977 for(i=0; i<pPage->nCell; i++){ 1978 pc = get2byteAligned(&data[cellOffset+i*2]); 1979 testcase( pc==iCellFirst ); 1980 testcase( pc==iCellLast ); 1981 if( pc<iCellFirst || pc>iCellLast ){ 1982 return SQLITE_CORRUPT_PAGE(pPage); 1983 } 1984 sz = pPage->xCellSize(pPage, &data[pc]); 1985 testcase( pc+sz==usableSize ); 1986 if( pc+sz>usableSize ){ 1987 return SQLITE_CORRUPT_PAGE(pPage); 1988 } 1989 } 1990 return SQLITE_OK; 1991 } 1992 1993 /* 1994 ** Initialize the auxiliary information for a disk block. 1995 ** 1996 ** Return SQLITE_OK on success. If we see that the page does 1997 ** not contain a well-formed database page, then return 1998 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1999 ** guarantee that the page is well-formed. It only shows that 2000 ** we failed to detect any corruption. 2001 */ 2002 static int btreeInitPage(MemPage *pPage){ 2003 u8 *data; /* Equal to pPage->aData */ 2004 BtShared *pBt; /* The main btree structure */ 2005 2006 assert( pPage->pBt!=0 ); 2007 assert( pPage->pBt->db!=0 ); 2008 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2009 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2010 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2011 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2012 assert( pPage->isInit==0 ); 2013 2014 pBt = pPage->pBt; 2015 data = pPage->aData + pPage->hdrOffset; 2016 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2017 ** the b-tree page type. */ 2018 if( decodeFlags(pPage, data[0]) ){ 2019 return SQLITE_CORRUPT_PAGE(pPage); 2020 } 2021 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2022 pPage->maskPage = (u16)(pBt->pageSize - 1); 2023 pPage->nOverflow = 0; 2024 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2025 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2026 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2027 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2028 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2029 ** number of cells on the page. */ 2030 pPage->nCell = get2byte(&data[3]); 2031 if( pPage->nCell>MX_CELL(pBt) ){ 2032 /* To many cells for a single page. The page must be corrupt */ 2033 return SQLITE_CORRUPT_PAGE(pPage); 2034 } 2035 testcase( pPage->nCell==MX_CELL(pBt) ); 2036 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2037 ** possible for a root page of a table that contains no rows) then the 2038 ** offset to the cell content area will equal the page size minus the 2039 ** bytes of reserved space. */ 2040 assert( pPage->nCell>0 2041 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2042 || CORRUPT_DB ); 2043 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2044 pPage->isInit = 1; 2045 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2046 return btreeCellSizeCheck(pPage); 2047 } 2048 return SQLITE_OK; 2049 } 2050 2051 /* 2052 ** Set up a raw page so that it looks like a database page holding 2053 ** no entries. 2054 */ 2055 static void zeroPage(MemPage *pPage, int flags){ 2056 unsigned char *data = pPage->aData; 2057 BtShared *pBt = pPage->pBt; 2058 u8 hdr = pPage->hdrOffset; 2059 u16 first; 2060 2061 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2062 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2063 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2064 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2065 assert( sqlite3_mutex_held(pBt->mutex) ); 2066 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2067 memset(&data[hdr], 0, pBt->usableSize - hdr); 2068 } 2069 data[hdr] = (char)flags; 2070 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2071 memset(&data[hdr+1], 0, 4); 2072 data[hdr+7] = 0; 2073 put2byte(&data[hdr+5], pBt->usableSize); 2074 pPage->nFree = (u16)(pBt->usableSize - first); 2075 decodeFlags(pPage, flags); 2076 pPage->cellOffset = first; 2077 pPage->aDataEnd = &data[pBt->usableSize]; 2078 pPage->aCellIdx = &data[first]; 2079 pPage->aDataOfst = &data[pPage->childPtrSize]; 2080 pPage->nOverflow = 0; 2081 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2082 pPage->maskPage = (u16)(pBt->pageSize - 1); 2083 pPage->nCell = 0; 2084 pPage->isInit = 1; 2085 } 2086 2087 2088 /* 2089 ** Convert a DbPage obtained from the pager into a MemPage used by 2090 ** the btree layer. 2091 */ 2092 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2093 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2094 if( pgno!=pPage->pgno ){ 2095 pPage->aData = sqlite3PagerGetData(pDbPage); 2096 pPage->pDbPage = pDbPage; 2097 pPage->pBt = pBt; 2098 pPage->pgno = pgno; 2099 pPage->hdrOffset = pgno==1 ? 100 : 0; 2100 } 2101 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2102 return pPage; 2103 } 2104 2105 /* 2106 ** Get a page from the pager. Initialize the MemPage.pBt and 2107 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2108 ** 2109 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2110 ** about the content of the page at this time. So do not go to the disk 2111 ** to fetch the content. Just fill in the content with zeros for now. 2112 ** If in the future we call sqlite3PagerWrite() on this page, that 2113 ** means we have started to be concerned about content and the disk 2114 ** read should occur at that point. 2115 */ 2116 static int btreeGetPage( 2117 BtShared *pBt, /* The btree */ 2118 Pgno pgno, /* Number of the page to fetch */ 2119 MemPage **ppPage, /* Return the page in this parameter */ 2120 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2121 ){ 2122 int rc; 2123 DbPage *pDbPage; 2124 2125 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2126 assert( sqlite3_mutex_held(pBt->mutex) ); 2127 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2128 if( rc ) return rc; 2129 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2130 return SQLITE_OK; 2131 } 2132 2133 /* 2134 ** Retrieve a page from the pager cache. If the requested page is not 2135 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2136 ** MemPage.aData elements if needed. 2137 */ 2138 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2139 DbPage *pDbPage; 2140 assert( sqlite3_mutex_held(pBt->mutex) ); 2141 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2142 if( pDbPage ){ 2143 return btreePageFromDbPage(pDbPage, pgno, pBt); 2144 } 2145 return 0; 2146 } 2147 2148 /* 2149 ** Return the size of the database file in pages. If there is any kind of 2150 ** error, return ((unsigned int)-1). 2151 */ 2152 static Pgno btreePagecount(BtShared *pBt){ 2153 return pBt->nPage; 2154 } 2155 Pgno sqlite3BtreeLastPage(Btree *p){ 2156 assert( sqlite3BtreeHoldsMutex(p) ); 2157 return btreePagecount(p->pBt); 2158 } 2159 2160 /* 2161 ** Get a page from the pager and initialize it. 2162 ** 2163 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2164 ** call. Do additional sanity checking on the page in this case. 2165 ** And if the fetch fails, this routine must decrement pCur->iPage. 2166 ** 2167 ** The page is fetched as read-write unless pCur is not NULL and is 2168 ** a read-only cursor. 2169 ** 2170 ** If an error occurs, then *ppPage is undefined. It 2171 ** may remain unchanged, or it may be set to an invalid value. 2172 */ 2173 static int getAndInitPage( 2174 BtShared *pBt, /* The database file */ 2175 Pgno pgno, /* Number of the page to get */ 2176 MemPage **ppPage, /* Write the page pointer here */ 2177 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2178 int bReadOnly /* True for a read-only page */ 2179 ){ 2180 int rc; 2181 DbPage *pDbPage; 2182 assert( sqlite3_mutex_held(pBt->mutex) ); 2183 assert( pCur==0 || ppPage==&pCur->pPage ); 2184 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2185 assert( pCur==0 || pCur->iPage>0 ); 2186 2187 if( pgno>btreePagecount(pBt) ){ 2188 rc = SQLITE_CORRUPT_BKPT; 2189 goto getAndInitPage_error1; 2190 } 2191 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2192 if( rc ){ 2193 goto getAndInitPage_error1; 2194 } 2195 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2196 if( (*ppPage)->isInit==0 ){ 2197 btreePageFromDbPage(pDbPage, pgno, pBt); 2198 rc = btreeInitPage(*ppPage); 2199 if( rc!=SQLITE_OK ){ 2200 goto getAndInitPage_error2; 2201 } 2202 } 2203 assert( (*ppPage)->pgno==pgno ); 2204 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2205 2206 /* If obtaining a child page for a cursor, we must verify that the page is 2207 ** compatible with the root page. */ 2208 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2209 rc = SQLITE_CORRUPT_PGNO(pgno); 2210 goto getAndInitPage_error2; 2211 } 2212 return SQLITE_OK; 2213 2214 getAndInitPage_error2: 2215 releasePage(*ppPage); 2216 getAndInitPage_error1: 2217 if( pCur ){ 2218 pCur->iPage--; 2219 pCur->pPage = pCur->apPage[pCur->iPage]; 2220 } 2221 testcase( pgno==0 ); 2222 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2223 return rc; 2224 } 2225 2226 /* 2227 ** Release a MemPage. This should be called once for each prior 2228 ** call to btreeGetPage. 2229 ** 2230 ** Page1 is a special case and must be released using releasePageOne(). 2231 */ 2232 static void releasePageNotNull(MemPage *pPage){ 2233 assert( pPage->aData ); 2234 assert( pPage->pBt ); 2235 assert( pPage->pDbPage!=0 ); 2236 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2237 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2238 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2239 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2240 } 2241 static void releasePage(MemPage *pPage){ 2242 if( pPage ) releasePageNotNull(pPage); 2243 } 2244 static void releasePageOne(MemPage *pPage){ 2245 assert( pPage!=0 ); 2246 assert( pPage->aData ); 2247 assert( pPage->pBt ); 2248 assert( pPage->pDbPage!=0 ); 2249 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2250 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2251 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2252 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2253 } 2254 2255 /* 2256 ** Get an unused page. 2257 ** 2258 ** This works just like btreeGetPage() with the addition: 2259 ** 2260 ** * If the page is already in use for some other purpose, immediately 2261 ** release it and return an SQLITE_CURRUPT error. 2262 ** * Make sure the isInit flag is clear 2263 */ 2264 static int btreeGetUnusedPage( 2265 BtShared *pBt, /* The btree */ 2266 Pgno pgno, /* Number of the page to fetch */ 2267 MemPage **ppPage, /* Return the page in this parameter */ 2268 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2269 ){ 2270 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2271 if( rc==SQLITE_OK ){ 2272 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2273 releasePage(*ppPage); 2274 *ppPage = 0; 2275 return SQLITE_CORRUPT_BKPT; 2276 } 2277 (*ppPage)->isInit = 0; 2278 }else{ 2279 *ppPage = 0; 2280 } 2281 return rc; 2282 } 2283 2284 2285 /* 2286 ** During a rollback, when the pager reloads information into the cache 2287 ** so that the cache is restored to its original state at the start of 2288 ** the transaction, for each page restored this routine is called. 2289 ** 2290 ** This routine needs to reset the extra data section at the end of the 2291 ** page to agree with the restored data. 2292 */ 2293 static void pageReinit(DbPage *pData){ 2294 MemPage *pPage; 2295 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2296 assert( sqlite3PagerPageRefcount(pData)>0 ); 2297 if( pPage->isInit ){ 2298 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2299 pPage->isInit = 0; 2300 if( sqlite3PagerPageRefcount(pData)>1 ){ 2301 /* pPage might not be a btree page; it might be an overflow page 2302 ** or ptrmap page or a free page. In those cases, the following 2303 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2304 ** But no harm is done by this. And it is very important that 2305 ** btreeInitPage() be called on every btree page so we make 2306 ** the call for every page that comes in for re-initing. */ 2307 btreeInitPage(pPage); 2308 } 2309 } 2310 } 2311 2312 /* 2313 ** Invoke the busy handler for a btree. 2314 */ 2315 static int btreeInvokeBusyHandler(void *pArg){ 2316 BtShared *pBt = (BtShared*)pArg; 2317 assert( pBt->db ); 2318 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2319 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2320 } 2321 2322 /* 2323 ** Open a database file. 2324 ** 2325 ** zFilename is the name of the database file. If zFilename is NULL 2326 ** then an ephemeral database is created. The ephemeral database might 2327 ** be exclusively in memory, or it might use a disk-based memory cache. 2328 ** Either way, the ephemeral database will be automatically deleted 2329 ** when sqlite3BtreeClose() is called. 2330 ** 2331 ** If zFilename is ":memory:" then an in-memory database is created 2332 ** that is automatically destroyed when it is closed. 2333 ** 2334 ** The "flags" parameter is a bitmask that might contain bits like 2335 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2336 ** 2337 ** If the database is already opened in the same database connection 2338 ** and we are in shared cache mode, then the open will fail with an 2339 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2340 ** objects in the same database connection since doing so will lead 2341 ** to problems with locking. 2342 */ 2343 int sqlite3BtreeOpen( 2344 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2345 const char *zFilename, /* Name of the file containing the BTree database */ 2346 sqlite3 *db, /* Associated database handle */ 2347 Btree **ppBtree, /* Pointer to new Btree object written here */ 2348 int flags, /* Options */ 2349 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2350 ){ 2351 BtShared *pBt = 0; /* Shared part of btree structure */ 2352 Btree *p; /* Handle to return */ 2353 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2354 int rc = SQLITE_OK; /* Result code from this function */ 2355 u8 nReserve; /* Byte of unused space on each page */ 2356 unsigned char zDbHeader[100]; /* Database header content */ 2357 2358 /* True if opening an ephemeral, temporary database */ 2359 const int isTempDb = zFilename==0 || zFilename[0]==0; 2360 2361 /* Set the variable isMemdb to true for an in-memory database, or 2362 ** false for a file-based database. 2363 */ 2364 #ifdef SQLITE_OMIT_MEMORYDB 2365 const int isMemdb = 0; 2366 #else 2367 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2368 || (isTempDb && sqlite3TempInMemory(db)) 2369 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2370 #endif 2371 2372 assert( db!=0 ); 2373 assert( pVfs!=0 ); 2374 assert( sqlite3_mutex_held(db->mutex) ); 2375 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2376 2377 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2378 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2379 2380 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2381 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2382 2383 if( isMemdb ){ 2384 flags |= BTREE_MEMORY; 2385 } 2386 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2387 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2388 } 2389 p = sqlite3MallocZero(sizeof(Btree)); 2390 if( !p ){ 2391 return SQLITE_NOMEM_BKPT; 2392 } 2393 p->inTrans = TRANS_NONE; 2394 p->db = db; 2395 #ifndef SQLITE_OMIT_SHARED_CACHE 2396 p->lock.pBtree = p; 2397 p->lock.iTable = 1; 2398 #endif 2399 2400 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2401 /* 2402 ** If this Btree is a candidate for shared cache, try to find an 2403 ** existing BtShared object that we can share with 2404 */ 2405 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2406 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2407 int nFilename = sqlite3Strlen30(zFilename)+1; 2408 int nFullPathname = pVfs->mxPathname+1; 2409 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2410 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2411 2412 p->sharable = 1; 2413 if( !zFullPathname ){ 2414 sqlite3_free(p); 2415 return SQLITE_NOMEM_BKPT; 2416 } 2417 if( isMemdb ){ 2418 memcpy(zFullPathname, zFilename, nFilename); 2419 }else{ 2420 rc = sqlite3OsFullPathname(pVfs, zFilename, 2421 nFullPathname, zFullPathname); 2422 if( rc ){ 2423 if( rc==SQLITE_OK_SYMLINK ){ 2424 rc = SQLITE_OK; 2425 }else{ 2426 sqlite3_free(zFullPathname); 2427 sqlite3_free(p); 2428 return rc; 2429 } 2430 } 2431 } 2432 #if SQLITE_THREADSAFE 2433 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2434 sqlite3_mutex_enter(mutexOpen); 2435 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2436 sqlite3_mutex_enter(mutexShared); 2437 #endif 2438 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2439 assert( pBt->nRef>0 ); 2440 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2441 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2442 int iDb; 2443 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2444 Btree *pExisting = db->aDb[iDb].pBt; 2445 if( pExisting && pExisting->pBt==pBt ){ 2446 sqlite3_mutex_leave(mutexShared); 2447 sqlite3_mutex_leave(mutexOpen); 2448 sqlite3_free(zFullPathname); 2449 sqlite3_free(p); 2450 return SQLITE_CONSTRAINT; 2451 } 2452 } 2453 p->pBt = pBt; 2454 pBt->nRef++; 2455 break; 2456 } 2457 } 2458 sqlite3_mutex_leave(mutexShared); 2459 sqlite3_free(zFullPathname); 2460 } 2461 #ifdef SQLITE_DEBUG 2462 else{ 2463 /* In debug mode, we mark all persistent databases as sharable 2464 ** even when they are not. This exercises the locking code and 2465 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2466 ** statements to find locking problems. 2467 */ 2468 p->sharable = 1; 2469 } 2470 #endif 2471 } 2472 #endif 2473 if( pBt==0 ){ 2474 /* 2475 ** The following asserts make sure that structures used by the btree are 2476 ** the right size. This is to guard against size changes that result 2477 ** when compiling on a different architecture. 2478 */ 2479 assert( sizeof(i64)==8 ); 2480 assert( sizeof(u64)==8 ); 2481 assert( sizeof(u32)==4 ); 2482 assert( sizeof(u16)==2 ); 2483 assert( sizeof(Pgno)==4 ); 2484 2485 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2486 if( pBt==0 ){ 2487 rc = SQLITE_NOMEM_BKPT; 2488 goto btree_open_out; 2489 } 2490 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2491 sizeof(MemPage), flags, vfsFlags, pageReinit); 2492 if( rc==SQLITE_OK ){ 2493 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2494 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2495 } 2496 if( rc!=SQLITE_OK ){ 2497 goto btree_open_out; 2498 } 2499 pBt->openFlags = (u8)flags; 2500 pBt->db = db; 2501 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2502 p->pBt = pBt; 2503 2504 pBt->pCursor = 0; 2505 pBt->pPage1 = 0; 2506 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2507 #if defined(SQLITE_SECURE_DELETE) 2508 pBt->btsFlags |= BTS_SECURE_DELETE; 2509 #elif defined(SQLITE_FAST_SECURE_DELETE) 2510 pBt->btsFlags |= BTS_OVERWRITE; 2511 #endif 2512 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2513 ** determined by the 2-byte integer located at an offset of 16 bytes from 2514 ** the beginning of the database file. */ 2515 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2516 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2517 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2518 pBt->pageSize = 0; 2519 #ifndef SQLITE_OMIT_AUTOVACUUM 2520 /* If the magic name ":memory:" will create an in-memory database, then 2521 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2522 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2523 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2524 ** regular file-name. In this case the auto-vacuum applies as per normal. 2525 */ 2526 if( zFilename && !isMemdb ){ 2527 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2528 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2529 } 2530 #endif 2531 nReserve = 0; 2532 }else{ 2533 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2534 ** determined by the one-byte unsigned integer found at an offset of 20 2535 ** into the database file header. */ 2536 nReserve = zDbHeader[20]; 2537 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2538 #ifndef SQLITE_OMIT_AUTOVACUUM 2539 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2540 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2541 #endif 2542 } 2543 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2544 if( rc ) goto btree_open_out; 2545 pBt->usableSize = pBt->pageSize - nReserve; 2546 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2547 2548 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2549 /* Add the new BtShared object to the linked list sharable BtShareds. 2550 */ 2551 pBt->nRef = 1; 2552 if( p->sharable ){ 2553 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2554 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2555 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2556 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2557 if( pBt->mutex==0 ){ 2558 rc = SQLITE_NOMEM_BKPT; 2559 goto btree_open_out; 2560 } 2561 } 2562 sqlite3_mutex_enter(mutexShared); 2563 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2564 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2565 sqlite3_mutex_leave(mutexShared); 2566 } 2567 #endif 2568 } 2569 2570 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2571 /* If the new Btree uses a sharable pBtShared, then link the new 2572 ** Btree into the list of all sharable Btrees for the same connection. 2573 ** The list is kept in ascending order by pBt address. 2574 */ 2575 if( p->sharable ){ 2576 int i; 2577 Btree *pSib; 2578 for(i=0; i<db->nDb; i++){ 2579 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2580 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2581 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2582 p->pNext = pSib; 2583 p->pPrev = 0; 2584 pSib->pPrev = p; 2585 }else{ 2586 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2587 pSib = pSib->pNext; 2588 } 2589 p->pNext = pSib->pNext; 2590 p->pPrev = pSib; 2591 if( p->pNext ){ 2592 p->pNext->pPrev = p; 2593 } 2594 pSib->pNext = p; 2595 } 2596 break; 2597 } 2598 } 2599 } 2600 #endif 2601 *ppBtree = p; 2602 2603 btree_open_out: 2604 if( rc!=SQLITE_OK ){ 2605 if( pBt && pBt->pPager ){ 2606 sqlite3PagerClose(pBt->pPager, 0); 2607 } 2608 sqlite3_free(pBt); 2609 sqlite3_free(p); 2610 *ppBtree = 0; 2611 }else{ 2612 sqlite3_file *pFile; 2613 2614 /* If the B-Tree was successfully opened, set the pager-cache size to the 2615 ** default value. Except, when opening on an existing shared pager-cache, 2616 ** do not change the pager-cache size. 2617 */ 2618 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2619 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2620 } 2621 2622 pFile = sqlite3PagerFile(pBt->pPager); 2623 if( pFile->pMethods ){ 2624 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2625 } 2626 } 2627 if( mutexOpen ){ 2628 assert( sqlite3_mutex_held(mutexOpen) ); 2629 sqlite3_mutex_leave(mutexOpen); 2630 } 2631 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2632 return rc; 2633 } 2634 2635 /* 2636 ** Decrement the BtShared.nRef counter. When it reaches zero, 2637 ** remove the BtShared structure from the sharing list. Return 2638 ** true if the BtShared.nRef counter reaches zero and return 2639 ** false if it is still positive. 2640 */ 2641 static int removeFromSharingList(BtShared *pBt){ 2642 #ifndef SQLITE_OMIT_SHARED_CACHE 2643 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2644 BtShared *pList; 2645 int removed = 0; 2646 2647 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2648 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2649 sqlite3_mutex_enter(pMainMtx); 2650 pBt->nRef--; 2651 if( pBt->nRef<=0 ){ 2652 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2653 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2654 }else{ 2655 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2656 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2657 pList=pList->pNext; 2658 } 2659 if( ALWAYS(pList) ){ 2660 pList->pNext = pBt->pNext; 2661 } 2662 } 2663 if( SQLITE_THREADSAFE ){ 2664 sqlite3_mutex_free(pBt->mutex); 2665 } 2666 removed = 1; 2667 } 2668 sqlite3_mutex_leave(pMainMtx); 2669 return removed; 2670 #else 2671 return 1; 2672 #endif 2673 } 2674 2675 /* 2676 ** Make sure pBt->pTmpSpace points to an allocation of 2677 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2678 ** pointer. 2679 */ 2680 static void allocateTempSpace(BtShared *pBt){ 2681 if( !pBt->pTmpSpace ){ 2682 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2683 2684 /* One of the uses of pBt->pTmpSpace is to format cells before 2685 ** inserting them into a leaf page (function fillInCell()). If 2686 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2687 ** by the various routines that manipulate binary cells. Which 2688 ** can mean that fillInCell() only initializes the first 2 or 3 2689 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2690 ** it into a database page. This is not actually a problem, but it 2691 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2692 ** data is passed to system call write(). So to avoid this error, 2693 ** zero the first 4 bytes of temp space here. 2694 ** 2695 ** Also: Provide four bytes of initialized space before the 2696 ** beginning of pTmpSpace as an area available to prepend the 2697 ** left-child pointer to the beginning of a cell. 2698 */ 2699 if( pBt->pTmpSpace ){ 2700 memset(pBt->pTmpSpace, 0, 8); 2701 pBt->pTmpSpace += 4; 2702 } 2703 } 2704 } 2705 2706 /* 2707 ** Free the pBt->pTmpSpace allocation 2708 */ 2709 static void freeTempSpace(BtShared *pBt){ 2710 if( pBt->pTmpSpace ){ 2711 pBt->pTmpSpace -= 4; 2712 sqlite3PageFree(pBt->pTmpSpace); 2713 pBt->pTmpSpace = 0; 2714 } 2715 } 2716 2717 /* 2718 ** Close an open database and invalidate all cursors. 2719 */ 2720 int sqlite3BtreeClose(Btree *p){ 2721 BtShared *pBt = p->pBt; 2722 BtCursor *pCur; 2723 2724 /* Close all cursors opened via this handle. */ 2725 assert( sqlite3_mutex_held(p->db->mutex) ); 2726 sqlite3BtreeEnter(p); 2727 pCur = pBt->pCursor; 2728 while( pCur ){ 2729 BtCursor *pTmp = pCur; 2730 pCur = pCur->pNext; 2731 if( pTmp->pBtree==p ){ 2732 sqlite3BtreeCloseCursor(pTmp); 2733 } 2734 } 2735 2736 /* Rollback any active transaction and free the handle structure. 2737 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2738 ** this handle. 2739 */ 2740 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2741 sqlite3BtreeLeave(p); 2742 2743 /* If there are still other outstanding references to the shared-btree 2744 ** structure, return now. The remainder of this procedure cleans 2745 ** up the shared-btree. 2746 */ 2747 assert( p->wantToLock==0 && p->locked==0 ); 2748 if( !p->sharable || removeFromSharingList(pBt) ){ 2749 /* The pBt is no longer on the sharing list, so we can access 2750 ** it without having to hold the mutex. 2751 ** 2752 ** Clean out and delete the BtShared object. 2753 */ 2754 assert( !pBt->pCursor ); 2755 sqlite3PagerClose(pBt->pPager, p->db); 2756 if( pBt->xFreeSchema && pBt->pSchema ){ 2757 pBt->xFreeSchema(pBt->pSchema); 2758 } 2759 sqlite3DbFree(0, pBt->pSchema); 2760 freeTempSpace(pBt); 2761 sqlite3_free(pBt); 2762 } 2763 2764 #ifndef SQLITE_OMIT_SHARED_CACHE 2765 assert( p->wantToLock==0 ); 2766 assert( p->locked==0 ); 2767 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2768 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2769 #endif 2770 2771 sqlite3_free(p); 2772 return SQLITE_OK; 2773 } 2774 2775 /* 2776 ** Change the "soft" limit on the number of pages in the cache. 2777 ** Unused and unmodified pages will be recycled when the number of 2778 ** pages in the cache exceeds this soft limit. But the size of the 2779 ** cache is allowed to grow larger than this limit if it contains 2780 ** dirty pages or pages still in active use. 2781 */ 2782 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2783 BtShared *pBt = p->pBt; 2784 assert( sqlite3_mutex_held(p->db->mutex) ); 2785 sqlite3BtreeEnter(p); 2786 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2787 sqlite3BtreeLeave(p); 2788 return SQLITE_OK; 2789 } 2790 2791 /* 2792 ** Change the "spill" limit on the number of pages in the cache. 2793 ** If the number of pages exceeds this limit during a write transaction, 2794 ** the pager might attempt to "spill" pages to the journal early in 2795 ** order to free up memory. 2796 ** 2797 ** The value returned is the current spill size. If zero is passed 2798 ** as an argument, no changes are made to the spill size setting, so 2799 ** using mxPage of 0 is a way to query the current spill size. 2800 */ 2801 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2802 BtShared *pBt = p->pBt; 2803 int res; 2804 assert( sqlite3_mutex_held(p->db->mutex) ); 2805 sqlite3BtreeEnter(p); 2806 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2807 sqlite3BtreeLeave(p); 2808 return res; 2809 } 2810 2811 #if SQLITE_MAX_MMAP_SIZE>0 2812 /* 2813 ** Change the limit on the amount of the database file that may be 2814 ** memory mapped. 2815 */ 2816 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2817 BtShared *pBt = p->pBt; 2818 assert( sqlite3_mutex_held(p->db->mutex) ); 2819 sqlite3BtreeEnter(p); 2820 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2821 sqlite3BtreeLeave(p); 2822 return SQLITE_OK; 2823 } 2824 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2825 2826 /* 2827 ** Change the way data is synced to disk in order to increase or decrease 2828 ** how well the database resists damage due to OS crashes and power 2829 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2830 ** there is a high probability of damage) Level 2 is the default. There 2831 ** is a very low but non-zero probability of damage. Level 3 reduces the 2832 ** probability of damage to near zero but with a write performance reduction. 2833 */ 2834 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2835 int sqlite3BtreeSetPagerFlags( 2836 Btree *p, /* The btree to set the safety level on */ 2837 unsigned pgFlags /* Various PAGER_* flags */ 2838 ){ 2839 BtShared *pBt = p->pBt; 2840 assert( sqlite3_mutex_held(p->db->mutex) ); 2841 sqlite3BtreeEnter(p); 2842 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2843 sqlite3BtreeLeave(p); 2844 return SQLITE_OK; 2845 } 2846 #endif 2847 2848 /* 2849 ** Change the default pages size and the number of reserved bytes per page. 2850 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2851 ** without changing anything. 2852 ** 2853 ** The page size must be a power of 2 between 512 and 65536. If the page 2854 ** size supplied does not meet this constraint then the page size is not 2855 ** changed. 2856 ** 2857 ** Page sizes are constrained to be a power of two so that the region 2858 ** of the database file used for locking (beginning at PENDING_BYTE, 2859 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2860 ** at the beginning of a page. 2861 ** 2862 ** If parameter nReserve is less than zero, then the number of reserved 2863 ** bytes per page is left unchanged. 2864 ** 2865 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2866 ** and autovacuum mode can no longer be changed. 2867 */ 2868 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2869 int rc = SQLITE_OK; 2870 int x; 2871 BtShared *pBt = p->pBt; 2872 assert( nReserve>=0 && nReserve<=255 ); 2873 sqlite3BtreeEnter(p); 2874 pBt->nReserveWanted = nReserve; 2875 x = pBt->pageSize - pBt->usableSize; 2876 if( nReserve<x ) nReserve = x; 2877 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2878 sqlite3BtreeLeave(p); 2879 return SQLITE_READONLY; 2880 } 2881 assert( nReserve>=0 && nReserve<=255 ); 2882 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2883 ((pageSize-1)&pageSize)==0 ){ 2884 assert( (pageSize & 7)==0 ); 2885 assert( !pBt->pCursor ); 2886 pBt->pageSize = (u32)pageSize; 2887 freeTempSpace(pBt); 2888 } 2889 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2890 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2891 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2892 sqlite3BtreeLeave(p); 2893 return rc; 2894 } 2895 2896 /* 2897 ** Return the currently defined page size 2898 */ 2899 int sqlite3BtreeGetPageSize(Btree *p){ 2900 return p->pBt->pageSize; 2901 } 2902 2903 /* 2904 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2905 ** may only be called if it is guaranteed that the b-tree mutex is already 2906 ** held. 2907 ** 2908 ** This is useful in one special case in the backup API code where it is 2909 ** known that the shared b-tree mutex is held, but the mutex on the 2910 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2911 ** were to be called, it might collide with some other operation on the 2912 ** database handle that owns *p, causing undefined behavior. 2913 */ 2914 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2915 int n; 2916 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2917 n = p->pBt->pageSize - p->pBt->usableSize; 2918 return n; 2919 } 2920 2921 /* 2922 ** Return the number of bytes of space at the end of every page that 2923 ** are intentually left unused. This is the "reserved" space that is 2924 ** sometimes used by extensions. 2925 ** 2926 ** The value returned is the larger of the current reserve size and 2927 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 2928 ** The amount of reserve can only grow - never shrink. 2929 */ 2930 int sqlite3BtreeGetRequestedReserve(Btree *p){ 2931 int n1, n2; 2932 sqlite3BtreeEnter(p); 2933 n1 = (int)p->pBt->nReserveWanted; 2934 n2 = sqlite3BtreeGetReserveNoMutex(p); 2935 sqlite3BtreeLeave(p); 2936 return n1>n2 ? n1 : n2; 2937 } 2938 2939 2940 /* 2941 ** Set the maximum page count for a database if mxPage is positive. 2942 ** No changes are made if mxPage is 0 or negative. 2943 ** Regardless of the value of mxPage, return the maximum page count. 2944 */ 2945 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 2946 Pgno n; 2947 sqlite3BtreeEnter(p); 2948 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2949 sqlite3BtreeLeave(p); 2950 return n; 2951 } 2952 2953 /* 2954 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2955 ** 2956 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2957 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2958 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2959 ** newFlag==(-1) No changes 2960 ** 2961 ** This routine acts as a query if newFlag is less than zero 2962 ** 2963 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2964 ** freelist leaf pages are not written back to the database. Thus in-page 2965 ** deleted content is cleared, but freelist deleted content is not. 2966 ** 2967 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2968 ** that freelist leaf pages are written back into the database, increasing 2969 ** the amount of disk I/O. 2970 */ 2971 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2972 int b; 2973 if( p==0 ) return 0; 2974 sqlite3BtreeEnter(p); 2975 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2976 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2977 if( newFlag>=0 ){ 2978 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2979 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2980 } 2981 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2982 sqlite3BtreeLeave(p); 2983 return b; 2984 } 2985 2986 /* 2987 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2988 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2989 ** is disabled. The default value for the auto-vacuum property is 2990 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2991 */ 2992 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2993 #ifdef SQLITE_OMIT_AUTOVACUUM 2994 return SQLITE_READONLY; 2995 #else 2996 BtShared *pBt = p->pBt; 2997 int rc = SQLITE_OK; 2998 u8 av = (u8)autoVacuum; 2999 3000 sqlite3BtreeEnter(p); 3001 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3002 rc = SQLITE_READONLY; 3003 }else{ 3004 pBt->autoVacuum = av ?1:0; 3005 pBt->incrVacuum = av==2 ?1:0; 3006 } 3007 sqlite3BtreeLeave(p); 3008 return rc; 3009 #endif 3010 } 3011 3012 /* 3013 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3014 ** enabled 1 is returned. Otherwise 0. 3015 */ 3016 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3017 #ifdef SQLITE_OMIT_AUTOVACUUM 3018 return BTREE_AUTOVACUUM_NONE; 3019 #else 3020 int rc; 3021 sqlite3BtreeEnter(p); 3022 rc = ( 3023 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3024 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3025 BTREE_AUTOVACUUM_INCR 3026 ); 3027 sqlite3BtreeLeave(p); 3028 return rc; 3029 #endif 3030 } 3031 3032 /* 3033 ** If the user has not set the safety-level for this database connection 3034 ** using "PRAGMA synchronous", and if the safety-level is not already 3035 ** set to the value passed to this function as the second parameter, 3036 ** set it so. 3037 */ 3038 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3039 && !defined(SQLITE_OMIT_WAL) 3040 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3041 sqlite3 *db; 3042 Db *pDb; 3043 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3044 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3045 if( pDb->bSyncSet==0 3046 && pDb->safety_level!=safety_level 3047 && pDb!=&db->aDb[1] 3048 ){ 3049 pDb->safety_level = safety_level; 3050 sqlite3PagerSetFlags(pBt->pPager, 3051 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3052 } 3053 } 3054 } 3055 #else 3056 # define setDefaultSyncFlag(pBt,safety_level) 3057 #endif 3058 3059 /* Forward declaration */ 3060 static int newDatabase(BtShared*); 3061 3062 3063 /* 3064 ** Get a reference to pPage1 of the database file. This will 3065 ** also acquire a readlock on that file. 3066 ** 3067 ** SQLITE_OK is returned on success. If the file is not a 3068 ** well-formed database file, then SQLITE_CORRUPT is returned. 3069 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3070 ** is returned if we run out of memory. 3071 */ 3072 static int lockBtree(BtShared *pBt){ 3073 int rc; /* Result code from subfunctions */ 3074 MemPage *pPage1; /* Page 1 of the database file */ 3075 u32 nPage; /* Number of pages in the database */ 3076 u32 nPageFile = 0; /* Number of pages in the database file */ 3077 u32 nPageHeader; /* Number of pages in the database according to hdr */ 3078 3079 assert( sqlite3_mutex_held(pBt->mutex) ); 3080 assert( pBt->pPage1==0 ); 3081 rc = sqlite3PagerSharedLock(pBt->pPager); 3082 if( rc!=SQLITE_OK ) return rc; 3083 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3084 if( rc!=SQLITE_OK ) return rc; 3085 3086 /* Do some checking to help insure the file we opened really is 3087 ** a valid database file. 3088 */ 3089 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3090 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3091 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3092 nPage = nPageFile; 3093 } 3094 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3095 nPage = 0; 3096 } 3097 if( nPage>0 ){ 3098 u32 pageSize; 3099 u32 usableSize; 3100 u8 *page1 = pPage1->aData; 3101 rc = SQLITE_NOTADB; 3102 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3103 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3104 ** 61 74 20 33 00. */ 3105 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3106 goto page1_init_failed; 3107 } 3108 3109 #ifdef SQLITE_OMIT_WAL 3110 if( page1[18]>1 ){ 3111 pBt->btsFlags |= BTS_READ_ONLY; 3112 } 3113 if( page1[19]>1 ){ 3114 goto page1_init_failed; 3115 } 3116 #else 3117 if( page1[18]>2 ){ 3118 pBt->btsFlags |= BTS_READ_ONLY; 3119 } 3120 if( page1[19]>2 ){ 3121 goto page1_init_failed; 3122 } 3123 3124 /* If the write version is set to 2, this database should be accessed 3125 ** in WAL mode. If the log is not already open, open it now. Then 3126 ** return SQLITE_OK and return without populating BtShared.pPage1. 3127 ** The caller detects this and calls this function again. This is 3128 ** required as the version of page 1 currently in the page1 buffer 3129 ** may not be the latest version - there may be a newer one in the log 3130 ** file. 3131 */ 3132 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3133 int isOpen = 0; 3134 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3135 if( rc!=SQLITE_OK ){ 3136 goto page1_init_failed; 3137 }else{ 3138 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3139 if( isOpen==0 ){ 3140 releasePageOne(pPage1); 3141 return SQLITE_OK; 3142 } 3143 } 3144 rc = SQLITE_NOTADB; 3145 }else{ 3146 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3147 } 3148 #endif 3149 3150 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3151 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3152 ** 3153 ** The original design allowed these amounts to vary, but as of 3154 ** version 3.6.0, we require them to be fixed. 3155 */ 3156 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3157 goto page1_init_failed; 3158 } 3159 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3160 ** determined by the 2-byte integer located at an offset of 16 bytes from 3161 ** the beginning of the database file. */ 3162 pageSize = (page1[16]<<8) | (page1[17]<<16); 3163 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3164 ** between 512 and 65536 inclusive. */ 3165 if( ((pageSize-1)&pageSize)!=0 3166 || pageSize>SQLITE_MAX_PAGE_SIZE 3167 || pageSize<=256 3168 ){ 3169 goto page1_init_failed; 3170 } 3171 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3172 assert( (pageSize & 7)==0 ); 3173 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3174 ** integer at offset 20 is the number of bytes of space at the end of 3175 ** each page to reserve for extensions. 3176 ** 3177 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3178 ** determined by the one-byte unsigned integer found at an offset of 20 3179 ** into the database file header. */ 3180 usableSize = pageSize - page1[20]; 3181 if( (u32)pageSize!=pBt->pageSize ){ 3182 /* After reading the first page of the database assuming a page size 3183 ** of BtShared.pageSize, we have discovered that the page-size is 3184 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3185 ** zero and return SQLITE_OK. The caller will call this function 3186 ** again with the correct page-size. 3187 */ 3188 releasePageOne(pPage1); 3189 pBt->usableSize = usableSize; 3190 pBt->pageSize = pageSize; 3191 freeTempSpace(pBt); 3192 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3193 pageSize-usableSize); 3194 return rc; 3195 } 3196 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3197 rc = SQLITE_CORRUPT_BKPT; 3198 goto page1_init_failed; 3199 } 3200 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3201 ** be less than 480. In other words, if the page size is 512, then the 3202 ** reserved space size cannot exceed 32. */ 3203 if( usableSize<480 ){ 3204 goto page1_init_failed; 3205 } 3206 pBt->pageSize = pageSize; 3207 pBt->usableSize = usableSize; 3208 #ifndef SQLITE_OMIT_AUTOVACUUM 3209 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3210 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3211 #endif 3212 } 3213 3214 /* maxLocal is the maximum amount of payload to store locally for 3215 ** a cell. Make sure it is small enough so that at least minFanout 3216 ** cells can will fit on one page. We assume a 10-byte page header. 3217 ** Besides the payload, the cell must store: 3218 ** 2-byte pointer to the cell 3219 ** 4-byte child pointer 3220 ** 9-byte nKey value 3221 ** 4-byte nData value 3222 ** 4-byte overflow page pointer 3223 ** So a cell consists of a 2-byte pointer, a header which is as much as 3224 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3225 ** page pointer. 3226 */ 3227 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3228 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3229 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3230 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3231 if( pBt->maxLocal>127 ){ 3232 pBt->max1bytePayload = 127; 3233 }else{ 3234 pBt->max1bytePayload = (u8)pBt->maxLocal; 3235 } 3236 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3237 pBt->pPage1 = pPage1; 3238 pBt->nPage = nPage; 3239 return SQLITE_OK; 3240 3241 page1_init_failed: 3242 releasePageOne(pPage1); 3243 pBt->pPage1 = 0; 3244 return rc; 3245 } 3246 3247 #ifndef NDEBUG 3248 /* 3249 ** Return the number of cursors open on pBt. This is for use 3250 ** in assert() expressions, so it is only compiled if NDEBUG is not 3251 ** defined. 3252 ** 3253 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3254 ** false then all cursors are counted. 3255 ** 3256 ** For the purposes of this routine, a cursor is any cursor that 3257 ** is capable of reading or writing to the database. Cursors that 3258 ** have been tripped into the CURSOR_FAULT state are not counted. 3259 */ 3260 static int countValidCursors(BtShared *pBt, int wrOnly){ 3261 BtCursor *pCur; 3262 int r = 0; 3263 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3264 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3265 && pCur->eState!=CURSOR_FAULT ) r++; 3266 } 3267 return r; 3268 } 3269 #endif 3270 3271 /* 3272 ** If there are no outstanding cursors and we are not in the middle 3273 ** of a transaction but there is a read lock on the database, then 3274 ** this routine unrefs the first page of the database file which 3275 ** has the effect of releasing the read lock. 3276 ** 3277 ** If there is a transaction in progress, this routine is a no-op. 3278 */ 3279 static void unlockBtreeIfUnused(BtShared *pBt){ 3280 assert( sqlite3_mutex_held(pBt->mutex) ); 3281 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3282 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3283 MemPage *pPage1 = pBt->pPage1; 3284 assert( pPage1->aData ); 3285 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3286 pBt->pPage1 = 0; 3287 releasePageOne(pPage1); 3288 } 3289 } 3290 3291 /* 3292 ** If pBt points to an empty file then convert that empty file 3293 ** into a new empty database by initializing the first page of 3294 ** the database. 3295 */ 3296 static int newDatabase(BtShared *pBt){ 3297 MemPage *pP1; 3298 unsigned char *data; 3299 int rc; 3300 3301 assert( sqlite3_mutex_held(pBt->mutex) ); 3302 if( pBt->nPage>0 ){ 3303 return SQLITE_OK; 3304 } 3305 pP1 = pBt->pPage1; 3306 assert( pP1!=0 ); 3307 data = pP1->aData; 3308 rc = sqlite3PagerWrite(pP1->pDbPage); 3309 if( rc ) return rc; 3310 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3311 assert( sizeof(zMagicHeader)==16 ); 3312 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3313 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3314 data[18] = 1; 3315 data[19] = 1; 3316 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3317 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3318 data[21] = 64; 3319 data[22] = 32; 3320 data[23] = 32; 3321 memset(&data[24], 0, 100-24); 3322 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3323 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3324 #ifndef SQLITE_OMIT_AUTOVACUUM 3325 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3326 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3327 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3328 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3329 #endif 3330 pBt->nPage = 1; 3331 data[31] = 1; 3332 return SQLITE_OK; 3333 } 3334 3335 /* 3336 ** Initialize the first page of the database file (creating a database 3337 ** consisting of a single page and no schema objects). Return SQLITE_OK 3338 ** if successful, or an SQLite error code otherwise. 3339 */ 3340 int sqlite3BtreeNewDb(Btree *p){ 3341 int rc; 3342 sqlite3BtreeEnter(p); 3343 p->pBt->nPage = 0; 3344 rc = newDatabase(p->pBt); 3345 sqlite3BtreeLeave(p); 3346 return rc; 3347 } 3348 3349 /* 3350 ** Attempt to start a new transaction. A write-transaction 3351 ** is started if the second argument is nonzero, otherwise a read- 3352 ** transaction. If the second argument is 2 or more and exclusive 3353 ** transaction is started, meaning that no other process is allowed 3354 ** to access the database. A preexisting transaction may not be 3355 ** upgraded to exclusive by calling this routine a second time - the 3356 ** exclusivity flag only works for a new transaction. 3357 ** 3358 ** A write-transaction must be started before attempting any 3359 ** changes to the database. None of the following routines 3360 ** will work unless a transaction is started first: 3361 ** 3362 ** sqlite3BtreeCreateTable() 3363 ** sqlite3BtreeCreateIndex() 3364 ** sqlite3BtreeClearTable() 3365 ** sqlite3BtreeDropTable() 3366 ** sqlite3BtreeInsert() 3367 ** sqlite3BtreeDelete() 3368 ** sqlite3BtreeUpdateMeta() 3369 ** 3370 ** If an initial attempt to acquire the lock fails because of lock contention 3371 ** and the database was previously unlocked, then invoke the busy handler 3372 ** if there is one. But if there was previously a read-lock, do not 3373 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3374 ** returned when there is already a read-lock in order to avoid a deadlock. 3375 ** 3376 ** Suppose there are two processes A and B. A has a read lock and B has 3377 ** a reserved lock. B tries to promote to exclusive but is blocked because 3378 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3379 ** One or the other of the two processes must give way or there can be 3380 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3381 ** when A already has a read lock, we encourage A to give up and let B 3382 ** proceed. 3383 */ 3384 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3385 BtShared *pBt = p->pBt; 3386 Pager *pPager = pBt->pPager; 3387 int rc = SQLITE_OK; 3388 3389 sqlite3BtreeEnter(p); 3390 btreeIntegrity(p); 3391 3392 /* If the btree is already in a write-transaction, or it 3393 ** is already in a read-transaction and a read-transaction 3394 ** is requested, this is a no-op. 3395 */ 3396 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3397 goto trans_begun; 3398 } 3399 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3400 3401 if( (p->db->flags & SQLITE_ResetDatabase) 3402 && sqlite3PagerIsreadonly(pPager)==0 3403 ){ 3404 pBt->btsFlags &= ~BTS_READ_ONLY; 3405 } 3406 3407 /* Write transactions are not possible on a read-only database */ 3408 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3409 rc = SQLITE_READONLY; 3410 goto trans_begun; 3411 } 3412 3413 #ifndef SQLITE_OMIT_SHARED_CACHE 3414 { 3415 sqlite3 *pBlock = 0; 3416 /* If another database handle has already opened a write transaction 3417 ** on this shared-btree structure and a second write transaction is 3418 ** requested, return SQLITE_LOCKED. 3419 */ 3420 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3421 || (pBt->btsFlags & BTS_PENDING)!=0 3422 ){ 3423 pBlock = pBt->pWriter->db; 3424 }else if( wrflag>1 ){ 3425 BtLock *pIter; 3426 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3427 if( pIter->pBtree!=p ){ 3428 pBlock = pIter->pBtree->db; 3429 break; 3430 } 3431 } 3432 } 3433 if( pBlock ){ 3434 sqlite3ConnectionBlocked(p->db, pBlock); 3435 rc = SQLITE_LOCKED_SHAREDCACHE; 3436 goto trans_begun; 3437 } 3438 } 3439 #endif 3440 3441 /* Any read-only or read-write transaction implies a read-lock on 3442 ** page 1. So if some other shared-cache client already has a write-lock 3443 ** on page 1, the transaction cannot be opened. */ 3444 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3445 if( SQLITE_OK!=rc ) goto trans_begun; 3446 3447 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3448 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3449 do { 3450 sqlite3PagerWalDb(pPager, p->db); 3451 3452 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3453 /* If transitioning from no transaction directly to a write transaction, 3454 ** block for the WRITER lock first if possible. */ 3455 if( pBt->pPage1==0 && wrflag ){ 3456 assert( pBt->inTransaction==TRANS_NONE ); 3457 rc = sqlite3PagerWalWriteLock(pPager, 1); 3458 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3459 } 3460 #endif 3461 3462 /* Call lockBtree() until either pBt->pPage1 is populated or 3463 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3464 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3465 ** reading page 1 it discovers that the page-size of the database 3466 ** file is not pBt->pageSize. In this case lockBtree() will update 3467 ** pBt->pageSize to the page-size of the file on disk. 3468 */ 3469 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3470 3471 if( rc==SQLITE_OK && wrflag ){ 3472 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3473 rc = SQLITE_READONLY; 3474 }else{ 3475 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3476 if( rc==SQLITE_OK ){ 3477 rc = newDatabase(pBt); 3478 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3479 /* if there was no transaction opened when this function was 3480 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3481 ** code to SQLITE_BUSY. */ 3482 rc = SQLITE_BUSY; 3483 } 3484 } 3485 } 3486 3487 if( rc!=SQLITE_OK ){ 3488 (void)sqlite3PagerWalWriteLock(pPager, 0); 3489 unlockBtreeIfUnused(pBt); 3490 } 3491 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3492 btreeInvokeBusyHandler(pBt) ); 3493 sqlite3PagerWalDb(pPager, 0); 3494 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3495 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3496 #endif 3497 3498 if( rc==SQLITE_OK ){ 3499 if( p->inTrans==TRANS_NONE ){ 3500 pBt->nTransaction++; 3501 #ifndef SQLITE_OMIT_SHARED_CACHE 3502 if( p->sharable ){ 3503 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3504 p->lock.eLock = READ_LOCK; 3505 p->lock.pNext = pBt->pLock; 3506 pBt->pLock = &p->lock; 3507 } 3508 #endif 3509 } 3510 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3511 if( p->inTrans>pBt->inTransaction ){ 3512 pBt->inTransaction = p->inTrans; 3513 } 3514 if( wrflag ){ 3515 MemPage *pPage1 = pBt->pPage1; 3516 #ifndef SQLITE_OMIT_SHARED_CACHE 3517 assert( !pBt->pWriter ); 3518 pBt->pWriter = p; 3519 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3520 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3521 #endif 3522 3523 /* If the db-size header field is incorrect (as it may be if an old 3524 ** client has been writing the database file), update it now. Doing 3525 ** this sooner rather than later means the database size can safely 3526 ** re-read the database size from page 1 if a savepoint or transaction 3527 ** rollback occurs within the transaction. 3528 */ 3529 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3530 rc = sqlite3PagerWrite(pPage1->pDbPage); 3531 if( rc==SQLITE_OK ){ 3532 put4byte(&pPage1->aData[28], pBt->nPage); 3533 } 3534 } 3535 } 3536 } 3537 3538 trans_begun: 3539 if( rc==SQLITE_OK ){ 3540 if( pSchemaVersion ){ 3541 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3542 } 3543 if( wrflag ){ 3544 /* This call makes sure that the pager has the correct number of 3545 ** open savepoints. If the second parameter is greater than 0 and 3546 ** the sub-journal is not already open, then it will be opened here. 3547 */ 3548 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3549 } 3550 } 3551 3552 btreeIntegrity(p); 3553 sqlite3BtreeLeave(p); 3554 return rc; 3555 } 3556 3557 #ifndef SQLITE_OMIT_AUTOVACUUM 3558 3559 /* 3560 ** Set the pointer-map entries for all children of page pPage. Also, if 3561 ** pPage contains cells that point to overflow pages, set the pointer 3562 ** map entries for the overflow pages as well. 3563 */ 3564 static int setChildPtrmaps(MemPage *pPage){ 3565 int i; /* Counter variable */ 3566 int nCell; /* Number of cells in page pPage */ 3567 int rc; /* Return code */ 3568 BtShared *pBt = pPage->pBt; 3569 Pgno pgno = pPage->pgno; 3570 3571 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3572 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3573 if( rc!=SQLITE_OK ) return rc; 3574 nCell = pPage->nCell; 3575 3576 for(i=0; i<nCell; i++){ 3577 u8 *pCell = findCell(pPage, i); 3578 3579 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3580 3581 if( !pPage->leaf ){ 3582 Pgno childPgno = get4byte(pCell); 3583 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3584 } 3585 } 3586 3587 if( !pPage->leaf ){ 3588 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3589 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3590 } 3591 3592 return rc; 3593 } 3594 3595 /* 3596 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3597 ** that it points to iTo. Parameter eType describes the type of pointer to 3598 ** be modified, as follows: 3599 ** 3600 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3601 ** page of pPage. 3602 ** 3603 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3604 ** page pointed to by one of the cells on pPage. 3605 ** 3606 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3607 ** overflow page in the list. 3608 */ 3609 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3610 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3611 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3612 if( eType==PTRMAP_OVERFLOW2 ){ 3613 /* The pointer is always the first 4 bytes of the page in this case. */ 3614 if( get4byte(pPage->aData)!=iFrom ){ 3615 return SQLITE_CORRUPT_PAGE(pPage); 3616 } 3617 put4byte(pPage->aData, iTo); 3618 }else{ 3619 int i; 3620 int nCell; 3621 int rc; 3622 3623 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3624 if( rc ) return rc; 3625 nCell = pPage->nCell; 3626 3627 for(i=0; i<nCell; i++){ 3628 u8 *pCell = findCell(pPage, i); 3629 if( eType==PTRMAP_OVERFLOW1 ){ 3630 CellInfo info; 3631 pPage->xParseCell(pPage, pCell, &info); 3632 if( info.nLocal<info.nPayload ){ 3633 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3634 return SQLITE_CORRUPT_PAGE(pPage); 3635 } 3636 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3637 put4byte(pCell+info.nSize-4, iTo); 3638 break; 3639 } 3640 } 3641 }else{ 3642 if( get4byte(pCell)==iFrom ){ 3643 put4byte(pCell, iTo); 3644 break; 3645 } 3646 } 3647 } 3648 3649 if( i==nCell ){ 3650 if( eType!=PTRMAP_BTREE || 3651 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3652 return SQLITE_CORRUPT_PAGE(pPage); 3653 } 3654 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3655 } 3656 } 3657 return SQLITE_OK; 3658 } 3659 3660 3661 /* 3662 ** Move the open database page pDbPage to location iFreePage in the 3663 ** database. The pDbPage reference remains valid. 3664 ** 3665 ** The isCommit flag indicates that there is no need to remember that 3666 ** the journal needs to be sync()ed before database page pDbPage->pgno 3667 ** can be written to. The caller has already promised not to write to that 3668 ** page. 3669 */ 3670 static int relocatePage( 3671 BtShared *pBt, /* Btree */ 3672 MemPage *pDbPage, /* Open page to move */ 3673 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3674 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3675 Pgno iFreePage, /* The location to move pDbPage to */ 3676 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3677 ){ 3678 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3679 Pgno iDbPage = pDbPage->pgno; 3680 Pager *pPager = pBt->pPager; 3681 int rc; 3682 3683 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3684 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3685 assert( sqlite3_mutex_held(pBt->mutex) ); 3686 assert( pDbPage->pBt==pBt ); 3687 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3688 3689 /* Move page iDbPage from its current location to page number iFreePage */ 3690 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3691 iDbPage, iFreePage, iPtrPage, eType)); 3692 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3693 if( rc!=SQLITE_OK ){ 3694 return rc; 3695 } 3696 pDbPage->pgno = iFreePage; 3697 3698 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3699 ** that point to overflow pages. The pointer map entries for all these 3700 ** pages need to be changed. 3701 ** 3702 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3703 ** pointer to a subsequent overflow page. If this is the case, then 3704 ** the pointer map needs to be updated for the subsequent overflow page. 3705 */ 3706 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3707 rc = setChildPtrmaps(pDbPage); 3708 if( rc!=SQLITE_OK ){ 3709 return rc; 3710 } 3711 }else{ 3712 Pgno nextOvfl = get4byte(pDbPage->aData); 3713 if( nextOvfl!=0 ){ 3714 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3715 if( rc!=SQLITE_OK ){ 3716 return rc; 3717 } 3718 } 3719 } 3720 3721 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3722 ** that it points at iFreePage. Also fix the pointer map entry for 3723 ** iPtrPage. 3724 */ 3725 if( eType!=PTRMAP_ROOTPAGE ){ 3726 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3727 if( rc!=SQLITE_OK ){ 3728 return rc; 3729 } 3730 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3731 if( rc!=SQLITE_OK ){ 3732 releasePage(pPtrPage); 3733 return rc; 3734 } 3735 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3736 releasePage(pPtrPage); 3737 if( rc==SQLITE_OK ){ 3738 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3739 } 3740 } 3741 return rc; 3742 } 3743 3744 /* Forward declaration required by incrVacuumStep(). */ 3745 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3746 3747 /* 3748 ** Perform a single step of an incremental-vacuum. If successful, return 3749 ** SQLITE_OK. If there is no work to do (and therefore no point in 3750 ** calling this function again), return SQLITE_DONE. Or, if an error 3751 ** occurs, return some other error code. 3752 ** 3753 ** More specifically, this function attempts to re-organize the database so 3754 ** that the last page of the file currently in use is no longer in use. 3755 ** 3756 ** Parameter nFin is the number of pages that this database would contain 3757 ** were this function called until it returns SQLITE_DONE. 3758 ** 3759 ** If the bCommit parameter is non-zero, this function assumes that the 3760 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3761 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3762 ** operation, or false for an incremental vacuum. 3763 */ 3764 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3765 Pgno nFreeList; /* Number of pages still on the free-list */ 3766 int rc; 3767 3768 assert( sqlite3_mutex_held(pBt->mutex) ); 3769 assert( iLastPg>nFin ); 3770 3771 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3772 u8 eType; 3773 Pgno iPtrPage; 3774 3775 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3776 if( nFreeList==0 ){ 3777 return SQLITE_DONE; 3778 } 3779 3780 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3781 if( rc!=SQLITE_OK ){ 3782 return rc; 3783 } 3784 if( eType==PTRMAP_ROOTPAGE ){ 3785 return SQLITE_CORRUPT_BKPT; 3786 } 3787 3788 if( eType==PTRMAP_FREEPAGE ){ 3789 if( bCommit==0 ){ 3790 /* Remove the page from the files free-list. This is not required 3791 ** if bCommit is non-zero. In that case, the free-list will be 3792 ** truncated to zero after this function returns, so it doesn't 3793 ** matter if it still contains some garbage entries. 3794 */ 3795 Pgno iFreePg; 3796 MemPage *pFreePg; 3797 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3798 if( rc!=SQLITE_OK ){ 3799 return rc; 3800 } 3801 assert( iFreePg==iLastPg ); 3802 releasePage(pFreePg); 3803 } 3804 } else { 3805 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3806 MemPage *pLastPg; 3807 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3808 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3809 3810 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3811 if( rc!=SQLITE_OK ){ 3812 return rc; 3813 } 3814 3815 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3816 ** is swapped with the first free page pulled off the free list. 3817 ** 3818 ** On the other hand, if bCommit is greater than zero, then keep 3819 ** looping until a free-page located within the first nFin pages 3820 ** of the file is found. 3821 */ 3822 if( bCommit==0 ){ 3823 eMode = BTALLOC_LE; 3824 iNear = nFin; 3825 } 3826 do { 3827 MemPage *pFreePg; 3828 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3829 if( rc!=SQLITE_OK ){ 3830 releasePage(pLastPg); 3831 return rc; 3832 } 3833 releasePage(pFreePg); 3834 }while( bCommit && iFreePg>nFin ); 3835 assert( iFreePg<iLastPg ); 3836 3837 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3838 releasePage(pLastPg); 3839 if( rc!=SQLITE_OK ){ 3840 return rc; 3841 } 3842 } 3843 } 3844 3845 if( bCommit==0 ){ 3846 do { 3847 iLastPg--; 3848 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3849 pBt->bDoTruncate = 1; 3850 pBt->nPage = iLastPg; 3851 } 3852 return SQLITE_OK; 3853 } 3854 3855 /* 3856 ** The database opened by the first argument is an auto-vacuum database 3857 ** nOrig pages in size containing nFree free pages. Return the expected 3858 ** size of the database in pages following an auto-vacuum operation. 3859 */ 3860 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3861 int nEntry; /* Number of entries on one ptrmap page */ 3862 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3863 Pgno nFin; /* Return value */ 3864 3865 nEntry = pBt->usableSize/5; 3866 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3867 nFin = nOrig - nFree - nPtrmap; 3868 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3869 nFin--; 3870 } 3871 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3872 nFin--; 3873 } 3874 3875 return nFin; 3876 } 3877 3878 /* 3879 ** A write-transaction must be opened before calling this function. 3880 ** It performs a single unit of work towards an incremental vacuum. 3881 ** 3882 ** If the incremental vacuum is finished after this function has run, 3883 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3884 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3885 */ 3886 int sqlite3BtreeIncrVacuum(Btree *p){ 3887 int rc; 3888 BtShared *pBt = p->pBt; 3889 3890 sqlite3BtreeEnter(p); 3891 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3892 if( !pBt->autoVacuum ){ 3893 rc = SQLITE_DONE; 3894 }else{ 3895 Pgno nOrig = btreePagecount(pBt); 3896 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3897 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3898 3899 if( nOrig<nFin || nFree>=nOrig ){ 3900 rc = SQLITE_CORRUPT_BKPT; 3901 }else if( nFree>0 ){ 3902 rc = saveAllCursors(pBt, 0, 0); 3903 if( rc==SQLITE_OK ){ 3904 invalidateAllOverflowCache(pBt); 3905 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3906 } 3907 if( rc==SQLITE_OK ){ 3908 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3909 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3910 } 3911 }else{ 3912 rc = SQLITE_DONE; 3913 } 3914 } 3915 sqlite3BtreeLeave(p); 3916 return rc; 3917 } 3918 3919 /* 3920 ** This routine is called prior to sqlite3PagerCommit when a transaction 3921 ** is committed for an auto-vacuum database. 3922 ** 3923 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3924 ** the database file should be truncated to during the commit process. 3925 ** i.e. the database has been reorganized so that only the first *pnTrunc 3926 ** pages are in use. 3927 */ 3928 static int autoVacuumCommit(BtShared *pBt){ 3929 int rc = SQLITE_OK; 3930 Pager *pPager = pBt->pPager; 3931 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3932 3933 assert( sqlite3_mutex_held(pBt->mutex) ); 3934 invalidateAllOverflowCache(pBt); 3935 assert(pBt->autoVacuum); 3936 if( !pBt->incrVacuum ){ 3937 Pgno nFin; /* Number of pages in database after autovacuuming */ 3938 Pgno nFree; /* Number of pages on the freelist initially */ 3939 Pgno iFree; /* The next page to be freed */ 3940 Pgno nOrig; /* Database size before freeing */ 3941 3942 nOrig = btreePagecount(pBt); 3943 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3944 /* It is not possible to create a database for which the final page 3945 ** is either a pointer-map page or the pending-byte page. If one 3946 ** is encountered, this indicates corruption. 3947 */ 3948 return SQLITE_CORRUPT_BKPT; 3949 } 3950 3951 nFree = get4byte(&pBt->pPage1->aData[36]); 3952 nFin = finalDbSize(pBt, nOrig, nFree); 3953 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3954 if( nFin<nOrig ){ 3955 rc = saveAllCursors(pBt, 0, 0); 3956 } 3957 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3958 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3959 } 3960 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3961 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3962 put4byte(&pBt->pPage1->aData[32], 0); 3963 put4byte(&pBt->pPage1->aData[36], 0); 3964 put4byte(&pBt->pPage1->aData[28], nFin); 3965 pBt->bDoTruncate = 1; 3966 pBt->nPage = nFin; 3967 } 3968 if( rc!=SQLITE_OK ){ 3969 sqlite3PagerRollback(pPager); 3970 } 3971 } 3972 3973 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3974 return rc; 3975 } 3976 3977 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3978 # define setChildPtrmaps(x) SQLITE_OK 3979 #endif 3980 3981 /* 3982 ** This routine does the first phase of a two-phase commit. This routine 3983 ** causes a rollback journal to be created (if it does not already exist) 3984 ** and populated with enough information so that if a power loss occurs 3985 ** the database can be restored to its original state by playing back 3986 ** the journal. Then the contents of the journal are flushed out to 3987 ** the disk. After the journal is safely on oxide, the changes to the 3988 ** database are written into the database file and flushed to oxide. 3989 ** At the end of this call, the rollback journal still exists on the 3990 ** disk and we are still holding all locks, so the transaction has not 3991 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3992 ** commit process. 3993 ** 3994 ** This call is a no-op if no write-transaction is currently active on pBt. 3995 ** 3996 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 3997 ** the name of a super-journal file that should be written into the 3998 ** individual journal file, or is NULL, indicating no super-journal file 3999 ** (single database transaction). 4000 ** 4001 ** When this is called, the super-journal should already have been 4002 ** created, populated with this journal pointer and synced to disk. 4003 ** 4004 ** Once this is routine has returned, the only thing required to commit 4005 ** the write-transaction for this database file is to delete the journal. 4006 */ 4007 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4008 int rc = SQLITE_OK; 4009 if( p->inTrans==TRANS_WRITE ){ 4010 BtShared *pBt = p->pBt; 4011 sqlite3BtreeEnter(p); 4012 #ifndef SQLITE_OMIT_AUTOVACUUM 4013 if( pBt->autoVacuum ){ 4014 rc = autoVacuumCommit(pBt); 4015 if( rc!=SQLITE_OK ){ 4016 sqlite3BtreeLeave(p); 4017 return rc; 4018 } 4019 } 4020 if( pBt->bDoTruncate ){ 4021 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4022 } 4023 #endif 4024 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4025 sqlite3BtreeLeave(p); 4026 } 4027 return rc; 4028 } 4029 4030 /* 4031 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4032 ** at the conclusion of a transaction. 4033 */ 4034 static void btreeEndTransaction(Btree *p){ 4035 BtShared *pBt = p->pBt; 4036 sqlite3 *db = p->db; 4037 assert( sqlite3BtreeHoldsMutex(p) ); 4038 4039 #ifndef SQLITE_OMIT_AUTOVACUUM 4040 pBt->bDoTruncate = 0; 4041 #endif 4042 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4043 /* If there are other active statements that belong to this database 4044 ** handle, downgrade to a read-only transaction. The other statements 4045 ** may still be reading from the database. */ 4046 downgradeAllSharedCacheTableLocks(p); 4047 p->inTrans = TRANS_READ; 4048 }else{ 4049 /* If the handle had any kind of transaction open, decrement the 4050 ** transaction count of the shared btree. If the transaction count 4051 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4052 ** call below will unlock the pager. */ 4053 if( p->inTrans!=TRANS_NONE ){ 4054 clearAllSharedCacheTableLocks(p); 4055 pBt->nTransaction--; 4056 if( 0==pBt->nTransaction ){ 4057 pBt->inTransaction = TRANS_NONE; 4058 } 4059 } 4060 4061 /* Set the current transaction state to TRANS_NONE and unlock the 4062 ** pager if this call closed the only read or write transaction. */ 4063 p->inTrans = TRANS_NONE; 4064 unlockBtreeIfUnused(pBt); 4065 } 4066 4067 btreeIntegrity(p); 4068 } 4069 4070 /* 4071 ** Commit the transaction currently in progress. 4072 ** 4073 ** This routine implements the second phase of a 2-phase commit. The 4074 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4075 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4076 ** routine did all the work of writing information out to disk and flushing the 4077 ** contents so that they are written onto the disk platter. All this 4078 ** routine has to do is delete or truncate or zero the header in the 4079 ** the rollback journal (which causes the transaction to commit) and 4080 ** drop locks. 4081 ** 4082 ** Normally, if an error occurs while the pager layer is attempting to 4083 ** finalize the underlying journal file, this function returns an error and 4084 ** the upper layer will attempt a rollback. However, if the second argument 4085 ** is non-zero then this b-tree transaction is part of a multi-file 4086 ** transaction. In this case, the transaction has already been committed 4087 ** (by deleting a super-journal file) and the caller will ignore this 4088 ** functions return code. So, even if an error occurs in the pager layer, 4089 ** reset the b-tree objects internal state to indicate that the write 4090 ** transaction has been closed. This is quite safe, as the pager will have 4091 ** transitioned to the error state. 4092 ** 4093 ** This will release the write lock on the database file. If there 4094 ** are no active cursors, it also releases the read lock. 4095 */ 4096 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4097 4098 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4099 sqlite3BtreeEnter(p); 4100 btreeIntegrity(p); 4101 4102 /* If the handle has a write-transaction open, commit the shared-btrees 4103 ** transaction and set the shared state to TRANS_READ. 4104 */ 4105 if( p->inTrans==TRANS_WRITE ){ 4106 int rc; 4107 BtShared *pBt = p->pBt; 4108 assert( pBt->inTransaction==TRANS_WRITE ); 4109 assert( pBt->nTransaction>0 ); 4110 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4111 if( rc!=SQLITE_OK && bCleanup==0 ){ 4112 sqlite3BtreeLeave(p); 4113 return rc; 4114 } 4115 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4116 pBt->inTransaction = TRANS_READ; 4117 btreeClearHasContent(pBt); 4118 } 4119 4120 btreeEndTransaction(p); 4121 sqlite3BtreeLeave(p); 4122 return SQLITE_OK; 4123 } 4124 4125 /* 4126 ** Do both phases of a commit. 4127 */ 4128 int sqlite3BtreeCommit(Btree *p){ 4129 int rc; 4130 sqlite3BtreeEnter(p); 4131 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4132 if( rc==SQLITE_OK ){ 4133 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4134 } 4135 sqlite3BtreeLeave(p); 4136 return rc; 4137 } 4138 4139 /* 4140 ** This routine sets the state to CURSOR_FAULT and the error 4141 ** code to errCode for every cursor on any BtShared that pBtree 4142 ** references. Or if the writeOnly flag is set to 1, then only 4143 ** trip write cursors and leave read cursors unchanged. 4144 ** 4145 ** Every cursor is a candidate to be tripped, including cursors 4146 ** that belong to other database connections that happen to be 4147 ** sharing the cache with pBtree. 4148 ** 4149 ** This routine gets called when a rollback occurs. If the writeOnly 4150 ** flag is true, then only write-cursors need be tripped - read-only 4151 ** cursors save their current positions so that they may continue 4152 ** following the rollback. Or, if writeOnly is false, all cursors are 4153 ** tripped. In general, writeOnly is false if the transaction being 4154 ** rolled back modified the database schema. In this case b-tree root 4155 ** pages may be moved or deleted from the database altogether, making 4156 ** it unsafe for read cursors to continue. 4157 ** 4158 ** If the writeOnly flag is true and an error is encountered while 4159 ** saving the current position of a read-only cursor, all cursors, 4160 ** including all read-cursors are tripped. 4161 ** 4162 ** SQLITE_OK is returned if successful, or if an error occurs while 4163 ** saving a cursor position, an SQLite error code. 4164 */ 4165 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4166 BtCursor *p; 4167 int rc = SQLITE_OK; 4168 4169 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4170 if( pBtree ){ 4171 sqlite3BtreeEnter(pBtree); 4172 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4173 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4174 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4175 rc = saveCursorPosition(p); 4176 if( rc!=SQLITE_OK ){ 4177 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4178 break; 4179 } 4180 } 4181 }else{ 4182 sqlite3BtreeClearCursor(p); 4183 p->eState = CURSOR_FAULT; 4184 p->skipNext = errCode; 4185 } 4186 btreeReleaseAllCursorPages(p); 4187 } 4188 sqlite3BtreeLeave(pBtree); 4189 } 4190 return rc; 4191 } 4192 4193 /* 4194 ** Set the pBt->nPage field correctly, according to the current 4195 ** state of the database. Assume pBt->pPage1 is valid. 4196 */ 4197 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4198 int nPage = get4byte(&pPage1->aData[28]); 4199 testcase( nPage==0 ); 4200 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4201 testcase( pBt->nPage!=nPage ); 4202 pBt->nPage = nPage; 4203 } 4204 4205 /* 4206 ** Rollback the transaction in progress. 4207 ** 4208 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4209 ** Only write cursors are tripped if writeOnly is true but all cursors are 4210 ** tripped if writeOnly is false. Any attempt to use 4211 ** a tripped cursor will result in an error. 4212 ** 4213 ** This will release the write lock on the database file. If there 4214 ** are no active cursors, it also releases the read lock. 4215 */ 4216 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4217 int rc; 4218 BtShared *pBt = p->pBt; 4219 MemPage *pPage1; 4220 4221 assert( writeOnly==1 || writeOnly==0 ); 4222 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4223 sqlite3BtreeEnter(p); 4224 if( tripCode==SQLITE_OK ){ 4225 rc = tripCode = saveAllCursors(pBt, 0, 0); 4226 if( rc ) writeOnly = 0; 4227 }else{ 4228 rc = SQLITE_OK; 4229 } 4230 if( tripCode ){ 4231 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4232 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4233 if( rc2!=SQLITE_OK ) rc = rc2; 4234 } 4235 btreeIntegrity(p); 4236 4237 if( p->inTrans==TRANS_WRITE ){ 4238 int rc2; 4239 4240 assert( TRANS_WRITE==pBt->inTransaction ); 4241 rc2 = sqlite3PagerRollback(pBt->pPager); 4242 if( rc2!=SQLITE_OK ){ 4243 rc = rc2; 4244 } 4245 4246 /* The rollback may have destroyed the pPage1->aData value. So 4247 ** call btreeGetPage() on page 1 again to make 4248 ** sure pPage1->aData is set correctly. */ 4249 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4250 btreeSetNPage(pBt, pPage1); 4251 releasePageOne(pPage1); 4252 } 4253 assert( countValidCursors(pBt, 1)==0 ); 4254 pBt->inTransaction = TRANS_READ; 4255 btreeClearHasContent(pBt); 4256 } 4257 4258 btreeEndTransaction(p); 4259 sqlite3BtreeLeave(p); 4260 return rc; 4261 } 4262 4263 /* 4264 ** Start a statement subtransaction. The subtransaction can be rolled 4265 ** back independently of the main transaction. You must start a transaction 4266 ** before starting a subtransaction. The subtransaction is ended automatically 4267 ** if the main transaction commits or rolls back. 4268 ** 4269 ** Statement subtransactions are used around individual SQL statements 4270 ** that are contained within a BEGIN...COMMIT block. If a constraint 4271 ** error occurs within the statement, the effect of that one statement 4272 ** can be rolled back without having to rollback the entire transaction. 4273 ** 4274 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4275 ** value passed as the second parameter is the total number of savepoints, 4276 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4277 ** are no active savepoints and no other statement-transactions open, 4278 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4279 ** using the sqlite3BtreeSavepoint() function. 4280 */ 4281 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4282 int rc; 4283 BtShared *pBt = p->pBt; 4284 sqlite3BtreeEnter(p); 4285 assert( p->inTrans==TRANS_WRITE ); 4286 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4287 assert( iStatement>0 ); 4288 assert( iStatement>p->db->nSavepoint ); 4289 assert( pBt->inTransaction==TRANS_WRITE ); 4290 /* At the pager level, a statement transaction is a savepoint with 4291 ** an index greater than all savepoints created explicitly using 4292 ** SQL statements. It is illegal to open, release or rollback any 4293 ** such savepoints while the statement transaction savepoint is active. 4294 */ 4295 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4296 sqlite3BtreeLeave(p); 4297 return rc; 4298 } 4299 4300 /* 4301 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4302 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4303 ** savepoint identified by parameter iSavepoint, depending on the value 4304 ** of op. 4305 ** 4306 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4307 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4308 ** contents of the entire transaction are rolled back. This is different 4309 ** from a normal transaction rollback, as no locks are released and the 4310 ** transaction remains open. 4311 */ 4312 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4313 int rc = SQLITE_OK; 4314 if( p && p->inTrans==TRANS_WRITE ){ 4315 BtShared *pBt = p->pBt; 4316 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4317 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4318 sqlite3BtreeEnter(p); 4319 if( op==SAVEPOINT_ROLLBACK ){ 4320 rc = saveAllCursors(pBt, 0, 0); 4321 } 4322 if( rc==SQLITE_OK ){ 4323 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4324 } 4325 if( rc==SQLITE_OK ){ 4326 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4327 pBt->nPage = 0; 4328 } 4329 rc = newDatabase(pBt); 4330 btreeSetNPage(pBt, pBt->pPage1); 4331 4332 /* pBt->nPage might be zero if the database was corrupt when 4333 ** the transaction was started. Otherwise, it must be at least 1. */ 4334 assert( CORRUPT_DB || pBt->nPage>0 ); 4335 } 4336 sqlite3BtreeLeave(p); 4337 } 4338 return rc; 4339 } 4340 4341 /* 4342 ** Create a new cursor for the BTree whose root is on the page 4343 ** iTable. If a read-only cursor is requested, it is assumed that 4344 ** the caller already has at least a read-only transaction open 4345 ** on the database already. If a write-cursor is requested, then 4346 ** the caller is assumed to have an open write transaction. 4347 ** 4348 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4349 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4350 ** can be used for reading or for writing if other conditions for writing 4351 ** are also met. These are the conditions that must be met in order 4352 ** for writing to be allowed: 4353 ** 4354 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4355 ** 4356 ** 2: Other database connections that share the same pager cache 4357 ** but which are not in the READ_UNCOMMITTED state may not have 4358 ** cursors open with wrFlag==0 on the same table. Otherwise 4359 ** the changes made by this write cursor would be visible to 4360 ** the read cursors in the other database connection. 4361 ** 4362 ** 3: The database must be writable (not on read-only media) 4363 ** 4364 ** 4: There must be an active transaction. 4365 ** 4366 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4367 ** is set. If FORDELETE is set, that is a hint to the implementation that 4368 ** this cursor will only be used to seek to and delete entries of an index 4369 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4370 ** this implementation. But in a hypothetical alternative storage engine 4371 ** in which index entries are automatically deleted when corresponding table 4372 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4373 ** operations on this cursor can be no-ops and all READ operations can 4374 ** return a null row (2-bytes: 0x01 0x00). 4375 ** 4376 ** No checking is done to make sure that page iTable really is the 4377 ** root page of a b-tree. If it is not, then the cursor acquired 4378 ** will not work correctly. 4379 ** 4380 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4381 ** on pCur to initialize the memory space prior to invoking this routine. 4382 */ 4383 static int btreeCursor( 4384 Btree *p, /* The btree */ 4385 Pgno iTable, /* Root page of table to open */ 4386 int wrFlag, /* 1 to write. 0 read-only */ 4387 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4388 BtCursor *pCur /* Space for new cursor */ 4389 ){ 4390 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4391 BtCursor *pX; /* Looping over other all cursors */ 4392 4393 assert( sqlite3BtreeHoldsMutex(p) ); 4394 assert( wrFlag==0 4395 || wrFlag==BTREE_WRCSR 4396 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4397 ); 4398 4399 /* The following assert statements verify that if this is a sharable 4400 ** b-tree database, the connection is holding the required table locks, 4401 ** and that no other connection has any open cursor that conflicts with 4402 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4403 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4404 || iTable<1 ); 4405 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4406 4407 /* Assert that the caller has opened the required transaction. */ 4408 assert( p->inTrans>TRANS_NONE ); 4409 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4410 assert( pBt->pPage1 && pBt->pPage1->aData ); 4411 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4412 4413 if( wrFlag ){ 4414 allocateTempSpace(pBt); 4415 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4416 } 4417 if( iTable<=1 ){ 4418 if( iTable<1 ){ 4419 return SQLITE_CORRUPT_BKPT; 4420 }else if( btreePagecount(pBt)==0 ){ 4421 assert( wrFlag==0 ); 4422 iTable = 0; 4423 } 4424 } 4425 4426 /* Now that no other errors can occur, finish filling in the BtCursor 4427 ** variables and link the cursor into the BtShared list. */ 4428 pCur->pgnoRoot = iTable; 4429 pCur->iPage = -1; 4430 pCur->pKeyInfo = pKeyInfo; 4431 pCur->pBtree = p; 4432 pCur->pBt = pBt; 4433 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4434 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4435 /* If there are two or more cursors on the same btree, then all such 4436 ** cursors *must* have the BTCF_Multiple flag set. */ 4437 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4438 if( pX->pgnoRoot==iTable ){ 4439 pX->curFlags |= BTCF_Multiple; 4440 pCur->curFlags |= BTCF_Multiple; 4441 } 4442 } 4443 pCur->pNext = pBt->pCursor; 4444 pBt->pCursor = pCur; 4445 pCur->eState = CURSOR_INVALID; 4446 return SQLITE_OK; 4447 } 4448 static int btreeCursorWithLock( 4449 Btree *p, /* The btree */ 4450 Pgno iTable, /* Root page of table to open */ 4451 int wrFlag, /* 1 to write. 0 read-only */ 4452 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4453 BtCursor *pCur /* Space for new cursor */ 4454 ){ 4455 int rc; 4456 sqlite3BtreeEnter(p); 4457 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4458 sqlite3BtreeLeave(p); 4459 return rc; 4460 } 4461 int sqlite3BtreeCursor( 4462 Btree *p, /* The btree */ 4463 Pgno iTable, /* Root page of table to open */ 4464 int wrFlag, /* 1 to write. 0 read-only */ 4465 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4466 BtCursor *pCur /* Write new cursor here */ 4467 ){ 4468 if( p->sharable ){ 4469 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4470 }else{ 4471 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4472 } 4473 } 4474 4475 /* 4476 ** Return the size of a BtCursor object in bytes. 4477 ** 4478 ** This interfaces is needed so that users of cursors can preallocate 4479 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4480 ** to users so they cannot do the sizeof() themselves - they must call 4481 ** this routine. 4482 */ 4483 int sqlite3BtreeCursorSize(void){ 4484 return ROUND8(sizeof(BtCursor)); 4485 } 4486 4487 /* 4488 ** Initialize memory that will be converted into a BtCursor object. 4489 ** 4490 ** The simple approach here would be to memset() the entire object 4491 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4492 ** do not need to be zeroed and they are large, so we can save a lot 4493 ** of run-time by skipping the initialization of those elements. 4494 */ 4495 void sqlite3BtreeCursorZero(BtCursor *p){ 4496 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4497 } 4498 4499 /* 4500 ** Close a cursor. The read lock on the database file is released 4501 ** when the last cursor is closed. 4502 */ 4503 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4504 Btree *pBtree = pCur->pBtree; 4505 if( pBtree ){ 4506 BtShared *pBt = pCur->pBt; 4507 sqlite3BtreeEnter(pBtree); 4508 assert( pBt->pCursor!=0 ); 4509 if( pBt->pCursor==pCur ){ 4510 pBt->pCursor = pCur->pNext; 4511 }else{ 4512 BtCursor *pPrev = pBt->pCursor; 4513 do{ 4514 if( pPrev->pNext==pCur ){ 4515 pPrev->pNext = pCur->pNext; 4516 break; 4517 } 4518 pPrev = pPrev->pNext; 4519 }while( ALWAYS(pPrev) ); 4520 } 4521 btreeReleaseAllCursorPages(pCur); 4522 unlockBtreeIfUnused(pBt); 4523 sqlite3_free(pCur->aOverflow); 4524 sqlite3_free(pCur->pKey); 4525 sqlite3BtreeLeave(pBtree); 4526 pCur->pBtree = 0; 4527 } 4528 return SQLITE_OK; 4529 } 4530 4531 /* 4532 ** Make sure the BtCursor* given in the argument has a valid 4533 ** BtCursor.info structure. If it is not already valid, call 4534 ** btreeParseCell() to fill it in. 4535 ** 4536 ** BtCursor.info is a cache of the information in the current cell. 4537 ** Using this cache reduces the number of calls to btreeParseCell(). 4538 */ 4539 #ifndef NDEBUG 4540 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4541 if( a->nKey!=b->nKey ) return 0; 4542 if( a->pPayload!=b->pPayload ) return 0; 4543 if( a->nPayload!=b->nPayload ) return 0; 4544 if( a->nLocal!=b->nLocal ) return 0; 4545 if( a->nSize!=b->nSize ) return 0; 4546 return 1; 4547 } 4548 static void assertCellInfo(BtCursor *pCur){ 4549 CellInfo info; 4550 memset(&info, 0, sizeof(info)); 4551 btreeParseCell(pCur->pPage, pCur->ix, &info); 4552 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4553 } 4554 #else 4555 #define assertCellInfo(x) 4556 #endif 4557 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4558 if( pCur->info.nSize==0 ){ 4559 pCur->curFlags |= BTCF_ValidNKey; 4560 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4561 }else{ 4562 assertCellInfo(pCur); 4563 } 4564 } 4565 4566 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4567 /* 4568 ** Return true if the given BtCursor is valid. A valid cursor is one 4569 ** that is currently pointing to a row in a (non-empty) table. 4570 ** This is a verification routine is used only within assert() statements. 4571 */ 4572 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4573 return pCur && pCur->eState==CURSOR_VALID; 4574 } 4575 #endif /* NDEBUG */ 4576 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4577 assert( pCur!=0 ); 4578 return pCur->eState==CURSOR_VALID; 4579 } 4580 4581 /* 4582 ** Return the value of the integer key or "rowid" for a table btree. 4583 ** This routine is only valid for a cursor that is pointing into a 4584 ** ordinary table btree. If the cursor points to an index btree or 4585 ** is invalid, the result of this routine is undefined. 4586 */ 4587 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4588 assert( cursorHoldsMutex(pCur) ); 4589 assert( pCur->eState==CURSOR_VALID ); 4590 assert( pCur->curIntKey ); 4591 getCellInfo(pCur); 4592 return pCur->info.nKey; 4593 } 4594 4595 /* 4596 ** Pin or unpin a cursor. 4597 */ 4598 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4599 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4600 pCur->curFlags |= BTCF_Pinned; 4601 } 4602 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4603 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4604 pCur->curFlags &= ~BTCF_Pinned; 4605 } 4606 4607 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4608 /* 4609 ** Return the offset into the database file for the start of the 4610 ** payload to which the cursor is pointing. 4611 */ 4612 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4613 assert( cursorHoldsMutex(pCur) ); 4614 assert( pCur->eState==CURSOR_VALID ); 4615 getCellInfo(pCur); 4616 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4617 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4618 } 4619 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4620 4621 /* 4622 ** Return the number of bytes of payload for the entry that pCur is 4623 ** currently pointing to. For table btrees, this will be the amount 4624 ** of data. For index btrees, this will be the size of the key. 4625 ** 4626 ** The caller must guarantee that the cursor is pointing to a non-NULL 4627 ** valid entry. In other words, the calling procedure must guarantee 4628 ** that the cursor has Cursor.eState==CURSOR_VALID. 4629 */ 4630 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4631 assert( cursorHoldsMutex(pCur) ); 4632 assert( pCur->eState==CURSOR_VALID ); 4633 getCellInfo(pCur); 4634 return pCur->info.nPayload; 4635 } 4636 4637 /* 4638 ** Return an upper bound on the size of any record for the table 4639 ** that the cursor is pointing into. 4640 ** 4641 ** This is an optimization. Everything will still work if this 4642 ** routine always returns 2147483647 (which is the largest record 4643 ** that SQLite can handle) or more. But returning a smaller value might 4644 ** prevent large memory allocations when trying to interpret a 4645 ** corrupt datrabase. 4646 ** 4647 ** The current implementation merely returns the size of the underlying 4648 ** database file. 4649 */ 4650 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4651 assert( cursorHoldsMutex(pCur) ); 4652 assert( pCur->eState==CURSOR_VALID ); 4653 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4654 } 4655 4656 /* 4657 ** Given the page number of an overflow page in the database (parameter 4658 ** ovfl), this function finds the page number of the next page in the 4659 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4660 ** pointer-map data instead of reading the content of page ovfl to do so. 4661 ** 4662 ** If an error occurs an SQLite error code is returned. Otherwise: 4663 ** 4664 ** The page number of the next overflow page in the linked list is 4665 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4666 ** list, *pPgnoNext is set to zero. 4667 ** 4668 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4669 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4670 ** reference. It is the responsibility of the caller to call releasePage() 4671 ** on *ppPage to free the reference. In no reference was obtained (because 4672 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4673 ** *ppPage is set to zero. 4674 */ 4675 static int getOverflowPage( 4676 BtShared *pBt, /* The database file */ 4677 Pgno ovfl, /* Current overflow page number */ 4678 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4679 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4680 ){ 4681 Pgno next = 0; 4682 MemPage *pPage = 0; 4683 int rc = SQLITE_OK; 4684 4685 assert( sqlite3_mutex_held(pBt->mutex) ); 4686 assert(pPgnoNext); 4687 4688 #ifndef SQLITE_OMIT_AUTOVACUUM 4689 /* Try to find the next page in the overflow list using the 4690 ** autovacuum pointer-map pages. Guess that the next page in 4691 ** the overflow list is page number (ovfl+1). If that guess turns 4692 ** out to be wrong, fall back to loading the data of page 4693 ** number ovfl to determine the next page number. 4694 */ 4695 if( pBt->autoVacuum ){ 4696 Pgno pgno; 4697 Pgno iGuess = ovfl+1; 4698 u8 eType; 4699 4700 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4701 iGuess++; 4702 } 4703 4704 if( iGuess<=btreePagecount(pBt) ){ 4705 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4706 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4707 next = iGuess; 4708 rc = SQLITE_DONE; 4709 } 4710 } 4711 } 4712 #endif 4713 4714 assert( next==0 || rc==SQLITE_DONE ); 4715 if( rc==SQLITE_OK ){ 4716 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4717 assert( rc==SQLITE_OK || pPage==0 ); 4718 if( rc==SQLITE_OK ){ 4719 next = get4byte(pPage->aData); 4720 } 4721 } 4722 4723 *pPgnoNext = next; 4724 if( ppPage ){ 4725 *ppPage = pPage; 4726 }else{ 4727 releasePage(pPage); 4728 } 4729 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4730 } 4731 4732 /* 4733 ** Copy data from a buffer to a page, or from a page to a buffer. 4734 ** 4735 ** pPayload is a pointer to data stored on database page pDbPage. 4736 ** If argument eOp is false, then nByte bytes of data are copied 4737 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4738 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4739 ** of data are copied from the buffer pBuf to pPayload. 4740 ** 4741 ** SQLITE_OK is returned on success, otherwise an error code. 4742 */ 4743 static int copyPayload( 4744 void *pPayload, /* Pointer to page data */ 4745 void *pBuf, /* Pointer to buffer */ 4746 int nByte, /* Number of bytes to copy */ 4747 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4748 DbPage *pDbPage /* Page containing pPayload */ 4749 ){ 4750 if( eOp ){ 4751 /* Copy data from buffer to page (a write operation) */ 4752 int rc = sqlite3PagerWrite(pDbPage); 4753 if( rc!=SQLITE_OK ){ 4754 return rc; 4755 } 4756 memcpy(pPayload, pBuf, nByte); 4757 }else{ 4758 /* Copy data from page to buffer (a read operation) */ 4759 memcpy(pBuf, pPayload, nByte); 4760 } 4761 return SQLITE_OK; 4762 } 4763 4764 /* 4765 ** This function is used to read or overwrite payload information 4766 ** for the entry that the pCur cursor is pointing to. The eOp 4767 ** argument is interpreted as follows: 4768 ** 4769 ** 0: The operation is a read. Populate the overflow cache. 4770 ** 1: The operation is a write. Populate the overflow cache. 4771 ** 4772 ** A total of "amt" bytes are read or written beginning at "offset". 4773 ** Data is read to or from the buffer pBuf. 4774 ** 4775 ** The content being read or written might appear on the main page 4776 ** or be scattered out on multiple overflow pages. 4777 ** 4778 ** If the current cursor entry uses one or more overflow pages 4779 ** this function may allocate space for and lazily populate 4780 ** the overflow page-list cache array (BtCursor.aOverflow). 4781 ** Subsequent calls use this cache to make seeking to the supplied offset 4782 ** more efficient. 4783 ** 4784 ** Once an overflow page-list cache has been allocated, it must be 4785 ** invalidated if some other cursor writes to the same table, or if 4786 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4787 ** mode, the following events may invalidate an overflow page-list cache. 4788 ** 4789 ** * An incremental vacuum, 4790 ** * A commit in auto_vacuum="full" mode, 4791 ** * Creating a table (may require moving an overflow page). 4792 */ 4793 static int accessPayload( 4794 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4795 u32 offset, /* Begin reading this far into payload */ 4796 u32 amt, /* Read this many bytes */ 4797 unsigned char *pBuf, /* Write the bytes into this buffer */ 4798 int eOp /* zero to read. non-zero to write. */ 4799 ){ 4800 unsigned char *aPayload; 4801 int rc = SQLITE_OK; 4802 int iIdx = 0; 4803 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4804 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4805 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4806 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4807 #endif 4808 4809 assert( pPage ); 4810 assert( eOp==0 || eOp==1 ); 4811 assert( pCur->eState==CURSOR_VALID ); 4812 assert( pCur->ix<pPage->nCell ); 4813 assert( cursorHoldsMutex(pCur) ); 4814 4815 getCellInfo(pCur); 4816 aPayload = pCur->info.pPayload; 4817 assert( offset+amt <= pCur->info.nPayload ); 4818 4819 assert( aPayload > pPage->aData ); 4820 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4821 /* Trying to read or write past the end of the data is an error. The 4822 ** conditional above is really: 4823 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4824 ** but is recast into its current form to avoid integer overflow problems 4825 */ 4826 return SQLITE_CORRUPT_PAGE(pPage); 4827 } 4828 4829 /* Check if data must be read/written to/from the btree page itself. */ 4830 if( offset<pCur->info.nLocal ){ 4831 int a = amt; 4832 if( a+offset>pCur->info.nLocal ){ 4833 a = pCur->info.nLocal - offset; 4834 } 4835 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4836 offset = 0; 4837 pBuf += a; 4838 amt -= a; 4839 }else{ 4840 offset -= pCur->info.nLocal; 4841 } 4842 4843 4844 if( rc==SQLITE_OK && amt>0 ){ 4845 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4846 Pgno nextPage; 4847 4848 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4849 4850 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4851 ** 4852 ** The aOverflow[] array is sized at one entry for each overflow page 4853 ** in the overflow chain. The page number of the first overflow page is 4854 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4855 ** means "not yet known" (the cache is lazily populated). 4856 */ 4857 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4858 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4859 if( pCur->aOverflow==0 4860 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4861 ){ 4862 Pgno *aNew = (Pgno*)sqlite3Realloc( 4863 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4864 ); 4865 if( aNew==0 ){ 4866 return SQLITE_NOMEM_BKPT; 4867 }else{ 4868 pCur->aOverflow = aNew; 4869 } 4870 } 4871 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4872 pCur->curFlags |= BTCF_ValidOvfl; 4873 }else{ 4874 /* If the overflow page-list cache has been allocated and the 4875 ** entry for the first required overflow page is valid, skip 4876 ** directly to it. 4877 */ 4878 if( pCur->aOverflow[offset/ovflSize] ){ 4879 iIdx = (offset/ovflSize); 4880 nextPage = pCur->aOverflow[iIdx]; 4881 offset = (offset%ovflSize); 4882 } 4883 } 4884 4885 assert( rc==SQLITE_OK && amt>0 ); 4886 while( nextPage ){ 4887 /* If required, populate the overflow page-list cache. */ 4888 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 4889 assert( pCur->aOverflow[iIdx]==0 4890 || pCur->aOverflow[iIdx]==nextPage 4891 || CORRUPT_DB ); 4892 pCur->aOverflow[iIdx] = nextPage; 4893 4894 if( offset>=ovflSize ){ 4895 /* The only reason to read this page is to obtain the page 4896 ** number for the next page in the overflow chain. The page 4897 ** data is not required. So first try to lookup the overflow 4898 ** page-list cache, if any, then fall back to the getOverflowPage() 4899 ** function. 4900 */ 4901 assert( pCur->curFlags & BTCF_ValidOvfl ); 4902 assert( pCur->pBtree->db==pBt->db ); 4903 if( pCur->aOverflow[iIdx+1] ){ 4904 nextPage = pCur->aOverflow[iIdx+1]; 4905 }else{ 4906 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4907 } 4908 offset -= ovflSize; 4909 }else{ 4910 /* Need to read this page properly. It contains some of the 4911 ** range of data that is being read (eOp==0) or written (eOp!=0). 4912 */ 4913 int a = amt; 4914 if( a + offset > ovflSize ){ 4915 a = ovflSize - offset; 4916 } 4917 4918 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4919 /* If all the following are true: 4920 ** 4921 ** 1) this is a read operation, and 4922 ** 2) data is required from the start of this overflow page, and 4923 ** 3) there are no dirty pages in the page-cache 4924 ** 4) the database is file-backed, and 4925 ** 5) the page is not in the WAL file 4926 ** 6) at least 4 bytes have already been read into the output buffer 4927 ** 4928 ** then data can be read directly from the database file into the 4929 ** output buffer, bypassing the page-cache altogether. This speeds 4930 ** up loading large records that span many overflow pages. 4931 */ 4932 if( eOp==0 /* (1) */ 4933 && offset==0 /* (2) */ 4934 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 4935 && &pBuf[-4]>=pBufStart /* (6) */ 4936 ){ 4937 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 4938 u8 aSave[4]; 4939 u8 *aWrite = &pBuf[-4]; 4940 assert( aWrite>=pBufStart ); /* due to (6) */ 4941 memcpy(aSave, aWrite, 4); 4942 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4943 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 4944 nextPage = get4byte(aWrite); 4945 memcpy(aWrite, aSave, 4); 4946 }else 4947 #endif 4948 4949 { 4950 DbPage *pDbPage; 4951 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4952 (eOp==0 ? PAGER_GET_READONLY : 0) 4953 ); 4954 if( rc==SQLITE_OK ){ 4955 aPayload = sqlite3PagerGetData(pDbPage); 4956 nextPage = get4byte(aPayload); 4957 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4958 sqlite3PagerUnref(pDbPage); 4959 offset = 0; 4960 } 4961 } 4962 amt -= a; 4963 if( amt==0 ) return rc; 4964 pBuf += a; 4965 } 4966 if( rc ) break; 4967 iIdx++; 4968 } 4969 } 4970 4971 if( rc==SQLITE_OK && amt>0 ){ 4972 /* Overflow chain ends prematurely */ 4973 return SQLITE_CORRUPT_PAGE(pPage); 4974 } 4975 return rc; 4976 } 4977 4978 /* 4979 ** Read part of the payload for the row at which that cursor pCur is currently 4980 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4981 ** begins at "offset". 4982 ** 4983 ** pCur can be pointing to either a table or an index b-tree. 4984 ** If pointing to a table btree, then the content section is read. If 4985 ** pCur is pointing to an index b-tree then the key section is read. 4986 ** 4987 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4988 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4989 ** cursor might be invalid or might need to be restored before being read. 4990 ** 4991 ** Return SQLITE_OK on success or an error code if anything goes 4992 ** wrong. An error is returned if "offset+amt" is larger than 4993 ** the available payload. 4994 */ 4995 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4996 assert( cursorHoldsMutex(pCur) ); 4997 assert( pCur->eState==CURSOR_VALID ); 4998 assert( pCur->iPage>=0 && pCur->pPage ); 4999 assert( pCur->ix<pCur->pPage->nCell ); 5000 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5001 } 5002 5003 /* 5004 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5005 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5006 ** interface. 5007 */ 5008 #ifndef SQLITE_OMIT_INCRBLOB 5009 static SQLITE_NOINLINE int accessPayloadChecked( 5010 BtCursor *pCur, 5011 u32 offset, 5012 u32 amt, 5013 void *pBuf 5014 ){ 5015 int rc; 5016 if ( pCur->eState==CURSOR_INVALID ){ 5017 return SQLITE_ABORT; 5018 } 5019 assert( cursorOwnsBtShared(pCur) ); 5020 rc = btreeRestoreCursorPosition(pCur); 5021 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5022 } 5023 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5024 if( pCur->eState==CURSOR_VALID ){ 5025 assert( cursorOwnsBtShared(pCur) ); 5026 return accessPayload(pCur, offset, amt, pBuf, 0); 5027 }else{ 5028 return accessPayloadChecked(pCur, offset, amt, pBuf); 5029 } 5030 } 5031 #endif /* SQLITE_OMIT_INCRBLOB */ 5032 5033 /* 5034 ** Return a pointer to payload information from the entry that the 5035 ** pCur cursor is pointing to. The pointer is to the beginning of 5036 ** the key if index btrees (pPage->intKey==0) and is the data for 5037 ** table btrees (pPage->intKey==1). The number of bytes of available 5038 ** key/data is written into *pAmt. If *pAmt==0, then the value 5039 ** returned will not be a valid pointer. 5040 ** 5041 ** This routine is an optimization. It is common for the entire key 5042 ** and data to fit on the local page and for there to be no overflow 5043 ** pages. When that is so, this routine can be used to access the 5044 ** key and data without making a copy. If the key and/or data spills 5045 ** onto overflow pages, then accessPayload() must be used to reassemble 5046 ** the key/data and copy it into a preallocated buffer. 5047 ** 5048 ** The pointer returned by this routine looks directly into the cached 5049 ** page of the database. The data might change or move the next time 5050 ** any btree routine is called. 5051 */ 5052 static const void *fetchPayload( 5053 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5054 u32 *pAmt /* Write the number of available bytes here */ 5055 ){ 5056 int amt; 5057 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5058 assert( pCur->eState==CURSOR_VALID ); 5059 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5060 assert( cursorOwnsBtShared(pCur) ); 5061 assert( pCur->ix<pCur->pPage->nCell ); 5062 assert( pCur->info.nSize>0 ); 5063 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5064 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5065 amt = pCur->info.nLocal; 5066 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5067 /* There is too little space on the page for the expected amount 5068 ** of local content. Database must be corrupt. */ 5069 assert( CORRUPT_DB ); 5070 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5071 } 5072 *pAmt = (u32)amt; 5073 return (void*)pCur->info.pPayload; 5074 } 5075 5076 5077 /* 5078 ** For the entry that cursor pCur is point to, return as 5079 ** many bytes of the key or data as are available on the local 5080 ** b-tree page. Write the number of available bytes into *pAmt. 5081 ** 5082 ** The pointer returned is ephemeral. The key/data may move 5083 ** or be destroyed on the next call to any Btree routine, 5084 ** including calls from other threads against the same cache. 5085 ** Hence, a mutex on the BtShared should be held prior to calling 5086 ** this routine. 5087 ** 5088 ** These routines is used to get quick access to key and data 5089 ** in the common case where no overflow pages are used. 5090 */ 5091 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5092 return fetchPayload(pCur, pAmt); 5093 } 5094 5095 5096 /* 5097 ** Move the cursor down to a new child page. The newPgno argument is the 5098 ** page number of the child page to move to. 5099 ** 5100 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5101 ** the new child page does not match the flags field of the parent (i.e. 5102 ** if an intkey page appears to be the parent of a non-intkey page, or 5103 ** vice-versa). 5104 */ 5105 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5106 BtShared *pBt = pCur->pBt; 5107 5108 assert( cursorOwnsBtShared(pCur) ); 5109 assert( pCur->eState==CURSOR_VALID ); 5110 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5111 assert( pCur->iPage>=0 ); 5112 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5113 return SQLITE_CORRUPT_BKPT; 5114 } 5115 pCur->info.nSize = 0; 5116 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5117 pCur->aiIdx[pCur->iPage] = pCur->ix; 5118 pCur->apPage[pCur->iPage] = pCur->pPage; 5119 pCur->ix = 0; 5120 pCur->iPage++; 5121 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5122 } 5123 5124 #ifdef SQLITE_DEBUG 5125 /* 5126 ** Page pParent is an internal (non-leaf) tree page. This function 5127 ** asserts that page number iChild is the left-child if the iIdx'th 5128 ** cell in page pParent. Or, if iIdx is equal to the total number of 5129 ** cells in pParent, that page number iChild is the right-child of 5130 ** the page. 5131 */ 5132 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5133 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5134 ** in a corrupt database */ 5135 assert( iIdx<=pParent->nCell ); 5136 if( iIdx==pParent->nCell ){ 5137 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5138 }else{ 5139 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5140 } 5141 } 5142 #else 5143 # define assertParentIndex(x,y,z) 5144 #endif 5145 5146 /* 5147 ** Move the cursor up to the parent page. 5148 ** 5149 ** pCur->idx is set to the cell index that contains the pointer 5150 ** to the page we are coming from. If we are coming from the 5151 ** right-most child page then pCur->idx is set to one more than 5152 ** the largest cell index. 5153 */ 5154 static void moveToParent(BtCursor *pCur){ 5155 MemPage *pLeaf; 5156 assert( cursorOwnsBtShared(pCur) ); 5157 assert( pCur->eState==CURSOR_VALID ); 5158 assert( pCur->iPage>0 ); 5159 assert( pCur->pPage ); 5160 assertParentIndex( 5161 pCur->apPage[pCur->iPage-1], 5162 pCur->aiIdx[pCur->iPage-1], 5163 pCur->pPage->pgno 5164 ); 5165 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5166 pCur->info.nSize = 0; 5167 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5168 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5169 pLeaf = pCur->pPage; 5170 pCur->pPage = pCur->apPage[--pCur->iPage]; 5171 releasePageNotNull(pLeaf); 5172 } 5173 5174 /* 5175 ** Move the cursor to point to the root page of its b-tree structure. 5176 ** 5177 ** If the table has a virtual root page, then the cursor is moved to point 5178 ** to the virtual root page instead of the actual root page. A table has a 5179 ** virtual root page when the actual root page contains no cells and a 5180 ** single child page. This can only happen with the table rooted at page 1. 5181 ** 5182 ** If the b-tree structure is empty, the cursor state is set to 5183 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5184 ** the cursor is set to point to the first cell located on the root 5185 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5186 ** 5187 ** If this function returns successfully, it may be assumed that the 5188 ** page-header flags indicate that the [virtual] root-page is the expected 5189 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5190 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5191 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5192 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5193 ** b-tree). 5194 */ 5195 static int moveToRoot(BtCursor *pCur){ 5196 MemPage *pRoot; 5197 int rc = SQLITE_OK; 5198 5199 assert( cursorOwnsBtShared(pCur) ); 5200 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5201 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5202 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5203 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5204 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5205 5206 if( pCur->iPage>=0 ){ 5207 if( pCur->iPage ){ 5208 releasePageNotNull(pCur->pPage); 5209 while( --pCur->iPage ){ 5210 releasePageNotNull(pCur->apPage[pCur->iPage]); 5211 } 5212 pCur->pPage = pCur->apPage[0]; 5213 goto skip_init; 5214 } 5215 }else if( pCur->pgnoRoot==0 ){ 5216 pCur->eState = CURSOR_INVALID; 5217 return SQLITE_EMPTY; 5218 }else{ 5219 assert( pCur->iPage==(-1) ); 5220 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5221 if( pCur->eState==CURSOR_FAULT ){ 5222 assert( pCur->skipNext!=SQLITE_OK ); 5223 return pCur->skipNext; 5224 } 5225 sqlite3BtreeClearCursor(pCur); 5226 } 5227 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5228 0, pCur->curPagerFlags); 5229 if( rc!=SQLITE_OK ){ 5230 pCur->eState = CURSOR_INVALID; 5231 return rc; 5232 } 5233 pCur->iPage = 0; 5234 pCur->curIntKey = pCur->pPage->intKey; 5235 } 5236 pRoot = pCur->pPage; 5237 assert( pRoot->pgno==pCur->pgnoRoot ); 5238 5239 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5240 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5241 ** NULL, the caller expects a table b-tree. If this is not the case, 5242 ** return an SQLITE_CORRUPT error. 5243 ** 5244 ** Earlier versions of SQLite assumed that this test could not fail 5245 ** if the root page was already loaded when this function was called (i.e. 5246 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5247 ** in such a way that page pRoot is linked into a second b-tree table 5248 ** (or the freelist). */ 5249 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5250 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5251 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5252 } 5253 5254 skip_init: 5255 pCur->ix = 0; 5256 pCur->info.nSize = 0; 5257 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5258 5259 pRoot = pCur->pPage; 5260 if( pRoot->nCell>0 ){ 5261 pCur->eState = CURSOR_VALID; 5262 }else if( !pRoot->leaf ){ 5263 Pgno subpage; 5264 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5265 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5266 pCur->eState = CURSOR_VALID; 5267 rc = moveToChild(pCur, subpage); 5268 }else{ 5269 pCur->eState = CURSOR_INVALID; 5270 rc = SQLITE_EMPTY; 5271 } 5272 return rc; 5273 } 5274 5275 /* 5276 ** Move the cursor down to the left-most leaf entry beneath the 5277 ** entry to which it is currently pointing. 5278 ** 5279 ** The left-most leaf is the one with the smallest key - the first 5280 ** in ascending order. 5281 */ 5282 static int moveToLeftmost(BtCursor *pCur){ 5283 Pgno pgno; 5284 int rc = SQLITE_OK; 5285 MemPage *pPage; 5286 5287 assert( cursorOwnsBtShared(pCur) ); 5288 assert( pCur->eState==CURSOR_VALID ); 5289 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5290 assert( pCur->ix<pPage->nCell ); 5291 pgno = get4byte(findCell(pPage, pCur->ix)); 5292 rc = moveToChild(pCur, pgno); 5293 } 5294 return rc; 5295 } 5296 5297 /* 5298 ** Move the cursor down to the right-most leaf entry beneath the 5299 ** page to which it is currently pointing. Notice the difference 5300 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5301 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5302 ** finds the right-most entry beneath the *page*. 5303 ** 5304 ** The right-most entry is the one with the largest key - the last 5305 ** key in ascending order. 5306 */ 5307 static int moveToRightmost(BtCursor *pCur){ 5308 Pgno pgno; 5309 int rc = SQLITE_OK; 5310 MemPage *pPage = 0; 5311 5312 assert( cursorOwnsBtShared(pCur) ); 5313 assert( pCur->eState==CURSOR_VALID ); 5314 while( !(pPage = pCur->pPage)->leaf ){ 5315 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5316 pCur->ix = pPage->nCell; 5317 rc = moveToChild(pCur, pgno); 5318 if( rc ) return rc; 5319 } 5320 pCur->ix = pPage->nCell-1; 5321 assert( pCur->info.nSize==0 ); 5322 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5323 return SQLITE_OK; 5324 } 5325 5326 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5327 ** on success. Set *pRes to 0 if the cursor actually points to something 5328 ** or set *pRes to 1 if the table is empty. 5329 */ 5330 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5331 int rc; 5332 5333 assert( cursorOwnsBtShared(pCur) ); 5334 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5335 rc = moveToRoot(pCur); 5336 if( rc==SQLITE_OK ){ 5337 assert( pCur->pPage->nCell>0 ); 5338 *pRes = 0; 5339 rc = moveToLeftmost(pCur); 5340 }else if( rc==SQLITE_EMPTY ){ 5341 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5342 *pRes = 1; 5343 rc = SQLITE_OK; 5344 } 5345 return rc; 5346 } 5347 5348 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5349 ** on success. Set *pRes to 0 if the cursor actually points to something 5350 ** or set *pRes to 1 if the table is empty. 5351 */ 5352 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5353 int rc; 5354 5355 assert( cursorOwnsBtShared(pCur) ); 5356 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5357 5358 /* If the cursor already points to the last entry, this is a no-op. */ 5359 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5360 #ifdef SQLITE_DEBUG 5361 /* This block serves to assert() that the cursor really does point 5362 ** to the last entry in the b-tree. */ 5363 int ii; 5364 for(ii=0; ii<pCur->iPage; ii++){ 5365 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5366 } 5367 assert( pCur->ix==pCur->pPage->nCell-1 ); 5368 assert( pCur->pPage->leaf ); 5369 #endif 5370 *pRes = 0; 5371 return SQLITE_OK; 5372 } 5373 5374 rc = moveToRoot(pCur); 5375 if( rc==SQLITE_OK ){ 5376 assert( pCur->eState==CURSOR_VALID ); 5377 *pRes = 0; 5378 rc = moveToRightmost(pCur); 5379 if( rc==SQLITE_OK ){ 5380 pCur->curFlags |= BTCF_AtLast; 5381 }else{ 5382 pCur->curFlags &= ~BTCF_AtLast; 5383 } 5384 }else if( rc==SQLITE_EMPTY ){ 5385 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5386 *pRes = 1; 5387 rc = SQLITE_OK; 5388 } 5389 return rc; 5390 } 5391 5392 /* Move the cursor so that it points to an entry near the key 5393 ** specified by pIdxKey or intKey. Return a success code. 5394 ** 5395 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5396 ** must be NULL. For index tables, pIdxKey is used and intKey 5397 ** is ignored. 5398 ** 5399 ** If an exact match is not found, then the cursor is always 5400 ** left pointing at a leaf page which would hold the entry if it 5401 ** were present. The cursor might point to an entry that comes 5402 ** before or after the key. 5403 ** 5404 ** An integer is written into *pRes which is the result of 5405 ** comparing the key with the entry to which the cursor is 5406 ** pointing. The meaning of the integer written into 5407 ** *pRes is as follows: 5408 ** 5409 ** *pRes<0 The cursor is left pointing at an entry that 5410 ** is smaller than intKey/pIdxKey or if the table is empty 5411 ** and the cursor is therefore left point to nothing. 5412 ** 5413 ** *pRes==0 The cursor is left pointing at an entry that 5414 ** exactly matches intKey/pIdxKey. 5415 ** 5416 ** *pRes>0 The cursor is left pointing at an entry that 5417 ** is larger than intKey/pIdxKey. 5418 ** 5419 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5420 ** exists an entry in the table that exactly matches pIdxKey. 5421 */ 5422 int sqlite3BtreeMovetoUnpacked( 5423 BtCursor *pCur, /* The cursor to be moved */ 5424 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5425 i64 intKey, /* The table key */ 5426 int biasRight, /* If true, bias the search to the high end */ 5427 int *pRes /* Write search results here */ 5428 ){ 5429 int rc; 5430 RecordCompare xRecordCompare; 5431 5432 assert( cursorOwnsBtShared(pCur) ); 5433 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5434 assert( pRes ); 5435 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5436 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5437 5438 /* If the cursor is already positioned at the point we are trying 5439 ** to move to, then just return without doing any work */ 5440 if( pIdxKey==0 5441 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5442 ){ 5443 if( pCur->info.nKey==intKey ){ 5444 *pRes = 0; 5445 return SQLITE_OK; 5446 } 5447 if( pCur->info.nKey<intKey ){ 5448 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5449 *pRes = -1; 5450 return SQLITE_OK; 5451 } 5452 /* If the requested key is one more than the previous key, then 5453 ** try to get there using sqlite3BtreeNext() rather than a full 5454 ** binary search. This is an optimization only. The correct answer 5455 ** is still obtained without this case, only a little more slowely */ 5456 if( pCur->info.nKey+1==intKey ){ 5457 *pRes = 0; 5458 rc = sqlite3BtreeNext(pCur, 0); 5459 if( rc==SQLITE_OK ){ 5460 getCellInfo(pCur); 5461 if( pCur->info.nKey==intKey ){ 5462 return SQLITE_OK; 5463 } 5464 }else if( rc==SQLITE_DONE ){ 5465 rc = SQLITE_OK; 5466 }else{ 5467 return rc; 5468 } 5469 } 5470 } 5471 } 5472 5473 #ifdef SQLITE_DEBUG 5474 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5475 #endif 5476 5477 if( pIdxKey ){ 5478 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5479 pIdxKey->errCode = 0; 5480 assert( pIdxKey->default_rc==1 5481 || pIdxKey->default_rc==0 5482 || pIdxKey->default_rc==-1 5483 ); 5484 }else{ 5485 xRecordCompare = 0; /* All keys are integers */ 5486 } 5487 5488 rc = moveToRoot(pCur); 5489 if( rc ){ 5490 if( rc==SQLITE_EMPTY ){ 5491 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5492 *pRes = -1; 5493 return SQLITE_OK; 5494 } 5495 return rc; 5496 } 5497 assert( pCur->pPage ); 5498 assert( pCur->pPage->isInit ); 5499 assert( pCur->eState==CURSOR_VALID ); 5500 assert( pCur->pPage->nCell > 0 ); 5501 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5502 assert( pCur->curIntKey || pIdxKey ); 5503 for(;;){ 5504 int lwr, upr, idx, c; 5505 Pgno chldPg; 5506 MemPage *pPage = pCur->pPage; 5507 u8 *pCell; /* Pointer to current cell in pPage */ 5508 5509 /* pPage->nCell must be greater than zero. If this is the root-page 5510 ** the cursor would have been INVALID above and this for(;;) loop 5511 ** not run. If this is not the root-page, then the moveToChild() routine 5512 ** would have already detected db corruption. Similarly, pPage must 5513 ** be the right kind (index or table) of b-tree page. Otherwise 5514 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5515 assert( pPage->nCell>0 ); 5516 assert( pPage->intKey==(pIdxKey==0) ); 5517 lwr = 0; 5518 upr = pPage->nCell-1; 5519 assert( biasRight==0 || biasRight==1 ); 5520 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5521 pCur->ix = (u16)idx; 5522 if( xRecordCompare==0 ){ 5523 for(;;){ 5524 i64 nCellKey; 5525 pCell = findCellPastPtr(pPage, idx); 5526 if( pPage->intKeyLeaf ){ 5527 while( 0x80 <= *(pCell++) ){ 5528 if( pCell>=pPage->aDataEnd ){ 5529 return SQLITE_CORRUPT_PAGE(pPage); 5530 } 5531 } 5532 } 5533 getVarint(pCell, (u64*)&nCellKey); 5534 if( nCellKey<intKey ){ 5535 lwr = idx+1; 5536 if( lwr>upr ){ c = -1; break; } 5537 }else if( nCellKey>intKey ){ 5538 upr = idx-1; 5539 if( lwr>upr ){ c = +1; break; } 5540 }else{ 5541 assert( nCellKey==intKey ); 5542 pCur->ix = (u16)idx; 5543 if( !pPage->leaf ){ 5544 lwr = idx; 5545 goto moveto_next_layer; 5546 }else{ 5547 pCur->curFlags |= BTCF_ValidNKey; 5548 pCur->info.nKey = nCellKey; 5549 pCur->info.nSize = 0; 5550 *pRes = 0; 5551 return SQLITE_OK; 5552 } 5553 } 5554 assert( lwr+upr>=0 ); 5555 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5556 } 5557 }else{ 5558 for(;;){ 5559 int nCell; /* Size of the pCell cell in bytes */ 5560 pCell = findCellPastPtr(pPage, idx); 5561 5562 /* The maximum supported page-size is 65536 bytes. This means that 5563 ** the maximum number of record bytes stored on an index B-Tree 5564 ** page is less than 16384 bytes and may be stored as a 2-byte 5565 ** varint. This information is used to attempt to avoid parsing 5566 ** the entire cell by checking for the cases where the record is 5567 ** stored entirely within the b-tree page by inspecting the first 5568 ** 2 bytes of the cell. 5569 */ 5570 nCell = pCell[0]; 5571 if( nCell<=pPage->max1bytePayload ){ 5572 /* This branch runs if the record-size field of the cell is a 5573 ** single byte varint and the record fits entirely on the main 5574 ** b-tree page. */ 5575 testcase( pCell+nCell+1==pPage->aDataEnd ); 5576 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5577 }else if( !(pCell[1] & 0x80) 5578 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5579 ){ 5580 /* The record-size field is a 2 byte varint and the record 5581 ** fits entirely on the main b-tree page. */ 5582 testcase( pCell+nCell+2==pPage->aDataEnd ); 5583 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5584 }else{ 5585 /* The record flows over onto one or more overflow pages. In 5586 ** this case the whole cell needs to be parsed, a buffer allocated 5587 ** and accessPayload() used to retrieve the record into the 5588 ** buffer before VdbeRecordCompare() can be called. 5589 ** 5590 ** If the record is corrupt, the xRecordCompare routine may read 5591 ** up to two varints past the end of the buffer. An extra 18 5592 ** bytes of padding is allocated at the end of the buffer in 5593 ** case this happens. */ 5594 void *pCellKey; 5595 u8 * const pCellBody = pCell - pPage->childPtrSize; 5596 const int nOverrun = 18; /* Size of the overrun padding */ 5597 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5598 nCell = (int)pCur->info.nKey; 5599 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5600 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5601 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5602 testcase( nCell==2 ); /* Minimum legal index key size */ 5603 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5604 rc = SQLITE_CORRUPT_PAGE(pPage); 5605 goto moveto_finish; 5606 } 5607 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5608 if( pCellKey==0 ){ 5609 rc = SQLITE_NOMEM_BKPT; 5610 goto moveto_finish; 5611 } 5612 pCur->ix = (u16)idx; 5613 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5614 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5615 pCur->curFlags &= ~BTCF_ValidOvfl; 5616 if( rc ){ 5617 sqlite3_free(pCellKey); 5618 goto moveto_finish; 5619 } 5620 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5621 sqlite3_free(pCellKey); 5622 } 5623 assert( 5624 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5625 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5626 ); 5627 if( c<0 ){ 5628 lwr = idx+1; 5629 }else if( c>0 ){ 5630 upr = idx-1; 5631 }else{ 5632 assert( c==0 ); 5633 *pRes = 0; 5634 rc = SQLITE_OK; 5635 pCur->ix = (u16)idx; 5636 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5637 goto moveto_finish; 5638 } 5639 if( lwr>upr ) break; 5640 assert( lwr+upr>=0 ); 5641 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5642 } 5643 } 5644 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5645 assert( pPage->isInit ); 5646 if( pPage->leaf ){ 5647 assert( pCur->ix<pCur->pPage->nCell ); 5648 pCur->ix = (u16)idx; 5649 *pRes = c; 5650 rc = SQLITE_OK; 5651 goto moveto_finish; 5652 } 5653 moveto_next_layer: 5654 if( lwr>=pPage->nCell ){ 5655 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5656 }else{ 5657 chldPg = get4byte(findCell(pPage, lwr)); 5658 } 5659 pCur->ix = (u16)lwr; 5660 rc = moveToChild(pCur, chldPg); 5661 if( rc ) break; 5662 } 5663 moveto_finish: 5664 pCur->info.nSize = 0; 5665 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5666 return rc; 5667 } 5668 5669 5670 /* 5671 ** Return TRUE if the cursor is not pointing at an entry of the table. 5672 ** 5673 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5674 ** past the last entry in the table or sqlite3BtreePrev() moves past 5675 ** the first entry. TRUE is also returned if the table is empty. 5676 */ 5677 int sqlite3BtreeEof(BtCursor *pCur){ 5678 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5679 ** have been deleted? This API will need to change to return an error code 5680 ** as well as the boolean result value. 5681 */ 5682 return (CURSOR_VALID!=pCur->eState); 5683 } 5684 5685 /* 5686 ** Return an estimate for the number of rows in the table that pCur is 5687 ** pointing to. Return a negative number if no estimate is currently 5688 ** available. 5689 */ 5690 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5691 i64 n; 5692 u8 i; 5693 5694 assert( cursorOwnsBtShared(pCur) ); 5695 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5696 5697 /* Currently this interface is only called by the OP_IfSmaller 5698 ** opcode, and it that case the cursor will always be valid and 5699 ** will always point to a leaf node. */ 5700 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5701 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5702 5703 n = pCur->pPage->nCell; 5704 for(i=0; i<pCur->iPage; i++){ 5705 n *= pCur->apPage[i]->nCell; 5706 } 5707 return n; 5708 } 5709 5710 /* 5711 ** Advance the cursor to the next entry in the database. 5712 ** Return value: 5713 ** 5714 ** SQLITE_OK success 5715 ** SQLITE_DONE cursor is already pointing at the last element 5716 ** otherwise some kind of error occurred 5717 ** 5718 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5719 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5720 ** to the next cell on the current page. The (slower) btreeNext() helper 5721 ** routine is called when it is necessary to move to a different page or 5722 ** to restore the cursor. 5723 ** 5724 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5725 ** cursor corresponds to an SQL index and this routine could have been 5726 ** skipped if the SQL index had been a unique index. The F argument 5727 ** is a hint to the implement. SQLite btree implementation does not use 5728 ** this hint, but COMDB2 does. 5729 */ 5730 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5731 int rc; 5732 int idx; 5733 MemPage *pPage; 5734 5735 assert( cursorOwnsBtShared(pCur) ); 5736 if( pCur->eState!=CURSOR_VALID ){ 5737 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5738 rc = restoreCursorPosition(pCur); 5739 if( rc!=SQLITE_OK ){ 5740 return rc; 5741 } 5742 if( CURSOR_INVALID==pCur->eState ){ 5743 return SQLITE_DONE; 5744 } 5745 if( pCur->eState==CURSOR_SKIPNEXT ){ 5746 pCur->eState = CURSOR_VALID; 5747 if( pCur->skipNext>0 ) return SQLITE_OK; 5748 } 5749 } 5750 5751 pPage = pCur->pPage; 5752 idx = ++pCur->ix; 5753 if( !pPage->isInit || sqlite3FaultSim(412) ){ 5754 /* The only known way for this to happen is for there to be a 5755 ** recursive SQL function that does a DELETE operation as part of a 5756 ** SELECT which deletes content out from under an active cursor 5757 ** in a corrupt database file where the table being DELETE-ed from 5758 ** has pages in common with the table being queried. See TH3 5759 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5760 ** example. */ 5761 return SQLITE_CORRUPT_BKPT; 5762 } 5763 5764 /* If the database file is corrupt, it is possible for the value of idx 5765 ** to be invalid here. This can only occur if a second cursor modifies 5766 ** the page while cursor pCur is holding a reference to it. Which can 5767 ** only happen if the database is corrupt in such a way as to link the 5768 ** page into more than one b-tree structure. 5769 ** 5770 ** Update 2019-12-23: appears to long longer be possible after the 5771 ** addition of anotherValidCursor() condition on balance_deeper(). */ 5772 harmless( idx>pPage->nCell ); 5773 5774 if( idx>=pPage->nCell ){ 5775 if( !pPage->leaf ){ 5776 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5777 if( rc ) return rc; 5778 return moveToLeftmost(pCur); 5779 } 5780 do{ 5781 if( pCur->iPage==0 ){ 5782 pCur->eState = CURSOR_INVALID; 5783 return SQLITE_DONE; 5784 } 5785 moveToParent(pCur); 5786 pPage = pCur->pPage; 5787 }while( pCur->ix>=pPage->nCell ); 5788 if( pPage->intKey ){ 5789 return sqlite3BtreeNext(pCur, 0); 5790 }else{ 5791 return SQLITE_OK; 5792 } 5793 } 5794 if( pPage->leaf ){ 5795 return SQLITE_OK; 5796 }else{ 5797 return moveToLeftmost(pCur); 5798 } 5799 } 5800 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5801 MemPage *pPage; 5802 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5803 assert( cursorOwnsBtShared(pCur) ); 5804 assert( flags==0 || flags==1 ); 5805 pCur->info.nSize = 0; 5806 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5807 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5808 pPage = pCur->pPage; 5809 if( (++pCur->ix)>=pPage->nCell ){ 5810 pCur->ix--; 5811 return btreeNext(pCur); 5812 } 5813 if( pPage->leaf ){ 5814 return SQLITE_OK; 5815 }else{ 5816 return moveToLeftmost(pCur); 5817 } 5818 } 5819 5820 /* 5821 ** Step the cursor to the back to the previous entry in the database. 5822 ** Return values: 5823 ** 5824 ** SQLITE_OK success 5825 ** SQLITE_DONE the cursor is already on the first element of the table 5826 ** otherwise some kind of error occurred 5827 ** 5828 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5829 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5830 ** to the previous cell on the current page. The (slower) btreePrevious() 5831 ** helper routine is called when it is necessary to move to a different page 5832 ** or to restore the cursor. 5833 ** 5834 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5835 ** the cursor corresponds to an SQL index and this routine could have been 5836 ** skipped if the SQL index had been a unique index. The F argument is a 5837 ** hint to the implement. The native SQLite btree implementation does not 5838 ** use this hint, but COMDB2 does. 5839 */ 5840 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5841 int rc; 5842 MemPage *pPage; 5843 5844 assert( cursorOwnsBtShared(pCur) ); 5845 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5846 assert( pCur->info.nSize==0 ); 5847 if( pCur->eState!=CURSOR_VALID ){ 5848 rc = restoreCursorPosition(pCur); 5849 if( rc!=SQLITE_OK ){ 5850 return rc; 5851 } 5852 if( CURSOR_INVALID==pCur->eState ){ 5853 return SQLITE_DONE; 5854 } 5855 if( CURSOR_SKIPNEXT==pCur->eState ){ 5856 pCur->eState = CURSOR_VALID; 5857 if( pCur->skipNext<0 ) return SQLITE_OK; 5858 } 5859 } 5860 5861 pPage = pCur->pPage; 5862 assert( pPage->isInit ); 5863 if( !pPage->leaf ){ 5864 int idx = pCur->ix; 5865 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5866 if( rc ) return rc; 5867 rc = moveToRightmost(pCur); 5868 }else{ 5869 while( pCur->ix==0 ){ 5870 if( pCur->iPage==0 ){ 5871 pCur->eState = CURSOR_INVALID; 5872 return SQLITE_DONE; 5873 } 5874 moveToParent(pCur); 5875 } 5876 assert( pCur->info.nSize==0 ); 5877 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5878 5879 pCur->ix--; 5880 pPage = pCur->pPage; 5881 if( pPage->intKey && !pPage->leaf ){ 5882 rc = sqlite3BtreePrevious(pCur, 0); 5883 }else{ 5884 rc = SQLITE_OK; 5885 } 5886 } 5887 return rc; 5888 } 5889 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5890 assert( cursorOwnsBtShared(pCur) ); 5891 assert( flags==0 || flags==1 ); 5892 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5893 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5894 pCur->info.nSize = 0; 5895 if( pCur->eState!=CURSOR_VALID 5896 || pCur->ix==0 5897 || pCur->pPage->leaf==0 5898 ){ 5899 return btreePrevious(pCur); 5900 } 5901 pCur->ix--; 5902 return SQLITE_OK; 5903 } 5904 5905 /* 5906 ** Allocate a new page from the database file. 5907 ** 5908 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5909 ** has already been called on the new page.) The new page has also 5910 ** been referenced and the calling routine is responsible for calling 5911 ** sqlite3PagerUnref() on the new page when it is done. 5912 ** 5913 ** SQLITE_OK is returned on success. Any other return value indicates 5914 ** an error. *ppPage is set to NULL in the event of an error. 5915 ** 5916 ** If the "nearby" parameter is not 0, then an effort is made to 5917 ** locate a page close to the page number "nearby". This can be used in an 5918 ** attempt to keep related pages close to each other in the database file, 5919 ** which in turn can make database access faster. 5920 ** 5921 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5922 ** anywhere on the free-list, then it is guaranteed to be returned. If 5923 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5924 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5925 ** are no restrictions on which page is returned. 5926 */ 5927 static int allocateBtreePage( 5928 BtShared *pBt, /* The btree */ 5929 MemPage **ppPage, /* Store pointer to the allocated page here */ 5930 Pgno *pPgno, /* Store the page number here */ 5931 Pgno nearby, /* Search for a page near this one */ 5932 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5933 ){ 5934 MemPage *pPage1; 5935 int rc; 5936 u32 n; /* Number of pages on the freelist */ 5937 u32 k; /* Number of leaves on the trunk of the freelist */ 5938 MemPage *pTrunk = 0; 5939 MemPage *pPrevTrunk = 0; 5940 Pgno mxPage; /* Total size of the database file */ 5941 5942 assert( sqlite3_mutex_held(pBt->mutex) ); 5943 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5944 pPage1 = pBt->pPage1; 5945 mxPage = btreePagecount(pBt); 5946 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5947 ** stores stores the total number of pages on the freelist. */ 5948 n = get4byte(&pPage1->aData[36]); 5949 testcase( n==mxPage-1 ); 5950 if( n>=mxPage ){ 5951 return SQLITE_CORRUPT_BKPT; 5952 } 5953 if( n>0 ){ 5954 /* There are pages on the freelist. Reuse one of those pages. */ 5955 Pgno iTrunk; 5956 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5957 u32 nSearch = 0; /* Count of the number of search attempts */ 5958 5959 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5960 ** shows that the page 'nearby' is somewhere on the free-list, then 5961 ** the entire-list will be searched for that page. 5962 */ 5963 #ifndef SQLITE_OMIT_AUTOVACUUM 5964 if( eMode==BTALLOC_EXACT ){ 5965 if( nearby<=mxPage ){ 5966 u8 eType; 5967 assert( nearby>0 ); 5968 assert( pBt->autoVacuum ); 5969 rc = ptrmapGet(pBt, nearby, &eType, 0); 5970 if( rc ) return rc; 5971 if( eType==PTRMAP_FREEPAGE ){ 5972 searchList = 1; 5973 } 5974 } 5975 }else if( eMode==BTALLOC_LE ){ 5976 searchList = 1; 5977 } 5978 #endif 5979 5980 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5981 ** first free-list trunk page. iPrevTrunk is initially 1. 5982 */ 5983 rc = sqlite3PagerWrite(pPage1->pDbPage); 5984 if( rc ) return rc; 5985 put4byte(&pPage1->aData[36], n-1); 5986 5987 /* The code within this loop is run only once if the 'searchList' variable 5988 ** is not true. Otherwise, it runs once for each trunk-page on the 5989 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5990 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5991 */ 5992 do { 5993 pPrevTrunk = pTrunk; 5994 if( pPrevTrunk ){ 5995 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5996 ** is the page number of the next freelist trunk page in the list or 5997 ** zero if this is the last freelist trunk page. */ 5998 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5999 }else{ 6000 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6001 ** stores the page number of the first page of the freelist, or zero if 6002 ** the freelist is empty. */ 6003 iTrunk = get4byte(&pPage1->aData[32]); 6004 } 6005 testcase( iTrunk==mxPage ); 6006 if( iTrunk>mxPage || nSearch++ > n ){ 6007 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6008 }else{ 6009 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6010 } 6011 if( rc ){ 6012 pTrunk = 0; 6013 goto end_allocate_page; 6014 } 6015 assert( pTrunk!=0 ); 6016 assert( pTrunk->aData!=0 ); 6017 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6018 ** is the number of leaf page pointers to follow. */ 6019 k = get4byte(&pTrunk->aData[4]); 6020 if( k==0 && !searchList ){ 6021 /* The trunk has no leaves and the list is not being searched. 6022 ** So extract the trunk page itself and use it as the newly 6023 ** allocated page */ 6024 assert( pPrevTrunk==0 ); 6025 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6026 if( rc ){ 6027 goto end_allocate_page; 6028 } 6029 *pPgno = iTrunk; 6030 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6031 *ppPage = pTrunk; 6032 pTrunk = 0; 6033 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6034 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6035 /* Value of k is out of range. Database corruption */ 6036 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6037 goto end_allocate_page; 6038 #ifndef SQLITE_OMIT_AUTOVACUUM 6039 }else if( searchList 6040 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6041 ){ 6042 /* The list is being searched and this trunk page is the page 6043 ** to allocate, regardless of whether it has leaves. 6044 */ 6045 *pPgno = iTrunk; 6046 *ppPage = pTrunk; 6047 searchList = 0; 6048 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6049 if( rc ){ 6050 goto end_allocate_page; 6051 } 6052 if( k==0 ){ 6053 if( !pPrevTrunk ){ 6054 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6055 }else{ 6056 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6057 if( rc!=SQLITE_OK ){ 6058 goto end_allocate_page; 6059 } 6060 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6061 } 6062 }else{ 6063 /* The trunk page is required by the caller but it contains 6064 ** pointers to free-list leaves. The first leaf becomes a trunk 6065 ** page in this case. 6066 */ 6067 MemPage *pNewTrunk; 6068 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6069 if( iNewTrunk>mxPage ){ 6070 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6071 goto end_allocate_page; 6072 } 6073 testcase( iNewTrunk==mxPage ); 6074 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6075 if( rc!=SQLITE_OK ){ 6076 goto end_allocate_page; 6077 } 6078 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6079 if( rc!=SQLITE_OK ){ 6080 releasePage(pNewTrunk); 6081 goto end_allocate_page; 6082 } 6083 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6084 put4byte(&pNewTrunk->aData[4], k-1); 6085 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6086 releasePage(pNewTrunk); 6087 if( !pPrevTrunk ){ 6088 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6089 put4byte(&pPage1->aData[32], iNewTrunk); 6090 }else{ 6091 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6092 if( rc ){ 6093 goto end_allocate_page; 6094 } 6095 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6096 } 6097 } 6098 pTrunk = 0; 6099 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6100 #endif 6101 }else if( k>0 ){ 6102 /* Extract a leaf from the trunk */ 6103 u32 closest; 6104 Pgno iPage; 6105 unsigned char *aData = pTrunk->aData; 6106 if( nearby>0 ){ 6107 u32 i; 6108 closest = 0; 6109 if( eMode==BTALLOC_LE ){ 6110 for(i=0; i<k; i++){ 6111 iPage = get4byte(&aData[8+i*4]); 6112 if( iPage<=nearby ){ 6113 closest = i; 6114 break; 6115 } 6116 } 6117 }else{ 6118 int dist; 6119 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6120 for(i=1; i<k; i++){ 6121 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6122 if( d2<dist ){ 6123 closest = i; 6124 dist = d2; 6125 } 6126 } 6127 } 6128 }else{ 6129 closest = 0; 6130 } 6131 6132 iPage = get4byte(&aData[8+closest*4]); 6133 testcase( iPage==mxPage ); 6134 if( iPage>mxPage ){ 6135 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6136 goto end_allocate_page; 6137 } 6138 testcase( iPage==mxPage ); 6139 if( !searchList 6140 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6141 ){ 6142 int noContent; 6143 *pPgno = iPage; 6144 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6145 ": %d more free pages\n", 6146 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6147 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6148 if( rc ) goto end_allocate_page; 6149 if( closest<k-1 ){ 6150 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6151 } 6152 put4byte(&aData[4], k-1); 6153 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6154 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6155 if( rc==SQLITE_OK ){ 6156 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6157 if( rc!=SQLITE_OK ){ 6158 releasePage(*ppPage); 6159 *ppPage = 0; 6160 } 6161 } 6162 searchList = 0; 6163 } 6164 } 6165 releasePage(pPrevTrunk); 6166 pPrevTrunk = 0; 6167 }while( searchList ); 6168 }else{ 6169 /* There are no pages on the freelist, so append a new page to the 6170 ** database image. 6171 ** 6172 ** Normally, new pages allocated by this block can be requested from the 6173 ** pager layer with the 'no-content' flag set. This prevents the pager 6174 ** from trying to read the pages content from disk. However, if the 6175 ** current transaction has already run one or more incremental-vacuum 6176 ** steps, then the page we are about to allocate may contain content 6177 ** that is required in the event of a rollback. In this case, do 6178 ** not set the no-content flag. This causes the pager to load and journal 6179 ** the current page content before overwriting it. 6180 ** 6181 ** Note that the pager will not actually attempt to load or journal 6182 ** content for any page that really does lie past the end of the database 6183 ** file on disk. So the effects of disabling the no-content optimization 6184 ** here are confined to those pages that lie between the end of the 6185 ** database image and the end of the database file. 6186 */ 6187 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6188 6189 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6190 if( rc ) return rc; 6191 pBt->nPage++; 6192 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6193 6194 #ifndef SQLITE_OMIT_AUTOVACUUM 6195 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6196 /* If *pPgno refers to a pointer-map page, allocate two new pages 6197 ** at the end of the file instead of one. The first allocated page 6198 ** becomes a new pointer-map page, the second is used by the caller. 6199 */ 6200 MemPage *pPg = 0; 6201 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6202 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6203 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6204 if( rc==SQLITE_OK ){ 6205 rc = sqlite3PagerWrite(pPg->pDbPage); 6206 releasePage(pPg); 6207 } 6208 if( rc ) return rc; 6209 pBt->nPage++; 6210 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6211 } 6212 #endif 6213 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6214 *pPgno = pBt->nPage; 6215 6216 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6217 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6218 if( rc ) return rc; 6219 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6220 if( rc!=SQLITE_OK ){ 6221 releasePage(*ppPage); 6222 *ppPage = 0; 6223 } 6224 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6225 } 6226 6227 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6228 6229 end_allocate_page: 6230 releasePage(pTrunk); 6231 releasePage(pPrevTrunk); 6232 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6233 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6234 return rc; 6235 } 6236 6237 /* 6238 ** This function is used to add page iPage to the database file free-list. 6239 ** It is assumed that the page is not already a part of the free-list. 6240 ** 6241 ** The value passed as the second argument to this function is optional. 6242 ** If the caller happens to have a pointer to the MemPage object 6243 ** corresponding to page iPage handy, it may pass it as the second value. 6244 ** Otherwise, it may pass NULL. 6245 ** 6246 ** If a pointer to a MemPage object is passed as the second argument, 6247 ** its reference count is not altered by this function. 6248 */ 6249 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6250 MemPage *pTrunk = 0; /* Free-list trunk page */ 6251 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6252 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6253 MemPage *pPage; /* Page being freed. May be NULL. */ 6254 int rc; /* Return Code */ 6255 u32 nFree; /* Initial number of pages on free-list */ 6256 6257 assert( sqlite3_mutex_held(pBt->mutex) ); 6258 assert( CORRUPT_DB || iPage>1 ); 6259 assert( !pMemPage || pMemPage->pgno==iPage ); 6260 6261 if( iPage<2 || iPage>pBt->nPage ){ 6262 return SQLITE_CORRUPT_BKPT; 6263 } 6264 if( pMemPage ){ 6265 pPage = pMemPage; 6266 sqlite3PagerRef(pPage->pDbPage); 6267 }else{ 6268 pPage = btreePageLookup(pBt, iPage); 6269 } 6270 6271 /* Increment the free page count on pPage1 */ 6272 rc = sqlite3PagerWrite(pPage1->pDbPage); 6273 if( rc ) goto freepage_out; 6274 nFree = get4byte(&pPage1->aData[36]); 6275 put4byte(&pPage1->aData[36], nFree+1); 6276 6277 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6278 /* If the secure_delete option is enabled, then 6279 ** always fully overwrite deleted information with zeros. 6280 */ 6281 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6282 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6283 ){ 6284 goto freepage_out; 6285 } 6286 memset(pPage->aData, 0, pPage->pBt->pageSize); 6287 } 6288 6289 /* If the database supports auto-vacuum, write an entry in the pointer-map 6290 ** to indicate that the page is free. 6291 */ 6292 if( ISAUTOVACUUM ){ 6293 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6294 if( rc ) goto freepage_out; 6295 } 6296 6297 /* Now manipulate the actual database free-list structure. There are two 6298 ** possibilities. If the free-list is currently empty, or if the first 6299 ** trunk page in the free-list is full, then this page will become a 6300 ** new free-list trunk page. Otherwise, it will become a leaf of the 6301 ** first trunk page in the current free-list. This block tests if it 6302 ** is possible to add the page as a new free-list leaf. 6303 */ 6304 if( nFree!=0 ){ 6305 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6306 6307 iTrunk = get4byte(&pPage1->aData[32]); 6308 if( iTrunk>btreePagecount(pBt) ){ 6309 rc = SQLITE_CORRUPT_BKPT; 6310 goto freepage_out; 6311 } 6312 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6313 if( rc!=SQLITE_OK ){ 6314 goto freepage_out; 6315 } 6316 6317 nLeaf = get4byte(&pTrunk->aData[4]); 6318 assert( pBt->usableSize>32 ); 6319 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6320 rc = SQLITE_CORRUPT_BKPT; 6321 goto freepage_out; 6322 } 6323 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6324 /* In this case there is room on the trunk page to insert the page 6325 ** being freed as a new leaf. 6326 ** 6327 ** Note that the trunk page is not really full until it contains 6328 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6329 ** coded. But due to a coding error in versions of SQLite prior to 6330 ** 3.6.0, databases with freelist trunk pages holding more than 6331 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6332 ** to maintain backwards compatibility with older versions of SQLite, 6333 ** we will continue to restrict the number of entries to usableSize/4 - 8 6334 ** for now. At some point in the future (once everyone has upgraded 6335 ** to 3.6.0 or later) we should consider fixing the conditional above 6336 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6337 ** 6338 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6339 ** avoid using the last six entries in the freelist trunk page array in 6340 ** order that database files created by newer versions of SQLite can be 6341 ** read by older versions of SQLite. 6342 */ 6343 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6344 if( rc==SQLITE_OK ){ 6345 put4byte(&pTrunk->aData[4], nLeaf+1); 6346 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6347 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6348 sqlite3PagerDontWrite(pPage->pDbPage); 6349 } 6350 rc = btreeSetHasContent(pBt, iPage); 6351 } 6352 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6353 goto freepage_out; 6354 } 6355 } 6356 6357 /* If control flows to this point, then it was not possible to add the 6358 ** the page being freed as a leaf page of the first trunk in the free-list. 6359 ** Possibly because the free-list is empty, or possibly because the 6360 ** first trunk in the free-list is full. Either way, the page being freed 6361 ** will become the new first trunk page in the free-list. 6362 */ 6363 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6364 goto freepage_out; 6365 } 6366 rc = sqlite3PagerWrite(pPage->pDbPage); 6367 if( rc!=SQLITE_OK ){ 6368 goto freepage_out; 6369 } 6370 put4byte(pPage->aData, iTrunk); 6371 put4byte(&pPage->aData[4], 0); 6372 put4byte(&pPage1->aData[32], iPage); 6373 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6374 6375 freepage_out: 6376 if( pPage ){ 6377 pPage->isInit = 0; 6378 } 6379 releasePage(pPage); 6380 releasePage(pTrunk); 6381 return rc; 6382 } 6383 static void freePage(MemPage *pPage, int *pRC){ 6384 if( (*pRC)==SQLITE_OK ){ 6385 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6386 } 6387 } 6388 6389 /* 6390 ** Free any overflow pages associated with the given Cell. Store 6391 ** size information about the cell in pInfo. 6392 */ 6393 static int clearCell( 6394 MemPage *pPage, /* The page that contains the Cell */ 6395 unsigned char *pCell, /* First byte of the Cell */ 6396 CellInfo *pInfo /* Size information about the cell */ 6397 ){ 6398 BtShared *pBt; 6399 Pgno ovflPgno; 6400 int rc; 6401 int nOvfl; 6402 u32 ovflPageSize; 6403 6404 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6405 pPage->xParseCell(pPage, pCell, pInfo); 6406 if( pInfo->nLocal==pInfo->nPayload ){ 6407 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6408 } 6409 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6410 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6411 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6412 /* Cell extends past end of page */ 6413 return SQLITE_CORRUPT_PAGE(pPage); 6414 } 6415 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6416 pBt = pPage->pBt; 6417 assert( pBt->usableSize > 4 ); 6418 ovflPageSize = pBt->usableSize - 4; 6419 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6420 assert( nOvfl>0 || 6421 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6422 ); 6423 while( nOvfl-- ){ 6424 Pgno iNext = 0; 6425 MemPage *pOvfl = 0; 6426 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6427 /* 0 is not a legal page number and page 1 cannot be an 6428 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6429 ** file the database must be corrupt. */ 6430 return SQLITE_CORRUPT_BKPT; 6431 } 6432 if( nOvfl ){ 6433 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6434 if( rc ) return rc; 6435 } 6436 6437 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6438 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6439 ){ 6440 /* There is no reason any cursor should have an outstanding reference 6441 ** to an overflow page belonging to a cell that is being deleted/updated. 6442 ** So if there exists more than one reference to this page, then it 6443 ** must not really be an overflow page and the database must be corrupt. 6444 ** It is helpful to detect this before calling freePage2(), as 6445 ** freePage2() may zero the page contents if secure-delete mode is 6446 ** enabled. If this 'overflow' page happens to be a page that the 6447 ** caller is iterating through or using in some other way, this 6448 ** can be problematic. 6449 */ 6450 rc = SQLITE_CORRUPT_BKPT; 6451 }else{ 6452 rc = freePage2(pBt, pOvfl, ovflPgno); 6453 } 6454 6455 if( pOvfl ){ 6456 sqlite3PagerUnref(pOvfl->pDbPage); 6457 } 6458 if( rc ) return rc; 6459 ovflPgno = iNext; 6460 } 6461 return SQLITE_OK; 6462 } 6463 6464 /* 6465 ** Create the byte sequence used to represent a cell on page pPage 6466 ** and write that byte sequence into pCell[]. Overflow pages are 6467 ** allocated and filled in as necessary. The calling procedure 6468 ** is responsible for making sure sufficient space has been allocated 6469 ** for pCell[]. 6470 ** 6471 ** Note that pCell does not necessary need to point to the pPage->aData 6472 ** area. pCell might point to some temporary storage. The cell will 6473 ** be constructed in this temporary area then copied into pPage->aData 6474 ** later. 6475 */ 6476 static int fillInCell( 6477 MemPage *pPage, /* The page that contains the cell */ 6478 unsigned char *pCell, /* Complete text of the cell */ 6479 const BtreePayload *pX, /* Payload with which to construct the cell */ 6480 int *pnSize /* Write cell size here */ 6481 ){ 6482 int nPayload; 6483 const u8 *pSrc; 6484 int nSrc, n, rc, mn; 6485 int spaceLeft; 6486 MemPage *pToRelease; 6487 unsigned char *pPrior; 6488 unsigned char *pPayload; 6489 BtShared *pBt; 6490 Pgno pgnoOvfl; 6491 int nHeader; 6492 6493 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6494 6495 /* pPage is not necessarily writeable since pCell might be auxiliary 6496 ** buffer space that is separate from the pPage buffer area */ 6497 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6498 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6499 6500 /* Fill in the header. */ 6501 nHeader = pPage->childPtrSize; 6502 if( pPage->intKey ){ 6503 nPayload = pX->nData + pX->nZero; 6504 pSrc = pX->pData; 6505 nSrc = pX->nData; 6506 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6507 nHeader += putVarint32(&pCell[nHeader], nPayload); 6508 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6509 }else{ 6510 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6511 nSrc = nPayload = (int)pX->nKey; 6512 pSrc = pX->pKey; 6513 nHeader += putVarint32(&pCell[nHeader], nPayload); 6514 } 6515 6516 /* Fill in the payload */ 6517 pPayload = &pCell[nHeader]; 6518 if( nPayload<=pPage->maxLocal ){ 6519 /* This is the common case where everything fits on the btree page 6520 ** and no overflow pages are required. */ 6521 n = nHeader + nPayload; 6522 testcase( n==3 ); 6523 testcase( n==4 ); 6524 if( n<4 ) n = 4; 6525 *pnSize = n; 6526 assert( nSrc<=nPayload ); 6527 testcase( nSrc<nPayload ); 6528 memcpy(pPayload, pSrc, nSrc); 6529 memset(pPayload+nSrc, 0, nPayload-nSrc); 6530 return SQLITE_OK; 6531 } 6532 6533 /* If we reach this point, it means that some of the content will need 6534 ** to spill onto overflow pages. 6535 */ 6536 mn = pPage->minLocal; 6537 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6538 testcase( n==pPage->maxLocal ); 6539 testcase( n==pPage->maxLocal+1 ); 6540 if( n > pPage->maxLocal ) n = mn; 6541 spaceLeft = n; 6542 *pnSize = n + nHeader + 4; 6543 pPrior = &pCell[nHeader+n]; 6544 pToRelease = 0; 6545 pgnoOvfl = 0; 6546 pBt = pPage->pBt; 6547 6548 /* At this point variables should be set as follows: 6549 ** 6550 ** nPayload Total payload size in bytes 6551 ** pPayload Begin writing payload here 6552 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6553 ** that means content must spill into overflow pages. 6554 ** *pnSize Size of the local cell (not counting overflow pages) 6555 ** pPrior Where to write the pgno of the first overflow page 6556 ** 6557 ** Use a call to btreeParseCellPtr() to verify that the values above 6558 ** were computed correctly. 6559 */ 6560 #ifdef SQLITE_DEBUG 6561 { 6562 CellInfo info; 6563 pPage->xParseCell(pPage, pCell, &info); 6564 assert( nHeader==(int)(info.pPayload - pCell) ); 6565 assert( info.nKey==pX->nKey ); 6566 assert( *pnSize == info.nSize ); 6567 assert( spaceLeft == info.nLocal ); 6568 } 6569 #endif 6570 6571 /* Write the payload into the local Cell and any extra into overflow pages */ 6572 while( 1 ){ 6573 n = nPayload; 6574 if( n>spaceLeft ) n = spaceLeft; 6575 6576 /* If pToRelease is not zero than pPayload points into the data area 6577 ** of pToRelease. Make sure pToRelease is still writeable. */ 6578 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6579 6580 /* If pPayload is part of the data area of pPage, then make sure pPage 6581 ** is still writeable */ 6582 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6583 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6584 6585 if( nSrc>=n ){ 6586 memcpy(pPayload, pSrc, n); 6587 }else if( nSrc>0 ){ 6588 n = nSrc; 6589 memcpy(pPayload, pSrc, n); 6590 }else{ 6591 memset(pPayload, 0, n); 6592 } 6593 nPayload -= n; 6594 if( nPayload<=0 ) break; 6595 pPayload += n; 6596 pSrc += n; 6597 nSrc -= n; 6598 spaceLeft -= n; 6599 if( spaceLeft==0 ){ 6600 MemPage *pOvfl = 0; 6601 #ifndef SQLITE_OMIT_AUTOVACUUM 6602 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6603 if( pBt->autoVacuum ){ 6604 do{ 6605 pgnoOvfl++; 6606 } while( 6607 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6608 ); 6609 } 6610 #endif 6611 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6612 #ifndef SQLITE_OMIT_AUTOVACUUM 6613 /* If the database supports auto-vacuum, and the second or subsequent 6614 ** overflow page is being allocated, add an entry to the pointer-map 6615 ** for that page now. 6616 ** 6617 ** If this is the first overflow page, then write a partial entry 6618 ** to the pointer-map. If we write nothing to this pointer-map slot, 6619 ** then the optimistic overflow chain processing in clearCell() 6620 ** may misinterpret the uninitialized values and delete the 6621 ** wrong pages from the database. 6622 */ 6623 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6624 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6625 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6626 if( rc ){ 6627 releasePage(pOvfl); 6628 } 6629 } 6630 #endif 6631 if( rc ){ 6632 releasePage(pToRelease); 6633 return rc; 6634 } 6635 6636 /* If pToRelease is not zero than pPrior points into the data area 6637 ** of pToRelease. Make sure pToRelease is still writeable. */ 6638 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6639 6640 /* If pPrior is part of the data area of pPage, then make sure pPage 6641 ** is still writeable */ 6642 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6643 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6644 6645 put4byte(pPrior, pgnoOvfl); 6646 releasePage(pToRelease); 6647 pToRelease = pOvfl; 6648 pPrior = pOvfl->aData; 6649 put4byte(pPrior, 0); 6650 pPayload = &pOvfl->aData[4]; 6651 spaceLeft = pBt->usableSize - 4; 6652 } 6653 } 6654 releasePage(pToRelease); 6655 return SQLITE_OK; 6656 } 6657 6658 /* 6659 ** Remove the i-th cell from pPage. This routine effects pPage only. 6660 ** The cell content is not freed or deallocated. It is assumed that 6661 ** the cell content has been copied someplace else. This routine just 6662 ** removes the reference to the cell from pPage. 6663 ** 6664 ** "sz" must be the number of bytes in the cell. 6665 */ 6666 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6667 u32 pc; /* Offset to cell content of cell being deleted */ 6668 u8 *data; /* pPage->aData */ 6669 u8 *ptr; /* Used to move bytes around within data[] */ 6670 int rc; /* The return code */ 6671 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6672 6673 if( *pRC ) return; 6674 assert( idx>=0 && idx<pPage->nCell ); 6675 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6676 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6677 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6678 assert( pPage->nFree>=0 ); 6679 data = pPage->aData; 6680 ptr = &pPage->aCellIdx[2*idx]; 6681 pc = get2byte(ptr); 6682 hdr = pPage->hdrOffset; 6683 testcase( pc==get2byte(&data[hdr+5]) ); 6684 testcase( pc+sz==pPage->pBt->usableSize ); 6685 if( pc+sz > pPage->pBt->usableSize ){ 6686 *pRC = SQLITE_CORRUPT_BKPT; 6687 return; 6688 } 6689 rc = freeSpace(pPage, pc, sz); 6690 if( rc ){ 6691 *pRC = rc; 6692 return; 6693 } 6694 pPage->nCell--; 6695 if( pPage->nCell==0 ){ 6696 memset(&data[hdr+1], 0, 4); 6697 data[hdr+7] = 0; 6698 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6699 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6700 - pPage->childPtrSize - 8; 6701 }else{ 6702 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6703 put2byte(&data[hdr+3], pPage->nCell); 6704 pPage->nFree += 2; 6705 } 6706 } 6707 6708 /* 6709 ** Insert a new cell on pPage at cell index "i". pCell points to the 6710 ** content of the cell. 6711 ** 6712 ** If the cell content will fit on the page, then put it there. If it 6713 ** will not fit, then make a copy of the cell content into pTemp if 6714 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6715 ** in pPage->apOvfl[] and make it point to the cell content (either 6716 ** in pTemp or the original pCell) and also record its index. 6717 ** Allocating a new entry in pPage->aCell[] implies that 6718 ** pPage->nOverflow is incremented. 6719 ** 6720 ** *pRC must be SQLITE_OK when this routine is called. 6721 */ 6722 static void insertCell( 6723 MemPage *pPage, /* Page into which we are copying */ 6724 int i, /* New cell becomes the i-th cell of the page */ 6725 u8 *pCell, /* Content of the new cell */ 6726 int sz, /* Bytes of content in pCell */ 6727 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6728 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6729 int *pRC /* Read and write return code from here */ 6730 ){ 6731 int idx = 0; /* Where to write new cell content in data[] */ 6732 int j; /* Loop counter */ 6733 u8 *data; /* The content of the whole page */ 6734 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6735 6736 assert( *pRC==SQLITE_OK ); 6737 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6738 assert( MX_CELL(pPage->pBt)<=10921 ); 6739 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6740 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6741 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6742 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6743 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6744 assert( pPage->nFree>=0 ); 6745 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6746 if( pTemp ){ 6747 memcpy(pTemp, pCell, sz); 6748 pCell = pTemp; 6749 } 6750 if( iChild ){ 6751 put4byte(pCell, iChild); 6752 } 6753 j = pPage->nOverflow++; 6754 /* Comparison against ArraySize-1 since we hold back one extra slot 6755 ** as a contingency. In other words, never need more than 3 overflow 6756 ** slots but 4 are allocated, just to be safe. */ 6757 assert( j < ArraySize(pPage->apOvfl)-1 ); 6758 pPage->apOvfl[j] = pCell; 6759 pPage->aiOvfl[j] = (u16)i; 6760 6761 /* When multiple overflows occur, they are always sequential and in 6762 ** sorted order. This invariants arise because multiple overflows can 6763 ** only occur when inserting divider cells into the parent page during 6764 ** balancing, and the dividers are adjacent and sorted. 6765 */ 6766 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6767 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6768 }else{ 6769 int rc = sqlite3PagerWrite(pPage->pDbPage); 6770 if( rc!=SQLITE_OK ){ 6771 *pRC = rc; 6772 return; 6773 } 6774 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6775 data = pPage->aData; 6776 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6777 rc = allocateSpace(pPage, sz, &idx); 6778 if( rc ){ *pRC = rc; return; } 6779 /* The allocateSpace() routine guarantees the following properties 6780 ** if it returns successfully */ 6781 assert( idx >= 0 ); 6782 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6783 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6784 pPage->nFree -= (u16)(2 + sz); 6785 if( iChild ){ 6786 /* In a corrupt database where an entry in the cell index section of 6787 ** a btree page has a value of 3 or less, the pCell value might point 6788 ** as many as 4 bytes in front of the start of the aData buffer for 6789 ** the source page. Make sure this does not cause problems by not 6790 ** reading the first 4 bytes */ 6791 memcpy(&data[idx+4], pCell+4, sz-4); 6792 put4byte(&data[idx], iChild); 6793 }else{ 6794 memcpy(&data[idx], pCell, sz); 6795 } 6796 pIns = pPage->aCellIdx + i*2; 6797 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6798 put2byte(pIns, idx); 6799 pPage->nCell++; 6800 /* increment the cell count */ 6801 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6802 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6803 #ifndef SQLITE_OMIT_AUTOVACUUM 6804 if( pPage->pBt->autoVacuum ){ 6805 /* The cell may contain a pointer to an overflow page. If so, write 6806 ** the entry for the overflow page into the pointer map. 6807 */ 6808 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6809 } 6810 #endif 6811 } 6812 } 6813 6814 /* 6815 ** The following parameters determine how many adjacent pages get involved 6816 ** in a balancing operation. NN is the number of neighbors on either side 6817 ** of the page that participate in the balancing operation. NB is the 6818 ** total number of pages that participate, including the target page and 6819 ** NN neighbors on either side. 6820 ** 6821 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6822 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6823 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6824 ** The value of NN appears to give the best results overall. 6825 ** 6826 ** (Later:) The description above makes it seem as if these values are 6827 ** tunable - as if you could change them and recompile and it would all work. 6828 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6829 ** we have never tested any other value. 6830 */ 6831 #define NN 1 /* Number of neighbors on either side of pPage */ 6832 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6833 6834 /* 6835 ** A CellArray object contains a cache of pointers and sizes for a 6836 ** consecutive sequence of cells that might be held on multiple pages. 6837 ** 6838 ** The cells in this array are the divider cell or cells from the pParent 6839 ** page plus up to three child pages. There are a total of nCell cells. 6840 ** 6841 ** pRef is a pointer to one of the pages that contributes cells. This is 6842 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 6843 ** which should be common to all pages that contribute cells to this array. 6844 ** 6845 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 6846 ** cell and the size of each cell. Some of the apCell[] pointers might refer 6847 ** to overflow cells. In other words, some apCel[] pointers might not point 6848 ** to content area of the pages. 6849 ** 6850 ** A szCell[] of zero means the size of that cell has not yet been computed. 6851 ** 6852 ** The cells come from as many as four different pages: 6853 ** 6854 ** ----------- 6855 ** | Parent | 6856 ** ----------- 6857 ** / | \ 6858 ** / | \ 6859 ** --------- --------- --------- 6860 ** |Child-1| |Child-2| |Child-3| 6861 ** --------- --------- --------- 6862 ** 6863 ** The order of cells is in the array is for an index btree is: 6864 ** 6865 ** 1. All cells from Child-1 in order 6866 ** 2. The first divider cell from Parent 6867 ** 3. All cells from Child-2 in order 6868 ** 4. The second divider cell from Parent 6869 ** 5. All cells from Child-3 in order 6870 ** 6871 ** For a table-btree (with rowids) the items 2 and 4 are empty because 6872 ** content exists only in leaves and there are no divider cells. 6873 ** 6874 ** For an index btree, the apEnd[] array holds pointer to the end of page 6875 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 6876 ** respectively. The ixNx[] array holds the number of cells contained in 6877 ** each of these 5 stages, and all stages to the left. Hence: 6878 ** 6879 ** ixNx[0] = Number of cells in Child-1. 6880 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 6881 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 6882 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 6883 ** ixNx[4] = Total number of cells. 6884 ** 6885 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 6886 ** are used and they point to the leaf pages only, and the ixNx value are: 6887 ** 6888 ** ixNx[0] = Number of cells in Child-1. 6889 ** ixNx[1] = Number of cells in Child-1 and Child-2. 6890 ** ixNx[2] = Total number of cells. 6891 ** 6892 ** Sometimes when deleting, a child page can have zero cells. In those 6893 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 6894 ** entries, shift down. The end result is that each ixNx[] entry should 6895 ** be larger than the previous 6896 */ 6897 typedef struct CellArray CellArray; 6898 struct CellArray { 6899 int nCell; /* Number of cells in apCell[] */ 6900 MemPage *pRef; /* Reference page */ 6901 u8 **apCell; /* All cells begin balanced */ 6902 u16 *szCell; /* Local size of all cells in apCell[] */ 6903 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 6904 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 6905 }; 6906 6907 /* 6908 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6909 ** computed. 6910 */ 6911 static void populateCellCache(CellArray *p, int idx, int N){ 6912 assert( idx>=0 && idx+N<=p->nCell ); 6913 while( N>0 ){ 6914 assert( p->apCell[idx]!=0 ); 6915 if( p->szCell[idx]==0 ){ 6916 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6917 }else{ 6918 assert( CORRUPT_DB || 6919 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6920 } 6921 idx++; 6922 N--; 6923 } 6924 } 6925 6926 /* 6927 ** Return the size of the Nth element of the cell array 6928 */ 6929 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6930 assert( N>=0 && N<p->nCell ); 6931 assert( p->szCell[N]==0 ); 6932 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6933 return p->szCell[N]; 6934 } 6935 static u16 cachedCellSize(CellArray *p, int N){ 6936 assert( N>=0 && N<p->nCell ); 6937 if( p->szCell[N] ) return p->szCell[N]; 6938 return computeCellSize(p, N); 6939 } 6940 6941 /* 6942 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6943 ** szCell[] array contains the size in bytes of each cell. This function 6944 ** replaces the current contents of page pPg with the contents of the cell 6945 ** array. 6946 ** 6947 ** Some of the cells in apCell[] may currently be stored in pPg. This 6948 ** function works around problems caused by this by making a copy of any 6949 ** such cells before overwriting the page data. 6950 ** 6951 ** The MemPage.nFree field is invalidated by this function. It is the 6952 ** responsibility of the caller to set it correctly. 6953 */ 6954 static int rebuildPage( 6955 CellArray *pCArray, /* Content to be added to page pPg */ 6956 int iFirst, /* First cell in pCArray to use */ 6957 int nCell, /* Final number of cells on page */ 6958 MemPage *pPg /* The page to be reconstructed */ 6959 ){ 6960 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6961 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6962 const int usableSize = pPg->pBt->usableSize; 6963 u8 * const pEnd = &aData[usableSize]; 6964 int i = iFirst; /* Which cell to copy from pCArray*/ 6965 u32 j; /* Start of cell content area */ 6966 int iEnd = i+nCell; /* Loop terminator */ 6967 u8 *pCellptr = pPg->aCellIdx; 6968 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6969 u8 *pData; 6970 int k; /* Current slot in pCArray->apEnd[] */ 6971 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 6972 6973 assert( i<iEnd ); 6974 j = get2byte(&aData[hdr+5]); 6975 if( NEVER(j>(u32)usableSize) ){ j = 0; } 6976 memcpy(&pTmp[j], &aData[j], usableSize - j); 6977 6978 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 6979 pSrcEnd = pCArray->apEnd[k]; 6980 6981 pData = pEnd; 6982 while( 1/*exit by break*/ ){ 6983 u8 *pCell = pCArray->apCell[i]; 6984 u16 sz = pCArray->szCell[i]; 6985 assert( sz>0 ); 6986 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6987 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 6988 pCell = &pTmp[pCell - aData]; 6989 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 6990 && (uptr)(pCell)<(uptr)pSrcEnd 6991 ){ 6992 return SQLITE_CORRUPT_BKPT; 6993 } 6994 6995 pData -= sz; 6996 put2byte(pCellptr, (pData - aData)); 6997 pCellptr += 2; 6998 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6999 memcpy(pData, pCell, sz); 7000 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7001 testcase( sz!=pPg->xCellSize(pPg,pCell) ) 7002 i++; 7003 if( i>=iEnd ) break; 7004 if( pCArray->ixNx[k]<=i ){ 7005 k++; 7006 pSrcEnd = pCArray->apEnd[k]; 7007 } 7008 } 7009 7010 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7011 pPg->nCell = nCell; 7012 pPg->nOverflow = 0; 7013 7014 put2byte(&aData[hdr+1], 0); 7015 put2byte(&aData[hdr+3], pPg->nCell); 7016 put2byte(&aData[hdr+5], pData - aData); 7017 aData[hdr+7] = 0x00; 7018 return SQLITE_OK; 7019 } 7020 7021 /* 7022 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7023 ** This function attempts to add the cells stored in the array to page pPg. 7024 ** If it cannot (because the page needs to be defragmented before the cells 7025 ** will fit), non-zero is returned. Otherwise, if the cells are added 7026 ** successfully, zero is returned. 7027 ** 7028 ** Argument pCellptr points to the first entry in the cell-pointer array 7029 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7030 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7031 ** cell in the array. It is the responsibility of the caller to ensure 7032 ** that it is safe to overwrite this part of the cell-pointer array. 7033 ** 7034 ** When this function is called, *ppData points to the start of the 7035 ** content area on page pPg. If the size of the content area is extended, 7036 ** *ppData is updated to point to the new start of the content area 7037 ** before returning. 7038 ** 7039 ** Finally, argument pBegin points to the byte immediately following the 7040 ** end of the space required by this page for the cell-pointer area (for 7041 ** all cells - not just those inserted by the current call). If the content 7042 ** area must be extended to before this point in order to accomodate all 7043 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7044 */ 7045 static int pageInsertArray( 7046 MemPage *pPg, /* Page to add cells to */ 7047 u8 *pBegin, /* End of cell-pointer array */ 7048 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7049 u8 *pCellptr, /* Pointer to cell-pointer area */ 7050 int iFirst, /* Index of first cell to add */ 7051 int nCell, /* Number of cells to add to pPg */ 7052 CellArray *pCArray /* Array of cells */ 7053 ){ 7054 int i = iFirst; /* Loop counter - cell index to insert */ 7055 u8 *aData = pPg->aData; /* Complete page */ 7056 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7057 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7058 int k; /* Current slot in pCArray->apEnd[] */ 7059 u8 *pEnd; /* Maximum extent of cell data */ 7060 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7061 if( iEnd<=iFirst ) return 0; 7062 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7063 pEnd = pCArray->apEnd[k]; 7064 while( 1 /*Exit by break*/ ){ 7065 int sz, rc; 7066 u8 *pSlot; 7067 assert( pCArray->szCell[i]!=0 ); 7068 sz = pCArray->szCell[i]; 7069 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7070 if( (pData - pBegin)<sz ) return 1; 7071 pData -= sz; 7072 pSlot = pData; 7073 } 7074 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7075 ** database. But they might for a corrupt database. Hence use memmove() 7076 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7077 assert( (pSlot+sz)<=pCArray->apCell[i] 7078 || pSlot>=(pCArray->apCell[i]+sz) 7079 || CORRUPT_DB ); 7080 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7081 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7082 ){ 7083 assert( CORRUPT_DB ); 7084 (void)SQLITE_CORRUPT_BKPT; 7085 return 1; 7086 } 7087 memmove(pSlot, pCArray->apCell[i], sz); 7088 put2byte(pCellptr, (pSlot - aData)); 7089 pCellptr += 2; 7090 i++; 7091 if( i>=iEnd ) break; 7092 if( pCArray->ixNx[k]<=i ){ 7093 k++; 7094 pEnd = pCArray->apEnd[k]; 7095 } 7096 } 7097 *ppData = pData; 7098 return 0; 7099 } 7100 7101 /* 7102 ** The pCArray object contains pointers to b-tree cells and their sizes. 7103 ** 7104 ** This function adds the space associated with each cell in the array 7105 ** that is currently stored within the body of pPg to the pPg free-list. 7106 ** The cell-pointers and other fields of the page are not updated. 7107 ** 7108 ** This function returns the total number of cells added to the free-list. 7109 */ 7110 static int pageFreeArray( 7111 MemPage *pPg, /* Page to edit */ 7112 int iFirst, /* First cell to delete */ 7113 int nCell, /* Cells to delete */ 7114 CellArray *pCArray /* Array of cells */ 7115 ){ 7116 u8 * const aData = pPg->aData; 7117 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7118 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7119 int nRet = 0; 7120 int i; 7121 int iEnd = iFirst + nCell; 7122 u8 *pFree = 0; 7123 int szFree = 0; 7124 7125 for(i=iFirst; i<iEnd; i++){ 7126 u8 *pCell = pCArray->apCell[i]; 7127 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7128 int sz; 7129 /* No need to use cachedCellSize() here. The sizes of all cells that 7130 ** are to be freed have already been computing while deciding which 7131 ** cells need freeing */ 7132 sz = pCArray->szCell[i]; assert( sz>0 ); 7133 if( pFree!=(pCell + sz) ){ 7134 if( pFree ){ 7135 assert( pFree>aData && (pFree - aData)<65536 ); 7136 freeSpace(pPg, (u16)(pFree - aData), szFree); 7137 } 7138 pFree = pCell; 7139 szFree = sz; 7140 if( pFree+sz>pEnd ) return 0; 7141 }else{ 7142 pFree = pCell; 7143 szFree += sz; 7144 } 7145 nRet++; 7146 } 7147 } 7148 if( pFree ){ 7149 assert( pFree>aData && (pFree - aData)<65536 ); 7150 freeSpace(pPg, (u16)(pFree - aData), szFree); 7151 } 7152 return nRet; 7153 } 7154 7155 /* 7156 ** pCArray contains pointers to and sizes of all cells in the page being 7157 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7158 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7159 ** starting at apCell[iNew]. 7160 ** 7161 ** This routine makes the necessary adjustments to pPg so that it contains 7162 ** the correct cells after being balanced. 7163 ** 7164 ** The pPg->nFree field is invalid when this function returns. It is the 7165 ** responsibility of the caller to set it correctly. 7166 */ 7167 static int editPage( 7168 MemPage *pPg, /* Edit this page */ 7169 int iOld, /* Index of first cell currently on page */ 7170 int iNew, /* Index of new first cell on page */ 7171 int nNew, /* Final number of cells on page */ 7172 CellArray *pCArray /* Array of cells and sizes */ 7173 ){ 7174 u8 * const aData = pPg->aData; 7175 const int hdr = pPg->hdrOffset; 7176 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7177 int nCell = pPg->nCell; /* Cells stored on pPg */ 7178 u8 *pData; 7179 u8 *pCellptr; 7180 int i; 7181 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7182 int iNewEnd = iNew + nNew; 7183 7184 #ifdef SQLITE_DEBUG 7185 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7186 memcpy(pTmp, aData, pPg->pBt->usableSize); 7187 #endif 7188 7189 /* Remove cells from the start and end of the page */ 7190 assert( nCell>=0 ); 7191 if( iOld<iNew ){ 7192 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7193 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7194 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7195 nCell -= nShift; 7196 } 7197 if( iNewEnd < iOldEnd ){ 7198 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7199 assert( nCell>=nTail ); 7200 nCell -= nTail; 7201 } 7202 7203 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7204 if( pData<pBegin ) goto editpage_fail; 7205 7206 /* Add cells to the start of the page */ 7207 if( iNew<iOld ){ 7208 int nAdd = MIN(nNew,iOld-iNew); 7209 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7210 assert( nAdd>=0 ); 7211 pCellptr = pPg->aCellIdx; 7212 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7213 if( pageInsertArray( 7214 pPg, pBegin, &pData, pCellptr, 7215 iNew, nAdd, pCArray 7216 ) ) goto editpage_fail; 7217 nCell += nAdd; 7218 } 7219 7220 /* Add any overflow cells */ 7221 for(i=0; i<pPg->nOverflow; i++){ 7222 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7223 if( iCell>=0 && iCell<nNew ){ 7224 pCellptr = &pPg->aCellIdx[iCell * 2]; 7225 if( nCell>iCell ){ 7226 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7227 } 7228 nCell++; 7229 cachedCellSize(pCArray, iCell+iNew); 7230 if( pageInsertArray( 7231 pPg, pBegin, &pData, pCellptr, 7232 iCell+iNew, 1, pCArray 7233 ) ) goto editpage_fail; 7234 } 7235 } 7236 7237 /* Append cells to the end of the page */ 7238 assert( nCell>=0 ); 7239 pCellptr = &pPg->aCellIdx[nCell*2]; 7240 if( pageInsertArray( 7241 pPg, pBegin, &pData, pCellptr, 7242 iNew+nCell, nNew-nCell, pCArray 7243 ) ) goto editpage_fail; 7244 7245 pPg->nCell = nNew; 7246 pPg->nOverflow = 0; 7247 7248 put2byte(&aData[hdr+3], pPg->nCell); 7249 put2byte(&aData[hdr+5], pData - aData); 7250 7251 #ifdef SQLITE_DEBUG 7252 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7253 u8 *pCell = pCArray->apCell[i+iNew]; 7254 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7255 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7256 pCell = &pTmp[pCell - aData]; 7257 } 7258 assert( 0==memcmp(pCell, &aData[iOff], 7259 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7260 } 7261 #endif 7262 7263 return SQLITE_OK; 7264 editpage_fail: 7265 /* Unable to edit this page. Rebuild it from scratch instead. */ 7266 populateCellCache(pCArray, iNew, nNew); 7267 return rebuildPage(pCArray, iNew, nNew, pPg); 7268 } 7269 7270 7271 #ifndef SQLITE_OMIT_QUICKBALANCE 7272 /* 7273 ** This version of balance() handles the common special case where 7274 ** a new entry is being inserted on the extreme right-end of the 7275 ** tree, in other words, when the new entry will become the largest 7276 ** entry in the tree. 7277 ** 7278 ** Instead of trying to balance the 3 right-most leaf pages, just add 7279 ** a new page to the right-hand side and put the one new entry in 7280 ** that page. This leaves the right side of the tree somewhat 7281 ** unbalanced. But odds are that we will be inserting new entries 7282 ** at the end soon afterwards so the nearly empty page will quickly 7283 ** fill up. On average. 7284 ** 7285 ** pPage is the leaf page which is the right-most page in the tree. 7286 ** pParent is its parent. pPage must have a single overflow entry 7287 ** which is also the right-most entry on the page. 7288 ** 7289 ** The pSpace buffer is used to store a temporary copy of the divider 7290 ** cell that will be inserted into pParent. Such a cell consists of a 4 7291 ** byte page number followed by a variable length integer. In other 7292 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7293 ** least 13 bytes in size. 7294 */ 7295 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7296 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7297 MemPage *pNew; /* Newly allocated page */ 7298 int rc; /* Return Code */ 7299 Pgno pgnoNew; /* Page number of pNew */ 7300 7301 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7302 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7303 assert( pPage->nOverflow==1 ); 7304 7305 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7306 assert( pPage->nFree>=0 ); 7307 assert( pParent->nFree>=0 ); 7308 7309 /* Allocate a new page. This page will become the right-sibling of 7310 ** pPage. Make the parent page writable, so that the new divider cell 7311 ** may be inserted. If both these operations are successful, proceed. 7312 */ 7313 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7314 7315 if( rc==SQLITE_OK ){ 7316 7317 u8 *pOut = &pSpace[4]; 7318 u8 *pCell = pPage->apOvfl[0]; 7319 u16 szCell = pPage->xCellSize(pPage, pCell); 7320 u8 *pStop; 7321 CellArray b; 7322 7323 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7324 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7325 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7326 b.nCell = 1; 7327 b.pRef = pPage; 7328 b.apCell = &pCell; 7329 b.szCell = &szCell; 7330 b.apEnd[0] = pPage->aDataEnd; 7331 b.ixNx[0] = 2; 7332 rc = rebuildPage(&b, 0, 1, pNew); 7333 if( NEVER(rc) ){ 7334 releasePage(pNew); 7335 return rc; 7336 } 7337 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7338 7339 /* If this is an auto-vacuum database, update the pointer map 7340 ** with entries for the new page, and any pointer from the 7341 ** cell on the page to an overflow page. If either of these 7342 ** operations fails, the return code is set, but the contents 7343 ** of the parent page are still manipulated by thh code below. 7344 ** That is Ok, at this point the parent page is guaranteed to 7345 ** be marked as dirty. Returning an error code will cause a 7346 ** rollback, undoing any changes made to the parent page. 7347 */ 7348 if( ISAUTOVACUUM ){ 7349 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7350 if( szCell>pNew->minLocal ){ 7351 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7352 } 7353 } 7354 7355 /* Create a divider cell to insert into pParent. The divider cell 7356 ** consists of a 4-byte page number (the page number of pPage) and 7357 ** a variable length key value (which must be the same value as the 7358 ** largest key on pPage). 7359 ** 7360 ** To find the largest key value on pPage, first find the right-most 7361 ** cell on pPage. The first two fields of this cell are the 7362 ** record-length (a variable length integer at most 32-bits in size) 7363 ** and the key value (a variable length integer, may have any value). 7364 ** The first of the while(...) loops below skips over the record-length 7365 ** field. The second while(...) loop copies the key value from the 7366 ** cell on pPage into the pSpace buffer. 7367 */ 7368 pCell = findCell(pPage, pPage->nCell-1); 7369 pStop = &pCell[9]; 7370 while( (*(pCell++)&0x80) && pCell<pStop ); 7371 pStop = &pCell[9]; 7372 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7373 7374 /* Insert the new divider cell into pParent. */ 7375 if( rc==SQLITE_OK ){ 7376 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7377 0, pPage->pgno, &rc); 7378 } 7379 7380 /* Set the right-child pointer of pParent to point to the new page. */ 7381 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7382 7383 /* Release the reference to the new page. */ 7384 releasePage(pNew); 7385 } 7386 7387 return rc; 7388 } 7389 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7390 7391 #if 0 7392 /* 7393 ** This function does not contribute anything to the operation of SQLite. 7394 ** it is sometimes activated temporarily while debugging code responsible 7395 ** for setting pointer-map entries. 7396 */ 7397 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7398 int i, j; 7399 for(i=0; i<nPage; i++){ 7400 Pgno n; 7401 u8 e; 7402 MemPage *pPage = apPage[i]; 7403 BtShared *pBt = pPage->pBt; 7404 assert( pPage->isInit ); 7405 7406 for(j=0; j<pPage->nCell; j++){ 7407 CellInfo info; 7408 u8 *z; 7409 7410 z = findCell(pPage, j); 7411 pPage->xParseCell(pPage, z, &info); 7412 if( info.nLocal<info.nPayload ){ 7413 Pgno ovfl = get4byte(&z[info.nSize-4]); 7414 ptrmapGet(pBt, ovfl, &e, &n); 7415 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7416 } 7417 if( !pPage->leaf ){ 7418 Pgno child = get4byte(z); 7419 ptrmapGet(pBt, child, &e, &n); 7420 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7421 } 7422 } 7423 if( !pPage->leaf ){ 7424 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7425 ptrmapGet(pBt, child, &e, &n); 7426 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7427 } 7428 } 7429 return 1; 7430 } 7431 #endif 7432 7433 /* 7434 ** This function is used to copy the contents of the b-tree node stored 7435 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7436 ** the pointer-map entries for each child page are updated so that the 7437 ** parent page stored in the pointer map is page pTo. If pFrom contained 7438 ** any cells with overflow page pointers, then the corresponding pointer 7439 ** map entries are also updated so that the parent page is page pTo. 7440 ** 7441 ** If pFrom is currently carrying any overflow cells (entries in the 7442 ** MemPage.apOvfl[] array), they are not copied to pTo. 7443 ** 7444 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7445 ** 7446 ** The performance of this function is not critical. It is only used by 7447 ** the balance_shallower() and balance_deeper() procedures, neither of 7448 ** which are called often under normal circumstances. 7449 */ 7450 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7451 if( (*pRC)==SQLITE_OK ){ 7452 BtShared * const pBt = pFrom->pBt; 7453 u8 * const aFrom = pFrom->aData; 7454 u8 * const aTo = pTo->aData; 7455 int const iFromHdr = pFrom->hdrOffset; 7456 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7457 int rc; 7458 int iData; 7459 7460 7461 assert( pFrom->isInit ); 7462 assert( pFrom->nFree>=iToHdr ); 7463 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7464 7465 /* Copy the b-tree node content from page pFrom to page pTo. */ 7466 iData = get2byte(&aFrom[iFromHdr+5]); 7467 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7468 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7469 7470 /* Reinitialize page pTo so that the contents of the MemPage structure 7471 ** match the new data. The initialization of pTo can actually fail under 7472 ** fairly obscure circumstances, even though it is a copy of initialized 7473 ** page pFrom. 7474 */ 7475 pTo->isInit = 0; 7476 rc = btreeInitPage(pTo); 7477 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7478 if( rc!=SQLITE_OK ){ 7479 *pRC = rc; 7480 return; 7481 } 7482 7483 /* If this is an auto-vacuum database, update the pointer-map entries 7484 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7485 */ 7486 if( ISAUTOVACUUM ){ 7487 *pRC = setChildPtrmaps(pTo); 7488 } 7489 } 7490 } 7491 7492 /* 7493 ** This routine redistributes cells on the iParentIdx'th child of pParent 7494 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7495 ** same amount of free space. Usually a single sibling on either side of the 7496 ** page are used in the balancing, though both siblings might come from one 7497 ** side if the page is the first or last child of its parent. If the page 7498 ** has fewer than 2 siblings (something which can only happen if the page 7499 ** is a root page or a child of a root page) then all available siblings 7500 ** participate in the balancing. 7501 ** 7502 ** The number of siblings of the page might be increased or decreased by 7503 ** one or two in an effort to keep pages nearly full but not over full. 7504 ** 7505 ** Note that when this routine is called, some of the cells on the page 7506 ** might not actually be stored in MemPage.aData[]. This can happen 7507 ** if the page is overfull. This routine ensures that all cells allocated 7508 ** to the page and its siblings fit into MemPage.aData[] before returning. 7509 ** 7510 ** In the course of balancing the page and its siblings, cells may be 7511 ** inserted into or removed from the parent page (pParent). Doing so 7512 ** may cause the parent page to become overfull or underfull. If this 7513 ** happens, it is the responsibility of the caller to invoke the correct 7514 ** balancing routine to fix this problem (see the balance() routine). 7515 ** 7516 ** If this routine fails for any reason, it might leave the database 7517 ** in a corrupted state. So if this routine fails, the database should 7518 ** be rolled back. 7519 ** 7520 ** The third argument to this function, aOvflSpace, is a pointer to a 7521 ** buffer big enough to hold one page. If while inserting cells into the parent 7522 ** page (pParent) the parent page becomes overfull, this buffer is 7523 ** used to store the parent's overflow cells. Because this function inserts 7524 ** a maximum of four divider cells into the parent page, and the maximum 7525 ** size of a cell stored within an internal node is always less than 1/4 7526 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7527 ** enough for all overflow cells. 7528 ** 7529 ** If aOvflSpace is set to a null pointer, this function returns 7530 ** SQLITE_NOMEM. 7531 */ 7532 static int balance_nonroot( 7533 MemPage *pParent, /* Parent page of siblings being balanced */ 7534 int iParentIdx, /* Index of "the page" in pParent */ 7535 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7536 int isRoot, /* True if pParent is a root-page */ 7537 int bBulk /* True if this call is part of a bulk load */ 7538 ){ 7539 BtShared *pBt; /* The whole database */ 7540 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7541 int nNew = 0; /* Number of pages in apNew[] */ 7542 int nOld; /* Number of pages in apOld[] */ 7543 int i, j, k; /* Loop counters */ 7544 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7545 int rc = SQLITE_OK; /* The return code */ 7546 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7547 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7548 int usableSpace; /* Bytes in pPage beyond the header */ 7549 int pageFlags; /* Value of pPage->aData[0] */ 7550 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7551 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7552 int szScratch; /* Size of scratch memory requested */ 7553 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7554 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7555 u8 *pRight; /* Location in parent of right-sibling pointer */ 7556 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7557 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7558 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7559 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7560 u8 *aSpace1; /* Space for copies of dividers cells */ 7561 Pgno pgno; /* Temp var to store a page number in */ 7562 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7563 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7564 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7565 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7566 CellArray b; /* Parsed information on cells being balanced */ 7567 7568 memset(abDone, 0, sizeof(abDone)); 7569 b.nCell = 0; 7570 b.apCell = 0; 7571 pBt = pParent->pBt; 7572 assert( sqlite3_mutex_held(pBt->mutex) ); 7573 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7574 7575 /* At this point pParent may have at most one overflow cell. And if 7576 ** this overflow cell is present, it must be the cell with 7577 ** index iParentIdx. This scenario comes about when this function 7578 ** is called (indirectly) from sqlite3BtreeDelete(). 7579 */ 7580 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7581 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7582 7583 if( !aOvflSpace ){ 7584 return SQLITE_NOMEM_BKPT; 7585 } 7586 assert( pParent->nFree>=0 ); 7587 7588 /* Find the sibling pages to balance. Also locate the cells in pParent 7589 ** that divide the siblings. An attempt is made to find NN siblings on 7590 ** either side of pPage. More siblings are taken from one side, however, 7591 ** if there are fewer than NN siblings on the other side. If pParent 7592 ** has NB or fewer children then all children of pParent are taken. 7593 ** 7594 ** This loop also drops the divider cells from the parent page. This 7595 ** way, the remainder of the function does not have to deal with any 7596 ** overflow cells in the parent page, since if any existed they will 7597 ** have already been removed. 7598 */ 7599 i = pParent->nOverflow + pParent->nCell; 7600 if( i<2 ){ 7601 nxDiv = 0; 7602 }else{ 7603 assert( bBulk==0 || bBulk==1 ); 7604 if( iParentIdx==0 ){ 7605 nxDiv = 0; 7606 }else if( iParentIdx==i ){ 7607 nxDiv = i-2+bBulk; 7608 }else{ 7609 nxDiv = iParentIdx-1; 7610 } 7611 i = 2-bBulk; 7612 } 7613 nOld = i+1; 7614 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7615 pRight = &pParent->aData[pParent->hdrOffset+8]; 7616 }else{ 7617 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7618 } 7619 pgno = get4byte(pRight); 7620 while( 1 ){ 7621 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7622 if( rc ){ 7623 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7624 goto balance_cleanup; 7625 } 7626 if( apOld[i]->nFree<0 ){ 7627 rc = btreeComputeFreeSpace(apOld[i]); 7628 if( rc ){ 7629 memset(apOld, 0, (i)*sizeof(MemPage*)); 7630 goto balance_cleanup; 7631 } 7632 } 7633 if( (i--)==0 ) break; 7634 7635 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7636 apDiv[i] = pParent->apOvfl[0]; 7637 pgno = get4byte(apDiv[i]); 7638 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7639 pParent->nOverflow = 0; 7640 }else{ 7641 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7642 pgno = get4byte(apDiv[i]); 7643 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7644 7645 /* Drop the cell from the parent page. apDiv[i] still points to 7646 ** the cell within the parent, even though it has been dropped. 7647 ** This is safe because dropping a cell only overwrites the first 7648 ** four bytes of it, and this function does not need the first 7649 ** four bytes of the divider cell. So the pointer is safe to use 7650 ** later on. 7651 ** 7652 ** But not if we are in secure-delete mode. In secure-delete mode, 7653 ** the dropCell() routine will overwrite the entire cell with zeroes. 7654 ** In this case, temporarily copy the cell into the aOvflSpace[] 7655 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7656 ** is allocated. */ 7657 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7658 int iOff; 7659 7660 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7661 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7662 rc = SQLITE_CORRUPT_BKPT; 7663 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7664 goto balance_cleanup; 7665 }else{ 7666 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7667 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7668 } 7669 } 7670 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7671 } 7672 } 7673 7674 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7675 ** alignment */ 7676 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl)); 7677 nMaxCells = (nMaxCells + 3)&~3; 7678 7679 /* 7680 ** Allocate space for memory structures 7681 */ 7682 szScratch = 7683 nMaxCells*sizeof(u8*) /* b.apCell */ 7684 + nMaxCells*sizeof(u16) /* b.szCell */ 7685 + pBt->pageSize; /* aSpace1 */ 7686 7687 assert( szScratch<=7*(int)pBt->pageSize ); 7688 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7689 if( b.apCell==0 ){ 7690 rc = SQLITE_NOMEM_BKPT; 7691 goto balance_cleanup; 7692 } 7693 b.szCell = (u16*)&b.apCell[nMaxCells]; 7694 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7695 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7696 7697 /* 7698 ** Load pointers to all cells on sibling pages and the divider cells 7699 ** into the local b.apCell[] array. Make copies of the divider cells 7700 ** into space obtained from aSpace1[]. The divider cells have already 7701 ** been removed from pParent. 7702 ** 7703 ** If the siblings are on leaf pages, then the child pointers of the 7704 ** divider cells are stripped from the cells before they are copied 7705 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7706 ** child pointers. If siblings are not leaves, then all cell in 7707 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7708 ** are alike. 7709 ** 7710 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7711 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7712 */ 7713 b.pRef = apOld[0]; 7714 leafCorrection = b.pRef->leaf*4; 7715 leafData = b.pRef->intKeyLeaf; 7716 for(i=0; i<nOld; i++){ 7717 MemPage *pOld = apOld[i]; 7718 int limit = pOld->nCell; 7719 u8 *aData = pOld->aData; 7720 u16 maskPage = pOld->maskPage; 7721 u8 *piCell = aData + pOld->cellOffset; 7722 u8 *piEnd; 7723 VVA_ONLY( int nCellAtStart = b.nCell; ) 7724 7725 /* Verify that all sibling pages are of the same "type" (table-leaf, 7726 ** table-interior, index-leaf, or index-interior). 7727 */ 7728 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7729 rc = SQLITE_CORRUPT_BKPT; 7730 goto balance_cleanup; 7731 } 7732 7733 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7734 ** contains overflow cells, include them in the b.apCell[] array 7735 ** in the correct spot. 7736 ** 7737 ** Note that when there are multiple overflow cells, it is always the 7738 ** case that they are sequential and adjacent. This invariant arises 7739 ** because multiple overflows can only occurs when inserting divider 7740 ** cells into a parent on a prior balance, and divider cells are always 7741 ** adjacent and are inserted in order. There is an assert() tagged 7742 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7743 ** invariant. 7744 ** 7745 ** This must be done in advance. Once the balance starts, the cell 7746 ** offset section of the btree page will be overwritten and we will no 7747 ** long be able to find the cells if a pointer to each cell is not saved 7748 ** first. 7749 */ 7750 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7751 if( pOld->nOverflow>0 ){ 7752 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7753 rc = SQLITE_CORRUPT_BKPT; 7754 goto balance_cleanup; 7755 } 7756 limit = pOld->aiOvfl[0]; 7757 for(j=0; j<limit; j++){ 7758 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7759 piCell += 2; 7760 b.nCell++; 7761 } 7762 for(k=0; k<pOld->nOverflow; k++){ 7763 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7764 b.apCell[b.nCell] = pOld->apOvfl[k]; 7765 b.nCell++; 7766 } 7767 } 7768 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7769 while( piCell<piEnd ){ 7770 assert( b.nCell<nMaxCells ); 7771 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7772 piCell += 2; 7773 b.nCell++; 7774 } 7775 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7776 7777 cntOld[i] = b.nCell; 7778 if( i<nOld-1 && !leafData){ 7779 u16 sz = (u16)szNew[i]; 7780 u8 *pTemp; 7781 assert( b.nCell<nMaxCells ); 7782 b.szCell[b.nCell] = sz; 7783 pTemp = &aSpace1[iSpace1]; 7784 iSpace1 += sz; 7785 assert( sz<=pBt->maxLocal+23 ); 7786 assert( iSpace1 <= (int)pBt->pageSize ); 7787 memcpy(pTemp, apDiv[i], sz); 7788 b.apCell[b.nCell] = pTemp+leafCorrection; 7789 assert( leafCorrection==0 || leafCorrection==4 ); 7790 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7791 if( !pOld->leaf ){ 7792 assert( leafCorrection==0 ); 7793 assert( pOld->hdrOffset==0 ); 7794 /* The right pointer of the child page pOld becomes the left 7795 ** pointer of the divider cell */ 7796 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7797 }else{ 7798 assert( leafCorrection==4 ); 7799 while( b.szCell[b.nCell]<4 ){ 7800 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7801 ** does exist, pad it with 0x00 bytes. */ 7802 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7803 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7804 aSpace1[iSpace1++] = 0x00; 7805 b.szCell[b.nCell]++; 7806 } 7807 } 7808 b.nCell++; 7809 } 7810 } 7811 7812 /* 7813 ** Figure out the number of pages needed to hold all b.nCell cells. 7814 ** Store this number in "k". Also compute szNew[] which is the total 7815 ** size of all cells on the i-th page and cntNew[] which is the index 7816 ** in b.apCell[] of the cell that divides page i from page i+1. 7817 ** cntNew[k] should equal b.nCell. 7818 ** 7819 ** Values computed by this block: 7820 ** 7821 ** k: The total number of sibling pages 7822 ** szNew[i]: Spaced used on the i-th sibling page. 7823 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7824 ** the right of the i-th sibling page. 7825 ** usableSpace: Number of bytes of space available on each sibling. 7826 ** 7827 */ 7828 usableSpace = pBt->usableSize - 12 + leafCorrection; 7829 for(i=k=0; i<nOld; i++, k++){ 7830 MemPage *p = apOld[i]; 7831 b.apEnd[k] = p->aDataEnd; 7832 b.ixNx[k] = cntOld[i]; 7833 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7834 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7835 } 7836 if( !leafData ){ 7837 k++; 7838 b.apEnd[k] = pParent->aDataEnd; 7839 b.ixNx[k] = cntOld[i]+1; 7840 } 7841 assert( p->nFree>=0 ); 7842 szNew[i] = usableSpace - p->nFree; 7843 for(j=0; j<p->nOverflow; j++){ 7844 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7845 } 7846 cntNew[i] = cntOld[i]; 7847 } 7848 k = nOld; 7849 for(i=0; i<k; i++){ 7850 int sz; 7851 while( szNew[i]>usableSpace ){ 7852 if( i+1>=k ){ 7853 k = i+2; 7854 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7855 szNew[k-1] = 0; 7856 cntNew[k-1] = b.nCell; 7857 } 7858 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7859 szNew[i] -= sz; 7860 if( !leafData ){ 7861 if( cntNew[i]<b.nCell ){ 7862 sz = 2 + cachedCellSize(&b, cntNew[i]); 7863 }else{ 7864 sz = 0; 7865 } 7866 } 7867 szNew[i+1] += sz; 7868 cntNew[i]--; 7869 } 7870 while( cntNew[i]<b.nCell ){ 7871 sz = 2 + cachedCellSize(&b, cntNew[i]); 7872 if( szNew[i]+sz>usableSpace ) break; 7873 szNew[i] += sz; 7874 cntNew[i]++; 7875 if( !leafData ){ 7876 if( cntNew[i]<b.nCell ){ 7877 sz = 2 + cachedCellSize(&b, cntNew[i]); 7878 }else{ 7879 sz = 0; 7880 } 7881 } 7882 szNew[i+1] -= sz; 7883 } 7884 if( cntNew[i]>=b.nCell ){ 7885 k = i+1; 7886 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7887 rc = SQLITE_CORRUPT_BKPT; 7888 goto balance_cleanup; 7889 } 7890 } 7891 7892 /* 7893 ** The packing computed by the previous block is biased toward the siblings 7894 ** on the left side (siblings with smaller keys). The left siblings are 7895 ** always nearly full, while the right-most sibling might be nearly empty. 7896 ** The next block of code attempts to adjust the packing of siblings to 7897 ** get a better balance. 7898 ** 7899 ** This adjustment is more than an optimization. The packing above might 7900 ** be so out of balance as to be illegal. For example, the right-most 7901 ** sibling might be completely empty. This adjustment is not optional. 7902 */ 7903 for(i=k-1; i>0; i--){ 7904 int szRight = szNew[i]; /* Size of sibling on the right */ 7905 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7906 int r; /* Index of right-most cell in left sibling */ 7907 int d; /* Index of first cell to the left of right sibling */ 7908 7909 r = cntNew[i-1] - 1; 7910 d = r + 1 - leafData; 7911 (void)cachedCellSize(&b, d); 7912 do{ 7913 assert( d<nMaxCells ); 7914 assert( r<nMaxCells ); 7915 (void)cachedCellSize(&b, r); 7916 if( szRight!=0 7917 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7918 break; 7919 } 7920 szRight += b.szCell[d] + 2; 7921 szLeft -= b.szCell[r] + 2; 7922 cntNew[i-1] = r; 7923 r--; 7924 d--; 7925 }while( r>=0 ); 7926 szNew[i] = szRight; 7927 szNew[i-1] = szLeft; 7928 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7929 rc = SQLITE_CORRUPT_BKPT; 7930 goto balance_cleanup; 7931 } 7932 } 7933 7934 /* Sanity check: For a non-corrupt database file one of the follwing 7935 ** must be true: 7936 ** (1) We found one or more cells (cntNew[0])>0), or 7937 ** (2) pPage is a virtual root page. A virtual root page is when 7938 ** the real root page is page 1 and we are the only child of 7939 ** that page. 7940 */ 7941 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7942 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7943 apOld[0]->pgno, apOld[0]->nCell, 7944 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7945 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7946 )); 7947 7948 /* 7949 ** Allocate k new pages. Reuse old pages where possible. 7950 */ 7951 pageFlags = apOld[0]->aData[0]; 7952 for(i=0; i<k; i++){ 7953 MemPage *pNew; 7954 if( i<nOld ){ 7955 pNew = apNew[i] = apOld[i]; 7956 apOld[i] = 0; 7957 rc = sqlite3PagerWrite(pNew->pDbPage); 7958 nNew++; 7959 if( rc ) goto balance_cleanup; 7960 }else{ 7961 assert( i>0 ); 7962 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7963 if( rc ) goto balance_cleanup; 7964 zeroPage(pNew, pageFlags); 7965 apNew[i] = pNew; 7966 nNew++; 7967 cntOld[i] = b.nCell; 7968 7969 /* Set the pointer-map entry for the new sibling page. */ 7970 if( ISAUTOVACUUM ){ 7971 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7972 if( rc!=SQLITE_OK ){ 7973 goto balance_cleanup; 7974 } 7975 } 7976 } 7977 } 7978 7979 /* 7980 ** Reassign page numbers so that the new pages are in ascending order. 7981 ** This helps to keep entries in the disk file in order so that a scan 7982 ** of the table is closer to a linear scan through the file. That in turn 7983 ** helps the operating system to deliver pages from the disk more rapidly. 7984 ** 7985 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7986 ** than (NB+2) (a small constant), that should not be a problem. 7987 ** 7988 ** When NB==3, this one optimization makes the database about 25% faster 7989 ** for large insertions and deletions. 7990 */ 7991 for(i=0; i<nNew; i++){ 7992 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7993 aPgFlags[i] = apNew[i]->pDbPage->flags; 7994 for(j=0; j<i; j++){ 7995 if( aPgno[j]==aPgno[i] ){ 7996 /* This branch is taken if the set of sibling pages somehow contains 7997 ** duplicate entries. This can happen if the database is corrupt. 7998 ** It would be simpler to detect this as part of the loop below, but 7999 ** we do the detection here in order to avoid populating the pager 8000 ** cache with two separate objects associated with the same 8001 ** page number. */ 8002 assert( CORRUPT_DB ); 8003 rc = SQLITE_CORRUPT_BKPT; 8004 goto balance_cleanup; 8005 } 8006 } 8007 } 8008 for(i=0; i<nNew; i++){ 8009 int iBest = 0; /* aPgno[] index of page number to use */ 8010 for(j=1; j<nNew; j++){ 8011 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8012 } 8013 pgno = aPgOrder[iBest]; 8014 aPgOrder[iBest] = 0xffffffff; 8015 if( iBest!=i ){ 8016 if( iBest>i ){ 8017 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8018 } 8019 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8020 apNew[i]->pgno = pgno; 8021 } 8022 } 8023 8024 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8025 "%d(%d nc=%d) %d(%d nc=%d)\n", 8026 apNew[0]->pgno, szNew[0], cntNew[0], 8027 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8028 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8029 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8030 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8031 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8032 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8033 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8034 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8035 )); 8036 8037 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8038 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8039 assert( apNew[nNew-1]!=0 ); 8040 put4byte(pRight, apNew[nNew-1]->pgno); 8041 8042 /* If the sibling pages are not leaves, ensure that the right-child pointer 8043 ** of the right-most new sibling page is set to the value that was 8044 ** originally in the same field of the right-most old sibling page. */ 8045 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8046 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8047 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8048 } 8049 8050 /* Make any required updates to pointer map entries associated with 8051 ** cells stored on sibling pages following the balance operation. Pointer 8052 ** map entries associated with divider cells are set by the insertCell() 8053 ** routine. The associated pointer map entries are: 8054 ** 8055 ** a) if the cell contains a reference to an overflow chain, the 8056 ** entry associated with the first page in the overflow chain, and 8057 ** 8058 ** b) if the sibling pages are not leaves, the child page associated 8059 ** with the cell. 8060 ** 8061 ** If the sibling pages are not leaves, then the pointer map entry 8062 ** associated with the right-child of each sibling may also need to be 8063 ** updated. This happens below, after the sibling pages have been 8064 ** populated, not here. 8065 */ 8066 if( ISAUTOVACUUM ){ 8067 MemPage *pOld; 8068 MemPage *pNew = pOld = apNew[0]; 8069 int cntOldNext = pNew->nCell + pNew->nOverflow; 8070 int iNew = 0; 8071 int iOld = 0; 8072 8073 for(i=0; i<b.nCell; i++){ 8074 u8 *pCell = b.apCell[i]; 8075 while( i==cntOldNext ){ 8076 iOld++; 8077 assert( iOld<nNew || iOld<nOld ); 8078 assert( iOld>=0 && iOld<NB ); 8079 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8080 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8081 } 8082 if( i==cntNew[iNew] ){ 8083 pNew = apNew[++iNew]; 8084 if( !leafData ) continue; 8085 } 8086 8087 /* Cell pCell is destined for new sibling page pNew. Originally, it 8088 ** was either part of sibling page iOld (possibly an overflow cell), 8089 ** or else the divider cell to the left of sibling page iOld. So, 8090 ** if sibling page iOld had the same page number as pNew, and if 8091 ** pCell really was a part of sibling page iOld (not a divider or 8092 ** overflow cell), we can skip updating the pointer map entries. */ 8093 if( iOld>=nNew 8094 || pNew->pgno!=aPgno[iOld] 8095 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8096 ){ 8097 if( !leafCorrection ){ 8098 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8099 } 8100 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8101 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8102 } 8103 if( rc ) goto balance_cleanup; 8104 } 8105 } 8106 } 8107 8108 /* Insert new divider cells into pParent. */ 8109 for(i=0; i<nNew-1; i++){ 8110 u8 *pCell; 8111 u8 *pTemp; 8112 int sz; 8113 MemPage *pNew = apNew[i]; 8114 j = cntNew[i]; 8115 8116 assert( j<nMaxCells ); 8117 assert( b.apCell[j]!=0 ); 8118 pCell = b.apCell[j]; 8119 sz = b.szCell[j] + leafCorrection; 8120 pTemp = &aOvflSpace[iOvflSpace]; 8121 if( !pNew->leaf ){ 8122 memcpy(&pNew->aData[8], pCell, 4); 8123 }else if( leafData ){ 8124 /* If the tree is a leaf-data tree, and the siblings are leaves, 8125 ** then there is no divider cell in b.apCell[]. Instead, the divider 8126 ** cell consists of the integer key for the right-most cell of 8127 ** the sibling-page assembled above only. 8128 */ 8129 CellInfo info; 8130 j--; 8131 pNew->xParseCell(pNew, b.apCell[j], &info); 8132 pCell = pTemp; 8133 sz = 4 + putVarint(&pCell[4], info.nKey); 8134 pTemp = 0; 8135 }else{ 8136 pCell -= 4; 8137 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8138 ** previously stored on a leaf node, and its reported size was 4 8139 ** bytes, then it may actually be smaller than this 8140 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8141 ** any cell). But it is important to pass the correct size to 8142 ** insertCell(), so reparse the cell now. 8143 ** 8144 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8145 ** and WITHOUT ROWID tables with exactly one column which is the 8146 ** primary key. 8147 */ 8148 if( b.szCell[j]==4 ){ 8149 assert(leafCorrection==4); 8150 sz = pParent->xCellSize(pParent, pCell); 8151 } 8152 } 8153 iOvflSpace += sz; 8154 assert( sz<=pBt->maxLocal+23 ); 8155 assert( iOvflSpace <= (int)pBt->pageSize ); 8156 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8157 if( rc!=SQLITE_OK ) goto balance_cleanup; 8158 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8159 } 8160 8161 /* Now update the actual sibling pages. The order in which they are updated 8162 ** is important, as this code needs to avoid disrupting any page from which 8163 ** cells may still to be read. In practice, this means: 8164 ** 8165 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8166 ** then it is not safe to update page apNew[iPg] until after 8167 ** the left-hand sibling apNew[iPg-1] has been updated. 8168 ** 8169 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8170 ** then it is not safe to update page apNew[iPg] until after 8171 ** the right-hand sibling apNew[iPg+1] has been updated. 8172 ** 8173 ** If neither of the above apply, the page is safe to update. 8174 ** 8175 ** The iPg value in the following loop starts at nNew-1 goes down 8176 ** to 0, then back up to nNew-1 again, thus making two passes over 8177 ** the pages. On the initial downward pass, only condition (1) above 8178 ** needs to be tested because (2) will always be true from the previous 8179 ** step. On the upward pass, both conditions are always true, so the 8180 ** upwards pass simply processes pages that were missed on the downward 8181 ** pass. 8182 */ 8183 for(i=1-nNew; i<nNew; i++){ 8184 int iPg = i<0 ? -i : i; 8185 assert( iPg>=0 && iPg<nNew ); 8186 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8187 if( i>=0 /* On the upwards pass, or... */ 8188 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8189 ){ 8190 int iNew; 8191 int iOld; 8192 int nNewCell; 8193 8194 /* Verify condition (1): If cells are moving left, update iPg 8195 ** only after iPg-1 has already been updated. */ 8196 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8197 8198 /* Verify condition (2): If cells are moving right, update iPg 8199 ** only after iPg+1 has already been updated. */ 8200 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8201 8202 if( iPg==0 ){ 8203 iNew = iOld = 0; 8204 nNewCell = cntNew[0]; 8205 }else{ 8206 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8207 iNew = cntNew[iPg-1] + !leafData; 8208 nNewCell = cntNew[iPg] - iNew; 8209 } 8210 8211 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8212 if( rc ) goto balance_cleanup; 8213 abDone[iPg]++; 8214 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8215 assert( apNew[iPg]->nOverflow==0 ); 8216 assert( apNew[iPg]->nCell==nNewCell ); 8217 } 8218 } 8219 8220 /* All pages have been processed exactly once */ 8221 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8222 8223 assert( nOld>0 ); 8224 assert( nNew>0 ); 8225 8226 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8227 /* The root page of the b-tree now contains no cells. The only sibling 8228 ** page is the right-child of the parent. Copy the contents of the 8229 ** child page into the parent, decreasing the overall height of the 8230 ** b-tree structure by one. This is described as the "balance-shallower" 8231 ** sub-algorithm in some documentation. 8232 ** 8233 ** If this is an auto-vacuum database, the call to copyNodeContent() 8234 ** sets all pointer-map entries corresponding to database image pages 8235 ** for which the pointer is stored within the content being copied. 8236 ** 8237 ** It is critical that the child page be defragmented before being 8238 ** copied into the parent, because if the parent is page 1 then it will 8239 ** by smaller than the child due to the database header, and so all the 8240 ** free space needs to be up front. 8241 */ 8242 assert( nNew==1 || CORRUPT_DB ); 8243 rc = defragmentPage(apNew[0], -1); 8244 testcase( rc!=SQLITE_OK ); 8245 assert( apNew[0]->nFree == 8246 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8247 - apNew[0]->nCell*2) 8248 || rc!=SQLITE_OK 8249 ); 8250 copyNodeContent(apNew[0], pParent, &rc); 8251 freePage(apNew[0], &rc); 8252 }else if( ISAUTOVACUUM && !leafCorrection ){ 8253 /* Fix the pointer map entries associated with the right-child of each 8254 ** sibling page. All other pointer map entries have already been taken 8255 ** care of. */ 8256 for(i=0; i<nNew; i++){ 8257 u32 key = get4byte(&apNew[i]->aData[8]); 8258 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8259 } 8260 } 8261 8262 assert( pParent->isInit ); 8263 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8264 nOld, nNew, b.nCell)); 8265 8266 /* Free any old pages that were not reused as new pages. 8267 */ 8268 for(i=nNew; i<nOld; i++){ 8269 freePage(apOld[i], &rc); 8270 } 8271 8272 #if 0 8273 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8274 /* The ptrmapCheckPages() contains assert() statements that verify that 8275 ** all pointer map pages are set correctly. This is helpful while 8276 ** debugging. This is usually disabled because a corrupt database may 8277 ** cause an assert() statement to fail. */ 8278 ptrmapCheckPages(apNew, nNew); 8279 ptrmapCheckPages(&pParent, 1); 8280 } 8281 #endif 8282 8283 /* 8284 ** Cleanup before returning. 8285 */ 8286 balance_cleanup: 8287 sqlite3StackFree(0, b.apCell); 8288 for(i=0; i<nOld; i++){ 8289 releasePage(apOld[i]); 8290 } 8291 for(i=0; i<nNew; i++){ 8292 releasePage(apNew[i]); 8293 } 8294 8295 return rc; 8296 } 8297 8298 8299 /* 8300 ** This function is called when the root page of a b-tree structure is 8301 ** overfull (has one or more overflow pages). 8302 ** 8303 ** A new child page is allocated and the contents of the current root 8304 ** page, including overflow cells, are copied into the child. The root 8305 ** page is then overwritten to make it an empty page with the right-child 8306 ** pointer pointing to the new page. 8307 ** 8308 ** Before returning, all pointer-map entries corresponding to pages 8309 ** that the new child-page now contains pointers to are updated. The 8310 ** entry corresponding to the new right-child pointer of the root 8311 ** page is also updated. 8312 ** 8313 ** If successful, *ppChild is set to contain a reference to the child 8314 ** page and SQLITE_OK is returned. In this case the caller is required 8315 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8316 ** an error code is returned and *ppChild is set to 0. 8317 */ 8318 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8319 int rc; /* Return value from subprocedures */ 8320 MemPage *pChild = 0; /* Pointer to a new child page */ 8321 Pgno pgnoChild = 0; /* Page number of the new child page */ 8322 BtShared *pBt = pRoot->pBt; /* The BTree */ 8323 8324 assert( pRoot->nOverflow>0 ); 8325 assert( sqlite3_mutex_held(pBt->mutex) ); 8326 8327 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8328 ** page that will become the new right-child of pPage. Copy the contents 8329 ** of the node stored on pRoot into the new child page. 8330 */ 8331 rc = sqlite3PagerWrite(pRoot->pDbPage); 8332 if( rc==SQLITE_OK ){ 8333 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8334 copyNodeContent(pRoot, pChild, &rc); 8335 if( ISAUTOVACUUM ){ 8336 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8337 } 8338 } 8339 if( rc ){ 8340 *ppChild = 0; 8341 releasePage(pChild); 8342 return rc; 8343 } 8344 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8345 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8346 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8347 8348 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8349 8350 /* Copy the overflow cells from pRoot to pChild */ 8351 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8352 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8353 memcpy(pChild->apOvfl, pRoot->apOvfl, 8354 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8355 pChild->nOverflow = pRoot->nOverflow; 8356 8357 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8358 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8359 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8360 8361 *ppChild = pChild; 8362 return SQLITE_OK; 8363 } 8364 8365 /* 8366 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8367 ** on the same B-tree as pCur. 8368 ** 8369 ** This can if a database is corrupt with two or more SQL tables 8370 ** pointing to the same b-tree. If an insert occurs on one SQL table 8371 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8372 ** table linked to the same b-tree. If the secondary insert causes a 8373 ** rebalance, that can change content out from under the cursor on the 8374 ** first SQL table, violating invariants on the first insert. 8375 */ 8376 static int anotherValidCursor(BtCursor *pCur){ 8377 BtCursor *pOther; 8378 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8379 if( pOther!=pCur 8380 && pOther->eState==CURSOR_VALID 8381 && pOther->pPage==pCur->pPage 8382 ){ 8383 return SQLITE_CORRUPT_BKPT; 8384 } 8385 } 8386 return SQLITE_OK; 8387 } 8388 8389 /* 8390 ** The page that pCur currently points to has just been modified in 8391 ** some way. This function figures out if this modification means the 8392 ** tree needs to be balanced, and if so calls the appropriate balancing 8393 ** routine. Balancing routines are: 8394 ** 8395 ** balance_quick() 8396 ** balance_deeper() 8397 ** balance_nonroot() 8398 */ 8399 static int balance(BtCursor *pCur){ 8400 int rc = SQLITE_OK; 8401 const int nMin = pCur->pBt->usableSize * 2 / 3; 8402 u8 aBalanceQuickSpace[13]; 8403 u8 *pFree = 0; 8404 8405 VVA_ONLY( int balance_quick_called = 0 ); 8406 VVA_ONLY( int balance_deeper_called = 0 ); 8407 8408 do { 8409 int iPage; 8410 MemPage *pPage = pCur->pPage; 8411 8412 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8413 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8414 break; 8415 }else if( (iPage = pCur->iPage)==0 ){ 8416 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8417 /* The root page of the b-tree is overfull. In this case call the 8418 ** balance_deeper() function to create a new child for the root-page 8419 ** and copy the current contents of the root-page to it. The 8420 ** next iteration of the do-loop will balance the child page. 8421 */ 8422 assert( balance_deeper_called==0 ); 8423 VVA_ONLY( balance_deeper_called++ ); 8424 rc = balance_deeper(pPage, &pCur->apPage[1]); 8425 if( rc==SQLITE_OK ){ 8426 pCur->iPage = 1; 8427 pCur->ix = 0; 8428 pCur->aiIdx[0] = 0; 8429 pCur->apPage[0] = pPage; 8430 pCur->pPage = pCur->apPage[1]; 8431 assert( pCur->pPage->nOverflow ); 8432 } 8433 }else{ 8434 break; 8435 } 8436 }else{ 8437 MemPage * const pParent = pCur->apPage[iPage-1]; 8438 int const iIdx = pCur->aiIdx[iPage-1]; 8439 8440 rc = sqlite3PagerWrite(pParent->pDbPage); 8441 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8442 rc = btreeComputeFreeSpace(pParent); 8443 } 8444 if( rc==SQLITE_OK ){ 8445 #ifndef SQLITE_OMIT_QUICKBALANCE 8446 if( pPage->intKeyLeaf 8447 && pPage->nOverflow==1 8448 && pPage->aiOvfl[0]==pPage->nCell 8449 && pParent->pgno!=1 8450 && pParent->nCell==iIdx 8451 ){ 8452 /* Call balance_quick() to create a new sibling of pPage on which 8453 ** to store the overflow cell. balance_quick() inserts a new cell 8454 ** into pParent, which may cause pParent overflow. If this 8455 ** happens, the next iteration of the do-loop will balance pParent 8456 ** use either balance_nonroot() or balance_deeper(). Until this 8457 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8458 ** buffer. 8459 ** 8460 ** The purpose of the following assert() is to check that only a 8461 ** single call to balance_quick() is made for each call to this 8462 ** function. If this were not verified, a subtle bug involving reuse 8463 ** of the aBalanceQuickSpace[] might sneak in. 8464 */ 8465 assert( balance_quick_called==0 ); 8466 VVA_ONLY( balance_quick_called++ ); 8467 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8468 }else 8469 #endif 8470 { 8471 /* In this case, call balance_nonroot() to redistribute cells 8472 ** between pPage and up to 2 of its sibling pages. This involves 8473 ** modifying the contents of pParent, which may cause pParent to 8474 ** become overfull or underfull. The next iteration of the do-loop 8475 ** will balance the parent page to correct this. 8476 ** 8477 ** If the parent page becomes overfull, the overflow cell or cells 8478 ** are stored in the pSpace buffer allocated immediately below. 8479 ** A subsequent iteration of the do-loop will deal with this by 8480 ** calling balance_nonroot() (balance_deeper() may be called first, 8481 ** but it doesn't deal with overflow cells - just moves them to a 8482 ** different page). Once this subsequent call to balance_nonroot() 8483 ** has completed, it is safe to release the pSpace buffer used by 8484 ** the previous call, as the overflow cell data will have been 8485 ** copied either into the body of a database page or into the new 8486 ** pSpace buffer passed to the latter call to balance_nonroot(). 8487 */ 8488 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8489 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8490 pCur->hints&BTREE_BULKLOAD); 8491 if( pFree ){ 8492 /* If pFree is not NULL, it points to the pSpace buffer used 8493 ** by a previous call to balance_nonroot(). Its contents are 8494 ** now stored either on real database pages or within the 8495 ** new pSpace buffer, so it may be safely freed here. */ 8496 sqlite3PageFree(pFree); 8497 } 8498 8499 /* The pSpace buffer will be freed after the next call to 8500 ** balance_nonroot(), or just before this function returns, whichever 8501 ** comes first. */ 8502 pFree = pSpace; 8503 } 8504 } 8505 8506 pPage->nOverflow = 0; 8507 8508 /* The next iteration of the do-loop balances the parent page. */ 8509 releasePage(pPage); 8510 pCur->iPage--; 8511 assert( pCur->iPage>=0 ); 8512 pCur->pPage = pCur->apPage[pCur->iPage]; 8513 } 8514 }while( rc==SQLITE_OK ); 8515 8516 if( pFree ){ 8517 sqlite3PageFree(pFree); 8518 } 8519 return rc; 8520 } 8521 8522 /* Overwrite content from pX into pDest. Only do the write if the 8523 ** content is different from what is already there. 8524 */ 8525 static int btreeOverwriteContent( 8526 MemPage *pPage, /* MemPage on which writing will occur */ 8527 u8 *pDest, /* Pointer to the place to start writing */ 8528 const BtreePayload *pX, /* Source of data to write */ 8529 int iOffset, /* Offset of first byte to write */ 8530 int iAmt /* Number of bytes to be written */ 8531 ){ 8532 int nData = pX->nData - iOffset; 8533 if( nData<=0 ){ 8534 /* Overwritting with zeros */ 8535 int i; 8536 for(i=0; i<iAmt && pDest[i]==0; i++){} 8537 if( i<iAmt ){ 8538 int rc = sqlite3PagerWrite(pPage->pDbPage); 8539 if( rc ) return rc; 8540 memset(pDest + i, 0, iAmt - i); 8541 } 8542 }else{ 8543 if( nData<iAmt ){ 8544 /* Mixed read data and zeros at the end. Make a recursive call 8545 ** to write the zeros then fall through to write the real data */ 8546 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8547 iAmt-nData); 8548 if( rc ) return rc; 8549 iAmt = nData; 8550 } 8551 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8552 int rc = sqlite3PagerWrite(pPage->pDbPage); 8553 if( rc ) return rc; 8554 /* In a corrupt database, it is possible for the source and destination 8555 ** buffers to overlap. This is harmless since the database is already 8556 ** corrupt but it does cause valgrind and ASAN warnings. So use 8557 ** memmove(). */ 8558 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8559 } 8560 } 8561 return SQLITE_OK; 8562 } 8563 8564 /* 8565 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8566 ** contained in pX. 8567 */ 8568 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8569 int iOffset; /* Next byte of pX->pData to write */ 8570 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8571 int rc; /* Return code */ 8572 MemPage *pPage = pCur->pPage; /* Page being written */ 8573 BtShared *pBt; /* Btree */ 8574 Pgno ovflPgno; /* Next overflow page to write */ 8575 u32 ovflPageSize; /* Size to write on overflow page */ 8576 8577 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8578 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8579 ){ 8580 return SQLITE_CORRUPT_BKPT; 8581 } 8582 /* Overwrite the local portion first */ 8583 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8584 0, pCur->info.nLocal); 8585 if( rc ) return rc; 8586 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8587 8588 /* Now overwrite the overflow pages */ 8589 iOffset = pCur->info.nLocal; 8590 assert( nTotal>=0 ); 8591 assert( iOffset>=0 ); 8592 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8593 pBt = pPage->pBt; 8594 ovflPageSize = pBt->usableSize - 4; 8595 do{ 8596 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8597 if( rc ) return rc; 8598 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8599 rc = SQLITE_CORRUPT_BKPT; 8600 }else{ 8601 if( iOffset+ovflPageSize<(u32)nTotal ){ 8602 ovflPgno = get4byte(pPage->aData); 8603 }else{ 8604 ovflPageSize = nTotal - iOffset; 8605 } 8606 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8607 iOffset, ovflPageSize); 8608 } 8609 sqlite3PagerUnref(pPage->pDbPage); 8610 if( rc ) return rc; 8611 iOffset += ovflPageSize; 8612 }while( iOffset<nTotal ); 8613 return SQLITE_OK; 8614 } 8615 8616 8617 /* 8618 ** Insert a new record into the BTree. The content of the new record 8619 ** is described by the pX object. The pCur cursor is used only to 8620 ** define what table the record should be inserted into, and is left 8621 ** pointing at a random location. 8622 ** 8623 ** For a table btree (used for rowid tables), only the pX.nKey value of 8624 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8625 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8626 ** hold the content of the row. 8627 ** 8628 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8629 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8630 ** pX.pData,nData,nZero fields must be zero. 8631 ** 8632 ** If the seekResult parameter is non-zero, then a successful call to 8633 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8634 ** been performed. In other words, if seekResult!=0 then the cursor 8635 ** is currently pointing to a cell that will be adjacent to the cell 8636 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8637 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8638 ** that is larger than (pKey,nKey). 8639 ** 8640 ** If seekResult==0, that means pCur is pointing at some unknown location. 8641 ** In that case, this routine must seek the cursor to the correct insertion 8642 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8643 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8644 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8645 ** to decode the key. 8646 */ 8647 int sqlite3BtreeInsert( 8648 BtCursor *pCur, /* Insert data into the table of this cursor */ 8649 const BtreePayload *pX, /* Content of the row to be inserted */ 8650 int flags, /* True if this is likely an append */ 8651 int seekResult /* Result of prior MovetoUnpacked() call */ 8652 ){ 8653 int rc; 8654 int loc = seekResult; /* -1: before desired location +1: after */ 8655 int szNew = 0; 8656 int idx; 8657 MemPage *pPage; 8658 Btree *p = pCur->pBtree; 8659 BtShared *pBt = p->pBt; 8660 unsigned char *oldCell; 8661 unsigned char *newCell = 0; 8662 8663 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8664 8665 if( pCur->eState==CURSOR_FAULT ){ 8666 assert( pCur->skipNext!=SQLITE_OK ); 8667 return pCur->skipNext; 8668 } 8669 8670 assert( cursorOwnsBtShared(pCur) ); 8671 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8672 && pBt->inTransaction==TRANS_WRITE 8673 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8674 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8675 8676 /* Assert that the caller has been consistent. If this cursor was opened 8677 ** expecting an index b-tree, then the caller should be inserting blob 8678 ** keys with no associated data. If the cursor was opened expecting an 8679 ** intkey table, the caller should be inserting integer keys with a 8680 ** blob of associated data. */ 8681 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8682 8683 /* Save the positions of any other cursors open on this table. 8684 ** 8685 ** In some cases, the call to btreeMoveto() below is a no-op. For 8686 ** example, when inserting data into a table with auto-generated integer 8687 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8688 ** integer key to use. It then calls this function to actually insert the 8689 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8690 ** that the cursor is already where it needs to be and returns without 8691 ** doing any work. To avoid thwarting these optimizations, it is important 8692 ** not to clear the cursor here. 8693 */ 8694 if( pCur->curFlags & BTCF_Multiple ){ 8695 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8696 if( rc ) return rc; 8697 } 8698 8699 if( pCur->pKeyInfo==0 ){ 8700 assert( pX->pKey==0 ); 8701 /* If this is an insert into a table b-tree, invalidate any incrblob 8702 ** cursors open on the row being replaced */ 8703 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8704 8705 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8706 ** to a row with the same key as the new entry being inserted. 8707 */ 8708 #ifdef SQLITE_DEBUG 8709 if( flags & BTREE_SAVEPOSITION ){ 8710 assert( pCur->curFlags & BTCF_ValidNKey ); 8711 assert( pX->nKey==pCur->info.nKey ); 8712 assert( loc==0 ); 8713 } 8714 #endif 8715 8716 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8717 ** that the cursor is not pointing to a row to be overwritten. 8718 ** So do a complete check. 8719 */ 8720 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8721 /* The cursor is pointing to the entry that is to be 8722 ** overwritten */ 8723 assert( pX->nData>=0 && pX->nZero>=0 ); 8724 if( pCur->info.nSize!=0 8725 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8726 ){ 8727 /* New entry is the same size as the old. Do an overwrite */ 8728 return btreeOverwriteCell(pCur, pX); 8729 } 8730 assert( loc==0 ); 8731 }else if( loc==0 ){ 8732 /* The cursor is *not* pointing to the cell to be overwritten, nor 8733 ** to an adjacent cell. Move the cursor so that it is pointing either 8734 ** to the cell to be overwritten or an adjacent cell. 8735 */ 8736 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8737 if( rc ) return rc; 8738 } 8739 }else{ 8740 /* This is an index or a WITHOUT ROWID table */ 8741 8742 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8743 ** to a row with the same key as the new entry being inserted. 8744 */ 8745 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8746 8747 /* If the cursor is not already pointing either to the cell to be 8748 ** overwritten, or if a new cell is being inserted, if the cursor is 8749 ** not pointing to an immediately adjacent cell, then move the cursor 8750 ** so that it does. 8751 */ 8752 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8753 if( pX->nMem ){ 8754 UnpackedRecord r; 8755 r.pKeyInfo = pCur->pKeyInfo; 8756 r.aMem = pX->aMem; 8757 r.nField = pX->nMem; 8758 r.default_rc = 0; 8759 r.errCode = 0; 8760 r.r1 = 0; 8761 r.r2 = 0; 8762 r.eqSeen = 0; 8763 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8764 }else{ 8765 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8766 } 8767 if( rc ) return rc; 8768 } 8769 8770 /* If the cursor is currently pointing to an entry to be overwritten 8771 ** and the new content is the same as as the old, then use the 8772 ** overwrite optimization. 8773 */ 8774 if( loc==0 ){ 8775 getCellInfo(pCur); 8776 if( pCur->info.nKey==pX->nKey ){ 8777 BtreePayload x2; 8778 x2.pData = pX->pKey; 8779 x2.nData = pX->nKey; 8780 x2.nZero = 0; 8781 return btreeOverwriteCell(pCur, &x2); 8782 } 8783 } 8784 8785 } 8786 assert( pCur->eState==CURSOR_VALID 8787 || (pCur->eState==CURSOR_INVALID && loc) 8788 || CORRUPT_DB ); 8789 8790 pPage = pCur->pPage; 8791 assert( pPage->intKey || pX->nKey>=0 ); 8792 assert( pPage->leaf || !pPage->intKey ); 8793 if( pPage->nFree<0 ){ 8794 if( pCur->eState>CURSOR_INVALID ){ 8795 rc = SQLITE_CORRUPT_BKPT; 8796 }else{ 8797 rc = btreeComputeFreeSpace(pPage); 8798 } 8799 if( rc ) return rc; 8800 } 8801 8802 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8803 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8804 loc==0 ? "overwrite" : "new entry")); 8805 assert( pPage->isInit ); 8806 newCell = pBt->pTmpSpace; 8807 assert( newCell!=0 ); 8808 rc = fillInCell(pPage, newCell, pX, &szNew); 8809 if( rc ) goto end_insert; 8810 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8811 assert( szNew <= MX_CELL_SIZE(pBt) ); 8812 idx = pCur->ix; 8813 if( loc==0 ){ 8814 CellInfo info; 8815 assert( idx<pPage->nCell ); 8816 rc = sqlite3PagerWrite(pPage->pDbPage); 8817 if( rc ){ 8818 goto end_insert; 8819 } 8820 oldCell = findCell(pPage, idx); 8821 if( !pPage->leaf ){ 8822 memcpy(newCell, oldCell, 4); 8823 } 8824 rc = clearCell(pPage, oldCell, &info); 8825 testcase( pCur->curFlags & BTCF_ValidOvfl ); 8826 invalidateOverflowCache(pCur); 8827 if( info.nSize==szNew && info.nLocal==info.nPayload 8828 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8829 ){ 8830 /* Overwrite the old cell with the new if they are the same size. 8831 ** We could also try to do this if the old cell is smaller, then add 8832 ** the leftover space to the free list. But experiments show that 8833 ** doing that is no faster then skipping this optimization and just 8834 ** calling dropCell() and insertCell(). 8835 ** 8836 ** This optimization cannot be used on an autovacuum database if the 8837 ** new entry uses overflow pages, as the insertCell() call below is 8838 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8839 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8840 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 8841 return SQLITE_CORRUPT_BKPT; 8842 } 8843 if( oldCell+szNew > pPage->aDataEnd ){ 8844 return SQLITE_CORRUPT_BKPT; 8845 } 8846 memcpy(oldCell, newCell, szNew); 8847 return SQLITE_OK; 8848 } 8849 dropCell(pPage, idx, info.nSize, &rc); 8850 if( rc ) goto end_insert; 8851 }else if( loc<0 && pPage->nCell>0 ){ 8852 assert( pPage->leaf ); 8853 idx = ++pCur->ix; 8854 pCur->curFlags &= ~BTCF_ValidNKey; 8855 }else{ 8856 assert( pPage->leaf ); 8857 } 8858 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8859 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8860 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8861 8862 /* If no error has occurred and pPage has an overflow cell, call balance() 8863 ** to redistribute the cells within the tree. Since balance() may move 8864 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8865 ** variables. 8866 ** 8867 ** Previous versions of SQLite called moveToRoot() to move the cursor 8868 ** back to the root page as balance() used to invalidate the contents 8869 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8870 ** set the cursor state to "invalid". This makes common insert operations 8871 ** slightly faster. 8872 ** 8873 ** There is a subtle but important optimization here too. When inserting 8874 ** multiple records into an intkey b-tree using a single cursor (as can 8875 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8876 ** is advantageous to leave the cursor pointing to the last entry in 8877 ** the b-tree if possible. If the cursor is left pointing to the last 8878 ** entry in the table, and the next row inserted has an integer key 8879 ** larger than the largest existing key, it is possible to insert the 8880 ** row without seeking the cursor. This can be a big performance boost. 8881 */ 8882 pCur->info.nSize = 0; 8883 if( pPage->nOverflow ){ 8884 assert( rc==SQLITE_OK ); 8885 pCur->curFlags &= ~(BTCF_ValidNKey); 8886 rc = balance(pCur); 8887 8888 /* Must make sure nOverflow is reset to zero even if the balance() 8889 ** fails. Internal data structure corruption will result otherwise. 8890 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8891 ** from trying to save the current position of the cursor. */ 8892 pCur->pPage->nOverflow = 0; 8893 pCur->eState = CURSOR_INVALID; 8894 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8895 btreeReleaseAllCursorPages(pCur); 8896 if( pCur->pKeyInfo ){ 8897 assert( pCur->pKey==0 ); 8898 pCur->pKey = sqlite3Malloc( pX->nKey ); 8899 if( pCur->pKey==0 ){ 8900 rc = SQLITE_NOMEM; 8901 }else{ 8902 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8903 } 8904 } 8905 pCur->eState = CURSOR_REQUIRESEEK; 8906 pCur->nKey = pX->nKey; 8907 } 8908 } 8909 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8910 8911 end_insert: 8912 return rc; 8913 } 8914 8915 /* 8916 ** Delete the entry that the cursor is pointing to. 8917 ** 8918 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8919 ** the cursor is left pointing at an arbitrary location after the delete. 8920 ** But if that bit is set, then the cursor is left in a state such that 8921 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8922 ** as it would have been on if the call to BtreeDelete() had been omitted. 8923 ** 8924 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8925 ** associated with a single table entry and its indexes. Only one of those 8926 ** deletes is considered the "primary" delete. The primary delete occurs 8927 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8928 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8929 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8930 ** but which might be used by alternative storage engines. 8931 */ 8932 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8933 Btree *p = pCur->pBtree; 8934 BtShared *pBt = p->pBt; 8935 int rc; /* Return code */ 8936 MemPage *pPage; /* Page to delete cell from */ 8937 unsigned char *pCell; /* Pointer to cell to delete */ 8938 int iCellIdx; /* Index of cell to delete */ 8939 int iCellDepth; /* Depth of node containing pCell */ 8940 CellInfo info; /* Size of the cell being deleted */ 8941 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8942 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8943 8944 assert( cursorOwnsBtShared(pCur) ); 8945 assert( pBt->inTransaction==TRANS_WRITE ); 8946 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8947 assert( pCur->curFlags & BTCF_WriteFlag ); 8948 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8949 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8950 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8951 if( pCur->eState==CURSOR_REQUIRESEEK ){ 8952 rc = btreeRestoreCursorPosition(pCur); 8953 if( rc ) return rc; 8954 } 8955 assert( pCur->eState==CURSOR_VALID ); 8956 8957 iCellDepth = pCur->iPage; 8958 iCellIdx = pCur->ix; 8959 pPage = pCur->pPage; 8960 pCell = findCell(pPage, iCellIdx); 8961 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT; 8962 8963 /* If the bPreserve flag is set to true, then the cursor position must 8964 ** be preserved following this delete operation. If the current delete 8965 ** will cause a b-tree rebalance, then this is done by saving the cursor 8966 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8967 ** returning. 8968 ** 8969 ** Or, if the current delete will not cause a rebalance, then the cursor 8970 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8971 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8972 if( bPreserve ){ 8973 if( !pPage->leaf 8974 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8975 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 8976 ){ 8977 /* A b-tree rebalance will be required after deleting this entry. 8978 ** Save the cursor key. */ 8979 rc = saveCursorKey(pCur); 8980 if( rc ) return rc; 8981 }else{ 8982 bSkipnext = 1; 8983 } 8984 } 8985 8986 /* If the page containing the entry to delete is not a leaf page, move 8987 ** the cursor to the largest entry in the tree that is smaller than 8988 ** the entry being deleted. This cell will replace the cell being deleted 8989 ** from the internal node. The 'previous' entry is used for this instead 8990 ** of the 'next' entry, as the previous entry is always a part of the 8991 ** sub-tree headed by the child page of the cell being deleted. This makes 8992 ** balancing the tree following the delete operation easier. */ 8993 if( !pPage->leaf ){ 8994 rc = sqlite3BtreePrevious(pCur, 0); 8995 assert( rc!=SQLITE_DONE ); 8996 if( rc ) return rc; 8997 } 8998 8999 /* Save the positions of any other cursors open on this table before 9000 ** making any modifications. */ 9001 if( pCur->curFlags & BTCF_Multiple ){ 9002 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9003 if( rc ) return rc; 9004 } 9005 9006 /* If this is a delete operation to remove a row from a table b-tree, 9007 ** invalidate any incrblob cursors open on the row being deleted. */ 9008 if( pCur->pKeyInfo==0 ){ 9009 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9010 } 9011 9012 /* Make the page containing the entry to be deleted writable. Then free any 9013 ** overflow pages associated with the entry and finally remove the cell 9014 ** itself from within the page. */ 9015 rc = sqlite3PagerWrite(pPage->pDbPage); 9016 if( rc ) return rc; 9017 rc = clearCell(pPage, pCell, &info); 9018 dropCell(pPage, iCellIdx, info.nSize, &rc); 9019 if( rc ) return rc; 9020 9021 /* If the cell deleted was not located on a leaf page, then the cursor 9022 ** is currently pointing to the largest entry in the sub-tree headed 9023 ** by the child-page of the cell that was just deleted from an internal 9024 ** node. The cell from the leaf node needs to be moved to the internal 9025 ** node to replace the deleted cell. */ 9026 if( !pPage->leaf ){ 9027 MemPage *pLeaf = pCur->pPage; 9028 int nCell; 9029 Pgno n; 9030 unsigned char *pTmp; 9031 9032 if( pLeaf->nFree<0 ){ 9033 rc = btreeComputeFreeSpace(pLeaf); 9034 if( rc ) return rc; 9035 } 9036 if( iCellDepth<pCur->iPage-1 ){ 9037 n = pCur->apPage[iCellDepth+1]->pgno; 9038 }else{ 9039 n = pCur->pPage->pgno; 9040 } 9041 pCell = findCell(pLeaf, pLeaf->nCell-1); 9042 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9043 nCell = pLeaf->xCellSize(pLeaf, pCell); 9044 assert( MX_CELL_SIZE(pBt) >= nCell ); 9045 pTmp = pBt->pTmpSpace; 9046 assert( pTmp!=0 ); 9047 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9048 if( rc==SQLITE_OK ){ 9049 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9050 } 9051 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9052 if( rc ) return rc; 9053 } 9054 9055 /* Balance the tree. If the entry deleted was located on a leaf page, 9056 ** then the cursor still points to that page. In this case the first 9057 ** call to balance() repairs the tree, and the if(...) condition is 9058 ** never true. 9059 ** 9060 ** Otherwise, if the entry deleted was on an internal node page, then 9061 ** pCur is pointing to the leaf page from which a cell was removed to 9062 ** replace the cell deleted from the internal node. This is slightly 9063 ** tricky as the leaf node may be underfull, and the internal node may 9064 ** be either under or overfull. In this case run the balancing algorithm 9065 ** on the leaf node first. If the balance proceeds far enough up the 9066 ** tree that we can be sure that any problem in the internal node has 9067 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9068 ** walk the cursor up the tree to the internal node and balance it as 9069 ** well. */ 9070 rc = balance(pCur); 9071 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9072 releasePageNotNull(pCur->pPage); 9073 pCur->iPage--; 9074 while( pCur->iPage>iCellDepth ){ 9075 releasePage(pCur->apPage[pCur->iPage--]); 9076 } 9077 pCur->pPage = pCur->apPage[pCur->iPage]; 9078 rc = balance(pCur); 9079 } 9080 9081 if( rc==SQLITE_OK ){ 9082 if( bSkipnext ){ 9083 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9084 assert( pPage==pCur->pPage || CORRUPT_DB ); 9085 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9086 pCur->eState = CURSOR_SKIPNEXT; 9087 if( iCellIdx>=pPage->nCell ){ 9088 pCur->skipNext = -1; 9089 pCur->ix = pPage->nCell-1; 9090 }else{ 9091 pCur->skipNext = 1; 9092 } 9093 }else{ 9094 rc = moveToRoot(pCur); 9095 if( bPreserve ){ 9096 btreeReleaseAllCursorPages(pCur); 9097 pCur->eState = CURSOR_REQUIRESEEK; 9098 } 9099 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9100 } 9101 } 9102 return rc; 9103 } 9104 9105 /* 9106 ** Create a new BTree table. Write into *piTable the page 9107 ** number for the root page of the new table. 9108 ** 9109 ** The type of type is determined by the flags parameter. Only the 9110 ** following values of flags are currently in use. Other values for 9111 ** flags might not work: 9112 ** 9113 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9114 ** BTREE_ZERODATA Used for SQL indices 9115 */ 9116 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9117 BtShared *pBt = p->pBt; 9118 MemPage *pRoot; 9119 Pgno pgnoRoot; 9120 int rc; 9121 int ptfFlags; /* Page-type flage for the root page of new table */ 9122 9123 assert( sqlite3BtreeHoldsMutex(p) ); 9124 assert( pBt->inTransaction==TRANS_WRITE ); 9125 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9126 9127 #ifdef SQLITE_OMIT_AUTOVACUUM 9128 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9129 if( rc ){ 9130 return rc; 9131 } 9132 #else 9133 if( pBt->autoVacuum ){ 9134 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9135 MemPage *pPageMove; /* The page to move to. */ 9136 9137 /* Creating a new table may probably require moving an existing database 9138 ** to make room for the new tables root page. In case this page turns 9139 ** out to be an overflow page, delete all overflow page-map caches 9140 ** held by open cursors. 9141 */ 9142 invalidateAllOverflowCache(pBt); 9143 9144 /* Read the value of meta[3] from the database to determine where the 9145 ** root page of the new table should go. meta[3] is the largest root-page 9146 ** created so far, so the new root-page is (meta[3]+1). 9147 */ 9148 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9149 if( pgnoRoot>btreePagecount(pBt) ){ 9150 return SQLITE_CORRUPT_BKPT; 9151 } 9152 pgnoRoot++; 9153 9154 /* The new root-page may not be allocated on a pointer-map page, or the 9155 ** PENDING_BYTE page. 9156 */ 9157 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9158 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9159 pgnoRoot++; 9160 } 9161 assert( pgnoRoot>=3 ); 9162 9163 /* Allocate a page. The page that currently resides at pgnoRoot will 9164 ** be moved to the allocated page (unless the allocated page happens 9165 ** to reside at pgnoRoot). 9166 */ 9167 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9168 if( rc!=SQLITE_OK ){ 9169 return rc; 9170 } 9171 9172 if( pgnoMove!=pgnoRoot ){ 9173 /* pgnoRoot is the page that will be used for the root-page of 9174 ** the new table (assuming an error did not occur). But we were 9175 ** allocated pgnoMove. If required (i.e. if it was not allocated 9176 ** by extending the file), the current page at position pgnoMove 9177 ** is already journaled. 9178 */ 9179 u8 eType = 0; 9180 Pgno iPtrPage = 0; 9181 9182 /* Save the positions of any open cursors. This is required in 9183 ** case they are holding a reference to an xFetch reference 9184 ** corresponding to page pgnoRoot. */ 9185 rc = saveAllCursors(pBt, 0, 0); 9186 releasePage(pPageMove); 9187 if( rc!=SQLITE_OK ){ 9188 return rc; 9189 } 9190 9191 /* Move the page currently at pgnoRoot to pgnoMove. */ 9192 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9193 if( rc!=SQLITE_OK ){ 9194 return rc; 9195 } 9196 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9197 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9198 rc = SQLITE_CORRUPT_BKPT; 9199 } 9200 if( rc!=SQLITE_OK ){ 9201 releasePage(pRoot); 9202 return rc; 9203 } 9204 assert( eType!=PTRMAP_ROOTPAGE ); 9205 assert( eType!=PTRMAP_FREEPAGE ); 9206 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9207 releasePage(pRoot); 9208 9209 /* Obtain the page at pgnoRoot */ 9210 if( rc!=SQLITE_OK ){ 9211 return rc; 9212 } 9213 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9214 if( rc!=SQLITE_OK ){ 9215 return rc; 9216 } 9217 rc = sqlite3PagerWrite(pRoot->pDbPage); 9218 if( rc!=SQLITE_OK ){ 9219 releasePage(pRoot); 9220 return rc; 9221 } 9222 }else{ 9223 pRoot = pPageMove; 9224 } 9225 9226 /* Update the pointer-map and meta-data with the new root-page number. */ 9227 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9228 if( rc ){ 9229 releasePage(pRoot); 9230 return rc; 9231 } 9232 9233 /* When the new root page was allocated, page 1 was made writable in 9234 ** order either to increase the database filesize, or to decrement the 9235 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9236 */ 9237 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9238 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9239 if( NEVER(rc) ){ 9240 releasePage(pRoot); 9241 return rc; 9242 } 9243 9244 }else{ 9245 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9246 if( rc ) return rc; 9247 } 9248 #endif 9249 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9250 if( createTabFlags & BTREE_INTKEY ){ 9251 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9252 }else{ 9253 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9254 } 9255 zeroPage(pRoot, ptfFlags); 9256 sqlite3PagerUnref(pRoot->pDbPage); 9257 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9258 *piTable = pgnoRoot; 9259 return SQLITE_OK; 9260 } 9261 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9262 int rc; 9263 sqlite3BtreeEnter(p); 9264 rc = btreeCreateTable(p, piTable, flags); 9265 sqlite3BtreeLeave(p); 9266 return rc; 9267 } 9268 9269 /* 9270 ** Erase the given database page and all its children. Return 9271 ** the page to the freelist. 9272 */ 9273 static int clearDatabasePage( 9274 BtShared *pBt, /* The BTree that contains the table */ 9275 Pgno pgno, /* Page number to clear */ 9276 int freePageFlag, /* Deallocate page if true */ 9277 int *pnChange /* Add number of Cells freed to this counter */ 9278 ){ 9279 MemPage *pPage; 9280 int rc; 9281 unsigned char *pCell; 9282 int i; 9283 int hdr; 9284 CellInfo info; 9285 9286 assert( sqlite3_mutex_held(pBt->mutex) ); 9287 if( pgno>btreePagecount(pBt) ){ 9288 return SQLITE_CORRUPT_BKPT; 9289 } 9290 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9291 if( rc ) return rc; 9292 if( pPage->bBusy ){ 9293 rc = SQLITE_CORRUPT_BKPT; 9294 goto cleardatabasepage_out; 9295 } 9296 pPage->bBusy = 1; 9297 hdr = pPage->hdrOffset; 9298 for(i=0; i<pPage->nCell; i++){ 9299 pCell = findCell(pPage, i); 9300 if( !pPage->leaf ){ 9301 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9302 if( rc ) goto cleardatabasepage_out; 9303 } 9304 rc = clearCell(pPage, pCell, &info); 9305 if( rc ) goto cleardatabasepage_out; 9306 } 9307 if( !pPage->leaf ){ 9308 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9309 if( rc ) goto cleardatabasepage_out; 9310 }else if( pnChange ){ 9311 assert( pPage->intKey || CORRUPT_DB ); 9312 testcase( !pPage->intKey ); 9313 *pnChange += pPage->nCell; 9314 } 9315 if( freePageFlag ){ 9316 freePage(pPage, &rc); 9317 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9318 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9319 } 9320 9321 cleardatabasepage_out: 9322 pPage->bBusy = 0; 9323 releasePage(pPage); 9324 return rc; 9325 } 9326 9327 /* 9328 ** Delete all information from a single table in the database. iTable is 9329 ** the page number of the root of the table. After this routine returns, 9330 ** the root page is empty, but still exists. 9331 ** 9332 ** This routine will fail with SQLITE_LOCKED if there are any open 9333 ** read cursors on the table. Open write cursors are moved to the 9334 ** root of the table. 9335 ** 9336 ** If pnChange is not NULL, then table iTable must be an intkey table. The 9337 ** integer value pointed to by pnChange is incremented by the number of 9338 ** entries in the table. 9339 */ 9340 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 9341 int rc; 9342 BtShared *pBt = p->pBt; 9343 sqlite3BtreeEnter(p); 9344 assert( p->inTrans==TRANS_WRITE ); 9345 9346 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9347 9348 if( SQLITE_OK==rc ){ 9349 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9350 ** is the root of a table b-tree - if it is not, the following call is 9351 ** a no-op). */ 9352 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9353 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9354 } 9355 sqlite3BtreeLeave(p); 9356 return rc; 9357 } 9358 9359 /* 9360 ** Delete all information from the single table that pCur is open on. 9361 ** 9362 ** This routine only work for pCur on an ephemeral table. 9363 */ 9364 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9365 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9366 } 9367 9368 /* 9369 ** Erase all information in a table and add the root of the table to 9370 ** the freelist. Except, the root of the principle table (the one on 9371 ** page 1) is never added to the freelist. 9372 ** 9373 ** This routine will fail with SQLITE_LOCKED if there are any open 9374 ** cursors on the table. 9375 ** 9376 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9377 ** root page in the database file, then the last root page 9378 ** in the database file is moved into the slot formerly occupied by 9379 ** iTable and that last slot formerly occupied by the last root page 9380 ** is added to the freelist instead of iTable. In this say, all 9381 ** root pages are kept at the beginning of the database file, which 9382 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9383 ** page number that used to be the last root page in the file before 9384 ** the move. If no page gets moved, *piMoved is set to 0. 9385 ** The last root page is recorded in meta[3] and the value of 9386 ** meta[3] is updated by this procedure. 9387 */ 9388 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9389 int rc; 9390 MemPage *pPage = 0; 9391 BtShared *pBt = p->pBt; 9392 9393 assert( sqlite3BtreeHoldsMutex(p) ); 9394 assert( p->inTrans==TRANS_WRITE ); 9395 assert( iTable>=2 ); 9396 if( iTable>btreePagecount(pBt) ){ 9397 return SQLITE_CORRUPT_BKPT; 9398 } 9399 9400 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9401 if( rc ) return rc; 9402 rc = sqlite3BtreeClearTable(p, iTable, 0); 9403 if( rc ){ 9404 releasePage(pPage); 9405 return rc; 9406 } 9407 9408 *piMoved = 0; 9409 9410 #ifdef SQLITE_OMIT_AUTOVACUUM 9411 freePage(pPage, &rc); 9412 releasePage(pPage); 9413 #else 9414 if( pBt->autoVacuum ){ 9415 Pgno maxRootPgno; 9416 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9417 9418 if( iTable==maxRootPgno ){ 9419 /* If the table being dropped is the table with the largest root-page 9420 ** number in the database, put the root page on the free list. 9421 */ 9422 freePage(pPage, &rc); 9423 releasePage(pPage); 9424 if( rc!=SQLITE_OK ){ 9425 return rc; 9426 } 9427 }else{ 9428 /* The table being dropped does not have the largest root-page 9429 ** number in the database. So move the page that does into the 9430 ** gap left by the deleted root-page. 9431 */ 9432 MemPage *pMove; 9433 releasePage(pPage); 9434 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9435 if( rc!=SQLITE_OK ){ 9436 return rc; 9437 } 9438 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9439 releasePage(pMove); 9440 if( rc!=SQLITE_OK ){ 9441 return rc; 9442 } 9443 pMove = 0; 9444 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9445 freePage(pMove, &rc); 9446 releasePage(pMove); 9447 if( rc!=SQLITE_OK ){ 9448 return rc; 9449 } 9450 *piMoved = maxRootPgno; 9451 } 9452 9453 /* Set the new 'max-root-page' value in the database header. This 9454 ** is the old value less one, less one more if that happens to 9455 ** be a root-page number, less one again if that is the 9456 ** PENDING_BYTE_PAGE. 9457 */ 9458 maxRootPgno--; 9459 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9460 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9461 maxRootPgno--; 9462 } 9463 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9464 9465 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9466 }else{ 9467 freePage(pPage, &rc); 9468 releasePage(pPage); 9469 } 9470 #endif 9471 return rc; 9472 } 9473 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9474 int rc; 9475 sqlite3BtreeEnter(p); 9476 rc = btreeDropTable(p, iTable, piMoved); 9477 sqlite3BtreeLeave(p); 9478 return rc; 9479 } 9480 9481 9482 /* 9483 ** This function may only be called if the b-tree connection already 9484 ** has a read or write transaction open on the database. 9485 ** 9486 ** Read the meta-information out of a database file. Meta[0] 9487 ** is the number of free pages currently in the database. Meta[1] 9488 ** through meta[15] are available for use by higher layers. Meta[0] 9489 ** is read-only, the others are read/write. 9490 ** 9491 ** The schema layer numbers meta values differently. At the schema 9492 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9493 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9494 ** 9495 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9496 ** of reading the value out of the header, it instead loads the "DataVersion" 9497 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9498 ** database file. It is a number computed by the pager. But its access 9499 ** pattern is the same as header meta values, and so it is convenient to 9500 ** read it from this routine. 9501 */ 9502 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9503 BtShared *pBt = p->pBt; 9504 9505 sqlite3BtreeEnter(p); 9506 assert( p->inTrans>TRANS_NONE ); 9507 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 9508 assert( pBt->pPage1 ); 9509 assert( idx>=0 && idx<=15 ); 9510 9511 if( idx==BTREE_DATA_VERSION ){ 9512 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9513 }else{ 9514 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9515 } 9516 9517 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9518 ** database, mark the database as read-only. */ 9519 #ifdef SQLITE_OMIT_AUTOVACUUM 9520 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9521 pBt->btsFlags |= BTS_READ_ONLY; 9522 } 9523 #endif 9524 9525 sqlite3BtreeLeave(p); 9526 } 9527 9528 /* 9529 ** Write meta-information back into the database. Meta[0] is 9530 ** read-only and may not be written. 9531 */ 9532 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9533 BtShared *pBt = p->pBt; 9534 unsigned char *pP1; 9535 int rc; 9536 assert( idx>=1 && idx<=15 ); 9537 sqlite3BtreeEnter(p); 9538 assert( p->inTrans==TRANS_WRITE ); 9539 assert( pBt->pPage1!=0 ); 9540 pP1 = pBt->pPage1->aData; 9541 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9542 if( rc==SQLITE_OK ){ 9543 put4byte(&pP1[36 + idx*4], iMeta); 9544 #ifndef SQLITE_OMIT_AUTOVACUUM 9545 if( idx==BTREE_INCR_VACUUM ){ 9546 assert( pBt->autoVacuum || iMeta==0 ); 9547 assert( iMeta==0 || iMeta==1 ); 9548 pBt->incrVacuum = (u8)iMeta; 9549 } 9550 #endif 9551 } 9552 sqlite3BtreeLeave(p); 9553 return rc; 9554 } 9555 9556 /* 9557 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9558 ** number of entries in the b-tree and write the result to *pnEntry. 9559 ** 9560 ** SQLITE_OK is returned if the operation is successfully executed. 9561 ** Otherwise, if an error is encountered (i.e. an IO error or database 9562 ** corruption) an SQLite error code is returned. 9563 */ 9564 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9565 i64 nEntry = 0; /* Value to return in *pnEntry */ 9566 int rc; /* Return code */ 9567 9568 rc = moveToRoot(pCur); 9569 if( rc==SQLITE_EMPTY ){ 9570 *pnEntry = 0; 9571 return SQLITE_OK; 9572 } 9573 9574 /* Unless an error occurs, the following loop runs one iteration for each 9575 ** page in the B-Tree structure (not including overflow pages). 9576 */ 9577 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 9578 int iIdx; /* Index of child node in parent */ 9579 MemPage *pPage; /* Current page of the b-tree */ 9580 9581 /* If this is a leaf page or the tree is not an int-key tree, then 9582 ** this page contains countable entries. Increment the entry counter 9583 ** accordingly. 9584 */ 9585 pPage = pCur->pPage; 9586 if( pPage->leaf || !pPage->intKey ){ 9587 nEntry += pPage->nCell; 9588 } 9589 9590 /* pPage is a leaf node. This loop navigates the cursor so that it 9591 ** points to the first interior cell that it points to the parent of 9592 ** the next page in the tree that has not yet been visited. The 9593 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9594 ** of the page, or to the number of cells in the page if the next page 9595 ** to visit is the right-child of its parent. 9596 ** 9597 ** If all pages in the tree have been visited, return SQLITE_OK to the 9598 ** caller. 9599 */ 9600 if( pPage->leaf ){ 9601 do { 9602 if( pCur->iPage==0 ){ 9603 /* All pages of the b-tree have been visited. Return successfully. */ 9604 *pnEntry = nEntry; 9605 return moveToRoot(pCur); 9606 } 9607 moveToParent(pCur); 9608 }while ( pCur->ix>=pCur->pPage->nCell ); 9609 9610 pCur->ix++; 9611 pPage = pCur->pPage; 9612 } 9613 9614 /* Descend to the child node of the cell that the cursor currently 9615 ** points at. This is the right-child if (iIdx==pPage->nCell). 9616 */ 9617 iIdx = pCur->ix; 9618 if( iIdx==pPage->nCell ){ 9619 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9620 }else{ 9621 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9622 } 9623 } 9624 9625 /* An error has occurred. Return an error code. */ 9626 return rc; 9627 } 9628 9629 /* 9630 ** Return the pager associated with a BTree. This routine is used for 9631 ** testing and debugging only. 9632 */ 9633 Pager *sqlite3BtreePager(Btree *p){ 9634 return p->pBt->pPager; 9635 } 9636 9637 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9638 /* 9639 ** Append a message to the error message string. 9640 */ 9641 static void checkAppendMsg( 9642 IntegrityCk *pCheck, 9643 const char *zFormat, 9644 ... 9645 ){ 9646 va_list ap; 9647 if( !pCheck->mxErr ) return; 9648 pCheck->mxErr--; 9649 pCheck->nErr++; 9650 va_start(ap, zFormat); 9651 if( pCheck->errMsg.nChar ){ 9652 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9653 } 9654 if( pCheck->zPfx ){ 9655 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9656 } 9657 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9658 va_end(ap); 9659 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9660 pCheck->bOomFault = 1; 9661 } 9662 } 9663 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9664 9665 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9666 9667 /* 9668 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9669 ** corresponds to page iPg is already set. 9670 */ 9671 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9672 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9673 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9674 } 9675 9676 /* 9677 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9678 */ 9679 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9680 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9681 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9682 } 9683 9684 9685 /* 9686 ** Add 1 to the reference count for page iPage. If this is the second 9687 ** reference to the page, add an error message to pCheck->zErrMsg. 9688 ** Return 1 if there are 2 or more references to the page and 0 if 9689 ** if this is the first reference to the page. 9690 ** 9691 ** Also check that the page number is in bounds. 9692 */ 9693 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9694 if( iPage>pCheck->nPage || iPage==0 ){ 9695 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9696 return 1; 9697 } 9698 if( getPageReferenced(pCheck, iPage) ){ 9699 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9700 return 1; 9701 } 9702 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 9703 setPageReferenced(pCheck, iPage); 9704 return 0; 9705 } 9706 9707 #ifndef SQLITE_OMIT_AUTOVACUUM 9708 /* 9709 ** Check that the entry in the pointer-map for page iChild maps to 9710 ** page iParent, pointer type ptrType. If not, append an error message 9711 ** to pCheck. 9712 */ 9713 static void checkPtrmap( 9714 IntegrityCk *pCheck, /* Integrity check context */ 9715 Pgno iChild, /* Child page number */ 9716 u8 eType, /* Expected pointer map type */ 9717 Pgno iParent /* Expected pointer map parent page number */ 9718 ){ 9719 int rc; 9720 u8 ePtrmapType; 9721 Pgno iPtrmapParent; 9722 9723 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9724 if( rc!=SQLITE_OK ){ 9725 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 9726 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9727 return; 9728 } 9729 9730 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9731 checkAppendMsg(pCheck, 9732 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9733 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9734 } 9735 } 9736 #endif 9737 9738 /* 9739 ** Check the integrity of the freelist or of an overflow page list. 9740 ** Verify that the number of pages on the list is N. 9741 */ 9742 static void checkList( 9743 IntegrityCk *pCheck, /* Integrity checking context */ 9744 int isFreeList, /* True for a freelist. False for overflow page list */ 9745 Pgno iPage, /* Page number for first page in the list */ 9746 u32 N /* Expected number of pages in the list */ 9747 ){ 9748 int i; 9749 u32 expected = N; 9750 int nErrAtStart = pCheck->nErr; 9751 while( iPage!=0 && pCheck->mxErr ){ 9752 DbPage *pOvflPage; 9753 unsigned char *pOvflData; 9754 if( checkRef(pCheck, iPage) ) break; 9755 N--; 9756 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9757 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9758 break; 9759 } 9760 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9761 if( isFreeList ){ 9762 u32 n = (u32)get4byte(&pOvflData[4]); 9763 #ifndef SQLITE_OMIT_AUTOVACUUM 9764 if( pCheck->pBt->autoVacuum ){ 9765 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9766 } 9767 #endif 9768 if( n>pCheck->pBt->usableSize/4-2 ){ 9769 checkAppendMsg(pCheck, 9770 "freelist leaf count too big on page %d", iPage); 9771 N--; 9772 }else{ 9773 for(i=0; i<(int)n; i++){ 9774 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9775 #ifndef SQLITE_OMIT_AUTOVACUUM 9776 if( pCheck->pBt->autoVacuum ){ 9777 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9778 } 9779 #endif 9780 checkRef(pCheck, iFreePage); 9781 } 9782 N -= n; 9783 } 9784 } 9785 #ifndef SQLITE_OMIT_AUTOVACUUM 9786 else{ 9787 /* If this database supports auto-vacuum and iPage is not the last 9788 ** page in this overflow list, check that the pointer-map entry for 9789 ** the following page matches iPage. 9790 */ 9791 if( pCheck->pBt->autoVacuum && N>0 ){ 9792 i = get4byte(pOvflData); 9793 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9794 } 9795 } 9796 #endif 9797 iPage = get4byte(pOvflData); 9798 sqlite3PagerUnref(pOvflPage); 9799 } 9800 if( N && nErrAtStart==pCheck->nErr ){ 9801 checkAppendMsg(pCheck, 9802 "%s is %d but should be %d", 9803 isFreeList ? "size" : "overflow list length", 9804 expected-N, expected); 9805 } 9806 } 9807 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9808 9809 /* 9810 ** An implementation of a min-heap. 9811 ** 9812 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9813 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9814 ** and aHeap[N*2+1]. 9815 ** 9816 ** The heap property is this: Every node is less than or equal to both 9817 ** of its daughter nodes. A consequence of the heap property is that the 9818 ** root node aHeap[1] is always the minimum value currently in the heap. 9819 ** 9820 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9821 ** the heap, preserving the heap property. The btreeHeapPull() routine 9822 ** removes the root element from the heap (the minimum value in the heap) 9823 ** and then moves other nodes around as necessary to preserve the heap 9824 ** property. 9825 ** 9826 ** This heap is used for cell overlap and coverage testing. Each u32 9827 ** entry represents the span of a cell or freeblock on a btree page. 9828 ** The upper 16 bits are the index of the first byte of a range and the 9829 ** lower 16 bits are the index of the last byte of that range. 9830 */ 9831 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9832 u32 j, i = ++aHeap[0]; 9833 aHeap[i] = x; 9834 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9835 x = aHeap[j]; 9836 aHeap[j] = aHeap[i]; 9837 aHeap[i] = x; 9838 i = j; 9839 } 9840 } 9841 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9842 u32 j, i, x; 9843 if( (x = aHeap[0])==0 ) return 0; 9844 *pOut = aHeap[1]; 9845 aHeap[1] = aHeap[x]; 9846 aHeap[x] = 0xffffffff; 9847 aHeap[0]--; 9848 i = 1; 9849 while( (j = i*2)<=aHeap[0] ){ 9850 if( aHeap[j]>aHeap[j+1] ) j++; 9851 if( aHeap[i]<aHeap[j] ) break; 9852 x = aHeap[i]; 9853 aHeap[i] = aHeap[j]; 9854 aHeap[j] = x; 9855 i = j; 9856 } 9857 return 1; 9858 } 9859 9860 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9861 /* 9862 ** Do various sanity checks on a single page of a tree. Return 9863 ** the tree depth. Root pages return 0. Parents of root pages 9864 ** return 1, and so forth. 9865 ** 9866 ** These checks are done: 9867 ** 9868 ** 1. Make sure that cells and freeblocks do not overlap 9869 ** but combine to completely cover the page. 9870 ** 2. Make sure integer cell keys are in order. 9871 ** 3. Check the integrity of overflow pages. 9872 ** 4. Recursively call checkTreePage on all children. 9873 ** 5. Verify that the depth of all children is the same. 9874 */ 9875 static int checkTreePage( 9876 IntegrityCk *pCheck, /* Context for the sanity check */ 9877 Pgno iPage, /* Page number of the page to check */ 9878 i64 *piMinKey, /* Write minimum integer primary key here */ 9879 i64 maxKey /* Error if integer primary key greater than this */ 9880 ){ 9881 MemPage *pPage = 0; /* The page being analyzed */ 9882 int i; /* Loop counter */ 9883 int rc; /* Result code from subroutine call */ 9884 int depth = -1, d2; /* Depth of a subtree */ 9885 int pgno; /* Page number */ 9886 int nFrag; /* Number of fragmented bytes on the page */ 9887 int hdr; /* Offset to the page header */ 9888 int cellStart; /* Offset to the start of the cell pointer array */ 9889 int nCell; /* Number of cells */ 9890 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9891 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9892 ** False if IPK must be strictly less than maxKey */ 9893 u8 *data; /* Page content */ 9894 u8 *pCell; /* Cell content */ 9895 u8 *pCellIdx; /* Next element of the cell pointer array */ 9896 BtShared *pBt; /* The BtShared object that owns pPage */ 9897 u32 pc; /* Address of a cell */ 9898 u32 usableSize; /* Usable size of the page */ 9899 u32 contentOffset; /* Offset to the start of the cell content area */ 9900 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9901 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9902 const char *saved_zPfx = pCheck->zPfx; 9903 int saved_v1 = pCheck->v1; 9904 int saved_v2 = pCheck->v2; 9905 u8 savedIsInit = 0; 9906 9907 /* Check that the page exists 9908 */ 9909 pBt = pCheck->pBt; 9910 usableSize = pBt->usableSize; 9911 if( iPage==0 ) return 0; 9912 if( checkRef(pCheck, iPage) ) return 0; 9913 pCheck->zPfx = "Page %u: "; 9914 pCheck->v1 = iPage; 9915 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 9916 checkAppendMsg(pCheck, 9917 "unable to get the page. error code=%d", rc); 9918 goto end_of_check; 9919 } 9920 9921 /* Clear MemPage.isInit to make sure the corruption detection code in 9922 ** btreeInitPage() is executed. */ 9923 savedIsInit = pPage->isInit; 9924 pPage->isInit = 0; 9925 if( (rc = btreeInitPage(pPage))!=0 ){ 9926 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9927 checkAppendMsg(pCheck, 9928 "btreeInitPage() returns error code %d", rc); 9929 goto end_of_check; 9930 } 9931 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 9932 assert( rc==SQLITE_CORRUPT ); 9933 checkAppendMsg(pCheck, "free space corruption", rc); 9934 goto end_of_check; 9935 } 9936 data = pPage->aData; 9937 hdr = pPage->hdrOffset; 9938 9939 /* Set up for cell analysis */ 9940 pCheck->zPfx = "On tree page %u cell %d: "; 9941 contentOffset = get2byteNotZero(&data[hdr+5]); 9942 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9943 9944 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9945 ** number of cells on the page. */ 9946 nCell = get2byte(&data[hdr+3]); 9947 assert( pPage->nCell==nCell ); 9948 9949 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9950 ** immediately follows the b-tree page header. */ 9951 cellStart = hdr + 12 - 4*pPage->leaf; 9952 assert( pPage->aCellIdx==&data[cellStart] ); 9953 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9954 9955 if( !pPage->leaf ){ 9956 /* Analyze the right-child page of internal pages */ 9957 pgno = get4byte(&data[hdr+8]); 9958 #ifndef SQLITE_OMIT_AUTOVACUUM 9959 if( pBt->autoVacuum ){ 9960 pCheck->zPfx = "On page %u at right child: "; 9961 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9962 } 9963 #endif 9964 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9965 keyCanBeEqual = 0; 9966 }else{ 9967 /* For leaf pages, the coverage check will occur in the same loop 9968 ** as the other cell checks, so initialize the heap. */ 9969 heap = pCheck->heap; 9970 heap[0] = 0; 9971 } 9972 9973 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9974 ** integer offsets to the cell contents. */ 9975 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9976 CellInfo info; 9977 9978 /* Check cell size */ 9979 pCheck->v2 = i; 9980 assert( pCellIdx==&data[cellStart + i*2] ); 9981 pc = get2byteAligned(pCellIdx); 9982 pCellIdx -= 2; 9983 if( pc<contentOffset || pc>usableSize-4 ){ 9984 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9985 pc, contentOffset, usableSize-4); 9986 doCoverageCheck = 0; 9987 continue; 9988 } 9989 pCell = &data[pc]; 9990 pPage->xParseCell(pPage, pCell, &info); 9991 if( pc+info.nSize>usableSize ){ 9992 checkAppendMsg(pCheck, "Extends off end of page"); 9993 doCoverageCheck = 0; 9994 continue; 9995 } 9996 9997 /* Check for integer primary key out of range */ 9998 if( pPage->intKey ){ 9999 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10000 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10001 } 10002 maxKey = info.nKey; 10003 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10004 } 10005 10006 /* Check the content overflow list */ 10007 if( info.nPayload>info.nLocal ){ 10008 u32 nPage; /* Number of pages on the overflow chain */ 10009 Pgno pgnoOvfl; /* First page of the overflow chain */ 10010 assert( pc + info.nSize - 4 <= usableSize ); 10011 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10012 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10013 #ifndef SQLITE_OMIT_AUTOVACUUM 10014 if( pBt->autoVacuum ){ 10015 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10016 } 10017 #endif 10018 checkList(pCheck, 0, pgnoOvfl, nPage); 10019 } 10020 10021 if( !pPage->leaf ){ 10022 /* Check sanity of left child page for internal pages */ 10023 pgno = get4byte(pCell); 10024 #ifndef SQLITE_OMIT_AUTOVACUUM 10025 if( pBt->autoVacuum ){ 10026 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10027 } 10028 #endif 10029 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10030 keyCanBeEqual = 0; 10031 if( d2!=depth ){ 10032 checkAppendMsg(pCheck, "Child page depth differs"); 10033 depth = d2; 10034 } 10035 }else{ 10036 /* Populate the coverage-checking heap for leaf pages */ 10037 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10038 } 10039 } 10040 *piMinKey = maxKey; 10041 10042 /* Check for complete coverage of the page 10043 */ 10044 pCheck->zPfx = 0; 10045 if( doCoverageCheck && pCheck->mxErr>0 ){ 10046 /* For leaf pages, the min-heap has already been initialized and the 10047 ** cells have already been inserted. But for internal pages, that has 10048 ** not yet been done, so do it now */ 10049 if( !pPage->leaf ){ 10050 heap = pCheck->heap; 10051 heap[0] = 0; 10052 for(i=nCell-1; i>=0; i--){ 10053 u32 size; 10054 pc = get2byteAligned(&data[cellStart+i*2]); 10055 size = pPage->xCellSize(pPage, &data[pc]); 10056 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10057 } 10058 } 10059 /* Add the freeblocks to the min-heap 10060 ** 10061 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10062 ** is the offset of the first freeblock, or zero if there are no 10063 ** freeblocks on the page. 10064 */ 10065 i = get2byte(&data[hdr+1]); 10066 while( i>0 ){ 10067 int size, j; 10068 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10069 size = get2byte(&data[i+2]); 10070 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10071 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10072 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10073 ** big-endian integer which is the offset in the b-tree page of the next 10074 ** freeblock in the chain, or zero if the freeblock is the last on the 10075 ** chain. */ 10076 j = get2byte(&data[i]); 10077 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10078 ** increasing offset. */ 10079 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10080 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10081 i = j; 10082 } 10083 /* Analyze the min-heap looking for overlap between cells and/or 10084 ** freeblocks, and counting the number of untracked bytes in nFrag. 10085 ** 10086 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10087 ** There is an implied first entry the covers the page header, the cell 10088 ** pointer index, and the gap between the cell pointer index and the start 10089 ** of cell content. 10090 ** 10091 ** The loop below pulls entries from the min-heap in order and compares 10092 ** the start_address against the previous end_address. If there is an 10093 ** overlap, that means bytes are used multiple times. If there is a gap, 10094 ** that gap is added to the fragmentation count. 10095 */ 10096 nFrag = 0; 10097 prev = contentOffset - 1; /* Implied first min-heap entry */ 10098 while( btreeHeapPull(heap,&x) ){ 10099 if( (prev&0xffff)>=(x>>16) ){ 10100 checkAppendMsg(pCheck, 10101 "Multiple uses for byte %u of page %u", x>>16, iPage); 10102 break; 10103 }else{ 10104 nFrag += (x>>16) - (prev&0xffff) - 1; 10105 prev = x; 10106 } 10107 } 10108 nFrag += usableSize - (prev&0xffff) - 1; 10109 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10110 ** is stored in the fifth field of the b-tree page header. 10111 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10112 ** number of fragmented free bytes within the cell content area. 10113 */ 10114 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10115 checkAppendMsg(pCheck, 10116 "Fragmentation of %d bytes reported as %d on page %u", 10117 nFrag, data[hdr+7], iPage); 10118 } 10119 } 10120 10121 end_of_check: 10122 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10123 releasePage(pPage); 10124 pCheck->zPfx = saved_zPfx; 10125 pCheck->v1 = saved_v1; 10126 pCheck->v2 = saved_v2; 10127 return depth+1; 10128 } 10129 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10130 10131 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10132 /* 10133 ** This routine does a complete check of the given BTree file. aRoot[] is 10134 ** an array of pages numbers were each page number is the root page of 10135 ** a table. nRoot is the number of entries in aRoot. 10136 ** 10137 ** A read-only or read-write transaction must be opened before calling 10138 ** this function. 10139 ** 10140 ** Write the number of error seen in *pnErr. Except for some memory 10141 ** allocation errors, an error message held in memory obtained from 10142 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10143 ** returned. If a memory allocation error occurs, NULL is returned. 10144 ** 10145 ** If the first entry in aRoot[] is 0, that indicates that the list of 10146 ** root pages is incomplete. This is a "partial integrity-check". This 10147 ** happens when performing an integrity check on a single table. The 10148 ** zero is skipped, of course. But in addition, the freelist checks 10149 ** and the checks to make sure every page is referenced are also skipped, 10150 ** since obviously it is not possible to know which pages are covered by 10151 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10152 ** checks are still performed. 10153 */ 10154 char *sqlite3BtreeIntegrityCheck( 10155 sqlite3 *db, /* Database connection that is running the check */ 10156 Btree *p, /* The btree to be checked */ 10157 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10158 int nRoot, /* Number of entries in aRoot[] */ 10159 int mxErr, /* Stop reporting errors after this many */ 10160 int *pnErr /* Write number of errors seen to this variable */ 10161 ){ 10162 Pgno i; 10163 IntegrityCk sCheck; 10164 BtShared *pBt = p->pBt; 10165 u64 savedDbFlags = pBt->db->flags; 10166 char zErr[100]; 10167 int bPartial = 0; /* True if not checking all btrees */ 10168 int bCkFreelist = 1; /* True to scan the freelist */ 10169 VVA_ONLY( int nRef ); 10170 assert( nRoot>0 ); 10171 10172 /* aRoot[0]==0 means this is a partial check */ 10173 if( aRoot[0]==0 ){ 10174 assert( nRoot>1 ); 10175 bPartial = 1; 10176 if( aRoot[1]!=1 ) bCkFreelist = 0; 10177 } 10178 10179 sqlite3BtreeEnter(p); 10180 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10181 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10182 assert( nRef>=0 ); 10183 sCheck.db = db; 10184 sCheck.pBt = pBt; 10185 sCheck.pPager = pBt->pPager; 10186 sCheck.nPage = btreePagecount(sCheck.pBt); 10187 sCheck.mxErr = mxErr; 10188 sCheck.nErr = 0; 10189 sCheck.bOomFault = 0; 10190 sCheck.zPfx = 0; 10191 sCheck.v1 = 0; 10192 sCheck.v2 = 0; 10193 sCheck.aPgRef = 0; 10194 sCheck.heap = 0; 10195 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10196 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10197 if( sCheck.nPage==0 ){ 10198 goto integrity_ck_cleanup; 10199 } 10200 10201 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10202 if( !sCheck.aPgRef ){ 10203 sCheck.bOomFault = 1; 10204 goto integrity_ck_cleanup; 10205 } 10206 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10207 if( sCheck.heap==0 ){ 10208 sCheck.bOomFault = 1; 10209 goto integrity_ck_cleanup; 10210 } 10211 10212 i = PENDING_BYTE_PAGE(pBt); 10213 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10214 10215 /* Check the integrity of the freelist 10216 */ 10217 if( bCkFreelist ){ 10218 sCheck.zPfx = "Main freelist: "; 10219 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10220 get4byte(&pBt->pPage1->aData[36])); 10221 sCheck.zPfx = 0; 10222 } 10223 10224 /* Check all the tables. 10225 */ 10226 #ifndef SQLITE_OMIT_AUTOVACUUM 10227 if( !bPartial ){ 10228 if( pBt->autoVacuum ){ 10229 Pgno mx = 0; 10230 Pgno mxInHdr; 10231 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10232 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10233 if( mx!=mxInHdr ){ 10234 checkAppendMsg(&sCheck, 10235 "max rootpage (%d) disagrees with header (%d)", 10236 mx, mxInHdr 10237 ); 10238 } 10239 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10240 checkAppendMsg(&sCheck, 10241 "incremental_vacuum enabled with a max rootpage of zero" 10242 ); 10243 } 10244 } 10245 #endif 10246 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10247 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10248 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10249 i64 notUsed; 10250 if( aRoot[i]==0 ) continue; 10251 #ifndef SQLITE_OMIT_AUTOVACUUM 10252 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10253 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10254 } 10255 #endif 10256 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10257 } 10258 pBt->db->flags = savedDbFlags; 10259 10260 /* Make sure every page in the file is referenced 10261 */ 10262 if( !bPartial ){ 10263 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10264 #ifdef SQLITE_OMIT_AUTOVACUUM 10265 if( getPageReferenced(&sCheck, i)==0 ){ 10266 checkAppendMsg(&sCheck, "Page %d is never used", i); 10267 } 10268 #else 10269 /* If the database supports auto-vacuum, make sure no tables contain 10270 ** references to pointer-map pages. 10271 */ 10272 if( getPageReferenced(&sCheck, i)==0 && 10273 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10274 checkAppendMsg(&sCheck, "Page %d is never used", i); 10275 } 10276 if( getPageReferenced(&sCheck, i)!=0 && 10277 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10278 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10279 } 10280 #endif 10281 } 10282 } 10283 10284 /* Clean up and report errors. 10285 */ 10286 integrity_ck_cleanup: 10287 sqlite3PageFree(sCheck.heap); 10288 sqlite3_free(sCheck.aPgRef); 10289 if( sCheck.bOomFault ){ 10290 sqlite3_str_reset(&sCheck.errMsg); 10291 sCheck.nErr++; 10292 } 10293 *pnErr = sCheck.nErr; 10294 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10295 /* Make sure this analysis did not leave any unref() pages. */ 10296 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10297 sqlite3BtreeLeave(p); 10298 return sqlite3StrAccumFinish(&sCheck.errMsg); 10299 } 10300 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10301 10302 /* 10303 ** Return the full pathname of the underlying database file. Return 10304 ** an empty string if the database is in-memory or a TEMP database. 10305 ** 10306 ** The pager filename is invariant as long as the pager is 10307 ** open so it is safe to access without the BtShared mutex. 10308 */ 10309 const char *sqlite3BtreeGetFilename(Btree *p){ 10310 assert( p->pBt->pPager!=0 ); 10311 return sqlite3PagerFilename(p->pBt->pPager, 1); 10312 } 10313 10314 /* 10315 ** Return the pathname of the journal file for this database. The return 10316 ** value of this routine is the same regardless of whether the journal file 10317 ** has been created or not. 10318 ** 10319 ** The pager journal filename is invariant as long as the pager is 10320 ** open so it is safe to access without the BtShared mutex. 10321 */ 10322 const char *sqlite3BtreeGetJournalname(Btree *p){ 10323 assert( p->pBt->pPager!=0 ); 10324 return sqlite3PagerJournalname(p->pBt->pPager); 10325 } 10326 10327 /* 10328 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10329 ** to describe the current transaction state of Btree p. 10330 */ 10331 int sqlite3BtreeTxnState(Btree *p){ 10332 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10333 return p ? p->inTrans : 0; 10334 } 10335 10336 #ifndef SQLITE_OMIT_WAL 10337 /* 10338 ** Run a checkpoint on the Btree passed as the first argument. 10339 ** 10340 ** Return SQLITE_LOCKED if this or any other connection has an open 10341 ** transaction on the shared-cache the argument Btree is connected to. 10342 ** 10343 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10344 */ 10345 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10346 int rc = SQLITE_OK; 10347 if( p ){ 10348 BtShared *pBt = p->pBt; 10349 sqlite3BtreeEnter(p); 10350 if( pBt->inTransaction!=TRANS_NONE ){ 10351 rc = SQLITE_LOCKED; 10352 }else{ 10353 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10354 } 10355 sqlite3BtreeLeave(p); 10356 } 10357 return rc; 10358 } 10359 #endif 10360 10361 /* 10362 ** Return true if there is currently a backup running on Btree p. 10363 */ 10364 int sqlite3BtreeIsInBackup(Btree *p){ 10365 assert( p ); 10366 assert( sqlite3_mutex_held(p->db->mutex) ); 10367 return p->nBackup!=0; 10368 } 10369 10370 /* 10371 ** This function returns a pointer to a blob of memory associated with 10372 ** a single shared-btree. The memory is used by client code for its own 10373 ** purposes (for example, to store a high-level schema associated with 10374 ** the shared-btree). The btree layer manages reference counting issues. 10375 ** 10376 ** The first time this is called on a shared-btree, nBytes bytes of memory 10377 ** are allocated, zeroed, and returned to the caller. For each subsequent 10378 ** call the nBytes parameter is ignored and a pointer to the same blob 10379 ** of memory returned. 10380 ** 10381 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10382 ** allocated, a null pointer is returned. If the blob has already been 10383 ** allocated, it is returned as normal. 10384 ** 10385 ** Just before the shared-btree is closed, the function passed as the 10386 ** xFree argument when the memory allocation was made is invoked on the 10387 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10388 ** on the memory, the btree layer does that. 10389 */ 10390 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10391 BtShared *pBt = p->pBt; 10392 sqlite3BtreeEnter(p); 10393 if( !pBt->pSchema && nBytes ){ 10394 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10395 pBt->xFreeSchema = xFree; 10396 } 10397 sqlite3BtreeLeave(p); 10398 return pBt->pSchema; 10399 } 10400 10401 /* 10402 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10403 ** btree as the argument handle holds an exclusive lock on the 10404 ** sqlite_schema table. Otherwise SQLITE_OK. 10405 */ 10406 int sqlite3BtreeSchemaLocked(Btree *p){ 10407 int rc; 10408 assert( sqlite3_mutex_held(p->db->mutex) ); 10409 sqlite3BtreeEnter(p); 10410 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10411 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10412 sqlite3BtreeLeave(p); 10413 return rc; 10414 } 10415 10416 10417 #ifndef SQLITE_OMIT_SHARED_CACHE 10418 /* 10419 ** Obtain a lock on the table whose root page is iTab. The 10420 ** lock is a write lock if isWritelock is true or a read lock 10421 ** if it is false. 10422 */ 10423 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10424 int rc = SQLITE_OK; 10425 assert( p->inTrans!=TRANS_NONE ); 10426 if( p->sharable ){ 10427 u8 lockType = READ_LOCK + isWriteLock; 10428 assert( READ_LOCK+1==WRITE_LOCK ); 10429 assert( isWriteLock==0 || isWriteLock==1 ); 10430 10431 sqlite3BtreeEnter(p); 10432 rc = querySharedCacheTableLock(p, iTab, lockType); 10433 if( rc==SQLITE_OK ){ 10434 rc = setSharedCacheTableLock(p, iTab, lockType); 10435 } 10436 sqlite3BtreeLeave(p); 10437 } 10438 return rc; 10439 } 10440 #endif 10441 10442 #ifndef SQLITE_OMIT_INCRBLOB 10443 /* 10444 ** Argument pCsr must be a cursor opened for writing on an 10445 ** INTKEY table currently pointing at a valid table entry. 10446 ** This function modifies the data stored as part of that entry. 10447 ** 10448 ** Only the data content may only be modified, it is not possible to 10449 ** change the length of the data stored. If this function is called with 10450 ** parameters that attempt to write past the end of the existing data, 10451 ** no modifications are made and SQLITE_CORRUPT is returned. 10452 */ 10453 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10454 int rc; 10455 assert( cursorOwnsBtShared(pCsr) ); 10456 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10457 assert( pCsr->curFlags & BTCF_Incrblob ); 10458 10459 rc = restoreCursorPosition(pCsr); 10460 if( rc!=SQLITE_OK ){ 10461 return rc; 10462 } 10463 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10464 if( pCsr->eState!=CURSOR_VALID ){ 10465 return SQLITE_ABORT; 10466 } 10467 10468 /* Save the positions of all other cursors open on this table. This is 10469 ** required in case any of them are holding references to an xFetch 10470 ** version of the b-tree page modified by the accessPayload call below. 10471 ** 10472 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10473 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10474 ** saveAllCursors can only return SQLITE_OK. 10475 */ 10476 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10477 assert( rc==SQLITE_OK ); 10478 10479 /* Check some assumptions: 10480 ** (a) the cursor is open for writing, 10481 ** (b) there is a read/write transaction open, 10482 ** (c) the connection holds a write-lock on the table (if required), 10483 ** (d) there are no conflicting read-locks, and 10484 ** (e) the cursor points at a valid row of an intKey table. 10485 */ 10486 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10487 return SQLITE_READONLY; 10488 } 10489 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10490 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10491 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10492 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10493 assert( pCsr->pPage->intKey ); 10494 10495 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10496 } 10497 10498 /* 10499 ** Mark this cursor as an incremental blob cursor. 10500 */ 10501 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10502 pCur->curFlags |= BTCF_Incrblob; 10503 pCur->pBtree->hasIncrblobCur = 1; 10504 } 10505 #endif 10506 10507 /* 10508 ** Set both the "read version" (single byte at byte offset 18) and 10509 ** "write version" (single byte at byte offset 19) fields in the database 10510 ** header to iVersion. 10511 */ 10512 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10513 BtShared *pBt = pBtree->pBt; 10514 int rc; /* Return code */ 10515 10516 assert( iVersion==1 || iVersion==2 ); 10517 10518 /* If setting the version fields to 1, do not automatically open the 10519 ** WAL connection, even if the version fields are currently set to 2. 10520 */ 10521 pBt->btsFlags &= ~BTS_NO_WAL; 10522 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10523 10524 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10525 if( rc==SQLITE_OK ){ 10526 u8 *aData = pBt->pPage1->aData; 10527 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10528 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10529 if( rc==SQLITE_OK ){ 10530 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10531 if( rc==SQLITE_OK ){ 10532 aData[18] = (u8)iVersion; 10533 aData[19] = (u8)iVersion; 10534 } 10535 } 10536 } 10537 } 10538 10539 pBt->btsFlags &= ~BTS_NO_WAL; 10540 return rc; 10541 } 10542 10543 /* 10544 ** Return true if the cursor has a hint specified. This routine is 10545 ** only used from within assert() statements 10546 */ 10547 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10548 return (pCsr->hints & mask)!=0; 10549 } 10550 10551 /* 10552 ** Return true if the given Btree is read-only. 10553 */ 10554 int sqlite3BtreeIsReadonly(Btree *p){ 10555 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10556 } 10557 10558 /* 10559 ** Return the size of the header added to each page by this module. 10560 */ 10561 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10562 10563 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10564 /* 10565 ** Return true if the Btree passed as the only argument is sharable. 10566 */ 10567 int sqlite3BtreeSharable(Btree *p){ 10568 return p->sharable; 10569 } 10570 10571 /* 10572 ** Return the number of connections to the BtShared object accessed by 10573 ** the Btree handle passed as the only argument. For private caches 10574 ** this is always 1. For shared caches it may be 1 or greater. 10575 */ 10576 int sqlite3BtreeConnectionCount(Btree *p){ 10577 testcase( p->sharable ); 10578 return p->pBt->nRef; 10579 } 10580 #endif 10581