xref: /sqlite-3.40.0/src/btree.c (revision a3fdec71)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements a external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         iTab = pIdx->pTable->tnum;
179       }
180     }
181   }else{
182     iTab = iRoot;
183   }
184 
185   /* Search for the required lock. Either a write-lock on root-page iTab, a
186   ** write-lock on the schema table, or (if the client is reading) a
187   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
188   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189     if( pLock->pBtree==pBtree
190      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191      && pLock->eLock>=eLockType
192     ){
193       return 1;
194     }
195   }
196 
197   /* Failed to find the required lock. */
198   return 0;
199 }
200 #endif /* SQLITE_DEBUG */
201 
202 #ifdef SQLITE_DEBUG
203 /*
204 **** This function may be used as part of assert() statements only. ****
205 **
206 ** Return true if it would be illegal for pBtree to write into the
207 ** table or index rooted at iRoot because other shared connections are
208 ** simultaneously reading that same table or index.
209 **
210 ** It is illegal for pBtree to write if some other Btree object that
211 ** shares the same BtShared object is currently reading or writing
212 ** the iRoot table.  Except, if the other Btree object has the
213 ** read-uncommitted flag set, then it is OK for the other object to
214 ** have a read cursor.
215 **
216 ** For example, before writing to any part of the table or index
217 ** rooted at page iRoot, one should call:
218 **
219 **    assert( !hasReadConflicts(pBtree, iRoot) );
220 */
221 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222   BtCursor *p;
223   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224     if( p->pgnoRoot==iRoot
225      && p->pBtree!=pBtree
226      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227     ){
228       return 1;
229     }
230   }
231   return 0;
232 }
233 #endif    /* #ifdef SQLITE_DEBUG */
234 
235 /*
236 ** Query to see if Btree handle p may obtain a lock of type eLock
237 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
238 ** SQLITE_OK if the lock may be obtained (by calling
239 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
240 */
241 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
242   BtShared *pBt = p->pBt;
243   BtLock *pIter;
244 
245   assert( sqlite3BtreeHoldsMutex(p) );
246   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247   assert( p->db!=0 );
248   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
249 
250   /* If requesting a write-lock, then the Btree must have an open write
251   ** transaction on this file. And, obviously, for this to be so there
252   ** must be an open write transaction on the file itself.
253   */
254   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256 
257   /* This routine is a no-op if the shared-cache is not enabled */
258   if( !p->sharable ){
259     return SQLITE_OK;
260   }
261 
262   /* If some other connection is holding an exclusive lock, the
263   ** requested lock may not be obtained.
264   */
265   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
266     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267     return SQLITE_LOCKED_SHAREDCACHE;
268   }
269 
270   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271     /* The condition (pIter->eLock!=eLock) in the following if(...)
272     ** statement is a simplification of:
273     **
274     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275     **
276     ** since we know that if eLock==WRITE_LOCK, then no other connection
277     ** may hold a WRITE_LOCK on any table in this file (since there can
278     ** only be a single writer).
279     */
280     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284       if( eLock==WRITE_LOCK ){
285         assert( p==pBt->pWriter );
286         pBt->btsFlags |= BTS_PENDING;
287       }
288       return SQLITE_LOCKED_SHAREDCACHE;
289     }
290   }
291   return SQLITE_OK;
292 }
293 #endif /* !SQLITE_OMIT_SHARED_CACHE */
294 
295 #ifndef SQLITE_OMIT_SHARED_CACHE
296 /*
297 ** Add a lock on the table with root-page iTable to the shared-btree used
298 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
299 ** WRITE_LOCK.
300 **
301 ** This function assumes the following:
302 **
303 **   (a) The specified Btree object p is connected to a sharable
304 **       database (one with the BtShared.sharable flag set), and
305 **
306 **   (b) No other Btree objects hold a lock that conflicts
307 **       with the requested lock (i.e. querySharedCacheTableLock() has
308 **       already been called and returned SQLITE_OK).
309 **
310 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311 ** is returned if a malloc attempt fails.
312 */
313 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
314   BtShared *pBt = p->pBt;
315   BtLock *pLock = 0;
316   BtLock *pIter;
317 
318   assert( sqlite3BtreeHoldsMutex(p) );
319   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320   assert( p->db!=0 );
321 
322   /* A connection with the read-uncommitted flag set will never try to
323   ** obtain a read-lock using this function. The only read-lock obtained
324   ** by a connection in read-uncommitted mode is on the sqlite_master
325   ** table, and that lock is obtained in BtreeBeginTrans().  */
326   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327 
328   /* This function should only be called on a sharable b-tree after it
329   ** has been determined that no other b-tree holds a conflicting lock.  */
330   assert( p->sharable );
331   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
332 
333   /* First search the list for an existing lock on this table. */
334   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335     if( pIter->iTable==iTable && pIter->pBtree==p ){
336       pLock = pIter;
337       break;
338     }
339   }
340 
341   /* If the above search did not find a BtLock struct associating Btree p
342   ** with table iTable, allocate one and link it into the list.
343   */
344   if( !pLock ){
345     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
346     if( !pLock ){
347       return SQLITE_NOMEM;
348     }
349     pLock->iTable = iTable;
350     pLock->pBtree = p;
351     pLock->pNext = pBt->pLock;
352     pBt->pLock = pLock;
353   }
354 
355   /* Set the BtLock.eLock variable to the maximum of the current lock
356   ** and the requested lock. This means if a write-lock was already held
357   ** and a read-lock requested, we don't incorrectly downgrade the lock.
358   */
359   assert( WRITE_LOCK>READ_LOCK );
360   if( eLock>pLock->eLock ){
361     pLock->eLock = eLock;
362   }
363 
364   return SQLITE_OK;
365 }
366 #endif /* !SQLITE_OMIT_SHARED_CACHE */
367 
368 #ifndef SQLITE_OMIT_SHARED_CACHE
369 /*
370 ** Release all the table locks (locks obtained via calls to
371 ** the setSharedCacheTableLock() procedure) held by Btree object p.
372 **
373 ** This function assumes that Btree p has an open read or write
374 ** transaction. If it does not, then the BTS_PENDING flag
375 ** may be incorrectly cleared.
376 */
377 static void clearAllSharedCacheTableLocks(Btree *p){
378   BtShared *pBt = p->pBt;
379   BtLock **ppIter = &pBt->pLock;
380 
381   assert( sqlite3BtreeHoldsMutex(p) );
382   assert( p->sharable || 0==*ppIter );
383   assert( p->inTrans>0 );
384 
385   while( *ppIter ){
386     BtLock *pLock = *ppIter;
387     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
388     assert( pLock->pBtree->inTrans>=pLock->eLock );
389     if( pLock->pBtree==p ){
390       *ppIter = pLock->pNext;
391       assert( pLock->iTable!=1 || pLock==&p->lock );
392       if( pLock->iTable!=1 ){
393         sqlite3_free(pLock);
394       }
395     }else{
396       ppIter = &pLock->pNext;
397     }
398   }
399 
400   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
401   if( pBt->pWriter==p ){
402     pBt->pWriter = 0;
403     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
404   }else if( pBt->nTransaction==2 ){
405     /* This function is called when Btree p is concluding its
406     ** transaction. If there currently exists a writer, and p is not
407     ** that writer, then the number of locks held by connections other
408     ** than the writer must be about to drop to zero. In this case
409     ** set the BTS_PENDING flag to 0.
410     **
411     ** If there is not currently a writer, then BTS_PENDING must
412     ** be zero already. So this next line is harmless in that case.
413     */
414     pBt->btsFlags &= ~BTS_PENDING;
415   }
416 }
417 
418 /*
419 ** This function changes all write-locks held by Btree p into read-locks.
420 */
421 static void downgradeAllSharedCacheTableLocks(Btree *p){
422   BtShared *pBt = p->pBt;
423   if( pBt->pWriter==p ){
424     BtLock *pLock;
425     pBt->pWriter = 0;
426     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
427     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429       pLock->eLock = READ_LOCK;
430     }
431   }
432 }
433 
434 #endif /* SQLITE_OMIT_SHARED_CACHE */
435 
436 static void releasePage(MemPage *pPage);  /* Forward reference */
437 
438 /*
439 ***** This routine is used inside of assert() only ****
440 **
441 ** Verify that the cursor holds the mutex on its BtShared
442 */
443 #ifdef SQLITE_DEBUG
444 static int cursorHoldsMutex(BtCursor *p){
445   return sqlite3_mutex_held(p->pBt->mutex);
446 }
447 #endif
448 
449 
450 #ifndef SQLITE_OMIT_INCRBLOB
451 /*
452 ** Invalidate the overflow page-list cache for cursor pCur, if any.
453 */
454 static void invalidateOverflowCache(BtCursor *pCur){
455   assert( cursorHoldsMutex(pCur) );
456   sqlite3_free(pCur->aOverflow);
457   pCur->aOverflow = 0;
458 }
459 
460 /*
461 ** Invalidate the overflow page-list cache for all cursors opened
462 ** on the shared btree structure pBt.
463 */
464 static void invalidateAllOverflowCache(BtShared *pBt){
465   BtCursor *p;
466   assert( sqlite3_mutex_held(pBt->mutex) );
467   for(p=pBt->pCursor; p; p=p->pNext){
468     invalidateOverflowCache(p);
469   }
470 }
471 
472 /*
473 ** This function is called before modifying the contents of a table
474 ** to invalidate any incrblob cursors that are open on the
475 ** row or one of the rows being modified.
476 **
477 ** If argument isClearTable is true, then the entire contents of the
478 ** table is about to be deleted. In this case invalidate all incrblob
479 ** cursors open on any row within the table with root-page pgnoRoot.
480 **
481 ** Otherwise, if argument isClearTable is false, then the row with
482 ** rowid iRow is being replaced or deleted. In this case invalidate
483 ** only those incrblob cursors open on that specific row.
484 */
485 static void invalidateIncrblobCursors(
486   Btree *pBtree,          /* The database file to check */
487   i64 iRow,               /* The rowid that might be changing */
488   int isClearTable        /* True if all rows are being deleted */
489 ){
490   BtCursor *p;
491   BtShared *pBt = pBtree->pBt;
492   assert( sqlite3BtreeHoldsMutex(pBtree) );
493   for(p=pBt->pCursor; p; p=p->pNext){
494     if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495       p->eState = CURSOR_INVALID;
496     }
497   }
498 }
499 
500 #else
501   /* Stub functions when INCRBLOB is omitted */
502   #define invalidateOverflowCache(x)
503   #define invalidateAllOverflowCache(x)
504   #define invalidateIncrblobCursors(x,y,z)
505 #endif /* SQLITE_OMIT_INCRBLOB */
506 
507 /*
508 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509 ** when a page that previously contained data becomes a free-list leaf
510 ** page.
511 **
512 ** The BtShared.pHasContent bitvec exists to work around an obscure
513 ** bug caused by the interaction of two useful IO optimizations surrounding
514 ** free-list leaf pages:
515 **
516 **   1) When all data is deleted from a page and the page becomes
517 **      a free-list leaf page, the page is not written to the database
518 **      (as free-list leaf pages contain no meaningful data). Sometimes
519 **      such a page is not even journalled (as it will not be modified,
520 **      why bother journalling it?).
521 **
522 **   2) When a free-list leaf page is reused, its content is not read
523 **      from the database or written to the journal file (why should it
524 **      be, if it is not at all meaningful?).
525 **
526 ** By themselves, these optimizations work fine and provide a handy
527 ** performance boost to bulk delete or insert operations. However, if
528 ** a page is moved to the free-list and then reused within the same
529 ** transaction, a problem comes up. If the page is not journalled when
530 ** it is moved to the free-list and it is also not journalled when it
531 ** is extracted from the free-list and reused, then the original data
532 ** may be lost. In the event of a rollback, it may not be possible
533 ** to restore the database to its original configuration.
534 **
535 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536 ** moved to become a free-list leaf page, the corresponding bit is
537 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
538 ** optimization 2 above is omitted if the corresponding bit is already
539 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
540 ** at the end of every transaction.
541 */
542 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543   int rc = SQLITE_OK;
544   if( !pBt->pHasContent ){
545     assert( pgno<=pBt->nPage );
546     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
547     if( !pBt->pHasContent ){
548       rc = SQLITE_NOMEM;
549     }
550   }
551   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553   }
554   return rc;
555 }
556 
557 /*
558 ** Query the BtShared.pHasContent vector.
559 **
560 ** This function is called when a free-list leaf page is removed from the
561 ** free-list for reuse. It returns false if it is safe to retrieve the
562 ** page from the pager layer with the 'no-content' flag set. True otherwise.
563 */
564 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565   Bitvec *p = pBt->pHasContent;
566   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567 }
568 
569 /*
570 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571 ** invoked at the conclusion of each write-transaction.
572 */
573 static void btreeClearHasContent(BtShared *pBt){
574   sqlite3BitvecDestroy(pBt->pHasContent);
575   pBt->pHasContent = 0;
576 }
577 
578 /*
579 ** Release all of the apPage[] pages for a cursor.
580 */
581 static void btreeReleaseAllCursorPages(BtCursor *pCur){
582   int i;
583   for(i=0; i<=pCur->iPage; i++){
584     releasePage(pCur->apPage[i]);
585     pCur->apPage[i] = 0;
586   }
587   pCur->iPage = -1;
588 }
589 
590 
591 /*
592 ** Save the current cursor position in the variables BtCursor.nKey
593 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
594 **
595 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596 ** prior to calling this routine.
597 */
598 static int saveCursorPosition(BtCursor *pCur){
599   int rc;
600 
601   assert( CURSOR_VALID==pCur->eState );
602   assert( 0==pCur->pKey );
603   assert( cursorHoldsMutex(pCur) );
604 
605   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
606   assert( rc==SQLITE_OK );  /* KeySize() cannot fail */
607 
608   /* If this is an intKey table, then the above call to BtreeKeySize()
609   ** stores the integer key in pCur->nKey. In this case this value is
610   ** all that is required. Otherwise, if pCur is not open on an intKey
611   ** table, then malloc space for and store the pCur->nKey bytes of key
612   ** data.
613   */
614   if( 0==pCur->apPage[0]->intKey ){
615     void *pKey = sqlite3Malloc( (int)pCur->nKey );
616     if( pKey ){
617       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
618       if( rc==SQLITE_OK ){
619         pCur->pKey = pKey;
620       }else{
621         sqlite3_free(pKey);
622       }
623     }else{
624       rc = SQLITE_NOMEM;
625     }
626   }
627   assert( !pCur->apPage[0]->intKey || !pCur->pKey );
628 
629   if( rc==SQLITE_OK ){
630     btreeReleaseAllCursorPages(pCur);
631     pCur->eState = CURSOR_REQUIRESEEK;
632   }
633 
634   invalidateOverflowCache(pCur);
635   return rc;
636 }
637 
638 /*
639 ** Save the positions of all cursors (except pExcept) that are open on
640 ** the table  with root-page iRoot. Usually, this is called just before cursor
641 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642 */
643 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644   BtCursor *p;
645   assert( sqlite3_mutex_held(pBt->mutex) );
646   assert( pExcept==0 || pExcept->pBt==pBt );
647   for(p=pBt->pCursor; p; p=p->pNext){
648     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649       if( p->eState==CURSOR_VALID ){
650         int rc = saveCursorPosition(p);
651         if( SQLITE_OK!=rc ){
652           return rc;
653         }
654       }else{
655         testcase( p->iPage>0 );
656         btreeReleaseAllCursorPages(p);
657       }
658     }
659   }
660   return SQLITE_OK;
661 }
662 
663 /*
664 ** Clear the current cursor position.
665 */
666 void sqlite3BtreeClearCursor(BtCursor *pCur){
667   assert( cursorHoldsMutex(pCur) );
668   sqlite3_free(pCur->pKey);
669   pCur->pKey = 0;
670   pCur->eState = CURSOR_INVALID;
671 }
672 
673 /*
674 ** In this version of BtreeMoveto, pKey is a packed index record
675 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
676 ** record and then call BtreeMovetoUnpacked() to do the work.
677 */
678 static int btreeMoveto(
679   BtCursor *pCur,     /* Cursor open on the btree to be searched */
680   const void *pKey,   /* Packed key if the btree is an index */
681   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
682   int bias,           /* Bias search to the high end */
683   int *pRes           /* Write search results here */
684 ){
685   int rc;                    /* Status code */
686   UnpackedRecord *pIdxKey;   /* Unpacked index key */
687   char aSpace[200];          /* Temp space for pIdxKey - to avoid a malloc */
688   char *pFree = 0;
689 
690   if( pKey ){
691     assert( nKey==(i64)(int)nKey );
692     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694     );
695     if( pIdxKey==0 ) return SQLITE_NOMEM;
696     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
697     if( pIdxKey->nField==0 ){
698       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
699       return SQLITE_CORRUPT_BKPT;
700     }
701   }else{
702     pIdxKey = 0;
703   }
704   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
705   if( pFree ){
706     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
707   }
708   return rc;
709 }
710 
711 /*
712 ** Restore the cursor to the position it was in (or as close to as possible)
713 ** when saveCursorPosition() was called. Note that this call deletes the
714 ** saved position info stored by saveCursorPosition(), so there can be
715 ** at most one effective restoreCursorPosition() call after each
716 ** saveCursorPosition().
717 */
718 static int btreeRestoreCursorPosition(BtCursor *pCur){
719   int rc;
720   assert( cursorHoldsMutex(pCur) );
721   assert( pCur->eState>=CURSOR_REQUIRESEEK );
722   if( pCur->eState==CURSOR_FAULT ){
723     return pCur->skipNext;
724   }
725   pCur->eState = CURSOR_INVALID;
726   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
727   if( rc==SQLITE_OK ){
728     sqlite3_free(pCur->pKey);
729     pCur->pKey = 0;
730     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
731     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
732       pCur->eState = CURSOR_SKIPNEXT;
733     }
734   }
735   return rc;
736 }
737 
738 #define restoreCursorPosition(p) \
739   (p->eState>=CURSOR_REQUIRESEEK ? \
740          btreeRestoreCursorPosition(p) : \
741          SQLITE_OK)
742 
743 /*
744 ** Determine whether or not a cursor has moved from the position it
745 ** was last placed at.  Cursors can move when the row they are pointing
746 ** at is deleted out from under them.
747 **
748 ** This routine returns an error code if something goes wrong.  The
749 ** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
750 */
751 int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
752   int rc;
753 
754   rc = restoreCursorPosition(pCur);
755   if( rc ){
756     *pHasMoved = 1;
757     return rc;
758   }
759   if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
760     *pHasMoved = 1;
761   }else{
762     *pHasMoved = 0;
763   }
764   return SQLITE_OK;
765 }
766 
767 #ifndef SQLITE_OMIT_AUTOVACUUM
768 /*
769 ** Given a page number of a regular database page, return the page
770 ** number for the pointer-map page that contains the entry for the
771 ** input page number.
772 **
773 ** Return 0 (not a valid page) for pgno==1 since there is
774 ** no pointer map associated with page 1.  The integrity_check logic
775 ** requires that ptrmapPageno(*,1)!=1.
776 */
777 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
778   int nPagesPerMapPage;
779   Pgno iPtrMap, ret;
780   assert( sqlite3_mutex_held(pBt->mutex) );
781   if( pgno<2 ) return 0;
782   nPagesPerMapPage = (pBt->usableSize/5)+1;
783   iPtrMap = (pgno-2)/nPagesPerMapPage;
784   ret = (iPtrMap*nPagesPerMapPage) + 2;
785   if( ret==PENDING_BYTE_PAGE(pBt) ){
786     ret++;
787   }
788   return ret;
789 }
790 
791 /*
792 ** Write an entry into the pointer map.
793 **
794 ** This routine updates the pointer map entry for page number 'key'
795 ** so that it maps to type 'eType' and parent page number 'pgno'.
796 **
797 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
798 ** a no-op.  If an error occurs, the appropriate error code is written
799 ** into *pRC.
800 */
801 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
802   DbPage *pDbPage;  /* The pointer map page */
803   u8 *pPtrmap;      /* The pointer map data */
804   Pgno iPtrmap;     /* The pointer map page number */
805   int offset;       /* Offset in pointer map page */
806   int rc;           /* Return code from subfunctions */
807 
808   if( *pRC ) return;
809 
810   assert( sqlite3_mutex_held(pBt->mutex) );
811   /* The master-journal page number must never be used as a pointer map page */
812   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
813 
814   assert( pBt->autoVacuum );
815   if( key==0 ){
816     *pRC = SQLITE_CORRUPT_BKPT;
817     return;
818   }
819   iPtrmap = PTRMAP_PAGENO(pBt, key);
820   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
821   if( rc!=SQLITE_OK ){
822     *pRC = rc;
823     return;
824   }
825   offset = PTRMAP_PTROFFSET(iPtrmap, key);
826   if( offset<0 ){
827     *pRC = SQLITE_CORRUPT_BKPT;
828     goto ptrmap_exit;
829   }
830   assert( offset <= (int)pBt->usableSize-5 );
831   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
832 
833   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
834     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
835     *pRC= rc = sqlite3PagerWrite(pDbPage);
836     if( rc==SQLITE_OK ){
837       pPtrmap[offset] = eType;
838       put4byte(&pPtrmap[offset+1], parent);
839     }
840   }
841 
842 ptrmap_exit:
843   sqlite3PagerUnref(pDbPage);
844 }
845 
846 /*
847 ** Read an entry from the pointer map.
848 **
849 ** This routine retrieves the pointer map entry for page 'key', writing
850 ** the type and parent page number to *pEType and *pPgno respectively.
851 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
852 */
853 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
854   DbPage *pDbPage;   /* The pointer map page */
855   int iPtrmap;       /* Pointer map page index */
856   u8 *pPtrmap;       /* Pointer map page data */
857   int offset;        /* Offset of entry in pointer map */
858   int rc;
859 
860   assert( sqlite3_mutex_held(pBt->mutex) );
861 
862   iPtrmap = PTRMAP_PAGENO(pBt, key);
863   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
864   if( rc!=0 ){
865     return rc;
866   }
867   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
868 
869   offset = PTRMAP_PTROFFSET(iPtrmap, key);
870   if( offset<0 ){
871     sqlite3PagerUnref(pDbPage);
872     return SQLITE_CORRUPT_BKPT;
873   }
874   assert( offset <= (int)pBt->usableSize-5 );
875   assert( pEType!=0 );
876   *pEType = pPtrmap[offset];
877   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
878 
879   sqlite3PagerUnref(pDbPage);
880   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
881   return SQLITE_OK;
882 }
883 
884 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
885   #define ptrmapPut(w,x,y,z,rc)
886   #define ptrmapGet(w,x,y,z) SQLITE_OK
887   #define ptrmapPutOvflPtr(x, y, rc)
888 #endif
889 
890 /*
891 ** Given a btree page and a cell index (0 means the first cell on
892 ** the page, 1 means the second cell, and so forth) return a pointer
893 ** to the cell content.
894 **
895 ** This routine works only for pages that do not contain overflow cells.
896 */
897 #define findCell(P,I) \
898   ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
899 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
900 
901 
902 /*
903 ** This a more complex version of findCell() that works for
904 ** pages that do contain overflow cells.
905 */
906 static u8 *findOverflowCell(MemPage *pPage, int iCell){
907   int i;
908   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
909   for(i=pPage->nOverflow-1; i>=0; i--){
910     int k;
911     k = pPage->aiOvfl[i];
912     if( k<=iCell ){
913       if( k==iCell ){
914         return pPage->apOvfl[i];
915       }
916       iCell--;
917     }
918   }
919   return findCell(pPage, iCell);
920 }
921 
922 /*
923 ** Parse a cell content block and fill in the CellInfo structure.  There
924 ** are two versions of this function.  btreeParseCell() takes a
925 ** cell index as the second argument and btreeParseCellPtr()
926 ** takes a pointer to the body of the cell as its second argument.
927 **
928 ** Within this file, the parseCell() macro can be called instead of
929 ** btreeParseCellPtr(). Using some compilers, this will be faster.
930 */
931 static void btreeParseCellPtr(
932   MemPage *pPage,         /* Page containing the cell */
933   u8 *pCell,              /* Pointer to the cell text. */
934   CellInfo *pInfo         /* Fill in this structure */
935 ){
936   u16 n;                  /* Number bytes in cell content header */
937   u32 nPayload;           /* Number of bytes of cell payload */
938 
939   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
940 
941   pInfo->pCell = pCell;
942   assert( pPage->leaf==0 || pPage->leaf==1 );
943   n = pPage->childPtrSize;
944   assert( n==4-4*pPage->leaf );
945   if( pPage->intKey ){
946     if( pPage->hasData ){
947       assert( n==0 );
948       n = getVarint32(pCell, nPayload);
949     }else{
950       nPayload = 0;
951     }
952     n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
953     pInfo->nData = nPayload;
954   }else{
955     pInfo->nData = 0;
956     n += getVarint32(&pCell[n], nPayload);
957     pInfo->nKey = nPayload;
958   }
959   pInfo->nPayload = nPayload;
960   pInfo->nHeader = n;
961   testcase( nPayload==pPage->maxLocal );
962   testcase( nPayload==pPage->maxLocal+1 );
963   if( likely(nPayload<=pPage->maxLocal) ){
964     /* This is the (easy) common case where the entire payload fits
965     ** on the local page.  No overflow is required.
966     */
967     if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
968     pInfo->nLocal = (u16)nPayload;
969     pInfo->iOverflow = 0;
970   }else{
971     /* If the payload will not fit completely on the local page, we have
972     ** to decide how much to store locally and how much to spill onto
973     ** overflow pages.  The strategy is to minimize the amount of unused
974     ** space on overflow pages while keeping the amount of local storage
975     ** in between minLocal and maxLocal.
976     **
977     ** Warning:  changing the way overflow payload is distributed in any
978     ** way will result in an incompatible file format.
979     */
980     int minLocal;  /* Minimum amount of payload held locally */
981     int maxLocal;  /* Maximum amount of payload held locally */
982     int surplus;   /* Overflow payload available for local storage */
983 
984     minLocal = pPage->minLocal;
985     maxLocal = pPage->maxLocal;
986     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
987     testcase( surplus==maxLocal );
988     testcase( surplus==maxLocal+1 );
989     if( surplus <= maxLocal ){
990       pInfo->nLocal = (u16)surplus;
991     }else{
992       pInfo->nLocal = (u16)minLocal;
993     }
994     pInfo->iOverflow = (u16)(pInfo->nLocal + n);
995     pInfo->nSize = pInfo->iOverflow + 4;
996   }
997 }
998 #define parseCell(pPage, iCell, pInfo) \
999   btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1000 static void btreeParseCell(
1001   MemPage *pPage,         /* Page containing the cell */
1002   int iCell,              /* The cell index.  First cell is 0 */
1003   CellInfo *pInfo         /* Fill in this structure */
1004 ){
1005   parseCell(pPage, iCell, pInfo);
1006 }
1007 
1008 /*
1009 ** Compute the total number of bytes that a Cell needs in the cell
1010 ** data area of the btree-page.  The return number includes the cell
1011 ** data header and the local payload, but not any overflow page or
1012 ** the space used by the cell pointer.
1013 */
1014 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1015   u8 *pIter = &pCell[pPage->childPtrSize];
1016   u32 nSize;
1017 
1018 #ifdef SQLITE_DEBUG
1019   /* The value returned by this function should always be the same as
1020   ** the (CellInfo.nSize) value found by doing a full parse of the
1021   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1022   ** this function verifies that this invariant is not violated. */
1023   CellInfo debuginfo;
1024   btreeParseCellPtr(pPage, pCell, &debuginfo);
1025 #endif
1026 
1027   if( pPage->intKey ){
1028     u8 *pEnd;
1029     if( pPage->hasData ){
1030       pIter += getVarint32(pIter, nSize);
1031     }else{
1032       nSize = 0;
1033     }
1034 
1035     /* pIter now points at the 64-bit integer key value, a variable length
1036     ** integer. The following block moves pIter to point at the first byte
1037     ** past the end of the key value. */
1038     pEnd = &pIter[9];
1039     while( (*pIter++)&0x80 && pIter<pEnd );
1040   }else{
1041     pIter += getVarint32(pIter, nSize);
1042   }
1043 
1044   testcase( nSize==pPage->maxLocal );
1045   testcase( nSize==pPage->maxLocal+1 );
1046   if( nSize>pPage->maxLocal ){
1047     int minLocal = pPage->minLocal;
1048     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1049     testcase( nSize==pPage->maxLocal );
1050     testcase( nSize==pPage->maxLocal+1 );
1051     if( nSize>pPage->maxLocal ){
1052       nSize = minLocal;
1053     }
1054     nSize += 4;
1055   }
1056   nSize += (u32)(pIter - pCell);
1057 
1058   /* The minimum size of any cell is 4 bytes. */
1059   if( nSize<4 ){
1060     nSize = 4;
1061   }
1062 
1063   assert( nSize==debuginfo.nSize );
1064   return (u16)nSize;
1065 }
1066 
1067 #ifdef SQLITE_DEBUG
1068 /* This variation on cellSizePtr() is used inside of assert() statements
1069 ** only. */
1070 static u16 cellSize(MemPage *pPage, int iCell){
1071   return cellSizePtr(pPage, findCell(pPage, iCell));
1072 }
1073 #endif
1074 
1075 #ifndef SQLITE_OMIT_AUTOVACUUM
1076 /*
1077 ** If the cell pCell, part of page pPage contains a pointer
1078 ** to an overflow page, insert an entry into the pointer-map
1079 ** for the overflow page.
1080 */
1081 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1082   CellInfo info;
1083   if( *pRC ) return;
1084   assert( pCell!=0 );
1085   btreeParseCellPtr(pPage, pCell, &info);
1086   assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
1087   if( info.iOverflow ){
1088     Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1089     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1090   }
1091 }
1092 #endif
1093 
1094 
1095 /*
1096 ** Defragment the page given.  All Cells are moved to the
1097 ** end of the page and all free space is collected into one
1098 ** big FreeBlk that occurs in between the header and cell
1099 ** pointer array and the cell content area.
1100 */
1101 static int defragmentPage(MemPage *pPage){
1102   int i;                     /* Loop counter */
1103   int pc;                    /* Address of a i-th cell */
1104   int hdr;                   /* Offset to the page header */
1105   int size;                  /* Size of a cell */
1106   int usableSize;            /* Number of usable bytes on a page */
1107   int cellOffset;            /* Offset to the cell pointer array */
1108   int cbrk;                  /* Offset to the cell content area */
1109   int nCell;                 /* Number of cells on the page */
1110   unsigned char *data;       /* The page data */
1111   unsigned char *temp;       /* Temp area for cell content */
1112   int iCellFirst;            /* First allowable cell index */
1113   int iCellLast;             /* Last possible cell index */
1114 
1115 
1116   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1117   assert( pPage->pBt!=0 );
1118   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1119   assert( pPage->nOverflow==0 );
1120   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1121   temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1122   data = pPage->aData;
1123   hdr = pPage->hdrOffset;
1124   cellOffset = pPage->cellOffset;
1125   nCell = pPage->nCell;
1126   assert( nCell==get2byte(&data[hdr+3]) );
1127   usableSize = pPage->pBt->usableSize;
1128   cbrk = get2byte(&data[hdr+5]);
1129   memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1130   cbrk = usableSize;
1131   iCellFirst = cellOffset + 2*nCell;
1132   iCellLast = usableSize - 4;
1133   for(i=0; i<nCell; i++){
1134     u8 *pAddr;     /* The i-th cell pointer */
1135     pAddr = &data[cellOffset + i*2];
1136     pc = get2byte(pAddr);
1137     testcase( pc==iCellFirst );
1138     testcase( pc==iCellLast );
1139 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1140     /* These conditions have already been verified in btreeInitPage()
1141     ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1142     */
1143     if( pc<iCellFirst || pc>iCellLast ){
1144       return SQLITE_CORRUPT_BKPT;
1145     }
1146 #endif
1147     assert( pc>=iCellFirst && pc<=iCellLast );
1148     size = cellSizePtr(pPage, &temp[pc]);
1149     cbrk -= size;
1150 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1151     if( cbrk<iCellFirst ){
1152       return SQLITE_CORRUPT_BKPT;
1153     }
1154 #else
1155     if( cbrk<iCellFirst || pc+size>usableSize ){
1156       return SQLITE_CORRUPT_BKPT;
1157     }
1158 #endif
1159     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1160     testcase( cbrk+size==usableSize );
1161     testcase( pc+size==usableSize );
1162     memcpy(&data[cbrk], &temp[pc], size);
1163     put2byte(pAddr, cbrk);
1164   }
1165   assert( cbrk>=iCellFirst );
1166   put2byte(&data[hdr+5], cbrk);
1167   data[hdr+1] = 0;
1168   data[hdr+2] = 0;
1169   data[hdr+7] = 0;
1170   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1171   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1172   if( cbrk-iCellFirst!=pPage->nFree ){
1173     return SQLITE_CORRUPT_BKPT;
1174   }
1175   return SQLITE_OK;
1176 }
1177 
1178 /*
1179 ** Allocate nByte bytes of space from within the B-Tree page passed
1180 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1181 ** of the first byte of allocated space. Return either SQLITE_OK or
1182 ** an error code (usually SQLITE_CORRUPT).
1183 **
1184 ** The caller guarantees that there is sufficient space to make the
1185 ** allocation.  This routine might need to defragment in order to bring
1186 ** all the space together, however.  This routine will avoid using
1187 ** the first two bytes past the cell pointer area since presumably this
1188 ** allocation is being made in order to insert a new cell, so we will
1189 ** also end up needing a new cell pointer.
1190 */
1191 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1192   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1193   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1194   int nFrag;                           /* Number of fragmented bytes on pPage */
1195   int top;                             /* First byte of cell content area */
1196   int gap;        /* First byte of gap between cell pointers and cell content */
1197   int rc;         /* Integer return code */
1198   int usableSize; /* Usable size of the page */
1199 
1200   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1201   assert( pPage->pBt );
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( nByte>=0 );  /* Minimum cell size is 4 */
1204   assert( pPage->nFree>=nByte );
1205   assert( pPage->nOverflow==0 );
1206   usableSize = pPage->pBt->usableSize;
1207   assert( nByte < usableSize-8 );
1208 
1209   nFrag = data[hdr+7];
1210   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1211   gap = pPage->cellOffset + 2*pPage->nCell;
1212   top = get2byteNotZero(&data[hdr+5]);
1213   if( gap>top ) return SQLITE_CORRUPT_BKPT;
1214   testcase( gap+2==top );
1215   testcase( gap+1==top );
1216   testcase( gap==top );
1217 
1218   if( nFrag>=60 ){
1219     /* Always defragment highly fragmented pages */
1220     rc = defragmentPage(pPage);
1221     if( rc ) return rc;
1222     top = get2byteNotZero(&data[hdr+5]);
1223   }else if( gap+2<=top ){
1224     /* Search the freelist looking for a free slot big enough to satisfy
1225     ** the request. The allocation is made from the first free slot in
1226     ** the list that is large enough to accommodate it.
1227     */
1228     int pc, addr;
1229     for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1230       int size;            /* Size of the free slot */
1231       if( pc>usableSize-4 || pc<addr+4 ){
1232         return SQLITE_CORRUPT_BKPT;
1233       }
1234       size = get2byte(&data[pc+2]);
1235       if( size>=nByte ){
1236         int x = size - nByte;
1237         testcase( x==4 );
1238         testcase( x==3 );
1239         if( x<4 ){
1240           /* Remove the slot from the free-list. Update the number of
1241           ** fragmented bytes within the page. */
1242           memcpy(&data[addr], &data[pc], 2);
1243           data[hdr+7] = (u8)(nFrag + x);
1244         }else if( size+pc > usableSize ){
1245           return SQLITE_CORRUPT_BKPT;
1246         }else{
1247           /* The slot remains on the free-list. Reduce its size to account
1248           ** for the portion used by the new allocation. */
1249           put2byte(&data[pc+2], x);
1250         }
1251         *pIdx = pc + x;
1252         return SQLITE_OK;
1253       }
1254     }
1255   }
1256 
1257   /* Check to make sure there is enough space in the gap to satisfy
1258   ** the allocation.  If not, defragment.
1259   */
1260   testcase( gap+2+nByte==top );
1261   if( gap+2+nByte>top ){
1262     rc = defragmentPage(pPage);
1263     if( rc ) return rc;
1264     top = get2byteNotZero(&data[hdr+5]);
1265     assert( gap+nByte<=top );
1266   }
1267 
1268 
1269   /* Allocate memory from the gap in between the cell pointer array
1270   ** and the cell content area.  The btreeInitPage() call has already
1271   ** validated the freelist.  Given that the freelist is valid, there
1272   ** is no way that the allocation can extend off the end of the page.
1273   ** The assert() below verifies the previous sentence.
1274   */
1275   top -= nByte;
1276   put2byte(&data[hdr+5], top);
1277   assert( top+nByte <= (int)pPage->pBt->usableSize );
1278   *pIdx = top;
1279   return SQLITE_OK;
1280 }
1281 
1282 /*
1283 ** Return a section of the pPage->aData to the freelist.
1284 ** The first byte of the new free block is pPage->aDisk[start]
1285 ** and the size of the block is "size" bytes.
1286 **
1287 ** Most of the effort here is involved in coalesing adjacent
1288 ** free blocks into a single big free block.
1289 */
1290 static int freeSpace(MemPage *pPage, int start, int size){
1291   int addr, pbegin, hdr;
1292   int iLast;                        /* Largest possible freeblock offset */
1293   unsigned char *data = pPage->aData;
1294 
1295   assert( pPage->pBt!=0 );
1296   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1297   assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
1298   assert( (start + size) <= (int)pPage->pBt->usableSize );
1299   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1300   assert( size>=0 );   /* Minimum cell size is 4 */
1301 
1302   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1303     /* Overwrite deleted information with zeros when the secure_delete
1304     ** option is enabled */
1305     memset(&data[start], 0, size);
1306   }
1307 
1308   /* Add the space back into the linked list of freeblocks.  Note that
1309   ** even though the freeblock list was checked by btreeInitPage(),
1310   ** btreeInitPage() did not detect overlapping cells or
1311   ** freeblocks that overlapped cells.   Nor does it detect when the
1312   ** cell content area exceeds the value in the page header.  If these
1313   ** situations arise, then subsequent insert operations might corrupt
1314   ** the freelist.  So we do need to check for corruption while scanning
1315   ** the freelist.
1316   */
1317   hdr = pPage->hdrOffset;
1318   addr = hdr + 1;
1319   iLast = pPage->pBt->usableSize - 4;
1320   assert( start<=iLast );
1321   while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
1322     if( pbegin<addr+4 ){
1323       return SQLITE_CORRUPT_BKPT;
1324     }
1325     addr = pbegin;
1326   }
1327   if( pbegin>iLast ){
1328     return SQLITE_CORRUPT_BKPT;
1329   }
1330   assert( pbegin>addr || pbegin==0 );
1331   put2byte(&data[addr], start);
1332   put2byte(&data[start], pbegin);
1333   put2byte(&data[start+2], size);
1334   pPage->nFree = pPage->nFree + (u16)size;
1335 
1336   /* Coalesce adjacent free blocks */
1337   addr = hdr + 1;
1338   while( (pbegin = get2byte(&data[addr]))>0 ){
1339     int pnext, psize, x;
1340     assert( pbegin>addr );
1341     assert( pbegin <= (int)pPage->pBt->usableSize-4 );
1342     pnext = get2byte(&data[pbegin]);
1343     psize = get2byte(&data[pbegin+2]);
1344     if( pbegin + psize + 3 >= pnext && pnext>0 ){
1345       int frag = pnext - (pbegin+psize);
1346       if( (frag<0) || (frag>(int)data[hdr+7]) ){
1347         return SQLITE_CORRUPT_BKPT;
1348       }
1349       data[hdr+7] -= (u8)frag;
1350       x = get2byte(&data[pnext]);
1351       put2byte(&data[pbegin], x);
1352       x = pnext + get2byte(&data[pnext+2]) - pbegin;
1353       put2byte(&data[pbegin+2], x);
1354     }else{
1355       addr = pbegin;
1356     }
1357   }
1358 
1359   /* If the cell content area begins with a freeblock, remove it. */
1360   if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1361     int top;
1362     pbegin = get2byte(&data[hdr+1]);
1363     memcpy(&data[hdr+1], &data[pbegin], 2);
1364     top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1365     put2byte(&data[hdr+5], top);
1366   }
1367   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1368   return SQLITE_OK;
1369 }
1370 
1371 /*
1372 ** Decode the flags byte (the first byte of the header) for a page
1373 ** and initialize fields of the MemPage structure accordingly.
1374 **
1375 ** Only the following combinations are supported.  Anything different
1376 ** indicates a corrupt database files:
1377 **
1378 **         PTF_ZERODATA
1379 **         PTF_ZERODATA | PTF_LEAF
1380 **         PTF_LEAFDATA | PTF_INTKEY
1381 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1382 */
1383 static int decodeFlags(MemPage *pPage, int flagByte){
1384   BtShared *pBt;     /* A copy of pPage->pBt */
1385 
1386   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1387   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1388   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1389   flagByte &= ~PTF_LEAF;
1390   pPage->childPtrSize = 4-4*pPage->leaf;
1391   pBt = pPage->pBt;
1392   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1393     pPage->intKey = 1;
1394     pPage->hasData = pPage->leaf;
1395     pPage->maxLocal = pBt->maxLeaf;
1396     pPage->minLocal = pBt->minLeaf;
1397   }else if( flagByte==PTF_ZERODATA ){
1398     pPage->intKey = 0;
1399     pPage->hasData = 0;
1400     pPage->maxLocal = pBt->maxLocal;
1401     pPage->minLocal = pBt->minLocal;
1402   }else{
1403     return SQLITE_CORRUPT_BKPT;
1404   }
1405   pPage->max1bytePayload = pBt->max1bytePayload;
1406   return SQLITE_OK;
1407 }
1408 
1409 /*
1410 ** Initialize the auxiliary information for a disk block.
1411 **
1412 ** Return SQLITE_OK on success.  If we see that the page does
1413 ** not contain a well-formed database page, then return
1414 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1415 ** guarantee that the page is well-formed.  It only shows that
1416 ** we failed to detect any corruption.
1417 */
1418 static int btreeInitPage(MemPage *pPage){
1419 
1420   assert( pPage->pBt!=0 );
1421   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1422   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1423   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1424   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1425 
1426   if( !pPage->isInit ){
1427     u16 pc;            /* Address of a freeblock within pPage->aData[] */
1428     u8 hdr;            /* Offset to beginning of page header */
1429     u8 *data;          /* Equal to pPage->aData */
1430     BtShared *pBt;        /* The main btree structure */
1431     int usableSize;    /* Amount of usable space on each page */
1432     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1433     int nFree;         /* Number of unused bytes on the page */
1434     int top;           /* First byte of the cell content area */
1435     int iCellFirst;    /* First allowable cell or freeblock offset */
1436     int iCellLast;     /* Last possible cell or freeblock offset */
1437 
1438     pBt = pPage->pBt;
1439 
1440     hdr = pPage->hdrOffset;
1441     data = pPage->aData;
1442     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1443     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1444     pPage->maskPage = (u16)(pBt->pageSize - 1);
1445     pPage->nOverflow = 0;
1446     usableSize = pBt->usableSize;
1447     pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1448     pPage->aDataEnd = &data[usableSize];
1449     pPage->aCellIdx = &data[cellOffset];
1450     top = get2byteNotZero(&data[hdr+5]);
1451     pPage->nCell = get2byte(&data[hdr+3]);
1452     if( pPage->nCell>MX_CELL(pBt) ){
1453       /* To many cells for a single page.  The page must be corrupt */
1454       return SQLITE_CORRUPT_BKPT;
1455     }
1456     testcase( pPage->nCell==MX_CELL(pBt) );
1457 
1458     /* A malformed database page might cause us to read past the end
1459     ** of page when parsing a cell.
1460     **
1461     ** The following block of code checks early to see if a cell extends
1462     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1463     ** returned if it does.
1464     */
1465     iCellFirst = cellOffset + 2*pPage->nCell;
1466     iCellLast = usableSize - 4;
1467 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1468     {
1469       int i;            /* Index into the cell pointer array */
1470       int sz;           /* Size of a cell */
1471 
1472       if( !pPage->leaf ) iCellLast--;
1473       for(i=0; i<pPage->nCell; i++){
1474         pc = get2byte(&data[cellOffset+i*2]);
1475         testcase( pc==iCellFirst );
1476         testcase( pc==iCellLast );
1477         if( pc<iCellFirst || pc>iCellLast ){
1478           return SQLITE_CORRUPT_BKPT;
1479         }
1480         sz = cellSizePtr(pPage, &data[pc]);
1481         testcase( pc+sz==usableSize );
1482         if( pc+sz>usableSize ){
1483           return SQLITE_CORRUPT_BKPT;
1484         }
1485       }
1486       if( !pPage->leaf ) iCellLast++;
1487     }
1488 #endif
1489 
1490     /* Compute the total free space on the page */
1491     pc = get2byte(&data[hdr+1]);
1492     nFree = data[hdr+7] + top;
1493     while( pc>0 ){
1494       u16 next, size;
1495       if( pc<iCellFirst || pc>iCellLast ){
1496         /* Start of free block is off the page */
1497         return SQLITE_CORRUPT_BKPT;
1498       }
1499       next = get2byte(&data[pc]);
1500       size = get2byte(&data[pc+2]);
1501       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1502         /* Free blocks must be in ascending order. And the last byte of
1503         ** the free-block must lie on the database page.  */
1504         return SQLITE_CORRUPT_BKPT;
1505       }
1506       nFree = nFree + size;
1507       pc = next;
1508     }
1509 
1510     /* At this point, nFree contains the sum of the offset to the start
1511     ** of the cell-content area plus the number of free bytes within
1512     ** the cell-content area. If this is greater than the usable-size
1513     ** of the page, then the page must be corrupted. This check also
1514     ** serves to verify that the offset to the start of the cell-content
1515     ** area, according to the page header, lies within the page.
1516     */
1517     if( nFree>usableSize ){
1518       return SQLITE_CORRUPT_BKPT;
1519     }
1520     pPage->nFree = (u16)(nFree - iCellFirst);
1521     pPage->isInit = 1;
1522   }
1523   return SQLITE_OK;
1524 }
1525 
1526 /*
1527 ** Set up a raw page so that it looks like a database page holding
1528 ** no entries.
1529 */
1530 static void zeroPage(MemPage *pPage, int flags){
1531   unsigned char *data = pPage->aData;
1532   BtShared *pBt = pPage->pBt;
1533   u8 hdr = pPage->hdrOffset;
1534   u16 first;
1535 
1536   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1537   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1538   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1539   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1540   assert( sqlite3_mutex_held(pBt->mutex) );
1541   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1542     memset(&data[hdr], 0, pBt->usableSize - hdr);
1543   }
1544   data[hdr] = (char)flags;
1545   first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
1546   memset(&data[hdr+1], 0, 4);
1547   data[hdr+7] = 0;
1548   put2byte(&data[hdr+5], pBt->usableSize);
1549   pPage->nFree = (u16)(pBt->usableSize - first);
1550   decodeFlags(pPage, flags);
1551   pPage->hdrOffset = hdr;
1552   pPage->cellOffset = first;
1553   pPage->aDataEnd = &data[pBt->usableSize];
1554   pPage->aCellIdx = &data[first];
1555   pPage->nOverflow = 0;
1556   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1557   pPage->maskPage = (u16)(pBt->pageSize - 1);
1558   pPage->nCell = 0;
1559   pPage->isInit = 1;
1560 }
1561 
1562 
1563 /*
1564 ** Convert a DbPage obtained from the pager into a MemPage used by
1565 ** the btree layer.
1566 */
1567 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1568   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1569   pPage->aData = sqlite3PagerGetData(pDbPage);
1570   pPage->pDbPage = pDbPage;
1571   pPage->pBt = pBt;
1572   pPage->pgno = pgno;
1573   pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1574   return pPage;
1575 }
1576 
1577 /*
1578 ** Get a page from the pager.  Initialize the MemPage.pBt and
1579 ** MemPage.aData elements if needed.
1580 **
1581 ** If the noContent flag is set, it means that we do not care about
1582 ** the content of the page at this time.  So do not go to the disk
1583 ** to fetch the content.  Just fill in the content with zeros for now.
1584 ** If in the future we call sqlite3PagerWrite() on this page, that
1585 ** means we have started to be concerned about content and the disk
1586 ** read should occur at that point.
1587 */
1588 static int btreeGetPage(
1589   BtShared *pBt,       /* The btree */
1590   Pgno pgno,           /* Number of the page to fetch */
1591   MemPage **ppPage,    /* Return the page in this parameter */
1592   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1593 ){
1594   int rc;
1595   DbPage *pDbPage;
1596 
1597   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1598   assert( sqlite3_mutex_held(pBt->mutex) );
1599   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1600   if( rc ) return rc;
1601   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1602   return SQLITE_OK;
1603 }
1604 
1605 /*
1606 ** Retrieve a page from the pager cache. If the requested page is not
1607 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1608 ** MemPage.aData elements if needed.
1609 */
1610 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1611   DbPage *pDbPage;
1612   assert( sqlite3_mutex_held(pBt->mutex) );
1613   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1614   if( pDbPage ){
1615     return btreePageFromDbPage(pDbPage, pgno, pBt);
1616   }
1617   return 0;
1618 }
1619 
1620 /*
1621 ** Return the size of the database file in pages. If there is any kind of
1622 ** error, return ((unsigned int)-1).
1623 */
1624 static Pgno btreePagecount(BtShared *pBt){
1625   return pBt->nPage;
1626 }
1627 u32 sqlite3BtreeLastPage(Btree *p){
1628   assert( sqlite3BtreeHoldsMutex(p) );
1629   assert( ((p->pBt->nPage)&0x8000000)==0 );
1630   return (int)btreePagecount(p->pBt);
1631 }
1632 
1633 /*
1634 ** Get a page from the pager and initialize it.  This routine is just a
1635 ** convenience wrapper around separate calls to btreeGetPage() and
1636 ** btreeInitPage().
1637 **
1638 ** If an error occurs, then the value *ppPage is set to is undefined. It
1639 ** may remain unchanged, or it may be set to an invalid value.
1640 */
1641 static int getAndInitPage(
1642   BtShared *pBt,                  /* The database file */
1643   Pgno pgno,                      /* Number of the page to get */
1644   MemPage **ppPage,               /* Write the page pointer here */
1645   int bReadonly                   /* PAGER_GET_READONLY or 0 */
1646 ){
1647   int rc;
1648   assert( sqlite3_mutex_held(pBt->mutex) );
1649   assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
1650 
1651   if( pgno>btreePagecount(pBt) ){
1652     rc = SQLITE_CORRUPT_BKPT;
1653   }else{
1654     rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
1655     if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
1656       rc = btreeInitPage(*ppPage);
1657       if( rc!=SQLITE_OK ){
1658         releasePage(*ppPage);
1659       }
1660     }
1661   }
1662 
1663   testcase( pgno==0 );
1664   assert( pgno!=0 || rc==SQLITE_CORRUPT );
1665   return rc;
1666 }
1667 
1668 /*
1669 ** Release a MemPage.  This should be called once for each prior
1670 ** call to btreeGetPage.
1671 */
1672 static void releasePage(MemPage *pPage){
1673   if( pPage ){
1674     assert( pPage->aData );
1675     assert( pPage->pBt );
1676     assert( pPage->pDbPage!=0 );
1677     assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1678     assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
1679     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1680     sqlite3PagerUnrefNotNull(pPage->pDbPage);
1681   }
1682 }
1683 
1684 /*
1685 ** During a rollback, when the pager reloads information into the cache
1686 ** so that the cache is restored to its original state at the start of
1687 ** the transaction, for each page restored this routine is called.
1688 **
1689 ** This routine needs to reset the extra data section at the end of the
1690 ** page to agree with the restored data.
1691 */
1692 static void pageReinit(DbPage *pData){
1693   MemPage *pPage;
1694   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
1695   assert( sqlite3PagerPageRefcount(pData)>0 );
1696   if( pPage->isInit ){
1697     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1698     pPage->isInit = 0;
1699     if( sqlite3PagerPageRefcount(pData)>1 ){
1700       /* pPage might not be a btree page;  it might be an overflow page
1701       ** or ptrmap page or a free page.  In those cases, the following
1702       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
1703       ** But no harm is done by this.  And it is very important that
1704       ** btreeInitPage() be called on every btree page so we make
1705       ** the call for every page that comes in for re-initing. */
1706       btreeInitPage(pPage);
1707     }
1708   }
1709 }
1710 
1711 /*
1712 ** Invoke the busy handler for a btree.
1713 */
1714 static int btreeInvokeBusyHandler(void *pArg){
1715   BtShared *pBt = (BtShared*)pArg;
1716   assert( pBt->db );
1717   assert( sqlite3_mutex_held(pBt->db->mutex) );
1718   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1719 }
1720 
1721 /*
1722 ** Open a database file.
1723 **
1724 ** zFilename is the name of the database file.  If zFilename is NULL
1725 ** then an ephemeral database is created.  The ephemeral database might
1726 ** be exclusively in memory, or it might use a disk-based memory cache.
1727 ** Either way, the ephemeral database will be automatically deleted
1728 ** when sqlite3BtreeClose() is called.
1729 **
1730 ** If zFilename is ":memory:" then an in-memory database is created
1731 ** that is automatically destroyed when it is closed.
1732 **
1733 ** The "flags" parameter is a bitmask that might contain bits like
1734 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
1735 **
1736 ** If the database is already opened in the same database connection
1737 ** and we are in shared cache mode, then the open will fail with an
1738 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
1739 ** objects in the same database connection since doing so will lead
1740 ** to problems with locking.
1741 */
1742 int sqlite3BtreeOpen(
1743   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
1744   const char *zFilename,  /* Name of the file containing the BTree database */
1745   sqlite3 *db,            /* Associated database handle */
1746   Btree **ppBtree,        /* Pointer to new Btree object written here */
1747   int flags,              /* Options */
1748   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
1749 ){
1750   BtShared *pBt = 0;             /* Shared part of btree structure */
1751   Btree *p;                      /* Handle to return */
1752   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
1753   int rc = SQLITE_OK;            /* Result code from this function */
1754   u8 nReserve;                   /* Byte of unused space on each page */
1755   unsigned char zDbHeader[100];  /* Database header content */
1756 
1757   /* True if opening an ephemeral, temporary database */
1758   const int isTempDb = zFilename==0 || zFilename[0]==0;
1759 
1760   /* Set the variable isMemdb to true for an in-memory database, or
1761   ** false for a file-based database.
1762   */
1763 #ifdef SQLITE_OMIT_MEMORYDB
1764   const int isMemdb = 0;
1765 #else
1766   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1767                        || (isTempDb && sqlite3TempInMemory(db))
1768                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
1769 #endif
1770 
1771   assert( db!=0 );
1772   assert( pVfs!=0 );
1773   assert( sqlite3_mutex_held(db->mutex) );
1774   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
1775 
1776   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1777   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1778 
1779   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1780   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
1781 
1782   if( isMemdb ){
1783     flags |= BTREE_MEMORY;
1784   }
1785   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1786     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1787   }
1788   p = sqlite3MallocZero(sizeof(Btree));
1789   if( !p ){
1790     return SQLITE_NOMEM;
1791   }
1792   p->inTrans = TRANS_NONE;
1793   p->db = db;
1794 #ifndef SQLITE_OMIT_SHARED_CACHE
1795   p->lock.pBtree = p;
1796   p->lock.iTable = 1;
1797 #endif
1798 
1799 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1800   /*
1801   ** If this Btree is a candidate for shared cache, try to find an
1802   ** existing BtShared object that we can share with
1803   */
1804   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
1805     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
1806       int nFullPathname = pVfs->mxPathname+1;
1807       char *zFullPathname = sqlite3Malloc(nFullPathname);
1808       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1809       p->sharable = 1;
1810       if( !zFullPathname ){
1811         sqlite3_free(p);
1812         return SQLITE_NOMEM;
1813       }
1814       if( isMemdb ){
1815         memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1816       }else{
1817         rc = sqlite3OsFullPathname(pVfs, zFilename,
1818                                    nFullPathname, zFullPathname);
1819         if( rc ){
1820           sqlite3_free(zFullPathname);
1821           sqlite3_free(p);
1822           return rc;
1823         }
1824       }
1825 #if SQLITE_THREADSAFE
1826       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1827       sqlite3_mutex_enter(mutexOpen);
1828       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
1829       sqlite3_mutex_enter(mutexShared);
1830 #endif
1831       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
1832         assert( pBt->nRef>0 );
1833         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
1834                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
1835           int iDb;
1836           for(iDb=db->nDb-1; iDb>=0; iDb--){
1837             Btree *pExisting = db->aDb[iDb].pBt;
1838             if( pExisting && pExisting->pBt==pBt ){
1839               sqlite3_mutex_leave(mutexShared);
1840               sqlite3_mutex_leave(mutexOpen);
1841               sqlite3_free(zFullPathname);
1842               sqlite3_free(p);
1843               return SQLITE_CONSTRAINT;
1844             }
1845           }
1846           p->pBt = pBt;
1847           pBt->nRef++;
1848           break;
1849         }
1850       }
1851       sqlite3_mutex_leave(mutexShared);
1852       sqlite3_free(zFullPathname);
1853     }
1854 #ifdef SQLITE_DEBUG
1855     else{
1856       /* In debug mode, we mark all persistent databases as sharable
1857       ** even when they are not.  This exercises the locking code and
1858       ** gives more opportunity for asserts(sqlite3_mutex_held())
1859       ** statements to find locking problems.
1860       */
1861       p->sharable = 1;
1862     }
1863 #endif
1864   }
1865 #endif
1866   if( pBt==0 ){
1867     /*
1868     ** The following asserts make sure that structures used by the btree are
1869     ** the right size.  This is to guard against size changes that result
1870     ** when compiling on a different architecture.
1871     */
1872     assert( sizeof(i64)==8 || sizeof(i64)==4 );
1873     assert( sizeof(u64)==8 || sizeof(u64)==4 );
1874     assert( sizeof(u32)==4 );
1875     assert( sizeof(u16)==2 );
1876     assert( sizeof(Pgno)==4 );
1877 
1878     pBt = sqlite3MallocZero( sizeof(*pBt) );
1879     if( pBt==0 ){
1880       rc = SQLITE_NOMEM;
1881       goto btree_open_out;
1882     }
1883     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
1884                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
1885     if( rc==SQLITE_OK ){
1886       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
1887       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1888     }
1889     if( rc!=SQLITE_OK ){
1890       goto btree_open_out;
1891     }
1892     pBt->openFlags = (u8)flags;
1893     pBt->db = db;
1894     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
1895     p->pBt = pBt;
1896 
1897     pBt->pCursor = 0;
1898     pBt->pPage1 = 0;
1899     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
1900 #ifdef SQLITE_SECURE_DELETE
1901     pBt->btsFlags |= BTS_SECURE_DELETE;
1902 #endif
1903     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
1904     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1905          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
1906       pBt->pageSize = 0;
1907 #ifndef SQLITE_OMIT_AUTOVACUUM
1908       /* If the magic name ":memory:" will create an in-memory database, then
1909       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1910       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1911       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1912       ** regular file-name. In this case the auto-vacuum applies as per normal.
1913       */
1914       if( zFilename && !isMemdb ){
1915         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1916         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1917       }
1918 #endif
1919       nReserve = 0;
1920     }else{
1921       nReserve = zDbHeader[20];
1922       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
1923 #ifndef SQLITE_OMIT_AUTOVACUUM
1924       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1925       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1926 #endif
1927     }
1928     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
1929     if( rc ) goto btree_open_out;
1930     pBt->usableSize = pBt->pageSize - nReserve;
1931     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
1932 
1933 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1934     /* Add the new BtShared object to the linked list sharable BtShareds.
1935     */
1936     if( p->sharable ){
1937       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1938       pBt->nRef = 1;
1939       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
1940       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
1941         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
1942         if( pBt->mutex==0 ){
1943           rc = SQLITE_NOMEM;
1944           db->mallocFailed = 0;
1945           goto btree_open_out;
1946         }
1947       }
1948       sqlite3_mutex_enter(mutexShared);
1949       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1950       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
1951       sqlite3_mutex_leave(mutexShared);
1952     }
1953 #endif
1954   }
1955 
1956 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1957   /* If the new Btree uses a sharable pBtShared, then link the new
1958   ** Btree into the list of all sharable Btrees for the same connection.
1959   ** The list is kept in ascending order by pBt address.
1960   */
1961   if( p->sharable ){
1962     int i;
1963     Btree *pSib;
1964     for(i=0; i<db->nDb; i++){
1965       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
1966         while( pSib->pPrev ){ pSib = pSib->pPrev; }
1967         if( p->pBt<pSib->pBt ){
1968           p->pNext = pSib;
1969           p->pPrev = 0;
1970           pSib->pPrev = p;
1971         }else{
1972           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
1973             pSib = pSib->pNext;
1974           }
1975           p->pNext = pSib->pNext;
1976           p->pPrev = pSib;
1977           if( p->pNext ){
1978             p->pNext->pPrev = p;
1979           }
1980           pSib->pNext = p;
1981         }
1982         break;
1983       }
1984     }
1985   }
1986 #endif
1987   *ppBtree = p;
1988 
1989 btree_open_out:
1990   if( rc!=SQLITE_OK ){
1991     if( pBt && pBt->pPager ){
1992       sqlite3PagerClose(pBt->pPager);
1993     }
1994     sqlite3_free(pBt);
1995     sqlite3_free(p);
1996     *ppBtree = 0;
1997   }else{
1998     /* If the B-Tree was successfully opened, set the pager-cache size to the
1999     ** default value. Except, when opening on an existing shared pager-cache,
2000     ** do not change the pager-cache size.
2001     */
2002     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2003       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2004     }
2005   }
2006   if( mutexOpen ){
2007     assert( sqlite3_mutex_held(mutexOpen) );
2008     sqlite3_mutex_leave(mutexOpen);
2009   }
2010   return rc;
2011 }
2012 
2013 /*
2014 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2015 ** remove the BtShared structure from the sharing list.  Return
2016 ** true if the BtShared.nRef counter reaches zero and return
2017 ** false if it is still positive.
2018 */
2019 static int removeFromSharingList(BtShared *pBt){
2020 #ifndef SQLITE_OMIT_SHARED_CACHE
2021   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2022   BtShared *pList;
2023   int removed = 0;
2024 
2025   assert( sqlite3_mutex_notheld(pBt->mutex) );
2026   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2027   sqlite3_mutex_enter(pMaster);
2028   pBt->nRef--;
2029   if( pBt->nRef<=0 ){
2030     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2031       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2032     }else{
2033       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2034       while( ALWAYS(pList) && pList->pNext!=pBt ){
2035         pList=pList->pNext;
2036       }
2037       if( ALWAYS(pList) ){
2038         pList->pNext = pBt->pNext;
2039       }
2040     }
2041     if( SQLITE_THREADSAFE ){
2042       sqlite3_mutex_free(pBt->mutex);
2043     }
2044     removed = 1;
2045   }
2046   sqlite3_mutex_leave(pMaster);
2047   return removed;
2048 #else
2049   return 1;
2050 #endif
2051 }
2052 
2053 /*
2054 ** Make sure pBt->pTmpSpace points to an allocation of
2055 ** MX_CELL_SIZE(pBt) bytes.
2056 */
2057 static void allocateTempSpace(BtShared *pBt){
2058   if( !pBt->pTmpSpace ){
2059     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2060 
2061     /* One of the uses of pBt->pTmpSpace is to format cells before
2062     ** inserting them into a leaf page (function fillInCell()). If
2063     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2064     ** by the various routines that manipulate binary cells. Which
2065     ** can mean that fillInCell() only initializes the first 2 or 3
2066     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2067     ** it into a database page. This is not actually a problem, but it
2068     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2069     ** data is passed to system call write(). So to avoid this error,
2070     ** zero the first 4 bytes of temp space here.  */
2071     if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
2072   }
2073 }
2074 
2075 /*
2076 ** Free the pBt->pTmpSpace allocation
2077 */
2078 static void freeTempSpace(BtShared *pBt){
2079   sqlite3PageFree( pBt->pTmpSpace);
2080   pBt->pTmpSpace = 0;
2081 }
2082 
2083 /*
2084 ** Close an open database and invalidate all cursors.
2085 */
2086 int sqlite3BtreeClose(Btree *p){
2087   BtShared *pBt = p->pBt;
2088   BtCursor *pCur;
2089 
2090   /* Close all cursors opened via this handle.  */
2091   assert( sqlite3_mutex_held(p->db->mutex) );
2092   sqlite3BtreeEnter(p);
2093   pCur = pBt->pCursor;
2094   while( pCur ){
2095     BtCursor *pTmp = pCur;
2096     pCur = pCur->pNext;
2097     if( pTmp->pBtree==p ){
2098       sqlite3BtreeCloseCursor(pTmp);
2099     }
2100   }
2101 
2102   /* Rollback any active transaction and free the handle structure.
2103   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2104   ** this handle.
2105   */
2106   sqlite3BtreeRollback(p, SQLITE_OK);
2107   sqlite3BtreeLeave(p);
2108 
2109   /* If there are still other outstanding references to the shared-btree
2110   ** structure, return now. The remainder of this procedure cleans
2111   ** up the shared-btree.
2112   */
2113   assert( p->wantToLock==0 && p->locked==0 );
2114   if( !p->sharable || removeFromSharingList(pBt) ){
2115     /* The pBt is no longer on the sharing list, so we can access
2116     ** it without having to hold the mutex.
2117     **
2118     ** Clean out and delete the BtShared object.
2119     */
2120     assert( !pBt->pCursor );
2121     sqlite3PagerClose(pBt->pPager);
2122     if( pBt->xFreeSchema && pBt->pSchema ){
2123       pBt->xFreeSchema(pBt->pSchema);
2124     }
2125     sqlite3DbFree(0, pBt->pSchema);
2126     freeTempSpace(pBt);
2127     sqlite3_free(pBt);
2128   }
2129 
2130 #ifndef SQLITE_OMIT_SHARED_CACHE
2131   assert( p->wantToLock==0 );
2132   assert( p->locked==0 );
2133   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2134   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2135 #endif
2136 
2137   sqlite3_free(p);
2138   return SQLITE_OK;
2139 }
2140 
2141 /*
2142 ** Change the limit on the number of pages allowed in the cache.
2143 **
2144 ** The maximum number of cache pages is set to the absolute
2145 ** value of mxPage.  If mxPage is negative, the pager will
2146 ** operate asynchronously - it will not stop to do fsync()s
2147 ** to insure data is written to the disk surface before
2148 ** continuing.  Transactions still work if synchronous is off,
2149 ** and the database cannot be corrupted if this program
2150 ** crashes.  But if the operating system crashes or there is
2151 ** an abrupt power failure when synchronous is off, the database
2152 ** could be left in an inconsistent and unrecoverable state.
2153 ** Synchronous is on by default so database corruption is not
2154 ** normally a worry.
2155 */
2156 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2157   BtShared *pBt = p->pBt;
2158   assert( sqlite3_mutex_held(p->db->mutex) );
2159   sqlite3BtreeEnter(p);
2160   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2161   sqlite3BtreeLeave(p);
2162   return SQLITE_OK;
2163 }
2164 
2165 /*
2166 ** Change the limit on the amount of the database file that may be
2167 ** memory mapped.
2168 */
2169 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2170   BtShared *pBt = p->pBt;
2171   assert( sqlite3_mutex_held(p->db->mutex) );
2172   sqlite3BtreeEnter(p);
2173   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2174   sqlite3BtreeLeave(p);
2175   return SQLITE_OK;
2176 }
2177 
2178 /*
2179 ** Change the way data is synced to disk in order to increase or decrease
2180 ** how well the database resists damage due to OS crashes and power
2181 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2182 ** there is a high probability of damage)  Level 2 is the default.  There
2183 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2184 ** probability of damage to near zero but with a write performance reduction.
2185 */
2186 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2187 int sqlite3BtreeSetPagerFlags(
2188   Btree *p,              /* The btree to set the safety level on */
2189   unsigned pgFlags       /* Various PAGER_* flags */
2190 ){
2191   BtShared *pBt = p->pBt;
2192   assert( sqlite3_mutex_held(p->db->mutex) );
2193   sqlite3BtreeEnter(p);
2194   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2195   sqlite3BtreeLeave(p);
2196   return SQLITE_OK;
2197 }
2198 #endif
2199 
2200 /*
2201 ** Return TRUE if the given btree is set to safety level 1.  In other
2202 ** words, return TRUE if no sync() occurs on the disk files.
2203 */
2204 int sqlite3BtreeSyncDisabled(Btree *p){
2205   BtShared *pBt = p->pBt;
2206   int rc;
2207   assert( sqlite3_mutex_held(p->db->mutex) );
2208   sqlite3BtreeEnter(p);
2209   assert( pBt && pBt->pPager );
2210   rc = sqlite3PagerNosync(pBt->pPager);
2211   sqlite3BtreeLeave(p);
2212   return rc;
2213 }
2214 
2215 /*
2216 ** Change the default pages size and the number of reserved bytes per page.
2217 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2218 ** without changing anything.
2219 **
2220 ** The page size must be a power of 2 between 512 and 65536.  If the page
2221 ** size supplied does not meet this constraint then the page size is not
2222 ** changed.
2223 **
2224 ** Page sizes are constrained to be a power of two so that the region
2225 ** of the database file used for locking (beginning at PENDING_BYTE,
2226 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2227 ** at the beginning of a page.
2228 **
2229 ** If parameter nReserve is less than zero, then the number of reserved
2230 ** bytes per page is left unchanged.
2231 **
2232 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2233 ** and autovacuum mode can no longer be changed.
2234 */
2235 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2236   int rc = SQLITE_OK;
2237   BtShared *pBt = p->pBt;
2238   assert( nReserve>=-1 && nReserve<=255 );
2239   sqlite3BtreeEnter(p);
2240   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2241     sqlite3BtreeLeave(p);
2242     return SQLITE_READONLY;
2243   }
2244   if( nReserve<0 ){
2245     nReserve = pBt->pageSize - pBt->usableSize;
2246   }
2247   assert( nReserve>=0 && nReserve<=255 );
2248   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2249         ((pageSize-1)&pageSize)==0 ){
2250     assert( (pageSize & 7)==0 );
2251     assert( !pBt->pPage1 && !pBt->pCursor );
2252     pBt->pageSize = (u32)pageSize;
2253     freeTempSpace(pBt);
2254   }
2255   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2256   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2257   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2258   sqlite3BtreeLeave(p);
2259   return rc;
2260 }
2261 
2262 /*
2263 ** Return the currently defined page size
2264 */
2265 int sqlite3BtreeGetPageSize(Btree *p){
2266   return p->pBt->pageSize;
2267 }
2268 
2269 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
2270 /*
2271 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2272 ** may only be called if it is guaranteed that the b-tree mutex is already
2273 ** held.
2274 **
2275 ** This is useful in one special case in the backup API code where it is
2276 ** known that the shared b-tree mutex is held, but the mutex on the
2277 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2278 ** were to be called, it might collide with some other operation on the
2279 ** database handle that owns *p, causing undefined behavior.
2280 */
2281 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2282   assert( sqlite3_mutex_held(p->pBt->mutex) );
2283   return p->pBt->pageSize - p->pBt->usableSize;
2284 }
2285 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
2286 
2287 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
2288 /*
2289 ** Return the number of bytes of space at the end of every page that
2290 ** are intentually left unused.  This is the "reserved" space that is
2291 ** sometimes used by extensions.
2292 */
2293 int sqlite3BtreeGetReserve(Btree *p){
2294   int n;
2295   sqlite3BtreeEnter(p);
2296   n = p->pBt->pageSize - p->pBt->usableSize;
2297   sqlite3BtreeLeave(p);
2298   return n;
2299 }
2300 
2301 /*
2302 ** Set the maximum page count for a database if mxPage is positive.
2303 ** No changes are made if mxPage is 0 or negative.
2304 ** Regardless of the value of mxPage, return the maximum page count.
2305 */
2306 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2307   int n;
2308   sqlite3BtreeEnter(p);
2309   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2310   sqlite3BtreeLeave(p);
2311   return n;
2312 }
2313 
2314 /*
2315 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2316 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2317 ** setting after the change.
2318 */
2319 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2320   int b;
2321   if( p==0 ) return 0;
2322   sqlite3BtreeEnter(p);
2323   if( newFlag>=0 ){
2324     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2325     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2326   }
2327   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2328   sqlite3BtreeLeave(p);
2329   return b;
2330 }
2331 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
2332 
2333 /*
2334 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2335 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2336 ** is disabled. The default value for the auto-vacuum property is
2337 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2338 */
2339 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2340 #ifdef SQLITE_OMIT_AUTOVACUUM
2341   return SQLITE_READONLY;
2342 #else
2343   BtShared *pBt = p->pBt;
2344   int rc = SQLITE_OK;
2345   u8 av = (u8)autoVacuum;
2346 
2347   sqlite3BtreeEnter(p);
2348   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2349     rc = SQLITE_READONLY;
2350   }else{
2351     pBt->autoVacuum = av ?1:0;
2352     pBt->incrVacuum = av==2 ?1:0;
2353   }
2354   sqlite3BtreeLeave(p);
2355   return rc;
2356 #endif
2357 }
2358 
2359 /*
2360 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2361 ** enabled 1 is returned. Otherwise 0.
2362 */
2363 int sqlite3BtreeGetAutoVacuum(Btree *p){
2364 #ifdef SQLITE_OMIT_AUTOVACUUM
2365   return BTREE_AUTOVACUUM_NONE;
2366 #else
2367   int rc;
2368   sqlite3BtreeEnter(p);
2369   rc = (
2370     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2371     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2372     BTREE_AUTOVACUUM_INCR
2373   );
2374   sqlite3BtreeLeave(p);
2375   return rc;
2376 #endif
2377 }
2378 
2379 
2380 /*
2381 ** Get a reference to pPage1 of the database file.  This will
2382 ** also acquire a readlock on that file.
2383 **
2384 ** SQLITE_OK is returned on success.  If the file is not a
2385 ** well-formed database file, then SQLITE_CORRUPT is returned.
2386 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2387 ** is returned if we run out of memory.
2388 */
2389 static int lockBtree(BtShared *pBt){
2390   int rc;              /* Result code from subfunctions */
2391   MemPage *pPage1;     /* Page 1 of the database file */
2392   int nPage;           /* Number of pages in the database */
2393   int nPageFile = 0;   /* Number of pages in the database file */
2394   int nPageHeader;     /* Number of pages in the database according to hdr */
2395 
2396   assert( sqlite3_mutex_held(pBt->mutex) );
2397   assert( pBt->pPage1==0 );
2398   rc = sqlite3PagerSharedLock(pBt->pPager);
2399   if( rc!=SQLITE_OK ) return rc;
2400   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2401   if( rc!=SQLITE_OK ) return rc;
2402 
2403   /* Do some checking to help insure the file we opened really is
2404   ** a valid database file.
2405   */
2406   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2407   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2408   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2409     nPage = nPageFile;
2410   }
2411   if( nPage>0 ){
2412     u32 pageSize;
2413     u32 usableSize;
2414     u8 *page1 = pPage1->aData;
2415     rc = SQLITE_NOTADB;
2416     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2417       goto page1_init_failed;
2418     }
2419 
2420 #ifdef SQLITE_OMIT_WAL
2421     if( page1[18]>1 ){
2422       pBt->btsFlags |= BTS_READ_ONLY;
2423     }
2424     if( page1[19]>1 ){
2425       goto page1_init_failed;
2426     }
2427 #else
2428     if( page1[18]>2 ){
2429       pBt->btsFlags |= BTS_READ_ONLY;
2430     }
2431     if( page1[19]>2 ){
2432       goto page1_init_failed;
2433     }
2434 
2435     /* If the write version is set to 2, this database should be accessed
2436     ** in WAL mode. If the log is not already open, open it now. Then
2437     ** return SQLITE_OK and return without populating BtShared.pPage1.
2438     ** The caller detects this and calls this function again. This is
2439     ** required as the version of page 1 currently in the page1 buffer
2440     ** may not be the latest version - there may be a newer one in the log
2441     ** file.
2442     */
2443     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2444       int isOpen = 0;
2445       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2446       if( rc!=SQLITE_OK ){
2447         goto page1_init_failed;
2448       }else if( isOpen==0 ){
2449         releasePage(pPage1);
2450         return SQLITE_OK;
2451       }
2452       rc = SQLITE_NOTADB;
2453     }
2454 #endif
2455 
2456     /* The maximum embedded fraction must be exactly 25%.  And the minimum
2457     ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2458     ** The original design allowed these amounts to vary, but as of
2459     ** version 3.6.0, we require them to be fixed.
2460     */
2461     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2462       goto page1_init_failed;
2463     }
2464     pageSize = (page1[16]<<8) | (page1[17]<<16);
2465     if( ((pageSize-1)&pageSize)!=0
2466      || pageSize>SQLITE_MAX_PAGE_SIZE
2467      || pageSize<=256
2468     ){
2469       goto page1_init_failed;
2470     }
2471     assert( (pageSize & 7)==0 );
2472     usableSize = pageSize - page1[20];
2473     if( (u32)pageSize!=pBt->pageSize ){
2474       /* After reading the first page of the database assuming a page size
2475       ** of BtShared.pageSize, we have discovered that the page-size is
2476       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2477       ** zero and return SQLITE_OK. The caller will call this function
2478       ** again with the correct page-size.
2479       */
2480       releasePage(pPage1);
2481       pBt->usableSize = usableSize;
2482       pBt->pageSize = pageSize;
2483       freeTempSpace(pBt);
2484       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2485                                    pageSize-usableSize);
2486       return rc;
2487     }
2488     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2489       rc = SQLITE_CORRUPT_BKPT;
2490       goto page1_init_failed;
2491     }
2492     if( usableSize<480 ){
2493       goto page1_init_failed;
2494     }
2495     pBt->pageSize = pageSize;
2496     pBt->usableSize = usableSize;
2497 #ifndef SQLITE_OMIT_AUTOVACUUM
2498     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2499     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2500 #endif
2501   }
2502 
2503   /* maxLocal is the maximum amount of payload to store locally for
2504   ** a cell.  Make sure it is small enough so that at least minFanout
2505   ** cells can will fit on one page.  We assume a 10-byte page header.
2506   ** Besides the payload, the cell must store:
2507   **     2-byte pointer to the cell
2508   **     4-byte child pointer
2509   **     9-byte nKey value
2510   **     4-byte nData value
2511   **     4-byte overflow page pointer
2512   ** So a cell consists of a 2-byte pointer, a header which is as much as
2513   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2514   ** page pointer.
2515   */
2516   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2517   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2518   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2519   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2520   if( pBt->maxLocal>127 ){
2521     pBt->max1bytePayload = 127;
2522   }else{
2523     pBt->max1bytePayload = (u8)pBt->maxLocal;
2524   }
2525   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2526   pBt->pPage1 = pPage1;
2527   pBt->nPage = nPage;
2528   return SQLITE_OK;
2529 
2530 page1_init_failed:
2531   releasePage(pPage1);
2532   pBt->pPage1 = 0;
2533   return rc;
2534 }
2535 
2536 #ifndef NDEBUG
2537 /*
2538 ** Return the number of cursors open on pBt. This is for use
2539 ** in assert() expressions, so it is only compiled if NDEBUG is not
2540 ** defined.
2541 **
2542 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
2543 ** false then all cursors are counted.
2544 **
2545 ** For the purposes of this routine, a cursor is any cursor that
2546 ** is capable of reading or writing to the databse.  Cursors that
2547 ** have been tripped into the CURSOR_FAULT state are not counted.
2548 */
2549 static int countValidCursors(BtShared *pBt, int wrOnly){
2550   BtCursor *pCur;
2551   int r = 0;
2552   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2553     if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2554   }
2555   return r;
2556 }
2557 #endif
2558 
2559 /*
2560 ** If there are no outstanding cursors and we are not in the middle
2561 ** of a transaction but there is a read lock on the database, then
2562 ** this routine unrefs the first page of the database file which
2563 ** has the effect of releasing the read lock.
2564 **
2565 ** If there is a transaction in progress, this routine is a no-op.
2566 */
2567 static void unlockBtreeIfUnused(BtShared *pBt){
2568   assert( sqlite3_mutex_held(pBt->mutex) );
2569   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
2570   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
2571     assert( pBt->pPage1->aData );
2572     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2573     assert( pBt->pPage1->aData );
2574     releasePage(pBt->pPage1);
2575     pBt->pPage1 = 0;
2576   }
2577 }
2578 
2579 /*
2580 ** If pBt points to an empty file then convert that empty file
2581 ** into a new empty database by initializing the first page of
2582 ** the database.
2583 */
2584 static int newDatabase(BtShared *pBt){
2585   MemPage *pP1;
2586   unsigned char *data;
2587   int rc;
2588 
2589   assert( sqlite3_mutex_held(pBt->mutex) );
2590   if( pBt->nPage>0 ){
2591     return SQLITE_OK;
2592   }
2593   pP1 = pBt->pPage1;
2594   assert( pP1!=0 );
2595   data = pP1->aData;
2596   rc = sqlite3PagerWrite(pP1->pDbPage);
2597   if( rc ) return rc;
2598   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2599   assert( sizeof(zMagicHeader)==16 );
2600   data[16] = (u8)((pBt->pageSize>>8)&0xff);
2601   data[17] = (u8)((pBt->pageSize>>16)&0xff);
2602   data[18] = 1;
2603   data[19] = 1;
2604   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2605   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
2606   data[21] = 64;
2607   data[22] = 32;
2608   data[23] = 32;
2609   memset(&data[24], 0, 100-24);
2610   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
2611   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2612 #ifndef SQLITE_OMIT_AUTOVACUUM
2613   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
2614   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
2615   put4byte(&data[36 + 4*4], pBt->autoVacuum);
2616   put4byte(&data[36 + 7*4], pBt->incrVacuum);
2617 #endif
2618   pBt->nPage = 1;
2619   data[31] = 1;
2620   return SQLITE_OK;
2621 }
2622 
2623 /*
2624 ** Initialize the first page of the database file (creating a database
2625 ** consisting of a single page and no schema objects). Return SQLITE_OK
2626 ** if successful, or an SQLite error code otherwise.
2627 */
2628 int sqlite3BtreeNewDb(Btree *p){
2629   int rc;
2630   sqlite3BtreeEnter(p);
2631   p->pBt->nPage = 0;
2632   rc = newDatabase(p->pBt);
2633   sqlite3BtreeLeave(p);
2634   return rc;
2635 }
2636 
2637 /*
2638 ** Attempt to start a new transaction. A write-transaction
2639 ** is started if the second argument is nonzero, otherwise a read-
2640 ** transaction.  If the second argument is 2 or more and exclusive
2641 ** transaction is started, meaning that no other process is allowed
2642 ** to access the database.  A preexisting transaction may not be
2643 ** upgraded to exclusive by calling this routine a second time - the
2644 ** exclusivity flag only works for a new transaction.
2645 **
2646 ** A write-transaction must be started before attempting any
2647 ** changes to the database.  None of the following routines
2648 ** will work unless a transaction is started first:
2649 **
2650 **      sqlite3BtreeCreateTable()
2651 **      sqlite3BtreeCreateIndex()
2652 **      sqlite3BtreeClearTable()
2653 **      sqlite3BtreeDropTable()
2654 **      sqlite3BtreeInsert()
2655 **      sqlite3BtreeDelete()
2656 **      sqlite3BtreeUpdateMeta()
2657 **
2658 ** If an initial attempt to acquire the lock fails because of lock contention
2659 ** and the database was previously unlocked, then invoke the busy handler
2660 ** if there is one.  But if there was previously a read-lock, do not
2661 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
2662 ** returned when there is already a read-lock in order to avoid a deadlock.
2663 **
2664 ** Suppose there are two processes A and B.  A has a read lock and B has
2665 ** a reserved lock.  B tries to promote to exclusive but is blocked because
2666 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
2667 ** One or the other of the two processes must give way or there can be
2668 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
2669 ** when A already has a read lock, we encourage A to give up and let B
2670 ** proceed.
2671 */
2672 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
2673   sqlite3 *pBlock = 0;
2674   BtShared *pBt = p->pBt;
2675   int rc = SQLITE_OK;
2676 
2677   sqlite3BtreeEnter(p);
2678   btreeIntegrity(p);
2679 
2680   /* If the btree is already in a write-transaction, or it
2681   ** is already in a read-transaction and a read-transaction
2682   ** is requested, this is a no-op.
2683   */
2684   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
2685     goto trans_begun;
2686   }
2687   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
2688 
2689   /* Write transactions are not possible on a read-only database */
2690   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
2691     rc = SQLITE_READONLY;
2692     goto trans_begun;
2693   }
2694 
2695 #ifndef SQLITE_OMIT_SHARED_CACHE
2696   /* If another database handle has already opened a write transaction
2697   ** on this shared-btree structure and a second write transaction is
2698   ** requested, return SQLITE_LOCKED.
2699   */
2700   if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2701    || (pBt->btsFlags & BTS_PENDING)!=0
2702   ){
2703     pBlock = pBt->pWriter->db;
2704   }else if( wrflag>1 ){
2705     BtLock *pIter;
2706     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2707       if( pIter->pBtree!=p ){
2708         pBlock = pIter->pBtree->db;
2709         break;
2710       }
2711     }
2712   }
2713   if( pBlock ){
2714     sqlite3ConnectionBlocked(p->db, pBlock);
2715     rc = SQLITE_LOCKED_SHAREDCACHE;
2716     goto trans_begun;
2717   }
2718 #endif
2719 
2720   /* Any read-only or read-write transaction implies a read-lock on
2721   ** page 1. So if some other shared-cache client already has a write-lock
2722   ** on page 1, the transaction cannot be opened. */
2723   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2724   if( SQLITE_OK!=rc ) goto trans_begun;
2725 
2726   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2727   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
2728   do {
2729     /* Call lockBtree() until either pBt->pPage1 is populated or
2730     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2731     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2732     ** reading page 1 it discovers that the page-size of the database
2733     ** file is not pBt->pageSize. In this case lockBtree() will update
2734     ** pBt->pageSize to the page-size of the file on disk.
2735     */
2736     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
2737 
2738     if( rc==SQLITE_OK && wrflag ){
2739       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
2740         rc = SQLITE_READONLY;
2741       }else{
2742         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
2743         if( rc==SQLITE_OK ){
2744           rc = newDatabase(pBt);
2745         }
2746       }
2747     }
2748 
2749     if( rc!=SQLITE_OK ){
2750       unlockBtreeIfUnused(pBt);
2751     }
2752   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
2753           btreeInvokeBusyHandler(pBt) );
2754 
2755   if( rc==SQLITE_OK ){
2756     if( p->inTrans==TRANS_NONE ){
2757       pBt->nTransaction++;
2758 #ifndef SQLITE_OMIT_SHARED_CACHE
2759       if( p->sharable ){
2760         assert( p->lock.pBtree==p && p->lock.iTable==1 );
2761         p->lock.eLock = READ_LOCK;
2762         p->lock.pNext = pBt->pLock;
2763         pBt->pLock = &p->lock;
2764       }
2765 #endif
2766     }
2767     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2768     if( p->inTrans>pBt->inTransaction ){
2769       pBt->inTransaction = p->inTrans;
2770     }
2771     if( wrflag ){
2772       MemPage *pPage1 = pBt->pPage1;
2773 #ifndef SQLITE_OMIT_SHARED_CACHE
2774       assert( !pBt->pWriter );
2775       pBt->pWriter = p;
2776       pBt->btsFlags &= ~BTS_EXCLUSIVE;
2777       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
2778 #endif
2779 
2780       /* If the db-size header field is incorrect (as it may be if an old
2781       ** client has been writing the database file), update it now. Doing
2782       ** this sooner rather than later means the database size can safely
2783       ** re-read the database size from page 1 if a savepoint or transaction
2784       ** rollback occurs within the transaction.
2785       */
2786       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2787         rc = sqlite3PagerWrite(pPage1->pDbPage);
2788         if( rc==SQLITE_OK ){
2789           put4byte(&pPage1->aData[28], pBt->nPage);
2790         }
2791       }
2792     }
2793   }
2794 
2795 
2796 trans_begun:
2797   if( rc==SQLITE_OK && wrflag ){
2798     /* This call makes sure that the pager has the correct number of
2799     ** open savepoints. If the second parameter is greater than 0 and
2800     ** the sub-journal is not already open, then it will be opened here.
2801     */
2802     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2803   }
2804 
2805   btreeIntegrity(p);
2806   sqlite3BtreeLeave(p);
2807   return rc;
2808 }
2809 
2810 #ifndef SQLITE_OMIT_AUTOVACUUM
2811 
2812 /*
2813 ** Set the pointer-map entries for all children of page pPage. Also, if
2814 ** pPage contains cells that point to overflow pages, set the pointer
2815 ** map entries for the overflow pages as well.
2816 */
2817 static int setChildPtrmaps(MemPage *pPage){
2818   int i;                             /* Counter variable */
2819   int nCell;                         /* Number of cells in page pPage */
2820   int rc;                            /* Return code */
2821   BtShared *pBt = pPage->pBt;
2822   u8 isInitOrig = pPage->isInit;
2823   Pgno pgno = pPage->pgno;
2824 
2825   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2826   rc = btreeInitPage(pPage);
2827   if( rc!=SQLITE_OK ){
2828     goto set_child_ptrmaps_out;
2829   }
2830   nCell = pPage->nCell;
2831 
2832   for(i=0; i<nCell; i++){
2833     u8 *pCell = findCell(pPage, i);
2834 
2835     ptrmapPutOvflPtr(pPage, pCell, &rc);
2836 
2837     if( !pPage->leaf ){
2838       Pgno childPgno = get4byte(pCell);
2839       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
2840     }
2841   }
2842 
2843   if( !pPage->leaf ){
2844     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2845     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
2846   }
2847 
2848 set_child_ptrmaps_out:
2849   pPage->isInit = isInitOrig;
2850   return rc;
2851 }
2852 
2853 /*
2854 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
2855 ** that it points to iTo. Parameter eType describes the type of pointer to
2856 ** be modified, as  follows:
2857 **
2858 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
2859 **                   page of pPage.
2860 **
2861 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2862 **                   page pointed to by one of the cells on pPage.
2863 **
2864 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2865 **                   overflow page in the list.
2866 */
2867 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
2868   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2869   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2870   if( eType==PTRMAP_OVERFLOW2 ){
2871     /* The pointer is always the first 4 bytes of the page in this case.  */
2872     if( get4byte(pPage->aData)!=iFrom ){
2873       return SQLITE_CORRUPT_BKPT;
2874     }
2875     put4byte(pPage->aData, iTo);
2876   }else{
2877     u8 isInitOrig = pPage->isInit;
2878     int i;
2879     int nCell;
2880 
2881     btreeInitPage(pPage);
2882     nCell = pPage->nCell;
2883 
2884     for(i=0; i<nCell; i++){
2885       u8 *pCell = findCell(pPage, i);
2886       if( eType==PTRMAP_OVERFLOW1 ){
2887         CellInfo info;
2888         btreeParseCellPtr(pPage, pCell, &info);
2889         if( info.iOverflow
2890          && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2891          && iFrom==get4byte(&pCell[info.iOverflow])
2892         ){
2893           put4byte(&pCell[info.iOverflow], iTo);
2894           break;
2895         }
2896       }else{
2897         if( get4byte(pCell)==iFrom ){
2898           put4byte(pCell, iTo);
2899           break;
2900         }
2901       }
2902     }
2903 
2904     if( i==nCell ){
2905       if( eType!=PTRMAP_BTREE ||
2906           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
2907         return SQLITE_CORRUPT_BKPT;
2908       }
2909       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2910     }
2911 
2912     pPage->isInit = isInitOrig;
2913   }
2914   return SQLITE_OK;
2915 }
2916 
2917 
2918 /*
2919 ** Move the open database page pDbPage to location iFreePage in the
2920 ** database. The pDbPage reference remains valid.
2921 **
2922 ** The isCommit flag indicates that there is no need to remember that
2923 ** the journal needs to be sync()ed before database page pDbPage->pgno
2924 ** can be written to. The caller has already promised not to write to that
2925 ** page.
2926 */
2927 static int relocatePage(
2928   BtShared *pBt,           /* Btree */
2929   MemPage *pDbPage,        /* Open page to move */
2930   u8 eType,                /* Pointer map 'type' entry for pDbPage */
2931   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
2932   Pgno iFreePage,          /* The location to move pDbPage to */
2933   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
2934 ){
2935   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
2936   Pgno iDbPage = pDbPage->pgno;
2937   Pager *pPager = pBt->pPager;
2938   int rc;
2939 
2940   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2941       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
2942   assert( sqlite3_mutex_held(pBt->mutex) );
2943   assert( pDbPage->pBt==pBt );
2944 
2945   /* Move page iDbPage from its current location to page number iFreePage */
2946   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2947       iDbPage, iFreePage, iPtrPage, eType));
2948   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
2949   if( rc!=SQLITE_OK ){
2950     return rc;
2951   }
2952   pDbPage->pgno = iFreePage;
2953 
2954   /* If pDbPage was a btree-page, then it may have child pages and/or cells
2955   ** that point to overflow pages. The pointer map entries for all these
2956   ** pages need to be changed.
2957   **
2958   ** If pDbPage is an overflow page, then the first 4 bytes may store a
2959   ** pointer to a subsequent overflow page. If this is the case, then
2960   ** the pointer map needs to be updated for the subsequent overflow page.
2961   */
2962   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
2963     rc = setChildPtrmaps(pDbPage);
2964     if( rc!=SQLITE_OK ){
2965       return rc;
2966     }
2967   }else{
2968     Pgno nextOvfl = get4byte(pDbPage->aData);
2969     if( nextOvfl!=0 ){
2970       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
2971       if( rc!=SQLITE_OK ){
2972         return rc;
2973       }
2974     }
2975   }
2976 
2977   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2978   ** that it points at iFreePage. Also fix the pointer map entry for
2979   ** iPtrPage.
2980   */
2981   if( eType!=PTRMAP_ROOTPAGE ){
2982     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
2983     if( rc!=SQLITE_OK ){
2984       return rc;
2985     }
2986     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
2987     if( rc!=SQLITE_OK ){
2988       releasePage(pPtrPage);
2989       return rc;
2990     }
2991     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
2992     releasePage(pPtrPage);
2993     if( rc==SQLITE_OK ){
2994       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
2995     }
2996   }
2997   return rc;
2998 }
2999 
3000 /* Forward declaration required by incrVacuumStep(). */
3001 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3002 
3003 /*
3004 ** Perform a single step of an incremental-vacuum. If successful, return
3005 ** SQLITE_OK. If there is no work to do (and therefore no point in
3006 ** calling this function again), return SQLITE_DONE. Or, if an error
3007 ** occurs, return some other error code.
3008 **
3009 ** More specificly, this function attempts to re-organize the database so
3010 ** that the last page of the file currently in use is no longer in use.
3011 **
3012 ** Parameter nFin is the number of pages that this database would contain
3013 ** were this function called until it returns SQLITE_DONE.
3014 **
3015 ** If the bCommit parameter is non-zero, this function assumes that the
3016 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3017 ** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3018 ** operation, or false for an incremental vacuum.
3019 */
3020 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3021   Pgno nFreeList;           /* Number of pages still on the free-list */
3022   int rc;
3023 
3024   assert( sqlite3_mutex_held(pBt->mutex) );
3025   assert( iLastPg>nFin );
3026 
3027   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3028     u8 eType;
3029     Pgno iPtrPage;
3030 
3031     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3032     if( nFreeList==0 ){
3033       return SQLITE_DONE;
3034     }
3035 
3036     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3037     if( rc!=SQLITE_OK ){
3038       return rc;
3039     }
3040     if( eType==PTRMAP_ROOTPAGE ){
3041       return SQLITE_CORRUPT_BKPT;
3042     }
3043 
3044     if( eType==PTRMAP_FREEPAGE ){
3045       if( bCommit==0 ){
3046         /* Remove the page from the files free-list. This is not required
3047         ** if bCommit is non-zero. In that case, the free-list will be
3048         ** truncated to zero after this function returns, so it doesn't
3049         ** matter if it still contains some garbage entries.
3050         */
3051         Pgno iFreePg;
3052         MemPage *pFreePg;
3053         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3054         if( rc!=SQLITE_OK ){
3055           return rc;
3056         }
3057         assert( iFreePg==iLastPg );
3058         releasePage(pFreePg);
3059       }
3060     } else {
3061       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3062       MemPage *pLastPg;
3063       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3064       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3065 
3066       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3067       if( rc!=SQLITE_OK ){
3068         return rc;
3069       }
3070 
3071       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3072       ** is swapped with the first free page pulled off the free list.
3073       **
3074       ** On the other hand, if bCommit is greater than zero, then keep
3075       ** looping until a free-page located within the first nFin pages
3076       ** of the file is found.
3077       */
3078       if( bCommit==0 ){
3079         eMode = BTALLOC_LE;
3080         iNear = nFin;
3081       }
3082       do {
3083         MemPage *pFreePg;
3084         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3085         if( rc!=SQLITE_OK ){
3086           releasePage(pLastPg);
3087           return rc;
3088         }
3089         releasePage(pFreePg);
3090       }while( bCommit && iFreePg>nFin );
3091       assert( iFreePg<iLastPg );
3092 
3093       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3094       releasePage(pLastPg);
3095       if( rc!=SQLITE_OK ){
3096         return rc;
3097       }
3098     }
3099   }
3100 
3101   if( bCommit==0 ){
3102     do {
3103       iLastPg--;
3104     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3105     pBt->bDoTruncate = 1;
3106     pBt->nPage = iLastPg;
3107   }
3108   return SQLITE_OK;
3109 }
3110 
3111 /*
3112 ** The database opened by the first argument is an auto-vacuum database
3113 ** nOrig pages in size containing nFree free pages. Return the expected
3114 ** size of the database in pages following an auto-vacuum operation.
3115 */
3116 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3117   int nEntry;                     /* Number of entries on one ptrmap page */
3118   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3119   Pgno nFin;                      /* Return value */
3120 
3121   nEntry = pBt->usableSize/5;
3122   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3123   nFin = nOrig - nFree - nPtrmap;
3124   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3125     nFin--;
3126   }
3127   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3128     nFin--;
3129   }
3130 
3131   return nFin;
3132 }
3133 
3134 /*
3135 ** A write-transaction must be opened before calling this function.
3136 ** It performs a single unit of work towards an incremental vacuum.
3137 **
3138 ** If the incremental vacuum is finished after this function has run,
3139 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3140 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3141 */
3142 int sqlite3BtreeIncrVacuum(Btree *p){
3143   int rc;
3144   BtShared *pBt = p->pBt;
3145 
3146   sqlite3BtreeEnter(p);
3147   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3148   if( !pBt->autoVacuum ){
3149     rc = SQLITE_DONE;
3150   }else{
3151     Pgno nOrig = btreePagecount(pBt);
3152     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3153     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3154 
3155     if( nOrig<nFin ){
3156       rc = SQLITE_CORRUPT_BKPT;
3157     }else if( nFree>0 ){
3158       rc = saveAllCursors(pBt, 0, 0);
3159       if( rc==SQLITE_OK ){
3160         invalidateAllOverflowCache(pBt);
3161         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3162       }
3163       if( rc==SQLITE_OK ){
3164         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3165         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3166       }
3167     }else{
3168       rc = SQLITE_DONE;
3169     }
3170   }
3171   sqlite3BtreeLeave(p);
3172   return rc;
3173 }
3174 
3175 /*
3176 ** This routine is called prior to sqlite3PagerCommit when a transaction
3177 ** is committed for an auto-vacuum database.
3178 **
3179 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3180 ** the database file should be truncated to during the commit process.
3181 ** i.e. the database has been reorganized so that only the first *pnTrunc
3182 ** pages are in use.
3183 */
3184 static int autoVacuumCommit(BtShared *pBt){
3185   int rc = SQLITE_OK;
3186   Pager *pPager = pBt->pPager;
3187   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
3188 
3189   assert( sqlite3_mutex_held(pBt->mutex) );
3190   invalidateAllOverflowCache(pBt);
3191   assert(pBt->autoVacuum);
3192   if( !pBt->incrVacuum ){
3193     Pgno nFin;         /* Number of pages in database after autovacuuming */
3194     Pgno nFree;        /* Number of pages on the freelist initially */
3195     Pgno iFree;        /* The next page to be freed */
3196     Pgno nOrig;        /* Database size before freeing */
3197 
3198     nOrig = btreePagecount(pBt);
3199     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3200       /* It is not possible to create a database for which the final page
3201       ** is either a pointer-map page or the pending-byte page. If one
3202       ** is encountered, this indicates corruption.
3203       */
3204       return SQLITE_CORRUPT_BKPT;
3205     }
3206 
3207     nFree = get4byte(&pBt->pPage1->aData[36]);
3208     nFin = finalDbSize(pBt, nOrig, nFree);
3209     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3210     if( nFin<nOrig ){
3211       rc = saveAllCursors(pBt, 0, 0);
3212     }
3213     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3214       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3215     }
3216     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3217       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3218       put4byte(&pBt->pPage1->aData[32], 0);
3219       put4byte(&pBt->pPage1->aData[36], 0);
3220       put4byte(&pBt->pPage1->aData[28], nFin);
3221       pBt->bDoTruncate = 1;
3222       pBt->nPage = nFin;
3223     }
3224     if( rc!=SQLITE_OK ){
3225       sqlite3PagerRollback(pPager);
3226     }
3227   }
3228 
3229   assert( nRef>=sqlite3PagerRefcount(pPager) );
3230   return rc;
3231 }
3232 
3233 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3234 # define setChildPtrmaps(x) SQLITE_OK
3235 #endif
3236 
3237 /*
3238 ** This routine does the first phase of a two-phase commit.  This routine
3239 ** causes a rollback journal to be created (if it does not already exist)
3240 ** and populated with enough information so that if a power loss occurs
3241 ** the database can be restored to its original state by playing back
3242 ** the journal.  Then the contents of the journal are flushed out to
3243 ** the disk.  After the journal is safely on oxide, the changes to the
3244 ** database are written into the database file and flushed to oxide.
3245 ** At the end of this call, the rollback journal still exists on the
3246 ** disk and we are still holding all locks, so the transaction has not
3247 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3248 ** commit process.
3249 **
3250 ** This call is a no-op if no write-transaction is currently active on pBt.
3251 **
3252 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3253 ** the name of a master journal file that should be written into the
3254 ** individual journal file, or is NULL, indicating no master journal file
3255 ** (single database transaction).
3256 **
3257 ** When this is called, the master journal should already have been
3258 ** created, populated with this journal pointer and synced to disk.
3259 **
3260 ** Once this is routine has returned, the only thing required to commit
3261 ** the write-transaction for this database file is to delete the journal.
3262 */
3263 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3264   int rc = SQLITE_OK;
3265   if( p->inTrans==TRANS_WRITE ){
3266     BtShared *pBt = p->pBt;
3267     sqlite3BtreeEnter(p);
3268 #ifndef SQLITE_OMIT_AUTOVACUUM
3269     if( pBt->autoVacuum ){
3270       rc = autoVacuumCommit(pBt);
3271       if( rc!=SQLITE_OK ){
3272         sqlite3BtreeLeave(p);
3273         return rc;
3274       }
3275     }
3276     if( pBt->bDoTruncate ){
3277       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3278     }
3279 #endif
3280     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3281     sqlite3BtreeLeave(p);
3282   }
3283   return rc;
3284 }
3285 
3286 /*
3287 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3288 ** at the conclusion of a transaction.
3289 */
3290 static void btreeEndTransaction(Btree *p){
3291   BtShared *pBt = p->pBt;
3292   sqlite3 *db = p->db;
3293   assert( sqlite3BtreeHoldsMutex(p) );
3294 
3295 #ifndef SQLITE_OMIT_AUTOVACUUM
3296   pBt->bDoTruncate = 0;
3297 #endif
3298   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3299     /* If there are other active statements that belong to this database
3300     ** handle, downgrade to a read-only transaction. The other statements
3301     ** may still be reading from the database.  */
3302     downgradeAllSharedCacheTableLocks(p);
3303     p->inTrans = TRANS_READ;
3304   }else{
3305     /* If the handle had any kind of transaction open, decrement the
3306     ** transaction count of the shared btree. If the transaction count
3307     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3308     ** call below will unlock the pager.  */
3309     if( p->inTrans!=TRANS_NONE ){
3310       clearAllSharedCacheTableLocks(p);
3311       pBt->nTransaction--;
3312       if( 0==pBt->nTransaction ){
3313         pBt->inTransaction = TRANS_NONE;
3314       }
3315     }
3316 
3317     /* Set the current transaction state to TRANS_NONE and unlock the
3318     ** pager if this call closed the only read or write transaction.  */
3319     p->inTrans = TRANS_NONE;
3320     unlockBtreeIfUnused(pBt);
3321   }
3322 
3323   btreeIntegrity(p);
3324 }
3325 
3326 /*
3327 ** Commit the transaction currently in progress.
3328 **
3329 ** This routine implements the second phase of a 2-phase commit.  The
3330 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3331 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3332 ** routine did all the work of writing information out to disk and flushing the
3333 ** contents so that they are written onto the disk platter.  All this
3334 ** routine has to do is delete or truncate or zero the header in the
3335 ** the rollback journal (which causes the transaction to commit) and
3336 ** drop locks.
3337 **
3338 ** Normally, if an error occurs while the pager layer is attempting to
3339 ** finalize the underlying journal file, this function returns an error and
3340 ** the upper layer will attempt a rollback. However, if the second argument
3341 ** is non-zero then this b-tree transaction is part of a multi-file
3342 ** transaction. In this case, the transaction has already been committed
3343 ** (by deleting a master journal file) and the caller will ignore this
3344 ** functions return code. So, even if an error occurs in the pager layer,
3345 ** reset the b-tree objects internal state to indicate that the write
3346 ** transaction has been closed. This is quite safe, as the pager will have
3347 ** transitioned to the error state.
3348 **
3349 ** This will release the write lock on the database file.  If there
3350 ** are no active cursors, it also releases the read lock.
3351 */
3352 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3353 
3354   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3355   sqlite3BtreeEnter(p);
3356   btreeIntegrity(p);
3357 
3358   /* If the handle has a write-transaction open, commit the shared-btrees
3359   ** transaction and set the shared state to TRANS_READ.
3360   */
3361   if( p->inTrans==TRANS_WRITE ){
3362     int rc;
3363     BtShared *pBt = p->pBt;
3364     assert( pBt->inTransaction==TRANS_WRITE );
3365     assert( pBt->nTransaction>0 );
3366     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3367     if( rc!=SQLITE_OK && bCleanup==0 ){
3368       sqlite3BtreeLeave(p);
3369       return rc;
3370     }
3371     pBt->inTransaction = TRANS_READ;
3372     btreeClearHasContent(pBt);
3373   }
3374 
3375   btreeEndTransaction(p);
3376   sqlite3BtreeLeave(p);
3377   return SQLITE_OK;
3378 }
3379 
3380 /*
3381 ** Do both phases of a commit.
3382 */
3383 int sqlite3BtreeCommit(Btree *p){
3384   int rc;
3385   sqlite3BtreeEnter(p);
3386   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3387   if( rc==SQLITE_OK ){
3388     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3389   }
3390   sqlite3BtreeLeave(p);
3391   return rc;
3392 }
3393 
3394 /*
3395 ** This routine sets the state to CURSOR_FAULT and the error
3396 ** code to errCode for every cursor on BtShared that pBtree
3397 ** references.
3398 **
3399 ** Every cursor is tripped, including cursors that belong
3400 ** to other database connections that happen to be sharing
3401 ** the cache with pBtree.
3402 **
3403 ** This routine gets called when a rollback occurs.
3404 ** All cursors using the same cache must be tripped
3405 ** to prevent them from trying to use the btree after
3406 ** the rollback.  The rollback may have deleted tables
3407 ** or moved root pages, so it is not sufficient to
3408 ** save the state of the cursor.  The cursor must be
3409 ** invalidated.
3410 */
3411 void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3412   BtCursor *p;
3413   if( pBtree==0 ) return;
3414   sqlite3BtreeEnter(pBtree);
3415   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3416     int i;
3417     sqlite3BtreeClearCursor(p);
3418     p->eState = CURSOR_FAULT;
3419     p->skipNext = errCode;
3420     for(i=0; i<=p->iPage; i++){
3421       releasePage(p->apPage[i]);
3422       p->apPage[i] = 0;
3423     }
3424   }
3425   sqlite3BtreeLeave(pBtree);
3426 }
3427 
3428 /*
3429 ** Rollback the transaction in progress.  All cursors will be
3430 ** invalided by this operation.  Any attempt to use a cursor
3431 ** that was open at the beginning of this operation will result
3432 ** in an error.
3433 **
3434 ** This will release the write lock on the database file.  If there
3435 ** are no active cursors, it also releases the read lock.
3436 */
3437 int sqlite3BtreeRollback(Btree *p, int tripCode){
3438   int rc;
3439   BtShared *pBt = p->pBt;
3440   MemPage *pPage1;
3441 
3442   sqlite3BtreeEnter(p);
3443   if( tripCode==SQLITE_OK ){
3444     rc = tripCode = saveAllCursors(pBt, 0, 0);
3445   }else{
3446     rc = SQLITE_OK;
3447   }
3448   if( tripCode ){
3449     sqlite3BtreeTripAllCursors(p, tripCode);
3450   }
3451   btreeIntegrity(p);
3452 
3453   if( p->inTrans==TRANS_WRITE ){
3454     int rc2;
3455 
3456     assert( TRANS_WRITE==pBt->inTransaction );
3457     rc2 = sqlite3PagerRollback(pBt->pPager);
3458     if( rc2!=SQLITE_OK ){
3459       rc = rc2;
3460     }
3461 
3462     /* The rollback may have destroyed the pPage1->aData value.  So
3463     ** call btreeGetPage() on page 1 again to make
3464     ** sure pPage1->aData is set correctly. */
3465     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3466       int nPage = get4byte(28+(u8*)pPage1->aData);
3467       testcase( nPage==0 );
3468       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3469       testcase( pBt->nPage!=nPage );
3470       pBt->nPage = nPage;
3471       releasePage(pPage1);
3472     }
3473     assert( countValidCursors(pBt, 1)==0 );
3474     pBt->inTransaction = TRANS_READ;
3475     btreeClearHasContent(pBt);
3476   }
3477 
3478   btreeEndTransaction(p);
3479   sqlite3BtreeLeave(p);
3480   return rc;
3481 }
3482 
3483 /*
3484 ** Start a statement subtransaction. The subtransaction can can be rolled
3485 ** back independently of the main transaction. You must start a transaction
3486 ** before starting a subtransaction. The subtransaction is ended automatically
3487 ** if the main transaction commits or rolls back.
3488 **
3489 ** Statement subtransactions are used around individual SQL statements
3490 ** that are contained within a BEGIN...COMMIT block.  If a constraint
3491 ** error occurs within the statement, the effect of that one statement
3492 ** can be rolled back without having to rollback the entire transaction.
3493 **
3494 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3495 ** value passed as the second parameter is the total number of savepoints,
3496 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3497 ** are no active savepoints and no other statement-transactions open,
3498 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3499 ** using the sqlite3BtreeSavepoint() function.
3500 */
3501 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3502   int rc;
3503   BtShared *pBt = p->pBt;
3504   sqlite3BtreeEnter(p);
3505   assert( p->inTrans==TRANS_WRITE );
3506   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3507   assert( iStatement>0 );
3508   assert( iStatement>p->db->nSavepoint );
3509   assert( pBt->inTransaction==TRANS_WRITE );
3510   /* At the pager level, a statement transaction is a savepoint with
3511   ** an index greater than all savepoints created explicitly using
3512   ** SQL statements. It is illegal to open, release or rollback any
3513   ** such savepoints while the statement transaction savepoint is active.
3514   */
3515   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
3516   sqlite3BtreeLeave(p);
3517   return rc;
3518 }
3519 
3520 /*
3521 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3522 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3523 ** savepoint identified by parameter iSavepoint, depending on the value
3524 ** of op.
3525 **
3526 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3527 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3528 ** contents of the entire transaction are rolled back. This is different
3529 ** from a normal transaction rollback, as no locks are released and the
3530 ** transaction remains open.
3531 */
3532 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3533   int rc = SQLITE_OK;
3534   if( p && p->inTrans==TRANS_WRITE ){
3535     BtShared *pBt = p->pBt;
3536     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3537     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3538     sqlite3BtreeEnter(p);
3539     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
3540     if( rc==SQLITE_OK ){
3541       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3542         pBt->nPage = 0;
3543       }
3544       rc = newDatabase(pBt);
3545       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
3546 
3547       /* The database size was written into the offset 28 of the header
3548       ** when the transaction started, so we know that the value at offset
3549       ** 28 is nonzero. */
3550       assert( pBt->nPage>0 );
3551     }
3552     sqlite3BtreeLeave(p);
3553   }
3554   return rc;
3555 }
3556 
3557 /*
3558 ** Create a new cursor for the BTree whose root is on the page
3559 ** iTable. If a read-only cursor is requested, it is assumed that
3560 ** the caller already has at least a read-only transaction open
3561 ** on the database already. If a write-cursor is requested, then
3562 ** the caller is assumed to have an open write transaction.
3563 **
3564 ** If wrFlag==0, then the cursor can only be used for reading.
3565 ** If wrFlag==1, then the cursor can be used for reading or for
3566 ** writing if other conditions for writing are also met.  These
3567 ** are the conditions that must be met in order for writing to
3568 ** be allowed:
3569 **
3570 ** 1:  The cursor must have been opened with wrFlag==1
3571 **
3572 ** 2:  Other database connections that share the same pager cache
3573 **     but which are not in the READ_UNCOMMITTED state may not have
3574 **     cursors open with wrFlag==0 on the same table.  Otherwise
3575 **     the changes made by this write cursor would be visible to
3576 **     the read cursors in the other database connection.
3577 **
3578 ** 3:  The database must be writable (not on read-only media)
3579 **
3580 ** 4:  There must be an active transaction.
3581 **
3582 ** No checking is done to make sure that page iTable really is the
3583 ** root page of a b-tree.  If it is not, then the cursor acquired
3584 ** will not work correctly.
3585 **
3586 ** It is assumed that the sqlite3BtreeCursorZero() has been called
3587 ** on pCur to initialize the memory space prior to invoking this routine.
3588 */
3589 static int btreeCursor(
3590   Btree *p,                              /* The btree */
3591   int iTable,                            /* Root page of table to open */
3592   int wrFlag,                            /* 1 to write. 0 read-only */
3593   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
3594   BtCursor *pCur                         /* Space for new cursor */
3595 ){
3596   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
3597 
3598   assert( sqlite3BtreeHoldsMutex(p) );
3599   assert( wrFlag==0 || wrFlag==1 );
3600 
3601   /* The following assert statements verify that if this is a sharable
3602   ** b-tree database, the connection is holding the required table locks,
3603   ** and that no other connection has any open cursor that conflicts with
3604   ** this lock.  */
3605   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
3606   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3607 
3608   /* Assert that the caller has opened the required transaction. */
3609   assert( p->inTrans>TRANS_NONE );
3610   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3611   assert( pBt->pPage1 && pBt->pPage1->aData );
3612 
3613   if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
3614     return SQLITE_READONLY;
3615   }
3616   if( iTable==1 && btreePagecount(pBt)==0 ){
3617     assert( wrFlag==0 );
3618     iTable = 0;
3619   }
3620 
3621   /* Now that no other errors can occur, finish filling in the BtCursor
3622   ** variables and link the cursor into the BtShared list.  */
3623   pCur->pgnoRoot = (Pgno)iTable;
3624   pCur->iPage = -1;
3625   pCur->pKeyInfo = pKeyInfo;
3626   pCur->pBtree = p;
3627   pCur->pBt = pBt;
3628   pCur->wrFlag = (u8)wrFlag;
3629   pCur->pNext = pBt->pCursor;
3630   if( pCur->pNext ){
3631     pCur->pNext->pPrev = pCur;
3632   }
3633   pBt->pCursor = pCur;
3634   pCur->eState = CURSOR_INVALID;
3635   pCur->cachedRowid = 0;
3636   return SQLITE_OK;
3637 }
3638 int sqlite3BtreeCursor(
3639   Btree *p,                                   /* The btree */
3640   int iTable,                                 /* Root page of table to open */
3641   int wrFlag,                                 /* 1 to write. 0 read-only */
3642   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
3643   BtCursor *pCur                              /* Write new cursor here */
3644 ){
3645   int rc;
3646   sqlite3BtreeEnter(p);
3647   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
3648   sqlite3BtreeLeave(p);
3649   return rc;
3650 }
3651 
3652 /*
3653 ** Return the size of a BtCursor object in bytes.
3654 **
3655 ** This interfaces is needed so that users of cursors can preallocate
3656 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
3657 ** to users so they cannot do the sizeof() themselves - they must call
3658 ** this routine.
3659 */
3660 int sqlite3BtreeCursorSize(void){
3661   return ROUND8(sizeof(BtCursor));
3662 }
3663 
3664 /*
3665 ** Initialize memory that will be converted into a BtCursor object.
3666 **
3667 ** The simple approach here would be to memset() the entire object
3668 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
3669 ** do not need to be zeroed and they are large, so we can save a lot
3670 ** of run-time by skipping the initialization of those elements.
3671 */
3672 void sqlite3BtreeCursorZero(BtCursor *p){
3673   memset(p, 0, offsetof(BtCursor, iPage));
3674 }
3675 
3676 /*
3677 ** Set the cached rowid value of every cursor in the same database file
3678 ** as pCur and having the same root page number as pCur.  The value is
3679 ** set to iRowid.
3680 **
3681 ** Only positive rowid values are considered valid for this cache.
3682 ** The cache is initialized to zero, indicating an invalid cache.
3683 ** A btree will work fine with zero or negative rowids.  We just cannot
3684 ** cache zero or negative rowids, which means tables that use zero or
3685 ** negative rowids might run a little slower.  But in practice, zero
3686 ** or negative rowids are very uncommon so this should not be a problem.
3687 */
3688 void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3689   BtCursor *p;
3690   for(p=pCur->pBt->pCursor; p; p=p->pNext){
3691     if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3692   }
3693   assert( pCur->cachedRowid==iRowid );
3694 }
3695 
3696 /*
3697 ** Return the cached rowid for the given cursor.  A negative or zero
3698 ** return value indicates that the rowid cache is invalid and should be
3699 ** ignored.  If the rowid cache has never before been set, then a
3700 ** zero is returned.
3701 */
3702 sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3703   return pCur->cachedRowid;
3704 }
3705 
3706 /*
3707 ** Close a cursor.  The read lock on the database file is released
3708 ** when the last cursor is closed.
3709 */
3710 int sqlite3BtreeCloseCursor(BtCursor *pCur){
3711   Btree *pBtree = pCur->pBtree;
3712   if( pBtree ){
3713     int i;
3714     BtShared *pBt = pCur->pBt;
3715     sqlite3BtreeEnter(pBtree);
3716     sqlite3BtreeClearCursor(pCur);
3717     if( pCur->pPrev ){
3718       pCur->pPrev->pNext = pCur->pNext;
3719     }else{
3720       pBt->pCursor = pCur->pNext;
3721     }
3722     if( pCur->pNext ){
3723       pCur->pNext->pPrev = pCur->pPrev;
3724     }
3725     for(i=0; i<=pCur->iPage; i++){
3726       releasePage(pCur->apPage[i]);
3727     }
3728     unlockBtreeIfUnused(pBt);
3729     invalidateOverflowCache(pCur);
3730     /* sqlite3_free(pCur); */
3731     sqlite3BtreeLeave(pBtree);
3732   }
3733   return SQLITE_OK;
3734 }
3735 
3736 /*
3737 ** Make sure the BtCursor* given in the argument has a valid
3738 ** BtCursor.info structure.  If it is not already valid, call
3739 ** btreeParseCell() to fill it in.
3740 **
3741 ** BtCursor.info is a cache of the information in the current cell.
3742 ** Using this cache reduces the number of calls to btreeParseCell().
3743 **
3744 ** 2007-06-25:  There is a bug in some versions of MSVC that cause the
3745 ** compiler to crash when getCellInfo() is implemented as a macro.
3746 ** But there is a measureable speed advantage to using the macro on gcc
3747 ** (when less compiler optimizations like -Os or -O0 are used and the
3748 ** compiler is not doing agressive inlining.)  So we use a real function
3749 ** for MSVC and a macro for everything else.  Ticket #2457.
3750 */
3751 #ifndef NDEBUG
3752   static void assertCellInfo(BtCursor *pCur){
3753     CellInfo info;
3754     int iPage = pCur->iPage;
3755     memset(&info, 0, sizeof(info));
3756     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
3757     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
3758   }
3759 #else
3760   #define assertCellInfo(x)
3761 #endif
3762 #ifdef _MSC_VER
3763   /* Use a real function in MSVC to work around bugs in that compiler. */
3764   static void getCellInfo(BtCursor *pCur){
3765     if( pCur->info.nSize==0 ){
3766       int iPage = pCur->iPage;
3767       btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
3768       pCur->validNKey = 1;
3769     }else{
3770       assertCellInfo(pCur);
3771     }
3772   }
3773 #else /* if not _MSC_VER */
3774   /* Use a macro in all other compilers so that the function is inlined */
3775 #define getCellInfo(pCur)                                                      \
3776   if( pCur->info.nSize==0 ){                                                   \
3777     int iPage = pCur->iPage;                                                   \
3778     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3779     pCur->validNKey = 1;                                                       \
3780   }else{                                                                       \
3781     assertCellInfo(pCur);                                                      \
3782   }
3783 #endif /* _MSC_VER */
3784 
3785 #ifndef NDEBUG  /* The next routine used only within assert() statements */
3786 /*
3787 ** Return true if the given BtCursor is valid.  A valid cursor is one
3788 ** that is currently pointing to a row in a (non-empty) table.
3789 ** This is a verification routine is used only within assert() statements.
3790 */
3791 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3792   return pCur && pCur->eState==CURSOR_VALID;
3793 }
3794 #endif /* NDEBUG */
3795 
3796 /*
3797 ** Set *pSize to the size of the buffer needed to hold the value of
3798 ** the key for the current entry.  If the cursor is not pointing
3799 ** to a valid entry, *pSize is set to 0.
3800 **
3801 ** For a table with the INTKEY flag set, this routine returns the key
3802 ** itself, not the number of bytes in the key.
3803 **
3804 ** The caller must position the cursor prior to invoking this routine.
3805 **
3806 ** This routine cannot fail.  It always returns SQLITE_OK.
3807 */
3808 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
3809   assert( cursorHoldsMutex(pCur) );
3810   assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3811   if( pCur->eState!=CURSOR_VALID ){
3812     *pSize = 0;
3813   }else{
3814     getCellInfo(pCur);
3815     *pSize = pCur->info.nKey;
3816   }
3817   return SQLITE_OK;
3818 }
3819 
3820 /*
3821 ** Set *pSize to the number of bytes of data in the entry the
3822 ** cursor currently points to.
3823 **
3824 ** The caller must guarantee that the cursor is pointing to a non-NULL
3825 ** valid entry.  In other words, the calling procedure must guarantee
3826 ** that the cursor has Cursor.eState==CURSOR_VALID.
3827 **
3828 ** Failure is not possible.  This function always returns SQLITE_OK.
3829 ** It might just as well be a procedure (returning void) but we continue
3830 ** to return an integer result code for historical reasons.
3831 */
3832 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
3833   assert( cursorHoldsMutex(pCur) );
3834   assert( pCur->eState==CURSOR_VALID );
3835   getCellInfo(pCur);
3836   *pSize = pCur->info.nData;
3837   return SQLITE_OK;
3838 }
3839 
3840 /*
3841 ** Given the page number of an overflow page in the database (parameter
3842 ** ovfl), this function finds the page number of the next page in the
3843 ** linked list of overflow pages. If possible, it uses the auto-vacuum
3844 ** pointer-map data instead of reading the content of page ovfl to do so.
3845 **
3846 ** If an error occurs an SQLite error code is returned. Otherwise:
3847 **
3848 ** The page number of the next overflow page in the linked list is
3849 ** written to *pPgnoNext. If page ovfl is the last page in its linked
3850 ** list, *pPgnoNext is set to zero.
3851 **
3852 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
3853 ** to page number pOvfl was obtained, then *ppPage is set to point to that
3854 ** reference. It is the responsibility of the caller to call releasePage()
3855 ** on *ppPage to free the reference. In no reference was obtained (because
3856 ** the pointer-map was used to obtain the value for *pPgnoNext), then
3857 ** *ppPage is set to zero.
3858 */
3859 static int getOverflowPage(
3860   BtShared *pBt,               /* The database file */
3861   Pgno ovfl,                   /* Current overflow page number */
3862   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
3863   Pgno *pPgnoNext              /* OUT: Next overflow page number */
3864 ){
3865   Pgno next = 0;
3866   MemPage *pPage = 0;
3867   int rc = SQLITE_OK;
3868 
3869   assert( sqlite3_mutex_held(pBt->mutex) );
3870   assert(pPgnoNext);
3871 
3872 #ifndef SQLITE_OMIT_AUTOVACUUM
3873   /* Try to find the next page in the overflow list using the
3874   ** autovacuum pointer-map pages. Guess that the next page in
3875   ** the overflow list is page number (ovfl+1). If that guess turns
3876   ** out to be wrong, fall back to loading the data of page
3877   ** number ovfl to determine the next page number.
3878   */
3879   if( pBt->autoVacuum ){
3880     Pgno pgno;
3881     Pgno iGuess = ovfl+1;
3882     u8 eType;
3883 
3884     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3885       iGuess++;
3886     }
3887 
3888     if( iGuess<=btreePagecount(pBt) ){
3889       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
3890       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
3891         next = iGuess;
3892         rc = SQLITE_DONE;
3893       }
3894     }
3895   }
3896 #endif
3897 
3898   assert( next==0 || rc==SQLITE_DONE );
3899   if( rc==SQLITE_OK ){
3900     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
3901     assert( rc==SQLITE_OK || pPage==0 );
3902     if( rc==SQLITE_OK ){
3903       next = get4byte(pPage->aData);
3904     }
3905   }
3906 
3907   *pPgnoNext = next;
3908   if( ppPage ){
3909     *ppPage = pPage;
3910   }else{
3911     releasePage(pPage);
3912   }
3913   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
3914 }
3915 
3916 /*
3917 ** Copy data from a buffer to a page, or from a page to a buffer.
3918 **
3919 ** pPayload is a pointer to data stored on database page pDbPage.
3920 ** If argument eOp is false, then nByte bytes of data are copied
3921 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3922 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3923 ** of data are copied from the buffer pBuf to pPayload.
3924 **
3925 ** SQLITE_OK is returned on success, otherwise an error code.
3926 */
3927 static int copyPayload(
3928   void *pPayload,           /* Pointer to page data */
3929   void *pBuf,               /* Pointer to buffer */
3930   int nByte,                /* Number of bytes to copy */
3931   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
3932   DbPage *pDbPage           /* Page containing pPayload */
3933 ){
3934   if( eOp ){
3935     /* Copy data from buffer to page (a write operation) */
3936     int rc = sqlite3PagerWrite(pDbPage);
3937     if( rc!=SQLITE_OK ){
3938       return rc;
3939     }
3940     memcpy(pPayload, pBuf, nByte);
3941   }else{
3942     /* Copy data from page to buffer (a read operation) */
3943     memcpy(pBuf, pPayload, nByte);
3944   }
3945   return SQLITE_OK;
3946 }
3947 
3948 /*
3949 ** This function is used to read or overwrite payload information
3950 ** for the entry that the pCur cursor is pointing to. If the eOp
3951 ** parameter is 0, this is a read operation (data copied into
3952 ** buffer pBuf). If it is non-zero, a write (data copied from
3953 ** buffer pBuf).
3954 **
3955 ** A total of "amt" bytes are read or written beginning at "offset".
3956 ** Data is read to or from the buffer pBuf.
3957 **
3958 ** The content being read or written might appear on the main page
3959 ** or be scattered out on multiple overflow pages.
3960 **
3961 ** If the BtCursor.isIncrblobHandle flag is set, and the current
3962 ** cursor entry uses one or more overflow pages, this function
3963 ** allocates space for and lazily popluates the overflow page-list
3964 ** cache array (BtCursor.aOverflow). Subsequent calls use this
3965 ** cache to make seeking to the supplied offset more efficient.
3966 **
3967 ** Once an overflow page-list cache has been allocated, it may be
3968 ** invalidated if some other cursor writes to the same table, or if
3969 ** the cursor is moved to a different row. Additionally, in auto-vacuum
3970 ** mode, the following events may invalidate an overflow page-list cache.
3971 **
3972 **   * An incremental vacuum,
3973 **   * A commit in auto_vacuum="full" mode,
3974 **   * Creating a table (may require moving an overflow page).
3975 */
3976 static int accessPayload(
3977   BtCursor *pCur,      /* Cursor pointing to entry to read from */
3978   u32 offset,          /* Begin reading this far into payload */
3979   u32 amt,             /* Read this many bytes */
3980   unsigned char *pBuf, /* Write the bytes into this buffer */
3981   int eOp              /* zero to read. non-zero to write. */
3982 ){
3983   unsigned char *aPayload;
3984   int rc = SQLITE_OK;
3985   u32 nKey;
3986   int iIdx = 0;
3987   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
3988   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
3989 
3990   assert( pPage );
3991   assert( pCur->eState==CURSOR_VALID );
3992   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3993   assert( cursorHoldsMutex(pCur) );
3994 
3995   getCellInfo(pCur);
3996   aPayload = pCur->info.pCell + pCur->info.nHeader;
3997   nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
3998 
3999   if( NEVER(offset+amt > nKey+pCur->info.nData)
4000    || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4001   ){
4002     /* Trying to read or write past the end of the data is an error */
4003     return SQLITE_CORRUPT_BKPT;
4004   }
4005 
4006   /* Check if data must be read/written to/from the btree page itself. */
4007   if( offset<pCur->info.nLocal ){
4008     int a = amt;
4009     if( a+offset>pCur->info.nLocal ){
4010       a = pCur->info.nLocal - offset;
4011     }
4012     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4013     offset = 0;
4014     pBuf += a;
4015     amt -= a;
4016   }else{
4017     offset -= pCur->info.nLocal;
4018   }
4019 
4020   if( rc==SQLITE_OK && amt>0 ){
4021     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4022     Pgno nextPage;
4023 
4024     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4025 
4026 #ifndef SQLITE_OMIT_INCRBLOB
4027     /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
4028     ** has not been allocated, allocate it now. The array is sized at
4029     ** one entry for each overflow page in the overflow chain. The
4030     ** page number of the first overflow page is stored in aOverflow[0],
4031     ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4032     ** (the cache is lazily populated).
4033     */
4034     if( pCur->isIncrblobHandle && !pCur->aOverflow ){
4035       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4036       pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
4037       /* nOvfl is always positive.  If it were zero, fetchPayload would have
4038       ** been used instead of this routine. */
4039       if( ALWAYS(nOvfl) && !pCur->aOverflow ){
4040         rc = SQLITE_NOMEM;
4041       }
4042     }
4043 
4044     /* If the overflow page-list cache has been allocated and the
4045     ** entry for the first required overflow page is valid, skip
4046     ** directly to it.
4047     */
4048     if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4049       iIdx = (offset/ovflSize);
4050       nextPage = pCur->aOverflow[iIdx];
4051       offset = (offset%ovflSize);
4052     }
4053 #endif
4054 
4055     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4056 
4057 #ifndef SQLITE_OMIT_INCRBLOB
4058       /* If required, populate the overflow page-list cache. */
4059       if( pCur->aOverflow ){
4060         assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4061         pCur->aOverflow[iIdx] = nextPage;
4062       }
4063 #endif
4064 
4065       if( offset>=ovflSize ){
4066         /* The only reason to read this page is to obtain the page
4067         ** number for the next page in the overflow chain. The page
4068         ** data is not required. So first try to lookup the overflow
4069         ** page-list cache, if any, then fall back to the getOverflowPage()
4070         ** function.
4071         */
4072 #ifndef SQLITE_OMIT_INCRBLOB
4073         if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4074           nextPage = pCur->aOverflow[iIdx+1];
4075         } else
4076 #endif
4077           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4078         offset -= ovflSize;
4079       }else{
4080         /* Need to read this page properly. It contains some of the
4081         ** range of data that is being read (eOp==0) or written (eOp!=0).
4082         */
4083 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4084         sqlite3_file *fd;
4085 #endif
4086         int a = amt;
4087         if( a + offset > ovflSize ){
4088           a = ovflSize - offset;
4089         }
4090 
4091 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4092         /* If all the following are true:
4093         **
4094         **   1) this is a read operation, and
4095         **   2) data is required from the start of this overflow page, and
4096         **   3) the database is file-backed, and
4097         **   4) there is no open write-transaction, and
4098         **   5) the database is not a WAL database,
4099         **
4100         ** then data can be read directly from the database file into the
4101         ** output buffer, bypassing the page-cache altogether. This speeds
4102         ** up loading large records that span many overflow pages.
4103         */
4104         if( eOp==0                                             /* (1) */
4105          && offset==0                                          /* (2) */
4106          && pBt->inTransaction==TRANS_READ                     /* (4) */
4107          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
4108          && pBt->pPage1->aData[19]==0x01                       /* (5) */
4109         ){
4110           u8 aSave[4];
4111           u8 *aWrite = &pBuf[-4];
4112           memcpy(aSave, aWrite, 4);
4113           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4114           nextPage = get4byte(aWrite);
4115           memcpy(aWrite, aSave, 4);
4116         }else
4117 #endif
4118 
4119         {
4120           DbPage *pDbPage;
4121           rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
4122               (eOp==0 ? PAGER_GET_READONLY : 0)
4123           );
4124           if( rc==SQLITE_OK ){
4125             aPayload = sqlite3PagerGetData(pDbPage);
4126             nextPage = get4byte(aPayload);
4127             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4128             sqlite3PagerUnref(pDbPage);
4129             offset = 0;
4130           }
4131         }
4132         amt -= a;
4133         pBuf += a;
4134       }
4135     }
4136   }
4137 
4138   if( rc==SQLITE_OK && amt>0 ){
4139     return SQLITE_CORRUPT_BKPT;
4140   }
4141   return rc;
4142 }
4143 
4144 /*
4145 ** Read part of the key associated with cursor pCur.  Exactly
4146 ** "amt" bytes will be transfered into pBuf[].  The transfer
4147 ** begins at "offset".
4148 **
4149 ** The caller must ensure that pCur is pointing to a valid row
4150 ** in the table.
4151 **
4152 ** Return SQLITE_OK on success or an error code if anything goes
4153 ** wrong.  An error is returned if "offset+amt" is larger than
4154 ** the available payload.
4155 */
4156 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4157   assert( cursorHoldsMutex(pCur) );
4158   assert( pCur->eState==CURSOR_VALID );
4159   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4160   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4161   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4162 }
4163 
4164 /*
4165 ** Read part of the data associated with cursor pCur.  Exactly
4166 ** "amt" bytes will be transfered into pBuf[].  The transfer
4167 ** begins at "offset".
4168 **
4169 ** Return SQLITE_OK on success or an error code if anything goes
4170 ** wrong.  An error is returned if "offset+amt" is larger than
4171 ** the available payload.
4172 */
4173 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4174   int rc;
4175 
4176 #ifndef SQLITE_OMIT_INCRBLOB
4177   if ( pCur->eState==CURSOR_INVALID ){
4178     return SQLITE_ABORT;
4179   }
4180 #endif
4181 
4182   assert( cursorHoldsMutex(pCur) );
4183   rc = restoreCursorPosition(pCur);
4184   if( rc==SQLITE_OK ){
4185     assert( pCur->eState==CURSOR_VALID );
4186     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4187     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4188     rc = accessPayload(pCur, offset, amt, pBuf, 0);
4189   }
4190   return rc;
4191 }
4192 
4193 /*
4194 ** Return a pointer to payload information from the entry that the
4195 ** pCur cursor is pointing to.  The pointer is to the beginning of
4196 ** the key if index btrees (pPage->intKey==0) and is the data for
4197 ** table btrees (pPage->intKey==1). The number of bytes of available
4198 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4199 ** returned will not be a valid pointer.
4200 **
4201 ** This routine is an optimization.  It is common for the entire key
4202 ** and data to fit on the local page and for there to be no overflow
4203 ** pages.  When that is so, this routine can be used to access the
4204 ** key and data without making a copy.  If the key and/or data spills
4205 ** onto overflow pages, then accessPayload() must be used to reassemble
4206 ** the key/data and copy it into a preallocated buffer.
4207 **
4208 ** The pointer returned by this routine looks directly into the cached
4209 ** page of the database.  The data might change or move the next time
4210 ** any btree routine is called.
4211 */
4212 static const void *fetchPayload(
4213   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4214   u32 *pAmt            /* Write the number of available bytes here */
4215 ){
4216   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4217   assert( pCur->eState==CURSOR_VALID );
4218   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4219   assert( cursorHoldsMutex(pCur) );
4220   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4221   if( pCur->info.nSize==0 ){
4222     btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4223                    &pCur->info);
4224   }
4225   *pAmt = pCur->info.nLocal;
4226   return (void*)(pCur->info.pCell + pCur->info.nHeader);
4227 }
4228 
4229 
4230 /*
4231 ** For the entry that cursor pCur is point to, return as
4232 ** many bytes of the key or data as are available on the local
4233 ** b-tree page.  Write the number of available bytes into *pAmt.
4234 **
4235 ** The pointer returned is ephemeral.  The key/data may move
4236 ** or be destroyed on the next call to any Btree routine,
4237 ** including calls from other threads against the same cache.
4238 ** Hence, a mutex on the BtShared should be held prior to calling
4239 ** this routine.
4240 **
4241 ** These routines is used to get quick access to key and data
4242 ** in the common case where no overflow pages are used.
4243 */
4244 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4245   return fetchPayload(pCur, pAmt);
4246 }
4247 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4248   return fetchPayload(pCur, pAmt);
4249 }
4250 
4251 
4252 /*
4253 ** Move the cursor down to a new child page.  The newPgno argument is the
4254 ** page number of the child page to move to.
4255 **
4256 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4257 ** the new child page does not match the flags field of the parent (i.e.
4258 ** if an intkey page appears to be the parent of a non-intkey page, or
4259 ** vice-versa).
4260 */
4261 static int moveToChild(BtCursor *pCur, u32 newPgno){
4262   int rc;
4263   int i = pCur->iPage;
4264   MemPage *pNewPage;
4265   BtShared *pBt = pCur->pBt;
4266 
4267   assert( cursorHoldsMutex(pCur) );
4268   assert( pCur->eState==CURSOR_VALID );
4269   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4270   assert( pCur->iPage>=0 );
4271   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4272     return SQLITE_CORRUPT_BKPT;
4273   }
4274   rc = getAndInitPage(pBt, newPgno, &pNewPage,
4275                pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
4276   if( rc ) return rc;
4277   pCur->apPage[i+1] = pNewPage;
4278   pCur->aiIdx[i+1] = 0;
4279   pCur->iPage++;
4280 
4281   pCur->info.nSize = 0;
4282   pCur->validNKey = 0;
4283   if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
4284     return SQLITE_CORRUPT_BKPT;
4285   }
4286   return SQLITE_OK;
4287 }
4288 
4289 #if 0
4290 /*
4291 ** Page pParent is an internal (non-leaf) tree page. This function
4292 ** asserts that page number iChild is the left-child if the iIdx'th
4293 ** cell in page pParent. Or, if iIdx is equal to the total number of
4294 ** cells in pParent, that page number iChild is the right-child of
4295 ** the page.
4296 */
4297 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4298   assert( iIdx<=pParent->nCell );
4299   if( iIdx==pParent->nCell ){
4300     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4301   }else{
4302     assert( get4byte(findCell(pParent, iIdx))==iChild );
4303   }
4304 }
4305 #else
4306 #  define assertParentIndex(x,y,z)
4307 #endif
4308 
4309 /*
4310 ** Move the cursor up to the parent page.
4311 **
4312 ** pCur->idx is set to the cell index that contains the pointer
4313 ** to the page we are coming from.  If we are coming from the
4314 ** right-most child page then pCur->idx is set to one more than
4315 ** the largest cell index.
4316 */
4317 static void moveToParent(BtCursor *pCur){
4318   assert( cursorHoldsMutex(pCur) );
4319   assert( pCur->eState==CURSOR_VALID );
4320   assert( pCur->iPage>0 );
4321   assert( pCur->apPage[pCur->iPage] );
4322 
4323   /* UPDATE: It is actually possible for the condition tested by the assert
4324   ** below to be untrue if the database file is corrupt. This can occur if
4325   ** one cursor has modified page pParent while a reference to it is held
4326   ** by a second cursor. Which can only happen if a single page is linked
4327   ** into more than one b-tree structure in a corrupt database.  */
4328 #if 0
4329   assertParentIndex(
4330     pCur->apPage[pCur->iPage-1],
4331     pCur->aiIdx[pCur->iPage-1],
4332     pCur->apPage[pCur->iPage]->pgno
4333   );
4334 #endif
4335   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4336 
4337   releasePage(pCur->apPage[pCur->iPage]);
4338   pCur->iPage--;
4339   pCur->info.nSize = 0;
4340   pCur->validNKey = 0;
4341 }
4342 
4343 /*
4344 ** Move the cursor to point to the root page of its b-tree structure.
4345 **
4346 ** If the table has a virtual root page, then the cursor is moved to point
4347 ** to the virtual root page instead of the actual root page. A table has a
4348 ** virtual root page when the actual root page contains no cells and a
4349 ** single child page. This can only happen with the table rooted at page 1.
4350 **
4351 ** If the b-tree structure is empty, the cursor state is set to
4352 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4353 ** cell located on the root (or virtual root) page and the cursor state
4354 ** is set to CURSOR_VALID.
4355 **
4356 ** If this function returns successfully, it may be assumed that the
4357 ** page-header flags indicate that the [virtual] root-page is the expected
4358 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4359 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4360 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4361 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4362 ** b-tree).
4363 */
4364 static int moveToRoot(BtCursor *pCur){
4365   MemPage *pRoot;
4366   int rc = SQLITE_OK;
4367 
4368   assert( cursorHoldsMutex(pCur) );
4369   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4370   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4371   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4372   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4373     if( pCur->eState==CURSOR_FAULT ){
4374       assert( pCur->skipNext!=SQLITE_OK );
4375       return pCur->skipNext;
4376     }
4377     sqlite3BtreeClearCursor(pCur);
4378   }
4379 
4380   if( pCur->iPage>=0 ){
4381     while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
4382   }else if( pCur->pgnoRoot==0 ){
4383     pCur->eState = CURSOR_INVALID;
4384     return SQLITE_OK;
4385   }else{
4386     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4387                         pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
4388     if( rc!=SQLITE_OK ){
4389       pCur->eState = CURSOR_INVALID;
4390       return rc;
4391     }
4392     pCur->iPage = 0;
4393   }
4394   pRoot = pCur->apPage[0];
4395   assert( pRoot->pgno==pCur->pgnoRoot );
4396 
4397   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4398   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4399   ** NULL, the caller expects a table b-tree. If this is not the case,
4400   ** return an SQLITE_CORRUPT error.
4401   **
4402   ** Earlier versions of SQLite assumed that this test could not fail
4403   ** if the root page was already loaded when this function was called (i.e.
4404   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4405   ** in such a way that page pRoot is linked into a second b-tree table
4406   ** (or the freelist).  */
4407   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4408   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4409     return SQLITE_CORRUPT_BKPT;
4410   }
4411 
4412   pCur->aiIdx[0] = 0;
4413   pCur->info.nSize = 0;
4414   pCur->atLast = 0;
4415   pCur->validNKey = 0;
4416 
4417   if( pRoot->nCell>0 ){
4418     pCur->eState = CURSOR_VALID;
4419   }else if( !pRoot->leaf ){
4420     Pgno subpage;
4421     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4422     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4423     pCur->eState = CURSOR_VALID;
4424     rc = moveToChild(pCur, subpage);
4425   }else{
4426     pCur->eState = CURSOR_INVALID;
4427   }
4428   return rc;
4429 }
4430 
4431 /*
4432 ** Move the cursor down to the left-most leaf entry beneath the
4433 ** entry to which it is currently pointing.
4434 **
4435 ** The left-most leaf is the one with the smallest key - the first
4436 ** in ascending order.
4437 */
4438 static int moveToLeftmost(BtCursor *pCur){
4439   Pgno pgno;
4440   int rc = SQLITE_OK;
4441   MemPage *pPage;
4442 
4443   assert( cursorHoldsMutex(pCur) );
4444   assert( pCur->eState==CURSOR_VALID );
4445   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4446     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4447     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4448     rc = moveToChild(pCur, pgno);
4449   }
4450   return rc;
4451 }
4452 
4453 /*
4454 ** Move the cursor down to the right-most leaf entry beneath the
4455 ** page to which it is currently pointing.  Notice the difference
4456 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
4457 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4458 ** finds the right-most entry beneath the *page*.
4459 **
4460 ** The right-most entry is the one with the largest key - the last
4461 ** key in ascending order.
4462 */
4463 static int moveToRightmost(BtCursor *pCur){
4464   Pgno pgno;
4465   int rc = SQLITE_OK;
4466   MemPage *pPage = 0;
4467 
4468   assert( cursorHoldsMutex(pCur) );
4469   assert( pCur->eState==CURSOR_VALID );
4470   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4471     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4472     pCur->aiIdx[pCur->iPage] = pPage->nCell;
4473     rc = moveToChild(pCur, pgno);
4474   }
4475   if( rc==SQLITE_OK ){
4476     pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4477     pCur->info.nSize = 0;
4478     pCur->validNKey = 0;
4479   }
4480   return rc;
4481 }
4482 
4483 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
4484 ** on success.  Set *pRes to 0 if the cursor actually points to something
4485 ** or set *pRes to 1 if the table is empty.
4486 */
4487 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4488   int rc;
4489 
4490   assert( cursorHoldsMutex(pCur) );
4491   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4492   rc = moveToRoot(pCur);
4493   if( rc==SQLITE_OK ){
4494     if( pCur->eState==CURSOR_INVALID ){
4495       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4496       *pRes = 1;
4497     }else{
4498       assert( pCur->apPage[pCur->iPage]->nCell>0 );
4499       *pRes = 0;
4500       rc = moveToLeftmost(pCur);
4501     }
4502   }
4503   return rc;
4504 }
4505 
4506 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
4507 ** on success.  Set *pRes to 0 if the cursor actually points to something
4508 ** or set *pRes to 1 if the table is empty.
4509 */
4510 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4511   int rc;
4512 
4513   assert( cursorHoldsMutex(pCur) );
4514   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4515 
4516   /* If the cursor already points to the last entry, this is a no-op. */
4517   if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4518 #ifdef SQLITE_DEBUG
4519     /* This block serves to assert() that the cursor really does point
4520     ** to the last entry in the b-tree. */
4521     int ii;
4522     for(ii=0; ii<pCur->iPage; ii++){
4523       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4524     }
4525     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4526     assert( pCur->apPage[pCur->iPage]->leaf );
4527 #endif
4528     return SQLITE_OK;
4529   }
4530 
4531   rc = moveToRoot(pCur);
4532   if( rc==SQLITE_OK ){
4533     if( CURSOR_INVALID==pCur->eState ){
4534       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4535       *pRes = 1;
4536     }else{
4537       assert( pCur->eState==CURSOR_VALID );
4538       *pRes = 0;
4539       rc = moveToRightmost(pCur);
4540       pCur->atLast = rc==SQLITE_OK ?1:0;
4541     }
4542   }
4543   return rc;
4544 }
4545 
4546 /* Move the cursor so that it points to an entry near the key
4547 ** specified by pIdxKey or intKey.   Return a success code.
4548 **
4549 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
4550 ** must be NULL.  For index tables, pIdxKey is used and intKey
4551 ** is ignored.
4552 **
4553 ** If an exact match is not found, then the cursor is always
4554 ** left pointing at a leaf page which would hold the entry if it
4555 ** were present.  The cursor might point to an entry that comes
4556 ** before or after the key.
4557 **
4558 ** An integer is written into *pRes which is the result of
4559 ** comparing the key with the entry to which the cursor is
4560 ** pointing.  The meaning of the integer written into
4561 ** *pRes is as follows:
4562 **
4563 **     *pRes<0      The cursor is left pointing at an entry that
4564 **                  is smaller than intKey/pIdxKey or if the table is empty
4565 **                  and the cursor is therefore left point to nothing.
4566 **
4567 **     *pRes==0     The cursor is left pointing at an entry that
4568 **                  exactly matches intKey/pIdxKey.
4569 **
4570 **     *pRes>0      The cursor is left pointing at an entry that
4571 **                  is larger than intKey/pIdxKey.
4572 **
4573 */
4574 int sqlite3BtreeMovetoUnpacked(
4575   BtCursor *pCur,          /* The cursor to be moved */
4576   UnpackedRecord *pIdxKey, /* Unpacked index key */
4577   i64 intKey,              /* The table key */
4578   int biasRight,           /* If true, bias the search to the high end */
4579   int *pRes                /* Write search results here */
4580 ){
4581   int rc;
4582 
4583   assert( cursorHoldsMutex(pCur) );
4584   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4585   assert( pRes );
4586   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
4587 
4588   /* If the cursor is already positioned at the point we are trying
4589   ** to move to, then just return without doing any work */
4590   if( pCur->eState==CURSOR_VALID && pCur->validNKey
4591    && pCur->apPage[0]->intKey
4592   ){
4593     if( pCur->info.nKey==intKey ){
4594       *pRes = 0;
4595       return SQLITE_OK;
4596     }
4597     if( pCur->atLast && pCur->info.nKey<intKey ){
4598       *pRes = -1;
4599       return SQLITE_OK;
4600     }
4601   }
4602 
4603   rc = moveToRoot(pCur);
4604   if( rc ){
4605     return rc;
4606   }
4607   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4608   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4609   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
4610   if( pCur->eState==CURSOR_INVALID ){
4611     *pRes = -1;
4612     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4613     return SQLITE_OK;
4614   }
4615   assert( pCur->apPage[0]->intKey || pIdxKey );
4616   for(;;){
4617     int lwr, upr, idx, c;
4618     Pgno chldPg;
4619     MemPage *pPage = pCur->apPage[pCur->iPage];
4620     u8 *pCell;                          /* Pointer to current cell in pPage */
4621 
4622     /* pPage->nCell must be greater than zero. If this is the root-page
4623     ** the cursor would have been INVALID above and this for(;;) loop
4624     ** not run. If this is not the root-page, then the moveToChild() routine
4625     ** would have already detected db corruption. Similarly, pPage must
4626     ** be the right kind (index or table) of b-tree page. Otherwise
4627     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
4628     assert( pPage->nCell>0 );
4629     assert( pPage->intKey==(pIdxKey==0) );
4630     lwr = 0;
4631     upr = pPage->nCell-1;
4632     assert( biasRight==0 || biasRight==1 );
4633     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
4634     pCur->aiIdx[pCur->iPage] = (u16)idx;
4635     if( pPage->intKey ){
4636       for(;;){
4637         i64 nCellKey;
4638         pCell = findCell(pPage, idx) + pPage->childPtrSize;
4639         if( pPage->hasData ){
4640           while( 0x80 <= *(pCell++) ){
4641             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4642           }
4643         }
4644         getVarint(pCell, (u64*)&nCellKey);
4645         if( nCellKey<intKey ){
4646           lwr = idx+1;
4647           if( lwr>upr ){ c = -1; break; }
4648         }else if( nCellKey>intKey ){
4649           upr = idx-1;
4650           if( lwr>upr ){ c = +1; break; }
4651         }else{
4652           assert( nCellKey==intKey );
4653           pCur->validNKey = 1;
4654           pCur->info.nKey = nCellKey;
4655           pCur->aiIdx[pCur->iPage] = (u16)idx;
4656           if( !pPage->leaf ){
4657             lwr = idx;
4658             goto moveto_next_layer;
4659           }else{
4660             *pRes = 0;
4661             rc = SQLITE_OK;
4662             goto moveto_finish;
4663           }
4664         }
4665         assert( lwr+upr>=0 );
4666         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
4667       }
4668     }else{
4669       for(;;){
4670         int nCell;
4671         pCell = findCell(pPage, idx) + pPage->childPtrSize;
4672 
4673         /* The maximum supported page-size is 65536 bytes. This means that
4674         ** the maximum number of record bytes stored on an index B-Tree
4675         ** page is less than 16384 bytes and may be stored as a 2-byte
4676         ** varint. This information is used to attempt to avoid parsing
4677         ** the entire cell by checking for the cases where the record is
4678         ** stored entirely within the b-tree page by inspecting the first
4679         ** 2 bytes of the cell.
4680         */
4681         nCell = pCell[0];
4682         if( nCell<=pPage->max1bytePayload ){
4683           /* This branch runs if the record-size field of the cell is a
4684           ** single byte varint and the record fits entirely on the main
4685           ** b-tree page.  */
4686           testcase( pCell+nCell+1==pPage->aDataEnd );
4687           c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4688         }else if( !(pCell[1] & 0x80)
4689           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4690         ){
4691           /* The record-size field is a 2 byte varint and the record
4692           ** fits entirely on the main b-tree page.  */
4693           testcase( pCell+nCell+2==pPage->aDataEnd );
4694           c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
4695         }else{
4696           /* The record flows over onto one or more overflow pages. In
4697           ** this case the whole cell needs to be parsed, a buffer allocated
4698           ** and accessPayload() used to retrieve the record into the
4699           ** buffer before VdbeRecordCompare() can be called. */
4700           void *pCellKey;
4701           u8 * const pCellBody = pCell - pPage->childPtrSize;
4702           btreeParseCellPtr(pPage, pCellBody, &pCur->info);
4703           nCell = (int)pCur->info.nKey;
4704           pCellKey = sqlite3Malloc( nCell );
4705           if( pCellKey==0 ){
4706             rc = SQLITE_NOMEM;
4707             goto moveto_finish;
4708           }
4709           pCur->aiIdx[pCur->iPage] = (u16)idx;
4710           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
4711           if( rc ){
4712             sqlite3_free(pCellKey);
4713             goto moveto_finish;
4714           }
4715           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
4716           sqlite3_free(pCellKey);
4717         }
4718         if( c<0 ){
4719           lwr = idx+1;
4720         }else if( c>0 ){
4721           upr = idx-1;
4722         }else{
4723           assert( c==0 );
4724           *pRes = 0;
4725           rc = SQLITE_OK;
4726           pCur->aiIdx[pCur->iPage] = (u16)idx;
4727           goto moveto_finish;
4728         }
4729         if( lwr>upr ) break;
4730         assert( lwr+upr>=0 );
4731         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
4732       }
4733     }
4734     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
4735     assert( pPage->isInit );
4736     if( pPage->leaf ){
4737       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4738       pCur->aiIdx[pCur->iPage] = (u16)idx;
4739       *pRes = c;
4740       rc = SQLITE_OK;
4741       goto moveto_finish;
4742     }
4743 moveto_next_layer:
4744     if( lwr>=pPage->nCell ){
4745       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4746     }else{
4747       chldPg = get4byte(findCell(pPage, lwr));
4748     }
4749     pCur->aiIdx[pCur->iPage] = (u16)lwr;
4750     rc = moveToChild(pCur, chldPg);
4751     if( rc ) break;
4752   }
4753 moveto_finish:
4754   pCur->info.nSize = 0;
4755   pCur->validNKey = 0;
4756   return rc;
4757 }
4758 
4759 
4760 /*
4761 ** Return TRUE if the cursor is not pointing at an entry of the table.
4762 **
4763 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
4764 ** past the last entry in the table or sqlite3BtreePrev() moves past
4765 ** the first entry.  TRUE is also returned if the table is empty.
4766 */
4767 int sqlite3BtreeEof(BtCursor *pCur){
4768   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4769   ** have been deleted? This API will need to change to return an error code
4770   ** as well as the boolean result value.
4771   */
4772   return (CURSOR_VALID!=pCur->eState);
4773 }
4774 
4775 /*
4776 ** Advance the cursor to the next entry in the database.  If
4777 ** successful then set *pRes=0.  If the cursor
4778 ** was already pointing to the last entry in the database before
4779 ** this routine was called, then set *pRes=1.
4780 */
4781 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4782   int rc;
4783   int idx;
4784   MemPage *pPage;
4785 
4786   assert( cursorHoldsMutex(pCur) );
4787   assert( pRes!=0 );
4788   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4789   if( pCur->eState!=CURSOR_VALID ){
4790     rc = restoreCursorPosition(pCur);
4791     if( rc!=SQLITE_OK ){
4792       *pRes = 0;
4793       return rc;
4794     }
4795     if( CURSOR_INVALID==pCur->eState ){
4796       *pRes = 1;
4797       return SQLITE_OK;
4798     }
4799     if( pCur->skipNext ){
4800       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4801       pCur->eState = CURSOR_VALID;
4802       if( pCur->skipNext>0 ){
4803         pCur->skipNext = 0;
4804         *pRes = 0;
4805         return SQLITE_OK;
4806       }
4807       pCur->skipNext = 0;
4808     }
4809   }
4810 
4811   pPage = pCur->apPage[pCur->iPage];
4812   idx = ++pCur->aiIdx[pCur->iPage];
4813   assert( pPage->isInit );
4814 
4815   /* If the database file is corrupt, it is possible for the value of idx
4816   ** to be invalid here. This can only occur if a second cursor modifies
4817   ** the page while cursor pCur is holding a reference to it. Which can
4818   ** only happen if the database is corrupt in such a way as to link the
4819   ** page into more than one b-tree structure. */
4820   testcase( idx>pPage->nCell );
4821 
4822   pCur->info.nSize = 0;
4823   pCur->validNKey = 0;
4824   if( idx>=pPage->nCell ){
4825     if( !pPage->leaf ){
4826       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
4827       if( rc ){
4828         *pRes = 0;
4829         return rc;
4830       }
4831       rc = moveToLeftmost(pCur);
4832       *pRes = 0;
4833       return rc;
4834     }
4835     do{
4836       if( pCur->iPage==0 ){
4837         *pRes = 1;
4838         pCur->eState = CURSOR_INVALID;
4839         return SQLITE_OK;
4840       }
4841       moveToParent(pCur);
4842       pPage = pCur->apPage[pCur->iPage];
4843     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
4844     *pRes = 0;
4845     if( pPage->intKey ){
4846       rc = sqlite3BtreeNext(pCur, pRes);
4847     }else{
4848       rc = SQLITE_OK;
4849     }
4850     return rc;
4851   }
4852   *pRes = 0;
4853   if( pPage->leaf ){
4854     return SQLITE_OK;
4855   }
4856   rc = moveToLeftmost(pCur);
4857   return rc;
4858 }
4859 
4860 
4861 /*
4862 ** Step the cursor to the back to the previous entry in the database.  If
4863 ** successful then set *pRes=0.  If the cursor
4864 ** was already pointing to the first entry in the database before
4865 ** this routine was called, then set *pRes=1.
4866 */
4867 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
4868   int rc;
4869   MemPage *pPage;
4870 
4871   assert( cursorHoldsMutex(pCur) );
4872   assert( pRes!=0 );
4873   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4874   pCur->atLast = 0;
4875   if( pCur->eState!=CURSOR_VALID ){
4876     if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4877       rc = btreeRestoreCursorPosition(pCur);
4878       if( rc!=SQLITE_OK ){
4879         *pRes = 0;
4880         return rc;
4881       }
4882     }
4883     if( CURSOR_INVALID==pCur->eState ){
4884       *pRes = 1;
4885       return SQLITE_OK;
4886     }
4887     if( pCur->skipNext ){
4888       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4889       pCur->eState = CURSOR_VALID;
4890       if( pCur->skipNext<0 ){
4891         pCur->skipNext = 0;
4892         *pRes = 0;
4893         return SQLITE_OK;
4894       }
4895       pCur->skipNext = 0;
4896     }
4897   }
4898 
4899   pPage = pCur->apPage[pCur->iPage];
4900   assert( pPage->isInit );
4901   if( !pPage->leaf ){
4902     int idx = pCur->aiIdx[pCur->iPage];
4903     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
4904     if( rc ){
4905       *pRes = 0;
4906       return rc;
4907     }
4908     rc = moveToRightmost(pCur);
4909   }else{
4910     while( pCur->aiIdx[pCur->iPage]==0 ){
4911       if( pCur->iPage==0 ){
4912         pCur->eState = CURSOR_INVALID;
4913         *pRes = 1;
4914         return SQLITE_OK;
4915       }
4916       moveToParent(pCur);
4917     }
4918     pCur->info.nSize = 0;
4919     pCur->validNKey = 0;
4920 
4921     pCur->aiIdx[pCur->iPage]--;
4922     pPage = pCur->apPage[pCur->iPage];
4923     if( pPage->intKey && !pPage->leaf ){
4924       rc = sqlite3BtreePrevious(pCur, pRes);
4925     }else{
4926       rc = SQLITE_OK;
4927     }
4928   }
4929   *pRes = 0;
4930   return rc;
4931 }
4932 
4933 /*
4934 ** Allocate a new page from the database file.
4935 **
4936 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
4937 ** has already been called on the new page.)  The new page has also
4938 ** been referenced and the calling routine is responsible for calling
4939 ** sqlite3PagerUnref() on the new page when it is done.
4940 **
4941 ** SQLITE_OK is returned on success.  Any other return value indicates
4942 ** an error.  *ppPage and *pPgno are undefined in the event of an error.
4943 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
4944 **
4945 ** If the "nearby" parameter is not 0, then an effort is made to
4946 ** locate a page close to the page number "nearby".  This can be used in an
4947 ** attempt to keep related pages close to each other in the database file,
4948 ** which in turn can make database access faster.
4949 **
4950 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4951 ** anywhere on the free-list, then it is guaranteed to be returned.  If
4952 ** eMode is BTALLOC_LT then the page returned will be less than or equal
4953 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
4954 ** are no restrictions on which page is returned.
4955 */
4956 static int allocateBtreePage(
4957   BtShared *pBt,         /* The btree */
4958   MemPage **ppPage,      /* Store pointer to the allocated page here */
4959   Pgno *pPgno,           /* Store the page number here */
4960   Pgno nearby,           /* Search for a page near this one */
4961   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
4962 ){
4963   MemPage *pPage1;
4964   int rc;
4965   u32 n;     /* Number of pages on the freelist */
4966   u32 k;     /* Number of leaves on the trunk of the freelist */
4967   MemPage *pTrunk = 0;
4968   MemPage *pPrevTrunk = 0;
4969   Pgno mxPage;     /* Total size of the database file */
4970 
4971   assert( sqlite3_mutex_held(pBt->mutex) );
4972   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
4973   pPage1 = pBt->pPage1;
4974   mxPage = btreePagecount(pBt);
4975   n = get4byte(&pPage1->aData[36]);
4976   testcase( n==mxPage-1 );
4977   if( n>=mxPage ){
4978     return SQLITE_CORRUPT_BKPT;
4979   }
4980   if( n>0 ){
4981     /* There are pages on the freelist.  Reuse one of those pages. */
4982     Pgno iTrunk;
4983     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4984 
4985     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
4986     ** shows that the page 'nearby' is somewhere on the free-list, then
4987     ** the entire-list will be searched for that page.
4988     */
4989 #ifndef SQLITE_OMIT_AUTOVACUUM
4990     if( eMode==BTALLOC_EXACT ){
4991       if( nearby<=mxPage ){
4992         u8 eType;
4993         assert( nearby>0 );
4994         assert( pBt->autoVacuum );
4995         rc = ptrmapGet(pBt, nearby, &eType, 0);
4996         if( rc ) return rc;
4997         if( eType==PTRMAP_FREEPAGE ){
4998           searchList = 1;
4999         }
5000       }
5001     }else if( eMode==BTALLOC_LE ){
5002       searchList = 1;
5003     }
5004 #endif
5005 
5006     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5007     ** first free-list trunk page. iPrevTrunk is initially 1.
5008     */
5009     rc = sqlite3PagerWrite(pPage1->pDbPage);
5010     if( rc ) return rc;
5011     put4byte(&pPage1->aData[36], n-1);
5012 
5013     /* The code within this loop is run only once if the 'searchList' variable
5014     ** is not true. Otherwise, it runs once for each trunk-page on the
5015     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5016     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5017     */
5018     do {
5019       pPrevTrunk = pTrunk;
5020       if( pPrevTrunk ){
5021         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5022       }else{
5023         iTrunk = get4byte(&pPage1->aData[32]);
5024       }
5025       testcase( iTrunk==mxPage );
5026       if( iTrunk>mxPage ){
5027         rc = SQLITE_CORRUPT_BKPT;
5028       }else{
5029         rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5030       }
5031       if( rc ){
5032         pTrunk = 0;
5033         goto end_allocate_page;
5034       }
5035       assert( pTrunk!=0 );
5036       assert( pTrunk->aData!=0 );
5037 
5038       k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
5039       if( k==0 && !searchList ){
5040         /* The trunk has no leaves and the list is not being searched.
5041         ** So extract the trunk page itself and use it as the newly
5042         ** allocated page */
5043         assert( pPrevTrunk==0 );
5044         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5045         if( rc ){
5046           goto end_allocate_page;
5047         }
5048         *pPgno = iTrunk;
5049         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5050         *ppPage = pTrunk;
5051         pTrunk = 0;
5052         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5053       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5054         /* Value of k is out of range.  Database corruption */
5055         rc = SQLITE_CORRUPT_BKPT;
5056         goto end_allocate_page;
5057 #ifndef SQLITE_OMIT_AUTOVACUUM
5058       }else if( searchList
5059             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5060       ){
5061         /* The list is being searched and this trunk page is the page
5062         ** to allocate, regardless of whether it has leaves.
5063         */
5064         *pPgno = iTrunk;
5065         *ppPage = pTrunk;
5066         searchList = 0;
5067         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5068         if( rc ){
5069           goto end_allocate_page;
5070         }
5071         if( k==0 ){
5072           if( !pPrevTrunk ){
5073             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5074           }else{
5075             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5076             if( rc!=SQLITE_OK ){
5077               goto end_allocate_page;
5078             }
5079             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5080           }
5081         }else{
5082           /* The trunk page is required by the caller but it contains
5083           ** pointers to free-list leaves. The first leaf becomes a trunk
5084           ** page in this case.
5085           */
5086           MemPage *pNewTrunk;
5087           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5088           if( iNewTrunk>mxPage ){
5089             rc = SQLITE_CORRUPT_BKPT;
5090             goto end_allocate_page;
5091           }
5092           testcase( iNewTrunk==mxPage );
5093           rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
5094           if( rc!=SQLITE_OK ){
5095             goto end_allocate_page;
5096           }
5097           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5098           if( rc!=SQLITE_OK ){
5099             releasePage(pNewTrunk);
5100             goto end_allocate_page;
5101           }
5102           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5103           put4byte(&pNewTrunk->aData[4], k-1);
5104           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5105           releasePage(pNewTrunk);
5106           if( !pPrevTrunk ){
5107             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5108             put4byte(&pPage1->aData[32], iNewTrunk);
5109           }else{
5110             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5111             if( rc ){
5112               goto end_allocate_page;
5113             }
5114             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5115           }
5116         }
5117         pTrunk = 0;
5118         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5119 #endif
5120       }else if( k>0 ){
5121         /* Extract a leaf from the trunk */
5122         u32 closest;
5123         Pgno iPage;
5124         unsigned char *aData = pTrunk->aData;
5125         if( nearby>0 ){
5126           u32 i;
5127           closest = 0;
5128           if( eMode==BTALLOC_LE ){
5129             for(i=0; i<k; i++){
5130               iPage = get4byte(&aData[8+i*4]);
5131               if( iPage<=nearby ){
5132                 closest = i;
5133                 break;
5134               }
5135             }
5136           }else{
5137             int dist;
5138             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5139             for(i=1; i<k; i++){
5140               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5141               if( d2<dist ){
5142                 closest = i;
5143                 dist = d2;
5144               }
5145             }
5146           }
5147         }else{
5148           closest = 0;
5149         }
5150 
5151         iPage = get4byte(&aData[8+closest*4]);
5152         testcase( iPage==mxPage );
5153         if( iPage>mxPage ){
5154           rc = SQLITE_CORRUPT_BKPT;
5155           goto end_allocate_page;
5156         }
5157         testcase( iPage==mxPage );
5158         if( !searchList
5159          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5160         ){
5161           int noContent;
5162           *pPgno = iPage;
5163           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5164                  ": %d more free pages\n",
5165                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5166           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5167           if( rc ) goto end_allocate_page;
5168           if( closest<k-1 ){
5169             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5170           }
5171           put4byte(&aData[4], k-1);
5172           noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5173           rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
5174           if( rc==SQLITE_OK ){
5175             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5176             if( rc!=SQLITE_OK ){
5177               releasePage(*ppPage);
5178             }
5179           }
5180           searchList = 0;
5181         }
5182       }
5183       releasePage(pPrevTrunk);
5184       pPrevTrunk = 0;
5185     }while( searchList );
5186   }else{
5187     /* There are no pages on the freelist, so append a new page to the
5188     ** database image.
5189     **
5190     ** Normally, new pages allocated by this block can be requested from the
5191     ** pager layer with the 'no-content' flag set. This prevents the pager
5192     ** from trying to read the pages content from disk. However, if the
5193     ** current transaction has already run one or more incremental-vacuum
5194     ** steps, then the page we are about to allocate may contain content
5195     ** that is required in the event of a rollback. In this case, do
5196     ** not set the no-content flag. This causes the pager to load and journal
5197     ** the current page content before overwriting it.
5198     **
5199     ** Note that the pager will not actually attempt to load or journal
5200     ** content for any page that really does lie past the end of the database
5201     ** file on disk. So the effects of disabling the no-content optimization
5202     ** here are confined to those pages that lie between the end of the
5203     ** database image and the end of the database file.
5204     */
5205     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
5206 
5207     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5208     if( rc ) return rc;
5209     pBt->nPage++;
5210     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5211 
5212 #ifndef SQLITE_OMIT_AUTOVACUUM
5213     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5214       /* If *pPgno refers to a pointer-map page, allocate two new pages
5215       ** at the end of the file instead of one. The first allocated page
5216       ** becomes a new pointer-map page, the second is used by the caller.
5217       */
5218       MemPage *pPg = 0;
5219       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5220       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5221       rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
5222       if( rc==SQLITE_OK ){
5223         rc = sqlite3PagerWrite(pPg->pDbPage);
5224         releasePage(pPg);
5225       }
5226       if( rc ) return rc;
5227       pBt->nPage++;
5228       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5229     }
5230 #endif
5231     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5232     *pPgno = pBt->nPage;
5233 
5234     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5235     rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
5236     if( rc ) return rc;
5237     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5238     if( rc!=SQLITE_OK ){
5239       releasePage(*ppPage);
5240     }
5241     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5242   }
5243 
5244   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5245 
5246 end_allocate_page:
5247   releasePage(pTrunk);
5248   releasePage(pPrevTrunk);
5249   if( rc==SQLITE_OK ){
5250     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5251       releasePage(*ppPage);
5252       *ppPage = 0;
5253       return SQLITE_CORRUPT_BKPT;
5254     }
5255     (*ppPage)->isInit = 0;
5256   }else{
5257     *ppPage = 0;
5258   }
5259   assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
5260   return rc;
5261 }
5262 
5263 /*
5264 ** This function is used to add page iPage to the database file free-list.
5265 ** It is assumed that the page is not already a part of the free-list.
5266 **
5267 ** The value passed as the second argument to this function is optional.
5268 ** If the caller happens to have a pointer to the MemPage object
5269 ** corresponding to page iPage handy, it may pass it as the second value.
5270 ** Otherwise, it may pass NULL.
5271 **
5272 ** If a pointer to a MemPage object is passed as the second argument,
5273 ** its reference count is not altered by this function.
5274 */
5275 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5276   MemPage *pTrunk = 0;                /* Free-list trunk page */
5277   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5278   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5279   MemPage *pPage;                     /* Page being freed. May be NULL. */
5280   int rc;                             /* Return Code */
5281   int nFree;                          /* Initial number of pages on free-list */
5282 
5283   assert( sqlite3_mutex_held(pBt->mutex) );
5284   assert( iPage>1 );
5285   assert( !pMemPage || pMemPage->pgno==iPage );
5286 
5287   if( pMemPage ){
5288     pPage = pMemPage;
5289     sqlite3PagerRef(pPage->pDbPage);
5290   }else{
5291     pPage = btreePageLookup(pBt, iPage);
5292   }
5293 
5294   /* Increment the free page count on pPage1 */
5295   rc = sqlite3PagerWrite(pPage1->pDbPage);
5296   if( rc ) goto freepage_out;
5297   nFree = get4byte(&pPage1->aData[36]);
5298   put4byte(&pPage1->aData[36], nFree+1);
5299 
5300   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5301     /* If the secure_delete option is enabled, then
5302     ** always fully overwrite deleted information with zeros.
5303     */
5304     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5305      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5306     ){
5307       goto freepage_out;
5308     }
5309     memset(pPage->aData, 0, pPage->pBt->pageSize);
5310   }
5311 
5312   /* If the database supports auto-vacuum, write an entry in the pointer-map
5313   ** to indicate that the page is free.
5314   */
5315   if( ISAUTOVACUUM ){
5316     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5317     if( rc ) goto freepage_out;
5318   }
5319 
5320   /* Now manipulate the actual database free-list structure. There are two
5321   ** possibilities. If the free-list is currently empty, or if the first
5322   ** trunk page in the free-list is full, then this page will become a
5323   ** new free-list trunk page. Otherwise, it will become a leaf of the
5324   ** first trunk page in the current free-list. This block tests if it
5325   ** is possible to add the page as a new free-list leaf.
5326   */
5327   if( nFree!=0 ){
5328     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
5329 
5330     iTrunk = get4byte(&pPage1->aData[32]);
5331     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5332     if( rc!=SQLITE_OK ){
5333       goto freepage_out;
5334     }
5335 
5336     nLeaf = get4byte(&pTrunk->aData[4]);
5337     assert( pBt->usableSize>32 );
5338     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5339       rc = SQLITE_CORRUPT_BKPT;
5340       goto freepage_out;
5341     }
5342     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5343       /* In this case there is room on the trunk page to insert the page
5344       ** being freed as a new leaf.
5345       **
5346       ** Note that the trunk page is not really full until it contains
5347       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5348       ** coded.  But due to a coding error in versions of SQLite prior to
5349       ** 3.6.0, databases with freelist trunk pages holding more than
5350       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
5351       ** to maintain backwards compatibility with older versions of SQLite,
5352       ** we will continue to restrict the number of entries to usableSize/4 - 8
5353       ** for now.  At some point in the future (once everyone has upgraded
5354       ** to 3.6.0 or later) we should consider fixing the conditional above
5355       ** to read "usableSize/4-2" instead of "usableSize/4-8".
5356       */
5357       rc = sqlite3PagerWrite(pTrunk->pDbPage);
5358       if( rc==SQLITE_OK ){
5359         put4byte(&pTrunk->aData[4], nLeaf+1);
5360         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5361         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5362           sqlite3PagerDontWrite(pPage->pDbPage);
5363         }
5364         rc = btreeSetHasContent(pBt, iPage);
5365       }
5366       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5367       goto freepage_out;
5368     }
5369   }
5370 
5371   /* If control flows to this point, then it was not possible to add the
5372   ** the page being freed as a leaf page of the first trunk in the free-list.
5373   ** Possibly because the free-list is empty, or possibly because the
5374   ** first trunk in the free-list is full. Either way, the page being freed
5375   ** will become the new first trunk page in the free-list.
5376   */
5377   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5378     goto freepage_out;
5379   }
5380   rc = sqlite3PagerWrite(pPage->pDbPage);
5381   if( rc!=SQLITE_OK ){
5382     goto freepage_out;
5383   }
5384   put4byte(pPage->aData, iTrunk);
5385   put4byte(&pPage->aData[4], 0);
5386   put4byte(&pPage1->aData[32], iPage);
5387   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5388 
5389 freepage_out:
5390   if( pPage ){
5391     pPage->isInit = 0;
5392   }
5393   releasePage(pPage);
5394   releasePage(pTrunk);
5395   return rc;
5396 }
5397 static void freePage(MemPage *pPage, int *pRC){
5398   if( (*pRC)==SQLITE_OK ){
5399     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5400   }
5401 }
5402 
5403 /*
5404 ** Free any overflow pages associated with the given Cell.
5405 */
5406 static int clearCell(MemPage *pPage, unsigned char *pCell){
5407   BtShared *pBt = pPage->pBt;
5408   CellInfo info;
5409   Pgno ovflPgno;
5410   int rc;
5411   int nOvfl;
5412   u32 ovflPageSize;
5413 
5414   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5415   btreeParseCellPtr(pPage, pCell, &info);
5416   if( info.iOverflow==0 ){
5417     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
5418   }
5419   if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5420     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
5421   }
5422   ovflPgno = get4byte(&pCell[info.iOverflow]);
5423   assert( pBt->usableSize > 4 );
5424   ovflPageSize = pBt->usableSize - 4;
5425   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5426   assert( ovflPgno==0 || nOvfl>0 );
5427   while( nOvfl-- ){
5428     Pgno iNext = 0;
5429     MemPage *pOvfl = 0;
5430     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
5431       /* 0 is not a legal page number and page 1 cannot be an
5432       ** overflow page. Therefore if ovflPgno<2 or past the end of the
5433       ** file the database must be corrupt. */
5434       return SQLITE_CORRUPT_BKPT;
5435     }
5436     if( nOvfl ){
5437       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5438       if( rc ) return rc;
5439     }
5440 
5441     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
5442      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5443     ){
5444       /* There is no reason any cursor should have an outstanding reference
5445       ** to an overflow page belonging to a cell that is being deleted/updated.
5446       ** So if there exists more than one reference to this page, then it
5447       ** must not really be an overflow page and the database must be corrupt.
5448       ** It is helpful to detect this before calling freePage2(), as
5449       ** freePage2() may zero the page contents if secure-delete mode is
5450       ** enabled. If this 'overflow' page happens to be a page that the
5451       ** caller is iterating through or using in some other way, this
5452       ** can be problematic.
5453       */
5454       rc = SQLITE_CORRUPT_BKPT;
5455     }else{
5456       rc = freePage2(pBt, pOvfl, ovflPgno);
5457     }
5458 
5459     if( pOvfl ){
5460       sqlite3PagerUnref(pOvfl->pDbPage);
5461     }
5462     if( rc ) return rc;
5463     ovflPgno = iNext;
5464   }
5465   return SQLITE_OK;
5466 }
5467 
5468 /*
5469 ** Create the byte sequence used to represent a cell on page pPage
5470 ** and write that byte sequence into pCell[].  Overflow pages are
5471 ** allocated and filled in as necessary.  The calling procedure
5472 ** is responsible for making sure sufficient space has been allocated
5473 ** for pCell[].
5474 **
5475 ** Note that pCell does not necessary need to point to the pPage->aData
5476 ** area.  pCell might point to some temporary storage.  The cell will
5477 ** be constructed in this temporary area then copied into pPage->aData
5478 ** later.
5479 */
5480 static int fillInCell(
5481   MemPage *pPage,                /* The page that contains the cell */
5482   unsigned char *pCell,          /* Complete text of the cell */
5483   const void *pKey, i64 nKey,    /* The key */
5484   const void *pData,int nData,   /* The data */
5485   int nZero,                     /* Extra zero bytes to append to pData */
5486   int *pnSize                    /* Write cell size here */
5487 ){
5488   int nPayload;
5489   const u8 *pSrc;
5490   int nSrc, n, rc;
5491   int spaceLeft;
5492   MemPage *pOvfl = 0;
5493   MemPage *pToRelease = 0;
5494   unsigned char *pPrior;
5495   unsigned char *pPayload;
5496   BtShared *pBt = pPage->pBt;
5497   Pgno pgnoOvfl = 0;
5498   int nHeader;
5499   CellInfo info;
5500 
5501   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5502 
5503   /* pPage is not necessarily writeable since pCell might be auxiliary
5504   ** buffer space that is separate from the pPage buffer area */
5505   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5506             || sqlite3PagerIswriteable(pPage->pDbPage) );
5507 
5508   /* Fill in the header. */
5509   nHeader = 0;
5510   if( !pPage->leaf ){
5511     nHeader += 4;
5512   }
5513   if( pPage->hasData ){
5514     nHeader += putVarint32(&pCell[nHeader], nData+nZero);
5515   }else{
5516     nData = nZero = 0;
5517   }
5518   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
5519   btreeParseCellPtr(pPage, pCell, &info);
5520   assert( info.nHeader==nHeader );
5521   assert( info.nKey==nKey );
5522   assert( info.nData==(u32)(nData+nZero) );
5523 
5524   /* Fill in the payload */
5525   nPayload = nData + nZero;
5526   if( pPage->intKey ){
5527     pSrc = pData;
5528     nSrc = nData;
5529     nData = 0;
5530   }else{
5531     if( NEVER(nKey>0x7fffffff || pKey==0) ){
5532       return SQLITE_CORRUPT_BKPT;
5533     }
5534     nPayload += (int)nKey;
5535     pSrc = pKey;
5536     nSrc = (int)nKey;
5537   }
5538   *pnSize = info.nSize;
5539   spaceLeft = info.nLocal;
5540   pPayload = &pCell[nHeader];
5541   pPrior = &pCell[info.iOverflow];
5542 
5543   while( nPayload>0 ){
5544     if( spaceLeft==0 ){
5545 #ifndef SQLITE_OMIT_AUTOVACUUM
5546       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
5547       if( pBt->autoVacuum ){
5548         do{
5549           pgnoOvfl++;
5550         } while(
5551           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5552         );
5553       }
5554 #endif
5555       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
5556 #ifndef SQLITE_OMIT_AUTOVACUUM
5557       /* If the database supports auto-vacuum, and the second or subsequent
5558       ** overflow page is being allocated, add an entry to the pointer-map
5559       ** for that page now.
5560       **
5561       ** If this is the first overflow page, then write a partial entry
5562       ** to the pointer-map. If we write nothing to this pointer-map slot,
5563       ** then the optimistic overflow chain processing in clearCell()
5564       ** may misinterpret the uninitialized values and delete the
5565       ** wrong pages from the database.
5566       */
5567       if( pBt->autoVacuum && rc==SQLITE_OK ){
5568         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5569         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
5570         if( rc ){
5571           releasePage(pOvfl);
5572         }
5573       }
5574 #endif
5575       if( rc ){
5576         releasePage(pToRelease);
5577         return rc;
5578       }
5579 
5580       /* If pToRelease is not zero than pPrior points into the data area
5581       ** of pToRelease.  Make sure pToRelease is still writeable. */
5582       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5583 
5584       /* If pPrior is part of the data area of pPage, then make sure pPage
5585       ** is still writeable */
5586       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5587             || sqlite3PagerIswriteable(pPage->pDbPage) );
5588 
5589       put4byte(pPrior, pgnoOvfl);
5590       releasePage(pToRelease);
5591       pToRelease = pOvfl;
5592       pPrior = pOvfl->aData;
5593       put4byte(pPrior, 0);
5594       pPayload = &pOvfl->aData[4];
5595       spaceLeft = pBt->usableSize - 4;
5596     }
5597     n = nPayload;
5598     if( n>spaceLeft ) n = spaceLeft;
5599 
5600     /* If pToRelease is not zero than pPayload points into the data area
5601     ** of pToRelease.  Make sure pToRelease is still writeable. */
5602     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5603 
5604     /* If pPayload is part of the data area of pPage, then make sure pPage
5605     ** is still writeable */
5606     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5607             || sqlite3PagerIswriteable(pPage->pDbPage) );
5608 
5609     if( nSrc>0 ){
5610       if( n>nSrc ) n = nSrc;
5611       assert( pSrc );
5612       memcpy(pPayload, pSrc, n);
5613     }else{
5614       memset(pPayload, 0, n);
5615     }
5616     nPayload -= n;
5617     pPayload += n;
5618     pSrc += n;
5619     nSrc -= n;
5620     spaceLeft -= n;
5621     if( nSrc==0 ){
5622       nSrc = nData;
5623       pSrc = pData;
5624     }
5625   }
5626   releasePage(pToRelease);
5627   return SQLITE_OK;
5628 }
5629 
5630 /*
5631 ** Remove the i-th cell from pPage.  This routine effects pPage only.
5632 ** The cell content is not freed or deallocated.  It is assumed that
5633 ** the cell content has been copied someplace else.  This routine just
5634 ** removes the reference to the cell from pPage.
5635 **
5636 ** "sz" must be the number of bytes in the cell.
5637 */
5638 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
5639   u32 pc;         /* Offset to cell content of cell being deleted */
5640   u8 *data;       /* pPage->aData */
5641   u8 *ptr;        /* Used to move bytes around within data[] */
5642   int rc;         /* The return code */
5643   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
5644 
5645   if( *pRC ) return;
5646 
5647   assert( idx>=0 && idx<pPage->nCell );
5648   assert( sz==cellSize(pPage, idx) );
5649   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5650   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5651   data = pPage->aData;
5652   ptr = &pPage->aCellIdx[2*idx];
5653   pc = get2byte(ptr);
5654   hdr = pPage->hdrOffset;
5655   testcase( pc==get2byte(&data[hdr+5]) );
5656   testcase( pc+sz==pPage->pBt->usableSize );
5657   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
5658     *pRC = SQLITE_CORRUPT_BKPT;
5659     return;
5660   }
5661   rc = freeSpace(pPage, pc, sz);
5662   if( rc ){
5663     *pRC = rc;
5664     return;
5665   }
5666   pPage->nCell--;
5667   memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
5668   put2byte(&data[hdr+3], pPage->nCell);
5669   pPage->nFree += 2;
5670 }
5671 
5672 /*
5673 ** Insert a new cell on pPage at cell index "i".  pCell points to the
5674 ** content of the cell.
5675 **
5676 ** If the cell content will fit on the page, then put it there.  If it
5677 ** will not fit, then make a copy of the cell content into pTemp if
5678 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
5679 ** in pPage->apOvfl[] and make it point to the cell content (either
5680 ** in pTemp or the original pCell) and also record its index.
5681 ** Allocating a new entry in pPage->aCell[] implies that
5682 ** pPage->nOverflow is incremented.
5683 **
5684 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5685 ** cell. The caller will overwrite them after this function returns. If
5686 ** nSkip is non-zero, then pCell may not point to an invalid memory location
5687 ** (but pCell+nSkip is always valid).
5688 */
5689 static void insertCell(
5690   MemPage *pPage,   /* Page into which we are copying */
5691   int i,            /* New cell becomes the i-th cell of the page */
5692   u8 *pCell,        /* Content of the new cell */
5693   int sz,           /* Bytes of content in pCell */
5694   u8 *pTemp,        /* Temp storage space for pCell, if needed */
5695   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
5696   int *pRC          /* Read and write return code from here */
5697 ){
5698   int idx = 0;      /* Where to write new cell content in data[] */
5699   int j;            /* Loop counter */
5700   int end;          /* First byte past the last cell pointer in data[] */
5701   int ins;          /* Index in data[] where new cell pointer is inserted */
5702   int cellOffset;   /* Address of first cell pointer in data[] */
5703   u8 *data;         /* The content of the whole page */
5704   int nSkip = (iChild ? 4 : 0);
5705 
5706   if( *pRC ) return;
5707 
5708   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
5709   assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
5710   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5711   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
5712   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5713   /* The cell should normally be sized correctly.  However, when moving a
5714   ** malformed cell from a leaf page to an interior page, if the cell size
5715   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5716   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
5717   ** the term after the || in the following assert(). */
5718   assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
5719   if( pPage->nOverflow || sz+2>pPage->nFree ){
5720     if( pTemp ){
5721       memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
5722       pCell = pTemp;
5723     }
5724     if( iChild ){
5725       put4byte(pCell, iChild);
5726     }
5727     j = pPage->nOverflow++;
5728     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5729     pPage->apOvfl[j] = pCell;
5730     pPage->aiOvfl[j] = (u16)i;
5731   }else{
5732     int rc = sqlite3PagerWrite(pPage->pDbPage);
5733     if( rc!=SQLITE_OK ){
5734       *pRC = rc;
5735       return;
5736     }
5737     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5738     data = pPage->aData;
5739     cellOffset = pPage->cellOffset;
5740     end = cellOffset + 2*pPage->nCell;
5741     ins = cellOffset + 2*i;
5742     rc = allocateSpace(pPage, sz, &idx);
5743     if( rc ){ *pRC = rc; return; }
5744     /* The allocateSpace() routine guarantees the following two properties
5745     ** if it returns success */
5746     assert( idx >= end+2 );
5747     assert( idx+sz <= (int)pPage->pBt->usableSize );
5748     pPage->nCell++;
5749     pPage->nFree -= (u16)(2 + sz);
5750     memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
5751     if( iChild ){
5752       put4byte(&data[idx], iChild);
5753     }
5754     memmove(&data[ins+2], &data[ins], end-ins);
5755     put2byte(&data[ins], idx);
5756     put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5757 #ifndef SQLITE_OMIT_AUTOVACUUM
5758     if( pPage->pBt->autoVacuum ){
5759       /* The cell may contain a pointer to an overflow page. If so, write
5760       ** the entry for the overflow page into the pointer map.
5761       */
5762       ptrmapPutOvflPtr(pPage, pCell, pRC);
5763     }
5764 #endif
5765   }
5766 }
5767 
5768 /*
5769 ** Add a list of cells to a page.  The page should be initially empty.
5770 ** The cells are guaranteed to fit on the page.
5771 */
5772 static void assemblePage(
5773   MemPage *pPage,   /* The page to be assemblied */
5774   int nCell,        /* The number of cells to add to this page */
5775   u8 **apCell,      /* Pointers to cell bodies */
5776   u16 *aSize        /* Sizes of the cells */
5777 ){
5778   int i;            /* Loop counter */
5779   u8 *pCellptr;     /* Address of next cell pointer */
5780   int cellbody;     /* Address of next cell body */
5781   u8 * const data = pPage->aData;             /* Pointer to data for pPage */
5782   const int hdr = pPage->hdrOffset;           /* Offset of header on pPage */
5783   const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
5784 
5785   assert( pPage->nOverflow==0 );
5786   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5787   assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5788             && (int)MX_CELL(pPage->pBt)<=10921);
5789   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5790 
5791   /* Check that the page has just been zeroed by zeroPage() */
5792   assert( pPage->nCell==0 );
5793   assert( get2byteNotZero(&data[hdr+5])==nUsable );
5794 
5795   pCellptr = &pPage->aCellIdx[nCell*2];
5796   cellbody = nUsable;
5797   for(i=nCell-1; i>=0; i--){
5798     u16 sz = aSize[i];
5799     pCellptr -= 2;
5800     cellbody -= sz;
5801     put2byte(pCellptr, cellbody);
5802     memcpy(&data[cellbody], apCell[i], sz);
5803   }
5804   put2byte(&data[hdr+3], nCell);
5805   put2byte(&data[hdr+5], cellbody);
5806   pPage->nFree -= (nCell*2 + nUsable - cellbody);
5807   pPage->nCell = (u16)nCell;
5808 }
5809 
5810 /*
5811 ** The following parameters determine how many adjacent pages get involved
5812 ** in a balancing operation.  NN is the number of neighbors on either side
5813 ** of the page that participate in the balancing operation.  NB is the
5814 ** total number of pages that participate, including the target page and
5815 ** NN neighbors on either side.
5816 **
5817 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
5818 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5819 ** in exchange for a larger degradation in INSERT and UPDATE performance.
5820 ** The value of NN appears to give the best results overall.
5821 */
5822 #define NN 1             /* Number of neighbors on either side of pPage */
5823 #define NB (NN*2+1)      /* Total pages involved in the balance */
5824 
5825 
5826 #ifndef SQLITE_OMIT_QUICKBALANCE
5827 /*
5828 ** This version of balance() handles the common special case where
5829 ** a new entry is being inserted on the extreme right-end of the
5830 ** tree, in other words, when the new entry will become the largest
5831 ** entry in the tree.
5832 **
5833 ** Instead of trying to balance the 3 right-most leaf pages, just add
5834 ** a new page to the right-hand side and put the one new entry in
5835 ** that page.  This leaves the right side of the tree somewhat
5836 ** unbalanced.  But odds are that we will be inserting new entries
5837 ** at the end soon afterwards so the nearly empty page will quickly
5838 ** fill up.  On average.
5839 **
5840 ** pPage is the leaf page which is the right-most page in the tree.
5841 ** pParent is its parent.  pPage must have a single overflow entry
5842 ** which is also the right-most entry on the page.
5843 **
5844 ** The pSpace buffer is used to store a temporary copy of the divider
5845 ** cell that will be inserted into pParent. Such a cell consists of a 4
5846 ** byte page number followed by a variable length integer. In other
5847 ** words, at most 13 bytes. Hence the pSpace buffer must be at
5848 ** least 13 bytes in size.
5849 */
5850 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5851   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
5852   MemPage *pNew;                       /* Newly allocated page */
5853   int rc;                              /* Return Code */
5854   Pgno pgnoNew;                        /* Page number of pNew */
5855 
5856   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5857   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5858   assert( pPage->nOverflow==1 );
5859 
5860   /* This error condition is now caught prior to reaching this function */
5861   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
5862 
5863   /* Allocate a new page. This page will become the right-sibling of
5864   ** pPage. Make the parent page writable, so that the new divider cell
5865   ** may be inserted. If both these operations are successful, proceed.
5866   */
5867   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
5868 
5869   if( rc==SQLITE_OK ){
5870 
5871     u8 *pOut = &pSpace[4];
5872     u8 *pCell = pPage->apOvfl[0];
5873     u16 szCell = cellSizePtr(pPage, pCell);
5874     u8 *pStop;
5875 
5876     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
5877     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5878     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
5879     assemblePage(pNew, 1, &pCell, &szCell);
5880 
5881     /* If this is an auto-vacuum database, update the pointer map
5882     ** with entries for the new page, and any pointer from the
5883     ** cell on the page to an overflow page. If either of these
5884     ** operations fails, the return code is set, but the contents
5885     ** of the parent page are still manipulated by thh code below.
5886     ** That is Ok, at this point the parent page is guaranteed to
5887     ** be marked as dirty. Returning an error code will cause a
5888     ** rollback, undoing any changes made to the parent page.
5889     */
5890     if( ISAUTOVACUUM ){
5891       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5892       if( szCell>pNew->minLocal ){
5893         ptrmapPutOvflPtr(pNew, pCell, &rc);
5894       }
5895     }
5896 
5897     /* Create a divider cell to insert into pParent. The divider cell
5898     ** consists of a 4-byte page number (the page number of pPage) and
5899     ** a variable length key value (which must be the same value as the
5900     ** largest key on pPage).
5901     **
5902     ** To find the largest key value on pPage, first find the right-most
5903     ** cell on pPage. The first two fields of this cell are the
5904     ** record-length (a variable length integer at most 32-bits in size)
5905     ** and the key value (a variable length integer, may have any value).
5906     ** The first of the while(...) loops below skips over the record-length
5907     ** field. The second while(...) loop copies the key value from the
5908     ** cell on pPage into the pSpace buffer.
5909     */
5910     pCell = findCell(pPage, pPage->nCell-1);
5911     pStop = &pCell[9];
5912     while( (*(pCell++)&0x80) && pCell<pStop );
5913     pStop = &pCell[9];
5914     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5915 
5916     /* Insert the new divider cell into pParent. */
5917     insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5918                0, pPage->pgno, &rc);
5919 
5920     /* Set the right-child pointer of pParent to point to the new page. */
5921     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5922 
5923     /* Release the reference to the new page. */
5924     releasePage(pNew);
5925   }
5926 
5927   return rc;
5928 }
5929 #endif /* SQLITE_OMIT_QUICKBALANCE */
5930 
5931 #if 0
5932 /*
5933 ** This function does not contribute anything to the operation of SQLite.
5934 ** it is sometimes activated temporarily while debugging code responsible
5935 ** for setting pointer-map entries.
5936 */
5937 static int ptrmapCheckPages(MemPage **apPage, int nPage){
5938   int i, j;
5939   for(i=0; i<nPage; i++){
5940     Pgno n;
5941     u8 e;
5942     MemPage *pPage = apPage[i];
5943     BtShared *pBt = pPage->pBt;
5944     assert( pPage->isInit );
5945 
5946     for(j=0; j<pPage->nCell; j++){
5947       CellInfo info;
5948       u8 *z;
5949 
5950       z = findCell(pPage, j);
5951       btreeParseCellPtr(pPage, z, &info);
5952       if( info.iOverflow ){
5953         Pgno ovfl = get4byte(&z[info.iOverflow]);
5954         ptrmapGet(pBt, ovfl, &e, &n);
5955         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5956       }
5957       if( !pPage->leaf ){
5958         Pgno child = get4byte(z);
5959         ptrmapGet(pBt, child, &e, &n);
5960         assert( n==pPage->pgno && e==PTRMAP_BTREE );
5961       }
5962     }
5963     if( !pPage->leaf ){
5964       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5965       ptrmapGet(pBt, child, &e, &n);
5966       assert( n==pPage->pgno && e==PTRMAP_BTREE );
5967     }
5968   }
5969   return 1;
5970 }
5971 #endif
5972 
5973 /*
5974 ** This function is used to copy the contents of the b-tree node stored
5975 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5976 ** the pointer-map entries for each child page are updated so that the
5977 ** parent page stored in the pointer map is page pTo. If pFrom contained
5978 ** any cells with overflow page pointers, then the corresponding pointer
5979 ** map entries are also updated so that the parent page is page pTo.
5980 **
5981 ** If pFrom is currently carrying any overflow cells (entries in the
5982 ** MemPage.apOvfl[] array), they are not copied to pTo.
5983 **
5984 ** Before returning, page pTo is reinitialized using btreeInitPage().
5985 **
5986 ** The performance of this function is not critical. It is only used by
5987 ** the balance_shallower() and balance_deeper() procedures, neither of
5988 ** which are called often under normal circumstances.
5989 */
5990 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5991   if( (*pRC)==SQLITE_OK ){
5992     BtShared * const pBt = pFrom->pBt;
5993     u8 * const aFrom = pFrom->aData;
5994     u8 * const aTo = pTo->aData;
5995     int const iFromHdr = pFrom->hdrOffset;
5996     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5997     int rc;
5998     int iData;
5999 
6000 
6001     assert( pFrom->isInit );
6002     assert( pFrom->nFree>=iToHdr );
6003     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6004 
6005     /* Copy the b-tree node content from page pFrom to page pTo. */
6006     iData = get2byte(&aFrom[iFromHdr+5]);
6007     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6008     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6009 
6010     /* Reinitialize page pTo so that the contents of the MemPage structure
6011     ** match the new data. The initialization of pTo can actually fail under
6012     ** fairly obscure circumstances, even though it is a copy of initialized
6013     ** page pFrom.
6014     */
6015     pTo->isInit = 0;
6016     rc = btreeInitPage(pTo);
6017     if( rc!=SQLITE_OK ){
6018       *pRC = rc;
6019       return;
6020     }
6021 
6022     /* If this is an auto-vacuum database, update the pointer-map entries
6023     ** for any b-tree or overflow pages that pTo now contains the pointers to.
6024     */
6025     if( ISAUTOVACUUM ){
6026       *pRC = setChildPtrmaps(pTo);
6027     }
6028   }
6029 }
6030 
6031 /*
6032 ** This routine redistributes cells on the iParentIdx'th child of pParent
6033 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6034 ** same amount of free space. Usually a single sibling on either side of the
6035 ** page are used in the balancing, though both siblings might come from one
6036 ** side if the page is the first or last child of its parent. If the page
6037 ** has fewer than 2 siblings (something which can only happen if the page
6038 ** is a root page or a child of a root page) then all available siblings
6039 ** participate in the balancing.
6040 **
6041 ** The number of siblings of the page might be increased or decreased by
6042 ** one or two in an effort to keep pages nearly full but not over full.
6043 **
6044 ** Note that when this routine is called, some of the cells on the page
6045 ** might not actually be stored in MemPage.aData[]. This can happen
6046 ** if the page is overfull. This routine ensures that all cells allocated
6047 ** to the page and its siblings fit into MemPage.aData[] before returning.
6048 **
6049 ** In the course of balancing the page and its siblings, cells may be
6050 ** inserted into or removed from the parent page (pParent). Doing so
6051 ** may cause the parent page to become overfull or underfull. If this
6052 ** happens, it is the responsibility of the caller to invoke the correct
6053 ** balancing routine to fix this problem (see the balance() routine).
6054 **
6055 ** If this routine fails for any reason, it might leave the database
6056 ** in a corrupted state. So if this routine fails, the database should
6057 ** be rolled back.
6058 **
6059 ** The third argument to this function, aOvflSpace, is a pointer to a
6060 ** buffer big enough to hold one page. If while inserting cells into the parent
6061 ** page (pParent) the parent page becomes overfull, this buffer is
6062 ** used to store the parent's overflow cells. Because this function inserts
6063 ** a maximum of four divider cells into the parent page, and the maximum
6064 ** size of a cell stored within an internal node is always less than 1/4
6065 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6066 ** enough for all overflow cells.
6067 **
6068 ** If aOvflSpace is set to a null pointer, this function returns
6069 ** SQLITE_NOMEM.
6070 */
6071 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6072 #pragma optimize("", off)
6073 #endif
6074 static int balance_nonroot(
6075   MemPage *pParent,               /* Parent page of siblings being balanced */
6076   int iParentIdx,                 /* Index of "the page" in pParent */
6077   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
6078   int isRoot,                     /* True if pParent is a root-page */
6079   int bBulk                       /* True if this call is part of a bulk load */
6080 ){
6081   BtShared *pBt;               /* The whole database */
6082   int nCell = 0;               /* Number of cells in apCell[] */
6083   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
6084   int nNew = 0;                /* Number of pages in apNew[] */
6085   int nOld;                    /* Number of pages in apOld[] */
6086   int i, j, k;                 /* Loop counters */
6087   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
6088   int rc = SQLITE_OK;          /* The return code */
6089   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
6090   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
6091   int usableSpace;             /* Bytes in pPage beyond the header */
6092   int pageFlags;               /* Value of pPage->aData[0] */
6093   int subtotal;                /* Subtotal of bytes in cells on one page */
6094   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
6095   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
6096   int szScratch;               /* Size of scratch memory requested */
6097   MemPage *apOld[NB];          /* pPage and up to two siblings */
6098   MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
6099   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
6100   u8 *pRight;                  /* Location in parent of right-sibling pointer */
6101   u8 *apDiv[NB-1];             /* Divider cells in pParent */
6102   int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
6103   int szNew[NB+2];             /* Combined size of cells place on i-th page */
6104   u8 **apCell = 0;             /* All cells begin balanced */
6105   u16 *szCell;                 /* Local size of all cells in apCell[] */
6106   u8 *aSpace1;                 /* Space for copies of dividers cells */
6107   Pgno pgno;                   /* Temp var to store a page number in */
6108 
6109   pBt = pParent->pBt;
6110   assert( sqlite3_mutex_held(pBt->mutex) );
6111   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6112 
6113 #if 0
6114   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
6115 #endif
6116 
6117   /* At this point pParent may have at most one overflow cell. And if
6118   ** this overflow cell is present, it must be the cell with
6119   ** index iParentIdx. This scenario comes about when this function
6120   ** is called (indirectly) from sqlite3BtreeDelete().
6121   */
6122   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
6123   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
6124 
6125   if( !aOvflSpace ){
6126     return SQLITE_NOMEM;
6127   }
6128 
6129   /* Find the sibling pages to balance. Also locate the cells in pParent
6130   ** that divide the siblings. An attempt is made to find NN siblings on
6131   ** either side of pPage. More siblings are taken from one side, however,
6132   ** if there are fewer than NN siblings on the other side. If pParent
6133   ** has NB or fewer children then all children of pParent are taken.
6134   **
6135   ** This loop also drops the divider cells from the parent page. This
6136   ** way, the remainder of the function does not have to deal with any
6137   ** overflow cells in the parent page, since if any existed they will
6138   ** have already been removed.
6139   */
6140   i = pParent->nOverflow + pParent->nCell;
6141   if( i<2 ){
6142     nxDiv = 0;
6143   }else{
6144     assert( bBulk==0 || bBulk==1 );
6145     if( iParentIdx==0 ){
6146       nxDiv = 0;
6147     }else if( iParentIdx==i ){
6148       nxDiv = i-2+bBulk;
6149     }else{
6150       assert( bBulk==0 );
6151       nxDiv = iParentIdx-1;
6152     }
6153     i = 2-bBulk;
6154   }
6155   nOld = i+1;
6156   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6157     pRight = &pParent->aData[pParent->hdrOffset+8];
6158   }else{
6159     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6160   }
6161   pgno = get4byte(pRight);
6162   while( 1 ){
6163     rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
6164     if( rc ){
6165       memset(apOld, 0, (i+1)*sizeof(MemPage*));
6166       goto balance_cleanup;
6167     }
6168     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
6169     if( (i--)==0 ) break;
6170 
6171     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6172       apDiv[i] = pParent->apOvfl[0];
6173       pgno = get4byte(apDiv[i]);
6174       szNew[i] = cellSizePtr(pParent, apDiv[i]);
6175       pParent->nOverflow = 0;
6176     }else{
6177       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6178       pgno = get4byte(apDiv[i]);
6179       szNew[i] = cellSizePtr(pParent, apDiv[i]);
6180 
6181       /* Drop the cell from the parent page. apDiv[i] still points to
6182       ** the cell within the parent, even though it has been dropped.
6183       ** This is safe because dropping a cell only overwrites the first
6184       ** four bytes of it, and this function does not need the first
6185       ** four bytes of the divider cell. So the pointer is safe to use
6186       ** later on.
6187       **
6188       ** But not if we are in secure-delete mode. In secure-delete mode,
6189       ** the dropCell() routine will overwrite the entire cell with zeroes.
6190       ** In this case, temporarily copy the cell into the aOvflSpace[]
6191       ** buffer. It will be copied out again as soon as the aSpace[] buffer
6192       ** is allocated.  */
6193       if( pBt->btsFlags & BTS_SECURE_DELETE ){
6194         int iOff;
6195 
6196         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
6197         if( (iOff+szNew[i])>(int)pBt->usableSize ){
6198           rc = SQLITE_CORRUPT_BKPT;
6199           memset(apOld, 0, (i+1)*sizeof(MemPage*));
6200           goto balance_cleanup;
6201         }else{
6202           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6203           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6204         }
6205       }
6206       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
6207     }
6208   }
6209 
6210   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
6211   ** alignment */
6212   nMaxCells = (nMaxCells + 3)&~3;
6213 
6214   /*
6215   ** Allocate space for memory structures
6216   */
6217   k = pBt->pageSize + ROUND8(sizeof(MemPage));
6218   szScratch =
6219        nMaxCells*sizeof(u8*)                       /* apCell */
6220      + nMaxCells*sizeof(u16)                       /* szCell */
6221      + pBt->pageSize                               /* aSpace1 */
6222      + k*nOld;                                     /* Page copies (apCopy) */
6223   apCell = sqlite3ScratchMalloc( szScratch );
6224   if( apCell==0 ){
6225     rc = SQLITE_NOMEM;
6226     goto balance_cleanup;
6227   }
6228   szCell = (u16*)&apCell[nMaxCells];
6229   aSpace1 = (u8*)&szCell[nMaxCells];
6230   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
6231 
6232   /*
6233   ** Load pointers to all cells on sibling pages and the divider cells
6234   ** into the local apCell[] array.  Make copies of the divider cells
6235   ** into space obtained from aSpace1[] and remove the divider cells
6236   ** from pParent.
6237   **
6238   ** If the siblings are on leaf pages, then the child pointers of the
6239   ** divider cells are stripped from the cells before they are copied
6240   ** into aSpace1[].  In this way, all cells in apCell[] are without
6241   ** child pointers.  If siblings are not leaves, then all cell in
6242   ** apCell[] include child pointers.  Either way, all cells in apCell[]
6243   ** are alike.
6244   **
6245   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
6246   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
6247   */
6248   leafCorrection = apOld[0]->leaf*4;
6249   leafData = apOld[0]->hasData;
6250   for(i=0; i<nOld; i++){
6251     int limit;
6252 
6253     /* Before doing anything else, take a copy of the i'th original sibling
6254     ** The rest of this function will use data from the copies rather
6255     ** that the original pages since the original pages will be in the
6256     ** process of being overwritten.  */
6257     MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6258     memcpy(pOld, apOld[i], sizeof(MemPage));
6259     pOld->aData = (void*)&pOld[1];
6260     memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6261 
6262     limit = pOld->nCell+pOld->nOverflow;
6263     if( pOld->nOverflow>0 ){
6264       for(j=0; j<limit; j++){
6265         assert( nCell<nMaxCells );
6266         apCell[nCell] = findOverflowCell(pOld, j);
6267         szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6268         nCell++;
6269       }
6270     }else{
6271       u8 *aData = pOld->aData;
6272       u16 maskPage = pOld->maskPage;
6273       u16 cellOffset = pOld->cellOffset;
6274       for(j=0; j<limit; j++){
6275         assert( nCell<nMaxCells );
6276         apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6277         szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6278         nCell++;
6279       }
6280     }
6281     if( i<nOld-1 && !leafData){
6282       u16 sz = (u16)szNew[i];
6283       u8 *pTemp;
6284       assert( nCell<nMaxCells );
6285       szCell[nCell] = sz;
6286       pTemp = &aSpace1[iSpace1];
6287       iSpace1 += sz;
6288       assert( sz<=pBt->maxLocal+23 );
6289       assert( iSpace1 <= (int)pBt->pageSize );
6290       memcpy(pTemp, apDiv[i], sz);
6291       apCell[nCell] = pTemp+leafCorrection;
6292       assert( leafCorrection==0 || leafCorrection==4 );
6293       szCell[nCell] = szCell[nCell] - leafCorrection;
6294       if( !pOld->leaf ){
6295         assert( leafCorrection==0 );
6296         assert( pOld->hdrOffset==0 );
6297         /* The right pointer of the child page pOld becomes the left
6298         ** pointer of the divider cell */
6299         memcpy(apCell[nCell], &pOld->aData[8], 4);
6300       }else{
6301         assert( leafCorrection==4 );
6302         if( szCell[nCell]<4 ){
6303           /* Do not allow any cells smaller than 4 bytes. */
6304           szCell[nCell] = 4;
6305         }
6306       }
6307       nCell++;
6308     }
6309   }
6310 
6311   /*
6312   ** Figure out the number of pages needed to hold all nCell cells.
6313   ** Store this number in "k".  Also compute szNew[] which is the total
6314   ** size of all cells on the i-th page and cntNew[] which is the index
6315   ** in apCell[] of the cell that divides page i from page i+1.
6316   ** cntNew[k] should equal nCell.
6317   **
6318   ** Values computed by this block:
6319   **
6320   **           k: The total number of sibling pages
6321   **    szNew[i]: Spaced used on the i-th sibling page.
6322   **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6323   **              the right of the i-th sibling page.
6324   ** usableSpace: Number of bytes of space available on each sibling.
6325   **
6326   */
6327   usableSpace = pBt->usableSize - 12 + leafCorrection;
6328   for(subtotal=k=i=0; i<nCell; i++){
6329     assert( i<nMaxCells );
6330     subtotal += szCell[i] + 2;
6331     if( subtotal > usableSpace ){
6332       szNew[k] = subtotal - szCell[i];
6333       cntNew[k] = i;
6334       if( leafData ){ i--; }
6335       subtotal = 0;
6336       k++;
6337       if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
6338     }
6339   }
6340   szNew[k] = subtotal;
6341   cntNew[k] = nCell;
6342   k++;
6343 
6344   /*
6345   ** The packing computed by the previous block is biased toward the siblings
6346   ** on the left side.  The left siblings are always nearly full, while the
6347   ** right-most sibling might be nearly empty.  This block of code attempts
6348   ** to adjust the packing of siblings to get a better balance.
6349   **
6350   ** This adjustment is more than an optimization.  The packing above might
6351   ** be so out of balance as to be illegal.  For example, the right-most
6352   ** sibling might be completely empty.  This adjustment is not optional.
6353   */
6354   for(i=k-1; i>0; i--){
6355     int szRight = szNew[i];  /* Size of sibling on the right */
6356     int szLeft = szNew[i-1]; /* Size of sibling on the left */
6357     int r;              /* Index of right-most cell in left sibling */
6358     int d;              /* Index of first cell to the left of right sibling */
6359 
6360     r = cntNew[i-1] - 1;
6361     d = r + 1 - leafData;
6362     assert( d<nMaxCells );
6363     assert( r<nMaxCells );
6364     while( szRight==0
6365        || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6366     ){
6367       szRight += szCell[d] + 2;
6368       szLeft -= szCell[r] + 2;
6369       cntNew[i-1]--;
6370       r = cntNew[i-1] - 1;
6371       d = r + 1 - leafData;
6372     }
6373     szNew[i] = szRight;
6374     szNew[i-1] = szLeft;
6375   }
6376 
6377   /* Either we found one or more cells (cntnew[0])>0) or pPage is
6378   ** a virtual root page.  A virtual root page is when the real root
6379   ** page is page 1 and we are the only child of that page.
6380   **
6381   ** UPDATE:  The assert() below is not necessarily true if the database
6382   ** file is corrupt.  The corruption will be detected and reported later
6383   ** in this procedure so there is no need to act upon it now.
6384   */
6385 #if 0
6386   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
6387 #endif
6388 
6389   TRACE(("BALANCE: old: %d %d %d  ",
6390     apOld[0]->pgno,
6391     nOld>=2 ? apOld[1]->pgno : 0,
6392     nOld>=3 ? apOld[2]->pgno : 0
6393   ));
6394 
6395   /*
6396   ** Allocate k new pages.  Reuse old pages where possible.
6397   */
6398   if( apOld[0]->pgno<=1 ){
6399     rc = SQLITE_CORRUPT_BKPT;
6400     goto balance_cleanup;
6401   }
6402   pageFlags = apOld[0]->aData[0];
6403   for(i=0; i<k; i++){
6404     MemPage *pNew;
6405     if( i<nOld ){
6406       pNew = apNew[i] = apOld[i];
6407       apOld[i] = 0;
6408       rc = sqlite3PagerWrite(pNew->pDbPage);
6409       nNew++;
6410       if( rc ) goto balance_cleanup;
6411     }else{
6412       assert( i>0 );
6413       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
6414       if( rc ) goto balance_cleanup;
6415       apNew[i] = pNew;
6416       nNew++;
6417 
6418       /* Set the pointer-map entry for the new sibling page. */
6419       if( ISAUTOVACUUM ){
6420         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
6421         if( rc!=SQLITE_OK ){
6422           goto balance_cleanup;
6423         }
6424       }
6425     }
6426   }
6427 
6428   /* Free any old pages that were not reused as new pages.
6429   */
6430   while( i<nOld ){
6431     freePage(apOld[i], &rc);
6432     if( rc ) goto balance_cleanup;
6433     releasePage(apOld[i]);
6434     apOld[i] = 0;
6435     i++;
6436   }
6437 
6438   /*
6439   ** Put the new pages in accending order.  This helps to
6440   ** keep entries in the disk file in order so that a scan
6441   ** of the table is a linear scan through the file.  That
6442   ** in turn helps the operating system to deliver pages
6443   ** from the disk more rapidly.
6444   **
6445   ** An O(n^2) insertion sort algorithm is used, but since
6446   ** n is never more than NB (a small constant), that should
6447   ** not be a problem.
6448   **
6449   ** When NB==3, this one optimization makes the database
6450   ** about 25% faster for large insertions and deletions.
6451   */
6452   for(i=0; i<k-1; i++){
6453     int minV = apNew[i]->pgno;
6454     int minI = i;
6455     for(j=i+1; j<k; j++){
6456       if( apNew[j]->pgno<(unsigned)minV ){
6457         minI = j;
6458         minV = apNew[j]->pgno;
6459       }
6460     }
6461     if( minI>i ){
6462       MemPage *pT;
6463       pT = apNew[i];
6464       apNew[i] = apNew[minI];
6465       apNew[minI] = pT;
6466     }
6467   }
6468   TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
6469     apNew[0]->pgno, szNew[0],
6470     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6471     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6472     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6473     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6474 
6475   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6476   put4byte(pRight, apNew[nNew-1]->pgno);
6477 
6478   /*
6479   ** Evenly distribute the data in apCell[] across the new pages.
6480   ** Insert divider cells into pParent as necessary.
6481   */
6482   j = 0;
6483   for(i=0; i<nNew; i++){
6484     /* Assemble the new sibling page. */
6485     MemPage *pNew = apNew[i];
6486     assert( j<nMaxCells );
6487     zeroPage(pNew, pageFlags);
6488     assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
6489     assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
6490     assert( pNew->nOverflow==0 );
6491 
6492     j = cntNew[i];
6493 
6494     /* If the sibling page assembled above was not the right-most sibling,
6495     ** insert a divider cell into the parent page.
6496     */
6497     assert( i<nNew-1 || j==nCell );
6498     if( j<nCell ){
6499       u8 *pCell;
6500       u8 *pTemp;
6501       int sz;
6502 
6503       assert( j<nMaxCells );
6504       pCell = apCell[j];
6505       sz = szCell[j] + leafCorrection;
6506       pTemp = &aOvflSpace[iOvflSpace];
6507       if( !pNew->leaf ){
6508         memcpy(&pNew->aData[8], pCell, 4);
6509       }else if( leafData ){
6510         /* If the tree is a leaf-data tree, and the siblings are leaves,
6511         ** then there is no divider cell in apCell[]. Instead, the divider
6512         ** cell consists of the integer key for the right-most cell of
6513         ** the sibling-page assembled above only.
6514         */
6515         CellInfo info;
6516         j--;
6517         btreeParseCellPtr(pNew, apCell[j], &info);
6518         pCell = pTemp;
6519         sz = 4 + putVarint(&pCell[4], info.nKey);
6520         pTemp = 0;
6521       }else{
6522         pCell -= 4;
6523         /* Obscure case for non-leaf-data trees: If the cell at pCell was
6524         ** previously stored on a leaf node, and its reported size was 4
6525         ** bytes, then it may actually be smaller than this
6526         ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
6527         ** any cell). But it is important to pass the correct size to
6528         ** insertCell(), so reparse the cell now.
6529         **
6530         ** Note that this can never happen in an SQLite data file, as all
6531         ** cells are at least 4 bytes. It only happens in b-trees used
6532         ** to evaluate "IN (SELECT ...)" and similar clauses.
6533         */
6534         if( szCell[j]==4 ){
6535           assert(leafCorrection==4);
6536           sz = cellSizePtr(pParent, pCell);
6537         }
6538       }
6539       iOvflSpace += sz;
6540       assert( sz<=pBt->maxLocal+23 );
6541       assert( iOvflSpace <= (int)pBt->pageSize );
6542       insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
6543       if( rc!=SQLITE_OK ) goto balance_cleanup;
6544       assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6545 
6546       j++;
6547       nxDiv++;
6548     }
6549   }
6550   assert( j==nCell );
6551   assert( nOld>0 );
6552   assert( nNew>0 );
6553   if( (pageFlags & PTF_LEAF)==0 ){
6554     u8 *zChild = &apCopy[nOld-1]->aData[8];
6555     memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
6556   }
6557 
6558   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6559     /* The root page of the b-tree now contains no cells. The only sibling
6560     ** page is the right-child of the parent. Copy the contents of the
6561     ** child page into the parent, decreasing the overall height of the
6562     ** b-tree structure by one. This is described as the "balance-shallower"
6563     ** sub-algorithm in some documentation.
6564     **
6565     ** If this is an auto-vacuum database, the call to copyNodeContent()
6566     ** sets all pointer-map entries corresponding to database image pages
6567     ** for which the pointer is stored within the content being copied.
6568     **
6569     ** The second assert below verifies that the child page is defragmented
6570     ** (it must be, as it was just reconstructed using assemblePage()). This
6571     ** is important if the parent page happens to be page 1 of the database
6572     ** image.  */
6573     assert( nNew==1 );
6574     assert( apNew[0]->nFree ==
6575         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6576     );
6577     copyNodeContent(apNew[0], pParent, &rc);
6578     freePage(apNew[0], &rc);
6579   }else if( ISAUTOVACUUM ){
6580     /* Fix the pointer-map entries for all the cells that were shifted around.
6581     ** There are several different types of pointer-map entries that need to
6582     ** be dealt with by this routine. Some of these have been set already, but
6583     ** many have not. The following is a summary:
6584     **
6585     **   1) The entries associated with new sibling pages that were not
6586     **      siblings when this function was called. These have already
6587     **      been set. We don't need to worry about old siblings that were
6588     **      moved to the free-list - the freePage() code has taken care
6589     **      of those.
6590     **
6591     **   2) The pointer-map entries associated with the first overflow
6592     **      page in any overflow chains used by new divider cells. These
6593     **      have also already been taken care of by the insertCell() code.
6594     **
6595     **   3) If the sibling pages are not leaves, then the child pages of
6596     **      cells stored on the sibling pages may need to be updated.
6597     **
6598     **   4) If the sibling pages are not internal intkey nodes, then any
6599     **      overflow pages used by these cells may need to be updated
6600     **      (internal intkey nodes never contain pointers to overflow pages).
6601     **
6602     **   5) If the sibling pages are not leaves, then the pointer-map
6603     **      entries for the right-child pages of each sibling may need
6604     **      to be updated.
6605     **
6606     ** Cases 1 and 2 are dealt with above by other code. The next
6607     ** block deals with cases 3 and 4 and the one after that, case 5. Since
6608     ** setting a pointer map entry is a relatively expensive operation, this
6609     ** code only sets pointer map entries for child or overflow pages that have
6610     ** actually moved between pages.  */
6611     MemPage *pNew = apNew[0];
6612     MemPage *pOld = apCopy[0];
6613     int nOverflow = pOld->nOverflow;
6614     int iNextOld = pOld->nCell + nOverflow;
6615     int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
6616     j = 0;                             /* Current 'old' sibling page */
6617     k = 0;                             /* Current 'new' sibling page */
6618     for(i=0; i<nCell; i++){
6619       int isDivider = 0;
6620       while( i==iNextOld ){
6621         /* Cell i is the cell immediately following the last cell on old
6622         ** sibling page j. If the siblings are not leaf pages of an
6623         ** intkey b-tree, then cell i was a divider cell. */
6624         assert( j+1 < ArraySize(apCopy) );
6625         assert( j+1 < nOld );
6626         pOld = apCopy[++j];
6627         iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6628         if( pOld->nOverflow ){
6629           nOverflow = pOld->nOverflow;
6630           iOverflow = i + !leafData + pOld->aiOvfl[0];
6631         }
6632         isDivider = !leafData;
6633       }
6634 
6635       assert(nOverflow>0 || iOverflow<i );
6636       assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6637       assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
6638       if( i==iOverflow ){
6639         isDivider = 1;
6640         if( (--nOverflow)>0 ){
6641           iOverflow++;
6642         }
6643       }
6644 
6645       if( i==cntNew[k] ){
6646         /* Cell i is the cell immediately following the last cell on new
6647         ** sibling page k. If the siblings are not leaf pages of an
6648         ** intkey b-tree, then cell i is a divider cell.  */
6649         pNew = apNew[++k];
6650         if( !leafData ) continue;
6651       }
6652       assert( j<nOld );
6653       assert( k<nNew );
6654 
6655       /* If the cell was originally divider cell (and is not now) or
6656       ** an overflow cell, or if the cell was located on a different sibling
6657       ** page before the balancing, then the pointer map entries associated
6658       ** with any child or overflow pages need to be updated.  */
6659       if( isDivider || pOld->pgno!=pNew->pgno ){
6660         if( !leafCorrection ){
6661           ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
6662         }
6663         if( szCell[i]>pNew->minLocal ){
6664           ptrmapPutOvflPtr(pNew, apCell[i], &rc);
6665         }
6666       }
6667     }
6668 
6669     if( !leafCorrection ){
6670       for(i=0; i<nNew; i++){
6671         u32 key = get4byte(&apNew[i]->aData[8]);
6672         ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
6673       }
6674     }
6675 
6676 #if 0
6677     /* The ptrmapCheckPages() contains assert() statements that verify that
6678     ** all pointer map pages are set correctly. This is helpful while
6679     ** debugging. This is usually disabled because a corrupt database may
6680     ** cause an assert() statement to fail.  */
6681     ptrmapCheckPages(apNew, nNew);
6682     ptrmapCheckPages(&pParent, 1);
6683 #endif
6684   }
6685 
6686   assert( pParent->isInit );
6687   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6688           nOld, nNew, nCell));
6689 
6690   /*
6691   ** Cleanup before returning.
6692   */
6693 balance_cleanup:
6694   sqlite3ScratchFree(apCell);
6695   for(i=0; i<nOld; i++){
6696     releasePage(apOld[i]);
6697   }
6698   for(i=0; i<nNew; i++){
6699     releasePage(apNew[i]);
6700   }
6701 
6702   return rc;
6703 }
6704 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6705 #pragma optimize("", on)
6706 #endif
6707 
6708 
6709 /*
6710 ** This function is called when the root page of a b-tree structure is
6711 ** overfull (has one or more overflow pages).
6712 **
6713 ** A new child page is allocated and the contents of the current root
6714 ** page, including overflow cells, are copied into the child. The root
6715 ** page is then overwritten to make it an empty page with the right-child
6716 ** pointer pointing to the new page.
6717 **
6718 ** Before returning, all pointer-map entries corresponding to pages
6719 ** that the new child-page now contains pointers to are updated. The
6720 ** entry corresponding to the new right-child pointer of the root
6721 ** page is also updated.
6722 **
6723 ** If successful, *ppChild is set to contain a reference to the child
6724 ** page and SQLITE_OK is returned. In this case the caller is required
6725 ** to call releasePage() on *ppChild exactly once. If an error occurs,
6726 ** an error code is returned and *ppChild is set to 0.
6727 */
6728 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6729   int rc;                        /* Return value from subprocedures */
6730   MemPage *pChild = 0;           /* Pointer to a new child page */
6731   Pgno pgnoChild = 0;            /* Page number of the new child page */
6732   BtShared *pBt = pRoot->pBt;    /* The BTree */
6733 
6734   assert( pRoot->nOverflow>0 );
6735   assert( sqlite3_mutex_held(pBt->mutex) );
6736 
6737   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6738   ** page that will become the new right-child of pPage. Copy the contents
6739   ** of the node stored on pRoot into the new child page.
6740   */
6741   rc = sqlite3PagerWrite(pRoot->pDbPage);
6742   if( rc==SQLITE_OK ){
6743     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
6744     copyNodeContent(pRoot, pChild, &rc);
6745     if( ISAUTOVACUUM ){
6746       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
6747     }
6748   }
6749   if( rc ){
6750     *ppChild = 0;
6751     releasePage(pChild);
6752     return rc;
6753   }
6754   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6755   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6756   assert( pChild->nCell==pRoot->nCell );
6757 
6758   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6759 
6760   /* Copy the overflow cells from pRoot to pChild */
6761   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6762          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6763   memcpy(pChild->apOvfl, pRoot->apOvfl,
6764          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
6765   pChild->nOverflow = pRoot->nOverflow;
6766 
6767   /* Zero the contents of pRoot. Then install pChild as the right-child. */
6768   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6769   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6770 
6771   *ppChild = pChild;
6772   return SQLITE_OK;
6773 }
6774 
6775 /*
6776 ** The page that pCur currently points to has just been modified in
6777 ** some way. This function figures out if this modification means the
6778 ** tree needs to be balanced, and if so calls the appropriate balancing
6779 ** routine. Balancing routines are:
6780 **
6781 **   balance_quick()
6782 **   balance_deeper()
6783 **   balance_nonroot()
6784 */
6785 static int balance(BtCursor *pCur){
6786   int rc = SQLITE_OK;
6787   const int nMin = pCur->pBt->usableSize * 2 / 3;
6788   u8 aBalanceQuickSpace[13];
6789   u8 *pFree = 0;
6790 
6791   TESTONLY( int balance_quick_called = 0 );
6792   TESTONLY( int balance_deeper_called = 0 );
6793 
6794   do {
6795     int iPage = pCur->iPage;
6796     MemPage *pPage = pCur->apPage[iPage];
6797 
6798     if( iPage==0 ){
6799       if( pPage->nOverflow ){
6800         /* The root page of the b-tree is overfull. In this case call the
6801         ** balance_deeper() function to create a new child for the root-page
6802         ** and copy the current contents of the root-page to it. The
6803         ** next iteration of the do-loop will balance the child page.
6804         */
6805         assert( (balance_deeper_called++)==0 );
6806         rc = balance_deeper(pPage, &pCur->apPage[1]);
6807         if( rc==SQLITE_OK ){
6808           pCur->iPage = 1;
6809           pCur->aiIdx[0] = 0;
6810           pCur->aiIdx[1] = 0;
6811           assert( pCur->apPage[1]->nOverflow );
6812         }
6813       }else{
6814         break;
6815       }
6816     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6817       break;
6818     }else{
6819       MemPage * const pParent = pCur->apPage[iPage-1];
6820       int const iIdx = pCur->aiIdx[iPage-1];
6821 
6822       rc = sqlite3PagerWrite(pParent->pDbPage);
6823       if( rc==SQLITE_OK ){
6824 #ifndef SQLITE_OMIT_QUICKBALANCE
6825         if( pPage->hasData
6826          && pPage->nOverflow==1
6827          && pPage->aiOvfl[0]==pPage->nCell
6828          && pParent->pgno!=1
6829          && pParent->nCell==iIdx
6830         ){
6831           /* Call balance_quick() to create a new sibling of pPage on which
6832           ** to store the overflow cell. balance_quick() inserts a new cell
6833           ** into pParent, which may cause pParent overflow. If this
6834           ** happens, the next interation of the do-loop will balance pParent
6835           ** use either balance_nonroot() or balance_deeper(). Until this
6836           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6837           ** buffer.
6838           **
6839           ** The purpose of the following assert() is to check that only a
6840           ** single call to balance_quick() is made for each call to this
6841           ** function. If this were not verified, a subtle bug involving reuse
6842           ** of the aBalanceQuickSpace[] might sneak in.
6843           */
6844           assert( (balance_quick_called++)==0 );
6845           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6846         }else
6847 #endif
6848         {
6849           /* In this case, call balance_nonroot() to redistribute cells
6850           ** between pPage and up to 2 of its sibling pages. This involves
6851           ** modifying the contents of pParent, which may cause pParent to
6852           ** become overfull or underfull. The next iteration of the do-loop
6853           ** will balance the parent page to correct this.
6854           **
6855           ** If the parent page becomes overfull, the overflow cell or cells
6856           ** are stored in the pSpace buffer allocated immediately below.
6857           ** A subsequent iteration of the do-loop will deal with this by
6858           ** calling balance_nonroot() (balance_deeper() may be called first,
6859           ** but it doesn't deal with overflow cells - just moves them to a
6860           ** different page). Once this subsequent call to balance_nonroot()
6861           ** has completed, it is safe to release the pSpace buffer used by
6862           ** the previous call, as the overflow cell data will have been
6863           ** copied either into the body of a database page or into the new
6864           ** pSpace buffer passed to the latter call to balance_nonroot().
6865           */
6866           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
6867           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
6868           if( pFree ){
6869             /* If pFree is not NULL, it points to the pSpace buffer used
6870             ** by a previous call to balance_nonroot(). Its contents are
6871             ** now stored either on real database pages or within the
6872             ** new pSpace buffer, so it may be safely freed here. */
6873             sqlite3PageFree(pFree);
6874           }
6875 
6876           /* The pSpace buffer will be freed after the next call to
6877           ** balance_nonroot(), or just before this function returns, whichever
6878           ** comes first. */
6879           pFree = pSpace;
6880         }
6881       }
6882 
6883       pPage->nOverflow = 0;
6884 
6885       /* The next iteration of the do-loop balances the parent page. */
6886       releasePage(pPage);
6887       pCur->iPage--;
6888     }
6889   }while( rc==SQLITE_OK );
6890 
6891   if( pFree ){
6892     sqlite3PageFree(pFree);
6893   }
6894   return rc;
6895 }
6896 
6897 
6898 /*
6899 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
6900 ** and the data is given by (pData,nData).  The cursor is used only to
6901 ** define what table the record should be inserted into.  The cursor
6902 ** is left pointing at a random location.
6903 **
6904 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
6905 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
6906 **
6907 ** If the seekResult parameter is non-zero, then a successful call to
6908 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
6909 ** been performed. seekResult is the search result returned (a negative
6910 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
6911 ** a positive value if pCur points at an etry that is larger than
6912 ** (pKey, nKey)).
6913 **
6914 ** If the seekResult parameter is non-zero, then the caller guarantees that
6915 ** cursor pCur is pointing at the existing copy of a row that is to be
6916 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
6917 ** point to any entry or to no entry at all and so this function has to seek
6918 ** the cursor before the new key can be inserted.
6919 */
6920 int sqlite3BtreeInsert(
6921   BtCursor *pCur,                /* Insert data into the table of this cursor */
6922   const void *pKey, i64 nKey,    /* The key of the new record */
6923   const void *pData, int nData,  /* The data of the new record */
6924   int nZero,                     /* Number of extra 0 bytes to append to data */
6925   int appendBias,                /* True if this is likely an append */
6926   int seekResult                 /* Result of prior MovetoUnpacked() call */
6927 ){
6928   int rc;
6929   int loc = seekResult;          /* -1: before desired location  +1: after */
6930   int szNew = 0;
6931   int idx;
6932   MemPage *pPage;
6933   Btree *p = pCur->pBtree;
6934   BtShared *pBt = p->pBt;
6935   unsigned char *oldCell;
6936   unsigned char *newCell = 0;
6937 
6938   if( pCur->eState==CURSOR_FAULT ){
6939     assert( pCur->skipNext!=SQLITE_OK );
6940     return pCur->skipNext;
6941   }
6942 
6943   assert( cursorHoldsMutex(pCur) );
6944   assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6945               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
6946   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6947 
6948   /* Assert that the caller has been consistent. If this cursor was opened
6949   ** expecting an index b-tree, then the caller should be inserting blob
6950   ** keys with no associated data. If the cursor was opened expecting an
6951   ** intkey table, the caller should be inserting integer keys with a
6952   ** blob of associated data.  */
6953   assert( (pKey==0)==(pCur->pKeyInfo==0) );
6954 
6955   /* Save the positions of any other cursors open on this table.
6956   **
6957   ** In some cases, the call to btreeMoveto() below is a no-op. For
6958   ** example, when inserting data into a table with auto-generated integer
6959   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6960   ** integer key to use. It then calls this function to actually insert the
6961   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
6962   ** that the cursor is already where it needs to be and returns without
6963   ** doing any work. To avoid thwarting these optimizations, it is important
6964   ** not to clear the cursor here.
6965   */
6966   rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6967   if( rc ) return rc;
6968 
6969   /* If this is an insert into a table b-tree, invalidate any incrblob
6970   ** cursors open on the row being replaced (assuming this is a replace
6971   ** operation - if it is not, the following is a no-op).  */
6972   if( pCur->pKeyInfo==0 ){
6973     invalidateIncrblobCursors(p, nKey, 0);
6974   }
6975 
6976   if( !loc ){
6977     rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6978     if( rc ) return rc;
6979   }
6980   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
6981 
6982   pPage = pCur->apPage[pCur->iPage];
6983   assert( pPage->intKey || nKey>=0 );
6984   assert( pPage->leaf || !pPage->intKey );
6985 
6986   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6987           pCur->pgnoRoot, nKey, nData, pPage->pgno,
6988           loc==0 ? "overwrite" : "new entry"));
6989   assert( pPage->isInit );
6990   allocateTempSpace(pBt);
6991   newCell = pBt->pTmpSpace;
6992   if( newCell==0 ) return SQLITE_NOMEM;
6993   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
6994   if( rc ) goto end_insert;
6995   assert( szNew==cellSizePtr(pPage, newCell) );
6996   assert( szNew <= MX_CELL_SIZE(pBt) );
6997   idx = pCur->aiIdx[pCur->iPage];
6998   if( loc==0 ){
6999     u16 szOld;
7000     assert( idx<pPage->nCell );
7001     rc = sqlite3PagerWrite(pPage->pDbPage);
7002     if( rc ){
7003       goto end_insert;
7004     }
7005     oldCell = findCell(pPage, idx);
7006     if( !pPage->leaf ){
7007       memcpy(newCell, oldCell, 4);
7008     }
7009     szOld = cellSizePtr(pPage, oldCell);
7010     rc = clearCell(pPage, oldCell);
7011     dropCell(pPage, idx, szOld, &rc);
7012     if( rc ) goto end_insert;
7013   }else if( loc<0 && pPage->nCell>0 ){
7014     assert( pPage->leaf );
7015     idx = ++pCur->aiIdx[pCur->iPage];
7016   }else{
7017     assert( pPage->leaf );
7018   }
7019   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
7020   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
7021 
7022   /* If no error has occurred and pPage has an overflow cell, call balance()
7023   ** to redistribute the cells within the tree. Since balance() may move
7024   ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7025   ** variables.
7026   **
7027   ** Previous versions of SQLite called moveToRoot() to move the cursor
7028   ** back to the root page as balance() used to invalidate the contents
7029   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7030   ** set the cursor state to "invalid". This makes common insert operations
7031   ** slightly faster.
7032   **
7033   ** There is a subtle but important optimization here too. When inserting
7034   ** multiple records into an intkey b-tree using a single cursor (as can
7035   ** happen while processing an "INSERT INTO ... SELECT" statement), it
7036   ** is advantageous to leave the cursor pointing to the last entry in
7037   ** the b-tree if possible. If the cursor is left pointing to the last
7038   ** entry in the table, and the next row inserted has an integer key
7039   ** larger than the largest existing key, it is possible to insert the
7040   ** row without seeking the cursor. This can be a big performance boost.
7041   */
7042   pCur->info.nSize = 0;
7043   pCur->validNKey = 0;
7044   if( rc==SQLITE_OK && pPage->nOverflow ){
7045     rc = balance(pCur);
7046 
7047     /* Must make sure nOverflow is reset to zero even if the balance()
7048     ** fails. Internal data structure corruption will result otherwise.
7049     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7050     ** from trying to save the current position of the cursor.  */
7051     pCur->apPage[pCur->iPage]->nOverflow = 0;
7052     pCur->eState = CURSOR_INVALID;
7053   }
7054   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
7055 
7056 end_insert:
7057   return rc;
7058 }
7059 
7060 /*
7061 ** Delete the entry that the cursor is pointing to.  The cursor
7062 ** is left pointing at a arbitrary location.
7063 */
7064 int sqlite3BtreeDelete(BtCursor *pCur){
7065   Btree *p = pCur->pBtree;
7066   BtShared *pBt = p->pBt;
7067   int rc;                              /* Return code */
7068   MemPage *pPage;                      /* Page to delete cell from */
7069   unsigned char *pCell;                /* Pointer to cell to delete */
7070   int iCellIdx;                        /* Index of cell to delete */
7071   int iCellDepth;                      /* Depth of node containing pCell */
7072 
7073   assert( cursorHoldsMutex(pCur) );
7074   assert( pBt->inTransaction==TRANS_WRITE );
7075   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
7076   assert( pCur->wrFlag );
7077   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7078   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7079 
7080   if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7081    || NEVER(pCur->eState!=CURSOR_VALID)
7082   ){
7083     return SQLITE_ERROR;  /* Something has gone awry. */
7084   }
7085 
7086   iCellDepth = pCur->iPage;
7087   iCellIdx = pCur->aiIdx[iCellDepth];
7088   pPage = pCur->apPage[iCellDepth];
7089   pCell = findCell(pPage, iCellIdx);
7090 
7091   /* If the page containing the entry to delete is not a leaf page, move
7092   ** the cursor to the largest entry in the tree that is smaller than
7093   ** the entry being deleted. This cell will replace the cell being deleted
7094   ** from the internal node. The 'previous' entry is used for this instead
7095   ** of the 'next' entry, as the previous entry is always a part of the
7096   ** sub-tree headed by the child page of the cell being deleted. This makes
7097   ** balancing the tree following the delete operation easier.  */
7098   if( !pPage->leaf ){
7099     int notUsed;
7100     rc = sqlite3BtreePrevious(pCur, &notUsed);
7101     if( rc ) return rc;
7102   }
7103 
7104   /* Save the positions of any other cursors open on this table before
7105   ** making any modifications. Make the page containing the entry to be
7106   ** deleted writable. Then free any overflow pages associated with the
7107   ** entry and finally remove the cell itself from within the page.
7108   */
7109   rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7110   if( rc ) return rc;
7111 
7112   /* If this is a delete operation to remove a row from a table b-tree,
7113   ** invalidate any incrblob cursors open on the row being deleted.  */
7114   if( pCur->pKeyInfo==0 ){
7115     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7116   }
7117 
7118   rc = sqlite3PagerWrite(pPage->pDbPage);
7119   if( rc ) return rc;
7120   rc = clearCell(pPage, pCell);
7121   dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
7122   if( rc ) return rc;
7123 
7124   /* If the cell deleted was not located on a leaf page, then the cursor
7125   ** is currently pointing to the largest entry in the sub-tree headed
7126   ** by the child-page of the cell that was just deleted from an internal
7127   ** node. The cell from the leaf node needs to be moved to the internal
7128   ** node to replace the deleted cell.  */
7129   if( !pPage->leaf ){
7130     MemPage *pLeaf = pCur->apPage[pCur->iPage];
7131     int nCell;
7132     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7133     unsigned char *pTmp;
7134 
7135     pCell = findCell(pLeaf, pLeaf->nCell-1);
7136     nCell = cellSizePtr(pLeaf, pCell);
7137     assert( MX_CELL_SIZE(pBt) >= nCell );
7138 
7139     allocateTempSpace(pBt);
7140     pTmp = pBt->pTmpSpace;
7141 
7142     rc = sqlite3PagerWrite(pLeaf->pDbPage);
7143     insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7144     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
7145     if( rc ) return rc;
7146   }
7147 
7148   /* Balance the tree. If the entry deleted was located on a leaf page,
7149   ** then the cursor still points to that page. In this case the first
7150   ** call to balance() repairs the tree, and the if(...) condition is
7151   ** never true.
7152   **
7153   ** Otherwise, if the entry deleted was on an internal node page, then
7154   ** pCur is pointing to the leaf page from which a cell was removed to
7155   ** replace the cell deleted from the internal node. This is slightly
7156   ** tricky as the leaf node may be underfull, and the internal node may
7157   ** be either under or overfull. In this case run the balancing algorithm
7158   ** on the leaf node first. If the balance proceeds far enough up the
7159   ** tree that we can be sure that any problem in the internal node has
7160   ** been corrected, so be it. Otherwise, after balancing the leaf node,
7161   ** walk the cursor up the tree to the internal node and balance it as
7162   ** well.  */
7163   rc = balance(pCur);
7164   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7165     while( pCur->iPage>iCellDepth ){
7166       releasePage(pCur->apPage[pCur->iPage--]);
7167     }
7168     rc = balance(pCur);
7169   }
7170 
7171   if( rc==SQLITE_OK ){
7172     moveToRoot(pCur);
7173   }
7174   return rc;
7175 }
7176 
7177 /*
7178 ** Create a new BTree table.  Write into *piTable the page
7179 ** number for the root page of the new table.
7180 **
7181 ** The type of type is determined by the flags parameter.  Only the
7182 ** following values of flags are currently in use.  Other values for
7183 ** flags might not work:
7184 **
7185 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
7186 **     BTREE_ZERODATA                  Used for SQL indices
7187 */
7188 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
7189   BtShared *pBt = p->pBt;
7190   MemPage *pRoot;
7191   Pgno pgnoRoot;
7192   int rc;
7193   int ptfFlags;          /* Page-type flage for the root page of new table */
7194 
7195   assert( sqlite3BtreeHoldsMutex(p) );
7196   assert( pBt->inTransaction==TRANS_WRITE );
7197   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
7198 
7199 #ifdef SQLITE_OMIT_AUTOVACUUM
7200   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
7201   if( rc ){
7202     return rc;
7203   }
7204 #else
7205   if( pBt->autoVacuum ){
7206     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
7207     MemPage *pPageMove; /* The page to move to. */
7208 
7209     /* Creating a new table may probably require moving an existing database
7210     ** to make room for the new tables root page. In case this page turns
7211     ** out to be an overflow page, delete all overflow page-map caches
7212     ** held by open cursors.
7213     */
7214     invalidateAllOverflowCache(pBt);
7215 
7216     /* Read the value of meta[3] from the database to determine where the
7217     ** root page of the new table should go. meta[3] is the largest root-page
7218     ** created so far, so the new root-page is (meta[3]+1).
7219     */
7220     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
7221     pgnoRoot++;
7222 
7223     /* The new root-page may not be allocated on a pointer-map page, or the
7224     ** PENDING_BYTE page.
7225     */
7226     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
7227         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
7228       pgnoRoot++;
7229     }
7230     assert( pgnoRoot>=3 );
7231 
7232     /* Allocate a page. The page that currently resides at pgnoRoot will
7233     ** be moved to the allocated page (unless the allocated page happens
7234     ** to reside at pgnoRoot).
7235     */
7236     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
7237     if( rc!=SQLITE_OK ){
7238       return rc;
7239     }
7240 
7241     if( pgnoMove!=pgnoRoot ){
7242       /* pgnoRoot is the page that will be used for the root-page of
7243       ** the new table (assuming an error did not occur). But we were
7244       ** allocated pgnoMove. If required (i.e. if it was not allocated
7245       ** by extending the file), the current page at position pgnoMove
7246       ** is already journaled.
7247       */
7248       u8 eType = 0;
7249       Pgno iPtrPage = 0;
7250 
7251       /* Save the positions of any open cursors. This is required in
7252       ** case they are holding a reference to an xFetch reference
7253       ** corresponding to page pgnoRoot.  */
7254       rc = saveAllCursors(pBt, 0, 0);
7255       releasePage(pPageMove);
7256       if( rc!=SQLITE_OK ){
7257         return rc;
7258       }
7259 
7260       /* Move the page currently at pgnoRoot to pgnoMove. */
7261       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
7262       if( rc!=SQLITE_OK ){
7263         return rc;
7264       }
7265       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
7266       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7267         rc = SQLITE_CORRUPT_BKPT;
7268       }
7269       if( rc!=SQLITE_OK ){
7270         releasePage(pRoot);
7271         return rc;
7272       }
7273       assert( eType!=PTRMAP_ROOTPAGE );
7274       assert( eType!=PTRMAP_FREEPAGE );
7275       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
7276       releasePage(pRoot);
7277 
7278       /* Obtain the page at pgnoRoot */
7279       if( rc!=SQLITE_OK ){
7280         return rc;
7281       }
7282       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
7283       if( rc!=SQLITE_OK ){
7284         return rc;
7285       }
7286       rc = sqlite3PagerWrite(pRoot->pDbPage);
7287       if( rc!=SQLITE_OK ){
7288         releasePage(pRoot);
7289         return rc;
7290       }
7291     }else{
7292       pRoot = pPageMove;
7293     }
7294 
7295     /* Update the pointer-map and meta-data with the new root-page number. */
7296     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
7297     if( rc ){
7298       releasePage(pRoot);
7299       return rc;
7300     }
7301 
7302     /* When the new root page was allocated, page 1 was made writable in
7303     ** order either to increase the database filesize, or to decrement the
7304     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7305     */
7306     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
7307     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
7308     if( NEVER(rc) ){
7309       releasePage(pRoot);
7310       return rc;
7311     }
7312 
7313   }else{
7314     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
7315     if( rc ) return rc;
7316   }
7317 #endif
7318   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7319   if( createTabFlags & BTREE_INTKEY ){
7320     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7321   }else{
7322     ptfFlags = PTF_ZERODATA | PTF_LEAF;
7323   }
7324   zeroPage(pRoot, ptfFlags);
7325   sqlite3PagerUnref(pRoot->pDbPage);
7326   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
7327   *piTable = (int)pgnoRoot;
7328   return SQLITE_OK;
7329 }
7330 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7331   int rc;
7332   sqlite3BtreeEnter(p);
7333   rc = btreeCreateTable(p, piTable, flags);
7334   sqlite3BtreeLeave(p);
7335   return rc;
7336 }
7337 
7338 /*
7339 ** Erase the given database page and all its children.  Return
7340 ** the page to the freelist.
7341 */
7342 static int clearDatabasePage(
7343   BtShared *pBt,           /* The BTree that contains the table */
7344   Pgno pgno,               /* Page number to clear */
7345   int freePageFlag,        /* Deallocate page if true */
7346   int *pnChange            /* Add number of Cells freed to this counter */
7347 ){
7348   MemPage *pPage;
7349   int rc;
7350   unsigned char *pCell;
7351   int i;
7352   int hdr;
7353 
7354   assert( sqlite3_mutex_held(pBt->mutex) );
7355   if( pgno>btreePagecount(pBt) ){
7356     return SQLITE_CORRUPT_BKPT;
7357   }
7358 
7359   rc = getAndInitPage(pBt, pgno, &pPage, 0);
7360   if( rc ) return rc;
7361   hdr = pPage->hdrOffset;
7362   for(i=0; i<pPage->nCell; i++){
7363     pCell = findCell(pPage, i);
7364     if( !pPage->leaf ){
7365       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
7366       if( rc ) goto cleardatabasepage_out;
7367     }
7368     rc = clearCell(pPage, pCell);
7369     if( rc ) goto cleardatabasepage_out;
7370   }
7371   if( !pPage->leaf ){
7372     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
7373     if( rc ) goto cleardatabasepage_out;
7374   }else if( pnChange ){
7375     assert( pPage->intKey );
7376     *pnChange += pPage->nCell;
7377   }
7378   if( freePageFlag ){
7379     freePage(pPage, &rc);
7380   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
7381     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
7382   }
7383 
7384 cleardatabasepage_out:
7385   releasePage(pPage);
7386   return rc;
7387 }
7388 
7389 /*
7390 ** Delete all information from a single table in the database.  iTable is
7391 ** the page number of the root of the table.  After this routine returns,
7392 ** the root page is empty, but still exists.
7393 **
7394 ** This routine will fail with SQLITE_LOCKED if there are any open
7395 ** read cursors on the table.  Open write cursors are moved to the
7396 ** root of the table.
7397 **
7398 ** If pnChange is not NULL, then table iTable must be an intkey table. The
7399 ** integer value pointed to by pnChange is incremented by the number of
7400 ** entries in the table.
7401 */
7402 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
7403   int rc;
7404   BtShared *pBt = p->pBt;
7405   sqlite3BtreeEnter(p);
7406   assert( p->inTrans==TRANS_WRITE );
7407 
7408   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7409 
7410   if( SQLITE_OK==rc ){
7411     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7412     ** is the root of a table b-tree - if it is not, the following call is
7413     ** a no-op).  */
7414     invalidateIncrblobCursors(p, 0, 1);
7415     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
7416   }
7417   sqlite3BtreeLeave(p);
7418   return rc;
7419 }
7420 
7421 /*
7422 ** Erase all information in a table and add the root of the table to
7423 ** the freelist.  Except, the root of the principle table (the one on
7424 ** page 1) is never added to the freelist.
7425 **
7426 ** This routine will fail with SQLITE_LOCKED if there are any open
7427 ** cursors on the table.
7428 **
7429 ** If AUTOVACUUM is enabled and the page at iTable is not the last
7430 ** root page in the database file, then the last root page
7431 ** in the database file is moved into the slot formerly occupied by
7432 ** iTable and that last slot formerly occupied by the last root page
7433 ** is added to the freelist instead of iTable.  In this say, all
7434 ** root pages are kept at the beginning of the database file, which
7435 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
7436 ** page number that used to be the last root page in the file before
7437 ** the move.  If no page gets moved, *piMoved is set to 0.
7438 ** The last root page is recorded in meta[3] and the value of
7439 ** meta[3] is updated by this procedure.
7440 */
7441 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
7442   int rc;
7443   MemPage *pPage = 0;
7444   BtShared *pBt = p->pBt;
7445 
7446   assert( sqlite3BtreeHoldsMutex(p) );
7447   assert( p->inTrans==TRANS_WRITE );
7448 
7449   /* It is illegal to drop a table if any cursors are open on the
7450   ** database. This is because in auto-vacuum mode the backend may
7451   ** need to move another root-page to fill a gap left by the deleted
7452   ** root page. If an open cursor was using this page a problem would
7453   ** occur.
7454   **
7455   ** This error is caught long before control reaches this point.
7456   */
7457   if( NEVER(pBt->pCursor) ){
7458     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7459     return SQLITE_LOCKED_SHAREDCACHE;
7460   }
7461 
7462   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
7463   if( rc ) return rc;
7464   rc = sqlite3BtreeClearTable(p, iTable, 0);
7465   if( rc ){
7466     releasePage(pPage);
7467     return rc;
7468   }
7469 
7470   *piMoved = 0;
7471 
7472   if( iTable>1 ){
7473 #ifdef SQLITE_OMIT_AUTOVACUUM
7474     freePage(pPage, &rc);
7475     releasePage(pPage);
7476 #else
7477     if( pBt->autoVacuum ){
7478       Pgno maxRootPgno;
7479       sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
7480 
7481       if( iTable==maxRootPgno ){
7482         /* If the table being dropped is the table with the largest root-page
7483         ** number in the database, put the root page on the free list.
7484         */
7485         freePage(pPage, &rc);
7486         releasePage(pPage);
7487         if( rc!=SQLITE_OK ){
7488           return rc;
7489         }
7490       }else{
7491         /* The table being dropped does not have the largest root-page
7492         ** number in the database. So move the page that does into the
7493         ** gap left by the deleted root-page.
7494         */
7495         MemPage *pMove;
7496         releasePage(pPage);
7497         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
7498         if( rc!=SQLITE_OK ){
7499           return rc;
7500         }
7501         rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
7502         releasePage(pMove);
7503         if( rc!=SQLITE_OK ){
7504           return rc;
7505         }
7506         pMove = 0;
7507         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
7508         freePage(pMove, &rc);
7509         releasePage(pMove);
7510         if( rc!=SQLITE_OK ){
7511           return rc;
7512         }
7513         *piMoved = maxRootPgno;
7514       }
7515 
7516       /* Set the new 'max-root-page' value in the database header. This
7517       ** is the old value less one, less one more if that happens to
7518       ** be a root-page number, less one again if that is the
7519       ** PENDING_BYTE_PAGE.
7520       */
7521       maxRootPgno--;
7522       while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7523              || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
7524         maxRootPgno--;
7525       }
7526       assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7527 
7528       rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
7529     }else{
7530       freePage(pPage, &rc);
7531       releasePage(pPage);
7532     }
7533 #endif
7534   }else{
7535     /* If sqlite3BtreeDropTable was called on page 1.
7536     ** This really never should happen except in a corrupt
7537     ** database.
7538     */
7539     zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
7540     releasePage(pPage);
7541   }
7542   return rc;
7543 }
7544 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7545   int rc;
7546   sqlite3BtreeEnter(p);
7547   rc = btreeDropTable(p, iTable, piMoved);
7548   sqlite3BtreeLeave(p);
7549   return rc;
7550 }
7551 
7552 
7553 /*
7554 ** This function may only be called if the b-tree connection already
7555 ** has a read or write transaction open on the database.
7556 **
7557 ** Read the meta-information out of a database file.  Meta[0]
7558 ** is the number of free pages currently in the database.  Meta[1]
7559 ** through meta[15] are available for use by higher layers.  Meta[0]
7560 ** is read-only, the others are read/write.
7561 **
7562 ** The schema layer numbers meta values differently.  At the schema
7563 ** layer (and the SetCookie and ReadCookie opcodes) the number of
7564 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
7565 */
7566 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
7567   BtShared *pBt = p->pBt;
7568 
7569   sqlite3BtreeEnter(p);
7570   assert( p->inTrans>TRANS_NONE );
7571   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
7572   assert( pBt->pPage1 );
7573   assert( idx>=0 && idx<=15 );
7574 
7575   *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
7576 
7577   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7578   ** database, mark the database as read-only.  */
7579 #ifdef SQLITE_OMIT_AUTOVACUUM
7580   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7581     pBt->btsFlags |= BTS_READ_ONLY;
7582   }
7583 #endif
7584 
7585   sqlite3BtreeLeave(p);
7586 }
7587 
7588 /*
7589 ** Write meta-information back into the database.  Meta[0] is
7590 ** read-only and may not be written.
7591 */
7592 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7593   BtShared *pBt = p->pBt;
7594   unsigned char *pP1;
7595   int rc;
7596   assert( idx>=1 && idx<=15 );
7597   sqlite3BtreeEnter(p);
7598   assert( p->inTrans==TRANS_WRITE );
7599   assert( pBt->pPage1!=0 );
7600   pP1 = pBt->pPage1->aData;
7601   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7602   if( rc==SQLITE_OK ){
7603     put4byte(&pP1[36 + idx*4], iMeta);
7604 #ifndef SQLITE_OMIT_AUTOVACUUM
7605     if( idx==BTREE_INCR_VACUUM ){
7606       assert( pBt->autoVacuum || iMeta==0 );
7607       assert( iMeta==0 || iMeta==1 );
7608       pBt->incrVacuum = (u8)iMeta;
7609     }
7610 #endif
7611   }
7612   sqlite3BtreeLeave(p);
7613   return rc;
7614 }
7615 
7616 #ifndef SQLITE_OMIT_BTREECOUNT
7617 /*
7618 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
7619 ** number of entries in the b-tree and write the result to *pnEntry.
7620 **
7621 ** SQLITE_OK is returned if the operation is successfully executed.
7622 ** Otherwise, if an error is encountered (i.e. an IO error or database
7623 ** corruption) an SQLite error code is returned.
7624 */
7625 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7626   i64 nEntry = 0;                      /* Value to return in *pnEntry */
7627   int rc;                              /* Return code */
7628 
7629   if( pCur->pgnoRoot==0 ){
7630     *pnEntry = 0;
7631     return SQLITE_OK;
7632   }
7633   rc = moveToRoot(pCur);
7634 
7635   /* Unless an error occurs, the following loop runs one iteration for each
7636   ** page in the B-Tree structure (not including overflow pages).
7637   */
7638   while( rc==SQLITE_OK ){
7639     int iIdx;                          /* Index of child node in parent */
7640     MemPage *pPage;                    /* Current page of the b-tree */
7641 
7642     /* If this is a leaf page or the tree is not an int-key tree, then
7643     ** this page contains countable entries. Increment the entry counter
7644     ** accordingly.
7645     */
7646     pPage = pCur->apPage[pCur->iPage];
7647     if( pPage->leaf || !pPage->intKey ){
7648       nEntry += pPage->nCell;
7649     }
7650 
7651     /* pPage is a leaf node. This loop navigates the cursor so that it
7652     ** points to the first interior cell that it points to the parent of
7653     ** the next page in the tree that has not yet been visited. The
7654     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7655     ** of the page, or to the number of cells in the page if the next page
7656     ** to visit is the right-child of its parent.
7657     **
7658     ** If all pages in the tree have been visited, return SQLITE_OK to the
7659     ** caller.
7660     */
7661     if( pPage->leaf ){
7662       do {
7663         if( pCur->iPage==0 ){
7664           /* All pages of the b-tree have been visited. Return successfully. */
7665           *pnEntry = nEntry;
7666           return SQLITE_OK;
7667         }
7668         moveToParent(pCur);
7669       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7670 
7671       pCur->aiIdx[pCur->iPage]++;
7672       pPage = pCur->apPage[pCur->iPage];
7673     }
7674 
7675     /* Descend to the child node of the cell that the cursor currently
7676     ** points at. This is the right-child if (iIdx==pPage->nCell).
7677     */
7678     iIdx = pCur->aiIdx[pCur->iPage];
7679     if( iIdx==pPage->nCell ){
7680       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7681     }else{
7682       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7683     }
7684   }
7685 
7686   /* An error has occurred. Return an error code. */
7687   return rc;
7688 }
7689 #endif
7690 
7691 /*
7692 ** Return the pager associated with a BTree.  This routine is used for
7693 ** testing and debugging only.
7694 */
7695 Pager *sqlite3BtreePager(Btree *p){
7696   return p->pBt->pPager;
7697 }
7698 
7699 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7700 /*
7701 ** Append a message to the error message string.
7702 */
7703 static void checkAppendMsg(
7704   IntegrityCk *pCheck,
7705   char *zMsg1,
7706   const char *zFormat,
7707   ...
7708 ){
7709   va_list ap;
7710   if( !pCheck->mxErr ) return;
7711   pCheck->mxErr--;
7712   pCheck->nErr++;
7713   va_start(ap, zFormat);
7714   if( pCheck->errMsg.nChar ){
7715     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
7716   }
7717   if( zMsg1 ){
7718     sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
7719   }
7720   sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7721   va_end(ap);
7722   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
7723     pCheck->mallocFailed = 1;
7724   }
7725 }
7726 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7727 
7728 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7729 
7730 /*
7731 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7732 ** corresponds to page iPg is already set.
7733 */
7734 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7735   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7736   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7737 }
7738 
7739 /*
7740 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7741 */
7742 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7743   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7744   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7745 }
7746 
7747 
7748 /*
7749 ** Add 1 to the reference count for page iPage.  If this is the second
7750 ** reference to the page, add an error message to pCheck->zErrMsg.
7751 ** Return 1 if there are 2 ore more references to the page and 0 if
7752 ** if this is the first reference to the page.
7753 **
7754 ** Also check that the page number is in bounds.
7755 */
7756 static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
7757   if( iPage==0 ) return 1;
7758   if( iPage>pCheck->nPage ){
7759     checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
7760     return 1;
7761   }
7762   if( getPageReferenced(pCheck, iPage) ){
7763     checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
7764     return 1;
7765   }
7766   setPageReferenced(pCheck, iPage);
7767   return 0;
7768 }
7769 
7770 #ifndef SQLITE_OMIT_AUTOVACUUM
7771 /*
7772 ** Check that the entry in the pointer-map for page iChild maps to
7773 ** page iParent, pointer type ptrType. If not, append an error message
7774 ** to pCheck.
7775 */
7776 static void checkPtrmap(
7777   IntegrityCk *pCheck,   /* Integrity check context */
7778   Pgno iChild,           /* Child page number */
7779   u8 eType,              /* Expected pointer map type */
7780   Pgno iParent,          /* Expected pointer map parent page number */
7781   char *zContext         /* Context description (used for error msg) */
7782 ){
7783   int rc;
7784   u8 ePtrmapType;
7785   Pgno iPtrmapParent;
7786 
7787   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7788   if( rc!=SQLITE_OK ){
7789     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
7790     checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7791     return;
7792   }
7793 
7794   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7795     checkAppendMsg(pCheck, zContext,
7796       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7797       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7798   }
7799 }
7800 #endif
7801 
7802 /*
7803 ** Check the integrity of the freelist or of an overflow page list.
7804 ** Verify that the number of pages on the list is N.
7805 */
7806 static void checkList(
7807   IntegrityCk *pCheck,  /* Integrity checking context */
7808   int isFreeList,       /* True for a freelist.  False for overflow page list */
7809   int iPage,            /* Page number for first page in the list */
7810   int N,                /* Expected number of pages in the list */
7811   char *zContext        /* Context for error messages */
7812 ){
7813   int i;
7814   int expected = N;
7815   int iFirst = iPage;
7816   while( N-- > 0 && pCheck->mxErr ){
7817     DbPage *pOvflPage;
7818     unsigned char *pOvflData;
7819     if( iPage<1 ){
7820       checkAppendMsg(pCheck, zContext,
7821          "%d of %d pages missing from overflow list starting at %d",
7822           N+1, expected, iFirst);
7823       break;
7824     }
7825     if( checkRef(pCheck, iPage, zContext) ) break;
7826     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
7827       checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
7828       break;
7829     }
7830     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
7831     if( isFreeList ){
7832       int n = get4byte(&pOvflData[4]);
7833 #ifndef SQLITE_OMIT_AUTOVACUUM
7834       if( pCheck->pBt->autoVacuum ){
7835         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7836       }
7837 #endif
7838       if( n>(int)pCheck->pBt->usableSize/4-2 ){
7839         checkAppendMsg(pCheck, zContext,
7840            "freelist leaf count too big on page %d", iPage);
7841         N--;
7842       }else{
7843         for(i=0; i<n; i++){
7844           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
7845 #ifndef SQLITE_OMIT_AUTOVACUUM
7846           if( pCheck->pBt->autoVacuum ){
7847             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7848           }
7849 #endif
7850           checkRef(pCheck, iFreePage, zContext);
7851         }
7852         N -= n;
7853       }
7854     }
7855 #ifndef SQLITE_OMIT_AUTOVACUUM
7856     else{
7857       /* If this database supports auto-vacuum and iPage is not the last
7858       ** page in this overflow list, check that the pointer-map entry for
7859       ** the following page matches iPage.
7860       */
7861       if( pCheck->pBt->autoVacuum && N>0 ){
7862         i = get4byte(pOvflData);
7863         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7864       }
7865     }
7866 #endif
7867     iPage = get4byte(pOvflData);
7868     sqlite3PagerUnref(pOvflPage);
7869   }
7870 }
7871 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7872 
7873 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7874 /*
7875 ** Do various sanity checks on a single page of a tree.  Return
7876 ** the tree depth.  Root pages return 0.  Parents of root pages
7877 ** return 1, and so forth.
7878 **
7879 ** These checks are done:
7880 **
7881 **      1.  Make sure that cells and freeblocks do not overlap
7882 **          but combine to completely cover the page.
7883 **  NO  2.  Make sure cell keys are in order.
7884 **  NO  3.  Make sure no key is less than or equal to zLowerBound.
7885 **  NO  4.  Make sure no key is greater than or equal to zUpperBound.
7886 **      5.  Check the integrity of overflow pages.
7887 **      6.  Recursively call checkTreePage on all children.
7888 **      7.  Verify that the depth of all children is the same.
7889 **      8.  Make sure this page is at least 33% full or else it is
7890 **          the root of the tree.
7891 */
7892 static int checkTreePage(
7893   IntegrityCk *pCheck,  /* Context for the sanity check */
7894   int iPage,            /* Page number of the page to check */
7895   char *zParentContext, /* Parent context */
7896   i64 *pnParentMinKey,
7897   i64 *pnParentMaxKey
7898 ){
7899   MemPage *pPage;
7900   int i, rc, depth, d2, pgno, cnt;
7901   int hdr, cellStart;
7902   int nCell;
7903   u8 *data;
7904   BtShared *pBt;
7905   int usableSize;
7906   char zContext[100];
7907   char *hit = 0;
7908   i64 nMinKey = 0;
7909   i64 nMaxKey = 0;
7910 
7911   sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
7912 
7913   /* Check that the page exists
7914   */
7915   pBt = pCheck->pBt;
7916   usableSize = pBt->usableSize;
7917   if( iPage==0 ) return 0;
7918   if( checkRef(pCheck, iPage, zParentContext) ) return 0;
7919   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
7920     checkAppendMsg(pCheck, zContext,
7921        "unable to get the page. error code=%d", rc);
7922     return 0;
7923   }
7924 
7925   /* Clear MemPage.isInit to make sure the corruption detection code in
7926   ** btreeInitPage() is executed.  */
7927   pPage->isInit = 0;
7928   if( (rc = btreeInitPage(pPage))!=0 ){
7929     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
7930     checkAppendMsg(pCheck, zContext,
7931                    "btreeInitPage() returns error code %d", rc);
7932     releasePage(pPage);
7933     return 0;
7934   }
7935 
7936   /* Check out all the cells.
7937   */
7938   depth = 0;
7939   for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
7940     u8 *pCell;
7941     u32 sz;
7942     CellInfo info;
7943 
7944     /* Check payload overflow pages
7945     */
7946     sqlite3_snprintf(sizeof(zContext), zContext,
7947              "On tree page %d cell %d: ", iPage, i);
7948     pCell = findCell(pPage,i);
7949     btreeParseCellPtr(pPage, pCell, &info);
7950     sz = info.nData;
7951     if( !pPage->intKey ) sz += (int)info.nKey;
7952     /* For intKey pages, check that the keys are in order.
7953     */
7954     else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7955     else{
7956       if( info.nKey <= nMaxKey ){
7957         checkAppendMsg(pCheck, zContext,
7958             "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7959       }
7960       nMaxKey = info.nKey;
7961     }
7962     assert( sz==info.nPayload );
7963     if( (sz>info.nLocal)
7964      && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7965     ){
7966       int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
7967       Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7968 #ifndef SQLITE_OMIT_AUTOVACUUM
7969       if( pBt->autoVacuum ){
7970         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
7971       }
7972 #endif
7973       checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
7974     }
7975 
7976     /* Check sanity of left child page.
7977     */
7978     if( !pPage->leaf ){
7979       pgno = get4byte(pCell);
7980 #ifndef SQLITE_OMIT_AUTOVACUUM
7981       if( pBt->autoVacuum ){
7982         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7983       }
7984 #endif
7985       d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
7986       if( i>0 && d2!=depth ){
7987         checkAppendMsg(pCheck, zContext, "Child page depth differs");
7988       }
7989       depth = d2;
7990     }
7991   }
7992 
7993   if( !pPage->leaf ){
7994     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7995     sqlite3_snprintf(sizeof(zContext), zContext,
7996                      "On page %d at right child: ", iPage);
7997 #ifndef SQLITE_OMIT_AUTOVACUUM
7998     if( pBt->autoVacuum ){
7999       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8000     }
8001 #endif
8002     checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
8003   }
8004 
8005   /* For intKey leaf pages, check that the min/max keys are in order
8006   ** with any left/parent/right pages.
8007   */
8008   if( pPage->leaf && pPage->intKey ){
8009     /* if we are a left child page */
8010     if( pnParentMinKey ){
8011       /* if we are the left most child page */
8012       if( !pnParentMaxKey ){
8013         if( nMaxKey > *pnParentMinKey ){
8014           checkAppendMsg(pCheck, zContext,
8015               "Rowid %lld out of order (max larger than parent min of %lld)",
8016               nMaxKey, *pnParentMinKey);
8017         }
8018       }else{
8019         if( nMinKey <= *pnParentMinKey ){
8020           checkAppendMsg(pCheck, zContext,
8021               "Rowid %lld out of order (min less than parent min of %lld)",
8022               nMinKey, *pnParentMinKey);
8023         }
8024         if( nMaxKey > *pnParentMaxKey ){
8025           checkAppendMsg(pCheck, zContext,
8026               "Rowid %lld out of order (max larger than parent max of %lld)",
8027               nMaxKey, *pnParentMaxKey);
8028         }
8029         *pnParentMinKey = nMaxKey;
8030       }
8031     /* else if we're a right child page */
8032     } else if( pnParentMaxKey ){
8033       if( nMinKey <= *pnParentMaxKey ){
8034         checkAppendMsg(pCheck, zContext,
8035             "Rowid %lld out of order (min less than parent max of %lld)",
8036             nMinKey, *pnParentMaxKey);
8037       }
8038     }
8039   }
8040 
8041   /* Check for complete coverage of the page
8042   */
8043   data = pPage->aData;
8044   hdr = pPage->hdrOffset;
8045   hit = sqlite3PageMalloc( pBt->pageSize );
8046   if( hit==0 ){
8047     pCheck->mallocFailed = 1;
8048   }else{
8049     int contentOffset = get2byteNotZero(&data[hdr+5]);
8050     assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
8051     memset(hit+contentOffset, 0, usableSize-contentOffset);
8052     memset(hit, 1, contentOffset);
8053     nCell = get2byte(&data[hdr+3]);
8054     cellStart = hdr + 12 - 4*pPage->leaf;
8055     for(i=0; i<nCell; i++){
8056       int pc = get2byte(&data[cellStart+i*2]);
8057       u32 size = 65536;
8058       int j;
8059       if( pc<=usableSize-4 ){
8060         size = cellSizePtr(pPage, &data[pc]);
8061       }
8062       if( (int)(pc+size-1)>=usableSize ){
8063         checkAppendMsg(pCheck, 0,
8064             "Corruption detected in cell %d on page %d",i,iPage);
8065       }else{
8066         for(j=pc+size-1; j>=pc; j--) hit[j]++;
8067       }
8068     }
8069     i = get2byte(&data[hdr+1]);
8070     while( i>0 ){
8071       int size, j;
8072       assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
8073       size = get2byte(&data[i+2]);
8074       assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
8075       for(j=i+size-1; j>=i; j--) hit[j]++;
8076       j = get2byte(&data[i]);
8077       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
8078       assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
8079       i = j;
8080     }
8081     for(i=cnt=0; i<usableSize; i++){
8082       if( hit[i]==0 ){
8083         cnt++;
8084       }else if( hit[i]>1 ){
8085         checkAppendMsg(pCheck, 0,
8086           "Multiple uses for byte %d of page %d", i, iPage);
8087         break;
8088       }
8089     }
8090     if( cnt!=data[hdr+7] ){
8091       checkAppendMsg(pCheck, 0,
8092           "Fragmentation of %d bytes reported as %d on page %d",
8093           cnt, data[hdr+7], iPage);
8094     }
8095   }
8096   sqlite3PageFree(hit);
8097   releasePage(pPage);
8098   return depth+1;
8099 }
8100 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8101 
8102 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8103 /*
8104 ** This routine does a complete check of the given BTree file.  aRoot[] is
8105 ** an array of pages numbers were each page number is the root page of
8106 ** a table.  nRoot is the number of entries in aRoot.
8107 **
8108 ** A read-only or read-write transaction must be opened before calling
8109 ** this function.
8110 **
8111 ** Write the number of error seen in *pnErr.  Except for some memory
8112 ** allocation errors,  an error message held in memory obtained from
8113 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
8114 ** returned.  If a memory allocation error occurs, NULL is returned.
8115 */
8116 char *sqlite3BtreeIntegrityCheck(
8117   Btree *p,     /* The btree to be checked */
8118   int *aRoot,   /* An array of root pages numbers for individual trees */
8119   int nRoot,    /* Number of entries in aRoot[] */
8120   int mxErr,    /* Stop reporting errors after this many */
8121   int *pnErr    /* Write number of errors seen to this variable */
8122 ){
8123   Pgno i;
8124   int nRef;
8125   IntegrityCk sCheck;
8126   BtShared *pBt = p->pBt;
8127   char zErr[100];
8128 
8129   sqlite3BtreeEnter(p);
8130   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
8131   nRef = sqlite3PagerRefcount(pBt->pPager);
8132   sCheck.pBt = pBt;
8133   sCheck.pPager = pBt->pPager;
8134   sCheck.nPage = btreePagecount(sCheck.pBt);
8135   sCheck.mxErr = mxErr;
8136   sCheck.nErr = 0;
8137   sCheck.mallocFailed = 0;
8138   *pnErr = 0;
8139   if( sCheck.nPage==0 ){
8140     sqlite3BtreeLeave(p);
8141     return 0;
8142   }
8143 
8144   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8145   if( !sCheck.aPgRef ){
8146     *pnErr = 1;
8147     sqlite3BtreeLeave(p);
8148     return 0;
8149   }
8150   i = PENDING_BYTE_PAGE(pBt);
8151   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
8152   sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
8153   sCheck.errMsg.useMalloc = 2;
8154 
8155   /* Check the integrity of the freelist
8156   */
8157   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8158             get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
8159 
8160   /* Check all the tables.
8161   */
8162   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
8163     if( aRoot[i]==0 ) continue;
8164 #ifndef SQLITE_OMIT_AUTOVACUUM
8165     if( pBt->autoVacuum && aRoot[i]>1 ){
8166       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8167     }
8168 #endif
8169     checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
8170   }
8171 
8172   /* Make sure every page in the file is referenced
8173   */
8174   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
8175 #ifdef SQLITE_OMIT_AUTOVACUUM
8176     if( getPageReferenced(&sCheck, i)==0 ){
8177       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8178     }
8179 #else
8180     /* If the database supports auto-vacuum, make sure no tables contain
8181     ** references to pointer-map pages.
8182     */
8183     if( getPageReferenced(&sCheck, i)==0 &&
8184        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
8185       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8186     }
8187     if( getPageReferenced(&sCheck, i)!=0 &&
8188        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
8189       checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8190     }
8191 #endif
8192   }
8193 
8194   /* Make sure this analysis did not leave any unref() pages.
8195   ** This is an internal consistency check; an integrity check
8196   ** of the integrity check.
8197   */
8198   if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
8199     checkAppendMsg(&sCheck, 0,
8200       "Outstanding page count goes from %d to %d during this analysis",
8201       nRef, sqlite3PagerRefcount(pBt->pPager)
8202     );
8203   }
8204 
8205   /* Clean  up and report errors.
8206   */
8207   sqlite3BtreeLeave(p);
8208   sqlite3_free(sCheck.aPgRef);
8209   if( sCheck.mallocFailed ){
8210     sqlite3StrAccumReset(&sCheck.errMsg);
8211     *pnErr = sCheck.nErr+1;
8212     return 0;
8213   }
8214   *pnErr = sCheck.nErr;
8215   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8216   return sqlite3StrAccumFinish(&sCheck.errMsg);
8217 }
8218 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8219 
8220 /*
8221 ** Return the full pathname of the underlying database file.  Return
8222 ** an empty string if the database is in-memory or a TEMP database.
8223 **
8224 ** The pager filename is invariant as long as the pager is
8225 ** open so it is safe to access without the BtShared mutex.
8226 */
8227 const char *sqlite3BtreeGetFilename(Btree *p){
8228   assert( p->pBt->pPager!=0 );
8229   return sqlite3PagerFilename(p->pBt->pPager, 1);
8230 }
8231 
8232 /*
8233 ** Return the pathname of the journal file for this database. The return
8234 ** value of this routine is the same regardless of whether the journal file
8235 ** has been created or not.
8236 **
8237 ** The pager journal filename is invariant as long as the pager is
8238 ** open so it is safe to access without the BtShared mutex.
8239 */
8240 const char *sqlite3BtreeGetJournalname(Btree *p){
8241   assert( p->pBt->pPager!=0 );
8242   return sqlite3PagerJournalname(p->pBt->pPager);
8243 }
8244 
8245 /*
8246 ** Return non-zero if a transaction is active.
8247 */
8248 int sqlite3BtreeIsInTrans(Btree *p){
8249   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
8250   return (p && (p->inTrans==TRANS_WRITE));
8251 }
8252 
8253 #ifndef SQLITE_OMIT_WAL
8254 /*
8255 ** Run a checkpoint on the Btree passed as the first argument.
8256 **
8257 ** Return SQLITE_LOCKED if this or any other connection has an open
8258 ** transaction on the shared-cache the argument Btree is connected to.
8259 **
8260 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
8261 */
8262 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
8263   int rc = SQLITE_OK;
8264   if( p ){
8265     BtShared *pBt = p->pBt;
8266     sqlite3BtreeEnter(p);
8267     if( pBt->inTransaction!=TRANS_NONE ){
8268       rc = SQLITE_LOCKED;
8269     }else{
8270       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
8271     }
8272     sqlite3BtreeLeave(p);
8273   }
8274   return rc;
8275 }
8276 #endif
8277 
8278 /*
8279 ** Return non-zero if a read (or write) transaction is active.
8280 */
8281 int sqlite3BtreeIsInReadTrans(Btree *p){
8282   assert( p );
8283   assert( sqlite3_mutex_held(p->db->mutex) );
8284   return p->inTrans!=TRANS_NONE;
8285 }
8286 
8287 int sqlite3BtreeIsInBackup(Btree *p){
8288   assert( p );
8289   assert( sqlite3_mutex_held(p->db->mutex) );
8290   return p->nBackup!=0;
8291 }
8292 
8293 /*
8294 ** This function returns a pointer to a blob of memory associated with
8295 ** a single shared-btree. The memory is used by client code for its own
8296 ** purposes (for example, to store a high-level schema associated with
8297 ** the shared-btree). The btree layer manages reference counting issues.
8298 **
8299 ** The first time this is called on a shared-btree, nBytes bytes of memory
8300 ** are allocated, zeroed, and returned to the caller. For each subsequent
8301 ** call the nBytes parameter is ignored and a pointer to the same blob
8302 ** of memory returned.
8303 **
8304 ** If the nBytes parameter is 0 and the blob of memory has not yet been
8305 ** allocated, a null pointer is returned. If the blob has already been
8306 ** allocated, it is returned as normal.
8307 **
8308 ** Just before the shared-btree is closed, the function passed as the
8309 ** xFree argument when the memory allocation was made is invoked on the
8310 ** blob of allocated memory. The xFree function should not call sqlite3_free()
8311 ** on the memory, the btree layer does that.
8312 */
8313 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8314   BtShared *pBt = p->pBt;
8315   sqlite3BtreeEnter(p);
8316   if( !pBt->pSchema && nBytes ){
8317     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
8318     pBt->xFreeSchema = xFree;
8319   }
8320   sqlite3BtreeLeave(p);
8321   return pBt->pSchema;
8322 }
8323 
8324 /*
8325 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8326 ** btree as the argument handle holds an exclusive lock on the
8327 ** sqlite_master table. Otherwise SQLITE_OK.
8328 */
8329 int sqlite3BtreeSchemaLocked(Btree *p){
8330   int rc;
8331   assert( sqlite3_mutex_held(p->db->mutex) );
8332   sqlite3BtreeEnter(p);
8333   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8334   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
8335   sqlite3BtreeLeave(p);
8336   return rc;
8337 }
8338 
8339 
8340 #ifndef SQLITE_OMIT_SHARED_CACHE
8341 /*
8342 ** Obtain a lock on the table whose root page is iTab.  The
8343 ** lock is a write lock if isWritelock is true or a read lock
8344 ** if it is false.
8345 */
8346 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
8347   int rc = SQLITE_OK;
8348   assert( p->inTrans!=TRANS_NONE );
8349   if( p->sharable ){
8350     u8 lockType = READ_LOCK + isWriteLock;
8351     assert( READ_LOCK+1==WRITE_LOCK );
8352     assert( isWriteLock==0 || isWriteLock==1 );
8353 
8354     sqlite3BtreeEnter(p);
8355     rc = querySharedCacheTableLock(p, iTab, lockType);
8356     if( rc==SQLITE_OK ){
8357       rc = setSharedCacheTableLock(p, iTab, lockType);
8358     }
8359     sqlite3BtreeLeave(p);
8360   }
8361   return rc;
8362 }
8363 #endif
8364 
8365 #ifndef SQLITE_OMIT_INCRBLOB
8366 /*
8367 ** Argument pCsr must be a cursor opened for writing on an
8368 ** INTKEY table currently pointing at a valid table entry.
8369 ** This function modifies the data stored as part of that entry.
8370 **
8371 ** Only the data content may only be modified, it is not possible to
8372 ** change the length of the data stored. If this function is called with
8373 ** parameters that attempt to write past the end of the existing data,
8374 ** no modifications are made and SQLITE_CORRUPT is returned.
8375 */
8376 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
8377   int rc;
8378   assert( cursorHoldsMutex(pCsr) );
8379   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
8380   assert( pCsr->isIncrblobHandle );
8381 
8382   rc = restoreCursorPosition(pCsr);
8383   if( rc!=SQLITE_OK ){
8384     return rc;
8385   }
8386   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8387   if( pCsr->eState!=CURSOR_VALID ){
8388     return SQLITE_ABORT;
8389   }
8390 
8391   /* Save the positions of all other cursors open on this table. This is
8392   ** required in case any of them are holding references to an xFetch
8393   ** version of the b-tree page modified by the accessPayload call below.
8394   **
8395   ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8396   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8397   ** saveAllCursors can only return SQLITE_OK.
8398   */
8399   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8400   assert( rc==SQLITE_OK );
8401 
8402   /* Check some assumptions:
8403   **   (a) the cursor is open for writing,
8404   **   (b) there is a read/write transaction open,
8405   **   (c) the connection holds a write-lock on the table (if required),
8406   **   (d) there are no conflicting read-locks, and
8407   **   (e) the cursor points at a valid row of an intKey table.
8408   */
8409   if( !pCsr->wrFlag ){
8410     return SQLITE_READONLY;
8411   }
8412   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8413               && pCsr->pBt->inTransaction==TRANS_WRITE );
8414   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8415   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
8416   assert( pCsr->apPage[pCsr->iPage]->intKey );
8417 
8418   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
8419 }
8420 
8421 /*
8422 ** Set a flag on this cursor to cache the locations of pages from the
8423 ** overflow list for the current row. This is used by cursors opened
8424 ** for incremental blob IO only.
8425 **
8426 ** This function sets a flag only. The actual page location cache
8427 ** (stored in BtCursor.aOverflow[]) is allocated and used by function
8428 ** accessPayload() (the worker function for sqlite3BtreeData() and
8429 ** sqlite3BtreePutData()).
8430 */
8431 void sqlite3BtreeCacheOverflow(BtCursor *pCur){
8432   assert( cursorHoldsMutex(pCur) );
8433   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
8434   invalidateOverflowCache(pCur);
8435   pCur->isIncrblobHandle = 1;
8436 }
8437 #endif
8438 
8439 /*
8440 ** Set both the "read version" (single byte at byte offset 18) and
8441 ** "write version" (single byte at byte offset 19) fields in the database
8442 ** header to iVersion.
8443 */
8444 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8445   BtShared *pBt = pBtree->pBt;
8446   int rc;                         /* Return code */
8447 
8448   assert( iVersion==1 || iVersion==2 );
8449 
8450   /* If setting the version fields to 1, do not automatically open the
8451   ** WAL connection, even if the version fields are currently set to 2.
8452   */
8453   pBt->btsFlags &= ~BTS_NO_WAL;
8454   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
8455 
8456   rc = sqlite3BtreeBeginTrans(pBtree, 0);
8457   if( rc==SQLITE_OK ){
8458     u8 *aData = pBt->pPage1->aData;
8459     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
8460       rc = sqlite3BtreeBeginTrans(pBtree, 2);
8461       if( rc==SQLITE_OK ){
8462         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8463         if( rc==SQLITE_OK ){
8464           aData[18] = (u8)iVersion;
8465           aData[19] = (u8)iVersion;
8466         }
8467       }
8468     }
8469   }
8470 
8471   pBt->btsFlags &= ~BTS_NO_WAL;
8472   return rc;
8473 }
8474 
8475 /*
8476 ** set the mask of hint flags for cursor pCsr. Currently the only valid
8477 ** values are 0 and BTREE_BULKLOAD.
8478 */
8479 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8480   assert( mask==BTREE_BULKLOAD || mask==0 );
8481   pCsr->hints = mask;
8482 }
8483