xref: /sqlite-3.40.0/src/btree.c (revision 9dbf96bd)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==(int)iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
811 */
812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830     }else{
831       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
832     }
833     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834   }else{
835     pIdxKey = 0;
836     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
837   }
838   return rc;
839 }
840 
841 /*
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
847 */
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849   int rc;
850   int skipNext = 0;
851   assert( cursorOwnsBtShared(pCur) );
852   assert( pCur->eState>=CURSOR_REQUIRESEEK );
853   if( pCur->eState==CURSOR_FAULT ){
854     return pCur->skipNext;
855   }
856   pCur->eState = CURSOR_INVALID;
857   if( sqlite3FaultSim(410) ){
858     rc = SQLITE_IOERR;
859   }else{
860     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861   }
862   if( rc==SQLITE_OK ){
863     sqlite3_free(pCur->pKey);
864     pCur->pKey = 0;
865     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866     if( skipNext ) pCur->skipNext = skipNext;
867     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868       pCur->eState = CURSOR_SKIPNEXT;
869     }
870   }
871   return rc;
872 }
873 
874 #define restoreCursorPosition(p) \
875   (p->eState>=CURSOR_REQUIRESEEK ? \
876          btreeRestoreCursorPosition(p) : \
877          SQLITE_OK)
878 
879 /*
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example.  Cursor might also move if a btree
884 ** is rebalanced.
885 **
886 ** Calling this routine with a NULL cursor pointer returns false.
887 **
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
890 */
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892   assert( EIGHT_BYTE_ALIGNMENT(pCur)
893        || pCur==sqlite3BtreeFakeValidCursor() );
894   assert( offsetof(BtCursor, eState)==0 );
895   assert( sizeof(pCur->eState)==1 );
896   return CURSOR_VALID != *(u8*)pCur;
897 }
898 
899 /*
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
902 ** cursor returned must not be used with any other Btree interface.
903 */
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905   static u8 fakeCursor = CURSOR_VALID;
906   assert( offsetof(BtCursor, eState)==0 );
907   return (BtCursor*)&fakeCursor;
908 }
909 
910 /*
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
914 **
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
919 **
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
922 */
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924   int rc;
925 
926   assert( pCur!=0 );
927   assert( pCur->eState!=CURSOR_VALID );
928   rc = restoreCursorPosition(pCur);
929   if( rc ){
930     *pDifferentRow = 1;
931     return rc;
932   }
933   if( pCur->eState!=CURSOR_VALID ){
934     *pDifferentRow = 1;
935   }else{
936     *pDifferentRow = 0;
937   }
938   return SQLITE_OK;
939 }
940 
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
942 /*
943 ** Provide hints to the cursor.  The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
946 */
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948   /* Used only by system that substitute their own storage engine */
949 }
950 #endif
951 
952 /*
953 ** Provide flag hints to the cursor.
954 */
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957   pCur->hints = x;
958 }
959 
960 
961 #ifndef SQLITE_OMIT_AUTOVACUUM
962 /*
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
966 **
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1.  The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
970 */
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972   int nPagesPerMapPage;
973   Pgno iPtrMap, ret;
974   assert( sqlite3_mutex_held(pBt->mutex) );
975   if( pgno<2 ) return 0;
976   nPagesPerMapPage = (pBt->usableSize/5)+1;
977   iPtrMap = (pgno-2)/nPagesPerMapPage;
978   ret = (iPtrMap*nPagesPerMapPage) + 2;
979   if( ret==PENDING_BYTE_PAGE(pBt) ){
980     ret++;
981   }
982   return ret;
983 }
984 
985 /*
986 ** Write an entry into the pointer map.
987 **
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
990 **
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op.  If an error occurs, the appropriate error code is written
993 ** into *pRC.
994 */
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996   DbPage *pDbPage;  /* The pointer map page */
997   u8 *pPtrmap;      /* The pointer map data */
998   Pgno iPtrmap;     /* The pointer map page number */
999   int offset;       /* Offset in pointer map page */
1000   int rc;           /* Return code from subfunctions */
1001 
1002   if( *pRC ) return;
1003 
1004   assert( sqlite3_mutex_held(pBt->mutex) );
1005   /* The super-journal page number must never be used as a pointer map page */
1006   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007 
1008   assert( pBt->autoVacuum );
1009   if( key==0 ){
1010     *pRC = SQLITE_CORRUPT_BKPT;
1011     return;
1012   }
1013   iPtrmap = PTRMAP_PAGENO(pBt, key);
1014   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015   if( rc!=SQLITE_OK ){
1016     *pRC = rc;
1017     return;
1018   }
1019   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020     /* The first byte of the extra data is the MemPage.isInit byte.
1021     ** If that byte is set, it means this page is also being used
1022     ** as a btree page. */
1023     *pRC = SQLITE_CORRUPT_BKPT;
1024     goto ptrmap_exit;
1025   }
1026   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027   if( offset<0 ){
1028     *pRC = SQLITE_CORRUPT_BKPT;
1029     goto ptrmap_exit;
1030   }
1031   assert( offset <= (int)pBt->usableSize-5 );
1032   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1033 
1034   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036     *pRC= rc = sqlite3PagerWrite(pDbPage);
1037     if( rc==SQLITE_OK ){
1038       pPtrmap[offset] = eType;
1039       put4byte(&pPtrmap[offset+1], parent);
1040     }
1041   }
1042 
1043 ptrmap_exit:
1044   sqlite3PagerUnref(pDbPage);
1045 }
1046 
1047 /*
1048 ** Read an entry from the pointer map.
1049 **
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1053 */
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055   DbPage *pDbPage;   /* The pointer map page */
1056   int iPtrmap;       /* Pointer map page index */
1057   u8 *pPtrmap;       /* Pointer map page data */
1058   int offset;        /* Offset of entry in pointer map */
1059   int rc;
1060 
1061   assert( sqlite3_mutex_held(pBt->mutex) );
1062 
1063   iPtrmap = PTRMAP_PAGENO(pBt, key);
1064   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065   if( rc!=0 ){
1066     return rc;
1067   }
1068   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1069 
1070   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071   if( offset<0 ){
1072     sqlite3PagerUnref(pDbPage);
1073     return SQLITE_CORRUPT_BKPT;
1074   }
1075   assert( offset <= (int)pBt->usableSize-5 );
1076   assert( pEType!=0 );
1077   *pEType = pPtrmap[offset];
1078   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1079 
1080   sqlite3PagerUnref(pDbPage);
1081   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082   return SQLITE_OK;
1083 }
1084 
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086   #define ptrmapPut(w,x,y,z,rc)
1087   #define ptrmapGet(w,x,y,z) SQLITE_OK
1088   #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1090 
1091 /*
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1095 **
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1098 **
1099 ** This routine works only for pages that do not contain overflow cells.
1100 */
1101 #define findCell(P,I) \
1102   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 
1106 
1107 /*
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1111 ** structure.
1112 */
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114   MemPage *pPage,         /* Page containing the cell */
1115   u8 *pCell,              /* Pointer to the cell text. */
1116   CellInfo *pInfo         /* Fill in this structure */
1117 ){
1118   /* If the payload will not fit completely on the local page, we have
1119   ** to decide how much to store locally and how much to spill onto
1120   ** overflow pages.  The strategy is to minimize the amount of unused
1121   ** space on overflow pages while keeping the amount of local storage
1122   ** in between minLocal and maxLocal.
1123   **
1124   ** Warning:  changing the way overflow payload is distributed in any
1125   ** way will result in an incompatible file format.
1126   */
1127   int minLocal;  /* Minimum amount of payload held locally */
1128   int maxLocal;  /* Maximum amount of payload held locally */
1129   int surplus;   /* Overflow payload available for local storage */
1130 
1131   minLocal = pPage->minLocal;
1132   maxLocal = pPage->maxLocal;
1133   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134   testcase( surplus==maxLocal );
1135   testcase( surplus==maxLocal+1 );
1136   if( surplus <= maxLocal ){
1137     pInfo->nLocal = (u16)surplus;
1138   }else{
1139     pInfo->nLocal = (u16)minLocal;
1140   }
1141   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1142 }
1143 
1144 /*
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1147 */
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149   int maxLocal;  /* Maximum amount of payload held locally */
1150   maxLocal = pPage->maxLocal;
1151   if( nPayload<=maxLocal ){
1152     return nPayload;
1153   }else{
1154     int minLocal;  /* Minimum amount of payload held locally */
1155     int surplus;   /* Overflow payload available for local storage */
1156     minLocal = pPage->minLocal;
1157     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158     return ( surplus <= maxLocal ) ? surplus : minLocal;
1159   }
1160 }
1161 
1162 /*
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1165 **
1166 ** Parse a cell content block and fill in the CellInfo structure.
1167 **
1168 ** btreeParseCellPtr()        =>   table btree leaf nodes
1169 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1170 ** btreeParseCellPtrIndex()   =>   index btree nodes
1171 **
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1175 */
1176 static void btreeParseCellPtrNoPayload(
1177   MemPage *pPage,         /* Page containing the cell */
1178   u8 *pCell,              /* Pointer to the cell text. */
1179   CellInfo *pInfo         /* Fill in this structure */
1180 ){
1181   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182   assert( pPage->leaf==0 );
1183   assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185   UNUSED_PARAMETER(pPage);
1186 #endif
1187   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188   pInfo->nPayload = 0;
1189   pInfo->nLocal = 0;
1190   pInfo->pPayload = 0;
1191   return;
1192 }
1193 static void btreeParseCellPtr(
1194   MemPage *pPage,         /* Page containing the cell */
1195   u8 *pCell,              /* Pointer to the cell text. */
1196   CellInfo *pInfo         /* Fill in this structure */
1197 ){
1198   u8 *pIter;              /* For scanning through pCell */
1199   u32 nPayload;           /* Number of bytes of cell payload */
1200   u64 iKey;               /* Extracted Key value */
1201 
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( pPage->leaf==0 || pPage->leaf==1 );
1204   assert( pPage->intKeyLeaf );
1205   assert( pPage->childPtrSize==0 );
1206   pIter = pCell;
1207 
1208   /* The next block of code is equivalent to:
1209   **
1210   **     pIter += getVarint32(pIter, nPayload);
1211   **
1212   ** The code is inlined to avoid a function call.
1213   */
1214   nPayload = *pIter;
1215   if( nPayload>=0x80 ){
1216     u8 *pEnd = &pIter[8];
1217     nPayload &= 0x7f;
1218     do{
1219       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220     }while( (*pIter)>=0x80 && pIter<pEnd );
1221   }
1222   pIter++;
1223 
1224   /* The next block of code is equivalent to:
1225   **
1226   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227   **
1228   ** The code is inlined and the loop is unrolled for performance.
1229   ** This routine is a high-runner.
1230   */
1231   iKey = *pIter;
1232   if( iKey>=0x80 ){
1233     u8 x;
1234     iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235     if( x>=0x80 ){
1236       iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237       if( x>=0x80 ){
1238         iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239         if( x>=0x80 ){
1240           iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241           if( x>=0x80 ){
1242             iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243             if( x>=0x80 ){
1244               iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245               if( x>=0x80 ){
1246                 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247                 if( x>=0x80 ){
1248                   iKey = (iKey<<8) | (*++pIter);
1249                 }
1250               }
1251             }
1252           }
1253         }
1254       }
1255     }
1256   }
1257   pIter++;
1258 
1259   pInfo->nKey = *(i64*)&iKey;
1260   pInfo->nPayload = nPayload;
1261   pInfo->pPayload = pIter;
1262   testcase( nPayload==pPage->maxLocal );
1263   testcase( nPayload==(u32)pPage->maxLocal+1 );
1264   if( nPayload<=pPage->maxLocal ){
1265     /* This is the (easy) common case where the entire payload fits
1266     ** on the local page.  No overflow is required.
1267     */
1268     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1270     pInfo->nLocal = (u16)nPayload;
1271   }else{
1272     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1273   }
1274 }
1275 static void btreeParseCellPtrIndex(
1276   MemPage *pPage,         /* Page containing the cell */
1277   u8 *pCell,              /* Pointer to the cell text. */
1278   CellInfo *pInfo         /* Fill in this structure */
1279 ){
1280   u8 *pIter;              /* For scanning through pCell */
1281   u32 nPayload;           /* Number of bytes of cell payload */
1282 
1283   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284   assert( pPage->leaf==0 || pPage->leaf==1 );
1285   assert( pPage->intKeyLeaf==0 );
1286   pIter = pCell + pPage->childPtrSize;
1287   nPayload = *pIter;
1288   if( nPayload>=0x80 ){
1289     u8 *pEnd = &pIter[8];
1290     nPayload &= 0x7f;
1291     do{
1292       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293     }while( *(pIter)>=0x80 && pIter<pEnd );
1294   }
1295   pIter++;
1296   pInfo->nKey = nPayload;
1297   pInfo->nPayload = nPayload;
1298   pInfo->pPayload = pIter;
1299   testcase( nPayload==pPage->maxLocal );
1300   testcase( nPayload==(u32)pPage->maxLocal+1 );
1301   if( nPayload<=pPage->maxLocal ){
1302     /* This is the (easy) common case where the entire payload fits
1303     ** on the local page.  No overflow is required.
1304     */
1305     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307     pInfo->nLocal = (u16)nPayload;
1308   }else{
1309     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1310   }
1311 }
1312 static void btreeParseCell(
1313   MemPage *pPage,         /* Page containing the cell */
1314   int iCell,              /* The cell index.  First cell is 0 */
1315   CellInfo *pInfo         /* Fill in this structure */
1316 ){
1317   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1318 }
1319 
1320 /*
1321 ** The following routines are implementations of the MemPage.xCellSize
1322 ** method.
1323 **
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page.  The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1328 **
1329 ** cellSizePtrNoPayload()    =>   table internal nodes
1330 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1331 */
1332 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1333   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1334   u8 *pEnd;                                /* End mark for a varint */
1335   u32 nSize;                               /* Size value to return */
1336 
1337 #ifdef SQLITE_DEBUG
1338   /* The value returned by this function should always be the same as
1339   ** the (CellInfo.nSize) value found by doing a full parse of the
1340   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1341   ** this function verifies that this invariant is not violated. */
1342   CellInfo debuginfo;
1343   pPage->xParseCell(pPage, pCell, &debuginfo);
1344 #endif
1345 
1346   nSize = *pIter;
1347   if( nSize>=0x80 ){
1348     pEnd = &pIter[8];
1349     nSize &= 0x7f;
1350     do{
1351       nSize = (nSize<<7) | (*++pIter & 0x7f);
1352     }while( *(pIter)>=0x80 && pIter<pEnd );
1353   }
1354   pIter++;
1355   if( pPage->intKey ){
1356     /* pIter now points at the 64-bit integer key value, a variable length
1357     ** integer. The following block moves pIter to point at the first byte
1358     ** past the end of the key value. */
1359     pEnd = &pIter[9];
1360     while( (*pIter++)&0x80 && pIter<pEnd );
1361   }
1362   testcase( nSize==pPage->maxLocal );
1363   testcase( nSize==(u32)pPage->maxLocal+1 );
1364   if( nSize<=pPage->maxLocal ){
1365     nSize += (u32)(pIter - pCell);
1366     if( nSize<4 ) nSize = 4;
1367   }else{
1368     int minLocal = pPage->minLocal;
1369     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1370     testcase( nSize==pPage->maxLocal );
1371     testcase( nSize==(u32)pPage->maxLocal+1 );
1372     if( nSize>pPage->maxLocal ){
1373       nSize = minLocal;
1374     }
1375     nSize += 4 + (u16)(pIter - pCell);
1376   }
1377   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1378   return (u16)nSize;
1379 }
1380 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1381   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1382   u8 *pEnd;              /* End mark for a varint */
1383 
1384 #ifdef SQLITE_DEBUG
1385   /* The value returned by this function should always be the same as
1386   ** the (CellInfo.nSize) value found by doing a full parse of the
1387   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1388   ** this function verifies that this invariant is not violated. */
1389   CellInfo debuginfo;
1390   pPage->xParseCell(pPage, pCell, &debuginfo);
1391 #else
1392   UNUSED_PARAMETER(pPage);
1393 #endif
1394 
1395   assert( pPage->childPtrSize==4 );
1396   pEnd = pIter + 9;
1397   while( (*pIter++)&0x80 && pIter<pEnd );
1398   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1399   return (u16)(pIter - pCell);
1400 }
1401 
1402 
1403 #ifdef SQLITE_DEBUG
1404 /* This variation on cellSizePtr() is used inside of assert() statements
1405 ** only. */
1406 static u16 cellSize(MemPage *pPage, int iCell){
1407   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1408 }
1409 #endif
1410 
1411 #ifndef SQLITE_OMIT_AUTOVACUUM
1412 /*
1413 ** The cell pCell is currently part of page pSrc but will ultimately be part
1414 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1415 ** pointer to an overflow page, insert an entry into the pointer-map for
1416 ** the overflow page that will be valid after pCell has been moved to pPage.
1417 */
1418 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1419   CellInfo info;
1420   if( *pRC ) return;
1421   assert( pCell!=0 );
1422   pPage->xParseCell(pPage, pCell, &info);
1423   if( info.nLocal<info.nPayload ){
1424     Pgno ovfl;
1425     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1426       testcase( pSrc!=pPage );
1427       *pRC = SQLITE_CORRUPT_BKPT;
1428       return;
1429     }
1430     ovfl = get4byte(&pCell[info.nSize-4]);
1431     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1432   }
1433 }
1434 #endif
1435 
1436 
1437 /*
1438 ** Defragment the page given. This routine reorganizes cells within the
1439 ** page so that there are no free-blocks on the free-block list.
1440 **
1441 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1442 ** present in the page after this routine returns.
1443 **
1444 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1445 ** b-tree page so that there are no freeblocks or fragment bytes, all
1446 ** unused bytes are contained in the unallocated space region, and all
1447 ** cells are packed tightly at the end of the page.
1448 */
1449 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1450   int i;                     /* Loop counter */
1451   int pc;                    /* Address of the i-th cell */
1452   int hdr;                   /* Offset to the page header */
1453   int size;                  /* Size of a cell */
1454   int usableSize;            /* Number of usable bytes on a page */
1455   int cellOffset;            /* Offset to the cell pointer array */
1456   int cbrk;                  /* Offset to the cell content area */
1457   int nCell;                 /* Number of cells on the page */
1458   unsigned char *data;       /* The page data */
1459   unsigned char *temp;       /* Temp area for cell content */
1460   unsigned char *src;        /* Source of content */
1461   int iCellFirst;            /* First allowable cell index */
1462   int iCellLast;             /* Last possible cell index */
1463   int iCellStart;            /* First cell offset in input */
1464 
1465   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1466   assert( pPage->pBt!=0 );
1467   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1468   assert( pPage->nOverflow==0 );
1469   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1470   temp = 0;
1471   src = data = pPage->aData;
1472   hdr = pPage->hdrOffset;
1473   cellOffset = pPage->cellOffset;
1474   nCell = pPage->nCell;
1475   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1476   iCellFirst = cellOffset + 2*nCell;
1477   usableSize = pPage->pBt->usableSize;
1478 
1479   /* This block handles pages with two or fewer free blocks and nMaxFrag
1480   ** or fewer fragmented bytes. In this case it is faster to move the
1481   ** two (or one) blocks of cells using memmove() and add the required
1482   ** offsets to each pointer in the cell-pointer array than it is to
1483   ** reconstruct the entire page.  */
1484   if( (int)data[hdr+7]<=nMaxFrag ){
1485     int iFree = get2byte(&data[hdr+1]);
1486     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1487     if( iFree ){
1488       int iFree2 = get2byte(&data[iFree]);
1489       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1490       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1491         u8 *pEnd = &data[cellOffset + nCell*2];
1492         u8 *pAddr;
1493         int sz2 = 0;
1494         int sz = get2byte(&data[iFree+2]);
1495         int top = get2byte(&data[hdr+5]);
1496         if( top>=iFree ){
1497           return SQLITE_CORRUPT_PAGE(pPage);
1498         }
1499         if( iFree2 ){
1500           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1501           sz2 = get2byte(&data[iFree2+2]);
1502           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1503           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1504           sz += sz2;
1505         }else if( NEVER(iFree+sz>usableSize) ){
1506           return SQLITE_CORRUPT_PAGE(pPage);
1507         }
1508 
1509         cbrk = top+sz;
1510         assert( cbrk+(iFree-top) <= usableSize );
1511         memmove(&data[cbrk], &data[top], iFree-top);
1512         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1513           pc = get2byte(pAddr);
1514           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1515           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1516         }
1517         goto defragment_out;
1518       }
1519     }
1520   }
1521 
1522   cbrk = usableSize;
1523   iCellLast = usableSize - 4;
1524   iCellStart = get2byte(&data[hdr+5]);
1525   for(i=0; i<nCell; i++){
1526     u8 *pAddr;     /* The i-th cell pointer */
1527     pAddr = &data[cellOffset + i*2];
1528     pc = get2byte(pAddr);
1529     testcase( pc==iCellFirst );
1530     testcase( pc==iCellLast );
1531     /* These conditions have already been verified in btreeInitPage()
1532     ** if PRAGMA cell_size_check=ON.
1533     */
1534     if( pc<iCellStart || pc>iCellLast ){
1535       return SQLITE_CORRUPT_PAGE(pPage);
1536     }
1537     assert( pc>=iCellStart && pc<=iCellLast );
1538     size = pPage->xCellSize(pPage, &src[pc]);
1539     cbrk -= size;
1540     if( cbrk<iCellStart || pc+size>usableSize ){
1541       return SQLITE_CORRUPT_PAGE(pPage);
1542     }
1543     assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1544     testcase( cbrk+size==usableSize );
1545     testcase( pc+size==usableSize );
1546     put2byte(pAddr, cbrk);
1547     if( temp==0 ){
1548       if( cbrk==pc ) continue;
1549       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1550       memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1551       src = temp;
1552     }
1553     memcpy(&data[cbrk], &src[pc], size);
1554   }
1555   data[hdr+7] = 0;
1556 
1557  defragment_out:
1558   assert( pPage->nFree>=0 );
1559   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1560     return SQLITE_CORRUPT_PAGE(pPage);
1561   }
1562   assert( cbrk>=iCellFirst );
1563   put2byte(&data[hdr+5], cbrk);
1564   data[hdr+1] = 0;
1565   data[hdr+2] = 0;
1566   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1567   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1568   return SQLITE_OK;
1569 }
1570 
1571 /*
1572 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1573 ** size. If one can be found, return a pointer to the space and remove it
1574 ** from the free-list.
1575 **
1576 ** If no suitable space can be found on the free-list, return NULL.
1577 **
1578 ** This function may detect corruption within pPg.  If corruption is
1579 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1580 **
1581 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1582 ** will be ignored if adding the extra space to the fragmentation count
1583 ** causes the fragmentation count to exceed 60.
1584 */
1585 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1586   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1587   u8 * const aData = pPg->aData;             /* Page data */
1588   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1589   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1590   int x;                                     /* Excess size of the slot */
1591   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1592   int size;                                  /* Size of the free slot */
1593 
1594   assert( pc>0 );
1595   while( pc<=maxPC ){
1596     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1597     ** freeblock form a big-endian integer which is the size of the freeblock
1598     ** in bytes, including the 4-byte header. */
1599     size = get2byte(&aData[pc+2]);
1600     if( (x = size - nByte)>=0 ){
1601       testcase( x==4 );
1602       testcase( x==3 );
1603       if( x<4 ){
1604         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1605         ** number of bytes in fragments may not exceed 60. */
1606         if( aData[hdr+7]>57 ) return 0;
1607 
1608         /* Remove the slot from the free-list. Update the number of
1609         ** fragmented bytes within the page. */
1610         memcpy(&aData[iAddr], &aData[pc], 2);
1611         aData[hdr+7] += (u8)x;
1612       }else if( x+pc > maxPC ){
1613         /* This slot extends off the end of the usable part of the page */
1614         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615         return 0;
1616       }else{
1617         /* The slot remains on the free-list. Reduce its size to account
1618         ** for the portion used by the new allocation. */
1619         put2byte(&aData[pc+2], x);
1620       }
1621       return &aData[pc + x];
1622     }
1623     iAddr = pc;
1624     pc = get2byte(&aData[pc]);
1625     if( pc<=iAddr+size ){
1626       if( pc ){
1627         /* The next slot in the chain is not past the end of the current slot */
1628         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1629       }
1630       return 0;
1631     }
1632   }
1633   if( pc>maxPC+nByte-4 ){
1634     /* The free slot chain extends off the end of the page */
1635     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1636   }
1637   return 0;
1638 }
1639 
1640 /*
1641 ** Allocate nByte bytes of space from within the B-Tree page passed
1642 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1643 ** of the first byte of allocated space. Return either SQLITE_OK or
1644 ** an error code (usually SQLITE_CORRUPT).
1645 **
1646 ** The caller guarantees that there is sufficient space to make the
1647 ** allocation.  This routine might need to defragment in order to bring
1648 ** all the space together, however.  This routine will avoid using
1649 ** the first two bytes past the cell pointer area since presumably this
1650 ** allocation is being made in order to insert a new cell, so we will
1651 ** also end up needing a new cell pointer.
1652 */
1653 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1654   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1655   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1656   int top;                             /* First byte of cell content area */
1657   int rc = SQLITE_OK;                  /* Integer return code */
1658   int gap;        /* First byte of gap between cell pointers and cell content */
1659 
1660   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1661   assert( pPage->pBt );
1662   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1663   assert( nByte>=0 );  /* Minimum cell size is 4 */
1664   assert( pPage->nFree>=nByte );
1665   assert( pPage->nOverflow==0 );
1666   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1667 
1668   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1669   gap = pPage->cellOffset + 2*pPage->nCell;
1670   assert( gap<=65536 );
1671   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1672   ** and the reserved space is zero (the usual value for reserved space)
1673   ** then the cell content offset of an empty page wants to be 65536.
1674   ** However, that integer is too large to be stored in a 2-byte unsigned
1675   ** integer, so a value of 0 is used in its place. */
1676   top = get2byte(&data[hdr+5]);
1677   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1678   if( gap>top ){
1679     if( top==0 && pPage->pBt->usableSize==65536 ){
1680       top = 65536;
1681     }else{
1682       return SQLITE_CORRUPT_PAGE(pPage);
1683     }
1684   }
1685 
1686   /* If there is enough space between gap and top for one more cell pointer,
1687   ** and if the freelist is not empty, then search the
1688   ** freelist looking for a slot big enough to satisfy the request.
1689   */
1690   testcase( gap+2==top );
1691   testcase( gap+1==top );
1692   testcase( gap==top );
1693   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1694     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1695     if( pSpace ){
1696       int g2;
1697       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1698       *pIdx = g2 = (int)(pSpace-data);
1699       if( g2<=gap ){
1700         return SQLITE_CORRUPT_PAGE(pPage);
1701       }else{
1702         return SQLITE_OK;
1703       }
1704     }else if( rc ){
1705       return rc;
1706     }
1707   }
1708 
1709   /* The request could not be fulfilled using a freelist slot.  Check
1710   ** to see if defragmentation is necessary.
1711   */
1712   testcase( gap+2+nByte==top );
1713   if( gap+2+nByte>top ){
1714     assert( pPage->nCell>0 || CORRUPT_DB );
1715     assert( pPage->nFree>=0 );
1716     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1717     if( rc ) return rc;
1718     top = get2byteNotZero(&data[hdr+5]);
1719     assert( gap+2+nByte<=top );
1720   }
1721 
1722 
1723   /* Allocate memory from the gap in between the cell pointer array
1724   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1725   ** validated the freelist.  Given that the freelist is valid, there
1726   ** is no way that the allocation can extend off the end of the page.
1727   ** The assert() below verifies the previous sentence.
1728   */
1729   top -= nByte;
1730   put2byte(&data[hdr+5], top);
1731   assert( top+nByte <= (int)pPage->pBt->usableSize );
1732   *pIdx = top;
1733   return SQLITE_OK;
1734 }
1735 
1736 /*
1737 ** Return a section of the pPage->aData to the freelist.
1738 ** The first byte of the new free block is pPage->aData[iStart]
1739 ** and the size of the block is iSize bytes.
1740 **
1741 ** Adjacent freeblocks are coalesced.
1742 **
1743 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1744 ** that routine will not detect overlap between cells or freeblocks.  Nor
1745 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1746 ** at the end of the page.  So do additional corruption checks inside this
1747 ** routine and return SQLITE_CORRUPT if any problems are found.
1748 */
1749 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1750   u16 iPtr;                             /* Address of ptr to next freeblock */
1751   u16 iFreeBlk;                         /* Address of the next freeblock */
1752   u8 hdr;                               /* Page header size.  0 or 100 */
1753   u8 nFrag = 0;                         /* Reduction in fragmentation */
1754   u16 iOrigSize = iSize;                /* Original value of iSize */
1755   u16 x;                                /* Offset to cell content area */
1756   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1757   unsigned char *data = pPage->aData;   /* Page content */
1758 
1759   assert( pPage->pBt!=0 );
1760   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1761   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1762   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1763   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1764   assert( iSize>=4 );   /* Minimum cell size is 4 */
1765   assert( iStart<=pPage->pBt->usableSize-4 );
1766 
1767   /* The list of freeblocks must be in ascending order.  Find the
1768   ** spot on the list where iStart should be inserted.
1769   */
1770   hdr = pPage->hdrOffset;
1771   iPtr = hdr + 1;
1772   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1773     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1774   }else{
1775     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1776       if( iFreeBlk<iPtr+4 ){
1777         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1778         return SQLITE_CORRUPT_PAGE(pPage);
1779       }
1780       iPtr = iFreeBlk;
1781     }
1782     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1783       return SQLITE_CORRUPT_PAGE(pPage);
1784     }
1785     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1786 
1787     /* At this point:
1788     **    iFreeBlk:   First freeblock after iStart, or zero if none
1789     **    iPtr:       The address of a pointer to iFreeBlk
1790     **
1791     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1792     */
1793     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1794       nFrag = iFreeBlk - iEnd;
1795       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1796       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1797       if( iEnd > pPage->pBt->usableSize ){
1798         return SQLITE_CORRUPT_PAGE(pPage);
1799       }
1800       iSize = iEnd - iStart;
1801       iFreeBlk = get2byte(&data[iFreeBlk]);
1802     }
1803 
1804     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1805     ** pointer in the page header) then check to see if iStart should be
1806     ** coalesced onto the end of iPtr.
1807     */
1808     if( iPtr>hdr+1 ){
1809       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1810       if( iPtrEnd+3>=iStart ){
1811         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1812         nFrag += iStart - iPtrEnd;
1813         iSize = iEnd - iPtr;
1814         iStart = iPtr;
1815       }
1816     }
1817     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1818     data[hdr+7] -= nFrag;
1819   }
1820   x = get2byte(&data[hdr+5]);
1821   if( iStart<=x ){
1822     /* The new freeblock is at the beginning of the cell content area,
1823     ** so just extend the cell content area rather than create another
1824     ** freelist entry */
1825     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1826     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1827     put2byte(&data[hdr+1], iFreeBlk);
1828     put2byte(&data[hdr+5], iEnd);
1829   }else{
1830     /* Insert the new freeblock into the freelist */
1831     put2byte(&data[iPtr], iStart);
1832   }
1833   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1834     /* Overwrite deleted information with zeros when the secure_delete
1835     ** option is enabled */
1836     memset(&data[iStart], 0, iSize);
1837   }
1838   put2byte(&data[iStart], iFreeBlk);
1839   put2byte(&data[iStart+2], iSize);
1840   pPage->nFree += iOrigSize;
1841   return SQLITE_OK;
1842 }
1843 
1844 /*
1845 ** Decode the flags byte (the first byte of the header) for a page
1846 ** and initialize fields of the MemPage structure accordingly.
1847 **
1848 ** Only the following combinations are supported.  Anything different
1849 ** indicates a corrupt database files:
1850 **
1851 **         PTF_ZERODATA
1852 **         PTF_ZERODATA | PTF_LEAF
1853 **         PTF_LEAFDATA | PTF_INTKEY
1854 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1855 */
1856 static int decodeFlags(MemPage *pPage, int flagByte){
1857   BtShared *pBt;     /* A copy of pPage->pBt */
1858 
1859   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1860   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1861   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1862   flagByte &= ~PTF_LEAF;
1863   pPage->childPtrSize = 4-4*pPage->leaf;
1864   pPage->xCellSize = cellSizePtr;
1865   pBt = pPage->pBt;
1866   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1867     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1868     ** interior table b-tree page. */
1869     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1870     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1871     ** leaf table b-tree page. */
1872     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1873     pPage->intKey = 1;
1874     if( pPage->leaf ){
1875       pPage->intKeyLeaf = 1;
1876       pPage->xParseCell = btreeParseCellPtr;
1877     }else{
1878       pPage->intKeyLeaf = 0;
1879       pPage->xCellSize = cellSizePtrNoPayload;
1880       pPage->xParseCell = btreeParseCellPtrNoPayload;
1881     }
1882     pPage->maxLocal = pBt->maxLeaf;
1883     pPage->minLocal = pBt->minLeaf;
1884   }else if( flagByte==PTF_ZERODATA ){
1885     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1886     ** interior index b-tree page. */
1887     assert( (PTF_ZERODATA)==2 );
1888     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1889     ** leaf index b-tree page. */
1890     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1891     pPage->intKey = 0;
1892     pPage->intKeyLeaf = 0;
1893     pPage->xParseCell = btreeParseCellPtrIndex;
1894     pPage->maxLocal = pBt->maxLocal;
1895     pPage->minLocal = pBt->minLocal;
1896   }else{
1897     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1898     ** an error. */
1899     return SQLITE_CORRUPT_PAGE(pPage);
1900   }
1901   pPage->max1bytePayload = pBt->max1bytePayload;
1902   return SQLITE_OK;
1903 }
1904 
1905 /*
1906 ** Compute the amount of freespace on the page.  In other words, fill
1907 ** in the pPage->nFree field.
1908 */
1909 static int btreeComputeFreeSpace(MemPage *pPage){
1910   int pc;            /* Address of a freeblock within pPage->aData[] */
1911   u8 hdr;            /* Offset to beginning of page header */
1912   u8 *data;          /* Equal to pPage->aData */
1913   int usableSize;    /* Amount of usable space on each page */
1914   int nFree;         /* Number of unused bytes on the page */
1915   int top;           /* First byte of the cell content area */
1916   int iCellFirst;    /* First allowable cell or freeblock offset */
1917   int iCellLast;     /* Last possible cell or freeblock offset */
1918 
1919   assert( pPage->pBt!=0 );
1920   assert( pPage->pBt->db!=0 );
1921   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1922   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1923   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1924   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1925   assert( pPage->isInit==1 );
1926   assert( pPage->nFree<0 );
1927 
1928   usableSize = pPage->pBt->usableSize;
1929   hdr = pPage->hdrOffset;
1930   data = pPage->aData;
1931   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1932   ** the start of the cell content area. A zero value for this integer is
1933   ** interpreted as 65536. */
1934   top = get2byteNotZero(&data[hdr+5]);
1935   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1936   iCellLast = usableSize - 4;
1937 
1938   /* Compute the total free space on the page
1939   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1940   ** start of the first freeblock on the page, or is zero if there are no
1941   ** freeblocks. */
1942   pc = get2byte(&data[hdr+1]);
1943   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1944   if( pc>0 ){
1945     u32 next, size;
1946     if( pc<top ){
1947       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1948       ** always be at least one cell before the first freeblock.
1949       */
1950       return SQLITE_CORRUPT_PAGE(pPage);
1951     }
1952     while( 1 ){
1953       if( pc>iCellLast ){
1954         /* Freeblock off the end of the page */
1955         return SQLITE_CORRUPT_PAGE(pPage);
1956       }
1957       next = get2byte(&data[pc]);
1958       size = get2byte(&data[pc+2]);
1959       nFree = nFree + size;
1960       if( next<=pc+size+3 ) break;
1961       pc = next;
1962     }
1963     if( next>0 ){
1964       /* Freeblock not in ascending order */
1965       return SQLITE_CORRUPT_PAGE(pPage);
1966     }
1967     if( pc+size>(unsigned int)usableSize ){
1968       /* Last freeblock extends past page end */
1969       return SQLITE_CORRUPT_PAGE(pPage);
1970     }
1971   }
1972 
1973   /* At this point, nFree contains the sum of the offset to the start
1974   ** of the cell-content area plus the number of free bytes within
1975   ** the cell-content area. If this is greater than the usable-size
1976   ** of the page, then the page must be corrupted. This check also
1977   ** serves to verify that the offset to the start of the cell-content
1978   ** area, according to the page header, lies within the page.
1979   */
1980   if( nFree>usableSize || nFree<iCellFirst ){
1981     return SQLITE_CORRUPT_PAGE(pPage);
1982   }
1983   pPage->nFree = (u16)(nFree - iCellFirst);
1984   return SQLITE_OK;
1985 }
1986 
1987 /*
1988 ** Do additional sanity check after btreeInitPage() if
1989 ** PRAGMA cell_size_check=ON
1990 */
1991 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1992   int iCellFirst;    /* First allowable cell or freeblock offset */
1993   int iCellLast;     /* Last possible cell or freeblock offset */
1994   int i;             /* Index into the cell pointer array */
1995   int sz;            /* Size of a cell */
1996   int pc;            /* Address of a freeblock within pPage->aData[] */
1997   u8 *data;          /* Equal to pPage->aData */
1998   int usableSize;    /* Maximum usable space on the page */
1999   int cellOffset;    /* Start of cell content area */
2000 
2001   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2002   usableSize = pPage->pBt->usableSize;
2003   iCellLast = usableSize - 4;
2004   data = pPage->aData;
2005   cellOffset = pPage->cellOffset;
2006   if( !pPage->leaf ) iCellLast--;
2007   for(i=0; i<pPage->nCell; i++){
2008     pc = get2byteAligned(&data[cellOffset+i*2]);
2009     testcase( pc==iCellFirst );
2010     testcase( pc==iCellLast );
2011     if( pc<iCellFirst || pc>iCellLast ){
2012       return SQLITE_CORRUPT_PAGE(pPage);
2013     }
2014     sz = pPage->xCellSize(pPage, &data[pc]);
2015     testcase( pc+sz==usableSize );
2016     if( pc+sz>usableSize ){
2017       return SQLITE_CORRUPT_PAGE(pPage);
2018     }
2019   }
2020   return SQLITE_OK;
2021 }
2022 
2023 /*
2024 ** Initialize the auxiliary information for a disk block.
2025 **
2026 ** Return SQLITE_OK on success.  If we see that the page does
2027 ** not contain a well-formed database page, then return
2028 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2029 ** guarantee that the page is well-formed.  It only shows that
2030 ** we failed to detect any corruption.
2031 */
2032 static int btreeInitPage(MemPage *pPage){
2033   u8 *data;          /* Equal to pPage->aData */
2034   BtShared *pBt;        /* The main btree structure */
2035 
2036   assert( pPage->pBt!=0 );
2037   assert( pPage->pBt->db!=0 );
2038   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2039   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2040   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2041   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2042   assert( pPage->isInit==0 );
2043 
2044   pBt = pPage->pBt;
2045   data = pPage->aData + pPage->hdrOffset;
2046   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2047   ** the b-tree page type. */
2048   if( decodeFlags(pPage, data[0]) ){
2049     return SQLITE_CORRUPT_PAGE(pPage);
2050   }
2051   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2052   pPage->maskPage = (u16)(pBt->pageSize - 1);
2053   pPage->nOverflow = 0;
2054   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2055   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2056   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2057   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2058   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2059   ** number of cells on the page. */
2060   pPage->nCell = get2byte(&data[3]);
2061   if( pPage->nCell>MX_CELL(pBt) ){
2062     /* To many cells for a single page.  The page must be corrupt */
2063     return SQLITE_CORRUPT_PAGE(pPage);
2064   }
2065   testcase( pPage->nCell==MX_CELL(pBt) );
2066   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2067   ** possible for a root page of a table that contains no rows) then the
2068   ** offset to the cell content area will equal the page size minus the
2069   ** bytes of reserved space. */
2070   assert( pPage->nCell>0
2071        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2072        || CORRUPT_DB );
2073   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2074   pPage->isInit = 1;
2075   if( pBt->db->flags & SQLITE_CellSizeCk ){
2076     return btreeCellSizeCheck(pPage);
2077   }
2078   return SQLITE_OK;
2079 }
2080 
2081 /*
2082 ** Set up a raw page so that it looks like a database page holding
2083 ** no entries.
2084 */
2085 static void zeroPage(MemPage *pPage, int flags){
2086   unsigned char *data = pPage->aData;
2087   BtShared *pBt = pPage->pBt;
2088   u8 hdr = pPage->hdrOffset;
2089   u16 first;
2090 
2091   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2092   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2093   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2094   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2095   assert( sqlite3_mutex_held(pBt->mutex) );
2096   if( pBt->btsFlags & BTS_FAST_SECURE ){
2097     memset(&data[hdr], 0, pBt->usableSize - hdr);
2098   }
2099   data[hdr] = (char)flags;
2100   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2101   memset(&data[hdr+1], 0, 4);
2102   data[hdr+7] = 0;
2103   put2byte(&data[hdr+5], pBt->usableSize);
2104   pPage->nFree = (u16)(pBt->usableSize - first);
2105   decodeFlags(pPage, flags);
2106   pPage->cellOffset = first;
2107   pPage->aDataEnd = &data[pBt->usableSize];
2108   pPage->aCellIdx = &data[first];
2109   pPage->aDataOfst = &data[pPage->childPtrSize];
2110   pPage->nOverflow = 0;
2111   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2112   pPage->maskPage = (u16)(pBt->pageSize - 1);
2113   pPage->nCell = 0;
2114   pPage->isInit = 1;
2115 }
2116 
2117 
2118 /*
2119 ** Convert a DbPage obtained from the pager into a MemPage used by
2120 ** the btree layer.
2121 */
2122 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2123   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2124   if( pgno!=pPage->pgno ){
2125     pPage->aData = sqlite3PagerGetData(pDbPage);
2126     pPage->pDbPage = pDbPage;
2127     pPage->pBt = pBt;
2128     pPage->pgno = pgno;
2129     pPage->hdrOffset = pgno==1 ? 100 : 0;
2130   }
2131   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2132   return pPage;
2133 }
2134 
2135 /*
2136 ** Get a page from the pager.  Initialize the MemPage.pBt and
2137 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2138 **
2139 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2140 ** about the content of the page at this time.  So do not go to the disk
2141 ** to fetch the content.  Just fill in the content with zeros for now.
2142 ** If in the future we call sqlite3PagerWrite() on this page, that
2143 ** means we have started to be concerned about content and the disk
2144 ** read should occur at that point.
2145 */
2146 static int btreeGetPage(
2147   BtShared *pBt,       /* The btree */
2148   Pgno pgno,           /* Number of the page to fetch */
2149   MemPage **ppPage,    /* Return the page in this parameter */
2150   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2151 ){
2152   int rc;
2153   DbPage *pDbPage;
2154 
2155   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2156   assert( sqlite3_mutex_held(pBt->mutex) );
2157   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2158   if( rc ) return rc;
2159   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2160   return SQLITE_OK;
2161 }
2162 
2163 /*
2164 ** Retrieve a page from the pager cache. If the requested page is not
2165 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2166 ** MemPage.aData elements if needed.
2167 */
2168 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2169   DbPage *pDbPage;
2170   assert( sqlite3_mutex_held(pBt->mutex) );
2171   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2172   if( pDbPage ){
2173     return btreePageFromDbPage(pDbPage, pgno, pBt);
2174   }
2175   return 0;
2176 }
2177 
2178 /*
2179 ** Return the size of the database file in pages. If there is any kind of
2180 ** error, return ((unsigned int)-1).
2181 */
2182 static Pgno btreePagecount(BtShared *pBt){
2183   return pBt->nPage;
2184 }
2185 Pgno sqlite3BtreeLastPage(Btree *p){
2186   assert( sqlite3BtreeHoldsMutex(p) );
2187   return btreePagecount(p->pBt);
2188 }
2189 
2190 /*
2191 ** Get a page from the pager and initialize it.
2192 **
2193 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2194 ** call.  Do additional sanity checking on the page in this case.
2195 ** And if the fetch fails, this routine must decrement pCur->iPage.
2196 **
2197 ** The page is fetched as read-write unless pCur is not NULL and is
2198 ** a read-only cursor.
2199 **
2200 ** If an error occurs, then *ppPage is undefined. It
2201 ** may remain unchanged, or it may be set to an invalid value.
2202 */
2203 static int getAndInitPage(
2204   BtShared *pBt,                  /* The database file */
2205   Pgno pgno,                      /* Number of the page to get */
2206   MemPage **ppPage,               /* Write the page pointer here */
2207   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2208   int bReadOnly                   /* True for a read-only page */
2209 ){
2210   int rc;
2211   DbPage *pDbPage;
2212   assert( sqlite3_mutex_held(pBt->mutex) );
2213   assert( pCur==0 || ppPage==&pCur->pPage );
2214   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2215   assert( pCur==0 || pCur->iPage>0 );
2216 
2217   if( pgno>btreePagecount(pBt) ){
2218     rc = SQLITE_CORRUPT_BKPT;
2219     goto getAndInitPage_error1;
2220   }
2221   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2222   if( rc ){
2223     goto getAndInitPage_error1;
2224   }
2225   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2226   if( (*ppPage)->isInit==0 ){
2227     btreePageFromDbPage(pDbPage, pgno, pBt);
2228     rc = btreeInitPage(*ppPage);
2229     if( rc!=SQLITE_OK ){
2230       goto getAndInitPage_error2;
2231     }
2232   }
2233   assert( (*ppPage)->pgno==pgno );
2234   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2235 
2236   /* If obtaining a child page for a cursor, we must verify that the page is
2237   ** compatible with the root page. */
2238   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2239     rc = SQLITE_CORRUPT_PGNO(pgno);
2240     goto getAndInitPage_error2;
2241   }
2242   return SQLITE_OK;
2243 
2244 getAndInitPage_error2:
2245   releasePage(*ppPage);
2246 getAndInitPage_error1:
2247   if( pCur ){
2248     pCur->iPage--;
2249     pCur->pPage = pCur->apPage[pCur->iPage];
2250   }
2251   testcase( pgno==0 );
2252   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2253   return rc;
2254 }
2255 
2256 /*
2257 ** Release a MemPage.  This should be called once for each prior
2258 ** call to btreeGetPage.
2259 **
2260 ** Page1 is a special case and must be released using releasePageOne().
2261 */
2262 static void releasePageNotNull(MemPage *pPage){
2263   assert( pPage->aData );
2264   assert( pPage->pBt );
2265   assert( pPage->pDbPage!=0 );
2266   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2267   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2268   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2269   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2270 }
2271 static void releasePage(MemPage *pPage){
2272   if( pPage ) releasePageNotNull(pPage);
2273 }
2274 static void releasePageOne(MemPage *pPage){
2275   assert( pPage!=0 );
2276   assert( pPage->aData );
2277   assert( pPage->pBt );
2278   assert( pPage->pDbPage!=0 );
2279   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2280   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2281   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2282   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2283 }
2284 
2285 /*
2286 ** Get an unused page.
2287 **
2288 ** This works just like btreeGetPage() with the addition:
2289 **
2290 **   *  If the page is already in use for some other purpose, immediately
2291 **      release it and return an SQLITE_CURRUPT error.
2292 **   *  Make sure the isInit flag is clear
2293 */
2294 static int btreeGetUnusedPage(
2295   BtShared *pBt,       /* The btree */
2296   Pgno pgno,           /* Number of the page to fetch */
2297   MemPage **ppPage,    /* Return the page in this parameter */
2298   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2299 ){
2300   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2301   if( rc==SQLITE_OK ){
2302     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2303       releasePage(*ppPage);
2304       *ppPage = 0;
2305       return SQLITE_CORRUPT_BKPT;
2306     }
2307     (*ppPage)->isInit = 0;
2308   }else{
2309     *ppPage = 0;
2310   }
2311   return rc;
2312 }
2313 
2314 
2315 /*
2316 ** During a rollback, when the pager reloads information into the cache
2317 ** so that the cache is restored to its original state at the start of
2318 ** the transaction, for each page restored this routine is called.
2319 **
2320 ** This routine needs to reset the extra data section at the end of the
2321 ** page to agree with the restored data.
2322 */
2323 static void pageReinit(DbPage *pData){
2324   MemPage *pPage;
2325   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2326   assert( sqlite3PagerPageRefcount(pData)>0 );
2327   if( pPage->isInit ){
2328     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2329     pPage->isInit = 0;
2330     if( sqlite3PagerPageRefcount(pData)>1 ){
2331       /* pPage might not be a btree page;  it might be an overflow page
2332       ** or ptrmap page or a free page.  In those cases, the following
2333       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2334       ** But no harm is done by this.  And it is very important that
2335       ** btreeInitPage() be called on every btree page so we make
2336       ** the call for every page that comes in for re-initing. */
2337       btreeInitPage(pPage);
2338     }
2339   }
2340 }
2341 
2342 /*
2343 ** Invoke the busy handler for a btree.
2344 */
2345 static int btreeInvokeBusyHandler(void *pArg){
2346   BtShared *pBt = (BtShared*)pArg;
2347   assert( pBt->db );
2348   assert( sqlite3_mutex_held(pBt->db->mutex) );
2349   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2350 }
2351 
2352 /*
2353 ** Open a database file.
2354 **
2355 ** zFilename is the name of the database file.  If zFilename is NULL
2356 ** then an ephemeral database is created.  The ephemeral database might
2357 ** be exclusively in memory, or it might use a disk-based memory cache.
2358 ** Either way, the ephemeral database will be automatically deleted
2359 ** when sqlite3BtreeClose() is called.
2360 **
2361 ** If zFilename is ":memory:" then an in-memory database is created
2362 ** that is automatically destroyed when it is closed.
2363 **
2364 ** The "flags" parameter is a bitmask that might contain bits like
2365 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2366 **
2367 ** If the database is already opened in the same database connection
2368 ** and we are in shared cache mode, then the open will fail with an
2369 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2370 ** objects in the same database connection since doing so will lead
2371 ** to problems with locking.
2372 */
2373 int sqlite3BtreeOpen(
2374   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2375   const char *zFilename,  /* Name of the file containing the BTree database */
2376   sqlite3 *db,            /* Associated database handle */
2377   Btree **ppBtree,        /* Pointer to new Btree object written here */
2378   int flags,              /* Options */
2379   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2380 ){
2381   BtShared *pBt = 0;             /* Shared part of btree structure */
2382   Btree *p;                      /* Handle to return */
2383   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2384   int rc = SQLITE_OK;            /* Result code from this function */
2385   u8 nReserve;                   /* Byte of unused space on each page */
2386   unsigned char zDbHeader[100];  /* Database header content */
2387 
2388   /* True if opening an ephemeral, temporary database */
2389   const int isTempDb = zFilename==0 || zFilename[0]==0;
2390 
2391   /* Set the variable isMemdb to true for an in-memory database, or
2392   ** false for a file-based database.
2393   */
2394 #ifdef SQLITE_OMIT_MEMORYDB
2395   const int isMemdb = 0;
2396 #else
2397   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2398                        || (isTempDb && sqlite3TempInMemory(db))
2399                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2400 #endif
2401 
2402   assert( db!=0 );
2403   assert( pVfs!=0 );
2404   assert( sqlite3_mutex_held(db->mutex) );
2405   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2406 
2407   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2408   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2409 
2410   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2411   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2412 
2413   if( isMemdb ){
2414     flags |= BTREE_MEMORY;
2415   }
2416   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2417     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2418   }
2419   p = sqlite3MallocZero(sizeof(Btree));
2420   if( !p ){
2421     return SQLITE_NOMEM_BKPT;
2422   }
2423   p->inTrans = TRANS_NONE;
2424   p->db = db;
2425 #ifndef SQLITE_OMIT_SHARED_CACHE
2426   p->lock.pBtree = p;
2427   p->lock.iTable = 1;
2428 #endif
2429 
2430 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2431   /*
2432   ** If this Btree is a candidate for shared cache, try to find an
2433   ** existing BtShared object that we can share with
2434   */
2435   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2436     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2437       int nFilename = sqlite3Strlen30(zFilename)+1;
2438       int nFullPathname = pVfs->mxPathname+1;
2439       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2440       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2441 
2442       p->sharable = 1;
2443       if( !zFullPathname ){
2444         sqlite3_free(p);
2445         return SQLITE_NOMEM_BKPT;
2446       }
2447       if( isMemdb ){
2448         memcpy(zFullPathname, zFilename, nFilename);
2449       }else{
2450         rc = sqlite3OsFullPathname(pVfs, zFilename,
2451                                    nFullPathname, zFullPathname);
2452         if( rc ){
2453           if( rc==SQLITE_OK_SYMLINK ){
2454             rc = SQLITE_OK;
2455           }else{
2456             sqlite3_free(zFullPathname);
2457             sqlite3_free(p);
2458             return rc;
2459           }
2460         }
2461       }
2462 #if SQLITE_THREADSAFE
2463       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2464       sqlite3_mutex_enter(mutexOpen);
2465       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2466       sqlite3_mutex_enter(mutexShared);
2467 #endif
2468       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2469         assert( pBt->nRef>0 );
2470         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2471                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2472           int iDb;
2473           for(iDb=db->nDb-1; iDb>=0; iDb--){
2474             Btree *pExisting = db->aDb[iDb].pBt;
2475             if( pExisting && pExisting->pBt==pBt ){
2476               sqlite3_mutex_leave(mutexShared);
2477               sqlite3_mutex_leave(mutexOpen);
2478               sqlite3_free(zFullPathname);
2479               sqlite3_free(p);
2480               return SQLITE_CONSTRAINT;
2481             }
2482           }
2483           p->pBt = pBt;
2484           pBt->nRef++;
2485           break;
2486         }
2487       }
2488       sqlite3_mutex_leave(mutexShared);
2489       sqlite3_free(zFullPathname);
2490     }
2491 #ifdef SQLITE_DEBUG
2492     else{
2493       /* In debug mode, we mark all persistent databases as sharable
2494       ** even when they are not.  This exercises the locking code and
2495       ** gives more opportunity for asserts(sqlite3_mutex_held())
2496       ** statements to find locking problems.
2497       */
2498       p->sharable = 1;
2499     }
2500 #endif
2501   }
2502 #endif
2503   if( pBt==0 ){
2504     /*
2505     ** The following asserts make sure that structures used by the btree are
2506     ** the right size.  This is to guard against size changes that result
2507     ** when compiling on a different architecture.
2508     */
2509     assert( sizeof(i64)==8 );
2510     assert( sizeof(u64)==8 );
2511     assert( sizeof(u32)==4 );
2512     assert( sizeof(u16)==2 );
2513     assert( sizeof(Pgno)==4 );
2514 
2515     pBt = sqlite3MallocZero( sizeof(*pBt) );
2516     if( pBt==0 ){
2517       rc = SQLITE_NOMEM_BKPT;
2518       goto btree_open_out;
2519     }
2520     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2521                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2522     if( rc==SQLITE_OK ){
2523       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2524       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2525     }
2526     if( rc!=SQLITE_OK ){
2527       goto btree_open_out;
2528     }
2529     pBt->openFlags = (u8)flags;
2530     pBt->db = db;
2531     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2532     p->pBt = pBt;
2533 
2534     pBt->pCursor = 0;
2535     pBt->pPage1 = 0;
2536     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2537 #if defined(SQLITE_SECURE_DELETE)
2538     pBt->btsFlags |= BTS_SECURE_DELETE;
2539 #elif defined(SQLITE_FAST_SECURE_DELETE)
2540     pBt->btsFlags |= BTS_OVERWRITE;
2541 #endif
2542     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2543     ** determined by the 2-byte integer located at an offset of 16 bytes from
2544     ** the beginning of the database file. */
2545     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2546     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2547          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2548       pBt->pageSize = 0;
2549 #ifndef SQLITE_OMIT_AUTOVACUUM
2550       /* If the magic name ":memory:" will create an in-memory database, then
2551       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2552       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2553       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2554       ** regular file-name. In this case the auto-vacuum applies as per normal.
2555       */
2556       if( zFilename && !isMemdb ){
2557         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2558         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2559       }
2560 #endif
2561       nReserve = 0;
2562     }else{
2563       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2564       ** determined by the one-byte unsigned integer found at an offset of 20
2565       ** into the database file header. */
2566       nReserve = zDbHeader[20];
2567       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2568 #ifndef SQLITE_OMIT_AUTOVACUUM
2569       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2570       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2571 #endif
2572     }
2573     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2574     if( rc ) goto btree_open_out;
2575     pBt->usableSize = pBt->pageSize - nReserve;
2576     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2577 
2578 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2579     /* Add the new BtShared object to the linked list sharable BtShareds.
2580     */
2581     pBt->nRef = 1;
2582     if( p->sharable ){
2583       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2584       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2585       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2586         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2587         if( pBt->mutex==0 ){
2588           rc = SQLITE_NOMEM_BKPT;
2589           goto btree_open_out;
2590         }
2591       }
2592       sqlite3_mutex_enter(mutexShared);
2593       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2594       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2595       sqlite3_mutex_leave(mutexShared);
2596     }
2597 #endif
2598   }
2599 
2600 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2601   /* If the new Btree uses a sharable pBtShared, then link the new
2602   ** Btree into the list of all sharable Btrees for the same connection.
2603   ** The list is kept in ascending order by pBt address.
2604   */
2605   if( p->sharable ){
2606     int i;
2607     Btree *pSib;
2608     for(i=0; i<db->nDb; i++){
2609       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2610         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2611         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2612           p->pNext = pSib;
2613           p->pPrev = 0;
2614           pSib->pPrev = p;
2615         }else{
2616           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2617             pSib = pSib->pNext;
2618           }
2619           p->pNext = pSib->pNext;
2620           p->pPrev = pSib;
2621           if( p->pNext ){
2622             p->pNext->pPrev = p;
2623           }
2624           pSib->pNext = p;
2625         }
2626         break;
2627       }
2628     }
2629   }
2630 #endif
2631   *ppBtree = p;
2632 
2633 btree_open_out:
2634   if( rc!=SQLITE_OK ){
2635     if( pBt && pBt->pPager ){
2636       sqlite3PagerClose(pBt->pPager, 0);
2637     }
2638     sqlite3_free(pBt);
2639     sqlite3_free(p);
2640     *ppBtree = 0;
2641   }else{
2642     sqlite3_file *pFile;
2643 
2644     /* If the B-Tree was successfully opened, set the pager-cache size to the
2645     ** default value. Except, when opening on an existing shared pager-cache,
2646     ** do not change the pager-cache size.
2647     */
2648     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2649       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2650     }
2651 
2652     pFile = sqlite3PagerFile(pBt->pPager);
2653     if( pFile->pMethods ){
2654       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2655     }
2656   }
2657   if( mutexOpen ){
2658     assert( sqlite3_mutex_held(mutexOpen) );
2659     sqlite3_mutex_leave(mutexOpen);
2660   }
2661   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2662   return rc;
2663 }
2664 
2665 /*
2666 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2667 ** remove the BtShared structure from the sharing list.  Return
2668 ** true if the BtShared.nRef counter reaches zero and return
2669 ** false if it is still positive.
2670 */
2671 static int removeFromSharingList(BtShared *pBt){
2672 #ifndef SQLITE_OMIT_SHARED_CACHE
2673   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2674   BtShared *pList;
2675   int removed = 0;
2676 
2677   assert( sqlite3_mutex_notheld(pBt->mutex) );
2678   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2679   sqlite3_mutex_enter(pMainMtx);
2680   pBt->nRef--;
2681   if( pBt->nRef<=0 ){
2682     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2683       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2684     }else{
2685       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2686       while( ALWAYS(pList) && pList->pNext!=pBt ){
2687         pList=pList->pNext;
2688       }
2689       if( ALWAYS(pList) ){
2690         pList->pNext = pBt->pNext;
2691       }
2692     }
2693     if( SQLITE_THREADSAFE ){
2694       sqlite3_mutex_free(pBt->mutex);
2695     }
2696     removed = 1;
2697   }
2698   sqlite3_mutex_leave(pMainMtx);
2699   return removed;
2700 #else
2701   return 1;
2702 #endif
2703 }
2704 
2705 /*
2706 ** Make sure pBt->pTmpSpace points to an allocation of
2707 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2708 ** pointer.
2709 */
2710 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2711   assert( pBt!=0 );
2712   assert( pBt->pTmpSpace==0 );
2713   /* This routine is called only by btreeCursor() when allocating the
2714   ** first write cursor for the BtShared object */
2715   assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2716   pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2717   if( pBt->pTmpSpace==0 ){
2718     BtCursor *pCur = pBt->pCursor;
2719     pBt->pCursor = pCur->pNext;  /* Unlink the cursor */
2720     memset(pCur, 0, sizeof(*pCur));
2721     return SQLITE_NOMEM_BKPT;
2722   }
2723 
2724   /* One of the uses of pBt->pTmpSpace is to format cells before
2725   ** inserting them into a leaf page (function fillInCell()). If
2726   ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2727   ** by the various routines that manipulate binary cells. Which
2728   ** can mean that fillInCell() only initializes the first 2 or 3
2729   ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2730   ** it into a database page. This is not actually a problem, but it
2731   ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2732   ** data is passed to system call write(). So to avoid this error,
2733   ** zero the first 4 bytes of temp space here.
2734   **
2735   ** Also:  Provide four bytes of initialized space before the
2736   ** beginning of pTmpSpace as an area available to prepend the
2737   ** left-child pointer to the beginning of a cell.
2738   */
2739   memset(pBt->pTmpSpace, 0, 8);
2740   pBt->pTmpSpace += 4;
2741   return SQLITE_OK;
2742 }
2743 
2744 /*
2745 ** Free the pBt->pTmpSpace allocation
2746 */
2747 static void freeTempSpace(BtShared *pBt){
2748   if( pBt->pTmpSpace ){
2749     pBt->pTmpSpace -= 4;
2750     sqlite3PageFree(pBt->pTmpSpace);
2751     pBt->pTmpSpace = 0;
2752   }
2753 }
2754 
2755 /*
2756 ** Close an open database and invalidate all cursors.
2757 */
2758 int sqlite3BtreeClose(Btree *p){
2759   BtShared *pBt = p->pBt;
2760 
2761   /* Close all cursors opened via this handle.  */
2762   assert( sqlite3_mutex_held(p->db->mutex) );
2763   sqlite3BtreeEnter(p);
2764 
2765   /* Verify that no other cursors have this Btree open */
2766 #ifdef SQLITE_DEBUG
2767   {
2768     BtCursor *pCur = pBt->pCursor;
2769     while( pCur ){
2770       BtCursor *pTmp = pCur;
2771       pCur = pCur->pNext;
2772       assert( pTmp->pBtree!=p );
2773 
2774     }
2775   }
2776 #endif
2777 
2778   /* Rollback any active transaction and free the handle structure.
2779   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2780   ** this handle.
2781   */
2782   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2783   sqlite3BtreeLeave(p);
2784 
2785   /* If there are still other outstanding references to the shared-btree
2786   ** structure, return now. The remainder of this procedure cleans
2787   ** up the shared-btree.
2788   */
2789   assert( p->wantToLock==0 && p->locked==0 );
2790   if( !p->sharable || removeFromSharingList(pBt) ){
2791     /* The pBt is no longer on the sharing list, so we can access
2792     ** it without having to hold the mutex.
2793     **
2794     ** Clean out and delete the BtShared object.
2795     */
2796     assert( !pBt->pCursor );
2797     sqlite3PagerClose(pBt->pPager, p->db);
2798     if( pBt->xFreeSchema && pBt->pSchema ){
2799       pBt->xFreeSchema(pBt->pSchema);
2800     }
2801     sqlite3DbFree(0, pBt->pSchema);
2802     freeTempSpace(pBt);
2803     sqlite3_free(pBt);
2804   }
2805 
2806 #ifndef SQLITE_OMIT_SHARED_CACHE
2807   assert( p->wantToLock==0 );
2808   assert( p->locked==0 );
2809   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2810   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2811 #endif
2812 
2813   sqlite3_free(p);
2814   return SQLITE_OK;
2815 }
2816 
2817 /*
2818 ** Change the "soft" limit on the number of pages in the cache.
2819 ** Unused and unmodified pages will be recycled when the number of
2820 ** pages in the cache exceeds this soft limit.  But the size of the
2821 ** cache is allowed to grow larger than this limit if it contains
2822 ** dirty pages or pages still in active use.
2823 */
2824 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2825   BtShared *pBt = p->pBt;
2826   assert( sqlite3_mutex_held(p->db->mutex) );
2827   sqlite3BtreeEnter(p);
2828   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2829   sqlite3BtreeLeave(p);
2830   return SQLITE_OK;
2831 }
2832 
2833 /*
2834 ** Change the "spill" limit on the number of pages in the cache.
2835 ** If the number of pages exceeds this limit during a write transaction,
2836 ** the pager might attempt to "spill" pages to the journal early in
2837 ** order to free up memory.
2838 **
2839 ** The value returned is the current spill size.  If zero is passed
2840 ** as an argument, no changes are made to the spill size setting, so
2841 ** using mxPage of 0 is a way to query the current spill size.
2842 */
2843 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2844   BtShared *pBt = p->pBt;
2845   int res;
2846   assert( sqlite3_mutex_held(p->db->mutex) );
2847   sqlite3BtreeEnter(p);
2848   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2849   sqlite3BtreeLeave(p);
2850   return res;
2851 }
2852 
2853 #if SQLITE_MAX_MMAP_SIZE>0
2854 /*
2855 ** Change the limit on the amount of the database file that may be
2856 ** memory mapped.
2857 */
2858 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2859   BtShared *pBt = p->pBt;
2860   assert( sqlite3_mutex_held(p->db->mutex) );
2861   sqlite3BtreeEnter(p);
2862   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2863   sqlite3BtreeLeave(p);
2864   return SQLITE_OK;
2865 }
2866 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2867 
2868 /*
2869 ** Change the way data is synced to disk in order to increase or decrease
2870 ** how well the database resists damage due to OS crashes and power
2871 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2872 ** there is a high probability of damage)  Level 2 is the default.  There
2873 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2874 ** probability of damage to near zero but with a write performance reduction.
2875 */
2876 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2877 int sqlite3BtreeSetPagerFlags(
2878   Btree *p,              /* The btree to set the safety level on */
2879   unsigned pgFlags       /* Various PAGER_* flags */
2880 ){
2881   BtShared *pBt = p->pBt;
2882   assert( sqlite3_mutex_held(p->db->mutex) );
2883   sqlite3BtreeEnter(p);
2884   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2885   sqlite3BtreeLeave(p);
2886   return SQLITE_OK;
2887 }
2888 #endif
2889 
2890 /*
2891 ** Change the default pages size and the number of reserved bytes per page.
2892 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2893 ** without changing anything.
2894 **
2895 ** The page size must be a power of 2 between 512 and 65536.  If the page
2896 ** size supplied does not meet this constraint then the page size is not
2897 ** changed.
2898 **
2899 ** Page sizes are constrained to be a power of two so that the region
2900 ** of the database file used for locking (beginning at PENDING_BYTE,
2901 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2902 ** at the beginning of a page.
2903 **
2904 ** If parameter nReserve is less than zero, then the number of reserved
2905 ** bytes per page is left unchanged.
2906 **
2907 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2908 ** and autovacuum mode can no longer be changed.
2909 */
2910 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2911   int rc = SQLITE_OK;
2912   int x;
2913   BtShared *pBt = p->pBt;
2914   assert( nReserve>=0 && nReserve<=255 );
2915   sqlite3BtreeEnter(p);
2916   pBt->nReserveWanted = nReserve;
2917   x = pBt->pageSize - pBt->usableSize;
2918   if( nReserve<x ) nReserve = x;
2919   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2920     sqlite3BtreeLeave(p);
2921     return SQLITE_READONLY;
2922   }
2923   assert( nReserve>=0 && nReserve<=255 );
2924   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2925         ((pageSize-1)&pageSize)==0 ){
2926     assert( (pageSize & 7)==0 );
2927     assert( !pBt->pCursor );
2928     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2929     pBt->pageSize = (u32)pageSize;
2930     freeTempSpace(pBt);
2931   }
2932   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2933   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2934   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2935   sqlite3BtreeLeave(p);
2936   return rc;
2937 }
2938 
2939 /*
2940 ** Return the currently defined page size
2941 */
2942 int sqlite3BtreeGetPageSize(Btree *p){
2943   return p->pBt->pageSize;
2944 }
2945 
2946 /*
2947 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2948 ** may only be called if it is guaranteed that the b-tree mutex is already
2949 ** held.
2950 **
2951 ** This is useful in one special case in the backup API code where it is
2952 ** known that the shared b-tree mutex is held, but the mutex on the
2953 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2954 ** were to be called, it might collide with some other operation on the
2955 ** database handle that owns *p, causing undefined behavior.
2956 */
2957 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2958   int n;
2959   assert( sqlite3_mutex_held(p->pBt->mutex) );
2960   n = p->pBt->pageSize - p->pBt->usableSize;
2961   return n;
2962 }
2963 
2964 /*
2965 ** Return the number of bytes of space at the end of every page that
2966 ** are intentually left unused.  This is the "reserved" space that is
2967 ** sometimes used by extensions.
2968 **
2969 ** The value returned is the larger of the current reserve size and
2970 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2971 ** The amount of reserve can only grow - never shrink.
2972 */
2973 int sqlite3BtreeGetRequestedReserve(Btree *p){
2974   int n1, n2;
2975   sqlite3BtreeEnter(p);
2976   n1 = (int)p->pBt->nReserveWanted;
2977   n2 = sqlite3BtreeGetReserveNoMutex(p);
2978   sqlite3BtreeLeave(p);
2979   return n1>n2 ? n1 : n2;
2980 }
2981 
2982 
2983 /*
2984 ** Set the maximum page count for a database if mxPage is positive.
2985 ** No changes are made if mxPage is 0 or negative.
2986 ** Regardless of the value of mxPage, return the maximum page count.
2987 */
2988 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2989   Pgno n;
2990   sqlite3BtreeEnter(p);
2991   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2992   sqlite3BtreeLeave(p);
2993   return n;
2994 }
2995 
2996 /*
2997 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2998 **
2999 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3000 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3001 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3002 **    newFlag==(-1)    No changes
3003 **
3004 ** This routine acts as a query if newFlag is less than zero
3005 **
3006 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3007 ** freelist leaf pages are not written back to the database.  Thus in-page
3008 ** deleted content is cleared, but freelist deleted content is not.
3009 **
3010 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3011 ** that freelist leaf pages are written back into the database, increasing
3012 ** the amount of disk I/O.
3013 */
3014 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3015   int b;
3016   if( p==0 ) return 0;
3017   sqlite3BtreeEnter(p);
3018   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3019   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3020   if( newFlag>=0 ){
3021     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3022     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3023   }
3024   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3025   sqlite3BtreeLeave(p);
3026   return b;
3027 }
3028 
3029 /*
3030 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3031 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3032 ** is disabled. The default value for the auto-vacuum property is
3033 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3034 */
3035 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3036 #ifdef SQLITE_OMIT_AUTOVACUUM
3037   return SQLITE_READONLY;
3038 #else
3039   BtShared *pBt = p->pBt;
3040   int rc = SQLITE_OK;
3041   u8 av = (u8)autoVacuum;
3042 
3043   sqlite3BtreeEnter(p);
3044   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3045     rc = SQLITE_READONLY;
3046   }else{
3047     pBt->autoVacuum = av ?1:0;
3048     pBt->incrVacuum = av==2 ?1:0;
3049   }
3050   sqlite3BtreeLeave(p);
3051   return rc;
3052 #endif
3053 }
3054 
3055 /*
3056 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3057 ** enabled 1 is returned. Otherwise 0.
3058 */
3059 int sqlite3BtreeGetAutoVacuum(Btree *p){
3060 #ifdef SQLITE_OMIT_AUTOVACUUM
3061   return BTREE_AUTOVACUUM_NONE;
3062 #else
3063   int rc;
3064   sqlite3BtreeEnter(p);
3065   rc = (
3066     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3067     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3068     BTREE_AUTOVACUUM_INCR
3069   );
3070   sqlite3BtreeLeave(p);
3071   return rc;
3072 #endif
3073 }
3074 
3075 /*
3076 ** If the user has not set the safety-level for this database connection
3077 ** using "PRAGMA synchronous", and if the safety-level is not already
3078 ** set to the value passed to this function as the second parameter,
3079 ** set it so.
3080 */
3081 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3082     && !defined(SQLITE_OMIT_WAL)
3083 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3084   sqlite3 *db;
3085   Db *pDb;
3086   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3087     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3088     if( pDb->bSyncSet==0
3089      && pDb->safety_level!=safety_level
3090      && pDb!=&db->aDb[1]
3091     ){
3092       pDb->safety_level = safety_level;
3093       sqlite3PagerSetFlags(pBt->pPager,
3094           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3095     }
3096   }
3097 }
3098 #else
3099 # define setDefaultSyncFlag(pBt,safety_level)
3100 #endif
3101 
3102 /* Forward declaration */
3103 static int newDatabase(BtShared*);
3104 
3105 
3106 /*
3107 ** Get a reference to pPage1 of the database file.  This will
3108 ** also acquire a readlock on that file.
3109 **
3110 ** SQLITE_OK is returned on success.  If the file is not a
3111 ** well-formed database file, then SQLITE_CORRUPT is returned.
3112 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3113 ** is returned if we run out of memory.
3114 */
3115 static int lockBtree(BtShared *pBt){
3116   int rc;              /* Result code from subfunctions */
3117   MemPage *pPage1;     /* Page 1 of the database file */
3118   u32 nPage;           /* Number of pages in the database */
3119   u32 nPageFile = 0;   /* Number of pages in the database file */
3120 
3121   assert( sqlite3_mutex_held(pBt->mutex) );
3122   assert( pBt->pPage1==0 );
3123   rc = sqlite3PagerSharedLock(pBt->pPager);
3124   if( rc!=SQLITE_OK ) return rc;
3125   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3126   if( rc!=SQLITE_OK ) return rc;
3127 
3128   /* Do some checking to help insure the file we opened really is
3129   ** a valid database file.
3130   */
3131   nPage = get4byte(28+(u8*)pPage1->aData);
3132   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3133   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3134     nPage = nPageFile;
3135   }
3136   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3137     nPage = 0;
3138   }
3139   if( nPage>0 ){
3140     u32 pageSize;
3141     u32 usableSize;
3142     u8 *page1 = pPage1->aData;
3143     rc = SQLITE_NOTADB;
3144     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3145     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3146     ** 61 74 20 33 00. */
3147     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3148       goto page1_init_failed;
3149     }
3150 
3151 #ifdef SQLITE_OMIT_WAL
3152     if( page1[18]>1 ){
3153       pBt->btsFlags |= BTS_READ_ONLY;
3154     }
3155     if( page1[19]>1 ){
3156       goto page1_init_failed;
3157     }
3158 #else
3159     if( page1[18]>2 ){
3160       pBt->btsFlags |= BTS_READ_ONLY;
3161     }
3162     if( page1[19]>2 ){
3163       goto page1_init_failed;
3164     }
3165 
3166     /* If the read version is set to 2, this database should be accessed
3167     ** in WAL mode. If the log is not already open, open it now. Then
3168     ** return SQLITE_OK and return without populating BtShared.pPage1.
3169     ** The caller detects this and calls this function again. This is
3170     ** required as the version of page 1 currently in the page1 buffer
3171     ** may not be the latest version - there may be a newer one in the log
3172     ** file.
3173     */
3174     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3175       int isOpen = 0;
3176       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3177       if( rc!=SQLITE_OK ){
3178         goto page1_init_failed;
3179       }else{
3180         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3181         if( isOpen==0 ){
3182           releasePageOne(pPage1);
3183           return SQLITE_OK;
3184         }
3185       }
3186       rc = SQLITE_NOTADB;
3187     }else{
3188       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3189     }
3190 #endif
3191 
3192     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3193     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3194     **
3195     ** The original design allowed these amounts to vary, but as of
3196     ** version 3.6.0, we require them to be fixed.
3197     */
3198     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3199       goto page1_init_failed;
3200     }
3201     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3202     ** determined by the 2-byte integer located at an offset of 16 bytes from
3203     ** the beginning of the database file. */
3204     pageSize = (page1[16]<<8) | (page1[17]<<16);
3205     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3206     ** between 512 and 65536 inclusive. */
3207     if( ((pageSize-1)&pageSize)!=0
3208      || pageSize>SQLITE_MAX_PAGE_SIZE
3209      || pageSize<=256
3210     ){
3211       goto page1_init_failed;
3212     }
3213     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3214     assert( (pageSize & 7)==0 );
3215     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3216     ** integer at offset 20 is the number of bytes of space at the end of
3217     ** each page to reserve for extensions.
3218     **
3219     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3220     ** determined by the one-byte unsigned integer found at an offset of 20
3221     ** into the database file header. */
3222     usableSize = pageSize - page1[20];
3223     if( (u32)pageSize!=pBt->pageSize ){
3224       /* After reading the first page of the database assuming a page size
3225       ** of BtShared.pageSize, we have discovered that the page-size is
3226       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3227       ** zero and return SQLITE_OK. The caller will call this function
3228       ** again with the correct page-size.
3229       */
3230       releasePageOne(pPage1);
3231       pBt->usableSize = usableSize;
3232       pBt->pageSize = pageSize;
3233       freeTempSpace(pBt);
3234       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3235                                    pageSize-usableSize);
3236       return rc;
3237     }
3238     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3239       rc = SQLITE_CORRUPT_BKPT;
3240       goto page1_init_failed;
3241     }
3242     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3243     ** be less than 480. In other words, if the page size is 512, then the
3244     ** reserved space size cannot exceed 32. */
3245     if( usableSize<480 ){
3246       goto page1_init_failed;
3247     }
3248     pBt->pageSize = pageSize;
3249     pBt->usableSize = usableSize;
3250 #ifndef SQLITE_OMIT_AUTOVACUUM
3251     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3252     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3253 #endif
3254   }
3255 
3256   /* maxLocal is the maximum amount of payload to store locally for
3257   ** a cell.  Make sure it is small enough so that at least minFanout
3258   ** cells can will fit on one page.  We assume a 10-byte page header.
3259   ** Besides the payload, the cell must store:
3260   **     2-byte pointer to the cell
3261   **     4-byte child pointer
3262   **     9-byte nKey value
3263   **     4-byte nData value
3264   **     4-byte overflow page pointer
3265   ** So a cell consists of a 2-byte pointer, a header which is as much as
3266   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3267   ** page pointer.
3268   */
3269   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3270   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3271   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3272   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3273   if( pBt->maxLocal>127 ){
3274     pBt->max1bytePayload = 127;
3275   }else{
3276     pBt->max1bytePayload = (u8)pBt->maxLocal;
3277   }
3278   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3279   pBt->pPage1 = pPage1;
3280   pBt->nPage = nPage;
3281   return SQLITE_OK;
3282 
3283 page1_init_failed:
3284   releasePageOne(pPage1);
3285   pBt->pPage1 = 0;
3286   return rc;
3287 }
3288 
3289 #ifndef NDEBUG
3290 /*
3291 ** Return the number of cursors open on pBt. This is for use
3292 ** in assert() expressions, so it is only compiled if NDEBUG is not
3293 ** defined.
3294 **
3295 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3296 ** false then all cursors are counted.
3297 **
3298 ** For the purposes of this routine, a cursor is any cursor that
3299 ** is capable of reading or writing to the database.  Cursors that
3300 ** have been tripped into the CURSOR_FAULT state are not counted.
3301 */
3302 static int countValidCursors(BtShared *pBt, int wrOnly){
3303   BtCursor *pCur;
3304   int r = 0;
3305   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3306     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3307      && pCur->eState!=CURSOR_FAULT ) r++;
3308   }
3309   return r;
3310 }
3311 #endif
3312 
3313 /*
3314 ** If there are no outstanding cursors and we are not in the middle
3315 ** of a transaction but there is a read lock on the database, then
3316 ** this routine unrefs the first page of the database file which
3317 ** has the effect of releasing the read lock.
3318 **
3319 ** If there is a transaction in progress, this routine is a no-op.
3320 */
3321 static void unlockBtreeIfUnused(BtShared *pBt){
3322   assert( sqlite3_mutex_held(pBt->mutex) );
3323   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3324   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3325     MemPage *pPage1 = pBt->pPage1;
3326     assert( pPage1->aData );
3327     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3328     pBt->pPage1 = 0;
3329     releasePageOne(pPage1);
3330   }
3331 }
3332 
3333 /*
3334 ** If pBt points to an empty file then convert that empty file
3335 ** into a new empty database by initializing the first page of
3336 ** the database.
3337 */
3338 static int newDatabase(BtShared *pBt){
3339   MemPage *pP1;
3340   unsigned char *data;
3341   int rc;
3342 
3343   assert( sqlite3_mutex_held(pBt->mutex) );
3344   if( pBt->nPage>0 ){
3345     return SQLITE_OK;
3346   }
3347   pP1 = pBt->pPage1;
3348   assert( pP1!=0 );
3349   data = pP1->aData;
3350   rc = sqlite3PagerWrite(pP1->pDbPage);
3351   if( rc ) return rc;
3352   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3353   assert( sizeof(zMagicHeader)==16 );
3354   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3355   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3356   data[18] = 1;
3357   data[19] = 1;
3358   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3359   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3360   data[21] = 64;
3361   data[22] = 32;
3362   data[23] = 32;
3363   memset(&data[24], 0, 100-24);
3364   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3365   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3366 #ifndef SQLITE_OMIT_AUTOVACUUM
3367   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3368   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3369   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3370   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3371 #endif
3372   pBt->nPage = 1;
3373   data[31] = 1;
3374   return SQLITE_OK;
3375 }
3376 
3377 /*
3378 ** Initialize the first page of the database file (creating a database
3379 ** consisting of a single page and no schema objects). Return SQLITE_OK
3380 ** if successful, or an SQLite error code otherwise.
3381 */
3382 int sqlite3BtreeNewDb(Btree *p){
3383   int rc;
3384   sqlite3BtreeEnter(p);
3385   p->pBt->nPage = 0;
3386   rc = newDatabase(p->pBt);
3387   sqlite3BtreeLeave(p);
3388   return rc;
3389 }
3390 
3391 /*
3392 ** Attempt to start a new transaction. A write-transaction
3393 ** is started if the second argument is nonzero, otherwise a read-
3394 ** transaction.  If the second argument is 2 or more and exclusive
3395 ** transaction is started, meaning that no other process is allowed
3396 ** to access the database.  A preexisting transaction may not be
3397 ** upgraded to exclusive by calling this routine a second time - the
3398 ** exclusivity flag only works for a new transaction.
3399 **
3400 ** A write-transaction must be started before attempting any
3401 ** changes to the database.  None of the following routines
3402 ** will work unless a transaction is started first:
3403 **
3404 **      sqlite3BtreeCreateTable()
3405 **      sqlite3BtreeCreateIndex()
3406 **      sqlite3BtreeClearTable()
3407 **      sqlite3BtreeDropTable()
3408 **      sqlite3BtreeInsert()
3409 **      sqlite3BtreeDelete()
3410 **      sqlite3BtreeUpdateMeta()
3411 **
3412 ** If an initial attempt to acquire the lock fails because of lock contention
3413 ** and the database was previously unlocked, then invoke the busy handler
3414 ** if there is one.  But if there was previously a read-lock, do not
3415 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3416 ** returned when there is already a read-lock in order to avoid a deadlock.
3417 **
3418 ** Suppose there are two processes A and B.  A has a read lock and B has
3419 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3420 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3421 ** One or the other of the two processes must give way or there can be
3422 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3423 ** when A already has a read lock, we encourage A to give up and let B
3424 ** proceed.
3425 */
3426 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3427   BtShared *pBt = p->pBt;
3428   Pager *pPager = pBt->pPager;
3429   int rc = SQLITE_OK;
3430 
3431   sqlite3BtreeEnter(p);
3432   btreeIntegrity(p);
3433 
3434   /* If the btree is already in a write-transaction, or it
3435   ** is already in a read-transaction and a read-transaction
3436   ** is requested, this is a no-op.
3437   */
3438   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3439     goto trans_begun;
3440   }
3441   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3442 
3443   if( (p->db->flags & SQLITE_ResetDatabase)
3444    && sqlite3PagerIsreadonly(pPager)==0
3445   ){
3446     pBt->btsFlags &= ~BTS_READ_ONLY;
3447   }
3448 
3449   /* Write transactions are not possible on a read-only database */
3450   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3451     rc = SQLITE_READONLY;
3452     goto trans_begun;
3453   }
3454 
3455 #ifndef SQLITE_OMIT_SHARED_CACHE
3456   {
3457     sqlite3 *pBlock = 0;
3458     /* If another database handle has already opened a write transaction
3459     ** on this shared-btree structure and a second write transaction is
3460     ** requested, return SQLITE_LOCKED.
3461     */
3462     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3463      || (pBt->btsFlags & BTS_PENDING)!=0
3464     ){
3465       pBlock = pBt->pWriter->db;
3466     }else if( wrflag>1 ){
3467       BtLock *pIter;
3468       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3469         if( pIter->pBtree!=p ){
3470           pBlock = pIter->pBtree->db;
3471           break;
3472         }
3473       }
3474     }
3475     if( pBlock ){
3476       sqlite3ConnectionBlocked(p->db, pBlock);
3477       rc = SQLITE_LOCKED_SHAREDCACHE;
3478       goto trans_begun;
3479     }
3480   }
3481 #endif
3482 
3483   /* Any read-only or read-write transaction implies a read-lock on
3484   ** page 1. So if some other shared-cache client already has a write-lock
3485   ** on page 1, the transaction cannot be opened. */
3486   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3487   if( SQLITE_OK!=rc ) goto trans_begun;
3488 
3489   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3490   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3491   do {
3492     sqlite3PagerWalDb(pPager, p->db);
3493 
3494 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3495     /* If transitioning from no transaction directly to a write transaction,
3496     ** block for the WRITER lock first if possible. */
3497     if( pBt->pPage1==0 && wrflag ){
3498       assert( pBt->inTransaction==TRANS_NONE );
3499       rc = sqlite3PagerWalWriteLock(pPager, 1);
3500       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3501     }
3502 #endif
3503 
3504     /* Call lockBtree() until either pBt->pPage1 is populated or
3505     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3506     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3507     ** reading page 1 it discovers that the page-size of the database
3508     ** file is not pBt->pageSize. In this case lockBtree() will update
3509     ** pBt->pageSize to the page-size of the file on disk.
3510     */
3511     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3512 
3513     if( rc==SQLITE_OK && wrflag ){
3514       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3515         rc = SQLITE_READONLY;
3516       }else{
3517         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3518         if( rc==SQLITE_OK ){
3519           rc = newDatabase(pBt);
3520         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3521           /* if there was no transaction opened when this function was
3522           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3523           ** code to SQLITE_BUSY. */
3524           rc = SQLITE_BUSY;
3525         }
3526       }
3527     }
3528 
3529     if( rc!=SQLITE_OK ){
3530       (void)sqlite3PagerWalWriteLock(pPager, 0);
3531       unlockBtreeIfUnused(pBt);
3532     }
3533   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3534           btreeInvokeBusyHandler(pBt) );
3535   sqlite3PagerWalDb(pPager, 0);
3536 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3537   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3538 #endif
3539 
3540   if( rc==SQLITE_OK ){
3541     if( p->inTrans==TRANS_NONE ){
3542       pBt->nTransaction++;
3543 #ifndef SQLITE_OMIT_SHARED_CACHE
3544       if( p->sharable ){
3545         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3546         p->lock.eLock = READ_LOCK;
3547         p->lock.pNext = pBt->pLock;
3548         pBt->pLock = &p->lock;
3549       }
3550 #endif
3551     }
3552     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3553     if( p->inTrans>pBt->inTransaction ){
3554       pBt->inTransaction = p->inTrans;
3555     }
3556     if( wrflag ){
3557       MemPage *pPage1 = pBt->pPage1;
3558 #ifndef SQLITE_OMIT_SHARED_CACHE
3559       assert( !pBt->pWriter );
3560       pBt->pWriter = p;
3561       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3562       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3563 #endif
3564 
3565       /* If the db-size header field is incorrect (as it may be if an old
3566       ** client has been writing the database file), update it now. Doing
3567       ** this sooner rather than later means the database size can safely
3568       ** re-read the database size from page 1 if a savepoint or transaction
3569       ** rollback occurs within the transaction.
3570       */
3571       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3572         rc = sqlite3PagerWrite(pPage1->pDbPage);
3573         if( rc==SQLITE_OK ){
3574           put4byte(&pPage1->aData[28], pBt->nPage);
3575         }
3576       }
3577     }
3578   }
3579 
3580 trans_begun:
3581   if( rc==SQLITE_OK ){
3582     if( pSchemaVersion ){
3583       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3584     }
3585     if( wrflag ){
3586       /* This call makes sure that the pager has the correct number of
3587       ** open savepoints. If the second parameter is greater than 0 and
3588       ** the sub-journal is not already open, then it will be opened here.
3589       */
3590       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3591     }
3592   }
3593 
3594   btreeIntegrity(p);
3595   sqlite3BtreeLeave(p);
3596   return rc;
3597 }
3598 
3599 #ifndef SQLITE_OMIT_AUTOVACUUM
3600 
3601 /*
3602 ** Set the pointer-map entries for all children of page pPage. Also, if
3603 ** pPage contains cells that point to overflow pages, set the pointer
3604 ** map entries for the overflow pages as well.
3605 */
3606 static int setChildPtrmaps(MemPage *pPage){
3607   int i;                             /* Counter variable */
3608   int nCell;                         /* Number of cells in page pPage */
3609   int rc;                            /* Return code */
3610   BtShared *pBt = pPage->pBt;
3611   Pgno pgno = pPage->pgno;
3612 
3613   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3614   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3615   if( rc!=SQLITE_OK ) return rc;
3616   nCell = pPage->nCell;
3617 
3618   for(i=0; i<nCell; i++){
3619     u8 *pCell = findCell(pPage, i);
3620 
3621     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3622 
3623     if( !pPage->leaf ){
3624       Pgno childPgno = get4byte(pCell);
3625       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3626     }
3627   }
3628 
3629   if( !pPage->leaf ){
3630     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3631     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3632   }
3633 
3634   return rc;
3635 }
3636 
3637 /*
3638 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3639 ** that it points to iTo. Parameter eType describes the type of pointer to
3640 ** be modified, as  follows:
3641 **
3642 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3643 **                   page of pPage.
3644 **
3645 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3646 **                   page pointed to by one of the cells on pPage.
3647 **
3648 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3649 **                   overflow page in the list.
3650 */
3651 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3652   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3653   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3654   if( eType==PTRMAP_OVERFLOW2 ){
3655     /* The pointer is always the first 4 bytes of the page in this case.  */
3656     if( get4byte(pPage->aData)!=iFrom ){
3657       return SQLITE_CORRUPT_PAGE(pPage);
3658     }
3659     put4byte(pPage->aData, iTo);
3660   }else{
3661     int i;
3662     int nCell;
3663     int rc;
3664 
3665     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3666     if( rc ) return rc;
3667     nCell = pPage->nCell;
3668 
3669     for(i=0; i<nCell; i++){
3670       u8 *pCell = findCell(pPage, i);
3671       if( eType==PTRMAP_OVERFLOW1 ){
3672         CellInfo info;
3673         pPage->xParseCell(pPage, pCell, &info);
3674         if( info.nLocal<info.nPayload ){
3675           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3676             return SQLITE_CORRUPT_PAGE(pPage);
3677           }
3678           if( iFrom==get4byte(pCell+info.nSize-4) ){
3679             put4byte(pCell+info.nSize-4, iTo);
3680             break;
3681           }
3682         }
3683       }else{
3684         if( get4byte(pCell)==iFrom ){
3685           put4byte(pCell, iTo);
3686           break;
3687         }
3688       }
3689     }
3690 
3691     if( i==nCell ){
3692       if( eType!=PTRMAP_BTREE ||
3693           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3694         return SQLITE_CORRUPT_PAGE(pPage);
3695       }
3696       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3697     }
3698   }
3699   return SQLITE_OK;
3700 }
3701 
3702 
3703 /*
3704 ** Move the open database page pDbPage to location iFreePage in the
3705 ** database. The pDbPage reference remains valid.
3706 **
3707 ** The isCommit flag indicates that there is no need to remember that
3708 ** the journal needs to be sync()ed before database page pDbPage->pgno
3709 ** can be written to. The caller has already promised not to write to that
3710 ** page.
3711 */
3712 static int relocatePage(
3713   BtShared *pBt,           /* Btree */
3714   MemPage *pDbPage,        /* Open page to move */
3715   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3716   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3717   Pgno iFreePage,          /* The location to move pDbPage to */
3718   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3719 ){
3720   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3721   Pgno iDbPage = pDbPage->pgno;
3722   Pager *pPager = pBt->pPager;
3723   int rc;
3724 
3725   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3726       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3727   assert( sqlite3_mutex_held(pBt->mutex) );
3728   assert( pDbPage->pBt==pBt );
3729   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3730 
3731   /* Move page iDbPage from its current location to page number iFreePage */
3732   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3733       iDbPage, iFreePage, iPtrPage, eType));
3734   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3735   if( rc!=SQLITE_OK ){
3736     return rc;
3737   }
3738   pDbPage->pgno = iFreePage;
3739 
3740   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3741   ** that point to overflow pages. The pointer map entries for all these
3742   ** pages need to be changed.
3743   **
3744   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3745   ** pointer to a subsequent overflow page. If this is the case, then
3746   ** the pointer map needs to be updated for the subsequent overflow page.
3747   */
3748   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3749     rc = setChildPtrmaps(pDbPage);
3750     if( rc!=SQLITE_OK ){
3751       return rc;
3752     }
3753   }else{
3754     Pgno nextOvfl = get4byte(pDbPage->aData);
3755     if( nextOvfl!=0 ){
3756       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3757       if( rc!=SQLITE_OK ){
3758         return rc;
3759       }
3760     }
3761   }
3762 
3763   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3764   ** that it points at iFreePage. Also fix the pointer map entry for
3765   ** iPtrPage.
3766   */
3767   if( eType!=PTRMAP_ROOTPAGE ){
3768     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3769     if( rc!=SQLITE_OK ){
3770       return rc;
3771     }
3772     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3773     if( rc!=SQLITE_OK ){
3774       releasePage(pPtrPage);
3775       return rc;
3776     }
3777     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3778     releasePage(pPtrPage);
3779     if( rc==SQLITE_OK ){
3780       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3781     }
3782   }
3783   return rc;
3784 }
3785 
3786 /* Forward declaration required by incrVacuumStep(). */
3787 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3788 
3789 /*
3790 ** Perform a single step of an incremental-vacuum. If successful, return
3791 ** SQLITE_OK. If there is no work to do (and therefore no point in
3792 ** calling this function again), return SQLITE_DONE. Or, if an error
3793 ** occurs, return some other error code.
3794 **
3795 ** More specifically, this function attempts to re-organize the database so
3796 ** that the last page of the file currently in use is no longer in use.
3797 **
3798 ** Parameter nFin is the number of pages that this database would contain
3799 ** were this function called until it returns SQLITE_DONE.
3800 **
3801 ** If the bCommit parameter is non-zero, this function assumes that the
3802 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3803 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3804 ** operation, or false for an incremental vacuum.
3805 */
3806 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3807   Pgno nFreeList;           /* Number of pages still on the free-list */
3808   int rc;
3809 
3810   assert( sqlite3_mutex_held(pBt->mutex) );
3811   assert( iLastPg>nFin );
3812 
3813   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3814     u8 eType;
3815     Pgno iPtrPage;
3816 
3817     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3818     if( nFreeList==0 ){
3819       return SQLITE_DONE;
3820     }
3821 
3822     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3823     if( rc!=SQLITE_OK ){
3824       return rc;
3825     }
3826     if( eType==PTRMAP_ROOTPAGE ){
3827       return SQLITE_CORRUPT_BKPT;
3828     }
3829 
3830     if( eType==PTRMAP_FREEPAGE ){
3831       if( bCommit==0 ){
3832         /* Remove the page from the files free-list. This is not required
3833         ** if bCommit is non-zero. In that case, the free-list will be
3834         ** truncated to zero after this function returns, so it doesn't
3835         ** matter if it still contains some garbage entries.
3836         */
3837         Pgno iFreePg;
3838         MemPage *pFreePg;
3839         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3840         if( rc!=SQLITE_OK ){
3841           return rc;
3842         }
3843         assert( iFreePg==iLastPg );
3844         releasePage(pFreePg);
3845       }
3846     } else {
3847       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3848       MemPage *pLastPg;
3849       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3850       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3851 
3852       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3853       if( rc!=SQLITE_OK ){
3854         return rc;
3855       }
3856 
3857       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3858       ** is swapped with the first free page pulled off the free list.
3859       **
3860       ** On the other hand, if bCommit is greater than zero, then keep
3861       ** looping until a free-page located within the first nFin pages
3862       ** of the file is found.
3863       */
3864       if( bCommit==0 ){
3865         eMode = BTALLOC_LE;
3866         iNear = nFin;
3867       }
3868       do {
3869         MemPage *pFreePg;
3870         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3871         if( rc!=SQLITE_OK ){
3872           releasePage(pLastPg);
3873           return rc;
3874         }
3875         releasePage(pFreePg);
3876       }while( bCommit && iFreePg>nFin );
3877       assert( iFreePg<iLastPg );
3878 
3879       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3880       releasePage(pLastPg);
3881       if( rc!=SQLITE_OK ){
3882         return rc;
3883       }
3884     }
3885   }
3886 
3887   if( bCommit==0 ){
3888     do {
3889       iLastPg--;
3890     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3891     pBt->bDoTruncate = 1;
3892     pBt->nPage = iLastPg;
3893   }
3894   return SQLITE_OK;
3895 }
3896 
3897 /*
3898 ** The database opened by the first argument is an auto-vacuum database
3899 ** nOrig pages in size containing nFree free pages. Return the expected
3900 ** size of the database in pages following an auto-vacuum operation.
3901 */
3902 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3903   int nEntry;                     /* Number of entries on one ptrmap page */
3904   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3905   Pgno nFin;                      /* Return value */
3906 
3907   nEntry = pBt->usableSize/5;
3908   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3909   nFin = nOrig - nFree - nPtrmap;
3910   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3911     nFin--;
3912   }
3913   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3914     nFin--;
3915   }
3916 
3917   return nFin;
3918 }
3919 
3920 /*
3921 ** A write-transaction must be opened before calling this function.
3922 ** It performs a single unit of work towards an incremental vacuum.
3923 **
3924 ** If the incremental vacuum is finished after this function has run,
3925 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3926 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3927 */
3928 int sqlite3BtreeIncrVacuum(Btree *p){
3929   int rc;
3930   BtShared *pBt = p->pBt;
3931 
3932   sqlite3BtreeEnter(p);
3933   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3934   if( !pBt->autoVacuum ){
3935     rc = SQLITE_DONE;
3936   }else{
3937     Pgno nOrig = btreePagecount(pBt);
3938     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3939     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3940 
3941     if( nOrig<nFin || nFree>=nOrig ){
3942       rc = SQLITE_CORRUPT_BKPT;
3943     }else if( nFree>0 ){
3944       rc = saveAllCursors(pBt, 0, 0);
3945       if( rc==SQLITE_OK ){
3946         invalidateAllOverflowCache(pBt);
3947         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3948       }
3949       if( rc==SQLITE_OK ){
3950         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3951         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3952       }
3953     }else{
3954       rc = SQLITE_DONE;
3955     }
3956   }
3957   sqlite3BtreeLeave(p);
3958   return rc;
3959 }
3960 
3961 /*
3962 ** This routine is called prior to sqlite3PagerCommit when a transaction
3963 ** is committed for an auto-vacuum database.
3964 */
3965 static int autoVacuumCommit(Btree *p){
3966   int rc = SQLITE_OK;
3967   Pager *pPager;
3968   BtShared *pBt;
3969   sqlite3 *db;
3970   VVA_ONLY( int nRef );
3971 
3972   assert( p!=0 );
3973   pBt = p->pBt;
3974   pPager = pBt->pPager;
3975   VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
3976 
3977   assert( sqlite3_mutex_held(pBt->mutex) );
3978   invalidateAllOverflowCache(pBt);
3979   assert(pBt->autoVacuum);
3980   if( !pBt->incrVacuum ){
3981     Pgno nFin;         /* Number of pages in database after autovacuuming */
3982     Pgno nFree;        /* Number of pages on the freelist initially */
3983     Pgno nVac;         /* Number of pages to vacuum */
3984     Pgno iFree;        /* The next page to be freed */
3985     Pgno nOrig;        /* Database size before freeing */
3986 
3987     nOrig = btreePagecount(pBt);
3988     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3989       /* It is not possible to create a database for which the final page
3990       ** is either a pointer-map page or the pending-byte page. If one
3991       ** is encountered, this indicates corruption.
3992       */
3993       return SQLITE_CORRUPT_BKPT;
3994     }
3995 
3996     nFree = get4byte(&pBt->pPage1->aData[36]);
3997     db = p->db;
3998     if( db->xAutovacPages ){
3999       int iDb;
4000       for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4001         if( db->aDb[iDb].pBt==p ) break;
4002       }
4003       nVac = db->xAutovacPages(
4004         db->pAutovacPagesArg,
4005         db->aDb[iDb].zDbSName,
4006         nOrig,
4007         nFree,
4008         pBt->pageSize
4009       );
4010       if( nVac>nFree ){
4011         nVac = nFree;
4012       }
4013       if( nVac==0 ){
4014         return SQLITE_OK;
4015       }
4016     }else{
4017       nVac = nFree;
4018     }
4019     nFin = finalDbSize(pBt, nOrig, nVac);
4020     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4021     if( nFin<nOrig ){
4022       rc = saveAllCursors(pBt, 0, 0);
4023     }
4024     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4025       rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4026     }
4027     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4028       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4029       if( nVac==nFree ){
4030         put4byte(&pBt->pPage1->aData[32], 0);
4031         put4byte(&pBt->pPage1->aData[36], 0);
4032       }
4033       put4byte(&pBt->pPage1->aData[28], nFin);
4034       pBt->bDoTruncate = 1;
4035       pBt->nPage = nFin;
4036     }
4037     if( rc!=SQLITE_OK ){
4038       sqlite3PagerRollback(pPager);
4039     }
4040   }
4041 
4042   assert( nRef>=sqlite3PagerRefcount(pPager) );
4043   return rc;
4044 }
4045 
4046 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4047 # define setChildPtrmaps(x) SQLITE_OK
4048 #endif
4049 
4050 /*
4051 ** This routine does the first phase of a two-phase commit.  This routine
4052 ** causes a rollback journal to be created (if it does not already exist)
4053 ** and populated with enough information so that if a power loss occurs
4054 ** the database can be restored to its original state by playing back
4055 ** the journal.  Then the contents of the journal are flushed out to
4056 ** the disk.  After the journal is safely on oxide, the changes to the
4057 ** database are written into the database file and flushed to oxide.
4058 ** At the end of this call, the rollback journal still exists on the
4059 ** disk and we are still holding all locks, so the transaction has not
4060 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4061 ** commit process.
4062 **
4063 ** This call is a no-op if no write-transaction is currently active on pBt.
4064 **
4065 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4066 ** the name of a super-journal file that should be written into the
4067 ** individual journal file, or is NULL, indicating no super-journal file
4068 ** (single database transaction).
4069 **
4070 ** When this is called, the super-journal should already have been
4071 ** created, populated with this journal pointer and synced to disk.
4072 **
4073 ** Once this is routine has returned, the only thing required to commit
4074 ** the write-transaction for this database file is to delete the journal.
4075 */
4076 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4077   int rc = SQLITE_OK;
4078   if( p->inTrans==TRANS_WRITE ){
4079     BtShared *pBt = p->pBt;
4080     sqlite3BtreeEnter(p);
4081 #ifndef SQLITE_OMIT_AUTOVACUUM
4082     if( pBt->autoVacuum ){
4083       rc = autoVacuumCommit(p);
4084       if( rc!=SQLITE_OK ){
4085         sqlite3BtreeLeave(p);
4086         return rc;
4087       }
4088     }
4089     if( pBt->bDoTruncate ){
4090       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4091     }
4092 #endif
4093     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4094     sqlite3BtreeLeave(p);
4095   }
4096   return rc;
4097 }
4098 
4099 /*
4100 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4101 ** at the conclusion of a transaction.
4102 */
4103 static void btreeEndTransaction(Btree *p){
4104   BtShared *pBt = p->pBt;
4105   sqlite3 *db = p->db;
4106   assert( sqlite3BtreeHoldsMutex(p) );
4107 
4108 #ifndef SQLITE_OMIT_AUTOVACUUM
4109   pBt->bDoTruncate = 0;
4110 #endif
4111   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4112     /* If there are other active statements that belong to this database
4113     ** handle, downgrade to a read-only transaction. The other statements
4114     ** may still be reading from the database.  */
4115     downgradeAllSharedCacheTableLocks(p);
4116     p->inTrans = TRANS_READ;
4117   }else{
4118     /* If the handle had any kind of transaction open, decrement the
4119     ** transaction count of the shared btree. If the transaction count
4120     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4121     ** call below will unlock the pager.  */
4122     if( p->inTrans!=TRANS_NONE ){
4123       clearAllSharedCacheTableLocks(p);
4124       pBt->nTransaction--;
4125       if( 0==pBt->nTransaction ){
4126         pBt->inTransaction = TRANS_NONE;
4127       }
4128     }
4129 
4130     /* Set the current transaction state to TRANS_NONE and unlock the
4131     ** pager if this call closed the only read or write transaction.  */
4132     p->inTrans = TRANS_NONE;
4133     unlockBtreeIfUnused(pBt);
4134   }
4135 
4136   btreeIntegrity(p);
4137 }
4138 
4139 /*
4140 ** Commit the transaction currently in progress.
4141 **
4142 ** This routine implements the second phase of a 2-phase commit.  The
4143 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4144 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4145 ** routine did all the work of writing information out to disk and flushing the
4146 ** contents so that they are written onto the disk platter.  All this
4147 ** routine has to do is delete or truncate or zero the header in the
4148 ** the rollback journal (which causes the transaction to commit) and
4149 ** drop locks.
4150 **
4151 ** Normally, if an error occurs while the pager layer is attempting to
4152 ** finalize the underlying journal file, this function returns an error and
4153 ** the upper layer will attempt a rollback. However, if the second argument
4154 ** is non-zero then this b-tree transaction is part of a multi-file
4155 ** transaction. In this case, the transaction has already been committed
4156 ** (by deleting a super-journal file) and the caller will ignore this
4157 ** functions return code. So, even if an error occurs in the pager layer,
4158 ** reset the b-tree objects internal state to indicate that the write
4159 ** transaction has been closed. This is quite safe, as the pager will have
4160 ** transitioned to the error state.
4161 **
4162 ** This will release the write lock on the database file.  If there
4163 ** are no active cursors, it also releases the read lock.
4164 */
4165 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4166 
4167   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4168   sqlite3BtreeEnter(p);
4169   btreeIntegrity(p);
4170 
4171   /* If the handle has a write-transaction open, commit the shared-btrees
4172   ** transaction and set the shared state to TRANS_READ.
4173   */
4174   if( p->inTrans==TRANS_WRITE ){
4175     int rc;
4176     BtShared *pBt = p->pBt;
4177     assert( pBt->inTransaction==TRANS_WRITE );
4178     assert( pBt->nTransaction>0 );
4179     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4180     if( rc!=SQLITE_OK && bCleanup==0 ){
4181       sqlite3BtreeLeave(p);
4182       return rc;
4183     }
4184     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4185     pBt->inTransaction = TRANS_READ;
4186     btreeClearHasContent(pBt);
4187   }
4188 
4189   btreeEndTransaction(p);
4190   sqlite3BtreeLeave(p);
4191   return SQLITE_OK;
4192 }
4193 
4194 /*
4195 ** Do both phases of a commit.
4196 */
4197 int sqlite3BtreeCommit(Btree *p){
4198   int rc;
4199   sqlite3BtreeEnter(p);
4200   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4201   if( rc==SQLITE_OK ){
4202     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4203   }
4204   sqlite3BtreeLeave(p);
4205   return rc;
4206 }
4207 
4208 /*
4209 ** This routine sets the state to CURSOR_FAULT and the error
4210 ** code to errCode for every cursor on any BtShared that pBtree
4211 ** references.  Or if the writeOnly flag is set to 1, then only
4212 ** trip write cursors and leave read cursors unchanged.
4213 **
4214 ** Every cursor is a candidate to be tripped, including cursors
4215 ** that belong to other database connections that happen to be
4216 ** sharing the cache with pBtree.
4217 **
4218 ** This routine gets called when a rollback occurs. If the writeOnly
4219 ** flag is true, then only write-cursors need be tripped - read-only
4220 ** cursors save their current positions so that they may continue
4221 ** following the rollback. Or, if writeOnly is false, all cursors are
4222 ** tripped. In general, writeOnly is false if the transaction being
4223 ** rolled back modified the database schema. In this case b-tree root
4224 ** pages may be moved or deleted from the database altogether, making
4225 ** it unsafe for read cursors to continue.
4226 **
4227 ** If the writeOnly flag is true and an error is encountered while
4228 ** saving the current position of a read-only cursor, all cursors,
4229 ** including all read-cursors are tripped.
4230 **
4231 ** SQLITE_OK is returned if successful, or if an error occurs while
4232 ** saving a cursor position, an SQLite error code.
4233 */
4234 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4235   BtCursor *p;
4236   int rc = SQLITE_OK;
4237 
4238   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4239   if( pBtree ){
4240     sqlite3BtreeEnter(pBtree);
4241     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4242       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4243         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4244           rc = saveCursorPosition(p);
4245           if( rc!=SQLITE_OK ){
4246             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4247             break;
4248           }
4249         }
4250       }else{
4251         sqlite3BtreeClearCursor(p);
4252         p->eState = CURSOR_FAULT;
4253         p->skipNext = errCode;
4254       }
4255       btreeReleaseAllCursorPages(p);
4256     }
4257     sqlite3BtreeLeave(pBtree);
4258   }
4259   return rc;
4260 }
4261 
4262 /*
4263 ** Set the pBt->nPage field correctly, according to the current
4264 ** state of the database.  Assume pBt->pPage1 is valid.
4265 */
4266 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4267   int nPage = get4byte(&pPage1->aData[28]);
4268   testcase( nPage==0 );
4269   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4270   testcase( pBt->nPage!=(u32)nPage );
4271   pBt->nPage = nPage;
4272 }
4273 
4274 /*
4275 ** Rollback the transaction in progress.
4276 **
4277 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4278 ** Only write cursors are tripped if writeOnly is true but all cursors are
4279 ** tripped if writeOnly is false.  Any attempt to use
4280 ** a tripped cursor will result in an error.
4281 **
4282 ** This will release the write lock on the database file.  If there
4283 ** are no active cursors, it also releases the read lock.
4284 */
4285 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4286   int rc;
4287   BtShared *pBt = p->pBt;
4288   MemPage *pPage1;
4289 
4290   assert( writeOnly==1 || writeOnly==0 );
4291   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4292   sqlite3BtreeEnter(p);
4293   if( tripCode==SQLITE_OK ){
4294     rc = tripCode = saveAllCursors(pBt, 0, 0);
4295     if( rc ) writeOnly = 0;
4296   }else{
4297     rc = SQLITE_OK;
4298   }
4299   if( tripCode ){
4300     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4301     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4302     if( rc2!=SQLITE_OK ) rc = rc2;
4303   }
4304   btreeIntegrity(p);
4305 
4306   if( p->inTrans==TRANS_WRITE ){
4307     int rc2;
4308 
4309     assert( TRANS_WRITE==pBt->inTransaction );
4310     rc2 = sqlite3PagerRollback(pBt->pPager);
4311     if( rc2!=SQLITE_OK ){
4312       rc = rc2;
4313     }
4314 
4315     /* The rollback may have destroyed the pPage1->aData value.  So
4316     ** call btreeGetPage() on page 1 again to make
4317     ** sure pPage1->aData is set correctly. */
4318     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4319       btreeSetNPage(pBt, pPage1);
4320       releasePageOne(pPage1);
4321     }
4322     assert( countValidCursors(pBt, 1)==0 );
4323     pBt->inTransaction = TRANS_READ;
4324     btreeClearHasContent(pBt);
4325   }
4326 
4327   btreeEndTransaction(p);
4328   sqlite3BtreeLeave(p);
4329   return rc;
4330 }
4331 
4332 /*
4333 ** Start a statement subtransaction. The subtransaction can be rolled
4334 ** back independently of the main transaction. You must start a transaction
4335 ** before starting a subtransaction. The subtransaction is ended automatically
4336 ** if the main transaction commits or rolls back.
4337 **
4338 ** Statement subtransactions are used around individual SQL statements
4339 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4340 ** error occurs within the statement, the effect of that one statement
4341 ** can be rolled back without having to rollback the entire transaction.
4342 **
4343 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4344 ** value passed as the second parameter is the total number of savepoints,
4345 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4346 ** are no active savepoints and no other statement-transactions open,
4347 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4348 ** using the sqlite3BtreeSavepoint() function.
4349 */
4350 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4351   int rc;
4352   BtShared *pBt = p->pBt;
4353   sqlite3BtreeEnter(p);
4354   assert( p->inTrans==TRANS_WRITE );
4355   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4356   assert( iStatement>0 );
4357   assert( iStatement>p->db->nSavepoint );
4358   assert( pBt->inTransaction==TRANS_WRITE );
4359   /* At the pager level, a statement transaction is a savepoint with
4360   ** an index greater than all savepoints created explicitly using
4361   ** SQL statements. It is illegal to open, release or rollback any
4362   ** such savepoints while the statement transaction savepoint is active.
4363   */
4364   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4365   sqlite3BtreeLeave(p);
4366   return rc;
4367 }
4368 
4369 /*
4370 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4371 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4372 ** savepoint identified by parameter iSavepoint, depending on the value
4373 ** of op.
4374 **
4375 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4376 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4377 ** contents of the entire transaction are rolled back. This is different
4378 ** from a normal transaction rollback, as no locks are released and the
4379 ** transaction remains open.
4380 */
4381 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4382   int rc = SQLITE_OK;
4383   if( p && p->inTrans==TRANS_WRITE ){
4384     BtShared *pBt = p->pBt;
4385     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4386     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4387     sqlite3BtreeEnter(p);
4388     if( op==SAVEPOINT_ROLLBACK ){
4389       rc = saveAllCursors(pBt, 0, 0);
4390     }
4391     if( rc==SQLITE_OK ){
4392       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4393     }
4394     if( rc==SQLITE_OK ){
4395       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4396         pBt->nPage = 0;
4397       }
4398       rc = newDatabase(pBt);
4399       btreeSetNPage(pBt, pBt->pPage1);
4400 
4401       /* pBt->nPage might be zero if the database was corrupt when
4402       ** the transaction was started. Otherwise, it must be at least 1.  */
4403       assert( CORRUPT_DB || pBt->nPage>0 );
4404     }
4405     sqlite3BtreeLeave(p);
4406   }
4407   return rc;
4408 }
4409 
4410 /*
4411 ** Create a new cursor for the BTree whose root is on the page
4412 ** iTable. If a read-only cursor is requested, it is assumed that
4413 ** the caller already has at least a read-only transaction open
4414 ** on the database already. If a write-cursor is requested, then
4415 ** the caller is assumed to have an open write transaction.
4416 **
4417 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4418 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4419 ** can be used for reading or for writing if other conditions for writing
4420 ** are also met.  These are the conditions that must be met in order
4421 ** for writing to be allowed:
4422 **
4423 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4424 **
4425 ** 2:  Other database connections that share the same pager cache
4426 **     but which are not in the READ_UNCOMMITTED state may not have
4427 **     cursors open with wrFlag==0 on the same table.  Otherwise
4428 **     the changes made by this write cursor would be visible to
4429 **     the read cursors in the other database connection.
4430 **
4431 ** 3:  The database must be writable (not on read-only media)
4432 **
4433 ** 4:  There must be an active transaction.
4434 **
4435 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4436 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4437 ** this cursor will only be used to seek to and delete entries of an index
4438 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4439 ** this implementation.  But in a hypothetical alternative storage engine
4440 ** in which index entries are automatically deleted when corresponding table
4441 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4442 ** operations on this cursor can be no-ops and all READ operations can
4443 ** return a null row (2-bytes: 0x01 0x00).
4444 **
4445 ** No checking is done to make sure that page iTable really is the
4446 ** root page of a b-tree.  If it is not, then the cursor acquired
4447 ** will not work correctly.
4448 **
4449 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4450 ** on pCur to initialize the memory space prior to invoking this routine.
4451 */
4452 static int btreeCursor(
4453   Btree *p,                              /* The btree */
4454   Pgno iTable,                           /* Root page of table to open */
4455   int wrFlag,                            /* 1 to write. 0 read-only */
4456   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4457   BtCursor *pCur                         /* Space for new cursor */
4458 ){
4459   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4460   BtCursor *pX;                          /* Looping over other all cursors */
4461 
4462   assert( sqlite3BtreeHoldsMutex(p) );
4463   assert( wrFlag==0
4464        || wrFlag==BTREE_WRCSR
4465        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4466   );
4467 
4468   /* The following assert statements verify that if this is a sharable
4469   ** b-tree database, the connection is holding the required table locks,
4470   ** and that no other connection has any open cursor that conflicts with
4471   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4472   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4473           || iTable<1 );
4474   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4475 
4476   /* Assert that the caller has opened the required transaction. */
4477   assert( p->inTrans>TRANS_NONE );
4478   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4479   assert( pBt->pPage1 && pBt->pPage1->aData );
4480   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4481 
4482   if( iTable<=1 ){
4483     if( iTable<1 ){
4484       return SQLITE_CORRUPT_BKPT;
4485     }else if( btreePagecount(pBt)==0 ){
4486       assert( wrFlag==0 );
4487       iTable = 0;
4488     }
4489   }
4490 
4491   /* Now that no other errors can occur, finish filling in the BtCursor
4492   ** variables and link the cursor into the BtShared list.  */
4493   pCur->pgnoRoot = iTable;
4494   pCur->iPage = -1;
4495   pCur->pKeyInfo = pKeyInfo;
4496   pCur->pBtree = p;
4497   pCur->pBt = pBt;
4498   pCur->curFlags = 0;
4499   /* If there are two or more cursors on the same btree, then all such
4500   ** cursors *must* have the BTCF_Multiple flag set. */
4501   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4502     if( pX->pgnoRoot==iTable ){
4503       pX->curFlags |= BTCF_Multiple;
4504       pCur->curFlags = BTCF_Multiple;
4505     }
4506   }
4507   pCur->eState = CURSOR_INVALID;
4508   pCur->pNext = pBt->pCursor;
4509   pBt->pCursor = pCur;
4510   if( wrFlag ){
4511     pCur->curFlags |= BTCF_WriteFlag;
4512     pCur->curPagerFlags = 0;
4513     if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4514   }else{
4515     pCur->curPagerFlags = PAGER_GET_READONLY;
4516   }
4517   return SQLITE_OK;
4518 }
4519 static int btreeCursorWithLock(
4520   Btree *p,                              /* The btree */
4521   Pgno iTable,                           /* Root page of table to open */
4522   int wrFlag,                            /* 1 to write. 0 read-only */
4523   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4524   BtCursor *pCur                         /* Space for new cursor */
4525 ){
4526   int rc;
4527   sqlite3BtreeEnter(p);
4528   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4529   sqlite3BtreeLeave(p);
4530   return rc;
4531 }
4532 int sqlite3BtreeCursor(
4533   Btree *p,                                   /* The btree */
4534   Pgno iTable,                                /* Root page of table to open */
4535   int wrFlag,                                 /* 1 to write. 0 read-only */
4536   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4537   BtCursor *pCur                              /* Write new cursor here */
4538 ){
4539   if( p->sharable ){
4540     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4541   }else{
4542     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4543   }
4544 }
4545 
4546 /*
4547 ** Return the size of a BtCursor object in bytes.
4548 **
4549 ** This interfaces is needed so that users of cursors can preallocate
4550 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4551 ** to users so they cannot do the sizeof() themselves - they must call
4552 ** this routine.
4553 */
4554 int sqlite3BtreeCursorSize(void){
4555   return ROUND8(sizeof(BtCursor));
4556 }
4557 
4558 /*
4559 ** Initialize memory that will be converted into a BtCursor object.
4560 **
4561 ** The simple approach here would be to memset() the entire object
4562 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4563 ** do not need to be zeroed and they are large, so we can save a lot
4564 ** of run-time by skipping the initialization of those elements.
4565 */
4566 void sqlite3BtreeCursorZero(BtCursor *p){
4567   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4568 }
4569 
4570 /*
4571 ** Close a cursor.  The read lock on the database file is released
4572 ** when the last cursor is closed.
4573 */
4574 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4575   Btree *pBtree = pCur->pBtree;
4576   if( pBtree ){
4577     BtShared *pBt = pCur->pBt;
4578     sqlite3BtreeEnter(pBtree);
4579     assert( pBt->pCursor!=0 );
4580     if( pBt->pCursor==pCur ){
4581       pBt->pCursor = pCur->pNext;
4582     }else{
4583       BtCursor *pPrev = pBt->pCursor;
4584       do{
4585         if( pPrev->pNext==pCur ){
4586           pPrev->pNext = pCur->pNext;
4587           break;
4588         }
4589         pPrev = pPrev->pNext;
4590       }while( ALWAYS(pPrev) );
4591     }
4592     btreeReleaseAllCursorPages(pCur);
4593     unlockBtreeIfUnused(pBt);
4594     sqlite3_free(pCur->aOverflow);
4595     sqlite3_free(pCur->pKey);
4596     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4597       /* Since the BtShared is not sharable, there is no need to
4598       ** worry about the missing sqlite3BtreeLeave() call here.  */
4599       assert( pBtree->sharable==0 );
4600       sqlite3BtreeClose(pBtree);
4601     }else{
4602       sqlite3BtreeLeave(pBtree);
4603     }
4604     pCur->pBtree = 0;
4605   }
4606   return SQLITE_OK;
4607 }
4608 
4609 /*
4610 ** Make sure the BtCursor* given in the argument has a valid
4611 ** BtCursor.info structure.  If it is not already valid, call
4612 ** btreeParseCell() to fill it in.
4613 **
4614 ** BtCursor.info is a cache of the information in the current cell.
4615 ** Using this cache reduces the number of calls to btreeParseCell().
4616 */
4617 #ifndef NDEBUG
4618   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4619     if( a->nKey!=b->nKey ) return 0;
4620     if( a->pPayload!=b->pPayload ) return 0;
4621     if( a->nPayload!=b->nPayload ) return 0;
4622     if( a->nLocal!=b->nLocal ) return 0;
4623     if( a->nSize!=b->nSize ) return 0;
4624     return 1;
4625   }
4626   static void assertCellInfo(BtCursor *pCur){
4627     CellInfo info;
4628     memset(&info, 0, sizeof(info));
4629     btreeParseCell(pCur->pPage, pCur->ix, &info);
4630     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4631   }
4632 #else
4633   #define assertCellInfo(x)
4634 #endif
4635 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4636   if( pCur->info.nSize==0 ){
4637     pCur->curFlags |= BTCF_ValidNKey;
4638     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4639   }else{
4640     assertCellInfo(pCur);
4641   }
4642 }
4643 
4644 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4645 /*
4646 ** Return true if the given BtCursor is valid.  A valid cursor is one
4647 ** that is currently pointing to a row in a (non-empty) table.
4648 ** This is a verification routine is used only within assert() statements.
4649 */
4650 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4651   return pCur && pCur->eState==CURSOR_VALID;
4652 }
4653 #endif /* NDEBUG */
4654 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4655   assert( pCur!=0 );
4656   return pCur->eState==CURSOR_VALID;
4657 }
4658 
4659 /*
4660 ** Return the value of the integer key or "rowid" for a table btree.
4661 ** This routine is only valid for a cursor that is pointing into a
4662 ** ordinary table btree.  If the cursor points to an index btree or
4663 ** is invalid, the result of this routine is undefined.
4664 */
4665 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4666   assert( cursorHoldsMutex(pCur) );
4667   assert( pCur->eState==CURSOR_VALID );
4668   assert( pCur->curIntKey );
4669   getCellInfo(pCur);
4670   return pCur->info.nKey;
4671 }
4672 
4673 /*
4674 ** Pin or unpin a cursor.
4675 */
4676 void sqlite3BtreeCursorPin(BtCursor *pCur){
4677   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4678   pCur->curFlags |= BTCF_Pinned;
4679 }
4680 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4681   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4682   pCur->curFlags &= ~BTCF_Pinned;
4683 }
4684 
4685 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4686 /*
4687 ** Return the offset into the database file for the start of the
4688 ** payload to which the cursor is pointing.
4689 */
4690 i64 sqlite3BtreeOffset(BtCursor *pCur){
4691   assert( cursorHoldsMutex(pCur) );
4692   assert( pCur->eState==CURSOR_VALID );
4693   getCellInfo(pCur);
4694   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4695          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4696 }
4697 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4698 
4699 /*
4700 ** Return the number of bytes of payload for the entry that pCur is
4701 ** currently pointing to.  For table btrees, this will be the amount
4702 ** of data.  For index btrees, this will be the size of the key.
4703 **
4704 ** The caller must guarantee that the cursor is pointing to a non-NULL
4705 ** valid entry.  In other words, the calling procedure must guarantee
4706 ** that the cursor has Cursor.eState==CURSOR_VALID.
4707 */
4708 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4709   assert( cursorHoldsMutex(pCur) );
4710   assert( pCur->eState==CURSOR_VALID );
4711   getCellInfo(pCur);
4712   return pCur->info.nPayload;
4713 }
4714 
4715 /*
4716 ** Return an upper bound on the size of any record for the table
4717 ** that the cursor is pointing into.
4718 **
4719 ** This is an optimization.  Everything will still work if this
4720 ** routine always returns 2147483647 (which is the largest record
4721 ** that SQLite can handle) or more.  But returning a smaller value might
4722 ** prevent large memory allocations when trying to interpret a
4723 ** corrupt datrabase.
4724 **
4725 ** The current implementation merely returns the size of the underlying
4726 ** database file.
4727 */
4728 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4729   assert( cursorHoldsMutex(pCur) );
4730   assert( pCur->eState==CURSOR_VALID );
4731   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4732 }
4733 
4734 /*
4735 ** Given the page number of an overflow page in the database (parameter
4736 ** ovfl), this function finds the page number of the next page in the
4737 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4738 ** pointer-map data instead of reading the content of page ovfl to do so.
4739 **
4740 ** If an error occurs an SQLite error code is returned. Otherwise:
4741 **
4742 ** The page number of the next overflow page in the linked list is
4743 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4744 ** list, *pPgnoNext is set to zero.
4745 **
4746 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4747 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4748 ** reference. It is the responsibility of the caller to call releasePage()
4749 ** on *ppPage to free the reference. In no reference was obtained (because
4750 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4751 ** *ppPage is set to zero.
4752 */
4753 static int getOverflowPage(
4754   BtShared *pBt,               /* The database file */
4755   Pgno ovfl,                   /* Current overflow page number */
4756   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4757   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4758 ){
4759   Pgno next = 0;
4760   MemPage *pPage = 0;
4761   int rc = SQLITE_OK;
4762 
4763   assert( sqlite3_mutex_held(pBt->mutex) );
4764   assert(pPgnoNext);
4765 
4766 #ifndef SQLITE_OMIT_AUTOVACUUM
4767   /* Try to find the next page in the overflow list using the
4768   ** autovacuum pointer-map pages. Guess that the next page in
4769   ** the overflow list is page number (ovfl+1). If that guess turns
4770   ** out to be wrong, fall back to loading the data of page
4771   ** number ovfl to determine the next page number.
4772   */
4773   if( pBt->autoVacuum ){
4774     Pgno pgno;
4775     Pgno iGuess = ovfl+1;
4776     u8 eType;
4777 
4778     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4779       iGuess++;
4780     }
4781 
4782     if( iGuess<=btreePagecount(pBt) ){
4783       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4784       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4785         next = iGuess;
4786         rc = SQLITE_DONE;
4787       }
4788     }
4789   }
4790 #endif
4791 
4792   assert( next==0 || rc==SQLITE_DONE );
4793   if( rc==SQLITE_OK ){
4794     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4795     assert( rc==SQLITE_OK || pPage==0 );
4796     if( rc==SQLITE_OK ){
4797       next = get4byte(pPage->aData);
4798     }
4799   }
4800 
4801   *pPgnoNext = next;
4802   if( ppPage ){
4803     *ppPage = pPage;
4804   }else{
4805     releasePage(pPage);
4806   }
4807   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4808 }
4809 
4810 /*
4811 ** Copy data from a buffer to a page, or from a page to a buffer.
4812 **
4813 ** pPayload is a pointer to data stored on database page pDbPage.
4814 ** If argument eOp is false, then nByte bytes of data are copied
4815 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4816 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4817 ** of data are copied from the buffer pBuf to pPayload.
4818 **
4819 ** SQLITE_OK is returned on success, otherwise an error code.
4820 */
4821 static int copyPayload(
4822   void *pPayload,           /* Pointer to page data */
4823   void *pBuf,               /* Pointer to buffer */
4824   int nByte,                /* Number of bytes to copy */
4825   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4826   DbPage *pDbPage           /* Page containing pPayload */
4827 ){
4828   if( eOp ){
4829     /* Copy data from buffer to page (a write operation) */
4830     int rc = sqlite3PagerWrite(pDbPage);
4831     if( rc!=SQLITE_OK ){
4832       return rc;
4833     }
4834     memcpy(pPayload, pBuf, nByte);
4835   }else{
4836     /* Copy data from page to buffer (a read operation) */
4837     memcpy(pBuf, pPayload, nByte);
4838   }
4839   return SQLITE_OK;
4840 }
4841 
4842 /*
4843 ** This function is used to read or overwrite payload information
4844 ** for the entry that the pCur cursor is pointing to. The eOp
4845 ** argument is interpreted as follows:
4846 **
4847 **   0: The operation is a read. Populate the overflow cache.
4848 **   1: The operation is a write. Populate the overflow cache.
4849 **
4850 ** A total of "amt" bytes are read or written beginning at "offset".
4851 ** Data is read to or from the buffer pBuf.
4852 **
4853 ** The content being read or written might appear on the main page
4854 ** or be scattered out on multiple overflow pages.
4855 **
4856 ** If the current cursor entry uses one or more overflow pages
4857 ** this function may allocate space for and lazily populate
4858 ** the overflow page-list cache array (BtCursor.aOverflow).
4859 ** Subsequent calls use this cache to make seeking to the supplied offset
4860 ** more efficient.
4861 **
4862 ** Once an overflow page-list cache has been allocated, it must be
4863 ** invalidated if some other cursor writes to the same table, or if
4864 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4865 ** mode, the following events may invalidate an overflow page-list cache.
4866 **
4867 **   * An incremental vacuum,
4868 **   * A commit in auto_vacuum="full" mode,
4869 **   * Creating a table (may require moving an overflow page).
4870 */
4871 static int accessPayload(
4872   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4873   u32 offset,          /* Begin reading this far into payload */
4874   u32 amt,             /* Read this many bytes */
4875   unsigned char *pBuf, /* Write the bytes into this buffer */
4876   int eOp              /* zero to read. non-zero to write. */
4877 ){
4878   unsigned char *aPayload;
4879   int rc = SQLITE_OK;
4880   int iIdx = 0;
4881   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4882   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4883 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4884   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4885 #endif
4886 
4887   assert( pPage );
4888   assert( eOp==0 || eOp==1 );
4889   assert( pCur->eState==CURSOR_VALID );
4890   if( pCur->ix>=pPage->nCell ){
4891     return SQLITE_CORRUPT_PAGE(pPage);
4892   }
4893   assert( cursorHoldsMutex(pCur) );
4894 
4895   getCellInfo(pCur);
4896   aPayload = pCur->info.pPayload;
4897   assert( offset+amt <= pCur->info.nPayload );
4898 
4899   assert( aPayload > pPage->aData );
4900   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4901     /* Trying to read or write past the end of the data is an error.  The
4902     ** conditional above is really:
4903     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4904     ** but is recast into its current form to avoid integer overflow problems
4905     */
4906     return SQLITE_CORRUPT_PAGE(pPage);
4907   }
4908 
4909   /* Check if data must be read/written to/from the btree page itself. */
4910   if( offset<pCur->info.nLocal ){
4911     int a = amt;
4912     if( a+offset>pCur->info.nLocal ){
4913       a = pCur->info.nLocal - offset;
4914     }
4915     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4916     offset = 0;
4917     pBuf += a;
4918     amt -= a;
4919   }else{
4920     offset -= pCur->info.nLocal;
4921   }
4922 
4923 
4924   if( rc==SQLITE_OK && amt>0 ){
4925     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4926     Pgno nextPage;
4927 
4928     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4929 
4930     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4931     **
4932     ** The aOverflow[] array is sized at one entry for each overflow page
4933     ** in the overflow chain. The page number of the first overflow page is
4934     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4935     ** means "not yet known" (the cache is lazily populated).
4936     */
4937     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4938       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4939       if( pCur->aOverflow==0
4940        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4941       ){
4942         Pgno *aNew = (Pgno*)sqlite3Realloc(
4943             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4944         );
4945         if( aNew==0 ){
4946           return SQLITE_NOMEM_BKPT;
4947         }else{
4948           pCur->aOverflow = aNew;
4949         }
4950       }
4951       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4952       pCur->curFlags |= BTCF_ValidOvfl;
4953     }else{
4954       /* If the overflow page-list cache has been allocated and the
4955       ** entry for the first required overflow page is valid, skip
4956       ** directly to it.
4957       */
4958       if( pCur->aOverflow[offset/ovflSize] ){
4959         iIdx = (offset/ovflSize);
4960         nextPage = pCur->aOverflow[iIdx];
4961         offset = (offset%ovflSize);
4962       }
4963     }
4964 
4965     assert( rc==SQLITE_OK && amt>0 );
4966     while( nextPage ){
4967       /* If required, populate the overflow page-list cache. */
4968       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
4969       assert( pCur->aOverflow[iIdx]==0
4970               || pCur->aOverflow[iIdx]==nextPage
4971               || CORRUPT_DB );
4972       pCur->aOverflow[iIdx] = nextPage;
4973 
4974       if( offset>=ovflSize ){
4975         /* The only reason to read this page is to obtain the page
4976         ** number for the next page in the overflow chain. The page
4977         ** data is not required. So first try to lookup the overflow
4978         ** page-list cache, if any, then fall back to the getOverflowPage()
4979         ** function.
4980         */
4981         assert( pCur->curFlags & BTCF_ValidOvfl );
4982         assert( pCur->pBtree->db==pBt->db );
4983         if( pCur->aOverflow[iIdx+1] ){
4984           nextPage = pCur->aOverflow[iIdx+1];
4985         }else{
4986           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4987         }
4988         offset -= ovflSize;
4989       }else{
4990         /* Need to read this page properly. It contains some of the
4991         ** range of data that is being read (eOp==0) or written (eOp!=0).
4992         */
4993         int a = amt;
4994         if( a + offset > ovflSize ){
4995           a = ovflSize - offset;
4996         }
4997 
4998 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4999         /* If all the following are true:
5000         **
5001         **   1) this is a read operation, and
5002         **   2) data is required from the start of this overflow page, and
5003         **   3) there are no dirty pages in the page-cache
5004         **   4) the database is file-backed, and
5005         **   5) the page is not in the WAL file
5006         **   6) at least 4 bytes have already been read into the output buffer
5007         **
5008         ** then data can be read directly from the database file into the
5009         ** output buffer, bypassing the page-cache altogether. This speeds
5010         ** up loading large records that span many overflow pages.
5011         */
5012         if( eOp==0                                             /* (1) */
5013          && offset==0                                          /* (2) */
5014          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
5015          && &pBuf[-4]>=pBufStart                               /* (6) */
5016         ){
5017           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5018           u8 aSave[4];
5019           u8 *aWrite = &pBuf[-4];
5020           assert( aWrite>=pBufStart );                         /* due to (6) */
5021           memcpy(aSave, aWrite, 4);
5022           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5023           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5024           nextPage = get4byte(aWrite);
5025           memcpy(aWrite, aSave, 4);
5026         }else
5027 #endif
5028 
5029         {
5030           DbPage *pDbPage;
5031           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5032               (eOp==0 ? PAGER_GET_READONLY : 0)
5033           );
5034           if( rc==SQLITE_OK ){
5035             aPayload = sqlite3PagerGetData(pDbPage);
5036             nextPage = get4byte(aPayload);
5037             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5038             sqlite3PagerUnref(pDbPage);
5039             offset = 0;
5040           }
5041         }
5042         amt -= a;
5043         if( amt==0 ) return rc;
5044         pBuf += a;
5045       }
5046       if( rc ) break;
5047       iIdx++;
5048     }
5049   }
5050 
5051   if( rc==SQLITE_OK && amt>0 ){
5052     /* Overflow chain ends prematurely */
5053     return SQLITE_CORRUPT_PAGE(pPage);
5054   }
5055   return rc;
5056 }
5057 
5058 /*
5059 ** Read part of the payload for the row at which that cursor pCur is currently
5060 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5061 ** begins at "offset".
5062 **
5063 ** pCur can be pointing to either a table or an index b-tree.
5064 ** If pointing to a table btree, then the content section is read.  If
5065 ** pCur is pointing to an index b-tree then the key section is read.
5066 **
5067 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5068 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5069 ** cursor might be invalid or might need to be restored before being read.
5070 **
5071 ** Return SQLITE_OK on success or an error code if anything goes
5072 ** wrong.  An error is returned if "offset+amt" is larger than
5073 ** the available payload.
5074 */
5075 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5076   assert( cursorHoldsMutex(pCur) );
5077   assert( pCur->eState==CURSOR_VALID );
5078   assert( pCur->iPage>=0 && pCur->pPage );
5079   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5080 }
5081 
5082 /*
5083 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5084 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5085 ** interface.
5086 */
5087 #ifndef SQLITE_OMIT_INCRBLOB
5088 static SQLITE_NOINLINE int accessPayloadChecked(
5089   BtCursor *pCur,
5090   u32 offset,
5091   u32 amt,
5092   void *pBuf
5093 ){
5094   int rc;
5095   if ( pCur->eState==CURSOR_INVALID ){
5096     return SQLITE_ABORT;
5097   }
5098   assert( cursorOwnsBtShared(pCur) );
5099   rc = btreeRestoreCursorPosition(pCur);
5100   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5101 }
5102 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5103   if( pCur->eState==CURSOR_VALID ){
5104     assert( cursorOwnsBtShared(pCur) );
5105     return accessPayload(pCur, offset, amt, pBuf, 0);
5106   }else{
5107     return accessPayloadChecked(pCur, offset, amt, pBuf);
5108   }
5109 }
5110 #endif /* SQLITE_OMIT_INCRBLOB */
5111 
5112 /*
5113 ** Return a pointer to payload information from the entry that the
5114 ** pCur cursor is pointing to.  The pointer is to the beginning of
5115 ** the key if index btrees (pPage->intKey==0) and is the data for
5116 ** table btrees (pPage->intKey==1). The number of bytes of available
5117 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5118 ** returned will not be a valid pointer.
5119 **
5120 ** This routine is an optimization.  It is common for the entire key
5121 ** and data to fit on the local page and for there to be no overflow
5122 ** pages.  When that is so, this routine can be used to access the
5123 ** key and data without making a copy.  If the key and/or data spills
5124 ** onto overflow pages, then accessPayload() must be used to reassemble
5125 ** the key/data and copy it into a preallocated buffer.
5126 **
5127 ** The pointer returned by this routine looks directly into the cached
5128 ** page of the database.  The data might change or move the next time
5129 ** any btree routine is called.
5130 */
5131 static const void *fetchPayload(
5132   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5133   u32 *pAmt            /* Write the number of available bytes here */
5134 ){
5135   int amt;
5136   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5137   assert( pCur->eState==CURSOR_VALID );
5138   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5139   assert( cursorOwnsBtShared(pCur) );
5140   assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5141   assert( pCur->info.nSize>0 );
5142   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5143   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5144   amt = pCur->info.nLocal;
5145   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5146     /* There is too little space on the page for the expected amount
5147     ** of local content. Database must be corrupt. */
5148     assert( CORRUPT_DB );
5149     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5150   }
5151   *pAmt = (u32)amt;
5152   return (void*)pCur->info.pPayload;
5153 }
5154 
5155 
5156 /*
5157 ** For the entry that cursor pCur is point to, return as
5158 ** many bytes of the key or data as are available on the local
5159 ** b-tree page.  Write the number of available bytes into *pAmt.
5160 **
5161 ** The pointer returned is ephemeral.  The key/data may move
5162 ** or be destroyed on the next call to any Btree routine,
5163 ** including calls from other threads against the same cache.
5164 ** Hence, a mutex on the BtShared should be held prior to calling
5165 ** this routine.
5166 **
5167 ** These routines is used to get quick access to key and data
5168 ** in the common case where no overflow pages are used.
5169 */
5170 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5171   return fetchPayload(pCur, pAmt);
5172 }
5173 
5174 
5175 /*
5176 ** Move the cursor down to a new child page.  The newPgno argument is the
5177 ** page number of the child page to move to.
5178 **
5179 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5180 ** the new child page does not match the flags field of the parent (i.e.
5181 ** if an intkey page appears to be the parent of a non-intkey page, or
5182 ** vice-versa).
5183 */
5184 static int moveToChild(BtCursor *pCur, u32 newPgno){
5185   BtShared *pBt = pCur->pBt;
5186 
5187   assert( cursorOwnsBtShared(pCur) );
5188   assert( pCur->eState==CURSOR_VALID );
5189   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5190   assert( pCur->iPage>=0 );
5191   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5192     return SQLITE_CORRUPT_BKPT;
5193   }
5194   pCur->info.nSize = 0;
5195   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5196   pCur->aiIdx[pCur->iPage] = pCur->ix;
5197   pCur->apPage[pCur->iPage] = pCur->pPage;
5198   pCur->ix = 0;
5199   pCur->iPage++;
5200   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5201 }
5202 
5203 #ifdef SQLITE_DEBUG
5204 /*
5205 ** Page pParent is an internal (non-leaf) tree page. This function
5206 ** asserts that page number iChild is the left-child if the iIdx'th
5207 ** cell in page pParent. Or, if iIdx is equal to the total number of
5208 ** cells in pParent, that page number iChild is the right-child of
5209 ** the page.
5210 */
5211 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5212   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5213                             ** in a corrupt database */
5214   assert( iIdx<=pParent->nCell );
5215   if( iIdx==pParent->nCell ){
5216     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5217   }else{
5218     assert( get4byte(findCell(pParent, iIdx))==iChild );
5219   }
5220 }
5221 #else
5222 #  define assertParentIndex(x,y,z)
5223 #endif
5224 
5225 /*
5226 ** Move the cursor up to the parent page.
5227 **
5228 ** pCur->idx is set to the cell index that contains the pointer
5229 ** to the page we are coming from.  If we are coming from the
5230 ** right-most child page then pCur->idx is set to one more than
5231 ** the largest cell index.
5232 */
5233 static void moveToParent(BtCursor *pCur){
5234   MemPage *pLeaf;
5235   assert( cursorOwnsBtShared(pCur) );
5236   assert( pCur->eState==CURSOR_VALID );
5237   assert( pCur->iPage>0 );
5238   assert( pCur->pPage );
5239   assertParentIndex(
5240     pCur->apPage[pCur->iPage-1],
5241     pCur->aiIdx[pCur->iPage-1],
5242     pCur->pPage->pgno
5243   );
5244   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5245   pCur->info.nSize = 0;
5246   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5247   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5248   pLeaf = pCur->pPage;
5249   pCur->pPage = pCur->apPage[--pCur->iPage];
5250   releasePageNotNull(pLeaf);
5251 }
5252 
5253 /*
5254 ** Move the cursor to point to the root page of its b-tree structure.
5255 **
5256 ** If the table has a virtual root page, then the cursor is moved to point
5257 ** to the virtual root page instead of the actual root page. A table has a
5258 ** virtual root page when the actual root page contains no cells and a
5259 ** single child page. This can only happen with the table rooted at page 1.
5260 **
5261 ** If the b-tree structure is empty, the cursor state is set to
5262 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5263 ** the cursor is set to point to the first cell located on the root
5264 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5265 **
5266 ** If this function returns successfully, it may be assumed that the
5267 ** page-header flags indicate that the [virtual] root-page is the expected
5268 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5269 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5270 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5271 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5272 ** b-tree).
5273 */
5274 static int moveToRoot(BtCursor *pCur){
5275   MemPage *pRoot;
5276   int rc = SQLITE_OK;
5277 
5278   assert( cursorOwnsBtShared(pCur) );
5279   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5280   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5281   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5282   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5283   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5284 
5285   if( pCur->iPage>=0 ){
5286     if( pCur->iPage ){
5287       releasePageNotNull(pCur->pPage);
5288       while( --pCur->iPage ){
5289         releasePageNotNull(pCur->apPage[pCur->iPage]);
5290       }
5291       pRoot = pCur->pPage = pCur->apPage[0];
5292       goto skip_init;
5293     }
5294   }else if( pCur->pgnoRoot==0 ){
5295     pCur->eState = CURSOR_INVALID;
5296     return SQLITE_EMPTY;
5297   }else{
5298     assert( pCur->iPage==(-1) );
5299     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5300       if( pCur->eState==CURSOR_FAULT ){
5301         assert( pCur->skipNext!=SQLITE_OK );
5302         return pCur->skipNext;
5303       }
5304       sqlite3BtreeClearCursor(pCur);
5305     }
5306     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5307                         0, pCur->curPagerFlags);
5308     if( rc!=SQLITE_OK ){
5309       pCur->eState = CURSOR_INVALID;
5310       return rc;
5311     }
5312     pCur->iPage = 0;
5313     pCur->curIntKey = pCur->pPage->intKey;
5314   }
5315   pRoot = pCur->pPage;
5316   assert( pRoot->pgno==pCur->pgnoRoot );
5317 
5318   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5319   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5320   ** NULL, the caller expects a table b-tree. If this is not the case,
5321   ** return an SQLITE_CORRUPT error.
5322   **
5323   ** Earlier versions of SQLite assumed that this test could not fail
5324   ** if the root page was already loaded when this function was called (i.e.
5325   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5326   ** in such a way that page pRoot is linked into a second b-tree table
5327   ** (or the freelist).  */
5328   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5329   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5330     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5331   }
5332 
5333 skip_init:
5334   pCur->ix = 0;
5335   pCur->info.nSize = 0;
5336   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5337 
5338   if( pRoot->nCell>0 ){
5339     pCur->eState = CURSOR_VALID;
5340   }else if( !pRoot->leaf ){
5341     Pgno subpage;
5342     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5343     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5344     pCur->eState = CURSOR_VALID;
5345     rc = moveToChild(pCur, subpage);
5346   }else{
5347     pCur->eState = CURSOR_INVALID;
5348     rc = SQLITE_EMPTY;
5349   }
5350   return rc;
5351 }
5352 
5353 /*
5354 ** Move the cursor down to the left-most leaf entry beneath the
5355 ** entry to which it is currently pointing.
5356 **
5357 ** The left-most leaf is the one with the smallest key - the first
5358 ** in ascending order.
5359 */
5360 static int moveToLeftmost(BtCursor *pCur){
5361   Pgno pgno;
5362   int rc = SQLITE_OK;
5363   MemPage *pPage;
5364 
5365   assert( cursorOwnsBtShared(pCur) );
5366   assert( pCur->eState==CURSOR_VALID );
5367   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5368     assert( pCur->ix<pPage->nCell );
5369     pgno = get4byte(findCell(pPage, pCur->ix));
5370     rc = moveToChild(pCur, pgno);
5371   }
5372   return rc;
5373 }
5374 
5375 /*
5376 ** Move the cursor down to the right-most leaf entry beneath the
5377 ** page to which it is currently pointing.  Notice the difference
5378 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5379 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5380 ** finds the right-most entry beneath the *page*.
5381 **
5382 ** The right-most entry is the one with the largest key - the last
5383 ** key in ascending order.
5384 */
5385 static int moveToRightmost(BtCursor *pCur){
5386   Pgno pgno;
5387   int rc = SQLITE_OK;
5388   MemPage *pPage = 0;
5389 
5390   assert( cursorOwnsBtShared(pCur) );
5391   assert( pCur->eState==CURSOR_VALID );
5392   while( !(pPage = pCur->pPage)->leaf ){
5393     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5394     pCur->ix = pPage->nCell;
5395     rc = moveToChild(pCur, pgno);
5396     if( rc ) return rc;
5397   }
5398   pCur->ix = pPage->nCell-1;
5399   assert( pCur->info.nSize==0 );
5400   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5401   return SQLITE_OK;
5402 }
5403 
5404 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5405 ** on success.  Set *pRes to 0 if the cursor actually points to something
5406 ** or set *pRes to 1 if the table is empty.
5407 */
5408 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5409   int rc;
5410 
5411   assert( cursorOwnsBtShared(pCur) );
5412   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5413   rc = moveToRoot(pCur);
5414   if( rc==SQLITE_OK ){
5415     assert( pCur->pPage->nCell>0 );
5416     *pRes = 0;
5417     rc = moveToLeftmost(pCur);
5418   }else if( rc==SQLITE_EMPTY ){
5419     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5420     *pRes = 1;
5421     rc = SQLITE_OK;
5422   }
5423   return rc;
5424 }
5425 
5426 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5427 ** on success.  Set *pRes to 0 if the cursor actually points to something
5428 ** or set *pRes to 1 if the table is empty.
5429 */
5430 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5431   int rc;
5432 
5433   assert( cursorOwnsBtShared(pCur) );
5434   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5435 
5436   /* If the cursor already points to the last entry, this is a no-op. */
5437   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5438 #ifdef SQLITE_DEBUG
5439     /* This block serves to assert() that the cursor really does point
5440     ** to the last entry in the b-tree. */
5441     int ii;
5442     for(ii=0; ii<pCur->iPage; ii++){
5443       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5444     }
5445     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5446     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5447     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5448     assert( pCur->pPage->leaf );
5449 #endif
5450     *pRes = 0;
5451     return SQLITE_OK;
5452   }
5453 
5454   rc = moveToRoot(pCur);
5455   if( rc==SQLITE_OK ){
5456     assert( pCur->eState==CURSOR_VALID );
5457     *pRes = 0;
5458     rc = moveToRightmost(pCur);
5459     if( rc==SQLITE_OK ){
5460       pCur->curFlags |= BTCF_AtLast;
5461     }else{
5462       pCur->curFlags &= ~BTCF_AtLast;
5463     }
5464   }else if( rc==SQLITE_EMPTY ){
5465     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5466     *pRes = 1;
5467     rc = SQLITE_OK;
5468   }
5469   return rc;
5470 }
5471 
5472 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5473 ** table near the key intKey.   Return a success code.
5474 **
5475 ** If an exact match is not found, then the cursor is always
5476 ** left pointing at a leaf page which would hold the entry if it
5477 ** were present.  The cursor might point to an entry that comes
5478 ** before or after the key.
5479 **
5480 ** An integer is written into *pRes which is the result of
5481 ** comparing the key with the entry to which the cursor is
5482 ** pointing.  The meaning of the integer written into
5483 ** *pRes is as follows:
5484 **
5485 **     *pRes<0      The cursor is left pointing at an entry that
5486 **                  is smaller than intKey or if the table is empty
5487 **                  and the cursor is therefore left point to nothing.
5488 **
5489 **     *pRes==0     The cursor is left pointing at an entry that
5490 **                  exactly matches intKey.
5491 **
5492 **     *pRes>0      The cursor is left pointing at an entry that
5493 **                  is larger than intKey.
5494 */
5495 int sqlite3BtreeTableMoveto(
5496   BtCursor *pCur,          /* The cursor to be moved */
5497   i64 intKey,              /* The table key */
5498   int biasRight,           /* If true, bias the search to the high end */
5499   int *pRes                /* Write search results here */
5500 ){
5501   int rc;
5502 
5503   assert( cursorOwnsBtShared(pCur) );
5504   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5505   assert( pRes );
5506   assert( pCur->pKeyInfo==0 );
5507   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5508 
5509   /* If the cursor is already positioned at the point we are trying
5510   ** to move to, then just return without doing any work */
5511   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5512     if( pCur->info.nKey==intKey ){
5513       *pRes = 0;
5514       return SQLITE_OK;
5515     }
5516     if( pCur->info.nKey<intKey ){
5517       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5518         *pRes = -1;
5519         return SQLITE_OK;
5520       }
5521       /* If the requested key is one more than the previous key, then
5522       ** try to get there using sqlite3BtreeNext() rather than a full
5523       ** binary search.  This is an optimization only.  The correct answer
5524       ** is still obtained without this case, only a little more slowely */
5525       if( pCur->info.nKey+1==intKey ){
5526         *pRes = 0;
5527         rc = sqlite3BtreeNext(pCur, 0);
5528         if( rc==SQLITE_OK ){
5529           getCellInfo(pCur);
5530           if( pCur->info.nKey==intKey ){
5531             return SQLITE_OK;
5532           }
5533         }else if( rc!=SQLITE_DONE ){
5534           return rc;
5535         }
5536       }
5537     }
5538   }
5539 
5540 #ifdef SQLITE_DEBUG
5541   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5542 #endif
5543 
5544   rc = moveToRoot(pCur);
5545   if( rc ){
5546     if( rc==SQLITE_EMPTY ){
5547       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5548       *pRes = -1;
5549       return SQLITE_OK;
5550     }
5551     return rc;
5552   }
5553   assert( pCur->pPage );
5554   assert( pCur->pPage->isInit );
5555   assert( pCur->eState==CURSOR_VALID );
5556   assert( pCur->pPage->nCell > 0 );
5557   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5558   assert( pCur->curIntKey );
5559 
5560   for(;;){
5561     int lwr, upr, idx, c;
5562     Pgno chldPg;
5563     MemPage *pPage = pCur->pPage;
5564     u8 *pCell;                          /* Pointer to current cell in pPage */
5565 
5566     /* pPage->nCell must be greater than zero. If this is the root-page
5567     ** the cursor would have been INVALID above and this for(;;) loop
5568     ** not run. If this is not the root-page, then the moveToChild() routine
5569     ** would have already detected db corruption. Similarly, pPage must
5570     ** be the right kind (index or table) of b-tree page. Otherwise
5571     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5572     assert( pPage->nCell>0 );
5573     assert( pPage->intKey );
5574     lwr = 0;
5575     upr = pPage->nCell-1;
5576     assert( biasRight==0 || biasRight==1 );
5577     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5578     for(;;){
5579       i64 nCellKey;
5580       pCell = findCellPastPtr(pPage, idx);
5581       if( pPage->intKeyLeaf ){
5582         while( 0x80 <= *(pCell++) ){
5583           if( pCell>=pPage->aDataEnd ){
5584             return SQLITE_CORRUPT_PAGE(pPage);
5585           }
5586         }
5587       }
5588       getVarint(pCell, (u64*)&nCellKey);
5589       if( nCellKey<intKey ){
5590         lwr = idx+1;
5591         if( lwr>upr ){ c = -1; break; }
5592       }else if( nCellKey>intKey ){
5593         upr = idx-1;
5594         if( lwr>upr ){ c = +1; break; }
5595       }else{
5596         assert( nCellKey==intKey );
5597         pCur->ix = (u16)idx;
5598         if( !pPage->leaf ){
5599           lwr = idx;
5600           goto moveto_table_next_layer;
5601         }else{
5602           pCur->curFlags |= BTCF_ValidNKey;
5603           pCur->info.nKey = nCellKey;
5604           pCur->info.nSize = 0;
5605           *pRes = 0;
5606           return SQLITE_OK;
5607         }
5608       }
5609       assert( lwr+upr>=0 );
5610       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5611     }
5612     assert( lwr==upr+1 || !pPage->leaf );
5613     assert( pPage->isInit );
5614     if( pPage->leaf ){
5615       assert( pCur->ix<pCur->pPage->nCell );
5616       pCur->ix = (u16)idx;
5617       *pRes = c;
5618       rc = SQLITE_OK;
5619       goto moveto_table_finish;
5620     }
5621 moveto_table_next_layer:
5622     if( lwr>=pPage->nCell ){
5623       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5624     }else{
5625       chldPg = get4byte(findCell(pPage, lwr));
5626     }
5627     pCur->ix = (u16)lwr;
5628     rc = moveToChild(pCur, chldPg);
5629     if( rc ) break;
5630   }
5631 moveto_table_finish:
5632   pCur->info.nSize = 0;
5633   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5634   return rc;
5635 }
5636 
5637 /* Move the cursor so that it points to an entry in an index table
5638 ** near the key pIdxKey.   Return a success code.
5639 **
5640 ** If an exact match is not found, then the cursor is always
5641 ** left pointing at a leaf page which would hold the entry if it
5642 ** were present.  The cursor might point to an entry that comes
5643 ** before or after the key.
5644 **
5645 ** An integer is written into *pRes which is the result of
5646 ** comparing the key with the entry to which the cursor is
5647 ** pointing.  The meaning of the integer written into
5648 ** *pRes is as follows:
5649 **
5650 **     *pRes<0      The cursor is left pointing at an entry that
5651 **                  is smaller than pIdxKey or if the table is empty
5652 **                  and the cursor is therefore left point to nothing.
5653 **
5654 **     *pRes==0     The cursor is left pointing at an entry that
5655 **                  exactly matches pIdxKey.
5656 **
5657 **     *pRes>0      The cursor is left pointing at an entry that
5658 **                  is larger than pIdxKey.
5659 **
5660 ** The pIdxKey->eqSeen field is set to 1 if there
5661 ** exists an entry in the table that exactly matches pIdxKey.
5662 */
5663 int sqlite3BtreeIndexMoveto(
5664   BtCursor *pCur,          /* The cursor to be moved */
5665   UnpackedRecord *pIdxKey, /* Unpacked index key */
5666   int *pRes                /* Write search results here */
5667 ){
5668   int rc;
5669   RecordCompare xRecordCompare;
5670 
5671   assert( cursorOwnsBtShared(pCur) );
5672   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5673   assert( pRes );
5674   assert( pCur->pKeyInfo!=0 );
5675 
5676 #ifdef SQLITE_DEBUG
5677   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5678 #endif
5679 
5680   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5681   pIdxKey->errCode = 0;
5682   assert( pIdxKey->default_rc==1
5683        || pIdxKey->default_rc==0
5684        || pIdxKey->default_rc==-1
5685   );
5686 
5687   rc = moveToRoot(pCur);
5688   if( rc ){
5689     if( rc==SQLITE_EMPTY ){
5690       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5691       *pRes = -1;
5692       return SQLITE_OK;
5693     }
5694     return rc;
5695   }
5696   assert( pCur->pPage );
5697   assert( pCur->pPage->isInit );
5698   assert( pCur->eState==CURSOR_VALID );
5699   assert( pCur->pPage->nCell > 0 );
5700   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5701   assert( pCur->curIntKey || pIdxKey );
5702   for(;;){
5703     int lwr, upr, idx, c;
5704     Pgno chldPg;
5705     MemPage *pPage = pCur->pPage;
5706     u8 *pCell;                          /* Pointer to current cell in pPage */
5707 
5708     /* pPage->nCell must be greater than zero. If this is the root-page
5709     ** the cursor would have been INVALID above and this for(;;) loop
5710     ** not run. If this is not the root-page, then the moveToChild() routine
5711     ** would have already detected db corruption. Similarly, pPage must
5712     ** be the right kind (index or table) of b-tree page. Otherwise
5713     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5714     assert( pPage->nCell>0 );
5715     assert( pPage->intKey==(pIdxKey==0) );
5716     lwr = 0;
5717     upr = pPage->nCell-1;
5718     idx = upr>>1; /* idx = (lwr+upr)/2; */
5719     for(;;){
5720       int nCell;  /* Size of the pCell cell in bytes */
5721       pCell = findCellPastPtr(pPage, idx);
5722 
5723       /* The maximum supported page-size is 65536 bytes. This means that
5724       ** the maximum number of record bytes stored on an index B-Tree
5725       ** page is less than 16384 bytes and may be stored as a 2-byte
5726       ** varint. This information is used to attempt to avoid parsing
5727       ** the entire cell by checking for the cases where the record is
5728       ** stored entirely within the b-tree page by inspecting the first
5729       ** 2 bytes of the cell.
5730       */
5731       nCell = pCell[0];
5732       if( nCell<=pPage->max1bytePayload ){
5733         /* This branch runs if the record-size field of the cell is a
5734         ** single byte varint and the record fits entirely on the main
5735         ** b-tree page.  */
5736         testcase( pCell+nCell+1==pPage->aDataEnd );
5737         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5738       }else if( !(pCell[1] & 0x80)
5739         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5740       ){
5741         /* The record-size field is a 2 byte varint and the record
5742         ** fits entirely on the main b-tree page.  */
5743         testcase( pCell+nCell+2==pPage->aDataEnd );
5744         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5745       }else{
5746         /* The record flows over onto one or more overflow pages. In
5747         ** this case the whole cell needs to be parsed, a buffer allocated
5748         ** and accessPayload() used to retrieve the record into the
5749         ** buffer before VdbeRecordCompare() can be called.
5750         **
5751         ** If the record is corrupt, the xRecordCompare routine may read
5752         ** up to two varints past the end of the buffer. An extra 18
5753         ** bytes of padding is allocated at the end of the buffer in
5754         ** case this happens.  */
5755         void *pCellKey;
5756         u8 * const pCellBody = pCell - pPage->childPtrSize;
5757         const int nOverrun = 18;  /* Size of the overrun padding */
5758         pPage->xParseCell(pPage, pCellBody, &pCur->info);
5759         nCell = (int)pCur->info.nKey;
5760         testcase( nCell<0 );   /* True if key size is 2^32 or more */
5761         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5762         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5763         testcase( nCell==2 );  /* Minimum legal index key size */
5764         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5765           rc = SQLITE_CORRUPT_PAGE(pPage);
5766           goto moveto_index_finish;
5767         }
5768         pCellKey = sqlite3Malloc( nCell+nOverrun );
5769         if( pCellKey==0 ){
5770           rc = SQLITE_NOMEM_BKPT;
5771           goto moveto_index_finish;
5772         }
5773         pCur->ix = (u16)idx;
5774         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5775         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5776         pCur->curFlags &= ~BTCF_ValidOvfl;
5777         if( rc ){
5778           sqlite3_free(pCellKey);
5779           goto moveto_index_finish;
5780         }
5781         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5782         sqlite3_free(pCellKey);
5783       }
5784       assert(
5785           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5786        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5787       );
5788       if( c<0 ){
5789         lwr = idx+1;
5790       }else if( c>0 ){
5791         upr = idx-1;
5792       }else{
5793         assert( c==0 );
5794         *pRes = 0;
5795         rc = SQLITE_OK;
5796         pCur->ix = (u16)idx;
5797         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5798         goto moveto_index_finish;
5799       }
5800       if( lwr>upr ) break;
5801       assert( lwr+upr>=0 );
5802       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5803     }
5804     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5805     assert( pPage->isInit );
5806     if( pPage->leaf ){
5807       assert( pCur->ix<pCur->pPage->nCell );
5808       pCur->ix = (u16)idx;
5809       *pRes = c;
5810       rc = SQLITE_OK;
5811       goto moveto_index_finish;
5812     }
5813     if( lwr>=pPage->nCell ){
5814       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5815     }else{
5816       chldPg = get4byte(findCell(pPage, lwr));
5817     }
5818     pCur->ix = (u16)lwr;
5819     rc = moveToChild(pCur, chldPg);
5820     if( rc ) break;
5821   }
5822 moveto_index_finish:
5823   pCur->info.nSize = 0;
5824   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5825   return rc;
5826 }
5827 
5828 
5829 /*
5830 ** Return TRUE if the cursor is not pointing at an entry of the table.
5831 **
5832 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5833 ** past the last entry in the table or sqlite3BtreePrev() moves past
5834 ** the first entry.  TRUE is also returned if the table is empty.
5835 */
5836 int sqlite3BtreeEof(BtCursor *pCur){
5837   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5838   ** have been deleted? This API will need to change to return an error code
5839   ** as well as the boolean result value.
5840   */
5841   return (CURSOR_VALID!=pCur->eState);
5842 }
5843 
5844 /*
5845 ** Return an estimate for the number of rows in the table that pCur is
5846 ** pointing to.  Return a negative number if no estimate is currently
5847 ** available.
5848 */
5849 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5850   i64 n;
5851   u8 i;
5852 
5853   assert( cursorOwnsBtShared(pCur) );
5854   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5855 
5856   /* Currently this interface is only called by the OP_IfSmaller
5857   ** opcode, and it that case the cursor will always be valid and
5858   ** will always point to a leaf node. */
5859   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5860   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5861 
5862   n = pCur->pPage->nCell;
5863   for(i=0; i<pCur->iPage; i++){
5864     n *= pCur->apPage[i]->nCell;
5865   }
5866   return n;
5867 }
5868 
5869 /*
5870 ** Advance the cursor to the next entry in the database.
5871 ** Return value:
5872 **
5873 **    SQLITE_OK        success
5874 **    SQLITE_DONE      cursor is already pointing at the last element
5875 **    otherwise        some kind of error occurred
5876 **
5877 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5878 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5879 ** to the next cell on the current page.  The (slower) btreeNext() helper
5880 ** routine is called when it is necessary to move to a different page or
5881 ** to restore the cursor.
5882 **
5883 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5884 ** cursor corresponds to an SQL index and this routine could have been
5885 ** skipped if the SQL index had been a unique index.  The F argument
5886 ** is a hint to the implement.  SQLite btree implementation does not use
5887 ** this hint, but COMDB2 does.
5888 */
5889 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5890   int rc;
5891   int idx;
5892   MemPage *pPage;
5893 
5894   assert( cursorOwnsBtShared(pCur) );
5895   if( pCur->eState!=CURSOR_VALID ){
5896     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5897     rc = restoreCursorPosition(pCur);
5898     if( rc!=SQLITE_OK ){
5899       return rc;
5900     }
5901     if( CURSOR_INVALID==pCur->eState ){
5902       return SQLITE_DONE;
5903     }
5904     if( pCur->eState==CURSOR_SKIPNEXT ){
5905       pCur->eState = CURSOR_VALID;
5906       if( pCur->skipNext>0 ) return SQLITE_OK;
5907     }
5908   }
5909 
5910   pPage = pCur->pPage;
5911   idx = ++pCur->ix;
5912   if( !pPage->isInit || sqlite3FaultSim(412) ){
5913     /* The only known way for this to happen is for there to be a
5914     ** recursive SQL function that does a DELETE operation as part of a
5915     ** SELECT which deletes content out from under an active cursor
5916     ** in a corrupt database file where the table being DELETE-ed from
5917     ** has pages in common with the table being queried.  See TH3
5918     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5919     ** example. */
5920     return SQLITE_CORRUPT_BKPT;
5921   }
5922 
5923   if( idx>=pPage->nCell ){
5924     if( !pPage->leaf ){
5925       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5926       if( rc ) return rc;
5927       return moveToLeftmost(pCur);
5928     }
5929     do{
5930       if( pCur->iPage==0 ){
5931         pCur->eState = CURSOR_INVALID;
5932         return SQLITE_DONE;
5933       }
5934       moveToParent(pCur);
5935       pPage = pCur->pPage;
5936     }while( pCur->ix>=pPage->nCell );
5937     if( pPage->intKey ){
5938       return sqlite3BtreeNext(pCur, 0);
5939     }else{
5940       return SQLITE_OK;
5941     }
5942   }
5943   if( pPage->leaf ){
5944     return SQLITE_OK;
5945   }else{
5946     return moveToLeftmost(pCur);
5947   }
5948 }
5949 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5950   MemPage *pPage;
5951   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5952   assert( cursorOwnsBtShared(pCur) );
5953   assert( flags==0 || flags==1 );
5954   pCur->info.nSize = 0;
5955   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5956   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5957   pPage = pCur->pPage;
5958   if( (++pCur->ix)>=pPage->nCell ){
5959     pCur->ix--;
5960     return btreeNext(pCur);
5961   }
5962   if( pPage->leaf ){
5963     return SQLITE_OK;
5964   }else{
5965     return moveToLeftmost(pCur);
5966   }
5967 }
5968 
5969 /*
5970 ** Step the cursor to the back to the previous entry in the database.
5971 ** Return values:
5972 **
5973 **     SQLITE_OK     success
5974 **     SQLITE_DONE   the cursor is already on the first element of the table
5975 **     otherwise     some kind of error occurred
5976 **
5977 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5978 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5979 ** to the previous cell on the current page.  The (slower) btreePrevious()
5980 ** helper routine is called when it is necessary to move to a different page
5981 ** or to restore the cursor.
5982 **
5983 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5984 ** the cursor corresponds to an SQL index and this routine could have been
5985 ** skipped if the SQL index had been a unique index.  The F argument is a
5986 ** hint to the implement.  The native SQLite btree implementation does not
5987 ** use this hint, but COMDB2 does.
5988 */
5989 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5990   int rc;
5991   MemPage *pPage;
5992 
5993   assert( cursorOwnsBtShared(pCur) );
5994   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5995   assert( pCur->info.nSize==0 );
5996   if( pCur->eState!=CURSOR_VALID ){
5997     rc = restoreCursorPosition(pCur);
5998     if( rc!=SQLITE_OK ){
5999       return rc;
6000     }
6001     if( CURSOR_INVALID==pCur->eState ){
6002       return SQLITE_DONE;
6003     }
6004     if( CURSOR_SKIPNEXT==pCur->eState ){
6005       pCur->eState = CURSOR_VALID;
6006       if( pCur->skipNext<0 ) return SQLITE_OK;
6007     }
6008   }
6009 
6010   pPage = pCur->pPage;
6011   assert( pPage->isInit );
6012   if( !pPage->leaf ){
6013     int idx = pCur->ix;
6014     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6015     if( rc ) return rc;
6016     rc = moveToRightmost(pCur);
6017   }else{
6018     while( pCur->ix==0 ){
6019       if( pCur->iPage==0 ){
6020         pCur->eState = CURSOR_INVALID;
6021         return SQLITE_DONE;
6022       }
6023       moveToParent(pCur);
6024     }
6025     assert( pCur->info.nSize==0 );
6026     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6027 
6028     pCur->ix--;
6029     pPage = pCur->pPage;
6030     if( pPage->intKey && !pPage->leaf ){
6031       rc = sqlite3BtreePrevious(pCur, 0);
6032     }else{
6033       rc = SQLITE_OK;
6034     }
6035   }
6036   return rc;
6037 }
6038 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6039   assert( cursorOwnsBtShared(pCur) );
6040   assert( flags==0 || flags==1 );
6041   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6042   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6043   pCur->info.nSize = 0;
6044   if( pCur->eState!=CURSOR_VALID
6045    || pCur->ix==0
6046    || pCur->pPage->leaf==0
6047   ){
6048     return btreePrevious(pCur);
6049   }
6050   pCur->ix--;
6051   return SQLITE_OK;
6052 }
6053 
6054 /*
6055 ** Allocate a new page from the database file.
6056 **
6057 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
6058 ** has already been called on the new page.)  The new page has also
6059 ** been referenced and the calling routine is responsible for calling
6060 ** sqlite3PagerUnref() on the new page when it is done.
6061 **
6062 ** SQLITE_OK is returned on success.  Any other return value indicates
6063 ** an error.  *ppPage is set to NULL in the event of an error.
6064 **
6065 ** If the "nearby" parameter is not 0, then an effort is made to
6066 ** locate a page close to the page number "nearby".  This can be used in an
6067 ** attempt to keep related pages close to each other in the database file,
6068 ** which in turn can make database access faster.
6069 **
6070 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6071 ** anywhere on the free-list, then it is guaranteed to be returned.  If
6072 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6073 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
6074 ** are no restrictions on which page is returned.
6075 */
6076 static int allocateBtreePage(
6077   BtShared *pBt,         /* The btree */
6078   MemPage **ppPage,      /* Store pointer to the allocated page here */
6079   Pgno *pPgno,           /* Store the page number here */
6080   Pgno nearby,           /* Search for a page near this one */
6081   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6082 ){
6083   MemPage *pPage1;
6084   int rc;
6085   u32 n;     /* Number of pages on the freelist */
6086   u32 k;     /* Number of leaves on the trunk of the freelist */
6087   MemPage *pTrunk = 0;
6088   MemPage *pPrevTrunk = 0;
6089   Pgno mxPage;     /* Total size of the database file */
6090 
6091   assert( sqlite3_mutex_held(pBt->mutex) );
6092   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6093   pPage1 = pBt->pPage1;
6094   mxPage = btreePagecount(pBt);
6095   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6096   ** stores stores the total number of pages on the freelist. */
6097   n = get4byte(&pPage1->aData[36]);
6098   testcase( n==mxPage-1 );
6099   if( n>=mxPage ){
6100     return SQLITE_CORRUPT_BKPT;
6101   }
6102   if( n>0 ){
6103     /* There are pages on the freelist.  Reuse one of those pages. */
6104     Pgno iTrunk;
6105     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6106     u32 nSearch = 0;   /* Count of the number of search attempts */
6107 
6108     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6109     ** shows that the page 'nearby' is somewhere on the free-list, then
6110     ** the entire-list will be searched for that page.
6111     */
6112 #ifndef SQLITE_OMIT_AUTOVACUUM
6113     if( eMode==BTALLOC_EXACT ){
6114       if( nearby<=mxPage ){
6115         u8 eType;
6116         assert( nearby>0 );
6117         assert( pBt->autoVacuum );
6118         rc = ptrmapGet(pBt, nearby, &eType, 0);
6119         if( rc ) return rc;
6120         if( eType==PTRMAP_FREEPAGE ){
6121           searchList = 1;
6122         }
6123       }
6124     }else if( eMode==BTALLOC_LE ){
6125       searchList = 1;
6126     }
6127 #endif
6128 
6129     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6130     ** first free-list trunk page. iPrevTrunk is initially 1.
6131     */
6132     rc = sqlite3PagerWrite(pPage1->pDbPage);
6133     if( rc ) return rc;
6134     put4byte(&pPage1->aData[36], n-1);
6135 
6136     /* The code within this loop is run only once if the 'searchList' variable
6137     ** is not true. Otherwise, it runs once for each trunk-page on the
6138     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6139     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6140     */
6141     do {
6142       pPrevTrunk = pTrunk;
6143       if( pPrevTrunk ){
6144         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6145         ** is the page number of the next freelist trunk page in the list or
6146         ** zero if this is the last freelist trunk page. */
6147         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6148       }else{
6149         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6150         ** stores the page number of the first page of the freelist, or zero if
6151         ** the freelist is empty. */
6152         iTrunk = get4byte(&pPage1->aData[32]);
6153       }
6154       testcase( iTrunk==mxPage );
6155       if( iTrunk>mxPage || nSearch++ > n ){
6156         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6157       }else{
6158         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6159       }
6160       if( rc ){
6161         pTrunk = 0;
6162         goto end_allocate_page;
6163       }
6164       assert( pTrunk!=0 );
6165       assert( pTrunk->aData!=0 );
6166       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6167       ** is the number of leaf page pointers to follow. */
6168       k = get4byte(&pTrunk->aData[4]);
6169       if( k==0 && !searchList ){
6170         /* The trunk has no leaves and the list is not being searched.
6171         ** So extract the trunk page itself and use it as the newly
6172         ** allocated page */
6173         assert( pPrevTrunk==0 );
6174         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6175         if( rc ){
6176           goto end_allocate_page;
6177         }
6178         *pPgno = iTrunk;
6179         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6180         *ppPage = pTrunk;
6181         pTrunk = 0;
6182         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6183       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6184         /* Value of k is out of range.  Database corruption */
6185         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6186         goto end_allocate_page;
6187 #ifndef SQLITE_OMIT_AUTOVACUUM
6188       }else if( searchList
6189             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6190       ){
6191         /* The list is being searched and this trunk page is the page
6192         ** to allocate, regardless of whether it has leaves.
6193         */
6194         *pPgno = iTrunk;
6195         *ppPage = pTrunk;
6196         searchList = 0;
6197         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6198         if( rc ){
6199           goto end_allocate_page;
6200         }
6201         if( k==0 ){
6202           if( !pPrevTrunk ){
6203             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6204           }else{
6205             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6206             if( rc!=SQLITE_OK ){
6207               goto end_allocate_page;
6208             }
6209             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6210           }
6211         }else{
6212           /* The trunk page is required by the caller but it contains
6213           ** pointers to free-list leaves. The first leaf becomes a trunk
6214           ** page in this case.
6215           */
6216           MemPage *pNewTrunk;
6217           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6218           if( iNewTrunk>mxPage ){
6219             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6220             goto end_allocate_page;
6221           }
6222           testcase( iNewTrunk==mxPage );
6223           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6224           if( rc!=SQLITE_OK ){
6225             goto end_allocate_page;
6226           }
6227           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6228           if( rc!=SQLITE_OK ){
6229             releasePage(pNewTrunk);
6230             goto end_allocate_page;
6231           }
6232           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6233           put4byte(&pNewTrunk->aData[4], k-1);
6234           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6235           releasePage(pNewTrunk);
6236           if( !pPrevTrunk ){
6237             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6238             put4byte(&pPage1->aData[32], iNewTrunk);
6239           }else{
6240             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6241             if( rc ){
6242               goto end_allocate_page;
6243             }
6244             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6245           }
6246         }
6247         pTrunk = 0;
6248         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6249 #endif
6250       }else if( k>0 ){
6251         /* Extract a leaf from the trunk */
6252         u32 closest;
6253         Pgno iPage;
6254         unsigned char *aData = pTrunk->aData;
6255         if( nearby>0 ){
6256           u32 i;
6257           closest = 0;
6258           if( eMode==BTALLOC_LE ){
6259             for(i=0; i<k; i++){
6260               iPage = get4byte(&aData[8+i*4]);
6261               if( iPage<=nearby ){
6262                 closest = i;
6263                 break;
6264               }
6265             }
6266           }else{
6267             int dist;
6268             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6269             for(i=1; i<k; i++){
6270               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6271               if( d2<dist ){
6272                 closest = i;
6273                 dist = d2;
6274               }
6275             }
6276           }
6277         }else{
6278           closest = 0;
6279         }
6280 
6281         iPage = get4byte(&aData[8+closest*4]);
6282         testcase( iPage==mxPage );
6283         if( iPage>mxPage || iPage<2 ){
6284           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6285           goto end_allocate_page;
6286         }
6287         testcase( iPage==mxPage );
6288         if( !searchList
6289          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6290         ){
6291           int noContent;
6292           *pPgno = iPage;
6293           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6294                  ": %d more free pages\n",
6295                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6296           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6297           if( rc ) goto end_allocate_page;
6298           if( closest<k-1 ){
6299             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6300           }
6301           put4byte(&aData[4], k-1);
6302           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6303           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6304           if( rc==SQLITE_OK ){
6305             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6306             if( rc!=SQLITE_OK ){
6307               releasePage(*ppPage);
6308               *ppPage = 0;
6309             }
6310           }
6311           searchList = 0;
6312         }
6313       }
6314       releasePage(pPrevTrunk);
6315       pPrevTrunk = 0;
6316     }while( searchList );
6317   }else{
6318     /* There are no pages on the freelist, so append a new page to the
6319     ** database image.
6320     **
6321     ** Normally, new pages allocated by this block can be requested from the
6322     ** pager layer with the 'no-content' flag set. This prevents the pager
6323     ** from trying to read the pages content from disk. However, if the
6324     ** current transaction has already run one or more incremental-vacuum
6325     ** steps, then the page we are about to allocate may contain content
6326     ** that is required in the event of a rollback. In this case, do
6327     ** not set the no-content flag. This causes the pager to load and journal
6328     ** the current page content before overwriting it.
6329     **
6330     ** Note that the pager will not actually attempt to load or journal
6331     ** content for any page that really does lie past the end of the database
6332     ** file on disk. So the effects of disabling the no-content optimization
6333     ** here are confined to those pages that lie between the end of the
6334     ** database image and the end of the database file.
6335     */
6336     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6337 
6338     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6339     if( rc ) return rc;
6340     pBt->nPage++;
6341     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6342 
6343 #ifndef SQLITE_OMIT_AUTOVACUUM
6344     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6345       /* If *pPgno refers to a pointer-map page, allocate two new pages
6346       ** at the end of the file instead of one. The first allocated page
6347       ** becomes a new pointer-map page, the second is used by the caller.
6348       */
6349       MemPage *pPg = 0;
6350       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6351       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6352       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6353       if( rc==SQLITE_OK ){
6354         rc = sqlite3PagerWrite(pPg->pDbPage);
6355         releasePage(pPg);
6356       }
6357       if( rc ) return rc;
6358       pBt->nPage++;
6359       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6360     }
6361 #endif
6362     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6363     *pPgno = pBt->nPage;
6364 
6365     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6366     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6367     if( rc ) return rc;
6368     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6369     if( rc!=SQLITE_OK ){
6370       releasePage(*ppPage);
6371       *ppPage = 0;
6372     }
6373     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6374   }
6375 
6376   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6377 
6378 end_allocate_page:
6379   releasePage(pTrunk);
6380   releasePage(pPrevTrunk);
6381   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6382   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6383   return rc;
6384 }
6385 
6386 /*
6387 ** This function is used to add page iPage to the database file free-list.
6388 ** It is assumed that the page is not already a part of the free-list.
6389 **
6390 ** The value passed as the second argument to this function is optional.
6391 ** If the caller happens to have a pointer to the MemPage object
6392 ** corresponding to page iPage handy, it may pass it as the second value.
6393 ** Otherwise, it may pass NULL.
6394 **
6395 ** If a pointer to a MemPage object is passed as the second argument,
6396 ** its reference count is not altered by this function.
6397 */
6398 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6399   MemPage *pTrunk = 0;                /* Free-list trunk page */
6400   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6401   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6402   MemPage *pPage;                     /* Page being freed. May be NULL. */
6403   int rc;                             /* Return Code */
6404   u32 nFree;                          /* Initial number of pages on free-list */
6405 
6406   assert( sqlite3_mutex_held(pBt->mutex) );
6407   assert( CORRUPT_DB || iPage>1 );
6408   assert( !pMemPage || pMemPage->pgno==iPage );
6409 
6410   if( NEVER(iPage<2) || iPage>pBt->nPage ){
6411     return SQLITE_CORRUPT_BKPT;
6412   }
6413   if( pMemPage ){
6414     pPage = pMemPage;
6415     sqlite3PagerRef(pPage->pDbPage);
6416   }else{
6417     pPage = btreePageLookup(pBt, iPage);
6418   }
6419 
6420   /* Increment the free page count on pPage1 */
6421   rc = sqlite3PagerWrite(pPage1->pDbPage);
6422   if( rc ) goto freepage_out;
6423   nFree = get4byte(&pPage1->aData[36]);
6424   put4byte(&pPage1->aData[36], nFree+1);
6425 
6426   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6427     /* If the secure_delete option is enabled, then
6428     ** always fully overwrite deleted information with zeros.
6429     */
6430     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6431      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6432     ){
6433       goto freepage_out;
6434     }
6435     memset(pPage->aData, 0, pPage->pBt->pageSize);
6436   }
6437 
6438   /* If the database supports auto-vacuum, write an entry in the pointer-map
6439   ** to indicate that the page is free.
6440   */
6441   if( ISAUTOVACUUM ){
6442     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6443     if( rc ) goto freepage_out;
6444   }
6445 
6446   /* Now manipulate the actual database free-list structure. There are two
6447   ** possibilities. If the free-list is currently empty, or if the first
6448   ** trunk page in the free-list is full, then this page will become a
6449   ** new free-list trunk page. Otherwise, it will become a leaf of the
6450   ** first trunk page in the current free-list. This block tests if it
6451   ** is possible to add the page as a new free-list leaf.
6452   */
6453   if( nFree!=0 ){
6454     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6455 
6456     iTrunk = get4byte(&pPage1->aData[32]);
6457     if( iTrunk>btreePagecount(pBt) ){
6458       rc = SQLITE_CORRUPT_BKPT;
6459       goto freepage_out;
6460     }
6461     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6462     if( rc!=SQLITE_OK ){
6463       goto freepage_out;
6464     }
6465 
6466     nLeaf = get4byte(&pTrunk->aData[4]);
6467     assert( pBt->usableSize>32 );
6468     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6469       rc = SQLITE_CORRUPT_BKPT;
6470       goto freepage_out;
6471     }
6472     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6473       /* In this case there is room on the trunk page to insert the page
6474       ** being freed as a new leaf.
6475       **
6476       ** Note that the trunk page is not really full until it contains
6477       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6478       ** coded.  But due to a coding error in versions of SQLite prior to
6479       ** 3.6.0, databases with freelist trunk pages holding more than
6480       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6481       ** to maintain backwards compatibility with older versions of SQLite,
6482       ** we will continue to restrict the number of entries to usableSize/4 - 8
6483       ** for now.  At some point in the future (once everyone has upgraded
6484       ** to 3.6.0 or later) we should consider fixing the conditional above
6485       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6486       **
6487       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6488       ** avoid using the last six entries in the freelist trunk page array in
6489       ** order that database files created by newer versions of SQLite can be
6490       ** read by older versions of SQLite.
6491       */
6492       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6493       if( rc==SQLITE_OK ){
6494         put4byte(&pTrunk->aData[4], nLeaf+1);
6495         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6496         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6497           sqlite3PagerDontWrite(pPage->pDbPage);
6498         }
6499         rc = btreeSetHasContent(pBt, iPage);
6500       }
6501       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6502       goto freepage_out;
6503     }
6504   }
6505 
6506   /* If control flows to this point, then it was not possible to add the
6507   ** the page being freed as a leaf page of the first trunk in the free-list.
6508   ** Possibly because the free-list is empty, or possibly because the
6509   ** first trunk in the free-list is full. Either way, the page being freed
6510   ** will become the new first trunk page in the free-list.
6511   */
6512   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6513     goto freepage_out;
6514   }
6515   rc = sqlite3PagerWrite(pPage->pDbPage);
6516   if( rc!=SQLITE_OK ){
6517     goto freepage_out;
6518   }
6519   put4byte(pPage->aData, iTrunk);
6520   put4byte(&pPage->aData[4], 0);
6521   put4byte(&pPage1->aData[32], iPage);
6522   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6523 
6524 freepage_out:
6525   if( pPage ){
6526     pPage->isInit = 0;
6527   }
6528   releasePage(pPage);
6529   releasePage(pTrunk);
6530   return rc;
6531 }
6532 static void freePage(MemPage *pPage, int *pRC){
6533   if( (*pRC)==SQLITE_OK ){
6534     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6535   }
6536 }
6537 
6538 /*
6539 ** Free the overflow pages associated with the given Cell.
6540 */
6541 static SQLITE_NOINLINE int clearCellOverflow(
6542   MemPage *pPage,          /* The page that contains the Cell */
6543   unsigned char *pCell,    /* First byte of the Cell */
6544   CellInfo *pInfo          /* Size information about the cell */
6545 ){
6546   BtShared *pBt;
6547   Pgno ovflPgno;
6548   int rc;
6549   int nOvfl;
6550   u32 ovflPageSize;
6551 
6552   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6553   assert( pInfo->nLocal!=pInfo->nPayload );
6554   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6555   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6556   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6557     /* Cell extends past end of page */
6558     return SQLITE_CORRUPT_PAGE(pPage);
6559   }
6560   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6561   pBt = pPage->pBt;
6562   assert( pBt->usableSize > 4 );
6563   ovflPageSize = pBt->usableSize - 4;
6564   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6565   assert( nOvfl>0 ||
6566     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6567   );
6568   while( nOvfl-- ){
6569     Pgno iNext = 0;
6570     MemPage *pOvfl = 0;
6571     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6572       /* 0 is not a legal page number and page 1 cannot be an
6573       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6574       ** file the database must be corrupt. */
6575       return SQLITE_CORRUPT_BKPT;
6576     }
6577     if( nOvfl ){
6578       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6579       if( rc ) return rc;
6580     }
6581 
6582     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6583      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6584     ){
6585       /* There is no reason any cursor should have an outstanding reference
6586       ** to an overflow page belonging to a cell that is being deleted/updated.
6587       ** So if there exists more than one reference to this page, then it
6588       ** must not really be an overflow page and the database must be corrupt.
6589       ** It is helpful to detect this before calling freePage2(), as
6590       ** freePage2() may zero the page contents if secure-delete mode is
6591       ** enabled. If this 'overflow' page happens to be a page that the
6592       ** caller is iterating through or using in some other way, this
6593       ** can be problematic.
6594       */
6595       rc = SQLITE_CORRUPT_BKPT;
6596     }else{
6597       rc = freePage2(pBt, pOvfl, ovflPgno);
6598     }
6599 
6600     if( pOvfl ){
6601       sqlite3PagerUnref(pOvfl->pDbPage);
6602     }
6603     if( rc ) return rc;
6604     ovflPgno = iNext;
6605   }
6606   return SQLITE_OK;
6607 }
6608 
6609 /* Call xParseCell to compute the size of a cell.  If the cell contains
6610 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6611 ** STore the result code (SQLITE_OK or some error code) in rc.
6612 **
6613 ** Implemented as macro to force inlining for performance.
6614 */
6615 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6616   pPage->xParseCell(pPage, pCell, &sInfo);          \
6617   if( sInfo.nLocal!=sInfo.nPayload ){               \
6618     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6619   }else{                                            \
6620     rc = SQLITE_OK;                                 \
6621   }
6622 
6623 
6624 /*
6625 ** Create the byte sequence used to represent a cell on page pPage
6626 ** and write that byte sequence into pCell[].  Overflow pages are
6627 ** allocated and filled in as necessary.  The calling procedure
6628 ** is responsible for making sure sufficient space has been allocated
6629 ** for pCell[].
6630 **
6631 ** Note that pCell does not necessary need to point to the pPage->aData
6632 ** area.  pCell might point to some temporary storage.  The cell will
6633 ** be constructed in this temporary area then copied into pPage->aData
6634 ** later.
6635 */
6636 static int fillInCell(
6637   MemPage *pPage,                /* The page that contains the cell */
6638   unsigned char *pCell,          /* Complete text of the cell */
6639   const BtreePayload *pX,        /* Payload with which to construct the cell */
6640   int *pnSize                    /* Write cell size here */
6641 ){
6642   int nPayload;
6643   const u8 *pSrc;
6644   int nSrc, n, rc, mn;
6645   int spaceLeft;
6646   MemPage *pToRelease;
6647   unsigned char *pPrior;
6648   unsigned char *pPayload;
6649   BtShared *pBt;
6650   Pgno pgnoOvfl;
6651   int nHeader;
6652 
6653   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6654 
6655   /* pPage is not necessarily writeable since pCell might be auxiliary
6656   ** buffer space that is separate from the pPage buffer area */
6657   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6658             || sqlite3PagerIswriteable(pPage->pDbPage) );
6659 
6660   /* Fill in the header. */
6661   nHeader = pPage->childPtrSize;
6662   if( pPage->intKey ){
6663     nPayload = pX->nData + pX->nZero;
6664     pSrc = pX->pData;
6665     nSrc = pX->nData;
6666     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6667     nHeader += putVarint32(&pCell[nHeader], nPayload);
6668     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6669   }else{
6670     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6671     nSrc = nPayload = (int)pX->nKey;
6672     pSrc = pX->pKey;
6673     nHeader += putVarint32(&pCell[nHeader], nPayload);
6674   }
6675 
6676   /* Fill in the payload */
6677   pPayload = &pCell[nHeader];
6678   if( nPayload<=pPage->maxLocal ){
6679     /* This is the common case where everything fits on the btree page
6680     ** and no overflow pages are required. */
6681     n = nHeader + nPayload;
6682     testcase( n==3 );
6683     testcase( n==4 );
6684     if( n<4 ) n = 4;
6685     *pnSize = n;
6686     assert( nSrc<=nPayload );
6687     testcase( nSrc<nPayload );
6688     memcpy(pPayload, pSrc, nSrc);
6689     memset(pPayload+nSrc, 0, nPayload-nSrc);
6690     return SQLITE_OK;
6691   }
6692 
6693   /* If we reach this point, it means that some of the content will need
6694   ** to spill onto overflow pages.
6695   */
6696   mn = pPage->minLocal;
6697   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6698   testcase( n==pPage->maxLocal );
6699   testcase( n==pPage->maxLocal+1 );
6700   if( n > pPage->maxLocal ) n = mn;
6701   spaceLeft = n;
6702   *pnSize = n + nHeader + 4;
6703   pPrior = &pCell[nHeader+n];
6704   pToRelease = 0;
6705   pgnoOvfl = 0;
6706   pBt = pPage->pBt;
6707 
6708   /* At this point variables should be set as follows:
6709   **
6710   **   nPayload           Total payload size in bytes
6711   **   pPayload           Begin writing payload here
6712   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6713   **                      that means content must spill into overflow pages.
6714   **   *pnSize            Size of the local cell (not counting overflow pages)
6715   **   pPrior             Where to write the pgno of the first overflow page
6716   **
6717   ** Use a call to btreeParseCellPtr() to verify that the values above
6718   ** were computed correctly.
6719   */
6720 #ifdef SQLITE_DEBUG
6721   {
6722     CellInfo info;
6723     pPage->xParseCell(pPage, pCell, &info);
6724     assert( nHeader==(int)(info.pPayload - pCell) );
6725     assert( info.nKey==pX->nKey );
6726     assert( *pnSize == info.nSize );
6727     assert( spaceLeft == info.nLocal );
6728   }
6729 #endif
6730 
6731   /* Write the payload into the local Cell and any extra into overflow pages */
6732   while( 1 ){
6733     n = nPayload;
6734     if( n>spaceLeft ) n = spaceLeft;
6735 
6736     /* If pToRelease is not zero than pPayload points into the data area
6737     ** of pToRelease.  Make sure pToRelease is still writeable. */
6738     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6739 
6740     /* If pPayload is part of the data area of pPage, then make sure pPage
6741     ** is still writeable */
6742     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6743             || sqlite3PagerIswriteable(pPage->pDbPage) );
6744 
6745     if( nSrc>=n ){
6746       memcpy(pPayload, pSrc, n);
6747     }else if( nSrc>0 ){
6748       n = nSrc;
6749       memcpy(pPayload, pSrc, n);
6750     }else{
6751       memset(pPayload, 0, n);
6752     }
6753     nPayload -= n;
6754     if( nPayload<=0 ) break;
6755     pPayload += n;
6756     pSrc += n;
6757     nSrc -= n;
6758     spaceLeft -= n;
6759     if( spaceLeft==0 ){
6760       MemPage *pOvfl = 0;
6761 #ifndef SQLITE_OMIT_AUTOVACUUM
6762       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6763       if( pBt->autoVacuum ){
6764         do{
6765           pgnoOvfl++;
6766         } while(
6767           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6768         );
6769       }
6770 #endif
6771       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6772 #ifndef SQLITE_OMIT_AUTOVACUUM
6773       /* If the database supports auto-vacuum, and the second or subsequent
6774       ** overflow page is being allocated, add an entry to the pointer-map
6775       ** for that page now.
6776       **
6777       ** If this is the first overflow page, then write a partial entry
6778       ** to the pointer-map. If we write nothing to this pointer-map slot,
6779       ** then the optimistic overflow chain processing in clearCell()
6780       ** may misinterpret the uninitialized values and delete the
6781       ** wrong pages from the database.
6782       */
6783       if( pBt->autoVacuum && rc==SQLITE_OK ){
6784         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6785         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6786         if( rc ){
6787           releasePage(pOvfl);
6788         }
6789       }
6790 #endif
6791       if( rc ){
6792         releasePage(pToRelease);
6793         return rc;
6794       }
6795 
6796       /* If pToRelease is not zero than pPrior points into the data area
6797       ** of pToRelease.  Make sure pToRelease is still writeable. */
6798       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6799 
6800       /* If pPrior is part of the data area of pPage, then make sure pPage
6801       ** is still writeable */
6802       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6803             || sqlite3PagerIswriteable(pPage->pDbPage) );
6804 
6805       put4byte(pPrior, pgnoOvfl);
6806       releasePage(pToRelease);
6807       pToRelease = pOvfl;
6808       pPrior = pOvfl->aData;
6809       put4byte(pPrior, 0);
6810       pPayload = &pOvfl->aData[4];
6811       spaceLeft = pBt->usableSize - 4;
6812     }
6813   }
6814   releasePage(pToRelease);
6815   return SQLITE_OK;
6816 }
6817 
6818 /*
6819 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6820 ** The cell content is not freed or deallocated.  It is assumed that
6821 ** the cell content has been copied someplace else.  This routine just
6822 ** removes the reference to the cell from pPage.
6823 **
6824 ** "sz" must be the number of bytes in the cell.
6825 */
6826 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6827   u32 pc;         /* Offset to cell content of cell being deleted */
6828   u8 *data;       /* pPage->aData */
6829   u8 *ptr;        /* Used to move bytes around within data[] */
6830   int rc;         /* The return code */
6831   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6832 
6833   if( *pRC ) return;
6834   assert( idx>=0 );
6835   assert( idx<pPage->nCell );
6836   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6837   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6838   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6839   assert( pPage->nFree>=0 );
6840   data = pPage->aData;
6841   ptr = &pPage->aCellIdx[2*idx];
6842   assert( pPage->pBt->usableSize > (int)(ptr-data) );
6843   pc = get2byte(ptr);
6844   hdr = pPage->hdrOffset;
6845   testcase( pc==(u32)get2byte(&data[hdr+5]) );
6846   testcase( pc+sz==pPage->pBt->usableSize );
6847   if( pc+sz > pPage->pBt->usableSize ){
6848     *pRC = SQLITE_CORRUPT_BKPT;
6849     return;
6850   }
6851   rc = freeSpace(pPage, pc, sz);
6852   if( rc ){
6853     *pRC = rc;
6854     return;
6855   }
6856   pPage->nCell--;
6857   if( pPage->nCell==0 ){
6858     memset(&data[hdr+1], 0, 4);
6859     data[hdr+7] = 0;
6860     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6861     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6862                        - pPage->childPtrSize - 8;
6863   }else{
6864     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6865     put2byte(&data[hdr+3], pPage->nCell);
6866     pPage->nFree += 2;
6867   }
6868 }
6869 
6870 /*
6871 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6872 ** content of the cell.
6873 **
6874 ** If the cell content will fit on the page, then put it there.  If it
6875 ** will not fit, then make a copy of the cell content into pTemp if
6876 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6877 ** in pPage->apOvfl[] and make it point to the cell content (either
6878 ** in pTemp or the original pCell) and also record its index.
6879 ** Allocating a new entry in pPage->aCell[] implies that
6880 ** pPage->nOverflow is incremented.
6881 **
6882 ** *pRC must be SQLITE_OK when this routine is called.
6883 */
6884 static void insertCell(
6885   MemPage *pPage,   /* Page into which we are copying */
6886   int i,            /* New cell becomes the i-th cell of the page */
6887   u8 *pCell,        /* Content of the new cell */
6888   int sz,           /* Bytes of content in pCell */
6889   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6890   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6891   int *pRC          /* Read and write return code from here */
6892 ){
6893   int idx = 0;      /* Where to write new cell content in data[] */
6894   int j;            /* Loop counter */
6895   u8 *data;         /* The content of the whole page */
6896   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6897 
6898   assert( *pRC==SQLITE_OK );
6899   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6900   assert( MX_CELL(pPage->pBt)<=10921 );
6901   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6902   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6903   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6904   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6905   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6906   assert( pPage->nFree>=0 );
6907   if( pPage->nOverflow || sz+2>pPage->nFree ){
6908     if( pTemp ){
6909       memcpy(pTemp, pCell, sz);
6910       pCell = pTemp;
6911     }
6912     if( iChild ){
6913       put4byte(pCell, iChild);
6914     }
6915     j = pPage->nOverflow++;
6916     /* Comparison against ArraySize-1 since we hold back one extra slot
6917     ** as a contingency.  In other words, never need more than 3 overflow
6918     ** slots but 4 are allocated, just to be safe. */
6919     assert( j < ArraySize(pPage->apOvfl)-1 );
6920     pPage->apOvfl[j] = pCell;
6921     pPage->aiOvfl[j] = (u16)i;
6922 
6923     /* When multiple overflows occur, they are always sequential and in
6924     ** sorted order.  This invariants arise because multiple overflows can
6925     ** only occur when inserting divider cells into the parent page during
6926     ** balancing, and the dividers are adjacent and sorted.
6927     */
6928     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6929     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6930   }else{
6931     int rc = sqlite3PagerWrite(pPage->pDbPage);
6932     if( rc!=SQLITE_OK ){
6933       *pRC = rc;
6934       return;
6935     }
6936     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6937     data = pPage->aData;
6938     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6939     rc = allocateSpace(pPage, sz, &idx);
6940     if( rc ){ *pRC = rc; return; }
6941     /* The allocateSpace() routine guarantees the following properties
6942     ** if it returns successfully */
6943     assert( idx >= 0 );
6944     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6945     assert( idx+sz <= (int)pPage->pBt->usableSize );
6946     pPage->nFree -= (u16)(2 + sz);
6947     if( iChild ){
6948       /* In a corrupt database where an entry in the cell index section of
6949       ** a btree page has a value of 3 or less, the pCell value might point
6950       ** as many as 4 bytes in front of the start of the aData buffer for
6951       ** the source page.  Make sure this does not cause problems by not
6952       ** reading the first 4 bytes */
6953       memcpy(&data[idx+4], pCell+4, sz-4);
6954       put4byte(&data[idx], iChild);
6955     }else{
6956       memcpy(&data[idx], pCell, sz);
6957     }
6958     pIns = pPage->aCellIdx + i*2;
6959     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6960     put2byte(pIns, idx);
6961     pPage->nCell++;
6962     /* increment the cell count */
6963     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6964     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6965 #ifndef SQLITE_OMIT_AUTOVACUUM
6966     if( pPage->pBt->autoVacuum ){
6967       /* The cell may contain a pointer to an overflow page. If so, write
6968       ** the entry for the overflow page into the pointer map.
6969       */
6970       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6971     }
6972 #endif
6973   }
6974 }
6975 
6976 /*
6977 ** The following parameters determine how many adjacent pages get involved
6978 ** in a balancing operation.  NN is the number of neighbors on either side
6979 ** of the page that participate in the balancing operation.  NB is the
6980 ** total number of pages that participate, including the target page and
6981 ** NN neighbors on either side.
6982 **
6983 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6984 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6985 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6986 ** The value of NN appears to give the best results overall.
6987 **
6988 ** (Later:) The description above makes it seem as if these values are
6989 ** tunable - as if you could change them and recompile and it would all work.
6990 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6991 ** we have never tested any other value.
6992 */
6993 #define NN 1             /* Number of neighbors on either side of pPage */
6994 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6995 
6996 /*
6997 ** A CellArray object contains a cache of pointers and sizes for a
6998 ** consecutive sequence of cells that might be held on multiple pages.
6999 **
7000 ** The cells in this array are the divider cell or cells from the pParent
7001 ** page plus up to three child pages.  There are a total of nCell cells.
7002 **
7003 ** pRef is a pointer to one of the pages that contributes cells.  This is
7004 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7005 ** which should be common to all pages that contribute cells to this array.
7006 **
7007 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7008 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
7009 ** to overflow cells.  In other words, some apCel[] pointers might not point
7010 ** to content area of the pages.
7011 **
7012 ** A szCell[] of zero means the size of that cell has not yet been computed.
7013 **
7014 ** The cells come from as many as four different pages:
7015 **
7016 **             -----------
7017 **             | Parent  |
7018 **             -----------
7019 **            /     |     \
7020 **           /      |      \
7021 **  ---------   ---------   ---------
7022 **  |Child-1|   |Child-2|   |Child-3|
7023 **  ---------   ---------   ---------
7024 **
7025 ** The order of cells is in the array is for an index btree is:
7026 **
7027 **       1.  All cells from Child-1 in order
7028 **       2.  The first divider cell from Parent
7029 **       3.  All cells from Child-2 in order
7030 **       4.  The second divider cell from Parent
7031 **       5.  All cells from Child-3 in order
7032 **
7033 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7034 ** content exists only in leaves and there are no divider cells.
7035 **
7036 ** For an index btree, the apEnd[] array holds pointer to the end of page
7037 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7038 ** respectively. The ixNx[] array holds the number of cells contained in
7039 ** each of these 5 stages, and all stages to the left.  Hence:
7040 **
7041 **    ixNx[0] = Number of cells in Child-1.
7042 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7043 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7044 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7045 **    ixNx[4] = Total number of cells.
7046 **
7047 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7048 ** are used and they point to the leaf pages only, and the ixNx value are:
7049 **
7050 **    ixNx[0] = Number of cells in Child-1.
7051 **    ixNx[1] = Number of cells in Child-1 and Child-2.
7052 **    ixNx[2] = Total number of cells.
7053 **
7054 ** Sometimes when deleting, a child page can have zero cells.  In those
7055 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7056 ** entries, shift down.  The end result is that each ixNx[] entry should
7057 ** be larger than the previous
7058 */
7059 typedef struct CellArray CellArray;
7060 struct CellArray {
7061   int nCell;              /* Number of cells in apCell[] */
7062   MemPage *pRef;          /* Reference page */
7063   u8 **apCell;            /* All cells begin balanced */
7064   u16 *szCell;            /* Local size of all cells in apCell[] */
7065   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
7066   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
7067 };
7068 
7069 /*
7070 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7071 ** computed.
7072 */
7073 static void populateCellCache(CellArray *p, int idx, int N){
7074   assert( idx>=0 && idx+N<=p->nCell );
7075   while( N>0 ){
7076     assert( p->apCell[idx]!=0 );
7077     if( p->szCell[idx]==0 ){
7078       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7079     }else{
7080       assert( CORRUPT_DB ||
7081               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7082     }
7083     idx++;
7084     N--;
7085   }
7086 }
7087 
7088 /*
7089 ** Return the size of the Nth element of the cell array
7090 */
7091 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7092   assert( N>=0 && N<p->nCell );
7093   assert( p->szCell[N]==0 );
7094   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7095   return p->szCell[N];
7096 }
7097 static u16 cachedCellSize(CellArray *p, int N){
7098   assert( N>=0 && N<p->nCell );
7099   if( p->szCell[N] ) return p->szCell[N];
7100   return computeCellSize(p, N);
7101 }
7102 
7103 /*
7104 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7105 ** szCell[] array contains the size in bytes of each cell. This function
7106 ** replaces the current contents of page pPg with the contents of the cell
7107 ** array.
7108 **
7109 ** Some of the cells in apCell[] may currently be stored in pPg. This
7110 ** function works around problems caused by this by making a copy of any
7111 ** such cells before overwriting the page data.
7112 **
7113 ** The MemPage.nFree field is invalidated by this function. It is the
7114 ** responsibility of the caller to set it correctly.
7115 */
7116 static int rebuildPage(
7117   CellArray *pCArray,             /* Content to be added to page pPg */
7118   int iFirst,                     /* First cell in pCArray to use */
7119   int nCell,                      /* Final number of cells on page */
7120   MemPage *pPg                    /* The page to be reconstructed */
7121 ){
7122   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7123   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7124   const int usableSize = pPg->pBt->usableSize;
7125   u8 * const pEnd = &aData[usableSize];
7126   int i = iFirst;                 /* Which cell to copy from pCArray*/
7127   u32 j;                          /* Start of cell content area */
7128   int iEnd = i+nCell;             /* Loop terminator */
7129   u8 *pCellptr = pPg->aCellIdx;
7130   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7131   u8 *pData;
7132   int k;                          /* Current slot in pCArray->apEnd[] */
7133   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7134 
7135   assert( i<iEnd );
7136   j = get2byte(&aData[hdr+5]);
7137   if( j>(u32)usableSize ){ j = 0; }
7138   memcpy(&pTmp[j], &aData[j], usableSize - j);
7139 
7140   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7141   pSrcEnd = pCArray->apEnd[k];
7142 
7143   pData = pEnd;
7144   while( 1/*exit by break*/ ){
7145     u8 *pCell = pCArray->apCell[i];
7146     u16 sz = pCArray->szCell[i];
7147     assert( sz>0 );
7148     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7149       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7150       pCell = &pTmp[pCell - aData];
7151     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7152            && (uptr)(pCell)<(uptr)pSrcEnd
7153     ){
7154       return SQLITE_CORRUPT_BKPT;
7155     }
7156 
7157     pData -= sz;
7158     put2byte(pCellptr, (pData - aData));
7159     pCellptr += 2;
7160     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7161     memmove(pData, pCell, sz);
7162     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7163     i++;
7164     if( i>=iEnd ) break;
7165     if( pCArray->ixNx[k]<=i ){
7166       k++;
7167       pSrcEnd = pCArray->apEnd[k];
7168     }
7169   }
7170 
7171   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7172   pPg->nCell = nCell;
7173   pPg->nOverflow = 0;
7174 
7175   put2byte(&aData[hdr+1], 0);
7176   put2byte(&aData[hdr+3], pPg->nCell);
7177   put2byte(&aData[hdr+5], pData - aData);
7178   aData[hdr+7] = 0x00;
7179   return SQLITE_OK;
7180 }
7181 
7182 /*
7183 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7184 ** This function attempts to add the cells stored in the array to page pPg.
7185 ** If it cannot (because the page needs to be defragmented before the cells
7186 ** will fit), non-zero is returned. Otherwise, if the cells are added
7187 ** successfully, zero is returned.
7188 **
7189 ** Argument pCellptr points to the first entry in the cell-pointer array
7190 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7191 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7192 ** cell in the array. It is the responsibility of the caller to ensure
7193 ** that it is safe to overwrite this part of the cell-pointer array.
7194 **
7195 ** When this function is called, *ppData points to the start of the
7196 ** content area on page pPg. If the size of the content area is extended,
7197 ** *ppData is updated to point to the new start of the content area
7198 ** before returning.
7199 **
7200 ** Finally, argument pBegin points to the byte immediately following the
7201 ** end of the space required by this page for the cell-pointer area (for
7202 ** all cells - not just those inserted by the current call). If the content
7203 ** area must be extended to before this point in order to accomodate all
7204 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7205 */
7206 static int pageInsertArray(
7207   MemPage *pPg,                   /* Page to add cells to */
7208   u8 *pBegin,                     /* End of cell-pointer array */
7209   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7210   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7211   int iFirst,                     /* Index of first cell to add */
7212   int nCell,                      /* Number of cells to add to pPg */
7213   CellArray *pCArray              /* Array of cells */
7214 ){
7215   int i = iFirst;                 /* Loop counter - cell index to insert */
7216   u8 *aData = pPg->aData;         /* Complete page */
7217   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7218   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7219   int k;                          /* Current slot in pCArray->apEnd[] */
7220   u8 *pEnd;                       /* Maximum extent of cell data */
7221   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7222   if( iEnd<=iFirst ) return 0;
7223   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7224   pEnd = pCArray->apEnd[k];
7225   while( 1 /*Exit by break*/ ){
7226     int sz, rc;
7227     u8 *pSlot;
7228     assert( pCArray->szCell[i]!=0 );
7229     sz = pCArray->szCell[i];
7230     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7231       if( (pData - pBegin)<sz ) return 1;
7232       pData -= sz;
7233       pSlot = pData;
7234     }
7235     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7236     ** database.  But they might for a corrupt database.  Hence use memmove()
7237     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7238     assert( (pSlot+sz)<=pCArray->apCell[i]
7239          || pSlot>=(pCArray->apCell[i]+sz)
7240          || CORRUPT_DB );
7241     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7242      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7243     ){
7244       assert( CORRUPT_DB );
7245       (void)SQLITE_CORRUPT_BKPT;
7246       return 1;
7247     }
7248     memmove(pSlot, pCArray->apCell[i], sz);
7249     put2byte(pCellptr, (pSlot - aData));
7250     pCellptr += 2;
7251     i++;
7252     if( i>=iEnd ) break;
7253     if( pCArray->ixNx[k]<=i ){
7254       k++;
7255       pEnd = pCArray->apEnd[k];
7256     }
7257   }
7258   *ppData = pData;
7259   return 0;
7260 }
7261 
7262 /*
7263 ** The pCArray object contains pointers to b-tree cells and their sizes.
7264 **
7265 ** This function adds the space associated with each cell in the array
7266 ** that is currently stored within the body of pPg to the pPg free-list.
7267 ** The cell-pointers and other fields of the page are not updated.
7268 **
7269 ** This function returns the total number of cells added to the free-list.
7270 */
7271 static int pageFreeArray(
7272   MemPage *pPg,                   /* Page to edit */
7273   int iFirst,                     /* First cell to delete */
7274   int nCell,                      /* Cells to delete */
7275   CellArray *pCArray              /* Array of cells */
7276 ){
7277   u8 * const aData = pPg->aData;
7278   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7279   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7280   int nRet = 0;
7281   int i;
7282   int iEnd = iFirst + nCell;
7283   u8 *pFree = 0;
7284   int szFree = 0;
7285 
7286   for(i=iFirst; i<iEnd; i++){
7287     u8 *pCell = pCArray->apCell[i];
7288     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7289       int sz;
7290       /* No need to use cachedCellSize() here.  The sizes of all cells that
7291       ** are to be freed have already been computing while deciding which
7292       ** cells need freeing */
7293       sz = pCArray->szCell[i];  assert( sz>0 );
7294       if( pFree!=(pCell + sz) ){
7295         if( pFree ){
7296           assert( pFree>aData && (pFree - aData)<65536 );
7297           freeSpace(pPg, (u16)(pFree - aData), szFree);
7298         }
7299         pFree = pCell;
7300         szFree = sz;
7301         if( pFree+sz>pEnd ){
7302           return 0;
7303         }
7304       }else{
7305         pFree = pCell;
7306         szFree += sz;
7307       }
7308       nRet++;
7309     }
7310   }
7311   if( pFree ){
7312     assert( pFree>aData && (pFree - aData)<65536 );
7313     freeSpace(pPg, (u16)(pFree - aData), szFree);
7314   }
7315   return nRet;
7316 }
7317 
7318 /*
7319 ** pCArray contains pointers to and sizes of all cells in the page being
7320 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7321 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7322 ** starting at apCell[iNew].
7323 **
7324 ** This routine makes the necessary adjustments to pPg so that it contains
7325 ** the correct cells after being balanced.
7326 **
7327 ** The pPg->nFree field is invalid when this function returns. It is the
7328 ** responsibility of the caller to set it correctly.
7329 */
7330 static int editPage(
7331   MemPage *pPg,                   /* Edit this page */
7332   int iOld,                       /* Index of first cell currently on page */
7333   int iNew,                       /* Index of new first cell on page */
7334   int nNew,                       /* Final number of cells on page */
7335   CellArray *pCArray              /* Array of cells and sizes */
7336 ){
7337   u8 * const aData = pPg->aData;
7338   const int hdr = pPg->hdrOffset;
7339   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7340   int nCell = pPg->nCell;       /* Cells stored on pPg */
7341   u8 *pData;
7342   u8 *pCellptr;
7343   int i;
7344   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7345   int iNewEnd = iNew + nNew;
7346 
7347 #ifdef SQLITE_DEBUG
7348   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7349   memcpy(pTmp, aData, pPg->pBt->usableSize);
7350 #endif
7351 
7352   /* Remove cells from the start and end of the page */
7353   assert( nCell>=0 );
7354   if( iOld<iNew ){
7355     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7356     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7357     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7358     nCell -= nShift;
7359   }
7360   if( iNewEnd < iOldEnd ){
7361     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7362     assert( nCell>=nTail );
7363     nCell -= nTail;
7364   }
7365 
7366   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7367   if( pData<pBegin ) goto editpage_fail;
7368   if( pData>pPg->aDataEnd ) goto editpage_fail;
7369 
7370   /* Add cells to the start of the page */
7371   if( iNew<iOld ){
7372     int nAdd = MIN(nNew,iOld-iNew);
7373     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7374     assert( nAdd>=0 );
7375     pCellptr = pPg->aCellIdx;
7376     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7377     if( pageInsertArray(
7378           pPg, pBegin, &pData, pCellptr,
7379           iNew, nAdd, pCArray
7380     ) ) goto editpage_fail;
7381     nCell += nAdd;
7382   }
7383 
7384   /* Add any overflow cells */
7385   for(i=0; i<pPg->nOverflow; i++){
7386     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7387     if( iCell>=0 && iCell<nNew ){
7388       pCellptr = &pPg->aCellIdx[iCell * 2];
7389       if( nCell>iCell ){
7390         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7391       }
7392       nCell++;
7393       cachedCellSize(pCArray, iCell+iNew);
7394       if( pageInsertArray(
7395             pPg, pBegin, &pData, pCellptr,
7396             iCell+iNew, 1, pCArray
7397       ) ) goto editpage_fail;
7398     }
7399   }
7400 
7401   /* Append cells to the end of the page */
7402   assert( nCell>=0 );
7403   pCellptr = &pPg->aCellIdx[nCell*2];
7404   if( pageInsertArray(
7405         pPg, pBegin, &pData, pCellptr,
7406         iNew+nCell, nNew-nCell, pCArray
7407   ) ) goto editpage_fail;
7408 
7409   pPg->nCell = nNew;
7410   pPg->nOverflow = 0;
7411 
7412   put2byte(&aData[hdr+3], pPg->nCell);
7413   put2byte(&aData[hdr+5], pData - aData);
7414 
7415 #ifdef SQLITE_DEBUG
7416   for(i=0; i<nNew && !CORRUPT_DB; i++){
7417     u8 *pCell = pCArray->apCell[i+iNew];
7418     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7419     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7420       pCell = &pTmp[pCell - aData];
7421     }
7422     assert( 0==memcmp(pCell, &aData[iOff],
7423             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7424   }
7425 #endif
7426 
7427   return SQLITE_OK;
7428  editpage_fail:
7429   /* Unable to edit this page. Rebuild it from scratch instead. */
7430   populateCellCache(pCArray, iNew, nNew);
7431   return rebuildPage(pCArray, iNew, nNew, pPg);
7432 }
7433 
7434 
7435 #ifndef SQLITE_OMIT_QUICKBALANCE
7436 /*
7437 ** This version of balance() handles the common special case where
7438 ** a new entry is being inserted on the extreme right-end of the
7439 ** tree, in other words, when the new entry will become the largest
7440 ** entry in the tree.
7441 **
7442 ** Instead of trying to balance the 3 right-most leaf pages, just add
7443 ** a new page to the right-hand side and put the one new entry in
7444 ** that page.  This leaves the right side of the tree somewhat
7445 ** unbalanced.  But odds are that we will be inserting new entries
7446 ** at the end soon afterwards so the nearly empty page will quickly
7447 ** fill up.  On average.
7448 **
7449 ** pPage is the leaf page which is the right-most page in the tree.
7450 ** pParent is its parent.  pPage must have a single overflow entry
7451 ** which is also the right-most entry on the page.
7452 **
7453 ** The pSpace buffer is used to store a temporary copy of the divider
7454 ** cell that will be inserted into pParent. Such a cell consists of a 4
7455 ** byte page number followed by a variable length integer. In other
7456 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7457 ** least 13 bytes in size.
7458 */
7459 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7460   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7461   MemPage *pNew;                       /* Newly allocated page */
7462   int rc;                              /* Return Code */
7463   Pgno pgnoNew;                        /* Page number of pNew */
7464 
7465   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7466   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7467   assert( pPage->nOverflow==1 );
7468 
7469   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7470   assert( pPage->nFree>=0 );
7471   assert( pParent->nFree>=0 );
7472 
7473   /* Allocate a new page. This page will become the right-sibling of
7474   ** pPage. Make the parent page writable, so that the new divider cell
7475   ** may be inserted. If both these operations are successful, proceed.
7476   */
7477   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7478 
7479   if( rc==SQLITE_OK ){
7480 
7481     u8 *pOut = &pSpace[4];
7482     u8 *pCell = pPage->apOvfl[0];
7483     u16 szCell = pPage->xCellSize(pPage, pCell);
7484     u8 *pStop;
7485     CellArray b;
7486 
7487     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7488     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7489     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7490     b.nCell = 1;
7491     b.pRef = pPage;
7492     b.apCell = &pCell;
7493     b.szCell = &szCell;
7494     b.apEnd[0] = pPage->aDataEnd;
7495     b.ixNx[0] = 2;
7496     rc = rebuildPage(&b, 0, 1, pNew);
7497     if( NEVER(rc) ){
7498       releasePage(pNew);
7499       return rc;
7500     }
7501     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7502 
7503     /* If this is an auto-vacuum database, update the pointer map
7504     ** with entries for the new page, and any pointer from the
7505     ** cell on the page to an overflow page. If either of these
7506     ** operations fails, the return code is set, but the contents
7507     ** of the parent page are still manipulated by thh code below.
7508     ** That is Ok, at this point the parent page is guaranteed to
7509     ** be marked as dirty. Returning an error code will cause a
7510     ** rollback, undoing any changes made to the parent page.
7511     */
7512     if( ISAUTOVACUUM ){
7513       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7514       if( szCell>pNew->minLocal ){
7515         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7516       }
7517     }
7518 
7519     /* Create a divider cell to insert into pParent. The divider cell
7520     ** consists of a 4-byte page number (the page number of pPage) and
7521     ** a variable length key value (which must be the same value as the
7522     ** largest key on pPage).
7523     **
7524     ** To find the largest key value on pPage, first find the right-most
7525     ** cell on pPage. The first two fields of this cell are the
7526     ** record-length (a variable length integer at most 32-bits in size)
7527     ** and the key value (a variable length integer, may have any value).
7528     ** The first of the while(...) loops below skips over the record-length
7529     ** field. The second while(...) loop copies the key value from the
7530     ** cell on pPage into the pSpace buffer.
7531     */
7532     pCell = findCell(pPage, pPage->nCell-1);
7533     pStop = &pCell[9];
7534     while( (*(pCell++)&0x80) && pCell<pStop );
7535     pStop = &pCell[9];
7536     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7537 
7538     /* Insert the new divider cell into pParent. */
7539     if( rc==SQLITE_OK ){
7540       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7541                    0, pPage->pgno, &rc);
7542     }
7543 
7544     /* Set the right-child pointer of pParent to point to the new page. */
7545     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7546 
7547     /* Release the reference to the new page. */
7548     releasePage(pNew);
7549   }
7550 
7551   return rc;
7552 }
7553 #endif /* SQLITE_OMIT_QUICKBALANCE */
7554 
7555 #if 0
7556 /*
7557 ** This function does not contribute anything to the operation of SQLite.
7558 ** it is sometimes activated temporarily while debugging code responsible
7559 ** for setting pointer-map entries.
7560 */
7561 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7562   int i, j;
7563   for(i=0; i<nPage; i++){
7564     Pgno n;
7565     u8 e;
7566     MemPage *pPage = apPage[i];
7567     BtShared *pBt = pPage->pBt;
7568     assert( pPage->isInit );
7569 
7570     for(j=0; j<pPage->nCell; j++){
7571       CellInfo info;
7572       u8 *z;
7573 
7574       z = findCell(pPage, j);
7575       pPage->xParseCell(pPage, z, &info);
7576       if( info.nLocal<info.nPayload ){
7577         Pgno ovfl = get4byte(&z[info.nSize-4]);
7578         ptrmapGet(pBt, ovfl, &e, &n);
7579         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7580       }
7581       if( !pPage->leaf ){
7582         Pgno child = get4byte(z);
7583         ptrmapGet(pBt, child, &e, &n);
7584         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7585       }
7586     }
7587     if( !pPage->leaf ){
7588       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7589       ptrmapGet(pBt, child, &e, &n);
7590       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7591     }
7592   }
7593   return 1;
7594 }
7595 #endif
7596 
7597 /*
7598 ** This function is used to copy the contents of the b-tree node stored
7599 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7600 ** the pointer-map entries for each child page are updated so that the
7601 ** parent page stored in the pointer map is page pTo. If pFrom contained
7602 ** any cells with overflow page pointers, then the corresponding pointer
7603 ** map entries are also updated so that the parent page is page pTo.
7604 **
7605 ** If pFrom is currently carrying any overflow cells (entries in the
7606 ** MemPage.apOvfl[] array), they are not copied to pTo.
7607 **
7608 ** Before returning, page pTo is reinitialized using btreeInitPage().
7609 **
7610 ** The performance of this function is not critical. It is only used by
7611 ** the balance_shallower() and balance_deeper() procedures, neither of
7612 ** which are called often under normal circumstances.
7613 */
7614 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7615   if( (*pRC)==SQLITE_OK ){
7616     BtShared * const pBt = pFrom->pBt;
7617     u8 * const aFrom = pFrom->aData;
7618     u8 * const aTo = pTo->aData;
7619     int const iFromHdr = pFrom->hdrOffset;
7620     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7621     int rc;
7622     int iData;
7623 
7624 
7625     assert( pFrom->isInit );
7626     assert( pFrom->nFree>=iToHdr );
7627     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7628 
7629     /* Copy the b-tree node content from page pFrom to page pTo. */
7630     iData = get2byte(&aFrom[iFromHdr+5]);
7631     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7632     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7633 
7634     /* Reinitialize page pTo so that the contents of the MemPage structure
7635     ** match the new data. The initialization of pTo can actually fail under
7636     ** fairly obscure circumstances, even though it is a copy of initialized
7637     ** page pFrom.
7638     */
7639     pTo->isInit = 0;
7640     rc = btreeInitPage(pTo);
7641     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7642     if( rc!=SQLITE_OK ){
7643       *pRC = rc;
7644       return;
7645     }
7646 
7647     /* If this is an auto-vacuum database, update the pointer-map entries
7648     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7649     */
7650     if( ISAUTOVACUUM ){
7651       *pRC = setChildPtrmaps(pTo);
7652     }
7653   }
7654 }
7655 
7656 /*
7657 ** This routine redistributes cells on the iParentIdx'th child of pParent
7658 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7659 ** same amount of free space. Usually a single sibling on either side of the
7660 ** page are used in the balancing, though both siblings might come from one
7661 ** side if the page is the first or last child of its parent. If the page
7662 ** has fewer than 2 siblings (something which can only happen if the page
7663 ** is a root page or a child of a root page) then all available siblings
7664 ** participate in the balancing.
7665 **
7666 ** The number of siblings of the page might be increased or decreased by
7667 ** one or two in an effort to keep pages nearly full but not over full.
7668 **
7669 ** Note that when this routine is called, some of the cells on the page
7670 ** might not actually be stored in MemPage.aData[]. This can happen
7671 ** if the page is overfull. This routine ensures that all cells allocated
7672 ** to the page and its siblings fit into MemPage.aData[] before returning.
7673 **
7674 ** In the course of balancing the page and its siblings, cells may be
7675 ** inserted into or removed from the parent page (pParent). Doing so
7676 ** may cause the parent page to become overfull or underfull. If this
7677 ** happens, it is the responsibility of the caller to invoke the correct
7678 ** balancing routine to fix this problem (see the balance() routine).
7679 **
7680 ** If this routine fails for any reason, it might leave the database
7681 ** in a corrupted state. So if this routine fails, the database should
7682 ** be rolled back.
7683 **
7684 ** The third argument to this function, aOvflSpace, is a pointer to a
7685 ** buffer big enough to hold one page. If while inserting cells into the parent
7686 ** page (pParent) the parent page becomes overfull, this buffer is
7687 ** used to store the parent's overflow cells. Because this function inserts
7688 ** a maximum of four divider cells into the parent page, and the maximum
7689 ** size of a cell stored within an internal node is always less than 1/4
7690 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7691 ** enough for all overflow cells.
7692 **
7693 ** If aOvflSpace is set to a null pointer, this function returns
7694 ** SQLITE_NOMEM.
7695 */
7696 static int balance_nonroot(
7697   MemPage *pParent,               /* Parent page of siblings being balanced */
7698   int iParentIdx,                 /* Index of "the page" in pParent */
7699   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7700   int isRoot,                     /* True if pParent is a root-page */
7701   int bBulk                       /* True if this call is part of a bulk load */
7702 ){
7703   BtShared *pBt;               /* The whole database */
7704   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7705   int nNew = 0;                /* Number of pages in apNew[] */
7706   int nOld;                    /* Number of pages in apOld[] */
7707   int i, j, k;                 /* Loop counters */
7708   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7709   int rc = SQLITE_OK;          /* The return code */
7710   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7711   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7712   int usableSpace;             /* Bytes in pPage beyond the header */
7713   int pageFlags;               /* Value of pPage->aData[0] */
7714   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7715   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7716   int szScratch;               /* Size of scratch memory requested */
7717   MemPage *apOld[NB];          /* pPage and up to two siblings */
7718   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7719   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7720   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7721   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7722   int cntOld[NB+2];            /* Old index in b.apCell[] */
7723   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7724   u8 *aSpace1;                 /* Space for copies of dividers cells */
7725   Pgno pgno;                   /* Temp var to store a page number in */
7726   u8 abDone[NB+2];             /* True after i'th new page is populated */
7727   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7728   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7729   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7730   CellArray b;                 /* Parsed information on cells being balanced */
7731 
7732   memset(abDone, 0, sizeof(abDone));
7733   memset(&b, 0, sizeof(b));
7734   pBt = pParent->pBt;
7735   assert( sqlite3_mutex_held(pBt->mutex) );
7736   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7737 
7738   /* At this point pParent may have at most one overflow cell. And if
7739   ** this overflow cell is present, it must be the cell with
7740   ** index iParentIdx. This scenario comes about when this function
7741   ** is called (indirectly) from sqlite3BtreeDelete().
7742   */
7743   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7744   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7745 
7746   if( !aOvflSpace ){
7747     return SQLITE_NOMEM_BKPT;
7748   }
7749   assert( pParent->nFree>=0 );
7750 
7751   /* Find the sibling pages to balance. Also locate the cells in pParent
7752   ** that divide the siblings. An attempt is made to find NN siblings on
7753   ** either side of pPage. More siblings are taken from one side, however,
7754   ** if there are fewer than NN siblings on the other side. If pParent
7755   ** has NB or fewer children then all children of pParent are taken.
7756   **
7757   ** This loop also drops the divider cells from the parent page. This
7758   ** way, the remainder of the function does not have to deal with any
7759   ** overflow cells in the parent page, since if any existed they will
7760   ** have already been removed.
7761   */
7762   i = pParent->nOverflow + pParent->nCell;
7763   if( i<2 ){
7764     nxDiv = 0;
7765   }else{
7766     assert( bBulk==0 || bBulk==1 );
7767     if( iParentIdx==0 ){
7768       nxDiv = 0;
7769     }else if( iParentIdx==i ){
7770       nxDiv = i-2+bBulk;
7771     }else{
7772       nxDiv = iParentIdx-1;
7773     }
7774     i = 2-bBulk;
7775   }
7776   nOld = i+1;
7777   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7778     pRight = &pParent->aData[pParent->hdrOffset+8];
7779   }else{
7780     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7781   }
7782   pgno = get4byte(pRight);
7783   while( 1 ){
7784     if( rc==SQLITE_OK ){
7785       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7786     }
7787     if( rc ){
7788       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7789       goto balance_cleanup;
7790     }
7791     if( apOld[i]->nFree<0 ){
7792       rc = btreeComputeFreeSpace(apOld[i]);
7793       if( rc ){
7794         memset(apOld, 0, (i)*sizeof(MemPage*));
7795         goto balance_cleanup;
7796       }
7797     }
7798     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7799     if( (i--)==0 ) break;
7800 
7801     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7802       apDiv[i] = pParent->apOvfl[0];
7803       pgno = get4byte(apDiv[i]);
7804       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7805       pParent->nOverflow = 0;
7806     }else{
7807       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7808       pgno = get4byte(apDiv[i]);
7809       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7810 
7811       /* Drop the cell from the parent page. apDiv[i] still points to
7812       ** the cell within the parent, even though it has been dropped.
7813       ** This is safe because dropping a cell only overwrites the first
7814       ** four bytes of it, and this function does not need the first
7815       ** four bytes of the divider cell. So the pointer is safe to use
7816       ** later on.
7817       **
7818       ** But not if we are in secure-delete mode. In secure-delete mode,
7819       ** the dropCell() routine will overwrite the entire cell with zeroes.
7820       ** In this case, temporarily copy the cell into the aOvflSpace[]
7821       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7822       ** is allocated.  */
7823       if( pBt->btsFlags & BTS_FAST_SECURE ){
7824         int iOff;
7825 
7826         /* If the following if() condition is not true, the db is corrupted.
7827         ** The call to dropCell() below will detect this.  */
7828         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7829         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7830           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7831           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7832         }
7833       }
7834       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7835     }
7836   }
7837 
7838   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7839   ** alignment */
7840   nMaxCells = (nMaxCells + 3)&~3;
7841 
7842   /*
7843   ** Allocate space for memory structures
7844   */
7845   szScratch =
7846        nMaxCells*sizeof(u8*)                       /* b.apCell */
7847      + nMaxCells*sizeof(u16)                       /* b.szCell */
7848      + pBt->pageSize;                              /* aSpace1 */
7849 
7850   assert( szScratch<=7*(int)pBt->pageSize );
7851   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7852   if( b.apCell==0 ){
7853     rc = SQLITE_NOMEM_BKPT;
7854     goto balance_cleanup;
7855   }
7856   b.szCell = (u16*)&b.apCell[nMaxCells];
7857   aSpace1 = (u8*)&b.szCell[nMaxCells];
7858   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7859 
7860   /*
7861   ** Load pointers to all cells on sibling pages and the divider cells
7862   ** into the local b.apCell[] array.  Make copies of the divider cells
7863   ** into space obtained from aSpace1[]. The divider cells have already
7864   ** been removed from pParent.
7865   **
7866   ** If the siblings are on leaf pages, then the child pointers of the
7867   ** divider cells are stripped from the cells before they are copied
7868   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7869   ** child pointers.  If siblings are not leaves, then all cell in
7870   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7871   ** are alike.
7872   **
7873   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7874   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7875   */
7876   b.pRef = apOld[0];
7877   leafCorrection = b.pRef->leaf*4;
7878   leafData = b.pRef->intKeyLeaf;
7879   for(i=0; i<nOld; i++){
7880     MemPage *pOld = apOld[i];
7881     int limit = pOld->nCell;
7882     u8 *aData = pOld->aData;
7883     u16 maskPage = pOld->maskPage;
7884     u8 *piCell = aData + pOld->cellOffset;
7885     u8 *piEnd;
7886     VVA_ONLY( int nCellAtStart = b.nCell; )
7887 
7888     /* Verify that all sibling pages are of the same "type" (table-leaf,
7889     ** table-interior, index-leaf, or index-interior).
7890     */
7891     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7892       rc = SQLITE_CORRUPT_BKPT;
7893       goto balance_cleanup;
7894     }
7895 
7896     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7897     ** contains overflow cells, include them in the b.apCell[] array
7898     ** in the correct spot.
7899     **
7900     ** Note that when there are multiple overflow cells, it is always the
7901     ** case that they are sequential and adjacent.  This invariant arises
7902     ** because multiple overflows can only occurs when inserting divider
7903     ** cells into a parent on a prior balance, and divider cells are always
7904     ** adjacent and are inserted in order.  There is an assert() tagged
7905     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7906     ** invariant.
7907     **
7908     ** This must be done in advance.  Once the balance starts, the cell
7909     ** offset section of the btree page will be overwritten and we will no
7910     ** long be able to find the cells if a pointer to each cell is not saved
7911     ** first.
7912     */
7913     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7914     if( pOld->nOverflow>0 ){
7915       if( NEVER(limit<pOld->aiOvfl[0]) ){
7916         rc = SQLITE_CORRUPT_BKPT;
7917         goto balance_cleanup;
7918       }
7919       limit = pOld->aiOvfl[0];
7920       for(j=0; j<limit; j++){
7921         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7922         piCell += 2;
7923         b.nCell++;
7924       }
7925       for(k=0; k<pOld->nOverflow; k++){
7926         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7927         b.apCell[b.nCell] = pOld->apOvfl[k];
7928         b.nCell++;
7929       }
7930     }
7931     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7932     while( piCell<piEnd ){
7933       assert( b.nCell<nMaxCells );
7934       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7935       piCell += 2;
7936       b.nCell++;
7937     }
7938     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7939 
7940     cntOld[i] = b.nCell;
7941     if( i<nOld-1 && !leafData){
7942       u16 sz = (u16)szNew[i];
7943       u8 *pTemp;
7944       assert( b.nCell<nMaxCells );
7945       b.szCell[b.nCell] = sz;
7946       pTemp = &aSpace1[iSpace1];
7947       iSpace1 += sz;
7948       assert( sz<=pBt->maxLocal+23 );
7949       assert( iSpace1 <= (int)pBt->pageSize );
7950       memcpy(pTemp, apDiv[i], sz);
7951       b.apCell[b.nCell] = pTemp+leafCorrection;
7952       assert( leafCorrection==0 || leafCorrection==4 );
7953       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7954       if( !pOld->leaf ){
7955         assert( leafCorrection==0 );
7956         assert( pOld->hdrOffset==0 || CORRUPT_DB );
7957         /* The right pointer of the child page pOld becomes the left
7958         ** pointer of the divider cell */
7959         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7960       }else{
7961         assert( leafCorrection==4 );
7962         while( b.szCell[b.nCell]<4 ){
7963           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7964           ** does exist, pad it with 0x00 bytes. */
7965           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7966           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7967           aSpace1[iSpace1++] = 0x00;
7968           b.szCell[b.nCell]++;
7969         }
7970       }
7971       b.nCell++;
7972     }
7973   }
7974 
7975   /*
7976   ** Figure out the number of pages needed to hold all b.nCell cells.
7977   ** Store this number in "k".  Also compute szNew[] which is the total
7978   ** size of all cells on the i-th page and cntNew[] which is the index
7979   ** in b.apCell[] of the cell that divides page i from page i+1.
7980   ** cntNew[k] should equal b.nCell.
7981   **
7982   ** Values computed by this block:
7983   **
7984   **           k: The total number of sibling pages
7985   **    szNew[i]: Spaced used on the i-th sibling page.
7986   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7987   **              the right of the i-th sibling page.
7988   ** usableSpace: Number of bytes of space available on each sibling.
7989   **
7990   */
7991   usableSpace = pBt->usableSize - 12 + leafCorrection;
7992   for(i=k=0; i<nOld; i++, k++){
7993     MemPage *p = apOld[i];
7994     b.apEnd[k] = p->aDataEnd;
7995     b.ixNx[k] = cntOld[i];
7996     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7997       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7998     }
7999     if( !leafData ){
8000       k++;
8001       b.apEnd[k] = pParent->aDataEnd;
8002       b.ixNx[k] = cntOld[i]+1;
8003     }
8004     assert( p->nFree>=0 );
8005     szNew[i] = usableSpace - p->nFree;
8006     for(j=0; j<p->nOverflow; j++){
8007       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8008     }
8009     cntNew[i] = cntOld[i];
8010   }
8011   k = nOld;
8012   for(i=0; i<k; i++){
8013     int sz;
8014     while( szNew[i]>usableSpace ){
8015       if( i+1>=k ){
8016         k = i+2;
8017         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8018         szNew[k-1] = 0;
8019         cntNew[k-1] = b.nCell;
8020       }
8021       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8022       szNew[i] -= sz;
8023       if( !leafData ){
8024         if( cntNew[i]<b.nCell ){
8025           sz = 2 + cachedCellSize(&b, cntNew[i]);
8026         }else{
8027           sz = 0;
8028         }
8029       }
8030       szNew[i+1] += sz;
8031       cntNew[i]--;
8032     }
8033     while( cntNew[i]<b.nCell ){
8034       sz = 2 + cachedCellSize(&b, cntNew[i]);
8035       if( szNew[i]+sz>usableSpace ) break;
8036       szNew[i] += sz;
8037       cntNew[i]++;
8038       if( !leafData ){
8039         if( cntNew[i]<b.nCell ){
8040           sz = 2 + cachedCellSize(&b, cntNew[i]);
8041         }else{
8042           sz = 0;
8043         }
8044       }
8045       szNew[i+1] -= sz;
8046     }
8047     if( cntNew[i]>=b.nCell ){
8048       k = i+1;
8049     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8050       rc = SQLITE_CORRUPT_BKPT;
8051       goto balance_cleanup;
8052     }
8053   }
8054 
8055   /*
8056   ** The packing computed by the previous block is biased toward the siblings
8057   ** on the left side (siblings with smaller keys). The left siblings are
8058   ** always nearly full, while the right-most sibling might be nearly empty.
8059   ** The next block of code attempts to adjust the packing of siblings to
8060   ** get a better balance.
8061   **
8062   ** This adjustment is more than an optimization.  The packing above might
8063   ** be so out of balance as to be illegal.  For example, the right-most
8064   ** sibling might be completely empty.  This adjustment is not optional.
8065   */
8066   for(i=k-1; i>0; i--){
8067     int szRight = szNew[i];  /* Size of sibling on the right */
8068     int szLeft = szNew[i-1]; /* Size of sibling on the left */
8069     int r;              /* Index of right-most cell in left sibling */
8070     int d;              /* Index of first cell to the left of right sibling */
8071 
8072     r = cntNew[i-1] - 1;
8073     d = r + 1 - leafData;
8074     (void)cachedCellSize(&b, d);
8075     do{
8076       assert( d<nMaxCells );
8077       assert( r<nMaxCells );
8078       (void)cachedCellSize(&b, r);
8079       if( szRight!=0
8080        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8081         break;
8082       }
8083       szRight += b.szCell[d] + 2;
8084       szLeft -= b.szCell[r] + 2;
8085       cntNew[i-1] = r;
8086       r--;
8087       d--;
8088     }while( r>=0 );
8089     szNew[i] = szRight;
8090     szNew[i-1] = szLeft;
8091     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8092       rc = SQLITE_CORRUPT_BKPT;
8093       goto balance_cleanup;
8094     }
8095   }
8096 
8097   /* Sanity check:  For a non-corrupt database file one of the follwing
8098   ** must be true:
8099   **    (1) We found one or more cells (cntNew[0])>0), or
8100   **    (2) pPage is a virtual root page.  A virtual root page is when
8101   **        the real root page is page 1 and we are the only child of
8102   **        that page.
8103   */
8104   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8105   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8106     apOld[0]->pgno, apOld[0]->nCell,
8107     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8108     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8109   ));
8110 
8111   /*
8112   ** Allocate k new pages.  Reuse old pages where possible.
8113   */
8114   pageFlags = apOld[0]->aData[0];
8115   for(i=0; i<k; i++){
8116     MemPage *pNew;
8117     if( i<nOld ){
8118       pNew = apNew[i] = apOld[i];
8119       apOld[i] = 0;
8120       rc = sqlite3PagerWrite(pNew->pDbPage);
8121       nNew++;
8122       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8123        && rc==SQLITE_OK
8124       ){
8125         rc = SQLITE_CORRUPT_BKPT;
8126       }
8127       if( rc ) goto balance_cleanup;
8128     }else{
8129       assert( i>0 );
8130       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8131       if( rc ) goto balance_cleanup;
8132       zeroPage(pNew, pageFlags);
8133       apNew[i] = pNew;
8134       nNew++;
8135       cntOld[i] = b.nCell;
8136 
8137       /* Set the pointer-map entry for the new sibling page. */
8138       if( ISAUTOVACUUM ){
8139         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8140         if( rc!=SQLITE_OK ){
8141           goto balance_cleanup;
8142         }
8143       }
8144     }
8145   }
8146 
8147   /*
8148   ** Reassign page numbers so that the new pages are in ascending order.
8149   ** This helps to keep entries in the disk file in order so that a scan
8150   ** of the table is closer to a linear scan through the file. That in turn
8151   ** helps the operating system to deliver pages from the disk more rapidly.
8152   **
8153   ** An O(n^2) insertion sort algorithm is used, but since n is never more
8154   ** than (NB+2) (a small constant), that should not be a problem.
8155   **
8156   ** When NB==3, this one optimization makes the database about 25% faster
8157   ** for large insertions and deletions.
8158   */
8159   for(i=0; i<nNew; i++){
8160     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8161     aPgFlags[i] = apNew[i]->pDbPage->flags;
8162     for(j=0; j<i; j++){
8163       if( NEVER(aPgno[j]==aPgno[i]) ){
8164         /* This branch is taken if the set of sibling pages somehow contains
8165         ** duplicate entries. This can happen if the database is corrupt.
8166         ** It would be simpler to detect this as part of the loop below, but
8167         ** we do the detection here in order to avoid populating the pager
8168         ** cache with two separate objects associated with the same
8169         ** page number.  */
8170         assert( CORRUPT_DB );
8171         rc = SQLITE_CORRUPT_BKPT;
8172         goto balance_cleanup;
8173       }
8174     }
8175   }
8176   for(i=0; i<nNew; i++){
8177     int iBest = 0;                /* aPgno[] index of page number to use */
8178     for(j=1; j<nNew; j++){
8179       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8180     }
8181     pgno = aPgOrder[iBest];
8182     aPgOrder[iBest] = 0xffffffff;
8183     if( iBest!=i ){
8184       if( iBest>i ){
8185         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8186       }
8187       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8188       apNew[i]->pgno = pgno;
8189     }
8190   }
8191 
8192   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8193          "%d(%d nc=%d) %d(%d nc=%d)\n",
8194     apNew[0]->pgno, szNew[0], cntNew[0],
8195     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8196     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8197     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8198     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8199     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8200     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8201     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8202     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8203   ));
8204 
8205   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8206   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8207   assert( apNew[nNew-1]!=0 );
8208   put4byte(pRight, apNew[nNew-1]->pgno);
8209 
8210   /* If the sibling pages are not leaves, ensure that the right-child pointer
8211   ** of the right-most new sibling page is set to the value that was
8212   ** originally in the same field of the right-most old sibling page. */
8213   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8214     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8215     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8216   }
8217 
8218   /* Make any required updates to pointer map entries associated with
8219   ** cells stored on sibling pages following the balance operation. Pointer
8220   ** map entries associated with divider cells are set by the insertCell()
8221   ** routine. The associated pointer map entries are:
8222   **
8223   **   a) if the cell contains a reference to an overflow chain, the
8224   **      entry associated with the first page in the overflow chain, and
8225   **
8226   **   b) if the sibling pages are not leaves, the child page associated
8227   **      with the cell.
8228   **
8229   ** If the sibling pages are not leaves, then the pointer map entry
8230   ** associated with the right-child of each sibling may also need to be
8231   ** updated. This happens below, after the sibling pages have been
8232   ** populated, not here.
8233   */
8234   if( ISAUTOVACUUM ){
8235     MemPage *pOld;
8236     MemPage *pNew = pOld = apNew[0];
8237     int cntOldNext = pNew->nCell + pNew->nOverflow;
8238     int iNew = 0;
8239     int iOld = 0;
8240 
8241     for(i=0; i<b.nCell; i++){
8242       u8 *pCell = b.apCell[i];
8243       while( i==cntOldNext ){
8244         iOld++;
8245         assert( iOld<nNew || iOld<nOld );
8246         assert( iOld>=0 && iOld<NB );
8247         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8248         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8249       }
8250       if( i==cntNew[iNew] ){
8251         pNew = apNew[++iNew];
8252         if( !leafData ) continue;
8253       }
8254 
8255       /* Cell pCell is destined for new sibling page pNew. Originally, it
8256       ** was either part of sibling page iOld (possibly an overflow cell),
8257       ** or else the divider cell to the left of sibling page iOld. So,
8258       ** if sibling page iOld had the same page number as pNew, and if
8259       ** pCell really was a part of sibling page iOld (not a divider or
8260       ** overflow cell), we can skip updating the pointer map entries.  */
8261       if( iOld>=nNew
8262        || pNew->pgno!=aPgno[iOld]
8263        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8264       ){
8265         if( !leafCorrection ){
8266           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8267         }
8268         if( cachedCellSize(&b,i)>pNew->minLocal ){
8269           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8270         }
8271         if( rc ) goto balance_cleanup;
8272       }
8273     }
8274   }
8275 
8276   /* Insert new divider cells into pParent. */
8277   for(i=0; i<nNew-1; i++){
8278     u8 *pCell;
8279     u8 *pTemp;
8280     int sz;
8281     u8 *pSrcEnd;
8282     MemPage *pNew = apNew[i];
8283     j = cntNew[i];
8284 
8285     assert( j<nMaxCells );
8286     assert( b.apCell[j]!=0 );
8287     pCell = b.apCell[j];
8288     sz = b.szCell[j] + leafCorrection;
8289     pTemp = &aOvflSpace[iOvflSpace];
8290     if( !pNew->leaf ){
8291       memcpy(&pNew->aData[8], pCell, 4);
8292     }else if( leafData ){
8293       /* If the tree is a leaf-data tree, and the siblings are leaves,
8294       ** then there is no divider cell in b.apCell[]. Instead, the divider
8295       ** cell consists of the integer key for the right-most cell of
8296       ** the sibling-page assembled above only.
8297       */
8298       CellInfo info;
8299       j--;
8300       pNew->xParseCell(pNew, b.apCell[j], &info);
8301       pCell = pTemp;
8302       sz = 4 + putVarint(&pCell[4], info.nKey);
8303       pTemp = 0;
8304     }else{
8305       pCell -= 4;
8306       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8307       ** previously stored on a leaf node, and its reported size was 4
8308       ** bytes, then it may actually be smaller than this
8309       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8310       ** any cell). But it is important to pass the correct size to
8311       ** insertCell(), so reparse the cell now.
8312       **
8313       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8314       ** and WITHOUT ROWID tables with exactly one column which is the
8315       ** primary key.
8316       */
8317       if( b.szCell[j]==4 ){
8318         assert(leafCorrection==4);
8319         sz = pParent->xCellSize(pParent, pCell);
8320       }
8321     }
8322     iOvflSpace += sz;
8323     assert( sz<=pBt->maxLocal+23 );
8324     assert( iOvflSpace <= (int)pBt->pageSize );
8325     for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8326     pSrcEnd = b.apEnd[k];
8327     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8328       rc = SQLITE_CORRUPT_BKPT;
8329       goto balance_cleanup;
8330     }
8331     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8332     if( rc!=SQLITE_OK ) goto balance_cleanup;
8333     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8334   }
8335 
8336   /* Now update the actual sibling pages. The order in which they are updated
8337   ** is important, as this code needs to avoid disrupting any page from which
8338   ** cells may still to be read. In practice, this means:
8339   **
8340   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8341   **      then it is not safe to update page apNew[iPg] until after
8342   **      the left-hand sibling apNew[iPg-1] has been updated.
8343   **
8344   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8345   **      then it is not safe to update page apNew[iPg] until after
8346   **      the right-hand sibling apNew[iPg+1] has been updated.
8347   **
8348   ** If neither of the above apply, the page is safe to update.
8349   **
8350   ** The iPg value in the following loop starts at nNew-1 goes down
8351   ** to 0, then back up to nNew-1 again, thus making two passes over
8352   ** the pages.  On the initial downward pass, only condition (1) above
8353   ** needs to be tested because (2) will always be true from the previous
8354   ** step.  On the upward pass, both conditions are always true, so the
8355   ** upwards pass simply processes pages that were missed on the downward
8356   ** pass.
8357   */
8358   for(i=1-nNew; i<nNew; i++){
8359     int iPg = i<0 ? -i : i;
8360     assert( iPg>=0 && iPg<nNew );
8361     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8362     if( i>=0                            /* On the upwards pass, or... */
8363      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8364     ){
8365       int iNew;
8366       int iOld;
8367       int nNewCell;
8368 
8369       /* Verify condition (1):  If cells are moving left, update iPg
8370       ** only after iPg-1 has already been updated. */
8371       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8372 
8373       /* Verify condition (2):  If cells are moving right, update iPg
8374       ** only after iPg+1 has already been updated. */
8375       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8376 
8377       if( iPg==0 ){
8378         iNew = iOld = 0;
8379         nNewCell = cntNew[0];
8380       }else{
8381         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8382         iNew = cntNew[iPg-1] + !leafData;
8383         nNewCell = cntNew[iPg] - iNew;
8384       }
8385 
8386       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8387       if( rc ) goto balance_cleanup;
8388       abDone[iPg]++;
8389       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8390       assert( apNew[iPg]->nOverflow==0 );
8391       assert( apNew[iPg]->nCell==nNewCell );
8392     }
8393   }
8394 
8395   /* All pages have been processed exactly once */
8396   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8397 
8398   assert( nOld>0 );
8399   assert( nNew>0 );
8400 
8401   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8402     /* The root page of the b-tree now contains no cells. The only sibling
8403     ** page is the right-child of the parent. Copy the contents of the
8404     ** child page into the parent, decreasing the overall height of the
8405     ** b-tree structure by one. This is described as the "balance-shallower"
8406     ** sub-algorithm in some documentation.
8407     **
8408     ** If this is an auto-vacuum database, the call to copyNodeContent()
8409     ** sets all pointer-map entries corresponding to database image pages
8410     ** for which the pointer is stored within the content being copied.
8411     **
8412     ** It is critical that the child page be defragmented before being
8413     ** copied into the parent, because if the parent is page 1 then it will
8414     ** by smaller than the child due to the database header, and so all the
8415     ** free space needs to be up front.
8416     */
8417     assert( nNew==1 || CORRUPT_DB );
8418     rc = defragmentPage(apNew[0], -1);
8419     testcase( rc!=SQLITE_OK );
8420     assert( apNew[0]->nFree ==
8421         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8422           - apNew[0]->nCell*2)
8423       || rc!=SQLITE_OK
8424     );
8425     copyNodeContent(apNew[0], pParent, &rc);
8426     freePage(apNew[0], &rc);
8427   }else if( ISAUTOVACUUM && !leafCorrection ){
8428     /* Fix the pointer map entries associated with the right-child of each
8429     ** sibling page. All other pointer map entries have already been taken
8430     ** care of.  */
8431     for(i=0; i<nNew; i++){
8432       u32 key = get4byte(&apNew[i]->aData[8]);
8433       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8434     }
8435   }
8436 
8437   assert( pParent->isInit );
8438   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8439           nOld, nNew, b.nCell));
8440 
8441   /* Free any old pages that were not reused as new pages.
8442   */
8443   for(i=nNew; i<nOld; i++){
8444     freePage(apOld[i], &rc);
8445   }
8446 
8447 #if 0
8448   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8449     /* The ptrmapCheckPages() contains assert() statements that verify that
8450     ** all pointer map pages are set correctly. This is helpful while
8451     ** debugging. This is usually disabled because a corrupt database may
8452     ** cause an assert() statement to fail.  */
8453     ptrmapCheckPages(apNew, nNew);
8454     ptrmapCheckPages(&pParent, 1);
8455   }
8456 #endif
8457 
8458   /*
8459   ** Cleanup before returning.
8460   */
8461 balance_cleanup:
8462   sqlite3StackFree(0, b.apCell);
8463   for(i=0; i<nOld; i++){
8464     releasePage(apOld[i]);
8465   }
8466   for(i=0; i<nNew; i++){
8467     releasePage(apNew[i]);
8468   }
8469 
8470   return rc;
8471 }
8472 
8473 
8474 /*
8475 ** This function is called when the root page of a b-tree structure is
8476 ** overfull (has one or more overflow pages).
8477 **
8478 ** A new child page is allocated and the contents of the current root
8479 ** page, including overflow cells, are copied into the child. The root
8480 ** page is then overwritten to make it an empty page with the right-child
8481 ** pointer pointing to the new page.
8482 **
8483 ** Before returning, all pointer-map entries corresponding to pages
8484 ** that the new child-page now contains pointers to are updated. The
8485 ** entry corresponding to the new right-child pointer of the root
8486 ** page is also updated.
8487 **
8488 ** If successful, *ppChild is set to contain a reference to the child
8489 ** page and SQLITE_OK is returned. In this case the caller is required
8490 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8491 ** an error code is returned and *ppChild is set to 0.
8492 */
8493 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8494   int rc;                        /* Return value from subprocedures */
8495   MemPage *pChild = 0;           /* Pointer to a new child page */
8496   Pgno pgnoChild = 0;            /* Page number of the new child page */
8497   BtShared *pBt = pRoot->pBt;    /* The BTree */
8498 
8499   assert( pRoot->nOverflow>0 );
8500   assert( sqlite3_mutex_held(pBt->mutex) );
8501 
8502   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8503   ** page that will become the new right-child of pPage. Copy the contents
8504   ** of the node stored on pRoot into the new child page.
8505   */
8506   rc = sqlite3PagerWrite(pRoot->pDbPage);
8507   if( rc==SQLITE_OK ){
8508     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8509     copyNodeContent(pRoot, pChild, &rc);
8510     if( ISAUTOVACUUM ){
8511       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8512     }
8513   }
8514   if( rc ){
8515     *ppChild = 0;
8516     releasePage(pChild);
8517     return rc;
8518   }
8519   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8520   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8521   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8522 
8523   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8524 
8525   /* Copy the overflow cells from pRoot to pChild */
8526   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8527          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8528   memcpy(pChild->apOvfl, pRoot->apOvfl,
8529          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8530   pChild->nOverflow = pRoot->nOverflow;
8531 
8532   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8533   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8534   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8535 
8536   *ppChild = pChild;
8537   return SQLITE_OK;
8538 }
8539 
8540 /*
8541 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8542 ** on the same B-tree as pCur.
8543 **
8544 ** This can occur if a database is corrupt with two or more SQL tables
8545 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8546 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8547 ** table linked to the same b-tree.  If the secondary insert causes a
8548 ** rebalance, that can change content out from under the cursor on the
8549 ** first SQL table, violating invariants on the first insert.
8550 */
8551 static int anotherValidCursor(BtCursor *pCur){
8552   BtCursor *pOther;
8553   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8554     if( pOther!=pCur
8555      && pOther->eState==CURSOR_VALID
8556      && pOther->pPage==pCur->pPage
8557     ){
8558       return SQLITE_CORRUPT_BKPT;
8559     }
8560   }
8561   return SQLITE_OK;
8562 }
8563 
8564 /*
8565 ** The page that pCur currently points to has just been modified in
8566 ** some way. This function figures out if this modification means the
8567 ** tree needs to be balanced, and if so calls the appropriate balancing
8568 ** routine. Balancing routines are:
8569 **
8570 **   balance_quick()
8571 **   balance_deeper()
8572 **   balance_nonroot()
8573 */
8574 static int balance(BtCursor *pCur){
8575   int rc = SQLITE_OK;
8576   const int nMin = pCur->pBt->usableSize * 2 / 3;
8577   u8 aBalanceQuickSpace[13];
8578   u8 *pFree = 0;
8579 
8580   VVA_ONLY( int balance_quick_called = 0 );
8581   VVA_ONLY( int balance_deeper_called = 0 );
8582 
8583   do {
8584     int iPage;
8585     MemPage *pPage = pCur->pPage;
8586 
8587     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8588     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8589       break;
8590     }else if( (iPage = pCur->iPage)==0 ){
8591       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8592         /* The root page of the b-tree is overfull. In this case call the
8593         ** balance_deeper() function to create a new child for the root-page
8594         ** and copy the current contents of the root-page to it. The
8595         ** next iteration of the do-loop will balance the child page.
8596         */
8597         assert( balance_deeper_called==0 );
8598         VVA_ONLY( balance_deeper_called++ );
8599         rc = balance_deeper(pPage, &pCur->apPage[1]);
8600         if( rc==SQLITE_OK ){
8601           pCur->iPage = 1;
8602           pCur->ix = 0;
8603           pCur->aiIdx[0] = 0;
8604           pCur->apPage[0] = pPage;
8605           pCur->pPage = pCur->apPage[1];
8606           assert( pCur->pPage->nOverflow );
8607         }
8608       }else{
8609         break;
8610       }
8611     }else{
8612       MemPage * const pParent = pCur->apPage[iPage-1];
8613       int const iIdx = pCur->aiIdx[iPage-1];
8614 
8615       rc = sqlite3PagerWrite(pParent->pDbPage);
8616       if( rc==SQLITE_OK && pParent->nFree<0 ){
8617         rc = btreeComputeFreeSpace(pParent);
8618       }
8619       if( rc==SQLITE_OK ){
8620 #ifndef SQLITE_OMIT_QUICKBALANCE
8621         if( pPage->intKeyLeaf
8622          && pPage->nOverflow==1
8623          && pPage->aiOvfl[0]==pPage->nCell
8624          && pParent->pgno!=1
8625          && pParent->nCell==iIdx
8626         ){
8627           /* Call balance_quick() to create a new sibling of pPage on which
8628           ** to store the overflow cell. balance_quick() inserts a new cell
8629           ** into pParent, which may cause pParent overflow. If this
8630           ** happens, the next iteration of the do-loop will balance pParent
8631           ** use either balance_nonroot() or balance_deeper(). Until this
8632           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8633           ** buffer.
8634           **
8635           ** The purpose of the following assert() is to check that only a
8636           ** single call to balance_quick() is made for each call to this
8637           ** function. If this were not verified, a subtle bug involving reuse
8638           ** of the aBalanceQuickSpace[] might sneak in.
8639           */
8640           assert( balance_quick_called==0 );
8641           VVA_ONLY( balance_quick_called++ );
8642           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8643         }else
8644 #endif
8645         {
8646           /* In this case, call balance_nonroot() to redistribute cells
8647           ** between pPage and up to 2 of its sibling pages. This involves
8648           ** modifying the contents of pParent, which may cause pParent to
8649           ** become overfull or underfull. The next iteration of the do-loop
8650           ** will balance the parent page to correct this.
8651           **
8652           ** If the parent page becomes overfull, the overflow cell or cells
8653           ** are stored in the pSpace buffer allocated immediately below.
8654           ** A subsequent iteration of the do-loop will deal with this by
8655           ** calling balance_nonroot() (balance_deeper() may be called first,
8656           ** but it doesn't deal with overflow cells - just moves them to a
8657           ** different page). Once this subsequent call to balance_nonroot()
8658           ** has completed, it is safe to release the pSpace buffer used by
8659           ** the previous call, as the overflow cell data will have been
8660           ** copied either into the body of a database page or into the new
8661           ** pSpace buffer passed to the latter call to balance_nonroot().
8662           */
8663           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8664           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8665                                pCur->hints&BTREE_BULKLOAD);
8666           if( pFree ){
8667             /* If pFree is not NULL, it points to the pSpace buffer used
8668             ** by a previous call to balance_nonroot(). Its contents are
8669             ** now stored either on real database pages or within the
8670             ** new pSpace buffer, so it may be safely freed here. */
8671             sqlite3PageFree(pFree);
8672           }
8673 
8674           /* The pSpace buffer will be freed after the next call to
8675           ** balance_nonroot(), or just before this function returns, whichever
8676           ** comes first. */
8677           pFree = pSpace;
8678         }
8679       }
8680 
8681       pPage->nOverflow = 0;
8682 
8683       /* The next iteration of the do-loop balances the parent page. */
8684       releasePage(pPage);
8685       pCur->iPage--;
8686       assert( pCur->iPage>=0 );
8687       pCur->pPage = pCur->apPage[pCur->iPage];
8688     }
8689   }while( rc==SQLITE_OK );
8690 
8691   if( pFree ){
8692     sqlite3PageFree(pFree);
8693   }
8694   return rc;
8695 }
8696 
8697 /* Overwrite content from pX into pDest.  Only do the write if the
8698 ** content is different from what is already there.
8699 */
8700 static int btreeOverwriteContent(
8701   MemPage *pPage,           /* MemPage on which writing will occur */
8702   u8 *pDest,                /* Pointer to the place to start writing */
8703   const BtreePayload *pX,   /* Source of data to write */
8704   int iOffset,              /* Offset of first byte to write */
8705   int iAmt                  /* Number of bytes to be written */
8706 ){
8707   int nData = pX->nData - iOffset;
8708   if( nData<=0 ){
8709     /* Overwritting with zeros */
8710     int i;
8711     for(i=0; i<iAmt && pDest[i]==0; i++){}
8712     if( i<iAmt ){
8713       int rc = sqlite3PagerWrite(pPage->pDbPage);
8714       if( rc ) return rc;
8715       memset(pDest + i, 0, iAmt - i);
8716     }
8717   }else{
8718     if( nData<iAmt ){
8719       /* Mixed read data and zeros at the end.  Make a recursive call
8720       ** to write the zeros then fall through to write the real data */
8721       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8722                                  iAmt-nData);
8723       if( rc ) return rc;
8724       iAmt = nData;
8725     }
8726     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8727       int rc = sqlite3PagerWrite(pPage->pDbPage);
8728       if( rc ) return rc;
8729       /* In a corrupt database, it is possible for the source and destination
8730       ** buffers to overlap.  This is harmless since the database is already
8731       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8732       ** memmove(). */
8733       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8734     }
8735   }
8736   return SQLITE_OK;
8737 }
8738 
8739 /*
8740 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8741 ** contained in pX.
8742 */
8743 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8744   int iOffset;                        /* Next byte of pX->pData to write */
8745   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8746   int rc;                             /* Return code */
8747   MemPage *pPage = pCur->pPage;       /* Page being written */
8748   BtShared *pBt;                      /* Btree */
8749   Pgno ovflPgno;                      /* Next overflow page to write */
8750   u32 ovflPageSize;                   /* Size to write on overflow page */
8751 
8752   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8753    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8754   ){
8755     return SQLITE_CORRUPT_BKPT;
8756   }
8757   /* Overwrite the local portion first */
8758   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8759                              0, pCur->info.nLocal);
8760   if( rc ) return rc;
8761   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8762 
8763   /* Now overwrite the overflow pages */
8764   iOffset = pCur->info.nLocal;
8765   assert( nTotal>=0 );
8766   assert( iOffset>=0 );
8767   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8768   pBt = pPage->pBt;
8769   ovflPageSize = pBt->usableSize - 4;
8770   do{
8771     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8772     if( rc ) return rc;
8773     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8774       rc = SQLITE_CORRUPT_BKPT;
8775     }else{
8776       if( iOffset+ovflPageSize<(u32)nTotal ){
8777         ovflPgno = get4byte(pPage->aData);
8778       }else{
8779         ovflPageSize = nTotal - iOffset;
8780       }
8781       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8782                                  iOffset, ovflPageSize);
8783     }
8784     sqlite3PagerUnref(pPage->pDbPage);
8785     if( rc ) return rc;
8786     iOffset += ovflPageSize;
8787   }while( iOffset<nTotal );
8788   return SQLITE_OK;
8789 }
8790 
8791 
8792 /*
8793 ** Insert a new record into the BTree.  The content of the new record
8794 ** is described by the pX object.  The pCur cursor is used only to
8795 ** define what table the record should be inserted into, and is left
8796 ** pointing at a random location.
8797 **
8798 ** For a table btree (used for rowid tables), only the pX.nKey value of
8799 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8800 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8801 ** hold the content of the row.
8802 **
8803 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8804 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8805 ** pX.pData,nData,nZero fields must be zero.
8806 **
8807 ** If the seekResult parameter is non-zero, then a successful call to
8808 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8809 ** been performed.  In other words, if seekResult!=0 then the cursor
8810 ** is currently pointing to a cell that will be adjacent to the cell
8811 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8812 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8813 ** that is larger than (pKey,nKey).
8814 **
8815 ** If seekResult==0, that means pCur is pointing at some unknown location.
8816 ** In that case, this routine must seek the cursor to the correct insertion
8817 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8818 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8819 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8820 ** to decode the key.
8821 */
8822 int sqlite3BtreeInsert(
8823   BtCursor *pCur,                /* Insert data into the table of this cursor */
8824   const BtreePayload *pX,        /* Content of the row to be inserted */
8825   int flags,                     /* True if this is likely an append */
8826   int seekResult                 /* Result of prior MovetoUnpacked() call */
8827 ){
8828   int rc;
8829   int loc = seekResult;          /* -1: before desired location  +1: after */
8830   int szNew = 0;
8831   int idx;
8832   MemPage *pPage;
8833   Btree *p = pCur->pBtree;
8834   BtShared *pBt = p->pBt;
8835   unsigned char *oldCell;
8836   unsigned char *newCell = 0;
8837 
8838   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
8839   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
8840 
8841   if( pCur->eState==CURSOR_FAULT ){
8842     assert( pCur->skipNext!=SQLITE_OK );
8843     return pCur->skipNext;
8844   }
8845 
8846   assert( cursorOwnsBtShared(pCur) );
8847   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8848               && pBt->inTransaction==TRANS_WRITE
8849               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8850   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8851 
8852   /* Assert that the caller has been consistent. If this cursor was opened
8853   ** expecting an index b-tree, then the caller should be inserting blob
8854   ** keys with no associated data. If the cursor was opened expecting an
8855   ** intkey table, the caller should be inserting integer keys with a
8856   ** blob of associated data.  */
8857   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
8858 
8859   /* Save the positions of any other cursors open on this table.
8860   **
8861   ** In some cases, the call to btreeMoveto() below is a no-op. For
8862   ** example, when inserting data into a table with auto-generated integer
8863   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8864   ** integer key to use. It then calls this function to actually insert the
8865   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8866   ** that the cursor is already where it needs to be and returns without
8867   ** doing any work. To avoid thwarting these optimizations, it is important
8868   ** not to clear the cursor here.
8869   */
8870   if( pCur->curFlags & BTCF_Multiple ){
8871     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8872     if( rc ) return rc;
8873     if( loc && pCur->iPage<0 ){
8874       /* This can only happen if the schema is corrupt such that there is more
8875       ** than one table or index with the same root page as used by the cursor.
8876       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8877       ** the schema was loaded. This cannot be asserted though, as a user might
8878       ** set the flag, load the schema, and then unset the flag.  */
8879       return SQLITE_CORRUPT_BKPT;
8880     }
8881   }
8882 
8883   if( pCur->pKeyInfo==0 ){
8884     assert( pX->pKey==0 );
8885     /* If this is an insert into a table b-tree, invalidate any incrblob
8886     ** cursors open on the row being replaced */
8887     if( p->hasIncrblobCur ){
8888       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8889     }
8890 
8891     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8892     ** to a row with the same key as the new entry being inserted.
8893     */
8894 #ifdef SQLITE_DEBUG
8895     if( flags & BTREE_SAVEPOSITION ){
8896       assert( pCur->curFlags & BTCF_ValidNKey );
8897       assert( pX->nKey==pCur->info.nKey );
8898       assert( loc==0 );
8899     }
8900 #endif
8901 
8902     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8903     ** that the cursor is not pointing to a row to be overwritten.
8904     ** So do a complete check.
8905     */
8906     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8907       /* The cursor is pointing to the entry that is to be
8908       ** overwritten */
8909       assert( pX->nData>=0 && pX->nZero>=0 );
8910       if( pCur->info.nSize!=0
8911        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8912       ){
8913         /* New entry is the same size as the old.  Do an overwrite */
8914         return btreeOverwriteCell(pCur, pX);
8915       }
8916       assert( loc==0 );
8917     }else if( loc==0 ){
8918       /* The cursor is *not* pointing to the cell to be overwritten, nor
8919       ** to an adjacent cell.  Move the cursor so that it is pointing either
8920       ** to the cell to be overwritten or an adjacent cell.
8921       */
8922       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8923                (flags & BTREE_APPEND)!=0, &loc);
8924       if( rc ) return rc;
8925     }
8926   }else{
8927     /* This is an index or a WITHOUT ROWID table */
8928 
8929     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8930     ** to a row with the same key as the new entry being inserted.
8931     */
8932     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8933 
8934     /* If the cursor is not already pointing either to the cell to be
8935     ** overwritten, or if a new cell is being inserted, if the cursor is
8936     ** not pointing to an immediately adjacent cell, then move the cursor
8937     ** so that it does.
8938     */
8939     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8940       if( pX->nMem ){
8941         UnpackedRecord r;
8942         r.pKeyInfo = pCur->pKeyInfo;
8943         r.aMem = pX->aMem;
8944         r.nField = pX->nMem;
8945         r.default_rc = 0;
8946         r.eqSeen = 0;
8947         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
8948       }else{
8949         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8950                     (flags & BTREE_APPEND)!=0, &loc);
8951       }
8952       if( rc ) return rc;
8953     }
8954 
8955     /* If the cursor is currently pointing to an entry to be overwritten
8956     ** and the new content is the same as as the old, then use the
8957     ** overwrite optimization.
8958     */
8959     if( loc==0 ){
8960       getCellInfo(pCur);
8961       if( pCur->info.nKey==pX->nKey ){
8962         BtreePayload x2;
8963         x2.pData = pX->pKey;
8964         x2.nData = pX->nKey;
8965         x2.nZero = 0;
8966         return btreeOverwriteCell(pCur, &x2);
8967       }
8968     }
8969   }
8970   assert( pCur->eState==CURSOR_VALID
8971        || (pCur->eState==CURSOR_INVALID && loc)
8972        || CORRUPT_DB );
8973 
8974   pPage = pCur->pPage;
8975   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
8976   assert( pPage->leaf || !pPage->intKey );
8977   if( pPage->nFree<0 ){
8978     if( NEVER(pCur->eState>CURSOR_INVALID) ){
8979       rc = SQLITE_CORRUPT_BKPT;
8980     }else{
8981       rc = btreeComputeFreeSpace(pPage);
8982     }
8983     if( rc ) return rc;
8984   }
8985 
8986   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8987           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8988           loc==0 ? "overwrite" : "new entry"));
8989   assert( pPage->isInit );
8990   newCell = pBt->pTmpSpace;
8991   assert( newCell!=0 );
8992   if( flags & BTREE_PREFORMAT ){
8993     rc = SQLITE_OK;
8994     szNew = pBt->nPreformatSize;
8995     if( szNew<4 ) szNew = 4;
8996     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8997       CellInfo info;
8998       pPage->xParseCell(pPage, newCell, &info);
8999       if( info.nPayload!=info.nLocal ){
9000         Pgno ovfl = get4byte(&newCell[szNew-4]);
9001         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9002       }
9003     }
9004   }else{
9005     rc = fillInCell(pPage, newCell, pX, &szNew);
9006   }
9007   if( rc ) goto end_insert;
9008   assert( szNew==pPage->xCellSize(pPage, newCell) );
9009   assert( szNew <= MX_CELL_SIZE(pBt) );
9010   idx = pCur->ix;
9011   if( loc==0 ){
9012     CellInfo info;
9013     assert( idx>=0 );
9014     if( idx>=pPage->nCell ){
9015       return SQLITE_CORRUPT_BKPT;
9016     }
9017     rc = sqlite3PagerWrite(pPage->pDbPage);
9018     if( rc ){
9019       goto end_insert;
9020     }
9021     oldCell = findCell(pPage, idx);
9022     if( !pPage->leaf ){
9023       memcpy(newCell, oldCell, 4);
9024     }
9025     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9026     testcase( pCur->curFlags & BTCF_ValidOvfl );
9027     invalidateOverflowCache(pCur);
9028     if( info.nSize==szNew && info.nLocal==info.nPayload
9029      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9030     ){
9031       /* Overwrite the old cell with the new if they are the same size.
9032       ** We could also try to do this if the old cell is smaller, then add
9033       ** the leftover space to the free list.  But experiments show that
9034       ** doing that is no faster then skipping this optimization and just
9035       ** calling dropCell() and insertCell().
9036       **
9037       ** This optimization cannot be used on an autovacuum database if the
9038       ** new entry uses overflow pages, as the insertCell() call below is
9039       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
9040       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9041       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9042         return SQLITE_CORRUPT_BKPT;
9043       }
9044       if( oldCell+szNew > pPage->aDataEnd ){
9045         return SQLITE_CORRUPT_BKPT;
9046       }
9047       memcpy(oldCell, newCell, szNew);
9048       return SQLITE_OK;
9049     }
9050     dropCell(pPage, idx, info.nSize, &rc);
9051     if( rc ) goto end_insert;
9052   }else if( loc<0 && pPage->nCell>0 ){
9053     assert( pPage->leaf );
9054     idx = ++pCur->ix;
9055     pCur->curFlags &= ~BTCF_ValidNKey;
9056   }else{
9057     assert( pPage->leaf );
9058   }
9059   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9060   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9061   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9062 
9063   /* If no error has occurred and pPage has an overflow cell, call balance()
9064   ** to redistribute the cells within the tree. Since balance() may move
9065   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9066   ** variables.
9067   **
9068   ** Previous versions of SQLite called moveToRoot() to move the cursor
9069   ** back to the root page as balance() used to invalidate the contents
9070   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9071   ** set the cursor state to "invalid". This makes common insert operations
9072   ** slightly faster.
9073   **
9074   ** There is a subtle but important optimization here too. When inserting
9075   ** multiple records into an intkey b-tree using a single cursor (as can
9076   ** happen while processing an "INSERT INTO ... SELECT" statement), it
9077   ** is advantageous to leave the cursor pointing to the last entry in
9078   ** the b-tree if possible. If the cursor is left pointing to the last
9079   ** entry in the table, and the next row inserted has an integer key
9080   ** larger than the largest existing key, it is possible to insert the
9081   ** row without seeking the cursor. This can be a big performance boost.
9082   */
9083   pCur->info.nSize = 0;
9084   if( pPage->nOverflow ){
9085     assert( rc==SQLITE_OK );
9086     pCur->curFlags &= ~(BTCF_ValidNKey);
9087     rc = balance(pCur);
9088 
9089     /* Must make sure nOverflow is reset to zero even if the balance()
9090     ** fails. Internal data structure corruption will result otherwise.
9091     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9092     ** from trying to save the current position of the cursor.  */
9093     pCur->pPage->nOverflow = 0;
9094     pCur->eState = CURSOR_INVALID;
9095     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9096       btreeReleaseAllCursorPages(pCur);
9097       if( pCur->pKeyInfo ){
9098         assert( pCur->pKey==0 );
9099         pCur->pKey = sqlite3Malloc( pX->nKey );
9100         if( pCur->pKey==0 ){
9101           rc = SQLITE_NOMEM;
9102         }else{
9103           memcpy(pCur->pKey, pX->pKey, pX->nKey);
9104         }
9105       }
9106       pCur->eState = CURSOR_REQUIRESEEK;
9107       pCur->nKey = pX->nKey;
9108     }
9109   }
9110   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9111 
9112 end_insert:
9113   return rc;
9114 }
9115 
9116 /*
9117 ** This function is used as part of copying the current row from cursor
9118 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9119 ** parameter iKey is used as the rowid value when the record is copied
9120 ** into pDest. Otherwise, the record is copied verbatim.
9121 **
9122 ** This function does not actually write the new value to cursor pDest.
9123 ** Instead, it creates and populates any required overflow pages and
9124 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9125 ** for the destination database. The size of the cell, in bytes, is left
9126 ** in BtShared.nPreformatSize. The caller completes the insertion by
9127 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9128 **
9129 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9130 */
9131 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9132   int rc = SQLITE_OK;
9133   BtShared *pBt = pDest->pBt;
9134   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9135   const u8 *aIn;                /* Pointer to next input buffer */
9136   u32 nIn;                      /* Size of input buffer aIn[] */
9137   u32 nRem;                     /* Bytes of data still to copy */
9138 
9139   getCellInfo(pSrc);
9140   aOut += putVarint32(aOut, pSrc->info.nPayload);
9141   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9142   nIn = pSrc->info.nLocal;
9143   aIn = pSrc->info.pPayload;
9144   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9145     return SQLITE_CORRUPT_BKPT;
9146   }
9147   nRem = pSrc->info.nPayload;
9148   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9149     memcpy(aOut, aIn, nIn);
9150     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9151   }else{
9152     Pager *pSrcPager = pSrc->pBt->pPager;
9153     u8 *pPgnoOut = 0;
9154     Pgno ovflIn = 0;
9155     DbPage *pPageIn = 0;
9156     MemPage *pPageOut = 0;
9157     u32 nOut;                     /* Size of output buffer aOut[] */
9158 
9159     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9160     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9161     if( nOut<pSrc->info.nPayload ){
9162       pPgnoOut = &aOut[nOut];
9163       pBt->nPreformatSize += 4;
9164     }
9165 
9166     if( nRem>nIn ){
9167       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9168         return SQLITE_CORRUPT_BKPT;
9169       }
9170       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9171     }
9172 
9173     do {
9174       nRem -= nOut;
9175       do{
9176         assert( nOut>0 );
9177         if( nIn>0 ){
9178           int nCopy = MIN(nOut, nIn);
9179           memcpy(aOut, aIn, nCopy);
9180           nOut -= nCopy;
9181           nIn -= nCopy;
9182           aOut += nCopy;
9183           aIn += nCopy;
9184         }
9185         if( nOut>0 ){
9186           sqlite3PagerUnref(pPageIn);
9187           pPageIn = 0;
9188           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9189           if( rc==SQLITE_OK ){
9190             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9191             ovflIn = get4byte(aIn);
9192             aIn += 4;
9193             nIn = pSrc->pBt->usableSize - 4;
9194           }
9195         }
9196       }while( rc==SQLITE_OK && nOut>0 );
9197 
9198       if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9199         Pgno pgnoNew;
9200         MemPage *pNew = 0;
9201         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9202         put4byte(pPgnoOut, pgnoNew);
9203         if( ISAUTOVACUUM && pPageOut ){
9204           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9205         }
9206         releasePage(pPageOut);
9207         pPageOut = pNew;
9208         if( pPageOut ){
9209           pPgnoOut = pPageOut->aData;
9210           put4byte(pPgnoOut, 0);
9211           aOut = &pPgnoOut[4];
9212           nOut = MIN(pBt->usableSize - 4, nRem);
9213         }
9214       }
9215     }while( nRem>0 && rc==SQLITE_OK );
9216 
9217     releasePage(pPageOut);
9218     sqlite3PagerUnref(pPageIn);
9219   }
9220 
9221   return rc;
9222 }
9223 
9224 /*
9225 ** Delete the entry that the cursor is pointing to.
9226 **
9227 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9228 ** the cursor is left pointing at an arbitrary location after the delete.
9229 ** But if that bit is set, then the cursor is left in a state such that
9230 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9231 ** as it would have been on if the call to BtreeDelete() had been omitted.
9232 **
9233 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9234 ** associated with a single table entry and its indexes.  Only one of those
9235 ** deletes is considered the "primary" delete.  The primary delete occurs
9236 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9237 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9238 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9239 ** but which might be used by alternative storage engines.
9240 */
9241 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9242   Btree *p = pCur->pBtree;
9243   BtShared *pBt = p->pBt;
9244   int rc;                    /* Return code */
9245   MemPage *pPage;            /* Page to delete cell from */
9246   unsigned char *pCell;      /* Pointer to cell to delete */
9247   int iCellIdx;              /* Index of cell to delete */
9248   int iCellDepth;            /* Depth of node containing pCell */
9249   CellInfo info;             /* Size of the cell being deleted */
9250   u8 bPreserve;              /* Keep cursor valid.  2 for CURSOR_SKIPNEXT */
9251 
9252   assert( cursorOwnsBtShared(pCur) );
9253   assert( pBt->inTransaction==TRANS_WRITE );
9254   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9255   assert( pCur->curFlags & BTCF_WriteFlag );
9256   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9257   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9258   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9259   if( pCur->eState==CURSOR_REQUIRESEEK ){
9260     rc = btreeRestoreCursorPosition(pCur);
9261     assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9262     if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9263   }
9264   assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
9265 
9266   iCellDepth = pCur->iPage;
9267   iCellIdx = pCur->ix;
9268   pPage = pCur->pPage;
9269   if( pPage->nCell<=iCellIdx ){
9270     return SQLITE_CORRUPT_BKPT;
9271   }
9272   pCell = findCell(pPage, iCellIdx);
9273   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9274     return SQLITE_CORRUPT_BKPT;
9275   }
9276 
9277   /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9278   ** be preserved following this delete operation. If the current delete
9279   ** will cause a b-tree rebalance, then this is done by saving the cursor
9280   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9281   ** returning.
9282   **
9283   ** If the current delete will not cause a rebalance, then the cursor
9284   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9285   ** before or after the deleted entry.
9286   **
9287   ** The bPreserve value records which path is required:
9288   **
9289   **    bPreserve==0         Not necessary to save the cursor position
9290   **    bPreserve==1         Use CURSOR_REQUIRESEEK to save the cursor position
9291   **    bPreserve==2         Cursor won't move.  Set CURSOR_SKIPNEXT.
9292   */
9293   bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
9294   if( bPreserve ){
9295     if( !pPage->leaf
9296      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
9297      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9298     ){
9299       /* A b-tree rebalance will be required after deleting this entry.
9300       ** Save the cursor key.  */
9301       rc = saveCursorKey(pCur);
9302       if( rc ) return rc;
9303     }else{
9304       bPreserve = 2;
9305     }
9306   }
9307 
9308   /* If the page containing the entry to delete is not a leaf page, move
9309   ** the cursor to the largest entry in the tree that is smaller than
9310   ** the entry being deleted. This cell will replace the cell being deleted
9311   ** from the internal node. The 'previous' entry is used for this instead
9312   ** of the 'next' entry, as the previous entry is always a part of the
9313   ** sub-tree headed by the child page of the cell being deleted. This makes
9314   ** balancing the tree following the delete operation easier.  */
9315   if( !pPage->leaf ){
9316     rc = sqlite3BtreePrevious(pCur, 0);
9317     assert( rc!=SQLITE_DONE );
9318     if( rc ) return rc;
9319   }
9320 
9321   /* Save the positions of any other cursors open on this table before
9322   ** making any modifications.  */
9323   if( pCur->curFlags & BTCF_Multiple ){
9324     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9325     if( rc ) return rc;
9326   }
9327 
9328   /* If this is a delete operation to remove a row from a table b-tree,
9329   ** invalidate any incrblob cursors open on the row being deleted.  */
9330   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9331     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9332   }
9333 
9334   /* Make the page containing the entry to be deleted writable. Then free any
9335   ** overflow pages associated with the entry and finally remove the cell
9336   ** itself from within the page.  */
9337   rc = sqlite3PagerWrite(pPage->pDbPage);
9338   if( rc ) return rc;
9339   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9340   dropCell(pPage, iCellIdx, info.nSize, &rc);
9341   if( rc ) return rc;
9342 
9343   /* If the cell deleted was not located on a leaf page, then the cursor
9344   ** is currently pointing to the largest entry in the sub-tree headed
9345   ** by the child-page of the cell that was just deleted from an internal
9346   ** node. The cell from the leaf node needs to be moved to the internal
9347   ** node to replace the deleted cell.  */
9348   if( !pPage->leaf ){
9349     MemPage *pLeaf = pCur->pPage;
9350     int nCell;
9351     Pgno n;
9352     unsigned char *pTmp;
9353 
9354     if( pLeaf->nFree<0 ){
9355       rc = btreeComputeFreeSpace(pLeaf);
9356       if( rc ) return rc;
9357     }
9358     if( iCellDepth<pCur->iPage-1 ){
9359       n = pCur->apPage[iCellDepth+1]->pgno;
9360     }else{
9361       n = pCur->pPage->pgno;
9362     }
9363     pCell = findCell(pLeaf, pLeaf->nCell-1);
9364     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9365     nCell = pLeaf->xCellSize(pLeaf, pCell);
9366     assert( MX_CELL_SIZE(pBt) >= nCell );
9367     pTmp = pBt->pTmpSpace;
9368     assert( pTmp!=0 );
9369     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9370     if( rc==SQLITE_OK ){
9371       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9372     }
9373     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9374     if( rc ) return rc;
9375   }
9376 
9377   /* Balance the tree. If the entry deleted was located on a leaf page,
9378   ** then the cursor still points to that page. In this case the first
9379   ** call to balance() repairs the tree, and the if(...) condition is
9380   ** never true.
9381   **
9382   ** Otherwise, if the entry deleted was on an internal node page, then
9383   ** pCur is pointing to the leaf page from which a cell was removed to
9384   ** replace the cell deleted from the internal node. This is slightly
9385   ** tricky as the leaf node may be underfull, and the internal node may
9386   ** be either under or overfull. In this case run the balancing algorithm
9387   ** on the leaf node first. If the balance proceeds far enough up the
9388   ** tree that we can be sure that any problem in the internal node has
9389   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9390   ** walk the cursor up the tree to the internal node and balance it as
9391   ** well.  */
9392   rc = balance(pCur);
9393   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9394     releasePageNotNull(pCur->pPage);
9395     pCur->iPage--;
9396     while( pCur->iPage>iCellDepth ){
9397       releasePage(pCur->apPage[pCur->iPage--]);
9398     }
9399     pCur->pPage = pCur->apPage[pCur->iPage];
9400     rc = balance(pCur);
9401   }
9402 
9403   if( rc==SQLITE_OK ){
9404     if( bPreserve>1 ){
9405       assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
9406       assert( pPage==pCur->pPage || CORRUPT_DB );
9407       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9408       pCur->eState = CURSOR_SKIPNEXT;
9409       if( iCellIdx>=pPage->nCell ){
9410         pCur->skipNext = -1;
9411         pCur->ix = pPage->nCell-1;
9412       }else{
9413         pCur->skipNext = 1;
9414       }
9415     }else{
9416       rc = moveToRoot(pCur);
9417       if( bPreserve ){
9418         btreeReleaseAllCursorPages(pCur);
9419         pCur->eState = CURSOR_REQUIRESEEK;
9420       }
9421       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9422     }
9423   }
9424   return rc;
9425 }
9426 
9427 /*
9428 ** Create a new BTree table.  Write into *piTable the page
9429 ** number for the root page of the new table.
9430 **
9431 ** The type of type is determined by the flags parameter.  Only the
9432 ** following values of flags are currently in use.  Other values for
9433 ** flags might not work:
9434 **
9435 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9436 **     BTREE_ZERODATA                  Used for SQL indices
9437 */
9438 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9439   BtShared *pBt = p->pBt;
9440   MemPage *pRoot;
9441   Pgno pgnoRoot;
9442   int rc;
9443   int ptfFlags;          /* Page-type flage for the root page of new table */
9444 
9445   assert( sqlite3BtreeHoldsMutex(p) );
9446   assert( pBt->inTransaction==TRANS_WRITE );
9447   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9448 
9449 #ifdef SQLITE_OMIT_AUTOVACUUM
9450   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9451   if( rc ){
9452     return rc;
9453   }
9454 #else
9455   if( pBt->autoVacuum ){
9456     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9457     MemPage *pPageMove; /* The page to move to. */
9458 
9459     /* Creating a new table may probably require moving an existing database
9460     ** to make room for the new tables root page. In case this page turns
9461     ** out to be an overflow page, delete all overflow page-map caches
9462     ** held by open cursors.
9463     */
9464     invalidateAllOverflowCache(pBt);
9465 
9466     /* Read the value of meta[3] from the database to determine where the
9467     ** root page of the new table should go. meta[3] is the largest root-page
9468     ** created so far, so the new root-page is (meta[3]+1).
9469     */
9470     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9471     if( pgnoRoot>btreePagecount(pBt) ){
9472       return SQLITE_CORRUPT_BKPT;
9473     }
9474     pgnoRoot++;
9475 
9476     /* The new root-page may not be allocated on a pointer-map page, or the
9477     ** PENDING_BYTE page.
9478     */
9479     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9480         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9481       pgnoRoot++;
9482     }
9483     assert( pgnoRoot>=3 );
9484 
9485     /* Allocate a page. The page that currently resides at pgnoRoot will
9486     ** be moved to the allocated page (unless the allocated page happens
9487     ** to reside at pgnoRoot).
9488     */
9489     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9490     if( rc!=SQLITE_OK ){
9491       return rc;
9492     }
9493 
9494     if( pgnoMove!=pgnoRoot ){
9495       /* pgnoRoot is the page that will be used for the root-page of
9496       ** the new table (assuming an error did not occur). But we were
9497       ** allocated pgnoMove. If required (i.e. if it was not allocated
9498       ** by extending the file), the current page at position pgnoMove
9499       ** is already journaled.
9500       */
9501       u8 eType = 0;
9502       Pgno iPtrPage = 0;
9503 
9504       /* Save the positions of any open cursors. This is required in
9505       ** case they are holding a reference to an xFetch reference
9506       ** corresponding to page pgnoRoot.  */
9507       rc = saveAllCursors(pBt, 0, 0);
9508       releasePage(pPageMove);
9509       if( rc!=SQLITE_OK ){
9510         return rc;
9511       }
9512 
9513       /* Move the page currently at pgnoRoot to pgnoMove. */
9514       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9515       if( rc!=SQLITE_OK ){
9516         return rc;
9517       }
9518       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9519       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9520         rc = SQLITE_CORRUPT_BKPT;
9521       }
9522       if( rc!=SQLITE_OK ){
9523         releasePage(pRoot);
9524         return rc;
9525       }
9526       assert( eType!=PTRMAP_ROOTPAGE );
9527       assert( eType!=PTRMAP_FREEPAGE );
9528       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9529       releasePage(pRoot);
9530 
9531       /* Obtain the page at pgnoRoot */
9532       if( rc!=SQLITE_OK ){
9533         return rc;
9534       }
9535       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9536       if( rc!=SQLITE_OK ){
9537         return rc;
9538       }
9539       rc = sqlite3PagerWrite(pRoot->pDbPage);
9540       if( rc!=SQLITE_OK ){
9541         releasePage(pRoot);
9542         return rc;
9543       }
9544     }else{
9545       pRoot = pPageMove;
9546     }
9547 
9548     /* Update the pointer-map and meta-data with the new root-page number. */
9549     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9550     if( rc ){
9551       releasePage(pRoot);
9552       return rc;
9553     }
9554 
9555     /* When the new root page was allocated, page 1 was made writable in
9556     ** order either to increase the database filesize, or to decrement the
9557     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9558     */
9559     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9560     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9561     if( NEVER(rc) ){
9562       releasePage(pRoot);
9563       return rc;
9564     }
9565 
9566   }else{
9567     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9568     if( rc ) return rc;
9569   }
9570 #endif
9571   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9572   if( createTabFlags & BTREE_INTKEY ){
9573     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9574   }else{
9575     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9576   }
9577   zeroPage(pRoot, ptfFlags);
9578   sqlite3PagerUnref(pRoot->pDbPage);
9579   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9580   *piTable = pgnoRoot;
9581   return SQLITE_OK;
9582 }
9583 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9584   int rc;
9585   sqlite3BtreeEnter(p);
9586   rc = btreeCreateTable(p, piTable, flags);
9587   sqlite3BtreeLeave(p);
9588   return rc;
9589 }
9590 
9591 /*
9592 ** Erase the given database page and all its children.  Return
9593 ** the page to the freelist.
9594 */
9595 static int clearDatabasePage(
9596   BtShared *pBt,           /* The BTree that contains the table */
9597   Pgno pgno,               /* Page number to clear */
9598   int freePageFlag,        /* Deallocate page if true */
9599   i64 *pnChange            /* Add number of Cells freed to this counter */
9600 ){
9601   MemPage *pPage;
9602   int rc;
9603   unsigned char *pCell;
9604   int i;
9605   int hdr;
9606   CellInfo info;
9607 
9608   assert( sqlite3_mutex_held(pBt->mutex) );
9609   if( pgno>btreePagecount(pBt) ){
9610     return SQLITE_CORRUPT_BKPT;
9611   }
9612   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9613   if( rc ) return rc;
9614   if( (pBt->openFlags & BTREE_SINGLE)==0
9615    && sqlite3PagerPageRefcount(pPage->pDbPage)!=1
9616   ){
9617     rc = SQLITE_CORRUPT_BKPT;
9618     goto cleardatabasepage_out;
9619   }
9620   hdr = pPage->hdrOffset;
9621   for(i=0; i<pPage->nCell; i++){
9622     pCell = findCell(pPage, i);
9623     if( !pPage->leaf ){
9624       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9625       if( rc ) goto cleardatabasepage_out;
9626     }
9627     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9628     if( rc ) goto cleardatabasepage_out;
9629   }
9630   if( !pPage->leaf ){
9631     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9632     if( rc ) goto cleardatabasepage_out;
9633     if( pPage->intKey ) pnChange = 0;
9634   }
9635   if( pnChange ){
9636     testcase( !pPage->intKey );
9637     *pnChange += pPage->nCell;
9638   }
9639   if( freePageFlag ){
9640     freePage(pPage, &rc);
9641   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9642     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9643   }
9644 
9645 cleardatabasepage_out:
9646   releasePage(pPage);
9647   return rc;
9648 }
9649 
9650 /*
9651 ** Delete all information from a single table in the database.  iTable is
9652 ** the page number of the root of the table.  After this routine returns,
9653 ** the root page is empty, but still exists.
9654 **
9655 ** This routine will fail with SQLITE_LOCKED if there are any open
9656 ** read cursors on the table.  Open write cursors are moved to the
9657 ** root of the table.
9658 **
9659 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9660 ** is incremented by the number of entries in the table.
9661 */
9662 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9663   int rc;
9664   BtShared *pBt = p->pBt;
9665   sqlite3BtreeEnter(p);
9666   assert( p->inTrans==TRANS_WRITE );
9667 
9668   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9669 
9670   if( SQLITE_OK==rc ){
9671     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9672     ** is the root of a table b-tree - if it is not, the following call is
9673     ** a no-op).  */
9674     if( p->hasIncrblobCur ){
9675       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9676     }
9677     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9678   }
9679   sqlite3BtreeLeave(p);
9680   return rc;
9681 }
9682 
9683 /*
9684 ** Delete all information from the single table that pCur is open on.
9685 **
9686 ** This routine only work for pCur on an ephemeral table.
9687 */
9688 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9689   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9690 }
9691 
9692 /*
9693 ** Erase all information in a table and add the root of the table to
9694 ** the freelist.  Except, the root of the principle table (the one on
9695 ** page 1) is never added to the freelist.
9696 **
9697 ** This routine will fail with SQLITE_LOCKED if there are any open
9698 ** cursors on the table.
9699 **
9700 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9701 ** root page in the database file, then the last root page
9702 ** in the database file is moved into the slot formerly occupied by
9703 ** iTable and that last slot formerly occupied by the last root page
9704 ** is added to the freelist instead of iTable.  In this say, all
9705 ** root pages are kept at the beginning of the database file, which
9706 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9707 ** page number that used to be the last root page in the file before
9708 ** the move.  If no page gets moved, *piMoved is set to 0.
9709 ** The last root page is recorded in meta[3] and the value of
9710 ** meta[3] is updated by this procedure.
9711 */
9712 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9713   int rc;
9714   MemPage *pPage = 0;
9715   BtShared *pBt = p->pBt;
9716 
9717   assert( sqlite3BtreeHoldsMutex(p) );
9718   assert( p->inTrans==TRANS_WRITE );
9719   assert( iTable>=2 );
9720   if( iTable>btreePagecount(pBt) ){
9721     return SQLITE_CORRUPT_BKPT;
9722   }
9723 
9724   rc = sqlite3BtreeClearTable(p, iTable, 0);
9725   if( rc ) return rc;
9726   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9727   if( NEVER(rc) ){
9728     releasePage(pPage);
9729     return rc;
9730   }
9731 
9732   *piMoved = 0;
9733 
9734 #ifdef SQLITE_OMIT_AUTOVACUUM
9735   freePage(pPage, &rc);
9736   releasePage(pPage);
9737 #else
9738   if( pBt->autoVacuum ){
9739     Pgno maxRootPgno;
9740     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9741 
9742     if( iTable==maxRootPgno ){
9743       /* If the table being dropped is the table with the largest root-page
9744       ** number in the database, put the root page on the free list.
9745       */
9746       freePage(pPage, &rc);
9747       releasePage(pPage);
9748       if( rc!=SQLITE_OK ){
9749         return rc;
9750       }
9751     }else{
9752       /* The table being dropped does not have the largest root-page
9753       ** number in the database. So move the page that does into the
9754       ** gap left by the deleted root-page.
9755       */
9756       MemPage *pMove;
9757       releasePage(pPage);
9758       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9759       if( rc!=SQLITE_OK ){
9760         return rc;
9761       }
9762       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9763       releasePage(pMove);
9764       if( rc!=SQLITE_OK ){
9765         return rc;
9766       }
9767       pMove = 0;
9768       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9769       freePage(pMove, &rc);
9770       releasePage(pMove);
9771       if( rc!=SQLITE_OK ){
9772         return rc;
9773       }
9774       *piMoved = maxRootPgno;
9775     }
9776 
9777     /* Set the new 'max-root-page' value in the database header. This
9778     ** is the old value less one, less one more if that happens to
9779     ** be a root-page number, less one again if that is the
9780     ** PENDING_BYTE_PAGE.
9781     */
9782     maxRootPgno--;
9783     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9784            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9785       maxRootPgno--;
9786     }
9787     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9788 
9789     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9790   }else{
9791     freePage(pPage, &rc);
9792     releasePage(pPage);
9793   }
9794 #endif
9795   return rc;
9796 }
9797 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9798   int rc;
9799   sqlite3BtreeEnter(p);
9800   rc = btreeDropTable(p, iTable, piMoved);
9801   sqlite3BtreeLeave(p);
9802   return rc;
9803 }
9804 
9805 
9806 /*
9807 ** This function may only be called if the b-tree connection already
9808 ** has a read or write transaction open on the database.
9809 **
9810 ** Read the meta-information out of a database file.  Meta[0]
9811 ** is the number of free pages currently in the database.  Meta[1]
9812 ** through meta[15] are available for use by higher layers.  Meta[0]
9813 ** is read-only, the others are read/write.
9814 **
9815 ** The schema layer numbers meta values differently.  At the schema
9816 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9817 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9818 **
9819 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9820 ** of reading the value out of the header, it instead loads the "DataVersion"
9821 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9822 ** database file.  It is a number computed by the pager.  But its access
9823 ** pattern is the same as header meta values, and so it is convenient to
9824 ** read it from this routine.
9825 */
9826 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9827   BtShared *pBt = p->pBt;
9828 
9829   sqlite3BtreeEnter(p);
9830   assert( p->inTrans>TRANS_NONE );
9831   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9832   assert( pBt->pPage1 );
9833   assert( idx>=0 && idx<=15 );
9834 
9835   if( idx==BTREE_DATA_VERSION ){
9836     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
9837   }else{
9838     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9839   }
9840 
9841   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9842   ** database, mark the database as read-only.  */
9843 #ifdef SQLITE_OMIT_AUTOVACUUM
9844   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9845     pBt->btsFlags |= BTS_READ_ONLY;
9846   }
9847 #endif
9848 
9849   sqlite3BtreeLeave(p);
9850 }
9851 
9852 /*
9853 ** Write meta-information back into the database.  Meta[0] is
9854 ** read-only and may not be written.
9855 */
9856 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9857   BtShared *pBt = p->pBt;
9858   unsigned char *pP1;
9859   int rc;
9860   assert( idx>=1 && idx<=15 );
9861   sqlite3BtreeEnter(p);
9862   assert( p->inTrans==TRANS_WRITE );
9863   assert( pBt->pPage1!=0 );
9864   pP1 = pBt->pPage1->aData;
9865   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9866   if( rc==SQLITE_OK ){
9867     put4byte(&pP1[36 + idx*4], iMeta);
9868 #ifndef SQLITE_OMIT_AUTOVACUUM
9869     if( idx==BTREE_INCR_VACUUM ){
9870       assert( pBt->autoVacuum || iMeta==0 );
9871       assert( iMeta==0 || iMeta==1 );
9872       pBt->incrVacuum = (u8)iMeta;
9873     }
9874 #endif
9875   }
9876   sqlite3BtreeLeave(p);
9877   return rc;
9878 }
9879 
9880 /*
9881 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9882 ** number of entries in the b-tree and write the result to *pnEntry.
9883 **
9884 ** SQLITE_OK is returned if the operation is successfully executed.
9885 ** Otherwise, if an error is encountered (i.e. an IO error or database
9886 ** corruption) an SQLite error code is returned.
9887 */
9888 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9889   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9890   int rc;                              /* Return code */
9891 
9892   rc = moveToRoot(pCur);
9893   if( rc==SQLITE_EMPTY ){
9894     *pnEntry = 0;
9895     return SQLITE_OK;
9896   }
9897 
9898   /* Unless an error occurs, the following loop runs one iteration for each
9899   ** page in the B-Tree structure (not including overflow pages).
9900   */
9901   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9902     int iIdx;                          /* Index of child node in parent */
9903     MemPage *pPage;                    /* Current page of the b-tree */
9904 
9905     /* If this is a leaf page or the tree is not an int-key tree, then
9906     ** this page contains countable entries. Increment the entry counter
9907     ** accordingly.
9908     */
9909     pPage = pCur->pPage;
9910     if( pPage->leaf || !pPage->intKey ){
9911       nEntry += pPage->nCell;
9912     }
9913 
9914     /* pPage is a leaf node. This loop navigates the cursor so that it
9915     ** points to the first interior cell that it points to the parent of
9916     ** the next page in the tree that has not yet been visited. The
9917     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9918     ** of the page, or to the number of cells in the page if the next page
9919     ** to visit is the right-child of its parent.
9920     **
9921     ** If all pages in the tree have been visited, return SQLITE_OK to the
9922     ** caller.
9923     */
9924     if( pPage->leaf ){
9925       do {
9926         if( pCur->iPage==0 ){
9927           /* All pages of the b-tree have been visited. Return successfully. */
9928           *pnEntry = nEntry;
9929           return moveToRoot(pCur);
9930         }
9931         moveToParent(pCur);
9932       }while ( pCur->ix>=pCur->pPage->nCell );
9933 
9934       pCur->ix++;
9935       pPage = pCur->pPage;
9936     }
9937 
9938     /* Descend to the child node of the cell that the cursor currently
9939     ** points at. This is the right-child if (iIdx==pPage->nCell).
9940     */
9941     iIdx = pCur->ix;
9942     if( iIdx==pPage->nCell ){
9943       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9944     }else{
9945       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9946     }
9947   }
9948 
9949   /* An error has occurred. Return an error code. */
9950   return rc;
9951 }
9952 
9953 /*
9954 ** Return the pager associated with a BTree.  This routine is used for
9955 ** testing and debugging only.
9956 */
9957 Pager *sqlite3BtreePager(Btree *p){
9958   return p->pBt->pPager;
9959 }
9960 
9961 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9962 /*
9963 ** Append a message to the error message string.
9964 */
9965 static void checkAppendMsg(
9966   IntegrityCk *pCheck,
9967   const char *zFormat,
9968   ...
9969 ){
9970   va_list ap;
9971   if( !pCheck->mxErr ) return;
9972   pCheck->mxErr--;
9973   pCheck->nErr++;
9974   va_start(ap, zFormat);
9975   if( pCheck->errMsg.nChar ){
9976     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9977   }
9978   if( pCheck->zPfx ){
9979     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9980   }
9981   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9982   va_end(ap);
9983   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9984     pCheck->bOomFault = 1;
9985   }
9986 }
9987 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9988 
9989 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9990 
9991 /*
9992 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9993 ** corresponds to page iPg is already set.
9994 */
9995 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9996   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9997   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9998 }
9999 
10000 /*
10001 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10002 */
10003 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10004   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10005   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10006 }
10007 
10008 
10009 /*
10010 ** Add 1 to the reference count for page iPage.  If this is the second
10011 ** reference to the page, add an error message to pCheck->zErrMsg.
10012 ** Return 1 if there are 2 or more references to the page and 0 if
10013 ** if this is the first reference to the page.
10014 **
10015 ** Also check that the page number is in bounds.
10016 */
10017 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
10018   if( iPage>pCheck->nPage || iPage==0 ){
10019     checkAppendMsg(pCheck, "invalid page number %d", iPage);
10020     return 1;
10021   }
10022   if( getPageReferenced(pCheck, iPage) ){
10023     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
10024     return 1;
10025   }
10026   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
10027   setPageReferenced(pCheck, iPage);
10028   return 0;
10029 }
10030 
10031 #ifndef SQLITE_OMIT_AUTOVACUUM
10032 /*
10033 ** Check that the entry in the pointer-map for page iChild maps to
10034 ** page iParent, pointer type ptrType. If not, append an error message
10035 ** to pCheck.
10036 */
10037 static void checkPtrmap(
10038   IntegrityCk *pCheck,   /* Integrity check context */
10039   Pgno iChild,           /* Child page number */
10040   u8 eType,              /* Expected pointer map type */
10041   Pgno iParent           /* Expected pointer map parent page number */
10042 ){
10043   int rc;
10044   u8 ePtrmapType;
10045   Pgno iPtrmapParent;
10046 
10047   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10048   if( rc!=SQLITE_OK ){
10049     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
10050     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10051     return;
10052   }
10053 
10054   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10055     checkAppendMsg(pCheck,
10056       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10057       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10058   }
10059 }
10060 #endif
10061 
10062 /*
10063 ** Check the integrity of the freelist or of an overflow page list.
10064 ** Verify that the number of pages on the list is N.
10065 */
10066 static void checkList(
10067   IntegrityCk *pCheck,  /* Integrity checking context */
10068   int isFreeList,       /* True for a freelist.  False for overflow page list */
10069   Pgno iPage,           /* Page number for first page in the list */
10070   u32 N                 /* Expected number of pages in the list */
10071 ){
10072   int i;
10073   u32 expected = N;
10074   int nErrAtStart = pCheck->nErr;
10075   while( iPage!=0 && pCheck->mxErr ){
10076     DbPage *pOvflPage;
10077     unsigned char *pOvflData;
10078     if( checkRef(pCheck, iPage) ) break;
10079     N--;
10080     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10081       checkAppendMsg(pCheck, "failed to get page %d", iPage);
10082       break;
10083     }
10084     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10085     if( isFreeList ){
10086       u32 n = (u32)get4byte(&pOvflData[4]);
10087 #ifndef SQLITE_OMIT_AUTOVACUUM
10088       if( pCheck->pBt->autoVacuum ){
10089         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10090       }
10091 #endif
10092       if( n>pCheck->pBt->usableSize/4-2 ){
10093         checkAppendMsg(pCheck,
10094            "freelist leaf count too big on page %d", iPage);
10095         N--;
10096       }else{
10097         for(i=0; i<(int)n; i++){
10098           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10099 #ifndef SQLITE_OMIT_AUTOVACUUM
10100           if( pCheck->pBt->autoVacuum ){
10101             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10102           }
10103 #endif
10104           checkRef(pCheck, iFreePage);
10105         }
10106         N -= n;
10107       }
10108     }
10109 #ifndef SQLITE_OMIT_AUTOVACUUM
10110     else{
10111       /* If this database supports auto-vacuum and iPage is not the last
10112       ** page in this overflow list, check that the pointer-map entry for
10113       ** the following page matches iPage.
10114       */
10115       if( pCheck->pBt->autoVacuum && N>0 ){
10116         i = get4byte(pOvflData);
10117         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10118       }
10119     }
10120 #endif
10121     iPage = get4byte(pOvflData);
10122     sqlite3PagerUnref(pOvflPage);
10123   }
10124   if( N && nErrAtStart==pCheck->nErr ){
10125     checkAppendMsg(pCheck,
10126       "%s is %d but should be %d",
10127       isFreeList ? "size" : "overflow list length",
10128       expected-N, expected);
10129   }
10130 }
10131 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10132 
10133 /*
10134 ** An implementation of a min-heap.
10135 **
10136 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10137 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10138 ** and aHeap[N*2+1].
10139 **
10140 ** The heap property is this:  Every node is less than or equal to both
10141 ** of its daughter nodes.  A consequence of the heap property is that the
10142 ** root node aHeap[1] is always the minimum value currently in the heap.
10143 **
10144 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10145 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10146 ** removes the root element from the heap (the minimum value in the heap)
10147 ** and then moves other nodes around as necessary to preserve the heap
10148 ** property.
10149 **
10150 ** This heap is used for cell overlap and coverage testing.  Each u32
10151 ** entry represents the span of a cell or freeblock on a btree page.
10152 ** The upper 16 bits are the index of the first byte of a range and the
10153 ** lower 16 bits are the index of the last byte of that range.
10154 */
10155 static void btreeHeapInsert(u32 *aHeap, u32 x){
10156   u32 j, i = ++aHeap[0];
10157   aHeap[i] = x;
10158   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10159     x = aHeap[j];
10160     aHeap[j] = aHeap[i];
10161     aHeap[i] = x;
10162     i = j;
10163   }
10164 }
10165 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10166   u32 j, i, x;
10167   if( (x = aHeap[0])==0 ) return 0;
10168   *pOut = aHeap[1];
10169   aHeap[1] = aHeap[x];
10170   aHeap[x] = 0xffffffff;
10171   aHeap[0]--;
10172   i = 1;
10173   while( (j = i*2)<=aHeap[0] ){
10174     if( aHeap[j]>aHeap[j+1] ) j++;
10175     if( aHeap[i]<aHeap[j] ) break;
10176     x = aHeap[i];
10177     aHeap[i] = aHeap[j];
10178     aHeap[j] = x;
10179     i = j;
10180   }
10181   return 1;
10182 }
10183 
10184 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10185 /*
10186 ** Do various sanity checks on a single page of a tree.  Return
10187 ** the tree depth.  Root pages return 0.  Parents of root pages
10188 ** return 1, and so forth.
10189 **
10190 ** These checks are done:
10191 **
10192 **      1.  Make sure that cells and freeblocks do not overlap
10193 **          but combine to completely cover the page.
10194 **      2.  Make sure integer cell keys are in order.
10195 **      3.  Check the integrity of overflow pages.
10196 **      4.  Recursively call checkTreePage on all children.
10197 **      5.  Verify that the depth of all children is the same.
10198 */
10199 static int checkTreePage(
10200   IntegrityCk *pCheck,  /* Context for the sanity check */
10201   Pgno iPage,           /* Page number of the page to check */
10202   i64 *piMinKey,        /* Write minimum integer primary key here */
10203   i64 maxKey            /* Error if integer primary key greater than this */
10204 ){
10205   MemPage *pPage = 0;      /* The page being analyzed */
10206   int i;                   /* Loop counter */
10207   int rc;                  /* Result code from subroutine call */
10208   int depth = -1, d2;      /* Depth of a subtree */
10209   int pgno;                /* Page number */
10210   int nFrag;               /* Number of fragmented bytes on the page */
10211   int hdr;                 /* Offset to the page header */
10212   int cellStart;           /* Offset to the start of the cell pointer array */
10213   int nCell;               /* Number of cells */
10214   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10215   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10216                            ** False if IPK must be strictly less than maxKey */
10217   u8 *data;                /* Page content */
10218   u8 *pCell;               /* Cell content */
10219   u8 *pCellIdx;            /* Next element of the cell pointer array */
10220   BtShared *pBt;           /* The BtShared object that owns pPage */
10221   u32 pc;                  /* Address of a cell */
10222   u32 usableSize;          /* Usable size of the page */
10223   u32 contentOffset;       /* Offset to the start of the cell content area */
10224   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10225   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10226   const char *saved_zPfx = pCheck->zPfx;
10227   int saved_v1 = pCheck->v1;
10228   int saved_v2 = pCheck->v2;
10229   u8 savedIsInit = 0;
10230 
10231   /* Check that the page exists
10232   */
10233   pBt = pCheck->pBt;
10234   usableSize = pBt->usableSize;
10235   if( iPage==0 ) return 0;
10236   if( checkRef(pCheck, iPage) ) return 0;
10237   pCheck->zPfx = "Page %u: ";
10238   pCheck->v1 = iPage;
10239   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10240     checkAppendMsg(pCheck,
10241        "unable to get the page. error code=%d", rc);
10242     goto end_of_check;
10243   }
10244 
10245   /* Clear MemPage.isInit to make sure the corruption detection code in
10246   ** btreeInitPage() is executed.  */
10247   savedIsInit = pPage->isInit;
10248   pPage->isInit = 0;
10249   if( (rc = btreeInitPage(pPage))!=0 ){
10250     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10251     checkAppendMsg(pCheck,
10252                    "btreeInitPage() returns error code %d", rc);
10253     goto end_of_check;
10254   }
10255   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10256     assert( rc==SQLITE_CORRUPT );
10257     checkAppendMsg(pCheck, "free space corruption", rc);
10258     goto end_of_check;
10259   }
10260   data = pPage->aData;
10261   hdr = pPage->hdrOffset;
10262 
10263   /* Set up for cell analysis */
10264   pCheck->zPfx = "On tree page %u cell %d: ";
10265   contentOffset = get2byteNotZero(&data[hdr+5]);
10266   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10267 
10268   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10269   ** number of cells on the page. */
10270   nCell = get2byte(&data[hdr+3]);
10271   assert( pPage->nCell==nCell );
10272 
10273   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10274   ** immediately follows the b-tree page header. */
10275   cellStart = hdr + 12 - 4*pPage->leaf;
10276   assert( pPage->aCellIdx==&data[cellStart] );
10277   pCellIdx = &data[cellStart + 2*(nCell-1)];
10278 
10279   if( !pPage->leaf ){
10280     /* Analyze the right-child page of internal pages */
10281     pgno = get4byte(&data[hdr+8]);
10282 #ifndef SQLITE_OMIT_AUTOVACUUM
10283     if( pBt->autoVacuum ){
10284       pCheck->zPfx = "On page %u at right child: ";
10285       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10286     }
10287 #endif
10288     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10289     keyCanBeEqual = 0;
10290   }else{
10291     /* For leaf pages, the coverage check will occur in the same loop
10292     ** as the other cell checks, so initialize the heap.  */
10293     heap = pCheck->heap;
10294     heap[0] = 0;
10295   }
10296 
10297   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10298   ** integer offsets to the cell contents. */
10299   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10300     CellInfo info;
10301 
10302     /* Check cell size */
10303     pCheck->v2 = i;
10304     assert( pCellIdx==&data[cellStart + i*2] );
10305     pc = get2byteAligned(pCellIdx);
10306     pCellIdx -= 2;
10307     if( pc<contentOffset || pc>usableSize-4 ){
10308       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10309                              pc, contentOffset, usableSize-4);
10310       doCoverageCheck = 0;
10311       continue;
10312     }
10313     pCell = &data[pc];
10314     pPage->xParseCell(pPage, pCell, &info);
10315     if( pc+info.nSize>usableSize ){
10316       checkAppendMsg(pCheck, "Extends off end of page");
10317       doCoverageCheck = 0;
10318       continue;
10319     }
10320 
10321     /* Check for integer primary key out of range */
10322     if( pPage->intKey ){
10323       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10324         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10325       }
10326       maxKey = info.nKey;
10327       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10328     }
10329 
10330     /* Check the content overflow list */
10331     if( info.nPayload>info.nLocal ){
10332       u32 nPage;       /* Number of pages on the overflow chain */
10333       Pgno pgnoOvfl;   /* First page of the overflow chain */
10334       assert( pc + info.nSize - 4 <= usableSize );
10335       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10336       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10337 #ifndef SQLITE_OMIT_AUTOVACUUM
10338       if( pBt->autoVacuum ){
10339         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10340       }
10341 #endif
10342       checkList(pCheck, 0, pgnoOvfl, nPage);
10343     }
10344 
10345     if( !pPage->leaf ){
10346       /* Check sanity of left child page for internal pages */
10347       pgno = get4byte(pCell);
10348 #ifndef SQLITE_OMIT_AUTOVACUUM
10349       if( pBt->autoVacuum ){
10350         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10351       }
10352 #endif
10353       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10354       keyCanBeEqual = 0;
10355       if( d2!=depth ){
10356         checkAppendMsg(pCheck, "Child page depth differs");
10357         depth = d2;
10358       }
10359     }else{
10360       /* Populate the coverage-checking heap for leaf pages */
10361       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10362     }
10363   }
10364   *piMinKey = maxKey;
10365 
10366   /* Check for complete coverage of the page
10367   */
10368   pCheck->zPfx = 0;
10369   if( doCoverageCheck && pCheck->mxErr>0 ){
10370     /* For leaf pages, the min-heap has already been initialized and the
10371     ** cells have already been inserted.  But for internal pages, that has
10372     ** not yet been done, so do it now */
10373     if( !pPage->leaf ){
10374       heap = pCheck->heap;
10375       heap[0] = 0;
10376       for(i=nCell-1; i>=0; i--){
10377         u32 size;
10378         pc = get2byteAligned(&data[cellStart+i*2]);
10379         size = pPage->xCellSize(pPage, &data[pc]);
10380         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10381       }
10382     }
10383     /* Add the freeblocks to the min-heap
10384     **
10385     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10386     ** is the offset of the first freeblock, or zero if there are no
10387     ** freeblocks on the page.
10388     */
10389     i = get2byte(&data[hdr+1]);
10390     while( i>0 ){
10391       int size, j;
10392       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10393       size = get2byte(&data[i+2]);
10394       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10395       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10396       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10397       ** big-endian integer which is the offset in the b-tree page of the next
10398       ** freeblock in the chain, or zero if the freeblock is the last on the
10399       ** chain. */
10400       j = get2byte(&data[i]);
10401       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10402       ** increasing offset. */
10403       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10404       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10405       i = j;
10406     }
10407     /* Analyze the min-heap looking for overlap between cells and/or
10408     ** freeblocks, and counting the number of untracked bytes in nFrag.
10409     **
10410     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10411     ** There is an implied first entry the covers the page header, the cell
10412     ** pointer index, and the gap between the cell pointer index and the start
10413     ** of cell content.
10414     **
10415     ** The loop below pulls entries from the min-heap in order and compares
10416     ** the start_address against the previous end_address.  If there is an
10417     ** overlap, that means bytes are used multiple times.  If there is a gap,
10418     ** that gap is added to the fragmentation count.
10419     */
10420     nFrag = 0;
10421     prev = contentOffset - 1;   /* Implied first min-heap entry */
10422     while( btreeHeapPull(heap,&x) ){
10423       if( (prev&0xffff)>=(x>>16) ){
10424         checkAppendMsg(pCheck,
10425           "Multiple uses for byte %u of page %u", x>>16, iPage);
10426         break;
10427       }else{
10428         nFrag += (x>>16) - (prev&0xffff) - 1;
10429         prev = x;
10430       }
10431     }
10432     nFrag += usableSize - (prev&0xffff) - 1;
10433     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10434     ** is stored in the fifth field of the b-tree page header.
10435     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10436     ** number of fragmented free bytes within the cell content area.
10437     */
10438     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10439       checkAppendMsg(pCheck,
10440           "Fragmentation of %d bytes reported as %d on page %u",
10441           nFrag, data[hdr+7], iPage);
10442     }
10443   }
10444 
10445 end_of_check:
10446   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10447   releasePage(pPage);
10448   pCheck->zPfx = saved_zPfx;
10449   pCheck->v1 = saved_v1;
10450   pCheck->v2 = saved_v2;
10451   return depth+1;
10452 }
10453 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10454 
10455 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10456 /*
10457 ** This routine does a complete check of the given BTree file.  aRoot[] is
10458 ** an array of pages numbers were each page number is the root page of
10459 ** a table.  nRoot is the number of entries in aRoot.
10460 **
10461 ** A read-only or read-write transaction must be opened before calling
10462 ** this function.
10463 **
10464 ** Write the number of error seen in *pnErr.  Except for some memory
10465 ** allocation errors,  an error message held in memory obtained from
10466 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10467 ** returned.  If a memory allocation error occurs, NULL is returned.
10468 **
10469 ** If the first entry in aRoot[] is 0, that indicates that the list of
10470 ** root pages is incomplete.  This is a "partial integrity-check".  This
10471 ** happens when performing an integrity check on a single table.  The
10472 ** zero is skipped, of course.  But in addition, the freelist checks
10473 ** and the checks to make sure every page is referenced are also skipped,
10474 ** since obviously it is not possible to know which pages are covered by
10475 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10476 ** checks are still performed.
10477 */
10478 char *sqlite3BtreeIntegrityCheck(
10479   sqlite3 *db,  /* Database connection that is running the check */
10480   Btree *p,     /* The btree to be checked */
10481   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10482   int nRoot,    /* Number of entries in aRoot[] */
10483   int mxErr,    /* Stop reporting errors after this many */
10484   int *pnErr    /* Write number of errors seen to this variable */
10485 ){
10486   Pgno i;
10487   IntegrityCk sCheck;
10488   BtShared *pBt = p->pBt;
10489   u64 savedDbFlags = pBt->db->flags;
10490   char zErr[100];
10491   int bPartial = 0;            /* True if not checking all btrees */
10492   int bCkFreelist = 1;         /* True to scan the freelist */
10493   VVA_ONLY( int nRef );
10494   assert( nRoot>0 );
10495 
10496   /* aRoot[0]==0 means this is a partial check */
10497   if( aRoot[0]==0 ){
10498     assert( nRoot>1 );
10499     bPartial = 1;
10500     if( aRoot[1]!=1 ) bCkFreelist = 0;
10501   }
10502 
10503   sqlite3BtreeEnter(p);
10504   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10505   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10506   assert( nRef>=0 );
10507   sCheck.db = db;
10508   sCheck.pBt = pBt;
10509   sCheck.pPager = pBt->pPager;
10510   sCheck.nPage = btreePagecount(sCheck.pBt);
10511   sCheck.mxErr = mxErr;
10512   sCheck.nErr = 0;
10513   sCheck.bOomFault = 0;
10514   sCheck.zPfx = 0;
10515   sCheck.v1 = 0;
10516   sCheck.v2 = 0;
10517   sCheck.aPgRef = 0;
10518   sCheck.heap = 0;
10519   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10520   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10521   if( sCheck.nPage==0 ){
10522     goto integrity_ck_cleanup;
10523   }
10524 
10525   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10526   if( !sCheck.aPgRef ){
10527     sCheck.bOomFault = 1;
10528     goto integrity_ck_cleanup;
10529   }
10530   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10531   if( sCheck.heap==0 ){
10532     sCheck.bOomFault = 1;
10533     goto integrity_ck_cleanup;
10534   }
10535 
10536   i = PENDING_BYTE_PAGE(pBt);
10537   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10538 
10539   /* Check the integrity of the freelist
10540   */
10541   if( bCkFreelist ){
10542     sCheck.zPfx = "Main freelist: ";
10543     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10544               get4byte(&pBt->pPage1->aData[36]));
10545     sCheck.zPfx = 0;
10546   }
10547 
10548   /* Check all the tables.
10549   */
10550 #ifndef SQLITE_OMIT_AUTOVACUUM
10551   if( !bPartial ){
10552     if( pBt->autoVacuum ){
10553       Pgno mx = 0;
10554       Pgno mxInHdr;
10555       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10556       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10557       if( mx!=mxInHdr ){
10558         checkAppendMsg(&sCheck,
10559           "max rootpage (%d) disagrees with header (%d)",
10560           mx, mxInHdr
10561         );
10562       }
10563     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10564       checkAppendMsg(&sCheck,
10565         "incremental_vacuum enabled with a max rootpage of zero"
10566       );
10567     }
10568   }
10569 #endif
10570   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10571   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10572   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10573     i64 notUsed;
10574     if( aRoot[i]==0 ) continue;
10575 #ifndef SQLITE_OMIT_AUTOVACUUM
10576     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10577       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10578     }
10579 #endif
10580     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10581   }
10582   pBt->db->flags = savedDbFlags;
10583 
10584   /* Make sure every page in the file is referenced
10585   */
10586   if( !bPartial ){
10587     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10588 #ifdef SQLITE_OMIT_AUTOVACUUM
10589       if( getPageReferenced(&sCheck, i)==0 ){
10590         checkAppendMsg(&sCheck, "Page %d is never used", i);
10591       }
10592 #else
10593       /* If the database supports auto-vacuum, make sure no tables contain
10594       ** references to pointer-map pages.
10595       */
10596       if( getPageReferenced(&sCheck, i)==0 &&
10597          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10598         checkAppendMsg(&sCheck, "Page %d is never used", i);
10599       }
10600       if( getPageReferenced(&sCheck, i)!=0 &&
10601          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10602         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10603       }
10604 #endif
10605     }
10606   }
10607 
10608   /* Clean  up and report errors.
10609   */
10610 integrity_ck_cleanup:
10611   sqlite3PageFree(sCheck.heap);
10612   sqlite3_free(sCheck.aPgRef);
10613   if( sCheck.bOomFault ){
10614     sqlite3_str_reset(&sCheck.errMsg);
10615     sCheck.nErr++;
10616   }
10617   *pnErr = sCheck.nErr;
10618   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10619   /* Make sure this analysis did not leave any unref() pages. */
10620   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10621   sqlite3BtreeLeave(p);
10622   return sqlite3StrAccumFinish(&sCheck.errMsg);
10623 }
10624 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10625 
10626 /*
10627 ** Return the full pathname of the underlying database file.  Return
10628 ** an empty string if the database is in-memory or a TEMP database.
10629 **
10630 ** The pager filename is invariant as long as the pager is
10631 ** open so it is safe to access without the BtShared mutex.
10632 */
10633 const char *sqlite3BtreeGetFilename(Btree *p){
10634   assert( p->pBt->pPager!=0 );
10635   return sqlite3PagerFilename(p->pBt->pPager, 1);
10636 }
10637 
10638 /*
10639 ** Return the pathname of the journal file for this database. The return
10640 ** value of this routine is the same regardless of whether the journal file
10641 ** has been created or not.
10642 **
10643 ** The pager journal filename is invariant as long as the pager is
10644 ** open so it is safe to access without the BtShared mutex.
10645 */
10646 const char *sqlite3BtreeGetJournalname(Btree *p){
10647   assert( p->pBt->pPager!=0 );
10648   return sqlite3PagerJournalname(p->pBt->pPager);
10649 }
10650 
10651 /*
10652 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10653 ** to describe the current transaction state of Btree p.
10654 */
10655 int sqlite3BtreeTxnState(Btree *p){
10656   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10657   return p ? p->inTrans : 0;
10658 }
10659 
10660 #ifndef SQLITE_OMIT_WAL
10661 /*
10662 ** Run a checkpoint on the Btree passed as the first argument.
10663 **
10664 ** Return SQLITE_LOCKED if this or any other connection has an open
10665 ** transaction on the shared-cache the argument Btree is connected to.
10666 **
10667 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10668 */
10669 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10670   int rc = SQLITE_OK;
10671   if( p ){
10672     BtShared *pBt = p->pBt;
10673     sqlite3BtreeEnter(p);
10674     if( pBt->inTransaction!=TRANS_NONE ){
10675       rc = SQLITE_LOCKED;
10676     }else{
10677       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10678     }
10679     sqlite3BtreeLeave(p);
10680   }
10681   return rc;
10682 }
10683 #endif
10684 
10685 /*
10686 ** Return true if there is currently a backup running on Btree p.
10687 */
10688 int sqlite3BtreeIsInBackup(Btree *p){
10689   assert( p );
10690   assert( sqlite3_mutex_held(p->db->mutex) );
10691   return p->nBackup!=0;
10692 }
10693 
10694 /*
10695 ** This function returns a pointer to a blob of memory associated with
10696 ** a single shared-btree. The memory is used by client code for its own
10697 ** purposes (for example, to store a high-level schema associated with
10698 ** the shared-btree). The btree layer manages reference counting issues.
10699 **
10700 ** The first time this is called on a shared-btree, nBytes bytes of memory
10701 ** are allocated, zeroed, and returned to the caller. For each subsequent
10702 ** call the nBytes parameter is ignored and a pointer to the same blob
10703 ** of memory returned.
10704 **
10705 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10706 ** allocated, a null pointer is returned. If the blob has already been
10707 ** allocated, it is returned as normal.
10708 **
10709 ** Just before the shared-btree is closed, the function passed as the
10710 ** xFree argument when the memory allocation was made is invoked on the
10711 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10712 ** on the memory, the btree layer does that.
10713 */
10714 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10715   BtShared *pBt = p->pBt;
10716   sqlite3BtreeEnter(p);
10717   if( !pBt->pSchema && nBytes ){
10718     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10719     pBt->xFreeSchema = xFree;
10720   }
10721   sqlite3BtreeLeave(p);
10722   return pBt->pSchema;
10723 }
10724 
10725 /*
10726 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10727 ** btree as the argument handle holds an exclusive lock on the
10728 ** sqlite_schema table. Otherwise SQLITE_OK.
10729 */
10730 int sqlite3BtreeSchemaLocked(Btree *p){
10731   int rc;
10732   assert( sqlite3_mutex_held(p->db->mutex) );
10733   sqlite3BtreeEnter(p);
10734   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10735   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10736   sqlite3BtreeLeave(p);
10737   return rc;
10738 }
10739 
10740 
10741 #ifndef SQLITE_OMIT_SHARED_CACHE
10742 /*
10743 ** Obtain a lock on the table whose root page is iTab.  The
10744 ** lock is a write lock if isWritelock is true or a read lock
10745 ** if it is false.
10746 */
10747 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10748   int rc = SQLITE_OK;
10749   assert( p->inTrans!=TRANS_NONE );
10750   if( p->sharable ){
10751     u8 lockType = READ_LOCK + isWriteLock;
10752     assert( READ_LOCK+1==WRITE_LOCK );
10753     assert( isWriteLock==0 || isWriteLock==1 );
10754 
10755     sqlite3BtreeEnter(p);
10756     rc = querySharedCacheTableLock(p, iTab, lockType);
10757     if( rc==SQLITE_OK ){
10758       rc = setSharedCacheTableLock(p, iTab, lockType);
10759     }
10760     sqlite3BtreeLeave(p);
10761   }
10762   return rc;
10763 }
10764 #endif
10765 
10766 #ifndef SQLITE_OMIT_INCRBLOB
10767 /*
10768 ** Argument pCsr must be a cursor opened for writing on an
10769 ** INTKEY table currently pointing at a valid table entry.
10770 ** This function modifies the data stored as part of that entry.
10771 **
10772 ** Only the data content may only be modified, it is not possible to
10773 ** change the length of the data stored. If this function is called with
10774 ** parameters that attempt to write past the end of the existing data,
10775 ** no modifications are made and SQLITE_CORRUPT is returned.
10776 */
10777 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10778   int rc;
10779   assert( cursorOwnsBtShared(pCsr) );
10780   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10781   assert( pCsr->curFlags & BTCF_Incrblob );
10782 
10783   rc = restoreCursorPosition(pCsr);
10784   if( rc!=SQLITE_OK ){
10785     return rc;
10786   }
10787   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10788   if( pCsr->eState!=CURSOR_VALID ){
10789     return SQLITE_ABORT;
10790   }
10791 
10792   /* Save the positions of all other cursors open on this table. This is
10793   ** required in case any of them are holding references to an xFetch
10794   ** version of the b-tree page modified by the accessPayload call below.
10795   **
10796   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10797   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10798   ** saveAllCursors can only return SQLITE_OK.
10799   */
10800   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10801   assert( rc==SQLITE_OK );
10802 
10803   /* Check some assumptions:
10804   **   (a) the cursor is open for writing,
10805   **   (b) there is a read/write transaction open,
10806   **   (c) the connection holds a write-lock on the table (if required),
10807   **   (d) there are no conflicting read-locks, and
10808   **   (e) the cursor points at a valid row of an intKey table.
10809   */
10810   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10811     return SQLITE_READONLY;
10812   }
10813   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10814               && pCsr->pBt->inTransaction==TRANS_WRITE );
10815   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10816   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10817   assert( pCsr->pPage->intKey );
10818 
10819   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10820 }
10821 
10822 /*
10823 ** Mark this cursor as an incremental blob cursor.
10824 */
10825 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10826   pCur->curFlags |= BTCF_Incrblob;
10827   pCur->pBtree->hasIncrblobCur = 1;
10828 }
10829 #endif
10830 
10831 /*
10832 ** Set both the "read version" (single byte at byte offset 18) and
10833 ** "write version" (single byte at byte offset 19) fields in the database
10834 ** header to iVersion.
10835 */
10836 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10837   BtShared *pBt = pBtree->pBt;
10838   int rc;                         /* Return code */
10839 
10840   assert( iVersion==1 || iVersion==2 );
10841 
10842   /* If setting the version fields to 1, do not automatically open the
10843   ** WAL connection, even if the version fields are currently set to 2.
10844   */
10845   pBt->btsFlags &= ~BTS_NO_WAL;
10846   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10847 
10848   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10849   if( rc==SQLITE_OK ){
10850     u8 *aData = pBt->pPage1->aData;
10851     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10852       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10853       if( rc==SQLITE_OK ){
10854         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10855         if( rc==SQLITE_OK ){
10856           aData[18] = (u8)iVersion;
10857           aData[19] = (u8)iVersion;
10858         }
10859       }
10860     }
10861   }
10862 
10863   pBt->btsFlags &= ~BTS_NO_WAL;
10864   return rc;
10865 }
10866 
10867 /*
10868 ** Return true if the cursor has a hint specified.  This routine is
10869 ** only used from within assert() statements
10870 */
10871 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10872   return (pCsr->hints & mask)!=0;
10873 }
10874 
10875 /*
10876 ** Return true if the given Btree is read-only.
10877 */
10878 int sqlite3BtreeIsReadonly(Btree *p){
10879   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10880 }
10881 
10882 /*
10883 ** Return the size of the header added to each page by this module.
10884 */
10885 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10886 
10887 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10888 /*
10889 ** Return true if the Btree passed as the only argument is sharable.
10890 */
10891 int sqlite3BtreeSharable(Btree *p){
10892   return p->sharable;
10893 }
10894 
10895 /*
10896 ** Return the number of connections to the BtShared object accessed by
10897 ** the Btree handle passed as the only argument. For private caches
10898 ** this is always 1. For shared caches it may be 1 or greater.
10899 */
10900 int sqlite3BtreeConnectionCount(Btree *p){
10901   testcase( p->sharable );
10902   return p->pBt->nRef;
10903 }
10904 #endif
10905