xref: /sqlite-3.40.0/src/btree.c (revision 8f0c712a)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content */
664     void *pKey;
665     pCur->nKey = sqlite3BtreePayloadSize(pCur);
666     pKey = sqlite3Malloc( pCur->nKey );
667     if( pKey ){
668       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
669       if( rc==SQLITE_OK ){
670         pCur->pKey = pKey;
671       }else{
672         sqlite3_free(pKey);
673       }
674     }else{
675       rc = SQLITE_NOMEM_BKPT;
676     }
677   }
678   assert( !pCur->curIntKey || !pCur->pKey );
679   return rc;
680 }
681 
682 /*
683 ** Save the current cursor position in the variables BtCursor.nKey
684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
685 **
686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687 ** prior to calling this routine.
688 */
689 static int saveCursorPosition(BtCursor *pCur){
690   int rc;
691 
692   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
693   assert( 0==pCur->pKey );
694   assert( cursorHoldsMutex(pCur) );
695 
696   if( pCur->eState==CURSOR_SKIPNEXT ){
697     pCur->eState = CURSOR_VALID;
698   }else{
699     pCur->skipNext = 0;
700   }
701 
702   rc = saveCursorKey(pCur);
703   if( rc==SQLITE_OK ){
704     btreeReleaseAllCursorPages(pCur);
705     pCur->eState = CURSOR_REQUIRESEEK;
706   }
707 
708   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
709   return rc;
710 }
711 
712 /* Forward reference */
713 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
714 
715 /*
716 ** Save the positions of all cursors (except pExcept) that are open on
717 ** the table with root-page iRoot.  "Saving the cursor position" means that
718 ** the location in the btree is remembered in such a way that it can be
719 ** moved back to the same spot after the btree has been modified.  This
720 ** routine is called just before cursor pExcept is used to modify the
721 ** table, for example in BtreeDelete() or BtreeInsert().
722 **
723 ** If there are two or more cursors on the same btree, then all such
724 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
725 ** routine enforces that rule.  This routine only needs to be called in
726 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
727 **
728 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730 ** pointless call to this routine.
731 **
732 ** Implementation note:  This routine merely checks to see if any cursors
733 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
734 ** event that cursors are in need to being saved.
735 */
736 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
737   BtCursor *p;
738   assert( sqlite3_mutex_held(pBt->mutex) );
739   assert( pExcept==0 || pExcept->pBt==pBt );
740   for(p=pBt->pCursor; p; p=p->pNext){
741     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
742   }
743   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
744   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
745   return SQLITE_OK;
746 }
747 
748 /* This helper routine to saveAllCursors does the actual work of saving
749 ** the cursors if and when a cursor is found that actually requires saving.
750 ** The common case is that no cursors need to be saved, so this routine is
751 ** broken out from its caller to avoid unnecessary stack pointer movement.
752 */
753 static int SQLITE_NOINLINE saveCursorsOnList(
754   BtCursor *p,         /* The first cursor that needs saving */
755   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
756   BtCursor *pExcept    /* Do not save this cursor */
757 ){
758   do{
759     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
760       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
761         int rc = saveCursorPosition(p);
762         if( SQLITE_OK!=rc ){
763           return rc;
764         }
765       }else{
766         testcase( p->iPage>=0 );
767         btreeReleaseAllCursorPages(p);
768       }
769     }
770     p = p->pNext;
771   }while( p );
772   return SQLITE_OK;
773 }
774 
775 /*
776 ** Clear the current cursor position.
777 */
778 void sqlite3BtreeClearCursor(BtCursor *pCur){
779   assert( cursorHoldsMutex(pCur) );
780   sqlite3_free(pCur->pKey);
781   pCur->pKey = 0;
782   pCur->eState = CURSOR_INVALID;
783 }
784 
785 /*
786 ** In this version of BtreeMoveto, pKey is a packed index record
787 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
788 ** record and then call BtreeMovetoUnpacked() to do the work.
789 */
790 static int btreeMoveto(
791   BtCursor *pCur,     /* Cursor open on the btree to be searched */
792   const void *pKey,   /* Packed key if the btree is an index */
793   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
794   int bias,           /* Bias search to the high end */
795   int *pRes           /* Write search results here */
796 ){
797   int rc;                    /* Status code */
798   UnpackedRecord *pIdxKey;   /* Unpacked index key */
799 
800   if( pKey ){
801     assert( nKey==(i64)(int)nKey );
802     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
803     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
804     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
805     if( pIdxKey->nField==0 ){
806       rc = SQLITE_CORRUPT_BKPT;
807       goto moveto_done;
808     }
809   }else{
810     pIdxKey = 0;
811   }
812   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
813 moveto_done:
814   if( pIdxKey ){
815     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
816   }
817   return rc;
818 }
819 
820 /*
821 ** Restore the cursor to the position it was in (or as close to as possible)
822 ** when saveCursorPosition() was called. Note that this call deletes the
823 ** saved position info stored by saveCursorPosition(), so there can be
824 ** at most one effective restoreCursorPosition() call after each
825 ** saveCursorPosition().
826 */
827 static int btreeRestoreCursorPosition(BtCursor *pCur){
828   int rc;
829   int skipNext;
830   assert( cursorOwnsBtShared(pCur) );
831   assert( pCur->eState>=CURSOR_REQUIRESEEK );
832   if( pCur->eState==CURSOR_FAULT ){
833     return pCur->skipNext;
834   }
835   pCur->eState = CURSOR_INVALID;
836   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
837   if( rc==SQLITE_OK ){
838     sqlite3_free(pCur->pKey);
839     pCur->pKey = 0;
840     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
841     pCur->skipNext |= skipNext;
842     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
843       pCur->eState = CURSOR_SKIPNEXT;
844     }
845   }
846   return rc;
847 }
848 
849 #define restoreCursorPosition(p) \
850   (p->eState>=CURSOR_REQUIRESEEK ? \
851          btreeRestoreCursorPosition(p) : \
852          SQLITE_OK)
853 
854 /*
855 ** Determine whether or not a cursor has moved from the position where
856 ** it was last placed, or has been invalidated for any other reason.
857 ** Cursors can move when the row they are pointing at is deleted out
858 ** from under them, for example.  Cursor might also move if a btree
859 ** is rebalanced.
860 **
861 ** Calling this routine with a NULL cursor pointer returns false.
862 **
863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864 ** back to where it ought to be if this routine returns true.
865 */
866 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
867   assert( EIGHT_BYTE_ALIGNMENT(pCur)
868        || pCur==sqlite3BtreeFakeValidCursor() );
869   assert( offsetof(BtCursor, eState)==0 );
870   assert( sizeof(pCur->eState)==1 );
871   return CURSOR_VALID != *(u8*)pCur;
872 }
873 
874 /*
875 ** Return a pointer to a fake BtCursor object that will always answer
876 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
877 ** cursor returned must not be used with any other Btree interface.
878 */
879 BtCursor *sqlite3BtreeFakeValidCursor(void){
880   static u8 fakeCursor = CURSOR_VALID;
881   assert( offsetof(BtCursor, eState)==0 );
882   return (BtCursor*)&fakeCursor;
883 }
884 
885 /*
886 ** This routine restores a cursor back to its original position after it
887 ** has been moved by some outside activity (such as a btree rebalance or
888 ** a row having been deleted out from under the cursor).
889 **
890 ** On success, the *pDifferentRow parameter is false if the cursor is left
891 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
892 ** was pointing to has been deleted, forcing the cursor to point to some
893 ** nearby row.
894 **
895 ** This routine should only be called for a cursor that just returned
896 ** TRUE from sqlite3BtreeCursorHasMoved().
897 */
898 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
899   int rc;
900 
901   assert( pCur!=0 );
902   assert( pCur->eState!=CURSOR_VALID );
903   rc = restoreCursorPosition(pCur);
904   if( rc ){
905     *pDifferentRow = 1;
906     return rc;
907   }
908   if( pCur->eState!=CURSOR_VALID ){
909     *pDifferentRow = 1;
910   }else{
911     assert( pCur->skipNext==0 );
912     *pDifferentRow = 0;
913   }
914   return SQLITE_OK;
915 }
916 
917 #ifdef SQLITE_ENABLE_CURSOR_HINTS
918 /*
919 ** Provide hints to the cursor.  The particular hint given (and the type
920 ** and number of the varargs parameters) is determined by the eHintType
921 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
922 */
923 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
924   /* Used only by system that substitute their own storage engine */
925 }
926 #endif
927 
928 /*
929 ** Provide flag hints to the cursor.
930 */
931 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
932   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
933   pCur->hints = x;
934 }
935 
936 
937 #ifndef SQLITE_OMIT_AUTOVACUUM
938 /*
939 ** Given a page number of a regular database page, return the page
940 ** number for the pointer-map page that contains the entry for the
941 ** input page number.
942 **
943 ** Return 0 (not a valid page) for pgno==1 since there is
944 ** no pointer map associated with page 1.  The integrity_check logic
945 ** requires that ptrmapPageno(*,1)!=1.
946 */
947 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
948   int nPagesPerMapPage;
949   Pgno iPtrMap, ret;
950   assert( sqlite3_mutex_held(pBt->mutex) );
951   if( pgno<2 ) return 0;
952   nPagesPerMapPage = (pBt->usableSize/5)+1;
953   iPtrMap = (pgno-2)/nPagesPerMapPage;
954   ret = (iPtrMap*nPagesPerMapPage) + 2;
955   if( ret==PENDING_BYTE_PAGE(pBt) ){
956     ret++;
957   }
958   return ret;
959 }
960 
961 /*
962 ** Write an entry into the pointer map.
963 **
964 ** This routine updates the pointer map entry for page number 'key'
965 ** so that it maps to type 'eType' and parent page number 'pgno'.
966 **
967 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
968 ** a no-op.  If an error occurs, the appropriate error code is written
969 ** into *pRC.
970 */
971 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
972   DbPage *pDbPage;  /* The pointer map page */
973   u8 *pPtrmap;      /* The pointer map data */
974   Pgno iPtrmap;     /* The pointer map page number */
975   int offset;       /* Offset in pointer map page */
976   int rc;           /* Return code from subfunctions */
977 
978   if( *pRC ) return;
979 
980   assert( sqlite3_mutex_held(pBt->mutex) );
981   /* The master-journal page number must never be used as a pointer map page */
982   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
983 
984   assert( pBt->autoVacuum );
985   if( key==0 ){
986     *pRC = SQLITE_CORRUPT_BKPT;
987     return;
988   }
989   iPtrmap = PTRMAP_PAGENO(pBt, key);
990   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
991   if( rc!=SQLITE_OK ){
992     *pRC = rc;
993     return;
994   }
995   offset = PTRMAP_PTROFFSET(iPtrmap, key);
996   if( offset<0 ){
997     *pRC = SQLITE_CORRUPT_BKPT;
998     goto ptrmap_exit;
999   }
1000   assert( offset <= (int)pBt->usableSize-5 );
1001   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1002 
1003   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1004     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1005     *pRC= rc = sqlite3PagerWrite(pDbPage);
1006     if( rc==SQLITE_OK ){
1007       pPtrmap[offset] = eType;
1008       put4byte(&pPtrmap[offset+1], parent);
1009     }
1010   }
1011 
1012 ptrmap_exit:
1013   sqlite3PagerUnref(pDbPage);
1014 }
1015 
1016 /*
1017 ** Read an entry from the pointer map.
1018 **
1019 ** This routine retrieves the pointer map entry for page 'key', writing
1020 ** the type and parent page number to *pEType and *pPgno respectively.
1021 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1022 */
1023 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1024   DbPage *pDbPage;   /* The pointer map page */
1025   int iPtrmap;       /* Pointer map page index */
1026   u8 *pPtrmap;       /* Pointer map page data */
1027   int offset;        /* Offset of entry in pointer map */
1028   int rc;
1029 
1030   assert( sqlite3_mutex_held(pBt->mutex) );
1031 
1032   iPtrmap = PTRMAP_PAGENO(pBt, key);
1033   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1034   if( rc!=0 ){
1035     return rc;
1036   }
1037   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1038 
1039   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1040   if( offset<0 ){
1041     sqlite3PagerUnref(pDbPage);
1042     return SQLITE_CORRUPT_BKPT;
1043   }
1044   assert( offset <= (int)pBt->usableSize-5 );
1045   assert( pEType!=0 );
1046   *pEType = pPtrmap[offset];
1047   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1048 
1049   sqlite3PagerUnref(pDbPage);
1050   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1051   return SQLITE_OK;
1052 }
1053 
1054 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1055   #define ptrmapPut(w,x,y,z,rc)
1056   #define ptrmapGet(w,x,y,z) SQLITE_OK
1057   #define ptrmapPutOvflPtr(x, y, rc)
1058 #endif
1059 
1060 /*
1061 ** Given a btree page and a cell index (0 means the first cell on
1062 ** the page, 1 means the second cell, and so forth) return a pointer
1063 ** to the cell content.
1064 **
1065 ** findCellPastPtr() does the same except it skips past the initial
1066 ** 4-byte child pointer found on interior pages, if there is one.
1067 **
1068 ** This routine works only for pages that do not contain overflow cells.
1069 */
1070 #define findCell(P,I) \
1071   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1072 #define findCellPastPtr(P,I) \
1073   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1074 
1075 
1076 /*
1077 ** This is common tail processing for btreeParseCellPtr() and
1078 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1079 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1080 ** structure.
1081 */
1082 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1083   MemPage *pPage,         /* Page containing the cell */
1084   u8 *pCell,              /* Pointer to the cell text. */
1085   CellInfo *pInfo         /* Fill in this structure */
1086 ){
1087   /* If the payload will not fit completely on the local page, we have
1088   ** to decide how much to store locally and how much to spill onto
1089   ** overflow pages.  The strategy is to minimize the amount of unused
1090   ** space on overflow pages while keeping the amount of local storage
1091   ** in between minLocal and maxLocal.
1092   **
1093   ** Warning:  changing the way overflow payload is distributed in any
1094   ** way will result in an incompatible file format.
1095   */
1096   int minLocal;  /* Minimum amount of payload held locally */
1097   int maxLocal;  /* Maximum amount of payload held locally */
1098   int surplus;   /* Overflow payload available for local storage */
1099 
1100   minLocal = pPage->minLocal;
1101   maxLocal = pPage->maxLocal;
1102   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1103   testcase( surplus==maxLocal );
1104   testcase( surplus==maxLocal+1 );
1105   if( surplus <= maxLocal ){
1106     pInfo->nLocal = (u16)surplus;
1107   }else{
1108     pInfo->nLocal = (u16)minLocal;
1109   }
1110   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1111 }
1112 
1113 /*
1114 ** The following routines are implementations of the MemPage.xParseCell()
1115 ** method.
1116 **
1117 ** Parse a cell content block and fill in the CellInfo structure.
1118 **
1119 ** btreeParseCellPtr()        =>   table btree leaf nodes
1120 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1121 ** btreeParseCellPtrIndex()   =>   index btree nodes
1122 **
1123 ** There is also a wrapper function btreeParseCell() that works for
1124 ** all MemPage types and that references the cell by index rather than
1125 ** by pointer.
1126 */
1127 static void btreeParseCellPtrNoPayload(
1128   MemPage *pPage,         /* Page containing the cell */
1129   u8 *pCell,              /* Pointer to the cell text. */
1130   CellInfo *pInfo         /* Fill in this structure */
1131 ){
1132   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1133   assert( pPage->leaf==0 );
1134   assert( pPage->childPtrSize==4 );
1135 #ifndef SQLITE_DEBUG
1136   UNUSED_PARAMETER(pPage);
1137 #endif
1138   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1139   pInfo->nPayload = 0;
1140   pInfo->nLocal = 0;
1141   pInfo->pPayload = 0;
1142   return;
1143 }
1144 static void btreeParseCellPtr(
1145   MemPage *pPage,         /* Page containing the cell */
1146   u8 *pCell,              /* Pointer to the cell text. */
1147   CellInfo *pInfo         /* Fill in this structure */
1148 ){
1149   u8 *pIter;              /* For scanning through pCell */
1150   u32 nPayload;           /* Number of bytes of cell payload */
1151   u64 iKey;               /* Extracted Key value */
1152 
1153   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1154   assert( pPage->leaf==0 || pPage->leaf==1 );
1155   assert( pPage->intKeyLeaf );
1156   assert( pPage->childPtrSize==0 );
1157   pIter = pCell;
1158 
1159   /* The next block of code is equivalent to:
1160   **
1161   **     pIter += getVarint32(pIter, nPayload);
1162   **
1163   ** The code is inlined to avoid a function call.
1164   */
1165   nPayload = *pIter;
1166   if( nPayload>=0x80 ){
1167     u8 *pEnd = &pIter[8];
1168     nPayload &= 0x7f;
1169     do{
1170       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1171     }while( (*pIter)>=0x80 && pIter<pEnd );
1172   }
1173   pIter++;
1174 
1175   /* The next block of code is equivalent to:
1176   **
1177   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1178   **
1179   ** The code is inlined to avoid a function call.
1180   */
1181   iKey = *pIter;
1182   if( iKey>=0x80 ){
1183     u8 *pEnd = &pIter[7];
1184     iKey &= 0x7f;
1185     while(1){
1186       iKey = (iKey<<7) | (*++pIter & 0x7f);
1187       if( (*pIter)<0x80 ) break;
1188       if( pIter>=pEnd ){
1189         iKey = (iKey<<8) | *++pIter;
1190         break;
1191       }
1192     }
1193   }
1194   pIter++;
1195 
1196   pInfo->nKey = *(i64*)&iKey;
1197   pInfo->nPayload = nPayload;
1198   pInfo->pPayload = pIter;
1199   testcase( nPayload==pPage->maxLocal );
1200   testcase( nPayload==pPage->maxLocal+1 );
1201   if( nPayload<=pPage->maxLocal ){
1202     /* This is the (easy) common case where the entire payload fits
1203     ** on the local page.  No overflow is required.
1204     */
1205     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1206     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1207     pInfo->nLocal = (u16)nPayload;
1208   }else{
1209     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1210   }
1211 }
1212 static void btreeParseCellPtrIndex(
1213   MemPage *pPage,         /* Page containing the cell */
1214   u8 *pCell,              /* Pointer to the cell text. */
1215   CellInfo *pInfo         /* Fill in this structure */
1216 ){
1217   u8 *pIter;              /* For scanning through pCell */
1218   u32 nPayload;           /* Number of bytes of cell payload */
1219 
1220   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1221   assert( pPage->leaf==0 || pPage->leaf==1 );
1222   assert( pPage->intKeyLeaf==0 );
1223   pIter = pCell + pPage->childPtrSize;
1224   nPayload = *pIter;
1225   if( nPayload>=0x80 ){
1226     u8 *pEnd = &pIter[8];
1227     nPayload &= 0x7f;
1228     do{
1229       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1230     }while( *(pIter)>=0x80 && pIter<pEnd );
1231   }
1232   pIter++;
1233   pInfo->nKey = nPayload;
1234   pInfo->nPayload = nPayload;
1235   pInfo->pPayload = pIter;
1236   testcase( nPayload==pPage->maxLocal );
1237   testcase( nPayload==pPage->maxLocal+1 );
1238   if( nPayload<=pPage->maxLocal ){
1239     /* This is the (easy) common case where the entire payload fits
1240     ** on the local page.  No overflow is required.
1241     */
1242     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1243     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1244     pInfo->nLocal = (u16)nPayload;
1245   }else{
1246     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1247   }
1248 }
1249 static void btreeParseCell(
1250   MemPage *pPage,         /* Page containing the cell */
1251   int iCell,              /* The cell index.  First cell is 0 */
1252   CellInfo *pInfo         /* Fill in this structure */
1253 ){
1254   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1255 }
1256 
1257 /*
1258 ** The following routines are implementations of the MemPage.xCellSize
1259 ** method.
1260 **
1261 ** Compute the total number of bytes that a Cell needs in the cell
1262 ** data area of the btree-page.  The return number includes the cell
1263 ** data header and the local payload, but not any overflow page or
1264 ** the space used by the cell pointer.
1265 **
1266 ** cellSizePtrNoPayload()    =>   table internal nodes
1267 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1268 */
1269 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1270   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1271   u8 *pEnd;                                /* End mark for a varint */
1272   u32 nSize;                               /* Size value to return */
1273 
1274 #ifdef SQLITE_DEBUG
1275   /* The value returned by this function should always be the same as
1276   ** the (CellInfo.nSize) value found by doing a full parse of the
1277   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278   ** this function verifies that this invariant is not violated. */
1279   CellInfo debuginfo;
1280   pPage->xParseCell(pPage, pCell, &debuginfo);
1281 #endif
1282 
1283   nSize = *pIter;
1284   if( nSize>=0x80 ){
1285     pEnd = &pIter[8];
1286     nSize &= 0x7f;
1287     do{
1288       nSize = (nSize<<7) | (*++pIter & 0x7f);
1289     }while( *(pIter)>=0x80 && pIter<pEnd );
1290   }
1291   pIter++;
1292   if( pPage->intKey ){
1293     /* pIter now points at the 64-bit integer key value, a variable length
1294     ** integer. The following block moves pIter to point at the first byte
1295     ** past the end of the key value. */
1296     pEnd = &pIter[9];
1297     while( (*pIter++)&0x80 && pIter<pEnd );
1298   }
1299   testcase( nSize==pPage->maxLocal );
1300   testcase( nSize==pPage->maxLocal+1 );
1301   if( nSize<=pPage->maxLocal ){
1302     nSize += (u32)(pIter - pCell);
1303     if( nSize<4 ) nSize = 4;
1304   }else{
1305     int minLocal = pPage->minLocal;
1306     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1307     testcase( nSize==pPage->maxLocal );
1308     testcase( nSize==pPage->maxLocal+1 );
1309     if( nSize>pPage->maxLocal ){
1310       nSize = minLocal;
1311     }
1312     nSize += 4 + (u16)(pIter - pCell);
1313   }
1314   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1315   return (u16)nSize;
1316 }
1317 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1318   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1319   u8 *pEnd;              /* End mark for a varint */
1320 
1321 #ifdef SQLITE_DEBUG
1322   /* The value returned by this function should always be the same as
1323   ** the (CellInfo.nSize) value found by doing a full parse of the
1324   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1325   ** this function verifies that this invariant is not violated. */
1326   CellInfo debuginfo;
1327   pPage->xParseCell(pPage, pCell, &debuginfo);
1328 #else
1329   UNUSED_PARAMETER(pPage);
1330 #endif
1331 
1332   assert( pPage->childPtrSize==4 );
1333   pEnd = pIter + 9;
1334   while( (*pIter++)&0x80 && pIter<pEnd );
1335   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1336   return (u16)(pIter - pCell);
1337 }
1338 
1339 
1340 #ifdef SQLITE_DEBUG
1341 /* This variation on cellSizePtr() is used inside of assert() statements
1342 ** only. */
1343 static u16 cellSize(MemPage *pPage, int iCell){
1344   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1345 }
1346 #endif
1347 
1348 #ifndef SQLITE_OMIT_AUTOVACUUM
1349 /*
1350 ** If the cell pCell, part of page pPage contains a pointer
1351 ** to an overflow page, insert an entry into the pointer-map
1352 ** for the overflow page.
1353 */
1354 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1355   CellInfo info;
1356   if( *pRC ) return;
1357   assert( pCell!=0 );
1358   pPage->xParseCell(pPage, pCell, &info);
1359   if( info.nLocal<info.nPayload ){
1360     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1361     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1362   }
1363 }
1364 #endif
1365 
1366 
1367 /*
1368 ** Defragment the page given. This routine reorganizes cells within the
1369 ** page so that there are no free-blocks on the free-block list.
1370 **
1371 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1372 ** present in the page after this routine returns.
1373 **
1374 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1375 ** b-tree page so that there are no freeblocks or fragment bytes, all
1376 ** unused bytes are contained in the unallocated space region, and all
1377 ** cells are packed tightly at the end of the page.
1378 */
1379 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1380   int i;                     /* Loop counter */
1381   int pc;                    /* Address of the i-th cell */
1382   int hdr;                   /* Offset to the page header */
1383   int size;                  /* Size of a cell */
1384   int usableSize;            /* Number of usable bytes on a page */
1385   int cellOffset;            /* Offset to the cell pointer array */
1386   int cbrk;                  /* Offset to the cell content area */
1387   int nCell;                 /* Number of cells on the page */
1388   unsigned char *data;       /* The page data */
1389   unsigned char *temp;       /* Temp area for cell content */
1390   unsigned char *src;        /* Source of content */
1391   int iCellFirst;            /* First allowable cell index */
1392   int iCellLast;             /* Last possible cell index */
1393 
1394   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1395   assert( pPage->pBt!=0 );
1396   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1397   assert( pPage->nOverflow==0 );
1398   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1399   temp = 0;
1400   src = data = pPage->aData;
1401   hdr = pPage->hdrOffset;
1402   cellOffset = pPage->cellOffset;
1403   nCell = pPage->nCell;
1404   assert( nCell==get2byte(&data[hdr+3]) );
1405   iCellFirst = cellOffset + 2*nCell;
1406   usableSize = pPage->pBt->usableSize;
1407 
1408   /* This block handles pages with two or fewer free blocks and nMaxFrag
1409   ** or fewer fragmented bytes. In this case it is faster to move the
1410   ** two (or one) blocks of cells using memmove() and add the required
1411   ** offsets to each pointer in the cell-pointer array than it is to
1412   ** reconstruct the entire page.  */
1413   if( (int)data[hdr+7]<=nMaxFrag ){
1414     int iFree = get2byte(&data[hdr+1]);
1415     if( iFree ){
1416       int iFree2 = get2byte(&data[iFree]);
1417 
1418       /* pageFindSlot() has already verified that free blocks are sorted
1419       ** in order of offset within the page, and that no block extends
1420       ** past the end of the page. Provided the two free slots do not
1421       ** overlap, this guarantees that the memmove() calls below will not
1422       ** overwrite the usableSize byte buffer, even if the database page
1423       ** is corrupt.  */
1424       assert( iFree2==0 || iFree2>iFree );
1425       assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1426       assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1427 
1428       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1429         u8 *pEnd = &data[cellOffset + nCell*2];
1430         u8 *pAddr;
1431         int sz2 = 0;
1432         int sz = get2byte(&data[iFree+2]);
1433         int top = get2byte(&data[hdr+5]);
1434         if( top>=iFree ){
1435           return SQLITE_CORRUPT_PAGE(pPage);
1436         }
1437         if( iFree2 ){
1438           assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
1439           sz2 = get2byte(&data[iFree2+2]);
1440           assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
1441           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1442           sz += sz2;
1443         }
1444         cbrk = top+sz;
1445         assert( cbrk+(iFree-top) <= usableSize );
1446         memmove(&data[cbrk], &data[top], iFree-top);
1447         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1448           pc = get2byte(pAddr);
1449           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1450           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1451         }
1452         goto defragment_out;
1453       }
1454     }
1455   }
1456 
1457   cbrk = usableSize;
1458   iCellLast = usableSize - 4;
1459   for(i=0; i<nCell; i++){
1460     u8 *pAddr;     /* The i-th cell pointer */
1461     pAddr = &data[cellOffset + i*2];
1462     pc = get2byte(pAddr);
1463     testcase( pc==iCellFirst );
1464     testcase( pc==iCellLast );
1465     /* These conditions have already been verified in btreeInitPage()
1466     ** if PRAGMA cell_size_check=ON.
1467     */
1468     if( pc<iCellFirst || pc>iCellLast ){
1469       return SQLITE_CORRUPT_PAGE(pPage);
1470     }
1471     assert( pc>=iCellFirst && pc<=iCellLast );
1472     size = pPage->xCellSize(pPage, &src[pc]);
1473     cbrk -= size;
1474     if( cbrk<iCellFirst || pc+size>usableSize ){
1475       return SQLITE_CORRUPT_PAGE(pPage);
1476     }
1477     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1478     testcase( cbrk+size==usableSize );
1479     testcase( pc+size==usableSize );
1480     put2byte(pAddr, cbrk);
1481     if( temp==0 ){
1482       int x;
1483       if( cbrk==pc ) continue;
1484       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1485       x = get2byte(&data[hdr+5]);
1486       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1487       src = temp;
1488     }
1489     memcpy(&data[cbrk], &src[pc], size);
1490   }
1491   data[hdr+7] = 0;
1492 
1493  defragment_out:
1494   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1495     return SQLITE_CORRUPT_PAGE(pPage);
1496   }
1497   assert( cbrk>=iCellFirst );
1498   put2byte(&data[hdr+5], cbrk);
1499   data[hdr+1] = 0;
1500   data[hdr+2] = 0;
1501   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1502   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1503   return SQLITE_OK;
1504 }
1505 
1506 /*
1507 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1508 ** size. If one can be found, return a pointer to the space and remove it
1509 ** from the free-list.
1510 **
1511 ** If no suitable space can be found on the free-list, return NULL.
1512 **
1513 ** This function may detect corruption within pPg.  If corruption is
1514 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1515 **
1516 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1517 ** will be ignored if adding the extra space to the fragmentation count
1518 ** causes the fragmentation count to exceed 60.
1519 */
1520 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1521   const int hdr = pPg->hdrOffset;
1522   u8 * const aData = pPg->aData;
1523   int iAddr = hdr + 1;
1524   int pc = get2byte(&aData[iAddr]);
1525   int x;
1526   int usableSize = pPg->pBt->usableSize;
1527   int size;            /* Size of the free slot */
1528 
1529   assert( pc>0 );
1530   while( pc<=usableSize-4 ){
1531     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1532     ** freeblock form a big-endian integer which is the size of the freeblock
1533     ** in bytes, including the 4-byte header. */
1534     size = get2byte(&aData[pc+2]);
1535     if( (x = size - nByte)>=0 ){
1536       testcase( x==4 );
1537       testcase( x==3 );
1538       if( size+pc > usableSize ){
1539         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1540         return 0;
1541       }else if( x<4 ){
1542         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1543         ** number of bytes in fragments may not exceed 60. */
1544         if( aData[hdr+7]>57 ) return 0;
1545 
1546         /* Remove the slot from the free-list. Update the number of
1547         ** fragmented bytes within the page. */
1548         memcpy(&aData[iAddr], &aData[pc], 2);
1549         aData[hdr+7] += (u8)x;
1550       }else{
1551         /* The slot remains on the free-list. Reduce its size to account
1552          ** for the portion used by the new allocation. */
1553         put2byte(&aData[pc+2], x);
1554       }
1555       return &aData[pc + x];
1556     }
1557     iAddr = pc;
1558     pc = get2byte(&aData[pc]);
1559     if( pc<iAddr+size ) break;
1560   }
1561   if( pc ){
1562     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1563   }
1564 
1565   return 0;
1566 }
1567 
1568 /*
1569 ** Allocate nByte bytes of space from within the B-Tree page passed
1570 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1571 ** of the first byte of allocated space. Return either SQLITE_OK or
1572 ** an error code (usually SQLITE_CORRUPT).
1573 **
1574 ** The caller guarantees that there is sufficient space to make the
1575 ** allocation.  This routine might need to defragment in order to bring
1576 ** all the space together, however.  This routine will avoid using
1577 ** the first two bytes past the cell pointer area since presumably this
1578 ** allocation is being made in order to insert a new cell, so we will
1579 ** also end up needing a new cell pointer.
1580 */
1581 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1582   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1583   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1584   int top;                             /* First byte of cell content area */
1585   int rc = SQLITE_OK;                  /* Integer return code */
1586   int gap;        /* First byte of gap between cell pointers and cell content */
1587 
1588   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1589   assert( pPage->pBt );
1590   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1591   assert( nByte>=0 );  /* Minimum cell size is 4 */
1592   assert( pPage->nFree>=nByte );
1593   assert( pPage->nOverflow==0 );
1594   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1595 
1596   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1597   gap = pPage->cellOffset + 2*pPage->nCell;
1598   assert( gap<=65536 );
1599   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1600   ** and the reserved space is zero (the usual value for reserved space)
1601   ** then the cell content offset of an empty page wants to be 65536.
1602   ** However, that integer is too large to be stored in a 2-byte unsigned
1603   ** integer, so a value of 0 is used in its place. */
1604   top = get2byte(&data[hdr+5]);
1605   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1606   if( gap>top ){
1607     if( top==0 && pPage->pBt->usableSize==65536 ){
1608       top = 65536;
1609     }else{
1610       return SQLITE_CORRUPT_PAGE(pPage);
1611     }
1612   }
1613 
1614   /* If there is enough space between gap and top for one more cell pointer
1615   ** array entry offset, and if the freelist is not empty, then search the
1616   ** freelist looking for a free slot big enough to satisfy the request.
1617   */
1618   testcase( gap+2==top );
1619   testcase( gap+1==top );
1620   testcase( gap==top );
1621   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1622     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1623     if( pSpace ){
1624       assert( pSpace>=data && (pSpace - data)<65536 );
1625       *pIdx = (int)(pSpace - data);
1626       return SQLITE_OK;
1627     }else if( rc ){
1628       return rc;
1629     }
1630   }
1631 
1632   /* The request could not be fulfilled using a freelist slot.  Check
1633   ** to see if defragmentation is necessary.
1634   */
1635   testcase( gap+2+nByte==top );
1636   if( gap+2+nByte>top ){
1637     assert( pPage->nCell>0 || CORRUPT_DB );
1638     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1639     if( rc ) return rc;
1640     top = get2byteNotZero(&data[hdr+5]);
1641     assert( gap+2+nByte<=top );
1642   }
1643 
1644 
1645   /* Allocate memory from the gap in between the cell pointer array
1646   ** and the cell content area.  The btreeInitPage() call has already
1647   ** validated the freelist.  Given that the freelist is valid, there
1648   ** is no way that the allocation can extend off the end of the page.
1649   ** The assert() below verifies the previous sentence.
1650   */
1651   top -= nByte;
1652   put2byte(&data[hdr+5], top);
1653   assert( top+nByte <= (int)pPage->pBt->usableSize );
1654   *pIdx = top;
1655   return SQLITE_OK;
1656 }
1657 
1658 /*
1659 ** Return a section of the pPage->aData to the freelist.
1660 ** The first byte of the new free block is pPage->aData[iStart]
1661 ** and the size of the block is iSize bytes.
1662 **
1663 ** Adjacent freeblocks are coalesced.
1664 **
1665 ** Note that even though the freeblock list was checked by btreeInitPage(),
1666 ** that routine will not detect overlap between cells or freeblocks.  Nor
1667 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1668 ** at the end of the page.  So do additional corruption checks inside this
1669 ** routine and return SQLITE_CORRUPT if any problems are found.
1670 */
1671 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1672   u16 iPtr;                             /* Address of ptr to next freeblock */
1673   u16 iFreeBlk;                         /* Address of the next freeblock */
1674   u8 hdr;                               /* Page header size.  0 or 100 */
1675   u8 nFrag = 0;                         /* Reduction in fragmentation */
1676   u16 iOrigSize = iSize;                /* Original value of iSize */
1677   u16 x;                                /* Offset to cell content area */
1678   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1679   unsigned char *data = pPage->aData;   /* Page content */
1680 
1681   assert( pPage->pBt!=0 );
1682   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1683   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1684   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1685   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1686   assert( iSize>=4 );   /* Minimum cell size is 4 */
1687   assert( iStart<=pPage->pBt->usableSize-4 );
1688 
1689   /* The list of freeblocks must be in ascending order.  Find the
1690   ** spot on the list where iStart should be inserted.
1691   */
1692   hdr = pPage->hdrOffset;
1693   iPtr = hdr + 1;
1694   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1695     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1696   }else{
1697     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1698       if( iFreeBlk<iPtr+4 ){
1699         if( iFreeBlk==0 ) break;
1700         return SQLITE_CORRUPT_PAGE(pPage);
1701       }
1702       iPtr = iFreeBlk;
1703     }
1704     if( iFreeBlk>pPage->pBt->usableSize-4 ){
1705       return SQLITE_CORRUPT_PAGE(pPage);
1706     }
1707     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1708 
1709     /* At this point:
1710     **    iFreeBlk:   First freeblock after iStart, or zero if none
1711     **    iPtr:       The address of a pointer to iFreeBlk
1712     **
1713     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1714     */
1715     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1716       nFrag = iFreeBlk - iEnd;
1717       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1718       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1719       if( iEnd > pPage->pBt->usableSize ){
1720         return SQLITE_CORRUPT_PAGE(pPage);
1721       }
1722       iSize = iEnd - iStart;
1723       iFreeBlk = get2byte(&data[iFreeBlk]);
1724     }
1725 
1726     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1727     ** pointer in the page header) then check to see if iStart should be
1728     ** coalesced onto the end of iPtr.
1729     */
1730     if( iPtr>hdr+1 ){
1731       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1732       if( iPtrEnd+3>=iStart ){
1733         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1734         nFrag += iStart - iPtrEnd;
1735         iSize = iEnd - iPtr;
1736         iStart = iPtr;
1737       }
1738     }
1739     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1740     data[hdr+7] -= nFrag;
1741   }
1742   x = get2byte(&data[hdr+5]);
1743   if( iStart<=x ){
1744     /* The new freeblock is at the beginning of the cell content area,
1745     ** so just extend the cell content area rather than create another
1746     ** freelist entry */
1747     if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1748     put2byte(&data[hdr+1], iFreeBlk);
1749     put2byte(&data[hdr+5], iEnd);
1750   }else{
1751     /* Insert the new freeblock into the freelist */
1752     put2byte(&data[iPtr], iStart);
1753   }
1754   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1755     /* Overwrite deleted information with zeros when the secure_delete
1756     ** option is enabled */
1757     memset(&data[iStart], 0, iSize);
1758   }
1759   put2byte(&data[iStart], iFreeBlk);
1760   put2byte(&data[iStart+2], iSize);
1761   pPage->nFree += iOrigSize;
1762   return SQLITE_OK;
1763 }
1764 
1765 /*
1766 ** Decode the flags byte (the first byte of the header) for a page
1767 ** and initialize fields of the MemPage structure accordingly.
1768 **
1769 ** Only the following combinations are supported.  Anything different
1770 ** indicates a corrupt database files:
1771 **
1772 **         PTF_ZERODATA
1773 **         PTF_ZERODATA | PTF_LEAF
1774 **         PTF_LEAFDATA | PTF_INTKEY
1775 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1776 */
1777 static int decodeFlags(MemPage *pPage, int flagByte){
1778   BtShared *pBt;     /* A copy of pPage->pBt */
1779 
1780   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1781   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1782   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1783   flagByte &= ~PTF_LEAF;
1784   pPage->childPtrSize = 4-4*pPage->leaf;
1785   pPage->xCellSize = cellSizePtr;
1786   pBt = pPage->pBt;
1787   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1788     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1789     ** interior table b-tree page. */
1790     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1791     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1792     ** leaf table b-tree page. */
1793     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1794     pPage->intKey = 1;
1795     if( pPage->leaf ){
1796       pPage->intKeyLeaf = 1;
1797       pPage->xParseCell = btreeParseCellPtr;
1798     }else{
1799       pPage->intKeyLeaf = 0;
1800       pPage->xCellSize = cellSizePtrNoPayload;
1801       pPage->xParseCell = btreeParseCellPtrNoPayload;
1802     }
1803     pPage->maxLocal = pBt->maxLeaf;
1804     pPage->minLocal = pBt->minLeaf;
1805   }else if( flagByte==PTF_ZERODATA ){
1806     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1807     ** interior index b-tree page. */
1808     assert( (PTF_ZERODATA)==2 );
1809     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1810     ** leaf index b-tree page. */
1811     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1812     pPage->intKey = 0;
1813     pPage->intKeyLeaf = 0;
1814     pPage->xParseCell = btreeParseCellPtrIndex;
1815     pPage->maxLocal = pBt->maxLocal;
1816     pPage->minLocal = pBt->minLocal;
1817   }else{
1818     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1819     ** an error. */
1820     return SQLITE_CORRUPT_PAGE(pPage);
1821   }
1822   pPage->max1bytePayload = pBt->max1bytePayload;
1823   return SQLITE_OK;
1824 }
1825 
1826 /*
1827 ** Initialize the auxiliary information for a disk block.
1828 **
1829 ** Return SQLITE_OK on success.  If we see that the page does
1830 ** not contain a well-formed database page, then return
1831 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1832 ** guarantee that the page is well-formed.  It only shows that
1833 ** we failed to detect any corruption.
1834 */
1835 static int btreeInitPage(MemPage *pPage){
1836   int pc;            /* Address of a freeblock within pPage->aData[] */
1837   u8 hdr;            /* Offset to beginning of page header */
1838   u8 *data;          /* Equal to pPage->aData */
1839   BtShared *pBt;        /* The main btree structure */
1840   int usableSize;    /* Amount of usable space on each page */
1841   u16 cellOffset;    /* Offset from start of page to first cell pointer */
1842   int nFree;         /* Number of unused bytes on the page */
1843   int top;           /* First byte of the cell content area */
1844   int iCellFirst;    /* First allowable cell or freeblock offset */
1845   int iCellLast;     /* Last possible cell or freeblock offset */
1846 
1847   assert( pPage->pBt!=0 );
1848   assert( pPage->pBt->db!=0 );
1849   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1850   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1851   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1852   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1853   assert( pPage->isInit==0 );
1854 
1855   pBt = pPage->pBt;
1856   hdr = pPage->hdrOffset;
1857   data = pPage->aData;
1858   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1859   ** the b-tree page type. */
1860   if( decodeFlags(pPage, data[hdr]) ){
1861     return SQLITE_CORRUPT_PAGE(pPage);
1862   }
1863   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1864   pPage->maskPage = (u16)(pBt->pageSize - 1);
1865   pPage->nOverflow = 0;
1866   usableSize = pBt->usableSize;
1867   pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1868   pPage->aDataEnd = &data[usableSize];
1869   pPage->aCellIdx = &data[cellOffset];
1870   pPage->aDataOfst = &data[pPage->childPtrSize];
1871   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1872   ** the start of the cell content area. A zero value for this integer is
1873   ** interpreted as 65536. */
1874   top = get2byteNotZero(&data[hdr+5]);
1875   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1876   ** number of cells on the page. */
1877   pPage->nCell = get2byte(&data[hdr+3]);
1878   if( pPage->nCell>MX_CELL(pBt) ){
1879     /* To many cells for a single page.  The page must be corrupt */
1880     return SQLITE_CORRUPT_PAGE(pPage);
1881   }
1882   testcase( pPage->nCell==MX_CELL(pBt) );
1883   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1884   ** possible for a root page of a table that contains no rows) then the
1885   ** offset to the cell content area will equal the page size minus the
1886   ** bytes of reserved space. */
1887   assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1888 
1889   /* A malformed database page might cause us to read past the end
1890   ** of page when parsing a cell.
1891   **
1892   ** The following block of code checks early to see if a cell extends
1893   ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1894   ** returned if it does.
1895   */
1896   iCellFirst = cellOffset + 2*pPage->nCell;
1897   iCellLast = usableSize - 4;
1898   if( pBt->db->flags & SQLITE_CellSizeCk ){
1899     int i;            /* Index into the cell pointer array */
1900     int sz;           /* Size of a cell */
1901 
1902     if( !pPage->leaf ) iCellLast--;
1903     for(i=0; i<pPage->nCell; i++){
1904       pc = get2byteAligned(&data[cellOffset+i*2]);
1905       testcase( pc==iCellFirst );
1906       testcase( pc==iCellLast );
1907       if( pc<iCellFirst || pc>iCellLast ){
1908         return SQLITE_CORRUPT_PAGE(pPage);
1909       }
1910       sz = pPage->xCellSize(pPage, &data[pc]);
1911       testcase( pc+sz==usableSize );
1912       if( pc+sz>usableSize ){
1913         return SQLITE_CORRUPT_PAGE(pPage);
1914       }
1915     }
1916     if( !pPage->leaf ) iCellLast++;
1917   }
1918 
1919   /* Compute the total free space on the page
1920   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1921   ** start of the first freeblock on the page, or is zero if there are no
1922   ** freeblocks. */
1923   pc = get2byte(&data[hdr+1]);
1924   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1925   if( pc>0 ){
1926     u32 next, size;
1927     if( pc<iCellFirst ){
1928       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1929       ** always be at least one cell before the first freeblock.
1930       */
1931       return SQLITE_CORRUPT_PAGE(pPage);
1932     }
1933     while( 1 ){
1934       if( pc>iCellLast ){
1935         /* Freeblock off the end of the page */
1936         return SQLITE_CORRUPT_PAGE(pPage);
1937       }
1938       next = get2byte(&data[pc]);
1939       size = get2byte(&data[pc+2]);
1940       nFree = nFree + size;
1941       if( next<=pc+size+3 ) break;
1942       pc = next;
1943     }
1944     if( next>0 ){
1945       /* Freeblock not in ascending order */
1946       return SQLITE_CORRUPT_PAGE(pPage);
1947     }
1948     if( pc+size>(unsigned int)usableSize ){
1949       /* Last freeblock extends past page end */
1950       return SQLITE_CORRUPT_PAGE(pPage);
1951     }
1952   }
1953 
1954   /* At this point, nFree contains the sum of the offset to the start
1955   ** of the cell-content area plus the number of free bytes within
1956   ** the cell-content area. If this is greater than the usable-size
1957   ** of the page, then the page must be corrupted. This check also
1958   ** serves to verify that the offset to the start of the cell-content
1959   ** area, according to the page header, lies within the page.
1960   */
1961   if( nFree>usableSize ){
1962     return SQLITE_CORRUPT_PAGE(pPage);
1963   }
1964   pPage->nFree = (u16)(nFree - iCellFirst);
1965   pPage->isInit = 1;
1966   return SQLITE_OK;
1967 }
1968 
1969 /*
1970 ** Set up a raw page so that it looks like a database page holding
1971 ** no entries.
1972 */
1973 static void zeroPage(MemPage *pPage, int flags){
1974   unsigned char *data = pPage->aData;
1975   BtShared *pBt = pPage->pBt;
1976   u8 hdr = pPage->hdrOffset;
1977   u16 first;
1978 
1979   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1980   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1981   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1982   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1983   assert( sqlite3_mutex_held(pBt->mutex) );
1984   if( pBt->btsFlags & BTS_FAST_SECURE ){
1985     memset(&data[hdr], 0, pBt->usableSize - hdr);
1986   }
1987   data[hdr] = (char)flags;
1988   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1989   memset(&data[hdr+1], 0, 4);
1990   data[hdr+7] = 0;
1991   put2byte(&data[hdr+5], pBt->usableSize);
1992   pPage->nFree = (u16)(pBt->usableSize - first);
1993   decodeFlags(pPage, flags);
1994   pPage->cellOffset = first;
1995   pPage->aDataEnd = &data[pBt->usableSize];
1996   pPage->aCellIdx = &data[first];
1997   pPage->aDataOfst = &data[pPage->childPtrSize];
1998   pPage->nOverflow = 0;
1999   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2000   pPage->maskPage = (u16)(pBt->pageSize - 1);
2001   pPage->nCell = 0;
2002   pPage->isInit = 1;
2003 }
2004 
2005 
2006 /*
2007 ** Convert a DbPage obtained from the pager into a MemPage used by
2008 ** the btree layer.
2009 */
2010 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2011   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2012   if( pgno!=pPage->pgno ){
2013     pPage->aData = sqlite3PagerGetData(pDbPage);
2014     pPage->pDbPage = pDbPage;
2015     pPage->pBt = pBt;
2016     pPage->pgno = pgno;
2017     pPage->hdrOffset = pgno==1 ? 100 : 0;
2018   }
2019   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2020   return pPage;
2021 }
2022 
2023 /*
2024 ** Get a page from the pager.  Initialize the MemPage.pBt and
2025 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2026 **
2027 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2028 ** about the content of the page at this time.  So do not go to the disk
2029 ** to fetch the content.  Just fill in the content with zeros for now.
2030 ** If in the future we call sqlite3PagerWrite() on this page, that
2031 ** means we have started to be concerned about content and the disk
2032 ** read should occur at that point.
2033 */
2034 static int btreeGetPage(
2035   BtShared *pBt,       /* The btree */
2036   Pgno pgno,           /* Number of the page to fetch */
2037   MemPage **ppPage,    /* Return the page in this parameter */
2038   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2039 ){
2040   int rc;
2041   DbPage *pDbPage;
2042 
2043   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2044   assert( sqlite3_mutex_held(pBt->mutex) );
2045   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2046   if( rc ) return rc;
2047   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2048   return SQLITE_OK;
2049 }
2050 
2051 /*
2052 ** Retrieve a page from the pager cache. If the requested page is not
2053 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2054 ** MemPage.aData elements if needed.
2055 */
2056 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2057   DbPage *pDbPage;
2058   assert( sqlite3_mutex_held(pBt->mutex) );
2059   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2060   if( pDbPage ){
2061     return btreePageFromDbPage(pDbPage, pgno, pBt);
2062   }
2063   return 0;
2064 }
2065 
2066 /*
2067 ** Return the size of the database file in pages. If there is any kind of
2068 ** error, return ((unsigned int)-1).
2069 */
2070 static Pgno btreePagecount(BtShared *pBt){
2071   return pBt->nPage;
2072 }
2073 u32 sqlite3BtreeLastPage(Btree *p){
2074   assert( sqlite3BtreeHoldsMutex(p) );
2075   assert( ((p->pBt->nPage)&0x80000000)==0 );
2076   return btreePagecount(p->pBt);
2077 }
2078 
2079 /*
2080 ** Get a page from the pager and initialize it.
2081 **
2082 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2083 ** call.  Do additional sanity checking on the page in this case.
2084 ** And if the fetch fails, this routine must decrement pCur->iPage.
2085 **
2086 ** The page is fetched as read-write unless pCur is not NULL and is
2087 ** a read-only cursor.
2088 **
2089 ** If an error occurs, then *ppPage is undefined. It
2090 ** may remain unchanged, or it may be set to an invalid value.
2091 */
2092 static int getAndInitPage(
2093   BtShared *pBt,                  /* The database file */
2094   Pgno pgno,                      /* Number of the page to get */
2095   MemPage **ppPage,               /* Write the page pointer here */
2096   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2097   int bReadOnly                   /* True for a read-only page */
2098 ){
2099   int rc;
2100   DbPage *pDbPage;
2101   assert( sqlite3_mutex_held(pBt->mutex) );
2102   assert( pCur==0 || ppPage==&pCur->pPage );
2103   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2104   assert( pCur==0 || pCur->iPage>0 );
2105 
2106   if( pgno>btreePagecount(pBt) ){
2107     rc = SQLITE_CORRUPT_BKPT;
2108     goto getAndInitPage_error;
2109   }
2110   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2111   if( rc ){
2112     goto getAndInitPage_error;
2113   }
2114   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2115   if( (*ppPage)->isInit==0 ){
2116     btreePageFromDbPage(pDbPage, pgno, pBt);
2117     rc = btreeInitPage(*ppPage);
2118     if( rc!=SQLITE_OK ){
2119       releasePage(*ppPage);
2120       goto getAndInitPage_error;
2121     }
2122   }
2123   assert( (*ppPage)->pgno==pgno );
2124   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2125 
2126   /* If obtaining a child page for a cursor, we must verify that the page is
2127   ** compatible with the root page. */
2128   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2129     rc = SQLITE_CORRUPT_PGNO(pgno);
2130     releasePage(*ppPage);
2131     goto getAndInitPage_error;
2132   }
2133   return SQLITE_OK;
2134 
2135 getAndInitPage_error:
2136   if( pCur ){
2137     pCur->iPage--;
2138     pCur->pPage = pCur->apPage[pCur->iPage];
2139   }
2140   testcase( pgno==0 );
2141   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2142   return rc;
2143 }
2144 
2145 /*
2146 ** Release a MemPage.  This should be called once for each prior
2147 ** call to btreeGetPage.
2148 **
2149 ** Page1 is a special case and must be released using releasePageOne().
2150 */
2151 static void releasePageNotNull(MemPage *pPage){
2152   assert( pPage->aData );
2153   assert( pPage->pBt );
2154   assert( pPage->pDbPage!=0 );
2155   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2156   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2157   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2158   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2159 }
2160 static void releasePage(MemPage *pPage){
2161   if( pPage ) releasePageNotNull(pPage);
2162 }
2163 static void releasePageOne(MemPage *pPage){
2164   assert( pPage!=0 );
2165   assert( pPage->aData );
2166   assert( pPage->pBt );
2167   assert( pPage->pDbPage!=0 );
2168   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2169   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2170   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2171   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2172 }
2173 
2174 /*
2175 ** Get an unused page.
2176 **
2177 ** This works just like btreeGetPage() with the addition:
2178 **
2179 **   *  If the page is already in use for some other purpose, immediately
2180 **      release it and return an SQLITE_CURRUPT error.
2181 **   *  Make sure the isInit flag is clear
2182 */
2183 static int btreeGetUnusedPage(
2184   BtShared *pBt,       /* The btree */
2185   Pgno pgno,           /* Number of the page to fetch */
2186   MemPage **ppPage,    /* Return the page in this parameter */
2187   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2188 ){
2189   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2190   if( rc==SQLITE_OK ){
2191     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2192       releasePage(*ppPage);
2193       *ppPage = 0;
2194       return SQLITE_CORRUPT_BKPT;
2195     }
2196     (*ppPage)->isInit = 0;
2197   }else{
2198     *ppPage = 0;
2199   }
2200   return rc;
2201 }
2202 
2203 
2204 /*
2205 ** During a rollback, when the pager reloads information into the cache
2206 ** so that the cache is restored to its original state at the start of
2207 ** the transaction, for each page restored this routine is called.
2208 **
2209 ** This routine needs to reset the extra data section at the end of the
2210 ** page to agree with the restored data.
2211 */
2212 static void pageReinit(DbPage *pData){
2213   MemPage *pPage;
2214   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2215   assert( sqlite3PagerPageRefcount(pData)>0 );
2216   if( pPage->isInit ){
2217     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2218     pPage->isInit = 0;
2219     if( sqlite3PagerPageRefcount(pData)>1 ){
2220       /* pPage might not be a btree page;  it might be an overflow page
2221       ** or ptrmap page or a free page.  In those cases, the following
2222       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2223       ** But no harm is done by this.  And it is very important that
2224       ** btreeInitPage() be called on every btree page so we make
2225       ** the call for every page that comes in for re-initing. */
2226       btreeInitPage(pPage);
2227     }
2228   }
2229 }
2230 
2231 /*
2232 ** Invoke the busy handler for a btree.
2233 */
2234 static int btreeInvokeBusyHandler(void *pArg){
2235   BtShared *pBt = (BtShared*)pArg;
2236   assert( pBt->db );
2237   assert( sqlite3_mutex_held(pBt->db->mutex) );
2238   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2239                                   sqlite3PagerFile(pBt->pPager));
2240 }
2241 
2242 /*
2243 ** Open a database file.
2244 **
2245 ** zFilename is the name of the database file.  If zFilename is NULL
2246 ** then an ephemeral database is created.  The ephemeral database might
2247 ** be exclusively in memory, or it might use a disk-based memory cache.
2248 ** Either way, the ephemeral database will be automatically deleted
2249 ** when sqlite3BtreeClose() is called.
2250 **
2251 ** If zFilename is ":memory:" then an in-memory database is created
2252 ** that is automatically destroyed when it is closed.
2253 **
2254 ** The "flags" parameter is a bitmask that might contain bits like
2255 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2256 **
2257 ** If the database is already opened in the same database connection
2258 ** and we are in shared cache mode, then the open will fail with an
2259 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2260 ** objects in the same database connection since doing so will lead
2261 ** to problems with locking.
2262 */
2263 int sqlite3BtreeOpen(
2264   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2265   const char *zFilename,  /* Name of the file containing the BTree database */
2266   sqlite3 *db,            /* Associated database handle */
2267   Btree **ppBtree,        /* Pointer to new Btree object written here */
2268   int flags,              /* Options */
2269   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2270 ){
2271   BtShared *pBt = 0;             /* Shared part of btree structure */
2272   Btree *p;                      /* Handle to return */
2273   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2274   int rc = SQLITE_OK;            /* Result code from this function */
2275   u8 nReserve;                   /* Byte of unused space on each page */
2276   unsigned char zDbHeader[100];  /* Database header content */
2277 
2278   /* True if opening an ephemeral, temporary database */
2279   const int isTempDb = zFilename==0 || zFilename[0]==0;
2280 
2281   /* Set the variable isMemdb to true for an in-memory database, or
2282   ** false for a file-based database.
2283   */
2284 #ifdef SQLITE_OMIT_MEMORYDB
2285   const int isMemdb = 0;
2286 #else
2287   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2288                        || (isTempDb && sqlite3TempInMemory(db))
2289                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2290 #endif
2291 
2292   assert( db!=0 );
2293   assert( pVfs!=0 );
2294   assert( sqlite3_mutex_held(db->mutex) );
2295   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2296 
2297   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2298   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2299 
2300   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2301   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2302 
2303   if( isMemdb ){
2304     flags |= BTREE_MEMORY;
2305   }
2306   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2307     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2308   }
2309   p = sqlite3MallocZero(sizeof(Btree));
2310   if( !p ){
2311     return SQLITE_NOMEM_BKPT;
2312   }
2313   p->inTrans = TRANS_NONE;
2314   p->db = db;
2315 #ifndef SQLITE_OMIT_SHARED_CACHE
2316   p->lock.pBtree = p;
2317   p->lock.iTable = 1;
2318 #endif
2319 
2320 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2321   /*
2322   ** If this Btree is a candidate for shared cache, try to find an
2323   ** existing BtShared object that we can share with
2324   */
2325   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2326     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2327       int nFilename = sqlite3Strlen30(zFilename)+1;
2328       int nFullPathname = pVfs->mxPathname+1;
2329       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2330       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2331 
2332       p->sharable = 1;
2333       if( !zFullPathname ){
2334         sqlite3_free(p);
2335         return SQLITE_NOMEM_BKPT;
2336       }
2337       if( isMemdb ){
2338         memcpy(zFullPathname, zFilename, nFilename);
2339       }else{
2340         rc = sqlite3OsFullPathname(pVfs, zFilename,
2341                                    nFullPathname, zFullPathname);
2342         if( rc ){
2343           sqlite3_free(zFullPathname);
2344           sqlite3_free(p);
2345           return rc;
2346         }
2347       }
2348 #if SQLITE_THREADSAFE
2349       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2350       sqlite3_mutex_enter(mutexOpen);
2351       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2352       sqlite3_mutex_enter(mutexShared);
2353 #endif
2354       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2355         assert( pBt->nRef>0 );
2356         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2357                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2358           int iDb;
2359           for(iDb=db->nDb-1; iDb>=0; iDb--){
2360             Btree *pExisting = db->aDb[iDb].pBt;
2361             if( pExisting && pExisting->pBt==pBt ){
2362               sqlite3_mutex_leave(mutexShared);
2363               sqlite3_mutex_leave(mutexOpen);
2364               sqlite3_free(zFullPathname);
2365               sqlite3_free(p);
2366               return SQLITE_CONSTRAINT;
2367             }
2368           }
2369           p->pBt = pBt;
2370           pBt->nRef++;
2371           break;
2372         }
2373       }
2374       sqlite3_mutex_leave(mutexShared);
2375       sqlite3_free(zFullPathname);
2376     }
2377 #ifdef SQLITE_DEBUG
2378     else{
2379       /* In debug mode, we mark all persistent databases as sharable
2380       ** even when they are not.  This exercises the locking code and
2381       ** gives more opportunity for asserts(sqlite3_mutex_held())
2382       ** statements to find locking problems.
2383       */
2384       p->sharable = 1;
2385     }
2386 #endif
2387   }
2388 #endif
2389   if( pBt==0 ){
2390     /*
2391     ** The following asserts make sure that structures used by the btree are
2392     ** the right size.  This is to guard against size changes that result
2393     ** when compiling on a different architecture.
2394     */
2395     assert( sizeof(i64)==8 );
2396     assert( sizeof(u64)==8 );
2397     assert( sizeof(u32)==4 );
2398     assert( sizeof(u16)==2 );
2399     assert( sizeof(Pgno)==4 );
2400 
2401     pBt = sqlite3MallocZero( sizeof(*pBt) );
2402     if( pBt==0 ){
2403       rc = SQLITE_NOMEM_BKPT;
2404       goto btree_open_out;
2405     }
2406     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2407                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2408     if( rc==SQLITE_OK ){
2409       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2410       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2411     }
2412     if( rc!=SQLITE_OK ){
2413       goto btree_open_out;
2414     }
2415     pBt->openFlags = (u8)flags;
2416     pBt->db = db;
2417     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2418     p->pBt = pBt;
2419 
2420     pBt->pCursor = 0;
2421     pBt->pPage1 = 0;
2422     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2423 #if defined(SQLITE_SECURE_DELETE)
2424     pBt->btsFlags |= BTS_SECURE_DELETE;
2425 #elif defined(SQLITE_FAST_SECURE_DELETE)
2426     pBt->btsFlags |= BTS_OVERWRITE;
2427 #endif
2428     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2429     ** determined by the 2-byte integer located at an offset of 16 bytes from
2430     ** the beginning of the database file. */
2431     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2432     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2433          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2434       pBt->pageSize = 0;
2435 #ifndef SQLITE_OMIT_AUTOVACUUM
2436       /* If the magic name ":memory:" will create an in-memory database, then
2437       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2438       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2439       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2440       ** regular file-name. In this case the auto-vacuum applies as per normal.
2441       */
2442       if( zFilename && !isMemdb ){
2443         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2444         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2445       }
2446 #endif
2447       nReserve = 0;
2448     }else{
2449       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2450       ** determined by the one-byte unsigned integer found at an offset of 20
2451       ** into the database file header. */
2452       nReserve = zDbHeader[20];
2453       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2454 #ifndef SQLITE_OMIT_AUTOVACUUM
2455       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2456       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2457 #endif
2458     }
2459     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2460     if( rc ) goto btree_open_out;
2461     pBt->usableSize = pBt->pageSize - nReserve;
2462     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2463 
2464 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2465     /* Add the new BtShared object to the linked list sharable BtShareds.
2466     */
2467     pBt->nRef = 1;
2468     if( p->sharable ){
2469       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2470       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2471       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2472         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2473         if( pBt->mutex==0 ){
2474           rc = SQLITE_NOMEM_BKPT;
2475           goto btree_open_out;
2476         }
2477       }
2478       sqlite3_mutex_enter(mutexShared);
2479       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2480       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2481       sqlite3_mutex_leave(mutexShared);
2482     }
2483 #endif
2484   }
2485 
2486 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2487   /* If the new Btree uses a sharable pBtShared, then link the new
2488   ** Btree into the list of all sharable Btrees for the same connection.
2489   ** The list is kept in ascending order by pBt address.
2490   */
2491   if( p->sharable ){
2492     int i;
2493     Btree *pSib;
2494     for(i=0; i<db->nDb; i++){
2495       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2496         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2497         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2498           p->pNext = pSib;
2499           p->pPrev = 0;
2500           pSib->pPrev = p;
2501         }else{
2502           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2503             pSib = pSib->pNext;
2504           }
2505           p->pNext = pSib->pNext;
2506           p->pPrev = pSib;
2507           if( p->pNext ){
2508             p->pNext->pPrev = p;
2509           }
2510           pSib->pNext = p;
2511         }
2512         break;
2513       }
2514     }
2515   }
2516 #endif
2517   *ppBtree = p;
2518 
2519 btree_open_out:
2520   if( rc!=SQLITE_OK ){
2521     if( pBt && pBt->pPager ){
2522       sqlite3PagerClose(pBt->pPager, 0);
2523     }
2524     sqlite3_free(pBt);
2525     sqlite3_free(p);
2526     *ppBtree = 0;
2527   }else{
2528     sqlite3_file *pFile;
2529 
2530     /* If the B-Tree was successfully opened, set the pager-cache size to the
2531     ** default value. Except, when opening on an existing shared pager-cache,
2532     ** do not change the pager-cache size.
2533     */
2534     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2535       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2536     }
2537 
2538     pFile = sqlite3PagerFile(pBt->pPager);
2539     if( pFile->pMethods ){
2540       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2541     }
2542   }
2543   if( mutexOpen ){
2544     assert( sqlite3_mutex_held(mutexOpen) );
2545     sqlite3_mutex_leave(mutexOpen);
2546   }
2547   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2548   return rc;
2549 }
2550 
2551 /*
2552 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2553 ** remove the BtShared structure from the sharing list.  Return
2554 ** true if the BtShared.nRef counter reaches zero and return
2555 ** false if it is still positive.
2556 */
2557 static int removeFromSharingList(BtShared *pBt){
2558 #ifndef SQLITE_OMIT_SHARED_CACHE
2559   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2560   BtShared *pList;
2561   int removed = 0;
2562 
2563   assert( sqlite3_mutex_notheld(pBt->mutex) );
2564   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2565   sqlite3_mutex_enter(pMaster);
2566   pBt->nRef--;
2567   if( pBt->nRef<=0 ){
2568     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2569       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2570     }else{
2571       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2572       while( ALWAYS(pList) && pList->pNext!=pBt ){
2573         pList=pList->pNext;
2574       }
2575       if( ALWAYS(pList) ){
2576         pList->pNext = pBt->pNext;
2577       }
2578     }
2579     if( SQLITE_THREADSAFE ){
2580       sqlite3_mutex_free(pBt->mutex);
2581     }
2582     removed = 1;
2583   }
2584   sqlite3_mutex_leave(pMaster);
2585   return removed;
2586 #else
2587   return 1;
2588 #endif
2589 }
2590 
2591 /*
2592 ** Make sure pBt->pTmpSpace points to an allocation of
2593 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2594 ** pointer.
2595 */
2596 static void allocateTempSpace(BtShared *pBt){
2597   if( !pBt->pTmpSpace ){
2598     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2599 
2600     /* One of the uses of pBt->pTmpSpace is to format cells before
2601     ** inserting them into a leaf page (function fillInCell()). If
2602     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2603     ** by the various routines that manipulate binary cells. Which
2604     ** can mean that fillInCell() only initializes the first 2 or 3
2605     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2606     ** it into a database page. This is not actually a problem, but it
2607     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2608     ** data is passed to system call write(). So to avoid this error,
2609     ** zero the first 4 bytes of temp space here.
2610     **
2611     ** Also:  Provide four bytes of initialized space before the
2612     ** beginning of pTmpSpace as an area available to prepend the
2613     ** left-child pointer to the beginning of a cell.
2614     */
2615     if( pBt->pTmpSpace ){
2616       memset(pBt->pTmpSpace, 0, 8);
2617       pBt->pTmpSpace += 4;
2618     }
2619   }
2620 }
2621 
2622 /*
2623 ** Free the pBt->pTmpSpace allocation
2624 */
2625 static void freeTempSpace(BtShared *pBt){
2626   if( pBt->pTmpSpace ){
2627     pBt->pTmpSpace -= 4;
2628     sqlite3PageFree(pBt->pTmpSpace);
2629     pBt->pTmpSpace = 0;
2630   }
2631 }
2632 
2633 /*
2634 ** Close an open database and invalidate all cursors.
2635 */
2636 int sqlite3BtreeClose(Btree *p){
2637   BtShared *pBt = p->pBt;
2638   BtCursor *pCur;
2639 
2640   /* Close all cursors opened via this handle.  */
2641   assert( sqlite3_mutex_held(p->db->mutex) );
2642   sqlite3BtreeEnter(p);
2643   pCur = pBt->pCursor;
2644   while( pCur ){
2645     BtCursor *pTmp = pCur;
2646     pCur = pCur->pNext;
2647     if( pTmp->pBtree==p ){
2648       sqlite3BtreeCloseCursor(pTmp);
2649     }
2650   }
2651 
2652   /* Rollback any active transaction and free the handle structure.
2653   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2654   ** this handle.
2655   */
2656   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2657   sqlite3BtreeLeave(p);
2658 
2659   /* If there are still other outstanding references to the shared-btree
2660   ** structure, return now. The remainder of this procedure cleans
2661   ** up the shared-btree.
2662   */
2663   assert( p->wantToLock==0 && p->locked==0 );
2664   if( !p->sharable || removeFromSharingList(pBt) ){
2665     /* The pBt is no longer on the sharing list, so we can access
2666     ** it without having to hold the mutex.
2667     **
2668     ** Clean out and delete the BtShared object.
2669     */
2670     assert( !pBt->pCursor );
2671     sqlite3PagerClose(pBt->pPager, p->db);
2672     if( pBt->xFreeSchema && pBt->pSchema ){
2673       pBt->xFreeSchema(pBt->pSchema);
2674     }
2675     sqlite3DbFree(0, pBt->pSchema);
2676     freeTempSpace(pBt);
2677     sqlite3_free(pBt);
2678   }
2679 
2680 #ifndef SQLITE_OMIT_SHARED_CACHE
2681   assert( p->wantToLock==0 );
2682   assert( p->locked==0 );
2683   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2684   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2685 #endif
2686 
2687   sqlite3_free(p);
2688   return SQLITE_OK;
2689 }
2690 
2691 /*
2692 ** Change the "soft" limit on the number of pages in the cache.
2693 ** Unused and unmodified pages will be recycled when the number of
2694 ** pages in the cache exceeds this soft limit.  But the size of the
2695 ** cache is allowed to grow larger than this limit if it contains
2696 ** dirty pages or pages still in active use.
2697 */
2698 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2699   BtShared *pBt = p->pBt;
2700   assert( sqlite3_mutex_held(p->db->mutex) );
2701   sqlite3BtreeEnter(p);
2702   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2703   sqlite3BtreeLeave(p);
2704   return SQLITE_OK;
2705 }
2706 
2707 /*
2708 ** Change the "spill" limit on the number of pages in the cache.
2709 ** If the number of pages exceeds this limit during a write transaction,
2710 ** the pager might attempt to "spill" pages to the journal early in
2711 ** order to free up memory.
2712 **
2713 ** The value returned is the current spill size.  If zero is passed
2714 ** as an argument, no changes are made to the spill size setting, so
2715 ** using mxPage of 0 is a way to query the current spill size.
2716 */
2717 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2718   BtShared *pBt = p->pBt;
2719   int res;
2720   assert( sqlite3_mutex_held(p->db->mutex) );
2721   sqlite3BtreeEnter(p);
2722   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2723   sqlite3BtreeLeave(p);
2724   return res;
2725 }
2726 
2727 #if SQLITE_MAX_MMAP_SIZE>0
2728 /*
2729 ** Change the limit on the amount of the database file that may be
2730 ** memory mapped.
2731 */
2732 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2733   BtShared *pBt = p->pBt;
2734   assert( sqlite3_mutex_held(p->db->mutex) );
2735   sqlite3BtreeEnter(p);
2736   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2737   sqlite3BtreeLeave(p);
2738   return SQLITE_OK;
2739 }
2740 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2741 
2742 /*
2743 ** Change the way data is synced to disk in order to increase or decrease
2744 ** how well the database resists damage due to OS crashes and power
2745 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2746 ** there is a high probability of damage)  Level 2 is the default.  There
2747 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2748 ** probability of damage to near zero but with a write performance reduction.
2749 */
2750 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2751 int sqlite3BtreeSetPagerFlags(
2752   Btree *p,              /* The btree to set the safety level on */
2753   unsigned pgFlags       /* Various PAGER_* flags */
2754 ){
2755   BtShared *pBt = p->pBt;
2756   assert( sqlite3_mutex_held(p->db->mutex) );
2757   sqlite3BtreeEnter(p);
2758   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2759   sqlite3BtreeLeave(p);
2760   return SQLITE_OK;
2761 }
2762 #endif
2763 
2764 /*
2765 ** Change the default pages size and the number of reserved bytes per page.
2766 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2767 ** without changing anything.
2768 **
2769 ** The page size must be a power of 2 between 512 and 65536.  If the page
2770 ** size supplied does not meet this constraint then the page size is not
2771 ** changed.
2772 **
2773 ** Page sizes are constrained to be a power of two so that the region
2774 ** of the database file used for locking (beginning at PENDING_BYTE,
2775 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2776 ** at the beginning of a page.
2777 **
2778 ** If parameter nReserve is less than zero, then the number of reserved
2779 ** bytes per page is left unchanged.
2780 **
2781 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2782 ** and autovacuum mode can no longer be changed.
2783 */
2784 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2785   int rc = SQLITE_OK;
2786   BtShared *pBt = p->pBt;
2787   assert( nReserve>=-1 && nReserve<=255 );
2788   sqlite3BtreeEnter(p);
2789 #if SQLITE_HAS_CODEC
2790   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2791 #endif
2792   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2793     sqlite3BtreeLeave(p);
2794     return SQLITE_READONLY;
2795   }
2796   if( nReserve<0 ){
2797     nReserve = pBt->pageSize - pBt->usableSize;
2798   }
2799   assert( nReserve>=0 && nReserve<=255 );
2800   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2801         ((pageSize-1)&pageSize)==0 ){
2802     assert( (pageSize & 7)==0 );
2803     assert( !pBt->pCursor );
2804     pBt->pageSize = (u32)pageSize;
2805     freeTempSpace(pBt);
2806   }
2807   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2808   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2809   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2810   sqlite3BtreeLeave(p);
2811   return rc;
2812 }
2813 
2814 /*
2815 ** Return the currently defined page size
2816 */
2817 int sqlite3BtreeGetPageSize(Btree *p){
2818   return p->pBt->pageSize;
2819 }
2820 
2821 /*
2822 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2823 ** may only be called if it is guaranteed that the b-tree mutex is already
2824 ** held.
2825 **
2826 ** This is useful in one special case in the backup API code where it is
2827 ** known that the shared b-tree mutex is held, but the mutex on the
2828 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2829 ** were to be called, it might collide with some other operation on the
2830 ** database handle that owns *p, causing undefined behavior.
2831 */
2832 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2833   int n;
2834   assert( sqlite3_mutex_held(p->pBt->mutex) );
2835   n = p->pBt->pageSize - p->pBt->usableSize;
2836   return n;
2837 }
2838 
2839 /*
2840 ** Return the number of bytes of space at the end of every page that
2841 ** are intentually left unused.  This is the "reserved" space that is
2842 ** sometimes used by extensions.
2843 **
2844 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2845 ** greater of the current reserved space and the maximum requested
2846 ** reserve space.
2847 */
2848 int sqlite3BtreeGetOptimalReserve(Btree *p){
2849   int n;
2850   sqlite3BtreeEnter(p);
2851   n = sqlite3BtreeGetReserveNoMutex(p);
2852 #ifdef SQLITE_HAS_CODEC
2853   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2854 #endif
2855   sqlite3BtreeLeave(p);
2856   return n;
2857 }
2858 
2859 
2860 /*
2861 ** Set the maximum page count for a database if mxPage is positive.
2862 ** No changes are made if mxPage is 0 or negative.
2863 ** Regardless of the value of mxPage, return the maximum page count.
2864 */
2865 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2866   int n;
2867   sqlite3BtreeEnter(p);
2868   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2869   sqlite3BtreeLeave(p);
2870   return n;
2871 }
2872 
2873 /*
2874 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2875 **
2876 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2877 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2878 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2879 **    newFlag==(-1)    No changes
2880 **
2881 ** This routine acts as a query if newFlag is less than zero
2882 **
2883 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2884 ** freelist leaf pages are not written back to the database.  Thus in-page
2885 ** deleted content is cleared, but freelist deleted content is not.
2886 **
2887 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2888 ** that freelist leaf pages are written back into the database, increasing
2889 ** the amount of disk I/O.
2890 */
2891 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2892   int b;
2893   if( p==0 ) return 0;
2894   sqlite3BtreeEnter(p);
2895   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2896   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2897   if( newFlag>=0 ){
2898     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2899     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2900   }
2901   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2902   sqlite3BtreeLeave(p);
2903   return b;
2904 }
2905 
2906 /*
2907 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2908 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2909 ** is disabled. The default value for the auto-vacuum property is
2910 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2911 */
2912 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2913 #ifdef SQLITE_OMIT_AUTOVACUUM
2914   return SQLITE_READONLY;
2915 #else
2916   BtShared *pBt = p->pBt;
2917   int rc = SQLITE_OK;
2918   u8 av = (u8)autoVacuum;
2919 
2920   sqlite3BtreeEnter(p);
2921   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2922     rc = SQLITE_READONLY;
2923   }else{
2924     pBt->autoVacuum = av ?1:0;
2925     pBt->incrVacuum = av==2 ?1:0;
2926   }
2927   sqlite3BtreeLeave(p);
2928   return rc;
2929 #endif
2930 }
2931 
2932 /*
2933 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2934 ** enabled 1 is returned. Otherwise 0.
2935 */
2936 int sqlite3BtreeGetAutoVacuum(Btree *p){
2937 #ifdef SQLITE_OMIT_AUTOVACUUM
2938   return BTREE_AUTOVACUUM_NONE;
2939 #else
2940   int rc;
2941   sqlite3BtreeEnter(p);
2942   rc = (
2943     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2944     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2945     BTREE_AUTOVACUUM_INCR
2946   );
2947   sqlite3BtreeLeave(p);
2948   return rc;
2949 #endif
2950 }
2951 
2952 /*
2953 ** If the user has not set the safety-level for this database connection
2954 ** using "PRAGMA synchronous", and if the safety-level is not already
2955 ** set to the value passed to this function as the second parameter,
2956 ** set it so.
2957 */
2958 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2959     && !defined(SQLITE_OMIT_WAL)
2960 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2961   sqlite3 *db;
2962   Db *pDb;
2963   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2964     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2965     if( pDb->bSyncSet==0
2966      && pDb->safety_level!=safety_level
2967      && pDb!=&db->aDb[1]
2968     ){
2969       pDb->safety_level = safety_level;
2970       sqlite3PagerSetFlags(pBt->pPager,
2971           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2972     }
2973   }
2974 }
2975 #else
2976 # define setDefaultSyncFlag(pBt,safety_level)
2977 #endif
2978 
2979 /* Forward declaration */
2980 static int newDatabase(BtShared*);
2981 
2982 
2983 /*
2984 ** Get a reference to pPage1 of the database file.  This will
2985 ** also acquire a readlock on that file.
2986 **
2987 ** SQLITE_OK is returned on success.  If the file is not a
2988 ** well-formed database file, then SQLITE_CORRUPT is returned.
2989 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2990 ** is returned if we run out of memory.
2991 */
2992 static int lockBtree(BtShared *pBt){
2993   int rc;              /* Result code from subfunctions */
2994   MemPage *pPage1;     /* Page 1 of the database file */
2995   int nPage;           /* Number of pages in the database */
2996   int nPageFile = 0;   /* Number of pages in the database file */
2997   int nPageHeader;     /* Number of pages in the database according to hdr */
2998 
2999   assert( sqlite3_mutex_held(pBt->mutex) );
3000   assert( pBt->pPage1==0 );
3001   rc = sqlite3PagerSharedLock(pBt->pPager);
3002   if( rc!=SQLITE_OK ) return rc;
3003   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3004   if( rc!=SQLITE_OK ) return rc;
3005 
3006   /* Do some checking to help insure the file we opened really is
3007   ** a valid database file.
3008   */
3009   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3010   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
3011   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3012     nPage = nPageFile;
3013   }
3014   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3015     nPage = 0;
3016   }
3017   if( nPage>0 ){
3018     u32 pageSize;
3019     u32 usableSize;
3020     u8 *page1 = pPage1->aData;
3021     rc = SQLITE_NOTADB;
3022     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3023     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3024     ** 61 74 20 33 00. */
3025     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3026       goto page1_init_failed;
3027     }
3028 
3029 #ifdef SQLITE_OMIT_WAL
3030     if( page1[18]>1 ){
3031       pBt->btsFlags |= BTS_READ_ONLY;
3032     }
3033     if( page1[19]>1 ){
3034       goto page1_init_failed;
3035     }
3036 #else
3037     if( page1[18]>2 ){
3038       pBt->btsFlags |= BTS_READ_ONLY;
3039     }
3040     if( page1[19]>2 ){
3041       goto page1_init_failed;
3042     }
3043 
3044     /* If the write version is set to 2, this database should be accessed
3045     ** in WAL mode. If the log is not already open, open it now. Then
3046     ** return SQLITE_OK and return without populating BtShared.pPage1.
3047     ** The caller detects this and calls this function again. This is
3048     ** required as the version of page 1 currently in the page1 buffer
3049     ** may not be the latest version - there may be a newer one in the log
3050     ** file.
3051     */
3052     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3053       int isOpen = 0;
3054       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3055       if( rc!=SQLITE_OK ){
3056         goto page1_init_failed;
3057       }else{
3058         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3059         if( isOpen==0 ){
3060           releasePageOne(pPage1);
3061           return SQLITE_OK;
3062         }
3063       }
3064       rc = SQLITE_NOTADB;
3065     }else{
3066       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3067     }
3068 #endif
3069 
3070     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3071     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3072     **
3073     ** The original design allowed these amounts to vary, but as of
3074     ** version 3.6.0, we require them to be fixed.
3075     */
3076     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3077       goto page1_init_failed;
3078     }
3079     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3080     ** determined by the 2-byte integer located at an offset of 16 bytes from
3081     ** the beginning of the database file. */
3082     pageSize = (page1[16]<<8) | (page1[17]<<16);
3083     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3084     ** between 512 and 65536 inclusive. */
3085     if( ((pageSize-1)&pageSize)!=0
3086      || pageSize>SQLITE_MAX_PAGE_SIZE
3087      || pageSize<=256
3088     ){
3089       goto page1_init_failed;
3090     }
3091     assert( (pageSize & 7)==0 );
3092     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3093     ** integer at offset 20 is the number of bytes of space at the end of
3094     ** each page to reserve for extensions.
3095     **
3096     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3097     ** determined by the one-byte unsigned integer found at an offset of 20
3098     ** into the database file header. */
3099     usableSize = pageSize - page1[20];
3100     if( (u32)pageSize!=pBt->pageSize ){
3101       /* After reading the first page of the database assuming a page size
3102       ** of BtShared.pageSize, we have discovered that the page-size is
3103       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3104       ** zero and return SQLITE_OK. The caller will call this function
3105       ** again with the correct page-size.
3106       */
3107       releasePageOne(pPage1);
3108       pBt->usableSize = usableSize;
3109       pBt->pageSize = pageSize;
3110       freeTempSpace(pBt);
3111       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3112                                    pageSize-usableSize);
3113       return rc;
3114     }
3115     if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
3116       rc = SQLITE_CORRUPT_BKPT;
3117       goto page1_init_failed;
3118     }
3119     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3120     ** be less than 480. In other words, if the page size is 512, then the
3121     ** reserved space size cannot exceed 32. */
3122     if( usableSize<480 ){
3123       goto page1_init_failed;
3124     }
3125     pBt->pageSize = pageSize;
3126     pBt->usableSize = usableSize;
3127 #ifndef SQLITE_OMIT_AUTOVACUUM
3128     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3129     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3130 #endif
3131   }
3132 
3133   /* maxLocal is the maximum amount of payload to store locally for
3134   ** a cell.  Make sure it is small enough so that at least minFanout
3135   ** cells can will fit on one page.  We assume a 10-byte page header.
3136   ** Besides the payload, the cell must store:
3137   **     2-byte pointer to the cell
3138   **     4-byte child pointer
3139   **     9-byte nKey value
3140   **     4-byte nData value
3141   **     4-byte overflow page pointer
3142   ** So a cell consists of a 2-byte pointer, a header which is as much as
3143   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3144   ** page pointer.
3145   */
3146   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3147   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3148   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3149   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3150   if( pBt->maxLocal>127 ){
3151     pBt->max1bytePayload = 127;
3152   }else{
3153     pBt->max1bytePayload = (u8)pBt->maxLocal;
3154   }
3155   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3156   pBt->pPage1 = pPage1;
3157   pBt->nPage = nPage;
3158   return SQLITE_OK;
3159 
3160 page1_init_failed:
3161   releasePageOne(pPage1);
3162   pBt->pPage1 = 0;
3163   return rc;
3164 }
3165 
3166 #ifndef NDEBUG
3167 /*
3168 ** Return the number of cursors open on pBt. This is for use
3169 ** in assert() expressions, so it is only compiled if NDEBUG is not
3170 ** defined.
3171 **
3172 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3173 ** false then all cursors are counted.
3174 **
3175 ** For the purposes of this routine, a cursor is any cursor that
3176 ** is capable of reading or writing to the database.  Cursors that
3177 ** have been tripped into the CURSOR_FAULT state are not counted.
3178 */
3179 static int countValidCursors(BtShared *pBt, int wrOnly){
3180   BtCursor *pCur;
3181   int r = 0;
3182   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3183     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3184      && pCur->eState!=CURSOR_FAULT ) r++;
3185   }
3186   return r;
3187 }
3188 #endif
3189 
3190 /*
3191 ** If there are no outstanding cursors and we are not in the middle
3192 ** of a transaction but there is a read lock on the database, then
3193 ** this routine unrefs the first page of the database file which
3194 ** has the effect of releasing the read lock.
3195 **
3196 ** If there is a transaction in progress, this routine is a no-op.
3197 */
3198 static void unlockBtreeIfUnused(BtShared *pBt){
3199   assert( sqlite3_mutex_held(pBt->mutex) );
3200   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3201   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3202     MemPage *pPage1 = pBt->pPage1;
3203     assert( pPage1->aData );
3204     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3205     pBt->pPage1 = 0;
3206     releasePageOne(pPage1);
3207   }
3208 }
3209 
3210 /*
3211 ** If pBt points to an empty file then convert that empty file
3212 ** into a new empty database by initializing the first page of
3213 ** the database.
3214 */
3215 static int newDatabase(BtShared *pBt){
3216   MemPage *pP1;
3217   unsigned char *data;
3218   int rc;
3219 
3220   assert( sqlite3_mutex_held(pBt->mutex) );
3221   if( pBt->nPage>0 ){
3222     return SQLITE_OK;
3223   }
3224   pP1 = pBt->pPage1;
3225   assert( pP1!=0 );
3226   data = pP1->aData;
3227   rc = sqlite3PagerWrite(pP1->pDbPage);
3228   if( rc ) return rc;
3229   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3230   assert( sizeof(zMagicHeader)==16 );
3231   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3232   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3233   data[18] = 1;
3234   data[19] = 1;
3235   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3236   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3237   data[21] = 64;
3238   data[22] = 32;
3239   data[23] = 32;
3240   memset(&data[24], 0, 100-24);
3241   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3242   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3243 #ifndef SQLITE_OMIT_AUTOVACUUM
3244   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3245   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3246   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3247   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3248 #endif
3249   pBt->nPage = 1;
3250   data[31] = 1;
3251   return SQLITE_OK;
3252 }
3253 
3254 /*
3255 ** Initialize the first page of the database file (creating a database
3256 ** consisting of a single page and no schema objects). Return SQLITE_OK
3257 ** if successful, or an SQLite error code otherwise.
3258 */
3259 int sqlite3BtreeNewDb(Btree *p){
3260   int rc;
3261   sqlite3BtreeEnter(p);
3262   p->pBt->nPage = 0;
3263   rc = newDatabase(p->pBt);
3264   sqlite3BtreeLeave(p);
3265   return rc;
3266 }
3267 
3268 /*
3269 ** Attempt to start a new transaction. A write-transaction
3270 ** is started if the second argument is nonzero, otherwise a read-
3271 ** transaction.  If the second argument is 2 or more and exclusive
3272 ** transaction is started, meaning that no other process is allowed
3273 ** to access the database.  A preexisting transaction may not be
3274 ** upgraded to exclusive by calling this routine a second time - the
3275 ** exclusivity flag only works for a new transaction.
3276 **
3277 ** A write-transaction must be started before attempting any
3278 ** changes to the database.  None of the following routines
3279 ** will work unless a transaction is started first:
3280 **
3281 **      sqlite3BtreeCreateTable()
3282 **      sqlite3BtreeCreateIndex()
3283 **      sqlite3BtreeClearTable()
3284 **      sqlite3BtreeDropTable()
3285 **      sqlite3BtreeInsert()
3286 **      sqlite3BtreeDelete()
3287 **      sqlite3BtreeUpdateMeta()
3288 **
3289 ** If an initial attempt to acquire the lock fails because of lock contention
3290 ** and the database was previously unlocked, then invoke the busy handler
3291 ** if there is one.  But if there was previously a read-lock, do not
3292 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3293 ** returned when there is already a read-lock in order to avoid a deadlock.
3294 **
3295 ** Suppose there are two processes A and B.  A has a read lock and B has
3296 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3297 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3298 ** One or the other of the two processes must give way or there can be
3299 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3300 ** when A already has a read lock, we encourage A to give up and let B
3301 ** proceed.
3302 */
3303 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3304   BtShared *pBt = p->pBt;
3305   int rc = SQLITE_OK;
3306 
3307   sqlite3BtreeEnter(p);
3308   btreeIntegrity(p);
3309 
3310   /* If the btree is already in a write-transaction, or it
3311   ** is already in a read-transaction and a read-transaction
3312   ** is requested, this is a no-op.
3313   */
3314   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3315     goto trans_begun;
3316   }
3317   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3318 
3319   /* Write transactions are not possible on a read-only database */
3320   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3321     rc = SQLITE_READONLY;
3322     goto trans_begun;
3323   }
3324 
3325 #ifndef SQLITE_OMIT_SHARED_CACHE
3326   {
3327     sqlite3 *pBlock = 0;
3328     /* If another database handle has already opened a write transaction
3329     ** on this shared-btree structure and a second write transaction is
3330     ** requested, return SQLITE_LOCKED.
3331     */
3332     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3333      || (pBt->btsFlags & BTS_PENDING)!=0
3334     ){
3335       pBlock = pBt->pWriter->db;
3336     }else if( wrflag>1 ){
3337       BtLock *pIter;
3338       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3339         if( pIter->pBtree!=p ){
3340           pBlock = pIter->pBtree->db;
3341           break;
3342         }
3343       }
3344     }
3345     if( pBlock ){
3346       sqlite3ConnectionBlocked(p->db, pBlock);
3347       rc = SQLITE_LOCKED_SHAREDCACHE;
3348       goto trans_begun;
3349     }
3350   }
3351 #endif
3352 
3353   /* Any read-only or read-write transaction implies a read-lock on
3354   ** page 1. So if some other shared-cache client already has a write-lock
3355   ** on page 1, the transaction cannot be opened. */
3356   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3357   if( SQLITE_OK!=rc ) goto trans_begun;
3358 
3359   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3360   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3361   do {
3362     /* Call lockBtree() until either pBt->pPage1 is populated or
3363     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3364     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3365     ** reading page 1 it discovers that the page-size of the database
3366     ** file is not pBt->pageSize. In this case lockBtree() will update
3367     ** pBt->pageSize to the page-size of the file on disk.
3368     */
3369     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3370 
3371     if( rc==SQLITE_OK && wrflag ){
3372       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3373         rc = SQLITE_READONLY;
3374       }else{
3375         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3376         if( rc==SQLITE_OK ){
3377           rc = newDatabase(pBt);
3378         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3379           /* if there was no transaction opened when this function was
3380           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3381           ** code to SQLITE_BUSY. */
3382           rc = SQLITE_BUSY;
3383         }
3384       }
3385     }
3386 
3387     if( rc!=SQLITE_OK ){
3388       unlockBtreeIfUnused(pBt);
3389     }
3390   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3391           btreeInvokeBusyHandler(pBt) );
3392   sqlite3PagerResetLockTimeout(pBt->pPager);
3393 
3394   if( rc==SQLITE_OK ){
3395     if( p->inTrans==TRANS_NONE ){
3396       pBt->nTransaction++;
3397 #ifndef SQLITE_OMIT_SHARED_CACHE
3398       if( p->sharable ){
3399         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3400         p->lock.eLock = READ_LOCK;
3401         p->lock.pNext = pBt->pLock;
3402         pBt->pLock = &p->lock;
3403       }
3404 #endif
3405     }
3406     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3407     if( p->inTrans>pBt->inTransaction ){
3408       pBt->inTransaction = p->inTrans;
3409     }
3410     if( wrflag ){
3411       MemPage *pPage1 = pBt->pPage1;
3412 #ifndef SQLITE_OMIT_SHARED_CACHE
3413       assert( !pBt->pWriter );
3414       pBt->pWriter = p;
3415       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3416       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3417 #endif
3418 
3419       /* If the db-size header field is incorrect (as it may be if an old
3420       ** client has been writing the database file), update it now. Doing
3421       ** this sooner rather than later means the database size can safely
3422       ** re-read the database size from page 1 if a savepoint or transaction
3423       ** rollback occurs within the transaction.
3424       */
3425       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3426         rc = sqlite3PagerWrite(pPage1->pDbPage);
3427         if( rc==SQLITE_OK ){
3428           put4byte(&pPage1->aData[28], pBt->nPage);
3429         }
3430       }
3431     }
3432   }
3433 
3434 trans_begun:
3435   if( rc==SQLITE_OK ){
3436     if( pSchemaVersion ){
3437       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3438     }
3439     if( wrflag ){
3440       /* This call makes sure that the pager has the correct number of
3441       ** open savepoints. If the second parameter is greater than 0 and
3442       ** the sub-journal is not already open, then it will be opened here.
3443       */
3444       rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3445     }
3446   }
3447 
3448   btreeIntegrity(p);
3449   sqlite3BtreeLeave(p);
3450   return rc;
3451 }
3452 
3453 #ifndef SQLITE_OMIT_AUTOVACUUM
3454 
3455 /*
3456 ** Set the pointer-map entries for all children of page pPage. Also, if
3457 ** pPage contains cells that point to overflow pages, set the pointer
3458 ** map entries for the overflow pages as well.
3459 */
3460 static int setChildPtrmaps(MemPage *pPage){
3461   int i;                             /* Counter variable */
3462   int nCell;                         /* Number of cells in page pPage */
3463   int rc;                            /* Return code */
3464   BtShared *pBt = pPage->pBt;
3465   Pgno pgno = pPage->pgno;
3466 
3467   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3468   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3469   if( rc!=SQLITE_OK ) return rc;
3470   nCell = pPage->nCell;
3471 
3472   for(i=0; i<nCell; i++){
3473     u8 *pCell = findCell(pPage, i);
3474 
3475     ptrmapPutOvflPtr(pPage, pCell, &rc);
3476 
3477     if( !pPage->leaf ){
3478       Pgno childPgno = get4byte(pCell);
3479       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3480     }
3481   }
3482 
3483   if( !pPage->leaf ){
3484     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3485     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3486   }
3487 
3488   return rc;
3489 }
3490 
3491 /*
3492 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3493 ** that it points to iTo. Parameter eType describes the type of pointer to
3494 ** be modified, as  follows:
3495 **
3496 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3497 **                   page of pPage.
3498 **
3499 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3500 **                   page pointed to by one of the cells on pPage.
3501 **
3502 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3503 **                   overflow page in the list.
3504 */
3505 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3506   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3507   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3508   if( eType==PTRMAP_OVERFLOW2 ){
3509     /* The pointer is always the first 4 bytes of the page in this case.  */
3510     if( get4byte(pPage->aData)!=iFrom ){
3511       return SQLITE_CORRUPT_PAGE(pPage);
3512     }
3513     put4byte(pPage->aData, iTo);
3514   }else{
3515     int i;
3516     int nCell;
3517     int rc;
3518 
3519     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3520     if( rc ) return rc;
3521     nCell = pPage->nCell;
3522 
3523     for(i=0; i<nCell; i++){
3524       u8 *pCell = findCell(pPage, i);
3525       if( eType==PTRMAP_OVERFLOW1 ){
3526         CellInfo info;
3527         pPage->xParseCell(pPage, pCell, &info);
3528         if( info.nLocal<info.nPayload ){
3529           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3530             return SQLITE_CORRUPT_PAGE(pPage);
3531           }
3532           if( iFrom==get4byte(pCell+info.nSize-4) ){
3533             put4byte(pCell+info.nSize-4, iTo);
3534             break;
3535           }
3536         }
3537       }else{
3538         if( get4byte(pCell)==iFrom ){
3539           put4byte(pCell, iTo);
3540           break;
3541         }
3542       }
3543     }
3544 
3545     if( i==nCell ){
3546       if( eType!=PTRMAP_BTREE ||
3547           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3548         return SQLITE_CORRUPT_PAGE(pPage);
3549       }
3550       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3551     }
3552   }
3553   return SQLITE_OK;
3554 }
3555 
3556 
3557 /*
3558 ** Move the open database page pDbPage to location iFreePage in the
3559 ** database. The pDbPage reference remains valid.
3560 **
3561 ** The isCommit flag indicates that there is no need to remember that
3562 ** the journal needs to be sync()ed before database page pDbPage->pgno
3563 ** can be written to. The caller has already promised not to write to that
3564 ** page.
3565 */
3566 static int relocatePage(
3567   BtShared *pBt,           /* Btree */
3568   MemPage *pDbPage,        /* Open page to move */
3569   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3570   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3571   Pgno iFreePage,          /* The location to move pDbPage to */
3572   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3573 ){
3574   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3575   Pgno iDbPage = pDbPage->pgno;
3576   Pager *pPager = pBt->pPager;
3577   int rc;
3578 
3579   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3580       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3581   assert( sqlite3_mutex_held(pBt->mutex) );
3582   assert( pDbPage->pBt==pBt );
3583 
3584   /* Move page iDbPage from its current location to page number iFreePage */
3585   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3586       iDbPage, iFreePage, iPtrPage, eType));
3587   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3588   if( rc!=SQLITE_OK ){
3589     return rc;
3590   }
3591   pDbPage->pgno = iFreePage;
3592 
3593   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3594   ** that point to overflow pages. The pointer map entries for all these
3595   ** pages need to be changed.
3596   **
3597   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3598   ** pointer to a subsequent overflow page. If this is the case, then
3599   ** the pointer map needs to be updated for the subsequent overflow page.
3600   */
3601   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3602     rc = setChildPtrmaps(pDbPage);
3603     if( rc!=SQLITE_OK ){
3604       return rc;
3605     }
3606   }else{
3607     Pgno nextOvfl = get4byte(pDbPage->aData);
3608     if( nextOvfl!=0 ){
3609       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3610       if( rc!=SQLITE_OK ){
3611         return rc;
3612       }
3613     }
3614   }
3615 
3616   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3617   ** that it points at iFreePage. Also fix the pointer map entry for
3618   ** iPtrPage.
3619   */
3620   if( eType!=PTRMAP_ROOTPAGE ){
3621     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3622     if( rc!=SQLITE_OK ){
3623       return rc;
3624     }
3625     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3626     if( rc!=SQLITE_OK ){
3627       releasePage(pPtrPage);
3628       return rc;
3629     }
3630     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3631     releasePage(pPtrPage);
3632     if( rc==SQLITE_OK ){
3633       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3634     }
3635   }
3636   return rc;
3637 }
3638 
3639 /* Forward declaration required by incrVacuumStep(). */
3640 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3641 
3642 /*
3643 ** Perform a single step of an incremental-vacuum. If successful, return
3644 ** SQLITE_OK. If there is no work to do (and therefore no point in
3645 ** calling this function again), return SQLITE_DONE. Or, if an error
3646 ** occurs, return some other error code.
3647 **
3648 ** More specifically, this function attempts to re-organize the database so
3649 ** that the last page of the file currently in use is no longer in use.
3650 **
3651 ** Parameter nFin is the number of pages that this database would contain
3652 ** were this function called until it returns SQLITE_DONE.
3653 **
3654 ** If the bCommit parameter is non-zero, this function assumes that the
3655 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3656 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3657 ** operation, or false for an incremental vacuum.
3658 */
3659 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3660   Pgno nFreeList;           /* Number of pages still on the free-list */
3661   int rc;
3662 
3663   assert( sqlite3_mutex_held(pBt->mutex) );
3664   assert( iLastPg>nFin );
3665 
3666   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3667     u8 eType;
3668     Pgno iPtrPage;
3669 
3670     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3671     if( nFreeList==0 ){
3672       return SQLITE_DONE;
3673     }
3674 
3675     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3676     if( rc!=SQLITE_OK ){
3677       return rc;
3678     }
3679     if( eType==PTRMAP_ROOTPAGE ){
3680       return SQLITE_CORRUPT_BKPT;
3681     }
3682 
3683     if( eType==PTRMAP_FREEPAGE ){
3684       if( bCommit==0 ){
3685         /* Remove the page from the files free-list. This is not required
3686         ** if bCommit is non-zero. In that case, the free-list will be
3687         ** truncated to zero after this function returns, so it doesn't
3688         ** matter if it still contains some garbage entries.
3689         */
3690         Pgno iFreePg;
3691         MemPage *pFreePg;
3692         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3693         if( rc!=SQLITE_OK ){
3694           return rc;
3695         }
3696         assert( iFreePg==iLastPg );
3697         releasePage(pFreePg);
3698       }
3699     } else {
3700       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3701       MemPage *pLastPg;
3702       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3703       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3704 
3705       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3706       if( rc!=SQLITE_OK ){
3707         return rc;
3708       }
3709 
3710       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3711       ** is swapped with the first free page pulled off the free list.
3712       **
3713       ** On the other hand, if bCommit is greater than zero, then keep
3714       ** looping until a free-page located within the first nFin pages
3715       ** of the file is found.
3716       */
3717       if( bCommit==0 ){
3718         eMode = BTALLOC_LE;
3719         iNear = nFin;
3720       }
3721       do {
3722         MemPage *pFreePg;
3723         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3724         if( rc!=SQLITE_OK ){
3725           releasePage(pLastPg);
3726           return rc;
3727         }
3728         releasePage(pFreePg);
3729       }while( bCommit && iFreePg>nFin );
3730       assert( iFreePg<iLastPg );
3731 
3732       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3733       releasePage(pLastPg);
3734       if( rc!=SQLITE_OK ){
3735         return rc;
3736       }
3737     }
3738   }
3739 
3740   if( bCommit==0 ){
3741     do {
3742       iLastPg--;
3743     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3744     pBt->bDoTruncate = 1;
3745     pBt->nPage = iLastPg;
3746   }
3747   return SQLITE_OK;
3748 }
3749 
3750 /*
3751 ** The database opened by the first argument is an auto-vacuum database
3752 ** nOrig pages in size containing nFree free pages. Return the expected
3753 ** size of the database in pages following an auto-vacuum operation.
3754 */
3755 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3756   int nEntry;                     /* Number of entries on one ptrmap page */
3757   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3758   Pgno nFin;                      /* Return value */
3759 
3760   nEntry = pBt->usableSize/5;
3761   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3762   nFin = nOrig - nFree - nPtrmap;
3763   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3764     nFin--;
3765   }
3766   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3767     nFin--;
3768   }
3769 
3770   return nFin;
3771 }
3772 
3773 /*
3774 ** A write-transaction must be opened before calling this function.
3775 ** It performs a single unit of work towards an incremental vacuum.
3776 **
3777 ** If the incremental vacuum is finished after this function has run,
3778 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3779 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3780 */
3781 int sqlite3BtreeIncrVacuum(Btree *p){
3782   int rc;
3783   BtShared *pBt = p->pBt;
3784 
3785   sqlite3BtreeEnter(p);
3786   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3787   if( !pBt->autoVacuum ){
3788     rc = SQLITE_DONE;
3789   }else{
3790     Pgno nOrig = btreePagecount(pBt);
3791     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3792     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3793 
3794     if( nOrig<nFin ){
3795       rc = SQLITE_CORRUPT_BKPT;
3796     }else if( nFree>0 ){
3797       rc = saveAllCursors(pBt, 0, 0);
3798       if( rc==SQLITE_OK ){
3799         invalidateAllOverflowCache(pBt);
3800         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3801       }
3802       if( rc==SQLITE_OK ){
3803         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3804         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3805       }
3806     }else{
3807       rc = SQLITE_DONE;
3808     }
3809   }
3810   sqlite3BtreeLeave(p);
3811   return rc;
3812 }
3813 
3814 /*
3815 ** This routine is called prior to sqlite3PagerCommit when a transaction
3816 ** is committed for an auto-vacuum database.
3817 **
3818 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3819 ** the database file should be truncated to during the commit process.
3820 ** i.e. the database has been reorganized so that only the first *pnTrunc
3821 ** pages are in use.
3822 */
3823 static int autoVacuumCommit(BtShared *pBt){
3824   int rc = SQLITE_OK;
3825   Pager *pPager = pBt->pPager;
3826   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3827 
3828   assert( sqlite3_mutex_held(pBt->mutex) );
3829   invalidateAllOverflowCache(pBt);
3830   assert(pBt->autoVacuum);
3831   if( !pBt->incrVacuum ){
3832     Pgno nFin;         /* Number of pages in database after autovacuuming */
3833     Pgno nFree;        /* Number of pages on the freelist initially */
3834     Pgno iFree;        /* The next page to be freed */
3835     Pgno nOrig;        /* Database size before freeing */
3836 
3837     nOrig = btreePagecount(pBt);
3838     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3839       /* It is not possible to create a database for which the final page
3840       ** is either a pointer-map page or the pending-byte page. If one
3841       ** is encountered, this indicates corruption.
3842       */
3843       return SQLITE_CORRUPT_BKPT;
3844     }
3845 
3846     nFree = get4byte(&pBt->pPage1->aData[36]);
3847     nFin = finalDbSize(pBt, nOrig, nFree);
3848     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3849     if( nFin<nOrig ){
3850       rc = saveAllCursors(pBt, 0, 0);
3851     }
3852     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3853       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3854     }
3855     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3856       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3857       put4byte(&pBt->pPage1->aData[32], 0);
3858       put4byte(&pBt->pPage1->aData[36], 0);
3859       put4byte(&pBt->pPage1->aData[28], nFin);
3860       pBt->bDoTruncate = 1;
3861       pBt->nPage = nFin;
3862     }
3863     if( rc!=SQLITE_OK ){
3864       sqlite3PagerRollback(pPager);
3865     }
3866   }
3867 
3868   assert( nRef>=sqlite3PagerRefcount(pPager) );
3869   return rc;
3870 }
3871 
3872 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3873 # define setChildPtrmaps(x) SQLITE_OK
3874 #endif
3875 
3876 /*
3877 ** This routine does the first phase of a two-phase commit.  This routine
3878 ** causes a rollback journal to be created (if it does not already exist)
3879 ** and populated with enough information so that if a power loss occurs
3880 ** the database can be restored to its original state by playing back
3881 ** the journal.  Then the contents of the journal are flushed out to
3882 ** the disk.  After the journal is safely on oxide, the changes to the
3883 ** database are written into the database file and flushed to oxide.
3884 ** At the end of this call, the rollback journal still exists on the
3885 ** disk and we are still holding all locks, so the transaction has not
3886 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3887 ** commit process.
3888 **
3889 ** This call is a no-op if no write-transaction is currently active on pBt.
3890 **
3891 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3892 ** the name of a master journal file that should be written into the
3893 ** individual journal file, or is NULL, indicating no master journal file
3894 ** (single database transaction).
3895 **
3896 ** When this is called, the master journal should already have been
3897 ** created, populated with this journal pointer and synced to disk.
3898 **
3899 ** Once this is routine has returned, the only thing required to commit
3900 ** the write-transaction for this database file is to delete the journal.
3901 */
3902 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3903   int rc = SQLITE_OK;
3904   if( p->inTrans==TRANS_WRITE ){
3905     BtShared *pBt = p->pBt;
3906     sqlite3BtreeEnter(p);
3907 #ifndef SQLITE_OMIT_AUTOVACUUM
3908     if( pBt->autoVacuum ){
3909       rc = autoVacuumCommit(pBt);
3910       if( rc!=SQLITE_OK ){
3911         sqlite3BtreeLeave(p);
3912         return rc;
3913       }
3914     }
3915     if( pBt->bDoTruncate ){
3916       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3917     }
3918 #endif
3919     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3920     sqlite3BtreeLeave(p);
3921   }
3922   return rc;
3923 }
3924 
3925 /*
3926 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3927 ** at the conclusion of a transaction.
3928 */
3929 static void btreeEndTransaction(Btree *p){
3930   BtShared *pBt = p->pBt;
3931   sqlite3 *db = p->db;
3932   assert( sqlite3BtreeHoldsMutex(p) );
3933 
3934 #ifndef SQLITE_OMIT_AUTOVACUUM
3935   pBt->bDoTruncate = 0;
3936 #endif
3937   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3938     /* If there are other active statements that belong to this database
3939     ** handle, downgrade to a read-only transaction. The other statements
3940     ** may still be reading from the database.  */
3941     downgradeAllSharedCacheTableLocks(p);
3942     p->inTrans = TRANS_READ;
3943   }else{
3944     /* If the handle had any kind of transaction open, decrement the
3945     ** transaction count of the shared btree. If the transaction count
3946     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3947     ** call below will unlock the pager.  */
3948     if( p->inTrans!=TRANS_NONE ){
3949       clearAllSharedCacheTableLocks(p);
3950       pBt->nTransaction--;
3951       if( 0==pBt->nTransaction ){
3952         pBt->inTransaction = TRANS_NONE;
3953       }
3954     }
3955 
3956     /* Set the current transaction state to TRANS_NONE and unlock the
3957     ** pager if this call closed the only read or write transaction.  */
3958     p->inTrans = TRANS_NONE;
3959     unlockBtreeIfUnused(pBt);
3960   }
3961 
3962   btreeIntegrity(p);
3963 }
3964 
3965 /*
3966 ** Commit the transaction currently in progress.
3967 **
3968 ** This routine implements the second phase of a 2-phase commit.  The
3969 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3970 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3971 ** routine did all the work of writing information out to disk and flushing the
3972 ** contents so that they are written onto the disk platter.  All this
3973 ** routine has to do is delete or truncate or zero the header in the
3974 ** the rollback journal (which causes the transaction to commit) and
3975 ** drop locks.
3976 **
3977 ** Normally, if an error occurs while the pager layer is attempting to
3978 ** finalize the underlying journal file, this function returns an error and
3979 ** the upper layer will attempt a rollback. However, if the second argument
3980 ** is non-zero then this b-tree transaction is part of a multi-file
3981 ** transaction. In this case, the transaction has already been committed
3982 ** (by deleting a master journal file) and the caller will ignore this
3983 ** functions return code. So, even if an error occurs in the pager layer,
3984 ** reset the b-tree objects internal state to indicate that the write
3985 ** transaction has been closed. This is quite safe, as the pager will have
3986 ** transitioned to the error state.
3987 **
3988 ** This will release the write lock on the database file.  If there
3989 ** are no active cursors, it also releases the read lock.
3990 */
3991 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3992 
3993   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3994   sqlite3BtreeEnter(p);
3995   btreeIntegrity(p);
3996 
3997   /* If the handle has a write-transaction open, commit the shared-btrees
3998   ** transaction and set the shared state to TRANS_READ.
3999   */
4000   if( p->inTrans==TRANS_WRITE ){
4001     int rc;
4002     BtShared *pBt = p->pBt;
4003     assert( pBt->inTransaction==TRANS_WRITE );
4004     assert( pBt->nTransaction>0 );
4005     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4006     if( rc!=SQLITE_OK && bCleanup==0 ){
4007       sqlite3BtreeLeave(p);
4008       return rc;
4009     }
4010     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4011     pBt->inTransaction = TRANS_READ;
4012     btreeClearHasContent(pBt);
4013   }
4014 
4015   btreeEndTransaction(p);
4016   sqlite3BtreeLeave(p);
4017   return SQLITE_OK;
4018 }
4019 
4020 /*
4021 ** Do both phases of a commit.
4022 */
4023 int sqlite3BtreeCommit(Btree *p){
4024   int rc;
4025   sqlite3BtreeEnter(p);
4026   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4027   if( rc==SQLITE_OK ){
4028     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4029   }
4030   sqlite3BtreeLeave(p);
4031   return rc;
4032 }
4033 
4034 /*
4035 ** This routine sets the state to CURSOR_FAULT and the error
4036 ** code to errCode for every cursor on any BtShared that pBtree
4037 ** references.  Or if the writeOnly flag is set to 1, then only
4038 ** trip write cursors and leave read cursors unchanged.
4039 **
4040 ** Every cursor is a candidate to be tripped, including cursors
4041 ** that belong to other database connections that happen to be
4042 ** sharing the cache with pBtree.
4043 **
4044 ** This routine gets called when a rollback occurs. If the writeOnly
4045 ** flag is true, then only write-cursors need be tripped - read-only
4046 ** cursors save their current positions so that they may continue
4047 ** following the rollback. Or, if writeOnly is false, all cursors are
4048 ** tripped. In general, writeOnly is false if the transaction being
4049 ** rolled back modified the database schema. In this case b-tree root
4050 ** pages may be moved or deleted from the database altogether, making
4051 ** it unsafe for read cursors to continue.
4052 **
4053 ** If the writeOnly flag is true and an error is encountered while
4054 ** saving the current position of a read-only cursor, all cursors,
4055 ** including all read-cursors are tripped.
4056 **
4057 ** SQLITE_OK is returned if successful, or if an error occurs while
4058 ** saving a cursor position, an SQLite error code.
4059 */
4060 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4061   BtCursor *p;
4062   int rc = SQLITE_OK;
4063 
4064   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4065   if( pBtree ){
4066     sqlite3BtreeEnter(pBtree);
4067     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4068       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4069         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4070           rc = saveCursorPosition(p);
4071           if( rc!=SQLITE_OK ){
4072             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4073             break;
4074           }
4075         }
4076       }else{
4077         sqlite3BtreeClearCursor(p);
4078         p->eState = CURSOR_FAULT;
4079         p->skipNext = errCode;
4080       }
4081       btreeReleaseAllCursorPages(p);
4082     }
4083     sqlite3BtreeLeave(pBtree);
4084   }
4085   return rc;
4086 }
4087 
4088 /*
4089 ** Rollback the transaction in progress.
4090 **
4091 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4092 ** Only write cursors are tripped if writeOnly is true but all cursors are
4093 ** tripped if writeOnly is false.  Any attempt to use
4094 ** a tripped cursor will result in an error.
4095 **
4096 ** This will release the write lock on the database file.  If there
4097 ** are no active cursors, it also releases the read lock.
4098 */
4099 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4100   int rc;
4101   BtShared *pBt = p->pBt;
4102   MemPage *pPage1;
4103 
4104   assert( writeOnly==1 || writeOnly==0 );
4105   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4106   sqlite3BtreeEnter(p);
4107   if( tripCode==SQLITE_OK ){
4108     rc = tripCode = saveAllCursors(pBt, 0, 0);
4109     if( rc ) writeOnly = 0;
4110   }else{
4111     rc = SQLITE_OK;
4112   }
4113   if( tripCode ){
4114     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4115     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4116     if( rc2!=SQLITE_OK ) rc = rc2;
4117   }
4118   btreeIntegrity(p);
4119 
4120   if( p->inTrans==TRANS_WRITE ){
4121     int rc2;
4122 
4123     assert( TRANS_WRITE==pBt->inTransaction );
4124     rc2 = sqlite3PagerRollback(pBt->pPager);
4125     if( rc2!=SQLITE_OK ){
4126       rc = rc2;
4127     }
4128 
4129     /* The rollback may have destroyed the pPage1->aData value.  So
4130     ** call btreeGetPage() on page 1 again to make
4131     ** sure pPage1->aData is set correctly. */
4132     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4133       int nPage = get4byte(28+(u8*)pPage1->aData);
4134       testcase( nPage==0 );
4135       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4136       testcase( pBt->nPage!=nPage );
4137       pBt->nPage = nPage;
4138       releasePageOne(pPage1);
4139     }
4140     assert( countValidCursors(pBt, 1)==0 );
4141     pBt->inTransaction = TRANS_READ;
4142     btreeClearHasContent(pBt);
4143   }
4144 
4145   btreeEndTransaction(p);
4146   sqlite3BtreeLeave(p);
4147   return rc;
4148 }
4149 
4150 /*
4151 ** Start a statement subtransaction. The subtransaction can be rolled
4152 ** back independently of the main transaction. You must start a transaction
4153 ** before starting a subtransaction. The subtransaction is ended automatically
4154 ** if the main transaction commits or rolls back.
4155 **
4156 ** Statement subtransactions are used around individual SQL statements
4157 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4158 ** error occurs within the statement, the effect of that one statement
4159 ** can be rolled back without having to rollback the entire transaction.
4160 **
4161 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4162 ** value passed as the second parameter is the total number of savepoints,
4163 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4164 ** are no active savepoints and no other statement-transactions open,
4165 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4166 ** using the sqlite3BtreeSavepoint() function.
4167 */
4168 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4169   int rc;
4170   BtShared *pBt = p->pBt;
4171   sqlite3BtreeEnter(p);
4172   assert( p->inTrans==TRANS_WRITE );
4173   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4174   assert( iStatement>0 );
4175   assert( iStatement>p->db->nSavepoint );
4176   assert( pBt->inTransaction==TRANS_WRITE );
4177   /* At the pager level, a statement transaction is a savepoint with
4178   ** an index greater than all savepoints created explicitly using
4179   ** SQL statements. It is illegal to open, release or rollback any
4180   ** such savepoints while the statement transaction savepoint is active.
4181   */
4182   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4183   sqlite3BtreeLeave(p);
4184   return rc;
4185 }
4186 
4187 /*
4188 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4189 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4190 ** savepoint identified by parameter iSavepoint, depending on the value
4191 ** of op.
4192 **
4193 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4194 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4195 ** contents of the entire transaction are rolled back. This is different
4196 ** from a normal transaction rollback, as no locks are released and the
4197 ** transaction remains open.
4198 */
4199 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4200   int rc = SQLITE_OK;
4201   if( p && p->inTrans==TRANS_WRITE ){
4202     BtShared *pBt = p->pBt;
4203     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4204     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4205     sqlite3BtreeEnter(p);
4206     if( op==SAVEPOINT_ROLLBACK ){
4207       rc = saveAllCursors(pBt, 0, 0);
4208     }
4209     if( rc==SQLITE_OK ){
4210       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4211     }
4212     if( rc==SQLITE_OK ){
4213       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4214         pBt->nPage = 0;
4215       }
4216       rc = newDatabase(pBt);
4217       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4218 
4219       /* The database size was written into the offset 28 of the header
4220       ** when the transaction started, so we know that the value at offset
4221       ** 28 is nonzero. */
4222       assert( pBt->nPage>0 );
4223     }
4224     sqlite3BtreeLeave(p);
4225   }
4226   return rc;
4227 }
4228 
4229 /*
4230 ** Create a new cursor for the BTree whose root is on the page
4231 ** iTable. If a read-only cursor is requested, it is assumed that
4232 ** the caller already has at least a read-only transaction open
4233 ** on the database already. If a write-cursor is requested, then
4234 ** the caller is assumed to have an open write transaction.
4235 **
4236 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4237 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4238 ** can be used for reading or for writing if other conditions for writing
4239 ** are also met.  These are the conditions that must be met in order
4240 ** for writing to be allowed:
4241 **
4242 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4243 **
4244 ** 2:  Other database connections that share the same pager cache
4245 **     but which are not in the READ_UNCOMMITTED state may not have
4246 **     cursors open with wrFlag==0 on the same table.  Otherwise
4247 **     the changes made by this write cursor would be visible to
4248 **     the read cursors in the other database connection.
4249 **
4250 ** 3:  The database must be writable (not on read-only media)
4251 **
4252 ** 4:  There must be an active transaction.
4253 **
4254 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4255 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4256 ** this cursor will only be used to seek to and delete entries of an index
4257 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4258 ** this implementation.  But in a hypothetical alternative storage engine
4259 ** in which index entries are automatically deleted when corresponding table
4260 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4261 ** operations on this cursor can be no-ops and all READ operations can
4262 ** return a null row (2-bytes: 0x01 0x00).
4263 **
4264 ** No checking is done to make sure that page iTable really is the
4265 ** root page of a b-tree.  If it is not, then the cursor acquired
4266 ** will not work correctly.
4267 **
4268 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4269 ** on pCur to initialize the memory space prior to invoking this routine.
4270 */
4271 static int btreeCursor(
4272   Btree *p,                              /* The btree */
4273   int iTable,                            /* Root page of table to open */
4274   int wrFlag,                            /* 1 to write. 0 read-only */
4275   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4276   BtCursor *pCur                         /* Space for new cursor */
4277 ){
4278   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4279   BtCursor *pX;                          /* Looping over other all cursors */
4280 
4281   assert( sqlite3BtreeHoldsMutex(p) );
4282   assert( wrFlag==0
4283        || wrFlag==BTREE_WRCSR
4284        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4285   );
4286 
4287   /* The following assert statements verify that if this is a sharable
4288   ** b-tree database, the connection is holding the required table locks,
4289   ** and that no other connection has any open cursor that conflicts with
4290   ** this lock.  */
4291   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4292   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4293 
4294   /* Assert that the caller has opened the required transaction. */
4295   assert( p->inTrans>TRANS_NONE );
4296   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4297   assert( pBt->pPage1 && pBt->pPage1->aData );
4298   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4299 
4300   if( wrFlag ){
4301     allocateTempSpace(pBt);
4302     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4303   }
4304   if( iTable==1 && btreePagecount(pBt)==0 ){
4305     assert( wrFlag==0 );
4306     iTable = 0;
4307   }
4308 
4309   /* Now that no other errors can occur, finish filling in the BtCursor
4310   ** variables and link the cursor into the BtShared list.  */
4311   pCur->pgnoRoot = (Pgno)iTable;
4312   pCur->iPage = -1;
4313   pCur->pKeyInfo = pKeyInfo;
4314   pCur->pBtree = p;
4315   pCur->pBt = pBt;
4316   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4317   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4318   /* If there are two or more cursors on the same btree, then all such
4319   ** cursors *must* have the BTCF_Multiple flag set. */
4320   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4321     if( pX->pgnoRoot==(Pgno)iTable ){
4322       pX->curFlags |= BTCF_Multiple;
4323       pCur->curFlags |= BTCF_Multiple;
4324     }
4325   }
4326   pCur->pNext = pBt->pCursor;
4327   pBt->pCursor = pCur;
4328   pCur->eState = CURSOR_INVALID;
4329   return SQLITE_OK;
4330 }
4331 int sqlite3BtreeCursor(
4332   Btree *p,                                   /* The btree */
4333   int iTable,                                 /* Root page of table to open */
4334   int wrFlag,                                 /* 1 to write. 0 read-only */
4335   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4336   BtCursor *pCur                              /* Write new cursor here */
4337 ){
4338   int rc;
4339   if( iTable<1 ){
4340     rc = SQLITE_CORRUPT_BKPT;
4341   }else{
4342     sqlite3BtreeEnter(p);
4343     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4344     sqlite3BtreeLeave(p);
4345   }
4346   return rc;
4347 }
4348 
4349 /*
4350 ** Return the size of a BtCursor object in bytes.
4351 **
4352 ** This interfaces is needed so that users of cursors can preallocate
4353 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4354 ** to users so they cannot do the sizeof() themselves - they must call
4355 ** this routine.
4356 */
4357 int sqlite3BtreeCursorSize(void){
4358   return ROUND8(sizeof(BtCursor));
4359 }
4360 
4361 /*
4362 ** Initialize memory that will be converted into a BtCursor object.
4363 **
4364 ** The simple approach here would be to memset() the entire object
4365 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4366 ** do not need to be zeroed and they are large, so we can save a lot
4367 ** of run-time by skipping the initialization of those elements.
4368 */
4369 void sqlite3BtreeCursorZero(BtCursor *p){
4370   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4371 }
4372 
4373 /*
4374 ** Close a cursor.  The read lock on the database file is released
4375 ** when the last cursor is closed.
4376 */
4377 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4378   Btree *pBtree = pCur->pBtree;
4379   if( pBtree ){
4380     BtShared *pBt = pCur->pBt;
4381     sqlite3BtreeEnter(pBtree);
4382     assert( pBt->pCursor!=0 );
4383     if( pBt->pCursor==pCur ){
4384       pBt->pCursor = pCur->pNext;
4385     }else{
4386       BtCursor *pPrev = pBt->pCursor;
4387       do{
4388         if( pPrev->pNext==pCur ){
4389           pPrev->pNext = pCur->pNext;
4390           break;
4391         }
4392         pPrev = pPrev->pNext;
4393       }while( ALWAYS(pPrev) );
4394     }
4395     btreeReleaseAllCursorPages(pCur);
4396     unlockBtreeIfUnused(pBt);
4397     sqlite3_free(pCur->aOverflow);
4398     sqlite3_free(pCur->pKey);
4399     sqlite3BtreeLeave(pBtree);
4400   }
4401   return SQLITE_OK;
4402 }
4403 
4404 /*
4405 ** Make sure the BtCursor* given in the argument has a valid
4406 ** BtCursor.info structure.  If it is not already valid, call
4407 ** btreeParseCell() to fill it in.
4408 **
4409 ** BtCursor.info is a cache of the information in the current cell.
4410 ** Using this cache reduces the number of calls to btreeParseCell().
4411 */
4412 #ifndef NDEBUG
4413   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4414     if( a->nKey!=b->nKey ) return 0;
4415     if( a->pPayload!=b->pPayload ) return 0;
4416     if( a->nPayload!=b->nPayload ) return 0;
4417     if( a->nLocal!=b->nLocal ) return 0;
4418     if( a->nSize!=b->nSize ) return 0;
4419     return 1;
4420   }
4421   static void assertCellInfo(BtCursor *pCur){
4422     CellInfo info;
4423     memset(&info, 0, sizeof(info));
4424     btreeParseCell(pCur->pPage, pCur->ix, &info);
4425     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4426   }
4427 #else
4428   #define assertCellInfo(x)
4429 #endif
4430 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4431   if( pCur->info.nSize==0 ){
4432     pCur->curFlags |= BTCF_ValidNKey;
4433     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4434   }else{
4435     assertCellInfo(pCur);
4436   }
4437 }
4438 
4439 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4440 /*
4441 ** Return true if the given BtCursor is valid.  A valid cursor is one
4442 ** that is currently pointing to a row in a (non-empty) table.
4443 ** This is a verification routine is used only within assert() statements.
4444 */
4445 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4446   return pCur && pCur->eState==CURSOR_VALID;
4447 }
4448 #endif /* NDEBUG */
4449 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4450   assert( pCur!=0 );
4451   return pCur->eState==CURSOR_VALID;
4452 }
4453 
4454 /*
4455 ** Return the value of the integer key or "rowid" for a table btree.
4456 ** This routine is only valid for a cursor that is pointing into a
4457 ** ordinary table btree.  If the cursor points to an index btree or
4458 ** is invalid, the result of this routine is undefined.
4459 */
4460 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4461   assert( cursorHoldsMutex(pCur) );
4462   assert( pCur->eState==CURSOR_VALID );
4463   assert( pCur->curIntKey );
4464   getCellInfo(pCur);
4465   return pCur->info.nKey;
4466 }
4467 
4468 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4469 /*
4470 ** Return the offset into the database file for the start of the
4471 ** payload to which the cursor is pointing.
4472 */
4473 i64 sqlite3BtreeOffset(BtCursor *pCur){
4474   assert( cursorHoldsMutex(pCur) );
4475   assert( pCur->eState==CURSOR_VALID );
4476   getCellInfo(pCur);
4477   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4478          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4479 }
4480 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4481 
4482 /*
4483 ** Return the number of bytes of payload for the entry that pCur is
4484 ** currently pointing to.  For table btrees, this will be the amount
4485 ** of data.  For index btrees, this will be the size of the key.
4486 **
4487 ** The caller must guarantee that the cursor is pointing to a non-NULL
4488 ** valid entry.  In other words, the calling procedure must guarantee
4489 ** that the cursor has Cursor.eState==CURSOR_VALID.
4490 */
4491 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4492   assert( cursorHoldsMutex(pCur) );
4493   assert( pCur->eState==CURSOR_VALID );
4494   getCellInfo(pCur);
4495   return pCur->info.nPayload;
4496 }
4497 
4498 /*
4499 ** Given the page number of an overflow page in the database (parameter
4500 ** ovfl), this function finds the page number of the next page in the
4501 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4502 ** pointer-map data instead of reading the content of page ovfl to do so.
4503 **
4504 ** If an error occurs an SQLite error code is returned. Otherwise:
4505 **
4506 ** The page number of the next overflow page in the linked list is
4507 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4508 ** list, *pPgnoNext is set to zero.
4509 **
4510 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4511 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4512 ** reference. It is the responsibility of the caller to call releasePage()
4513 ** on *ppPage to free the reference. In no reference was obtained (because
4514 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4515 ** *ppPage is set to zero.
4516 */
4517 static int getOverflowPage(
4518   BtShared *pBt,               /* The database file */
4519   Pgno ovfl,                   /* Current overflow page number */
4520   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4521   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4522 ){
4523   Pgno next = 0;
4524   MemPage *pPage = 0;
4525   int rc = SQLITE_OK;
4526 
4527   assert( sqlite3_mutex_held(pBt->mutex) );
4528   assert(pPgnoNext);
4529 
4530 #ifndef SQLITE_OMIT_AUTOVACUUM
4531   /* Try to find the next page in the overflow list using the
4532   ** autovacuum pointer-map pages. Guess that the next page in
4533   ** the overflow list is page number (ovfl+1). If that guess turns
4534   ** out to be wrong, fall back to loading the data of page
4535   ** number ovfl to determine the next page number.
4536   */
4537   if( pBt->autoVacuum ){
4538     Pgno pgno;
4539     Pgno iGuess = ovfl+1;
4540     u8 eType;
4541 
4542     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4543       iGuess++;
4544     }
4545 
4546     if( iGuess<=btreePagecount(pBt) ){
4547       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4548       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4549         next = iGuess;
4550         rc = SQLITE_DONE;
4551       }
4552     }
4553   }
4554 #endif
4555 
4556   assert( next==0 || rc==SQLITE_DONE );
4557   if( rc==SQLITE_OK ){
4558     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4559     assert( rc==SQLITE_OK || pPage==0 );
4560     if( rc==SQLITE_OK ){
4561       next = get4byte(pPage->aData);
4562     }
4563   }
4564 
4565   *pPgnoNext = next;
4566   if( ppPage ){
4567     *ppPage = pPage;
4568   }else{
4569     releasePage(pPage);
4570   }
4571   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4572 }
4573 
4574 /*
4575 ** Copy data from a buffer to a page, or from a page to a buffer.
4576 **
4577 ** pPayload is a pointer to data stored on database page pDbPage.
4578 ** If argument eOp is false, then nByte bytes of data are copied
4579 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4580 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4581 ** of data are copied from the buffer pBuf to pPayload.
4582 **
4583 ** SQLITE_OK is returned on success, otherwise an error code.
4584 */
4585 static int copyPayload(
4586   void *pPayload,           /* Pointer to page data */
4587   void *pBuf,               /* Pointer to buffer */
4588   int nByte,                /* Number of bytes to copy */
4589   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4590   DbPage *pDbPage           /* Page containing pPayload */
4591 ){
4592   if( eOp ){
4593     /* Copy data from buffer to page (a write operation) */
4594     int rc = sqlite3PagerWrite(pDbPage);
4595     if( rc!=SQLITE_OK ){
4596       return rc;
4597     }
4598     memcpy(pPayload, pBuf, nByte);
4599   }else{
4600     /* Copy data from page to buffer (a read operation) */
4601     memcpy(pBuf, pPayload, nByte);
4602   }
4603   return SQLITE_OK;
4604 }
4605 
4606 /*
4607 ** This function is used to read or overwrite payload information
4608 ** for the entry that the pCur cursor is pointing to. The eOp
4609 ** argument is interpreted as follows:
4610 **
4611 **   0: The operation is a read. Populate the overflow cache.
4612 **   1: The operation is a write. Populate the overflow cache.
4613 **
4614 ** A total of "amt" bytes are read or written beginning at "offset".
4615 ** Data is read to or from the buffer pBuf.
4616 **
4617 ** The content being read or written might appear on the main page
4618 ** or be scattered out on multiple overflow pages.
4619 **
4620 ** If the current cursor entry uses one or more overflow pages
4621 ** this function may allocate space for and lazily populate
4622 ** the overflow page-list cache array (BtCursor.aOverflow).
4623 ** Subsequent calls use this cache to make seeking to the supplied offset
4624 ** more efficient.
4625 **
4626 ** Once an overflow page-list cache has been allocated, it must be
4627 ** invalidated if some other cursor writes to the same table, or if
4628 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4629 ** mode, the following events may invalidate an overflow page-list cache.
4630 **
4631 **   * An incremental vacuum,
4632 **   * A commit in auto_vacuum="full" mode,
4633 **   * Creating a table (may require moving an overflow page).
4634 */
4635 static int accessPayload(
4636   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4637   u32 offset,          /* Begin reading this far into payload */
4638   u32 amt,             /* Read this many bytes */
4639   unsigned char *pBuf, /* Write the bytes into this buffer */
4640   int eOp              /* zero to read. non-zero to write. */
4641 ){
4642   unsigned char *aPayload;
4643   int rc = SQLITE_OK;
4644   int iIdx = 0;
4645   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4646   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4647 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4648   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4649 #endif
4650 
4651   assert( pPage );
4652   assert( eOp==0 || eOp==1 );
4653   assert( pCur->eState==CURSOR_VALID );
4654   assert( pCur->ix<pPage->nCell );
4655   assert( cursorHoldsMutex(pCur) );
4656 
4657   getCellInfo(pCur);
4658   aPayload = pCur->info.pPayload;
4659   assert( offset+amt <= pCur->info.nPayload );
4660 
4661   assert( aPayload > pPage->aData );
4662   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4663     /* Trying to read or write past the end of the data is an error.  The
4664     ** conditional above is really:
4665     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4666     ** but is recast into its current form to avoid integer overflow problems
4667     */
4668     return SQLITE_CORRUPT_PAGE(pPage);
4669   }
4670 
4671   /* Check if data must be read/written to/from the btree page itself. */
4672   if( offset<pCur->info.nLocal ){
4673     int a = amt;
4674     if( a+offset>pCur->info.nLocal ){
4675       a = pCur->info.nLocal - offset;
4676     }
4677     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4678     offset = 0;
4679     pBuf += a;
4680     amt -= a;
4681   }else{
4682     offset -= pCur->info.nLocal;
4683   }
4684 
4685 
4686   if( rc==SQLITE_OK && amt>0 ){
4687     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4688     Pgno nextPage;
4689 
4690     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4691 
4692     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4693     **
4694     ** The aOverflow[] array is sized at one entry for each overflow page
4695     ** in the overflow chain. The page number of the first overflow page is
4696     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4697     ** means "not yet known" (the cache is lazily populated).
4698     */
4699     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4700       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4701       if( pCur->aOverflow==0
4702        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4703       ){
4704         Pgno *aNew = (Pgno*)sqlite3Realloc(
4705             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4706         );
4707         if( aNew==0 ){
4708           return SQLITE_NOMEM_BKPT;
4709         }else{
4710           pCur->aOverflow = aNew;
4711         }
4712       }
4713       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4714       pCur->curFlags |= BTCF_ValidOvfl;
4715     }else{
4716       /* If the overflow page-list cache has been allocated and the
4717       ** entry for the first required overflow page is valid, skip
4718       ** directly to it.
4719       */
4720       if( pCur->aOverflow[offset/ovflSize] ){
4721         iIdx = (offset/ovflSize);
4722         nextPage = pCur->aOverflow[iIdx];
4723         offset = (offset%ovflSize);
4724       }
4725     }
4726 
4727     assert( rc==SQLITE_OK && amt>0 );
4728     while( nextPage ){
4729       /* If required, populate the overflow page-list cache. */
4730       assert( pCur->aOverflow[iIdx]==0
4731               || pCur->aOverflow[iIdx]==nextPage
4732               || CORRUPT_DB );
4733       pCur->aOverflow[iIdx] = nextPage;
4734 
4735       if( offset>=ovflSize ){
4736         /* The only reason to read this page is to obtain the page
4737         ** number for the next page in the overflow chain. The page
4738         ** data is not required. So first try to lookup the overflow
4739         ** page-list cache, if any, then fall back to the getOverflowPage()
4740         ** function.
4741         */
4742         assert( pCur->curFlags & BTCF_ValidOvfl );
4743         assert( pCur->pBtree->db==pBt->db );
4744         if( pCur->aOverflow[iIdx+1] ){
4745           nextPage = pCur->aOverflow[iIdx+1];
4746         }else{
4747           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4748         }
4749         offset -= ovflSize;
4750       }else{
4751         /* Need to read this page properly. It contains some of the
4752         ** range of data that is being read (eOp==0) or written (eOp!=0).
4753         */
4754 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4755         sqlite3_file *fd;      /* File from which to do direct overflow read */
4756 #endif
4757         int a = amt;
4758         if( a + offset > ovflSize ){
4759           a = ovflSize - offset;
4760         }
4761 
4762 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4763         /* If all the following are true:
4764         **
4765         **   1) this is a read operation, and
4766         **   2) data is required from the start of this overflow page, and
4767         **   3) there is no open write-transaction, and
4768         **   4) the database is file-backed, and
4769         **   5) the page is not in the WAL file
4770         **   6) at least 4 bytes have already been read into the output buffer
4771         **
4772         ** then data can be read directly from the database file into the
4773         ** output buffer, bypassing the page-cache altogether. This speeds
4774         ** up loading large records that span many overflow pages.
4775         */
4776         if( eOp==0                                             /* (1) */
4777          && offset==0                                          /* (2) */
4778          && pBt->inTransaction==TRANS_READ                     /* (3) */
4779          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
4780          && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
4781          && &pBuf[-4]>=pBufStart                               /* (6) */
4782         ){
4783           u8 aSave[4];
4784           u8 *aWrite = &pBuf[-4];
4785           assert( aWrite>=pBufStart );                         /* due to (6) */
4786           memcpy(aSave, aWrite, 4);
4787           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4788           nextPage = get4byte(aWrite);
4789           memcpy(aWrite, aSave, 4);
4790         }else
4791 #endif
4792 
4793         {
4794           DbPage *pDbPage;
4795           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4796               (eOp==0 ? PAGER_GET_READONLY : 0)
4797           );
4798           if( rc==SQLITE_OK ){
4799             aPayload = sqlite3PagerGetData(pDbPage);
4800             nextPage = get4byte(aPayload);
4801             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4802             sqlite3PagerUnref(pDbPage);
4803             offset = 0;
4804           }
4805         }
4806         amt -= a;
4807         if( amt==0 ) return rc;
4808         pBuf += a;
4809       }
4810       if( rc ) break;
4811       iIdx++;
4812     }
4813   }
4814 
4815   if( rc==SQLITE_OK && amt>0 ){
4816     /* Overflow chain ends prematurely */
4817     return SQLITE_CORRUPT_PAGE(pPage);
4818   }
4819   return rc;
4820 }
4821 
4822 /*
4823 ** Read part of the payload for the row at which that cursor pCur is currently
4824 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4825 ** begins at "offset".
4826 **
4827 ** pCur can be pointing to either a table or an index b-tree.
4828 ** If pointing to a table btree, then the content section is read.  If
4829 ** pCur is pointing to an index b-tree then the key section is read.
4830 **
4831 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4832 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4833 ** cursor might be invalid or might need to be restored before being read.
4834 **
4835 ** Return SQLITE_OK on success or an error code if anything goes
4836 ** wrong.  An error is returned if "offset+amt" is larger than
4837 ** the available payload.
4838 */
4839 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4840   assert( cursorHoldsMutex(pCur) );
4841   assert( pCur->eState==CURSOR_VALID );
4842   assert( pCur->iPage>=0 && pCur->pPage );
4843   assert( pCur->ix<pCur->pPage->nCell );
4844   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4845 }
4846 
4847 /*
4848 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4849 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4850 ** interface.
4851 */
4852 #ifndef SQLITE_OMIT_INCRBLOB
4853 static SQLITE_NOINLINE int accessPayloadChecked(
4854   BtCursor *pCur,
4855   u32 offset,
4856   u32 amt,
4857   void *pBuf
4858 ){
4859   int rc;
4860   if ( pCur->eState==CURSOR_INVALID ){
4861     return SQLITE_ABORT;
4862   }
4863   assert( cursorOwnsBtShared(pCur) );
4864   rc = btreeRestoreCursorPosition(pCur);
4865   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4866 }
4867 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4868   if( pCur->eState==CURSOR_VALID ){
4869     assert( cursorOwnsBtShared(pCur) );
4870     return accessPayload(pCur, offset, amt, pBuf, 0);
4871   }else{
4872     return accessPayloadChecked(pCur, offset, amt, pBuf);
4873   }
4874 }
4875 #endif /* SQLITE_OMIT_INCRBLOB */
4876 
4877 /*
4878 ** Return a pointer to payload information from the entry that the
4879 ** pCur cursor is pointing to.  The pointer is to the beginning of
4880 ** the key if index btrees (pPage->intKey==0) and is the data for
4881 ** table btrees (pPage->intKey==1). The number of bytes of available
4882 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4883 ** returned will not be a valid pointer.
4884 **
4885 ** This routine is an optimization.  It is common for the entire key
4886 ** and data to fit on the local page and for there to be no overflow
4887 ** pages.  When that is so, this routine can be used to access the
4888 ** key and data without making a copy.  If the key and/or data spills
4889 ** onto overflow pages, then accessPayload() must be used to reassemble
4890 ** the key/data and copy it into a preallocated buffer.
4891 **
4892 ** The pointer returned by this routine looks directly into the cached
4893 ** page of the database.  The data might change or move the next time
4894 ** any btree routine is called.
4895 */
4896 static const void *fetchPayload(
4897   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4898   u32 *pAmt            /* Write the number of available bytes here */
4899 ){
4900   int amt;
4901   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4902   assert( pCur->eState==CURSOR_VALID );
4903   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4904   assert( cursorOwnsBtShared(pCur) );
4905   assert( pCur->ix<pCur->pPage->nCell );
4906   assert( pCur->info.nSize>0 );
4907   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4908   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
4909   amt = pCur->info.nLocal;
4910   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4911     /* There is too little space on the page for the expected amount
4912     ** of local content. Database must be corrupt. */
4913     assert( CORRUPT_DB );
4914     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4915   }
4916   *pAmt = (u32)amt;
4917   return (void*)pCur->info.pPayload;
4918 }
4919 
4920 
4921 /*
4922 ** For the entry that cursor pCur is point to, return as
4923 ** many bytes of the key or data as are available on the local
4924 ** b-tree page.  Write the number of available bytes into *pAmt.
4925 **
4926 ** The pointer returned is ephemeral.  The key/data may move
4927 ** or be destroyed on the next call to any Btree routine,
4928 ** including calls from other threads against the same cache.
4929 ** Hence, a mutex on the BtShared should be held prior to calling
4930 ** this routine.
4931 **
4932 ** These routines is used to get quick access to key and data
4933 ** in the common case where no overflow pages are used.
4934 */
4935 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4936   return fetchPayload(pCur, pAmt);
4937 }
4938 
4939 
4940 /*
4941 ** Move the cursor down to a new child page.  The newPgno argument is the
4942 ** page number of the child page to move to.
4943 **
4944 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4945 ** the new child page does not match the flags field of the parent (i.e.
4946 ** if an intkey page appears to be the parent of a non-intkey page, or
4947 ** vice-versa).
4948 */
4949 static int moveToChild(BtCursor *pCur, u32 newPgno){
4950   BtShared *pBt = pCur->pBt;
4951 
4952   assert( cursorOwnsBtShared(pCur) );
4953   assert( pCur->eState==CURSOR_VALID );
4954   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4955   assert( pCur->iPage>=0 );
4956   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4957     return SQLITE_CORRUPT_BKPT;
4958   }
4959   pCur->info.nSize = 0;
4960   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4961   pCur->aiIdx[pCur->iPage] = pCur->ix;
4962   pCur->apPage[pCur->iPage] = pCur->pPage;
4963   pCur->ix = 0;
4964   pCur->iPage++;
4965   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
4966 }
4967 
4968 #ifdef SQLITE_DEBUG
4969 /*
4970 ** Page pParent is an internal (non-leaf) tree page. This function
4971 ** asserts that page number iChild is the left-child if the iIdx'th
4972 ** cell in page pParent. Or, if iIdx is equal to the total number of
4973 ** cells in pParent, that page number iChild is the right-child of
4974 ** the page.
4975 */
4976 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4977   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4978                             ** in a corrupt database */
4979   assert( iIdx<=pParent->nCell );
4980   if( iIdx==pParent->nCell ){
4981     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4982   }else{
4983     assert( get4byte(findCell(pParent, iIdx))==iChild );
4984   }
4985 }
4986 #else
4987 #  define assertParentIndex(x,y,z)
4988 #endif
4989 
4990 /*
4991 ** Move the cursor up to the parent page.
4992 **
4993 ** pCur->idx is set to the cell index that contains the pointer
4994 ** to the page we are coming from.  If we are coming from the
4995 ** right-most child page then pCur->idx is set to one more than
4996 ** the largest cell index.
4997 */
4998 static void moveToParent(BtCursor *pCur){
4999   MemPage *pLeaf;
5000   assert( cursorOwnsBtShared(pCur) );
5001   assert( pCur->eState==CURSOR_VALID );
5002   assert( pCur->iPage>0 );
5003   assert( pCur->pPage );
5004   assertParentIndex(
5005     pCur->apPage[pCur->iPage-1],
5006     pCur->aiIdx[pCur->iPage-1],
5007     pCur->pPage->pgno
5008   );
5009   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5010   pCur->info.nSize = 0;
5011   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5012   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5013   pLeaf = pCur->pPage;
5014   pCur->pPage = pCur->apPage[--pCur->iPage];
5015   releasePageNotNull(pLeaf);
5016 }
5017 
5018 /*
5019 ** Move the cursor to point to the root page of its b-tree structure.
5020 **
5021 ** If the table has a virtual root page, then the cursor is moved to point
5022 ** to the virtual root page instead of the actual root page. A table has a
5023 ** virtual root page when the actual root page contains no cells and a
5024 ** single child page. This can only happen with the table rooted at page 1.
5025 **
5026 ** If the b-tree structure is empty, the cursor state is set to
5027 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5028 ** the cursor is set to point to the first cell located on the root
5029 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5030 **
5031 ** If this function returns successfully, it may be assumed that the
5032 ** page-header flags indicate that the [virtual] root-page is the expected
5033 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5034 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5035 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5036 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5037 ** b-tree).
5038 */
5039 static int moveToRoot(BtCursor *pCur){
5040   MemPage *pRoot;
5041   int rc = SQLITE_OK;
5042 
5043   assert( cursorOwnsBtShared(pCur) );
5044   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5045   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5046   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5047   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5048   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5049 
5050   if( pCur->iPage>=0 ){
5051     if( pCur->iPage ){
5052       releasePageNotNull(pCur->pPage);
5053       while( --pCur->iPage ){
5054         releasePageNotNull(pCur->apPage[pCur->iPage]);
5055       }
5056       pCur->pPage = pCur->apPage[0];
5057       goto skip_init;
5058     }
5059   }else if( pCur->pgnoRoot==0 ){
5060     pCur->eState = CURSOR_INVALID;
5061     return SQLITE_EMPTY;
5062   }else{
5063     assert( pCur->iPage==(-1) );
5064     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5065       if( pCur->eState==CURSOR_FAULT ){
5066         assert( pCur->skipNext!=SQLITE_OK );
5067         return pCur->skipNext;
5068       }
5069       sqlite3BtreeClearCursor(pCur);
5070     }
5071     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5072                         0, pCur->curPagerFlags);
5073     if( rc!=SQLITE_OK ){
5074       pCur->eState = CURSOR_INVALID;
5075       return rc;
5076     }
5077     pCur->iPage = 0;
5078     pCur->curIntKey = pCur->pPage->intKey;
5079   }
5080   pRoot = pCur->pPage;
5081   assert( pRoot->pgno==pCur->pgnoRoot );
5082 
5083   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5084   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5085   ** NULL, the caller expects a table b-tree. If this is not the case,
5086   ** return an SQLITE_CORRUPT error.
5087   **
5088   ** Earlier versions of SQLite assumed that this test could not fail
5089   ** if the root page was already loaded when this function was called (i.e.
5090   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5091   ** in such a way that page pRoot is linked into a second b-tree table
5092   ** (or the freelist).  */
5093   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5094   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5095     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5096   }
5097 
5098 skip_init:
5099   pCur->ix = 0;
5100   pCur->info.nSize = 0;
5101   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5102 
5103   pRoot = pCur->pPage;
5104   if( pRoot->nCell>0 ){
5105     pCur->eState = CURSOR_VALID;
5106   }else if( !pRoot->leaf ){
5107     Pgno subpage;
5108     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5109     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5110     pCur->eState = CURSOR_VALID;
5111     rc = moveToChild(pCur, subpage);
5112   }else{
5113     pCur->eState = CURSOR_INVALID;
5114     rc = SQLITE_EMPTY;
5115   }
5116   return rc;
5117 }
5118 
5119 /*
5120 ** Move the cursor down to the left-most leaf entry beneath the
5121 ** entry to which it is currently pointing.
5122 **
5123 ** The left-most leaf is the one with the smallest key - the first
5124 ** in ascending order.
5125 */
5126 static int moveToLeftmost(BtCursor *pCur){
5127   Pgno pgno;
5128   int rc = SQLITE_OK;
5129   MemPage *pPage;
5130 
5131   assert( cursorOwnsBtShared(pCur) );
5132   assert( pCur->eState==CURSOR_VALID );
5133   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5134     assert( pCur->ix<pPage->nCell );
5135     pgno = get4byte(findCell(pPage, pCur->ix));
5136     rc = moveToChild(pCur, pgno);
5137   }
5138   return rc;
5139 }
5140 
5141 /*
5142 ** Move the cursor down to the right-most leaf entry beneath the
5143 ** page to which it is currently pointing.  Notice the difference
5144 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5145 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5146 ** finds the right-most entry beneath the *page*.
5147 **
5148 ** The right-most entry is the one with the largest key - the last
5149 ** key in ascending order.
5150 */
5151 static int moveToRightmost(BtCursor *pCur){
5152   Pgno pgno;
5153   int rc = SQLITE_OK;
5154   MemPage *pPage = 0;
5155 
5156   assert( cursorOwnsBtShared(pCur) );
5157   assert( pCur->eState==CURSOR_VALID );
5158   while( !(pPage = pCur->pPage)->leaf ){
5159     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5160     pCur->ix = pPage->nCell;
5161     rc = moveToChild(pCur, pgno);
5162     if( rc ) return rc;
5163   }
5164   pCur->ix = pPage->nCell-1;
5165   assert( pCur->info.nSize==0 );
5166   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5167   return SQLITE_OK;
5168 }
5169 
5170 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5171 ** on success.  Set *pRes to 0 if the cursor actually points to something
5172 ** or set *pRes to 1 if the table is empty.
5173 */
5174 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5175   int rc;
5176 
5177   assert( cursorOwnsBtShared(pCur) );
5178   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5179   rc = moveToRoot(pCur);
5180   if( rc==SQLITE_OK ){
5181     assert( pCur->pPage->nCell>0 );
5182     *pRes = 0;
5183     rc = moveToLeftmost(pCur);
5184   }else if( rc==SQLITE_EMPTY ){
5185     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5186     *pRes = 1;
5187     rc = SQLITE_OK;
5188   }
5189   return rc;
5190 }
5191 
5192 /*
5193 ** This function is a no-op if cursor pCur does not point to a valid row.
5194 ** Otherwise, if pCur is valid, configure it so that the next call to
5195 ** sqlite3BtreeNext() is a no-op.
5196 */
5197 #ifndef SQLITE_OMIT_WINDOWFUNC
5198 void sqlite3BtreeSkipNext(BtCursor *pCur){
5199   if( pCur->eState==CURSOR_VALID ){
5200     pCur->eState = CURSOR_SKIPNEXT;
5201     pCur->skipNext = 1;
5202   }
5203 }
5204 #endif /* SQLITE_OMIT_WINDOWFUNC */
5205 
5206 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5207 ** on success.  Set *pRes to 0 if the cursor actually points to something
5208 ** or set *pRes to 1 if the table is empty.
5209 */
5210 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5211   int rc;
5212 
5213   assert( cursorOwnsBtShared(pCur) );
5214   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5215 
5216   /* If the cursor already points to the last entry, this is a no-op. */
5217   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5218 #ifdef SQLITE_DEBUG
5219     /* This block serves to assert() that the cursor really does point
5220     ** to the last entry in the b-tree. */
5221     int ii;
5222     for(ii=0; ii<pCur->iPage; ii++){
5223       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5224     }
5225     assert( pCur->ix==pCur->pPage->nCell-1 );
5226     assert( pCur->pPage->leaf );
5227 #endif
5228     return SQLITE_OK;
5229   }
5230 
5231   rc = moveToRoot(pCur);
5232   if( rc==SQLITE_OK ){
5233     assert( pCur->eState==CURSOR_VALID );
5234     *pRes = 0;
5235     rc = moveToRightmost(pCur);
5236     if( rc==SQLITE_OK ){
5237       pCur->curFlags |= BTCF_AtLast;
5238     }else{
5239       pCur->curFlags &= ~BTCF_AtLast;
5240     }
5241   }else if( rc==SQLITE_EMPTY ){
5242     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5243     *pRes = 1;
5244     rc = SQLITE_OK;
5245   }
5246   return rc;
5247 }
5248 
5249 /* Move the cursor so that it points to an entry near the key
5250 ** specified by pIdxKey or intKey.   Return a success code.
5251 **
5252 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5253 ** must be NULL.  For index tables, pIdxKey is used and intKey
5254 ** is ignored.
5255 **
5256 ** If an exact match is not found, then the cursor is always
5257 ** left pointing at a leaf page which would hold the entry if it
5258 ** were present.  The cursor might point to an entry that comes
5259 ** before or after the key.
5260 **
5261 ** An integer is written into *pRes which is the result of
5262 ** comparing the key with the entry to which the cursor is
5263 ** pointing.  The meaning of the integer written into
5264 ** *pRes is as follows:
5265 **
5266 **     *pRes<0      The cursor is left pointing at an entry that
5267 **                  is smaller than intKey/pIdxKey or if the table is empty
5268 **                  and the cursor is therefore left point to nothing.
5269 **
5270 **     *pRes==0     The cursor is left pointing at an entry that
5271 **                  exactly matches intKey/pIdxKey.
5272 **
5273 **     *pRes>0      The cursor is left pointing at an entry that
5274 **                  is larger than intKey/pIdxKey.
5275 **
5276 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5277 ** exists an entry in the table that exactly matches pIdxKey.
5278 */
5279 int sqlite3BtreeMovetoUnpacked(
5280   BtCursor *pCur,          /* The cursor to be moved */
5281   UnpackedRecord *pIdxKey, /* Unpacked index key */
5282   i64 intKey,              /* The table key */
5283   int biasRight,           /* If true, bias the search to the high end */
5284   int *pRes                /* Write search results here */
5285 ){
5286   int rc;
5287   RecordCompare xRecordCompare;
5288 
5289   assert( cursorOwnsBtShared(pCur) );
5290   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5291   assert( pRes );
5292   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5293   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5294 
5295   /* If the cursor is already positioned at the point we are trying
5296   ** to move to, then just return without doing any work */
5297   if( pIdxKey==0
5298    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5299   ){
5300     if( pCur->info.nKey==intKey ){
5301       *pRes = 0;
5302       return SQLITE_OK;
5303     }
5304     if( pCur->info.nKey<intKey ){
5305       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5306         *pRes = -1;
5307         return SQLITE_OK;
5308       }
5309       /* If the requested key is one more than the previous key, then
5310       ** try to get there using sqlite3BtreeNext() rather than a full
5311       ** binary search.  This is an optimization only.  The correct answer
5312       ** is still obtained without this case, only a little more slowely */
5313       if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5314         *pRes = 0;
5315         rc = sqlite3BtreeNext(pCur, 0);
5316         if( rc==SQLITE_OK ){
5317           getCellInfo(pCur);
5318           if( pCur->info.nKey==intKey ){
5319             return SQLITE_OK;
5320           }
5321         }else if( rc==SQLITE_DONE ){
5322           rc = SQLITE_OK;
5323         }else{
5324           return rc;
5325         }
5326       }
5327     }
5328   }
5329 
5330   if( pIdxKey ){
5331     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5332     pIdxKey->errCode = 0;
5333     assert( pIdxKey->default_rc==1
5334          || pIdxKey->default_rc==0
5335          || pIdxKey->default_rc==-1
5336     );
5337   }else{
5338     xRecordCompare = 0; /* All keys are integers */
5339   }
5340 
5341   rc = moveToRoot(pCur);
5342   if( rc ){
5343     if( rc==SQLITE_EMPTY ){
5344       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5345       *pRes = -1;
5346       return SQLITE_OK;
5347     }
5348     return rc;
5349   }
5350   assert( pCur->pPage );
5351   assert( pCur->pPage->isInit );
5352   assert( pCur->eState==CURSOR_VALID );
5353   assert( pCur->pPage->nCell > 0 );
5354   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5355   assert( pCur->curIntKey || pIdxKey );
5356   for(;;){
5357     int lwr, upr, idx, c;
5358     Pgno chldPg;
5359     MemPage *pPage = pCur->pPage;
5360     u8 *pCell;                          /* Pointer to current cell in pPage */
5361 
5362     /* pPage->nCell must be greater than zero. If this is the root-page
5363     ** the cursor would have been INVALID above and this for(;;) loop
5364     ** not run. If this is not the root-page, then the moveToChild() routine
5365     ** would have already detected db corruption. Similarly, pPage must
5366     ** be the right kind (index or table) of b-tree page. Otherwise
5367     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5368     assert( pPage->nCell>0 );
5369     assert( pPage->intKey==(pIdxKey==0) );
5370     lwr = 0;
5371     upr = pPage->nCell-1;
5372     assert( biasRight==0 || biasRight==1 );
5373     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5374     pCur->ix = (u16)idx;
5375     if( xRecordCompare==0 ){
5376       for(;;){
5377         i64 nCellKey;
5378         pCell = findCellPastPtr(pPage, idx);
5379         if( pPage->intKeyLeaf ){
5380           while( 0x80 <= *(pCell++) ){
5381             if( pCell>=pPage->aDataEnd ){
5382               return SQLITE_CORRUPT_PAGE(pPage);
5383             }
5384           }
5385         }
5386         getVarint(pCell, (u64*)&nCellKey);
5387         if( nCellKey<intKey ){
5388           lwr = idx+1;
5389           if( lwr>upr ){ c = -1; break; }
5390         }else if( nCellKey>intKey ){
5391           upr = idx-1;
5392           if( lwr>upr ){ c = +1; break; }
5393         }else{
5394           assert( nCellKey==intKey );
5395           pCur->ix = (u16)idx;
5396           if( !pPage->leaf ){
5397             lwr = idx;
5398             goto moveto_next_layer;
5399           }else{
5400             pCur->curFlags |= BTCF_ValidNKey;
5401             pCur->info.nKey = nCellKey;
5402             pCur->info.nSize = 0;
5403             *pRes = 0;
5404             return SQLITE_OK;
5405           }
5406         }
5407         assert( lwr+upr>=0 );
5408         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5409       }
5410     }else{
5411       for(;;){
5412         int nCell;  /* Size of the pCell cell in bytes */
5413         pCell = findCellPastPtr(pPage, idx);
5414 
5415         /* The maximum supported page-size is 65536 bytes. This means that
5416         ** the maximum number of record bytes stored on an index B-Tree
5417         ** page is less than 16384 bytes and may be stored as a 2-byte
5418         ** varint. This information is used to attempt to avoid parsing
5419         ** the entire cell by checking for the cases where the record is
5420         ** stored entirely within the b-tree page by inspecting the first
5421         ** 2 bytes of the cell.
5422         */
5423         nCell = pCell[0];
5424         if( nCell<=pPage->max1bytePayload ){
5425           /* This branch runs if the record-size field of the cell is a
5426           ** single byte varint and the record fits entirely on the main
5427           ** b-tree page.  */
5428           testcase( pCell+nCell+1==pPage->aDataEnd );
5429           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5430         }else if( !(pCell[1] & 0x80)
5431           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5432         ){
5433           /* The record-size field is a 2 byte varint and the record
5434           ** fits entirely on the main b-tree page.  */
5435           testcase( pCell+nCell+2==pPage->aDataEnd );
5436           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5437         }else{
5438           /* The record flows over onto one or more overflow pages. In
5439           ** this case the whole cell needs to be parsed, a buffer allocated
5440           ** and accessPayload() used to retrieve the record into the
5441           ** buffer before VdbeRecordCompare() can be called.
5442           **
5443           ** If the record is corrupt, the xRecordCompare routine may read
5444           ** up to two varints past the end of the buffer. An extra 18
5445           ** bytes of padding is allocated at the end of the buffer in
5446           ** case this happens.  */
5447           void *pCellKey;
5448           u8 * const pCellBody = pCell - pPage->childPtrSize;
5449           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5450           nCell = (int)pCur->info.nKey;
5451           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5452           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5453           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5454           testcase( nCell==2 );  /* Minimum legal index key size */
5455           if( nCell<2 ){
5456             rc = SQLITE_CORRUPT_PAGE(pPage);
5457             goto moveto_finish;
5458           }
5459           pCellKey = sqlite3Malloc( nCell+18 );
5460           if( pCellKey==0 ){
5461             rc = SQLITE_NOMEM_BKPT;
5462             goto moveto_finish;
5463           }
5464           pCur->ix = (u16)idx;
5465           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5466           pCur->curFlags &= ~BTCF_ValidOvfl;
5467           if( rc ){
5468             sqlite3_free(pCellKey);
5469             goto moveto_finish;
5470           }
5471           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5472           sqlite3_free(pCellKey);
5473         }
5474         assert(
5475             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5476          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5477         );
5478         if( c<0 ){
5479           lwr = idx+1;
5480         }else if( c>0 ){
5481           upr = idx-1;
5482         }else{
5483           assert( c==0 );
5484           *pRes = 0;
5485           rc = SQLITE_OK;
5486           pCur->ix = (u16)idx;
5487           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5488           goto moveto_finish;
5489         }
5490         if( lwr>upr ) break;
5491         assert( lwr+upr>=0 );
5492         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5493       }
5494     }
5495     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5496     assert( pPage->isInit );
5497     if( pPage->leaf ){
5498       assert( pCur->ix<pCur->pPage->nCell );
5499       pCur->ix = (u16)idx;
5500       *pRes = c;
5501       rc = SQLITE_OK;
5502       goto moveto_finish;
5503     }
5504 moveto_next_layer:
5505     if( lwr>=pPage->nCell ){
5506       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5507     }else{
5508       chldPg = get4byte(findCell(pPage, lwr));
5509     }
5510     pCur->ix = (u16)lwr;
5511     rc = moveToChild(pCur, chldPg);
5512     if( rc ) break;
5513   }
5514 moveto_finish:
5515   pCur->info.nSize = 0;
5516   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5517   return rc;
5518 }
5519 
5520 
5521 /*
5522 ** Return TRUE if the cursor is not pointing at an entry of the table.
5523 **
5524 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5525 ** past the last entry in the table or sqlite3BtreePrev() moves past
5526 ** the first entry.  TRUE is also returned if the table is empty.
5527 */
5528 int sqlite3BtreeEof(BtCursor *pCur){
5529   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5530   ** have been deleted? This API will need to change to return an error code
5531   ** as well as the boolean result value.
5532   */
5533   return (CURSOR_VALID!=pCur->eState);
5534 }
5535 
5536 /*
5537 ** Return an estimate for the number of rows in the table that pCur is
5538 ** pointing to.  Return a negative number if no estimate is currently
5539 ** available.
5540 */
5541 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5542   i64 n;
5543   u8 i;
5544 
5545   assert( cursorOwnsBtShared(pCur) );
5546   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5547 
5548   /* Currently this interface is only called by the OP_IfSmaller
5549   ** opcode, and it that case the cursor will always be valid and
5550   ** will always point to a leaf node. */
5551   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5552   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5553 
5554   n = pCur->pPage->nCell;
5555   for(i=0; i<pCur->iPage; i++){
5556     n *= pCur->apPage[i]->nCell;
5557   }
5558   return n;
5559 }
5560 
5561 /*
5562 ** Advance the cursor to the next entry in the database.
5563 ** Return value:
5564 **
5565 **    SQLITE_OK        success
5566 **    SQLITE_DONE      cursor is already pointing at the last element
5567 **    otherwise        some kind of error occurred
5568 **
5569 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5570 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5571 ** to the next cell on the current page.  The (slower) btreeNext() helper
5572 ** routine is called when it is necessary to move to a different page or
5573 ** to restore the cursor.
5574 **
5575 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5576 ** cursor corresponds to an SQL index and this routine could have been
5577 ** skipped if the SQL index had been a unique index.  The F argument
5578 ** is a hint to the implement.  SQLite btree implementation does not use
5579 ** this hint, but COMDB2 does.
5580 */
5581 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5582   int rc;
5583   int idx;
5584   MemPage *pPage;
5585 
5586   assert( cursorOwnsBtShared(pCur) );
5587   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5588   if( pCur->eState!=CURSOR_VALID ){
5589     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5590     rc = restoreCursorPosition(pCur);
5591     if( rc!=SQLITE_OK ){
5592       return rc;
5593     }
5594     if( CURSOR_INVALID==pCur->eState ){
5595       return SQLITE_DONE;
5596     }
5597     if( pCur->skipNext ){
5598       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5599       pCur->eState = CURSOR_VALID;
5600       if( pCur->skipNext>0 ){
5601         pCur->skipNext = 0;
5602         return SQLITE_OK;
5603       }
5604       pCur->skipNext = 0;
5605     }
5606   }
5607 
5608   pPage = pCur->pPage;
5609   idx = ++pCur->ix;
5610   if( !pPage->isInit ){
5611     /* The only known way for this to happen is for there to be a
5612     ** recursive SQL function that does a DELETE operation as part of a
5613     ** SELECT which deletes content out from under an active cursor
5614     ** in a corrupt database file where the table being DELETE-ed from
5615     ** has pages in common with the table being queried.  See TH3
5616     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5617     ** example. */
5618     return SQLITE_CORRUPT_BKPT;
5619   }
5620 
5621   /* If the database file is corrupt, it is possible for the value of idx
5622   ** to be invalid here. This can only occur if a second cursor modifies
5623   ** the page while cursor pCur is holding a reference to it. Which can
5624   ** only happen if the database is corrupt in such a way as to link the
5625   ** page into more than one b-tree structure. */
5626   testcase( idx>pPage->nCell );
5627 
5628   if( idx>=pPage->nCell ){
5629     if( !pPage->leaf ){
5630       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5631       if( rc ) return rc;
5632       return moveToLeftmost(pCur);
5633     }
5634     do{
5635       if( pCur->iPage==0 ){
5636         pCur->eState = CURSOR_INVALID;
5637         return SQLITE_DONE;
5638       }
5639       moveToParent(pCur);
5640       pPage = pCur->pPage;
5641     }while( pCur->ix>=pPage->nCell );
5642     if( pPage->intKey ){
5643       return sqlite3BtreeNext(pCur, 0);
5644     }else{
5645       return SQLITE_OK;
5646     }
5647   }
5648   if( pPage->leaf ){
5649     return SQLITE_OK;
5650   }else{
5651     return moveToLeftmost(pCur);
5652   }
5653 }
5654 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5655   MemPage *pPage;
5656   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5657   assert( cursorOwnsBtShared(pCur) );
5658   assert( flags==0 || flags==1 );
5659   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5660   pCur->info.nSize = 0;
5661   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5662   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5663   pPage = pCur->pPage;
5664   if( (++pCur->ix)>=pPage->nCell ){
5665     pCur->ix--;
5666     return btreeNext(pCur);
5667   }
5668   if( pPage->leaf ){
5669     return SQLITE_OK;
5670   }else{
5671     return moveToLeftmost(pCur);
5672   }
5673 }
5674 
5675 /*
5676 ** Step the cursor to the back to the previous entry in the database.
5677 ** Return values:
5678 **
5679 **     SQLITE_OK     success
5680 **     SQLITE_DONE   the cursor is already on the first element of the table
5681 **     otherwise     some kind of error occurred
5682 **
5683 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5684 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5685 ** to the previous cell on the current page.  The (slower) btreePrevious()
5686 ** helper routine is called when it is necessary to move to a different page
5687 ** or to restore the cursor.
5688 **
5689 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5690 ** the cursor corresponds to an SQL index and this routine could have been
5691 ** skipped if the SQL index had been a unique index.  The F argument is a
5692 ** hint to the implement.  The native SQLite btree implementation does not
5693 ** use this hint, but COMDB2 does.
5694 */
5695 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5696   int rc;
5697   MemPage *pPage;
5698 
5699   assert( cursorOwnsBtShared(pCur) );
5700   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5701   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5702   assert( pCur->info.nSize==0 );
5703   if( pCur->eState!=CURSOR_VALID ){
5704     rc = restoreCursorPosition(pCur);
5705     if( rc!=SQLITE_OK ){
5706       return rc;
5707     }
5708     if( CURSOR_INVALID==pCur->eState ){
5709       return SQLITE_DONE;
5710     }
5711     if( pCur->skipNext ){
5712       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5713       pCur->eState = CURSOR_VALID;
5714       if( pCur->skipNext<0 ){
5715         pCur->skipNext = 0;
5716         return SQLITE_OK;
5717       }
5718       pCur->skipNext = 0;
5719     }
5720   }
5721 
5722   pPage = pCur->pPage;
5723   assert( pPage->isInit );
5724   if( !pPage->leaf ){
5725     int idx = pCur->ix;
5726     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5727     if( rc ) return rc;
5728     rc = moveToRightmost(pCur);
5729   }else{
5730     while( pCur->ix==0 ){
5731       if( pCur->iPage==0 ){
5732         pCur->eState = CURSOR_INVALID;
5733         return SQLITE_DONE;
5734       }
5735       moveToParent(pCur);
5736     }
5737     assert( pCur->info.nSize==0 );
5738     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5739 
5740     pCur->ix--;
5741     pPage = pCur->pPage;
5742     if( pPage->intKey && !pPage->leaf ){
5743       rc = sqlite3BtreePrevious(pCur, 0);
5744     }else{
5745       rc = SQLITE_OK;
5746     }
5747   }
5748   return rc;
5749 }
5750 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5751   assert( cursorOwnsBtShared(pCur) );
5752   assert( flags==0 || flags==1 );
5753   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5754   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5755   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5756   pCur->info.nSize = 0;
5757   if( pCur->eState!=CURSOR_VALID
5758    || pCur->ix==0
5759    || pCur->pPage->leaf==0
5760   ){
5761     return btreePrevious(pCur);
5762   }
5763   pCur->ix--;
5764   return SQLITE_OK;
5765 }
5766 
5767 /*
5768 ** Allocate a new page from the database file.
5769 **
5770 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5771 ** has already been called on the new page.)  The new page has also
5772 ** been referenced and the calling routine is responsible for calling
5773 ** sqlite3PagerUnref() on the new page when it is done.
5774 **
5775 ** SQLITE_OK is returned on success.  Any other return value indicates
5776 ** an error.  *ppPage is set to NULL in the event of an error.
5777 **
5778 ** If the "nearby" parameter is not 0, then an effort is made to
5779 ** locate a page close to the page number "nearby".  This can be used in an
5780 ** attempt to keep related pages close to each other in the database file,
5781 ** which in turn can make database access faster.
5782 **
5783 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5784 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5785 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5786 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5787 ** are no restrictions on which page is returned.
5788 */
5789 static int allocateBtreePage(
5790   BtShared *pBt,         /* The btree */
5791   MemPage **ppPage,      /* Store pointer to the allocated page here */
5792   Pgno *pPgno,           /* Store the page number here */
5793   Pgno nearby,           /* Search for a page near this one */
5794   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5795 ){
5796   MemPage *pPage1;
5797   int rc;
5798   u32 n;     /* Number of pages on the freelist */
5799   u32 k;     /* Number of leaves on the trunk of the freelist */
5800   MemPage *pTrunk = 0;
5801   MemPage *pPrevTrunk = 0;
5802   Pgno mxPage;     /* Total size of the database file */
5803 
5804   assert( sqlite3_mutex_held(pBt->mutex) );
5805   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5806   pPage1 = pBt->pPage1;
5807   mxPage = btreePagecount(pBt);
5808   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5809   ** stores stores the total number of pages on the freelist. */
5810   n = get4byte(&pPage1->aData[36]);
5811   testcase( n==mxPage-1 );
5812   if( n>=mxPage ){
5813     return SQLITE_CORRUPT_BKPT;
5814   }
5815   if( n>0 ){
5816     /* There are pages on the freelist.  Reuse one of those pages. */
5817     Pgno iTrunk;
5818     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5819     u32 nSearch = 0;   /* Count of the number of search attempts */
5820 
5821     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5822     ** shows that the page 'nearby' is somewhere on the free-list, then
5823     ** the entire-list will be searched for that page.
5824     */
5825 #ifndef SQLITE_OMIT_AUTOVACUUM
5826     if( eMode==BTALLOC_EXACT ){
5827       if( nearby<=mxPage ){
5828         u8 eType;
5829         assert( nearby>0 );
5830         assert( pBt->autoVacuum );
5831         rc = ptrmapGet(pBt, nearby, &eType, 0);
5832         if( rc ) return rc;
5833         if( eType==PTRMAP_FREEPAGE ){
5834           searchList = 1;
5835         }
5836       }
5837     }else if( eMode==BTALLOC_LE ){
5838       searchList = 1;
5839     }
5840 #endif
5841 
5842     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5843     ** first free-list trunk page. iPrevTrunk is initially 1.
5844     */
5845     rc = sqlite3PagerWrite(pPage1->pDbPage);
5846     if( rc ) return rc;
5847     put4byte(&pPage1->aData[36], n-1);
5848 
5849     /* The code within this loop is run only once if the 'searchList' variable
5850     ** is not true. Otherwise, it runs once for each trunk-page on the
5851     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5852     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5853     */
5854     do {
5855       pPrevTrunk = pTrunk;
5856       if( pPrevTrunk ){
5857         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5858         ** is the page number of the next freelist trunk page in the list or
5859         ** zero if this is the last freelist trunk page. */
5860         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5861       }else{
5862         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5863         ** stores the page number of the first page of the freelist, or zero if
5864         ** the freelist is empty. */
5865         iTrunk = get4byte(&pPage1->aData[32]);
5866       }
5867       testcase( iTrunk==mxPage );
5868       if( iTrunk>mxPage || nSearch++ > n ){
5869         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5870       }else{
5871         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5872       }
5873       if( rc ){
5874         pTrunk = 0;
5875         goto end_allocate_page;
5876       }
5877       assert( pTrunk!=0 );
5878       assert( pTrunk->aData!=0 );
5879       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5880       ** is the number of leaf page pointers to follow. */
5881       k = get4byte(&pTrunk->aData[4]);
5882       if( k==0 && !searchList ){
5883         /* The trunk has no leaves and the list is not being searched.
5884         ** So extract the trunk page itself and use it as the newly
5885         ** allocated page */
5886         assert( pPrevTrunk==0 );
5887         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5888         if( rc ){
5889           goto end_allocate_page;
5890         }
5891         *pPgno = iTrunk;
5892         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5893         *ppPage = pTrunk;
5894         pTrunk = 0;
5895         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5896       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5897         /* Value of k is out of range.  Database corruption */
5898         rc = SQLITE_CORRUPT_PGNO(iTrunk);
5899         goto end_allocate_page;
5900 #ifndef SQLITE_OMIT_AUTOVACUUM
5901       }else if( searchList
5902             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5903       ){
5904         /* The list is being searched and this trunk page is the page
5905         ** to allocate, regardless of whether it has leaves.
5906         */
5907         *pPgno = iTrunk;
5908         *ppPage = pTrunk;
5909         searchList = 0;
5910         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5911         if( rc ){
5912           goto end_allocate_page;
5913         }
5914         if( k==0 ){
5915           if( !pPrevTrunk ){
5916             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5917           }else{
5918             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5919             if( rc!=SQLITE_OK ){
5920               goto end_allocate_page;
5921             }
5922             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5923           }
5924         }else{
5925           /* The trunk page is required by the caller but it contains
5926           ** pointers to free-list leaves. The first leaf becomes a trunk
5927           ** page in this case.
5928           */
5929           MemPage *pNewTrunk;
5930           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5931           if( iNewTrunk>mxPage ){
5932             rc = SQLITE_CORRUPT_PGNO(iTrunk);
5933             goto end_allocate_page;
5934           }
5935           testcase( iNewTrunk==mxPage );
5936           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5937           if( rc!=SQLITE_OK ){
5938             goto end_allocate_page;
5939           }
5940           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5941           if( rc!=SQLITE_OK ){
5942             releasePage(pNewTrunk);
5943             goto end_allocate_page;
5944           }
5945           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5946           put4byte(&pNewTrunk->aData[4], k-1);
5947           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5948           releasePage(pNewTrunk);
5949           if( !pPrevTrunk ){
5950             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5951             put4byte(&pPage1->aData[32], iNewTrunk);
5952           }else{
5953             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5954             if( rc ){
5955               goto end_allocate_page;
5956             }
5957             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5958           }
5959         }
5960         pTrunk = 0;
5961         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5962 #endif
5963       }else if( k>0 ){
5964         /* Extract a leaf from the trunk */
5965         u32 closest;
5966         Pgno iPage;
5967         unsigned char *aData = pTrunk->aData;
5968         if( nearby>0 ){
5969           u32 i;
5970           closest = 0;
5971           if( eMode==BTALLOC_LE ){
5972             for(i=0; i<k; i++){
5973               iPage = get4byte(&aData[8+i*4]);
5974               if( iPage<=nearby ){
5975                 closest = i;
5976                 break;
5977               }
5978             }
5979           }else{
5980             int dist;
5981             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5982             for(i=1; i<k; i++){
5983               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5984               if( d2<dist ){
5985                 closest = i;
5986                 dist = d2;
5987               }
5988             }
5989           }
5990         }else{
5991           closest = 0;
5992         }
5993 
5994         iPage = get4byte(&aData[8+closest*4]);
5995         testcase( iPage==mxPage );
5996         if( iPage>mxPage ){
5997           rc = SQLITE_CORRUPT_PGNO(iTrunk);
5998           goto end_allocate_page;
5999         }
6000         testcase( iPage==mxPage );
6001         if( !searchList
6002          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6003         ){
6004           int noContent;
6005           *pPgno = iPage;
6006           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6007                  ": %d more free pages\n",
6008                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6009           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6010           if( rc ) goto end_allocate_page;
6011           if( closest<k-1 ){
6012             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6013           }
6014           put4byte(&aData[4], k-1);
6015           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6016           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6017           if( rc==SQLITE_OK ){
6018             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6019             if( rc!=SQLITE_OK ){
6020               releasePage(*ppPage);
6021               *ppPage = 0;
6022             }
6023           }
6024           searchList = 0;
6025         }
6026       }
6027       releasePage(pPrevTrunk);
6028       pPrevTrunk = 0;
6029     }while( searchList );
6030   }else{
6031     /* There are no pages on the freelist, so append a new page to the
6032     ** database image.
6033     **
6034     ** Normally, new pages allocated by this block can be requested from the
6035     ** pager layer with the 'no-content' flag set. This prevents the pager
6036     ** from trying to read the pages content from disk. However, if the
6037     ** current transaction has already run one or more incremental-vacuum
6038     ** steps, then the page we are about to allocate may contain content
6039     ** that is required in the event of a rollback. In this case, do
6040     ** not set the no-content flag. This causes the pager to load and journal
6041     ** the current page content before overwriting it.
6042     **
6043     ** Note that the pager will not actually attempt to load or journal
6044     ** content for any page that really does lie past the end of the database
6045     ** file on disk. So the effects of disabling the no-content optimization
6046     ** here are confined to those pages that lie between the end of the
6047     ** database image and the end of the database file.
6048     */
6049     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6050 
6051     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6052     if( rc ) return rc;
6053     pBt->nPage++;
6054     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6055 
6056 #ifndef SQLITE_OMIT_AUTOVACUUM
6057     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6058       /* If *pPgno refers to a pointer-map page, allocate two new pages
6059       ** at the end of the file instead of one. The first allocated page
6060       ** becomes a new pointer-map page, the second is used by the caller.
6061       */
6062       MemPage *pPg = 0;
6063       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6064       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6065       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6066       if( rc==SQLITE_OK ){
6067         rc = sqlite3PagerWrite(pPg->pDbPage);
6068         releasePage(pPg);
6069       }
6070       if( rc ) return rc;
6071       pBt->nPage++;
6072       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6073     }
6074 #endif
6075     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6076     *pPgno = pBt->nPage;
6077 
6078     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6079     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6080     if( rc ) return rc;
6081     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6082     if( rc!=SQLITE_OK ){
6083       releasePage(*ppPage);
6084       *ppPage = 0;
6085     }
6086     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6087   }
6088 
6089   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6090 
6091 end_allocate_page:
6092   releasePage(pTrunk);
6093   releasePage(pPrevTrunk);
6094   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6095   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6096   return rc;
6097 }
6098 
6099 /*
6100 ** This function is used to add page iPage to the database file free-list.
6101 ** It is assumed that the page is not already a part of the free-list.
6102 **
6103 ** The value passed as the second argument to this function is optional.
6104 ** If the caller happens to have a pointer to the MemPage object
6105 ** corresponding to page iPage handy, it may pass it as the second value.
6106 ** Otherwise, it may pass NULL.
6107 **
6108 ** If a pointer to a MemPage object is passed as the second argument,
6109 ** its reference count is not altered by this function.
6110 */
6111 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6112   MemPage *pTrunk = 0;                /* Free-list trunk page */
6113   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6114   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6115   MemPage *pPage;                     /* Page being freed. May be NULL. */
6116   int rc;                             /* Return Code */
6117   int nFree;                          /* Initial number of pages on free-list */
6118 
6119   assert( sqlite3_mutex_held(pBt->mutex) );
6120   assert( CORRUPT_DB || iPage>1 );
6121   assert( !pMemPage || pMemPage->pgno==iPage );
6122 
6123   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
6124   if( pMemPage ){
6125     pPage = pMemPage;
6126     sqlite3PagerRef(pPage->pDbPage);
6127   }else{
6128     pPage = btreePageLookup(pBt, iPage);
6129   }
6130 
6131   /* Increment the free page count on pPage1 */
6132   rc = sqlite3PagerWrite(pPage1->pDbPage);
6133   if( rc ) goto freepage_out;
6134   nFree = get4byte(&pPage1->aData[36]);
6135   put4byte(&pPage1->aData[36], nFree+1);
6136 
6137   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6138     /* If the secure_delete option is enabled, then
6139     ** always fully overwrite deleted information with zeros.
6140     */
6141     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6142      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6143     ){
6144       goto freepage_out;
6145     }
6146     memset(pPage->aData, 0, pPage->pBt->pageSize);
6147   }
6148 
6149   /* If the database supports auto-vacuum, write an entry in the pointer-map
6150   ** to indicate that the page is free.
6151   */
6152   if( ISAUTOVACUUM ){
6153     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6154     if( rc ) goto freepage_out;
6155   }
6156 
6157   /* Now manipulate the actual database free-list structure. There are two
6158   ** possibilities. If the free-list is currently empty, or if the first
6159   ** trunk page in the free-list is full, then this page will become a
6160   ** new free-list trunk page. Otherwise, it will become a leaf of the
6161   ** first trunk page in the current free-list. This block tests if it
6162   ** is possible to add the page as a new free-list leaf.
6163   */
6164   if( nFree!=0 ){
6165     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6166 
6167     iTrunk = get4byte(&pPage1->aData[32]);
6168     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6169     if( rc!=SQLITE_OK ){
6170       goto freepage_out;
6171     }
6172 
6173     nLeaf = get4byte(&pTrunk->aData[4]);
6174     assert( pBt->usableSize>32 );
6175     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6176       rc = SQLITE_CORRUPT_BKPT;
6177       goto freepage_out;
6178     }
6179     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6180       /* In this case there is room on the trunk page to insert the page
6181       ** being freed as a new leaf.
6182       **
6183       ** Note that the trunk page is not really full until it contains
6184       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6185       ** coded.  But due to a coding error in versions of SQLite prior to
6186       ** 3.6.0, databases with freelist trunk pages holding more than
6187       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6188       ** to maintain backwards compatibility with older versions of SQLite,
6189       ** we will continue to restrict the number of entries to usableSize/4 - 8
6190       ** for now.  At some point in the future (once everyone has upgraded
6191       ** to 3.6.0 or later) we should consider fixing the conditional above
6192       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6193       **
6194       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6195       ** avoid using the last six entries in the freelist trunk page array in
6196       ** order that database files created by newer versions of SQLite can be
6197       ** read by older versions of SQLite.
6198       */
6199       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6200       if( rc==SQLITE_OK ){
6201         put4byte(&pTrunk->aData[4], nLeaf+1);
6202         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6203         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6204           sqlite3PagerDontWrite(pPage->pDbPage);
6205         }
6206         rc = btreeSetHasContent(pBt, iPage);
6207       }
6208       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6209       goto freepage_out;
6210     }
6211   }
6212 
6213   /* If control flows to this point, then it was not possible to add the
6214   ** the page being freed as a leaf page of the first trunk in the free-list.
6215   ** Possibly because the free-list is empty, or possibly because the
6216   ** first trunk in the free-list is full. Either way, the page being freed
6217   ** will become the new first trunk page in the free-list.
6218   */
6219   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6220     goto freepage_out;
6221   }
6222   rc = sqlite3PagerWrite(pPage->pDbPage);
6223   if( rc!=SQLITE_OK ){
6224     goto freepage_out;
6225   }
6226   put4byte(pPage->aData, iTrunk);
6227   put4byte(&pPage->aData[4], 0);
6228   put4byte(&pPage1->aData[32], iPage);
6229   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6230 
6231 freepage_out:
6232   if( pPage ){
6233     pPage->isInit = 0;
6234   }
6235   releasePage(pPage);
6236   releasePage(pTrunk);
6237   return rc;
6238 }
6239 static void freePage(MemPage *pPage, int *pRC){
6240   if( (*pRC)==SQLITE_OK ){
6241     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6242   }
6243 }
6244 
6245 /*
6246 ** Free any overflow pages associated with the given Cell.  Store
6247 ** size information about the cell in pInfo.
6248 */
6249 static int clearCell(
6250   MemPage *pPage,          /* The page that contains the Cell */
6251   unsigned char *pCell,    /* First byte of the Cell */
6252   CellInfo *pInfo          /* Size information about the cell */
6253 ){
6254   BtShared *pBt;
6255   Pgno ovflPgno;
6256   int rc;
6257   int nOvfl;
6258   u32 ovflPageSize;
6259 
6260   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6261   pPage->xParseCell(pPage, pCell, pInfo);
6262   if( pInfo->nLocal==pInfo->nPayload ){
6263     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6264   }
6265   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6266   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6267   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6268     /* Cell extends past end of page */
6269     return SQLITE_CORRUPT_PAGE(pPage);
6270   }
6271   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6272   pBt = pPage->pBt;
6273   assert( pBt->usableSize > 4 );
6274   ovflPageSize = pBt->usableSize - 4;
6275   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6276   assert( nOvfl>0 ||
6277     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6278   );
6279   while( nOvfl-- ){
6280     Pgno iNext = 0;
6281     MemPage *pOvfl = 0;
6282     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6283       /* 0 is not a legal page number and page 1 cannot be an
6284       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6285       ** file the database must be corrupt. */
6286       return SQLITE_CORRUPT_BKPT;
6287     }
6288     if( nOvfl ){
6289       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6290       if( rc ) return rc;
6291     }
6292 
6293     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6294      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6295     ){
6296       /* There is no reason any cursor should have an outstanding reference
6297       ** to an overflow page belonging to a cell that is being deleted/updated.
6298       ** So if there exists more than one reference to this page, then it
6299       ** must not really be an overflow page and the database must be corrupt.
6300       ** It is helpful to detect this before calling freePage2(), as
6301       ** freePage2() may zero the page contents if secure-delete mode is
6302       ** enabled. If this 'overflow' page happens to be a page that the
6303       ** caller is iterating through or using in some other way, this
6304       ** can be problematic.
6305       */
6306       rc = SQLITE_CORRUPT_BKPT;
6307     }else{
6308       rc = freePage2(pBt, pOvfl, ovflPgno);
6309     }
6310 
6311     if( pOvfl ){
6312       sqlite3PagerUnref(pOvfl->pDbPage);
6313     }
6314     if( rc ) return rc;
6315     ovflPgno = iNext;
6316   }
6317   return SQLITE_OK;
6318 }
6319 
6320 /*
6321 ** Create the byte sequence used to represent a cell on page pPage
6322 ** and write that byte sequence into pCell[].  Overflow pages are
6323 ** allocated and filled in as necessary.  The calling procedure
6324 ** is responsible for making sure sufficient space has been allocated
6325 ** for pCell[].
6326 **
6327 ** Note that pCell does not necessary need to point to the pPage->aData
6328 ** area.  pCell might point to some temporary storage.  The cell will
6329 ** be constructed in this temporary area then copied into pPage->aData
6330 ** later.
6331 */
6332 static int fillInCell(
6333   MemPage *pPage,                /* The page that contains the cell */
6334   unsigned char *pCell,          /* Complete text of the cell */
6335   const BtreePayload *pX,        /* Payload with which to construct the cell */
6336   int *pnSize                    /* Write cell size here */
6337 ){
6338   int nPayload;
6339   const u8 *pSrc;
6340   int nSrc, n, rc, mn;
6341   int spaceLeft;
6342   MemPage *pToRelease;
6343   unsigned char *pPrior;
6344   unsigned char *pPayload;
6345   BtShared *pBt;
6346   Pgno pgnoOvfl;
6347   int nHeader;
6348 
6349   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6350 
6351   /* pPage is not necessarily writeable since pCell might be auxiliary
6352   ** buffer space that is separate from the pPage buffer area */
6353   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6354             || sqlite3PagerIswriteable(pPage->pDbPage) );
6355 
6356   /* Fill in the header. */
6357   nHeader = pPage->childPtrSize;
6358   if( pPage->intKey ){
6359     nPayload = pX->nData + pX->nZero;
6360     pSrc = pX->pData;
6361     nSrc = pX->nData;
6362     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6363     nHeader += putVarint32(&pCell[nHeader], nPayload);
6364     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6365   }else{
6366     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6367     nSrc = nPayload = (int)pX->nKey;
6368     pSrc = pX->pKey;
6369     nHeader += putVarint32(&pCell[nHeader], nPayload);
6370   }
6371 
6372   /* Fill in the payload */
6373   pPayload = &pCell[nHeader];
6374   if( nPayload<=pPage->maxLocal ){
6375     /* This is the common case where everything fits on the btree page
6376     ** and no overflow pages are required. */
6377     n = nHeader + nPayload;
6378     testcase( n==3 );
6379     testcase( n==4 );
6380     if( n<4 ) n = 4;
6381     *pnSize = n;
6382     assert( nSrc<=nPayload );
6383     testcase( nSrc<nPayload );
6384     memcpy(pPayload, pSrc, nSrc);
6385     memset(pPayload+nSrc, 0, nPayload-nSrc);
6386     return SQLITE_OK;
6387   }
6388 
6389   /* If we reach this point, it means that some of the content will need
6390   ** to spill onto overflow pages.
6391   */
6392   mn = pPage->minLocal;
6393   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6394   testcase( n==pPage->maxLocal );
6395   testcase( n==pPage->maxLocal+1 );
6396   if( n > pPage->maxLocal ) n = mn;
6397   spaceLeft = n;
6398   *pnSize = n + nHeader + 4;
6399   pPrior = &pCell[nHeader+n];
6400   pToRelease = 0;
6401   pgnoOvfl = 0;
6402   pBt = pPage->pBt;
6403 
6404   /* At this point variables should be set as follows:
6405   **
6406   **   nPayload           Total payload size in bytes
6407   **   pPayload           Begin writing payload here
6408   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6409   **                      that means content must spill into overflow pages.
6410   **   *pnSize            Size of the local cell (not counting overflow pages)
6411   **   pPrior             Where to write the pgno of the first overflow page
6412   **
6413   ** Use a call to btreeParseCellPtr() to verify that the values above
6414   ** were computed correctly.
6415   */
6416 #ifdef SQLITE_DEBUG
6417   {
6418     CellInfo info;
6419     pPage->xParseCell(pPage, pCell, &info);
6420     assert( nHeader==(int)(info.pPayload - pCell) );
6421     assert( info.nKey==pX->nKey );
6422     assert( *pnSize == info.nSize );
6423     assert( spaceLeft == info.nLocal );
6424   }
6425 #endif
6426 
6427   /* Write the payload into the local Cell and any extra into overflow pages */
6428   while( 1 ){
6429     n = nPayload;
6430     if( n>spaceLeft ) n = spaceLeft;
6431 
6432     /* If pToRelease is not zero than pPayload points into the data area
6433     ** of pToRelease.  Make sure pToRelease is still writeable. */
6434     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6435 
6436     /* If pPayload is part of the data area of pPage, then make sure pPage
6437     ** is still writeable */
6438     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6439             || sqlite3PagerIswriteable(pPage->pDbPage) );
6440 
6441     if( nSrc>=n ){
6442       memcpy(pPayload, pSrc, n);
6443     }else if( nSrc>0 ){
6444       n = nSrc;
6445       memcpy(pPayload, pSrc, n);
6446     }else{
6447       memset(pPayload, 0, n);
6448     }
6449     nPayload -= n;
6450     if( nPayload<=0 ) break;
6451     pPayload += n;
6452     pSrc += n;
6453     nSrc -= n;
6454     spaceLeft -= n;
6455     if( spaceLeft==0 ){
6456       MemPage *pOvfl = 0;
6457 #ifndef SQLITE_OMIT_AUTOVACUUM
6458       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6459       if( pBt->autoVacuum ){
6460         do{
6461           pgnoOvfl++;
6462         } while(
6463           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6464         );
6465       }
6466 #endif
6467       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6468 #ifndef SQLITE_OMIT_AUTOVACUUM
6469       /* If the database supports auto-vacuum, and the second or subsequent
6470       ** overflow page is being allocated, add an entry to the pointer-map
6471       ** for that page now.
6472       **
6473       ** If this is the first overflow page, then write a partial entry
6474       ** to the pointer-map. If we write nothing to this pointer-map slot,
6475       ** then the optimistic overflow chain processing in clearCell()
6476       ** may misinterpret the uninitialized values and delete the
6477       ** wrong pages from the database.
6478       */
6479       if( pBt->autoVacuum && rc==SQLITE_OK ){
6480         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6481         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6482         if( rc ){
6483           releasePage(pOvfl);
6484         }
6485       }
6486 #endif
6487       if( rc ){
6488         releasePage(pToRelease);
6489         return rc;
6490       }
6491 
6492       /* If pToRelease is not zero than pPrior points into the data area
6493       ** of pToRelease.  Make sure pToRelease is still writeable. */
6494       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6495 
6496       /* If pPrior is part of the data area of pPage, then make sure pPage
6497       ** is still writeable */
6498       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6499             || sqlite3PagerIswriteable(pPage->pDbPage) );
6500 
6501       put4byte(pPrior, pgnoOvfl);
6502       releasePage(pToRelease);
6503       pToRelease = pOvfl;
6504       pPrior = pOvfl->aData;
6505       put4byte(pPrior, 0);
6506       pPayload = &pOvfl->aData[4];
6507       spaceLeft = pBt->usableSize - 4;
6508     }
6509   }
6510   releasePage(pToRelease);
6511   return SQLITE_OK;
6512 }
6513 
6514 /*
6515 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6516 ** The cell content is not freed or deallocated.  It is assumed that
6517 ** the cell content has been copied someplace else.  This routine just
6518 ** removes the reference to the cell from pPage.
6519 **
6520 ** "sz" must be the number of bytes in the cell.
6521 */
6522 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6523   u32 pc;         /* Offset to cell content of cell being deleted */
6524   u8 *data;       /* pPage->aData */
6525   u8 *ptr;        /* Used to move bytes around within data[] */
6526   int rc;         /* The return code */
6527   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6528 
6529   if( *pRC ) return;
6530   assert( idx>=0 && idx<pPage->nCell );
6531   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6532   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6533   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6534   data = pPage->aData;
6535   ptr = &pPage->aCellIdx[2*idx];
6536   pc = get2byte(ptr);
6537   hdr = pPage->hdrOffset;
6538   testcase( pc==get2byte(&data[hdr+5]) );
6539   testcase( pc+sz==pPage->pBt->usableSize );
6540   if( pc+sz > pPage->pBt->usableSize ){
6541     *pRC = SQLITE_CORRUPT_BKPT;
6542     return;
6543   }
6544   rc = freeSpace(pPage, pc, sz);
6545   if( rc ){
6546     *pRC = rc;
6547     return;
6548   }
6549   pPage->nCell--;
6550   if( pPage->nCell==0 ){
6551     memset(&data[hdr+1], 0, 4);
6552     data[hdr+7] = 0;
6553     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6554     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6555                        - pPage->childPtrSize - 8;
6556   }else{
6557     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6558     put2byte(&data[hdr+3], pPage->nCell);
6559     pPage->nFree += 2;
6560   }
6561 }
6562 
6563 /*
6564 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6565 ** content of the cell.
6566 **
6567 ** If the cell content will fit on the page, then put it there.  If it
6568 ** will not fit, then make a copy of the cell content into pTemp if
6569 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6570 ** in pPage->apOvfl[] and make it point to the cell content (either
6571 ** in pTemp or the original pCell) and also record its index.
6572 ** Allocating a new entry in pPage->aCell[] implies that
6573 ** pPage->nOverflow is incremented.
6574 **
6575 ** *pRC must be SQLITE_OK when this routine is called.
6576 */
6577 static void insertCell(
6578   MemPage *pPage,   /* Page into which we are copying */
6579   int i,            /* New cell becomes the i-th cell of the page */
6580   u8 *pCell,        /* Content of the new cell */
6581   int sz,           /* Bytes of content in pCell */
6582   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6583   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6584   int *pRC          /* Read and write return code from here */
6585 ){
6586   int idx = 0;      /* Where to write new cell content in data[] */
6587   int j;            /* Loop counter */
6588   u8 *data;         /* The content of the whole page */
6589   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6590 
6591   assert( *pRC==SQLITE_OK );
6592   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6593   assert( MX_CELL(pPage->pBt)<=10921 );
6594   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6595   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6596   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6597   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6598   /* The cell should normally be sized correctly.  However, when moving a
6599   ** malformed cell from a leaf page to an interior page, if the cell size
6600   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6601   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6602   ** the term after the || in the following assert(). */
6603   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6604   if( pPage->nOverflow || sz+2>pPage->nFree ){
6605     if( pTemp ){
6606       memcpy(pTemp, pCell, sz);
6607       pCell = pTemp;
6608     }
6609     if( iChild ){
6610       put4byte(pCell, iChild);
6611     }
6612     j = pPage->nOverflow++;
6613     /* Comparison against ArraySize-1 since we hold back one extra slot
6614     ** as a contingency.  In other words, never need more than 3 overflow
6615     ** slots but 4 are allocated, just to be safe. */
6616     assert( j < ArraySize(pPage->apOvfl)-1 );
6617     pPage->apOvfl[j] = pCell;
6618     pPage->aiOvfl[j] = (u16)i;
6619 
6620     /* When multiple overflows occur, they are always sequential and in
6621     ** sorted order.  This invariants arise because multiple overflows can
6622     ** only occur when inserting divider cells into the parent page during
6623     ** balancing, and the dividers are adjacent and sorted.
6624     */
6625     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6626     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6627   }else{
6628     int rc = sqlite3PagerWrite(pPage->pDbPage);
6629     if( rc!=SQLITE_OK ){
6630       *pRC = rc;
6631       return;
6632     }
6633     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6634     data = pPage->aData;
6635     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6636     rc = allocateSpace(pPage, sz, &idx);
6637     if( rc ){ *pRC = rc; return; }
6638     /* The allocateSpace() routine guarantees the following properties
6639     ** if it returns successfully */
6640     assert( idx >= 0 );
6641     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6642     assert( idx+sz <= (int)pPage->pBt->usableSize );
6643     pPage->nFree -= (u16)(2 + sz);
6644     memcpy(&data[idx], pCell, sz);
6645     if( iChild ){
6646       put4byte(&data[idx], iChild);
6647     }
6648     pIns = pPage->aCellIdx + i*2;
6649     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6650     put2byte(pIns, idx);
6651     pPage->nCell++;
6652     /* increment the cell count */
6653     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6654     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6655 #ifndef SQLITE_OMIT_AUTOVACUUM
6656     if( pPage->pBt->autoVacuum ){
6657       /* The cell may contain a pointer to an overflow page. If so, write
6658       ** the entry for the overflow page into the pointer map.
6659       */
6660       ptrmapPutOvflPtr(pPage, pCell, pRC);
6661     }
6662 #endif
6663   }
6664 }
6665 
6666 /*
6667 ** A CellArray object contains a cache of pointers and sizes for a
6668 ** consecutive sequence of cells that might be held on multiple pages.
6669 */
6670 typedef struct CellArray CellArray;
6671 struct CellArray {
6672   int nCell;              /* Number of cells in apCell[] */
6673   MemPage *pRef;          /* Reference page */
6674   u8 **apCell;            /* All cells begin balanced */
6675   u16 *szCell;            /* Local size of all cells in apCell[] */
6676 };
6677 
6678 /*
6679 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6680 ** computed.
6681 */
6682 static void populateCellCache(CellArray *p, int idx, int N){
6683   assert( idx>=0 && idx+N<=p->nCell );
6684   while( N>0 ){
6685     assert( p->apCell[idx]!=0 );
6686     if( p->szCell[idx]==0 ){
6687       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6688     }else{
6689       assert( CORRUPT_DB ||
6690               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6691     }
6692     idx++;
6693     N--;
6694   }
6695 }
6696 
6697 /*
6698 ** Return the size of the Nth element of the cell array
6699 */
6700 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6701   assert( N>=0 && N<p->nCell );
6702   assert( p->szCell[N]==0 );
6703   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6704   return p->szCell[N];
6705 }
6706 static u16 cachedCellSize(CellArray *p, int N){
6707   assert( N>=0 && N<p->nCell );
6708   if( p->szCell[N] ) return p->szCell[N];
6709   return computeCellSize(p, N);
6710 }
6711 
6712 /*
6713 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6714 ** szCell[] array contains the size in bytes of each cell. This function
6715 ** replaces the current contents of page pPg with the contents of the cell
6716 ** array.
6717 **
6718 ** Some of the cells in apCell[] may currently be stored in pPg. This
6719 ** function works around problems caused by this by making a copy of any
6720 ** such cells before overwriting the page data.
6721 **
6722 ** The MemPage.nFree field is invalidated by this function. It is the
6723 ** responsibility of the caller to set it correctly.
6724 */
6725 static int rebuildPage(
6726   MemPage *pPg,                   /* Edit this page */
6727   int nCell,                      /* Final number of cells on page */
6728   u8 **apCell,                    /* Array of cells */
6729   u16 *szCell                     /* Array of cell sizes */
6730 ){
6731   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6732   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6733   const int usableSize = pPg->pBt->usableSize;
6734   u8 * const pEnd = &aData[usableSize];
6735   int i;
6736   u8 *pCellptr = pPg->aCellIdx;
6737   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6738   u8 *pData;
6739 
6740   i = get2byte(&aData[hdr+5]);
6741   memcpy(&pTmp[i], &aData[i], usableSize - i);
6742 
6743   pData = pEnd;
6744   for(i=0; i<nCell; i++){
6745     u8 *pCell = apCell[i];
6746     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6747       pCell = &pTmp[pCell - aData];
6748     }
6749     pData -= szCell[i];
6750     put2byte(pCellptr, (pData - aData));
6751     pCellptr += 2;
6752     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6753     memcpy(pData, pCell, szCell[i]);
6754     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6755     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6756   }
6757 
6758   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6759   pPg->nCell = nCell;
6760   pPg->nOverflow = 0;
6761 
6762   put2byte(&aData[hdr+1], 0);
6763   put2byte(&aData[hdr+3], pPg->nCell);
6764   put2byte(&aData[hdr+5], pData - aData);
6765   aData[hdr+7] = 0x00;
6766   return SQLITE_OK;
6767 }
6768 
6769 /*
6770 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6771 ** contains the size in bytes of each such cell. This function attempts to
6772 ** add the cells stored in the array to page pPg. If it cannot (because
6773 ** the page needs to be defragmented before the cells will fit), non-zero
6774 ** is returned. Otherwise, if the cells are added successfully, zero is
6775 ** returned.
6776 **
6777 ** Argument pCellptr points to the first entry in the cell-pointer array
6778 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6779 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6780 ** cell in the array. It is the responsibility of the caller to ensure
6781 ** that it is safe to overwrite this part of the cell-pointer array.
6782 **
6783 ** When this function is called, *ppData points to the start of the
6784 ** content area on page pPg. If the size of the content area is extended,
6785 ** *ppData is updated to point to the new start of the content area
6786 ** before returning.
6787 **
6788 ** Finally, argument pBegin points to the byte immediately following the
6789 ** end of the space required by this page for the cell-pointer area (for
6790 ** all cells - not just those inserted by the current call). If the content
6791 ** area must be extended to before this point in order to accomodate all
6792 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6793 */
6794 static int pageInsertArray(
6795   MemPage *pPg,                   /* Page to add cells to */
6796   u8 *pBegin,                     /* End of cell-pointer array */
6797   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6798   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6799   int iFirst,                     /* Index of first cell to add */
6800   int nCell,                      /* Number of cells to add to pPg */
6801   CellArray *pCArray              /* Array of cells */
6802 ){
6803   int i;
6804   u8 *aData = pPg->aData;
6805   u8 *pData = *ppData;
6806   int iEnd = iFirst + nCell;
6807   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6808   for(i=iFirst; i<iEnd; i++){
6809     int sz, rc;
6810     u8 *pSlot;
6811     sz = cachedCellSize(pCArray, i);
6812     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6813       if( (pData - pBegin)<sz ) return 1;
6814       pData -= sz;
6815       pSlot = pData;
6816     }
6817     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6818     ** database.  But they might for a corrupt database.  Hence use memmove()
6819     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6820     assert( (pSlot+sz)<=pCArray->apCell[i]
6821          || pSlot>=(pCArray->apCell[i]+sz)
6822          || CORRUPT_DB );
6823     memmove(pSlot, pCArray->apCell[i], sz);
6824     put2byte(pCellptr, (pSlot - aData));
6825     pCellptr += 2;
6826   }
6827   *ppData = pData;
6828   return 0;
6829 }
6830 
6831 /*
6832 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6833 ** contains the size in bytes of each such cell. This function adds the
6834 ** space associated with each cell in the array that is currently stored
6835 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6836 ** fields of the page are not updated.
6837 **
6838 ** This function returns the total number of cells added to the free-list.
6839 */
6840 static int pageFreeArray(
6841   MemPage *pPg,                   /* Page to edit */
6842   int iFirst,                     /* First cell to delete */
6843   int nCell,                      /* Cells to delete */
6844   CellArray *pCArray              /* Array of cells */
6845 ){
6846   u8 * const aData = pPg->aData;
6847   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6848   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6849   int nRet = 0;
6850   int i;
6851   int iEnd = iFirst + nCell;
6852   u8 *pFree = 0;
6853   int szFree = 0;
6854 
6855   for(i=iFirst; i<iEnd; i++){
6856     u8 *pCell = pCArray->apCell[i];
6857     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6858       int sz;
6859       /* No need to use cachedCellSize() here.  The sizes of all cells that
6860       ** are to be freed have already been computing while deciding which
6861       ** cells need freeing */
6862       sz = pCArray->szCell[i];  assert( sz>0 );
6863       if( pFree!=(pCell + sz) ){
6864         if( pFree ){
6865           assert( pFree>aData && (pFree - aData)<65536 );
6866           freeSpace(pPg, (u16)(pFree - aData), szFree);
6867         }
6868         pFree = pCell;
6869         szFree = sz;
6870         if( pFree+sz>pEnd ) return 0;
6871       }else{
6872         pFree = pCell;
6873         szFree += sz;
6874       }
6875       nRet++;
6876     }
6877   }
6878   if( pFree ){
6879     assert( pFree>aData && (pFree - aData)<65536 );
6880     freeSpace(pPg, (u16)(pFree - aData), szFree);
6881   }
6882   return nRet;
6883 }
6884 
6885 /*
6886 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6887 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6888 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6889 ** starting at apCell[iNew].
6890 **
6891 ** This routine makes the necessary adjustments to pPg so that it contains
6892 ** the correct cells after being balanced.
6893 **
6894 ** The pPg->nFree field is invalid when this function returns. It is the
6895 ** responsibility of the caller to set it correctly.
6896 */
6897 static int editPage(
6898   MemPage *pPg,                   /* Edit this page */
6899   int iOld,                       /* Index of first cell currently on page */
6900   int iNew,                       /* Index of new first cell on page */
6901   int nNew,                       /* Final number of cells on page */
6902   CellArray *pCArray              /* Array of cells and sizes */
6903 ){
6904   u8 * const aData = pPg->aData;
6905   const int hdr = pPg->hdrOffset;
6906   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6907   int nCell = pPg->nCell;       /* Cells stored on pPg */
6908   u8 *pData;
6909   u8 *pCellptr;
6910   int i;
6911   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6912   int iNewEnd = iNew + nNew;
6913 
6914 #ifdef SQLITE_DEBUG
6915   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6916   memcpy(pTmp, aData, pPg->pBt->usableSize);
6917 #endif
6918 
6919   /* Remove cells from the start and end of the page */
6920   if( iOld<iNew ){
6921     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6922     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6923     nCell -= nShift;
6924   }
6925   if( iNewEnd < iOldEnd ){
6926     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6927   }
6928 
6929   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6930   if( pData<pBegin ) goto editpage_fail;
6931 
6932   /* Add cells to the start of the page */
6933   if( iNew<iOld ){
6934     int nAdd = MIN(nNew,iOld-iNew);
6935     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6936     pCellptr = pPg->aCellIdx;
6937     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6938     if( pageInsertArray(
6939           pPg, pBegin, &pData, pCellptr,
6940           iNew, nAdd, pCArray
6941     ) ) goto editpage_fail;
6942     nCell += nAdd;
6943   }
6944 
6945   /* Add any overflow cells */
6946   for(i=0; i<pPg->nOverflow; i++){
6947     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6948     if( iCell>=0 && iCell<nNew ){
6949       pCellptr = &pPg->aCellIdx[iCell * 2];
6950       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6951       nCell++;
6952       if( pageInsertArray(
6953             pPg, pBegin, &pData, pCellptr,
6954             iCell+iNew, 1, pCArray
6955       ) ) goto editpage_fail;
6956     }
6957   }
6958 
6959   /* Append cells to the end of the page */
6960   pCellptr = &pPg->aCellIdx[nCell*2];
6961   if( pageInsertArray(
6962         pPg, pBegin, &pData, pCellptr,
6963         iNew+nCell, nNew-nCell, pCArray
6964   ) ) goto editpage_fail;
6965 
6966   pPg->nCell = nNew;
6967   pPg->nOverflow = 0;
6968 
6969   put2byte(&aData[hdr+3], pPg->nCell);
6970   put2byte(&aData[hdr+5], pData - aData);
6971 
6972 #ifdef SQLITE_DEBUG
6973   for(i=0; i<nNew && !CORRUPT_DB; i++){
6974     u8 *pCell = pCArray->apCell[i+iNew];
6975     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6976     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6977       pCell = &pTmp[pCell - aData];
6978     }
6979     assert( 0==memcmp(pCell, &aData[iOff],
6980             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6981   }
6982 #endif
6983 
6984   return SQLITE_OK;
6985  editpage_fail:
6986   /* Unable to edit this page. Rebuild it from scratch instead. */
6987   populateCellCache(pCArray, iNew, nNew);
6988   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6989 }
6990 
6991 /*
6992 ** The following parameters determine how many adjacent pages get involved
6993 ** in a balancing operation.  NN is the number of neighbors on either side
6994 ** of the page that participate in the balancing operation.  NB is the
6995 ** total number of pages that participate, including the target page and
6996 ** NN neighbors on either side.
6997 **
6998 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6999 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7000 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7001 ** The value of NN appears to give the best results overall.
7002 */
7003 #define NN 1             /* Number of neighbors on either side of pPage */
7004 #define NB (NN*2+1)      /* Total pages involved in the balance */
7005 
7006 
7007 #ifndef SQLITE_OMIT_QUICKBALANCE
7008 /*
7009 ** This version of balance() handles the common special case where
7010 ** a new entry is being inserted on the extreme right-end of the
7011 ** tree, in other words, when the new entry will become the largest
7012 ** entry in the tree.
7013 **
7014 ** Instead of trying to balance the 3 right-most leaf pages, just add
7015 ** a new page to the right-hand side and put the one new entry in
7016 ** that page.  This leaves the right side of the tree somewhat
7017 ** unbalanced.  But odds are that we will be inserting new entries
7018 ** at the end soon afterwards so the nearly empty page will quickly
7019 ** fill up.  On average.
7020 **
7021 ** pPage is the leaf page which is the right-most page in the tree.
7022 ** pParent is its parent.  pPage must have a single overflow entry
7023 ** which is also the right-most entry on the page.
7024 **
7025 ** The pSpace buffer is used to store a temporary copy of the divider
7026 ** cell that will be inserted into pParent. Such a cell consists of a 4
7027 ** byte page number followed by a variable length integer. In other
7028 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7029 ** least 13 bytes in size.
7030 */
7031 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7032   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7033   MemPage *pNew;                       /* Newly allocated page */
7034   int rc;                              /* Return Code */
7035   Pgno pgnoNew;                        /* Page number of pNew */
7036 
7037   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7038   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7039   assert( pPage->nOverflow==1 );
7040 
7041   /* This error condition is now caught prior to reaching this function */
7042   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
7043 
7044   /* Allocate a new page. This page will become the right-sibling of
7045   ** pPage. Make the parent page writable, so that the new divider cell
7046   ** may be inserted. If both these operations are successful, proceed.
7047   */
7048   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7049 
7050   if( rc==SQLITE_OK ){
7051 
7052     u8 *pOut = &pSpace[4];
7053     u8 *pCell = pPage->apOvfl[0];
7054     u16 szCell = pPage->xCellSize(pPage, pCell);
7055     u8 *pStop;
7056 
7057     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7058     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7059     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7060     rc = rebuildPage(pNew, 1, &pCell, &szCell);
7061     if( NEVER(rc) ) return rc;
7062     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7063 
7064     /* If this is an auto-vacuum database, update the pointer map
7065     ** with entries for the new page, and any pointer from the
7066     ** cell on the page to an overflow page. If either of these
7067     ** operations fails, the return code is set, but the contents
7068     ** of the parent page are still manipulated by thh code below.
7069     ** That is Ok, at this point the parent page is guaranteed to
7070     ** be marked as dirty. Returning an error code will cause a
7071     ** rollback, undoing any changes made to the parent page.
7072     */
7073     if( ISAUTOVACUUM ){
7074       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7075       if( szCell>pNew->minLocal ){
7076         ptrmapPutOvflPtr(pNew, pCell, &rc);
7077       }
7078     }
7079 
7080     /* Create a divider cell to insert into pParent. The divider cell
7081     ** consists of a 4-byte page number (the page number of pPage) and
7082     ** a variable length key value (which must be the same value as the
7083     ** largest key on pPage).
7084     **
7085     ** To find the largest key value on pPage, first find the right-most
7086     ** cell on pPage. The first two fields of this cell are the
7087     ** record-length (a variable length integer at most 32-bits in size)
7088     ** and the key value (a variable length integer, may have any value).
7089     ** The first of the while(...) loops below skips over the record-length
7090     ** field. The second while(...) loop copies the key value from the
7091     ** cell on pPage into the pSpace buffer.
7092     */
7093     pCell = findCell(pPage, pPage->nCell-1);
7094     pStop = &pCell[9];
7095     while( (*(pCell++)&0x80) && pCell<pStop );
7096     pStop = &pCell[9];
7097     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7098 
7099     /* Insert the new divider cell into pParent. */
7100     if( rc==SQLITE_OK ){
7101       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7102                    0, pPage->pgno, &rc);
7103     }
7104 
7105     /* Set the right-child pointer of pParent to point to the new page. */
7106     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7107 
7108     /* Release the reference to the new page. */
7109     releasePage(pNew);
7110   }
7111 
7112   return rc;
7113 }
7114 #endif /* SQLITE_OMIT_QUICKBALANCE */
7115 
7116 #if 0
7117 /*
7118 ** This function does not contribute anything to the operation of SQLite.
7119 ** it is sometimes activated temporarily while debugging code responsible
7120 ** for setting pointer-map entries.
7121 */
7122 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7123   int i, j;
7124   for(i=0; i<nPage; i++){
7125     Pgno n;
7126     u8 e;
7127     MemPage *pPage = apPage[i];
7128     BtShared *pBt = pPage->pBt;
7129     assert( pPage->isInit );
7130 
7131     for(j=0; j<pPage->nCell; j++){
7132       CellInfo info;
7133       u8 *z;
7134 
7135       z = findCell(pPage, j);
7136       pPage->xParseCell(pPage, z, &info);
7137       if( info.nLocal<info.nPayload ){
7138         Pgno ovfl = get4byte(&z[info.nSize-4]);
7139         ptrmapGet(pBt, ovfl, &e, &n);
7140         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7141       }
7142       if( !pPage->leaf ){
7143         Pgno child = get4byte(z);
7144         ptrmapGet(pBt, child, &e, &n);
7145         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7146       }
7147     }
7148     if( !pPage->leaf ){
7149       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7150       ptrmapGet(pBt, child, &e, &n);
7151       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7152     }
7153   }
7154   return 1;
7155 }
7156 #endif
7157 
7158 /*
7159 ** This function is used to copy the contents of the b-tree node stored
7160 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7161 ** the pointer-map entries for each child page are updated so that the
7162 ** parent page stored in the pointer map is page pTo. If pFrom contained
7163 ** any cells with overflow page pointers, then the corresponding pointer
7164 ** map entries are also updated so that the parent page is page pTo.
7165 **
7166 ** If pFrom is currently carrying any overflow cells (entries in the
7167 ** MemPage.apOvfl[] array), they are not copied to pTo.
7168 **
7169 ** Before returning, page pTo is reinitialized using btreeInitPage().
7170 **
7171 ** The performance of this function is not critical. It is only used by
7172 ** the balance_shallower() and balance_deeper() procedures, neither of
7173 ** which are called often under normal circumstances.
7174 */
7175 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7176   if( (*pRC)==SQLITE_OK ){
7177     BtShared * const pBt = pFrom->pBt;
7178     u8 * const aFrom = pFrom->aData;
7179     u8 * const aTo = pTo->aData;
7180     int const iFromHdr = pFrom->hdrOffset;
7181     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7182     int rc;
7183     int iData;
7184 
7185 
7186     assert( pFrom->isInit );
7187     assert( pFrom->nFree>=iToHdr );
7188     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7189 
7190     /* Copy the b-tree node content from page pFrom to page pTo. */
7191     iData = get2byte(&aFrom[iFromHdr+5]);
7192     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7193     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7194 
7195     /* Reinitialize page pTo so that the contents of the MemPage structure
7196     ** match the new data. The initialization of pTo can actually fail under
7197     ** fairly obscure circumstances, even though it is a copy of initialized
7198     ** page pFrom.
7199     */
7200     pTo->isInit = 0;
7201     rc = btreeInitPage(pTo);
7202     if( rc!=SQLITE_OK ){
7203       *pRC = rc;
7204       return;
7205     }
7206 
7207     /* If this is an auto-vacuum database, update the pointer-map entries
7208     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7209     */
7210     if( ISAUTOVACUUM ){
7211       *pRC = setChildPtrmaps(pTo);
7212     }
7213   }
7214 }
7215 
7216 /*
7217 ** This routine redistributes cells on the iParentIdx'th child of pParent
7218 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7219 ** same amount of free space. Usually a single sibling on either side of the
7220 ** page are used in the balancing, though both siblings might come from one
7221 ** side if the page is the first or last child of its parent. If the page
7222 ** has fewer than 2 siblings (something which can only happen if the page
7223 ** is a root page or a child of a root page) then all available siblings
7224 ** participate in the balancing.
7225 **
7226 ** The number of siblings of the page might be increased or decreased by
7227 ** one or two in an effort to keep pages nearly full but not over full.
7228 **
7229 ** Note that when this routine is called, some of the cells on the page
7230 ** might not actually be stored in MemPage.aData[]. This can happen
7231 ** if the page is overfull. This routine ensures that all cells allocated
7232 ** to the page and its siblings fit into MemPage.aData[] before returning.
7233 **
7234 ** In the course of balancing the page and its siblings, cells may be
7235 ** inserted into or removed from the parent page (pParent). Doing so
7236 ** may cause the parent page to become overfull or underfull. If this
7237 ** happens, it is the responsibility of the caller to invoke the correct
7238 ** balancing routine to fix this problem (see the balance() routine).
7239 **
7240 ** If this routine fails for any reason, it might leave the database
7241 ** in a corrupted state. So if this routine fails, the database should
7242 ** be rolled back.
7243 **
7244 ** The third argument to this function, aOvflSpace, is a pointer to a
7245 ** buffer big enough to hold one page. If while inserting cells into the parent
7246 ** page (pParent) the parent page becomes overfull, this buffer is
7247 ** used to store the parent's overflow cells. Because this function inserts
7248 ** a maximum of four divider cells into the parent page, and the maximum
7249 ** size of a cell stored within an internal node is always less than 1/4
7250 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7251 ** enough for all overflow cells.
7252 **
7253 ** If aOvflSpace is set to a null pointer, this function returns
7254 ** SQLITE_NOMEM.
7255 */
7256 static int balance_nonroot(
7257   MemPage *pParent,               /* Parent page of siblings being balanced */
7258   int iParentIdx,                 /* Index of "the page" in pParent */
7259   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7260   int isRoot,                     /* True if pParent is a root-page */
7261   int bBulk                       /* True if this call is part of a bulk load */
7262 ){
7263   BtShared *pBt;               /* The whole database */
7264   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7265   int nNew = 0;                /* Number of pages in apNew[] */
7266   int nOld;                    /* Number of pages in apOld[] */
7267   int i, j, k;                 /* Loop counters */
7268   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7269   int rc = SQLITE_OK;          /* The return code */
7270   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7271   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7272   int usableSpace;             /* Bytes in pPage beyond the header */
7273   int pageFlags;               /* Value of pPage->aData[0] */
7274   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7275   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7276   int szScratch;               /* Size of scratch memory requested */
7277   MemPage *apOld[NB];          /* pPage and up to two siblings */
7278   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7279   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7280   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7281   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7282   int cntOld[NB+2];            /* Old index in b.apCell[] */
7283   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7284   u8 *aSpace1;                 /* Space for copies of dividers cells */
7285   Pgno pgno;                   /* Temp var to store a page number in */
7286   u8 abDone[NB+2];             /* True after i'th new page is populated */
7287   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7288   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7289   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7290   CellArray b;                  /* Parsed information on cells being balanced */
7291 
7292   memset(abDone, 0, sizeof(abDone));
7293   b.nCell = 0;
7294   b.apCell = 0;
7295   pBt = pParent->pBt;
7296   assert( sqlite3_mutex_held(pBt->mutex) );
7297   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7298 
7299 #if 0
7300   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7301 #endif
7302 
7303   /* At this point pParent may have at most one overflow cell. And if
7304   ** this overflow cell is present, it must be the cell with
7305   ** index iParentIdx. This scenario comes about when this function
7306   ** is called (indirectly) from sqlite3BtreeDelete().
7307   */
7308   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7309   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7310 
7311   if( !aOvflSpace ){
7312     return SQLITE_NOMEM_BKPT;
7313   }
7314 
7315   /* Find the sibling pages to balance. Also locate the cells in pParent
7316   ** that divide the siblings. An attempt is made to find NN siblings on
7317   ** either side of pPage. More siblings are taken from one side, however,
7318   ** if there are fewer than NN siblings on the other side. If pParent
7319   ** has NB or fewer children then all children of pParent are taken.
7320   **
7321   ** This loop also drops the divider cells from the parent page. This
7322   ** way, the remainder of the function does not have to deal with any
7323   ** overflow cells in the parent page, since if any existed they will
7324   ** have already been removed.
7325   */
7326   i = pParent->nOverflow + pParent->nCell;
7327   if( i<2 ){
7328     nxDiv = 0;
7329   }else{
7330     assert( bBulk==0 || bBulk==1 );
7331     if( iParentIdx==0 ){
7332       nxDiv = 0;
7333     }else if( iParentIdx==i ){
7334       nxDiv = i-2+bBulk;
7335     }else{
7336       nxDiv = iParentIdx-1;
7337     }
7338     i = 2-bBulk;
7339   }
7340   nOld = i+1;
7341   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7342     pRight = &pParent->aData[pParent->hdrOffset+8];
7343   }else{
7344     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7345   }
7346   pgno = get4byte(pRight);
7347   while( 1 ){
7348     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7349     if( rc ){
7350       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7351       goto balance_cleanup;
7352     }
7353     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7354     if( (i--)==0 ) break;
7355 
7356     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7357       apDiv[i] = pParent->apOvfl[0];
7358       pgno = get4byte(apDiv[i]);
7359       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7360       pParent->nOverflow = 0;
7361     }else{
7362       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7363       pgno = get4byte(apDiv[i]);
7364       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7365 
7366       /* Drop the cell from the parent page. apDiv[i] still points to
7367       ** the cell within the parent, even though it has been dropped.
7368       ** This is safe because dropping a cell only overwrites the first
7369       ** four bytes of it, and this function does not need the first
7370       ** four bytes of the divider cell. So the pointer is safe to use
7371       ** later on.
7372       **
7373       ** But not if we are in secure-delete mode. In secure-delete mode,
7374       ** the dropCell() routine will overwrite the entire cell with zeroes.
7375       ** In this case, temporarily copy the cell into the aOvflSpace[]
7376       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7377       ** is allocated.  */
7378       if( pBt->btsFlags & BTS_FAST_SECURE ){
7379         int iOff;
7380 
7381         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7382         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7383           rc = SQLITE_CORRUPT_BKPT;
7384           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7385           goto balance_cleanup;
7386         }else{
7387           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7388           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7389         }
7390       }
7391       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7392     }
7393   }
7394 
7395   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7396   ** alignment */
7397   nMaxCells = (nMaxCells + 3)&~3;
7398 
7399   /*
7400   ** Allocate space for memory structures
7401   */
7402   szScratch =
7403        nMaxCells*sizeof(u8*)                       /* b.apCell */
7404      + nMaxCells*sizeof(u16)                       /* b.szCell */
7405      + pBt->pageSize;                              /* aSpace1 */
7406 
7407   assert( szScratch<=6*(int)pBt->pageSize );
7408   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7409   if( b.apCell==0 ){
7410     rc = SQLITE_NOMEM_BKPT;
7411     goto balance_cleanup;
7412   }
7413   b.szCell = (u16*)&b.apCell[nMaxCells];
7414   aSpace1 = (u8*)&b.szCell[nMaxCells];
7415   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7416 
7417   /*
7418   ** Load pointers to all cells on sibling pages and the divider cells
7419   ** into the local b.apCell[] array.  Make copies of the divider cells
7420   ** into space obtained from aSpace1[]. The divider cells have already
7421   ** been removed from pParent.
7422   **
7423   ** If the siblings are on leaf pages, then the child pointers of the
7424   ** divider cells are stripped from the cells before they are copied
7425   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7426   ** child pointers.  If siblings are not leaves, then all cell in
7427   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7428   ** are alike.
7429   **
7430   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7431   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7432   */
7433   b.pRef = apOld[0];
7434   leafCorrection = b.pRef->leaf*4;
7435   leafData = b.pRef->intKeyLeaf;
7436   for(i=0; i<nOld; i++){
7437     MemPage *pOld = apOld[i];
7438     int limit = pOld->nCell;
7439     u8 *aData = pOld->aData;
7440     u16 maskPage = pOld->maskPage;
7441     u8 *piCell = aData + pOld->cellOffset;
7442     u8 *piEnd;
7443 
7444     /* Verify that all sibling pages are of the same "type" (table-leaf,
7445     ** table-interior, index-leaf, or index-interior).
7446     */
7447     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7448       rc = SQLITE_CORRUPT_BKPT;
7449       goto balance_cleanup;
7450     }
7451 
7452     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7453     ** contains overflow cells, include them in the b.apCell[] array
7454     ** in the correct spot.
7455     **
7456     ** Note that when there are multiple overflow cells, it is always the
7457     ** case that they are sequential and adjacent.  This invariant arises
7458     ** because multiple overflows can only occurs when inserting divider
7459     ** cells into a parent on a prior balance, and divider cells are always
7460     ** adjacent and are inserted in order.  There is an assert() tagged
7461     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7462     ** invariant.
7463     **
7464     ** This must be done in advance.  Once the balance starts, the cell
7465     ** offset section of the btree page will be overwritten and we will no
7466     ** long be able to find the cells if a pointer to each cell is not saved
7467     ** first.
7468     */
7469     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7470     if( pOld->nOverflow>0 ){
7471       limit = pOld->aiOvfl[0];
7472       for(j=0; j<limit; j++){
7473         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7474         piCell += 2;
7475         b.nCell++;
7476       }
7477       for(k=0; k<pOld->nOverflow; k++){
7478         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7479         b.apCell[b.nCell] = pOld->apOvfl[k];
7480         b.nCell++;
7481       }
7482     }
7483     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7484     while( piCell<piEnd ){
7485       assert( b.nCell<nMaxCells );
7486       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7487       piCell += 2;
7488       b.nCell++;
7489     }
7490 
7491     cntOld[i] = b.nCell;
7492     if( i<nOld-1 && !leafData){
7493       u16 sz = (u16)szNew[i];
7494       u8 *pTemp;
7495       assert( b.nCell<nMaxCells );
7496       b.szCell[b.nCell] = sz;
7497       pTemp = &aSpace1[iSpace1];
7498       iSpace1 += sz;
7499       assert( sz<=pBt->maxLocal+23 );
7500       assert( iSpace1 <= (int)pBt->pageSize );
7501       memcpy(pTemp, apDiv[i], sz);
7502       b.apCell[b.nCell] = pTemp+leafCorrection;
7503       assert( leafCorrection==0 || leafCorrection==4 );
7504       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7505       if( !pOld->leaf ){
7506         assert( leafCorrection==0 );
7507         assert( pOld->hdrOffset==0 );
7508         /* The right pointer of the child page pOld becomes the left
7509         ** pointer of the divider cell */
7510         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7511       }else{
7512         assert( leafCorrection==4 );
7513         while( b.szCell[b.nCell]<4 ){
7514           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7515           ** does exist, pad it with 0x00 bytes. */
7516           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7517           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7518           aSpace1[iSpace1++] = 0x00;
7519           b.szCell[b.nCell]++;
7520         }
7521       }
7522       b.nCell++;
7523     }
7524   }
7525 
7526   /*
7527   ** Figure out the number of pages needed to hold all b.nCell cells.
7528   ** Store this number in "k".  Also compute szNew[] which is the total
7529   ** size of all cells on the i-th page and cntNew[] which is the index
7530   ** in b.apCell[] of the cell that divides page i from page i+1.
7531   ** cntNew[k] should equal b.nCell.
7532   **
7533   ** Values computed by this block:
7534   **
7535   **           k: The total number of sibling pages
7536   **    szNew[i]: Spaced used on the i-th sibling page.
7537   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7538   **              the right of the i-th sibling page.
7539   ** usableSpace: Number of bytes of space available on each sibling.
7540   **
7541   */
7542   usableSpace = pBt->usableSize - 12 + leafCorrection;
7543   for(i=0; i<nOld; i++){
7544     MemPage *p = apOld[i];
7545     szNew[i] = usableSpace - p->nFree;
7546     for(j=0; j<p->nOverflow; j++){
7547       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7548     }
7549     cntNew[i] = cntOld[i];
7550   }
7551   k = nOld;
7552   for(i=0; i<k; i++){
7553     int sz;
7554     while( szNew[i]>usableSpace ){
7555       if( i+1>=k ){
7556         k = i+2;
7557         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7558         szNew[k-1] = 0;
7559         cntNew[k-1] = b.nCell;
7560       }
7561       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7562       szNew[i] -= sz;
7563       if( !leafData ){
7564         if( cntNew[i]<b.nCell ){
7565           sz = 2 + cachedCellSize(&b, cntNew[i]);
7566         }else{
7567           sz = 0;
7568         }
7569       }
7570       szNew[i+1] += sz;
7571       cntNew[i]--;
7572     }
7573     while( cntNew[i]<b.nCell ){
7574       sz = 2 + cachedCellSize(&b, cntNew[i]);
7575       if( szNew[i]+sz>usableSpace ) break;
7576       szNew[i] += sz;
7577       cntNew[i]++;
7578       if( !leafData ){
7579         if( cntNew[i]<b.nCell ){
7580           sz = 2 + cachedCellSize(&b, cntNew[i]);
7581         }else{
7582           sz = 0;
7583         }
7584       }
7585       szNew[i+1] -= sz;
7586     }
7587     if( cntNew[i]>=b.nCell ){
7588       k = i+1;
7589     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7590       rc = SQLITE_CORRUPT_BKPT;
7591       goto balance_cleanup;
7592     }
7593   }
7594 
7595   /*
7596   ** The packing computed by the previous block is biased toward the siblings
7597   ** on the left side (siblings with smaller keys). The left siblings are
7598   ** always nearly full, while the right-most sibling might be nearly empty.
7599   ** The next block of code attempts to adjust the packing of siblings to
7600   ** get a better balance.
7601   **
7602   ** This adjustment is more than an optimization.  The packing above might
7603   ** be so out of balance as to be illegal.  For example, the right-most
7604   ** sibling might be completely empty.  This adjustment is not optional.
7605   */
7606   for(i=k-1; i>0; i--){
7607     int szRight = szNew[i];  /* Size of sibling on the right */
7608     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7609     int r;              /* Index of right-most cell in left sibling */
7610     int d;              /* Index of first cell to the left of right sibling */
7611 
7612     r = cntNew[i-1] - 1;
7613     d = r + 1 - leafData;
7614     (void)cachedCellSize(&b, d);
7615     do{
7616       assert( d<nMaxCells );
7617       assert( r<nMaxCells );
7618       (void)cachedCellSize(&b, r);
7619       if( szRight!=0
7620        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7621         break;
7622       }
7623       szRight += b.szCell[d] + 2;
7624       szLeft -= b.szCell[r] + 2;
7625       cntNew[i-1] = r;
7626       r--;
7627       d--;
7628     }while( r>=0 );
7629     szNew[i] = szRight;
7630     szNew[i-1] = szLeft;
7631     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7632       rc = SQLITE_CORRUPT_BKPT;
7633       goto balance_cleanup;
7634     }
7635   }
7636 
7637   /* Sanity check:  For a non-corrupt database file one of the follwing
7638   ** must be true:
7639   **    (1) We found one or more cells (cntNew[0])>0), or
7640   **    (2) pPage is a virtual root page.  A virtual root page is when
7641   **        the real root page is page 1 and we are the only child of
7642   **        that page.
7643   */
7644   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7645   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7646     apOld[0]->pgno, apOld[0]->nCell,
7647     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7648     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7649   ));
7650 
7651   /*
7652   ** Allocate k new pages.  Reuse old pages where possible.
7653   */
7654   pageFlags = apOld[0]->aData[0];
7655   for(i=0; i<k; i++){
7656     MemPage *pNew;
7657     if( i<nOld ){
7658       pNew = apNew[i] = apOld[i];
7659       apOld[i] = 0;
7660       rc = sqlite3PagerWrite(pNew->pDbPage);
7661       nNew++;
7662       if( rc ) goto balance_cleanup;
7663     }else{
7664       assert( i>0 );
7665       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7666       if( rc ) goto balance_cleanup;
7667       zeroPage(pNew, pageFlags);
7668       apNew[i] = pNew;
7669       nNew++;
7670       cntOld[i] = b.nCell;
7671 
7672       /* Set the pointer-map entry for the new sibling page. */
7673       if( ISAUTOVACUUM ){
7674         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7675         if( rc!=SQLITE_OK ){
7676           goto balance_cleanup;
7677         }
7678       }
7679     }
7680   }
7681 
7682   /*
7683   ** Reassign page numbers so that the new pages are in ascending order.
7684   ** This helps to keep entries in the disk file in order so that a scan
7685   ** of the table is closer to a linear scan through the file. That in turn
7686   ** helps the operating system to deliver pages from the disk more rapidly.
7687   **
7688   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7689   ** than (NB+2) (a small constant), that should not be a problem.
7690   **
7691   ** When NB==3, this one optimization makes the database about 25% faster
7692   ** for large insertions and deletions.
7693   */
7694   for(i=0; i<nNew; i++){
7695     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7696     aPgFlags[i] = apNew[i]->pDbPage->flags;
7697     for(j=0; j<i; j++){
7698       if( aPgno[j]==aPgno[i] ){
7699         /* This branch is taken if the set of sibling pages somehow contains
7700         ** duplicate entries. This can happen if the database is corrupt.
7701         ** It would be simpler to detect this as part of the loop below, but
7702         ** we do the detection here in order to avoid populating the pager
7703         ** cache with two separate objects associated with the same
7704         ** page number.  */
7705         assert( CORRUPT_DB );
7706         rc = SQLITE_CORRUPT_BKPT;
7707         goto balance_cleanup;
7708       }
7709     }
7710   }
7711   for(i=0; i<nNew; i++){
7712     int iBest = 0;                /* aPgno[] index of page number to use */
7713     for(j=1; j<nNew; j++){
7714       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7715     }
7716     pgno = aPgOrder[iBest];
7717     aPgOrder[iBest] = 0xffffffff;
7718     if( iBest!=i ){
7719       if( iBest>i ){
7720         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7721       }
7722       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7723       apNew[i]->pgno = pgno;
7724     }
7725   }
7726 
7727   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7728          "%d(%d nc=%d) %d(%d nc=%d)\n",
7729     apNew[0]->pgno, szNew[0], cntNew[0],
7730     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7731     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7732     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7733     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7734     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7735     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7736     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7737     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7738   ));
7739 
7740   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7741   put4byte(pRight, apNew[nNew-1]->pgno);
7742 
7743   /* If the sibling pages are not leaves, ensure that the right-child pointer
7744   ** of the right-most new sibling page is set to the value that was
7745   ** originally in the same field of the right-most old sibling page. */
7746   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7747     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7748     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7749   }
7750 
7751   /* Make any required updates to pointer map entries associated with
7752   ** cells stored on sibling pages following the balance operation. Pointer
7753   ** map entries associated with divider cells are set by the insertCell()
7754   ** routine. The associated pointer map entries are:
7755   **
7756   **   a) if the cell contains a reference to an overflow chain, the
7757   **      entry associated with the first page in the overflow chain, and
7758   **
7759   **   b) if the sibling pages are not leaves, the child page associated
7760   **      with the cell.
7761   **
7762   ** If the sibling pages are not leaves, then the pointer map entry
7763   ** associated with the right-child of each sibling may also need to be
7764   ** updated. This happens below, after the sibling pages have been
7765   ** populated, not here.
7766   */
7767   if( ISAUTOVACUUM ){
7768     MemPage *pNew = apNew[0];
7769     u8 *aOld = pNew->aData;
7770     int cntOldNext = pNew->nCell + pNew->nOverflow;
7771     int usableSize = pBt->usableSize;
7772     int iNew = 0;
7773     int iOld = 0;
7774 
7775     for(i=0; i<b.nCell; i++){
7776       u8 *pCell = b.apCell[i];
7777       if( i==cntOldNext ){
7778         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7779         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7780         aOld = pOld->aData;
7781       }
7782       if( i==cntNew[iNew] ){
7783         pNew = apNew[++iNew];
7784         if( !leafData ) continue;
7785       }
7786 
7787       /* Cell pCell is destined for new sibling page pNew. Originally, it
7788       ** was either part of sibling page iOld (possibly an overflow cell),
7789       ** or else the divider cell to the left of sibling page iOld. So,
7790       ** if sibling page iOld had the same page number as pNew, and if
7791       ** pCell really was a part of sibling page iOld (not a divider or
7792       ** overflow cell), we can skip updating the pointer map entries.  */
7793       if( iOld>=nNew
7794        || pNew->pgno!=aPgno[iOld]
7795        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7796       ){
7797         if( !leafCorrection ){
7798           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7799         }
7800         if( cachedCellSize(&b,i)>pNew->minLocal ){
7801           ptrmapPutOvflPtr(pNew, pCell, &rc);
7802         }
7803         if( rc ) goto balance_cleanup;
7804       }
7805     }
7806   }
7807 
7808   /* Insert new divider cells into pParent. */
7809   for(i=0; i<nNew-1; i++){
7810     u8 *pCell;
7811     u8 *pTemp;
7812     int sz;
7813     MemPage *pNew = apNew[i];
7814     j = cntNew[i];
7815 
7816     assert( j<nMaxCells );
7817     assert( b.apCell[j]!=0 );
7818     pCell = b.apCell[j];
7819     sz = b.szCell[j] + leafCorrection;
7820     pTemp = &aOvflSpace[iOvflSpace];
7821     if( !pNew->leaf ){
7822       memcpy(&pNew->aData[8], pCell, 4);
7823     }else if( leafData ){
7824       /* If the tree is a leaf-data tree, and the siblings are leaves,
7825       ** then there is no divider cell in b.apCell[]. Instead, the divider
7826       ** cell consists of the integer key for the right-most cell of
7827       ** the sibling-page assembled above only.
7828       */
7829       CellInfo info;
7830       j--;
7831       pNew->xParseCell(pNew, b.apCell[j], &info);
7832       pCell = pTemp;
7833       sz = 4 + putVarint(&pCell[4], info.nKey);
7834       pTemp = 0;
7835     }else{
7836       pCell -= 4;
7837       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7838       ** previously stored on a leaf node, and its reported size was 4
7839       ** bytes, then it may actually be smaller than this
7840       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7841       ** any cell). But it is important to pass the correct size to
7842       ** insertCell(), so reparse the cell now.
7843       **
7844       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7845       ** and WITHOUT ROWID tables with exactly one column which is the
7846       ** primary key.
7847       */
7848       if( b.szCell[j]==4 ){
7849         assert(leafCorrection==4);
7850         sz = pParent->xCellSize(pParent, pCell);
7851       }
7852     }
7853     iOvflSpace += sz;
7854     assert( sz<=pBt->maxLocal+23 );
7855     assert( iOvflSpace <= (int)pBt->pageSize );
7856     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7857     if( rc!=SQLITE_OK ) goto balance_cleanup;
7858     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7859   }
7860 
7861   /* Now update the actual sibling pages. The order in which they are updated
7862   ** is important, as this code needs to avoid disrupting any page from which
7863   ** cells may still to be read. In practice, this means:
7864   **
7865   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7866   **      then it is not safe to update page apNew[iPg] until after
7867   **      the left-hand sibling apNew[iPg-1] has been updated.
7868   **
7869   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7870   **      then it is not safe to update page apNew[iPg] until after
7871   **      the right-hand sibling apNew[iPg+1] has been updated.
7872   **
7873   ** If neither of the above apply, the page is safe to update.
7874   **
7875   ** The iPg value in the following loop starts at nNew-1 goes down
7876   ** to 0, then back up to nNew-1 again, thus making two passes over
7877   ** the pages.  On the initial downward pass, only condition (1) above
7878   ** needs to be tested because (2) will always be true from the previous
7879   ** step.  On the upward pass, both conditions are always true, so the
7880   ** upwards pass simply processes pages that were missed on the downward
7881   ** pass.
7882   */
7883   for(i=1-nNew; i<nNew; i++){
7884     int iPg = i<0 ? -i : i;
7885     assert( iPg>=0 && iPg<nNew );
7886     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7887     if( i>=0                            /* On the upwards pass, or... */
7888      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7889     ){
7890       int iNew;
7891       int iOld;
7892       int nNewCell;
7893 
7894       /* Verify condition (1):  If cells are moving left, update iPg
7895       ** only after iPg-1 has already been updated. */
7896       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7897 
7898       /* Verify condition (2):  If cells are moving right, update iPg
7899       ** only after iPg+1 has already been updated. */
7900       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7901 
7902       if( iPg==0 ){
7903         iNew = iOld = 0;
7904         nNewCell = cntNew[0];
7905       }else{
7906         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7907         iNew = cntNew[iPg-1] + !leafData;
7908         nNewCell = cntNew[iPg] - iNew;
7909       }
7910 
7911       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7912       if( rc ) goto balance_cleanup;
7913       abDone[iPg]++;
7914       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7915       assert( apNew[iPg]->nOverflow==0 );
7916       assert( apNew[iPg]->nCell==nNewCell );
7917     }
7918   }
7919 
7920   /* All pages have been processed exactly once */
7921   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7922 
7923   assert( nOld>0 );
7924   assert( nNew>0 );
7925 
7926   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7927     /* The root page of the b-tree now contains no cells. The only sibling
7928     ** page is the right-child of the parent. Copy the contents of the
7929     ** child page into the parent, decreasing the overall height of the
7930     ** b-tree structure by one. This is described as the "balance-shallower"
7931     ** sub-algorithm in some documentation.
7932     **
7933     ** If this is an auto-vacuum database, the call to copyNodeContent()
7934     ** sets all pointer-map entries corresponding to database image pages
7935     ** for which the pointer is stored within the content being copied.
7936     **
7937     ** It is critical that the child page be defragmented before being
7938     ** copied into the parent, because if the parent is page 1 then it will
7939     ** by smaller than the child due to the database header, and so all the
7940     ** free space needs to be up front.
7941     */
7942     assert( nNew==1 || CORRUPT_DB );
7943     rc = defragmentPage(apNew[0], -1);
7944     testcase( rc!=SQLITE_OK );
7945     assert( apNew[0]->nFree ==
7946         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7947       || rc!=SQLITE_OK
7948     );
7949     copyNodeContent(apNew[0], pParent, &rc);
7950     freePage(apNew[0], &rc);
7951   }else if( ISAUTOVACUUM && !leafCorrection ){
7952     /* Fix the pointer map entries associated with the right-child of each
7953     ** sibling page. All other pointer map entries have already been taken
7954     ** care of.  */
7955     for(i=0; i<nNew; i++){
7956       u32 key = get4byte(&apNew[i]->aData[8]);
7957       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7958     }
7959   }
7960 
7961   assert( pParent->isInit );
7962   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7963           nOld, nNew, b.nCell));
7964 
7965   /* Free any old pages that were not reused as new pages.
7966   */
7967   for(i=nNew; i<nOld; i++){
7968     freePage(apOld[i], &rc);
7969   }
7970 
7971 #if 0
7972   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7973     /* The ptrmapCheckPages() contains assert() statements that verify that
7974     ** all pointer map pages are set correctly. This is helpful while
7975     ** debugging. This is usually disabled because a corrupt database may
7976     ** cause an assert() statement to fail.  */
7977     ptrmapCheckPages(apNew, nNew);
7978     ptrmapCheckPages(&pParent, 1);
7979   }
7980 #endif
7981 
7982   /*
7983   ** Cleanup before returning.
7984   */
7985 balance_cleanup:
7986   sqlite3StackFree(0, b.apCell);
7987   for(i=0; i<nOld; i++){
7988     releasePage(apOld[i]);
7989   }
7990   for(i=0; i<nNew; i++){
7991     releasePage(apNew[i]);
7992   }
7993 
7994   return rc;
7995 }
7996 
7997 
7998 /*
7999 ** This function is called when the root page of a b-tree structure is
8000 ** overfull (has one or more overflow pages).
8001 **
8002 ** A new child page is allocated and the contents of the current root
8003 ** page, including overflow cells, are copied into the child. The root
8004 ** page is then overwritten to make it an empty page with the right-child
8005 ** pointer pointing to the new page.
8006 **
8007 ** Before returning, all pointer-map entries corresponding to pages
8008 ** that the new child-page now contains pointers to are updated. The
8009 ** entry corresponding to the new right-child pointer of the root
8010 ** page is also updated.
8011 **
8012 ** If successful, *ppChild is set to contain a reference to the child
8013 ** page and SQLITE_OK is returned. In this case the caller is required
8014 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8015 ** an error code is returned and *ppChild is set to 0.
8016 */
8017 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8018   int rc;                        /* Return value from subprocedures */
8019   MemPage *pChild = 0;           /* Pointer to a new child page */
8020   Pgno pgnoChild = 0;            /* Page number of the new child page */
8021   BtShared *pBt = pRoot->pBt;    /* The BTree */
8022 
8023   assert( pRoot->nOverflow>0 );
8024   assert( sqlite3_mutex_held(pBt->mutex) );
8025 
8026   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8027   ** page that will become the new right-child of pPage. Copy the contents
8028   ** of the node stored on pRoot into the new child page.
8029   */
8030   rc = sqlite3PagerWrite(pRoot->pDbPage);
8031   if( rc==SQLITE_OK ){
8032     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8033     copyNodeContent(pRoot, pChild, &rc);
8034     if( ISAUTOVACUUM ){
8035       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8036     }
8037   }
8038   if( rc ){
8039     *ppChild = 0;
8040     releasePage(pChild);
8041     return rc;
8042   }
8043   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8044   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8045   assert( pChild->nCell==pRoot->nCell );
8046 
8047   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8048 
8049   /* Copy the overflow cells from pRoot to pChild */
8050   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8051          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8052   memcpy(pChild->apOvfl, pRoot->apOvfl,
8053          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8054   pChild->nOverflow = pRoot->nOverflow;
8055 
8056   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8057   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8058   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8059 
8060   *ppChild = pChild;
8061   return SQLITE_OK;
8062 }
8063 
8064 /*
8065 ** The page that pCur currently points to has just been modified in
8066 ** some way. This function figures out if this modification means the
8067 ** tree needs to be balanced, and if so calls the appropriate balancing
8068 ** routine. Balancing routines are:
8069 **
8070 **   balance_quick()
8071 **   balance_deeper()
8072 **   balance_nonroot()
8073 */
8074 static int balance(BtCursor *pCur){
8075   int rc = SQLITE_OK;
8076   const int nMin = pCur->pBt->usableSize * 2 / 3;
8077   u8 aBalanceQuickSpace[13];
8078   u8 *pFree = 0;
8079 
8080   VVA_ONLY( int balance_quick_called = 0 );
8081   VVA_ONLY( int balance_deeper_called = 0 );
8082 
8083   do {
8084     int iPage = pCur->iPage;
8085     MemPage *pPage = pCur->pPage;
8086 
8087     if( iPage==0 ){
8088       if( pPage->nOverflow ){
8089         /* The root page of the b-tree is overfull. In this case call the
8090         ** balance_deeper() function to create a new child for the root-page
8091         ** and copy the current contents of the root-page to it. The
8092         ** next iteration of the do-loop will balance the child page.
8093         */
8094         assert( balance_deeper_called==0 );
8095         VVA_ONLY( balance_deeper_called++ );
8096         rc = balance_deeper(pPage, &pCur->apPage[1]);
8097         if( rc==SQLITE_OK ){
8098           pCur->iPage = 1;
8099           pCur->ix = 0;
8100           pCur->aiIdx[0] = 0;
8101           pCur->apPage[0] = pPage;
8102           pCur->pPage = pCur->apPage[1];
8103           assert( pCur->pPage->nOverflow );
8104         }
8105       }else{
8106         break;
8107       }
8108     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8109       break;
8110     }else{
8111       MemPage * const pParent = pCur->apPage[iPage-1];
8112       int const iIdx = pCur->aiIdx[iPage-1];
8113 
8114       rc = sqlite3PagerWrite(pParent->pDbPage);
8115       if( rc==SQLITE_OK ){
8116 #ifndef SQLITE_OMIT_QUICKBALANCE
8117         if( pPage->intKeyLeaf
8118          && pPage->nOverflow==1
8119          && pPage->aiOvfl[0]==pPage->nCell
8120          && pParent->pgno!=1
8121          && pParent->nCell==iIdx
8122         ){
8123           /* Call balance_quick() to create a new sibling of pPage on which
8124           ** to store the overflow cell. balance_quick() inserts a new cell
8125           ** into pParent, which may cause pParent overflow. If this
8126           ** happens, the next iteration of the do-loop will balance pParent
8127           ** use either balance_nonroot() or balance_deeper(). Until this
8128           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8129           ** buffer.
8130           **
8131           ** The purpose of the following assert() is to check that only a
8132           ** single call to balance_quick() is made for each call to this
8133           ** function. If this were not verified, a subtle bug involving reuse
8134           ** of the aBalanceQuickSpace[] might sneak in.
8135           */
8136           assert( balance_quick_called==0 );
8137           VVA_ONLY( balance_quick_called++ );
8138           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8139         }else
8140 #endif
8141         {
8142           /* In this case, call balance_nonroot() to redistribute cells
8143           ** between pPage and up to 2 of its sibling pages. This involves
8144           ** modifying the contents of pParent, which may cause pParent to
8145           ** become overfull or underfull. The next iteration of the do-loop
8146           ** will balance the parent page to correct this.
8147           **
8148           ** If the parent page becomes overfull, the overflow cell or cells
8149           ** are stored in the pSpace buffer allocated immediately below.
8150           ** A subsequent iteration of the do-loop will deal with this by
8151           ** calling balance_nonroot() (balance_deeper() may be called first,
8152           ** but it doesn't deal with overflow cells - just moves them to a
8153           ** different page). Once this subsequent call to balance_nonroot()
8154           ** has completed, it is safe to release the pSpace buffer used by
8155           ** the previous call, as the overflow cell data will have been
8156           ** copied either into the body of a database page or into the new
8157           ** pSpace buffer passed to the latter call to balance_nonroot().
8158           */
8159           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8160           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8161                                pCur->hints&BTREE_BULKLOAD);
8162           if( pFree ){
8163             /* If pFree is not NULL, it points to the pSpace buffer used
8164             ** by a previous call to balance_nonroot(). Its contents are
8165             ** now stored either on real database pages or within the
8166             ** new pSpace buffer, so it may be safely freed here. */
8167             sqlite3PageFree(pFree);
8168           }
8169 
8170           /* The pSpace buffer will be freed after the next call to
8171           ** balance_nonroot(), or just before this function returns, whichever
8172           ** comes first. */
8173           pFree = pSpace;
8174         }
8175       }
8176 
8177       pPage->nOverflow = 0;
8178 
8179       /* The next iteration of the do-loop balances the parent page. */
8180       releasePage(pPage);
8181       pCur->iPage--;
8182       assert( pCur->iPage>=0 );
8183       pCur->pPage = pCur->apPage[pCur->iPage];
8184     }
8185   }while( rc==SQLITE_OK );
8186 
8187   if( pFree ){
8188     sqlite3PageFree(pFree);
8189   }
8190   return rc;
8191 }
8192 
8193 /* Overwrite content from pX into pDest.  Only do the write if the
8194 ** content is different from what is already there.
8195 */
8196 static int btreeOverwriteContent(
8197   MemPage *pPage,           /* MemPage on which writing will occur */
8198   u8 *pDest,                /* Pointer to the place to start writing */
8199   const BtreePayload *pX,   /* Source of data to write */
8200   int iOffset,              /* Offset of first byte to write */
8201   int iAmt                  /* Number of bytes to be written */
8202 ){
8203   int nData = pX->nData - iOffset;
8204   if( nData<=0 ){
8205     /* Overwritting with zeros */
8206     int i;
8207     for(i=0; i<iAmt && pDest[i]==0; i++){}
8208     if( i<iAmt ){
8209       int rc = sqlite3PagerWrite(pPage->pDbPage);
8210       if( rc ) return rc;
8211       memset(pDest + i, 0, iAmt - i);
8212     }
8213   }else{
8214     if( nData<iAmt ){
8215       /* Mixed read data and zeros at the end.  Make a recursive call
8216       ** to write the zeros then fall through to write the real data */
8217       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8218                                  iAmt-nData);
8219       if( rc ) return rc;
8220       iAmt = nData;
8221     }
8222     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8223       int rc = sqlite3PagerWrite(pPage->pDbPage);
8224       if( rc ) return rc;
8225       memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8226     }
8227   }
8228   return SQLITE_OK;
8229 }
8230 
8231 /*
8232 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8233 ** contained in pX.
8234 */
8235 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8236   int iOffset;                        /* Next byte of pX->pData to write */
8237   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8238   int rc;                             /* Return code */
8239   MemPage *pPage = pCur->pPage;       /* Page being written */
8240   BtShared *pBt;                      /* Btree */
8241   Pgno ovflPgno;                      /* Next overflow page to write */
8242   u32 ovflPageSize;                   /* Size to write on overflow page */
8243 
8244   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8245     return SQLITE_CORRUPT_BKPT;
8246   }
8247   /* Overwrite the local portion first */
8248   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8249                              0, pCur->info.nLocal);
8250   if( rc ) return rc;
8251   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8252 
8253   /* Now overwrite the overflow pages */
8254   iOffset = pCur->info.nLocal;
8255   assert( nTotal>=0 );
8256   assert( iOffset>=0 );
8257   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8258   pBt = pPage->pBt;
8259   ovflPageSize = pBt->usableSize - 4;
8260   do{
8261     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8262     if( rc ) return rc;
8263     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8264       rc = SQLITE_CORRUPT_BKPT;
8265     }else{
8266       if( iOffset+ovflPageSize<(u32)nTotal ){
8267         ovflPgno = get4byte(pPage->aData);
8268       }else{
8269         ovflPageSize = nTotal - iOffset;
8270       }
8271       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8272                                  iOffset, ovflPageSize);
8273     }
8274     sqlite3PagerUnref(pPage->pDbPage);
8275     if( rc ) return rc;
8276     iOffset += ovflPageSize;
8277   }while( iOffset<nTotal );
8278   return SQLITE_OK;
8279 }
8280 
8281 
8282 /*
8283 ** Insert a new record into the BTree.  The content of the new record
8284 ** is described by the pX object.  The pCur cursor is used only to
8285 ** define what table the record should be inserted into, and is left
8286 ** pointing at a random location.
8287 **
8288 ** For a table btree (used for rowid tables), only the pX.nKey value of
8289 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8290 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8291 ** hold the content of the row.
8292 **
8293 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8294 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8295 ** pX.pData,nData,nZero fields must be zero.
8296 **
8297 ** If the seekResult parameter is non-zero, then a successful call to
8298 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8299 ** been performed.  In other words, if seekResult!=0 then the cursor
8300 ** is currently pointing to a cell that will be adjacent to the cell
8301 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8302 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8303 ** that is larger than (pKey,nKey).
8304 **
8305 ** If seekResult==0, that means pCur is pointing at some unknown location.
8306 ** In that case, this routine must seek the cursor to the correct insertion
8307 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8308 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8309 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8310 ** to decode the key.
8311 */
8312 int sqlite3BtreeInsert(
8313   BtCursor *pCur,                /* Insert data into the table of this cursor */
8314   const BtreePayload *pX,        /* Content of the row to be inserted */
8315   int flags,                     /* True if this is likely an append */
8316   int seekResult                 /* Result of prior MovetoUnpacked() call */
8317 ){
8318   int rc;
8319   int loc = seekResult;          /* -1: before desired location  +1: after */
8320   int szNew = 0;
8321   int idx;
8322   MemPage *pPage;
8323   Btree *p = pCur->pBtree;
8324   BtShared *pBt = p->pBt;
8325   unsigned char *oldCell;
8326   unsigned char *newCell = 0;
8327 
8328   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8329 
8330   if( pCur->eState==CURSOR_FAULT ){
8331     assert( pCur->skipNext!=SQLITE_OK );
8332     return pCur->skipNext;
8333   }
8334 
8335   assert( cursorOwnsBtShared(pCur) );
8336   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8337               && pBt->inTransaction==TRANS_WRITE
8338               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8339   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8340 
8341   /* Assert that the caller has been consistent. If this cursor was opened
8342   ** expecting an index b-tree, then the caller should be inserting blob
8343   ** keys with no associated data. If the cursor was opened expecting an
8344   ** intkey table, the caller should be inserting integer keys with a
8345   ** blob of associated data.  */
8346   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8347 
8348   /* Save the positions of any other cursors open on this table.
8349   **
8350   ** In some cases, the call to btreeMoveto() below is a no-op. For
8351   ** example, when inserting data into a table with auto-generated integer
8352   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8353   ** integer key to use. It then calls this function to actually insert the
8354   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8355   ** that the cursor is already where it needs to be and returns without
8356   ** doing any work. To avoid thwarting these optimizations, it is important
8357   ** not to clear the cursor here.
8358   */
8359   if( pCur->curFlags & BTCF_Multiple ){
8360     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8361     if( rc ) return rc;
8362   }
8363 
8364   if( pCur->pKeyInfo==0 ){
8365     assert( pX->pKey==0 );
8366     /* If this is an insert into a table b-tree, invalidate any incrblob
8367     ** cursors open on the row being replaced */
8368     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8369 
8370     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8371     ** to a row with the same key as the new entry being inserted.
8372     */
8373 #ifdef SQLITE_DEBUG
8374     if( flags & BTREE_SAVEPOSITION ){
8375       assert( pCur->curFlags & BTCF_ValidNKey );
8376       assert( pX->nKey==pCur->info.nKey );
8377       assert( pCur->info.nSize!=0 );
8378       assert( loc==0 );
8379     }
8380 #endif
8381 
8382     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8383     ** that the cursor is not pointing to a row to be overwritten.
8384     ** So do a complete check.
8385     */
8386     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8387       /* The cursor is pointing to the entry that is to be
8388       ** overwritten */
8389       assert( pX->nData>=0 && pX->nZero>=0 );
8390       if( pCur->info.nSize!=0
8391        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8392       ){
8393         /* New entry is the same size as the old.  Do an overwrite */
8394         return btreeOverwriteCell(pCur, pX);
8395       }
8396       assert( loc==0 );
8397     }else if( loc==0 ){
8398       /* The cursor is *not* pointing to the cell to be overwritten, nor
8399       ** to an adjacent cell.  Move the cursor so that it is pointing either
8400       ** to the cell to be overwritten or an adjacent cell.
8401       */
8402       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8403       if( rc ) return rc;
8404     }
8405   }else{
8406     /* This is an index or a WITHOUT ROWID table */
8407 
8408     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8409     ** to a row with the same key as the new entry being inserted.
8410     */
8411     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8412 
8413     /* If the cursor is not already pointing either to the cell to be
8414     ** overwritten, or if a new cell is being inserted, if the cursor is
8415     ** not pointing to an immediately adjacent cell, then move the cursor
8416     ** so that it does.
8417     */
8418     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8419       if( pX->nMem ){
8420         UnpackedRecord r;
8421         r.pKeyInfo = pCur->pKeyInfo;
8422         r.aMem = pX->aMem;
8423         r.nField = pX->nMem;
8424         r.default_rc = 0;
8425         r.errCode = 0;
8426         r.r1 = 0;
8427         r.r2 = 0;
8428         r.eqSeen = 0;
8429         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8430       }else{
8431         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8432       }
8433       if( rc ) return rc;
8434     }
8435 
8436     /* If the cursor is currently pointing to an entry to be overwritten
8437     ** and the new content is the same as as the old, then use the
8438     ** overwrite optimization.
8439     */
8440     if( loc==0 ){
8441       getCellInfo(pCur);
8442       if( pCur->info.nKey==pX->nKey ){
8443         BtreePayload x2;
8444         x2.pData = pX->pKey;
8445         x2.nData = pX->nKey;
8446         x2.nZero = 0;
8447         return btreeOverwriteCell(pCur, &x2);
8448       }
8449     }
8450 
8451   }
8452   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8453 
8454   pPage = pCur->pPage;
8455   assert( pPage->intKey || pX->nKey>=0 );
8456   assert( pPage->leaf || !pPage->intKey );
8457 
8458   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8459           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8460           loc==0 ? "overwrite" : "new entry"));
8461   assert( pPage->isInit );
8462   newCell = pBt->pTmpSpace;
8463   assert( newCell!=0 );
8464   rc = fillInCell(pPage, newCell, pX, &szNew);
8465   if( rc ) goto end_insert;
8466   assert( szNew==pPage->xCellSize(pPage, newCell) );
8467   assert( szNew <= MX_CELL_SIZE(pBt) );
8468   idx = pCur->ix;
8469   if( loc==0 ){
8470     CellInfo info;
8471     assert( idx<pPage->nCell );
8472     rc = sqlite3PagerWrite(pPage->pDbPage);
8473     if( rc ){
8474       goto end_insert;
8475     }
8476     oldCell = findCell(pPage, idx);
8477     if( !pPage->leaf ){
8478       memcpy(newCell, oldCell, 4);
8479     }
8480     rc = clearCell(pPage, oldCell, &info);
8481     if( info.nSize==szNew && info.nLocal==info.nPayload
8482      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8483     ){
8484       /* Overwrite the old cell with the new if they are the same size.
8485       ** We could also try to do this if the old cell is smaller, then add
8486       ** the leftover space to the free list.  But experiments show that
8487       ** doing that is no faster then skipping this optimization and just
8488       ** calling dropCell() and insertCell().
8489       **
8490       ** This optimization cannot be used on an autovacuum database if the
8491       ** new entry uses overflow pages, as the insertCell() call below is
8492       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8493       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8494       if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8495       memcpy(oldCell, newCell, szNew);
8496       return SQLITE_OK;
8497     }
8498     dropCell(pPage, idx, info.nSize, &rc);
8499     if( rc ) goto end_insert;
8500   }else if( loc<0 && pPage->nCell>0 ){
8501     assert( pPage->leaf );
8502     idx = ++pCur->ix;
8503     pCur->curFlags &= ~BTCF_ValidNKey;
8504   }else{
8505     assert( pPage->leaf );
8506   }
8507   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8508   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8509   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8510 
8511   /* If no error has occurred and pPage has an overflow cell, call balance()
8512   ** to redistribute the cells within the tree. Since balance() may move
8513   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8514   ** variables.
8515   **
8516   ** Previous versions of SQLite called moveToRoot() to move the cursor
8517   ** back to the root page as balance() used to invalidate the contents
8518   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8519   ** set the cursor state to "invalid". This makes common insert operations
8520   ** slightly faster.
8521   **
8522   ** There is a subtle but important optimization here too. When inserting
8523   ** multiple records into an intkey b-tree using a single cursor (as can
8524   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8525   ** is advantageous to leave the cursor pointing to the last entry in
8526   ** the b-tree if possible. If the cursor is left pointing to the last
8527   ** entry in the table, and the next row inserted has an integer key
8528   ** larger than the largest existing key, it is possible to insert the
8529   ** row without seeking the cursor. This can be a big performance boost.
8530   */
8531   pCur->info.nSize = 0;
8532   if( pPage->nOverflow ){
8533     assert( rc==SQLITE_OK );
8534     pCur->curFlags &= ~(BTCF_ValidNKey);
8535     rc = balance(pCur);
8536 
8537     /* Must make sure nOverflow is reset to zero even if the balance()
8538     ** fails. Internal data structure corruption will result otherwise.
8539     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8540     ** from trying to save the current position of the cursor.  */
8541     pCur->pPage->nOverflow = 0;
8542     pCur->eState = CURSOR_INVALID;
8543     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8544       btreeReleaseAllCursorPages(pCur);
8545       if( pCur->pKeyInfo ){
8546         assert( pCur->pKey==0 );
8547         pCur->pKey = sqlite3Malloc( pX->nKey );
8548         if( pCur->pKey==0 ){
8549           rc = SQLITE_NOMEM;
8550         }else{
8551           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8552         }
8553       }
8554       pCur->eState = CURSOR_REQUIRESEEK;
8555       pCur->nKey = pX->nKey;
8556     }
8557   }
8558   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8559 
8560 end_insert:
8561   return rc;
8562 }
8563 
8564 /*
8565 ** Delete the entry that the cursor is pointing to.
8566 **
8567 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8568 ** the cursor is left pointing at an arbitrary location after the delete.
8569 ** But if that bit is set, then the cursor is left in a state such that
8570 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8571 ** as it would have been on if the call to BtreeDelete() had been omitted.
8572 **
8573 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8574 ** associated with a single table entry and its indexes.  Only one of those
8575 ** deletes is considered the "primary" delete.  The primary delete occurs
8576 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8577 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8578 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8579 ** but which might be used by alternative storage engines.
8580 */
8581 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8582   Btree *p = pCur->pBtree;
8583   BtShared *pBt = p->pBt;
8584   int rc;                              /* Return code */
8585   MemPage *pPage;                      /* Page to delete cell from */
8586   unsigned char *pCell;                /* Pointer to cell to delete */
8587   int iCellIdx;                        /* Index of cell to delete */
8588   int iCellDepth;                      /* Depth of node containing pCell */
8589   CellInfo info;                       /* Size of the cell being deleted */
8590   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8591   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8592 
8593   assert( cursorOwnsBtShared(pCur) );
8594   assert( pBt->inTransaction==TRANS_WRITE );
8595   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8596   assert( pCur->curFlags & BTCF_WriteFlag );
8597   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8598   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8599   assert( pCur->ix<pCur->pPage->nCell );
8600   assert( pCur->eState==CURSOR_VALID );
8601   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8602 
8603   iCellDepth = pCur->iPage;
8604   iCellIdx = pCur->ix;
8605   pPage = pCur->pPage;
8606   pCell = findCell(pPage, iCellIdx);
8607 
8608   /* If the bPreserve flag is set to true, then the cursor position must
8609   ** be preserved following this delete operation. If the current delete
8610   ** will cause a b-tree rebalance, then this is done by saving the cursor
8611   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8612   ** returning.
8613   **
8614   ** Or, if the current delete will not cause a rebalance, then the cursor
8615   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8616   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8617   if( bPreserve ){
8618     if( !pPage->leaf
8619      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8620     ){
8621       /* A b-tree rebalance will be required after deleting this entry.
8622       ** Save the cursor key.  */
8623       rc = saveCursorKey(pCur);
8624       if( rc ) return rc;
8625     }else{
8626       bSkipnext = 1;
8627     }
8628   }
8629 
8630   /* If the page containing the entry to delete is not a leaf page, move
8631   ** the cursor to the largest entry in the tree that is smaller than
8632   ** the entry being deleted. This cell will replace the cell being deleted
8633   ** from the internal node. The 'previous' entry is used for this instead
8634   ** of the 'next' entry, as the previous entry is always a part of the
8635   ** sub-tree headed by the child page of the cell being deleted. This makes
8636   ** balancing the tree following the delete operation easier.  */
8637   if( !pPage->leaf ){
8638     rc = sqlite3BtreePrevious(pCur, 0);
8639     assert( rc!=SQLITE_DONE );
8640     if( rc ) return rc;
8641   }
8642 
8643   /* Save the positions of any other cursors open on this table before
8644   ** making any modifications.  */
8645   if( pCur->curFlags & BTCF_Multiple ){
8646     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8647     if( rc ) return rc;
8648   }
8649 
8650   /* If this is a delete operation to remove a row from a table b-tree,
8651   ** invalidate any incrblob cursors open on the row being deleted.  */
8652   if( pCur->pKeyInfo==0 ){
8653     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8654   }
8655 
8656   /* Make the page containing the entry to be deleted writable. Then free any
8657   ** overflow pages associated with the entry and finally remove the cell
8658   ** itself from within the page.  */
8659   rc = sqlite3PagerWrite(pPage->pDbPage);
8660   if( rc ) return rc;
8661   rc = clearCell(pPage, pCell, &info);
8662   dropCell(pPage, iCellIdx, info.nSize, &rc);
8663   if( rc ) return rc;
8664 
8665   /* If the cell deleted was not located on a leaf page, then the cursor
8666   ** is currently pointing to the largest entry in the sub-tree headed
8667   ** by the child-page of the cell that was just deleted from an internal
8668   ** node. The cell from the leaf node needs to be moved to the internal
8669   ** node to replace the deleted cell.  */
8670   if( !pPage->leaf ){
8671     MemPage *pLeaf = pCur->pPage;
8672     int nCell;
8673     Pgno n;
8674     unsigned char *pTmp;
8675 
8676     if( iCellDepth<pCur->iPage-1 ){
8677       n = pCur->apPage[iCellDepth+1]->pgno;
8678     }else{
8679       n = pCur->pPage->pgno;
8680     }
8681     pCell = findCell(pLeaf, pLeaf->nCell-1);
8682     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8683     nCell = pLeaf->xCellSize(pLeaf, pCell);
8684     assert( MX_CELL_SIZE(pBt) >= nCell );
8685     pTmp = pBt->pTmpSpace;
8686     assert( pTmp!=0 );
8687     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8688     if( rc==SQLITE_OK ){
8689       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8690     }
8691     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8692     if( rc ) return rc;
8693   }
8694 
8695   /* Balance the tree. If the entry deleted was located on a leaf page,
8696   ** then the cursor still points to that page. In this case the first
8697   ** call to balance() repairs the tree, and the if(...) condition is
8698   ** never true.
8699   **
8700   ** Otherwise, if the entry deleted was on an internal node page, then
8701   ** pCur is pointing to the leaf page from which a cell was removed to
8702   ** replace the cell deleted from the internal node. This is slightly
8703   ** tricky as the leaf node may be underfull, and the internal node may
8704   ** be either under or overfull. In this case run the balancing algorithm
8705   ** on the leaf node first. If the balance proceeds far enough up the
8706   ** tree that we can be sure that any problem in the internal node has
8707   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8708   ** walk the cursor up the tree to the internal node and balance it as
8709   ** well.  */
8710   rc = balance(pCur);
8711   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8712     releasePageNotNull(pCur->pPage);
8713     pCur->iPage--;
8714     while( pCur->iPage>iCellDepth ){
8715       releasePage(pCur->apPage[pCur->iPage--]);
8716     }
8717     pCur->pPage = pCur->apPage[pCur->iPage];
8718     rc = balance(pCur);
8719   }
8720 
8721   if( rc==SQLITE_OK ){
8722     if( bSkipnext ){
8723       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8724       assert( pPage==pCur->pPage || CORRUPT_DB );
8725       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8726       pCur->eState = CURSOR_SKIPNEXT;
8727       if( iCellIdx>=pPage->nCell ){
8728         pCur->skipNext = -1;
8729         pCur->ix = pPage->nCell-1;
8730       }else{
8731         pCur->skipNext = 1;
8732       }
8733     }else{
8734       rc = moveToRoot(pCur);
8735       if( bPreserve ){
8736         btreeReleaseAllCursorPages(pCur);
8737         pCur->eState = CURSOR_REQUIRESEEK;
8738       }
8739       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8740     }
8741   }
8742   return rc;
8743 }
8744 
8745 /*
8746 ** Create a new BTree table.  Write into *piTable the page
8747 ** number for the root page of the new table.
8748 **
8749 ** The type of type is determined by the flags parameter.  Only the
8750 ** following values of flags are currently in use.  Other values for
8751 ** flags might not work:
8752 **
8753 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8754 **     BTREE_ZERODATA                  Used for SQL indices
8755 */
8756 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8757   BtShared *pBt = p->pBt;
8758   MemPage *pRoot;
8759   Pgno pgnoRoot;
8760   int rc;
8761   int ptfFlags;          /* Page-type flage for the root page of new table */
8762 
8763   assert( sqlite3BtreeHoldsMutex(p) );
8764   assert( pBt->inTransaction==TRANS_WRITE );
8765   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8766 
8767 #ifdef SQLITE_OMIT_AUTOVACUUM
8768   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8769   if( rc ){
8770     return rc;
8771   }
8772 #else
8773   if( pBt->autoVacuum ){
8774     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8775     MemPage *pPageMove; /* The page to move to. */
8776 
8777     /* Creating a new table may probably require moving an existing database
8778     ** to make room for the new tables root page. In case this page turns
8779     ** out to be an overflow page, delete all overflow page-map caches
8780     ** held by open cursors.
8781     */
8782     invalidateAllOverflowCache(pBt);
8783 
8784     /* Read the value of meta[3] from the database to determine where the
8785     ** root page of the new table should go. meta[3] is the largest root-page
8786     ** created so far, so the new root-page is (meta[3]+1).
8787     */
8788     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8789     pgnoRoot++;
8790 
8791     /* The new root-page may not be allocated on a pointer-map page, or the
8792     ** PENDING_BYTE page.
8793     */
8794     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8795         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8796       pgnoRoot++;
8797     }
8798     assert( pgnoRoot>=3 || CORRUPT_DB );
8799     testcase( pgnoRoot<3 );
8800 
8801     /* Allocate a page. The page that currently resides at pgnoRoot will
8802     ** be moved to the allocated page (unless the allocated page happens
8803     ** to reside at pgnoRoot).
8804     */
8805     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8806     if( rc!=SQLITE_OK ){
8807       return rc;
8808     }
8809 
8810     if( pgnoMove!=pgnoRoot ){
8811       /* pgnoRoot is the page that will be used for the root-page of
8812       ** the new table (assuming an error did not occur). But we were
8813       ** allocated pgnoMove. If required (i.e. if it was not allocated
8814       ** by extending the file), the current page at position pgnoMove
8815       ** is already journaled.
8816       */
8817       u8 eType = 0;
8818       Pgno iPtrPage = 0;
8819 
8820       /* Save the positions of any open cursors. This is required in
8821       ** case they are holding a reference to an xFetch reference
8822       ** corresponding to page pgnoRoot.  */
8823       rc = saveAllCursors(pBt, 0, 0);
8824       releasePage(pPageMove);
8825       if( rc!=SQLITE_OK ){
8826         return rc;
8827       }
8828 
8829       /* Move the page currently at pgnoRoot to pgnoMove. */
8830       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8831       if( rc!=SQLITE_OK ){
8832         return rc;
8833       }
8834       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8835       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8836         rc = SQLITE_CORRUPT_BKPT;
8837       }
8838       if( rc!=SQLITE_OK ){
8839         releasePage(pRoot);
8840         return rc;
8841       }
8842       assert( eType!=PTRMAP_ROOTPAGE );
8843       assert( eType!=PTRMAP_FREEPAGE );
8844       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8845       releasePage(pRoot);
8846 
8847       /* Obtain the page at pgnoRoot */
8848       if( rc!=SQLITE_OK ){
8849         return rc;
8850       }
8851       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8852       if( rc!=SQLITE_OK ){
8853         return rc;
8854       }
8855       rc = sqlite3PagerWrite(pRoot->pDbPage);
8856       if( rc!=SQLITE_OK ){
8857         releasePage(pRoot);
8858         return rc;
8859       }
8860     }else{
8861       pRoot = pPageMove;
8862     }
8863 
8864     /* Update the pointer-map and meta-data with the new root-page number. */
8865     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8866     if( rc ){
8867       releasePage(pRoot);
8868       return rc;
8869     }
8870 
8871     /* When the new root page was allocated, page 1 was made writable in
8872     ** order either to increase the database filesize, or to decrement the
8873     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8874     */
8875     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8876     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8877     if( NEVER(rc) ){
8878       releasePage(pRoot);
8879       return rc;
8880     }
8881 
8882   }else{
8883     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8884     if( rc ) return rc;
8885   }
8886 #endif
8887   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8888   if( createTabFlags & BTREE_INTKEY ){
8889     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8890   }else{
8891     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8892   }
8893   zeroPage(pRoot, ptfFlags);
8894   sqlite3PagerUnref(pRoot->pDbPage);
8895   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8896   *piTable = (int)pgnoRoot;
8897   return SQLITE_OK;
8898 }
8899 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8900   int rc;
8901   sqlite3BtreeEnter(p);
8902   rc = btreeCreateTable(p, piTable, flags);
8903   sqlite3BtreeLeave(p);
8904   return rc;
8905 }
8906 
8907 /*
8908 ** Erase the given database page and all its children.  Return
8909 ** the page to the freelist.
8910 */
8911 static int clearDatabasePage(
8912   BtShared *pBt,           /* The BTree that contains the table */
8913   Pgno pgno,               /* Page number to clear */
8914   int freePageFlag,        /* Deallocate page if true */
8915   int *pnChange            /* Add number of Cells freed to this counter */
8916 ){
8917   MemPage *pPage;
8918   int rc;
8919   unsigned char *pCell;
8920   int i;
8921   int hdr;
8922   CellInfo info;
8923 
8924   assert( sqlite3_mutex_held(pBt->mutex) );
8925   if( pgno>btreePagecount(pBt) ){
8926     return SQLITE_CORRUPT_BKPT;
8927   }
8928   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8929   if( rc ) return rc;
8930   if( pPage->bBusy ){
8931     rc = SQLITE_CORRUPT_BKPT;
8932     goto cleardatabasepage_out;
8933   }
8934   pPage->bBusy = 1;
8935   hdr = pPage->hdrOffset;
8936   for(i=0; i<pPage->nCell; i++){
8937     pCell = findCell(pPage, i);
8938     if( !pPage->leaf ){
8939       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8940       if( rc ) goto cleardatabasepage_out;
8941     }
8942     rc = clearCell(pPage, pCell, &info);
8943     if( rc ) goto cleardatabasepage_out;
8944   }
8945   if( !pPage->leaf ){
8946     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8947     if( rc ) goto cleardatabasepage_out;
8948   }else if( pnChange ){
8949     assert( pPage->intKey || CORRUPT_DB );
8950     testcase( !pPage->intKey );
8951     *pnChange += pPage->nCell;
8952   }
8953   if( freePageFlag ){
8954     freePage(pPage, &rc);
8955   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8956     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8957   }
8958 
8959 cleardatabasepage_out:
8960   pPage->bBusy = 0;
8961   releasePage(pPage);
8962   return rc;
8963 }
8964 
8965 /*
8966 ** Delete all information from a single table in the database.  iTable is
8967 ** the page number of the root of the table.  After this routine returns,
8968 ** the root page is empty, but still exists.
8969 **
8970 ** This routine will fail with SQLITE_LOCKED if there are any open
8971 ** read cursors on the table.  Open write cursors are moved to the
8972 ** root of the table.
8973 **
8974 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8975 ** integer value pointed to by pnChange is incremented by the number of
8976 ** entries in the table.
8977 */
8978 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8979   int rc;
8980   BtShared *pBt = p->pBt;
8981   sqlite3BtreeEnter(p);
8982   assert( p->inTrans==TRANS_WRITE );
8983 
8984   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8985 
8986   if( SQLITE_OK==rc ){
8987     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8988     ** is the root of a table b-tree - if it is not, the following call is
8989     ** a no-op).  */
8990     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
8991     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8992   }
8993   sqlite3BtreeLeave(p);
8994   return rc;
8995 }
8996 
8997 /*
8998 ** Delete all information from the single table that pCur is open on.
8999 **
9000 ** This routine only work for pCur on an ephemeral table.
9001 */
9002 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9003   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9004 }
9005 
9006 /*
9007 ** Erase all information in a table and add the root of the table to
9008 ** the freelist.  Except, the root of the principle table (the one on
9009 ** page 1) is never added to the freelist.
9010 **
9011 ** This routine will fail with SQLITE_LOCKED if there are any open
9012 ** cursors on the table.
9013 **
9014 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9015 ** root page in the database file, then the last root page
9016 ** in the database file is moved into the slot formerly occupied by
9017 ** iTable and that last slot formerly occupied by the last root page
9018 ** is added to the freelist instead of iTable.  In this say, all
9019 ** root pages are kept at the beginning of the database file, which
9020 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9021 ** page number that used to be the last root page in the file before
9022 ** the move.  If no page gets moved, *piMoved is set to 0.
9023 ** The last root page is recorded in meta[3] and the value of
9024 ** meta[3] is updated by this procedure.
9025 */
9026 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9027   int rc;
9028   MemPage *pPage = 0;
9029   BtShared *pBt = p->pBt;
9030 
9031   assert( sqlite3BtreeHoldsMutex(p) );
9032   assert( p->inTrans==TRANS_WRITE );
9033   assert( iTable>=2 );
9034 
9035   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9036   if( rc ) return rc;
9037   rc = sqlite3BtreeClearTable(p, iTable, 0);
9038   if( rc ){
9039     releasePage(pPage);
9040     return rc;
9041   }
9042 
9043   *piMoved = 0;
9044 
9045 #ifdef SQLITE_OMIT_AUTOVACUUM
9046   freePage(pPage, &rc);
9047   releasePage(pPage);
9048 #else
9049   if( pBt->autoVacuum ){
9050     Pgno maxRootPgno;
9051     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9052 
9053     if( iTable==maxRootPgno ){
9054       /* If the table being dropped is the table with the largest root-page
9055       ** number in the database, put the root page on the free list.
9056       */
9057       freePage(pPage, &rc);
9058       releasePage(pPage);
9059       if( rc!=SQLITE_OK ){
9060         return rc;
9061       }
9062     }else{
9063       /* The table being dropped does not have the largest root-page
9064       ** number in the database. So move the page that does into the
9065       ** gap left by the deleted root-page.
9066       */
9067       MemPage *pMove;
9068       releasePage(pPage);
9069       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9070       if( rc!=SQLITE_OK ){
9071         return rc;
9072       }
9073       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9074       releasePage(pMove);
9075       if( rc!=SQLITE_OK ){
9076         return rc;
9077       }
9078       pMove = 0;
9079       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9080       freePage(pMove, &rc);
9081       releasePage(pMove);
9082       if( rc!=SQLITE_OK ){
9083         return rc;
9084       }
9085       *piMoved = maxRootPgno;
9086     }
9087 
9088     /* Set the new 'max-root-page' value in the database header. This
9089     ** is the old value less one, less one more if that happens to
9090     ** be a root-page number, less one again if that is the
9091     ** PENDING_BYTE_PAGE.
9092     */
9093     maxRootPgno--;
9094     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9095            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9096       maxRootPgno--;
9097     }
9098     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9099 
9100     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9101   }else{
9102     freePage(pPage, &rc);
9103     releasePage(pPage);
9104   }
9105 #endif
9106   return rc;
9107 }
9108 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9109   int rc;
9110   sqlite3BtreeEnter(p);
9111   rc = btreeDropTable(p, iTable, piMoved);
9112   sqlite3BtreeLeave(p);
9113   return rc;
9114 }
9115 
9116 
9117 /*
9118 ** This function may only be called if the b-tree connection already
9119 ** has a read or write transaction open on the database.
9120 **
9121 ** Read the meta-information out of a database file.  Meta[0]
9122 ** is the number of free pages currently in the database.  Meta[1]
9123 ** through meta[15] are available for use by higher layers.  Meta[0]
9124 ** is read-only, the others are read/write.
9125 **
9126 ** The schema layer numbers meta values differently.  At the schema
9127 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9128 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9129 **
9130 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9131 ** of reading the value out of the header, it instead loads the "DataVersion"
9132 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9133 ** database file.  It is a number computed by the pager.  But its access
9134 ** pattern is the same as header meta values, and so it is convenient to
9135 ** read it from this routine.
9136 */
9137 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9138   BtShared *pBt = p->pBt;
9139 
9140   sqlite3BtreeEnter(p);
9141   assert( p->inTrans>TRANS_NONE );
9142   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
9143   assert( pBt->pPage1 );
9144   assert( idx>=0 && idx<=15 );
9145 
9146   if( idx==BTREE_DATA_VERSION ){
9147     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9148   }else{
9149     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9150   }
9151 
9152   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9153   ** database, mark the database as read-only.  */
9154 #ifdef SQLITE_OMIT_AUTOVACUUM
9155   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9156     pBt->btsFlags |= BTS_READ_ONLY;
9157   }
9158 #endif
9159 
9160   sqlite3BtreeLeave(p);
9161 }
9162 
9163 /*
9164 ** Write meta-information back into the database.  Meta[0] is
9165 ** read-only and may not be written.
9166 */
9167 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9168   BtShared *pBt = p->pBt;
9169   unsigned char *pP1;
9170   int rc;
9171   assert( idx>=1 && idx<=15 );
9172   sqlite3BtreeEnter(p);
9173   assert( p->inTrans==TRANS_WRITE );
9174   assert( pBt->pPage1!=0 );
9175   pP1 = pBt->pPage1->aData;
9176   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9177   if( rc==SQLITE_OK ){
9178     put4byte(&pP1[36 + idx*4], iMeta);
9179 #ifndef SQLITE_OMIT_AUTOVACUUM
9180     if( idx==BTREE_INCR_VACUUM ){
9181       assert( pBt->autoVacuum || iMeta==0 );
9182       assert( iMeta==0 || iMeta==1 );
9183       pBt->incrVacuum = (u8)iMeta;
9184     }
9185 #endif
9186   }
9187   sqlite3BtreeLeave(p);
9188   return rc;
9189 }
9190 
9191 #ifndef SQLITE_OMIT_BTREECOUNT
9192 /*
9193 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9194 ** number of entries in the b-tree and write the result to *pnEntry.
9195 **
9196 ** SQLITE_OK is returned if the operation is successfully executed.
9197 ** Otherwise, if an error is encountered (i.e. an IO error or database
9198 ** corruption) an SQLite error code is returned.
9199 */
9200 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9201   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9202   int rc;                              /* Return code */
9203 
9204   rc = moveToRoot(pCur);
9205   if( rc==SQLITE_EMPTY ){
9206     *pnEntry = 0;
9207     return SQLITE_OK;
9208   }
9209 
9210   /* Unless an error occurs, the following loop runs one iteration for each
9211   ** page in the B-Tree structure (not including overflow pages).
9212   */
9213   while( rc==SQLITE_OK ){
9214     int iIdx;                          /* Index of child node in parent */
9215     MemPage *pPage;                    /* Current page of the b-tree */
9216 
9217     /* If this is a leaf page or the tree is not an int-key tree, then
9218     ** this page contains countable entries. Increment the entry counter
9219     ** accordingly.
9220     */
9221     pPage = pCur->pPage;
9222     if( pPage->leaf || !pPage->intKey ){
9223       nEntry += pPage->nCell;
9224     }
9225 
9226     /* pPage is a leaf node. This loop navigates the cursor so that it
9227     ** points to the first interior cell that it points to the parent of
9228     ** the next page in the tree that has not yet been visited. The
9229     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9230     ** of the page, or to the number of cells in the page if the next page
9231     ** to visit is the right-child of its parent.
9232     **
9233     ** If all pages in the tree have been visited, return SQLITE_OK to the
9234     ** caller.
9235     */
9236     if( pPage->leaf ){
9237       do {
9238         if( pCur->iPage==0 ){
9239           /* All pages of the b-tree have been visited. Return successfully. */
9240           *pnEntry = nEntry;
9241           return moveToRoot(pCur);
9242         }
9243         moveToParent(pCur);
9244       }while ( pCur->ix>=pCur->pPage->nCell );
9245 
9246       pCur->ix++;
9247       pPage = pCur->pPage;
9248     }
9249 
9250     /* Descend to the child node of the cell that the cursor currently
9251     ** points at. This is the right-child if (iIdx==pPage->nCell).
9252     */
9253     iIdx = pCur->ix;
9254     if( iIdx==pPage->nCell ){
9255       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9256     }else{
9257       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9258     }
9259   }
9260 
9261   /* An error has occurred. Return an error code. */
9262   return rc;
9263 }
9264 #endif
9265 
9266 /*
9267 ** Return the pager associated with a BTree.  This routine is used for
9268 ** testing and debugging only.
9269 */
9270 Pager *sqlite3BtreePager(Btree *p){
9271   return p->pBt->pPager;
9272 }
9273 
9274 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9275 /*
9276 ** Append a message to the error message string.
9277 */
9278 static void checkAppendMsg(
9279   IntegrityCk *pCheck,
9280   const char *zFormat,
9281   ...
9282 ){
9283   va_list ap;
9284   if( !pCheck->mxErr ) return;
9285   pCheck->mxErr--;
9286   pCheck->nErr++;
9287   va_start(ap, zFormat);
9288   if( pCheck->errMsg.nChar ){
9289     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9290   }
9291   if( pCheck->zPfx ){
9292     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9293   }
9294   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9295   va_end(ap);
9296   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9297     pCheck->mallocFailed = 1;
9298   }
9299 }
9300 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9301 
9302 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9303 
9304 /*
9305 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9306 ** corresponds to page iPg is already set.
9307 */
9308 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9309   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9310   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9311 }
9312 
9313 /*
9314 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9315 */
9316 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9317   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9318   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9319 }
9320 
9321 
9322 /*
9323 ** Add 1 to the reference count for page iPage.  If this is the second
9324 ** reference to the page, add an error message to pCheck->zErrMsg.
9325 ** Return 1 if there are 2 or more references to the page and 0 if
9326 ** if this is the first reference to the page.
9327 **
9328 ** Also check that the page number is in bounds.
9329 */
9330 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9331   if( iPage==0 ) return 1;
9332   if( iPage>pCheck->nPage ){
9333     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9334     return 1;
9335   }
9336   if( getPageReferenced(pCheck, iPage) ){
9337     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9338     return 1;
9339   }
9340   setPageReferenced(pCheck, iPage);
9341   return 0;
9342 }
9343 
9344 #ifndef SQLITE_OMIT_AUTOVACUUM
9345 /*
9346 ** Check that the entry in the pointer-map for page iChild maps to
9347 ** page iParent, pointer type ptrType. If not, append an error message
9348 ** to pCheck.
9349 */
9350 static void checkPtrmap(
9351   IntegrityCk *pCheck,   /* Integrity check context */
9352   Pgno iChild,           /* Child page number */
9353   u8 eType,              /* Expected pointer map type */
9354   Pgno iParent           /* Expected pointer map parent page number */
9355 ){
9356   int rc;
9357   u8 ePtrmapType;
9358   Pgno iPtrmapParent;
9359 
9360   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9361   if( rc!=SQLITE_OK ){
9362     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9363     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9364     return;
9365   }
9366 
9367   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9368     checkAppendMsg(pCheck,
9369       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9370       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9371   }
9372 }
9373 #endif
9374 
9375 /*
9376 ** Check the integrity of the freelist or of an overflow page list.
9377 ** Verify that the number of pages on the list is N.
9378 */
9379 static void checkList(
9380   IntegrityCk *pCheck,  /* Integrity checking context */
9381   int isFreeList,       /* True for a freelist.  False for overflow page list */
9382   int iPage,            /* Page number for first page in the list */
9383   int N                 /* Expected number of pages in the list */
9384 ){
9385   int i;
9386   int expected = N;
9387   int iFirst = iPage;
9388   while( N-- > 0 && pCheck->mxErr ){
9389     DbPage *pOvflPage;
9390     unsigned char *pOvflData;
9391     if( iPage<1 ){
9392       checkAppendMsg(pCheck,
9393          "%d of %d pages missing from overflow list starting at %d",
9394           N+1, expected, iFirst);
9395       break;
9396     }
9397     if( checkRef(pCheck, iPage) ) break;
9398     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9399       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9400       break;
9401     }
9402     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9403     if( isFreeList ){
9404       int n = get4byte(&pOvflData[4]);
9405 #ifndef SQLITE_OMIT_AUTOVACUUM
9406       if( pCheck->pBt->autoVacuum ){
9407         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9408       }
9409 #endif
9410       if( n>(int)pCheck->pBt->usableSize/4-2 ){
9411         checkAppendMsg(pCheck,
9412            "freelist leaf count too big on page %d", iPage);
9413         N--;
9414       }else{
9415         for(i=0; i<n; i++){
9416           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9417 #ifndef SQLITE_OMIT_AUTOVACUUM
9418           if( pCheck->pBt->autoVacuum ){
9419             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9420           }
9421 #endif
9422           checkRef(pCheck, iFreePage);
9423         }
9424         N -= n;
9425       }
9426     }
9427 #ifndef SQLITE_OMIT_AUTOVACUUM
9428     else{
9429       /* If this database supports auto-vacuum and iPage is not the last
9430       ** page in this overflow list, check that the pointer-map entry for
9431       ** the following page matches iPage.
9432       */
9433       if( pCheck->pBt->autoVacuum && N>0 ){
9434         i = get4byte(pOvflData);
9435         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9436       }
9437     }
9438 #endif
9439     iPage = get4byte(pOvflData);
9440     sqlite3PagerUnref(pOvflPage);
9441 
9442     if( isFreeList && N<(iPage!=0) ){
9443       checkAppendMsg(pCheck, "free-page count in header is too small");
9444     }
9445   }
9446 }
9447 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9448 
9449 /*
9450 ** An implementation of a min-heap.
9451 **
9452 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9453 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9454 ** and aHeap[N*2+1].
9455 **
9456 ** The heap property is this:  Every node is less than or equal to both
9457 ** of its daughter nodes.  A consequence of the heap property is that the
9458 ** root node aHeap[1] is always the minimum value currently in the heap.
9459 **
9460 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9461 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9462 ** removes the root element from the heap (the minimum value in the heap)
9463 ** and then moves other nodes around as necessary to preserve the heap
9464 ** property.
9465 **
9466 ** This heap is used for cell overlap and coverage testing.  Each u32
9467 ** entry represents the span of a cell or freeblock on a btree page.
9468 ** The upper 16 bits are the index of the first byte of a range and the
9469 ** lower 16 bits are the index of the last byte of that range.
9470 */
9471 static void btreeHeapInsert(u32 *aHeap, u32 x){
9472   u32 j, i = ++aHeap[0];
9473   aHeap[i] = x;
9474   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9475     x = aHeap[j];
9476     aHeap[j] = aHeap[i];
9477     aHeap[i] = x;
9478     i = j;
9479   }
9480 }
9481 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9482   u32 j, i, x;
9483   if( (x = aHeap[0])==0 ) return 0;
9484   *pOut = aHeap[1];
9485   aHeap[1] = aHeap[x];
9486   aHeap[x] = 0xffffffff;
9487   aHeap[0]--;
9488   i = 1;
9489   while( (j = i*2)<=aHeap[0] ){
9490     if( aHeap[j]>aHeap[j+1] ) j++;
9491     if( aHeap[i]<aHeap[j] ) break;
9492     x = aHeap[i];
9493     aHeap[i] = aHeap[j];
9494     aHeap[j] = x;
9495     i = j;
9496   }
9497   return 1;
9498 }
9499 
9500 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9501 /*
9502 ** Do various sanity checks on a single page of a tree.  Return
9503 ** the tree depth.  Root pages return 0.  Parents of root pages
9504 ** return 1, and so forth.
9505 **
9506 ** These checks are done:
9507 **
9508 **      1.  Make sure that cells and freeblocks do not overlap
9509 **          but combine to completely cover the page.
9510 **      2.  Make sure integer cell keys are in order.
9511 **      3.  Check the integrity of overflow pages.
9512 **      4.  Recursively call checkTreePage on all children.
9513 **      5.  Verify that the depth of all children is the same.
9514 */
9515 static int checkTreePage(
9516   IntegrityCk *pCheck,  /* Context for the sanity check */
9517   int iPage,            /* Page number of the page to check */
9518   i64 *piMinKey,        /* Write minimum integer primary key here */
9519   i64 maxKey            /* Error if integer primary key greater than this */
9520 ){
9521   MemPage *pPage = 0;      /* The page being analyzed */
9522   int i;                   /* Loop counter */
9523   int rc;                  /* Result code from subroutine call */
9524   int depth = -1, d2;      /* Depth of a subtree */
9525   int pgno;                /* Page number */
9526   int nFrag;               /* Number of fragmented bytes on the page */
9527   int hdr;                 /* Offset to the page header */
9528   int cellStart;           /* Offset to the start of the cell pointer array */
9529   int nCell;               /* Number of cells */
9530   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9531   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9532                            ** False if IPK must be strictly less than maxKey */
9533   u8 *data;                /* Page content */
9534   u8 *pCell;               /* Cell content */
9535   u8 *pCellIdx;            /* Next element of the cell pointer array */
9536   BtShared *pBt;           /* The BtShared object that owns pPage */
9537   u32 pc;                  /* Address of a cell */
9538   u32 usableSize;          /* Usable size of the page */
9539   u32 contentOffset;       /* Offset to the start of the cell content area */
9540   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9541   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9542   const char *saved_zPfx = pCheck->zPfx;
9543   int saved_v1 = pCheck->v1;
9544   int saved_v2 = pCheck->v2;
9545   u8 savedIsInit = 0;
9546 
9547   /* Check that the page exists
9548   */
9549   pBt = pCheck->pBt;
9550   usableSize = pBt->usableSize;
9551   if( iPage==0 ) return 0;
9552   if( checkRef(pCheck, iPage) ) return 0;
9553   pCheck->zPfx = "Page %d: ";
9554   pCheck->v1 = iPage;
9555   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9556     checkAppendMsg(pCheck,
9557        "unable to get the page. error code=%d", rc);
9558     goto end_of_check;
9559   }
9560 
9561   /* Clear MemPage.isInit to make sure the corruption detection code in
9562   ** btreeInitPage() is executed.  */
9563   savedIsInit = pPage->isInit;
9564   pPage->isInit = 0;
9565   if( (rc = btreeInitPage(pPage))!=0 ){
9566     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9567     checkAppendMsg(pCheck,
9568                    "btreeInitPage() returns error code %d", rc);
9569     goto end_of_check;
9570   }
9571   data = pPage->aData;
9572   hdr = pPage->hdrOffset;
9573 
9574   /* Set up for cell analysis */
9575   pCheck->zPfx = "On tree page %d cell %d: ";
9576   contentOffset = get2byteNotZero(&data[hdr+5]);
9577   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9578 
9579   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9580   ** number of cells on the page. */
9581   nCell = get2byte(&data[hdr+3]);
9582   assert( pPage->nCell==nCell );
9583 
9584   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9585   ** immediately follows the b-tree page header. */
9586   cellStart = hdr + 12 - 4*pPage->leaf;
9587   assert( pPage->aCellIdx==&data[cellStart] );
9588   pCellIdx = &data[cellStart + 2*(nCell-1)];
9589 
9590   if( !pPage->leaf ){
9591     /* Analyze the right-child page of internal pages */
9592     pgno = get4byte(&data[hdr+8]);
9593 #ifndef SQLITE_OMIT_AUTOVACUUM
9594     if( pBt->autoVacuum ){
9595       pCheck->zPfx = "On page %d at right child: ";
9596       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9597     }
9598 #endif
9599     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9600     keyCanBeEqual = 0;
9601   }else{
9602     /* For leaf pages, the coverage check will occur in the same loop
9603     ** as the other cell checks, so initialize the heap.  */
9604     heap = pCheck->heap;
9605     heap[0] = 0;
9606   }
9607 
9608   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9609   ** integer offsets to the cell contents. */
9610   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9611     CellInfo info;
9612 
9613     /* Check cell size */
9614     pCheck->v2 = i;
9615     assert( pCellIdx==&data[cellStart + i*2] );
9616     pc = get2byteAligned(pCellIdx);
9617     pCellIdx -= 2;
9618     if( pc<contentOffset || pc>usableSize-4 ){
9619       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9620                              pc, contentOffset, usableSize-4);
9621       doCoverageCheck = 0;
9622       continue;
9623     }
9624     pCell = &data[pc];
9625     pPage->xParseCell(pPage, pCell, &info);
9626     if( pc+info.nSize>usableSize ){
9627       checkAppendMsg(pCheck, "Extends off end of page");
9628       doCoverageCheck = 0;
9629       continue;
9630     }
9631 
9632     /* Check for integer primary key out of range */
9633     if( pPage->intKey ){
9634       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9635         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9636       }
9637       maxKey = info.nKey;
9638       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9639     }
9640 
9641     /* Check the content overflow list */
9642     if( info.nPayload>info.nLocal ){
9643       int nPage;       /* Number of pages on the overflow chain */
9644       Pgno pgnoOvfl;   /* First page of the overflow chain */
9645       assert( pc + info.nSize - 4 <= usableSize );
9646       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9647       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9648 #ifndef SQLITE_OMIT_AUTOVACUUM
9649       if( pBt->autoVacuum ){
9650         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9651       }
9652 #endif
9653       checkList(pCheck, 0, pgnoOvfl, nPage);
9654     }
9655 
9656     if( !pPage->leaf ){
9657       /* Check sanity of left child page for internal pages */
9658       pgno = get4byte(pCell);
9659 #ifndef SQLITE_OMIT_AUTOVACUUM
9660       if( pBt->autoVacuum ){
9661         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9662       }
9663 #endif
9664       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9665       keyCanBeEqual = 0;
9666       if( d2!=depth ){
9667         checkAppendMsg(pCheck, "Child page depth differs");
9668         depth = d2;
9669       }
9670     }else{
9671       /* Populate the coverage-checking heap for leaf pages */
9672       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9673     }
9674   }
9675   *piMinKey = maxKey;
9676 
9677   /* Check for complete coverage of the page
9678   */
9679   pCheck->zPfx = 0;
9680   if( doCoverageCheck && pCheck->mxErr>0 ){
9681     /* For leaf pages, the min-heap has already been initialized and the
9682     ** cells have already been inserted.  But for internal pages, that has
9683     ** not yet been done, so do it now */
9684     if( !pPage->leaf ){
9685       heap = pCheck->heap;
9686       heap[0] = 0;
9687       for(i=nCell-1; i>=0; i--){
9688         u32 size;
9689         pc = get2byteAligned(&data[cellStart+i*2]);
9690         size = pPage->xCellSize(pPage, &data[pc]);
9691         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9692       }
9693     }
9694     /* Add the freeblocks to the min-heap
9695     **
9696     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9697     ** is the offset of the first freeblock, or zero if there are no
9698     ** freeblocks on the page.
9699     */
9700     i = get2byte(&data[hdr+1]);
9701     while( i>0 ){
9702       int size, j;
9703       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9704       size = get2byte(&data[i+2]);
9705       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9706       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9707       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9708       ** big-endian integer which is the offset in the b-tree page of the next
9709       ** freeblock in the chain, or zero if the freeblock is the last on the
9710       ** chain. */
9711       j = get2byte(&data[i]);
9712       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9713       ** increasing offset. */
9714       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9715       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9716       i = j;
9717     }
9718     /* Analyze the min-heap looking for overlap between cells and/or
9719     ** freeblocks, and counting the number of untracked bytes in nFrag.
9720     **
9721     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9722     ** There is an implied first entry the covers the page header, the cell
9723     ** pointer index, and the gap between the cell pointer index and the start
9724     ** of cell content.
9725     **
9726     ** The loop below pulls entries from the min-heap in order and compares
9727     ** the start_address against the previous end_address.  If there is an
9728     ** overlap, that means bytes are used multiple times.  If there is a gap,
9729     ** that gap is added to the fragmentation count.
9730     */
9731     nFrag = 0;
9732     prev = contentOffset - 1;   /* Implied first min-heap entry */
9733     while( btreeHeapPull(heap,&x) ){
9734       if( (prev&0xffff)>=(x>>16) ){
9735         checkAppendMsg(pCheck,
9736           "Multiple uses for byte %u of page %d", x>>16, iPage);
9737         break;
9738       }else{
9739         nFrag += (x>>16) - (prev&0xffff) - 1;
9740         prev = x;
9741       }
9742     }
9743     nFrag += usableSize - (prev&0xffff) - 1;
9744     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9745     ** is stored in the fifth field of the b-tree page header.
9746     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9747     ** number of fragmented free bytes within the cell content area.
9748     */
9749     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9750       checkAppendMsg(pCheck,
9751           "Fragmentation of %d bytes reported as %d on page %d",
9752           nFrag, data[hdr+7], iPage);
9753     }
9754   }
9755 
9756 end_of_check:
9757   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9758   releasePage(pPage);
9759   pCheck->zPfx = saved_zPfx;
9760   pCheck->v1 = saved_v1;
9761   pCheck->v2 = saved_v2;
9762   return depth+1;
9763 }
9764 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9765 
9766 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9767 /*
9768 ** This routine does a complete check of the given BTree file.  aRoot[] is
9769 ** an array of pages numbers were each page number is the root page of
9770 ** a table.  nRoot is the number of entries in aRoot.
9771 **
9772 ** A read-only or read-write transaction must be opened before calling
9773 ** this function.
9774 **
9775 ** Write the number of error seen in *pnErr.  Except for some memory
9776 ** allocation errors,  an error message held in memory obtained from
9777 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9778 ** returned.  If a memory allocation error occurs, NULL is returned.
9779 */
9780 char *sqlite3BtreeIntegrityCheck(
9781   Btree *p,     /* The btree to be checked */
9782   int *aRoot,   /* An array of root pages numbers for individual trees */
9783   int nRoot,    /* Number of entries in aRoot[] */
9784   int mxErr,    /* Stop reporting errors after this many */
9785   int *pnErr    /* Write number of errors seen to this variable */
9786 ){
9787   Pgno i;
9788   IntegrityCk sCheck;
9789   BtShared *pBt = p->pBt;
9790   int savedDbFlags = pBt->db->flags;
9791   char zErr[100];
9792   VVA_ONLY( int nRef );
9793 
9794   sqlite3BtreeEnter(p);
9795   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9796   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9797   assert( nRef>=0 );
9798   sCheck.pBt = pBt;
9799   sCheck.pPager = pBt->pPager;
9800   sCheck.nPage = btreePagecount(sCheck.pBt);
9801   sCheck.mxErr = mxErr;
9802   sCheck.nErr = 0;
9803   sCheck.mallocFailed = 0;
9804   sCheck.zPfx = 0;
9805   sCheck.v1 = 0;
9806   sCheck.v2 = 0;
9807   sCheck.aPgRef = 0;
9808   sCheck.heap = 0;
9809   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9810   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9811   if( sCheck.nPage==0 ){
9812     goto integrity_ck_cleanup;
9813   }
9814 
9815   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9816   if( !sCheck.aPgRef ){
9817     sCheck.mallocFailed = 1;
9818     goto integrity_ck_cleanup;
9819   }
9820   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9821   if( sCheck.heap==0 ){
9822     sCheck.mallocFailed = 1;
9823     goto integrity_ck_cleanup;
9824   }
9825 
9826   i = PENDING_BYTE_PAGE(pBt);
9827   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9828 
9829   /* Check the integrity of the freelist
9830   */
9831   sCheck.zPfx = "Main freelist: ";
9832   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9833             get4byte(&pBt->pPage1->aData[36]));
9834   sCheck.zPfx = 0;
9835 
9836   /* Check all the tables.
9837   */
9838   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9839   pBt->db->flags &= ~SQLITE_CellSizeCk;
9840   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9841     i64 notUsed;
9842     if( aRoot[i]==0 ) continue;
9843 #ifndef SQLITE_OMIT_AUTOVACUUM
9844     if( pBt->autoVacuum && aRoot[i]>1 ){
9845       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9846     }
9847 #endif
9848     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9849   }
9850   pBt->db->flags = savedDbFlags;
9851 
9852   /* Make sure every page in the file is referenced
9853   */
9854   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9855 #ifdef SQLITE_OMIT_AUTOVACUUM
9856     if( getPageReferenced(&sCheck, i)==0 ){
9857       checkAppendMsg(&sCheck, "Page %d is never used", i);
9858     }
9859 #else
9860     /* If the database supports auto-vacuum, make sure no tables contain
9861     ** references to pointer-map pages.
9862     */
9863     if( getPageReferenced(&sCheck, i)==0 &&
9864        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9865       checkAppendMsg(&sCheck, "Page %d is never used", i);
9866     }
9867     if( getPageReferenced(&sCheck, i)!=0 &&
9868        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9869       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9870     }
9871 #endif
9872   }
9873 
9874   /* Clean  up and report errors.
9875   */
9876 integrity_ck_cleanup:
9877   sqlite3PageFree(sCheck.heap);
9878   sqlite3_free(sCheck.aPgRef);
9879   if( sCheck.mallocFailed ){
9880     sqlite3_str_reset(&sCheck.errMsg);
9881     sCheck.nErr++;
9882   }
9883   *pnErr = sCheck.nErr;
9884   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
9885   /* Make sure this analysis did not leave any unref() pages. */
9886   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9887   sqlite3BtreeLeave(p);
9888   return sqlite3StrAccumFinish(&sCheck.errMsg);
9889 }
9890 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9891 
9892 /*
9893 ** Return the full pathname of the underlying database file.  Return
9894 ** an empty string if the database is in-memory or a TEMP database.
9895 **
9896 ** The pager filename is invariant as long as the pager is
9897 ** open so it is safe to access without the BtShared mutex.
9898 */
9899 const char *sqlite3BtreeGetFilename(Btree *p){
9900   assert( p->pBt->pPager!=0 );
9901   return sqlite3PagerFilename(p->pBt->pPager, 1);
9902 }
9903 
9904 /*
9905 ** Return the pathname of the journal file for this database. The return
9906 ** value of this routine is the same regardless of whether the journal file
9907 ** has been created or not.
9908 **
9909 ** The pager journal filename is invariant as long as the pager is
9910 ** open so it is safe to access without the BtShared mutex.
9911 */
9912 const char *sqlite3BtreeGetJournalname(Btree *p){
9913   assert( p->pBt->pPager!=0 );
9914   return sqlite3PagerJournalname(p->pBt->pPager);
9915 }
9916 
9917 /*
9918 ** Return non-zero if a transaction is active.
9919 */
9920 int sqlite3BtreeIsInTrans(Btree *p){
9921   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9922   return (p && (p->inTrans==TRANS_WRITE));
9923 }
9924 
9925 #ifndef SQLITE_OMIT_WAL
9926 /*
9927 ** Run a checkpoint on the Btree passed as the first argument.
9928 **
9929 ** Return SQLITE_LOCKED if this or any other connection has an open
9930 ** transaction on the shared-cache the argument Btree is connected to.
9931 **
9932 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9933 */
9934 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9935   int rc = SQLITE_OK;
9936   if( p ){
9937     BtShared *pBt = p->pBt;
9938     sqlite3BtreeEnter(p);
9939     if( pBt->inTransaction!=TRANS_NONE ){
9940       rc = SQLITE_LOCKED;
9941     }else{
9942       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9943     }
9944     sqlite3BtreeLeave(p);
9945   }
9946   return rc;
9947 }
9948 #endif
9949 
9950 /*
9951 ** Return non-zero if a read (or write) transaction is active.
9952 */
9953 int sqlite3BtreeIsInReadTrans(Btree *p){
9954   assert( p );
9955   assert( sqlite3_mutex_held(p->db->mutex) );
9956   return p->inTrans!=TRANS_NONE;
9957 }
9958 
9959 int sqlite3BtreeIsInBackup(Btree *p){
9960   assert( p );
9961   assert( sqlite3_mutex_held(p->db->mutex) );
9962   return p->nBackup!=0;
9963 }
9964 
9965 /*
9966 ** This function returns a pointer to a blob of memory associated with
9967 ** a single shared-btree. The memory is used by client code for its own
9968 ** purposes (for example, to store a high-level schema associated with
9969 ** the shared-btree). The btree layer manages reference counting issues.
9970 **
9971 ** The first time this is called on a shared-btree, nBytes bytes of memory
9972 ** are allocated, zeroed, and returned to the caller. For each subsequent
9973 ** call the nBytes parameter is ignored and a pointer to the same blob
9974 ** of memory returned.
9975 **
9976 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9977 ** allocated, a null pointer is returned. If the blob has already been
9978 ** allocated, it is returned as normal.
9979 **
9980 ** Just before the shared-btree is closed, the function passed as the
9981 ** xFree argument when the memory allocation was made is invoked on the
9982 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9983 ** on the memory, the btree layer does that.
9984 */
9985 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9986   BtShared *pBt = p->pBt;
9987   sqlite3BtreeEnter(p);
9988   if( !pBt->pSchema && nBytes ){
9989     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9990     pBt->xFreeSchema = xFree;
9991   }
9992   sqlite3BtreeLeave(p);
9993   return pBt->pSchema;
9994 }
9995 
9996 /*
9997 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9998 ** btree as the argument handle holds an exclusive lock on the
9999 ** sqlite_master table. Otherwise SQLITE_OK.
10000 */
10001 int sqlite3BtreeSchemaLocked(Btree *p){
10002   int rc;
10003   assert( sqlite3_mutex_held(p->db->mutex) );
10004   sqlite3BtreeEnter(p);
10005   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10006   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10007   sqlite3BtreeLeave(p);
10008   return rc;
10009 }
10010 
10011 
10012 #ifndef SQLITE_OMIT_SHARED_CACHE
10013 /*
10014 ** Obtain a lock on the table whose root page is iTab.  The
10015 ** lock is a write lock if isWritelock is true or a read lock
10016 ** if it is false.
10017 */
10018 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10019   int rc = SQLITE_OK;
10020   assert( p->inTrans!=TRANS_NONE );
10021   if( p->sharable ){
10022     u8 lockType = READ_LOCK + isWriteLock;
10023     assert( READ_LOCK+1==WRITE_LOCK );
10024     assert( isWriteLock==0 || isWriteLock==1 );
10025 
10026     sqlite3BtreeEnter(p);
10027     rc = querySharedCacheTableLock(p, iTab, lockType);
10028     if( rc==SQLITE_OK ){
10029       rc = setSharedCacheTableLock(p, iTab, lockType);
10030     }
10031     sqlite3BtreeLeave(p);
10032   }
10033   return rc;
10034 }
10035 #endif
10036 
10037 #ifndef SQLITE_OMIT_INCRBLOB
10038 /*
10039 ** Argument pCsr must be a cursor opened for writing on an
10040 ** INTKEY table currently pointing at a valid table entry.
10041 ** This function modifies the data stored as part of that entry.
10042 **
10043 ** Only the data content may only be modified, it is not possible to
10044 ** change the length of the data stored. If this function is called with
10045 ** parameters that attempt to write past the end of the existing data,
10046 ** no modifications are made and SQLITE_CORRUPT is returned.
10047 */
10048 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10049   int rc;
10050   assert( cursorOwnsBtShared(pCsr) );
10051   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10052   assert( pCsr->curFlags & BTCF_Incrblob );
10053 
10054   rc = restoreCursorPosition(pCsr);
10055   if( rc!=SQLITE_OK ){
10056     return rc;
10057   }
10058   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10059   if( pCsr->eState!=CURSOR_VALID ){
10060     return SQLITE_ABORT;
10061   }
10062 
10063   /* Save the positions of all other cursors open on this table. This is
10064   ** required in case any of them are holding references to an xFetch
10065   ** version of the b-tree page modified by the accessPayload call below.
10066   **
10067   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10068   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10069   ** saveAllCursors can only return SQLITE_OK.
10070   */
10071   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10072   assert( rc==SQLITE_OK );
10073 
10074   /* Check some assumptions:
10075   **   (a) the cursor is open for writing,
10076   **   (b) there is a read/write transaction open,
10077   **   (c) the connection holds a write-lock on the table (if required),
10078   **   (d) there are no conflicting read-locks, and
10079   **   (e) the cursor points at a valid row of an intKey table.
10080   */
10081   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10082     return SQLITE_READONLY;
10083   }
10084   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10085               && pCsr->pBt->inTransaction==TRANS_WRITE );
10086   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10087   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10088   assert( pCsr->pPage->intKey );
10089 
10090   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10091 }
10092 
10093 /*
10094 ** Mark this cursor as an incremental blob cursor.
10095 */
10096 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10097   pCur->curFlags |= BTCF_Incrblob;
10098   pCur->pBtree->hasIncrblobCur = 1;
10099 }
10100 #endif
10101 
10102 /*
10103 ** Set both the "read version" (single byte at byte offset 18) and
10104 ** "write version" (single byte at byte offset 19) fields in the database
10105 ** header to iVersion.
10106 */
10107 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10108   BtShared *pBt = pBtree->pBt;
10109   int rc;                         /* Return code */
10110 
10111   assert( iVersion==1 || iVersion==2 );
10112 
10113   /* If setting the version fields to 1, do not automatically open the
10114   ** WAL connection, even if the version fields are currently set to 2.
10115   */
10116   pBt->btsFlags &= ~BTS_NO_WAL;
10117   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10118 
10119   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10120   if( rc==SQLITE_OK ){
10121     u8 *aData = pBt->pPage1->aData;
10122     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10123       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10124       if( rc==SQLITE_OK ){
10125         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10126         if( rc==SQLITE_OK ){
10127           aData[18] = (u8)iVersion;
10128           aData[19] = (u8)iVersion;
10129         }
10130       }
10131     }
10132   }
10133 
10134   pBt->btsFlags &= ~BTS_NO_WAL;
10135   return rc;
10136 }
10137 
10138 /*
10139 ** Return true if the cursor has a hint specified.  This routine is
10140 ** only used from within assert() statements
10141 */
10142 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10143   return (pCsr->hints & mask)!=0;
10144 }
10145 
10146 /*
10147 ** Return true if the given Btree is read-only.
10148 */
10149 int sqlite3BtreeIsReadonly(Btree *p){
10150   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10151 }
10152 
10153 /*
10154 ** Return the size of the header added to each page by this module.
10155 */
10156 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10157 
10158 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10159 /*
10160 ** Return true if the Btree passed as the only argument is sharable.
10161 */
10162 int sqlite3BtreeSharable(Btree *p){
10163   return p->sharable;
10164 }
10165 
10166 /*
10167 ** Return the number of connections to the BtShared object accessed by
10168 ** the Btree handle passed as the only argument. For private caches
10169 ** this is always 1. For shared caches it may be 1 or greater.
10170 */
10171 int sqlite3BtreeConnectionCount(Btree *p){
10172   testcase( p->sharable );
10173   return p->pBt->nRef;
10174 }
10175 #endif
10176