1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==(int)iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call BtreeMovetoUnpacked() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtr() => all index nodes & table leaf nodes 1331 */ 1332 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1333 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1334 u8 *pEnd; /* End mark for a varint */ 1335 u32 nSize; /* Size value to return */ 1336 1337 #ifdef SQLITE_DEBUG 1338 /* The value returned by this function should always be the same as 1339 ** the (CellInfo.nSize) value found by doing a full parse of the 1340 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1341 ** this function verifies that this invariant is not violated. */ 1342 CellInfo debuginfo; 1343 pPage->xParseCell(pPage, pCell, &debuginfo); 1344 #endif 1345 1346 nSize = *pIter; 1347 if( nSize>=0x80 ){ 1348 pEnd = &pIter[8]; 1349 nSize &= 0x7f; 1350 do{ 1351 nSize = (nSize<<7) | (*++pIter & 0x7f); 1352 }while( *(pIter)>=0x80 && pIter<pEnd ); 1353 } 1354 pIter++; 1355 if( pPage->intKey ){ 1356 /* pIter now points at the 64-bit integer key value, a variable length 1357 ** integer. The following block moves pIter to point at the first byte 1358 ** past the end of the key value. */ 1359 pEnd = &pIter[9]; 1360 while( (*pIter++)&0x80 && pIter<pEnd ); 1361 } 1362 testcase( nSize==pPage->maxLocal ); 1363 testcase( nSize==(u32)pPage->maxLocal+1 ); 1364 if( nSize<=pPage->maxLocal ){ 1365 nSize += (u32)(pIter - pCell); 1366 if( nSize<4 ) nSize = 4; 1367 }else{ 1368 int minLocal = pPage->minLocal; 1369 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1370 testcase( nSize==pPage->maxLocal ); 1371 testcase( nSize==(u32)pPage->maxLocal+1 ); 1372 if( nSize>pPage->maxLocal ){ 1373 nSize = minLocal; 1374 } 1375 nSize += 4 + (u16)(pIter - pCell); 1376 } 1377 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1378 return (u16)nSize; 1379 } 1380 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1381 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1382 u8 *pEnd; /* End mark for a varint */ 1383 1384 #ifdef SQLITE_DEBUG 1385 /* The value returned by this function should always be the same as 1386 ** the (CellInfo.nSize) value found by doing a full parse of the 1387 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1388 ** this function verifies that this invariant is not violated. */ 1389 CellInfo debuginfo; 1390 pPage->xParseCell(pPage, pCell, &debuginfo); 1391 #else 1392 UNUSED_PARAMETER(pPage); 1393 #endif 1394 1395 assert( pPage->childPtrSize==4 ); 1396 pEnd = pIter + 9; 1397 while( (*pIter++)&0x80 && pIter<pEnd ); 1398 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1399 return (u16)(pIter - pCell); 1400 } 1401 1402 1403 #ifdef SQLITE_DEBUG 1404 /* This variation on cellSizePtr() is used inside of assert() statements 1405 ** only. */ 1406 static u16 cellSize(MemPage *pPage, int iCell){ 1407 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1408 } 1409 #endif 1410 1411 #ifndef SQLITE_OMIT_AUTOVACUUM 1412 /* 1413 ** The cell pCell is currently part of page pSrc but will ultimately be part 1414 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1415 ** pointer to an overflow page, insert an entry into the pointer-map for 1416 ** the overflow page that will be valid after pCell has been moved to pPage. 1417 */ 1418 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1419 CellInfo info; 1420 if( *pRC ) return; 1421 assert( pCell!=0 ); 1422 pPage->xParseCell(pPage, pCell, &info); 1423 if( info.nLocal<info.nPayload ){ 1424 Pgno ovfl; 1425 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1426 testcase( pSrc!=pPage ); 1427 *pRC = SQLITE_CORRUPT_BKPT; 1428 return; 1429 } 1430 ovfl = get4byte(&pCell[info.nSize-4]); 1431 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1432 } 1433 } 1434 #endif 1435 1436 1437 /* 1438 ** Defragment the page given. This routine reorganizes cells within the 1439 ** page so that there are no free-blocks on the free-block list. 1440 ** 1441 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1442 ** present in the page after this routine returns. 1443 ** 1444 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1445 ** b-tree page so that there are no freeblocks or fragment bytes, all 1446 ** unused bytes are contained in the unallocated space region, and all 1447 ** cells are packed tightly at the end of the page. 1448 */ 1449 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1450 int i; /* Loop counter */ 1451 int pc; /* Address of the i-th cell */ 1452 int hdr; /* Offset to the page header */ 1453 int size; /* Size of a cell */ 1454 int usableSize; /* Number of usable bytes on a page */ 1455 int cellOffset; /* Offset to the cell pointer array */ 1456 int cbrk; /* Offset to the cell content area */ 1457 int nCell; /* Number of cells on the page */ 1458 unsigned char *data; /* The page data */ 1459 unsigned char *temp; /* Temp area for cell content */ 1460 unsigned char *src; /* Source of content */ 1461 int iCellFirst; /* First allowable cell index */ 1462 int iCellLast; /* Last possible cell index */ 1463 int iCellStart; /* First cell offset in input */ 1464 1465 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1466 assert( pPage->pBt!=0 ); 1467 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1468 assert( pPage->nOverflow==0 ); 1469 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1470 temp = 0; 1471 src = data = pPage->aData; 1472 hdr = pPage->hdrOffset; 1473 cellOffset = pPage->cellOffset; 1474 nCell = pPage->nCell; 1475 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1476 iCellFirst = cellOffset + 2*nCell; 1477 usableSize = pPage->pBt->usableSize; 1478 1479 /* This block handles pages with two or fewer free blocks and nMaxFrag 1480 ** or fewer fragmented bytes. In this case it is faster to move the 1481 ** two (or one) blocks of cells using memmove() and add the required 1482 ** offsets to each pointer in the cell-pointer array than it is to 1483 ** reconstruct the entire page. */ 1484 if( (int)data[hdr+7]<=nMaxFrag ){ 1485 int iFree = get2byte(&data[hdr+1]); 1486 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1487 if( iFree ){ 1488 int iFree2 = get2byte(&data[iFree]); 1489 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1490 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1491 u8 *pEnd = &data[cellOffset + nCell*2]; 1492 u8 *pAddr; 1493 int sz2 = 0; 1494 int sz = get2byte(&data[iFree+2]); 1495 int top = get2byte(&data[hdr+5]); 1496 if( top>=iFree ){ 1497 return SQLITE_CORRUPT_PAGE(pPage); 1498 } 1499 if( iFree2 ){ 1500 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1501 sz2 = get2byte(&data[iFree2+2]); 1502 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1503 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1504 sz += sz2; 1505 }else if( NEVER(iFree+sz>usableSize) ){ 1506 return SQLITE_CORRUPT_PAGE(pPage); 1507 } 1508 1509 cbrk = top+sz; 1510 assert( cbrk+(iFree-top) <= usableSize ); 1511 memmove(&data[cbrk], &data[top], iFree-top); 1512 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1513 pc = get2byte(pAddr); 1514 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1515 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1516 } 1517 goto defragment_out; 1518 } 1519 } 1520 } 1521 1522 cbrk = usableSize; 1523 iCellLast = usableSize - 4; 1524 iCellStart = get2byte(&data[hdr+5]); 1525 for(i=0; i<nCell; i++){ 1526 u8 *pAddr; /* The i-th cell pointer */ 1527 pAddr = &data[cellOffset + i*2]; 1528 pc = get2byte(pAddr); 1529 testcase( pc==iCellFirst ); 1530 testcase( pc==iCellLast ); 1531 /* These conditions have already been verified in btreeInitPage() 1532 ** if PRAGMA cell_size_check=ON. 1533 */ 1534 if( pc<iCellStart || pc>iCellLast ){ 1535 return SQLITE_CORRUPT_PAGE(pPage); 1536 } 1537 assert( pc>=iCellStart && pc<=iCellLast ); 1538 size = pPage->xCellSize(pPage, &src[pc]); 1539 cbrk -= size; 1540 if( cbrk<iCellStart || pc+size>usableSize ){ 1541 return SQLITE_CORRUPT_PAGE(pPage); 1542 } 1543 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1544 testcase( cbrk+size==usableSize ); 1545 testcase( pc+size==usableSize ); 1546 put2byte(pAddr, cbrk); 1547 if( temp==0 ){ 1548 if( cbrk==pc ) continue; 1549 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1550 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1551 src = temp; 1552 } 1553 memcpy(&data[cbrk], &src[pc], size); 1554 } 1555 data[hdr+7] = 0; 1556 1557 defragment_out: 1558 assert( pPage->nFree>=0 ); 1559 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1560 return SQLITE_CORRUPT_PAGE(pPage); 1561 } 1562 assert( cbrk>=iCellFirst ); 1563 put2byte(&data[hdr+5], cbrk); 1564 data[hdr+1] = 0; 1565 data[hdr+2] = 0; 1566 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1567 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1568 return SQLITE_OK; 1569 } 1570 1571 /* 1572 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1573 ** size. If one can be found, return a pointer to the space and remove it 1574 ** from the free-list. 1575 ** 1576 ** If no suitable space can be found on the free-list, return NULL. 1577 ** 1578 ** This function may detect corruption within pPg. If corruption is 1579 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1580 ** 1581 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1582 ** will be ignored if adding the extra space to the fragmentation count 1583 ** causes the fragmentation count to exceed 60. 1584 */ 1585 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1586 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1587 u8 * const aData = pPg->aData; /* Page data */ 1588 int iAddr = hdr + 1; /* Address of ptr to pc */ 1589 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1590 int x; /* Excess size of the slot */ 1591 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1592 int size; /* Size of the free slot */ 1593 1594 assert( pc>0 ); 1595 while( pc<=maxPC ){ 1596 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1597 ** freeblock form a big-endian integer which is the size of the freeblock 1598 ** in bytes, including the 4-byte header. */ 1599 size = get2byte(&aData[pc+2]); 1600 if( (x = size - nByte)>=0 ){ 1601 testcase( x==4 ); 1602 testcase( x==3 ); 1603 if( x<4 ){ 1604 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1605 ** number of bytes in fragments may not exceed 60. */ 1606 if( aData[hdr+7]>57 ) return 0; 1607 1608 /* Remove the slot from the free-list. Update the number of 1609 ** fragmented bytes within the page. */ 1610 memcpy(&aData[iAddr], &aData[pc], 2); 1611 aData[hdr+7] += (u8)x; 1612 }else if( x+pc > maxPC ){ 1613 /* This slot extends off the end of the usable part of the page */ 1614 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1615 return 0; 1616 }else{ 1617 /* The slot remains on the free-list. Reduce its size to account 1618 ** for the portion used by the new allocation. */ 1619 put2byte(&aData[pc+2], x); 1620 } 1621 return &aData[pc + x]; 1622 } 1623 iAddr = pc; 1624 pc = get2byte(&aData[pc]); 1625 if( pc<=iAddr+size ){ 1626 if( pc ){ 1627 /* The next slot in the chain is not past the end of the current slot */ 1628 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1629 } 1630 return 0; 1631 } 1632 } 1633 if( pc>maxPC+nByte-4 ){ 1634 /* The free slot chain extends off the end of the page */ 1635 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1636 } 1637 return 0; 1638 } 1639 1640 /* 1641 ** Allocate nByte bytes of space from within the B-Tree page passed 1642 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1643 ** of the first byte of allocated space. Return either SQLITE_OK or 1644 ** an error code (usually SQLITE_CORRUPT). 1645 ** 1646 ** The caller guarantees that there is sufficient space to make the 1647 ** allocation. This routine might need to defragment in order to bring 1648 ** all the space together, however. This routine will avoid using 1649 ** the first two bytes past the cell pointer area since presumably this 1650 ** allocation is being made in order to insert a new cell, so we will 1651 ** also end up needing a new cell pointer. 1652 */ 1653 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1654 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1655 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1656 int top; /* First byte of cell content area */ 1657 int rc = SQLITE_OK; /* Integer return code */ 1658 int gap; /* First byte of gap between cell pointers and cell content */ 1659 1660 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1661 assert( pPage->pBt ); 1662 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1663 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1664 assert( pPage->nFree>=nByte ); 1665 assert( pPage->nOverflow==0 ); 1666 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1667 1668 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1669 gap = pPage->cellOffset + 2*pPage->nCell; 1670 assert( gap<=65536 ); 1671 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1672 ** and the reserved space is zero (the usual value for reserved space) 1673 ** then the cell content offset of an empty page wants to be 65536. 1674 ** However, that integer is too large to be stored in a 2-byte unsigned 1675 ** integer, so a value of 0 is used in its place. */ 1676 top = get2byte(&data[hdr+5]); 1677 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1678 if( gap>top ){ 1679 if( top==0 && pPage->pBt->usableSize==65536 ){ 1680 top = 65536; 1681 }else{ 1682 return SQLITE_CORRUPT_PAGE(pPage); 1683 } 1684 } 1685 1686 /* If there is enough space between gap and top for one more cell pointer, 1687 ** and if the freelist is not empty, then search the 1688 ** freelist looking for a slot big enough to satisfy the request. 1689 */ 1690 testcase( gap+2==top ); 1691 testcase( gap+1==top ); 1692 testcase( gap==top ); 1693 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1694 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1695 if( pSpace ){ 1696 int g2; 1697 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1698 *pIdx = g2 = (int)(pSpace-data); 1699 if( g2<=gap ){ 1700 return SQLITE_CORRUPT_PAGE(pPage); 1701 }else{ 1702 return SQLITE_OK; 1703 } 1704 }else if( rc ){ 1705 return rc; 1706 } 1707 } 1708 1709 /* The request could not be fulfilled using a freelist slot. Check 1710 ** to see if defragmentation is necessary. 1711 */ 1712 testcase( gap+2+nByte==top ); 1713 if( gap+2+nByte>top ){ 1714 assert( pPage->nCell>0 || CORRUPT_DB ); 1715 assert( pPage->nFree>=0 ); 1716 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1717 if( rc ) return rc; 1718 top = get2byteNotZero(&data[hdr+5]); 1719 assert( gap+2+nByte<=top ); 1720 } 1721 1722 1723 /* Allocate memory from the gap in between the cell pointer array 1724 ** and the cell content area. The btreeComputeFreeSpace() call has already 1725 ** validated the freelist. Given that the freelist is valid, there 1726 ** is no way that the allocation can extend off the end of the page. 1727 ** The assert() below verifies the previous sentence. 1728 */ 1729 top -= nByte; 1730 put2byte(&data[hdr+5], top); 1731 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1732 *pIdx = top; 1733 return SQLITE_OK; 1734 } 1735 1736 /* 1737 ** Return a section of the pPage->aData to the freelist. 1738 ** The first byte of the new free block is pPage->aData[iStart] 1739 ** and the size of the block is iSize bytes. 1740 ** 1741 ** Adjacent freeblocks are coalesced. 1742 ** 1743 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1744 ** that routine will not detect overlap between cells or freeblocks. Nor 1745 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1746 ** at the end of the page. So do additional corruption checks inside this 1747 ** routine and return SQLITE_CORRUPT if any problems are found. 1748 */ 1749 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1750 u16 iPtr; /* Address of ptr to next freeblock */ 1751 u16 iFreeBlk; /* Address of the next freeblock */ 1752 u8 hdr; /* Page header size. 0 or 100 */ 1753 u8 nFrag = 0; /* Reduction in fragmentation */ 1754 u16 iOrigSize = iSize; /* Original value of iSize */ 1755 u16 x; /* Offset to cell content area */ 1756 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1757 unsigned char *data = pPage->aData; /* Page content */ 1758 1759 assert( pPage->pBt!=0 ); 1760 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1761 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1762 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1763 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1764 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1765 assert( iStart<=pPage->pBt->usableSize-4 ); 1766 1767 /* The list of freeblocks must be in ascending order. Find the 1768 ** spot on the list where iStart should be inserted. 1769 */ 1770 hdr = pPage->hdrOffset; 1771 iPtr = hdr + 1; 1772 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1773 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1774 }else{ 1775 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1776 if( iFreeBlk<iPtr+4 ){ 1777 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1778 return SQLITE_CORRUPT_PAGE(pPage); 1779 } 1780 iPtr = iFreeBlk; 1781 } 1782 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1783 return SQLITE_CORRUPT_PAGE(pPage); 1784 } 1785 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1786 1787 /* At this point: 1788 ** iFreeBlk: First freeblock after iStart, or zero if none 1789 ** iPtr: The address of a pointer to iFreeBlk 1790 ** 1791 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1792 */ 1793 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1794 nFrag = iFreeBlk - iEnd; 1795 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1796 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1797 if( iEnd > pPage->pBt->usableSize ){ 1798 return SQLITE_CORRUPT_PAGE(pPage); 1799 } 1800 iSize = iEnd - iStart; 1801 iFreeBlk = get2byte(&data[iFreeBlk]); 1802 } 1803 1804 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1805 ** pointer in the page header) then check to see if iStart should be 1806 ** coalesced onto the end of iPtr. 1807 */ 1808 if( iPtr>hdr+1 ){ 1809 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1810 if( iPtrEnd+3>=iStart ){ 1811 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1812 nFrag += iStart - iPtrEnd; 1813 iSize = iEnd - iPtr; 1814 iStart = iPtr; 1815 } 1816 } 1817 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1818 data[hdr+7] -= nFrag; 1819 } 1820 x = get2byte(&data[hdr+5]); 1821 if( iStart<=x ){ 1822 /* The new freeblock is at the beginning of the cell content area, 1823 ** so just extend the cell content area rather than create another 1824 ** freelist entry */ 1825 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1826 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1827 put2byte(&data[hdr+1], iFreeBlk); 1828 put2byte(&data[hdr+5], iEnd); 1829 }else{ 1830 /* Insert the new freeblock into the freelist */ 1831 put2byte(&data[iPtr], iStart); 1832 } 1833 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1834 /* Overwrite deleted information with zeros when the secure_delete 1835 ** option is enabled */ 1836 memset(&data[iStart], 0, iSize); 1837 } 1838 put2byte(&data[iStart], iFreeBlk); 1839 put2byte(&data[iStart+2], iSize); 1840 pPage->nFree += iOrigSize; 1841 return SQLITE_OK; 1842 } 1843 1844 /* 1845 ** Decode the flags byte (the first byte of the header) for a page 1846 ** and initialize fields of the MemPage structure accordingly. 1847 ** 1848 ** Only the following combinations are supported. Anything different 1849 ** indicates a corrupt database files: 1850 ** 1851 ** PTF_ZERODATA 1852 ** PTF_ZERODATA | PTF_LEAF 1853 ** PTF_LEAFDATA | PTF_INTKEY 1854 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1855 */ 1856 static int decodeFlags(MemPage *pPage, int flagByte){ 1857 BtShared *pBt; /* A copy of pPage->pBt */ 1858 1859 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1860 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1861 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1862 flagByte &= ~PTF_LEAF; 1863 pPage->childPtrSize = 4-4*pPage->leaf; 1864 pPage->xCellSize = cellSizePtr; 1865 pBt = pPage->pBt; 1866 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1867 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1868 ** interior table b-tree page. */ 1869 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1870 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1871 ** leaf table b-tree page. */ 1872 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1873 pPage->intKey = 1; 1874 if( pPage->leaf ){ 1875 pPage->intKeyLeaf = 1; 1876 pPage->xParseCell = btreeParseCellPtr; 1877 }else{ 1878 pPage->intKeyLeaf = 0; 1879 pPage->xCellSize = cellSizePtrNoPayload; 1880 pPage->xParseCell = btreeParseCellPtrNoPayload; 1881 } 1882 pPage->maxLocal = pBt->maxLeaf; 1883 pPage->minLocal = pBt->minLeaf; 1884 }else if( flagByte==PTF_ZERODATA ){ 1885 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1886 ** interior index b-tree page. */ 1887 assert( (PTF_ZERODATA)==2 ); 1888 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1889 ** leaf index b-tree page. */ 1890 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1891 pPage->intKey = 0; 1892 pPage->intKeyLeaf = 0; 1893 pPage->xParseCell = btreeParseCellPtrIndex; 1894 pPage->maxLocal = pBt->maxLocal; 1895 pPage->minLocal = pBt->minLocal; 1896 }else{ 1897 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1898 ** an error. */ 1899 return SQLITE_CORRUPT_PAGE(pPage); 1900 } 1901 pPage->max1bytePayload = pBt->max1bytePayload; 1902 return SQLITE_OK; 1903 } 1904 1905 /* 1906 ** Compute the amount of freespace on the page. In other words, fill 1907 ** in the pPage->nFree field. 1908 */ 1909 static int btreeComputeFreeSpace(MemPage *pPage){ 1910 int pc; /* Address of a freeblock within pPage->aData[] */ 1911 u8 hdr; /* Offset to beginning of page header */ 1912 u8 *data; /* Equal to pPage->aData */ 1913 int usableSize; /* Amount of usable space on each page */ 1914 int nFree; /* Number of unused bytes on the page */ 1915 int top; /* First byte of the cell content area */ 1916 int iCellFirst; /* First allowable cell or freeblock offset */ 1917 int iCellLast; /* Last possible cell or freeblock offset */ 1918 1919 assert( pPage->pBt!=0 ); 1920 assert( pPage->pBt->db!=0 ); 1921 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1922 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1923 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1924 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1925 assert( pPage->isInit==1 ); 1926 assert( pPage->nFree<0 ); 1927 1928 usableSize = pPage->pBt->usableSize; 1929 hdr = pPage->hdrOffset; 1930 data = pPage->aData; 1931 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1932 ** the start of the cell content area. A zero value for this integer is 1933 ** interpreted as 65536. */ 1934 top = get2byteNotZero(&data[hdr+5]); 1935 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1936 iCellLast = usableSize - 4; 1937 1938 /* Compute the total free space on the page 1939 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1940 ** start of the first freeblock on the page, or is zero if there are no 1941 ** freeblocks. */ 1942 pc = get2byte(&data[hdr+1]); 1943 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1944 if( pc>0 ){ 1945 u32 next, size; 1946 if( pc<top ){ 1947 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1948 ** always be at least one cell before the first freeblock. 1949 */ 1950 return SQLITE_CORRUPT_PAGE(pPage); 1951 } 1952 while( 1 ){ 1953 if( pc>iCellLast ){ 1954 /* Freeblock off the end of the page */ 1955 return SQLITE_CORRUPT_PAGE(pPage); 1956 } 1957 next = get2byte(&data[pc]); 1958 size = get2byte(&data[pc+2]); 1959 nFree = nFree + size; 1960 if( next<=pc+size+3 ) break; 1961 pc = next; 1962 } 1963 if( next>0 ){ 1964 /* Freeblock not in ascending order */ 1965 return SQLITE_CORRUPT_PAGE(pPage); 1966 } 1967 if( pc+size>(unsigned int)usableSize ){ 1968 /* Last freeblock extends past page end */ 1969 return SQLITE_CORRUPT_PAGE(pPage); 1970 } 1971 } 1972 1973 /* At this point, nFree contains the sum of the offset to the start 1974 ** of the cell-content area plus the number of free bytes within 1975 ** the cell-content area. If this is greater than the usable-size 1976 ** of the page, then the page must be corrupted. This check also 1977 ** serves to verify that the offset to the start of the cell-content 1978 ** area, according to the page header, lies within the page. 1979 */ 1980 if( nFree>usableSize || nFree<iCellFirst ){ 1981 return SQLITE_CORRUPT_PAGE(pPage); 1982 } 1983 pPage->nFree = (u16)(nFree - iCellFirst); 1984 return SQLITE_OK; 1985 } 1986 1987 /* 1988 ** Do additional sanity check after btreeInitPage() if 1989 ** PRAGMA cell_size_check=ON 1990 */ 1991 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1992 int iCellFirst; /* First allowable cell or freeblock offset */ 1993 int iCellLast; /* Last possible cell or freeblock offset */ 1994 int i; /* Index into the cell pointer array */ 1995 int sz; /* Size of a cell */ 1996 int pc; /* Address of a freeblock within pPage->aData[] */ 1997 u8 *data; /* Equal to pPage->aData */ 1998 int usableSize; /* Maximum usable space on the page */ 1999 int cellOffset; /* Start of cell content area */ 2000 2001 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2002 usableSize = pPage->pBt->usableSize; 2003 iCellLast = usableSize - 4; 2004 data = pPage->aData; 2005 cellOffset = pPage->cellOffset; 2006 if( !pPage->leaf ) iCellLast--; 2007 for(i=0; i<pPage->nCell; i++){ 2008 pc = get2byteAligned(&data[cellOffset+i*2]); 2009 testcase( pc==iCellFirst ); 2010 testcase( pc==iCellLast ); 2011 if( pc<iCellFirst || pc>iCellLast ){ 2012 return SQLITE_CORRUPT_PAGE(pPage); 2013 } 2014 sz = pPage->xCellSize(pPage, &data[pc]); 2015 testcase( pc+sz==usableSize ); 2016 if( pc+sz>usableSize ){ 2017 return SQLITE_CORRUPT_PAGE(pPage); 2018 } 2019 } 2020 return SQLITE_OK; 2021 } 2022 2023 /* 2024 ** Initialize the auxiliary information for a disk block. 2025 ** 2026 ** Return SQLITE_OK on success. If we see that the page does 2027 ** not contain a well-formed database page, then return 2028 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2029 ** guarantee that the page is well-formed. It only shows that 2030 ** we failed to detect any corruption. 2031 */ 2032 static int btreeInitPage(MemPage *pPage){ 2033 u8 *data; /* Equal to pPage->aData */ 2034 BtShared *pBt; /* The main btree structure */ 2035 2036 assert( pPage->pBt!=0 ); 2037 assert( pPage->pBt->db!=0 ); 2038 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2039 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2040 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2041 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2042 assert( pPage->isInit==0 ); 2043 2044 pBt = pPage->pBt; 2045 data = pPage->aData + pPage->hdrOffset; 2046 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2047 ** the b-tree page type. */ 2048 if( decodeFlags(pPage, data[0]) ){ 2049 return SQLITE_CORRUPT_PAGE(pPage); 2050 } 2051 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2052 pPage->maskPage = (u16)(pBt->pageSize - 1); 2053 pPage->nOverflow = 0; 2054 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2055 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2056 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2057 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2058 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2059 ** number of cells on the page. */ 2060 pPage->nCell = get2byte(&data[3]); 2061 if( pPage->nCell>MX_CELL(pBt) ){ 2062 /* To many cells for a single page. The page must be corrupt */ 2063 return SQLITE_CORRUPT_PAGE(pPage); 2064 } 2065 testcase( pPage->nCell==MX_CELL(pBt) ); 2066 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2067 ** possible for a root page of a table that contains no rows) then the 2068 ** offset to the cell content area will equal the page size minus the 2069 ** bytes of reserved space. */ 2070 assert( pPage->nCell>0 2071 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2072 || CORRUPT_DB ); 2073 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2074 pPage->isInit = 1; 2075 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2076 return btreeCellSizeCheck(pPage); 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Set up a raw page so that it looks like a database page holding 2083 ** no entries. 2084 */ 2085 static void zeroPage(MemPage *pPage, int flags){ 2086 unsigned char *data = pPage->aData; 2087 BtShared *pBt = pPage->pBt; 2088 u8 hdr = pPage->hdrOffset; 2089 u16 first; 2090 2091 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2092 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2093 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2094 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2095 assert( sqlite3_mutex_held(pBt->mutex) ); 2096 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2097 memset(&data[hdr], 0, pBt->usableSize - hdr); 2098 } 2099 data[hdr] = (char)flags; 2100 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2101 memset(&data[hdr+1], 0, 4); 2102 data[hdr+7] = 0; 2103 put2byte(&data[hdr+5], pBt->usableSize); 2104 pPage->nFree = (u16)(pBt->usableSize - first); 2105 decodeFlags(pPage, flags); 2106 pPage->cellOffset = first; 2107 pPage->aDataEnd = &data[pBt->usableSize]; 2108 pPage->aCellIdx = &data[first]; 2109 pPage->aDataOfst = &data[pPage->childPtrSize]; 2110 pPage->nOverflow = 0; 2111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2112 pPage->maskPage = (u16)(pBt->pageSize - 1); 2113 pPage->nCell = 0; 2114 pPage->isInit = 1; 2115 } 2116 2117 2118 /* 2119 ** Convert a DbPage obtained from the pager into a MemPage used by 2120 ** the btree layer. 2121 */ 2122 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2123 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2124 if( pgno!=pPage->pgno ){ 2125 pPage->aData = sqlite3PagerGetData(pDbPage); 2126 pPage->pDbPage = pDbPage; 2127 pPage->pBt = pBt; 2128 pPage->pgno = pgno; 2129 pPage->hdrOffset = pgno==1 ? 100 : 0; 2130 } 2131 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2132 return pPage; 2133 } 2134 2135 /* 2136 ** Get a page from the pager. Initialize the MemPage.pBt and 2137 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2138 ** 2139 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2140 ** about the content of the page at this time. So do not go to the disk 2141 ** to fetch the content. Just fill in the content with zeros for now. 2142 ** If in the future we call sqlite3PagerWrite() on this page, that 2143 ** means we have started to be concerned about content and the disk 2144 ** read should occur at that point. 2145 */ 2146 static int btreeGetPage( 2147 BtShared *pBt, /* The btree */ 2148 Pgno pgno, /* Number of the page to fetch */ 2149 MemPage **ppPage, /* Return the page in this parameter */ 2150 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2151 ){ 2152 int rc; 2153 DbPage *pDbPage; 2154 2155 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2156 assert( sqlite3_mutex_held(pBt->mutex) ); 2157 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2158 if( rc ) return rc; 2159 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2160 return SQLITE_OK; 2161 } 2162 2163 /* 2164 ** Retrieve a page from the pager cache. If the requested page is not 2165 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2166 ** MemPage.aData elements if needed. 2167 */ 2168 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2169 DbPage *pDbPage; 2170 assert( sqlite3_mutex_held(pBt->mutex) ); 2171 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2172 if( pDbPage ){ 2173 return btreePageFromDbPage(pDbPage, pgno, pBt); 2174 } 2175 return 0; 2176 } 2177 2178 /* 2179 ** Return the size of the database file in pages. If there is any kind of 2180 ** error, return ((unsigned int)-1). 2181 */ 2182 static Pgno btreePagecount(BtShared *pBt){ 2183 return pBt->nPage; 2184 } 2185 Pgno sqlite3BtreeLastPage(Btree *p){ 2186 assert( sqlite3BtreeHoldsMutex(p) ); 2187 return btreePagecount(p->pBt); 2188 } 2189 2190 /* 2191 ** Get a page from the pager and initialize it. 2192 ** 2193 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2194 ** call. Do additional sanity checking on the page in this case. 2195 ** And if the fetch fails, this routine must decrement pCur->iPage. 2196 ** 2197 ** The page is fetched as read-write unless pCur is not NULL and is 2198 ** a read-only cursor. 2199 ** 2200 ** If an error occurs, then *ppPage is undefined. It 2201 ** may remain unchanged, or it may be set to an invalid value. 2202 */ 2203 static int getAndInitPage( 2204 BtShared *pBt, /* The database file */ 2205 Pgno pgno, /* Number of the page to get */ 2206 MemPage **ppPage, /* Write the page pointer here */ 2207 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2208 int bReadOnly /* True for a read-only page */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 assert( sqlite3_mutex_held(pBt->mutex) ); 2213 assert( pCur==0 || ppPage==&pCur->pPage ); 2214 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2215 assert( pCur==0 || pCur->iPage>0 ); 2216 2217 if( pgno>btreePagecount(pBt) ){ 2218 rc = SQLITE_CORRUPT_BKPT; 2219 goto getAndInitPage_error1; 2220 } 2221 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2222 if( rc ){ 2223 goto getAndInitPage_error1; 2224 } 2225 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2226 if( (*ppPage)->isInit==0 ){ 2227 btreePageFromDbPage(pDbPage, pgno, pBt); 2228 rc = btreeInitPage(*ppPage); 2229 if( rc!=SQLITE_OK ){ 2230 goto getAndInitPage_error2; 2231 } 2232 } 2233 assert( (*ppPage)->pgno==pgno ); 2234 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2235 2236 /* If obtaining a child page for a cursor, we must verify that the page is 2237 ** compatible with the root page. */ 2238 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2239 rc = SQLITE_CORRUPT_PGNO(pgno); 2240 goto getAndInitPage_error2; 2241 } 2242 return SQLITE_OK; 2243 2244 getAndInitPage_error2: 2245 releasePage(*ppPage); 2246 getAndInitPage_error1: 2247 if( pCur ){ 2248 pCur->iPage--; 2249 pCur->pPage = pCur->apPage[pCur->iPage]; 2250 } 2251 testcase( pgno==0 ); 2252 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2253 return rc; 2254 } 2255 2256 /* 2257 ** Release a MemPage. This should be called once for each prior 2258 ** call to btreeGetPage. 2259 ** 2260 ** Page1 is a special case and must be released using releasePageOne(). 2261 */ 2262 static void releasePageNotNull(MemPage *pPage){ 2263 assert( pPage->aData ); 2264 assert( pPage->pBt ); 2265 assert( pPage->pDbPage!=0 ); 2266 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2267 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2268 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2269 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2270 } 2271 static void releasePage(MemPage *pPage){ 2272 if( pPage ) releasePageNotNull(pPage); 2273 } 2274 static void releasePageOne(MemPage *pPage){ 2275 assert( pPage!=0 ); 2276 assert( pPage->aData ); 2277 assert( pPage->pBt ); 2278 assert( pPage->pDbPage!=0 ); 2279 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2280 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2281 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2282 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2283 } 2284 2285 /* 2286 ** Get an unused page. 2287 ** 2288 ** This works just like btreeGetPage() with the addition: 2289 ** 2290 ** * If the page is already in use for some other purpose, immediately 2291 ** release it and return an SQLITE_CURRUPT error. 2292 ** * Make sure the isInit flag is clear 2293 */ 2294 static int btreeGetUnusedPage( 2295 BtShared *pBt, /* The btree */ 2296 Pgno pgno, /* Number of the page to fetch */ 2297 MemPage **ppPage, /* Return the page in this parameter */ 2298 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2299 ){ 2300 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2301 if( rc==SQLITE_OK ){ 2302 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2303 releasePage(*ppPage); 2304 *ppPage = 0; 2305 return SQLITE_CORRUPT_BKPT; 2306 } 2307 (*ppPage)->isInit = 0; 2308 }else{ 2309 *ppPage = 0; 2310 } 2311 return rc; 2312 } 2313 2314 2315 /* 2316 ** During a rollback, when the pager reloads information into the cache 2317 ** so that the cache is restored to its original state at the start of 2318 ** the transaction, for each page restored this routine is called. 2319 ** 2320 ** This routine needs to reset the extra data section at the end of the 2321 ** page to agree with the restored data. 2322 */ 2323 static void pageReinit(DbPage *pData){ 2324 MemPage *pPage; 2325 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2326 assert( sqlite3PagerPageRefcount(pData)>0 ); 2327 if( pPage->isInit ){ 2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2329 pPage->isInit = 0; 2330 if( sqlite3PagerPageRefcount(pData)>1 ){ 2331 /* pPage might not be a btree page; it might be an overflow page 2332 ** or ptrmap page or a free page. In those cases, the following 2333 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2334 ** But no harm is done by this. And it is very important that 2335 ** btreeInitPage() be called on every btree page so we make 2336 ** the call for every page that comes in for re-initing. */ 2337 btreeInitPage(pPage); 2338 } 2339 } 2340 } 2341 2342 /* 2343 ** Invoke the busy handler for a btree. 2344 */ 2345 static int btreeInvokeBusyHandler(void *pArg){ 2346 BtShared *pBt = (BtShared*)pArg; 2347 assert( pBt->db ); 2348 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2349 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2350 } 2351 2352 /* 2353 ** Open a database file. 2354 ** 2355 ** zFilename is the name of the database file. If zFilename is NULL 2356 ** then an ephemeral database is created. The ephemeral database might 2357 ** be exclusively in memory, or it might use a disk-based memory cache. 2358 ** Either way, the ephemeral database will be automatically deleted 2359 ** when sqlite3BtreeClose() is called. 2360 ** 2361 ** If zFilename is ":memory:" then an in-memory database is created 2362 ** that is automatically destroyed when it is closed. 2363 ** 2364 ** The "flags" parameter is a bitmask that might contain bits like 2365 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2366 ** 2367 ** If the database is already opened in the same database connection 2368 ** and we are in shared cache mode, then the open will fail with an 2369 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2370 ** objects in the same database connection since doing so will lead 2371 ** to problems with locking. 2372 */ 2373 int sqlite3BtreeOpen( 2374 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2375 const char *zFilename, /* Name of the file containing the BTree database */ 2376 sqlite3 *db, /* Associated database handle */ 2377 Btree **ppBtree, /* Pointer to new Btree object written here */ 2378 int flags, /* Options */ 2379 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2380 ){ 2381 BtShared *pBt = 0; /* Shared part of btree structure */ 2382 Btree *p; /* Handle to return */ 2383 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2384 int rc = SQLITE_OK; /* Result code from this function */ 2385 u8 nReserve; /* Byte of unused space on each page */ 2386 unsigned char zDbHeader[100]; /* Database header content */ 2387 2388 /* True if opening an ephemeral, temporary database */ 2389 const int isTempDb = zFilename==0 || zFilename[0]==0; 2390 2391 /* Set the variable isMemdb to true for an in-memory database, or 2392 ** false for a file-based database. 2393 */ 2394 #ifdef SQLITE_OMIT_MEMORYDB 2395 const int isMemdb = 0; 2396 #else 2397 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2398 || (isTempDb && sqlite3TempInMemory(db)) 2399 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2400 #endif 2401 2402 assert( db!=0 ); 2403 assert( pVfs!=0 ); 2404 assert( sqlite3_mutex_held(db->mutex) ); 2405 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2406 2407 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2408 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2409 2410 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2411 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2412 2413 if( isMemdb ){ 2414 flags |= BTREE_MEMORY; 2415 } 2416 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2417 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2418 } 2419 p = sqlite3MallocZero(sizeof(Btree)); 2420 if( !p ){ 2421 return SQLITE_NOMEM_BKPT; 2422 } 2423 p->inTrans = TRANS_NONE; 2424 p->db = db; 2425 #ifndef SQLITE_OMIT_SHARED_CACHE 2426 p->lock.pBtree = p; 2427 p->lock.iTable = 1; 2428 #endif 2429 2430 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2431 /* 2432 ** If this Btree is a candidate for shared cache, try to find an 2433 ** existing BtShared object that we can share with 2434 */ 2435 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2436 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2437 int nFilename = sqlite3Strlen30(zFilename)+1; 2438 int nFullPathname = pVfs->mxPathname+1; 2439 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2440 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2441 2442 p->sharable = 1; 2443 if( !zFullPathname ){ 2444 sqlite3_free(p); 2445 return SQLITE_NOMEM_BKPT; 2446 } 2447 if( isMemdb ){ 2448 memcpy(zFullPathname, zFilename, nFilename); 2449 }else{ 2450 rc = sqlite3OsFullPathname(pVfs, zFilename, 2451 nFullPathname, zFullPathname); 2452 if( rc ){ 2453 if( rc==SQLITE_OK_SYMLINK ){ 2454 rc = SQLITE_OK; 2455 }else{ 2456 sqlite3_free(zFullPathname); 2457 sqlite3_free(p); 2458 return rc; 2459 } 2460 } 2461 } 2462 #if SQLITE_THREADSAFE 2463 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2464 sqlite3_mutex_enter(mutexOpen); 2465 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2466 sqlite3_mutex_enter(mutexShared); 2467 #endif 2468 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2469 assert( pBt->nRef>0 ); 2470 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2471 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2472 int iDb; 2473 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2474 Btree *pExisting = db->aDb[iDb].pBt; 2475 if( pExisting && pExisting->pBt==pBt ){ 2476 sqlite3_mutex_leave(mutexShared); 2477 sqlite3_mutex_leave(mutexOpen); 2478 sqlite3_free(zFullPathname); 2479 sqlite3_free(p); 2480 return SQLITE_CONSTRAINT; 2481 } 2482 } 2483 p->pBt = pBt; 2484 pBt->nRef++; 2485 break; 2486 } 2487 } 2488 sqlite3_mutex_leave(mutexShared); 2489 sqlite3_free(zFullPathname); 2490 } 2491 #ifdef SQLITE_DEBUG 2492 else{ 2493 /* In debug mode, we mark all persistent databases as sharable 2494 ** even when they are not. This exercises the locking code and 2495 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2496 ** statements to find locking problems. 2497 */ 2498 p->sharable = 1; 2499 } 2500 #endif 2501 } 2502 #endif 2503 if( pBt==0 ){ 2504 /* 2505 ** The following asserts make sure that structures used by the btree are 2506 ** the right size. This is to guard against size changes that result 2507 ** when compiling on a different architecture. 2508 */ 2509 assert( sizeof(i64)==8 ); 2510 assert( sizeof(u64)==8 ); 2511 assert( sizeof(u32)==4 ); 2512 assert( sizeof(u16)==2 ); 2513 assert( sizeof(Pgno)==4 ); 2514 2515 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2516 if( pBt==0 ){ 2517 rc = SQLITE_NOMEM_BKPT; 2518 goto btree_open_out; 2519 } 2520 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2521 sizeof(MemPage), flags, vfsFlags, pageReinit); 2522 if( rc==SQLITE_OK ){ 2523 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2524 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2525 } 2526 if( rc!=SQLITE_OK ){ 2527 goto btree_open_out; 2528 } 2529 pBt->openFlags = (u8)flags; 2530 pBt->db = db; 2531 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2532 p->pBt = pBt; 2533 2534 pBt->pCursor = 0; 2535 pBt->pPage1 = 0; 2536 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2537 #if defined(SQLITE_SECURE_DELETE) 2538 pBt->btsFlags |= BTS_SECURE_DELETE; 2539 #elif defined(SQLITE_FAST_SECURE_DELETE) 2540 pBt->btsFlags |= BTS_OVERWRITE; 2541 #endif 2542 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2543 ** determined by the 2-byte integer located at an offset of 16 bytes from 2544 ** the beginning of the database file. */ 2545 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2546 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2547 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2548 pBt->pageSize = 0; 2549 #ifndef SQLITE_OMIT_AUTOVACUUM 2550 /* If the magic name ":memory:" will create an in-memory database, then 2551 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2552 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2553 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2554 ** regular file-name. In this case the auto-vacuum applies as per normal. 2555 */ 2556 if( zFilename && !isMemdb ){ 2557 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2558 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2559 } 2560 #endif 2561 nReserve = 0; 2562 }else{ 2563 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2564 ** determined by the one-byte unsigned integer found at an offset of 20 2565 ** into the database file header. */ 2566 nReserve = zDbHeader[20]; 2567 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2568 #ifndef SQLITE_OMIT_AUTOVACUUM 2569 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2570 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2571 #endif 2572 } 2573 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2574 if( rc ) goto btree_open_out; 2575 pBt->usableSize = pBt->pageSize - nReserve; 2576 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2577 2578 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2579 /* Add the new BtShared object to the linked list sharable BtShareds. 2580 */ 2581 pBt->nRef = 1; 2582 if( p->sharable ){ 2583 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2584 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2585 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2586 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2587 if( pBt->mutex==0 ){ 2588 rc = SQLITE_NOMEM_BKPT; 2589 goto btree_open_out; 2590 } 2591 } 2592 sqlite3_mutex_enter(mutexShared); 2593 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2594 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2595 sqlite3_mutex_leave(mutexShared); 2596 } 2597 #endif 2598 } 2599 2600 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2601 /* If the new Btree uses a sharable pBtShared, then link the new 2602 ** Btree into the list of all sharable Btrees for the same connection. 2603 ** The list is kept in ascending order by pBt address. 2604 */ 2605 if( p->sharable ){ 2606 int i; 2607 Btree *pSib; 2608 for(i=0; i<db->nDb; i++){ 2609 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2610 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2611 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2612 p->pNext = pSib; 2613 p->pPrev = 0; 2614 pSib->pPrev = p; 2615 }else{ 2616 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2617 pSib = pSib->pNext; 2618 } 2619 p->pNext = pSib->pNext; 2620 p->pPrev = pSib; 2621 if( p->pNext ){ 2622 p->pNext->pPrev = p; 2623 } 2624 pSib->pNext = p; 2625 } 2626 break; 2627 } 2628 } 2629 } 2630 #endif 2631 *ppBtree = p; 2632 2633 btree_open_out: 2634 if( rc!=SQLITE_OK ){ 2635 if( pBt && pBt->pPager ){ 2636 sqlite3PagerClose(pBt->pPager, 0); 2637 } 2638 sqlite3_free(pBt); 2639 sqlite3_free(p); 2640 *ppBtree = 0; 2641 }else{ 2642 sqlite3_file *pFile; 2643 2644 /* If the B-Tree was successfully opened, set the pager-cache size to the 2645 ** default value. Except, when opening on an existing shared pager-cache, 2646 ** do not change the pager-cache size. 2647 */ 2648 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2649 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2650 } 2651 2652 pFile = sqlite3PagerFile(pBt->pPager); 2653 if( pFile->pMethods ){ 2654 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2655 } 2656 } 2657 if( mutexOpen ){ 2658 assert( sqlite3_mutex_held(mutexOpen) ); 2659 sqlite3_mutex_leave(mutexOpen); 2660 } 2661 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2662 return rc; 2663 } 2664 2665 /* 2666 ** Decrement the BtShared.nRef counter. When it reaches zero, 2667 ** remove the BtShared structure from the sharing list. Return 2668 ** true if the BtShared.nRef counter reaches zero and return 2669 ** false if it is still positive. 2670 */ 2671 static int removeFromSharingList(BtShared *pBt){ 2672 #ifndef SQLITE_OMIT_SHARED_CACHE 2673 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2674 BtShared *pList; 2675 int removed = 0; 2676 2677 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2678 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2679 sqlite3_mutex_enter(pMainMtx); 2680 pBt->nRef--; 2681 if( pBt->nRef<=0 ){ 2682 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2683 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2684 }else{ 2685 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2686 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2687 pList=pList->pNext; 2688 } 2689 if( ALWAYS(pList) ){ 2690 pList->pNext = pBt->pNext; 2691 } 2692 } 2693 if( SQLITE_THREADSAFE ){ 2694 sqlite3_mutex_free(pBt->mutex); 2695 } 2696 removed = 1; 2697 } 2698 sqlite3_mutex_leave(pMainMtx); 2699 return removed; 2700 #else 2701 return 1; 2702 #endif 2703 } 2704 2705 /* 2706 ** Make sure pBt->pTmpSpace points to an allocation of 2707 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2708 ** pointer. 2709 */ 2710 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2711 assert( pBt!=0 ); 2712 assert( pBt->pTmpSpace==0 ); 2713 /* This routine is called only by btreeCursor() when allocating the 2714 ** first write cursor for the BtShared object */ 2715 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2716 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2717 if( pBt->pTmpSpace==0 ){ 2718 BtCursor *pCur = pBt->pCursor; 2719 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2720 memset(pCur, 0, sizeof(*pCur)); 2721 return SQLITE_NOMEM_BKPT; 2722 } 2723 2724 /* One of the uses of pBt->pTmpSpace is to format cells before 2725 ** inserting them into a leaf page (function fillInCell()). If 2726 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2727 ** by the various routines that manipulate binary cells. Which 2728 ** can mean that fillInCell() only initializes the first 2 or 3 2729 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2730 ** it into a database page. This is not actually a problem, but it 2731 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2732 ** data is passed to system call write(). So to avoid this error, 2733 ** zero the first 4 bytes of temp space here. 2734 ** 2735 ** Also: Provide four bytes of initialized space before the 2736 ** beginning of pTmpSpace as an area available to prepend the 2737 ** left-child pointer to the beginning of a cell. 2738 */ 2739 memset(pBt->pTmpSpace, 0, 8); 2740 pBt->pTmpSpace += 4; 2741 return SQLITE_OK; 2742 } 2743 2744 /* 2745 ** Free the pBt->pTmpSpace allocation 2746 */ 2747 static void freeTempSpace(BtShared *pBt){ 2748 if( pBt->pTmpSpace ){ 2749 pBt->pTmpSpace -= 4; 2750 sqlite3PageFree(pBt->pTmpSpace); 2751 pBt->pTmpSpace = 0; 2752 } 2753 } 2754 2755 /* 2756 ** Close an open database and invalidate all cursors. 2757 */ 2758 int sqlite3BtreeClose(Btree *p){ 2759 BtShared *pBt = p->pBt; 2760 2761 /* Close all cursors opened via this handle. */ 2762 assert( sqlite3_mutex_held(p->db->mutex) ); 2763 sqlite3BtreeEnter(p); 2764 2765 /* Verify that no other cursors have this Btree open */ 2766 #ifdef SQLITE_DEBUG 2767 { 2768 BtCursor *pCur = pBt->pCursor; 2769 while( pCur ){ 2770 BtCursor *pTmp = pCur; 2771 pCur = pCur->pNext; 2772 assert( pTmp->pBtree!=p ); 2773 2774 } 2775 } 2776 #endif 2777 2778 /* Rollback any active transaction and free the handle structure. 2779 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2780 ** this handle. 2781 */ 2782 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2783 sqlite3BtreeLeave(p); 2784 2785 /* If there are still other outstanding references to the shared-btree 2786 ** structure, return now. The remainder of this procedure cleans 2787 ** up the shared-btree. 2788 */ 2789 assert( p->wantToLock==0 && p->locked==0 ); 2790 if( !p->sharable || removeFromSharingList(pBt) ){ 2791 /* The pBt is no longer on the sharing list, so we can access 2792 ** it without having to hold the mutex. 2793 ** 2794 ** Clean out and delete the BtShared object. 2795 */ 2796 assert( !pBt->pCursor ); 2797 sqlite3PagerClose(pBt->pPager, p->db); 2798 if( pBt->xFreeSchema && pBt->pSchema ){ 2799 pBt->xFreeSchema(pBt->pSchema); 2800 } 2801 sqlite3DbFree(0, pBt->pSchema); 2802 freeTempSpace(pBt); 2803 sqlite3_free(pBt); 2804 } 2805 2806 #ifndef SQLITE_OMIT_SHARED_CACHE 2807 assert( p->wantToLock==0 ); 2808 assert( p->locked==0 ); 2809 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2810 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2811 #endif 2812 2813 sqlite3_free(p); 2814 return SQLITE_OK; 2815 } 2816 2817 /* 2818 ** Change the "soft" limit on the number of pages in the cache. 2819 ** Unused and unmodified pages will be recycled when the number of 2820 ** pages in the cache exceeds this soft limit. But the size of the 2821 ** cache is allowed to grow larger than this limit if it contains 2822 ** dirty pages or pages still in active use. 2823 */ 2824 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2825 BtShared *pBt = p->pBt; 2826 assert( sqlite3_mutex_held(p->db->mutex) ); 2827 sqlite3BtreeEnter(p); 2828 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2829 sqlite3BtreeLeave(p); 2830 return SQLITE_OK; 2831 } 2832 2833 /* 2834 ** Change the "spill" limit on the number of pages in the cache. 2835 ** If the number of pages exceeds this limit during a write transaction, 2836 ** the pager might attempt to "spill" pages to the journal early in 2837 ** order to free up memory. 2838 ** 2839 ** The value returned is the current spill size. If zero is passed 2840 ** as an argument, no changes are made to the spill size setting, so 2841 ** using mxPage of 0 is a way to query the current spill size. 2842 */ 2843 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2844 BtShared *pBt = p->pBt; 2845 int res; 2846 assert( sqlite3_mutex_held(p->db->mutex) ); 2847 sqlite3BtreeEnter(p); 2848 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2849 sqlite3BtreeLeave(p); 2850 return res; 2851 } 2852 2853 #if SQLITE_MAX_MMAP_SIZE>0 2854 /* 2855 ** Change the limit on the amount of the database file that may be 2856 ** memory mapped. 2857 */ 2858 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2859 BtShared *pBt = p->pBt; 2860 assert( sqlite3_mutex_held(p->db->mutex) ); 2861 sqlite3BtreeEnter(p); 2862 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2863 sqlite3BtreeLeave(p); 2864 return SQLITE_OK; 2865 } 2866 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2867 2868 /* 2869 ** Change the way data is synced to disk in order to increase or decrease 2870 ** how well the database resists damage due to OS crashes and power 2871 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2872 ** there is a high probability of damage) Level 2 is the default. There 2873 ** is a very low but non-zero probability of damage. Level 3 reduces the 2874 ** probability of damage to near zero but with a write performance reduction. 2875 */ 2876 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2877 int sqlite3BtreeSetPagerFlags( 2878 Btree *p, /* The btree to set the safety level on */ 2879 unsigned pgFlags /* Various PAGER_* flags */ 2880 ){ 2881 BtShared *pBt = p->pBt; 2882 assert( sqlite3_mutex_held(p->db->mutex) ); 2883 sqlite3BtreeEnter(p); 2884 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2885 sqlite3BtreeLeave(p); 2886 return SQLITE_OK; 2887 } 2888 #endif 2889 2890 /* 2891 ** Change the default pages size and the number of reserved bytes per page. 2892 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2893 ** without changing anything. 2894 ** 2895 ** The page size must be a power of 2 between 512 and 65536. If the page 2896 ** size supplied does not meet this constraint then the page size is not 2897 ** changed. 2898 ** 2899 ** Page sizes are constrained to be a power of two so that the region 2900 ** of the database file used for locking (beginning at PENDING_BYTE, 2901 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2902 ** at the beginning of a page. 2903 ** 2904 ** If parameter nReserve is less than zero, then the number of reserved 2905 ** bytes per page is left unchanged. 2906 ** 2907 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2908 ** and autovacuum mode can no longer be changed. 2909 */ 2910 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2911 int rc = SQLITE_OK; 2912 int x; 2913 BtShared *pBt = p->pBt; 2914 assert( nReserve>=0 && nReserve<=255 ); 2915 sqlite3BtreeEnter(p); 2916 pBt->nReserveWanted = nReserve; 2917 x = pBt->pageSize - pBt->usableSize; 2918 if( nReserve<x ) nReserve = x; 2919 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2920 sqlite3BtreeLeave(p); 2921 return SQLITE_READONLY; 2922 } 2923 assert( nReserve>=0 && nReserve<=255 ); 2924 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2925 ((pageSize-1)&pageSize)==0 ){ 2926 assert( (pageSize & 7)==0 ); 2927 assert( !pBt->pCursor ); 2928 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2929 pBt->pageSize = (u32)pageSize; 2930 freeTempSpace(pBt); 2931 } 2932 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2933 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2934 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2935 sqlite3BtreeLeave(p); 2936 return rc; 2937 } 2938 2939 /* 2940 ** Return the currently defined page size 2941 */ 2942 int sqlite3BtreeGetPageSize(Btree *p){ 2943 return p->pBt->pageSize; 2944 } 2945 2946 /* 2947 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2948 ** may only be called if it is guaranteed that the b-tree mutex is already 2949 ** held. 2950 ** 2951 ** This is useful in one special case in the backup API code where it is 2952 ** known that the shared b-tree mutex is held, but the mutex on the 2953 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2954 ** were to be called, it might collide with some other operation on the 2955 ** database handle that owns *p, causing undefined behavior. 2956 */ 2957 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2958 int n; 2959 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2960 n = p->pBt->pageSize - p->pBt->usableSize; 2961 return n; 2962 } 2963 2964 /* 2965 ** Return the number of bytes of space at the end of every page that 2966 ** are intentually left unused. This is the "reserved" space that is 2967 ** sometimes used by extensions. 2968 ** 2969 ** The value returned is the larger of the current reserve size and 2970 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 2971 ** The amount of reserve can only grow - never shrink. 2972 */ 2973 int sqlite3BtreeGetRequestedReserve(Btree *p){ 2974 int n1, n2; 2975 sqlite3BtreeEnter(p); 2976 n1 = (int)p->pBt->nReserveWanted; 2977 n2 = sqlite3BtreeGetReserveNoMutex(p); 2978 sqlite3BtreeLeave(p); 2979 return n1>n2 ? n1 : n2; 2980 } 2981 2982 2983 /* 2984 ** Set the maximum page count for a database if mxPage is positive. 2985 ** No changes are made if mxPage is 0 or negative. 2986 ** Regardless of the value of mxPage, return the maximum page count. 2987 */ 2988 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 2989 Pgno n; 2990 sqlite3BtreeEnter(p); 2991 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2992 sqlite3BtreeLeave(p); 2993 return n; 2994 } 2995 2996 /* 2997 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2998 ** 2999 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3000 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3001 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3002 ** newFlag==(-1) No changes 3003 ** 3004 ** This routine acts as a query if newFlag is less than zero 3005 ** 3006 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3007 ** freelist leaf pages are not written back to the database. Thus in-page 3008 ** deleted content is cleared, but freelist deleted content is not. 3009 ** 3010 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3011 ** that freelist leaf pages are written back into the database, increasing 3012 ** the amount of disk I/O. 3013 */ 3014 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3015 int b; 3016 if( p==0 ) return 0; 3017 sqlite3BtreeEnter(p); 3018 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3019 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3020 if( newFlag>=0 ){ 3021 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3022 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3023 } 3024 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3025 sqlite3BtreeLeave(p); 3026 return b; 3027 } 3028 3029 /* 3030 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3031 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3032 ** is disabled. The default value for the auto-vacuum property is 3033 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3034 */ 3035 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3036 #ifdef SQLITE_OMIT_AUTOVACUUM 3037 return SQLITE_READONLY; 3038 #else 3039 BtShared *pBt = p->pBt; 3040 int rc = SQLITE_OK; 3041 u8 av = (u8)autoVacuum; 3042 3043 sqlite3BtreeEnter(p); 3044 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3045 rc = SQLITE_READONLY; 3046 }else{ 3047 pBt->autoVacuum = av ?1:0; 3048 pBt->incrVacuum = av==2 ?1:0; 3049 } 3050 sqlite3BtreeLeave(p); 3051 return rc; 3052 #endif 3053 } 3054 3055 /* 3056 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3057 ** enabled 1 is returned. Otherwise 0. 3058 */ 3059 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3060 #ifdef SQLITE_OMIT_AUTOVACUUM 3061 return BTREE_AUTOVACUUM_NONE; 3062 #else 3063 int rc; 3064 sqlite3BtreeEnter(p); 3065 rc = ( 3066 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3067 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3068 BTREE_AUTOVACUUM_INCR 3069 ); 3070 sqlite3BtreeLeave(p); 3071 return rc; 3072 #endif 3073 } 3074 3075 /* 3076 ** If the user has not set the safety-level for this database connection 3077 ** using "PRAGMA synchronous", and if the safety-level is not already 3078 ** set to the value passed to this function as the second parameter, 3079 ** set it so. 3080 */ 3081 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3082 && !defined(SQLITE_OMIT_WAL) 3083 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3084 sqlite3 *db; 3085 Db *pDb; 3086 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3087 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3088 if( pDb->bSyncSet==0 3089 && pDb->safety_level!=safety_level 3090 && pDb!=&db->aDb[1] 3091 ){ 3092 pDb->safety_level = safety_level; 3093 sqlite3PagerSetFlags(pBt->pPager, 3094 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3095 } 3096 } 3097 } 3098 #else 3099 # define setDefaultSyncFlag(pBt,safety_level) 3100 #endif 3101 3102 /* Forward declaration */ 3103 static int newDatabase(BtShared*); 3104 3105 3106 /* 3107 ** Get a reference to pPage1 of the database file. This will 3108 ** also acquire a readlock on that file. 3109 ** 3110 ** SQLITE_OK is returned on success. If the file is not a 3111 ** well-formed database file, then SQLITE_CORRUPT is returned. 3112 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3113 ** is returned if we run out of memory. 3114 */ 3115 static int lockBtree(BtShared *pBt){ 3116 int rc; /* Result code from subfunctions */ 3117 MemPage *pPage1; /* Page 1 of the database file */ 3118 u32 nPage; /* Number of pages in the database */ 3119 u32 nPageFile = 0; /* Number of pages in the database file */ 3120 3121 assert( sqlite3_mutex_held(pBt->mutex) ); 3122 assert( pBt->pPage1==0 ); 3123 rc = sqlite3PagerSharedLock(pBt->pPager); 3124 if( rc!=SQLITE_OK ) return rc; 3125 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3126 if( rc!=SQLITE_OK ) return rc; 3127 3128 /* Do some checking to help insure the file we opened really is 3129 ** a valid database file. 3130 */ 3131 nPage = get4byte(28+(u8*)pPage1->aData); 3132 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3133 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3134 nPage = nPageFile; 3135 } 3136 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3137 nPage = 0; 3138 } 3139 if( nPage>0 ){ 3140 u32 pageSize; 3141 u32 usableSize; 3142 u8 *page1 = pPage1->aData; 3143 rc = SQLITE_NOTADB; 3144 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3145 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3146 ** 61 74 20 33 00. */ 3147 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3148 goto page1_init_failed; 3149 } 3150 3151 #ifdef SQLITE_OMIT_WAL 3152 if( page1[18]>1 ){ 3153 pBt->btsFlags |= BTS_READ_ONLY; 3154 } 3155 if( page1[19]>1 ){ 3156 goto page1_init_failed; 3157 } 3158 #else 3159 if( page1[18]>2 ){ 3160 pBt->btsFlags |= BTS_READ_ONLY; 3161 } 3162 if( page1[19]>2 ){ 3163 goto page1_init_failed; 3164 } 3165 3166 /* If the read version is set to 2, this database should be accessed 3167 ** in WAL mode. If the log is not already open, open it now. Then 3168 ** return SQLITE_OK and return without populating BtShared.pPage1. 3169 ** The caller detects this and calls this function again. This is 3170 ** required as the version of page 1 currently in the page1 buffer 3171 ** may not be the latest version - there may be a newer one in the log 3172 ** file. 3173 */ 3174 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3175 int isOpen = 0; 3176 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3177 if( rc!=SQLITE_OK ){ 3178 goto page1_init_failed; 3179 }else{ 3180 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3181 if( isOpen==0 ){ 3182 releasePageOne(pPage1); 3183 return SQLITE_OK; 3184 } 3185 } 3186 rc = SQLITE_NOTADB; 3187 }else{ 3188 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3189 } 3190 #endif 3191 3192 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3193 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3194 ** 3195 ** The original design allowed these amounts to vary, but as of 3196 ** version 3.6.0, we require them to be fixed. 3197 */ 3198 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3199 goto page1_init_failed; 3200 } 3201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3202 ** determined by the 2-byte integer located at an offset of 16 bytes from 3203 ** the beginning of the database file. */ 3204 pageSize = (page1[16]<<8) | (page1[17]<<16); 3205 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3206 ** between 512 and 65536 inclusive. */ 3207 if( ((pageSize-1)&pageSize)!=0 3208 || pageSize>SQLITE_MAX_PAGE_SIZE 3209 || pageSize<=256 3210 ){ 3211 goto page1_init_failed; 3212 } 3213 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3214 assert( (pageSize & 7)==0 ); 3215 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3216 ** integer at offset 20 is the number of bytes of space at the end of 3217 ** each page to reserve for extensions. 3218 ** 3219 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3220 ** determined by the one-byte unsigned integer found at an offset of 20 3221 ** into the database file header. */ 3222 usableSize = pageSize - page1[20]; 3223 if( (u32)pageSize!=pBt->pageSize ){ 3224 /* After reading the first page of the database assuming a page size 3225 ** of BtShared.pageSize, we have discovered that the page-size is 3226 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3227 ** zero and return SQLITE_OK. The caller will call this function 3228 ** again with the correct page-size. 3229 */ 3230 releasePageOne(pPage1); 3231 pBt->usableSize = usableSize; 3232 pBt->pageSize = pageSize; 3233 freeTempSpace(pBt); 3234 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3235 pageSize-usableSize); 3236 return rc; 3237 } 3238 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ 3239 rc = SQLITE_CORRUPT_BKPT; 3240 goto page1_init_failed; 3241 } 3242 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3243 ** be less than 480. In other words, if the page size is 512, then the 3244 ** reserved space size cannot exceed 32. */ 3245 if( usableSize<480 ){ 3246 goto page1_init_failed; 3247 } 3248 pBt->pageSize = pageSize; 3249 pBt->usableSize = usableSize; 3250 #ifndef SQLITE_OMIT_AUTOVACUUM 3251 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3252 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3253 #endif 3254 } 3255 3256 /* maxLocal is the maximum amount of payload to store locally for 3257 ** a cell. Make sure it is small enough so that at least minFanout 3258 ** cells can will fit on one page. We assume a 10-byte page header. 3259 ** Besides the payload, the cell must store: 3260 ** 2-byte pointer to the cell 3261 ** 4-byte child pointer 3262 ** 9-byte nKey value 3263 ** 4-byte nData value 3264 ** 4-byte overflow page pointer 3265 ** So a cell consists of a 2-byte pointer, a header which is as much as 3266 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3267 ** page pointer. 3268 */ 3269 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3270 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3271 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3272 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3273 if( pBt->maxLocal>127 ){ 3274 pBt->max1bytePayload = 127; 3275 }else{ 3276 pBt->max1bytePayload = (u8)pBt->maxLocal; 3277 } 3278 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3279 pBt->pPage1 = pPage1; 3280 pBt->nPage = nPage; 3281 return SQLITE_OK; 3282 3283 page1_init_failed: 3284 releasePageOne(pPage1); 3285 pBt->pPage1 = 0; 3286 return rc; 3287 } 3288 3289 #ifndef NDEBUG 3290 /* 3291 ** Return the number of cursors open on pBt. This is for use 3292 ** in assert() expressions, so it is only compiled if NDEBUG is not 3293 ** defined. 3294 ** 3295 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3296 ** false then all cursors are counted. 3297 ** 3298 ** For the purposes of this routine, a cursor is any cursor that 3299 ** is capable of reading or writing to the database. Cursors that 3300 ** have been tripped into the CURSOR_FAULT state are not counted. 3301 */ 3302 static int countValidCursors(BtShared *pBt, int wrOnly){ 3303 BtCursor *pCur; 3304 int r = 0; 3305 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3306 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3307 && pCur->eState!=CURSOR_FAULT ) r++; 3308 } 3309 return r; 3310 } 3311 #endif 3312 3313 /* 3314 ** If there are no outstanding cursors and we are not in the middle 3315 ** of a transaction but there is a read lock on the database, then 3316 ** this routine unrefs the first page of the database file which 3317 ** has the effect of releasing the read lock. 3318 ** 3319 ** If there is a transaction in progress, this routine is a no-op. 3320 */ 3321 static void unlockBtreeIfUnused(BtShared *pBt){ 3322 assert( sqlite3_mutex_held(pBt->mutex) ); 3323 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3324 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3325 MemPage *pPage1 = pBt->pPage1; 3326 assert( pPage1->aData ); 3327 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3328 pBt->pPage1 = 0; 3329 releasePageOne(pPage1); 3330 } 3331 } 3332 3333 /* 3334 ** If pBt points to an empty file then convert that empty file 3335 ** into a new empty database by initializing the first page of 3336 ** the database. 3337 */ 3338 static int newDatabase(BtShared *pBt){ 3339 MemPage *pP1; 3340 unsigned char *data; 3341 int rc; 3342 3343 assert( sqlite3_mutex_held(pBt->mutex) ); 3344 if( pBt->nPage>0 ){ 3345 return SQLITE_OK; 3346 } 3347 pP1 = pBt->pPage1; 3348 assert( pP1!=0 ); 3349 data = pP1->aData; 3350 rc = sqlite3PagerWrite(pP1->pDbPage); 3351 if( rc ) return rc; 3352 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3353 assert( sizeof(zMagicHeader)==16 ); 3354 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3355 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3356 data[18] = 1; 3357 data[19] = 1; 3358 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3359 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3360 data[21] = 64; 3361 data[22] = 32; 3362 data[23] = 32; 3363 memset(&data[24], 0, 100-24); 3364 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3365 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3366 #ifndef SQLITE_OMIT_AUTOVACUUM 3367 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3368 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3369 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3370 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3371 #endif 3372 pBt->nPage = 1; 3373 data[31] = 1; 3374 return SQLITE_OK; 3375 } 3376 3377 /* 3378 ** Initialize the first page of the database file (creating a database 3379 ** consisting of a single page and no schema objects). Return SQLITE_OK 3380 ** if successful, or an SQLite error code otherwise. 3381 */ 3382 int sqlite3BtreeNewDb(Btree *p){ 3383 int rc; 3384 sqlite3BtreeEnter(p); 3385 p->pBt->nPage = 0; 3386 rc = newDatabase(p->pBt); 3387 sqlite3BtreeLeave(p); 3388 return rc; 3389 } 3390 3391 /* 3392 ** Attempt to start a new transaction. A write-transaction 3393 ** is started if the second argument is nonzero, otherwise a read- 3394 ** transaction. If the second argument is 2 or more and exclusive 3395 ** transaction is started, meaning that no other process is allowed 3396 ** to access the database. A preexisting transaction may not be 3397 ** upgraded to exclusive by calling this routine a second time - the 3398 ** exclusivity flag only works for a new transaction. 3399 ** 3400 ** A write-transaction must be started before attempting any 3401 ** changes to the database. None of the following routines 3402 ** will work unless a transaction is started first: 3403 ** 3404 ** sqlite3BtreeCreateTable() 3405 ** sqlite3BtreeCreateIndex() 3406 ** sqlite3BtreeClearTable() 3407 ** sqlite3BtreeDropTable() 3408 ** sqlite3BtreeInsert() 3409 ** sqlite3BtreeDelete() 3410 ** sqlite3BtreeUpdateMeta() 3411 ** 3412 ** If an initial attempt to acquire the lock fails because of lock contention 3413 ** and the database was previously unlocked, then invoke the busy handler 3414 ** if there is one. But if there was previously a read-lock, do not 3415 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3416 ** returned when there is already a read-lock in order to avoid a deadlock. 3417 ** 3418 ** Suppose there are two processes A and B. A has a read lock and B has 3419 ** a reserved lock. B tries to promote to exclusive but is blocked because 3420 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3421 ** One or the other of the two processes must give way or there can be 3422 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3423 ** when A already has a read lock, we encourage A to give up and let B 3424 ** proceed. 3425 */ 3426 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3427 BtShared *pBt = p->pBt; 3428 Pager *pPager = pBt->pPager; 3429 int rc = SQLITE_OK; 3430 3431 sqlite3BtreeEnter(p); 3432 btreeIntegrity(p); 3433 3434 /* If the btree is already in a write-transaction, or it 3435 ** is already in a read-transaction and a read-transaction 3436 ** is requested, this is a no-op. 3437 */ 3438 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3439 goto trans_begun; 3440 } 3441 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3442 3443 if( (p->db->flags & SQLITE_ResetDatabase) 3444 && sqlite3PagerIsreadonly(pPager)==0 3445 ){ 3446 pBt->btsFlags &= ~BTS_READ_ONLY; 3447 } 3448 3449 /* Write transactions are not possible on a read-only database */ 3450 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3451 rc = SQLITE_READONLY; 3452 goto trans_begun; 3453 } 3454 3455 #ifndef SQLITE_OMIT_SHARED_CACHE 3456 { 3457 sqlite3 *pBlock = 0; 3458 /* If another database handle has already opened a write transaction 3459 ** on this shared-btree structure and a second write transaction is 3460 ** requested, return SQLITE_LOCKED. 3461 */ 3462 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3463 || (pBt->btsFlags & BTS_PENDING)!=0 3464 ){ 3465 pBlock = pBt->pWriter->db; 3466 }else if( wrflag>1 ){ 3467 BtLock *pIter; 3468 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3469 if( pIter->pBtree!=p ){ 3470 pBlock = pIter->pBtree->db; 3471 break; 3472 } 3473 } 3474 } 3475 if( pBlock ){ 3476 sqlite3ConnectionBlocked(p->db, pBlock); 3477 rc = SQLITE_LOCKED_SHAREDCACHE; 3478 goto trans_begun; 3479 } 3480 } 3481 #endif 3482 3483 /* Any read-only or read-write transaction implies a read-lock on 3484 ** page 1. So if some other shared-cache client already has a write-lock 3485 ** on page 1, the transaction cannot be opened. */ 3486 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3487 if( SQLITE_OK!=rc ) goto trans_begun; 3488 3489 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3490 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3491 do { 3492 sqlite3PagerWalDb(pPager, p->db); 3493 3494 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3495 /* If transitioning from no transaction directly to a write transaction, 3496 ** block for the WRITER lock first if possible. */ 3497 if( pBt->pPage1==0 && wrflag ){ 3498 assert( pBt->inTransaction==TRANS_NONE ); 3499 rc = sqlite3PagerWalWriteLock(pPager, 1); 3500 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3501 } 3502 #endif 3503 3504 /* Call lockBtree() until either pBt->pPage1 is populated or 3505 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3506 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3507 ** reading page 1 it discovers that the page-size of the database 3508 ** file is not pBt->pageSize. In this case lockBtree() will update 3509 ** pBt->pageSize to the page-size of the file on disk. 3510 */ 3511 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3512 3513 if( rc==SQLITE_OK && wrflag ){ 3514 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3515 rc = SQLITE_READONLY; 3516 }else{ 3517 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3518 if( rc==SQLITE_OK ){ 3519 rc = newDatabase(pBt); 3520 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3521 /* if there was no transaction opened when this function was 3522 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3523 ** code to SQLITE_BUSY. */ 3524 rc = SQLITE_BUSY; 3525 } 3526 } 3527 } 3528 3529 if( rc!=SQLITE_OK ){ 3530 (void)sqlite3PagerWalWriteLock(pPager, 0); 3531 unlockBtreeIfUnused(pBt); 3532 } 3533 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3534 btreeInvokeBusyHandler(pBt) ); 3535 sqlite3PagerWalDb(pPager, 0); 3536 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3537 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3538 #endif 3539 3540 if( rc==SQLITE_OK ){ 3541 if( p->inTrans==TRANS_NONE ){ 3542 pBt->nTransaction++; 3543 #ifndef SQLITE_OMIT_SHARED_CACHE 3544 if( p->sharable ){ 3545 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3546 p->lock.eLock = READ_LOCK; 3547 p->lock.pNext = pBt->pLock; 3548 pBt->pLock = &p->lock; 3549 } 3550 #endif 3551 } 3552 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3553 if( p->inTrans>pBt->inTransaction ){ 3554 pBt->inTransaction = p->inTrans; 3555 } 3556 if( wrflag ){ 3557 MemPage *pPage1 = pBt->pPage1; 3558 #ifndef SQLITE_OMIT_SHARED_CACHE 3559 assert( !pBt->pWriter ); 3560 pBt->pWriter = p; 3561 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3562 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3563 #endif 3564 3565 /* If the db-size header field is incorrect (as it may be if an old 3566 ** client has been writing the database file), update it now. Doing 3567 ** this sooner rather than later means the database size can safely 3568 ** re-read the database size from page 1 if a savepoint or transaction 3569 ** rollback occurs within the transaction. 3570 */ 3571 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3572 rc = sqlite3PagerWrite(pPage1->pDbPage); 3573 if( rc==SQLITE_OK ){ 3574 put4byte(&pPage1->aData[28], pBt->nPage); 3575 } 3576 } 3577 } 3578 } 3579 3580 trans_begun: 3581 if( rc==SQLITE_OK ){ 3582 if( pSchemaVersion ){ 3583 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3584 } 3585 if( wrflag ){ 3586 /* This call makes sure that the pager has the correct number of 3587 ** open savepoints. If the second parameter is greater than 0 and 3588 ** the sub-journal is not already open, then it will be opened here. 3589 */ 3590 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3591 } 3592 } 3593 3594 btreeIntegrity(p); 3595 sqlite3BtreeLeave(p); 3596 return rc; 3597 } 3598 3599 #ifndef SQLITE_OMIT_AUTOVACUUM 3600 3601 /* 3602 ** Set the pointer-map entries for all children of page pPage. Also, if 3603 ** pPage contains cells that point to overflow pages, set the pointer 3604 ** map entries for the overflow pages as well. 3605 */ 3606 static int setChildPtrmaps(MemPage *pPage){ 3607 int i; /* Counter variable */ 3608 int nCell; /* Number of cells in page pPage */ 3609 int rc; /* Return code */ 3610 BtShared *pBt = pPage->pBt; 3611 Pgno pgno = pPage->pgno; 3612 3613 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3614 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3615 if( rc!=SQLITE_OK ) return rc; 3616 nCell = pPage->nCell; 3617 3618 for(i=0; i<nCell; i++){ 3619 u8 *pCell = findCell(pPage, i); 3620 3621 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3622 3623 if( !pPage->leaf ){ 3624 Pgno childPgno = get4byte(pCell); 3625 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3626 } 3627 } 3628 3629 if( !pPage->leaf ){ 3630 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3631 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3632 } 3633 3634 return rc; 3635 } 3636 3637 /* 3638 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3639 ** that it points to iTo. Parameter eType describes the type of pointer to 3640 ** be modified, as follows: 3641 ** 3642 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3643 ** page of pPage. 3644 ** 3645 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3646 ** page pointed to by one of the cells on pPage. 3647 ** 3648 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3649 ** overflow page in the list. 3650 */ 3651 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3652 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3653 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3654 if( eType==PTRMAP_OVERFLOW2 ){ 3655 /* The pointer is always the first 4 bytes of the page in this case. */ 3656 if( get4byte(pPage->aData)!=iFrom ){ 3657 return SQLITE_CORRUPT_PAGE(pPage); 3658 } 3659 put4byte(pPage->aData, iTo); 3660 }else{ 3661 int i; 3662 int nCell; 3663 int rc; 3664 3665 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3666 if( rc ) return rc; 3667 nCell = pPage->nCell; 3668 3669 for(i=0; i<nCell; i++){ 3670 u8 *pCell = findCell(pPage, i); 3671 if( eType==PTRMAP_OVERFLOW1 ){ 3672 CellInfo info; 3673 pPage->xParseCell(pPage, pCell, &info); 3674 if( info.nLocal<info.nPayload ){ 3675 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3676 return SQLITE_CORRUPT_PAGE(pPage); 3677 } 3678 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3679 put4byte(pCell+info.nSize-4, iTo); 3680 break; 3681 } 3682 } 3683 }else{ 3684 if( get4byte(pCell)==iFrom ){ 3685 put4byte(pCell, iTo); 3686 break; 3687 } 3688 } 3689 } 3690 3691 if( i==nCell ){ 3692 if( eType!=PTRMAP_BTREE || 3693 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3694 return SQLITE_CORRUPT_PAGE(pPage); 3695 } 3696 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3697 } 3698 } 3699 return SQLITE_OK; 3700 } 3701 3702 3703 /* 3704 ** Move the open database page pDbPage to location iFreePage in the 3705 ** database. The pDbPage reference remains valid. 3706 ** 3707 ** The isCommit flag indicates that there is no need to remember that 3708 ** the journal needs to be sync()ed before database page pDbPage->pgno 3709 ** can be written to. The caller has already promised not to write to that 3710 ** page. 3711 */ 3712 static int relocatePage( 3713 BtShared *pBt, /* Btree */ 3714 MemPage *pDbPage, /* Open page to move */ 3715 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3716 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3717 Pgno iFreePage, /* The location to move pDbPage to */ 3718 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3719 ){ 3720 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3721 Pgno iDbPage = pDbPage->pgno; 3722 Pager *pPager = pBt->pPager; 3723 int rc; 3724 3725 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3726 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3727 assert( sqlite3_mutex_held(pBt->mutex) ); 3728 assert( pDbPage->pBt==pBt ); 3729 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3730 3731 /* Move page iDbPage from its current location to page number iFreePage */ 3732 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3733 iDbPage, iFreePage, iPtrPage, eType)); 3734 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3735 if( rc!=SQLITE_OK ){ 3736 return rc; 3737 } 3738 pDbPage->pgno = iFreePage; 3739 3740 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3741 ** that point to overflow pages. The pointer map entries for all these 3742 ** pages need to be changed. 3743 ** 3744 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3745 ** pointer to a subsequent overflow page. If this is the case, then 3746 ** the pointer map needs to be updated for the subsequent overflow page. 3747 */ 3748 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3749 rc = setChildPtrmaps(pDbPage); 3750 if( rc!=SQLITE_OK ){ 3751 return rc; 3752 } 3753 }else{ 3754 Pgno nextOvfl = get4byte(pDbPage->aData); 3755 if( nextOvfl!=0 ){ 3756 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3757 if( rc!=SQLITE_OK ){ 3758 return rc; 3759 } 3760 } 3761 } 3762 3763 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3764 ** that it points at iFreePage. Also fix the pointer map entry for 3765 ** iPtrPage. 3766 */ 3767 if( eType!=PTRMAP_ROOTPAGE ){ 3768 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3769 if( rc!=SQLITE_OK ){ 3770 return rc; 3771 } 3772 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3773 if( rc!=SQLITE_OK ){ 3774 releasePage(pPtrPage); 3775 return rc; 3776 } 3777 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3778 releasePage(pPtrPage); 3779 if( rc==SQLITE_OK ){ 3780 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3781 } 3782 } 3783 return rc; 3784 } 3785 3786 /* Forward declaration required by incrVacuumStep(). */ 3787 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3788 3789 /* 3790 ** Perform a single step of an incremental-vacuum. If successful, return 3791 ** SQLITE_OK. If there is no work to do (and therefore no point in 3792 ** calling this function again), return SQLITE_DONE. Or, if an error 3793 ** occurs, return some other error code. 3794 ** 3795 ** More specifically, this function attempts to re-organize the database so 3796 ** that the last page of the file currently in use is no longer in use. 3797 ** 3798 ** Parameter nFin is the number of pages that this database would contain 3799 ** were this function called until it returns SQLITE_DONE. 3800 ** 3801 ** If the bCommit parameter is non-zero, this function assumes that the 3802 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3803 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3804 ** operation, or false for an incremental vacuum. 3805 */ 3806 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3807 Pgno nFreeList; /* Number of pages still on the free-list */ 3808 int rc; 3809 3810 assert( sqlite3_mutex_held(pBt->mutex) ); 3811 assert( iLastPg>nFin ); 3812 3813 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3814 u8 eType; 3815 Pgno iPtrPage; 3816 3817 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3818 if( nFreeList==0 ){ 3819 return SQLITE_DONE; 3820 } 3821 3822 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3823 if( rc!=SQLITE_OK ){ 3824 return rc; 3825 } 3826 if( eType==PTRMAP_ROOTPAGE ){ 3827 return SQLITE_CORRUPT_BKPT; 3828 } 3829 3830 if( eType==PTRMAP_FREEPAGE ){ 3831 if( bCommit==0 ){ 3832 /* Remove the page from the files free-list. This is not required 3833 ** if bCommit is non-zero. In that case, the free-list will be 3834 ** truncated to zero after this function returns, so it doesn't 3835 ** matter if it still contains some garbage entries. 3836 */ 3837 Pgno iFreePg; 3838 MemPage *pFreePg; 3839 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3840 if( rc!=SQLITE_OK ){ 3841 return rc; 3842 } 3843 assert( iFreePg==iLastPg ); 3844 releasePage(pFreePg); 3845 } 3846 } else { 3847 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3848 MemPage *pLastPg; 3849 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3850 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3851 3852 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3853 if( rc!=SQLITE_OK ){ 3854 return rc; 3855 } 3856 3857 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3858 ** is swapped with the first free page pulled off the free list. 3859 ** 3860 ** On the other hand, if bCommit is greater than zero, then keep 3861 ** looping until a free-page located within the first nFin pages 3862 ** of the file is found. 3863 */ 3864 if( bCommit==0 ){ 3865 eMode = BTALLOC_LE; 3866 iNear = nFin; 3867 } 3868 do { 3869 MemPage *pFreePg; 3870 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3871 if( rc!=SQLITE_OK ){ 3872 releasePage(pLastPg); 3873 return rc; 3874 } 3875 releasePage(pFreePg); 3876 }while( bCommit && iFreePg>nFin ); 3877 assert( iFreePg<iLastPg ); 3878 3879 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3880 releasePage(pLastPg); 3881 if( rc!=SQLITE_OK ){ 3882 return rc; 3883 } 3884 } 3885 } 3886 3887 if( bCommit==0 ){ 3888 do { 3889 iLastPg--; 3890 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3891 pBt->bDoTruncate = 1; 3892 pBt->nPage = iLastPg; 3893 } 3894 return SQLITE_OK; 3895 } 3896 3897 /* 3898 ** The database opened by the first argument is an auto-vacuum database 3899 ** nOrig pages in size containing nFree free pages. Return the expected 3900 ** size of the database in pages following an auto-vacuum operation. 3901 */ 3902 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3903 int nEntry; /* Number of entries on one ptrmap page */ 3904 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3905 Pgno nFin; /* Return value */ 3906 3907 nEntry = pBt->usableSize/5; 3908 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3909 nFin = nOrig - nFree - nPtrmap; 3910 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3911 nFin--; 3912 } 3913 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3914 nFin--; 3915 } 3916 3917 return nFin; 3918 } 3919 3920 /* 3921 ** A write-transaction must be opened before calling this function. 3922 ** It performs a single unit of work towards an incremental vacuum. 3923 ** 3924 ** If the incremental vacuum is finished after this function has run, 3925 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3926 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3927 */ 3928 int sqlite3BtreeIncrVacuum(Btree *p){ 3929 int rc; 3930 BtShared *pBt = p->pBt; 3931 3932 sqlite3BtreeEnter(p); 3933 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3934 if( !pBt->autoVacuum ){ 3935 rc = SQLITE_DONE; 3936 }else{ 3937 Pgno nOrig = btreePagecount(pBt); 3938 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3939 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3940 3941 if( nOrig<nFin || nFree>=nOrig ){ 3942 rc = SQLITE_CORRUPT_BKPT; 3943 }else if( nFree>0 ){ 3944 rc = saveAllCursors(pBt, 0, 0); 3945 if( rc==SQLITE_OK ){ 3946 invalidateAllOverflowCache(pBt); 3947 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3948 } 3949 if( rc==SQLITE_OK ){ 3950 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3951 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3952 } 3953 }else{ 3954 rc = SQLITE_DONE; 3955 } 3956 } 3957 sqlite3BtreeLeave(p); 3958 return rc; 3959 } 3960 3961 /* 3962 ** This routine is called prior to sqlite3PagerCommit when a transaction 3963 ** is committed for an auto-vacuum database. 3964 */ 3965 static int autoVacuumCommit(Btree *p){ 3966 int rc = SQLITE_OK; 3967 Pager *pPager; 3968 BtShared *pBt; 3969 sqlite3 *db; 3970 VVA_ONLY( int nRef ); 3971 3972 assert( p!=0 ); 3973 pBt = p->pBt; 3974 pPager = pBt->pPager; 3975 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 3976 3977 assert( sqlite3_mutex_held(pBt->mutex) ); 3978 invalidateAllOverflowCache(pBt); 3979 assert(pBt->autoVacuum); 3980 if( !pBt->incrVacuum ){ 3981 Pgno nFin; /* Number of pages in database after autovacuuming */ 3982 Pgno nFree; /* Number of pages on the freelist initially */ 3983 Pgno nVac; /* Number of pages to vacuum */ 3984 Pgno iFree; /* The next page to be freed */ 3985 Pgno nOrig; /* Database size before freeing */ 3986 3987 nOrig = btreePagecount(pBt); 3988 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3989 /* It is not possible to create a database for which the final page 3990 ** is either a pointer-map page or the pending-byte page. If one 3991 ** is encountered, this indicates corruption. 3992 */ 3993 return SQLITE_CORRUPT_BKPT; 3994 } 3995 3996 nFree = get4byte(&pBt->pPage1->aData[36]); 3997 db = p->db; 3998 if( db->xAutovacPages ){ 3999 int iDb; 4000 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4001 if( db->aDb[iDb].pBt==p ) break; 4002 } 4003 nVac = db->xAutovacPages( 4004 db->pAutovacPagesArg, 4005 db->aDb[iDb].zDbSName, 4006 nOrig, 4007 nFree, 4008 pBt->pageSize 4009 ); 4010 if( nVac>nFree ){ 4011 nVac = nFree; 4012 } 4013 if( nVac==0 ){ 4014 return SQLITE_OK; 4015 } 4016 }else{ 4017 nVac = nFree; 4018 } 4019 nFin = finalDbSize(pBt, nOrig, nVac); 4020 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4021 if( nFin<nOrig ){ 4022 rc = saveAllCursors(pBt, 0, 0); 4023 } 4024 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4025 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4026 } 4027 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4028 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4029 if( nVac==nFree ){ 4030 put4byte(&pBt->pPage1->aData[32], 0); 4031 put4byte(&pBt->pPage1->aData[36], 0); 4032 } 4033 put4byte(&pBt->pPage1->aData[28], nFin); 4034 pBt->bDoTruncate = 1; 4035 pBt->nPage = nFin; 4036 } 4037 if( rc!=SQLITE_OK ){ 4038 sqlite3PagerRollback(pPager); 4039 } 4040 } 4041 4042 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4043 return rc; 4044 } 4045 4046 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4047 # define setChildPtrmaps(x) SQLITE_OK 4048 #endif 4049 4050 /* 4051 ** This routine does the first phase of a two-phase commit. This routine 4052 ** causes a rollback journal to be created (if it does not already exist) 4053 ** and populated with enough information so that if a power loss occurs 4054 ** the database can be restored to its original state by playing back 4055 ** the journal. Then the contents of the journal are flushed out to 4056 ** the disk. After the journal is safely on oxide, the changes to the 4057 ** database are written into the database file and flushed to oxide. 4058 ** At the end of this call, the rollback journal still exists on the 4059 ** disk and we are still holding all locks, so the transaction has not 4060 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4061 ** commit process. 4062 ** 4063 ** This call is a no-op if no write-transaction is currently active on pBt. 4064 ** 4065 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4066 ** the name of a super-journal file that should be written into the 4067 ** individual journal file, or is NULL, indicating no super-journal file 4068 ** (single database transaction). 4069 ** 4070 ** When this is called, the super-journal should already have been 4071 ** created, populated with this journal pointer and synced to disk. 4072 ** 4073 ** Once this is routine has returned, the only thing required to commit 4074 ** the write-transaction for this database file is to delete the journal. 4075 */ 4076 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4077 int rc = SQLITE_OK; 4078 if( p->inTrans==TRANS_WRITE ){ 4079 BtShared *pBt = p->pBt; 4080 sqlite3BtreeEnter(p); 4081 #ifndef SQLITE_OMIT_AUTOVACUUM 4082 if( pBt->autoVacuum ){ 4083 rc = autoVacuumCommit(p); 4084 if( rc!=SQLITE_OK ){ 4085 sqlite3BtreeLeave(p); 4086 return rc; 4087 } 4088 } 4089 if( pBt->bDoTruncate ){ 4090 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4091 } 4092 #endif 4093 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4094 sqlite3BtreeLeave(p); 4095 } 4096 return rc; 4097 } 4098 4099 /* 4100 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4101 ** at the conclusion of a transaction. 4102 */ 4103 static void btreeEndTransaction(Btree *p){ 4104 BtShared *pBt = p->pBt; 4105 sqlite3 *db = p->db; 4106 assert( sqlite3BtreeHoldsMutex(p) ); 4107 4108 #ifndef SQLITE_OMIT_AUTOVACUUM 4109 pBt->bDoTruncate = 0; 4110 #endif 4111 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4112 /* If there are other active statements that belong to this database 4113 ** handle, downgrade to a read-only transaction. The other statements 4114 ** may still be reading from the database. */ 4115 downgradeAllSharedCacheTableLocks(p); 4116 p->inTrans = TRANS_READ; 4117 }else{ 4118 /* If the handle had any kind of transaction open, decrement the 4119 ** transaction count of the shared btree. If the transaction count 4120 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4121 ** call below will unlock the pager. */ 4122 if( p->inTrans!=TRANS_NONE ){ 4123 clearAllSharedCacheTableLocks(p); 4124 pBt->nTransaction--; 4125 if( 0==pBt->nTransaction ){ 4126 pBt->inTransaction = TRANS_NONE; 4127 } 4128 } 4129 4130 /* Set the current transaction state to TRANS_NONE and unlock the 4131 ** pager if this call closed the only read or write transaction. */ 4132 p->inTrans = TRANS_NONE; 4133 unlockBtreeIfUnused(pBt); 4134 } 4135 4136 btreeIntegrity(p); 4137 } 4138 4139 /* 4140 ** Commit the transaction currently in progress. 4141 ** 4142 ** This routine implements the second phase of a 2-phase commit. The 4143 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4144 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4145 ** routine did all the work of writing information out to disk and flushing the 4146 ** contents so that they are written onto the disk platter. All this 4147 ** routine has to do is delete or truncate or zero the header in the 4148 ** the rollback journal (which causes the transaction to commit) and 4149 ** drop locks. 4150 ** 4151 ** Normally, if an error occurs while the pager layer is attempting to 4152 ** finalize the underlying journal file, this function returns an error and 4153 ** the upper layer will attempt a rollback. However, if the second argument 4154 ** is non-zero then this b-tree transaction is part of a multi-file 4155 ** transaction. In this case, the transaction has already been committed 4156 ** (by deleting a super-journal file) and the caller will ignore this 4157 ** functions return code. So, even if an error occurs in the pager layer, 4158 ** reset the b-tree objects internal state to indicate that the write 4159 ** transaction has been closed. This is quite safe, as the pager will have 4160 ** transitioned to the error state. 4161 ** 4162 ** This will release the write lock on the database file. If there 4163 ** are no active cursors, it also releases the read lock. 4164 */ 4165 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4166 4167 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4168 sqlite3BtreeEnter(p); 4169 btreeIntegrity(p); 4170 4171 /* If the handle has a write-transaction open, commit the shared-btrees 4172 ** transaction and set the shared state to TRANS_READ. 4173 */ 4174 if( p->inTrans==TRANS_WRITE ){ 4175 int rc; 4176 BtShared *pBt = p->pBt; 4177 assert( pBt->inTransaction==TRANS_WRITE ); 4178 assert( pBt->nTransaction>0 ); 4179 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4180 if( rc!=SQLITE_OK && bCleanup==0 ){ 4181 sqlite3BtreeLeave(p); 4182 return rc; 4183 } 4184 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4185 pBt->inTransaction = TRANS_READ; 4186 btreeClearHasContent(pBt); 4187 } 4188 4189 btreeEndTransaction(p); 4190 sqlite3BtreeLeave(p); 4191 return SQLITE_OK; 4192 } 4193 4194 /* 4195 ** Do both phases of a commit. 4196 */ 4197 int sqlite3BtreeCommit(Btree *p){ 4198 int rc; 4199 sqlite3BtreeEnter(p); 4200 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4201 if( rc==SQLITE_OK ){ 4202 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4203 } 4204 sqlite3BtreeLeave(p); 4205 return rc; 4206 } 4207 4208 /* 4209 ** This routine sets the state to CURSOR_FAULT and the error 4210 ** code to errCode for every cursor on any BtShared that pBtree 4211 ** references. Or if the writeOnly flag is set to 1, then only 4212 ** trip write cursors and leave read cursors unchanged. 4213 ** 4214 ** Every cursor is a candidate to be tripped, including cursors 4215 ** that belong to other database connections that happen to be 4216 ** sharing the cache with pBtree. 4217 ** 4218 ** This routine gets called when a rollback occurs. If the writeOnly 4219 ** flag is true, then only write-cursors need be tripped - read-only 4220 ** cursors save their current positions so that they may continue 4221 ** following the rollback. Or, if writeOnly is false, all cursors are 4222 ** tripped. In general, writeOnly is false if the transaction being 4223 ** rolled back modified the database schema. In this case b-tree root 4224 ** pages may be moved or deleted from the database altogether, making 4225 ** it unsafe for read cursors to continue. 4226 ** 4227 ** If the writeOnly flag is true and an error is encountered while 4228 ** saving the current position of a read-only cursor, all cursors, 4229 ** including all read-cursors are tripped. 4230 ** 4231 ** SQLITE_OK is returned if successful, or if an error occurs while 4232 ** saving a cursor position, an SQLite error code. 4233 */ 4234 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4235 BtCursor *p; 4236 int rc = SQLITE_OK; 4237 4238 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4239 if( pBtree ){ 4240 sqlite3BtreeEnter(pBtree); 4241 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4242 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4243 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4244 rc = saveCursorPosition(p); 4245 if( rc!=SQLITE_OK ){ 4246 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4247 break; 4248 } 4249 } 4250 }else{ 4251 sqlite3BtreeClearCursor(p); 4252 p->eState = CURSOR_FAULT; 4253 p->skipNext = errCode; 4254 } 4255 btreeReleaseAllCursorPages(p); 4256 } 4257 sqlite3BtreeLeave(pBtree); 4258 } 4259 return rc; 4260 } 4261 4262 /* 4263 ** Set the pBt->nPage field correctly, according to the current 4264 ** state of the database. Assume pBt->pPage1 is valid. 4265 */ 4266 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4267 int nPage = get4byte(&pPage1->aData[28]); 4268 testcase( nPage==0 ); 4269 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4270 testcase( pBt->nPage!=(u32)nPage ); 4271 pBt->nPage = nPage; 4272 } 4273 4274 /* 4275 ** Rollback the transaction in progress. 4276 ** 4277 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4278 ** Only write cursors are tripped if writeOnly is true but all cursors are 4279 ** tripped if writeOnly is false. Any attempt to use 4280 ** a tripped cursor will result in an error. 4281 ** 4282 ** This will release the write lock on the database file. If there 4283 ** are no active cursors, it also releases the read lock. 4284 */ 4285 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4286 int rc; 4287 BtShared *pBt = p->pBt; 4288 MemPage *pPage1; 4289 4290 assert( writeOnly==1 || writeOnly==0 ); 4291 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4292 sqlite3BtreeEnter(p); 4293 if( tripCode==SQLITE_OK ){ 4294 rc = tripCode = saveAllCursors(pBt, 0, 0); 4295 if( rc ) writeOnly = 0; 4296 }else{ 4297 rc = SQLITE_OK; 4298 } 4299 if( tripCode ){ 4300 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4301 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4302 if( rc2!=SQLITE_OK ) rc = rc2; 4303 } 4304 btreeIntegrity(p); 4305 4306 if( p->inTrans==TRANS_WRITE ){ 4307 int rc2; 4308 4309 assert( TRANS_WRITE==pBt->inTransaction ); 4310 rc2 = sqlite3PagerRollback(pBt->pPager); 4311 if( rc2!=SQLITE_OK ){ 4312 rc = rc2; 4313 } 4314 4315 /* The rollback may have destroyed the pPage1->aData value. So 4316 ** call btreeGetPage() on page 1 again to make 4317 ** sure pPage1->aData is set correctly. */ 4318 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4319 btreeSetNPage(pBt, pPage1); 4320 releasePageOne(pPage1); 4321 } 4322 assert( countValidCursors(pBt, 1)==0 ); 4323 pBt->inTransaction = TRANS_READ; 4324 btreeClearHasContent(pBt); 4325 } 4326 4327 btreeEndTransaction(p); 4328 sqlite3BtreeLeave(p); 4329 return rc; 4330 } 4331 4332 /* 4333 ** Start a statement subtransaction. The subtransaction can be rolled 4334 ** back independently of the main transaction. You must start a transaction 4335 ** before starting a subtransaction. The subtransaction is ended automatically 4336 ** if the main transaction commits or rolls back. 4337 ** 4338 ** Statement subtransactions are used around individual SQL statements 4339 ** that are contained within a BEGIN...COMMIT block. If a constraint 4340 ** error occurs within the statement, the effect of that one statement 4341 ** can be rolled back without having to rollback the entire transaction. 4342 ** 4343 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4344 ** value passed as the second parameter is the total number of savepoints, 4345 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4346 ** are no active savepoints and no other statement-transactions open, 4347 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4348 ** using the sqlite3BtreeSavepoint() function. 4349 */ 4350 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4351 int rc; 4352 BtShared *pBt = p->pBt; 4353 sqlite3BtreeEnter(p); 4354 assert( p->inTrans==TRANS_WRITE ); 4355 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4356 assert( iStatement>0 ); 4357 assert( iStatement>p->db->nSavepoint ); 4358 assert( pBt->inTransaction==TRANS_WRITE ); 4359 /* At the pager level, a statement transaction is a savepoint with 4360 ** an index greater than all savepoints created explicitly using 4361 ** SQL statements. It is illegal to open, release or rollback any 4362 ** such savepoints while the statement transaction savepoint is active. 4363 */ 4364 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4365 sqlite3BtreeLeave(p); 4366 return rc; 4367 } 4368 4369 /* 4370 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4371 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4372 ** savepoint identified by parameter iSavepoint, depending on the value 4373 ** of op. 4374 ** 4375 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4376 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4377 ** contents of the entire transaction are rolled back. This is different 4378 ** from a normal transaction rollback, as no locks are released and the 4379 ** transaction remains open. 4380 */ 4381 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4382 int rc = SQLITE_OK; 4383 if( p && p->inTrans==TRANS_WRITE ){ 4384 BtShared *pBt = p->pBt; 4385 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4386 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4387 sqlite3BtreeEnter(p); 4388 if( op==SAVEPOINT_ROLLBACK ){ 4389 rc = saveAllCursors(pBt, 0, 0); 4390 } 4391 if( rc==SQLITE_OK ){ 4392 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4393 } 4394 if( rc==SQLITE_OK ){ 4395 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4396 pBt->nPage = 0; 4397 } 4398 rc = newDatabase(pBt); 4399 btreeSetNPage(pBt, pBt->pPage1); 4400 4401 /* pBt->nPage might be zero if the database was corrupt when 4402 ** the transaction was started. Otherwise, it must be at least 1. */ 4403 assert( CORRUPT_DB || pBt->nPage>0 ); 4404 } 4405 sqlite3BtreeLeave(p); 4406 } 4407 return rc; 4408 } 4409 4410 /* 4411 ** Create a new cursor for the BTree whose root is on the page 4412 ** iTable. If a read-only cursor is requested, it is assumed that 4413 ** the caller already has at least a read-only transaction open 4414 ** on the database already. If a write-cursor is requested, then 4415 ** the caller is assumed to have an open write transaction. 4416 ** 4417 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4418 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4419 ** can be used for reading or for writing if other conditions for writing 4420 ** are also met. These are the conditions that must be met in order 4421 ** for writing to be allowed: 4422 ** 4423 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4424 ** 4425 ** 2: Other database connections that share the same pager cache 4426 ** but which are not in the READ_UNCOMMITTED state may not have 4427 ** cursors open with wrFlag==0 on the same table. Otherwise 4428 ** the changes made by this write cursor would be visible to 4429 ** the read cursors in the other database connection. 4430 ** 4431 ** 3: The database must be writable (not on read-only media) 4432 ** 4433 ** 4: There must be an active transaction. 4434 ** 4435 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4436 ** is set. If FORDELETE is set, that is a hint to the implementation that 4437 ** this cursor will only be used to seek to and delete entries of an index 4438 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4439 ** this implementation. But in a hypothetical alternative storage engine 4440 ** in which index entries are automatically deleted when corresponding table 4441 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4442 ** operations on this cursor can be no-ops and all READ operations can 4443 ** return a null row (2-bytes: 0x01 0x00). 4444 ** 4445 ** No checking is done to make sure that page iTable really is the 4446 ** root page of a b-tree. If it is not, then the cursor acquired 4447 ** will not work correctly. 4448 ** 4449 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4450 ** on pCur to initialize the memory space prior to invoking this routine. 4451 */ 4452 static int btreeCursor( 4453 Btree *p, /* The btree */ 4454 Pgno iTable, /* Root page of table to open */ 4455 int wrFlag, /* 1 to write. 0 read-only */ 4456 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4457 BtCursor *pCur /* Space for new cursor */ 4458 ){ 4459 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4460 BtCursor *pX; /* Looping over other all cursors */ 4461 4462 assert( sqlite3BtreeHoldsMutex(p) ); 4463 assert( wrFlag==0 4464 || wrFlag==BTREE_WRCSR 4465 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4466 ); 4467 4468 /* The following assert statements verify that if this is a sharable 4469 ** b-tree database, the connection is holding the required table locks, 4470 ** and that no other connection has any open cursor that conflicts with 4471 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4472 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4473 || iTable<1 ); 4474 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4475 4476 /* Assert that the caller has opened the required transaction. */ 4477 assert( p->inTrans>TRANS_NONE ); 4478 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4479 assert( pBt->pPage1 && pBt->pPage1->aData ); 4480 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4481 4482 if( iTable<=1 ){ 4483 if( iTable<1 ){ 4484 return SQLITE_CORRUPT_BKPT; 4485 }else if( btreePagecount(pBt)==0 ){ 4486 assert( wrFlag==0 ); 4487 iTable = 0; 4488 } 4489 } 4490 4491 /* Now that no other errors can occur, finish filling in the BtCursor 4492 ** variables and link the cursor into the BtShared list. */ 4493 pCur->pgnoRoot = iTable; 4494 pCur->iPage = -1; 4495 pCur->pKeyInfo = pKeyInfo; 4496 pCur->pBtree = p; 4497 pCur->pBt = pBt; 4498 pCur->curFlags = 0; 4499 /* If there are two or more cursors on the same btree, then all such 4500 ** cursors *must* have the BTCF_Multiple flag set. */ 4501 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4502 if( pX->pgnoRoot==iTable ){ 4503 pX->curFlags |= BTCF_Multiple; 4504 pCur->curFlags = BTCF_Multiple; 4505 } 4506 } 4507 pCur->eState = CURSOR_INVALID; 4508 pCur->pNext = pBt->pCursor; 4509 pBt->pCursor = pCur; 4510 if( wrFlag ){ 4511 pCur->curFlags |= BTCF_WriteFlag; 4512 pCur->curPagerFlags = 0; 4513 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4514 }else{ 4515 pCur->curPagerFlags = PAGER_GET_READONLY; 4516 } 4517 return SQLITE_OK; 4518 } 4519 static int btreeCursorWithLock( 4520 Btree *p, /* The btree */ 4521 Pgno iTable, /* Root page of table to open */ 4522 int wrFlag, /* 1 to write. 0 read-only */ 4523 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4524 BtCursor *pCur /* Space for new cursor */ 4525 ){ 4526 int rc; 4527 sqlite3BtreeEnter(p); 4528 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4529 sqlite3BtreeLeave(p); 4530 return rc; 4531 } 4532 int sqlite3BtreeCursor( 4533 Btree *p, /* The btree */ 4534 Pgno iTable, /* Root page of table to open */ 4535 int wrFlag, /* 1 to write. 0 read-only */ 4536 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4537 BtCursor *pCur /* Write new cursor here */ 4538 ){ 4539 if( p->sharable ){ 4540 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4541 }else{ 4542 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4543 } 4544 } 4545 4546 /* 4547 ** Return the size of a BtCursor object in bytes. 4548 ** 4549 ** This interfaces is needed so that users of cursors can preallocate 4550 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4551 ** to users so they cannot do the sizeof() themselves - they must call 4552 ** this routine. 4553 */ 4554 int sqlite3BtreeCursorSize(void){ 4555 return ROUND8(sizeof(BtCursor)); 4556 } 4557 4558 /* 4559 ** Initialize memory that will be converted into a BtCursor object. 4560 ** 4561 ** The simple approach here would be to memset() the entire object 4562 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4563 ** do not need to be zeroed and they are large, so we can save a lot 4564 ** of run-time by skipping the initialization of those elements. 4565 */ 4566 void sqlite3BtreeCursorZero(BtCursor *p){ 4567 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4568 } 4569 4570 /* 4571 ** Close a cursor. The read lock on the database file is released 4572 ** when the last cursor is closed. 4573 */ 4574 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4575 Btree *pBtree = pCur->pBtree; 4576 if( pBtree ){ 4577 BtShared *pBt = pCur->pBt; 4578 sqlite3BtreeEnter(pBtree); 4579 assert( pBt->pCursor!=0 ); 4580 if( pBt->pCursor==pCur ){ 4581 pBt->pCursor = pCur->pNext; 4582 }else{ 4583 BtCursor *pPrev = pBt->pCursor; 4584 do{ 4585 if( pPrev->pNext==pCur ){ 4586 pPrev->pNext = pCur->pNext; 4587 break; 4588 } 4589 pPrev = pPrev->pNext; 4590 }while( ALWAYS(pPrev) ); 4591 } 4592 btreeReleaseAllCursorPages(pCur); 4593 unlockBtreeIfUnused(pBt); 4594 sqlite3_free(pCur->aOverflow); 4595 sqlite3_free(pCur->pKey); 4596 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4597 /* Since the BtShared is not sharable, there is no need to 4598 ** worry about the missing sqlite3BtreeLeave() call here. */ 4599 assert( pBtree->sharable==0 ); 4600 sqlite3BtreeClose(pBtree); 4601 }else{ 4602 sqlite3BtreeLeave(pBtree); 4603 } 4604 pCur->pBtree = 0; 4605 } 4606 return SQLITE_OK; 4607 } 4608 4609 /* 4610 ** Make sure the BtCursor* given in the argument has a valid 4611 ** BtCursor.info structure. If it is not already valid, call 4612 ** btreeParseCell() to fill it in. 4613 ** 4614 ** BtCursor.info is a cache of the information in the current cell. 4615 ** Using this cache reduces the number of calls to btreeParseCell(). 4616 */ 4617 #ifndef NDEBUG 4618 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4619 if( a->nKey!=b->nKey ) return 0; 4620 if( a->pPayload!=b->pPayload ) return 0; 4621 if( a->nPayload!=b->nPayload ) return 0; 4622 if( a->nLocal!=b->nLocal ) return 0; 4623 if( a->nSize!=b->nSize ) return 0; 4624 return 1; 4625 } 4626 static void assertCellInfo(BtCursor *pCur){ 4627 CellInfo info; 4628 memset(&info, 0, sizeof(info)); 4629 btreeParseCell(pCur->pPage, pCur->ix, &info); 4630 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4631 } 4632 #else 4633 #define assertCellInfo(x) 4634 #endif 4635 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4636 if( pCur->info.nSize==0 ){ 4637 pCur->curFlags |= BTCF_ValidNKey; 4638 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4639 }else{ 4640 assertCellInfo(pCur); 4641 } 4642 } 4643 4644 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4645 /* 4646 ** Return true if the given BtCursor is valid. A valid cursor is one 4647 ** that is currently pointing to a row in a (non-empty) table. 4648 ** This is a verification routine is used only within assert() statements. 4649 */ 4650 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4651 return pCur && pCur->eState==CURSOR_VALID; 4652 } 4653 #endif /* NDEBUG */ 4654 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4655 assert( pCur!=0 ); 4656 return pCur->eState==CURSOR_VALID; 4657 } 4658 4659 /* 4660 ** Return the value of the integer key or "rowid" for a table btree. 4661 ** This routine is only valid for a cursor that is pointing into a 4662 ** ordinary table btree. If the cursor points to an index btree or 4663 ** is invalid, the result of this routine is undefined. 4664 */ 4665 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4666 assert( cursorHoldsMutex(pCur) ); 4667 assert( pCur->eState==CURSOR_VALID ); 4668 assert( pCur->curIntKey ); 4669 getCellInfo(pCur); 4670 return pCur->info.nKey; 4671 } 4672 4673 /* 4674 ** Pin or unpin a cursor. 4675 */ 4676 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4677 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4678 pCur->curFlags |= BTCF_Pinned; 4679 } 4680 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4681 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4682 pCur->curFlags &= ~BTCF_Pinned; 4683 } 4684 4685 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4686 /* 4687 ** Return the offset into the database file for the start of the 4688 ** payload to which the cursor is pointing. 4689 */ 4690 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4691 assert( cursorHoldsMutex(pCur) ); 4692 assert( pCur->eState==CURSOR_VALID ); 4693 getCellInfo(pCur); 4694 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4695 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4696 } 4697 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4698 4699 /* 4700 ** Return the number of bytes of payload for the entry that pCur is 4701 ** currently pointing to. For table btrees, this will be the amount 4702 ** of data. For index btrees, this will be the size of the key. 4703 ** 4704 ** The caller must guarantee that the cursor is pointing to a non-NULL 4705 ** valid entry. In other words, the calling procedure must guarantee 4706 ** that the cursor has Cursor.eState==CURSOR_VALID. 4707 */ 4708 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4709 assert( cursorHoldsMutex(pCur) ); 4710 assert( pCur->eState==CURSOR_VALID ); 4711 getCellInfo(pCur); 4712 return pCur->info.nPayload; 4713 } 4714 4715 /* 4716 ** Return an upper bound on the size of any record for the table 4717 ** that the cursor is pointing into. 4718 ** 4719 ** This is an optimization. Everything will still work if this 4720 ** routine always returns 2147483647 (which is the largest record 4721 ** that SQLite can handle) or more. But returning a smaller value might 4722 ** prevent large memory allocations when trying to interpret a 4723 ** corrupt datrabase. 4724 ** 4725 ** The current implementation merely returns the size of the underlying 4726 ** database file. 4727 */ 4728 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4729 assert( cursorHoldsMutex(pCur) ); 4730 assert( pCur->eState==CURSOR_VALID ); 4731 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4732 } 4733 4734 /* 4735 ** Given the page number of an overflow page in the database (parameter 4736 ** ovfl), this function finds the page number of the next page in the 4737 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4738 ** pointer-map data instead of reading the content of page ovfl to do so. 4739 ** 4740 ** If an error occurs an SQLite error code is returned. Otherwise: 4741 ** 4742 ** The page number of the next overflow page in the linked list is 4743 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4744 ** list, *pPgnoNext is set to zero. 4745 ** 4746 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4747 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4748 ** reference. It is the responsibility of the caller to call releasePage() 4749 ** on *ppPage to free the reference. In no reference was obtained (because 4750 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4751 ** *ppPage is set to zero. 4752 */ 4753 static int getOverflowPage( 4754 BtShared *pBt, /* The database file */ 4755 Pgno ovfl, /* Current overflow page number */ 4756 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4757 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4758 ){ 4759 Pgno next = 0; 4760 MemPage *pPage = 0; 4761 int rc = SQLITE_OK; 4762 4763 assert( sqlite3_mutex_held(pBt->mutex) ); 4764 assert(pPgnoNext); 4765 4766 #ifndef SQLITE_OMIT_AUTOVACUUM 4767 /* Try to find the next page in the overflow list using the 4768 ** autovacuum pointer-map pages. Guess that the next page in 4769 ** the overflow list is page number (ovfl+1). If that guess turns 4770 ** out to be wrong, fall back to loading the data of page 4771 ** number ovfl to determine the next page number. 4772 */ 4773 if( pBt->autoVacuum ){ 4774 Pgno pgno; 4775 Pgno iGuess = ovfl+1; 4776 u8 eType; 4777 4778 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4779 iGuess++; 4780 } 4781 4782 if( iGuess<=btreePagecount(pBt) ){ 4783 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4784 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4785 next = iGuess; 4786 rc = SQLITE_DONE; 4787 } 4788 } 4789 } 4790 #endif 4791 4792 assert( next==0 || rc==SQLITE_DONE ); 4793 if( rc==SQLITE_OK ){ 4794 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4795 assert( rc==SQLITE_OK || pPage==0 ); 4796 if( rc==SQLITE_OK ){ 4797 next = get4byte(pPage->aData); 4798 } 4799 } 4800 4801 *pPgnoNext = next; 4802 if( ppPage ){ 4803 *ppPage = pPage; 4804 }else{ 4805 releasePage(pPage); 4806 } 4807 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4808 } 4809 4810 /* 4811 ** Copy data from a buffer to a page, or from a page to a buffer. 4812 ** 4813 ** pPayload is a pointer to data stored on database page pDbPage. 4814 ** If argument eOp is false, then nByte bytes of data are copied 4815 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4816 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4817 ** of data are copied from the buffer pBuf to pPayload. 4818 ** 4819 ** SQLITE_OK is returned on success, otherwise an error code. 4820 */ 4821 static int copyPayload( 4822 void *pPayload, /* Pointer to page data */ 4823 void *pBuf, /* Pointer to buffer */ 4824 int nByte, /* Number of bytes to copy */ 4825 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4826 DbPage *pDbPage /* Page containing pPayload */ 4827 ){ 4828 if( eOp ){ 4829 /* Copy data from buffer to page (a write operation) */ 4830 int rc = sqlite3PagerWrite(pDbPage); 4831 if( rc!=SQLITE_OK ){ 4832 return rc; 4833 } 4834 memcpy(pPayload, pBuf, nByte); 4835 }else{ 4836 /* Copy data from page to buffer (a read operation) */ 4837 memcpy(pBuf, pPayload, nByte); 4838 } 4839 return SQLITE_OK; 4840 } 4841 4842 /* 4843 ** This function is used to read or overwrite payload information 4844 ** for the entry that the pCur cursor is pointing to. The eOp 4845 ** argument is interpreted as follows: 4846 ** 4847 ** 0: The operation is a read. Populate the overflow cache. 4848 ** 1: The operation is a write. Populate the overflow cache. 4849 ** 4850 ** A total of "amt" bytes are read or written beginning at "offset". 4851 ** Data is read to or from the buffer pBuf. 4852 ** 4853 ** The content being read or written might appear on the main page 4854 ** or be scattered out on multiple overflow pages. 4855 ** 4856 ** If the current cursor entry uses one or more overflow pages 4857 ** this function may allocate space for and lazily populate 4858 ** the overflow page-list cache array (BtCursor.aOverflow). 4859 ** Subsequent calls use this cache to make seeking to the supplied offset 4860 ** more efficient. 4861 ** 4862 ** Once an overflow page-list cache has been allocated, it must be 4863 ** invalidated if some other cursor writes to the same table, or if 4864 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4865 ** mode, the following events may invalidate an overflow page-list cache. 4866 ** 4867 ** * An incremental vacuum, 4868 ** * A commit in auto_vacuum="full" mode, 4869 ** * Creating a table (may require moving an overflow page). 4870 */ 4871 static int accessPayload( 4872 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4873 u32 offset, /* Begin reading this far into payload */ 4874 u32 amt, /* Read this many bytes */ 4875 unsigned char *pBuf, /* Write the bytes into this buffer */ 4876 int eOp /* zero to read. non-zero to write. */ 4877 ){ 4878 unsigned char *aPayload; 4879 int rc = SQLITE_OK; 4880 int iIdx = 0; 4881 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4882 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4883 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4884 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4885 #endif 4886 4887 assert( pPage ); 4888 assert( eOp==0 || eOp==1 ); 4889 assert( pCur->eState==CURSOR_VALID ); 4890 if( pCur->ix>=pPage->nCell ){ 4891 return SQLITE_CORRUPT_PAGE(pPage); 4892 } 4893 assert( cursorHoldsMutex(pCur) ); 4894 4895 getCellInfo(pCur); 4896 aPayload = pCur->info.pPayload; 4897 assert( offset+amt <= pCur->info.nPayload ); 4898 4899 assert( aPayload > pPage->aData ); 4900 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4901 /* Trying to read or write past the end of the data is an error. The 4902 ** conditional above is really: 4903 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4904 ** but is recast into its current form to avoid integer overflow problems 4905 */ 4906 return SQLITE_CORRUPT_PAGE(pPage); 4907 } 4908 4909 /* Check if data must be read/written to/from the btree page itself. */ 4910 if( offset<pCur->info.nLocal ){ 4911 int a = amt; 4912 if( a+offset>pCur->info.nLocal ){ 4913 a = pCur->info.nLocal - offset; 4914 } 4915 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4916 offset = 0; 4917 pBuf += a; 4918 amt -= a; 4919 }else{ 4920 offset -= pCur->info.nLocal; 4921 } 4922 4923 4924 if( rc==SQLITE_OK && amt>0 ){ 4925 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4926 Pgno nextPage; 4927 4928 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4929 4930 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4931 ** 4932 ** The aOverflow[] array is sized at one entry for each overflow page 4933 ** in the overflow chain. The page number of the first overflow page is 4934 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4935 ** means "not yet known" (the cache is lazily populated). 4936 */ 4937 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4938 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4939 if( pCur->aOverflow==0 4940 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4941 ){ 4942 Pgno *aNew = (Pgno*)sqlite3Realloc( 4943 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4944 ); 4945 if( aNew==0 ){ 4946 return SQLITE_NOMEM_BKPT; 4947 }else{ 4948 pCur->aOverflow = aNew; 4949 } 4950 } 4951 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4952 pCur->curFlags |= BTCF_ValidOvfl; 4953 }else{ 4954 /* If the overflow page-list cache has been allocated and the 4955 ** entry for the first required overflow page is valid, skip 4956 ** directly to it. 4957 */ 4958 if( pCur->aOverflow[offset/ovflSize] ){ 4959 iIdx = (offset/ovflSize); 4960 nextPage = pCur->aOverflow[iIdx]; 4961 offset = (offset%ovflSize); 4962 } 4963 } 4964 4965 assert( rc==SQLITE_OK && amt>0 ); 4966 while( nextPage ){ 4967 /* If required, populate the overflow page-list cache. */ 4968 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 4969 assert( pCur->aOverflow[iIdx]==0 4970 || pCur->aOverflow[iIdx]==nextPage 4971 || CORRUPT_DB ); 4972 pCur->aOverflow[iIdx] = nextPage; 4973 4974 if( offset>=ovflSize ){ 4975 /* The only reason to read this page is to obtain the page 4976 ** number for the next page in the overflow chain. The page 4977 ** data is not required. So first try to lookup the overflow 4978 ** page-list cache, if any, then fall back to the getOverflowPage() 4979 ** function. 4980 */ 4981 assert( pCur->curFlags & BTCF_ValidOvfl ); 4982 assert( pCur->pBtree->db==pBt->db ); 4983 if( pCur->aOverflow[iIdx+1] ){ 4984 nextPage = pCur->aOverflow[iIdx+1]; 4985 }else{ 4986 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4987 } 4988 offset -= ovflSize; 4989 }else{ 4990 /* Need to read this page properly. It contains some of the 4991 ** range of data that is being read (eOp==0) or written (eOp!=0). 4992 */ 4993 int a = amt; 4994 if( a + offset > ovflSize ){ 4995 a = ovflSize - offset; 4996 } 4997 4998 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4999 /* If all the following are true: 5000 ** 5001 ** 1) this is a read operation, and 5002 ** 2) data is required from the start of this overflow page, and 5003 ** 3) there are no dirty pages in the page-cache 5004 ** 4) the database is file-backed, and 5005 ** 5) the page is not in the WAL file 5006 ** 6) at least 4 bytes have already been read into the output buffer 5007 ** 5008 ** then data can be read directly from the database file into the 5009 ** output buffer, bypassing the page-cache altogether. This speeds 5010 ** up loading large records that span many overflow pages. 5011 */ 5012 if( eOp==0 /* (1) */ 5013 && offset==0 /* (2) */ 5014 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5015 && &pBuf[-4]>=pBufStart /* (6) */ 5016 ){ 5017 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5018 u8 aSave[4]; 5019 u8 *aWrite = &pBuf[-4]; 5020 assert( aWrite>=pBufStart ); /* due to (6) */ 5021 memcpy(aSave, aWrite, 4); 5022 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5023 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5024 nextPage = get4byte(aWrite); 5025 memcpy(aWrite, aSave, 4); 5026 }else 5027 #endif 5028 5029 { 5030 DbPage *pDbPage; 5031 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5032 (eOp==0 ? PAGER_GET_READONLY : 0) 5033 ); 5034 if( rc==SQLITE_OK ){ 5035 aPayload = sqlite3PagerGetData(pDbPage); 5036 nextPage = get4byte(aPayload); 5037 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5038 sqlite3PagerUnref(pDbPage); 5039 offset = 0; 5040 } 5041 } 5042 amt -= a; 5043 if( amt==0 ) return rc; 5044 pBuf += a; 5045 } 5046 if( rc ) break; 5047 iIdx++; 5048 } 5049 } 5050 5051 if( rc==SQLITE_OK && amt>0 ){ 5052 /* Overflow chain ends prematurely */ 5053 return SQLITE_CORRUPT_PAGE(pPage); 5054 } 5055 return rc; 5056 } 5057 5058 /* 5059 ** Read part of the payload for the row at which that cursor pCur is currently 5060 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5061 ** begins at "offset". 5062 ** 5063 ** pCur can be pointing to either a table or an index b-tree. 5064 ** If pointing to a table btree, then the content section is read. If 5065 ** pCur is pointing to an index b-tree then the key section is read. 5066 ** 5067 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5068 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5069 ** cursor might be invalid or might need to be restored before being read. 5070 ** 5071 ** Return SQLITE_OK on success or an error code if anything goes 5072 ** wrong. An error is returned if "offset+amt" is larger than 5073 ** the available payload. 5074 */ 5075 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5076 assert( cursorHoldsMutex(pCur) ); 5077 assert( pCur->eState==CURSOR_VALID ); 5078 assert( pCur->iPage>=0 && pCur->pPage ); 5079 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5080 } 5081 5082 /* 5083 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5084 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5085 ** interface. 5086 */ 5087 #ifndef SQLITE_OMIT_INCRBLOB 5088 static SQLITE_NOINLINE int accessPayloadChecked( 5089 BtCursor *pCur, 5090 u32 offset, 5091 u32 amt, 5092 void *pBuf 5093 ){ 5094 int rc; 5095 if ( pCur->eState==CURSOR_INVALID ){ 5096 return SQLITE_ABORT; 5097 } 5098 assert( cursorOwnsBtShared(pCur) ); 5099 rc = btreeRestoreCursorPosition(pCur); 5100 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5101 } 5102 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5103 if( pCur->eState==CURSOR_VALID ){ 5104 assert( cursorOwnsBtShared(pCur) ); 5105 return accessPayload(pCur, offset, amt, pBuf, 0); 5106 }else{ 5107 return accessPayloadChecked(pCur, offset, amt, pBuf); 5108 } 5109 } 5110 #endif /* SQLITE_OMIT_INCRBLOB */ 5111 5112 /* 5113 ** Return a pointer to payload information from the entry that the 5114 ** pCur cursor is pointing to. The pointer is to the beginning of 5115 ** the key if index btrees (pPage->intKey==0) and is the data for 5116 ** table btrees (pPage->intKey==1). The number of bytes of available 5117 ** key/data is written into *pAmt. If *pAmt==0, then the value 5118 ** returned will not be a valid pointer. 5119 ** 5120 ** This routine is an optimization. It is common for the entire key 5121 ** and data to fit on the local page and for there to be no overflow 5122 ** pages. When that is so, this routine can be used to access the 5123 ** key and data without making a copy. If the key and/or data spills 5124 ** onto overflow pages, then accessPayload() must be used to reassemble 5125 ** the key/data and copy it into a preallocated buffer. 5126 ** 5127 ** The pointer returned by this routine looks directly into the cached 5128 ** page of the database. The data might change or move the next time 5129 ** any btree routine is called. 5130 */ 5131 static const void *fetchPayload( 5132 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5133 u32 *pAmt /* Write the number of available bytes here */ 5134 ){ 5135 int amt; 5136 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5137 assert( pCur->eState==CURSOR_VALID ); 5138 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5139 assert( cursorOwnsBtShared(pCur) ); 5140 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5141 assert( pCur->info.nSize>0 ); 5142 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5143 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5144 amt = pCur->info.nLocal; 5145 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5146 /* There is too little space on the page for the expected amount 5147 ** of local content. Database must be corrupt. */ 5148 assert( CORRUPT_DB ); 5149 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5150 } 5151 *pAmt = (u32)amt; 5152 return (void*)pCur->info.pPayload; 5153 } 5154 5155 5156 /* 5157 ** For the entry that cursor pCur is point to, return as 5158 ** many bytes of the key or data as are available on the local 5159 ** b-tree page. Write the number of available bytes into *pAmt. 5160 ** 5161 ** The pointer returned is ephemeral. The key/data may move 5162 ** or be destroyed on the next call to any Btree routine, 5163 ** including calls from other threads against the same cache. 5164 ** Hence, a mutex on the BtShared should be held prior to calling 5165 ** this routine. 5166 ** 5167 ** These routines is used to get quick access to key and data 5168 ** in the common case where no overflow pages are used. 5169 */ 5170 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5171 return fetchPayload(pCur, pAmt); 5172 } 5173 5174 5175 /* 5176 ** Move the cursor down to a new child page. The newPgno argument is the 5177 ** page number of the child page to move to. 5178 ** 5179 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5180 ** the new child page does not match the flags field of the parent (i.e. 5181 ** if an intkey page appears to be the parent of a non-intkey page, or 5182 ** vice-versa). 5183 */ 5184 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5185 BtShared *pBt = pCur->pBt; 5186 5187 assert( cursorOwnsBtShared(pCur) ); 5188 assert( pCur->eState==CURSOR_VALID ); 5189 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5190 assert( pCur->iPage>=0 ); 5191 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5192 return SQLITE_CORRUPT_BKPT; 5193 } 5194 pCur->info.nSize = 0; 5195 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5196 pCur->aiIdx[pCur->iPage] = pCur->ix; 5197 pCur->apPage[pCur->iPage] = pCur->pPage; 5198 pCur->ix = 0; 5199 pCur->iPage++; 5200 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5201 } 5202 5203 #ifdef SQLITE_DEBUG 5204 /* 5205 ** Page pParent is an internal (non-leaf) tree page. This function 5206 ** asserts that page number iChild is the left-child if the iIdx'th 5207 ** cell in page pParent. Or, if iIdx is equal to the total number of 5208 ** cells in pParent, that page number iChild is the right-child of 5209 ** the page. 5210 */ 5211 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5212 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5213 ** in a corrupt database */ 5214 assert( iIdx<=pParent->nCell ); 5215 if( iIdx==pParent->nCell ){ 5216 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5217 }else{ 5218 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5219 } 5220 } 5221 #else 5222 # define assertParentIndex(x,y,z) 5223 #endif 5224 5225 /* 5226 ** Move the cursor up to the parent page. 5227 ** 5228 ** pCur->idx is set to the cell index that contains the pointer 5229 ** to the page we are coming from. If we are coming from the 5230 ** right-most child page then pCur->idx is set to one more than 5231 ** the largest cell index. 5232 */ 5233 static void moveToParent(BtCursor *pCur){ 5234 MemPage *pLeaf; 5235 assert( cursorOwnsBtShared(pCur) ); 5236 assert( pCur->eState==CURSOR_VALID ); 5237 assert( pCur->iPage>0 ); 5238 assert( pCur->pPage ); 5239 assertParentIndex( 5240 pCur->apPage[pCur->iPage-1], 5241 pCur->aiIdx[pCur->iPage-1], 5242 pCur->pPage->pgno 5243 ); 5244 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5245 pCur->info.nSize = 0; 5246 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5247 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5248 pLeaf = pCur->pPage; 5249 pCur->pPage = pCur->apPage[--pCur->iPage]; 5250 releasePageNotNull(pLeaf); 5251 } 5252 5253 /* 5254 ** Move the cursor to point to the root page of its b-tree structure. 5255 ** 5256 ** If the table has a virtual root page, then the cursor is moved to point 5257 ** to the virtual root page instead of the actual root page. A table has a 5258 ** virtual root page when the actual root page contains no cells and a 5259 ** single child page. This can only happen with the table rooted at page 1. 5260 ** 5261 ** If the b-tree structure is empty, the cursor state is set to 5262 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5263 ** the cursor is set to point to the first cell located on the root 5264 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5265 ** 5266 ** If this function returns successfully, it may be assumed that the 5267 ** page-header flags indicate that the [virtual] root-page is the expected 5268 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5269 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5270 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5271 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5272 ** b-tree). 5273 */ 5274 static int moveToRoot(BtCursor *pCur){ 5275 MemPage *pRoot; 5276 int rc = SQLITE_OK; 5277 5278 assert( cursorOwnsBtShared(pCur) ); 5279 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5280 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5281 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5282 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5283 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5284 5285 if( pCur->iPage>=0 ){ 5286 if( pCur->iPage ){ 5287 releasePageNotNull(pCur->pPage); 5288 while( --pCur->iPage ){ 5289 releasePageNotNull(pCur->apPage[pCur->iPage]); 5290 } 5291 pRoot = pCur->pPage = pCur->apPage[0]; 5292 goto skip_init; 5293 } 5294 }else if( pCur->pgnoRoot==0 ){ 5295 pCur->eState = CURSOR_INVALID; 5296 return SQLITE_EMPTY; 5297 }else{ 5298 assert( pCur->iPage==(-1) ); 5299 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5300 if( pCur->eState==CURSOR_FAULT ){ 5301 assert( pCur->skipNext!=SQLITE_OK ); 5302 return pCur->skipNext; 5303 } 5304 sqlite3BtreeClearCursor(pCur); 5305 } 5306 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5307 0, pCur->curPagerFlags); 5308 if( rc!=SQLITE_OK ){ 5309 pCur->eState = CURSOR_INVALID; 5310 return rc; 5311 } 5312 pCur->iPage = 0; 5313 pCur->curIntKey = pCur->pPage->intKey; 5314 } 5315 pRoot = pCur->pPage; 5316 assert( pRoot->pgno==pCur->pgnoRoot ); 5317 5318 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5319 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5320 ** NULL, the caller expects a table b-tree. If this is not the case, 5321 ** return an SQLITE_CORRUPT error. 5322 ** 5323 ** Earlier versions of SQLite assumed that this test could not fail 5324 ** if the root page was already loaded when this function was called (i.e. 5325 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5326 ** in such a way that page pRoot is linked into a second b-tree table 5327 ** (or the freelist). */ 5328 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5329 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5330 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5331 } 5332 5333 skip_init: 5334 pCur->ix = 0; 5335 pCur->info.nSize = 0; 5336 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5337 5338 if( pRoot->nCell>0 ){ 5339 pCur->eState = CURSOR_VALID; 5340 }else if( !pRoot->leaf ){ 5341 Pgno subpage; 5342 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5343 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5344 pCur->eState = CURSOR_VALID; 5345 rc = moveToChild(pCur, subpage); 5346 }else{ 5347 pCur->eState = CURSOR_INVALID; 5348 rc = SQLITE_EMPTY; 5349 } 5350 return rc; 5351 } 5352 5353 /* 5354 ** Move the cursor down to the left-most leaf entry beneath the 5355 ** entry to which it is currently pointing. 5356 ** 5357 ** The left-most leaf is the one with the smallest key - the first 5358 ** in ascending order. 5359 */ 5360 static int moveToLeftmost(BtCursor *pCur){ 5361 Pgno pgno; 5362 int rc = SQLITE_OK; 5363 MemPage *pPage; 5364 5365 assert( cursorOwnsBtShared(pCur) ); 5366 assert( pCur->eState==CURSOR_VALID ); 5367 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5368 assert( pCur->ix<pPage->nCell ); 5369 pgno = get4byte(findCell(pPage, pCur->ix)); 5370 rc = moveToChild(pCur, pgno); 5371 } 5372 return rc; 5373 } 5374 5375 /* 5376 ** Move the cursor down to the right-most leaf entry beneath the 5377 ** page to which it is currently pointing. Notice the difference 5378 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5379 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5380 ** finds the right-most entry beneath the *page*. 5381 ** 5382 ** The right-most entry is the one with the largest key - the last 5383 ** key in ascending order. 5384 */ 5385 static int moveToRightmost(BtCursor *pCur){ 5386 Pgno pgno; 5387 int rc = SQLITE_OK; 5388 MemPage *pPage = 0; 5389 5390 assert( cursorOwnsBtShared(pCur) ); 5391 assert( pCur->eState==CURSOR_VALID ); 5392 while( !(pPage = pCur->pPage)->leaf ){ 5393 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5394 pCur->ix = pPage->nCell; 5395 rc = moveToChild(pCur, pgno); 5396 if( rc ) return rc; 5397 } 5398 pCur->ix = pPage->nCell-1; 5399 assert( pCur->info.nSize==0 ); 5400 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5401 return SQLITE_OK; 5402 } 5403 5404 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5405 ** on success. Set *pRes to 0 if the cursor actually points to something 5406 ** or set *pRes to 1 if the table is empty. 5407 */ 5408 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5409 int rc; 5410 5411 assert( cursorOwnsBtShared(pCur) ); 5412 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5413 rc = moveToRoot(pCur); 5414 if( rc==SQLITE_OK ){ 5415 assert( pCur->pPage->nCell>0 ); 5416 *pRes = 0; 5417 rc = moveToLeftmost(pCur); 5418 }else if( rc==SQLITE_EMPTY ){ 5419 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5420 *pRes = 1; 5421 rc = SQLITE_OK; 5422 } 5423 return rc; 5424 } 5425 5426 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5427 ** on success. Set *pRes to 0 if the cursor actually points to something 5428 ** or set *pRes to 1 if the table is empty. 5429 */ 5430 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5431 int rc; 5432 5433 assert( cursorOwnsBtShared(pCur) ); 5434 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5435 5436 /* If the cursor already points to the last entry, this is a no-op. */ 5437 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5438 #ifdef SQLITE_DEBUG 5439 /* This block serves to assert() that the cursor really does point 5440 ** to the last entry in the b-tree. */ 5441 int ii; 5442 for(ii=0; ii<pCur->iPage; ii++){ 5443 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5444 } 5445 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5446 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5447 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5448 assert( pCur->pPage->leaf ); 5449 #endif 5450 *pRes = 0; 5451 return SQLITE_OK; 5452 } 5453 5454 rc = moveToRoot(pCur); 5455 if( rc==SQLITE_OK ){ 5456 assert( pCur->eState==CURSOR_VALID ); 5457 *pRes = 0; 5458 rc = moveToRightmost(pCur); 5459 if( rc==SQLITE_OK ){ 5460 pCur->curFlags |= BTCF_AtLast; 5461 }else{ 5462 pCur->curFlags &= ~BTCF_AtLast; 5463 } 5464 }else if( rc==SQLITE_EMPTY ){ 5465 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5466 *pRes = 1; 5467 rc = SQLITE_OK; 5468 } 5469 return rc; 5470 } 5471 5472 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5473 ** table near the key intKey. Return a success code. 5474 ** 5475 ** If an exact match is not found, then the cursor is always 5476 ** left pointing at a leaf page which would hold the entry if it 5477 ** were present. The cursor might point to an entry that comes 5478 ** before or after the key. 5479 ** 5480 ** An integer is written into *pRes which is the result of 5481 ** comparing the key with the entry to which the cursor is 5482 ** pointing. The meaning of the integer written into 5483 ** *pRes is as follows: 5484 ** 5485 ** *pRes<0 The cursor is left pointing at an entry that 5486 ** is smaller than intKey or if the table is empty 5487 ** and the cursor is therefore left point to nothing. 5488 ** 5489 ** *pRes==0 The cursor is left pointing at an entry that 5490 ** exactly matches intKey. 5491 ** 5492 ** *pRes>0 The cursor is left pointing at an entry that 5493 ** is larger than intKey. 5494 */ 5495 int sqlite3BtreeTableMoveto( 5496 BtCursor *pCur, /* The cursor to be moved */ 5497 i64 intKey, /* The table key */ 5498 int biasRight, /* If true, bias the search to the high end */ 5499 int *pRes /* Write search results here */ 5500 ){ 5501 int rc; 5502 5503 assert( cursorOwnsBtShared(pCur) ); 5504 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5505 assert( pRes ); 5506 assert( pCur->pKeyInfo==0 ); 5507 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5508 5509 /* If the cursor is already positioned at the point we are trying 5510 ** to move to, then just return without doing any work */ 5511 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5512 if( pCur->info.nKey==intKey ){ 5513 *pRes = 0; 5514 return SQLITE_OK; 5515 } 5516 if( pCur->info.nKey<intKey ){ 5517 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5518 *pRes = -1; 5519 return SQLITE_OK; 5520 } 5521 /* If the requested key is one more than the previous key, then 5522 ** try to get there using sqlite3BtreeNext() rather than a full 5523 ** binary search. This is an optimization only. The correct answer 5524 ** is still obtained without this case, only a little more slowely */ 5525 if( pCur->info.nKey+1==intKey ){ 5526 *pRes = 0; 5527 rc = sqlite3BtreeNext(pCur, 0); 5528 if( rc==SQLITE_OK ){ 5529 getCellInfo(pCur); 5530 if( pCur->info.nKey==intKey ){ 5531 return SQLITE_OK; 5532 } 5533 }else if( rc!=SQLITE_DONE ){ 5534 return rc; 5535 } 5536 } 5537 } 5538 } 5539 5540 #ifdef SQLITE_DEBUG 5541 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5542 #endif 5543 5544 rc = moveToRoot(pCur); 5545 if( rc ){ 5546 if( rc==SQLITE_EMPTY ){ 5547 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5548 *pRes = -1; 5549 return SQLITE_OK; 5550 } 5551 return rc; 5552 } 5553 assert( pCur->pPage ); 5554 assert( pCur->pPage->isInit ); 5555 assert( pCur->eState==CURSOR_VALID ); 5556 assert( pCur->pPage->nCell > 0 ); 5557 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5558 assert( pCur->curIntKey ); 5559 5560 for(;;){ 5561 int lwr, upr, idx, c; 5562 Pgno chldPg; 5563 MemPage *pPage = pCur->pPage; 5564 u8 *pCell; /* Pointer to current cell in pPage */ 5565 5566 /* pPage->nCell must be greater than zero. If this is the root-page 5567 ** the cursor would have been INVALID above and this for(;;) loop 5568 ** not run. If this is not the root-page, then the moveToChild() routine 5569 ** would have already detected db corruption. Similarly, pPage must 5570 ** be the right kind (index or table) of b-tree page. Otherwise 5571 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5572 assert( pPage->nCell>0 ); 5573 assert( pPage->intKey ); 5574 lwr = 0; 5575 upr = pPage->nCell-1; 5576 assert( biasRight==0 || biasRight==1 ); 5577 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5578 for(;;){ 5579 i64 nCellKey; 5580 pCell = findCellPastPtr(pPage, idx); 5581 if( pPage->intKeyLeaf ){ 5582 while( 0x80 <= *(pCell++) ){ 5583 if( pCell>=pPage->aDataEnd ){ 5584 return SQLITE_CORRUPT_PAGE(pPage); 5585 } 5586 } 5587 } 5588 getVarint(pCell, (u64*)&nCellKey); 5589 if( nCellKey<intKey ){ 5590 lwr = idx+1; 5591 if( lwr>upr ){ c = -1; break; } 5592 }else if( nCellKey>intKey ){ 5593 upr = idx-1; 5594 if( lwr>upr ){ c = +1; break; } 5595 }else{ 5596 assert( nCellKey==intKey ); 5597 pCur->ix = (u16)idx; 5598 if( !pPage->leaf ){ 5599 lwr = idx; 5600 goto moveto_table_next_layer; 5601 }else{ 5602 pCur->curFlags |= BTCF_ValidNKey; 5603 pCur->info.nKey = nCellKey; 5604 pCur->info.nSize = 0; 5605 *pRes = 0; 5606 return SQLITE_OK; 5607 } 5608 } 5609 assert( lwr+upr>=0 ); 5610 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5611 } 5612 assert( lwr==upr+1 || !pPage->leaf ); 5613 assert( pPage->isInit ); 5614 if( pPage->leaf ){ 5615 assert( pCur->ix<pCur->pPage->nCell ); 5616 pCur->ix = (u16)idx; 5617 *pRes = c; 5618 rc = SQLITE_OK; 5619 goto moveto_table_finish; 5620 } 5621 moveto_table_next_layer: 5622 if( lwr>=pPage->nCell ){ 5623 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5624 }else{ 5625 chldPg = get4byte(findCell(pPage, lwr)); 5626 } 5627 pCur->ix = (u16)lwr; 5628 rc = moveToChild(pCur, chldPg); 5629 if( rc ) break; 5630 } 5631 moveto_table_finish: 5632 pCur->info.nSize = 0; 5633 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5634 return rc; 5635 } 5636 5637 /* Move the cursor so that it points to an entry in an index table 5638 ** near the key pIdxKey. Return a success code. 5639 ** 5640 ** If an exact match is not found, then the cursor is always 5641 ** left pointing at a leaf page which would hold the entry if it 5642 ** were present. The cursor might point to an entry that comes 5643 ** before or after the key. 5644 ** 5645 ** An integer is written into *pRes which is the result of 5646 ** comparing the key with the entry to which the cursor is 5647 ** pointing. The meaning of the integer written into 5648 ** *pRes is as follows: 5649 ** 5650 ** *pRes<0 The cursor is left pointing at an entry that 5651 ** is smaller than pIdxKey or if the table is empty 5652 ** and the cursor is therefore left point to nothing. 5653 ** 5654 ** *pRes==0 The cursor is left pointing at an entry that 5655 ** exactly matches pIdxKey. 5656 ** 5657 ** *pRes>0 The cursor is left pointing at an entry that 5658 ** is larger than pIdxKey. 5659 ** 5660 ** The pIdxKey->eqSeen field is set to 1 if there 5661 ** exists an entry in the table that exactly matches pIdxKey. 5662 */ 5663 int sqlite3BtreeIndexMoveto( 5664 BtCursor *pCur, /* The cursor to be moved */ 5665 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5666 int *pRes /* Write search results here */ 5667 ){ 5668 int rc; 5669 RecordCompare xRecordCompare; 5670 5671 assert( cursorOwnsBtShared(pCur) ); 5672 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5673 assert( pRes ); 5674 assert( pCur->pKeyInfo!=0 ); 5675 5676 #ifdef SQLITE_DEBUG 5677 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5678 #endif 5679 5680 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5681 pIdxKey->errCode = 0; 5682 assert( pIdxKey->default_rc==1 5683 || pIdxKey->default_rc==0 5684 || pIdxKey->default_rc==-1 5685 ); 5686 5687 rc = moveToRoot(pCur); 5688 if( rc ){ 5689 if( rc==SQLITE_EMPTY ){ 5690 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5691 *pRes = -1; 5692 return SQLITE_OK; 5693 } 5694 return rc; 5695 } 5696 assert( pCur->pPage ); 5697 assert( pCur->pPage->isInit ); 5698 assert( pCur->eState==CURSOR_VALID ); 5699 assert( pCur->pPage->nCell > 0 ); 5700 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5701 assert( pCur->curIntKey || pIdxKey ); 5702 for(;;){ 5703 int lwr, upr, idx, c; 5704 Pgno chldPg; 5705 MemPage *pPage = pCur->pPage; 5706 u8 *pCell; /* Pointer to current cell in pPage */ 5707 5708 /* pPage->nCell must be greater than zero. If this is the root-page 5709 ** the cursor would have been INVALID above and this for(;;) loop 5710 ** not run. If this is not the root-page, then the moveToChild() routine 5711 ** would have already detected db corruption. Similarly, pPage must 5712 ** be the right kind (index or table) of b-tree page. Otherwise 5713 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5714 assert( pPage->nCell>0 ); 5715 assert( pPage->intKey==(pIdxKey==0) ); 5716 lwr = 0; 5717 upr = pPage->nCell-1; 5718 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5719 for(;;){ 5720 int nCell; /* Size of the pCell cell in bytes */ 5721 pCell = findCellPastPtr(pPage, idx); 5722 5723 /* The maximum supported page-size is 65536 bytes. This means that 5724 ** the maximum number of record bytes stored on an index B-Tree 5725 ** page is less than 16384 bytes and may be stored as a 2-byte 5726 ** varint. This information is used to attempt to avoid parsing 5727 ** the entire cell by checking for the cases where the record is 5728 ** stored entirely within the b-tree page by inspecting the first 5729 ** 2 bytes of the cell. 5730 */ 5731 nCell = pCell[0]; 5732 if( nCell<=pPage->max1bytePayload ){ 5733 /* This branch runs if the record-size field of the cell is a 5734 ** single byte varint and the record fits entirely on the main 5735 ** b-tree page. */ 5736 testcase( pCell+nCell+1==pPage->aDataEnd ); 5737 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5738 }else if( !(pCell[1] & 0x80) 5739 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5740 ){ 5741 /* The record-size field is a 2 byte varint and the record 5742 ** fits entirely on the main b-tree page. */ 5743 testcase( pCell+nCell+2==pPage->aDataEnd ); 5744 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5745 }else{ 5746 /* The record flows over onto one or more overflow pages. In 5747 ** this case the whole cell needs to be parsed, a buffer allocated 5748 ** and accessPayload() used to retrieve the record into the 5749 ** buffer before VdbeRecordCompare() can be called. 5750 ** 5751 ** If the record is corrupt, the xRecordCompare routine may read 5752 ** up to two varints past the end of the buffer. An extra 18 5753 ** bytes of padding is allocated at the end of the buffer in 5754 ** case this happens. */ 5755 void *pCellKey; 5756 u8 * const pCellBody = pCell - pPage->childPtrSize; 5757 const int nOverrun = 18; /* Size of the overrun padding */ 5758 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5759 nCell = (int)pCur->info.nKey; 5760 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5761 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5762 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5763 testcase( nCell==2 ); /* Minimum legal index key size */ 5764 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5765 rc = SQLITE_CORRUPT_PAGE(pPage); 5766 goto moveto_index_finish; 5767 } 5768 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5769 if( pCellKey==0 ){ 5770 rc = SQLITE_NOMEM_BKPT; 5771 goto moveto_index_finish; 5772 } 5773 pCur->ix = (u16)idx; 5774 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5775 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5776 pCur->curFlags &= ~BTCF_ValidOvfl; 5777 if( rc ){ 5778 sqlite3_free(pCellKey); 5779 goto moveto_index_finish; 5780 } 5781 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5782 sqlite3_free(pCellKey); 5783 } 5784 assert( 5785 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5786 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5787 ); 5788 if( c<0 ){ 5789 lwr = idx+1; 5790 }else if( c>0 ){ 5791 upr = idx-1; 5792 }else{ 5793 assert( c==0 ); 5794 *pRes = 0; 5795 rc = SQLITE_OK; 5796 pCur->ix = (u16)idx; 5797 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5798 goto moveto_index_finish; 5799 } 5800 if( lwr>upr ) break; 5801 assert( lwr+upr>=0 ); 5802 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5803 } 5804 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5805 assert( pPage->isInit ); 5806 if( pPage->leaf ){ 5807 assert( pCur->ix<pCur->pPage->nCell ); 5808 pCur->ix = (u16)idx; 5809 *pRes = c; 5810 rc = SQLITE_OK; 5811 goto moveto_index_finish; 5812 } 5813 if( lwr>=pPage->nCell ){ 5814 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5815 }else{ 5816 chldPg = get4byte(findCell(pPage, lwr)); 5817 } 5818 pCur->ix = (u16)lwr; 5819 rc = moveToChild(pCur, chldPg); 5820 if( rc ) break; 5821 } 5822 moveto_index_finish: 5823 pCur->info.nSize = 0; 5824 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5825 return rc; 5826 } 5827 5828 5829 /* 5830 ** Return TRUE if the cursor is not pointing at an entry of the table. 5831 ** 5832 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5833 ** past the last entry in the table or sqlite3BtreePrev() moves past 5834 ** the first entry. TRUE is also returned if the table is empty. 5835 */ 5836 int sqlite3BtreeEof(BtCursor *pCur){ 5837 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5838 ** have been deleted? This API will need to change to return an error code 5839 ** as well as the boolean result value. 5840 */ 5841 return (CURSOR_VALID!=pCur->eState); 5842 } 5843 5844 /* 5845 ** Return an estimate for the number of rows in the table that pCur is 5846 ** pointing to. Return a negative number if no estimate is currently 5847 ** available. 5848 */ 5849 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5850 i64 n; 5851 u8 i; 5852 5853 assert( cursorOwnsBtShared(pCur) ); 5854 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5855 5856 /* Currently this interface is only called by the OP_IfSmaller 5857 ** opcode, and it that case the cursor will always be valid and 5858 ** will always point to a leaf node. */ 5859 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5860 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5861 5862 n = pCur->pPage->nCell; 5863 for(i=0; i<pCur->iPage; i++){ 5864 n *= pCur->apPage[i]->nCell; 5865 } 5866 return n; 5867 } 5868 5869 /* 5870 ** Advance the cursor to the next entry in the database. 5871 ** Return value: 5872 ** 5873 ** SQLITE_OK success 5874 ** SQLITE_DONE cursor is already pointing at the last element 5875 ** otherwise some kind of error occurred 5876 ** 5877 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5878 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5879 ** to the next cell on the current page. The (slower) btreeNext() helper 5880 ** routine is called when it is necessary to move to a different page or 5881 ** to restore the cursor. 5882 ** 5883 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5884 ** cursor corresponds to an SQL index and this routine could have been 5885 ** skipped if the SQL index had been a unique index. The F argument 5886 ** is a hint to the implement. SQLite btree implementation does not use 5887 ** this hint, but COMDB2 does. 5888 */ 5889 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5890 int rc; 5891 int idx; 5892 MemPage *pPage; 5893 5894 assert( cursorOwnsBtShared(pCur) ); 5895 if( pCur->eState!=CURSOR_VALID ){ 5896 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5897 rc = restoreCursorPosition(pCur); 5898 if( rc!=SQLITE_OK ){ 5899 return rc; 5900 } 5901 if( CURSOR_INVALID==pCur->eState ){ 5902 return SQLITE_DONE; 5903 } 5904 if( pCur->eState==CURSOR_SKIPNEXT ){ 5905 pCur->eState = CURSOR_VALID; 5906 if( pCur->skipNext>0 ) return SQLITE_OK; 5907 } 5908 } 5909 5910 pPage = pCur->pPage; 5911 idx = ++pCur->ix; 5912 if( !pPage->isInit || sqlite3FaultSim(412) ){ 5913 /* The only known way for this to happen is for there to be a 5914 ** recursive SQL function that does a DELETE operation as part of a 5915 ** SELECT which deletes content out from under an active cursor 5916 ** in a corrupt database file where the table being DELETE-ed from 5917 ** has pages in common with the table being queried. See TH3 5918 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5919 ** example. */ 5920 return SQLITE_CORRUPT_BKPT; 5921 } 5922 5923 if( idx>=pPage->nCell ){ 5924 if( !pPage->leaf ){ 5925 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5926 if( rc ) return rc; 5927 return moveToLeftmost(pCur); 5928 } 5929 do{ 5930 if( pCur->iPage==0 ){ 5931 pCur->eState = CURSOR_INVALID; 5932 return SQLITE_DONE; 5933 } 5934 moveToParent(pCur); 5935 pPage = pCur->pPage; 5936 }while( pCur->ix>=pPage->nCell ); 5937 if( pPage->intKey ){ 5938 return sqlite3BtreeNext(pCur, 0); 5939 }else{ 5940 return SQLITE_OK; 5941 } 5942 } 5943 if( pPage->leaf ){ 5944 return SQLITE_OK; 5945 }else{ 5946 return moveToLeftmost(pCur); 5947 } 5948 } 5949 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5950 MemPage *pPage; 5951 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5952 assert( cursorOwnsBtShared(pCur) ); 5953 assert( flags==0 || flags==1 ); 5954 pCur->info.nSize = 0; 5955 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5956 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5957 pPage = pCur->pPage; 5958 if( (++pCur->ix)>=pPage->nCell ){ 5959 pCur->ix--; 5960 return btreeNext(pCur); 5961 } 5962 if( pPage->leaf ){ 5963 return SQLITE_OK; 5964 }else{ 5965 return moveToLeftmost(pCur); 5966 } 5967 } 5968 5969 /* 5970 ** Step the cursor to the back to the previous entry in the database. 5971 ** Return values: 5972 ** 5973 ** SQLITE_OK success 5974 ** SQLITE_DONE the cursor is already on the first element of the table 5975 ** otherwise some kind of error occurred 5976 ** 5977 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5978 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5979 ** to the previous cell on the current page. The (slower) btreePrevious() 5980 ** helper routine is called when it is necessary to move to a different page 5981 ** or to restore the cursor. 5982 ** 5983 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5984 ** the cursor corresponds to an SQL index and this routine could have been 5985 ** skipped if the SQL index had been a unique index. The F argument is a 5986 ** hint to the implement. The native SQLite btree implementation does not 5987 ** use this hint, but COMDB2 does. 5988 */ 5989 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5990 int rc; 5991 MemPage *pPage; 5992 5993 assert( cursorOwnsBtShared(pCur) ); 5994 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5995 assert( pCur->info.nSize==0 ); 5996 if( pCur->eState!=CURSOR_VALID ){ 5997 rc = restoreCursorPosition(pCur); 5998 if( rc!=SQLITE_OK ){ 5999 return rc; 6000 } 6001 if( CURSOR_INVALID==pCur->eState ){ 6002 return SQLITE_DONE; 6003 } 6004 if( CURSOR_SKIPNEXT==pCur->eState ){ 6005 pCur->eState = CURSOR_VALID; 6006 if( pCur->skipNext<0 ) return SQLITE_OK; 6007 } 6008 } 6009 6010 pPage = pCur->pPage; 6011 assert( pPage->isInit ); 6012 if( !pPage->leaf ){ 6013 int idx = pCur->ix; 6014 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6015 if( rc ) return rc; 6016 rc = moveToRightmost(pCur); 6017 }else{ 6018 while( pCur->ix==0 ){ 6019 if( pCur->iPage==0 ){ 6020 pCur->eState = CURSOR_INVALID; 6021 return SQLITE_DONE; 6022 } 6023 moveToParent(pCur); 6024 } 6025 assert( pCur->info.nSize==0 ); 6026 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6027 6028 pCur->ix--; 6029 pPage = pCur->pPage; 6030 if( pPage->intKey && !pPage->leaf ){ 6031 rc = sqlite3BtreePrevious(pCur, 0); 6032 }else{ 6033 rc = SQLITE_OK; 6034 } 6035 } 6036 return rc; 6037 } 6038 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6039 assert( cursorOwnsBtShared(pCur) ); 6040 assert( flags==0 || flags==1 ); 6041 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6042 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6043 pCur->info.nSize = 0; 6044 if( pCur->eState!=CURSOR_VALID 6045 || pCur->ix==0 6046 || pCur->pPage->leaf==0 6047 ){ 6048 return btreePrevious(pCur); 6049 } 6050 pCur->ix--; 6051 return SQLITE_OK; 6052 } 6053 6054 /* 6055 ** Allocate a new page from the database file. 6056 ** 6057 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6058 ** has already been called on the new page.) The new page has also 6059 ** been referenced and the calling routine is responsible for calling 6060 ** sqlite3PagerUnref() on the new page when it is done. 6061 ** 6062 ** SQLITE_OK is returned on success. Any other return value indicates 6063 ** an error. *ppPage is set to NULL in the event of an error. 6064 ** 6065 ** If the "nearby" parameter is not 0, then an effort is made to 6066 ** locate a page close to the page number "nearby". This can be used in an 6067 ** attempt to keep related pages close to each other in the database file, 6068 ** which in turn can make database access faster. 6069 ** 6070 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6071 ** anywhere on the free-list, then it is guaranteed to be returned. If 6072 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6073 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6074 ** are no restrictions on which page is returned. 6075 */ 6076 static int allocateBtreePage( 6077 BtShared *pBt, /* The btree */ 6078 MemPage **ppPage, /* Store pointer to the allocated page here */ 6079 Pgno *pPgno, /* Store the page number here */ 6080 Pgno nearby, /* Search for a page near this one */ 6081 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6082 ){ 6083 MemPage *pPage1; 6084 int rc; 6085 u32 n; /* Number of pages on the freelist */ 6086 u32 k; /* Number of leaves on the trunk of the freelist */ 6087 MemPage *pTrunk = 0; 6088 MemPage *pPrevTrunk = 0; 6089 Pgno mxPage; /* Total size of the database file */ 6090 6091 assert( sqlite3_mutex_held(pBt->mutex) ); 6092 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6093 pPage1 = pBt->pPage1; 6094 mxPage = btreePagecount(pBt); 6095 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6096 ** stores stores the total number of pages on the freelist. */ 6097 n = get4byte(&pPage1->aData[36]); 6098 testcase( n==mxPage-1 ); 6099 if( n>=mxPage ){ 6100 return SQLITE_CORRUPT_BKPT; 6101 } 6102 if( n>0 ){ 6103 /* There are pages on the freelist. Reuse one of those pages. */ 6104 Pgno iTrunk; 6105 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6106 u32 nSearch = 0; /* Count of the number of search attempts */ 6107 6108 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6109 ** shows that the page 'nearby' is somewhere on the free-list, then 6110 ** the entire-list will be searched for that page. 6111 */ 6112 #ifndef SQLITE_OMIT_AUTOVACUUM 6113 if( eMode==BTALLOC_EXACT ){ 6114 if( nearby<=mxPage ){ 6115 u8 eType; 6116 assert( nearby>0 ); 6117 assert( pBt->autoVacuum ); 6118 rc = ptrmapGet(pBt, nearby, &eType, 0); 6119 if( rc ) return rc; 6120 if( eType==PTRMAP_FREEPAGE ){ 6121 searchList = 1; 6122 } 6123 } 6124 }else if( eMode==BTALLOC_LE ){ 6125 searchList = 1; 6126 } 6127 #endif 6128 6129 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6130 ** first free-list trunk page. iPrevTrunk is initially 1. 6131 */ 6132 rc = sqlite3PagerWrite(pPage1->pDbPage); 6133 if( rc ) return rc; 6134 put4byte(&pPage1->aData[36], n-1); 6135 6136 /* The code within this loop is run only once if the 'searchList' variable 6137 ** is not true. Otherwise, it runs once for each trunk-page on the 6138 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6139 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6140 */ 6141 do { 6142 pPrevTrunk = pTrunk; 6143 if( pPrevTrunk ){ 6144 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6145 ** is the page number of the next freelist trunk page in the list or 6146 ** zero if this is the last freelist trunk page. */ 6147 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6148 }else{ 6149 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6150 ** stores the page number of the first page of the freelist, or zero if 6151 ** the freelist is empty. */ 6152 iTrunk = get4byte(&pPage1->aData[32]); 6153 } 6154 testcase( iTrunk==mxPage ); 6155 if( iTrunk>mxPage || nSearch++ > n ){ 6156 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6157 }else{ 6158 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6159 } 6160 if( rc ){ 6161 pTrunk = 0; 6162 goto end_allocate_page; 6163 } 6164 assert( pTrunk!=0 ); 6165 assert( pTrunk->aData!=0 ); 6166 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6167 ** is the number of leaf page pointers to follow. */ 6168 k = get4byte(&pTrunk->aData[4]); 6169 if( k==0 && !searchList ){ 6170 /* The trunk has no leaves and the list is not being searched. 6171 ** So extract the trunk page itself and use it as the newly 6172 ** allocated page */ 6173 assert( pPrevTrunk==0 ); 6174 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6175 if( rc ){ 6176 goto end_allocate_page; 6177 } 6178 *pPgno = iTrunk; 6179 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6180 *ppPage = pTrunk; 6181 pTrunk = 0; 6182 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6183 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6184 /* Value of k is out of range. Database corruption */ 6185 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6186 goto end_allocate_page; 6187 #ifndef SQLITE_OMIT_AUTOVACUUM 6188 }else if( searchList 6189 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6190 ){ 6191 /* The list is being searched and this trunk page is the page 6192 ** to allocate, regardless of whether it has leaves. 6193 */ 6194 *pPgno = iTrunk; 6195 *ppPage = pTrunk; 6196 searchList = 0; 6197 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6198 if( rc ){ 6199 goto end_allocate_page; 6200 } 6201 if( k==0 ){ 6202 if( !pPrevTrunk ){ 6203 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6204 }else{ 6205 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6206 if( rc!=SQLITE_OK ){ 6207 goto end_allocate_page; 6208 } 6209 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6210 } 6211 }else{ 6212 /* The trunk page is required by the caller but it contains 6213 ** pointers to free-list leaves. The first leaf becomes a trunk 6214 ** page in this case. 6215 */ 6216 MemPage *pNewTrunk; 6217 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6218 if( iNewTrunk>mxPage ){ 6219 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6220 goto end_allocate_page; 6221 } 6222 testcase( iNewTrunk==mxPage ); 6223 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6224 if( rc!=SQLITE_OK ){ 6225 goto end_allocate_page; 6226 } 6227 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6228 if( rc!=SQLITE_OK ){ 6229 releasePage(pNewTrunk); 6230 goto end_allocate_page; 6231 } 6232 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6233 put4byte(&pNewTrunk->aData[4], k-1); 6234 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6235 releasePage(pNewTrunk); 6236 if( !pPrevTrunk ){ 6237 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6238 put4byte(&pPage1->aData[32], iNewTrunk); 6239 }else{ 6240 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6241 if( rc ){ 6242 goto end_allocate_page; 6243 } 6244 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6245 } 6246 } 6247 pTrunk = 0; 6248 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6249 #endif 6250 }else if( k>0 ){ 6251 /* Extract a leaf from the trunk */ 6252 u32 closest; 6253 Pgno iPage; 6254 unsigned char *aData = pTrunk->aData; 6255 if( nearby>0 ){ 6256 u32 i; 6257 closest = 0; 6258 if( eMode==BTALLOC_LE ){ 6259 for(i=0; i<k; i++){ 6260 iPage = get4byte(&aData[8+i*4]); 6261 if( iPage<=nearby ){ 6262 closest = i; 6263 break; 6264 } 6265 } 6266 }else{ 6267 int dist; 6268 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6269 for(i=1; i<k; i++){ 6270 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6271 if( d2<dist ){ 6272 closest = i; 6273 dist = d2; 6274 } 6275 } 6276 } 6277 }else{ 6278 closest = 0; 6279 } 6280 6281 iPage = get4byte(&aData[8+closest*4]); 6282 testcase( iPage==mxPage ); 6283 if( iPage>mxPage || iPage<2 ){ 6284 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6285 goto end_allocate_page; 6286 } 6287 testcase( iPage==mxPage ); 6288 if( !searchList 6289 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6290 ){ 6291 int noContent; 6292 *pPgno = iPage; 6293 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6294 ": %d more free pages\n", 6295 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6296 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6297 if( rc ) goto end_allocate_page; 6298 if( closest<k-1 ){ 6299 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6300 } 6301 put4byte(&aData[4], k-1); 6302 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6303 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6304 if( rc==SQLITE_OK ){ 6305 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6306 if( rc!=SQLITE_OK ){ 6307 releasePage(*ppPage); 6308 *ppPage = 0; 6309 } 6310 } 6311 searchList = 0; 6312 } 6313 } 6314 releasePage(pPrevTrunk); 6315 pPrevTrunk = 0; 6316 }while( searchList ); 6317 }else{ 6318 /* There are no pages on the freelist, so append a new page to the 6319 ** database image. 6320 ** 6321 ** Normally, new pages allocated by this block can be requested from the 6322 ** pager layer with the 'no-content' flag set. This prevents the pager 6323 ** from trying to read the pages content from disk. However, if the 6324 ** current transaction has already run one or more incremental-vacuum 6325 ** steps, then the page we are about to allocate may contain content 6326 ** that is required in the event of a rollback. In this case, do 6327 ** not set the no-content flag. This causes the pager to load and journal 6328 ** the current page content before overwriting it. 6329 ** 6330 ** Note that the pager will not actually attempt to load or journal 6331 ** content for any page that really does lie past the end of the database 6332 ** file on disk. So the effects of disabling the no-content optimization 6333 ** here are confined to those pages that lie between the end of the 6334 ** database image and the end of the database file. 6335 */ 6336 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6337 6338 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6339 if( rc ) return rc; 6340 pBt->nPage++; 6341 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6342 6343 #ifndef SQLITE_OMIT_AUTOVACUUM 6344 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6345 /* If *pPgno refers to a pointer-map page, allocate two new pages 6346 ** at the end of the file instead of one. The first allocated page 6347 ** becomes a new pointer-map page, the second is used by the caller. 6348 */ 6349 MemPage *pPg = 0; 6350 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6351 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6352 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6353 if( rc==SQLITE_OK ){ 6354 rc = sqlite3PagerWrite(pPg->pDbPage); 6355 releasePage(pPg); 6356 } 6357 if( rc ) return rc; 6358 pBt->nPage++; 6359 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6360 } 6361 #endif 6362 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6363 *pPgno = pBt->nPage; 6364 6365 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6366 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6367 if( rc ) return rc; 6368 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6369 if( rc!=SQLITE_OK ){ 6370 releasePage(*ppPage); 6371 *ppPage = 0; 6372 } 6373 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6374 } 6375 6376 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6377 6378 end_allocate_page: 6379 releasePage(pTrunk); 6380 releasePage(pPrevTrunk); 6381 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6382 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6383 return rc; 6384 } 6385 6386 /* 6387 ** This function is used to add page iPage to the database file free-list. 6388 ** It is assumed that the page is not already a part of the free-list. 6389 ** 6390 ** The value passed as the second argument to this function is optional. 6391 ** If the caller happens to have a pointer to the MemPage object 6392 ** corresponding to page iPage handy, it may pass it as the second value. 6393 ** Otherwise, it may pass NULL. 6394 ** 6395 ** If a pointer to a MemPage object is passed as the second argument, 6396 ** its reference count is not altered by this function. 6397 */ 6398 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6399 MemPage *pTrunk = 0; /* Free-list trunk page */ 6400 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6401 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6402 MemPage *pPage; /* Page being freed. May be NULL. */ 6403 int rc; /* Return Code */ 6404 u32 nFree; /* Initial number of pages on free-list */ 6405 6406 assert( sqlite3_mutex_held(pBt->mutex) ); 6407 assert( CORRUPT_DB || iPage>1 ); 6408 assert( !pMemPage || pMemPage->pgno==iPage ); 6409 6410 if( NEVER(iPage<2) || iPage>pBt->nPage ){ 6411 return SQLITE_CORRUPT_BKPT; 6412 } 6413 if( pMemPage ){ 6414 pPage = pMemPage; 6415 sqlite3PagerRef(pPage->pDbPage); 6416 }else{ 6417 pPage = btreePageLookup(pBt, iPage); 6418 } 6419 6420 /* Increment the free page count on pPage1 */ 6421 rc = sqlite3PagerWrite(pPage1->pDbPage); 6422 if( rc ) goto freepage_out; 6423 nFree = get4byte(&pPage1->aData[36]); 6424 put4byte(&pPage1->aData[36], nFree+1); 6425 6426 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6427 /* If the secure_delete option is enabled, then 6428 ** always fully overwrite deleted information with zeros. 6429 */ 6430 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6431 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6432 ){ 6433 goto freepage_out; 6434 } 6435 memset(pPage->aData, 0, pPage->pBt->pageSize); 6436 } 6437 6438 /* If the database supports auto-vacuum, write an entry in the pointer-map 6439 ** to indicate that the page is free. 6440 */ 6441 if( ISAUTOVACUUM ){ 6442 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6443 if( rc ) goto freepage_out; 6444 } 6445 6446 /* Now manipulate the actual database free-list structure. There are two 6447 ** possibilities. If the free-list is currently empty, or if the first 6448 ** trunk page in the free-list is full, then this page will become a 6449 ** new free-list trunk page. Otherwise, it will become a leaf of the 6450 ** first trunk page in the current free-list. This block tests if it 6451 ** is possible to add the page as a new free-list leaf. 6452 */ 6453 if( nFree!=0 ){ 6454 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6455 6456 iTrunk = get4byte(&pPage1->aData[32]); 6457 if( iTrunk>btreePagecount(pBt) ){ 6458 rc = SQLITE_CORRUPT_BKPT; 6459 goto freepage_out; 6460 } 6461 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6462 if( rc!=SQLITE_OK ){ 6463 goto freepage_out; 6464 } 6465 6466 nLeaf = get4byte(&pTrunk->aData[4]); 6467 assert( pBt->usableSize>32 ); 6468 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6469 rc = SQLITE_CORRUPT_BKPT; 6470 goto freepage_out; 6471 } 6472 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6473 /* In this case there is room on the trunk page to insert the page 6474 ** being freed as a new leaf. 6475 ** 6476 ** Note that the trunk page is not really full until it contains 6477 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6478 ** coded. But due to a coding error in versions of SQLite prior to 6479 ** 3.6.0, databases with freelist trunk pages holding more than 6480 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6481 ** to maintain backwards compatibility with older versions of SQLite, 6482 ** we will continue to restrict the number of entries to usableSize/4 - 8 6483 ** for now. At some point in the future (once everyone has upgraded 6484 ** to 3.6.0 or later) we should consider fixing the conditional above 6485 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6486 ** 6487 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6488 ** avoid using the last six entries in the freelist trunk page array in 6489 ** order that database files created by newer versions of SQLite can be 6490 ** read by older versions of SQLite. 6491 */ 6492 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6493 if( rc==SQLITE_OK ){ 6494 put4byte(&pTrunk->aData[4], nLeaf+1); 6495 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6496 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6497 sqlite3PagerDontWrite(pPage->pDbPage); 6498 } 6499 rc = btreeSetHasContent(pBt, iPage); 6500 } 6501 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6502 goto freepage_out; 6503 } 6504 } 6505 6506 /* If control flows to this point, then it was not possible to add the 6507 ** the page being freed as a leaf page of the first trunk in the free-list. 6508 ** Possibly because the free-list is empty, or possibly because the 6509 ** first trunk in the free-list is full. Either way, the page being freed 6510 ** will become the new first trunk page in the free-list. 6511 */ 6512 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6513 goto freepage_out; 6514 } 6515 rc = sqlite3PagerWrite(pPage->pDbPage); 6516 if( rc!=SQLITE_OK ){ 6517 goto freepage_out; 6518 } 6519 put4byte(pPage->aData, iTrunk); 6520 put4byte(&pPage->aData[4], 0); 6521 put4byte(&pPage1->aData[32], iPage); 6522 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6523 6524 freepage_out: 6525 if( pPage ){ 6526 pPage->isInit = 0; 6527 } 6528 releasePage(pPage); 6529 releasePage(pTrunk); 6530 return rc; 6531 } 6532 static void freePage(MemPage *pPage, int *pRC){ 6533 if( (*pRC)==SQLITE_OK ){ 6534 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6535 } 6536 } 6537 6538 /* 6539 ** Free the overflow pages associated with the given Cell. 6540 */ 6541 static SQLITE_NOINLINE int clearCellOverflow( 6542 MemPage *pPage, /* The page that contains the Cell */ 6543 unsigned char *pCell, /* First byte of the Cell */ 6544 CellInfo *pInfo /* Size information about the cell */ 6545 ){ 6546 BtShared *pBt; 6547 Pgno ovflPgno; 6548 int rc; 6549 int nOvfl; 6550 u32 ovflPageSize; 6551 6552 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6553 assert( pInfo->nLocal!=pInfo->nPayload ); 6554 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6555 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6556 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6557 /* Cell extends past end of page */ 6558 return SQLITE_CORRUPT_PAGE(pPage); 6559 } 6560 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6561 pBt = pPage->pBt; 6562 assert( pBt->usableSize > 4 ); 6563 ovflPageSize = pBt->usableSize - 4; 6564 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6565 assert( nOvfl>0 || 6566 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6567 ); 6568 while( nOvfl-- ){ 6569 Pgno iNext = 0; 6570 MemPage *pOvfl = 0; 6571 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6572 /* 0 is not a legal page number and page 1 cannot be an 6573 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6574 ** file the database must be corrupt. */ 6575 return SQLITE_CORRUPT_BKPT; 6576 } 6577 if( nOvfl ){ 6578 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6579 if( rc ) return rc; 6580 } 6581 6582 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6583 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6584 ){ 6585 /* There is no reason any cursor should have an outstanding reference 6586 ** to an overflow page belonging to a cell that is being deleted/updated. 6587 ** So if there exists more than one reference to this page, then it 6588 ** must not really be an overflow page and the database must be corrupt. 6589 ** It is helpful to detect this before calling freePage2(), as 6590 ** freePage2() may zero the page contents if secure-delete mode is 6591 ** enabled. If this 'overflow' page happens to be a page that the 6592 ** caller is iterating through or using in some other way, this 6593 ** can be problematic. 6594 */ 6595 rc = SQLITE_CORRUPT_BKPT; 6596 }else{ 6597 rc = freePage2(pBt, pOvfl, ovflPgno); 6598 } 6599 6600 if( pOvfl ){ 6601 sqlite3PagerUnref(pOvfl->pDbPage); 6602 } 6603 if( rc ) return rc; 6604 ovflPgno = iNext; 6605 } 6606 return SQLITE_OK; 6607 } 6608 6609 /* Call xParseCell to compute the size of a cell. If the cell contains 6610 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6611 ** STore the result code (SQLITE_OK or some error code) in rc. 6612 ** 6613 ** Implemented as macro to force inlining for performance. 6614 */ 6615 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6616 pPage->xParseCell(pPage, pCell, &sInfo); \ 6617 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6618 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6619 }else{ \ 6620 rc = SQLITE_OK; \ 6621 } 6622 6623 6624 /* 6625 ** Create the byte sequence used to represent a cell on page pPage 6626 ** and write that byte sequence into pCell[]. Overflow pages are 6627 ** allocated and filled in as necessary. The calling procedure 6628 ** is responsible for making sure sufficient space has been allocated 6629 ** for pCell[]. 6630 ** 6631 ** Note that pCell does not necessary need to point to the pPage->aData 6632 ** area. pCell might point to some temporary storage. The cell will 6633 ** be constructed in this temporary area then copied into pPage->aData 6634 ** later. 6635 */ 6636 static int fillInCell( 6637 MemPage *pPage, /* The page that contains the cell */ 6638 unsigned char *pCell, /* Complete text of the cell */ 6639 const BtreePayload *pX, /* Payload with which to construct the cell */ 6640 int *pnSize /* Write cell size here */ 6641 ){ 6642 int nPayload; 6643 const u8 *pSrc; 6644 int nSrc, n, rc, mn; 6645 int spaceLeft; 6646 MemPage *pToRelease; 6647 unsigned char *pPrior; 6648 unsigned char *pPayload; 6649 BtShared *pBt; 6650 Pgno pgnoOvfl; 6651 int nHeader; 6652 6653 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6654 6655 /* pPage is not necessarily writeable since pCell might be auxiliary 6656 ** buffer space that is separate from the pPage buffer area */ 6657 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6658 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6659 6660 /* Fill in the header. */ 6661 nHeader = pPage->childPtrSize; 6662 if( pPage->intKey ){ 6663 nPayload = pX->nData + pX->nZero; 6664 pSrc = pX->pData; 6665 nSrc = pX->nData; 6666 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6667 nHeader += putVarint32(&pCell[nHeader], nPayload); 6668 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6669 }else{ 6670 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6671 nSrc = nPayload = (int)pX->nKey; 6672 pSrc = pX->pKey; 6673 nHeader += putVarint32(&pCell[nHeader], nPayload); 6674 } 6675 6676 /* Fill in the payload */ 6677 pPayload = &pCell[nHeader]; 6678 if( nPayload<=pPage->maxLocal ){ 6679 /* This is the common case where everything fits on the btree page 6680 ** and no overflow pages are required. */ 6681 n = nHeader + nPayload; 6682 testcase( n==3 ); 6683 testcase( n==4 ); 6684 if( n<4 ) n = 4; 6685 *pnSize = n; 6686 assert( nSrc<=nPayload ); 6687 testcase( nSrc<nPayload ); 6688 memcpy(pPayload, pSrc, nSrc); 6689 memset(pPayload+nSrc, 0, nPayload-nSrc); 6690 return SQLITE_OK; 6691 } 6692 6693 /* If we reach this point, it means that some of the content will need 6694 ** to spill onto overflow pages. 6695 */ 6696 mn = pPage->minLocal; 6697 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6698 testcase( n==pPage->maxLocal ); 6699 testcase( n==pPage->maxLocal+1 ); 6700 if( n > pPage->maxLocal ) n = mn; 6701 spaceLeft = n; 6702 *pnSize = n + nHeader + 4; 6703 pPrior = &pCell[nHeader+n]; 6704 pToRelease = 0; 6705 pgnoOvfl = 0; 6706 pBt = pPage->pBt; 6707 6708 /* At this point variables should be set as follows: 6709 ** 6710 ** nPayload Total payload size in bytes 6711 ** pPayload Begin writing payload here 6712 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6713 ** that means content must spill into overflow pages. 6714 ** *pnSize Size of the local cell (not counting overflow pages) 6715 ** pPrior Where to write the pgno of the first overflow page 6716 ** 6717 ** Use a call to btreeParseCellPtr() to verify that the values above 6718 ** were computed correctly. 6719 */ 6720 #ifdef SQLITE_DEBUG 6721 { 6722 CellInfo info; 6723 pPage->xParseCell(pPage, pCell, &info); 6724 assert( nHeader==(int)(info.pPayload - pCell) ); 6725 assert( info.nKey==pX->nKey ); 6726 assert( *pnSize == info.nSize ); 6727 assert( spaceLeft == info.nLocal ); 6728 } 6729 #endif 6730 6731 /* Write the payload into the local Cell and any extra into overflow pages */ 6732 while( 1 ){ 6733 n = nPayload; 6734 if( n>spaceLeft ) n = spaceLeft; 6735 6736 /* If pToRelease is not zero than pPayload points into the data area 6737 ** of pToRelease. Make sure pToRelease is still writeable. */ 6738 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6739 6740 /* If pPayload is part of the data area of pPage, then make sure pPage 6741 ** is still writeable */ 6742 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6743 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6744 6745 if( nSrc>=n ){ 6746 memcpy(pPayload, pSrc, n); 6747 }else if( nSrc>0 ){ 6748 n = nSrc; 6749 memcpy(pPayload, pSrc, n); 6750 }else{ 6751 memset(pPayload, 0, n); 6752 } 6753 nPayload -= n; 6754 if( nPayload<=0 ) break; 6755 pPayload += n; 6756 pSrc += n; 6757 nSrc -= n; 6758 spaceLeft -= n; 6759 if( spaceLeft==0 ){ 6760 MemPage *pOvfl = 0; 6761 #ifndef SQLITE_OMIT_AUTOVACUUM 6762 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6763 if( pBt->autoVacuum ){ 6764 do{ 6765 pgnoOvfl++; 6766 } while( 6767 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6768 ); 6769 } 6770 #endif 6771 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6772 #ifndef SQLITE_OMIT_AUTOVACUUM 6773 /* If the database supports auto-vacuum, and the second or subsequent 6774 ** overflow page is being allocated, add an entry to the pointer-map 6775 ** for that page now. 6776 ** 6777 ** If this is the first overflow page, then write a partial entry 6778 ** to the pointer-map. If we write nothing to this pointer-map slot, 6779 ** then the optimistic overflow chain processing in clearCell() 6780 ** may misinterpret the uninitialized values and delete the 6781 ** wrong pages from the database. 6782 */ 6783 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6784 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6785 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6786 if( rc ){ 6787 releasePage(pOvfl); 6788 } 6789 } 6790 #endif 6791 if( rc ){ 6792 releasePage(pToRelease); 6793 return rc; 6794 } 6795 6796 /* If pToRelease is not zero than pPrior points into the data area 6797 ** of pToRelease. Make sure pToRelease is still writeable. */ 6798 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6799 6800 /* If pPrior is part of the data area of pPage, then make sure pPage 6801 ** is still writeable */ 6802 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6803 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6804 6805 put4byte(pPrior, pgnoOvfl); 6806 releasePage(pToRelease); 6807 pToRelease = pOvfl; 6808 pPrior = pOvfl->aData; 6809 put4byte(pPrior, 0); 6810 pPayload = &pOvfl->aData[4]; 6811 spaceLeft = pBt->usableSize - 4; 6812 } 6813 } 6814 releasePage(pToRelease); 6815 return SQLITE_OK; 6816 } 6817 6818 /* 6819 ** Remove the i-th cell from pPage. This routine effects pPage only. 6820 ** The cell content is not freed or deallocated. It is assumed that 6821 ** the cell content has been copied someplace else. This routine just 6822 ** removes the reference to the cell from pPage. 6823 ** 6824 ** "sz" must be the number of bytes in the cell. 6825 */ 6826 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6827 u32 pc; /* Offset to cell content of cell being deleted */ 6828 u8 *data; /* pPage->aData */ 6829 u8 *ptr; /* Used to move bytes around within data[] */ 6830 int rc; /* The return code */ 6831 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6832 6833 if( *pRC ) return; 6834 assert( idx>=0 ); 6835 assert( idx<pPage->nCell ); 6836 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6837 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6838 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6839 assert( pPage->nFree>=0 ); 6840 data = pPage->aData; 6841 ptr = &pPage->aCellIdx[2*idx]; 6842 assert( pPage->pBt->usableSize > (int)(ptr-data) ); 6843 pc = get2byte(ptr); 6844 hdr = pPage->hdrOffset; 6845 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 6846 testcase( pc+sz==pPage->pBt->usableSize ); 6847 if( pc+sz > pPage->pBt->usableSize ){ 6848 *pRC = SQLITE_CORRUPT_BKPT; 6849 return; 6850 } 6851 rc = freeSpace(pPage, pc, sz); 6852 if( rc ){ 6853 *pRC = rc; 6854 return; 6855 } 6856 pPage->nCell--; 6857 if( pPage->nCell==0 ){ 6858 memset(&data[hdr+1], 0, 4); 6859 data[hdr+7] = 0; 6860 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6861 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6862 - pPage->childPtrSize - 8; 6863 }else{ 6864 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6865 put2byte(&data[hdr+3], pPage->nCell); 6866 pPage->nFree += 2; 6867 } 6868 } 6869 6870 /* 6871 ** Insert a new cell on pPage at cell index "i". pCell points to the 6872 ** content of the cell. 6873 ** 6874 ** If the cell content will fit on the page, then put it there. If it 6875 ** will not fit, then make a copy of the cell content into pTemp if 6876 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6877 ** in pPage->apOvfl[] and make it point to the cell content (either 6878 ** in pTemp or the original pCell) and also record its index. 6879 ** Allocating a new entry in pPage->aCell[] implies that 6880 ** pPage->nOverflow is incremented. 6881 ** 6882 ** *pRC must be SQLITE_OK when this routine is called. 6883 */ 6884 static void insertCell( 6885 MemPage *pPage, /* Page into which we are copying */ 6886 int i, /* New cell becomes the i-th cell of the page */ 6887 u8 *pCell, /* Content of the new cell */ 6888 int sz, /* Bytes of content in pCell */ 6889 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6890 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6891 int *pRC /* Read and write return code from here */ 6892 ){ 6893 int idx = 0; /* Where to write new cell content in data[] */ 6894 int j; /* Loop counter */ 6895 u8 *data; /* The content of the whole page */ 6896 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6897 6898 assert( *pRC==SQLITE_OK ); 6899 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6900 assert( MX_CELL(pPage->pBt)<=10921 ); 6901 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6902 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6903 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6904 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6905 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6906 assert( pPage->nFree>=0 ); 6907 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6908 if( pTemp ){ 6909 memcpy(pTemp, pCell, sz); 6910 pCell = pTemp; 6911 } 6912 if( iChild ){ 6913 put4byte(pCell, iChild); 6914 } 6915 j = pPage->nOverflow++; 6916 /* Comparison against ArraySize-1 since we hold back one extra slot 6917 ** as a contingency. In other words, never need more than 3 overflow 6918 ** slots but 4 are allocated, just to be safe. */ 6919 assert( j < ArraySize(pPage->apOvfl)-1 ); 6920 pPage->apOvfl[j] = pCell; 6921 pPage->aiOvfl[j] = (u16)i; 6922 6923 /* When multiple overflows occur, they are always sequential and in 6924 ** sorted order. This invariants arise because multiple overflows can 6925 ** only occur when inserting divider cells into the parent page during 6926 ** balancing, and the dividers are adjacent and sorted. 6927 */ 6928 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6929 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6930 }else{ 6931 int rc = sqlite3PagerWrite(pPage->pDbPage); 6932 if( rc!=SQLITE_OK ){ 6933 *pRC = rc; 6934 return; 6935 } 6936 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6937 data = pPage->aData; 6938 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6939 rc = allocateSpace(pPage, sz, &idx); 6940 if( rc ){ *pRC = rc; return; } 6941 /* The allocateSpace() routine guarantees the following properties 6942 ** if it returns successfully */ 6943 assert( idx >= 0 ); 6944 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6945 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6946 pPage->nFree -= (u16)(2 + sz); 6947 if( iChild ){ 6948 /* In a corrupt database where an entry in the cell index section of 6949 ** a btree page has a value of 3 or less, the pCell value might point 6950 ** as many as 4 bytes in front of the start of the aData buffer for 6951 ** the source page. Make sure this does not cause problems by not 6952 ** reading the first 4 bytes */ 6953 memcpy(&data[idx+4], pCell+4, sz-4); 6954 put4byte(&data[idx], iChild); 6955 }else{ 6956 memcpy(&data[idx], pCell, sz); 6957 } 6958 pIns = pPage->aCellIdx + i*2; 6959 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6960 put2byte(pIns, idx); 6961 pPage->nCell++; 6962 /* increment the cell count */ 6963 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6964 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6965 #ifndef SQLITE_OMIT_AUTOVACUUM 6966 if( pPage->pBt->autoVacuum ){ 6967 /* The cell may contain a pointer to an overflow page. If so, write 6968 ** the entry for the overflow page into the pointer map. 6969 */ 6970 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6971 } 6972 #endif 6973 } 6974 } 6975 6976 /* 6977 ** The following parameters determine how many adjacent pages get involved 6978 ** in a balancing operation. NN is the number of neighbors on either side 6979 ** of the page that participate in the balancing operation. NB is the 6980 ** total number of pages that participate, including the target page and 6981 ** NN neighbors on either side. 6982 ** 6983 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6984 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6985 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6986 ** The value of NN appears to give the best results overall. 6987 ** 6988 ** (Later:) The description above makes it seem as if these values are 6989 ** tunable - as if you could change them and recompile and it would all work. 6990 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6991 ** we have never tested any other value. 6992 */ 6993 #define NN 1 /* Number of neighbors on either side of pPage */ 6994 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6995 6996 /* 6997 ** A CellArray object contains a cache of pointers and sizes for a 6998 ** consecutive sequence of cells that might be held on multiple pages. 6999 ** 7000 ** The cells in this array are the divider cell or cells from the pParent 7001 ** page plus up to three child pages. There are a total of nCell cells. 7002 ** 7003 ** pRef is a pointer to one of the pages that contributes cells. This is 7004 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7005 ** which should be common to all pages that contribute cells to this array. 7006 ** 7007 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7008 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7009 ** to overflow cells. In other words, some apCel[] pointers might not point 7010 ** to content area of the pages. 7011 ** 7012 ** A szCell[] of zero means the size of that cell has not yet been computed. 7013 ** 7014 ** The cells come from as many as four different pages: 7015 ** 7016 ** ----------- 7017 ** | Parent | 7018 ** ----------- 7019 ** / | \ 7020 ** / | \ 7021 ** --------- --------- --------- 7022 ** |Child-1| |Child-2| |Child-3| 7023 ** --------- --------- --------- 7024 ** 7025 ** The order of cells is in the array is for an index btree is: 7026 ** 7027 ** 1. All cells from Child-1 in order 7028 ** 2. The first divider cell from Parent 7029 ** 3. All cells from Child-2 in order 7030 ** 4. The second divider cell from Parent 7031 ** 5. All cells from Child-3 in order 7032 ** 7033 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7034 ** content exists only in leaves and there are no divider cells. 7035 ** 7036 ** For an index btree, the apEnd[] array holds pointer to the end of page 7037 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7038 ** respectively. The ixNx[] array holds the number of cells contained in 7039 ** each of these 5 stages, and all stages to the left. Hence: 7040 ** 7041 ** ixNx[0] = Number of cells in Child-1. 7042 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7043 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7044 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7045 ** ixNx[4] = Total number of cells. 7046 ** 7047 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7048 ** are used and they point to the leaf pages only, and the ixNx value are: 7049 ** 7050 ** ixNx[0] = Number of cells in Child-1. 7051 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7052 ** ixNx[2] = Total number of cells. 7053 ** 7054 ** Sometimes when deleting, a child page can have zero cells. In those 7055 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7056 ** entries, shift down. The end result is that each ixNx[] entry should 7057 ** be larger than the previous 7058 */ 7059 typedef struct CellArray CellArray; 7060 struct CellArray { 7061 int nCell; /* Number of cells in apCell[] */ 7062 MemPage *pRef; /* Reference page */ 7063 u8 **apCell; /* All cells begin balanced */ 7064 u16 *szCell; /* Local size of all cells in apCell[] */ 7065 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7066 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7067 }; 7068 7069 /* 7070 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7071 ** computed. 7072 */ 7073 static void populateCellCache(CellArray *p, int idx, int N){ 7074 assert( idx>=0 && idx+N<=p->nCell ); 7075 while( N>0 ){ 7076 assert( p->apCell[idx]!=0 ); 7077 if( p->szCell[idx]==0 ){ 7078 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7079 }else{ 7080 assert( CORRUPT_DB || 7081 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7082 } 7083 idx++; 7084 N--; 7085 } 7086 } 7087 7088 /* 7089 ** Return the size of the Nth element of the cell array 7090 */ 7091 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7092 assert( N>=0 && N<p->nCell ); 7093 assert( p->szCell[N]==0 ); 7094 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7095 return p->szCell[N]; 7096 } 7097 static u16 cachedCellSize(CellArray *p, int N){ 7098 assert( N>=0 && N<p->nCell ); 7099 if( p->szCell[N] ) return p->szCell[N]; 7100 return computeCellSize(p, N); 7101 } 7102 7103 /* 7104 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7105 ** szCell[] array contains the size in bytes of each cell. This function 7106 ** replaces the current contents of page pPg with the contents of the cell 7107 ** array. 7108 ** 7109 ** Some of the cells in apCell[] may currently be stored in pPg. This 7110 ** function works around problems caused by this by making a copy of any 7111 ** such cells before overwriting the page data. 7112 ** 7113 ** The MemPage.nFree field is invalidated by this function. It is the 7114 ** responsibility of the caller to set it correctly. 7115 */ 7116 static int rebuildPage( 7117 CellArray *pCArray, /* Content to be added to page pPg */ 7118 int iFirst, /* First cell in pCArray to use */ 7119 int nCell, /* Final number of cells on page */ 7120 MemPage *pPg /* The page to be reconstructed */ 7121 ){ 7122 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7123 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7124 const int usableSize = pPg->pBt->usableSize; 7125 u8 * const pEnd = &aData[usableSize]; 7126 int i = iFirst; /* Which cell to copy from pCArray*/ 7127 u32 j; /* Start of cell content area */ 7128 int iEnd = i+nCell; /* Loop terminator */ 7129 u8 *pCellptr = pPg->aCellIdx; 7130 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7131 u8 *pData; 7132 int k; /* Current slot in pCArray->apEnd[] */ 7133 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7134 7135 assert( i<iEnd ); 7136 j = get2byte(&aData[hdr+5]); 7137 if( j>(u32)usableSize ){ j = 0; } 7138 memcpy(&pTmp[j], &aData[j], usableSize - j); 7139 7140 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7141 pSrcEnd = pCArray->apEnd[k]; 7142 7143 pData = pEnd; 7144 while( 1/*exit by break*/ ){ 7145 u8 *pCell = pCArray->apCell[i]; 7146 u16 sz = pCArray->szCell[i]; 7147 assert( sz>0 ); 7148 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7149 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7150 pCell = &pTmp[pCell - aData]; 7151 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7152 && (uptr)(pCell)<(uptr)pSrcEnd 7153 ){ 7154 return SQLITE_CORRUPT_BKPT; 7155 } 7156 7157 pData -= sz; 7158 put2byte(pCellptr, (pData - aData)); 7159 pCellptr += 2; 7160 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7161 memmove(pData, pCell, sz); 7162 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7163 i++; 7164 if( i>=iEnd ) break; 7165 if( pCArray->ixNx[k]<=i ){ 7166 k++; 7167 pSrcEnd = pCArray->apEnd[k]; 7168 } 7169 } 7170 7171 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7172 pPg->nCell = nCell; 7173 pPg->nOverflow = 0; 7174 7175 put2byte(&aData[hdr+1], 0); 7176 put2byte(&aData[hdr+3], pPg->nCell); 7177 put2byte(&aData[hdr+5], pData - aData); 7178 aData[hdr+7] = 0x00; 7179 return SQLITE_OK; 7180 } 7181 7182 /* 7183 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7184 ** This function attempts to add the cells stored in the array to page pPg. 7185 ** If it cannot (because the page needs to be defragmented before the cells 7186 ** will fit), non-zero is returned. Otherwise, if the cells are added 7187 ** successfully, zero is returned. 7188 ** 7189 ** Argument pCellptr points to the first entry in the cell-pointer array 7190 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7191 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7192 ** cell in the array. It is the responsibility of the caller to ensure 7193 ** that it is safe to overwrite this part of the cell-pointer array. 7194 ** 7195 ** When this function is called, *ppData points to the start of the 7196 ** content area on page pPg. If the size of the content area is extended, 7197 ** *ppData is updated to point to the new start of the content area 7198 ** before returning. 7199 ** 7200 ** Finally, argument pBegin points to the byte immediately following the 7201 ** end of the space required by this page for the cell-pointer area (for 7202 ** all cells - not just those inserted by the current call). If the content 7203 ** area must be extended to before this point in order to accomodate all 7204 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7205 */ 7206 static int pageInsertArray( 7207 MemPage *pPg, /* Page to add cells to */ 7208 u8 *pBegin, /* End of cell-pointer array */ 7209 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7210 u8 *pCellptr, /* Pointer to cell-pointer area */ 7211 int iFirst, /* Index of first cell to add */ 7212 int nCell, /* Number of cells to add to pPg */ 7213 CellArray *pCArray /* Array of cells */ 7214 ){ 7215 int i = iFirst; /* Loop counter - cell index to insert */ 7216 u8 *aData = pPg->aData; /* Complete page */ 7217 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7218 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7219 int k; /* Current slot in pCArray->apEnd[] */ 7220 u8 *pEnd; /* Maximum extent of cell data */ 7221 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7222 if( iEnd<=iFirst ) return 0; 7223 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7224 pEnd = pCArray->apEnd[k]; 7225 while( 1 /*Exit by break*/ ){ 7226 int sz, rc; 7227 u8 *pSlot; 7228 assert( pCArray->szCell[i]!=0 ); 7229 sz = pCArray->szCell[i]; 7230 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7231 if( (pData - pBegin)<sz ) return 1; 7232 pData -= sz; 7233 pSlot = pData; 7234 } 7235 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7236 ** database. But they might for a corrupt database. Hence use memmove() 7237 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7238 assert( (pSlot+sz)<=pCArray->apCell[i] 7239 || pSlot>=(pCArray->apCell[i]+sz) 7240 || CORRUPT_DB ); 7241 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7242 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7243 ){ 7244 assert( CORRUPT_DB ); 7245 (void)SQLITE_CORRUPT_BKPT; 7246 return 1; 7247 } 7248 memmove(pSlot, pCArray->apCell[i], sz); 7249 put2byte(pCellptr, (pSlot - aData)); 7250 pCellptr += 2; 7251 i++; 7252 if( i>=iEnd ) break; 7253 if( pCArray->ixNx[k]<=i ){ 7254 k++; 7255 pEnd = pCArray->apEnd[k]; 7256 } 7257 } 7258 *ppData = pData; 7259 return 0; 7260 } 7261 7262 /* 7263 ** The pCArray object contains pointers to b-tree cells and their sizes. 7264 ** 7265 ** This function adds the space associated with each cell in the array 7266 ** that is currently stored within the body of pPg to the pPg free-list. 7267 ** The cell-pointers and other fields of the page are not updated. 7268 ** 7269 ** This function returns the total number of cells added to the free-list. 7270 */ 7271 static int pageFreeArray( 7272 MemPage *pPg, /* Page to edit */ 7273 int iFirst, /* First cell to delete */ 7274 int nCell, /* Cells to delete */ 7275 CellArray *pCArray /* Array of cells */ 7276 ){ 7277 u8 * const aData = pPg->aData; 7278 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7279 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7280 int nRet = 0; 7281 int i; 7282 int iEnd = iFirst + nCell; 7283 u8 *pFree = 0; 7284 int szFree = 0; 7285 7286 for(i=iFirst; i<iEnd; i++){ 7287 u8 *pCell = pCArray->apCell[i]; 7288 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7289 int sz; 7290 /* No need to use cachedCellSize() here. The sizes of all cells that 7291 ** are to be freed have already been computing while deciding which 7292 ** cells need freeing */ 7293 sz = pCArray->szCell[i]; assert( sz>0 ); 7294 if( pFree!=(pCell + sz) ){ 7295 if( pFree ){ 7296 assert( pFree>aData && (pFree - aData)<65536 ); 7297 freeSpace(pPg, (u16)(pFree - aData), szFree); 7298 } 7299 pFree = pCell; 7300 szFree = sz; 7301 if( pFree+sz>pEnd ){ 7302 return 0; 7303 } 7304 }else{ 7305 pFree = pCell; 7306 szFree += sz; 7307 } 7308 nRet++; 7309 } 7310 } 7311 if( pFree ){ 7312 assert( pFree>aData && (pFree - aData)<65536 ); 7313 freeSpace(pPg, (u16)(pFree - aData), szFree); 7314 } 7315 return nRet; 7316 } 7317 7318 /* 7319 ** pCArray contains pointers to and sizes of all cells in the page being 7320 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7321 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7322 ** starting at apCell[iNew]. 7323 ** 7324 ** This routine makes the necessary adjustments to pPg so that it contains 7325 ** the correct cells after being balanced. 7326 ** 7327 ** The pPg->nFree field is invalid when this function returns. It is the 7328 ** responsibility of the caller to set it correctly. 7329 */ 7330 static int editPage( 7331 MemPage *pPg, /* Edit this page */ 7332 int iOld, /* Index of first cell currently on page */ 7333 int iNew, /* Index of new first cell on page */ 7334 int nNew, /* Final number of cells on page */ 7335 CellArray *pCArray /* Array of cells and sizes */ 7336 ){ 7337 u8 * const aData = pPg->aData; 7338 const int hdr = pPg->hdrOffset; 7339 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7340 int nCell = pPg->nCell; /* Cells stored on pPg */ 7341 u8 *pData; 7342 u8 *pCellptr; 7343 int i; 7344 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7345 int iNewEnd = iNew + nNew; 7346 7347 #ifdef SQLITE_DEBUG 7348 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7349 memcpy(pTmp, aData, pPg->pBt->usableSize); 7350 #endif 7351 7352 /* Remove cells from the start and end of the page */ 7353 assert( nCell>=0 ); 7354 if( iOld<iNew ){ 7355 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7356 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7357 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7358 nCell -= nShift; 7359 } 7360 if( iNewEnd < iOldEnd ){ 7361 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7362 assert( nCell>=nTail ); 7363 nCell -= nTail; 7364 } 7365 7366 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7367 if( pData<pBegin ) goto editpage_fail; 7368 if( pData>pPg->aDataEnd ) goto editpage_fail; 7369 7370 /* Add cells to the start of the page */ 7371 if( iNew<iOld ){ 7372 int nAdd = MIN(nNew,iOld-iNew); 7373 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7374 assert( nAdd>=0 ); 7375 pCellptr = pPg->aCellIdx; 7376 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7377 if( pageInsertArray( 7378 pPg, pBegin, &pData, pCellptr, 7379 iNew, nAdd, pCArray 7380 ) ) goto editpage_fail; 7381 nCell += nAdd; 7382 } 7383 7384 /* Add any overflow cells */ 7385 for(i=0; i<pPg->nOverflow; i++){ 7386 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7387 if( iCell>=0 && iCell<nNew ){ 7388 pCellptr = &pPg->aCellIdx[iCell * 2]; 7389 if( nCell>iCell ){ 7390 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7391 } 7392 nCell++; 7393 cachedCellSize(pCArray, iCell+iNew); 7394 if( pageInsertArray( 7395 pPg, pBegin, &pData, pCellptr, 7396 iCell+iNew, 1, pCArray 7397 ) ) goto editpage_fail; 7398 } 7399 } 7400 7401 /* Append cells to the end of the page */ 7402 assert( nCell>=0 ); 7403 pCellptr = &pPg->aCellIdx[nCell*2]; 7404 if( pageInsertArray( 7405 pPg, pBegin, &pData, pCellptr, 7406 iNew+nCell, nNew-nCell, pCArray 7407 ) ) goto editpage_fail; 7408 7409 pPg->nCell = nNew; 7410 pPg->nOverflow = 0; 7411 7412 put2byte(&aData[hdr+3], pPg->nCell); 7413 put2byte(&aData[hdr+5], pData - aData); 7414 7415 #ifdef SQLITE_DEBUG 7416 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7417 u8 *pCell = pCArray->apCell[i+iNew]; 7418 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7419 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7420 pCell = &pTmp[pCell - aData]; 7421 } 7422 assert( 0==memcmp(pCell, &aData[iOff], 7423 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7424 } 7425 #endif 7426 7427 return SQLITE_OK; 7428 editpage_fail: 7429 /* Unable to edit this page. Rebuild it from scratch instead. */ 7430 populateCellCache(pCArray, iNew, nNew); 7431 return rebuildPage(pCArray, iNew, nNew, pPg); 7432 } 7433 7434 7435 #ifndef SQLITE_OMIT_QUICKBALANCE 7436 /* 7437 ** This version of balance() handles the common special case where 7438 ** a new entry is being inserted on the extreme right-end of the 7439 ** tree, in other words, when the new entry will become the largest 7440 ** entry in the tree. 7441 ** 7442 ** Instead of trying to balance the 3 right-most leaf pages, just add 7443 ** a new page to the right-hand side and put the one new entry in 7444 ** that page. This leaves the right side of the tree somewhat 7445 ** unbalanced. But odds are that we will be inserting new entries 7446 ** at the end soon afterwards so the nearly empty page will quickly 7447 ** fill up. On average. 7448 ** 7449 ** pPage is the leaf page which is the right-most page in the tree. 7450 ** pParent is its parent. pPage must have a single overflow entry 7451 ** which is also the right-most entry on the page. 7452 ** 7453 ** The pSpace buffer is used to store a temporary copy of the divider 7454 ** cell that will be inserted into pParent. Such a cell consists of a 4 7455 ** byte page number followed by a variable length integer. In other 7456 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7457 ** least 13 bytes in size. 7458 */ 7459 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7460 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7461 MemPage *pNew; /* Newly allocated page */ 7462 int rc; /* Return Code */ 7463 Pgno pgnoNew; /* Page number of pNew */ 7464 7465 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7466 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7467 assert( pPage->nOverflow==1 ); 7468 7469 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7470 assert( pPage->nFree>=0 ); 7471 assert( pParent->nFree>=0 ); 7472 7473 /* Allocate a new page. This page will become the right-sibling of 7474 ** pPage. Make the parent page writable, so that the new divider cell 7475 ** may be inserted. If both these operations are successful, proceed. 7476 */ 7477 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7478 7479 if( rc==SQLITE_OK ){ 7480 7481 u8 *pOut = &pSpace[4]; 7482 u8 *pCell = pPage->apOvfl[0]; 7483 u16 szCell = pPage->xCellSize(pPage, pCell); 7484 u8 *pStop; 7485 CellArray b; 7486 7487 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7488 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7489 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7490 b.nCell = 1; 7491 b.pRef = pPage; 7492 b.apCell = &pCell; 7493 b.szCell = &szCell; 7494 b.apEnd[0] = pPage->aDataEnd; 7495 b.ixNx[0] = 2; 7496 rc = rebuildPage(&b, 0, 1, pNew); 7497 if( NEVER(rc) ){ 7498 releasePage(pNew); 7499 return rc; 7500 } 7501 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7502 7503 /* If this is an auto-vacuum database, update the pointer map 7504 ** with entries for the new page, and any pointer from the 7505 ** cell on the page to an overflow page. If either of these 7506 ** operations fails, the return code is set, but the contents 7507 ** of the parent page are still manipulated by thh code below. 7508 ** That is Ok, at this point the parent page is guaranteed to 7509 ** be marked as dirty. Returning an error code will cause a 7510 ** rollback, undoing any changes made to the parent page. 7511 */ 7512 if( ISAUTOVACUUM ){ 7513 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7514 if( szCell>pNew->minLocal ){ 7515 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7516 } 7517 } 7518 7519 /* Create a divider cell to insert into pParent. The divider cell 7520 ** consists of a 4-byte page number (the page number of pPage) and 7521 ** a variable length key value (which must be the same value as the 7522 ** largest key on pPage). 7523 ** 7524 ** To find the largest key value on pPage, first find the right-most 7525 ** cell on pPage. The first two fields of this cell are the 7526 ** record-length (a variable length integer at most 32-bits in size) 7527 ** and the key value (a variable length integer, may have any value). 7528 ** The first of the while(...) loops below skips over the record-length 7529 ** field. The second while(...) loop copies the key value from the 7530 ** cell on pPage into the pSpace buffer. 7531 */ 7532 pCell = findCell(pPage, pPage->nCell-1); 7533 pStop = &pCell[9]; 7534 while( (*(pCell++)&0x80) && pCell<pStop ); 7535 pStop = &pCell[9]; 7536 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7537 7538 /* Insert the new divider cell into pParent. */ 7539 if( rc==SQLITE_OK ){ 7540 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7541 0, pPage->pgno, &rc); 7542 } 7543 7544 /* Set the right-child pointer of pParent to point to the new page. */ 7545 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7546 7547 /* Release the reference to the new page. */ 7548 releasePage(pNew); 7549 } 7550 7551 return rc; 7552 } 7553 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7554 7555 #if 0 7556 /* 7557 ** This function does not contribute anything to the operation of SQLite. 7558 ** it is sometimes activated temporarily while debugging code responsible 7559 ** for setting pointer-map entries. 7560 */ 7561 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7562 int i, j; 7563 for(i=0; i<nPage; i++){ 7564 Pgno n; 7565 u8 e; 7566 MemPage *pPage = apPage[i]; 7567 BtShared *pBt = pPage->pBt; 7568 assert( pPage->isInit ); 7569 7570 for(j=0; j<pPage->nCell; j++){ 7571 CellInfo info; 7572 u8 *z; 7573 7574 z = findCell(pPage, j); 7575 pPage->xParseCell(pPage, z, &info); 7576 if( info.nLocal<info.nPayload ){ 7577 Pgno ovfl = get4byte(&z[info.nSize-4]); 7578 ptrmapGet(pBt, ovfl, &e, &n); 7579 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7580 } 7581 if( !pPage->leaf ){ 7582 Pgno child = get4byte(z); 7583 ptrmapGet(pBt, child, &e, &n); 7584 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7585 } 7586 } 7587 if( !pPage->leaf ){ 7588 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7589 ptrmapGet(pBt, child, &e, &n); 7590 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7591 } 7592 } 7593 return 1; 7594 } 7595 #endif 7596 7597 /* 7598 ** This function is used to copy the contents of the b-tree node stored 7599 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7600 ** the pointer-map entries for each child page are updated so that the 7601 ** parent page stored in the pointer map is page pTo. If pFrom contained 7602 ** any cells with overflow page pointers, then the corresponding pointer 7603 ** map entries are also updated so that the parent page is page pTo. 7604 ** 7605 ** If pFrom is currently carrying any overflow cells (entries in the 7606 ** MemPage.apOvfl[] array), they are not copied to pTo. 7607 ** 7608 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7609 ** 7610 ** The performance of this function is not critical. It is only used by 7611 ** the balance_shallower() and balance_deeper() procedures, neither of 7612 ** which are called often under normal circumstances. 7613 */ 7614 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7615 if( (*pRC)==SQLITE_OK ){ 7616 BtShared * const pBt = pFrom->pBt; 7617 u8 * const aFrom = pFrom->aData; 7618 u8 * const aTo = pTo->aData; 7619 int const iFromHdr = pFrom->hdrOffset; 7620 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7621 int rc; 7622 int iData; 7623 7624 7625 assert( pFrom->isInit ); 7626 assert( pFrom->nFree>=iToHdr ); 7627 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7628 7629 /* Copy the b-tree node content from page pFrom to page pTo. */ 7630 iData = get2byte(&aFrom[iFromHdr+5]); 7631 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7632 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7633 7634 /* Reinitialize page pTo so that the contents of the MemPage structure 7635 ** match the new data. The initialization of pTo can actually fail under 7636 ** fairly obscure circumstances, even though it is a copy of initialized 7637 ** page pFrom. 7638 */ 7639 pTo->isInit = 0; 7640 rc = btreeInitPage(pTo); 7641 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7642 if( rc!=SQLITE_OK ){ 7643 *pRC = rc; 7644 return; 7645 } 7646 7647 /* If this is an auto-vacuum database, update the pointer-map entries 7648 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7649 */ 7650 if( ISAUTOVACUUM ){ 7651 *pRC = setChildPtrmaps(pTo); 7652 } 7653 } 7654 } 7655 7656 /* 7657 ** This routine redistributes cells on the iParentIdx'th child of pParent 7658 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7659 ** same amount of free space. Usually a single sibling on either side of the 7660 ** page are used in the balancing, though both siblings might come from one 7661 ** side if the page is the first or last child of its parent. If the page 7662 ** has fewer than 2 siblings (something which can only happen if the page 7663 ** is a root page or a child of a root page) then all available siblings 7664 ** participate in the balancing. 7665 ** 7666 ** The number of siblings of the page might be increased or decreased by 7667 ** one or two in an effort to keep pages nearly full but not over full. 7668 ** 7669 ** Note that when this routine is called, some of the cells on the page 7670 ** might not actually be stored in MemPage.aData[]. This can happen 7671 ** if the page is overfull. This routine ensures that all cells allocated 7672 ** to the page and its siblings fit into MemPage.aData[] before returning. 7673 ** 7674 ** In the course of balancing the page and its siblings, cells may be 7675 ** inserted into or removed from the parent page (pParent). Doing so 7676 ** may cause the parent page to become overfull or underfull. If this 7677 ** happens, it is the responsibility of the caller to invoke the correct 7678 ** balancing routine to fix this problem (see the balance() routine). 7679 ** 7680 ** If this routine fails for any reason, it might leave the database 7681 ** in a corrupted state. So if this routine fails, the database should 7682 ** be rolled back. 7683 ** 7684 ** The third argument to this function, aOvflSpace, is a pointer to a 7685 ** buffer big enough to hold one page. If while inserting cells into the parent 7686 ** page (pParent) the parent page becomes overfull, this buffer is 7687 ** used to store the parent's overflow cells. Because this function inserts 7688 ** a maximum of four divider cells into the parent page, and the maximum 7689 ** size of a cell stored within an internal node is always less than 1/4 7690 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7691 ** enough for all overflow cells. 7692 ** 7693 ** If aOvflSpace is set to a null pointer, this function returns 7694 ** SQLITE_NOMEM. 7695 */ 7696 static int balance_nonroot( 7697 MemPage *pParent, /* Parent page of siblings being balanced */ 7698 int iParentIdx, /* Index of "the page" in pParent */ 7699 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7700 int isRoot, /* True if pParent is a root-page */ 7701 int bBulk /* True if this call is part of a bulk load */ 7702 ){ 7703 BtShared *pBt; /* The whole database */ 7704 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7705 int nNew = 0; /* Number of pages in apNew[] */ 7706 int nOld; /* Number of pages in apOld[] */ 7707 int i, j, k; /* Loop counters */ 7708 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7709 int rc = SQLITE_OK; /* The return code */ 7710 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7711 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7712 int usableSpace; /* Bytes in pPage beyond the header */ 7713 int pageFlags; /* Value of pPage->aData[0] */ 7714 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7715 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7716 int szScratch; /* Size of scratch memory requested */ 7717 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7718 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7719 u8 *pRight; /* Location in parent of right-sibling pointer */ 7720 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7721 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7722 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7723 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7724 u8 *aSpace1; /* Space for copies of dividers cells */ 7725 Pgno pgno; /* Temp var to store a page number in */ 7726 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7727 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7728 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7729 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7730 CellArray b; /* Parsed information on cells being balanced */ 7731 7732 memset(abDone, 0, sizeof(abDone)); 7733 memset(&b, 0, sizeof(b)); 7734 pBt = pParent->pBt; 7735 assert( sqlite3_mutex_held(pBt->mutex) ); 7736 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7737 7738 /* At this point pParent may have at most one overflow cell. And if 7739 ** this overflow cell is present, it must be the cell with 7740 ** index iParentIdx. This scenario comes about when this function 7741 ** is called (indirectly) from sqlite3BtreeDelete(). 7742 */ 7743 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7744 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7745 7746 if( !aOvflSpace ){ 7747 return SQLITE_NOMEM_BKPT; 7748 } 7749 assert( pParent->nFree>=0 ); 7750 7751 /* Find the sibling pages to balance. Also locate the cells in pParent 7752 ** that divide the siblings. An attempt is made to find NN siblings on 7753 ** either side of pPage. More siblings are taken from one side, however, 7754 ** if there are fewer than NN siblings on the other side. If pParent 7755 ** has NB or fewer children then all children of pParent are taken. 7756 ** 7757 ** This loop also drops the divider cells from the parent page. This 7758 ** way, the remainder of the function does not have to deal with any 7759 ** overflow cells in the parent page, since if any existed they will 7760 ** have already been removed. 7761 */ 7762 i = pParent->nOverflow + pParent->nCell; 7763 if( i<2 ){ 7764 nxDiv = 0; 7765 }else{ 7766 assert( bBulk==0 || bBulk==1 ); 7767 if( iParentIdx==0 ){ 7768 nxDiv = 0; 7769 }else if( iParentIdx==i ){ 7770 nxDiv = i-2+bBulk; 7771 }else{ 7772 nxDiv = iParentIdx-1; 7773 } 7774 i = 2-bBulk; 7775 } 7776 nOld = i+1; 7777 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7778 pRight = &pParent->aData[pParent->hdrOffset+8]; 7779 }else{ 7780 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7781 } 7782 pgno = get4byte(pRight); 7783 while( 1 ){ 7784 if( rc==SQLITE_OK ){ 7785 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7786 } 7787 if( rc ){ 7788 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7789 goto balance_cleanup; 7790 } 7791 if( apOld[i]->nFree<0 ){ 7792 rc = btreeComputeFreeSpace(apOld[i]); 7793 if( rc ){ 7794 memset(apOld, 0, (i)*sizeof(MemPage*)); 7795 goto balance_cleanup; 7796 } 7797 } 7798 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7799 if( (i--)==0 ) break; 7800 7801 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7802 apDiv[i] = pParent->apOvfl[0]; 7803 pgno = get4byte(apDiv[i]); 7804 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7805 pParent->nOverflow = 0; 7806 }else{ 7807 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7808 pgno = get4byte(apDiv[i]); 7809 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7810 7811 /* Drop the cell from the parent page. apDiv[i] still points to 7812 ** the cell within the parent, even though it has been dropped. 7813 ** This is safe because dropping a cell only overwrites the first 7814 ** four bytes of it, and this function does not need the first 7815 ** four bytes of the divider cell. So the pointer is safe to use 7816 ** later on. 7817 ** 7818 ** But not if we are in secure-delete mode. In secure-delete mode, 7819 ** the dropCell() routine will overwrite the entire cell with zeroes. 7820 ** In this case, temporarily copy the cell into the aOvflSpace[] 7821 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7822 ** is allocated. */ 7823 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7824 int iOff; 7825 7826 /* If the following if() condition is not true, the db is corrupted. 7827 ** The call to dropCell() below will detect this. */ 7828 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7829 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7830 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7831 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7832 } 7833 } 7834 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7835 } 7836 } 7837 7838 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7839 ** alignment */ 7840 nMaxCells = (nMaxCells + 3)&~3; 7841 7842 /* 7843 ** Allocate space for memory structures 7844 */ 7845 szScratch = 7846 nMaxCells*sizeof(u8*) /* b.apCell */ 7847 + nMaxCells*sizeof(u16) /* b.szCell */ 7848 + pBt->pageSize; /* aSpace1 */ 7849 7850 assert( szScratch<=7*(int)pBt->pageSize ); 7851 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7852 if( b.apCell==0 ){ 7853 rc = SQLITE_NOMEM_BKPT; 7854 goto balance_cleanup; 7855 } 7856 b.szCell = (u16*)&b.apCell[nMaxCells]; 7857 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7858 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7859 7860 /* 7861 ** Load pointers to all cells on sibling pages and the divider cells 7862 ** into the local b.apCell[] array. Make copies of the divider cells 7863 ** into space obtained from aSpace1[]. The divider cells have already 7864 ** been removed from pParent. 7865 ** 7866 ** If the siblings are on leaf pages, then the child pointers of the 7867 ** divider cells are stripped from the cells before they are copied 7868 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7869 ** child pointers. If siblings are not leaves, then all cell in 7870 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7871 ** are alike. 7872 ** 7873 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7874 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7875 */ 7876 b.pRef = apOld[0]; 7877 leafCorrection = b.pRef->leaf*4; 7878 leafData = b.pRef->intKeyLeaf; 7879 for(i=0; i<nOld; i++){ 7880 MemPage *pOld = apOld[i]; 7881 int limit = pOld->nCell; 7882 u8 *aData = pOld->aData; 7883 u16 maskPage = pOld->maskPage; 7884 u8 *piCell = aData + pOld->cellOffset; 7885 u8 *piEnd; 7886 VVA_ONLY( int nCellAtStart = b.nCell; ) 7887 7888 /* Verify that all sibling pages are of the same "type" (table-leaf, 7889 ** table-interior, index-leaf, or index-interior). 7890 */ 7891 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7892 rc = SQLITE_CORRUPT_BKPT; 7893 goto balance_cleanup; 7894 } 7895 7896 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7897 ** contains overflow cells, include them in the b.apCell[] array 7898 ** in the correct spot. 7899 ** 7900 ** Note that when there are multiple overflow cells, it is always the 7901 ** case that they are sequential and adjacent. This invariant arises 7902 ** because multiple overflows can only occurs when inserting divider 7903 ** cells into a parent on a prior balance, and divider cells are always 7904 ** adjacent and are inserted in order. There is an assert() tagged 7905 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7906 ** invariant. 7907 ** 7908 ** This must be done in advance. Once the balance starts, the cell 7909 ** offset section of the btree page will be overwritten and we will no 7910 ** long be able to find the cells if a pointer to each cell is not saved 7911 ** first. 7912 */ 7913 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7914 if( pOld->nOverflow>0 ){ 7915 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7916 rc = SQLITE_CORRUPT_BKPT; 7917 goto balance_cleanup; 7918 } 7919 limit = pOld->aiOvfl[0]; 7920 for(j=0; j<limit; j++){ 7921 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7922 piCell += 2; 7923 b.nCell++; 7924 } 7925 for(k=0; k<pOld->nOverflow; k++){ 7926 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7927 b.apCell[b.nCell] = pOld->apOvfl[k]; 7928 b.nCell++; 7929 } 7930 } 7931 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7932 while( piCell<piEnd ){ 7933 assert( b.nCell<nMaxCells ); 7934 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7935 piCell += 2; 7936 b.nCell++; 7937 } 7938 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7939 7940 cntOld[i] = b.nCell; 7941 if( i<nOld-1 && !leafData){ 7942 u16 sz = (u16)szNew[i]; 7943 u8 *pTemp; 7944 assert( b.nCell<nMaxCells ); 7945 b.szCell[b.nCell] = sz; 7946 pTemp = &aSpace1[iSpace1]; 7947 iSpace1 += sz; 7948 assert( sz<=pBt->maxLocal+23 ); 7949 assert( iSpace1 <= (int)pBt->pageSize ); 7950 memcpy(pTemp, apDiv[i], sz); 7951 b.apCell[b.nCell] = pTemp+leafCorrection; 7952 assert( leafCorrection==0 || leafCorrection==4 ); 7953 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7954 if( !pOld->leaf ){ 7955 assert( leafCorrection==0 ); 7956 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 7957 /* The right pointer of the child page pOld becomes the left 7958 ** pointer of the divider cell */ 7959 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7960 }else{ 7961 assert( leafCorrection==4 ); 7962 while( b.szCell[b.nCell]<4 ){ 7963 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7964 ** does exist, pad it with 0x00 bytes. */ 7965 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7966 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7967 aSpace1[iSpace1++] = 0x00; 7968 b.szCell[b.nCell]++; 7969 } 7970 } 7971 b.nCell++; 7972 } 7973 } 7974 7975 /* 7976 ** Figure out the number of pages needed to hold all b.nCell cells. 7977 ** Store this number in "k". Also compute szNew[] which is the total 7978 ** size of all cells on the i-th page and cntNew[] which is the index 7979 ** in b.apCell[] of the cell that divides page i from page i+1. 7980 ** cntNew[k] should equal b.nCell. 7981 ** 7982 ** Values computed by this block: 7983 ** 7984 ** k: The total number of sibling pages 7985 ** szNew[i]: Spaced used on the i-th sibling page. 7986 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7987 ** the right of the i-th sibling page. 7988 ** usableSpace: Number of bytes of space available on each sibling. 7989 ** 7990 */ 7991 usableSpace = pBt->usableSize - 12 + leafCorrection; 7992 for(i=k=0; i<nOld; i++, k++){ 7993 MemPage *p = apOld[i]; 7994 b.apEnd[k] = p->aDataEnd; 7995 b.ixNx[k] = cntOld[i]; 7996 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 7997 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 7998 } 7999 if( !leafData ){ 8000 k++; 8001 b.apEnd[k] = pParent->aDataEnd; 8002 b.ixNx[k] = cntOld[i]+1; 8003 } 8004 assert( p->nFree>=0 ); 8005 szNew[i] = usableSpace - p->nFree; 8006 for(j=0; j<p->nOverflow; j++){ 8007 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8008 } 8009 cntNew[i] = cntOld[i]; 8010 } 8011 k = nOld; 8012 for(i=0; i<k; i++){ 8013 int sz; 8014 while( szNew[i]>usableSpace ){ 8015 if( i+1>=k ){ 8016 k = i+2; 8017 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8018 szNew[k-1] = 0; 8019 cntNew[k-1] = b.nCell; 8020 } 8021 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8022 szNew[i] -= sz; 8023 if( !leafData ){ 8024 if( cntNew[i]<b.nCell ){ 8025 sz = 2 + cachedCellSize(&b, cntNew[i]); 8026 }else{ 8027 sz = 0; 8028 } 8029 } 8030 szNew[i+1] += sz; 8031 cntNew[i]--; 8032 } 8033 while( cntNew[i]<b.nCell ){ 8034 sz = 2 + cachedCellSize(&b, cntNew[i]); 8035 if( szNew[i]+sz>usableSpace ) break; 8036 szNew[i] += sz; 8037 cntNew[i]++; 8038 if( !leafData ){ 8039 if( cntNew[i]<b.nCell ){ 8040 sz = 2 + cachedCellSize(&b, cntNew[i]); 8041 }else{ 8042 sz = 0; 8043 } 8044 } 8045 szNew[i+1] -= sz; 8046 } 8047 if( cntNew[i]>=b.nCell ){ 8048 k = i+1; 8049 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8050 rc = SQLITE_CORRUPT_BKPT; 8051 goto balance_cleanup; 8052 } 8053 } 8054 8055 /* 8056 ** The packing computed by the previous block is biased toward the siblings 8057 ** on the left side (siblings with smaller keys). The left siblings are 8058 ** always nearly full, while the right-most sibling might be nearly empty. 8059 ** The next block of code attempts to adjust the packing of siblings to 8060 ** get a better balance. 8061 ** 8062 ** This adjustment is more than an optimization. The packing above might 8063 ** be so out of balance as to be illegal. For example, the right-most 8064 ** sibling might be completely empty. This adjustment is not optional. 8065 */ 8066 for(i=k-1; i>0; i--){ 8067 int szRight = szNew[i]; /* Size of sibling on the right */ 8068 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8069 int r; /* Index of right-most cell in left sibling */ 8070 int d; /* Index of first cell to the left of right sibling */ 8071 8072 r = cntNew[i-1] - 1; 8073 d = r + 1 - leafData; 8074 (void)cachedCellSize(&b, d); 8075 do{ 8076 assert( d<nMaxCells ); 8077 assert( r<nMaxCells ); 8078 (void)cachedCellSize(&b, r); 8079 if( szRight!=0 8080 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8081 break; 8082 } 8083 szRight += b.szCell[d] + 2; 8084 szLeft -= b.szCell[r] + 2; 8085 cntNew[i-1] = r; 8086 r--; 8087 d--; 8088 }while( r>=0 ); 8089 szNew[i] = szRight; 8090 szNew[i-1] = szLeft; 8091 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8092 rc = SQLITE_CORRUPT_BKPT; 8093 goto balance_cleanup; 8094 } 8095 } 8096 8097 /* Sanity check: For a non-corrupt database file one of the follwing 8098 ** must be true: 8099 ** (1) We found one or more cells (cntNew[0])>0), or 8100 ** (2) pPage is a virtual root page. A virtual root page is when 8101 ** the real root page is page 1 and we are the only child of 8102 ** that page. 8103 */ 8104 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8105 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8106 apOld[0]->pgno, apOld[0]->nCell, 8107 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8108 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8109 )); 8110 8111 /* 8112 ** Allocate k new pages. Reuse old pages where possible. 8113 */ 8114 pageFlags = apOld[0]->aData[0]; 8115 for(i=0; i<k; i++){ 8116 MemPage *pNew; 8117 if( i<nOld ){ 8118 pNew = apNew[i] = apOld[i]; 8119 apOld[i] = 0; 8120 rc = sqlite3PagerWrite(pNew->pDbPage); 8121 nNew++; 8122 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8123 && rc==SQLITE_OK 8124 ){ 8125 rc = SQLITE_CORRUPT_BKPT; 8126 } 8127 if( rc ) goto balance_cleanup; 8128 }else{ 8129 assert( i>0 ); 8130 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8131 if( rc ) goto balance_cleanup; 8132 zeroPage(pNew, pageFlags); 8133 apNew[i] = pNew; 8134 nNew++; 8135 cntOld[i] = b.nCell; 8136 8137 /* Set the pointer-map entry for the new sibling page. */ 8138 if( ISAUTOVACUUM ){ 8139 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8140 if( rc!=SQLITE_OK ){ 8141 goto balance_cleanup; 8142 } 8143 } 8144 } 8145 } 8146 8147 /* 8148 ** Reassign page numbers so that the new pages are in ascending order. 8149 ** This helps to keep entries in the disk file in order so that a scan 8150 ** of the table is closer to a linear scan through the file. That in turn 8151 ** helps the operating system to deliver pages from the disk more rapidly. 8152 ** 8153 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8154 ** than (NB+2) (a small constant), that should not be a problem. 8155 ** 8156 ** When NB==3, this one optimization makes the database about 25% faster 8157 ** for large insertions and deletions. 8158 */ 8159 for(i=0; i<nNew; i++){ 8160 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8161 aPgFlags[i] = apNew[i]->pDbPage->flags; 8162 for(j=0; j<i; j++){ 8163 if( NEVER(aPgno[j]==aPgno[i]) ){ 8164 /* This branch is taken if the set of sibling pages somehow contains 8165 ** duplicate entries. This can happen if the database is corrupt. 8166 ** It would be simpler to detect this as part of the loop below, but 8167 ** we do the detection here in order to avoid populating the pager 8168 ** cache with two separate objects associated with the same 8169 ** page number. */ 8170 assert( CORRUPT_DB ); 8171 rc = SQLITE_CORRUPT_BKPT; 8172 goto balance_cleanup; 8173 } 8174 } 8175 } 8176 for(i=0; i<nNew; i++){ 8177 int iBest = 0; /* aPgno[] index of page number to use */ 8178 for(j=1; j<nNew; j++){ 8179 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8180 } 8181 pgno = aPgOrder[iBest]; 8182 aPgOrder[iBest] = 0xffffffff; 8183 if( iBest!=i ){ 8184 if( iBest>i ){ 8185 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8186 } 8187 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8188 apNew[i]->pgno = pgno; 8189 } 8190 } 8191 8192 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8193 "%d(%d nc=%d) %d(%d nc=%d)\n", 8194 apNew[0]->pgno, szNew[0], cntNew[0], 8195 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8196 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8197 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8198 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8199 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8200 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8201 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8202 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8203 )); 8204 8205 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8206 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8207 assert( apNew[nNew-1]!=0 ); 8208 put4byte(pRight, apNew[nNew-1]->pgno); 8209 8210 /* If the sibling pages are not leaves, ensure that the right-child pointer 8211 ** of the right-most new sibling page is set to the value that was 8212 ** originally in the same field of the right-most old sibling page. */ 8213 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8214 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8215 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8216 } 8217 8218 /* Make any required updates to pointer map entries associated with 8219 ** cells stored on sibling pages following the balance operation. Pointer 8220 ** map entries associated with divider cells are set by the insertCell() 8221 ** routine. The associated pointer map entries are: 8222 ** 8223 ** a) if the cell contains a reference to an overflow chain, the 8224 ** entry associated with the first page in the overflow chain, and 8225 ** 8226 ** b) if the sibling pages are not leaves, the child page associated 8227 ** with the cell. 8228 ** 8229 ** If the sibling pages are not leaves, then the pointer map entry 8230 ** associated with the right-child of each sibling may also need to be 8231 ** updated. This happens below, after the sibling pages have been 8232 ** populated, not here. 8233 */ 8234 if( ISAUTOVACUUM ){ 8235 MemPage *pOld; 8236 MemPage *pNew = pOld = apNew[0]; 8237 int cntOldNext = pNew->nCell + pNew->nOverflow; 8238 int iNew = 0; 8239 int iOld = 0; 8240 8241 for(i=0; i<b.nCell; i++){ 8242 u8 *pCell = b.apCell[i]; 8243 while( i==cntOldNext ){ 8244 iOld++; 8245 assert( iOld<nNew || iOld<nOld ); 8246 assert( iOld>=0 && iOld<NB ); 8247 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8248 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8249 } 8250 if( i==cntNew[iNew] ){ 8251 pNew = apNew[++iNew]; 8252 if( !leafData ) continue; 8253 } 8254 8255 /* Cell pCell is destined for new sibling page pNew. Originally, it 8256 ** was either part of sibling page iOld (possibly an overflow cell), 8257 ** or else the divider cell to the left of sibling page iOld. So, 8258 ** if sibling page iOld had the same page number as pNew, and if 8259 ** pCell really was a part of sibling page iOld (not a divider or 8260 ** overflow cell), we can skip updating the pointer map entries. */ 8261 if( iOld>=nNew 8262 || pNew->pgno!=aPgno[iOld] 8263 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8264 ){ 8265 if( !leafCorrection ){ 8266 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8267 } 8268 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8269 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8270 } 8271 if( rc ) goto balance_cleanup; 8272 } 8273 } 8274 } 8275 8276 /* Insert new divider cells into pParent. */ 8277 for(i=0; i<nNew-1; i++){ 8278 u8 *pCell; 8279 u8 *pTemp; 8280 int sz; 8281 u8 *pSrcEnd; 8282 MemPage *pNew = apNew[i]; 8283 j = cntNew[i]; 8284 8285 assert( j<nMaxCells ); 8286 assert( b.apCell[j]!=0 ); 8287 pCell = b.apCell[j]; 8288 sz = b.szCell[j] + leafCorrection; 8289 pTemp = &aOvflSpace[iOvflSpace]; 8290 if( !pNew->leaf ){ 8291 memcpy(&pNew->aData[8], pCell, 4); 8292 }else if( leafData ){ 8293 /* If the tree is a leaf-data tree, and the siblings are leaves, 8294 ** then there is no divider cell in b.apCell[]. Instead, the divider 8295 ** cell consists of the integer key for the right-most cell of 8296 ** the sibling-page assembled above only. 8297 */ 8298 CellInfo info; 8299 j--; 8300 pNew->xParseCell(pNew, b.apCell[j], &info); 8301 pCell = pTemp; 8302 sz = 4 + putVarint(&pCell[4], info.nKey); 8303 pTemp = 0; 8304 }else{ 8305 pCell -= 4; 8306 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8307 ** previously stored on a leaf node, and its reported size was 4 8308 ** bytes, then it may actually be smaller than this 8309 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8310 ** any cell). But it is important to pass the correct size to 8311 ** insertCell(), so reparse the cell now. 8312 ** 8313 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8314 ** and WITHOUT ROWID tables with exactly one column which is the 8315 ** primary key. 8316 */ 8317 if( b.szCell[j]==4 ){ 8318 assert(leafCorrection==4); 8319 sz = pParent->xCellSize(pParent, pCell); 8320 } 8321 } 8322 iOvflSpace += sz; 8323 assert( sz<=pBt->maxLocal+23 ); 8324 assert( iOvflSpace <= (int)pBt->pageSize ); 8325 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 8326 pSrcEnd = b.apEnd[k]; 8327 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8328 rc = SQLITE_CORRUPT_BKPT; 8329 goto balance_cleanup; 8330 } 8331 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8332 if( rc!=SQLITE_OK ) goto balance_cleanup; 8333 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8334 } 8335 8336 /* Now update the actual sibling pages. The order in which they are updated 8337 ** is important, as this code needs to avoid disrupting any page from which 8338 ** cells may still to be read. In practice, this means: 8339 ** 8340 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8341 ** then it is not safe to update page apNew[iPg] until after 8342 ** the left-hand sibling apNew[iPg-1] has been updated. 8343 ** 8344 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8345 ** then it is not safe to update page apNew[iPg] until after 8346 ** the right-hand sibling apNew[iPg+1] has been updated. 8347 ** 8348 ** If neither of the above apply, the page is safe to update. 8349 ** 8350 ** The iPg value in the following loop starts at nNew-1 goes down 8351 ** to 0, then back up to nNew-1 again, thus making two passes over 8352 ** the pages. On the initial downward pass, only condition (1) above 8353 ** needs to be tested because (2) will always be true from the previous 8354 ** step. On the upward pass, both conditions are always true, so the 8355 ** upwards pass simply processes pages that were missed on the downward 8356 ** pass. 8357 */ 8358 for(i=1-nNew; i<nNew; i++){ 8359 int iPg = i<0 ? -i : i; 8360 assert( iPg>=0 && iPg<nNew ); 8361 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8362 if( i>=0 /* On the upwards pass, or... */ 8363 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8364 ){ 8365 int iNew; 8366 int iOld; 8367 int nNewCell; 8368 8369 /* Verify condition (1): If cells are moving left, update iPg 8370 ** only after iPg-1 has already been updated. */ 8371 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8372 8373 /* Verify condition (2): If cells are moving right, update iPg 8374 ** only after iPg+1 has already been updated. */ 8375 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8376 8377 if( iPg==0 ){ 8378 iNew = iOld = 0; 8379 nNewCell = cntNew[0]; 8380 }else{ 8381 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8382 iNew = cntNew[iPg-1] + !leafData; 8383 nNewCell = cntNew[iPg] - iNew; 8384 } 8385 8386 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8387 if( rc ) goto balance_cleanup; 8388 abDone[iPg]++; 8389 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8390 assert( apNew[iPg]->nOverflow==0 ); 8391 assert( apNew[iPg]->nCell==nNewCell ); 8392 } 8393 } 8394 8395 /* All pages have been processed exactly once */ 8396 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8397 8398 assert( nOld>0 ); 8399 assert( nNew>0 ); 8400 8401 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8402 /* The root page of the b-tree now contains no cells. The only sibling 8403 ** page is the right-child of the parent. Copy the contents of the 8404 ** child page into the parent, decreasing the overall height of the 8405 ** b-tree structure by one. This is described as the "balance-shallower" 8406 ** sub-algorithm in some documentation. 8407 ** 8408 ** If this is an auto-vacuum database, the call to copyNodeContent() 8409 ** sets all pointer-map entries corresponding to database image pages 8410 ** for which the pointer is stored within the content being copied. 8411 ** 8412 ** It is critical that the child page be defragmented before being 8413 ** copied into the parent, because if the parent is page 1 then it will 8414 ** by smaller than the child due to the database header, and so all the 8415 ** free space needs to be up front. 8416 */ 8417 assert( nNew==1 || CORRUPT_DB ); 8418 rc = defragmentPage(apNew[0], -1); 8419 testcase( rc!=SQLITE_OK ); 8420 assert( apNew[0]->nFree == 8421 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8422 - apNew[0]->nCell*2) 8423 || rc!=SQLITE_OK 8424 ); 8425 copyNodeContent(apNew[0], pParent, &rc); 8426 freePage(apNew[0], &rc); 8427 }else if( ISAUTOVACUUM && !leafCorrection ){ 8428 /* Fix the pointer map entries associated with the right-child of each 8429 ** sibling page. All other pointer map entries have already been taken 8430 ** care of. */ 8431 for(i=0; i<nNew; i++){ 8432 u32 key = get4byte(&apNew[i]->aData[8]); 8433 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8434 } 8435 } 8436 8437 assert( pParent->isInit ); 8438 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8439 nOld, nNew, b.nCell)); 8440 8441 /* Free any old pages that were not reused as new pages. 8442 */ 8443 for(i=nNew; i<nOld; i++){ 8444 freePage(apOld[i], &rc); 8445 } 8446 8447 #if 0 8448 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8449 /* The ptrmapCheckPages() contains assert() statements that verify that 8450 ** all pointer map pages are set correctly. This is helpful while 8451 ** debugging. This is usually disabled because a corrupt database may 8452 ** cause an assert() statement to fail. */ 8453 ptrmapCheckPages(apNew, nNew); 8454 ptrmapCheckPages(&pParent, 1); 8455 } 8456 #endif 8457 8458 /* 8459 ** Cleanup before returning. 8460 */ 8461 balance_cleanup: 8462 sqlite3StackFree(0, b.apCell); 8463 for(i=0; i<nOld; i++){ 8464 releasePage(apOld[i]); 8465 } 8466 for(i=0; i<nNew; i++){ 8467 releasePage(apNew[i]); 8468 } 8469 8470 return rc; 8471 } 8472 8473 8474 /* 8475 ** This function is called when the root page of a b-tree structure is 8476 ** overfull (has one or more overflow pages). 8477 ** 8478 ** A new child page is allocated and the contents of the current root 8479 ** page, including overflow cells, are copied into the child. The root 8480 ** page is then overwritten to make it an empty page with the right-child 8481 ** pointer pointing to the new page. 8482 ** 8483 ** Before returning, all pointer-map entries corresponding to pages 8484 ** that the new child-page now contains pointers to are updated. The 8485 ** entry corresponding to the new right-child pointer of the root 8486 ** page is also updated. 8487 ** 8488 ** If successful, *ppChild is set to contain a reference to the child 8489 ** page and SQLITE_OK is returned. In this case the caller is required 8490 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8491 ** an error code is returned and *ppChild is set to 0. 8492 */ 8493 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8494 int rc; /* Return value from subprocedures */ 8495 MemPage *pChild = 0; /* Pointer to a new child page */ 8496 Pgno pgnoChild = 0; /* Page number of the new child page */ 8497 BtShared *pBt = pRoot->pBt; /* The BTree */ 8498 8499 assert( pRoot->nOverflow>0 ); 8500 assert( sqlite3_mutex_held(pBt->mutex) ); 8501 8502 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8503 ** page that will become the new right-child of pPage. Copy the contents 8504 ** of the node stored on pRoot into the new child page. 8505 */ 8506 rc = sqlite3PagerWrite(pRoot->pDbPage); 8507 if( rc==SQLITE_OK ){ 8508 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8509 copyNodeContent(pRoot, pChild, &rc); 8510 if( ISAUTOVACUUM ){ 8511 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8512 } 8513 } 8514 if( rc ){ 8515 *ppChild = 0; 8516 releasePage(pChild); 8517 return rc; 8518 } 8519 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8520 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8521 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8522 8523 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8524 8525 /* Copy the overflow cells from pRoot to pChild */ 8526 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8527 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8528 memcpy(pChild->apOvfl, pRoot->apOvfl, 8529 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8530 pChild->nOverflow = pRoot->nOverflow; 8531 8532 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8533 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8534 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8535 8536 *ppChild = pChild; 8537 return SQLITE_OK; 8538 } 8539 8540 /* 8541 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8542 ** on the same B-tree as pCur. 8543 ** 8544 ** This can occur if a database is corrupt with two or more SQL tables 8545 ** pointing to the same b-tree. If an insert occurs on one SQL table 8546 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8547 ** table linked to the same b-tree. If the secondary insert causes a 8548 ** rebalance, that can change content out from under the cursor on the 8549 ** first SQL table, violating invariants on the first insert. 8550 */ 8551 static int anotherValidCursor(BtCursor *pCur){ 8552 BtCursor *pOther; 8553 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8554 if( pOther!=pCur 8555 && pOther->eState==CURSOR_VALID 8556 && pOther->pPage==pCur->pPage 8557 ){ 8558 return SQLITE_CORRUPT_BKPT; 8559 } 8560 } 8561 return SQLITE_OK; 8562 } 8563 8564 /* 8565 ** The page that pCur currently points to has just been modified in 8566 ** some way. This function figures out if this modification means the 8567 ** tree needs to be balanced, and if so calls the appropriate balancing 8568 ** routine. Balancing routines are: 8569 ** 8570 ** balance_quick() 8571 ** balance_deeper() 8572 ** balance_nonroot() 8573 */ 8574 static int balance(BtCursor *pCur){ 8575 int rc = SQLITE_OK; 8576 const int nMin = pCur->pBt->usableSize * 2 / 3; 8577 u8 aBalanceQuickSpace[13]; 8578 u8 *pFree = 0; 8579 8580 VVA_ONLY( int balance_quick_called = 0 ); 8581 VVA_ONLY( int balance_deeper_called = 0 ); 8582 8583 do { 8584 int iPage; 8585 MemPage *pPage = pCur->pPage; 8586 8587 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8588 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8589 break; 8590 }else if( (iPage = pCur->iPage)==0 ){ 8591 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8592 /* The root page of the b-tree is overfull. In this case call the 8593 ** balance_deeper() function to create a new child for the root-page 8594 ** and copy the current contents of the root-page to it. The 8595 ** next iteration of the do-loop will balance the child page. 8596 */ 8597 assert( balance_deeper_called==0 ); 8598 VVA_ONLY( balance_deeper_called++ ); 8599 rc = balance_deeper(pPage, &pCur->apPage[1]); 8600 if( rc==SQLITE_OK ){ 8601 pCur->iPage = 1; 8602 pCur->ix = 0; 8603 pCur->aiIdx[0] = 0; 8604 pCur->apPage[0] = pPage; 8605 pCur->pPage = pCur->apPage[1]; 8606 assert( pCur->pPage->nOverflow ); 8607 } 8608 }else{ 8609 break; 8610 } 8611 }else{ 8612 MemPage * const pParent = pCur->apPage[iPage-1]; 8613 int const iIdx = pCur->aiIdx[iPage-1]; 8614 8615 rc = sqlite3PagerWrite(pParent->pDbPage); 8616 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8617 rc = btreeComputeFreeSpace(pParent); 8618 } 8619 if( rc==SQLITE_OK ){ 8620 #ifndef SQLITE_OMIT_QUICKBALANCE 8621 if( pPage->intKeyLeaf 8622 && pPage->nOverflow==1 8623 && pPage->aiOvfl[0]==pPage->nCell 8624 && pParent->pgno!=1 8625 && pParent->nCell==iIdx 8626 ){ 8627 /* Call balance_quick() to create a new sibling of pPage on which 8628 ** to store the overflow cell. balance_quick() inserts a new cell 8629 ** into pParent, which may cause pParent overflow. If this 8630 ** happens, the next iteration of the do-loop will balance pParent 8631 ** use either balance_nonroot() or balance_deeper(). Until this 8632 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8633 ** buffer. 8634 ** 8635 ** The purpose of the following assert() is to check that only a 8636 ** single call to balance_quick() is made for each call to this 8637 ** function. If this were not verified, a subtle bug involving reuse 8638 ** of the aBalanceQuickSpace[] might sneak in. 8639 */ 8640 assert( balance_quick_called==0 ); 8641 VVA_ONLY( balance_quick_called++ ); 8642 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8643 }else 8644 #endif 8645 { 8646 /* In this case, call balance_nonroot() to redistribute cells 8647 ** between pPage and up to 2 of its sibling pages. This involves 8648 ** modifying the contents of pParent, which may cause pParent to 8649 ** become overfull or underfull. The next iteration of the do-loop 8650 ** will balance the parent page to correct this. 8651 ** 8652 ** If the parent page becomes overfull, the overflow cell or cells 8653 ** are stored in the pSpace buffer allocated immediately below. 8654 ** A subsequent iteration of the do-loop will deal with this by 8655 ** calling balance_nonroot() (balance_deeper() may be called first, 8656 ** but it doesn't deal with overflow cells - just moves them to a 8657 ** different page). Once this subsequent call to balance_nonroot() 8658 ** has completed, it is safe to release the pSpace buffer used by 8659 ** the previous call, as the overflow cell data will have been 8660 ** copied either into the body of a database page or into the new 8661 ** pSpace buffer passed to the latter call to balance_nonroot(). 8662 */ 8663 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8664 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8665 pCur->hints&BTREE_BULKLOAD); 8666 if( pFree ){ 8667 /* If pFree is not NULL, it points to the pSpace buffer used 8668 ** by a previous call to balance_nonroot(). Its contents are 8669 ** now stored either on real database pages or within the 8670 ** new pSpace buffer, so it may be safely freed here. */ 8671 sqlite3PageFree(pFree); 8672 } 8673 8674 /* The pSpace buffer will be freed after the next call to 8675 ** balance_nonroot(), or just before this function returns, whichever 8676 ** comes first. */ 8677 pFree = pSpace; 8678 } 8679 } 8680 8681 pPage->nOverflow = 0; 8682 8683 /* The next iteration of the do-loop balances the parent page. */ 8684 releasePage(pPage); 8685 pCur->iPage--; 8686 assert( pCur->iPage>=0 ); 8687 pCur->pPage = pCur->apPage[pCur->iPage]; 8688 } 8689 }while( rc==SQLITE_OK ); 8690 8691 if( pFree ){ 8692 sqlite3PageFree(pFree); 8693 } 8694 return rc; 8695 } 8696 8697 /* Overwrite content from pX into pDest. Only do the write if the 8698 ** content is different from what is already there. 8699 */ 8700 static int btreeOverwriteContent( 8701 MemPage *pPage, /* MemPage on which writing will occur */ 8702 u8 *pDest, /* Pointer to the place to start writing */ 8703 const BtreePayload *pX, /* Source of data to write */ 8704 int iOffset, /* Offset of first byte to write */ 8705 int iAmt /* Number of bytes to be written */ 8706 ){ 8707 int nData = pX->nData - iOffset; 8708 if( nData<=0 ){ 8709 /* Overwritting with zeros */ 8710 int i; 8711 for(i=0; i<iAmt && pDest[i]==0; i++){} 8712 if( i<iAmt ){ 8713 int rc = sqlite3PagerWrite(pPage->pDbPage); 8714 if( rc ) return rc; 8715 memset(pDest + i, 0, iAmt - i); 8716 } 8717 }else{ 8718 if( nData<iAmt ){ 8719 /* Mixed read data and zeros at the end. Make a recursive call 8720 ** to write the zeros then fall through to write the real data */ 8721 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8722 iAmt-nData); 8723 if( rc ) return rc; 8724 iAmt = nData; 8725 } 8726 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8727 int rc = sqlite3PagerWrite(pPage->pDbPage); 8728 if( rc ) return rc; 8729 /* In a corrupt database, it is possible for the source and destination 8730 ** buffers to overlap. This is harmless since the database is already 8731 ** corrupt but it does cause valgrind and ASAN warnings. So use 8732 ** memmove(). */ 8733 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8734 } 8735 } 8736 return SQLITE_OK; 8737 } 8738 8739 /* 8740 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8741 ** contained in pX. 8742 */ 8743 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8744 int iOffset; /* Next byte of pX->pData to write */ 8745 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8746 int rc; /* Return code */ 8747 MemPage *pPage = pCur->pPage; /* Page being written */ 8748 BtShared *pBt; /* Btree */ 8749 Pgno ovflPgno; /* Next overflow page to write */ 8750 u32 ovflPageSize; /* Size to write on overflow page */ 8751 8752 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8753 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8754 ){ 8755 return SQLITE_CORRUPT_BKPT; 8756 } 8757 /* Overwrite the local portion first */ 8758 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8759 0, pCur->info.nLocal); 8760 if( rc ) return rc; 8761 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8762 8763 /* Now overwrite the overflow pages */ 8764 iOffset = pCur->info.nLocal; 8765 assert( nTotal>=0 ); 8766 assert( iOffset>=0 ); 8767 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8768 pBt = pPage->pBt; 8769 ovflPageSize = pBt->usableSize - 4; 8770 do{ 8771 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8772 if( rc ) return rc; 8773 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8774 rc = SQLITE_CORRUPT_BKPT; 8775 }else{ 8776 if( iOffset+ovflPageSize<(u32)nTotal ){ 8777 ovflPgno = get4byte(pPage->aData); 8778 }else{ 8779 ovflPageSize = nTotal - iOffset; 8780 } 8781 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8782 iOffset, ovflPageSize); 8783 } 8784 sqlite3PagerUnref(pPage->pDbPage); 8785 if( rc ) return rc; 8786 iOffset += ovflPageSize; 8787 }while( iOffset<nTotal ); 8788 return SQLITE_OK; 8789 } 8790 8791 8792 /* 8793 ** Insert a new record into the BTree. The content of the new record 8794 ** is described by the pX object. The pCur cursor is used only to 8795 ** define what table the record should be inserted into, and is left 8796 ** pointing at a random location. 8797 ** 8798 ** For a table btree (used for rowid tables), only the pX.nKey value of 8799 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8800 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8801 ** hold the content of the row. 8802 ** 8803 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8804 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8805 ** pX.pData,nData,nZero fields must be zero. 8806 ** 8807 ** If the seekResult parameter is non-zero, then a successful call to 8808 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8809 ** been performed. In other words, if seekResult!=0 then the cursor 8810 ** is currently pointing to a cell that will be adjacent to the cell 8811 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8812 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8813 ** that is larger than (pKey,nKey). 8814 ** 8815 ** If seekResult==0, that means pCur is pointing at some unknown location. 8816 ** In that case, this routine must seek the cursor to the correct insertion 8817 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8818 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8819 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8820 ** to decode the key. 8821 */ 8822 int sqlite3BtreeInsert( 8823 BtCursor *pCur, /* Insert data into the table of this cursor */ 8824 const BtreePayload *pX, /* Content of the row to be inserted */ 8825 int flags, /* True if this is likely an append */ 8826 int seekResult /* Result of prior MovetoUnpacked() call */ 8827 ){ 8828 int rc; 8829 int loc = seekResult; /* -1: before desired location +1: after */ 8830 int szNew = 0; 8831 int idx; 8832 MemPage *pPage; 8833 Btree *p = pCur->pBtree; 8834 BtShared *pBt = p->pBt; 8835 unsigned char *oldCell; 8836 unsigned char *newCell = 0; 8837 8838 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 8839 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 8840 8841 if( pCur->eState==CURSOR_FAULT ){ 8842 assert( pCur->skipNext!=SQLITE_OK ); 8843 return pCur->skipNext; 8844 } 8845 8846 assert( cursorOwnsBtShared(pCur) ); 8847 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8848 && pBt->inTransaction==TRANS_WRITE 8849 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8850 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8851 8852 /* Assert that the caller has been consistent. If this cursor was opened 8853 ** expecting an index b-tree, then the caller should be inserting blob 8854 ** keys with no associated data. If the cursor was opened expecting an 8855 ** intkey table, the caller should be inserting integer keys with a 8856 ** blob of associated data. */ 8857 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8858 8859 /* Save the positions of any other cursors open on this table. 8860 ** 8861 ** In some cases, the call to btreeMoveto() below is a no-op. For 8862 ** example, when inserting data into a table with auto-generated integer 8863 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8864 ** integer key to use. It then calls this function to actually insert the 8865 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8866 ** that the cursor is already where it needs to be and returns without 8867 ** doing any work. To avoid thwarting these optimizations, it is important 8868 ** not to clear the cursor here. 8869 */ 8870 if( pCur->curFlags & BTCF_Multiple ){ 8871 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8872 if( rc ) return rc; 8873 if( loc && pCur->iPage<0 ){ 8874 /* This can only happen if the schema is corrupt such that there is more 8875 ** than one table or index with the same root page as used by the cursor. 8876 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 8877 ** the schema was loaded. This cannot be asserted though, as a user might 8878 ** set the flag, load the schema, and then unset the flag. */ 8879 return SQLITE_CORRUPT_BKPT; 8880 } 8881 } 8882 8883 if( pCur->pKeyInfo==0 ){ 8884 assert( pX->pKey==0 ); 8885 /* If this is an insert into a table b-tree, invalidate any incrblob 8886 ** cursors open on the row being replaced */ 8887 if( p->hasIncrblobCur ){ 8888 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8889 } 8890 8891 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8892 ** to a row with the same key as the new entry being inserted. 8893 */ 8894 #ifdef SQLITE_DEBUG 8895 if( flags & BTREE_SAVEPOSITION ){ 8896 assert( pCur->curFlags & BTCF_ValidNKey ); 8897 assert( pX->nKey==pCur->info.nKey ); 8898 assert( loc==0 ); 8899 } 8900 #endif 8901 8902 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8903 ** that the cursor is not pointing to a row to be overwritten. 8904 ** So do a complete check. 8905 */ 8906 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8907 /* The cursor is pointing to the entry that is to be 8908 ** overwritten */ 8909 assert( pX->nData>=0 && pX->nZero>=0 ); 8910 if( pCur->info.nSize!=0 8911 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8912 ){ 8913 /* New entry is the same size as the old. Do an overwrite */ 8914 return btreeOverwriteCell(pCur, pX); 8915 } 8916 assert( loc==0 ); 8917 }else if( loc==0 ){ 8918 /* The cursor is *not* pointing to the cell to be overwritten, nor 8919 ** to an adjacent cell. Move the cursor so that it is pointing either 8920 ** to the cell to be overwritten or an adjacent cell. 8921 */ 8922 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 8923 (flags & BTREE_APPEND)!=0, &loc); 8924 if( rc ) return rc; 8925 } 8926 }else{ 8927 /* This is an index or a WITHOUT ROWID table */ 8928 8929 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8930 ** to a row with the same key as the new entry being inserted. 8931 */ 8932 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8933 8934 /* If the cursor is not already pointing either to the cell to be 8935 ** overwritten, or if a new cell is being inserted, if the cursor is 8936 ** not pointing to an immediately adjacent cell, then move the cursor 8937 ** so that it does. 8938 */ 8939 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8940 if( pX->nMem ){ 8941 UnpackedRecord r; 8942 r.pKeyInfo = pCur->pKeyInfo; 8943 r.aMem = pX->aMem; 8944 r.nField = pX->nMem; 8945 r.default_rc = 0; 8946 r.eqSeen = 0; 8947 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 8948 }else{ 8949 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 8950 (flags & BTREE_APPEND)!=0, &loc); 8951 } 8952 if( rc ) return rc; 8953 } 8954 8955 /* If the cursor is currently pointing to an entry to be overwritten 8956 ** and the new content is the same as as the old, then use the 8957 ** overwrite optimization. 8958 */ 8959 if( loc==0 ){ 8960 getCellInfo(pCur); 8961 if( pCur->info.nKey==pX->nKey ){ 8962 BtreePayload x2; 8963 x2.pData = pX->pKey; 8964 x2.nData = pX->nKey; 8965 x2.nZero = 0; 8966 return btreeOverwriteCell(pCur, &x2); 8967 } 8968 } 8969 } 8970 assert( pCur->eState==CURSOR_VALID 8971 || (pCur->eState==CURSOR_INVALID && loc) 8972 || CORRUPT_DB ); 8973 8974 pPage = pCur->pPage; 8975 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 8976 assert( pPage->leaf || !pPage->intKey ); 8977 if( pPage->nFree<0 ){ 8978 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 8979 rc = SQLITE_CORRUPT_BKPT; 8980 }else{ 8981 rc = btreeComputeFreeSpace(pPage); 8982 } 8983 if( rc ) return rc; 8984 } 8985 8986 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8987 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8988 loc==0 ? "overwrite" : "new entry")); 8989 assert( pPage->isInit ); 8990 newCell = pBt->pTmpSpace; 8991 assert( newCell!=0 ); 8992 if( flags & BTREE_PREFORMAT ){ 8993 rc = SQLITE_OK; 8994 szNew = pBt->nPreformatSize; 8995 if( szNew<4 ) szNew = 4; 8996 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 8997 CellInfo info; 8998 pPage->xParseCell(pPage, newCell, &info); 8999 if( info.nPayload!=info.nLocal ){ 9000 Pgno ovfl = get4byte(&newCell[szNew-4]); 9001 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9002 } 9003 } 9004 }else{ 9005 rc = fillInCell(pPage, newCell, pX, &szNew); 9006 } 9007 if( rc ) goto end_insert; 9008 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9009 assert( szNew <= MX_CELL_SIZE(pBt) ); 9010 idx = pCur->ix; 9011 if( loc==0 ){ 9012 CellInfo info; 9013 assert( idx>=0 ); 9014 if( idx>=pPage->nCell ){ 9015 return SQLITE_CORRUPT_BKPT; 9016 } 9017 rc = sqlite3PagerWrite(pPage->pDbPage); 9018 if( rc ){ 9019 goto end_insert; 9020 } 9021 oldCell = findCell(pPage, idx); 9022 if( !pPage->leaf ){ 9023 memcpy(newCell, oldCell, 4); 9024 } 9025 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9026 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9027 invalidateOverflowCache(pCur); 9028 if( info.nSize==szNew && info.nLocal==info.nPayload 9029 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9030 ){ 9031 /* Overwrite the old cell with the new if they are the same size. 9032 ** We could also try to do this if the old cell is smaller, then add 9033 ** the leftover space to the free list. But experiments show that 9034 ** doing that is no faster then skipping this optimization and just 9035 ** calling dropCell() and insertCell(). 9036 ** 9037 ** This optimization cannot be used on an autovacuum database if the 9038 ** new entry uses overflow pages, as the insertCell() call below is 9039 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9040 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9041 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9042 return SQLITE_CORRUPT_BKPT; 9043 } 9044 if( oldCell+szNew > pPage->aDataEnd ){ 9045 return SQLITE_CORRUPT_BKPT; 9046 } 9047 memcpy(oldCell, newCell, szNew); 9048 return SQLITE_OK; 9049 } 9050 dropCell(pPage, idx, info.nSize, &rc); 9051 if( rc ) goto end_insert; 9052 }else if( loc<0 && pPage->nCell>0 ){ 9053 assert( pPage->leaf ); 9054 idx = ++pCur->ix; 9055 pCur->curFlags &= ~BTCF_ValidNKey; 9056 }else{ 9057 assert( pPage->leaf ); 9058 } 9059 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9060 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9061 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9062 9063 /* If no error has occurred and pPage has an overflow cell, call balance() 9064 ** to redistribute the cells within the tree. Since balance() may move 9065 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9066 ** variables. 9067 ** 9068 ** Previous versions of SQLite called moveToRoot() to move the cursor 9069 ** back to the root page as balance() used to invalidate the contents 9070 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9071 ** set the cursor state to "invalid". This makes common insert operations 9072 ** slightly faster. 9073 ** 9074 ** There is a subtle but important optimization here too. When inserting 9075 ** multiple records into an intkey b-tree using a single cursor (as can 9076 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9077 ** is advantageous to leave the cursor pointing to the last entry in 9078 ** the b-tree if possible. If the cursor is left pointing to the last 9079 ** entry in the table, and the next row inserted has an integer key 9080 ** larger than the largest existing key, it is possible to insert the 9081 ** row without seeking the cursor. This can be a big performance boost. 9082 */ 9083 pCur->info.nSize = 0; 9084 if( pPage->nOverflow ){ 9085 assert( rc==SQLITE_OK ); 9086 pCur->curFlags &= ~(BTCF_ValidNKey); 9087 rc = balance(pCur); 9088 9089 /* Must make sure nOverflow is reset to zero even if the balance() 9090 ** fails. Internal data structure corruption will result otherwise. 9091 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9092 ** from trying to save the current position of the cursor. */ 9093 pCur->pPage->nOverflow = 0; 9094 pCur->eState = CURSOR_INVALID; 9095 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9096 btreeReleaseAllCursorPages(pCur); 9097 if( pCur->pKeyInfo ){ 9098 assert( pCur->pKey==0 ); 9099 pCur->pKey = sqlite3Malloc( pX->nKey ); 9100 if( pCur->pKey==0 ){ 9101 rc = SQLITE_NOMEM; 9102 }else{ 9103 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9104 } 9105 } 9106 pCur->eState = CURSOR_REQUIRESEEK; 9107 pCur->nKey = pX->nKey; 9108 } 9109 } 9110 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9111 9112 end_insert: 9113 return rc; 9114 } 9115 9116 /* 9117 ** This function is used as part of copying the current row from cursor 9118 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9119 ** parameter iKey is used as the rowid value when the record is copied 9120 ** into pDest. Otherwise, the record is copied verbatim. 9121 ** 9122 ** This function does not actually write the new value to cursor pDest. 9123 ** Instead, it creates and populates any required overflow pages and 9124 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9125 ** for the destination database. The size of the cell, in bytes, is left 9126 ** in BtShared.nPreformatSize. The caller completes the insertion by 9127 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9128 ** 9129 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9130 */ 9131 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9132 int rc = SQLITE_OK; 9133 BtShared *pBt = pDest->pBt; 9134 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9135 const u8 *aIn; /* Pointer to next input buffer */ 9136 u32 nIn; /* Size of input buffer aIn[] */ 9137 u32 nRem; /* Bytes of data still to copy */ 9138 9139 getCellInfo(pSrc); 9140 aOut += putVarint32(aOut, pSrc->info.nPayload); 9141 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9142 nIn = pSrc->info.nLocal; 9143 aIn = pSrc->info.pPayload; 9144 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9145 return SQLITE_CORRUPT_BKPT; 9146 } 9147 nRem = pSrc->info.nPayload; 9148 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9149 memcpy(aOut, aIn, nIn); 9150 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9151 }else{ 9152 Pager *pSrcPager = pSrc->pBt->pPager; 9153 u8 *pPgnoOut = 0; 9154 Pgno ovflIn = 0; 9155 DbPage *pPageIn = 0; 9156 MemPage *pPageOut = 0; 9157 u32 nOut; /* Size of output buffer aOut[] */ 9158 9159 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9160 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9161 if( nOut<pSrc->info.nPayload ){ 9162 pPgnoOut = &aOut[nOut]; 9163 pBt->nPreformatSize += 4; 9164 } 9165 9166 if( nRem>nIn ){ 9167 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9168 return SQLITE_CORRUPT_BKPT; 9169 } 9170 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9171 } 9172 9173 do { 9174 nRem -= nOut; 9175 do{ 9176 assert( nOut>0 ); 9177 if( nIn>0 ){ 9178 int nCopy = MIN(nOut, nIn); 9179 memcpy(aOut, aIn, nCopy); 9180 nOut -= nCopy; 9181 nIn -= nCopy; 9182 aOut += nCopy; 9183 aIn += nCopy; 9184 } 9185 if( nOut>0 ){ 9186 sqlite3PagerUnref(pPageIn); 9187 pPageIn = 0; 9188 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9189 if( rc==SQLITE_OK ){ 9190 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9191 ovflIn = get4byte(aIn); 9192 aIn += 4; 9193 nIn = pSrc->pBt->usableSize - 4; 9194 } 9195 } 9196 }while( rc==SQLITE_OK && nOut>0 ); 9197 9198 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9199 Pgno pgnoNew; 9200 MemPage *pNew = 0; 9201 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9202 put4byte(pPgnoOut, pgnoNew); 9203 if( ISAUTOVACUUM && pPageOut ){ 9204 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9205 } 9206 releasePage(pPageOut); 9207 pPageOut = pNew; 9208 if( pPageOut ){ 9209 pPgnoOut = pPageOut->aData; 9210 put4byte(pPgnoOut, 0); 9211 aOut = &pPgnoOut[4]; 9212 nOut = MIN(pBt->usableSize - 4, nRem); 9213 } 9214 } 9215 }while( nRem>0 && rc==SQLITE_OK ); 9216 9217 releasePage(pPageOut); 9218 sqlite3PagerUnref(pPageIn); 9219 } 9220 9221 return rc; 9222 } 9223 9224 /* 9225 ** Delete the entry that the cursor is pointing to. 9226 ** 9227 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9228 ** the cursor is left pointing at an arbitrary location after the delete. 9229 ** But if that bit is set, then the cursor is left in a state such that 9230 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9231 ** as it would have been on if the call to BtreeDelete() had been omitted. 9232 ** 9233 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9234 ** associated with a single table entry and its indexes. Only one of those 9235 ** deletes is considered the "primary" delete. The primary delete occurs 9236 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9237 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9238 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9239 ** but which might be used by alternative storage engines. 9240 */ 9241 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9242 Btree *p = pCur->pBtree; 9243 BtShared *pBt = p->pBt; 9244 int rc; /* Return code */ 9245 MemPage *pPage; /* Page to delete cell from */ 9246 unsigned char *pCell; /* Pointer to cell to delete */ 9247 int iCellIdx; /* Index of cell to delete */ 9248 int iCellDepth; /* Depth of node containing pCell */ 9249 CellInfo info; /* Size of the cell being deleted */ 9250 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9251 9252 assert( cursorOwnsBtShared(pCur) ); 9253 assert( pBt->inTransaction==TRANS_WRITE ); 9254 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9255 assert( pCur->curFlags & BTCF_WriteFlag ); 9256 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9257 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9258 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9259 if( pCur->eState==CURSOR_REQUIRESEEK ){ 9260 rc = btreeRestoreCursorPosition(pCur); 9261 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9262 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9263 } 9264 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9265 9266 iCellDepth = pCur->iPage; 9267 iCellIdx = pCur->ix; 9268 pPage = pCur->pPage; 9269 if( pPage->nCell<=iCellIdx ){ 9270 return SQLITE_CORRUPT_BKPT; 9271 } 9272 pCell = findCell(pPage, iCellIdx); 9273 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9274 return SQLITE_CORRUPT_BKPT; 9275 } 9276 9277 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9278 ** be preserved following this delete operation. If the current delete 9279 ** will cause a b-tree rebalance, then this is done by saving the cursor 9280 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9281 ** returning. 9282 ** 9283 ** If the current delete will not cause a rebalance, then the cursor 9284 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9285 ** before or after the deleted entry. 9286 ** 9287 ** The bPreserve value records which path is required: 9288 ** 9289 ** bPreserve==0 Not necessary to save the cursor position 9290 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9291 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9292 */ 9293 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9294 if( bPreserve ){ 9295 if( !pPage->leaf 9296 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 9297 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9298 ){ 9299 /* A b-tree rebalance will be required after deleting this entry. 9300 ** Save the cursor key. */ 9301 rc = saveCursorKey(pCur); 9302 if( rc ) return rc; 9303 }else{ 9304 bPreserve = 2; 9305 } 9306 } 9307 9308 /* If the page containing the entry to delete is not a leaf page, move 9309 ** the cursor to the largest entry in the tree that is smaller than 9310 ** the entry being deleted. This cell will replace the cell being deleted 9311 ** from the internal node. The 'previous' entry is used for this instead 9312 ** of the 'next' entry, as the previous entry is always a part of the 9313 ** sub-tree headed by the child page of the cell being deleted. This makes 9314 ** balancing the tree following the delete operation easier. */ 9315 if( !pPage->leaf ){ 9316 rc = sqlite3BtreePrevious(pCur, 0); 9317 assert( rc!=SQLITE_DONE ); 9318 if( rc ) return rc; 9319 } 9320 9321 /* Save the positions of any other cursors open on this table before 9322 ** making any modifications. */ 9323 if( pCur->curFlags & BTCF_Multiple ){ 9324 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9325 if( rc ) return rc; 9326 } 9327 9328 /* If this is a delete operation to remove a row from a table b-tree, 9329 ** invalidate any incrblob cursors open on the row being deleted. */ 9330 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9331 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9332 } 9333 9334 /* Make the page containing the entry to be deleted writable. Then free any 9335 ** overflow pages associated with the entry and finally remove the cell 9336 ** itself from within the page. */ 9337 rc = sqlite3PagerWrite(pPage->pDbPage); 9338 if( rc ) return rc; 9339 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9340 dropCell(pPage, iCellIdx, info.nSize, &rc); 9341 if( rc ) return rc; 9342 9343 /* If the cell deleted was not located on a leaf page, then the cursor 9344 ** is currently pointing to the largest entry in the sub-tree headed 9345 ** by the child-page of the cell that was just deleted from an internal 9346 ** node. The cell from the leaf node needs to be moved to the internal 9347 ** node to replace the deleted cell. */ 9348 if( !pPage->leaf ){ 9349 MemPage *pLeaf = pCur->pPage; 9350 int nCell; 9351 Pgno n; 9352 unsigned char *pTmp; 9353 9354 if( pLeaf->nFree<0 ){ 9355 rc = btreeComputeFreeSpace(pLeaf); 9356 if( rc ) return rc; 9357 } 9358 if( iCellDepth<pCur->iPage-1 ){ 9359 n = pCur->apPage[iCellDepth+1]->pgno; 9360 }else{ 9361 n = pCur->pPage->pgno; 9362 } 9363 pCell = findCell(pLeaf, pLeaf->nCell-1); 9364 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9365 nCell = pLeaf->xCellSize(pLeaf, pCell); 9366 assert( MX_CELL_SIZE(pBt) >= nCell ); 9367 pTmp = pBt->pTmpSpace; 9368 assert( pTmp!=0 ); 9369 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9370 if( rc==SQLITE_OK ){ 9371 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9372 } 9373 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9374 if( rc ) return rc; 9375 } 9376 9377 /* Balance the tree. If the entry deleted was located on a leaf page, 9378 ** then the cursor still points to that page. In this case the first 9379 ** call to balance() repairs the tree, and the if(...) condition is 9380 ** never true. 9381 ** 9382 ** Otherwise, if the entry deleted was on an internal node page, then 9383 ** pCur is pointing to the leaf page from which a cell was removed to 9384 ** replace the cell deleted from the internal node. This is slightly 9385 ** tricky as the leaf node may be underfull, and the internal node may 9386 ** be either under or overfull. In this case run the balancing algorithm 9387 ** on the leaf node first. If the balance proceeds far enough up the 9388 ** tree that we can be sure that any problem in the internal node has 9389 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9390 ** walk the cursor up the tree to the internal node and balance it as 9391 ** well. */ 9392 rc = balance(pCur); 9393 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9394 releasePageNotNull(pCur->pPage); 9395 pCur->iPage--; 9396 while( pCur->iPage>iCellDepth ){ 9397 releasePage(pCur->apPage[pCur->iPage--]); 9398 } 9399 pCur->pPage = pCur->apPage[pCur->iPage]; 9400 rc = balance(pCur); 9401 } 9402 9403 if( rc==SQLITE_OK ){ 9404 if( bPreserve>1 ){ 9405 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9406 assert( pPage==pCur->pPage || CORRUPT_DB ); 9407 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9408 pCur->eState = CURSOR_SKIPNEXT; 9409 if( iCellIdx>=pPage->nCell ){ 9410 pCur->skipNext = -1; 9411 pCur->ix = pPage->nCell-1; 9412 }else{ 9413 pCur->skipNext = 1; 9414 } 9415 }else{ 9416 rc = moveToRoot(pCur); 9417 if( bPreserve ){ 9418 btreeReleaseAllCursorPages(pCur); 9419 pCur->eState = CURSOR_REQUIRESEEK; 9420 } 9421 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9422 } 9423 } 9424 return rc; 9425 } 9426 9427 /* 9428 ** Create a new BTree table. Write into *piTable the page 9429 ** number for the root page of the new table. 9430 ** 9431 ** The type of type is determined by the flags parameter. Only the 9432 ** following values of flags are currently in use. Other values for 9433 ** flags might not work: 9434 ** 9435 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9436 ** BTREE_ZERODATA Used for SQL indices 9437 */ 9438 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9439 BtShared *pBt = p->pBt; 9440 MemPage *pRoot; 9441 Pgno pgnoRoot; 9442 int rc; 9443 int ptfFlags; /* Page-type flage for the root page of new table */ 9444 9445 assert( sqlite3BtreeHoldsMutex(p) ); 9446 assert( pBt->inTransaction==TRANS_WRITE ); 9447 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9448 9449 #ifdef SQLITE_OMIT_AUTOVACUUM 9450 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9451 if( rc ){ 9452 return rc; 9453 } 9454 #else 9455 if( pBt->autoVacuum ){ 9456 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9457 MemPage *pPageMove; /* The page to move to. */ 9458 9459 /* Creating a new table may probably require moving an existing database 9460 ** to make room for the new tables root page. In case this page turns 9461 ** out to be an overflow page, delete all overflow page-map caches 9462 ** held by open cursors. 9463 */ 9464 invalidateAllOverflowCache(pBt); 9465 9466 /* Read the value of meta[3] from the database to determine where the 9467 ** root page of the new table should go. meta[3] is the largest root-page 9468 ** created so far, so the new root-page is (meta[3]+1). 9469 */ 9470 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9471 if( pgnoRoot>btreePagecount(pBt) ){ 9472 return SQLITE_CORRUPT_BKPT; 9473 } 9474 pgnoRoot++; 9475 9476 /* The new root-page may not be allocated on a pointer-map page, or the 9477 ** PENDING_BYTE page. 9478 */ 9479 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9480 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9481 pgnoRoot++; 9482 } 9483 assert( pgnoRoot>=3 ); 9484 9485 /* Allocate a page. The page that currently resides at pgnoRoot will 9486 ** be moved to the allocated page (unless the allocated page happens 9487 ** to reside at pgnoRoot). 9488 */ 9489 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9490 if( rc!=SQLITE_OK ){ 9491 return rc; 9492 } 9493 9494 if( pgnoMove!=pgnoRoot ){ 9495 /* pgnoRoot is the page that will be used for the root-page of 9496 ** the new table (assuming an error did not occur). But we were 9497 ** allocated pgnoMove. If required (i.e. if it was not allocated 9498 ** by extending the file), the current page at position pgnoMove 9499 ** is already journaled. 9500 */ 9501 u8 eType = 0; 9502 Pgno iPtrPage = 0; 9503 9504 /* Save the positions of any open cursors. This is required in 9505 ** case they are holding a reference to an xFetch reference 9506 ** corresponding to page pgnoRoot. */ 9507 rc = saveAllCursors(pBt, 0, 0); 9508 releasePage(pPageMove); 9509 if( rc!=SQLITE_OK ){ 9510 return rc; 9511 } 9512 9513 /* Move the page currently at pgnoRoot to pgnoMove. */ 9514 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9515 if( rc!=SQLITE_OK ){ 9516 return rc; 9517 } 9518 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9519 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9520 rc = SQLITE_CORRUPT_BKPT; 9521 } 9522 if( rc!=SQLITE_OK ){ 9523 releasePage(pRoot); 9524 return rc; 9525 } 9526 assert( eType!=PTRMAP_ROOTPAGE ); 9527 assert( eType!=PTRMAP_FREEPAGE ); 9528 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9529 releasePage(pRoot); 9530 9531 /* Obtain the page at pgnoRoot */ 9532 if( rc!=SQLITE_OK ){ 9533 return rc; 9534 } 9535 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9536 if( rc!=SQLITE_OK ){ 9537 return rc; 9538 } 9539 rc = sqlite3PagerWrite(pRoot->pDbPage); 9540 if( rc!=SQLITE_OK ){ 9541 releasePage(pRoot); 9542 return rc; 9543 } 9544 }else{ 9545 pRoot = pPageMove; 9546 } 9547 9548 /* Update the pointer-map and meta-data with the new root-page number. */ 9549 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9550 if( rc ){ 9551 releasePage(pRoot); 9552 return rc; 9553 } 9554 9555 /* When the new root page was allocated, page 1 was made writable in 9556 ** order either to increase the database filesize, or to decrement the 9557 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9558 */ 9559 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9560 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9561 if( NEVER(rc) ){ 9562 releasePage(pRoot); 9563 return rc; 9564 } 9565 9566 }else{ 9567 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9568 if( rc ) return rc; 9569 } 9570 #endif 9571 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9572 if( createTabFlags & BTREE_INTKEY ){ 9573 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9574 }else{ 9575 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9576 } 9577 zeroPage(pRoot, ptfFlags); 9578 sqlite3PagerUnref(pRoot->pDbPage); 9579 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9580 *piTable = pgnoRoot; 9581 return SQLITE_OK; 9582 } 9583 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9584 int rc; 9585 sqlite3BtreeEnter(p); 9586 rc = btreeCreateTable(p, piTable, flags); 9587 sqlite3BtreeLeave(p); 9588 return rc; 9589 } 9590 9591 /* 9592 ** Erase the given database page and all its children. Return 9593 ** the page to the freelist. 9594 */ 9595 static int clearDatabasePage( 9596 BtShared *pBt, /* The BTree that contains the table */ 9597 Pgno pgno, /* Page number to clear */ 9598 int freePageFlag, /* Deallocate page if true */ 9599 i64 *pnChange /* Add number of Cells freed to this counter */ 9600 ){ 9601 MemPage *pPage; 9602 int rc; 9603 unsigned char *pCell; 9604 int i; 9605 int hdr; 9606 CellInfo info; 9607 9608 assert( sqlite3_mutex_held(pBt->mutex) ); 9609 if( pgno>btreePagecount(pBt) ){ 9610 return SQLITE_CORRUPT_BKPT; 9611 } 9612 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9613 if( rc ) return rc; 9614 if( (pBt->openFlags & BTREE_SINGLE)==0 9615 && sqlite3PagerPageRefcount(pPage->pDbPage)!=1 9616 ){ 9617 rc = SQLITE_CORRUPT_BKPT; 9618 goto cleardatabasepage_out; 9619 } 9620 hdr = pPage->hdrOffset; 9621 for(i=0; i<pPage->nCell; i++){ 9622 pCell = findCell(pPage, i); 9623 if( !pPage->leaf ){ 9624 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9625 if( rc ) goto cleardatabasepage_out; 9626 } 9627 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9628 if( rc ) goto cleardatabasepage_out; 9629 } 9630 if( !pPage->leaf ){ 9631 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9632 if( rc ) goto cleardatabasepage_out; 9633 if( pPage->intKey ) pnChange = 0; 9634 } 9635 if( pnChange ){ 9636 testcase( !pPage->intKey ); 9637 *pnChange += pPage->nCell; 9638 } 9639 if( freePageFlag ){ 9640 freePage(pPage, &rc); 9641 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9642 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9643 } 9644 9645 cleardatabasepage_out: 9646 releasePage(pPage); 9647 return rc; 9648 } 9649 9650 /* 9651 ** Delete all information from a single table in the database. iTable is 9652 ** the page number of the root of the table. After this routine returns, 9653 ** the root page is empty, but still exists. 9654 ** 9655 ** This routine will fail with SQLITE_LOCKED if there are any open 9656 ** read cursors on the table. Open write cursors are moved to the 9657 ** root of the table. 9658 ** 9659 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9660 ** is incremented by the number of entries in the table. 9661 */ 9662 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9663 int rc; 9664 BtShared *pBt = p->pBt; 9665 sqlite3BtreeEnter(p); 9666 assert( p->inTrans==TRANS_WRITE ); 9667 9668 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9669 9670 if( SQLITE_OK==rc ){ 9671 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9672 ** is the root of a table b-tree - if it is not, the following call is 9673 ** a no-op). */ 9674 if( p->hasIncrblobCur ){ 9675 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9676 } 9677 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9678 } 9679 sqlite3BtreeLeave(p); 9680 return rc; 9681 } 9682 9683 /* 9684 ** Delete all information from the single table that pCur is open on. 9685 ** 9686 ** This routine only work for pCur on an ephemeral table. 9687 */ 9688 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9689 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9690 } 9691 9692 /* 9693 ** Erase all information in a table and add the root of the table to 9694 ** the freelist. Except, the root of the principle table (the one on 9695 ** page 1) is never added to the freelist. 9696 ** 9697 ** This routine will fail with SQLITE_LOCKED if there are any open 9698 ** cursors on the table. 9699 ** 9700 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9701 ** root page in the database file, then the last root page 9702 ** in the database file is moved into the slot formerly occupied by 9703 ** iTable and that last slot formerly occupied by the last root page 9704 ** is added to the freelist instead of iTable. In this say, all 9705 ** root pages are kept at the beginning of the database file, which 9706 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9707 ** page number that used to be the last root page in the file before 9708 ** the move. If no page gets moved, *piMoved is set to 0. 9709 ** The last root page is recorded in meta[3] and the value of 9710 ** meta[3] is updated by this procedure. 9711 */ 9712 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9713 int rc; 9714 MemPage *pPage = 0; 9715 BtShared *pBt = p->pBt; 9716 9717 assert( sqlite3BtreeHoldsMutex(p) ); 9718 assert( p->inTrans==TRANS_WRITE ); 9719 assert( iTable>=2 ); 9720 if( iTable>btreePagecount(pBt) ){ 9721 return SQLITE_CORRUPT_BKPT; 9722 } 9723 9724 rc = sqlite3BtreeClearTable(p, iTable, 0); 9725 if( rc ) return rc; 9726 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9727 if( NEVER(rc) ){ 9728 releasePage(pPage); 9729 return rc; 9730 } 9731 9732 *piMoved = 0; 9733 9734 #ifdef SQLITE_OMIT_AUTOVACUUM 9735 freePage(pPage, &rc); 9736 releasePage(pPage); 9737 #else 9738 if( pBt->autoVacuum ){ 9739 Pgno maxRootPgno; 9740 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9741 9742 if( iTable==maxRootPgno ){ 9743 /* If the table being dropped is the table with the largest root-page 9744 ** number in the database, put the root page on the free list. 9745 */ 9746 freePage(pPage, &rc); 9747 releasePage(pPage); 9748 if( rc!=SQLITE_OK ){ 9749 return rc; 9750 } 9751 }else{ 9752 /* The table being dropped does not have the largest root-page 9753 ** number in the database. So move the page that does into the 9754 ** gap left by the deleted root-page. 9755 */ 9756 MemPage *pMove; 9757 releasePage(pPage); 9758 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9759 if( rc!=SQLITE_OK ){ 9760 return rc; 9761 } 9762 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9763 releasePage(pMove); 9764 if( rc!=SQLITE_OK ){ 9765 return rc; 9766 } 9767 pMove = 0; 9768 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9769 freePage(pMove, &rc); 9770 releasePage(pMove); 9771 if( rc!=SQLITE_OK ){ 9772 return rc; 9773 } 9774 *piMoved = maxRootPgno; 9775 } 9776 9777 /* Set the new 'max-root-page' value in the database header. This 9778 ** is the old value less one, less one more if that happens to 9779 ** be a root-page number, less one again if that is the 9780 ** PENDING_BYTE_PAGE. 9781 */ 9782 maxRootPgno--; 9783 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9784 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9785 maxRootPgno--; 9786 } 9787 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9788 9789 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9790 }else{ 9791 freePage(pPage, &rc); 9792 releasePage(pPage); 9793 } 9794 #endif 9795 return rc; 9796 } 9797 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9798 int rc; 9799 sqlite3BtreeEnter(p); 9800 rc = btreeDropTable(p, iTable, piMoved); 9801 sqlite3BtreeLeave(p); 9802 return rc; 9803 } 9804 9805 9806 /* 9807 ** This function may only be called if the b-tree connection already 9808 ** has a read or write transaction open on the database. 9809 ** 9810 ** Read the meta-information out of a database file. Meta[0] 9811 ** is the number of free pages currently in the database. Meta[1] 9812 ** through meta[15] are available for use by higher layers. Meta[0] 9813 ** is read-only, the others are read/write. 9814 ** 9815 ** The schema layer numbers meta values differently. At the schema 9816 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9817 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9818 ** 9819 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9820 ** of reading the value out of the header, it instead loads the "DataVersion" 9821 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9822 ** database file. It is a number computed by the pager. But its access 9823 ** pattern is the same as header meta values, and so it is convenient to 9824 ** read it from this routine. 9825 */ 9826 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9827 BtShared *pBt = p->pBt; 9828 9829 sqlite3BtreeEnter(p); 9830 assert( p->inTrans>TRANS_NONE ); 9831 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 9832 assert( pBt->pPage1 ); 9833 assert( idx>=0 && idx<=15 ); 9834 9835 if( idx==BTREE_DATA_VERSION ){ 9836 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 9837 }else{ 9838 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9839 } 9840 9841 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9842 ** database, mark the database as read-only. */ 9843 #ifdef SQLITE_OMIT_AUTOVACUUM 9844 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9845 pBt->btsFlags |= BTS_READ_ONLY; 9846 } 9847 #endif 9848 9849 sqlite3BtreeLeave(p); 9850 } 9851 9852 /* 9853 ** Write meta-information back into the database. Meta[0] is 9854 ** read-only and may not be written. 9855 */ 9856 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9857 BtShared *pBt = p->pBt; 9858 unsigned char *pP1; 9859 int rc; 9860 assert( idx>=1 && idx<=15 ); 9861 sqlite3BtreeEnter(p); 9862 assert( p->inTrans==TRANS_WRITE ); 9863 assert( pBt->pPage1!=0 ); 9864 pP1 = pBt->pPage1->aData; 9865 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9866 if( rc==SQLITE_OK ){ 9867 put4byte(&pP1[36 + idx*4], iMeta); 9868 #ifndef SQLITE_OMIT_AUTOVACUUM 9869 if( idx==BTREE_INCR_VACUUM ){ 9870 assert( pBt->autoVacuum || iMeta==0 ); 9871 assert( iMeta==0 || iMeta==1 ); 9872 pBt->incrVacuum = (u8)iMeta; 9873 } 9874 #endif 9875 } 9876 sqlite3BtreeLeave(p); 9877 return rc; 9878 } 9879 9880 /* 9881 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9882 ** number of entries in the b-tree and write the result to *pnEntry. 9883 ** 9884 ** SQLITE_OK is returned if the operation is successfully executed. 9885 ** Otherwise, if an error is encountered (i.e. an IO error or database 9886 ** corruption) an SQLite error code is returned. 9887 */ 9888 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9889 i64 nEntry = 0; /* Value to return in *pnEntry */ 9890 int rc; /* Return code */ 9891 9892 rc = moveToRoot(pCur); 9893 if( rc==SQLITE_EMPTY ){ 9894 *pnEntry = 0; 9895 return SQLITE_OK; 9896 } 9897 9898 /* Unless an error occurs, the following loop runs one iteration for each 9899 ** page in the B-Tree structure (not including overflow pages). 9900 */ 9901 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 9902 int iIdx; /* Index of child node in parent */ 9903 MemPage *pPage; /* Current page of the b-tree */ 9904 9905 /* If this is a leaf page or the tree is not an int-key tree, then 9906 ** this page contains countable entries. Increment the entry counter 9907 ** accordingly. 9908 */ 9909 pPage = pCur->pPage; 9910 if( pPage->leaf || !pPage->intKey ){ 9911 nEntry += pPage->nCell; 9912 } 9913 9914 /* pPage is a leaf node. This loop navigates the cursor so that it 9915 ** points to the first interior cell that it points to the parent of 9916 ** the next page in the tree that has not yet been visited. The 9917 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9918 ** of the page, or to the number of cells in the page if the next page 9919 ** to visit is the right-child of its parent. 9920 ** 9921 ** If all pages in the tree have been visited, return SQLITE_OK to the 9922 ** caller. 9923 */ 9924 if( pPage->leaf ){ 9925 do { 9926 if( pCur->iPage==0 ){ 9927 /* All pages of the b-tree have been visited. Return successfully. */ 9928 *pnEntry = nEntry; 9929 return moveToRoot(pCur); 9930 } 9931 moveToParent(pCur); 9932 }while ( pCur->ix>=pCur->pPage->nCell ); 9933 9934 pCur->ix++; 9935 pPage = pCur->pPage; 9936 } 9937 9938 /* Descend to the child node of the cell that the cursor currently 9939 ** points at. This is the right-child if (iIdx==pPage->nCell). 9940 */ 9941 iIdx = pCur->ix; 9942 if( iIdx==pPage->nCell ){ 9943 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9944 }else{ 9945 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9946 } 9947 } 9948 9949 /* An error has occurred. Return an error code. */ 9950 return rc; 9951 } 9952 9953 /* 9954 ** Return the pager associated with a BTree. This routine is used for 9955 ** testing and debugging only. 9956 */ 9957 Pager *sqlite3BtreePager(Btree *p){ 9958 return p->pBt->pPager; 9959 } 9960 9961 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9962 /* 9963 ** Append a message to the error message string. 9964 */ 9965 static void checkAppendMsg( 9966 IntegrityCk *pCheck, 9967 const char *zFormat, 9968 ... 9969 ){ 9970 va_list ap; 9971 if( !pCheck->mxErr ) return; 9972 pCheck->mxErr--; 9973 pCheck->nErr++; 9974 va_start(ap, zFormat); 9975 if( pCheck->errMsg.nChar ){ 9976 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9977 } 9978 if( pCheck->zPfx ){ 9979 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9980 } 9981 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9982 va_end(ap); 9983 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9984 pCheck->bOomFault = 1; 9985 } 9986 } 9987 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9988 9989 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9990 9991 /* 9992 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9993 ** corresponds to page iPg is already set. 9994 */ 9995 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9996 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9997 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9998 } 9999 10000 /* 10001 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10002 */ 10003 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10004 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10005 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10006 } 10007 10008 10009 /* 10010 ** Add 1 to the reference count for page iPage. If this is the second 10011 ** reference to the page, add an error message to pCheck->zErrMsg. 10012 ** Return 1 if there are 2 or more references to the page and 0 if 10013 ** if this is the first reference to the page. 10014 ** 10015 ** Also check that the page number is in bounds. 10016 */ 10017 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10018 if( iPage>pCheck->nPage || iPage==0 ){ 10019 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10020 return 1; 10021 } 10022 if( getPageReferenced(pCheck, iPage) ){ 10023 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10024 return 1; 10025 } 10026 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10027 setPageReferenced(pCheck, iPage); 10028 return 0; 10029 } 10030 10031 #ifndef SQLITE_OMIT_AUTOVACUUM 10032 /* 10033 ** Check that the entry in the pointer-map for page iChild maps to 10034 ** page iParent, pointer type ptrType. If not, append an error message 10035 ** to pCheck. 10036 */ 10037 static void checkPtrmap( 10038 IntegrityCk *pCheck, /* Integrity check context */ 10039 Pgno iChild, /* Child page number */ 10040 u8 eType, /* Expected pointer map type */ 10041 Pgno iParent /* Expected pointer map parent page number */ 10042 ){ 10043 int rc; 10044 u8 ePtrmapType; 10045 Pgno iPtrmapParent; 10046 10047 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10048 if( rc!=SQLITE_OK ){ 10049 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10050 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10051 return; 10052 } 10053 10054 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10055 checkAppendMsg(pCheck, 10056 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10057 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10058 } 10059 } 10060 #endif 10061 10062 /* 10063 ** Check the integrity of the freelist or of an overflow page list. 10064 ** Verify that the number of pages on the list is N. 10065 */ 10066 static void checkList( 10067 IntegrityCk *pCheck, /* Integrity checking context */ 10068 int isFreeList, /* True for a freelist. False for overflow page list */ 10069 Pgno iPage, /* Page number for first page in the list */ 10070 u32 N /* Expected number of pages in the list */ 10071 ){ 10072 int i; 10073 u32 expected = N; 10074 int nErrAtStart = pCheck->nErr; 10075 while( iPage!=0 && pCheck->mxErr ){ 10076 DbPage *pOvflPage; 10077 unsigned char *pOvflData; 10078 if( checkRef(pCheck, iPage) ) break; 10079 N--; 10080 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10081 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10082 break; 10083 } 10084 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10085 if( isFreeList ){ 10086 u32 n = (u32)get4byte(&pOvflData[4]); 10087 #ifndef SQLITE_OMIT_AUTOVACUUM 10088 if( pCheck->pBt->autoVacuum ){ 10089 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10090 } 10091 #endif 10092 if( n>pCheck->pBt->usableSize/4-2 ){ 10093 checkAppendMsg(pCheck, 10094 "freelist leaf count too big on page %d", iPage); 10095 N--; 10096 }else{ 10097 for(i=0; i<(int)n; i++){ 10098 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10099 #ifndef SQLITE_OMIT_AUTOVACUUM 10100 if( pCheck->pBt->autoVacuum ){ 10101 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10102 } 10103 #endif 10104 checkRef(pCheck, iFreePage); 10105 } 10106 N -= n; 10107 } 10108 } 10109 #ifndef SQLITE_OMIT_AUTOVACUUM 10110 else{ 10111 /* If this database supports auto-vacuum and iPage is not the last 10112 ** page in this overflow list, check that the pointer-map entry for 10113 ** the following page matches iPage. 10114 */ 10115 if( pCheck->pBt->autoVacuum && N>0 ){ 10116 i = get4byte(pOvflData); 10117 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10118 } 10119 } 10120 #endif 10121 iPage = get4byte(pOvflData); 10122 sqlite3PagerUnref(pOvflPage); 10123 } 10124 if( N && nErrAtStart==pCheck->nErr ){ 10125 checkAppendMsg(pCheck, 10126 "%s is %d but should be %d", 10127 isFreeList ? "size" : "overflow list length", 10128 expected-N, expected); 10129 } 10130 } 10131 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10132 10133 /* 10134 ** An implementation of a min-heap. 10135 ** 10136 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10137 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10138 ** and aHeap[N*2+1]. 10139 ** 10140 ** The heap property is this: Every node is less than or equal to both 10141 ** of its daughter nodes. A consequence of the heap property is that the 10142 ** root node aHeap[1] is always the minimum value currently in the heap. 10143 ** 10144 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10145 ** the heap, preserving the heap property. The btreeHeapPull() routine 10146 ** removes the root element from the heap (the minimum value in the heap) 10147 ** and then moves other nodes around as necessary to preserve the heap 10148 ** property. 10149 ** 10150 ** This heap is used for cell overlap and coverage testing. Each u32 10151 ** entry represents the span of a cell or freeblock on a btree page. 10152 ** The upper 16 bits are the index of the first byte of a range and the 10153 ** lower 16 bits are the index of the last byte of that range. 10154 */ 10155 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10156 u32 j, i = ++aHeap[0]; 10157 aHeap[i] = x; 10158 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10159 x = aHeap[j]; 10160 aHeap[j] = aHeap[i]; 10161 aHeap[i] = x; 10162 i = j; 10163 } 10164 } 10165 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10166 u32 j, i, x; 10167 if( (x = aHeap[0])==0 ) return 0; 10168 *pOut = aHeap[1]; 10169 aHeap[1] = aHeap[x]; 10170 aHeap[x] = 0xffffffff; 10171 aHeap[0]--; 10172 i = 1; 10173 while( (j = i*2)<=aHeap[0] ){ 10174 if( aHeap[j]>aHeap[j+1] ) j++; 10175 if( aHeap[i]<aHeap[j] ) break; 10176 x = aHeap[i]; 10177 aHeap[i] = aHeap[j]; 10178 aHeap[j] = x; 10179 i = j; 10180 } 10181 return 1; 10182 } 10183 10184 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10185 /* 10186 ** Do various sanity checks on a single page of a tree. Return 10187 ** the tree depth. Root pages return 0. Parents of root pages 10188 ** return 1, and so forth. 10189 ** 10190 ** These checks are done: 10191 ** 10192 ** 1. Make sure that cells and freeblocks do not overlap 10193 ** but combine to completely cover the page. 10194 ** 2. Make sure integer cell keys are in order. 10195 ** 3. Check the integrity of overflow pages. 10196 ** 4. Recursively call checkTreePage on all children. 10197 ** 5. Verify that the depth of all children is the same. 10198 */ 10199 static int checkTreePage( 10200 IntegrityCk *pCheck, /* Context for the sanity check */ 10201 Pgno iPage, /* Page number of the page to check */ 10202 i64 *piMinKey, /* Write minimum integer primary key here */ 10203 i64 maxKey /* Error if integer primary key greater than this */ 10204 ){ 10205 MemPage *pPage = 0; /* The page being analyzed */ 10206 int i; /* Loop counter */ 10207 int rc; /* Result code from subroutine call */ 10208 int depth = -1, d2; /* Depth of a subtree */ 10209 int pgno; /* Page number */ 10210 int nFrag; /* Number of fragmented bytes on the page */ 10211 int hdr; /* Offset to the page header */ 10212 int cellStart; /* Offset to the start of the cell pointer array */ 10213 int nCell; /* Number of cells */ 10214 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10215 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10216 ** False if IPK must be strictly less than maxKey */ 10217 u8 *data; /* Page content */ 10218 u8 *pCell; /* Cell content */ 10219 u8 *pCellIdx; /* Next element of the cell pointer array */ 10220 BtShared *pBt; /* The BtShared object that owns pPage */ 10221 u32 pc; /* Address of a cell */ 10222 u32 usableSize; /* Usable size of the page */ 10223 u32 contentOffset; /* Offset to the start of the cell content area */ 10224 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10225 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10226 const char *saved_zPfx = pCheck->zPfx; 10227 int saved_v1 = pCheck->v1; 10228 int saved_v2 = pCheck->v2; 10229 u8 savedIsInit = 0; 10230 10231 /* Check that the page exists 10232 */ 10233 pBt = pCheck->pBt; 10234 usableSize = pBt->usableSize; 10235 if( iPage==0 ) return 0; 10236 if( checkRef(pCheck, iPage) ) return 0; 10237 pCheck->zPfx = "Page %u: "; 10238 pCheck->v1 = iPage; 10239 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10240 checkAppendMsg(pCheck, 10241 "unable to get the page. error code=%d", rc); 10242 goto end_of_check; 10243 } 10244 10245 /* Clear MemPage.isInit to make sure the corruption detection code in 10246 ** btreeInitPage() is executed. */ 10247 savedIsInit = pPage->isInit; 10248 pPage->isInit = 0; 10249 if( (rc = btreeInitPage(pPage))!=0 ){ 10250 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10251 checkAppendMsg(pCheck, 10252 "btreeInitPage() returns error code %d", rc); 10253 goto end_of_check; 10254 } 10255 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10256 assert( rc==SQLITE_CORRUPT ); 10257 checkAppendMsg(pCheck, "free space corruption", rc); 10258 goto end_of_check; 10259 } 10260 data = pPage->aData; 10261 hdr = pPage->hdrOffset; 10262 10263 /* Set up for cell analysis */ 10264 pCheck->zPfx = "On tree page %u cell %d: "; 10265 contentOffset = get2byteNotZero(&data[hdr+5]); 10266 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10267 10268 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10269 ** number of cells on the page. */ 10270 nCell = get2byte(&data[hdr+3]); 10271 assert( pPage->nCell==nCell ); 10272 10273 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10274 ** immediately follows the b-tree page header. */ 10275 cellStart = hdr + 12 - 4*pPage->leaf; 10276 assert( pPage->aCellIdx==&data[cellStart] ); 10277 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10278 10279 if( !pPage->leaf ){ 10280 /* Analyze the right-child page of internal pages */ 10281 pgno = get4byte(&data[hdr+8]); 10282 #ifndef SQLITE_OMIT_AUTOVACUUM 10283 if( pBt->autoVacuum ){ 10284 pCheck->zPfx = "On page %u at right child: "; 10285 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10286 } 10287 #endif 10288 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10289 keyCanBeEqual = 0; 10290 }else{ 10291 /* For leaf pages, the coverage check will occur in the same loop 10292 ** as the other cell checks, so initialize the heap. */ 10293 heap = pCheck->heap; 10294 heap[0] = 0; 10295 } 10296 10297 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10298 ** integer offsets to the cell contents. */ 10299 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10300 CellInfo info; 10301 10302 /* Check cell size */ 10303 pCheck->v2 = i; 10304 assert( pCellIdx==&data[cellStart + i*2] ); 10305 pc = get2byteAligned(pCellIdx); 10306 pCellIdx -= 2; 10307 if( pc<contentOffset || pc>usableSize-4 ){ 10308 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10309 pc, contentOffset, usableSize-4); 10310 doCoverageCheck = 0; 10311 continue; 10312 } 10313 pCell = &data[pc]; 10314 pPage->xParseCell(pPage, pCell, &info); 10315 if( pc+info.nSize>usableSize ){ 10316 checkAppendMsg(pCheck, "Extends off end of page"); 10317 doCoverageCheck = 0; 10318 continue; 10319 } 10320 10321 /* Check for integer primary key out of range */ 10322 if( pPage->intKey ){ 10323 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10324 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10325 } 10326 maxKey = info.nKey; 10327 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10328 } 10329 10330 /* Check the content overflow list */ 10331 if( info.nPayload>info.nLocal ){ 10332 u32 nPage; /* Number of pages on the overflow chain */ 10333 Pgno pgnoOvfl; /* First page of the overflow chain */ 10334 assert( pc + info.nSize - 4 <= usableSize ); 10335 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10336 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10337 #ifndef SQLITE_OMIT_AUTOVACUUM 10338 if( pBt->autoVacuum ){ 10339 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10340 } 10341 #endif 10342 checkList(pCheck, 0, pgnoOvfl, nPage); 10343 } 10344 10345 if( !pPage->leaf ){ 10346 /* Check sanity of left child page for internal pages */ 10347 pgno = get4byte(pCell); 10348 #ifndef SQLITE_OMIT_AUTOVACUUM 10349 if( pBt->autoVacuum ){ 10350 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10351 } 10352 #endif 10353 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10354 keyCanBeEqual = 0; 10355 if( d2!=depth ){ 10356 checkAppendMsg(pCheck, "Child page depth differs"); 10357 depth = d2; 10358 } 10359 }else{ 10360 /* Populate the coverage-checking heap for leaf pages */ 10361 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10362 } 10363 } 10364 *piMinKey = maxKey; 10365 10366 /* Check for complete coverage of the page 10367 */ 10368 pCheck->zPfx = 0; 10369 if( doCoverageCheck && pCheck->mxErr>0 ){ 10370 /* For leaf pages, the min-heap has already been initialized and the 10371 ** cells have already been inserted. But for internal pages, that has 10372 ** not yet been done, so do it now */ 10373 if( !pPage->leaf ){ 10374 heap = pCheck->heap; 10375 heap[0] = 0; 10376 for(i=nCell-1; i>=0; i--){ 10377 u32 size; 10378 pc = get2byteAligned(&data[cellStart+i*2]); 10379 size = pPage->xCellSize(pPage, &data[pc]); 10380 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10381 } 10382 } 10383 /* Add the freeblocks to the min-heap 10384 ** 10385 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10386 ** is the offset of the first freeblock, or zero if there are no 10387 ** freeblocks on the page. 10388 */ 10389 i = get2byte(&data[hdr+1]); 10390 while( i>0 ){ 10391 int size, j; 10392 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10393 size = get2byte(&data[i+2]); 10394 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10395 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10396 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10397 ** big-endian integer which is the offset in the b-tree page of the next 10398 ** freeblock in the chain, or zero if the freeblock is the last on the 10399 ** chain. */ 10400 j = get2byte(&data[i]); 10401 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10402 ** increasing offset. */ 10403 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10404 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10405 i = j; 10406 } 10407 /* Analyze the min-heap looking for overlap between cells and/or 10408 ** freeblocks, and counting the number of untracked bytes in nFrag. 10409 ** 10410 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10411 ** There is an implied first entry the covers the page header, the cell 10412 ** pointer index, and the gap between the cell pointer index and the start 10413 ** of cell content. 10414 ** 10415 ** The loop below pulls entries from the min-heap in order and compares 10416 ** the start_address against the previous end_address. If there is an 10417 ** overlap, that means bytes are used multiple times. If there is a gap, 10418 ** that gap is added to the fragmentation count. 10419 */ 10420 nFrag = 0; 10421 prev = contentOffset - 1; /* Implied first min-heap entry */ 10422 while( btreeHeapPull(heap,&x) ){ 10423 if( (prev&0xffff)>=(x>>16) ){ 10424 checkAppendMsg(pCheck, 10425 "Multiple uses for byte %u of page %u", x>>16, iPage); 10426 break; 10427 }else{ 10428 nFrag += (x>>16) - (prev&0xffff) - 1; 10429 prev = x; 10430 } 10431 } 10432 nFrag += usableSize - (prev&0xffff) - 1; 10433 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10434 ** is stored in the fifth field of the b-tree page header. 10435 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10436 ** number of fragmented free bytes within the cell content area. 10437 */ 10438 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10439 checkAppendMsg(pCheck, 10440 "Fragmentation of %d bytes reported as %d on page %u", 10441 nFrag, data[hdr+7], iPage); 10442 } 10443 } 10444 10445 end_of_check: 10446 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10447 releasePage(pPage); 10448 pCheck->zPfx = saved_zPfx; 10449 pCheck->v1 = saved_v1; 10450 pCheck->v2 = saved_v2; 10451 return depth+1; 10452 } 10453 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10454 10455 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10456 /* 10457 ** This routine does a complete check of the given BTree file. aRoot[] is 10458 ** an array of pages numbers were each page number is the root page of 10459 ** a table. nRoot is the number of entries in aRoot. 10460 ** 10461 ** A read-only or read-write transaction must be opened before calling 10462 ** this function. 10463 ** 10464 ** Write the number of error seen in *pnErr. Except for some memory 10465 ** allocation errors, an error message held in memory obtained from 10466 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10467 ** returned. If a memory allocation error occurs, NULL is returned. 10468 ** 10469 ** If the first entry in aRoot[] is 0, that indicates that the list of 10470 ** root pages is incomplete. This is a "partial integrity-check". This 10471 ** happens when performing an integrity check on a single table. The 10472 ** zero is skipped, of course. But in addition, the freelist checks 10473 ** and the checks to make sure every page is referenced are also skipped, 10474 ** since obviously it is not possible to know which pages are covered by 10475 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10476 ** checks are still performed. 10477 */ 10478 char *sqlite3BtreeIntegrityCheck( 10479 sqlite3 *db, /* Database connection that is running the check */ 10480 Btree *p, /* The btree to be checked */ 10481 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10482 int nRoot, /* Number of entries in aRoot[] */ 10483 int mxErr, /* Stop reporting errors after this many */ 10484 int *pnErr /* Write number of errors seen to this variable */ 10485 ){ 10486 Pgno i; 10487 IntegrityCk sCheck; 10488 BtShared *pBt = p->pBt; 10489 u64 savedDbFlags = pBt->db->flags; 10490 char zErr[100]; 10491 int bPartial = 0; /* True if not checking all btrees */ 10492 int bCkFreelist = 1; /* True to scan the freelist */ 10493 VVA_ONLY( int nRef ); 10494 assert( nRoot>0 ); 10495 10496 /* aRoot[0]==0 means this is a partial check */ 10497 if( aRoot[0]==0 ){ 10498 assert( nRoot>1 ); 10499 bPartial = 1; 10500 if( aRoot[1]!=1 ) bCkFreelist = 0; 10501 } 10502 10503 sqlite3BtreeEnter(p); 10504 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10505 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10506 assert( nRef>=0 ); 10507 sCheck.db = db; 10508 sCheck.pBt = pBt; 10509 sCheck.pPager = pBt->pPager; 10510 sCheck.nPage = btreePagecount(sCheck.pBt); 10511 sCheck.mxErr = mxErr; 10512 sCheck.nErr = 0; 10513 sCheck.bOomFault = 0; 10514 sCheck.zPfx = 0; 10515 sCheck.v1 = 0; 10516 sCheck.v2 = 0; 10517 sCheck.aPgRef = 0; 10518 sCheck.heap = 0; 10519 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10520 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10521 if( sCheck.nPage==0 ){ 10522 goto integrity_ck_cleanup; 10523 } 10524 10525 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10526 if( !sCheck.aPgRef ){ 10527 sCheck.bOomFault = 1; 10528 goto integrity_ck_cleanup; 10529 } 10530 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10531 if( sCheck.heap==0 ){ 10532 sCheck.bOomFault = 1; 10533 goto integrity_ck_cleanup; 10534 } 10535 10536 i = PENDING_BYTE_PAGE(pBt); 10537 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10538 10539 /* Check the integrity of the freelist 10540 */ 10541 if( bCkFreelist ){ 10542 sCheck.zPfx = "Main freelist: "; 10543 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10544 get4byte(&pBt->pPage1->aData[36])); 10545 sCheck.zPfx = 0; 10546 } 10547 10548 /* Check all the tables. 10549 */ 10550 #ifndef SQLITE_OMIT_AUTOVACUUM 10551 if( !bPartial ){ 10552 if( pBt->autoVacuum ){ 10553 Pgno mx = 0; 10554 Pgno mxInHdr; 10555 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10556 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10557 if( mx!=mxInHdr ){ 10558 checkAppendMsg(&sCheck, 10559 "max rootpage (%d) disagrees with header (%d)", 10560 mx, mxInHdr 10561 ); 10562 } 10563 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10564 checkAppendMsg(&sCheck, 10565 "incremental_vacuum enabled with a max rootpage of zero" 10566 ); 10567 } 10568 } 10569 #endif 10570 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10571 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10572 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10573 i64 notUsed; 10574 if( aRoot[i]==0 ) continue; 10575 #ifndef SQLITE_OMIT_AUTOVACUUM 10576 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10577 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10578 } 10579 #endif 10580 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10581 } 10582 pBt->db->flags = savedDbFlags; 10583 10584 /* Make sure every page in the file is referenced 10585 */ 10586 if( !bPartial ){ 10587 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10588 #ifdef SQLITE_OMIT_AUTOVACUUM 10589 if( getPageReferenced(&sCheck, i)==0 ){ 10590 checkAppendMsg(&sCheck, "Page %d is never used", i); 10591 } 10592 #else 10593 /* If the database supports auto-vacuum, make sure no tables contain 10594 ** references to pointer-map pages. 10595 */ 10596 if( getPageReferenced(&sCheck, i)==0 && 10597 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10598 checkAppendMsg(&sCheck, "Page %d is never used", i); 10599 } 10600 if( getPageReferenced(&sCheck, i)!=0 && 10601 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10602 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10603 } 10604 #endif 10605 } 10606 } 10607 10608 /* Clean up and report errors. 10609 */ 10610 integrity_ck_cleanup: 10611 sqlite3PageFree(sCheck.heap); 10612 sqlite3_free(sCheck.aPgRef); 10613 if( sCheck.bOomFault ){ 10614 sqlite3_str_reset(&sCheck.errMsg); 10615 sCheck.nErr++; 10616 } 10617 *pnErr = sCheck.nErr; 10618 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10619 /* Make sure this analysis did not leave any unref() pages. */ 10620 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10621 sqlite3BtreeLeave(p); 10622 return sqlite3StrAccumFinish(&sCheck.errMsg); 10623 } 10624 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10625 10626 /* 10627 ** Return the full pathname of the underlying database file. Return 10628 ** an empty string if the database is in-memory or a TEMP database. 10629 ** 10630 ** The pager filename is invariant as long as the pager is 10631 ** open so it is safe to access without the BtShared mutex. 10632 */ 10633 const char *sqlite3BtreeGetFilename(Btree *p){ 10634 assert( p->pBt->pPager!=0 ); 10635 return sqlite3PagerFilename(p->pBt->pPager, 1); 10636 } 10637 10638 /* 10639 ** Return the pathname of the journal file for this database. The return 10640 ** value of this routine is the same regardless of whether the journal file 10641 ** has been created or not. 10642 ** 10643 ** The pager journal filename is invariant as long as the pager is 10644 ** open so it is safe to access without the BtShared mutex. 10645 */ 10646 const char *sqlite3BtreeGetJournalname(Btree *p){ 10647 assert( p->pBt->pPager!=0 ); 10648 return sqlite3PagerJournalname(p->pBt->pPager); 10649 } 10650 10651 /* 10652 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10653 ** to describe the current transaction state of Btree p. 10654 */ 10655 int sqlite3BtreeTxnState(Btree *p){ 10656 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10657 return p ? p->inTrans : 0; 10658 } 10659 10660 #ifndef SQLITE_OMIT_WAL 10661 /* 10662 ** Run a checkpoint on the Btree passed as the first argument. 10663 ** 10664 ** Return SQLITE_LOCKED if this or any other connection has an open 10665 ** transaction on the shared-cache the argument Btree is connected to. 10666 ** 10667 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10668 */ 10669 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10670 int rc = SQLITE_OK; 10671 if( p ){ 10672 BtShared *pBt = p->pBt; 10673 sqlite3BtreeEnter(p); 10674 if( pBt->inTransaction!=TRANS_NONE ){ 10675 rc = SQLITE_LOCKED; 10676 }else{ 10677 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10678 } 10679 sqlite3BtreeLeave(p); 10680 } 10681 return rc; 10682 } 10683 #endif 10684 10685 /* 10686 ** Return true if there is currently a backup running on Btree p. 10687 */ 10688 int sqlite3BtreeIsInBackup(Btree *p){ 10689 assert( p ); 10690 assert( sqlite3_mutex_held(p->db->mutex) ); 10691 return p->nBackup!=0; 10692 } 10693 10694 /* 10695 ** This function returns a pointer to a blob of memory associated with 10696 ** a single shared-btree. The memory is used by client code for its own 10697 ** purposes (for example, to store a high-level schema associated with 10698 ** the shared-btree). The btree layer manages reference counting issues. 10699 ** 10700 ** The first time this is called on a shared-btree, nBytes bytes of memory 10701 ** are allocated, zeroed, and returned to the caller. For each subsequent 10702 ** call the nBytes parameter is ignored and a pointer to the same blob 10703 ** of memory returned. 10704 ** 10705 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10706 ** allocated, a null pointer is returned. If the blob has already been 10707 ** allocated, it is returned as normal. 10708 ** 10709 ** Just before the shared-btree is closed, the function passed as the 10710 ** xFree argument when the memory allocation was made is invoked on the 10711 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10712 ** on the memory, the btree layer does that. 10713 */ 10714 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10715 BtShared *pBt = p->pBt; 10716 sqlite3BtreeEnter(p); 10717 if( !pBt->pSchema && nBytes ){ 10718 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10719 pBt->xFreeSchema = xFree; 10720 } 10721 sqlite3BtreeLeave(p); 10722 return pBt->pSchema; 10723 } 10724 10725 /* 10726 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10727 ** btree as the argument handle holds an exclusive lock on the 10728 ** sqlite_schema table. Otherwise SQLITE_OK. 10729 */ 10730 int sqlite3BtreeSchemaLocked(Btree *p){ 10731 int rc; 10732 assert( sqlite3_mutex_held(p->db->mutex) ); 10733 sqlite3BtreeEnter(p); 10734 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10735 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10736 sqlite3BtreeLeave(p); 10737 return rc; 10738 } 10739 10740 10741 #ifndef SQLITE_OMIT_SHARED_CACHE 10742 /* 10743 ** Obtain a lock on the table whose root page is iTab. The 10744 ** lock is a write lock if isWritelock is true or a read lock 10745 ** if it is false. 10746 */ 10747 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10748 int rc = SQLITE_OK; 10749 assert( p->inTrans!=TRANS_NONE ); 10750 if( p->sharable ){ 10751 u8 lockType = READ_LOCK + isWriteLock; 10752 assert( READ_LOCK+1==WRITE_LOCK ); 10753 assert( isWriteLock==0 || isWriteLock==1 ); 10754 10755 sqlite3BtreeEnter(p); 10756 rc = querySharedCacheTableLock(p, iTab, lockType); 10757 if( rc==SQLITE_OK ){ 10758 rc = setSharedCacheTableLock(p, iTab, lockType); 10759 } 10760 sqlite3BtreeLeave(p); 10761 } 10762 return rc; 10763 } 10764 #endif 10765 10766 #ifndef SQLITE_OMIT_INCRBLOB 10767 /* 10768 ** Argument pCsr must be a cursor opened for writing on an 10769 ** INTKEY table currently pointing at a valid table entry. 10770 ** This function modifies the data stored as part of that entry. 10771 ** 10772 ** Only the data content may only be modified, it is not possible to 10773 ** change the length of the data stored. If this function is called with 10774 ** parameters that attempt to write past the end of the existing data, 10775 ** no modifications are made and SQLITE_CORRUPT is returned. 10776 */ 10777 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10778 int rc; 10779 assert( cursorOwnsBtShared(pCsr) ); 10780 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10781 assert( pCsr->curFlags & BTCF_Incrblob ); 10782 10783 rc = restoreCursorPosition(pCsr); 10784 if( rc!=SQLITE_OK ){ 10785 return rc; 10786 } 10787 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10788 if( pCsr->eState!=CURSOR_VALID ){ 10789 return SQLITE_ABORT; 10790 } 10791 10792 /* Save the positions of all other cursors open on this table. This is 10793 ** required in case any of them are holding references to an xFetch 10794 ** version of the b-tree page modified by the accessPayload call below. 10795 ** 10796 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10797 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10798 ** saveAllCursors can only return SQLITE_OK. 10799 */ 10800 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10801 assert( rc==SQLITE_OK ); 10802 10803 /* Check some assumptions: 10804 ** (a) the cursor is open for writing, 10805 ** (b) there is a read/write transaction open, 10806 ** (c) the connection holds a write-lock on the table (if required), 10807 ** (d) there are no conflicting read-locks, and 10808 ** (e) the cursor points at a valid row of an intKey table. 10809 */ 10810 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10811 return SQLITE_READONLY; 10812 } 10813 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10814 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10815 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10816 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10817 assert( pCsr->pPage->intKey ); 10818 10819 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10820 } 10821 10822 /* 10823 ** Mark this cursor as an incremental blob cursor. 10824 */ 10825 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10826 pCur->curFlags |= BTCF_Incrblob; 10827 pCur->pBtree->hasIncrblobCur = 1; 10828 } 10829 #endif 10830 10831 /* 10832 ** Set both the "read version" (single byte at byte offset 18) and 10833 ** "write version" (single byte at byte offset 19) fields in the database 10834 ** header to iVersion. 10835 */ 10836 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10837 BtShared *pBt = pBtree->pBt; 10838 int rc; /* Return code */ 10839 10840 assert( iVersion==1 || iVersion==2 ); 10841 10842 /* If setting the version fields to 1, do not automatically open the 10843 ** WAL connection, even if the version fields are currently set to 2. 10844 */ 10845 pBt->btsFlags &= ~BTS_NO_WAL; 10846 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10847 10848 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10849 if( rc==SQLITE_OK ){ 10850 u8 *aData = pBt->pPage1->aData; 10851 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10852 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10853 if( rc==SQLITE_OK ){ 10854 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10855 if( rc==SQLITE_OK ){ 10856 aData[18] = (u8)iVersion; 10857 aData[19] = (u8)iVersion; 10858 } 10859 } 10860 } 10861 } 10862 10863 pBt->btsFlags &= ~BTS_NO_WAL; 10864 return rc; 10865 } 10866 10867 /* 10868 ** Return true if the cursor has a hint specified. This routine is 10869 ** only used from within assert() statements 10870 */ 10871 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10872 return (pCsr->hints & mask)!=0; 10873 } 10874 10875 /* 10876 ** Return true if the given Btree is read-only. 10877 */ 10878 int sqlite3BtreeIsReadonly(Btree *p){ 10879 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10880 } 10881 10882 /* 10883 ** Return the size of the header added to each page by this module. 10884 */ 10885 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10886 10887 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10888 /* 10889 ** Return true if the Btree passed as the only argument is sharable. 10890 */ 10891 int sqlite3BtreeSharable(Btree *p){ 10892 return p->sharable; 10893 } 10894 10895 /* 10896 ** Return the number of connections to the BtShared object accessed by 10897 ** the Btree handle passed as the only argument. For private caches 10898 ** this is always 1. For shared caches it may be 1 or greater. 10899 */ 10900 int sqlite3BtreeConnectionCount(Btree *p){ 10901 testcase( p->sharable ); 10902 return p->pBt->nRef; 10903 } 10904 #endif 10905