1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 /* 116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 118 ** 119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 122 ** with the page number and filename associated with the (MemPage*). 123 */ 124 #ifdef SQLITE_DEBUG 125 int corruptPageError(int lineno, MemPage *p){ 126 char *zMsg; 127 sqlite3BeginBenignMalloc(); 128 zMsg = sqlite3_mprintf("database corruption page %d of %s", 129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 130 ); 131 sqlite3EndBenignMalloc(); 132 if( zMsg ){ 133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 134 } 135 sqlite3_free(zMsg); 136 return SQLITE_CORRUPT_BKPT; 137 } 138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 139 #else 140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 141 #endif 142 143 #ifndef SQLITE_OMIT_SHARED_CACHE 144 145 #ifdef SQLITE_DEBUG 146 /* 147 **** This function is only used as part of an assert() statement. *** 148 ** 149 ** Check to see if pBtree holds the required locks to read or write to the 150 ** table with root page iRoot. Return 1 if it does and 0 if not. 151 ** 152 ** For example, when writing to a table with root-page iRoot via 153 ** Btree connection pBtree: 154 ** 155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 156 ** 157 ** When writing to an index that resides in a sharable database, the 158 ** caller should have first obtained a lock specifying the root page of 159 ** the corresponding table. This makes things a bit more complicated, 160 ** as this module treats each table as a separate structure. To determine 161 ** the table corresponding to the index being written, this 162 ** function has to search through the database schema. 163 ** 164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 165 ** hold a write-lock on the schema table (root page 1). This is also 166 ** acceptable. 167 */ 168 static int hasSharedCacheTableLock( 169 Btree *pBtree, /* Handle that must hold lock */ 170 Pgno iRoot, /* Root page of b-tree */ 171 int isIndex, /* True if iRoot is the root of an index b-tree */ 172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 173 ){ 174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 175 Pgno iTab = 0; 176 BtLock *pLock; 177 178 /* If this database is not shareable, or if the client is reading 179 ** and has the read-uncommitted flag set, then no lock is required. 180 ** Return true immediately. 181 */ 182 if( (pBtree->sharable==0) 183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 184 ){ 185 return 1; 186 } 187 188 /* If the client is reading or writing an index and the schema is 189 ** not loaded, then it is too difficult to actually check to see if 190 ** the correct locks are held. So do not bother - just return true. 191 ** This case does not come up very often anyhow. 192 */ 193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 194 return 1; 195 } 196 197 /* Figure out the root-page that the lock should be held on. For table 198 ** b-trees, this is just the root page of the b-tree being read or 199 ** written. For index b-trees, it is the root page of the associated 200 ** table. */ 201 if( isIndex ){ 202 HashElem *p; 203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 204 Index *pIdx = (Index *)sqliteHashData(p); 205 if( pIdx->tnum==(int)iRoot ){ 206 if( iTab ){ 207 /* Two or more indexes share the same root page. There must 208 ** be imposter tables. So just return true. The assert is not 209 ** useful in that case. */ 210 return 1; 211 } 212 iTab = pIdx->pTable->tnum; 213 } 214 } 215 }else{ 216 iTab = iRoot; 217 } 218 219 /* Search for the required lock. Either a write-lock on root-page iTab, a 220 ** write-lock on the schema table, or (if the client is reading) a 221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 223 if( pLock->pBtree==pBtree 224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 225 && pLock->eLock>=eLockType 226 ){ 227 return 1; 228 } 229 } 230 231 /* Failed to find the required lock. */ 232 return 0; 233 } 234 #endif /* SQLITE_DEBUG */ 235 236 #ifdef SQLITE_DEBUG 237 /* 238 **** This function may be used as part of assert() statements only. **** 239 ** 240 ** Return true if it would be illegal for pBtree to write into the 241 ** table or index rooted at iRoot because other shared connections are 242 ** simultaneously reading that same table or index. 243 ** 244 ** It is illegal for pBtree to write if some other Btree object that 245 ** shares the same BtShared object is currently reading or writing 246 ** the iRoot table. Except, if the other Btree object has the 247 ** read-uncommitted flag set, then it is OK for the other object to 248 ** have a read cursor. 249 ** 250 ** For example, before writing to any part of the table or index 251 ** rooted at page iRoot, one should call: 252 ** 253 ** assert( !hasReadConflicts(pBtree, iRoot) ); 254 */ 255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 256 BtCursor *p; 257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 258 if( p->pgnoRoot==iRoot 259 && p->pBtree!=pBtree 260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 261 ){ 262 return 1; 263 } 264 } 265 return 0; 266 } 267 #endif /* #ifdef SQLITE_DEBUG */ 268 269 /* 270 ** Query to see if Btree handle p may obtain a lock of type eLock 271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 272 ** SQLITE_OK if the lock may be obtained (by calling 273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 274 */ 275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 276 BtShared *pBt = p->pBt; 277 BtLock *pIter; 278 279 assert( sqlite3BtreeHoldsMutex(p) ); 280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 281 assert( p->db!=0 ); 282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 283 284 /* If requesting a write-lock, then the Btree must have an open write 285 ** transaction on this file. And, obviously, for this to be so there 286 ** must be an open write transaction on the file itself. 287 */ 288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 290 291 /* This routine is a no-op if the shared-cache is not enabled */ 292 if( !p->sharable ){ 293 return SQLITE_OK; 294 } 295 296 /* If some other connection is holding an exclusive lock, the 297 ** requested lock may not be obtained. 298 */ 299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 301 return SQLITE_LOCKED_SHAREDCACHE; 302 } 303 304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 305 /* The condition (pIter->eLock!=eLock) in the following if(...) 306 ** statement is a simplification of: 307 ** 308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 309 ** 310 ** since we know that if eLock==WRITE_LOCK, then no other connection 311 ** may hold a WRITE_LOCK on any table in this file (since there can 312 ** only be a single writer). 313 */ 314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 318 if( eLock==WRITE_LOCK ){ 319 assert( p==pBt->pWriter ); 320 pBt->btsFlags |= BTS_PENDING; 321 } 322 return SQLITE_LOCKED_SHAREDCACHE; 323 } 324 } 325 return SQLITE_OK; 326 } 327 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 328 329 #ifndef SQLITE_OMIT_SHARED_CACHE 330 /* 331 ** Add a lock on the table with root-page iTable to the shared-btree used 332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 333 ** WRITE_LOCK. 334 ** 335 ** This function assumes the following: 336 ** 337 ** (a) The specified Btree object p is connected to a sharable 338 ** database (one with the BtShared.sharable flag set), and 339 ** 340 ** (b) No other Btree objects hold a lock that conflicts 341 ** with the requested lock (i.e. querySharedCacheTableLock() has 342 ** already been called and returned SQLITE_OK). 343 ** 344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 345 ** is returned if a malloc attempt fails. 346 */ 347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 348 BtShared *pBt = p->pBt; 349 BtLock *pLock = 0; 350 BtLock *pIter; 351 352 assert( sqlite3BtreeHoldsMutex(p) ); 353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 354 assert( p->db!=0 ); 355 356 /* A connection with the read-uncommitted flag set will never try to 357 ** obtain a read-lock using this function. The only read-lock obtained 358 ** by a connection in read-uncommitted mode is on the sqlite_master 359 ** table, and that lock is obtained in BtreeBeginTrans(). */ 360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 361 362 /* This function should only be called on a sharable b-tree after it 363 ** has been determined that no other b-tree holds a conflicting lock. */ 364 assert( p->sharable ); 365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 366 367 /* First search the list for an existing lock on this table. */ 368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 369 if( pIter->iTable==iTable && pIter->pBtree==p ){ 370 pLock = pIter; 371 break; 372 } 373 } 374 375 /* If the above search did not find a BtLock struct associating Btree p 376 ** with table iTable, allocate one and link it into the list. 377 */ 378 if( !pLock ){ 379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 380 if( !pLock ){ 381 return SQLITE_NOMEM_BKPT; 382 } 383 pLock->iTable = iTable; 384 pLock->pBtree = p; 385 pLock->pNext = pBt->pLock; 386 pBt->pLock = pLock; 387 } 388 389 /* Set the BtLock.eLock variable to the maximum of the current lock 390 ** and the requested lock. This means if a write-lock was already held 391 ** and a read-lock requested, we don't incorrectly downgrade the lock. 392 */ 393 assert( WRITE_LOCK>READ_LOCK ); 394 if( eLock>pLock->eLock ){ 395 pLock->eLock = eLock; 396 } 397 398 return SQLITE_OK; 399 } 400 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 401 402 #ifndef SQLITE_OMIT_SHARED_CACHE 403 /* 404 ** Release all the table locks (locks obtained via calls to 405 ** the setSharedCacheTableLock() procedure) held by Btree object p. 406 ** 407 ** This function assumes that Btree p has an open read or write 408 ** transaction. If it does not, then the BTS_PENDING flag 409 ** may be incorrectly cleared. 410 */ 411 static void clearAllSharedCacheTableLocks(Btree *p){ 412 BtShared *pBt = p->pBt; 413 BtLock **ppIter = &pBt->pLock; 414 415 assert( sqlite3BtreeHoldsMutex(p) ); 416 assert( p->sharable || 0==*ppIter ); 417 assert( p->inTrans>0 ); 418 419 while( *ppIter ){ 420 BtLock *pLock = *ppIter; 421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 422 assert( pLock->pBtree->inTrans>=pLock->eLock ); 423 if( pLock->pBtree==p ){ 424 *ppIter = pLock->pNext; 425 assert( pLock->iTable!=1 || pLock==&p->lock ); 426 if( pLock->iTable!=1 ){ 427 sqlite3_free(pLock); 428 } 429 }else{ 430 ppIter = &pLock->pNext; 431 } 432 } 433 434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 435 if( pBt->pWriter==p ){ 436 pBt->pWriter = 0; 437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 438 }else if( pBt->nTransaction==2 ){ 439 /* This function is called when Btree p is concluding its 440 ** transaction. If there currently exists a writer, and p is not 441 ** that writer, then the number of locks held by connections other 442 ** than the writer must be about to drop to zero. In this case 443 ** set the BTS_PENDING flag to 0. 444 ** 445 ** If there is not currently a writer, then BTS_PENDING must 446 ** be zero already. So this next line is harmless in that case. 447 */ 448 pBt->btsFlags &= ~BTS_PENDING; 449 } 450 } 451 452 /* 453 ** This function changes all write-locks held by Btree p into read-locks. 454 */ 455 static void downgradeAllSharedCacheTableLocks(Btree *p){ 456 BtShared *pBt = p->pBt; 457 if( pBt->pWriter==p ){ 458 BtLock *pLock; 459 pBt->pWriter = 0; 460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 463 pLock->eLock = READ_LOCK; 464 } 465 } 466 } 467 468 #endif /* SQLITE_OMIT_SHARED_CACHE */ 469 470 static void releasePage(MemPage *pPage); /* Forward reference */ 471 static void releasePageOne(MemPage *pPage); /* Forward reference */ 472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 473 474 /* 475 ***** This routine is used inside of assert() only **** 476 ** 477 ** Verify that the cursor holds the mutex on its BtShared 478 */ 479 #ifdef SQLITE_DEBUG 480 static int cursorHoldsMutex(BtCursor *p){ 481 return sqlite3_mutex_held(p->pBt->mutex); 482 } 483 484 /* Verify that the cursor and the BtShared agree about what is the current 485 ** database connetion. This is important in shared-cache mode. If the database 486 ** connection pointers get out-of-sync, it is possible for routines like 487 ** btreeInitPage() to reference an stale connection pointer that references a 488 ** a connection that has already closed. This routine is used inside assert() 489 ** statements only and for the purpose of double-checking that the btree code 490 ** does keep the database connection pointers up-to-date. 491 */ 492 static int cursorOwnsBtShared(BtCursor *p){ 493 assert( cursorHoldsMutex(p) ); 494 return (p->pBtree->db==p->pBt->db); 495 } 496 #endif 497 498 /* 499 ** Invalidate the overflow cache of the cursor passed as the first argument. 500 ** on the shared btree structure pBt. 501 */ 502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 503 504 /* 505 ** Invalidate the overflow page-list cache for all cursors opened 506 ** on the shared btree structure pBt. 507 */ 508 static void invalidateAllOverflowCache(BtShared *pBt){ 509 BtCursor *p; 510 assert( sqlite3_mutex_held(pBt->mutex) ); 511 for(p=pBt->pCursor; p; p=p->pNext){ 512 invalidateOverflowCache(p); 513 } 514 } 515 516 #ifndef SQLITE_OMIT_INCRBLOB 517 /* 518 ** This function is called before modifying the contents of a table 519 ** to invalidate any incrblob cursors that are open on the 520 ** row or one of the rows being modified. 521 ** 522 ** If argument isClearTable is true, then the entire contents of the 523 ** table is about to be deleted. In this case invalidate all incrblob 524 ** cursors open on any row within the table with root-page pgnoRoot. 525 ** 526 ** Otherwise, if argument isClearTable is false, then the row with 527 ** rowid iRow is being replaced or deleted. In this case invalidate 528 ** only those incrblob cursors open on that specific row. 529 */ 530 static void invalidateIncrblobCursors( 531 Btree *pBtree, /* The database file to check */ 532 Pgno pgnoRoot, /* The table that might be changing */ 533 i64 iRow, /* The rowid that might be changing */ 534 int isClearTable /* True if all rows are being deleted */ 535 ){ 536 BtCursor *p; 537 if( pBtree->hasIncrblobCur==0 ) return; 538 assert( sqlite3BtreeHoldsMutex(pBtree) ); 539 pBtree->hasIncrblobCur = 0; 540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 541 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 542 pBtree->hasIncrblobCur = 1; 543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 544 p->eState = CURSOR_INVALID; 545 } 546 } 547 } 548 } 549 550 #else 551 /* Stub function when INCRBLOB is omitted */ 552 #define invalidateIncrblobCursors(w,x,y,z) 553 #endif /* SQLITE_OMIT_INCRBLOB */ 554 555 /* 556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 557 ** when a page that previously contained data becomes a free-list leaf 558 ** page. 559 ** 560 ** The BtShared.pHasContent bitvec exists to work around an obscure 561 ** bug caused by the interaction of two useful IO optimizations surrounding 562 ** free-list leaf pages: 563 ** 564 ** 1) When all data is deleted from a page and the page becomes 565 ** a free-list leaf page, the page is not written to the database 566 ** (as free-list leaf pages contain no meaningful data). Sometimes 567 ** such a page is not even journalled (as it will not be modified, 568 ** why bother journalling it?). 569 ** 570 ** 2) When a free-list leaf page is reused, its content is not read 571 ** from the database or written to the journal file (why should it 572 ** be, if it is not at all meaningful?). 573 ** 574 ** By themselves, these optimizations work fine and provide a handy 575 ** performance boost to bulk delete or insert operations. However, if 576 ** a page is moved to the free-list and then reused within the same 577 ** transaction, a problem comes up. If the page is not journalled when 578 ** it is moved to the free-list and it is also not journalled when it 579 ** is extracted from the free-list and reused, then the original data 580 ** may be lost. In the event of a rollback, it may not be possible 581 ** to restore the database to its original configuration. 582 ** 583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 584 ** moved to become a free-list leaf page, the corresponding bit is 585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 586 ** optimization 2 above is omitted if the corresponding bit is already 587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 588 ** at the end of every transaction. 589 */ 590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 591 int rc = SQLITE_OK; 592 if( !pBt->pHasContent ){ 593 assert( pgno<=pBt->nPage ); 594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 595 if( !pBt->pHasContent ){ 596 rc = SQLITE_NOMEM_BKPT; 597 } 598 } 599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 601 } 602 return rc; 603 } 604 605 /* 606 ** Query the BtShared.pHasContent vector. 607 ** 608 ** This function is called when a free-list leaf page is removed from the 609 ** free-list for reuse. It returns false if it is safe to retrieve the 610 ** page from the pager layer with the 'no-content' flag set. True otherwise. 611 */ 612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 613 Bitvec *p = pBt->pHasContent; 614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); 615 } 616 617 /* 618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 619 ** invoked at the conclusion of each write-transaction. 620 */ 621 static void btreeClearHasContent(BtShared *pBt){ 622 sqlite3BitvecDestroy(pBt->pHasContent); 623 pBt->pHasContent = 0; 624 } 625 626 /* 627 ** Release all of the apPage[] pages for a cursor. 628 */ 629 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 630 int i; 631 if( pCur->iPage>=0 ){ 632 for(i=0; i<pCur->iPage; i++){ 633 releasePageNotNull(pCur->apPage[i]); 634 } 635 releasePageNotNull(pCur->pPage); 636 pCur->iPage = -1; 637 } 638 } 639 640 /* 641 ** The cursor passed as the only argument must point to a valid entry 642 ** when this function is called (i.e. have eState==CURSOR_VALID). This 643 ** function saves the current cursor key in variables pCur->nKey and 644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 645 ** code otherwise. 646 ** 647 ** If the cursor is open on an intkey table, then the integer key 648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 650 ** set to point to a malloced buffer pCur->nKey bytes in size containing 651 ** the key. 652 */ 653 static int saveCursorKey(BtCursor *pCur){ 654 int rc = SQLITE_OK; 655 assert( CURSOR_VALID==pCur->eState ); 656 assert( 0==pCur->pKey ); 657 assert( cursorHoldsMutex(pCur) ); 658 659 if( pCur->curIntKey ){ 660 /* Only the rowid is required for a table btree */ 661 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 662 }else{ 663 /* For an index btree, save the complete key content */ 664 void *pKey; 665 pCur->nKey = sqlite3BtreePayloadSize(pCur); 666 pKey = sqlite3Malloc( pCur->nKey ); 667 if( pKey ){ 668 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 669 if( rc==SQLITE_OK ){ 670 pCur->pKey = pKey; 671 }else{ 672 sqlite3_free(pKey); 673 } 674 }else{ 675 rc = SQLITE_NOMEM_BKPT; 676 } 677 } 678 assert( !pCur->curIntKey || !pCur->pKey ); 679 return rc; 680 } 681 682 /* 683 ** Save the current cursor position in the variables BtCursor.nKey 684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 685 ** 686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 687 ** prior to calling this routine. 688 */ 689 static int saveCursorPosition(BtCursor *pCur){ 690 int rc; 691 692 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 693 assert( 0==pCur->pKey ); 694 assert( cursorHoldsMutex(pCur) ); 695 696 if( pCur->eState==CURSOR_SKIPNEXT ){ 697 pCur->eState = CURSOR_VALID; 698 }else{ 699 pCur->skipNext = 0; 700 } 701 702 rc = saveCursorKey(pCur); 703 if( rc==SQLITE_OK ){ 704 btreeReleaseAllCursorPages(pCur); 705 pCur->eState = CURSOR_REQUIRESEEK; 706 } 707 708 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 709 return rc; 710 } 711 712 /* Forward reference */ 713 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 714 715 /* 716 ** Save the positions of all cursors (except pExcept) that are open on 717 ** the table with root-page iRoot. "Saving the cursor position" means that 718 ** the location in the btree is remembered in such a way that it can be 719 ** moved back to the same spot after the btree has been modified. This 720 ** routine is called just before cursor pExcept is used to modify the 721 ** table, for example in BtreeDelete() or BtreeInsert(). 722 ** 723 ** If there are two or more cursors on the same btree, then all such 724 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 725 ** routine enforces that rule. This routine only needs to be called in 726 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 727 ** 728 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 730 ** pointless call to this routine. 731 ** 732 ** Implementation note: This routine merely checks to see if any cursors 733 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 734 ** event that cursors are in need to being saved. 735 */ 736 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 737 BtCursor *p; 738 assert( sqlite3_mutex_held(pBt->mutex) ); 739 assert( pExcept==0 || pExcept->pBt==pBt ); 740 for(p=pBt->pCursor; p; p=p->pNext){ 741 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 742 } 743 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 744 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 745 return SQLITE_OK; 746 } 747 748 /* This helper routine to saveAllCursors does the actual work of saving 749 ** the cursors if and when a cursor is found that actually requires saving. 750 ** The common case is that no cursors need to be saved, so this routine is 751 ** broken out from its caller to avoid unnecessary stack pointer movement. 752 */ 753 static int SQLITE_NOINLINE saveCursorsOnList( 754 BtCursor *p, /* The first cursor that needs saving */ 755 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 756 BtCursor *pExcept /* Do not save this cursor */ 757 ){ 758 do{ 759 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 760 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 761 int rc = saveCursorPosition(p); 762 if( SQLITE_OK!=rc ){ 763 return rc; 764 } 765 }else{ 766 testcase( p->iPage>=0 ); 767 btreeReleaseAllCursorPages(p); 768 } 769 } 770 p = p->pNext; 771 }while( p ); 772 return SQLITE_OK; 773 } 774 775 /* 776 ** Clear the current cursor position. 777 */ 778 void sqlite3BtreeClearCursor(BtCursor *pCur){ 779 assert( cursorHoldsMutex(pCur) ); 780 sqlite3_free(pCur->pKey); 781 pCur->pKey = 0; 782 pCur->eState = CURSOR_INVALID; 783 } 784 785 /* 786 ** In this version of BtreeMoveto, pKey is a packed index record 787 ** such as is generated by the OP_MakeRecord opcode. Unpack the 788 ** record and then call BtreeMovetoUnpacked() to do the work. 789 */ 790 static int btreeMoveto( 791 BtCursor *pCur, /* Cursor open on the btree to be searched */ 792 const void *pKey, /* Packed key if the btree is an index */ 793 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 794 int bias, /* Bias search to the high end */ 795 int *pRes /* Write search results here */ 796 ){ 797 int rc; /* Status code */ 798 UnpackedRecord *pIdxKey; /* Unpacked index key */ 799 800 if( pKey ){ 801 assert( nKey==(i64)(int)nKey ); 802 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); 803 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 804 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); 805 if( pIdxKey->nField==0 ){ 806 rc = SQLITE_CORRUPT_BKPT; 807 goto moveto_done; 808 } 809 }else{ 810 pIdxKey = 0; 811 } 812 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); 813 moveto_done: 814 if( pIdxKey ){ 815 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 816 } 817 return rc; 818 } 819 820 /* 821 ** Restore the cursor to the position it was in (or as close to as possible) 822 ** when saveCursorPosition() was called. Note that this call deletes the 823 ** saved position info stored by saveCursorPosition(), so there can be 824 ** at most one effective restoreCursorPosition() call after each 825 ** saveCursorPosition(). 826 */ 827 static int btreeRestoreCursorPosition(BtCursor *pCur){ 828 int rc; 829 int skipNext; 830 assert( cursorOwnsBtShared(pCur) ); 831 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 832 if( pCur->eState==CURSOR_FAULT ){ 833 return pCur->skipNext; 834 } 835 pCur->eState = CURSOR_INVALID; 836 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 837 if( rc==SQLITE_OK ){ 838 sqlite3_free(pCur->pKey); 839 pCur->pKey = 0; 840 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 841 pCur->skipNext |= skipNext; 842 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 843 pCur->eState = CURSOR_SKIPNEXT; 844 } 845 } 846 return rc; 847 } 848 849 #define restoreCursorPosition(p) \ 850 (p->eState>=CURSOR_REQUIRESEEK ? \ 851 btreeRestoreCursorPosition(p) : \ 852 SQLITE_OK) 853 854 /* 855 ** Determine whether or not a cursor has moved from the position where 856 ** it was last placed, or has been invalidated for any other reason. 857 ** Cursors can move when the row they are pointing at is deleted out 858 ** from under them, for example. Cursor might also move if a btree 859 ** is rebalanced. 860 ** 861 ** Calling this routine with a NULL cursor pointer returns false. 862 ** 863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 864 ** back to where it ought to be if this routine returns true. 865 */ 866 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 867 assert( EIGHT_BYTE_ALIGNMENT(pCur) 868 || pCur==sqlite3BtreeFakeValidCursor() ); 869 assert( offsetof(BtCursor, eState)==0 ); 870 assert( sizeof(pCur->eState)==1 ); 871 return CURSOR_VALID != *(u8*)pCur; 872 } 873 874 /* 875 ** Return a pointer to a fake BtCursor object that will always answer 876 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 877 ** cursor returned must not be used with any other Btree interface. 878 */ 879 BtCursor *sqlite3BtreeFakeValidCursor(void){ 880 static u8 fakeCursor = CURSOR_VALID; 881 assert( offsetof(BtCursor, eState)==0 ); 882 return (BtCursor*)&fakeCursor; 883 } 884 885 /* 886 ** This routine restores a cursor back to its original position after it 887 ** has been moved by some outside activity (such as a btree rebalance or 888 ** a row having been deleted out from under the cursor). 889 ** 890 ** On success, the *pDifferentRow parameter is false if the cursor is left 891 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 892 ** was pointing to has been deleted, forcing the cursor to point to some 893 ** nearby row. 894 ** 895 ** This routine should only be called for a cursor that just returned 896 ** TRUE from sqlite3BtreeCursorHasMoved(). 897 */ 898 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 899 int rc; 900 901 assert( pCur!=0 ); 902 assert( pCur->eState!=CURSOR_VALID ); 903 rc = restoreCursorPosition(pCur); 904 if( rc ){ 905 *pDifferentRow = 1; 906 return rc; 907 } 908 if( pCur->eState!=CURSOR_VALID ){ 909 *pDifferentRow = 1; 910 }else{ 911 assert( pCur->skipNext==0 ); 912 *pDifferentRow = 0; 913 } 914 return SQLITE_OK; 915 } 916 917 #ifdef SQLITE_ENABLE_CURSOR_HINTS 918 /* 919 ** Provide hints to the cursor. The particular hint given (and the type 920 ** and number of the varargs parameters) is determined by the eHintType 921 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 922 */ 923 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 924 /* Used only by system that substitute their own storage engine */ 925 } 926 #endif 927 928 /* 929 ** Provide flag hints to the cursor. 930 */ 931 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 932 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 933 pCur->hints = x; 934 } 935 936 937 #ifndef SQLITE_OMIT_AUTOVACUUM 938 /* 939 ** Given a page number of a regular database page, return the page 940 ** number for the pointer-map page that contains the entry for the 941 ** input page number. 942 ** 943 ** Return 0 (not a valid page) for pgno==1 since there is 944 ** no pointer map associated with page 1. The integrity_check logic 945 ** requires that ptrmapPageno(*,1)!=1. 946 */ 947 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 948 int nPagesPerMapPage; 949 Pgno iPtrMap, ret; 950 assert( sqlite3_mutex_held(pBt->mutex) ); 951 if( pgno<2 ) return 0; 952 nPagesPerMapPage = (pBt->usableSize/5)+1; 953 iPtrMap = (pgno-2)/nPagesPerMapPage; 954 ret = (iPtrMap*nPagesPerMapPage) + 2; 955 if( ret==PENDING_BYTE_PAGE(pBt) ){ 956 ret++; 957 } 958 return ret; 959 } 960 961 /* 962 ** Write an entry into the pointer map. 963 ** 964 ** This routine updates the pointer map entry for page number 'key' 965 ** so that it maps to type 'eType' and parent page number 'pgno'. 966 ** 967 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 968 ** a no-op. If an error occurs, the appropriate error code is written 969 ** into *pRC. 970 */ 971 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 972 DbPage *pDbPage; /* The pointer map page */ 973 u8 *pPtrmap; /* The pointer map data */ 974 Pgno iPtrmap; /* The pointer map page number */ 975 int offset; /* Offset in pointer map page */ 976 int rc; /* Return code from subfunctions */ 977 978 if( *pRC ) return; 979 980 assert( sqlite3_mutex_held(pBt->mutex) ); 981 /* The master-journal page number must never be used as a pointer map page */ 982 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 983 984 assert( pBt->autoVacuum ); 985 if( key==0 ){ 986 *pRC = SQLITE_CORRUPT_BKPT; 987 return; 988 } 989 iPtrmap = PTRMAP_PAGENO(pBt, key); 990 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 991 if( rc!=SQLITE_OK ){ 992 *pRC = rc; 993 return; 994 } 995 offset = PTRMAP_PTROFFSET(iPtrmap, key); 996 if( offset<0 ){ 997 *pRC = SQLITE_CORRUPT_BKPT; 998 goto ptrmap_exit; 999 } 1000 assert( offset <= (int)pBt->usableSize-5 ); 1001 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1002 1003 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1004 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1005 *pRC= rc = sqlite3PagerWrite(pDbPage); 1006 if( rc==SQLITE_OK ){ 1007 pPtrmap[offset] = eType; 1008 put4byte(&pPtrmap[offset+1], parent); 1009 } 1010 } 1011 1012 ptrmap_exit: 1013 sqlite3PagerUnref(pDbPage); 1014 } 1015 1016 /* 1017 ** Read an entry from the pointer map. 1018 ** 1019 ** This routine retrieves the pointer map entry for page 'key', writing 1020 ** the type and parent page number to *pEType and *pPgno respectively. 1021 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1022 */ 1023 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1024 DbPage *pDbPage; /* The pointer map page */ 1025 int iPtrmap; /* Pointer map page index */ 1026 u8 *pPtrmap; /* Pointer map page data */ 1027 int offset; /* Offset of entry in pointer map */ 1028 int rc; 1029 1030 assert( sqlite3_mutex_held(pBt->mutex) ); 1031 1032 iPtrmap = PTRMAP_PAGENO(pBt, key); 1033 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1034 if( rc!=0 ){ 1035 return rc; 1036 } 1037 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1038 1039 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1040 if( offset<0 ){ 1041 sqlite3PagerUnref(pDbPage); 1042 return SQLITE_CORRUPT_BKPT; 1043 } 1044 assert( offset <= (int)pBt->usableSize-5 ); 1045 assert( pEType!=0 ); 1046 *pEType = pPtrmap[offset]; 1047 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1048 1049 sqlite3PagerUnref(pDbPage); 1050 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1051 return SQLITE_OK; 1052 } 1053 1054 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1055 #define ptrmapPut(w,x,y,z,rc) 1056 #define ptrmapGet(w,x,y,z) SQLITE_OK 1057 #define ptrmapPutOvflPtr(x, y, rc) 1058 #endif 1059 1060 /* 1061 ** Given a btree page and a cell index (0 means the first cell on 1062 ** the page, 1 means the second cell, and so forth) return a pointer 1063 ** to the cell content. 1064 ** 1065 ** findCellPastPtr() does the same except it skips past the initial 1066 ** 4-byte child pointer found on interior pages, if there is one. 1067 ** 1068 ** This routine works only for pages that do not contain overflow cells. 1069 */ 1070 #define findCell(P,I) \ 1071 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1072 #define findCellPastPtr(P,I) \ 1073 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1074 1075 1076 /* 1077 ** This is common tail processing for btreeParseCellPtr() and 1078 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1079 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1080 ** structure. 1081 */ 1082 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1083 MemPage *pPage, /* Page containing the cell */ 1084 u8 *pCell, /* Pointer to the cell text. */ 1085 CellInfo *pInfo /* Fill in this structure */ 1086 ){ 1087 /* If the payload will not fit completely on the local page, we have 1088 ** to decide how much to store locally and how much to spill onto 1089 ** overflow pages. The strategy is to minimize the amount of unused 1090 ** space on overflow pages while keeping the amount of local storage 1091 ** in between minLocal and maxLocal. 1092 ** 1093 ** Warning: changing the way overflow payload is distributed in any 1094 ** way will result in an incompatible file format. 1095 */ 1096 int minLocal; /* Minimum amount of payload held locally */ 1097 int maxLocal; /* Maximum amount of payload held locally */ 1098 int surplus; /* Overflow payload available for local storage */ 1099 1100 minLocal = pPage->minLocal; 1101 maxLocal = pPage->maxLocal; 1102 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1103 testcase( surplus==maxLocal ); 1104 testcase( surplus==maxLocal+1 ); 1105 if( surplus <= maxLocal ){ 1106 pInfo->nLocal = (u16)surplus; 1107 }else{ 1108 pInfo->nLocal = (u16)minLocal; 1109 } 1110 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1111 } 1112 1113 /* 1114 ** The following routines are implementations of the MemPage.xParseCell() 1115 ** method. 1116 ** 1117 ** Parse a cell content block and fill in the CellInfo structure. 1118 ** 1119 ** btreeParseCellPtr() => table btree leaf nodes 1120 ** btreeParseCellNoPayload() => table btree internal nodes 1121 ** btreeParseCellPtrIndex() => index btree nodes 1122 ** 1123 ** There is also a wrapper function btreeParseCell() that works for 1124 ** all MemPage types and that references the cell by index rather than 1125 ** by pointer. 1126 */ 1127 static void btreeParseCellPtrNoPayload( 1128 MemPage *pPage, /* Page containing the cell */ 1129 u8 *pCell, /* Pointer to the cell text. */ 1130 CellInfo *pInfo /* Fill in this structure */ 1131 ){ 1132 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1133 assert( pPage->leaf==0 ); 1134 assert( pPage->childPtrSize==4 ); 1135 #ifndef SQLITE_DEBUG 1136 UNUSED_PARAMETER(pPage); 1137 #endif 1138 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1139 pInfo->nPayload = 0; 1140 pInfo->nLocal = 0; 1141 pInfo->pPayload = 0; 1142 return; 1143 } 1144 static void btreeParseCellPtr( 1145 MemPage *pPage, /* Page containing the cell */ 1146 u8 *pCell, /* Pointer to the cell text. */ 1147 CellInfo *pInfo /* Fill in this structure */ 1148 ){ 1149 u8 *pIter; /* For scanning through pCell */ 1150 u32 nPayload; /* Number of bytes of cell payload */ 1151 u64 iKey; /* Extracted Key value */ 1152 1153 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1154 assert( pPage->leaf==0 || pPage->leaf==1 ); 1155 assert( pPage->intKeyLeaf ); 1156 assert( pPage->childPtrSize==0 ); 1157 pIter = pCell; 1158 1159 /* The next block of code is equivalent to: 1160 ** 1161 ** pIter += getVarint32(pIter, nPayload); 1162 ** 1163 ** The code is inlined to avoid a function call. 1164 */ 1165 nPayload = *pIter; 1166 if( nPayload>=0x80 ){ 1167 u8 *pEnd = &pIter[8]; 1168 nPayload &= 0x7f; 1169 do{ 1170 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1171 }while( (*pIter)>=0x80 && pIter<pEnd ); 1172 } 1173 pIter++; 1174 1175 /* The next block of code is equivalent to: 1176 ** 1177 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1178 ** 1179 ** The code is inlined to avoid a function call. 1180 */ 1181 iKey = *pIter; 1182 if( iKey>=0x80 ){ 1183 u8 *pEnd = &pIter[7]; 1184 iKey &= 0x7f; 1185 while(1){ 1186 iKey = (iKey<<7) | (*++pIter & 0x7f); 1187 if( (*pIter)<0x80 ) break; 1188 if( pIter>=pEnd ){ 1189 iKey = (iKey<<8) | *++pIter; 1190 break; 1191 } 1192 } 1193 } 1194 pIter++; 1195 1196 pInfo->nKey = *(i64*)&iKey; 1197 pInfo->nPayload = nPayload; 1198 pInfo->pPayload = pIter; 1199 testcase( nPayload==pPage->maxLocal ); 1200 testcase( nPayload==pPage->maxLocal+1 ); 1201 if( nPayload<=pPage->maxLocal ){ 1202 /* This is the (easy) common case where the entire payload fits 1203 ** on the local page. No overflow is required. 1204 */ 1205 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1206 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1207 pInfo->nLocal = (u16)nPayload; 1208 }else{ 1209 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1210 } 1211 } 1212 static void btreeParseCellPtrIndex( 1213 MemPage *pPage, /* Page containing the cell */ 1214 u8 *pCell, /* Pointer to the cell text. */ 1215 CellInfo *pInfo /* Fill in this structure */ 1216 ){ 1217 u8 *pIter; /* For scanning through pCell */ 1218 u32 nPayload; /* Number of bytes of cell payload */ 1219 1220 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1221 assert( pPage->leaf==0 || pPage->leaf==1 ); 1222 assert( pPage->intKeyLeaf==0 ); 1223 pIter = pCell + pPage->childPtrSize; 1224 nPayload = *pIter; 1225 if( nPayload>=0x80 ){ 1226 u8 *pEnd = &pIter[8]; 1227 nPayload &= 0x7f; 1228 do{ 1229 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1230 }while( *(pIter)>=0x80 && pIter<pEnd ); 1231 } 1232 pIter++; 1233 pInfo->nKey = nPayload; 1234 pInfo->nPayload = nPayload; 1235 pInfo->pPayload = pIter; 1236 testcase( nPayload==pPage->maxLocal ); 1237 testcase( nPayload==pPage->maxLocal+1 ); 1238 if( nPayload<=pPage->maxLocal ){ 1239 /* This is the (easy) common case where the entire payload fits 1240 ** on the local page. No overflow is required. 1241 */ 1242 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1243 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1244 pInfo->nLocal = (u16)nPayload; 1245 }else{ 1246 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1247 } 1248 } 1249 static void btreeParseCell( 1250 MemPage *pPage, /* Page containing the cell */ 1251 int iCell, /* The cell index. First cell is 0 */ 1252 CellInfo *pInfo /* Fill in this structure */ 1253 ){ 1254 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1255 } 1256 1257 /* 1258 ** The following routines are implementations of the MemPage.xCellSize 1259 ** method. 1260 ** 1261 ** Compute the total number of bytes that a Cell needs in the cell 1262 ** data area of the btree-page. The return number includes the cell 1263 ** data header and the local payload, but not any overflow page or 1264 ** the space used by the cell pointer. 1265 ** 1266 ** cellSizePtrNoPayload() => table internal nodes 1267 ** cellSizePtr() => all index nodes & table leaf nodes 1268 */ 1269 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1270 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1271 u8 *pEnd; /* End mark for a varint */ 1272 u32 nSize; /* Size value to return */ 1273 1274 #ifdef SQLITE_DEBUG 1275 /* The value returned by this function should always be the same as 1276 ** the (CellInfo.nSize) value found by doing a full parse of the 1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1278 ** this function verifies that this invariant is not violated. */ 1279 CellInfo debuginfo; 1280 pPage->xParseCell(pPage, pCell, &debuginfo); 1281 #endif 1282 1283 nSize = *pIter; 1284 if( nSize>=0x80 ){ 1285 pEnd = &pIter[8]; 1286 nSize &= 0x7f; 1287 do{ 1288 nSize = (nSize<<7) | (*++pIter & 0x7f); 1289 }while( *(pIter)>=0x80 && pIter<pEnd ); 1290 } 1291 pIter++; 1292 if( pPage->intKey ){ 1293 /* pIter now points at the 64-bit integer key value, a variable length 1294 ** integer. The following block moves pIter to point at the first byte 1295 ** past the end of the key value. */ 1296 pEnd = &pIter[9]; 1297 while( (*pIter++)&0x80 && pIter<pEnd ); 1298 } 1299 testcase( nSize==pPage->maxLocal ); 1300 testcase( nSize==pPage->maxLocal+1 ); 1301 if( nSize<=pPage->maxLocal ){ 1302 nSize += (u32)(pIter - pCell); 1303 if( nSize<4 ) nSize = 4; 1304 }else{ 1305 int minLocal = pPage->minLocal; 1306 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1307 testcase( nSize==pPage->maxLocal ); 1308 testcase( nSize==pPage->maxLocal+1 ); 1309 if( nSize>pPage->maxLocal ){ 1310 nSize = minLocal; 1311 } 1312 nSize += 4 + (u16)(pIter - pCell); 1313 } 1314 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1315 return (u16)nSize; 1316 } 1317 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1318 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1319 u8 *pEnd; /* End mark for a varint */ 1320 1321 #ifdef SQLITE_DEBUG 1322 /* The value returned by this function should always be the same as 1323 ** the (CellInfo.nSize) value found by doing a full parse of the 1324 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1325 ** this function verifies that this invariant is not violated. */ 1326 CellInfo debuginfo; 1327 pPage->xParseCell(pPage, pCell, &debuginfo); 1328 #else 1329 UNUSED_PARAMETER(pPage); 1330 #endif 1331 1332 assert( pPage->childPtrSize==4 ); 1333 pEnd = pIter + 9; 1334 while( (*pIter++)&0x80 && pIter<pEnd ); 1335 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1336 return (u16)(pIter - pCell); 1337 } 1338 1339 1340 #ifdef SQLITE_DEBUG 1341 /* This variation on cellSizePtr() is used inside of assert() statements 1342 ** only. */ 1343 static u16 cellSize(MemPage *pPage, int iCell){ 1344 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1345 } 1346 #endif 1347 1348 #ifndef SQLITE_OMIT_AUTOVACUUM 1349 /* 1350 ** If the cell pCell, part of page pPage contains a pointer 1351 ** to an overflow page, insert an entry into the pointer-map 1352 ** for the overflow page. 1353 */ 1354 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ 1355 CellInfo info; 1356 if( *pRC ) return; 1357 assert( pCell!=0 ); 1358 pPage->xParseCell(pPage, pCell, &info); 1359 if( info.nLocal<info.nPayload ){ 1360 Pgno ovfl = get4byte(&pCell[info.nSize-4]); 1361 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1362 } 1363 } 1364 #endif 1365 1366 1367 /* 1368 ** Defragment the page given. This routine reorganizes cells within the 1369 ** page so that there are no free-blocks on the free-block list. 1370 ** 1371 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1372 ** present in the page after this routine returns. 1373 ** 1374 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1375 ** b-tree page so that there are no freeblocks or fragment bytes, all 1376 ** unused bytes are contained in the unallocated space region, and all 1377 ** cells are packed tightly at the end of the page. 1378 */ 1379 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1380 int i; /* Loop counter */ 1381 int pc; /* Address of the i-th cell */ 1382 int hdr; /* Offset to the page header */ 1383 int size; /* Size of a cell */ 1384 int usableSize; /* Number of usable bytes on a page */ 1385 int cellOffset; /* Offset to the cell pointer array */ 1386 int cbrk; /* Offset to the cell content area */ 1387 int nCell; /* Number of cells on the page */ 1388 unsigned char *data; /* The page data */ 1389 unsigned char *temp; /* Temp area for cell content */ 1390 unsigned char *src; /* Source of content */ 1391 int iCellFirst; /* First allowable cell index */ 1392 int iCellLast; /* Last possible cell index */ 1393 1394 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1395 assert( pPage->pBt!=0 ); 1396 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1397 assert( pPage->nOverflow==0 ); 1398 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1399 temp = 0; 1400 src = data = pPage->aData; 1401 hdr = pPage->hdrOffset; 1402 cellOffset = pPage->cellOffset; 1403 nCell = pPage->nCell; 1404 assert( nCell==get2byte(&data[hdr+3]) ); 1405 iCellFirst = cellOffset + 2*nCell; 1406 usableSize = pPage->pBt->usableSize; 1407 1408 /* This block handles pages with two or fewer free blocks and nMaxFrag 1409 ** or fewer fragmented bytes. In this case it is faster to move the 1410 ** two (or one) blocks of cells using memmove() and add the required 1411 ** offsets to each pointer in the cell-pointer array than it is to 1412 ** reconstruct the entire page. */ 1413 if( (int)data[hdr+7]<=nMaxFrag ){ 1414 int iFree = get2byte(&data[hdr+1]); 1415 if( iFree ){ 1416 int iFree2 = get2byte(&data[iFree]); 1417 1418 /* pageFindSlot() has already verified that free blocks are sorted 1419 ** in order of offset within the page, and that no block extends 1420 ** past the end of the page. Provided the two free slots do not 1421 ** overlap, this guarantees that the memmove() calls below will not 1422 ** overwrite the usableSize byte buffer, even if the database page 1423 ** is corrupt. */ 1424 assert( iFree2==0 || iFree2>iFree ); 1425 assert( iFree+get2byte(&data[iFree+2]) <= usableSize ); 1426 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize ); 1427 1428 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1429 u8 *pEnd = &data[cellOffset + nCell*2]; 1430 u8 *pAddr; 1431 int sz2 = 0; 1432 int sz = get2byte(&data[iFree+2]); 1433 int top = get2byte(&data[hdr+5]); 1434 if( top>=iFree ){ 1435 return SQLITE_CORRUPT_PAGE(pPage); 1436 } 1437 if( iFree2 ){ 1438 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */ 1439 sz2 = get2byte(&data[iFree2+2]); 1440 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize ); 1441 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1442 sz += sz2; 1443 } 1444 cbrk = top+sz; 1445 assert( cbrk+(iFree-top) <= usableSize ); 1446 memmove(&data[cbrk], &data[top], iFree-top); 1447 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1448 pc = get2byte(pAddr); 1449 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1450 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1451 } 1452 goto defragment_out; 1453 } 1454 } 1455 } 1456 1457 cbrk = usableSize; 1458 iCellLast = usableSize - 4; 1459 for(i=0; i<nCell; i++){ 1460 u8 *pAddr; /* The i-th cell pointer */ 1461 pAddr = &data[cellOffset + i*2]; 1462 pc = get2byte(pAddr); 1463 testcase( pc==iCellFirst ); 1464 testcase( pc==iCellLast ); 1465 /* These conditions have already been verified in btreeInitPage() 1466 ** if PRAGMA cell_size_check=ON. 1467 */ 1468 if( pc<iCellFirst || pc>iCellLast ){ 1469 return SQLITE_CORRUPT_PAGE(pPage); 1470 } 1471 assert( pc>=iCellFirst && pc<=iCellLast ); 1472 size = pPage->xCellSize(pPage, &src[pc]); 1473 cbrk -= size; 1474 if( cbrk<iCellFirst || pc+size>usableSize ){ 1475 return SQLITE_CORRUPT_PAGE(pPage); 1476 } 1477 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); 1478 testcase( cbrk+size==usableSize ); 1479 testcase( pc+size==usableSize ); 1480 put2byte(pAddr, cbrk); 1481 if( temp==0 ){ 1482 int x; 1483 if( cbrk==pc ) continue; 1484 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1485 x = get2byte(&data[hdr+5]); 1486 memcpy(&temp[x], &data[x], (cbrk+size) - x); 1487 src = temp; 1488 } 1489 memcpy(&data[cbrk], &src[pc], size); 1490 } 1491 data[hdr+7] = 0; 1492 1493 defragment_out: 1494 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1495 return SQLITE_CORRUPT_PAGE(pPage); 1496 } 1497 assert( cbrk>=iCellFirst ); 1498 put2byte(&data[hdr+5], cbrk); 1499 data[hdr+1] = 0; 1500 data[hdr+2] = 0; 1501 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1502 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1503 return SQLITE_OK; 1504 } 1505 1506 /* 1507 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1508 ** size. If one can be found, return a pointer to the space and remove it 1509 ** from the free-list. 1510 ** 1511 ** If no suitable space can be found on the free-list, return NULL. 1512 ** 1513 ** This function may detect corruption within pPg. If corruption is 1514 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1515 ** 1516 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1517 ** will be ignored if adding the extra space to the fragmentation count 1518 ** causes the fragmentation count to exceed 60. 1519 */ 1520 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1521 const int hdr = pPg->hdrOffset; 1522 u8 * const aData = pPg->aData; 1523 int iAddr = hdr + 1; 1524 int pc = get2byte(&aData[iAddr]); 1525 int x; 1526 int usableSize = pPg->pBt->usableSize; 1527 int size; /* Size of the free slot */ 1528 1529 assert( pc>0 ); 1530 while( pc<=usableSize-4 ){ 1531 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1532 ** freeblock form a big-endian integer which is the size of the freeblock 1533 ** in bytes, including the 4-byte header. */ 1534 size = get2byte(&aData[pc+2]); 1535 if( (x = size - nByte)>=0 ){ 1536 testcase( x==4 ); 1537 testcase( x==3 ); 1538 if( size+pc > usableSize ){ 1539 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1540 return 0; 1541 }else if( x<4 ){ 1542 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1543 ** number of bytes in fragments may not exceed 60. */ 1544 if( aData[hdr+7]>57 ) return 0; 1545 1546 /* Remove the slot from the free-list. Update the number of 1547 ** fragmented bytes within the page. */ 1548 memcpy(&aData[iAddr], &aData[pc], 2); 1549 aData[hdr+7] += (u8)x; 1550 }else{ 1551 /* The slot remains on the free-list. Reduce its size to account 1552 ** for the portion used by the new allocation. */ 1553 put2byte(&aData[pc+2], x); 1554 } 1555 return &aData[pc + x]; 1556 } 1557 iAddr = pc; 1558 pc = get2byte(&aData[pc]); 1559 if( pc<iAddr+size ) break; 1560 } 1561 if( pc ){ 1562 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1563 } 1564 1565 return 0; 1566 } 1567 1568 /* 1569 ** Allocate nByte bytes of space from within the B-Tree page passed 1570 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1571 ** of the first byte of allocated space. Return either SQLITE_OK or 1572 ** an error code (usually SQLITE_CORRUPT). 1573 ** 1574 ** The caller guarantees that there is sufficient space to make the 1575 ** allocation. This routine might need to defragment in order to bring 1576 ** all the space together, however. This routine will avoid using 1577 ** the first two bytes past the cell pointer area since presumably this 1578 ** allocation is being made in order to insert a new cell, so we will 1579 ** also end up needing a new cell pointer. 1580 */ 1581 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1582 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1583 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1584 int top; /* First byte of cell content area */ 1585 int rc = SQLITE_OK; /* Integer return code */ 1586 int gap; /* First byte of gap between cell pointers and cell content */ 1587 1588 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1589 assert( pPage->pBt ); 1590 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1591 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1592 assert( pPage->nFree>=nByte ); 1593 assert( pPage->nOverflow==0 ); 1594 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1595 1596 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1597 gap = pPage->cellOffset + 2*pPage->nCell; 1598 assert( gap<=65536 ); 1599 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1600 ** and the reserved space is zero (the usual value for reserved space) 1601 ** then the cell content offset of an empty page wants to be 65536. 1602 ** However, that integer is too large to be stored in a 2-byte unsigned 1603 ** integer, so a value of 0 is used in its place. */ 1604 top = get2byte(&data[hdr+5]); 1605 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ 1606 if( gap>top ){ 1607 if( top==0 && pPage->pBt->usableSize==65536 ){ 1608 top = 65536; 1609 }else{ 1610 return SQLITE_CORRUPT_PAGE(pPage); 1611 } 1612 } 1613 1614 /* If there is enough space between gap and top for one more cell pointer 1615 ** array entry offset, and if the freelist is not empty, then search the 1616 ** freelist looking for a free slot big enough to satisfy the request. 1617 */ 1618 testcase( gap+2==top ); 1619 testcase( gap+1==top ); 1620 testcase( gap==top ); 1621 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1622 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1623 if( pSpace ){ 1624 assert( pSpace>=data && (pSpace - data)<65536 ); 1625 *pIdx = (int)(pSpace - data); 1626 return SQLITE_OK; 1627 }else if( rc ){ 1628 return rc; 1629 } 1630 } 1631 1632 /* The request could not be fulfilled using a freelist slot. Check 1633 ** to see if defragmentation is necessary. 1634 */ 1635 testcase( gap+2+nByte==top ); 1636 if( gap+2+nByte>top ){ 1637 assert( pPage->nCell>0 || CORRUPT_DB ); 1638 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1639 if( rc ) return rc; 1640 top = get2byteNotZero(&data[hdr+5]); 1641 assert( gap+2+nByte<=top ); 1642 } 1643 1644 1645 /* Allocate memory from the gap in between the cell pointer array 1646 ** and the cell content area. The btreeInitPage() call has already 1647 ** validated the freelist. Given that the freelist is valid, there 1648 ** is no way that the allocation can extend off the end of the page. 1649 ** The assert() below verifies the previous sentence. 1650 */ 1651 top -= nByte; 1652 put2byte(&data[hdr+5], top); 1653 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1654 *pIdx = top; 1655 return SQLITE_OK; 1656 } 1657 1658 /* 1659 ** Return a section of the pPage->aData to the freelist. 1660 ** The first byte of the new free block is pPage->aData[iStart] 1661 ** and the size of the block is iSize bytes. 1662 ** 1663 ** Adjacent freeblocks are coalesced. 1664 ** 1665 ** Note that even though the freeblock list was checked by btreeInitPage(), 1666 ** that routine will not detect overlap between cells or freeblocks. Nor 1667 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1668 ** at the end of the page. So do additional corruption checks inside this 1669 ** routine and return SQLITE_CORRUPT if any problems are found. 1670 */ 1671 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1672 u16 iPtr; /* Address of ptr to next freeblock */ 1673 u16 iFreeBlk; /* Address of the next freeblock */ 1674 u8 hdr; /* Page header size. 0 or 100 */ 1675 u8 nFrag = 0; /* Reduction in fragmentation */ 1676 u16 iOrigSize = iSize; /* Original value of iSize */ 1677 u16 x; /* Offset to cell content area */ 1678 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1679 unsigned char *data = pPage->aData; /* Page content */ 1680 1681 assert( pPage->pBt!=0 ); 1682 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1683 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1684 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1685 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1686 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1687 assert( iStart<=pPage->pBt->usableSize-4 ); 1688 1689 /* The list of freeblocks must be in ascending order. Find the 1690 ** spot on the list where iStart should be inserted. 1691 */ 1692 hdr = pPage->hdrOffset; 1693 iPtr = hdr + 1; 1694 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1695 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1696 }else{ 1697 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1698 if( iFreeBlk<iPtr+4 ){ 1699 if( iFreeBlk==0 ) break; 1700 return SQLITE_CORRUPT_PAGE(pPage); 1701 } 1702 iPtr = iFreeBlk; 1703 } 1704 if( iFreeBlk>pPage->pBt->usableSize-4 ){ 1705 return SQLITE_CORRUPT_PAGE(pPage); 1706 } 1707 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1708 1709 /* At this point: 1710 ** iFreeBlk: First freeblock after iStart, or zero if none 1711 ** iPtr: The address of a pointer to iFreeBlk 1712 ** 1713 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1714 */ 1715 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1716 nFrag = iFreeBlk - iEnd; 1717 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1718 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1719 if( iEnd > pPage->pBt->usableSize ){ 1720 return SQLITE_CORRUPT_PAGE(pPage); 1721 } 1722 iSize = iEnd - iStart; 1723 iFreeBlk = get2byte(&data[iFreeBlk]); 1724 } 1725 1726 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1727 ** pointer in the page header) then check to see if iStart should be 1728 ** coalesced onto the end of iPtr. 1729 */ 1730 if( iPtr>hdr+1 ){ 1731 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1732 if( iPtrEnd+3>=iStart ){ 1733 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1734 nFrag += iStart - iPtrEnd; 1735 iSize = iEnd - iPtr; 1736 iStart = iPtr; 1737 } 1738 } 1739 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1740 data[hdr+7] -= nFrag; 1741 } 1742 x = get2byte(&data[hdr+5]); 1743 if( iStart<=x ){ 1744 /* The new freeblock is at the beginning of the cell content area, 1745 ** so just extend the cell content area rather than create another 1746 ** freelist entry */ 1747 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1748 put2byte(&data[hdr+1], iFreeBlk); 1749 put2byte(&data[hdr+5], iEnd); 1750 }else{ 1751 /* Insert the new freeblock into the freelist */ 1752 put2byte(&data[iPtr], iStart); 1753 } 1754 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1755 /* Overwrite deleted information with zeros when the secure_delete 1756 ** option is enabled */ 1757 memset(&data[iStart], 0, iSize); 1758 } 1759 put2byte(&data[iStart], iFreeBlk); 1760 put2byte(&data[iStart+2], iSize); 1761 pPage->nFree += iOrigSize; 1762 return SQLITE_OK; 1763 } 1764 1765 /* 1766 ** Decode the flags byte (the first byte of the header) for a page 1767 ** and initialize fields of the MemPage structure accordingly. 1768 ** 1769 ** Only the following combinations are supported. Anything different 1770 ** indicates a corrupt database files: 1771 ** 1772 ** PTF_ZERODATA 1773 ** PTF_ZERODATA | PTF_LEAF 1774 ** PTF_LEAFDATA | PTF_INTKEY 1775 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1776 */ 1777 static int decodeFlags(MemPage *pPage, int flagByte){ 1778 BtShared *pBt; /* A copy of pPage->pBt */ 1779 1780 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1781 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1782 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1783 flagByte &= ~PTF_LEAF; 1784 pPage->childPtrSize = 4-4*pPage->leaf; 1785 pPage->xCellSize = cellSizePtr; 1786 pBt = pPage->pBt; 1787 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1788 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1789 ** interior table b-tree page. */ 1790 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1791 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1792 ** leaf table b-tree page. */ 1793 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1794 pPage->intKey = 1; 1795 if( pPage->leaf ){ 1796 pPage->intKeyLeaf = 1; 1797 pPage->xParseCell = btreeParseCellPtr; 1798 }else{ 1799 pPage->intKeyLeaf = 0; 1800 pPage->xCellSize = cellSizePtrNoPayload; 1801 pPage->xParseCell = btreeParseCellPtrNoPayload; 1802 } 1803 pPage->maxLocal = pBt->maxLeaf; 1804 pPage->minLocal = pBt->minLeaf; 1805 }else if( flagByte==PTF_ZERODATA ){ 1806 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1807 ** interior index b-tree page. */ 1808 assert( (PTF_ZERODATA)==2 ); 1809 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1810 ** leaf index b-tree page. */ 1811 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1812 pPage->intKey = 0; 1813 pPage->intKeyLeaf = 0; 1814 pPage->xParseCell = btreeParseCellPtrIndex; 1815 pPage->maxLocal = pBt->maxLocal; 1816 pPage->minLocal = pBt->minLocal; 1817 }else{ 1818 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1819 ** an error. */ 1820 return SQLITE_CORRUPT_PAGE(pPage); 1821 } 1822 pPage->max1bytePayload = pBt->max1bytePayload; 1823 return SQLITE_OK; 1824 } 1825 1826 /* 1827 ** Initialize the auxiliary information for a disk block. 1828 ** 1829 ** Return SQLITE_OK on success. If we see that the page does 1830 ** not contain a well-formed database page, then return 1831 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 1832 ** guarantee that the page is well-formed. It only shows that 1833 ** we failed to detect any corruption. 1834 */ 1835 static int btreeInitPage(MemPage *pPage){ 1836 int pc; /* Address of a freeblock within pPage->aData[] */ 1837 u8 hdr; /* Offset to beginning of page header */ 1838 u8 *data; /* Equal to pPage->aData */ 1839 BtShared *pBt; /* The main btree structure */ 1840 int usableSize; /* Amount of usable space on each page */ 1841 u16 cellOffset; /* Offset from start of page to first cell pointer */ 1842 int nFree; /* Number of unused bytes on the page */ 1843 int top; /* First byte of the cell content area */ 1844 int iCellFirst; /* First allowable cell or freeblock offset */ 1845 int iCellLast; /* Last possible cell or freeblock offset */ 1846 1847 assert( pPage->pBt!=0 ); 1848 assert( pPage->pBt->db!=0 ); 1849 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1850 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1851 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1852 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1853 assert( pPage->isInit==0 ); 1854 1855 pBt = pPage->pBt; 1856 hdr = pPage->hdrOffset; 1857 data = pPage->aData; 1858 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 1859 ** the b-tree page type. */ 1860 if( decodeFlags(pPage, data[hdr]) ){ 1861 return SQLITE_CORRUPT_PAGE(pPage); 1862 } 1863 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 1864 pPage->maskPage = (u16)(pBt->pageSize - 1); 1865 pPage->nOverflow = 0; 1866 usableSize = pBt->usableSize; 1867 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; 1868 pPage->aDataEnd = &data[usableSize]; 1869 pPage->aCellIdx = &data[cellOffset]; 1870 pPage->aDataOfst = &data[pPage->childPtrSize]; 1871 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1872 ** the start of the cell content area. A zero value for this integer is 1873 ** interpreted as 65536. */ 1874 top = get2byteNotZero(&data[hdr+5]); 1875 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 1876 ** number of cells on the page. */ 1877 pPage->nCell = get2byte(&data[hdr+3]); 1878 if( pPage->nCell>MX_CELL(pBt) ){ 1879 /* To many cells for a single page. The page must be corrupt */ 1880 return SQLITE_CORRUPT_PAGE(pPage); 1881 } 1882 testcase( pPage->nCell==MX_CELL(pBt) ); 1883 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 1884 ** possible for a root page of a table that contains no rows) then the 1885 ** offset to the cell content area will equal the page size minus the 1886 ** bytes of reserved space. */ 1887 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); 1888 1889 /* A malformed database page might cause us to read past the end 1890 ** of page when parsing a cell. 1891 ** 1892 ** The following block of code checks early to see if a cell extends 1893 ** past the end of a page boundary and causes SQLITE_CORRUPT to be 1894 ** returned if it does. 1895 */ 1896 iCellFirst = cellOffset + 2*pPage->nCell; 1897 iCellLast = usableSize - 4; 1898 if( pBt->db->flags & SQLITE_CellSizeCk ){ 1899 int i; /* Index into the cell pointer array */ 1900 int sz; /* Size of a cell */ 1901 1902 if( !pPage->leaf ) iCellLast--; 1903 for(i=0; i<pPage->nCell; i++){ 1904 pc = get2byteAligned(&data[cellOffset+i*2]); 1905 testcase( pc==iCellFirst ); 1906 testcase( pc==iCellLast ); 1907 if( pc<iCellFirst || pc>iCellLast ){ 1908 return SQLITE_CORRUPT_PAGE(pPage); 1909 } 1910 sz = pPage->xCellSize(pPage, &data[pc]); 1911 testcase( pc+sz==usableSize ); 1912 if( pc+sz>usableSize ){ 1913 return SQLITE_CORRUPT_PAGE(pPage); 1914 } 1915 } 1916 if( !pPage->leaf ) iCellLast++; 1917 } 1918 1919 /* Compute the total free space on the page 1920 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1921 ** start of the first freeblock on the page, or is zero if there are no 1922 ** freeblocks. */ 1923 pc = get2byte(&data[hdr+1]); 1924 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1925 if( pc>0 ){ 1926 u32 next, size; 1927 if( pc<iCellFirst ){ 1928 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1929 ** always be at least one cell before the first freeblock. 1930 */ 1931 return SQLITE_CORRUPT_PAGE(pPage); 1932 } 1933 while( 1 ){ 1934 if( pc>iCellLast ){ 1935 /* Freeblock off the end of the page */ 1936 return SQLITE_CORRUPT_PAGE(pPage); 1937 } 1938 next = get2byte(&data[pc]); 1939 size = get2byte(&data[pc+2]); 1940 nFree = nFree + size; 1941 if( next<=pc+size+3 ) break; 1942 pc = next; 1943 } 1944 if( next>0 ){ 1945 /* Freeblock not in ascending order */ 1946 return SQLITE_CORRUPT_PAGE(pPage); 1947 } 1948 if( pc+size>(unsigned int)usableSize ){ 1949 /* Last freeblock extends past page end */ 1950 return SQLITE_CORRUPT_PAGE(pPage); 1951 } 1952 } 1953 1954 /* At this point, nFree contains the sum of the offset to the start 1955 ** of the cell-content area plus the number of free bytes within 1956 ** the cell-content area. If this is greater than the usable-size 1957 ** of the page, then the page must be corrupted. This check also 1958 ** serves to verify that the offset to the start of the cell-content 1959 ** area, according to the page header, lies within the page. 1960 */ 1961 if( nFree>usableSize ){ 1962 return SQLITE_CORRUPT_PAGE(pPage); 1963 } 1964 pPage->nFree = (u16)(nFree - iCellFirst); 1965 pPage->isInit = 1; 1966 return SQLITE_OK; 1967 } 1968 1969 /* 1970 ** Set up a raw page so that it looks like a database page holding 1971 ** no entries. 1972 */ 1973 static void zeroPage(MemPage *pPage, int flags){ 1974 unsigned char *data = pPage->aData; 1975 BtShared *pBt = pPage->pBt; 1976 u8 hdr = pPage->hdrOffset; 1977 u16 first; 1978 1979 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 1980 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 1981 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 1982 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1983 assert( sqlite3_mutex_held(pBt->mutex) ); 1984 if( pBt->btsFlags & BTS_FAST_SECURE ){ 1985 memset(&data[hdr], 0, pBt->usableSize - hdr); 1986 } 1987 data[hdr] = (char)flags; 1988 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 1989 memset(&data[hdr+1], 0, 4); 1990 data[hdr+7] = 0; 1991 put2byte(&data[hdr+5], pBt->usableSize); 1992 pPage->nFree = (u16)(pBt->usableSize - first); 1993 decodeFlags(pPage, flags); 1994 pPage->cellOffset = first; 1995 pPage->aDataEnd = &data[pBt->usableSize]; 1996 pPage->aCellIdx = &data[first]; 1997 pPage->aDataOfst = &data[pPage->childPtrSize]; 1998 pPage->nOverflow = 0; 1999 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2000 pPage->maskPage = (u16)(pBt->pageSize - 1); 2001 pPage->nCell = 0; 2002 pPage->isInit = 1; 2003 } 2004 2005 2006 /* 2007 ** Convert a DbPage obtained from the pager into a MemPage used by 2008 ** the btree layer. 2009 */ 2010 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2011 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2012 if( pgno!=pPage->pgno ){ 2013 pPage->aData = sqlite3PagerGetData(pDbPage); 2014 pPage->pDbPage = pDbPage; 2015 pPage->pBt = pBt; 2016 pPage->pgno = pgno; 2017 pPage->hdrOffset = pgno==1 ? 100 : 0; 2018 } 2019 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2020 return pPage; 2021 } 2022 2023 /* 2024 ** Get a page from the pager. Initialize the MemPage.pBt and 2025 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2026 ** 2027 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2028 ** about the content of the page at this time. So do not go to the disk 2029 ** to fetch the content. Just fill in the content with zeros for now. 2030 ** If in the future we call sqlite3PagerWrite() on this page, that 2031 ** means we have started to be concerned about content and the disk 2032 ** read should occur at that point. 2033 */ 2034 static int btreeGetPage( 2035 BtShared *pBt, /* The btree */ 2036 Pgno pgno, /* Number of the page to fetch */ 2037 MemPage **ppPage, /* Return the page in this parameter */ 2038 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2039 ){ 2040 int rc; 2041 DbPage *pDbPage; 2042 2043 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2044 assert( sqlite3_mutex_held(pBt->mutex) ); 2045 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2046 if( rc ) return rc; 2047 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2048 return SQLITE_OK; 2049 } 2050 2051 /* 2052 ** Retrieve a page from the pager cache. If the requested page is not 2053 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2054 ** MemPage.aData elements if needed. 2055 */ 2056 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2057 DbPage *pDbPage; 2058 assert( sqlite3_mutex_held(pBt->mutex) ); 2059 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2060 if( pDbPage ){ 2061 return btreePageFromDbPage(pDbPage, pgno, pBt); 2062 } 2063 return 0; 2064 } 2065 2066 /* 2067 ** Return the size of the database file in pages. If there is any kind of 2068 ** error, return ((unsigned int)-1). 2069 */ 2070 static Pgno btreePagecount(BtShared *pBt){ 2071 return pBt->nPage; 2072 } 2073 u32 sqlite3BtreeLastPage(Btree *p){ 2074 assert( sqlite3BtreeHoldsMutex(p) ); 2075 assert( ((p->pBt->nPage)&0x80000000)==0 ); 2076 return btreePagecount(p->pBt); 2077 } 2078 2079 /* 2080 ** Get a page from the pager and initialize it. 2081 ** 2082 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2083 ** call. Do additional sanity checking on the page in this case. 2084 ** And if the fetch fails, this routine must decrement pCur->iPage. 2085 ** 2086 ** The page is fetched as read-write unless pCur is not NULL and is 2087 ** a read-only cursor. 2088 ** 2089 ** If an error occurs, then *ppPage is undefined. It 2090 ** may remain unchanged, or it may be set to an invalid value. 2091 */ 2092 static int getAndInitPage( 2093 BtShared *pBt, /* The database file */ 2094 Pgno pgno, /* Number of the page to get */ 2095 MemPage **ppPage, /* Write the page pointer here */ 2096 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2097 int bReadOnly /* True for a read-only page */ 2098 ){ 2099 int rc; 2100 DbPage *pDbPage; 2101 assert( sqlite3_mutex_held(pBt->mutex) ); 2102 assert( pCur==0 || ppPage==&pCur->pPage ); 2103 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2104 assert( pCur==0 || pCur->iPage>0 ); 2105 2106 if( pgno>btreePagecount(pBt) ){ 2107 rc = SQLITE_CORRUPT_BKPT; 2108 goto getAndInitPage_error; 2109 } 2110 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2111 if( rc ){ 2112 goto getAndInitPage_error; 2113 } 2114 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2115 if( (*ppPage)->isInit==0 ){ 2116 btreePageFromDbPage(pDbPage, pgno, pBt); 2117 rc = btreeInitPage(*ppPage); 2118 if( rc!=SQLITE_OK ){ 2119 releasePage(*ppPage); 2120 goto getAndInitPage_error; 2121 } 2122 } 2123 assert( (*ppPage)->pgno==pgno ); 2124 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2125 2126 /* If obtaining a child page for a cursor, we must verify that the page is 2127 ** compatible with the root page. */ 2128 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2129 rc = SQLITE_CORRUPT_PGNO(pgno); 2130 releasePage(*ppPage); 2131 goto getAndInitPage_error; 2132 } 2133 return SQLITE_OK; 2134 2135 getAndInitPage_error: 2136 if( pCur ){ 2137 pCur->iPage--; 2138 pCur->pPage = pCur->apPage[pCur->iPage]; 2139 } 2140 testcase( pgno==0 ); 2141 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2142 return rc; 2143 } 2144 2145 /* 2146 ** Release a MemPage. This should be called once for each prior 2147 ** call to btreeGetPage. 2148 ** 2149 ** Page1 is a special case and must be released using releasePageOne(). 2150 */ 2151 static void releasePageNotNull(MemPage *pPage){ 2152 assert( pPage->aData ); 2153 assert( pPage->pBt ); 2154 assert( pPage->pDbPage!=0 ); 2155 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2156 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2157 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2158 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2159 } 2160 static void releasePage(MemPage *pPage){ 2161 if( pPage ) releasePageNotNull(pPage); 2162 } 2163 static void releasePageOne(MemPage *pPage){ 2164 assert( pPage!=0 ); 2165 assert( pPage->aData ); 2166 assert( pPage->pBt ); 2167 assert( pPage->pDbPage!=0 ); 2168 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2169 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2170 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2171 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2172 } 2173 2174 /* 2175 ** Get an unused page. 2176 ** 2177 ** This works just like btreeGetPage() with the addition: 2178 ** 2179 ** * If the page is already in use for some other purpose, immediately 2180 ** release it and return an SQLITE_CURRUPT error. 2181 ** * Make sure the isInit flag is clear 2182 */ 2183 static int btreeGetUnusedPage( 2184 BtShared *pBt, /* The btree */ 2185 Pgno pgno, /* Number of the page to fetch */ 2186 MemPage **ppPage, /* Return the page in this parameter */ 2187 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2188 ){ 2189 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2190 if( rc==SQLITE_OK ){ 2191 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2192 releasePage(*ppPage); 2193 *ppPage = 0; 2194 return SQLITE_CORRUPT_BKPT; 2195 } 2196 (*ppPage)->isInit = 0; 2197 }else{ 2198 *ppPage = 0; 2199 } 2200 return rc; 2201 } 2202 2203 2204 /* 2205 ** During a rollback, when the pager reloads information into the cache 2206 ** so that the cache is restored to its original state at the start of 2207 ** the transaction, for each page restored this routine is called. 2208 ** 2209 ** This routine needs to reset the extra data section at the end of the 2210 ** page to agree with the restored data. 2211 */ 2212 static void pageReinit(DbPage *pData){ 2213 MemPage *pPage; 2214 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2215 assert( sqlite3PagerPageRefcount(pData)>0 ); 2216 if( pPage->isInit ){ 2217 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2218 pPage->isInit = 0; 2219 if( sqlite3PagerPageRefcount(pData)>1 ){ 2220 /* pPage might not be a btree page; it might be an overflow page 2221 ** or ptrmap page or a free page. In those cases, the following 2222 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2223 ** But no harm is done by this. And it is very important that 2224 ** btreeInitPage() be called on every btree page so we make 2225 ** the call for every page that comes in for re-initing. */ 2226 btreeInitPage(pPage); 2227 } 2228 } 2229 } 2230 2231 /* 2232 ** Invoke the busy handler for a btree. 2233 */ 2234 static int btreeInvokeBusyHandler(void *pArg){ 2235 BtShared *pBt = (BtShared*)pArg; 2236 assert( pBt->db ); 2237 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2238 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler, 2239 sqlite3PagerFile(pBt->pPager)); 2240 } 2241 2242 /* 2243 ** Open a database file. 2244 ** 2245 ** zFilename is the name of the database file. If zFilename is NULL 2246 ** then an ephemeral database is created. The ephemeral database might 2247 ** be exclusively in memory, or it might use a disk-based memory cache. 2248 ** Either way, the ephemeral database will be automatically deleted 2249 ** when sqlite3BtreeClose() is called. 2250 ** 2251 ** If zFilename is ":memory:" then an in-memory database is created 2252 ** that is automatically destroyed when it is closed. 2253 ** 2254 ** The "flags" parameter is a bitmask that might contain bits like 2255 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2256 ** 2257 ** If the database is already opened in the same database connection 2258 ** and we are in shared cache mode, then the open will fail with an 2259 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2260 ** objects in the same database connection since doing so will lead 2261 ** to problems with locking. 2262 */ 2263 int sqlite3BtreeOpen( 2264 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2265 const char *zFilename, /* Name of the file containing the BTree database */ 2266 sqlite3 *db, /* Associated database handle */ 2267 Btree **ppBtree, /* Pointer to new Btree object written here */ 2268 int flags, /* Options */ 2269 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2270 ){ 2271 BtShared *pBt = 0; /* Shared part of btree structure */ 2272 Btree *p; /* Handle to return */ 2273 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2274 int rc = SQLITE_OK; /* Result code from this function */ 2275 u8 nReserve; /* Byte of unused space on each page */ 2276 unsigned char zDbHeader[100]; /* Database header content */ 2277 2278 /* True if opening an ephemeral, temporary database */ 2279 const int isTempDb = zFilename==0 || zFilename[0]==0; 2280 2281 /* Set the variable isMemdb to true for an in-memory database, or 2282 ** false for a file-based database. 2283 */ 2284 #ifdef SQLITE_OMIT_MEMORYDB 2285 const int isMemdb = 0; 2286 #else 2287 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2288 || (isTempDb && sqlite3TempInMemory(db)) 2289 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2290 #endif 2291 2292 assert( db!=0 ); 2293 assert( pVfs!=0 ); 2294 assert( sqlite3_mutex_held(db->mutex) ); 2295 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2296 2297 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2298 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2299 2300 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2301 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2302 2303 if( isMemdb ){ 2304 flags |= BTREE_MEMORY; 2305 } 2306 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2307 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2308 } 2309 p = sqlite3MallocZero(sizeof(Btree)); 2310 if( !p ){ 2311 return SQLITE_NOMEM_BKPT; 2312 } 2313 p->inTrans = TRANS_NONE; 2314 p->db = db; 2315 #ifndef SQLITE_OMIT_SHARED_CACHE 2316 p->lock.pBtree = p; 2317 p->lock.iTable = 1; 2318 #endif 2319 2320 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2321 /* 2322 ** If this Btree is a candidate for shared cache, try to find an 2323 ** existing BtShared object that we can share with 2324 */ 2325 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2326 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2327 int nFilename = sqlite3Strlen30(zFilename)+1; 2328 int nFullPathname = pVfs->mxPathname+1; 2329 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2330 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2331 2332 p->sharable = 1; 2333 if( !zFullPathname ){ 2334 sqlite3_free(p); 2335 return SQLITE_NOMEM_BKPT; 2336 } 2337 if( isMemdb ){ 2338 memcpy(zFullPathname, zFilename, nFilename); 2339 }else{ 2340 rc = sqlite3OsFullPathname(pVfs, zFilename, 2341 nFullPathname, zFullPathname); 2342 if( rc ){ 2343 sqlite3_free(zFullPathname); 2344 sqlite3_free(p); 2345 return rc; 2346 } 2347 } 2348 #if SQLITE_THREADSAFE 2349 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2350 sqlite3_mutex_enter(mutexOpen); 2351 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 2352 sqlite3_mutex_enter(mutexShared); 2353 #endif 2354 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2355 assert( pBt->nRef>0 ); 2356 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2357 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2358 int iDb; 2359 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2360 Btree *pExisting = db->aDb[iDb].pBt; 2361 if( pExisting && pExisting->pBt==pBt ){ 2362 sqlite3_mutex_leave(mutexShared); 2363 sqlite3_mutex_leave(mutexOpen); 2364 sqlite3_free(zFullPathname); 2365 sqlite3_free(p); 2366 return SQLITE_CONSTRAINT; 2367 } 2368 } 2369 p->pBt = pBt; 2370 pBt->nRef++; 2371 break; 2372 } 2373 } 2374 sqlite3_mutex_leave(mutexShared); 2375 sqlite3_free(zFullPathname); 2376 } 2377 #ifdef SQLITE_DEBUG 2378 else{ 2379 /* In debug mode, we mark all persistent databases as sharable 2380 ** even when they are not. This exercises the locking code and 2381 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2382 ** statements to find locking problems. 2383 */ 2384 p->sharable = 1; 2385 } 2386 #endif 2387 } 2388 #endif 2389 if( pBt==0 ){ 2390 /* 2391 ** The following asserts make sure that structures used by the btree are 2392 ** the right size. This is to guard against size changes that result 2393 ** when compiling on a different architecture. 2394 */ 2395 assert( sizeof(i64)==8 ); 2396 assert( sizeof(u64)==8 ); 2397 assert( sizeof(u32)==4 ); 2398 assert( sizeof(u16)==2 ); 2399 assert( sizeof(Pgno)==4 ); 2400 2401 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2402 if( pBt==0 ){ 2403 rc = SQLITE_NOMEM_BKPT; 2404 goto btree_open_out; 2405 } 2406 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2407 sizeof(MemPage), flags, vfsFlags, pageReinit); 2408 if( rc==SQLITE_OK ){ 2409 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2410 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2411 } 2412 if( rc!=SQLITE_OK ){ 2413 goto btree_open_out; 2414 } 2415 pBt->openFlags = (u8)flags; 2416 pBt->db = db; 2417 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2418 p->pBt = pBt; 2419 2420 pBt->pCursor = 0; 2421 pBt->pPage1 = 0; 2422 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2423 #if defined(SQLITE_SECURE_DELETE) 2424 pBt->btsFlags |= BTS_SECURE_DELETE; 2425 #elif defined(SQLITE_FAST_SECURE_DELETE) 2426 pBt->btsFlags |= BTS_OVERWRITE; 2427 #endif 2428 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2429 ** determined by the 2-byte integer located at an offset of 16 bytes from 2430 ** the beginning of the database file. */ 2431 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2432 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2433 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2434 pBt->pageSize = 0; 2435 #ifndef SQLITE_OMIT_AUTOVACUUM 2436 /* If the magic name ":memory:" will create an in-memory database, then 2437 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2438 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2439 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2440 ** regular file-name. In this case the auto-vacuum applies as per normal. 2441 */ 2442 if( zFilename && !isMemdb ){ 2443 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2444 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2445 } 2446 #endif 2447 nReserve = 0; 2448 }else{ 2449 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2450 ** determined by the one-byte unsigned integer found at an offset of 20 2451 ** into the database file header. */ 2452 nReserve = zDbHeader[20]; 2453 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2454 #ifndef SQLITE_OMIT_AUTOVACUUM 2455 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2456 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2457 #endif 2458 } 2459 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2460 if( rc ) goto btree_open_out; 2461 pBt->usableSize = pBt->pageSize - nReserve; 2462 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2463 2464 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2465 /* Add the new BtShared object to the linked list sharable BtShareds. 2466 */ 2467 pBt->nRef = 1; 2468 if( p->sharable ){ 2469 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2470 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) 2471 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2472 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2473 if( pBt->mutex==0 ){ 2474 rc = SQLITE_NOMEM_BKPT; 2475 goto btree_open_out; 2476 } 2477 } 2478 sqlite3_mutex_enter(mutexShared); 2479 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2480 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2481 sqlite3_mutex_leave(mutexShared); 2482 } 2483 #endif 2484 } 2485 2486 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2487 /* If the new Btree uses a sharable pBtShared, then link the new 2488 ** Btree into the list of all sharable Btrees for the same connection. 2489 ** The list is kept in ascending order by pBt address. 2490 */ 2491 if( p->sharable ){ 2492 int i; 2493 Btree *pSib; 2494 for(i=0; i<db->nDb; i++){ 2495 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2496 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2497 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2498 p->pNext = pSib; 2499 p->pPrev = 0; 2500 pSib->pPrev = p; 2501 }else{ 2502 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2503 pSib = pSib->pNext; 2504 } 2505 p->pNext = pSib->pNext; 2506 p->pPrev = pSib; 2507 if( p->pNext ){ 2508 p->pNext->pPrev = p; 2509 } 2510 pSib->pNext = p; 2511 } 2512 break; 2513 } 2514 } 2515 } 2516 #endif 2517 *ppBtree = p; 2518 2519 btree_open_out: 2520 if( rc!=SQLITE_OK ){ 2521 if( pBt && pBt->pPager ){ 2522 sqlite3PagerClose(pBt->pPager, 0); 2523 } 2524 sqlite3_free(pBt); 2525 sqlite3_free(p); 2526 *ppBtree = 0; 2527 }else{ 2528 sqlite3_file *pFile; 2529 2530 /* If the B-Tree was successfully opened, set the pager-cache size to the 2531 ** default value. Except, when opening on an existing shared pager-cache, 2532 ** do not change the pager-cache size. 2533 */ 2534 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2535 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); 2536 } 2537 2538 pFile = sqlite3PagerFile(pBt->pPager); 2539 if( pFile->pMethods ){ 2540 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2541 } 2542 } 2543 if( mutexOpen ){ 2544 assert( sqlite3_mutex_held(mutexOpen) ); 2545 sqlite3_mutex_leave(mutexOpen); 2546 } 2547 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2548 return rc; 2549 } 2550 2551 /* 2552 ** Decrement the BtShared.nRef counter. When it reaches zero, 2553 ** remove the BtShared structure from the sharing list. Return 2554 ** true if the BtShared.nRef counter reaches zero and return 2555 ** false if it is still positive. 2556 */ 2557 static int removeFromSharingList(BtShared *pBt){ 2558 #ifndef SQLITE_OMIT_SHARED_CACHE 2559 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) 2560 BtShared *pList; 2561 int removed = 0; 2562 2563 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2564 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 2565 sqlite3_mutex_enter(pMaster); 2566 pBt->nRef--; 2567 if( pBt->nRef<=0 ){ 2568 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2569 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2570 }else{ 2571 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2572 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2573 pList=pList->pNext; 2574 } 2575 if( ALWAYS(pList) ){ 2576 pList->pNext = pBt->pNext; 2577 } 2578 } 2579 if( SQLITE_THREADSAFE ){ 2580 sqlite3_mutex_free(pBt->mutex); 2581 } 2582 removed = 1; 2583 } 2584 sqlite3_mutex_leave(pMaster); 2585 return removed; 2586 #else 2587 return 1; 2588 #endif 2589 } 2590 2591 /* 2592 ** Make sure pBt->pTmpSpace points to an allocation of 2593 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2594 ** pointer. 2595 */ 2596 static void allocateTempSpace(BtShared *pBt){ 2597 if( !pBt->pTmpSpace ){ 2598 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2599 2600 /* One of the uses of pBt->pTmpSpace is to format cells before 2601 ** inserting them into a leaf page (function fillInCell()). If 2602 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2603 ** by the various routines that manipulate binary cells. Which 2604 ** can mean that fillInCell() only initializes the first 2 or 3 2605 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2606 ** it into a database page. This is not actually a problem, but it 2607 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2608 ** data is passed to system call write(). So to avoid this error, 2609 ** zero the first 4 bytes of temp space here. 2610 ** 2611 ** Also: Provide four bytes of initialized space before the 2612 ** beginning of pTmpSpace as an area available to prepend the 2613 ** left-child pointer to the beginning of a cell. 2614 */ 2615 if( pBt->pTmpSpace ){ 2616 memset(pBt->pTmpSpace, 0, 8); 2617 pBt->pTmpSpace += 4; 2618 } 2619 } 2620 } 2621 2622 /* 2623 ** Free the pBt->pTmpSpace allocation 2624 */ 2625 static void freeTempSpace(BtShared *pBt){ 2626 if( pBt->pTmpSpace ){ 2627 pBt->pTmpSpace -= 4; 2628 sqlite3PageFree(pBt->pTmpSpace); 2629 pBt->pTmpSpace = 0; 2630 } 2631 } 2632 2633 /* 2634 ** Close an open database and invalidate all cursors. 2635 */ 2636 int sqlite3BtreeClose(Btree *p){ 2637 BtShared *pBt = p->pBt; 2638 BtCursor *pCur; 2639 2640 /* Close all cursors opened via this handle. */ 2641 assert( sqlite3_mutex_held(p->db->mutex) ); 2642 sqlite3BtreeEnter(p); 2643 pCur = pBt->pCursor; 2644 while( pCur ){ 2645 BtCursor *pTmp = pCur; 2646 pCur = pCur->pNext; 2647 if( pTmp->pBtree==p ){ 2648 sqlite3BtreeCloseCursor(pTmp); 2649 } 2650 } 2651 2652 /* Rollback any active transaction and free the handle structure. 2653 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2654 ** this handle. 2655 */ 2656 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2657 sqlite3BtreeLeave(p); 2658 2659 /* If there are still other outstanding references to the shared-btree 2660 ** structure, return now. The remainder of this procedure cleans 2661 ** up the shared-btree. 2662 */ 2663 assert( p->wantToLock==0 && p->locked==0 ); 2664 if( !p->sharable || removeFromSharingList(pBt) ){ 2665 /* The pBt is no longer on the sharing list, so we can access 2666 ** it without having to hold the mutex. 2667 ** 2668 ** Clean out and delete the BtShared object. 2669 */ 2670 assert( !pBt->pCursor ); 2671 sqlite3PagerClose(pBt->pPager, p->db); 2672 if( pBt->xFreeSchema && pBt->pSchema ){ 2673 pBt->xFreeSchema(pBt->pSchema); 2674 } 2675 sqlite3DbFree(0, pBt->pSchema); 2676 freeTempSpace(pBt); 2677 sqlite3_free(pBt); 2678 } 2679 2680 #ifndef SQLITE_OMIT_SHARED_CACHE 2681 assert( p->wantToLock==0 ); 2682 assert( p->locked==0 ); 2683 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2684 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2685 #endif 2686 2687 sqlite3_free(p); 2688 return SQLITE_OK; 2689 } 2690 2691 /* 2692 ** Change the "soft" limit on the number of pages in the cache. 2693 ** Unused and unmodified pages will be recycled when the number of 2694 ** pages in the cache exceeds this soft limit. But the size of the 2695 ** cache is allowed to grow larger than this limit if it contains 2696 ** dirty pages or pages still in active use. 2697 */ 2698 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2699 BtShared *pBt = p->pBt; 2700 assert( sqlite3_mutex_held(p->db->mutex) ); 2701 sqlite3BtreeEnter(p); 2702 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2703 sqlite3BtreeLeave(p); 2704 return SQLITE_OK; 2705 } 2706 2707 /* 2708 ** Change the "spill" limit on the number of pages in the cache. 2709 ** If the number of pages exceeds this limit during a write transaction, 2710 ** the pager might attempt to "spill" pages to the journal early in 2711 ** order to free up memory. 2712 ** 2713 ** The value returned is the current spill size. If zero is passed 2714 ** as an argument, no changes are made to the spill size setting, so 2715 ** using mxPage of 0 is a way to query the current spill size. 2716 */ 2717 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2718 BtShared *pBt = p->pBt; 2719 int res; 2720 assert( sqlite3_mutex_held(p->db->mutex) ); 2721 sqlite3BtreeEnter(p); 2722 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2723 sqlite3BtreeLeave(p); 2724 return res; 2725 } 2726 2727 #if SQLITE_MAX_MMAP_SIZE>0 2728 /* 2729 ** Change the limit on the amount of the database file that may be 2730 ** memory mapped. 2731 */ 2732 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2733 BtShared *pBt = p->pBt; 2734 assert( sqlite3_mutex_held(p->db->mutex) ); 2735 sqlite3BtreeEnter(p); 2736 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2737 sqlite3BtreeLeave(p); 2738 return SQLITE_OK; 2739 } 2740 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2741 2742 /* 2743 ** Change the way data is synced to disk in order to increase or decrease 2744 ** how well the database resists damage due to OS crashes and power 2745 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2746 ** there is a high probability of damage) Level 2 is the default. There 2747 ** is a very low but non-zero probability of damage. Level 3 reduces the 2748 ** probability of damage to near zero but with a write performance reduction. 2749 */ 2750 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2751 int sqlite3BtreeSetPagerFlags( 2752 Btree *p, /* The btree to set the safety level on */ 2753 unsigned pgFlags /* Various PAGER_* flags */ 2754 ){ 2755 BtShared *pBt = p->pBt; 2756 assert( sqlite3_mutex_held(p->db->mutex) ); 2757 sqlite3BtreeEnter(p); 2758 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2759 sqlite3BtreeLeave(p); 2760 return SQLITE_OK; 2761 } 2762 #endif 2763 2764 /* 2765 ** Change the default pages size and the number of reserved bytes per page. 2766 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2767 ** without changing anything. 2768 ** 2769 ** The page size must be a power of 2 between 512 and 65536. If the page 2770 ** size supplied does not meet this constraint then the page size is not 2771 ** changed. 2772 ** 2773 ** Page sizes are constrained to be a power of two so that the region 2774 ** of the database file used for locking (beginning at PENDING_BYTE, 2775 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2776 ** at the beginning of a page. 2777 ** 2778 ** If parameter nReserve is less than zero, then the number of reserved 2779 ** bytes per page is left unchanged. 2780 ** 2781 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2782 ** and autovacuum mode can no longer be changed. 2783 */ 2784 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2785 int rc = SQLITE_OK; 2786 BtShared *pBt = p->pBt; 2787 assert( nReserve>=-1 && nReserve<=255 ); 2788 sqlite3BtreeEnter(p); 2789 #if SQLITE_HAS_CODEC 2790 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; 2791 #endif 2792 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2793 sqlite3BtreeLeave(p); 2794 return SQLITE_READONLY; 2795 } 2796 if( nReserve<0 ){ 2797 nReserve = pBt->pageSize - pBt->usableSize; 2798 } 2799 assert( nReserve>=0 && nReserve<=255 ); 2800 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2801 ((pageSize-1)&pageSize)==0 ){ 2802 assert( (pageSize & 7)==0 ); 2803 assert( !pBt->pCursor ); 2804 pBt->pageSize = (u32)pageSize; 2805 freeTempSpace(pBt); 2806 } 2807 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2808 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2809 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2810 sqlite3BtreeLeave(p); 2811 return rc; 2812 } 2813 2814 /* 2815 ** Return the currently defined page size 2816 */ 2817 int sqlite3BtreeGetPageSize(Btree *p){ 2818 return p->pBt->pageSize; 2819 } 2820 2821 /* 2822 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2823 ** may only be called if it is guaranteed that the b-tree mutex is already 2824 ** held. 2825 ** 2826 ** This is useful in one special case in the backup API code where it is 2827 ** known that the shared b-tree mutex is held, but the mutex on the 2828 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2829 ** were to be called, it might collide with some other operation on the 2830 ** database handle that owns *p, causing undefined behavior. 2831 */ 2832 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2833 int n; 2834 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2835 n = p->pBt->pageSize - p->pBt->usableSize; 2836 return n; 2837 } 2838 2839 /* 2840 ** Return the number of bytes of space at the end of every page that 2841 ** are intentually left unused. This is the "reserved" space that is 2842 ** sometimes used by extensions. 2843 ** 2844 ** If SQLITE_HAS_MUTEX is defined then the number returned is the 2845 ** greater of the current reserved space and the maximum requested 2846 ** reserve space. 2847 */ 2848 int sqlite3BtreeGetOptimalReserve(Btree *p){ 2849 int n; 2850 sqlite3BtreeEnter(p); 2851 n = sqlite3BtreeGetReserveNoMutex(p); 2852 #ifdef SQLITE_HAS_CODEC 2853 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; 2854 #endif 2855 sqlite3BtreeLeave(p); 2856 return n; 2857 } 2858 2859 2860 /* 2861 ** Set the maximum page count for a database if mxPage is positive. 2862 ** No changes are made if mxPage is 0 or negative. 2863 ** Regardless of the value of mxPage, return the maximum page count. 2864 */ 2865 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ 2866 int n; 2867 sqlite3BtreeEnter(p); 2868 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2869 sqlite3BtreeLeave(p); 2870 return n; 2871 } 2872 2873 /* 2874 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2875 ** 2876 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 2877 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 2878 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 2879 ** newFlag==(-1) No changes 2880 ** 2881 ** This routine acts as a query if newFlag is less than zero 2882 ** 2883 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 2884 ** freelist leaf pages are not written back to the database. Thus in-page 2885 ** deleted content is cleared, but freelist deleted content is not. 2886 ** 2887 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 2888 ** that freelist leaf pages are written back into the database, increasing 2889 ** the amount of disk I/O. 2890 */ 2891 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 2892 int b; 2893 if( p==0 ) return 0; 2894 sqlite3BtreeEnter(p); 2895 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 2896 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 2897 if( newFlag>=0 ){ 2898 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 2899 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 2900 } 2901 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 2902 sqlite3BtreeLeave(p); 2903 return b; 2904 } 2905 2906 /* 2907 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 2908 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 2909 ** is disabled. The default value for the auto-vacuum property is 2910 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 2911 */ 2912 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 2913 #ifdef SQLITE_OMIT_AUTOVACUUM 2914 return SQLITE_READONLY; 2915 #else 2916 BtShared *pBt = p->pBt; 2917 int rc = SQLITE_OK; 2918 u8 av = (u8)autoVacuum; 2919 2920 sqlite3BtreeEnter(p); 2921 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 2922 rc = SQLITE_READONLY; 2923 }else{ 2924 pBt->autoVacuum = av ?1:0; 2925 pBt->incrVacuum = av==2 ?1:0; 2926 } 2927 sqlite3BtreeLeave(p); 2928 return rc; 2929 #endif 2930 } 2931 2932 /* 2933 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 2934 ** enabled 1 is returned. Otherwise 0. 2935 */ 2936 int sqlite3BtreeGetAutoVacuum(Btree *p){ 2937 #ifdef SQLITE_OMIT_AUTOVACUUM 2938 return BTREE_AUTOVACUUM_NONE; 2939 #else 2940 int rc; 2941 sqlite3BtreeEnter(p); 2942 rc = ( 2943 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 2944 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 2945 BTREE_AUTOVACUUM_INCR 2946 ); 2947 sqlite3BtreeLeave(p); 2948 return rc; 2949 #endif 2950 } 2951 2952 /* 2953 ** If the user has not set the safety-level for this database connection 2954 ** using "PRAGMA synchronous", and if the safety-level is not already 2955 ** set to the value passed to this function as the second parameter, 2956 ** set it so. 2957 */ 2958 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 2959 && !defined(SQLITE_OMIT_WAL) 2960 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 2961 sqlite3 *db; 2962 Db *pDb; 2963 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 2964 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 2965 if( pDb->bSyncSet==0 2966 && pDb->safety_level!=safety_level 2967 && pDb!=&db->aDb[1] 2968 ){ 2969 pDb->safety_level = safety_level; 2970 sqlite3PagerSetFlags(pBt->pPager, 2971 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 2972 } 2973 } 2974 } 2975 #else 2976 # define setDefaultSyncFlag(pBt,safety_level) 2977 #endif 2978 2979 /* Forward declaration */ 2980 static int newDatabase(BtShared*); 2981 2982 2983 /* 2984 ** Get a reference to pPage1 of the database file. This will 2985 ** also acquire a readlock on that file. 2986 ** 2987 ** SQLITE_OK is returned on success. If the file is not a 2988 ** well-formed database file, then SQLITE_CORRUPT is returned. 2989 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 2990 ** is returned if we run out of memory. 2991 */ 2992 static int lockBtree(BtShared *pBt){ 2993 int rc; /* Result code from subfunctions */ 2994 MemPage *pPage1; /* Page 1 of the database file */ 2995 int nPage; /* Number of pages in the database */ 2996 int nPageFile = 0; /* Number of pages in the database file */ 2997 int nPageHeader; /* Number of pages in the database according to hdr */ 2998 2999 assert( sqlite3_mutex_held(pBt->mutex) ); 3000 assert( pBt->pPage1==0 ); 3001 rc = sqlite3PagerSharedLock(pBt->pPager); 3002 if( rc!=SQLITE_OK ) return rc; 3003 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3004 if( rc!=SQLITE_OK ) return rc; 3005 3006 /* Do some checking to help insure the file we opened really is 3007 ** a valid database file. 3008 */ 3009 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); 3010 sqlite3PagerPagecount(pBt->pPager, &nPageFile); 3011 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3012 nPage = nPageFile; 3013 } 3014 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3015 nPage = 0; 3016 } 3017 if( nPage>0 ){ 3018 u32 pageSize; 3019 u32 usableSize; 3020 u8 *page1 = pPage1->aData; 3021 rc = SQLITE_NOTADB; 3022 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3023 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3024 ** 61 74 20 33 00. */ 3025 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3026 goto page1_init_failed; 3027 } 3028 3029 #ifdef SQLITE_OMIT_WAL 3030 if( page1[18]>1 ){ 3031 pBt->btsFlags |= BTS_READ_ONLY; 3032 } 3033 if( page1[19]>1 ){ 3034 goto page1_init_failed; 3035 } 3036 #else 3037 if( page1[18]>2 ){ 3038 pBt->btsFlags |= BTS_READ_ONLY; 3039 } 3040 if( page1[19]>2 ){ 3041 goto page1_init_failed; 3042 } 3043 3044 /* If the write version is set to 2, this database should be accessed 3045 ** in WAL mode. If the log is not already open, open it now. Then 3046 ** return SQLITE_OK and return without populating BtShared.pPage1. 3047 ** The caller detects this and calls this function again. This is 3048 ** required as the version of page 1 currently in the page1 buffer 3049 ** may not be the latest version - there may be a newer one in the log 3050 ** file. 3051 */ 3052 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3053 int isOpen = 0; 3054 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3055 if( rc!=SQLITE_OK ){ 3056 goto page1_init_failed; 3057 }else{ 3058 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3059 if( isOpen==0 ){ 3060 releasePageOne(pPage1); 3061 return SQLITE_OK; 3062 } 3063 } 3064 rc = SQLITE_NOTADB; 3065 }else{ 3066 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3067 } 3068 #endif 3069 3070 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3071 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3072 ** 3073 ** The original design allowed these amounts to vary, but as of 3074 ** version 3.6.0, we require them to be fixed. 3075 */ 3076 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3077 goto page1_init_failed; 3078 } 3079 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3080 ** determined by the 2-byte integer located at an offset of 16 bytes from 3081 ** the beginning of the database file. */ 3082 pageSize = (page1[16]<<8) | (page1[17]<<16); 3083 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3084 ** between 512 and 65536 inclusive. */ 3085 if( ((pageSize-1)&pageSize)!=0 3086 || pageSize>SQLITE_MAX_PAGE_SIZE 3087 || pageSize<=256 3088 ){ 3089 goto page1_init_failed; 3090 } 3091 assert( (pageSize & 7)==0 ); 3092 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3093 ** integer at offset 20 is the number of bytes of space at the end of 3094 ** each page to reserve for extensions. 3095 ** 3096 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3097 ** determined by the one-byte unsigned integer found at an offset of 20 3098 ** into the database file header. */ 3099 usableSize = pageSize - page1[20]; 3100 if( (u32)pageSize!=pBt->pageSize ){ 3101 /* After reading the first page of the database assuming a page size 3102 ** of BtShared.pageSize, we have discovered that the page-size is 3103 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3104 ** zero and return SQLITE_OK. The caller will call this function 3105 ** again with the correct page-size. 3106 */ 3107 releasePageOne(pPage1); 3108 pBt->usableSize = usableSize; 3109 pBt->pageSize = pageSize; 3110 freeTempSpace(pBt); 3111 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3112 pageSize-usableSize); 3113 return rc; 3114 } 3115 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){ 3116 rc = SQLITE_CORRUPT_BKPT; 3117 goto page1_init_failed; 3118 } 3119 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3120 ** be less than 480. In other words, if the page size is 512, then the 3121 ** reserved space size cannot exceed 32. */ 3122 if( usableSize<480 ){ 3123 goto page1_init_failed; 3124 } 3125 pBt->pageSize = pageSize; 3126 pBt->usableSize = usableSize; 3127 #ifndef SQLITE_OMIT_AUTOVACUUM 3128 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3129 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3130 #endif 3131 } 3132 3133 /* maxLocal is the maximum amount of payload to store locally for 3134 ** a cell. Make sure it is small enough so that at least minFanout 3135 ** cells can will fit on one page. We assume a 10-byte page header. 3136 ** Besides the payload, the cell must store: 3137 ** 2-byte pointer to the cell 3138 ** 4-byte child pointer 3139 ** 9-byte nKey value 3140 ** 4-byte nData value 3141 ** 4-byte overflow page pointer 3142 ** So a cell consists of a 2-byte pointer, a header which is as much as 3143 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3144 ** page pointer. 3145 */ 3146 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3147 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3148 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3149 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3150 if( pBt->maxLocal>127 ){ 3151 pBt->max1bytePayload = 127; 3152 }else{ 3153 pBt->max1bytePayload = (u8)pBt->maxLocal; 3154 } 3155 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3156 pBt->pPage1 = pPage1; 3157 pBt->nPage = nPage; 3158 return SQLITE_OK; 3159 3160 page1_init_failed: 3161 releasePageOne(pPage1); 3162 pBt->pPage1 = 0; 3163 return rc; 3164 } 3165 3166 #ifndef NDEBUG 3167 /* 3168 ** Return the number of cursors open on pBt. This is for use 3169 ** in assert() expressions, so it is only compiled if NDEBUG is not 3170 ** defined. 3171 ** 3172 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3173 ** false then all cursors are counted. 3174 ** 3175 ** For the purposes of this routine, a cursor is any cursor that 3176 ** is capable of reading or writing to the database. Cursors that 3177 ** have been tripped into the CURSOR_FAULT state are not counted. 3178 */ 3179 static int countValidCursors(BtShared *pBt, int wrOnly){ 3180 BtCursor *pCur; 3181 int r = 0; 3182 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3183 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3184 && pCur->eState!=CURSOR_FAULT ) r++; 3185 } 3186 return r; 3187 } 3188 #endif 3189 3190 /* 3191 ** If there are no outstanding cursors and we are not in the middle 3192 ** of a transaction but there is a read lock on the database, then 3193 ** this routine unrefs the first page of the database file which 3194 ** has the effect of releasing the read lock. 3195 ** 3196 ** If there is a transaction in progress, this routine is a no-op. 3197 */ 3198 static void unlockBtreeIfUnused(BtShared *pBt){ 3199 assert( sqlite3_mutex_held(pBt->mutex) ); 3200 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3201 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3202 MemPage *pPage1 = pBt->pPage1; 3203 assert( pPage1->aData ); 3204 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3205 pBt->pPage1 = 0; 3206 releasePageOne(pPage1); 3207 } 3208 } 3209 3210 /* 3211 ** If pBt points to an empty file then convert that empty file 3212 ** into a new empty database by initializing the first page of 3213 ** the database. 3214 */ 3215 static int newDatabase(BtShared *pBt){ 3216 MemPage *pP1; 3217 unsigned char *data; 3218 int rc; 3219 3220 assert( sqlite3_mutex_held(pBt->mutex) ); 3221 if( pBt->nPage>0 ){ 3222 return SQLITE_OK; 3223 } 3224 pP1 = pBt->pPage1; 3225 assert( pP1!=0 ); 3226 data = pP1->aData; 3227 rc = sqlite3PagerWrite(pP1->pDbPage); 3228 if( rc ) return rc; 3229 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3230 assert( sizeof(zMagicHeader)==16 ); 3231 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3232 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3233 data[18] = 1; 3234 data[19] = 1; 3235 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3236 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3237 data[21] = 64; 3238 data[22] = 32; 3239 data[23] = 32; 3240 memset(&data[24], 0, 100-24); 3241 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3242 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3243 #ifndef SQLITE_OMIT_AUTOVACUUM 3244 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3245 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3246 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3247 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3248 #endif 3249 pBt->nPage = 1; 3250 data[31] = 1; 3251 return SQLITE_OK; 3252 } 3253 3254 /* 3255 ** Initialize the first page of the database file (creating a database 3256 ** consisting of a single page and no schema objects). Return SQLITE_OK 3257 ** if successful, or an SQLite error code otherwise. 3258 */ 3259 int sqlite3BtreeNewDb(Btree *p){ 3260 int rc; 3261 sqlite3BtreeEnter(p); 3262 p->pBt->nPage = 0; 3263 rc = newDatabase(p->pBt); 3264 sqlite3BtreeLeave(p); 3265 return rc; 3266 } 3267 3268 /* 3269 ** Attempt to start a new transaction. A write-transaction 3270 ** is started if the second argument is nonzero, otherwise a read- 3271 ** transaction. If the second argument is 2 or more and exclusive 3272 ** transaction is started, meaning that no other process is allowed 3273 ** to access the database. A preexisting transaction may not be 3274 ** upgraded to exclusive by calling this routine a second time - the 3275 ** exclusivity flag only works for a new transaction. 3276 ** 3277 ** A write-transaction must be started before attempting any 3278 ** changes to the database. None of the following routines 3279 ** will work unless a transaction is started first: 3280 ** 3281 ** sqlite3BtreeCreateTable() 3282 ** sqlite3BtreeCreateIndex() 3283 ** sqlite3BtreeClearTable() 3284 ** sqlite3BtreeDropTable() 3285 ** sqlite3BtreeInsert() 3286 ** sqlite3BtreeDelete() 3287 ** sqlite3BtreeUpdateMeta() 3288 ** 3289 ** If an initial attempt to acquire the lock fails because of lock contention 3290 ** and the database was previously unlocked, then invoke the busy handler 3291 ** if there is one. But if there was previously a read-lock, do not 3292 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3293 ** returned when there is already a read-lock in order to avoid a deadlock. 3294 ** 3295 ** Suppose there are two processes A and B. A has a read lock and B has 3296 ** a reserved lock. B tries to promote to exclusive but is blocked because 3297 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3298 ** One or the other of the two processes must give way or there can be 3299 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3300 ** when A already has a read lock, we encourage A to give up and let B 3301 ** proceed. 3302 */ 3303 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3304 BtShared *pBt = p->pBt; 3305 int rc = SQLITE_OK; 3306 3307 sqlite3BtreeEnter(p); 3308 btreeIntegrity(p); 3309 3310 /* If the btree is already in a write-transaction, or it 3311 ** is already in a read-transaction and a read-transaction 3312 ** is requested, this is a no-op. 3313 */ 3314 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3315 goto trans_begun; 3316 } 3317 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3318 3319 /* Write transactions are not possible on a read-only database */ 3320 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3321 rc = SQLITE_READONLY; 3322 goto trans_begun; 3323 } 3324 3325 #ifndef SQLITE_OMIT_SHARED_CACHE 3326 { 3327 sqlite3 *pBlock = 0; 3328 /* If another database handle has already opened a write transaction 3329 ** on this shared-btree structure and a second write transaction is 3330 ** requested, return SQLITE_LOCKED. 3331 */ 3332 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3333 || (pBt->btsFlags & BTS_PENDING)!=0 3334 ){ 3335 pBlock = pBt->pWriter->db; 3336 }else if( wrflag>1 ){ 3337 BtLock *pIter; 3338 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3339 if( pIter->pBtree!=p ){ 3340 pBlock = pIter->pBtree->db; 3341 break; 3342 } 3343 } 3344 } 3345 if( pBlock ){ 3346 sqlite3ConnectionBlocked(p->db, pBlock); 3347 rc = SQLITE_LOCKED_SHAREDCACHE; 3348 goto trans_begun; 3349 } 3350 } 3351 #endif 3352 3353 /* Any read-only or read-write transaction implies a read-lock on 3354 ** page 1. So if some other shared-cache client already has a write-lock 3355 ** on page 1, the transaction cannot be opened. */ 3356 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 3357 if( SQLITE_OK!=rc ) goto trans_begun; 3358 3359 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3360 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3361 do { 3362 /* Call lockBtree() until either pBt->pPage1 is populated or 3363 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3364 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3365 ** reading page 1 it discovers that the page-size of the database 3366 ** file is not pBt->pageSize. In this case lockBtree() will update 3367 ** pBt->pageSize to the page-size of the file on disk. 3368 */ 3369 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3370 3371 if( rc==SQLITE_OK && wrflag ){ 3372 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3373 rc = SQLITE_READONLY; 3374 }else{ 3375 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); 3376 if( rc==SQLITE_OK ){ 3377 rc = newDatabase(pBt); 3378 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3379 /* if there was no transaction opened when this function was 3380 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3381 ** code to SQLITE_BUSY. */ 3382 rc = SQLITE_BUSY; 3383 } 3384 } 3385 } 3386 3387 if( rc!=SQLITE_OK ){ 3388 unlockBtreeIfUnused(pBt); 3389 } 3390 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3391 btreeInvokeBusyHandler(pBt) ); 3392 sqlite3PagerResetLockTimeout(pBt->pPager); 3393 3394 if( rc==SQLITE_OK ){ 3395 if( p->inTrans==TRANS_NONE ){ 3396 pBt->nTransaction++; 3397 #ifndef SQLITE_OMIT_SHARED_CACHE 3398 if( p->sharable ){ 3399 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3400 p->lock.eLock = READ_LOCK; 3401 p->lock.pNext = pBt->pLock; 3402 pBt->pLock = &p->lock; 3403 } 3404 #endif 3405 } 3406 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3407 if( p->inTrans>pBt->inTransaction ){ 3408 pBt->inTransaction = p->inTrans; 3409 } 3410 if( wrflag ){ 3411 MemPage *pPage1 = pBt->pPage1; 3412 #ifndef SQLITE_OMIT_SHARED_CACHE 3413 assert( !pBt->pWriter ); 3414 pBt->pWriter = p; 3415 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3416 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3417 #endif 3418 3419 /* If the db-size header field is incorrect (as it may be if an old 3420 ** client has been writing the database file), update it now. Doing 3421 ** this sooner rather than later means the database size can safely 3422 ** re-read the database size from page 1 if a savepoint or transaction 3423 ** rollback occurs within the transaction. 3424 */ 3425 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3426 rc = sqlite3PagerWrite(pPage1->pDbPage); 3427 if( rc==SQLITE_OK ){ 3428 put4byte(&pPage1->aData[28], pBt->nPage); 3429 } 3430 } 3431 } 3432 } 3433 3434 trans_begun: 3435 if( rc==SQLITE_OK ){ 3436 if( pSchemaVersion ){ 3437 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3438 } 3439 if( wrflag ){ 3440 /* This call makes sure that the pager has the correct number of 3441 ** open savepoints. If the second parameter is greater than 0 and 3442 ** the sub-journal is not already open, then it will be opened here. 3443 */ 3444 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); 3445 } 3446 } 3447 3448 btreeIntegrity(p); 3449 sqlite3BtreeLeave(p); 3450 return rc; 3451 } 3452 3453 #ifndef SQLITE_OMIT_AUTOVACUUM 3454 3455 /* 3456 ** Set the pointer-map entries for all children of page pPage. Also, if 3457 ** pPage contains cells that point to overflow pages, set the pointer 3458 ** map entries for the overflow pages as well. 3459 */ 3460 static int setChildPtrmaps(MemPage *pPage){ 3461 int i; /* Counter variable */ 3462 int nCell; /* Number of cells in page pPage */ 3463 int rc; /* Return code */ 3464 BtShared *pBt = pPage->pBt; 3465 Pgno pgno = pPage->pgno; 3466 3467 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3468 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3469 if( rc!=SQLITE_OK ) return rc; 3470 nCell = pPage->nCell; 3471 3472 for(i=0; i<nCell; i++){ 3473 u8 *pCell = findCell(pPage, i); 3474 3475 ptrmapPutOvflPtr(pPage, pCell, &rc); 3476 3477 if( !pPage->leaf ){ 3478 Pgno childPgno = get4byte(pCell); 3479 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3480 } 3481 } 3482 3483 if( !pPage->leaf ){ 3484 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3485 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3486 } 3487 3488 return rc; 3489 } 3490 3491 /* 3492 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3493 ** that it points to iTo. Parameter eType describes the type of pointer to 3494 ** be modified, as follows: 3495 ** 3496 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3497 ** page of pPage. 3498 ** 3499 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3500 ** page pointed to by one of the cells on pPage. 3501 ** 3502 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3503 ** overflow page in the list. 3504 */ 3505 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3506 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3507 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3508 if( eType==PTRMAP_OVERFLOW2 ){ 3509 /* The pointer is always the first 4 bytes of the page in this case. */ 3510 if( get4byte(pPage->aData)!=iFrom ){ 3511 return SQLITE_CORRUPT_PAGE(pPage); 3512 } 3513 put4byte(pPage->aData, iTo); 3514 }else{ 3515 int i; 3516 int nCell; 3517 int rc; 3518 3519 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3520 if( rc ) return rc; 3521 nCell = pPage->nCell; 3522 3523 for(i=0; i<nCell; i++){ 3524 u8 *pCell = findCell(pPage, i); 3525 if( eType==PTRMAP_OVERFLOW1 ){ 3526 CellInfo info; 3527 pPage->xParseCell(pPage, pCell, &info); 3528 if( info.nLocal<info.nPayload ){ 3529 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3530 return SQLITE_CORRUPT_PAGE(pPage); 3531 } 3532 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3533 put4byte(pCell+info.nSize-4, iTo); 3534 break; 3535 } 3536 } 3537 }else{ 3538 if( get4byte(pCell)==iFrom ){ 3539 put4byte(pCell, iTo); 3540 break; 3541 } 3542 } 3543 } 3544 3545 if( i==nCell ){ 3546 if( eType!=PTRMAP_BTREE || 3547 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3548 return SQLITE_CORRUPT_PAGE(pPage); 3549 } 3550 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3551 } 3552 } 3553 return SQLITE_OK; 3554 } 3555 3556 3557 /* 3558 ** Move the open database page pDbPage to location iFreePage in the 3559 ** database. The pDbPage reference remains valid. 3560 ** 3561 ** The isCommit flag indicates that there is no need to remember that 3562 ** the journal needs to be sync()ed before database page pDbPage->pgno 3563 ** can be written to. The caller has already promised not to write to that 3564 ** page. 3565 */ 3566 static int relocatePage( 3567 BtShared *pBt, /* Btree */ 3568 MemPage *pDbPage, /* Open page to move */ 3569 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3570 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3571 Pgno iFreePage, /* The location to move pDbPage to */ 3572 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3573 ){ 3574 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3575 Pgno iDbPage = pDbPage->pgno; 3576 Pager *pPager = pBt->pPager; 3577 int rc; 3578 3579 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3580 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3581 assert( sqlite3_mutex_held(pBt->mutex) ); 3582 assert( pDbPage->pBt==pBt ); 3583 3584 /* Move page iDbPage from its current location to page number iFreePage */ 3585 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3586 iDbPage, iFreePage, iPtrPage, eType)); 3587 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3588 if( rc!=SQLITE_OK ){ 3589 return rc; 3590 } 3591 pDbPage->pgno = iFreePage; 3592 3593 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3594 ** that point to overflow pages. The pointer map entries for all these 3595 ** pages need to be changed. 3596 ** 3597 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3598 ** pointer to a subsequent overflow page. If this is the case, then 3599 ** the pointer map needs to be updated for the subsequent overflow page. 3600 */ 3601 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3602 rc = setChildPtrmaps(pDbPage); 3603 if( rc!=SQLITE_OK ){ 3604 return rc; 3605 } 3606 }else{ 3607 Pgno nextOvfl = get4byte(pDbPage->aData); 3608 if( nextOvfl!=0 ){ 3609 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3610 if( rc!=SQLITE_OK ){ 3611 return rc; 3612 } 3613 } 3614 } 3615 3616 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3617 ** that it points at iFreePage. Also fix the pointer map entry for 3618 ** iPtrPage. 3619 */ 3620 if( eType!=PTRMAP_ROOTPAGE ){ 3621 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3622 if( rc!=SQLITE_OK ){ 3623 return rc; 3624 } 3625 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3626 if( rc!=SQLITE_OK ){ 3627 releasePage(pPtrPage); 3628 return rc; 3629 } 3630 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3631 releasePage(pPtrPage); 3632 if( rc==SQLITE_OK ){ 3633 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3634 } 3635 } 3636 return rc; 3637 } 3638 3639 /* Forward declaration required by incrVacuumStep(). */ 3640 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3641 3642 /* 3643 ** Perform a single step of an incremental-vacuum. If successful, return 3644 ** SQLITE_OK. If there is no work to do (and therefore no point in 3645 ** calling this function again), return SQLITE_DONE. Or, if an error 3646 ** occurs, return some other error code. 3647 ** 3648 ** More specifically, this function attempts to re-organize the database so 3649 ** that the last page of the file currently in use is no longer in use. 3650 ** 3651 ** Parameter nFin is the number of pages that this database would contain 3652 ** were this function called until it returns SQLITE_DONE. 3653 ** 3654 ** If the bCommit parameter is non-zero, this function assumes that the 3655 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3656 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3657 ** operation, or false for an incremental vacuum. 3658 */ 3659 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3660 Pgno nFreeList; /* Number of pages still on the free-list */ 3661 int rc; 3662 3663 assert( sqlite3_mutex_held(pBt->mutex) ); 3664 assert( iLastPg>nFin ); 3665 3666 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3667 u8 eType; 3668 Pgno iPtrPage; 3669 3670 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3671 if( nFreeList==0 ){ 3672 return SQLITE_DONE; 3673 } 3674 3675 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3676 if( rc!=SQLITE_OK ){ 3677 return rc; 3678 } 3679 if( eType==PTRMAP_ROOTPAGE ){ 3680 return SQLITE_CORRUPT_BKPT; 3681 } 3682 3683 if( eType==PTRMAP_FREEPAGE ){ 3684 if( bCommit==0 ){ 3685 /* Remove the page from the files free-list. This is not required 3686 ** if bCommit is non-zero. In that case, the free-list will be 3687 ** truncated to zero after this function returns, so it doesn't 3688 ** matter if it still contains some garbage entries. 3689 */ 3690 Pgno iFreePg; 3691 MemPage *pFreePg; 3692 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3693 if( rc!=SQLITE_OK ){ 3694 return rc; 3695 } 3696 assert( iFreePg==iLastPg ); 3697 releasePage(pFreePg); 3698 } 3699 } else { 3700 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3701 MemPage *pLastPg; 3702 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3703 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3704 3705 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3706 if( rc!=SQLITE_OK ){ 3707 return rc; 3708 } 3709 3710 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3711 ** is swapped with the first free page pulled off the free list. 3712 ** 3713 ** On the other hand, if bCommit is greater than zero, then keep 3714 ** looping until a free-page located within the first nFin pages 3715 ** of the file is found. 3716 */ 3717 if( bCommit==0 ){ 3718 eMode = BTALLOC_LE; 3719 iNear = nFin; 3720 } 3721 do { 3722 MemPage *pFreePg; 3723 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3724 if( rc!=SQLITE_OK ){ 3725 releasePage(pLastPg); 3726 return rc; 3727 } 3728 releasePage(pFreePg); 3729 }while( bCommit && iFreePg>nFin ); 3730 assert( iFreePg<iLastPg ); 3731 3732 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3733 releasePage(pLastPg); 3734 if( rc!=SQLITE_OK ){ 3735 return rc; 3736 } 3737 } 3738 } 3739 3740 if( bCommit==0 ){ 3741 do { 3742 iLastPg--; 3743 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3744 pBt->bDoTruncate = 1; 3745 pBt->nPage = iLastPg; 3746 } 3747 return SQLITE_OK; 3748 } 3749 3750 /* 3751 ** The database opened by the first argument is an auto-vacuum database 3752 ** nOrig pages in size containing nFree free pages. Return the expected 3753 ** size of the database in pages following an auto-vacuum operation. 3754 */ 3755 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3756 int nEntry; /* Number of entries on one ptrmap page */ 3757 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3758 Pgno nFin; /* Return value */ 3759 3760 nEntry = pBt->usableSize/5; 3761 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3762 nFin = nOrig - nFree - nPtrmap; 3763 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3764 nFin--; 3765 } 3766 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3767 nFin--; 3768 } 3769 3770 return nFin; 3771 } 3772 3773 /* 3774 ** A write-transaction must be opened before calling this function. 3775 ** It performs a single unit of work towards an incremental vacuum. 3776 ** 3777 ** If the incremental vacuum is finished after this function has run, 3778 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3779 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3780 */ 3781 int sqlite3BtreeIncrVacuum(Btree *p){ 3782 int rc; 3783 BtShared *pBt = p->pBt; 3784 3785 sqlite3BtreeEnter(p); 3786 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3787 if( !pBt->autoVacuum ){ 3788 rc = SQLITE_DONE; 3789 }else{ 3790 Pgno nOrig = btreePagecount(pBt); 3791 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3792 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3793 3794 if( nOrig<nFin ){ 3795 rc = SQLITE_CORRUPT_BKPT; 3796 }else if( nFree>0 ){ 3797 rc = saveAllCursors(pBt, 0, 0); 3798 if( rc==SQLITE_OK ){ 3799 invalidateAllOverflowCache(pBt); 3800 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3801 } 3802 if( rc==SQLITE_OK ){ 3803 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3804 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3805 } 3806 }else{ 3807 rc = SQLITE_DONE; 3808 } 3809 } 3810 sqlite3BtreeLeave(p); 3811 return rc; 3812 } 3813 3814 /* 3815 ** This routine is called prior to sqlite3PagerCommit when a transaction 3816 ** is committed for an auto-vacuum database. 3817 ** 3818 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages 3819 ** the database file should be truncated to during the commit process. 3820 ** i.e. the database has been reorganized so that only the first *pnTrunc 3821 ** pages are in use. 3822 */ 3823 static int autoVacuumCommit(BtShared *pBt){ 3824 int rc = SQLITE_OK; 3825 Pager *pPager = pBt->pPager; 3826 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) 3827 3828 assert( sqlite3_mutex_held(pBt->mutex) ); 3829 invalidateAllOverflowCache(pBt); 3830 assert(pBt->autoVacuum); 3831 if( !pBt->incrVacuum ){ 3832 Pgno nFin; /* Number of pages in database after autovacuuming */ 3833 Pgno nFree; /* Number of pages on the freelist initially */ 3834 Pgno iFree; /* The next page to be freed */ 3835 Pgno nOrig; /* Database size before freeing */ 3836 3837 nOrig = btreePagecount(pBt); 3838 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3839 /* It is not possible to create a database for which the final page 3840 ** is either a pointer-map page or the pending-byte page. If one 3841 ** is encountered, this indicates corruption. 3842 */ 3843 return SQLITE_CORRUPT_BKPT; 3844 } 3845 3846 nFree = get4byte(&pBt->pPage1->aData[36]); 3847 nFin = finalDbSize(pBt, nOrig, nFree); 3848 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 3849 if( nFin<nOrig ){ 3850 rc = saveAllCursors(pBt, 0, 0); 3851 } 3852 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 3853 rc = incrVacuumStep(pBt, nFin, iFree, 1); 3854 } 3855 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 3856 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3857 put4byte(&pBt->pPage1->aData[32], 0); 3858 put4byte(&pBt->pPage1->aData[36], 0); 3859 put4byte(&pBt->pPage1->aData[28], nFin); 3860 pBt->bDoTruncate = 1; 3861 pBt->nPage = nFin; 3862 } 3863 if( rc!=SQLITE_OK ){ 3864 sqlite3PagerRollback(pPager); 3865 } 3866 } 3867 3868 assert( nRef>=sqlite3PagerRefcount(pPager) ); 3869 return rc; 3870 } 3871 3872 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 3873 # define setChildPtrmaps(x) SQLITE_OK 3874 #endif 3875 3876 /* 3877 ** This routine does the first phase of a two-phase commit. This routine 3878 ** causes a rollback journal to be created (if it does not already exist) 3879 ** and populated with enough information so that if a power loss occurs 3880 ** the database can be restored to its original state by playing back 3881 ** the journal. Then the contents of the journal are flushed out to 3882 ** the disk. After the journal is safely on oxide, the changes to the 3883 ** database are written into the database file and flushed to oxide. 3884 ** At the end of this call, the rollback journal still exists on the 3885 ** disk and we are still holding all locks, so the transaction has not 3886 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 3887 ** commit process. 3888 ** 3889 ** This call is a no-op if no write-transaction is currently active on pBt. 3890 ** 3891 ** Otherwise, sync the database file for the btree pBt. zMaster points to 3892 ** the name of a master journal file that should be written into the 3893 ** individual journal file, or is NULL, indicating no master journal file 3894 ** (single database transaction). 3895 ** 3896 ** When this is called, the master journal should already have been 3897 ** created, populated with this journal pointer and synced to disk. 3898 ** 3899 ** Once this is routine has returned, the only thing required to commit 3900 ** the write-transaction for this database file is to delete the journal. 3901 */ 3902 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ 3903 int rc = SQLITE_OK; 3904 if( p->inTrans==TRANS_WRITE ){ 3905 BtShared *pBt = p->pBt; 3906 sqlite3BtreeEnter(p); 3907 #ifndef SQLITE_OMIT_AUTOVACUUM 3908 if( pBt->autoVacuum ){ 3909 rc = autoVacuumCommit(pBt); 3910 if( rc!=SQLITE_OK ){ 3911 sqlite3BtreeLeave(p); 3912 return rc; 3913 } 3914 } 3915 if( pBt->bDoTruncate ){ 3916 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 3917 } 3918 #endif 3919 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); 3920 sqlite3BtreeLeave(p); 3921 } 3922 return rc; 3923 } 3924 3925 /* 3926 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 3927 ** at the conclusion of a transaction. 3928 */ 3929 static void btreeEndTransaction(Btree *p){ 3930 BtShared *pBt = p->pBt; 3931 sqlite3 *db = p->db; 3932 assert( sqlite3BtreeHoldsMutex(p) ); 3933 3934 #ifndef SQLITE_OMIT_AUTOVACUUM 3935 pBt->bDoTruncate = 0; 3936 #endif 3937 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 3938 /* If there are other active statements that belong to this database 3939 ** handle, downgrade to a read-only transaction. The other statements 3940 ** may still be reading from the database. */ 3941 downgradeAllSharedCacheTableLocks(p); 3942 p->inTrans = TRANS_READ; 3943 }else{ 3944 /* If the handle had any kind of transaction open, decrement the 3945 ** transaction count of the shared btree. If the transaction count 3946 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 3947 ** call below will unlock the pager. */ 3948 if( p->inTrans!=TRANS_NONE ){ 3949 clearAllSharedCacheTableLocks(p); 3950 pBt->nTransaction--; 3951 if( 0==pBt->nTransaction ){ 3952 pBt->inTransaction = TRANS_NONE; 3953 } 3954 } 3955 3956 /* Set the current transaction state to TRANS_NONE and unlock the 3957 ** pager if this call closed the only read or write transaction. */ 3958 p->inTrans = TRANS_NONE; 3959 unlockBtreeIfUnused(pBt); 3960 } 3961 3962 btreeIntegrity(p); 3963 } 3964 3965 /* 3966 ** Commit the transaction currently in progress. 3967 ** 3968 ** This routine implements the second phase of a 2-phase commit. The 3969 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 3970 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 3971 ** routine did all the work of writing information out to disk and flushing the 3972 ** contents so that they are written onto the disk platter. All this 3973 ** routine has to do is delete or truncate or zero the header in the 3974 ** the rollback journal (which causes the transaction to commit) and 3975 ** drop locks. 3976 ** 3977 ** Normally, if an error occurs while the pager layer is attempting to 3978 ** finalize the underlying journal file, this function returns an error and 3979 ** the upper layer will attempt a rollback. However, if the second argument 3980 ** is non-zero then this b-tree transaction is part of a multi-file 3981 ** transaction. In this case, the transaction has already been committed 3982 ** (by deleting a master journal file) and the caller will ignore this 3983 ** functions return code. So, even if an error occurs in the pager layer, 3984 ** reset the b-tree objects internal state to indicate that the write 3985 ** transaction has been closed. This is quite safe, as the pager will have 3986 ** transitioned to the error state. 3987 ** 3988 ** This will release the write lock on the database file. If there 3989 ** are no active cursors, it also releases the read lock. 3990 */ 3991 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 3992 3993 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 3994 sqlite3BtreeEnter(p); 3995 btreeIntegrity(p); 3996 3997 /* If the handle has a write-transaction open, commit the shared-btrees 3998 ** transaction and set the shared state to TRANS_READ. 3999 */ 4000 if( p->inTrans==TRANS_WRITE ){ 4001 int rc; 4002 BtShared *pBt = p->pBt; 4003 assert( pBt->inTransaction==TRANS_WRITE ); 4004 assert( pBt->nTransaction>0 ); 4005 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4006 if( rc!=SQLITE_OK && bCleanup==0 ){ 4007 sqlite3BtreeLeave(p); 4008 return rc; 4009 } 4010 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4011 pBt->inTransaction = TRANS_READ; 4012 btreeClearHasContent(pBt); 4013 } 4014 4015 btreeEndTransaction(p); 4016 sqlite3BtreeLeave(p); 4017 return SQLITE_OK; 4018 } 4019 4020 /* 4021 ** Do both phases of a commit. 4022 */ 4023 int sqlite3BtreeCommit(Btree *p){ 4024 int rc; 4025 sqlite3BtreeEnter(p); 4026 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4027 if( rc==SQLITE_OK ){ 4028 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4029 } 4030 sqlite3BtreeLeave(p); 4031 return rc; 4032 } 4033 4034 /* 4035 ** This routine sets the state to CURSOR_FAULT and the error 4036 ** code to errCode for every cursor on any BtShared that pBtree 4037 ** references. Or if the writeOnly flag is set to 1, then only 4038 ** trip write cursors and leave read cursors unchanged. 4039 ** 4040 ** Every cursor is a candidate to be tripped, including cursors 4041 ** that belong to other database connections that happen to be 4042 ** sharing the cache with pBtree. 4043 ** 4044 ** This routine gets called when a rollback occurs. If the writeOnly 4045 ** flag is true, then only write-cursors need be tripped - read-only 4046 ** cursors save their current positions so that they may continue 4047 ** following the rollback. Or, if writeOnly is false, all cursors are 4048 ** tripped. In general, writeOnly is false if the transaction being 4049 ** rolled back modified the database schema. In this case b-tree root 4050 ** pages may be moved or deleted from the database altogether, making 4051 ** it unsafe for read cursors to continue. 4052 ** 4053 ** If the writeOnly flag is true and an error is encountered while 4054 ** saving the current position of a read-only cursor, all cursors, 4055 ** including all read-cursors are tripped. 4056 ** 4057 ** SQLITE_OK is returned if successful, or if an error occurs while 4058 ** saving a cursor position, an SQLite error code. 4059 */ 4060 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4061 BtCursor *p; 4062 int rc = SQLITE_OK; 4063 4064 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4065 if( pBtree ){ 4066 sqlite3BtreeEnter(pBtree); 4067 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4068 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4069 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4070 rc = saveCursorPosition(p); 4071 if( rc!=SQLITE_OK ){ 4072 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4073 break; 4074 } 4075 } 4076 }else{ 4077 sqlite3BtreeClearCursor(p); 4078 p->eState = CURSOR_FAULT; 4079 p->skipNext = errCode; 4080 } 4081 btreeReleaseAllCursorPages(p); 4082 } 4083 sqlite3BtreeLeave(pBtree); 4084 } 4085 return rc; 4086 } 4087 4088 /* 4089 ** Rollback the transaction in progress. 4090 ** 4091 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4092 ** Only write cursors are tripped if writeOnly is true but all cursors are 4093 ** tripped if writeOnly is false. Any attempt to use 4094 ** a tripped cursor will result in an error. 4095 ** 4096 ** This will release the write lock on the database file. If there 4097 ** are no active cursors, it also releases the read lock. 4098 */ 4099 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4100 int rc; 4101 BtShared *pBt = p->pBt; 4102 MemPage *pPage1; 4103 4104 assert( writeOnly==1 || writeOnly==0 ); 4105 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4106 sqlite3BtreeEnter(p); 4107 if( tripCode==SQLITE_OK ){ 4108 rc = tripCode = saveAllCursors(pBt, 0, 0); 4109 if( rc ) writeOnly = 0; 4110 }else{ 4111 rc = SQLITE_OK; 4112 } 4113 if( tripCode ){ 4114 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4115 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4116 if( rc2!=SQLITE_OK ) rc = rc2; 4117 } 4118 btreeIntegrity(p); 4119 4120 if( p->inTrans==TRANS_WRITE ){ 4121 int rc2; 4122 4123 assert( TRANS_WRITE==pBt->inTransaction ); 4124 rc2 = sqlite3PagerRollback(pBt->pPager); 4125 if( rc2!=SQLITE_OK ){ 4126 rc = rc2; 4127 } 4128 4129 /* The rollback may have destroyed the pPage1->aData value. So 4130 ** call btreeGetPage() on page 1 again to make 4131 ** sure pPage1->aData is set correctly. */ 4132 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4133 int nPage = get4byte(28+(u8*)pPage1->aData); 4134 testcase( nPage==0 ); 4135 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4136 testcase( pBt->nPage!=nPage ); 4137 pBt->nPage = nPage; 4138 releasePageOne(pPage1); 4139 } 4140 assert( countValidCursors(pBt, 1)==0 ); 4141 pBt->inTransaction = TRANS_READ; 4142 btreeClearHasContent(pBt); 4143 } 4144 4145 btreeEndTransaction(p); 4146 sqlite3BtreeLeave(p); 4147 return rc; 4148 } 4149 4150 /* 4151 ** Start a statement subtransaction. The subtransaction can be rolled 4152 ** back independently of the main transaction. You must start a transaction 4153 ** before starting a subtransaction. The subtransaction is ended automatically 4154 ** if the main transaction commits or rolls back. 4155 ** 4156 ** Statement subtransactions are used around individual SQL statements 4157 ** that are contained within a BEGIN...COMMIT block. If a constraint 4158 ** error occurs within the statement, the effect of that one statement 4159 ** can be rolled back without having to rollback the entire transaction. 4160 ** 4161 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4162 ** value passed as the second parameter is the total number of savepoints, 4163 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4164 ** are no active savepoints and no other statement-transactions open, 4165 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4166 ** using the sqlite3BtreeSavepoint() function. 4167 */ 4168 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4169 int rc; 4170 BtShared *pBt = p->pBt; 4171 sqlite3BtreeEnter(p); 4172 assert( p->inTrans==TRANS_WRITE ); 4173 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4174 assert( iStatement>0 ); 4175 assert( iStatement>p->db->nSavepoint ); 4176 assert( pBt->inTransaction==TRANS_WRITE ); 4177 /* At the pager level, a statement transaction is a savepoint with 4178 ** an index greater than all savepoints created explicitly using 4179 ** SQL statements. It is illegal to open, release or rollback any 4180 ** such savepoints while the statement transaction savepoint is active. 4181 */ 4182 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4183 sqlite3BtreeLeave(p); 4184 return rc; 4185 } 4186 4187 /* 4188 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4189 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4190 ** savepoint identified by parameter iSavepoint, depending on the value 4191 ** of op. 4192 ** 4193 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4194 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4195 ** contents of the entire transaction are rolled back. This is different 4196 ** from a normal transaction rollback, as no locks are released and the 4197 ** transaction remains open. 4198 */ 4199 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4200 int rc = SQLITE_OK; 4201 if( p && p->inTrans==TRANS_WRITE ){ 4202 BtShared *pBt = p->pBt; 4203 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4204 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4205 sqlite3BtreeEnter(p); 4206 if( op==SAVEPOINT_ROLLBACK ){ 4207 rc = saveAllCursors(pBt, 0, 0); 4208 } 4209 if( rc==SQLITE_OK ){ 4210 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4211 } 4212 if( rc==SQLITE_OK ){ 4213 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4214 pBt->nPage = 0; 4215 } 4216 rc = newDatabase(pBt); 4217 pBt->nPage = get4byte(28 + pBt->pPage1->aData); 4218 4219 /* The database size was written into the offset 28 of the header 4220 ** when the transaction started, so we know that the value at offset 4221 ** 28 is nonzero. */ 4222 assert( pBt->nPage>0 ); 4223 } 4224 sqlite3BtreeLeave(p); 4225 } 4226 return rc; 4227 } 4228 4229 /* 4230 ** Create a new cursor for the BTree whose root is on the page 4231 ** iTable. If a read-only cursor is requested, it is assumed that 4232 ** the caller already has at least a read-only transaction open 4233 ** on the database already. If a write-cursor is requested, then 4234 ** the caller is assumed to have an open write transaction. 4235 ** 4236 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4237 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4238 ** can be used for reading or for writing if other conditions for writing 4239 ** are also met. These are the conditions that must be met in order 4240 ** for writing to be allowed: 4241 ** 4242 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4243 ** 4244 ** 2: Other database connections that share the same pager cache 4245 ** but which are not in the READ_UNCOMMITTED state may not have 4246 ** cursors open with wrFlag==0 on the same table. Otherwise 4247 ** the changes made by this write cursor would be visible to 4248 ** the read cursors in the other database connection. 4249 ** 4250 ** 3: The database must be writable (not on read-only media) 4251 ** 4252 ** 4: There must be an active transaction. 4253 ** 4254 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4255 ** is set. If FORDELETE is set, that is a hint to the implementation that 4256 ** this cursor will only be used to seek to and delete entries of an index 4257 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4258 ** this implementation. But in a hypothetical alternative storage engine 4259 ** in which index entries are automatically deleted when corresponding table 4260 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4261 ** operations on this cursor can be no-ops and all READ operations can 4262 ** return a null row (2-bytes: 0x01 0x00). 4263 ** 4264 ** No checking is done to make sure that page iTable really is the 4265 ** root page of a b-tree. If it is not, then the cursor acquired 4266 ** will not work correctly. 4267 ** 4268 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4269 ** on pCur to initialize the memory space prior to invoking this routine. 4270 */ 4271 static int btreeCursor( 4272 Btree *p, /* The btree */ 4273 int iTable, /* Root page of table to open */ 4274 int wrFlag, /* 1 to write. 0 read-only */ 4275 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4276 BtCursor *pCur /* Space for new cursor */ 4277 ){ 4278 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4279 BtCursor *pX; /* Looping over other all cursors */ 4280 4281 assert( sqlite3BtreeHoldsMutex(p) ); 4282 assert( wrFlag==0 4283 || wrFlag==BTREE_WRCSR 4284 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4285 ); 4286 4287 /* The following assert statements verify that if this is a sharable 4288 ** b-tree database, the connection is holding the required table locks, 4289 ** and that no other connection has any open cursor that conflicts with 4290 ** this lock. */ 4291 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); 4292 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4293 4294 /* Assert that the caller has opened the required transaction. */ 4295 assert( p->inTrans>TRANS_NONE ); 4296 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4297 assert( pBt->pPage1 && pBt->pPage1->aData ); 4298 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4299 4300 if( wrFlag ){ 4301 allocateTempSpace(pBt); 4302 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; 4303 } 4304 if( iTable==1 && btreePagecount(pBt)==0 ){ 4305 assert( wrFlag==0 ); 4306 iTable = 0; 4307 } 4308 4309 /* Now that no other errors can occur, finish filling in the BtCursor 4310 ** variables and link the cursor into the BtShared list. */ 4311 pCur->pgnoRoot = (Pgno)iTable; 4312 pCur->iPage = -1; 4313 pCur->pKeyInfo = pKeyInfo; 4314 pCur->pBtree = p; 4315 pCur->pBt = pBt; 4316 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; 4317 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; 4318 /* If there are two or more cursors on the same btree, then all such 4319 ** cursors *must* have the BTCF_Multiple flag set. */ 4320 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4321 if( pX->pgnoRoot==(Pgno)iTable ){ 4322 pX->curFlags |= BTCF_Multiple; 4323 pCur->curFlags |= BTCF_Multiple; 4324 } 4325 } 4326 pCur->pNext = pBt->pCursor; 4327 pBt->pCursor = pCur; 4328 pCur->eState = CURSOR_INVALID; 4329 return SQLITE_OK; 4330 } 4331 int sqlite3BtreeCursor( 4332 Btree *p, /* The btree */ 4333 int iTable, /* Root page of table to open */ 4334 int wrFlag, /* 1 to write. 0 read-only */ 4335 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4336 BtCursor *pCur /* Write new cursor here */ 4337 ){ 4338 int rc; 4339 if( iTable<1 ){ 4340 rc = SQLITE_CORRUPT_BKPT; 4341 }else{ 4342 sqlite3BtreeEnter(p); 4343 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4344 sqlite3BtreeLeave(p); 4345 } 4346 return rc; 4347 } 4348 4349 /* 4350 ** Return the size of a BtCursor object in bytes. 4351 ** 4352 ** This interfaces is needed so that users of cursors can preallocate 4353 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4354 ** to users so they cannot do the sizeof() themselves - they must call 4355 ** this routine. 4356 */ 4357 int sqlite3BtreeCursorSize(void){ 4358 return ROUND8(sizeof(BtCursor)); 4359 } 4360 4361 /* 4362 ** Initialize memory that will be converted into a BtCursor object. 4363 ** 4364 ** The simple approach here would be to memset() the entire object 4365 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4366 ** do not need to be zeroed and they are large, so we can save a lot 4367 ** of run-time by skipping the initialization of those elements. 4368 */ 4369 void sqlite3BtreeCursorZero(BtCursor *p){ 4370 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4371 } 4372 4373 /* 4374 ** Close a cursor. The read lock on the database file is released 4375 ** when the last cursor is closed. 4376 */ 4377 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4378 Btree *pBtree = pCur->pBtree; 4379 if( pBtree ){ 4380 BtShared *pBt = pCur->pBt; 4381 sqlite3BtreeEnter(pBtree); 4382 assert( pBt->pCursor!=0 ); 4383 if( pBt->pCursor==pCur ){ 4384 pBt->pCursor = pCur->pNext; 4385 }else{ 4386 BtCursor *pPrev = pBt->pCursor; 4387 do{ 4388 if( pPrev->pNext==pCur ){ 4389 pPrev->pNext = pCur->pNext; 4390 break; 4391 } 4392 pPrev = pPrev->pNext; 4393 }while( ALWAYS(pPrev) ); 4394 } 4395 btreeReleaseAllCursorPages(pCur); 4396 unlockBtreeIfUnused(pBt); 4397 sqlite3_free(pCur->aOverflow); 4398 sqlite3_free(pCur->pKey); 4399 sqlite3BtreeLeave(pBtree); 4400 } 4401 return SQLITE_OK; 4402 } 4403 4404 /* 4405 ** Make sure the BtCursor* given in the argument has a valid 4406 ** BtCursor.info structure. If it is not already valid, call 4407 ** btreeParseCell() to fill it in. 4408 ** 4409 ** BtCursor.info is a cache of the information in the current cell. 4410 ** Using this cache reduces the number of calls to btreeParseCell(). 4411 */ 4412 #ifndef NDEBUG 4413 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4414 if( a->nKey!=b->nKey ) return 0; 4415 if( a->pPayload!=b->pPayload ) return 0; 4416 if( a->nPayload!=b->nPayload ) return 0; 4417 if( a->nLocal!=b->nLocal ) return 0; 4418 if( a->nSize!=b->nSize ) return 0; 4419 return 1; 4420 } 4421 static void assertCellInfo(BtCursor *pCur){ 4422 CellInfo info; 4423 memset(&info, 0, sizeof(info)); 4424 btreeParseCell(pCur->pPage, pCur->ix, &info); 4425 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4426 } 4427 #else 4428 #define assertCellInfo(x) 4429 #endif 4430 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4431 if( pCur->info.nSize==0 ){ 4432 pCur->curFlags |= BTCF_ValidNKey; 4433 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4434 }else{ 4435 assertCellInfo(pCur); 4436 } 4437 } 4438 4439 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4440 /* 4441 ** Return true if the given BtCursor is valid. A valid cursor is one 4442 ** that is currently pointing to a row in a (non-empty) table. 4443 ** This is a verification routine is used only within assert() statements. 4444 */ 4445 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4446 return pCur && pCur->eState==CURSOR_VALID; 4447 } 4448 #endif /* NDEBUG */ 4449 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4450 assert( pCur!=0 ); 4451 return pCur->eState==CURSOR_VALID; 4452 } 4453 4454 /* 4455 ** Return the value of the integer key or "rowid" for a table btree. 4456 ** This routine is only valid for a cursor that is pointing into a 4457 ** ordinary table btree. If the cursor points to an index btree or 4458 ** is invalid, the result of this routine is undefined. 4459 */ 4460 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4461 assert( cursorHoldsMutex(pCur) ); 4462 assert( pCur->eState==CURSOR_VALID ); 4463 assert( pCur->curIntKey ); 4464 getCellInfo(pCur); 4465 return pCur->info.nKey; 4466 } 4467 4468 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4469 /* 4470 ** Return the offset into the database file for the start of the 4471 ** payload to which the cursor is pointing. 4472 */ 4473 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4474 assert( cursorHoldsMutex(pCur) ); 4475 assert( pCur->eState==CURSOR_VALID ); 4476 getCellInfo(pCur); 4477 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4478 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4479 } 4480 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4481 4482 /* 4483 ** Return the number of bytes of payload for the entry that pCur is 4484 ** currently pointing to. For table btrees, this will be the amount 4485 ** of data. For index btrees, this will be the size of the key. 4486 ** 4487 ** The caller must guarantee that the cursor is pointing to a non-NULL 4488 ** valid entry. In other words, the calling procedure must guarantee 4489 ** that the cursor has Cursor.eState==CURSOR_VALID. 4490 */ 4491 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4492 assert( cursorHoldsMutex(pCur) ); 4493 assert( pCur->eState==CURSOR_VALID ); 4494 getCellInfo(pCur); 4495 return pCur->info.nPayload; 4496 } 4497 4498 /* 4499 ** Given the page number of an overflow page in the database (parameter 4500 ** ovfl), this function finds the page number of the next page in the 4501 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4502 ** pointer-map data instead of reading the content of page ovfl to do so. 4503 ** 4504 ** If an error occurs an SQLite error code is returned. Otherwise: 4505 ** 4506 ** The page number of the next overflow page in the linked list is 4507 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4508 ** list, *pPgnoNext is set to zero. 4509 ** 4510 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4511 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4512 ** reference. It is the responsibility of the caller to call releasePage() 4513 ** on *ppPage to free the reference. In no reference was obtained (because 4514 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4515 ** *ppPage is set to zero. 4516 */ 4517 static int getOverflowPage( 4518 BtShared *pBt, /* The database file */ 4519 Pgno ovfl, /* Current overflow page number */ 4520 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4521 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4522 ){ 4523 Pgno next = 0; 4524 MemPage *pPage = 0; 4525 int rc = SQLITE_OK; 4526 4527 assert( sqlite3_mutex_held(pBt->mutex) ); 4528 assert(pPgnoNext); 4529 4530 #ifndef SQLITE_OMIT_AUTOVACUUM 4531 /* Try to find the next page in the overflow list using the 4532 ** autovacuum pointer-map pages. Guess that the next page in 4533 ** the overflow list is page number (ovfl+1). If that guess turns 4534 ** out to be wrong, fall back to loading the data of page 4535 ** number ovfl to determine the next page number. 4536 */ 4537 if( pBt->autoVacuum ){ 4538 Pgno pgno; 4539 Pgno iGuess = ovfl+1; 4540 u8 eType; 4541 4542 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4543 iGuess++; 4544 } 4545 4546 if( iGuess<=btreePagecount(pBt) ){ 4547 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4548 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4549 next = iGuess; 4550 rc = SQLITE_DONE; 4551 } 4552 } 4553 } 4554 #endif 4555 4556 assert( next==0 || rc==SQLITE_DONE ); 4557 if( rc==SQLITE_OK ){ 4558 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4559 assert( rc==SQLITE_OK || pPage==0 ); 4560 if( rc==SQLITE_OK ){ 4561 next = get4byte(pPage->aData); 4562 } 4563 } 4564 4565 *pPgnoNext = next; 4566 if( ppPage ){ 4567 *ppPage = pPage; 4568 }else{ 4569 releasePage(pPage); 4570 } 4571 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4572 } 4573 4574 /* 4575 ** Copy data from a buffer to a page, or from a page to a buffer. 4576 ** 4577 ** pPayload is a pointer to data stored on database page pDbPage. 4578 ** If argument eOp is false, then nByte bytes of data are copied 4579 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4580 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4581 ** of data are copied from the buffer pBuf to pPayload. 4582 ** 4583 ** SQLITE_OK is returned on success, otherwise an error code. 4584 */ 4585 static int copyPayload( 4586 void *pPayload, /* Pointer to page data */ 4587 void *pBuf, /* Pointer to buffer */ 4588 int nByte, /* Number of bytes to copy */ 4589 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4590 DbPage *pDbPage /* Page containing pPayload */ 4591 ){ 4592 if( eOp ){ 4593 /* Copy data from buffer to page (a write operation) */ 4594 int rc = sqlite3PagerWrite(pDbPage); 4595 if( rc!=SQLITE_OK ){ 4596 return rc; 4597 } 4598 memcpy(pPayload, pBuf, nByte); 4599 }else{ 4600 /* Copy data from page to buffer (a read operation) */ 4601 memcpy(pBuf, pPayload, nByte); 4602 } 4603 return SQLITE_OK; 4604 } 4605 4606 /* 4607 ** This function is used to read or overwrite payload information 4608 ** for the entry that the pCur cursor is pointing to. The eOp 4609 ** argument is interpreted as follows: 4610 ** 4611 ** 0: The operation is a read. Populate the overflow cache. 4612 ** 1: The operation is a write. Populate the overflow cache. 4613 ** 4614 ** A total of "amt" bytes are read or written beginning at "offset". 4615 ** Data is read to or from the buffer pBuf. 4616 ** 4617 ** The content being read or written might appear on the main page 4618 ** or be scattered out on multiple overflow pages. 4619 ** 4620 ** If the current cursor entry uses one or more overflow pages 4621 ** this function may allocate space for and lazily populate 4622 ** the overflow page-list cache array (BtCursor.aOverflow). 4623 ** Subsequent calls use this cache to make seeking to the supplied offset 4624 ** more efficient. 4625 ** 4626 ** Once an overflow page-list cache has been allocated, it must be 4627 ** invalidated if some other cursor writes to the same table, or if 4628 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4629 ** mode, the following events may invalidate an overflow page-list cache. 4630 ** 4631 ** * An incremental vacuum, 4632 ** * A commit in auto_vacuum="full" mode, 4633 ** * Creating a table (may require moving an overflow page). 4634 */ 4635 static int accessPayload( 4636 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4637 u32 offset, /* Begin reading this far into payload */ 4638 u32 amt, /* Read this many bytes */ 4639 unsigned char *pBuf, /* Write the bytes into this buffer */ 4640 int eOp /* zero to read. non-zero to write. */ 4641 ){ 4642 unsigned char *aPayload; 4643 int rc = SQLITE_OK; 4644 int iIdx = 0; 4645 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4646 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4647 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4648 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4649 #endif 4650 4651 assert( pPage ); 4652 assert( eOp==0 || eOp==1 ); 4653 assert( pCur->eState==CURSOR_VALID ); 4654 assert( pCur->ix<pPage->nCell ); 4655 assert( cursorHoldsMutex(pCur) ); 4656 4657 getCellInfo(pCur); 4658 aPayload = pCur->info.pPayload; 4659 assert( offset+amt <= pCur->info.nPayload ); 4660 4661 assert( aPayload > pPage->aData ); 4662 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4663 /* Trying to read or write past the end of the data is an error. The 4664 ** conditional above is really: 4665 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4666 ** but is recast into its current form to avoid integer overflow problems 4667 */ 4668 return SQLITE_CORRUPT_PAGE(pPage); 4669 } 4670 4671 /* Check if data must be read/written to/from the btree page itself. */ 4672 if( offset<pCur->info.nLocal ){ 4673 int a = amt; 4674 if( a+offset>pCur->info.nLocal ){ 4675 a = pCur->info.nLocal - offset; 4676 } 4677 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4678 offset = 0; 4679 pBuf += a; 4680 amt -= a; 4681 }else{ 4682 offset -= pCur->info.nLocal; 4683 } 4684 4685 4686 if( rc==SQLITE_OK && amt>0 ){ 4687 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4688 Pgno nextPage; 4689 4690 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4691 4692 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4693 ** 4694 ** The aOverflow[] array is sized at one entry for each overflow page 4695 ** in the overflow chain. The page number of the first overflow page is 4696 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4697 ** means "not yet known" (the cache is lazily populated). 4698 */ 4699 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4700 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4701 if( pCur->aOverflow==0 4702 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4703 ){ 4704 Pgno *aNew = (Pgno*)sqlite3Realloc( 4705 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4706 ); 4707 if( aNew==0 ){ 4708 return SQLITE_NOMEM_BKPT; 4709 }else{ 4710 pCur->aOverflow = aNew; 4711 } 4712 } 4713 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4714 pCur->curFlags |= BTCF_ValidOvfl; 4715 }else{ 4716 /* If the overflow page-list cache has been allocated and the 4717 ** entry for the first required overflow page is valid, skip 4718 ** directly to it. 4719 */ 4720 if( pCur->aOverflow[offset/ovflSize] ){ 4721 iIdx = (offset/ovflSize); 4722 nextPage = pCur->aOverflow[iIdx]; 4723 offset = (offset%ovflSize); 4724 } 4725 } 4726 4727 assert( rc==SQLITE_OK && amt>0 ); 4728 while( nextPage ){ 4729 /* If required, populate the overflow page-list cache. */ 4730 assert( pCur->aOverflow[iIdx]==0 4731 || pCur->aOverflow[iIdx]==nextPage 4732 || CORRUPT_DB ); 4733 pCur->aOverflow[iIdx] = nextPage; 4734 4735 if( offset>=ovflSize ){ 4736 /* The only reason to read this page is to obtain the page 4737 ** number for the next page in the overflow chain. The page 4738 ** data is not required. So first try to lookup the overflow 4739 ** page-list cache, if any, then fall back to the getOverflowPage() 4740 ** function. 4741 */ 4742 assert( pCur->curFlags & BTCF_ValidOvfl ); 4743 assert( pCur->pBtree->db==pBt->db ); 4744 if( pCur->aOverflow[iIdx+1] ){ 4745 nextPage = pCur->aOverflow[iIdx+1]; 4746 }else{ 4747 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4748 } 4749 offset -= ovflSize; 4750 }else{ 4751 /* Need to read this page properly. It contains some of the 4752 ** range of data that is being read (eOp==0) or written (eOp!=0). 4753 */ 4754 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4755 sqlite3_file *fd; /* File from which to do direct overflow read */ 4756 #endif 4757 int a = amt; 4758 if( a + offset > ovflSize ){ 4759 a = ovflSize - offset; 4760 } 4761 4762 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4763 /* If all the following are true: 4764 ** 4765 ** 1) this is a read operation, and 4766 ** 2) data is required from the start of this overflow page, and 4767 ** 3) there is no open write-transaction, and 4768 ** 4) the database is file-backed, and 4769 ** 5) the page is not in the WAL file 4770 ** 6) at least 4 bytes have already been read into the output buffer 4771 ** 4772 ** then data can be read directly from the database file into the 4773 ** output buffer, bypassing the page-cache altogether. This speeds 4774 ** up loading large records that span many overflow pages. 4775 */ 4776 if( eOp==0 /* (1) */ 4777 && offset==0 /* (2) */ 4778 && pBt->inTransaction==TRANS_READ /* (3) */ 4779 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */ 4780 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */ 4781 && &pBuf[-4]>=pBufStart /* (6) */ 4782 ){ 4783 u8 aSave[4]; 4784 u8 *aWrite = &pBuf[-4]; 4785 assert( aWrite>=pBufStart ); /* due to (6) */ 4786 memcpy(aSave, aWrite, 4); 4787 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 4788 nextPage = get4byte(aWrite); 4789 memcpy(aWrite, aSave, 4); 4790 }else 4791 #endif 4792 4793 { 4794 DbPage *pDbPage; 4795 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 4796 (eOp==0 ? PAGER_GET_READONLY : 0) 4797 ); 4798 if( rc==SQLITE_OK ){ 4799 aPayload = sqlite3PagerGetData(pDbPage); 4800 nextPage = get4byte(aPayload); 4801 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 4802 sqlite3PagerUnref(pDbPage); 4803 offset = 0; 4804 } 4805 } 4806 amt -= a; 4807 if( amt==0 ) return rc; 4808 pBuf += a; 4809 } 4810 if( rc ) break; 4811 iIdx++; 4812 } 4813 } 4814 4815 if( rc==SQLITE_OK && amt>0 ){ 4816 /* Overflow chain ends prematurely */ 4817 return SQLITE_CORRUPT_PAGE(pPage); 4818 } 4819 return rc; 4820 } 4821 4822 /* 4823 ** Read part of the payload for the row at which that cursor pCur is currently 4824 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 4825 ** begins at "offset". 4826 ** 4827 ** pCur can be pointing to either a table or an index b-tree. 4828 ** If pointing to a table btree, then the content section is read. If 4829 ** pCur is pointing to an index b-tree then the key section is read. 4830 ** 4831 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 4832 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 4833 ** cursor might be invalid or might need to be restored before being read. 4834 ** 4835 ** Return SQLITE_OK on success or an error code if anything goes 4836 ** wrong. An error is returned if "offset+amt" is larger than 4837 ** the available payload. 4838 */ 4839 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4840 assert( cursorHoldsMutex(pCur) ); 4841 assert( pCur->eState==CURSOR_VALID ); 4842 assert( pCur->iPage>=0 && pCur->pPage ); 4843 assert( pCur->ix<pCur->pPage->nCell ); 4844 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 4845 } 4846 4847 /* 4848 ** This variant of sqlite3BtreePayload() works even if the cursor has not 4849 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 4850 ** interface. 4851 */ 4852 #ifndef SQLITE_OMIT_INCRBLOB 4853 static SQLITE_NOINLINE int accessPayloadChecked( 4854 BtCursor *pCur, 4855 u32 offset, 4856 u32 amt, 4857 void *pBuf 4858 ){ 4859 int rc; 4860 if ( pCur->eState==CURSOR_INVALID ){ 4861 return SQLITE_ABORT; 4862 } 4863 assert( cursorOwnsBtShared(pCur) ); 4864 rc = btreeRestoreCursorPosition(pCur); 4865 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 4866 } 4867 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 4868 if( pCur->eState==CURSOR_VALID ){ 4869 assert( cursorOwnsBtShared(pCur) ); 4870 return accessPayload(pCur, offset, amt, pBuf, 0); 4871 }else{ 4872 return accessPayloadChecked(pCur, offset, amt, pBuf); 4873 } 4874 } 4875 #endif /* SQLITE_OMIT_INCRBLOB */ 4876 4877 /* 4878 ** Return a pointer to payload information from the entry that the 4879 ** pCur cursor is pointing to. The pointer is to the beginning of 4880 ** the key if index btrees (pPage->intKey==0) and is the data for 4881 ** table btrees (pPage->intKey==1). The number of bytes of available 4882 ** key/data is written into *pAmt. If *pAmt==0, then the value 4883 ** returned will not be a valid pointer. 4884 ** 4885 ** This routine is an optimization. It is common for the entire key 4886 ** and data to fit on the local page and for there to be no overflow 4887 ** pages. When that is so, this routine can be used to access the 4888 ** key and data without making a copy. If the key and/or data spills 4889 ** onto overflow pages, then accessPayload() must be used to reassemble 4890 ** the key/data and copy it into a preallocated buffer. 4891 ** 4892 ** The pointer returned by this routine looks directly into the cached 4893 ** page of the database. The data might change or move the next time 4894 ** any btree routine is called. 4895 */ 4896 static const void *fetchPayload( 4897 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4898 u32 *pAmt /* Write the number of available bytes here */ 4899 ){ 4900 int amt; 4901 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 4902 assert( pCur->eState==CURSOR_VALID ); 4903 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 4904 assert( cursorOwnsBtShared(pCur) ); 4905 assert( pCur->ix<pCur->pPage->nCell ); 4906 assert( pCur->info.nSize>0 ); 4907 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 4908 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 4909 amt = pCur->info.nLocal; 4910 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 4911 /* There is too little space on the page for the expected amount 4912 ** of local content. Database must be corrupt. */ 4913 assert( CORRUPT_DB ); 4914 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 4915 } 4916 *pAmt = (u32)amt; 4917 return (void*)pCur->info.pPayload; 4918 } 4919 4920 4921 /* 4922 ** For the entry that cursor pCur is point to, return as 4923 ** many bytes of the key or data as are available on the local 4924 ** b-tree page. Write the number of available bytes into *pAmt. 4925 ** 4926 ** The pointer returned is ephemeral. The key/data may move 4927 ** or be destroyed on the next call to any Btree routine, 4928 ** including calls from other threads against the same cache. 4929 ** Hence, a mutex on the BtShared should be held prior to calling 4930 ** this routine. 4931 ** 4932 ** These routines is used to get quick access to key and data 4933 ** in the common case where no overflow pages are used. 4934 */ 4935 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 4936 return fetchPayload(pCur, pAmt); 4937 } 4938 4939 4940 /* 4941 ** Move the cursor down to a new child page. The newPgno argument is the 4942 ** page number of the child page to move to. 4943 ** 4944 ** This function returns SQLITE_CORRUPT if the page-header flags field of 4945 ** the new child page does not match the flags field of the parent (i.e. 4946 ** if an intkey page appears to be the parent of a non-intkey page, or 4947 ** vice-versa). 4948 */ 4949 static int moveToChild(BtCursor *pCur, u32 newPgno){ 4950 BtShared *pBt = pCur->pBt; 4951 4952 assert( cursorOwnsBtShared(pCur) ); 4953 assert( pCur->eState==CURSOR_VALID ); 4954 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 4955 assert( pCur->iPage>=0 ); 4956 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 4957 return SQLITE_CORRUPT_BKPT; 4958 } 4959 pCur->info.nSize = 0; 4960 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 4961 pCur->aiIdx[pCur->iPage] = pCur->ix; 4962 pCur->apPage[pCur->iPage] = pCur->pPage; 4963 pCur->ix = 0; 4964 pCur->iPage++; 4965 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 4966 } 4967 4968 #ifdef SQLITE_DEBUG 4969 /* 4970 ** Page pParent is an internal (non-leaf) tree page. This function 4971 ** asserts that page number iChild is the left-child if the iIdx'th 4972 ** cell in page pParent. Or, if iIdx is equal to the total number of 4973 ** cells in pParent, that page number iChild is the right-child of 4974 ** the page. 4975 */ 4976 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 4977 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 4978 ** in a corrupt database */ 4979 assert( iIdx<=pParent->nCell ); 4980 if( iIdx==pParent->nCell ){ 4981 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 4982 }else{ 4983 assert( get4byte(findCell(pParent, iIdx))==iChild ); 4984 } 4985 } 4986 #else 4987 # define assertParentIndex(x,y,z) 4988 #endif 4989 4990 /* 4991 ** Move the cursor up to the parent page. 4992 ** 4993 ** pCur->idx is set to the cell index that contains the pointer 4994 ** to the page we are coming from. If we are coming from the 4995 ** right-most child page then pCur->idx is set to one more than 4996 ** the largest cell index. 4997 */ 4998 static void moveToParent(BtCursor *pCur){ 4999 MemPage *pLeaf; 5000 assert( cursorOwnsBtShared(pCur) ); 5001 assert( pCur->eState==CURSOR_VALID ); 5002 assert( pCur->iPage>0 ); 5003 assert( pCur->pPage ); 5004 assertParentIndex( 5005 pCur->apPage[pCur->iPage-1], 5006 pCur->aiIdx[pCur->iPage-1], 5007 pCur->pPage->pgno 5008 ); 5009 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5010 pCur->info.nSize = 0; 5011 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5012 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5013 pLeaf = pCur->pPage; 5014 pCur->pPage = pCur->apPage[--pCur->iPage]; 5015 releasePageNotNull(pLeaf); 5016 } 5017 5018 /* 5019 ** Move the cursor to point to the root page of its b-tree structure. 5020 ** 5021 ** If the table has a virtual root page, then the cursor is moved to point 5022 ** to the virtual root page instead of the actual root page. A table has a 5023 ** virtual root page when the actual root page contains no cells and a 5024 ** single child page. This can only happen with the table rooted at page 1. 5025 ** 5026 ** If the b-tree structure is empty, the cursor state is set to 5027 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5028 ** the cursor is set to point to the first cell located on the root 5029 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5030 ** 5031 ** If this function returns successfully, it may be assumed that the 5032 ** page-header flags indicate that the [virtual] root-page is the expected 5033 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5034 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5035 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5036 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5037 ** b-tree). 5038 */ 5039 static int moveToRoot(BtCursor *pCur){ 5040 MemPage *pRoot; 5041 int rc = SQLITE_OK; 5042 5043 assert( cursorOwnsBtShared(pCur) ); 5044 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5045 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5046 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5047 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5048 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5049 5050 if( pCur->iPage>=0 ){ 5051 if( pCur->iPage ){ 5052 releasePageNotNull(pCur->pPage); 5053 while( --pCur->iPage ){ 5054 releasePageNotNull(pCur->apPage[pCur->iPage]); 5055 } 5056 pCur->pPage = pCur->apPage[0]; 5057 goto skip_init; 5058 } 5059 }else if( pCur->pgnoRoot==0 ){ 5060 pCur->eState = CURSOR_INVALID; 5061 return SQLITE_EMPTY; 5062 }else{ 5063 assert( pCur->iPage==(-1) ); 5064 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5065 if( pCur->eState==CURSOR_FAULT ){ 5066 assert( pCur->skipNext!=SQLITE_OK ); 5067 return pCur->skipNext; 5068 } 5069 sqlite3BtreeClearCursor(pCur); 5070 } 5071 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5072 0, pCur->curPagerFlags); 5073 if( rc!=SQLITE_OK ){ 5074 pCur->eState = CURSOR_INVALID; 5075 return rc; 5076 } 5077 pCur->iPage = 0; 5078 pCur->curIntKey = pCur->pPage->intKey; 5079 } 5080 pRoot = pCur->pPage; 5081 assert( pRoot->pgno==pCur->pgnoRoot ); 5082 5083 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5084 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5085 ** NULL, the caller expects a table b-tree. If this is not the case, 5086 ** return an SQLITE_CORRUPT error. 5087 ** 5088 ** Earlier versions of SQLite assumed that this test could not fail 5089 ** if the root page was already loaded when this function was called (i.e. 5090 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5091 ** in such a way that page pRoot is linked into a second b-tree table 5092 ** (or the freelist). */ 5093 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5094 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5095 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5096 } 5097 5098 skip_init: 5099 pCur->ix = 0; 5100 pCur->info.nSize = 0; 5101 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5102 5103 pRoot = pCur->pPage; 5104 if( pRoot->nCell>0 ){ 5105 pCur->eState = CURSOR_VALID; 5106 }else if( !pRoot->leaf ){ 5107 Pgno subpage; 5108 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5109 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5110 pCur->eState = CURSOR_VALID; 5111 rc = moveToChild(pCur, subpage); 5112 }else{ 5113 pCur->eState = CURSOR_INVALID; 5114 rc = SQLITE_EMPTY; 5115 } 5116 return rc; 5117 } 5118 5119 /* 5120 ** Move the cursor down to the left-most leaf entry beneath the 5121 ** entry to which it is currently pointing. 5122 ** 5123 ** The left-most leaf is the one with the smallest key - the first 5124 ** in ascending order. 5125 */ 5126 static int moveToLeftmost(BtCursor *pCur){ 5127 Pgno pgno; 5128 int rc = SQLITE_OK; 5129 MemPage *pPage; 5130 5131 assert( cursorOwnsBtShared(pCur) ); 5132 assert( pCur->eState==CURSOR_VALID ); 5133 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5134 assert( pCur->ix<pPage->nCell ); 5135 pgno = get4byte(findCell(pPage, pCur->ix)); 5136 rc = moveToChild(pCur, pgno); 5137 } 5138 return rc; 5139 } 5140 5141 /* 5142 ** Move the cursor down to the right-most leaf entry beneath the 5143 ** page to which it is currently pointing. Notice the difference 5144 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5145 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5146 ** finds the right-most entry beneath the *page*. 5147 ** 5148 ** The right-most entry is the one with the largest key - the last 5149 ** key in ascending order. 5150 */ 5151 static int moveToRightmost(BtCursor *pCur){ 5152 Pgno pgno; 5153 int rc = SQLITE_OK; 5154 MemPage *pPage = 0; 5155 5156 assert( cursorOwnsBtShared(pCur) ); 5157 assert( pCur->eState==CURSOR_VALID ); 5158 while( !(pPage = pCur->pPage)->leaf ){ 5159 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5160 pCur->ix = pPage->nCell; 5161 rc = moveToChild(pCur, pgno); 5162 if( rc ) return rc; 5163 } 5164 pCur->ix = pPage->nCell-1; 5165 assert( pCur->info.nSize==0 ); 5166 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5167 return SQLITE_OK; 5168 } 5169 5170 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5171 ** on success. Set *pRes to 0 if the cursor actually points to something 5172 ** or set *pRes to 1 if the table is empty. 5173 */ 5174 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5175 int rc; 5176 5177 assert( cursorOwnsBtShared(pCur) ); 5178 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5179 rc = moveToRoot(pCur); 5180 if( rc==SQLITE_OK ){ 5181 assert( pCur->pPage->nCell>0 ); 5182 *pRes = 0; 5183 rc = moveToLeftmost(pCur); 5184 }else if( rc==SQLITE_EMPTY ){ 5185 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5186 *pRes = 1; 5187 rc = SQLITE_OK; 5188 } 5189 return rc; 5190 } 5191 5192 /* 5193 ** This function is a no-op if cursor pCur does not point to a valid row. 5194 ** Otherwise, if pCur is valid, configure it so that the next call to 5195 ** sqlite3BtreeNext() is a no-op. 5196 */ 5197 #ifndef SQLITE_OMIT_WINDOWFUNC 5198 void sqlite3BtreeSkipNext(BtCursor *pCur){ 5199 if( pCur->eState==CURSOR_VALID ){ 5200 pCur->eState = CURSOR_SKIPNEXT; 5201 pCur->skipNext = 1; 5202 } 5203 } 5204 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5205 5206 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5207 ** on success. Set *pRes to 0 if the cursor actually points to something 5208 ** or set *pRes to 1 if the table is empty. 5209 */ 5210 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5211 int rc; 5212 5213 assert( cursorOwnsBtShared(pCur) ); 5214 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5215 5216 /* If the cursor already points to the last entry, this is a no-op. */ 5217 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5218 #ifdef SQLITE_DEBUG 5219 /* This block serves to assert() that the cursor really does point 5220 ** to the last entry in the b-tree. */ 5221 int ii; 5222 for(ii=0; ii<pCur->iPage; ii++){ 5223 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5224 } 5225 assert( pCur->ix==pCur->pPage->nCell-1 ); 5226 assert( pCur->pPage->leaf ); 5227 #endif 5228 return SQLITE_OK; 5229 } 5230 5231 rc = moveToRoot(pCur); 5232 if( rc==SQLITE_OK ){ 5233 assert( pCur->eState==CURSOR_VALID ); 5234 *pRes = 0; 5235 rc = moveToRightmost(pCur); 5236 if( rc==SQLITE_OK ){ 5237 pCur->curFlags |= BTCF_AtLast; 5238 }else{ 5239 pCur->curFlags &= ~BTCF_AtLast; 5240 } 5241 }else if( rc==SQLITE_EMPTY ){ 5242 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5243 *pRes = 1; 5244 rc = SQLITE_OK; 5245 } 5246 return rc; 5247 } 5248 5249 /* Move the cursor so that it points to an entry near the key 5250 ** specified by pIdxKey or intKey. Return a success code. 5251 ** 5252 ** For INTKEY tables, the intKey parameter is used. pIdxKey 5253 ** must be NULL. For index tables, pIdxKey is used and intKey 5254 ** is ignored. 5255 ** 5256 ** If an exact match is not found, then the cursor is always 5257 ** left pointing at a leaf page which would hold the entry if it 5258 ** were present. The cursor might point to an entry that comes 5259 ** before or after the key. 5260 ** 5261 ** An integer is written into *pRes which is the result of 5262 ** comparing the key with the entry to which the cursor is 5263 ** pointing. The meaning of the integer written into 5264 ** *pRes is as follows: 5265 ** 5266 ** *pRes<0 The cursor is left pointing at an entry that 5267 ** is smaller than intKey/pIdxKey or if the table is empty 5268 ** and the cursor is therefore left point to nothing. 5269 ** 5270 ** *pRes==0 The cursor is left pointing at an entry that 5271 ** exactly matches intKey/pIdxKey. 5272 ** 5273 ** *pRes>0 The cursor is left pointing at an entry that 5274 ** is larger than intKey/pIdxKey. 5275 ** 5276 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there 5277 ** exists an entry in the table that exactly matches pIdxKey. 5278 */ 5279 int sqlite3BtreeMovetoUnpacked( 5280 BtCursor *pCur, /* The cursor to be moved */ 5281 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5282 i64 intKey, /* The table key */ 5283 int biasRight, /* If true, bias the search to the high end */ 5284 int *pRes /* Write search results here */ 5285 ){ 5286 int rc; 5287 RecordCompare xRecordCompare; 5288 5289 assert( cursorOwnsBtShared(pCur) ); 5290 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5291 assert( pRes ); 5292 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); 5293 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); 5294 5295 /* If the cursor is already positioned at the point we are trying 5296 ** to move to, then just return without doing any work */ 5297 if( pIdxKey==0 5298 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 5299 ){ 5300 if( pCur->info.nKey==intKey ){ 5301 *pRes = 0; 5302 return SQLITE_OK; 5303 } 5304 if( pCur->info.nKey<intKey ){ 5305 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5306 *pRes = -1; 5307 return SQLITE_OK; 5308 } 5309 /* If the requested key is one more than the previous key, then 5310 ** try to get there using sqlite3BtreeNext() rather than a full 5311 ** binary search. This is an optimization only. The correct answer 5312 ** is still obtained without this case, only a little more slowely */ 5313 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){ 5314 *pRes = 0; 5315 rc = sqlite3BtreeNext(pCur, 0); 5316 if( rc==SQLITE_OK ){ 5317 getCellInfo(pCur); 5318 if( pCur->info.nKey==intKey ){ 5319 return SQLITE_OK; 5320 } 5321 }else if( rc==SQLITE_DONE ){ 5322 rc = SQLITE_OK; 5323 }else{ 5324 return rc; 5325 } 5326 } 5327 } 5328 } 5329 5330 if( pIdxKey ){ 5331 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5332 pIdxKey->errCode = 0; 5333 assert( pIdxKey->default_rc==1 5334 || pIdxKey->default_rc==0 5335 || pIdxKey->default_rc==-1 5336 ); 5337 }else{ 5338 xRecordCompare = 0; /* All keys are integers */ 5339 } 5340 5341 rc = moveToRoot(pCur); 5342 if( rc ){ 5343 if( rc==SQLITE_EMPTY ){ 5344 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5345 *pRes = -1; 5346 return SQLITE_OK; 5347 } 5348 return rc; 5349 } 5350 assert( pCur->pPage ); 5351 assert( pCur->pPage->isInit ); 5352 assert( pCur->eState==CURSOR_VALID ); 5353 assert( pCur->pPage->nCell > 0 ); 5354 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5355 assert( pCur->curIntKey || pIdxKey ); 5356 for(;;){ 5357 int lwr, upr, idx, c; 5358 Pgno chldPg; 5359 MemPage *pPage = pCur->pPage; 5360 u8 *pCell; /* Pointer to current cell in pPage */ 5361 5362 /* pPage->nCell must be greater than zero. If this is the root-page 5363 ** the cursor would have been INVALID above and this for(;;) loop 5364 ** not run. If this is not the root-page, then the moveToChild() routine 5365 ** would have already detected db corruption. Similarly, pPage must 5366 ** be the right kind (index or table) of b-tree page. Otherwise 5367 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5368 assert( pPage->nCell>0 ); 5369 assert( pPage->intKey==(pIdxKey==0) ); 5370 lwr = 0; 5371 upr = pPage->nCell-1; 5372 assert( biasRight==0 || biasRight==1 ); 5373 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5374 pCur->ix = (u16)idx; 5375 if( xRecordCompare==0 ){ 5376 for(;;){ 5377 i64 nCellKey; 5378 pCell = findCellPastPtr(pPage, idx); 5379 if( pPage->intKeyLeaf ){ 5380 while( 0x80 <= *(pCell++) ){ 5381 if( pCell>=pPage->aDataEnd ){ 5382 return SQLITE_CORRUPT_PAGE(pPage); 5383 } 5384 } 5385 } 5386 getVarint(pCell, (u64*)&nCellKey); 5387 if( nCellKey<intKey ){ 5388 lwr = idx+1; 5389 if( lwr>upr ){ c = -1; break; } 5390 }else if( nCellKey>intKey ){ 5391 upr = idx-1; 5392 if( lwr>upr ){ c = +1; break; } 5393 }else{ 5394 assert( nCellKey==intKey ); 5395 pCur->ix = (u16)idx; 5396 if( !pPage->leaf ){ 5397 lwr = idx; 5398 goto moveto_next_layer; 5399 }else{ 5400 pCur->curFlags |= BTCF_ValidNKey; 5401 pCur->info.nKey = nCellKey; 5402 pCur->info.nSize = 0; 5403 *pRes = 0; 5404 return SQLITE_OK; 5405 } 5406 } 5407 assert( lwr+upr>=0 ); 5408 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5409 } 5410 }else{ 5411 for(;;){ 5412 int nCell; /* Size of the pCell cell in bytes */ 5413 pCell = findCellPastPtr(pPage, idx); 5414 5415 /* The maximum supported page-size is 65536 bytes. This means that 5416 ** the maximum number of record bytes stored on an index B-Tree 5417 ** page is less than 16384 bytes and may be stored as a 2-byte 5418 ** varint. This information is used to attempt to avoid parsing 5419 ** the entire cell by checking for the cases where the record is 5420 ** stored entirely within the b-tree page by inspecting the first 5421 ** 2 bytes of the cell. 5422 */ 5423 nCell = pCell[0]; 5424 if( nCell<=pPage->max1bytePayload ){ 5425 /* This branch runs if the record-size field of the cell is a 5426 ** single byte varint and the record fits entirely on the main 5427 ** b-tree page. */ 5428 testcase( pCell+nCell+1==pPage->aDataEnd ); 5429 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5430 }else if( !(pCell[1] & 0x80) 5431 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5432 ){ 5433 /* The record-size field is a 2 byte varint and the record 5434 ** fits entirely on the main b-tree page. */ 5435 testcase( pCell+nCell+2==pPage->aDataEnd ); 5436 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5437 }else{ 5438 /* The record flows over onto one or more overflow pages. In 5439 ** this case the whole cell needs to be parsed, a buffer allocated 5440 ** and accessPayload() used to retrieve the record into the 5441 ** buffer before VdbeRecordCompare() can be called. 5442 ** 5443 ** If the record is corrupt, the xRecordCompare routine may read 5444 ** up to two varints past the end of the buffer. An extra 18 5445 ** bytes of padding is allocated at the end of the buffer in 5446 ** case this happens. */ 5447 void *pCellKey; 5448 u8 * const pCellBody = pCell - pPage->childPtrSize; 5449 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5450 nCell = (int)pCur->info.nKey; 5451 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5452 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5453 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5454 testcase( nCell==2 ); /* Minimum legal index key size */ 5455 if( nCell<2 ){ 5456 rc = SQLITE_CORRUPT_PAGE(pPage); 5457 goto moveto_finish; 5458 } 5459 pCellKey = sqlite3Malloc( nCell+18 ); 5460 if( pCellKey==0 ){ 5461 rc = SQLITE_NOMEM_BKPT; 5462 goto moveto_finish; 5463 } 5464 pCur->ix = (u16)idx; 5465 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5466 pCur->curFlags &= ~BTCF_ValidOvfl; 5467 if( rc ){ 5468 sqlite3_free(pCellKey); 5469 goto moveto_finish; 5470 } 5471 c = xRecordCompare(nCell, pCellKey, pIdxKey); 5472 sqlite3_free(pCellKey); 5473 } 5474 assert( 5475 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5476 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5477 ); 5478 if( c<0 ){ 5479 lwr = idx+1; 5480 }else if( c>0 ){ 5481 upr = idx-1; 5482 }else{ 5483 assert( c==0 ); 5484 *pRes = 0; 5485 rc = SQLITE_OK; 5486 pCur->ix = (u16)idx; 5487 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5488 goto moveto_finish; 5489 } 5490 if( lwr>upr ) break; 5491 assert( lwr+upr>=0 ); 5492 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5493 } 5494 } 5495 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5496 assert( pPage->isInit ); 5497 if( pPage->leaf ){ 5498 assert( pCur->ix<pCur->pPage->nCell ); 5499 pCur->ix = (u16)idx; 5500 *pRes = c; 5501 rc = SQLITE_OK; 5502 goto moveto_finish; 5503 } 5504 moveto_next_layer: 5505 if( lwr>=pPage->nCell ){ 5506 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5507 }else{ 5508 chldPg = get4byte(findCell(pPage, lwr)); 5509 } 5510 pCur->ix = (u16)lwr; 5511 rc = moveToChild(pCur, chldPg); 5512 if( rc ) break; 5513 } 5514 moveto_finish: 5515 pCur->info.nSize = 0; 5516 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5517 return rc; 5518 } 5519 5520 5521 /* 5522 ** Return TRUE if the cursor is not pointing at an entry of the table. 5523 ** 5524 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5525 ** past the last entry in the table or sqlite3BtreePrev() moves past 5526 ** the first entry. TRUE is also returned if the table is empty. 5527 */ 5528 int sqlite3BtreeEof(BtCursor *pCur){ 5529 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5530 ** have been deleted? This API will need to change to return an error code 5531 ** as well as the boolean result value. 5532 */ 5533 return (CURSOR_VALID!=pCur->eState); 5534 } 5535 5536 /* 5537 ** Return an estimate for the number of rows in the table that pCur is 5538 ** pointing to. Return a negative number if no estimate is currently 5539 ** available. 5540 */ 5541 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5542 i64 n; 5543 u8 i; 5544 5545 assert( cursorOwnsBtShared(pCur) ); 5546 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5547 5548 /* Currently this interface is only called by the OP_IfSmaller 5549 ** opcode, and it that case the cursor will always be valid and 5550 ** will always point to a leaf node. */ 5551 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5552 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5553 5554 n = pCur->pPage->nCell; 5555 for(i=0; i<pCur->iPage; i++){ 5556 n *= pCur->apPage[i]->nCell; 5557 } 5558 return n; 5559 } 5560 5561 /* 5562 ** Advance the cursor to the next entry in the database. 5563 ** Return value: 5564 ** 5565 ** SQLITE_OK success 5566 ** SQLITE_DONE cursor is already pointing at the last element 5567 ** otherwise some kind of error occurred 5568 ** 5569 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5570 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5571 ** to the next cell on the current page. The (slower) btreeNext() helper 5572 ** routine is called when it is necessary to move to a different page or 5573 ** to restore the cursor. 5574 ** 5575 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5576 ** cursor corresponds to an SQL index and this routine could have been 5577 ** skipped if the SQL index had been a unique index. The F argument 5578 ** is a hint to the implement. SQLite btree implementation does not use 5579 ** this hint, but COMDB2 does. 5580 */ 5581 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5582 int rc; 5583 int idx; 5584 MemPage *pPage; 5585 5586 assert( cursorOwnsBtShared(pCur) ); 5587 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5588 if( pCur->eState!=CURSOR_VALID ){ 5589 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5590 rc = restoreCursorPosition(pCur); 5591 if( rc!=SQLITE_OK ){ 5592 return rc; 5593 } 5594 if( CURSOR_INVALID==pCur->eState ){ 5595 return SQLITE_DONE; 5596 } 5597 if( pCur->skipNext ){ 5598 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5599 pCur->eState = CURSOR_VALID; 5600 if( pCur->skipNext>0 ){ 5601 pCur->skipNext = 0; 5602 return SQLITE_OK; 5603 } 5604 pCur->skipNext = 0; 5605 } 5606 } 5607 5608 pPage = pCur->pPage; 5609 idx = ++pCur->ix; 5610 if( !pPage->isInit ){ 5611 /* The only known way for this to happen is for there to be a 5612 ** recursive SQL function that does a DELETE operation as part of a 5613 ** SELECT which deletes content out from under an active cursor 5614 ** in a corrupt database file where the table being DELETE-ed from 5615 ** has pages in common with the table being queried. See TH3 5616 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5617 ** example. */ 5618 return SQLITE_CORRUPT_BKPT; 5619 } 5620 5621 /* If the database file is corrupt, it is possible for the value of idx 5622 ** to be invalid here. This can only occur if a second cursor modifies 5623 ** the page while cursor pCur is holding a reference to it. Which can 5624 ** only happen if the database is corrupt in such a way as to link the 5625 ** page into more than one b-tree structure. */ 5626 testcase( idx>pPage->nCell ); 5627 5628 if( idx>=pPage->nCell ){ 5629 if( !pPage->leaf ){ 5630 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5631 if( rc ) return rc; 5632 return moveToLeftmost(pCur); 5633 } 5634 do{ 5635 if( pCur->iPage==0 ){ 5636 pCur->eState = CURSOR_INVALID; 5637 return SQLITE_DONE; 5638 } 5639 moveToParent(pCur); 5640 pPage = pCur->pPage; 5641 }while( pCur->ix>=pPage->nCell ); 5642 if( pPage->intKey ){ 5643 return sqlite3BtreeNext(pCur, 0); 5644 }else{ 5645 return SQLITE_OK; 5646 } 5647 } 5648 if( pPage->leaf ){ 5649 return SQLITE_OK; 5650 }else{ 5651 return moveToLeftmost(pCur); 5652 } 5653 } 5654 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5655 MemPage *pPage; 5656 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5657 assert( cursorOwnsBtShared(pCur) ); 5658 assert( flags==0 || flags==1 ); 5659 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5660 pCur->info.nSize = 0; 5661 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5662 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5663 pPage = pCur->pPage; 5664 if( (++pCur->ix)>=pPage->nCell ){ 5665 pCur->ix--; 5666 return btreeNext(pCur); 5667 } 5668 if( pPage->leaf ){ 5669 return SQLITE_OK; 5670 }else{ 5671 return moveToLeftmost(pCur); 5672 } 5673 } 5674 5675 /* 5676 ** Step the cursor to the back to the previous entry in the database. 5677 ** Return values: 5678 ** 5679 ** SQLITE_OK success 5680 ** SQLITE_DONE the cursor is already on the first element of the table 5681 ** otherwise some kind of error occurred 5682 ** 5683 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5684 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5685 ** to the previous cell on the current page. The (slower) btreePrevious() 5686 ** helper routine is called when it is necessary to move to a different page 5687 ** or to restore the cursor. 5688 ** 5689 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5690 ** the cursor corresponds to an SQL index and this routine could have been 5691 ** skipped if the SQL index had been a unique index. The F argument is a 5692 ** hint to the implement. The native SQLite btree implementation does not 5693 ** use this hint, but COMDB2 does. 5694 */ 5695 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5696 int rc; 5697 MemPage *pPage; 5698 5699 assert( cursorOwnsBtShared(pCur) ); 5700 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5701 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5702 assert( pCur->info.nSize==0 ); 5703 if( pCur->eState!=CURSOR_VALID ){ 5704 rc = restoreCursorPosition(pCur); 5705 if( rc!=SQLITE_OK ){ 5706 return rc; 5707 } 5708 if( CURSOR_INVALID==pCur->eState ){ 5709 return SQLITE_DONE; 5710 } 5711 if( pCur->skipNext ){ 5712 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); 5713 pCur->eState = CURSOR_VALID; 5714 if( pCur->skipNext<0 ){ 5715 pCur->skipNext = 0; 5716 return SQLITE_OK; 5717 } 5718 pCur->skipNext = 0; 5719 } 5720 } 5721 5722 pPage = pCur->pPage; 5723 assert( pPage->isInit ); 5724 if( !pPage->leaf ){ 5725 int idx = pCur->ix; 5726 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 5727 if( rc ) return rc; 5728 rc = moveToRightmost(pCur); 5729 }else{ 5730 while( pCur->ix==0 ){ 5731 if( pCur->iPage==0 ){ 5732 pCur->eState = CURSOR_INVALID; 5733 return SQLITE_DONE; 5734 } 5735 moveToParent(pCur); 5736 } 5737 assert( pCur->info.nSize==0 ); 5738 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 5739 5740 pCur->ix--; 5741 pPage = pCur->pPage; 5742 if( pPage->intKey && !pPage->leaf ){ 5743 rc = sqlite3BtreePrevious(pCur, 0); 5744 }else{ 5745 rc = SQLITE_OK; 5746 } 5747 } 5748 return rc; 5749 } 5750 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 5751 assert( cursorOwnsBtShared(pCur) ); 5752 assert( flags==0 || flags==1 ); 5753 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); 5754 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5755 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 5756 pCur->info.nSize = 0; 5757 if( pCur->eState!=CURSOR_VALID 5758 || pCur->ix==0 5759 || pCur->pPage->leaf==0 5760 ){ 5761 return btreePrevious(pCur); 5762 } 5763 pCur->ix--; 5764 return SQLITE_OK; 5765 } 5766 5767 /* 5768 ** Allocate a new page from the database file. 5769 ** 5770 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 5771 ** has already been called on the new page.) The new page has also 5772 ** been referenced and the calling routine is responsible for calling 5773 ** sqlite3PagerUnref() on the new page when it is done. 5774 ** 5775 ** SQLITE_OK is returned on success. Any other return value indicates 5776 ** an error. *ppPage is set to NULL in the event of an error. 5777 ** 5778 ** If the "nearby" parameter is not 0, then an effort is made to 5779 ** locate a page close to the page number "nearby". This can be used in an 5780 ** attempt to keep related pages close to each other in the database file, 5781 ** which in turn can make database access faster. 5782 ** 5783 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 5784 ** anywhere on the free-list, then it is guaranteed to be returned. If 5785 ** eMode is BTALLOC_LT then the page returned will be less than or equal 5786 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 5787 ** are no restrictions on which page is returned. 5788 */ 5789 static int allocateBtreePage( 5790 BtShared *pBt, /* The btree */ 5791 MemPage **ppPage, /* Store pointer to the allocated page here */ 5792 Pgno *pPgno, /* Store the page number here */ 5793 Pgno nearby, /* Search for a page near this one */ 5794 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 5795 ){ 5796 MemPage *pPage1; 5797 int rc; 5798 u32 n; /* Number of pages on the freelist */ 5799 u32 k; /* Number of leaves on the trunk of the freelist */ 5800 MemPage *pTrunk = 0; 5801 MemPage *pPrevTrunk = 0; 5802 Pgno mxPage; /* Total size of the database file */ 5803 5804 assert( sqlite3_mutex_held(pBt->mutex) ); 5805 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 5806 pPage1 = pBt->pPage1; 5807 mxPage = btreePagecount(pBt); 5808 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 5809 ** stores stores the total number of pages on the freelist. */ 5810 n = get4byte(&pPage1->aData[36]); 5811 testcase( n==mxPage-1 ); 5812 if( n>=mxPage ){ 5813 return SQLITE_CORRUPT_BKPT; 5814 } 5815 if( n>0 ){ 5816 /* There are pages on the freelist. Reuse one of those pages. */ 5817 Pgno iTrunk; 5818 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 5819 u32 nSearch = 0; /* Count of the number of search attempts */ 5820 5821 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 5822 ** shows that the page 'nearby' is somewhere on the free-list, then 5823 ** the entire-list will be searched for that page. 5824 */ 5825 #ifndef SQLITE_OMIT_AUTOVACUUM 5826 if( eMode==BTALLOC_EXACT ){ 5827 if( nearby<=mxPage ){ 5828 u8 eType; 5829 assert( nearby>0 ); 5830 assert( pBt->autoVacuum ); 5831 rc = ptrmapGet(pBt, nearby, &eType, 0); 5832 if( rc ) return rc; 5833 if( eType==PTRMAP_FREEPAGE ){ 5834 searchList = 1; 5835 } 5836 } 5837 }else if( eMode==BTALLOC_LE ){ 5838 searchList = 1; 5839 } 5840 #endif 5841 5842 /* Decrement the free-list count by 1. Set iTrunk to the index of the 5843 ** first free-list trunk page. iPrevTrunk is initially 1. 5844 */ 5845 rc = sqlite3PagerWrite(pPage1->pDbPage); 5846 if( rc ) return rc; 5847 put4byte(&pPage1->aData[36], n-1); 5848 5849 /* The code within this loop is run only once if the 'searchList' variable 5850 ** is not true. Otherwise, it runs once for each trunk-page on the 5851 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 5852 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 5853 */ 5854 do { 5855 pPrevTrunk = pTrunk; 5856 if( pPrevTrunk ){ 5857 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 5858 ** is the page number of the next freelist trunk page in the list or 5859 ** zero if this is the last freelist trunk page. */ 5860 iTrunk = get4byte(&pPrevTrunk->aData[0]); 5861 }else{ 5862 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 5863 ** stores the page number of the first page of the freelist, or zero if 5864 ** the freelist is empty. */ 5865 iTrunk = get4byte(&pPage1->aData[32]); 5866 } 5867 testcase( iTrunk==mxPage ); 5868 if( iTrunk>mxPage || nSearch++ > n ){ 5869 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 5870 }else{ 5871 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 5872 } 5873 if( rc ){ 5874 pTrunk = 0; 5875 goto end_allocate_page; 5876 } 5877 assert( pTrunk!=0 ); 5878 assert( pTrunk->aData!=0 ); 5879 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 5880 ** is the number of leaf page pointers to follow. */ 5881 k = get4byte(&pTrunk->aData[4]); 5882 if( k==0 && !searchList ){ 5883 /* The trunk has no leaves and the list is not being searched. 5884 ** So extract the trunk page itself and use it as the newly 5885 ** allocated page */ 5886 assert( pPrevTrunk==0 ); 5887 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5888 if( rc ){ 5889 goto end_allocate_page; 5890 } 5891 *pPgno = iTrunk; 5892 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5893 *ppPage = pTrunk; 5894 pTrunk = 0; 5895 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5896 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 5897 /* Value of k is out of range. Database corruption */ 5898 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5899 goto end_allocate_page; 5900 #ifndef SQLITE_OMIT_AUTOVACUUM 5901 }else if( searchList 5902 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 5903 ){ 5904 /* The list is being searched and this trunk page is the page 5905 ** to allocate, regardless of whether it has leaves. 5906 */ 5907 *pPgno = iTrunk; 5908 *ppPage = pTrunk; 5909 searchList = 0; 5910 rc = sqlite3PagerWrite(pTrunk->pDbPage); 5911 if( rc ){ 5912 goto end_allocate_page; 5913 } 5914 if( k==0 ){ 5915 if( !pPrevTrunk ){ 5916 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 5917 }else{ 5918 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5919 if( rc!=SQLITE_OK ){ 5920 goto end_allocate_page; 5921 } 5922 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 5923 } 5924 }else{ 5925 /* The trunk page is required by the caller but it contains 5926 ** pointers to free-list leaves. The first leaf becomes a trunk 5927 ** page in this case. 5928 */ 5929 MemPage *pNewTrunk; 5930 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 5931 if( iNewTrunk>mxPage ){ 5932 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5933 goto end_allocate_page; 5934 } 5935 testcase( iNewTrunk==mxPage ); 5936 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 5937 if( rc!=SQLITE_OK ){ 5938 goto end_allocate_page; 5939 } 5940 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 5941 if( rc!=SQLITE_OK ){ 5942 releasePage(pNewTrunk); 5943 goto end_allocate_page; 5944 } 5945 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 5946 put4byte(&pNewTrunk->aData[4], k-1); 5947 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 5948 releasePage(pNewTrunk); 5949 if( !pPrevTrunk ){ 5950 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 5951 put4byte(&pPage1->aData[32], iNewTrunk); 5952 }else{ 5953 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 5954 if( rc ){ 5955 goto end_allocate_page; 5956 } 5957 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 5958 } 5959 } 5960 pTrunk = 0; 5961 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 5962 #endif 5963 }else if( k>0 ){ 5964 /* Extract a leaf from the trunk */ 5965 u32 closest; 5966 Pgno iPage; 5967 unsigned char *aData = pTrunk->aData; 5968 if( nearby>0 ){ 5969 u32 i; 5970 closest = 0; 5971 if( eMode==BTALLOC_LE ){ 5972 for(i=0; i<k; i++){ 5973 iPage = get4byte(&aData[8+i*4]); 5974 if( iPage<=nearby ){ 5975 closest = i; 5976 break; 5977 } 5978 } 5979 }else{ 5980 int dist; 5981 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 5982 for(i=1; i<k; i++){ 5983 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 5984 if( d2<dist ){ 5985 closest = i; 5986 dist = d2; 5987 } 5988 } 5989 } 5990 }else{ 5991 closest = 0; 5992 } 5993 5994 iPage = get4byte(&aData[8+closest*4]); 5995 testcase( iPage==mxPage ); 5996 if( iPage>mxPage ){ 5997 rc = SQLITE_CORRUPT_PGNO(iTrunk); 5998 goto end_allocate_page; 5999 } 6000 testcase( iPage==mxPage ); 6001 if( !searchList 6002 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6003 ){ 6004 int noContent; 6005 *pPgno = iPage; 6006 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6007 ": %d more free pages\n", 6008 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6009 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6010 if( rc ) goto end_allocate_page; 6011 if( closest<k-1 ){ 6012 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6013 } 6014 put4byte(&aData[4], k-1); 6015 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6016 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6017 if( rc==SQLITE_OK ){ 6018 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6019 if( rc!=SQLITE_OK ){ 6020 releasePage(*ppPage); 6021 *ppPage = 0; 6022 } 6023 } 6024 searchList = 0; 6025 } 6026 } 6027 releasePage(pPrevTrunk); 6028 pPrevTrunk = 0; 6029 }while( searchList ); 6030 }else{ 6031 /* There are no pages on the freelist, so append a new page to the 6032 ** database image. 6033 ** 6034 ** Normally, new pages allocated by this block can be requested from the 6035 ** pager layer with the 'no-content' flag set. This prevents the pager 6036 ** from trying to read the pages content from disk. However, if the 6037 ** current transaction has already run one or more incremental-vacuum 6038 ** steps, then the page we are about to allocate may contain content 6039 ** that is required in the event of a rollback. In this case, do 6040 ** not set the no-content flag. This causes the pager to load and journal 6041 ** the current page content before overwriting it. 6042 ** 6043 ** Note that the pager will not actually attempt to load or journal 6044 ** content for any page that really does lie past the end of the database 6045 ** file on disk. So the effects of disabling the no-content optimization 6046 ** here are confined to those pages that lie between the end of the 6047 ** database image and the end of the database file. 6048 */ 6049 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6050 6051 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6052 if( rc ) return rc; 6053 pBt->nPage++; 6054 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6055 6056 #ifndef SQLITE_OMIT_AUTOVACUUM 6057 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6058 /* If *pPgno refers to a pointer-map page, allocate two new pages 6059 ** at the end of the file instead of one. The first allocated page 6060 ** becomes a new pointer-map page, the second is used by the caller. 6061 */ 6062 MemPage *pPg = 0; 6063 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6064 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6065 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6066 if( rc==SQLITE_OK ){ 6067 rc = sqlite3PagerWrite(pPg->pDbPage); 6068 releasePage(pPg); 6069 } 6070 if( rc ) return rc; 6071 pBt->nPage++; 6072 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6073 } 6074 #endif 6075 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6076 *pPgno = pBt->nPage; 6077 6078 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6079 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6080 if( rc ) return rc; 6081 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6082 if( rc!=SQLITE_OK ){ 6083 releasePage(*ppPage); 6084 *ppPage = 0; 6085 } 6086 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6087 } 6088 6089 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6090 6091 end_allocate_page: 6092 releasePage(pTrunk); 6093 releasePage(pPrevTrunk); 6094 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6095 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6096 return rc; 6097 } 6098 6099 /* 6100 ** This function is used to add page iPage to the database file free-list. 6101 ** It is assumed that the page is not already a part of the free-list. 6102 ** 6103 ** The value passed as the second argument to this function is optional. 6104 ** If the caller happens to have a pointer to the MemPage object 6105 ** corresponding to page iPage handy, it may pass it as the second value. 6106 ** Otherwise, it may pass NULL. 6107 ** 6108 ** If a pointer to a MemPage object is passed as the second argument, 6109 ** its reference count is not altered by this function. 6110 */ 6111 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6112 MemPage *pTrunk = 0; /* Free-list trunk page */ 6113 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6114 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6115 MemPage *pPage; /* Page being freed. May be NULL. */ 6116 int rc; /* Return Code */ 6117 int nFree; /* Initial number of pages on free-list */ 6118 6119 assert( sqlite3_mutex_held(pBt->mutex) ); 6120 assert( CORRUPT_DB || iPage>1 ); 6121 assert( !pMemPage || pMemPage->pgno==iPage ); 6122 6123 if( iPage<2 ) return SQLITE_CORRUPT_BKPT; 6124 if( pMemPage ){ 6125 pPage = pMemPage; 6126 sqlite3PagerRef(pPage->pDbPage); 6127 }else{ 6128 pPage = btreePageLookup(pBt, iPage); 6129 } 6130 6131 /* Increment the free page count on pPage1 */ 6132 rc = sqlite3PagerWrite(pPage1->pDbPage); 6133 if( rc ) goto freepage_out; 6134 nFree = get4byte(&pPage1->aData[36]); 6135 put4byte(&pPage1->aData[36], nFree+1); 6136 6137 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6138 /* If the secure_delete option is enabled, then 6139 ** always fully overwrite deleted information with zeros. 6140 */ 6141 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6142 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6143 ){ 6144 goto freepage_out; 6145 } 6146 memset(pPage->aData, 0, pPage->pBt->pageSize); 6147 } 6148 6149 /* If the database supports auto-vacuum, write an entry in the pointer-map 6150 ** to indicate that the page is free. 6151 */ 6152 if( ISAUTOVACUUM ){ 6153 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6154 if( rc ) goto freepage_out; 6155 } 6156 6157 /* Now manipulate the actual database free-list structure. There are two 6158 ** possibilities. If the free-list is currently empty, or if the first 6159 ** trunk page in the free-list is full, then this page will become a 6160 ** new free-list trunk page. Otherwise, it will become a leaf of the 6161 ** first trunk page in the current free-list. This block tests if it 6162 ** is possible to add the page as a new free-list leaf. 6163 */ 6164 if( nFree!=0 ){ 6165 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6166 6167 iTrunk = get4byte(&pPage1->aData[32]); 6168 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6169 if( rc!=SQLITE_OK ){ 6170 goto freepage_out; 6171 } 6172 6173 nLeaf = get4byte(&pTrunk->aData[4]); 6174 assert( pBt->usableSize>32 ); 6175 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6176 rc = SQLITE_CORRUPT_BKPT; 6177 goto freepage_out; 6178 } 6179 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6180 /* In this case there is room on the trunk page to insert the page 6181 ** being freed as a new leaf. 6182 ** 6183 ** Note that the trunk page is not really full until it contains 6184 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6185 ** coded. But due to a coding error in versions of SQLite prior to 6186 ** 3.6.0, databases with freelist trunk pages holding more than 6187 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6188 ** to maintain backwards compatibility with older versions of SQLite, 6189 ** we will continue to restrict the number of entries to usableSize/4 - 8 6190 ** for now. At some point in the future (once everyone has upgraded 6191 ** to 3.6.0 or later) we should consider fixing the conditional above 6192 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6193 ** 6194 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6195 ** avoid using the last six entries in the freelist trunk page array in 6196 ** order that database files created by newer versions of SQLite can be 6197 ** read by older versions of SQLite. 6198 */ 6199 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6200 if( rc==SQLITE_OK ){ 6201 put4byte(&pTrunk->aData[4], nLeaf+1); 6202 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6203 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6204 sqlite3PagerDontWrite(pPage->pDbPage); 6205 } 6206 rc = btreeSetHasContent(pBt, iPage); 6207 } 6208 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6209 goto freepage_out; 6210 } 6211 } 6212 6213 /* If control flows to this point, then it was not possible to add the 6214 ** the page being freed as a leaf page of the first trunk in the free-list. 6215 ** Possibly because the free-list is empty, or possibly because the 6216 ** first trunk in the free-list is full. Either way, the page being freed 6217 ** will become the new first trunk page in the free-list. 6218 */ 6219 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6220 goto freepage_out; 6221 } 6222 rc = sqlite3PagerWrite(pPage->pDbPage); 6223 if( rc!=SQLITE_OK ){ 6224 goto freepage_out; 6225 } 6226 put4byte(pPage->aData, iTrunk); 6227 put4byte(&pPage->aData[4], 0); 6228 put4byte(&pPage1->aData[32], iPage); 6229 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6230 6231 freepage_out: 6232 if( pPage ){ 6233 pPage->isInit = 0; 6234 } 6235 releasePage(pPage); 6236 releasePage(pTrunk); 6237 return rc; 6238 } 6239 static void freePage(MemPage *pPage, int *pRC){ 6240 if( (*pRC)==SQLITE_OK ){ 6241 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6242 } 6243 } 6244 6245 /* 6246 ** Free any overflow pages associated with the given Cell. Store 6247 ** size information about the cell in pInfo. 6248 */ 6249 static int clearCell( 6250 MemPage *pPage, /* The page that contains the Cell */ 6251 unsigned char *pCell, /* First byte of the Cell */ 6252 CellInfo *pInfo /* Size information about the cell */ 6253 ){ 6254 BtShared *pBt; 6255 Pgno ovflPgno; 6256 int rc; 6257 int nOvfl; 6258 u32 ovflPageSize; 6259 6260 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6261 pPage->xParseCell(pPage, pCell, pInfo); 6262 if( pInfo->nLocal==pInfo->nPayload ){ 6263 return SQLITE_OK; /* No overflow pages. Return without doing anything */ 6264 } 6265 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6266 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6267 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6268 /* Cell extends past end of page */ 6269 return SQLITE_CORRUPT_PAGE(pPage); 6270 } 6271 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6272 pBt = pPage->pBt; 6273 assert( pBt->usableSize > 4 ); 6274 ovflPageSize = pBt->usableSize - 4; 6275 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6276 assert( nOvfl>0 || 6277 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6278 ); 6279 while( nOvfl-- ){ 6280 Pgno iNext = 0; 6281 MemPage *pOvfl = 0; 6282 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6283 /* 0 is not a legal page number and page 1 cannot be an 6284 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6285 ** file the database must be corrupt. */ 6286 return SQLITE_CORRUPT_BKPT; 6287 } 6288 if( nOvfl ){ 6289 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6290 if( rc ) return rc; 6291 } 6292 6293 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6294 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6295 ){ 6296 /* There is no reason any cursor should have an outstanding reference 6297 ** to an overflow page belonging to a cell that is being deleted/updated. 6298 ** So if there exists more than one reference to this page, then it 6299 ** must not really be an overflow page and the database must be corrupt. 6300 ** It is helpful to detect this before calling freePage2(), as 6301 ** freePage2() may zero the page contents if secure-delete mode is 6302 ** enabled. If this 'overflow' page happens to be a page that the 6303 ** caller is iterating through or using in some other way, this 6304 ** can be problematic. 6305 */ 6306 rc = SQLITE_CORRUPT_BKPT; 6307 }else{ 6308 rc = freePage2(pBt, pOvfl, ovflPgno); 6309 } 6310 6311 if( pOvfl ){ 6312 sqlite3PagerUnref(pOvfl->pDbPage); 6313 } 6314 if( rc ) return rc; 6315 ovflPgno = iNext; 6316 } 6317 return SQLITE_OK; 6318 } 6319 6320 /* 6321 ** Create the byte sequence used to represent a cell on page pPage 6322 ** and write that byte sequence into pCell[]. Overflow pages are 6323 ** allocated and filled in as necessary. The calling procedure 6324 ** is responsible for making sure sufficient space has been allocated 6325 ** for pCell[]. 6326 ** 6327 ** Note that pCell does not necessary need to point to the pPage->aData 6328 ** area. pCell might point to some temporary storage. The cell will 6329 ** be constructed in this temporary area then copied into pPage->aData 6330 ** later. 6331 */ 6332 static int fillInCell( 6333 MemPage *pPage, /* The page that contains the cell */ 6334 unsigned char *pCell, /* Complete text of the cell */ 6335 const BtreePayload *pX, /* Payload with which to construct the cell */ 6336 int *pnSize /* Write cell size here */ 6337 ){ 6338 int nPayload; 6339 const u8 *pSrc; 6340 int nSrc, n, rc, mn; 6341 int spaceLeft; 6342 MemPage *pToRelease; 6343 unsigned char *pPrior; 6344 unsigned char *pPayload; 6345 BtShared *pBt; 6346 Pgno pgnoOvfl; 6347 int nHeader; 6348 6349 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6350 6351 /* pPage is not necessarily writeable since pCell might be auxiliary 6352 ** buffer space that is separate from the pPage buffer area */ 6353 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6354 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6355 6356 /* Fill in the header. */ 6357 nHeader = pPage->childPtrSize; 6358 if( pPage->intKey ){ 6359 nPayload = pX->nData + pX->nZero; 6360 pSrc = pX->pData; 6361 nSrc = pX->nData; 6362 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6363 nHeader += putVarint32(&pCell[nHeader], nPayload); 6364 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6365 }else{ 6366 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6367 nSrc = nPayload = (int)pX->nKey; 6368 pSrc = pX->pKey; 6369 nHeader += putVarint32(&pCell[nHeader], nPayload); 6370 } 6371 6372 /* Fill in the payload */ 6373 pPayload = &pCell[nHeader]; 6374 if( nPayload<=pPage->maxLocal ){ 6375 /* This is the common case where everything fits on the btree page 6376 ** and no overflow pages are required. */ 6377 n = nHeader + nPayload; 6378 testcase( n==3 ); 6379 testcase( n==4 ); 6380 if( n<4 ) n = 4; 6381 *pnSize = n; 6382 assert( nSrc<=nPayload ); 6383 testcase( nSrc<nPayload ); 6384 memcpy(pPayload, pSrc, nSrc); 6385 memset(pPayload+nSrc, 0, nPayload-nSrc); 6386 return SQLITE_OK; 6387 } 6388 6389 /* If we reach this point, it means that some of the content will need 6390 ** to spill onto overflow pages. 6391 */ 6392 mn = pPage->minLocal; 6393 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6394 testcase( n==pPage->maxLocal ); 6395 testcase( n==pPage->maxLocal+1 ); 6396 if( n > pPage->maxLocal ) n = mn; 6397 spaceLeft = n; 6398 *pnSize = n + nHeader + 4; 6399 pPrior = &pCell[nHeader+n]; 6400 pToRelease = 0; 6401 pgnoOvfl = 0; 6402 pBt = pPage->pBt; 6403 6404 /* At this point variables should be set as follows: 6405 ** 6406 ** nPayload Total payload size in bytes 6407 ** pPayload Begin writing payload here 6408 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6409 ** that means content must spill into overflow pages. 6410 ** *pnSize Size of the local cell (not counting overflow pages) 6411 ** pPrior Where to write the pgno of the first overflow page 6412 ** 6413 ** Use a call to btreeParseCellPtr() to verify that the values above 6414 ** were computed correctly. 6415 */ 6416 #ifdef SQLITE_DEBUG 6417 { 6418 CellInfo info; 6419 pPage->xParseCell(pPage, pCell, &info); 6420 assert( nHeader==(int)(info.pPayload - pCell) ); 6421 assert( info.nKey==pX->nKey ); 6422 assert( *pnSize == info.nSize ); 6423 assert( spaceLeft == info.nLocal ); 6424 } 6425 #endif 6426 6427 /* Write the payload into the local Cell and any extra into overflow pages */ 6428 while( 1 ){ 6429 n = nPayload; 6430 if( n>spaceLeft ) n = spaceLeft; 6431 6432 /* If pToRelease is not zero than pPayload points into the data area 6433 ** of pToRelease. Make sure pToRelease is still writeable. */ 6434 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6435 6436 /* If pPayload is part of the data area of pPage, then make sure pPage 6437 ** is still writeable */ 6438 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6439 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6440 6441 if( nSrc>=n ){ 6442 memcpy(pPayload, pSrc, n); 6443 }else if( nSrc>0 ){ 6444 n = nSrc; 6445 memcpy(pPayload, pSrc, n); 6446 }else{ 6447 memset(pPayload, 0, n); 6448 } 6449 nPayload -= n; 6450 if( nPayload<=0 ) break; 6451 pPayload += n; 6452 pSrc += n; 6453 nSrc -= n; 6454 spaceLeft -= n; 6455 if( spaceLeft==0 ){ 6456 MemPage *pOvfl = 0; 6457 #ifndef SQLITE_OMIT_AUTOVACUUM 6458 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6459 if( pBt->autoVacuum ){ 6460 do{ 6461 pgnoOvfl++; 6462 } while( 6463 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6464 ); 6465 } 6466 #endif 6467 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6468 #ifndef SQLITE_OMIT_AUTOVACUUM 6469 /* If the database supports auto-vacuum, and the second or subsequent 6470 ** overflow page is being allocated, add an entry to the pointer-map 6471 ** for that page now. 6472 ** 6473 ** If this is the first overflow page, then write a partial entry 6474 ** to the pointer-map. If we write nothing to this pointer-map slot, 6475 ** then the optimistic overflow chain processing in clearCell() 6476 ** may misinterpret the uninitialized values and delete the 6477 ** wrong pages from the database. 6478 */ 6479 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6480 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6481 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6482 if( rc ){ 6483 releasePage(pOvfl); 6484 } 6485 } 6486 #endif 6487 if( rc ){ 6488 releasePage(pToRelease); 6489 return rc; 6490 } 6491 6492 /* If pToRelease is not zero than pPrior points into the data area 6493 ** of pToRelease. Make sure pToRelease is still writeable. */ 6494 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6495 6496 /* If pPrior is part of the data area of pPage, then make sure pPage 6497 ** is still writeable */ 6498 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6499 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6500 6501 put4byte(pPrior, pgnoOvfl); 6502 releasePage(pToRelease); 6503 pToRelease = pOvfl; 6504 pPrior = pOvfl->aData; 6505 put4byte(pPrior, 0); 6506 pPayload = &pOvfl->aData[4]; 6507 spaceLeft = pBt->usableSize - 4; 6508 } 6509 } 6510 releasePage(pToRelease); 6511 return SQLITE_OK; 6512 } 6513 6514 /* 6515 ** Remove the i-th cell from pPage. This routine effects pPage only. 6516 ** The cell content is not freed or deallocated. It is assumed that 6517 ** the cell content has been copied someplace else. This routine just 6518 ** removes the reference to the cell from pPage. 6519 ** 6520 ** "sz" must be the number of bytes in the cell. 6521 */ 6522 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6523 u32 pc; /* Offset to cell content of cell being deleted */ 6524 u8 *data; /* pPage->aData */ 6525 u8 *ptr; /* Used to move bytes around within data[] */ 6526 int rc; /* The return code */ 6527 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6528 6529 if( *pRC ) return; 6530 assert( idx>=0 && idx<pPage->nCell ); 6531 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6532 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6533 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6534 data = pPage->aData; 6535 ptr = &pPage->aCellIdx[2*idx]; 6536 pc = get2byte(ptr); 6537 hdr = pPage->hdrOffset; 6538 testcase( pc==get2byte(&data[hdr+5]) ); 6539 testcase( pc+sz==pPage->pBt->usableSize ); 6540 if( pc+sz > pPage->pBt->usableSize ){ 6541 *pRC = SQLITE_CORRUPT_BKPT; 6542 return; 6543 } 6544 rc = freeSpace(pPage, pc, sz); 6545 if( rc ){ 6546 *pRC = rc; 6547 return; 6548 } 6549 pPage->nCell--; 6550 if( pPage->nCell==0 ){ 6551 memset(&data[hdr+1], 0, 4); 6552 data[hdr+7] = 0; 6553 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6554 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6555 - pPage->childPtrSize - 8; 6556 }else{ 6557 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6558 put2byte(&data[hdr+3], pPage->nCell); 6559 pPage->nFree += 2; 6560 } 6561 } 6562 6563 /* 6564 ** Insert a new cell on pPage at cell index "i". pCell points to the 6565 ** content of the cell. 6566 ** 6567 ** If the cell content will fit on the page, then put it there. If it 6568 ** will not fit, then make a copy of the cell content into pTemp if 6569 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6570 ** in pPage->apOvfl[] and make it point to the cell content (either 6571 ** in pTemp or the original pCell) and also record its index. 6572 ** Allocating a new entry in pPage->aCell[] implies that 6573 ** pPage->nOverflow is incremented. 6574 ** 6575 ** *pRC must be SQLITE_OK when this routine is called. 6576 */ 6577 static void insertCell( 6578 MemPage *pPage, /* Page into which we are copying */ 6579 int i, /* New cell becomes the i-th cell of the page */ 6580 u8 *pCell, /* Content of the new cell */ 6581 int sz, /* Bytes of content in pCell */ 6582 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6583 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6584 int *pRC /* Read and write return code from here */ 6585 ){ 6586 int idx = 0; /* Where to write new cell content in data[] */ 6587 int j; /* Loop counter */ 6588 u8 *data; /* The content of the whole page */ 6589 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6590 6591 assert( *pRC==SQLITE_OK ); 6592 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6593 assert( MX_CELL(pPage->pBt)<=10921 ); 6594 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6595 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6596 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6597 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6598 /* The cell should normally be sized correctly. However, when moving a 6599 ** malformed cell from a leaf page to an interior page, if the cell size 6600 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size 6601 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence 6602 ** the term after the || in the following assert(). */ 6603 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); 6604 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6605 if( pTemp ){ 6606 memcpy(pTemp, pCell, sz); 6607 pCell = pTemp; 6608 } 6609 if( iChild ){ 6610 put4byte(pCell, iChild); 6611 } 6612 j = pPage->nOverflow++; 6613 /* Comparison against ArraySize-1 since we hold back one extra slot 6614 ** as a contingency. In other words, never need more than 3 overflow 6615 ** slots but 4 are allocated, just to be safe. */ 6616 assert( j < ArraySize(pPage->apOvfl)-1 ); 6617 pPage->apOvfl[j] = pCell; 6618 pPage->aiOvfl[j] = (u16)i; 6619 6620 /* When multiple overflows occur, they are always sequential and in 6621 ** sorted order. This invariants arise because multiple overflows can 6622 ** only occur when inserting divider cells into the parent page during 6623 ** balancing, and the dividers are adjacent and sorted. 6624 */ 6625 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6626 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6627 }else{ 6628 int rc = sqlite3PagerWrite(pPage->pDbPage); 6629 if( rc!=SQLITE_OK ){ 6630 *pRC = rc; 6631 return; 6632 } 6633 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6634 data = pPage->aData; 6635 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6636 rc = allocateSpace(pPage, sz, &idx); 6637 if( rc ){ *pRC = rc; return; } 6638 /* The allocateSpace() routine guarantees the following properties 6639 ** if it returns successfully */ 6640 assert( idx >= 0 ); 6641 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6642 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6643 pPage->nFree -= (u16)(2 + sz); 6644 memcpy(&data[idx], pCell, sz); 6645 if( iChild ){ 6646 put4byte(&data[idx], iChild); 6647 } 6648 pIns = pPage->aCellIdx + i*2; 6649 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6650 put2byte(pIns, idx); 6651 pPage->nCell++; 6652 /* increment the cell count */ 6653 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6654 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); 6655 #ifndef SQLITE_OMIT_AUTOVACUUM 6656 if( pPage->pBt->autoVacuum ){ 6657 /* The cell may contain a pointer to an overflow page. If so, write 6658 ** the entry for the overflow page into the pointer map. 6659 */ 6660 ptrmapPutOvflPtr(pPage, pCell, pRC); 6661 } 6662 #endif 6663 } 6664 } 6665 6666 /* 6667 ** A CellArray object contains a cache of pointers and sizes for a 6668 ** consecutive sequence of cells that might be held on multiple pages. 6669 */ 6670 typedef struct CellArray CellArray; 6671 struct CellArray { 6672 int nCell; /* Number of cells in apCell[] */ 6673 MemPage *pRef; /* Reference page */ 6674 u8 **apCell; /* All cells begin balanced */ 6675 u16 *szCell; /* Local size of all cells in apCell[] */ 6676 }; 6677 6678 /* 6679 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 6680 ** computed. 6681 */ 6682 static void populateCellCache(CellArray *p, int idx, int N){ 6683 assert( idx>=0 && idx+N<=p->nCell ); 6684 while( N>0 ){ 6685 assert( p->apCell[idx]!=0 ); 6686 if( p->szCell[idx]==0 ){ 6687 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 6688 }else{ 6689 assert( CORRUPT_DB || 6690 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 6691 } 6692 idx++; 6693 N--; 6694 } 6695 } 6696 6697 /* 6698 ** Return the size of the Nth element of the cell array 6699 */ 6700 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 6701 assert( N>=0 && N<p->nCell ); 6702 assert( p->szCell[N]==0 ); 6703 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 6704 return p->szCell[N]; 6705 } 6706 static u16 cachedCellSize(CellArray *p, int N){ 6707 assert( N>=0 && N<p->nCell ); 6708 if( p->szCell[N] ) return p->szCell[N]; 6709 return computeCellSize(p, N); 6710 } 6711 6712 /* 6713 ** Array apCell[] contains pointers to nCell b-tree page cells. The 6714 ** szCell[] array contains the size in bytes of each cell. This function 6715 ** replaces the current contents of page pPg with the contents of the cell 6716 ** array. 6717 ** 6718 ** Some of the cells in apCell[] may currently be stored in pPg. This 6719 ** function works around problems caused by this by making a copy of any 6720 ** such cells before overwriting the page data. 6721 ** 6722 ** The MemPage.nFree field is invalidated by this function. It is the 6723 ** responsibility of the caller to set it correctly. 6724 */ 6725 static int rebuildPage( 6726 MemPage *pPg, /* Edit this page */ 6727 int nCell, /* Final number of cells on page */ 6728 u8 **apCell, /* Array of cells */ 6729 u16 *szCell /* Array of cell sizes */ 6730 ){ 6731 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 6732 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 6733 const int usableSize = pPg->pBt->usableSize; 6734 u8 * const pEnd = &aData[usableSize]; 6735 int i; 6736 u8 *pCellptr = pPg->aCellIdx; 6737 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6738 u8 *pData; 6739 6740 i = get2byte(&aData[hdr+5]); 6741 memcpy(&pTmp[i], &aData[i], usableSize - i); 6742 6743 pData = pEnd; 6744 for(i=0; i<nCell; i++){ 6745 u8 *pCell = apCell[i]; 6746 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ 6747 pCell = &pTmp[pCell - aData]; 6748 } 6749 pData -= szCell[i]; 6750 put2byte(pCellptr, (pData - aData)); 6751 pCellptr += 2; 6752 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 6753 memcpy(pData, pCell, szCell[i]); 6754 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 6755 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); 6756 } 6757 6758 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 6759 pPg->nCell = nCell; 6760 pPg->nOverflow = 0; 6761 6762 put2byte(&aData[hdr+1], 0); 6763 put2byte(&aData[hdr+3], pPg->nCell); 6764 put2byte(&aData[hdr+5], pData - aData); 6765 aData[hdr+7] = 0x00; 6766 return SQLITE_OK; 6767 } 6768 6769 /* 6770 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6771 ** contains the size in bytes of each such cell. This function attempts to 6772 ** add the cells stored in the array to page pPg. If it cannot (because 6773 ** the page needs to be defragmented before the cells will fit), non-zero 6774 ** is returned. Otherwise, if the cells are added successfully, zero is 6775 ** returned. 6776 ** 6777 ** Argument pCellptr points to the first entry in the cell-pointer array 6778 ** (part of page pPg) to populate. After cell apCell[0] is written to the 6779 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 6780 ** cell in the array. It is the responsibility of the caller to ensure 6781 ** that it is safe to overwrite this part of the cell-pointer array. 6782 ** 6783 ** When this function is called, *ppData points to the start of the 6784 ** content area on page pPg. If the size of the content area is extended, 6785 ** *ppData is updated to point to the new start of the content area 6786 ** before returning. 6787 ** 6788 ** Finally, argument pBegin points to the byte immediately following the 6789 ** end of the space required by this page for the cell-pointer area (for 6790 ** all cells - not just those inserted by the current call). If the content 6791 ** area must be extended to before this point in order to accomodate all 6792 ** cells in apCell[], then the cells do not fit and non-zero is returned. 6793 */ 6794 static int pageInsertArray( 6795 MemPage *pPg, /* Page to add cells to */ 6796 u8 *pBegin, /* End of cell-pointer array */ 6797 u8 **ppData, /* IN/OUT: Page content -area pointer */ 6798 u8 *pCellptr, /* Pointer to cell-pointer area */ 6799 int iFirst, /* Index of first cell to add */ 6800 int nCell, /* Number of cells to add to pPg */ 6801 CellArray *pCArray /* Array of cells */ 6802 ){ 6803 int i; 6804 u8 *aData = pPg->aData; 6805 u8 *pData = *ppData; 6806 int iEnd = iFirst + nCell; 6807 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 6808 for(i=iFirst; i<iEnd; i++){ 6809 int sz, rc; 6810 u8 *pSlot; 6811 sz = cachedCellSize(pCArray, i); 6812 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 6813 if( (pData - pBegin)<sz ) return 1; 6814 pData -= sz; 6815 pSlot = pData; 6816 } 6817 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 6818 ** database. But they might for a corrupt database. Hence use memmove() 6819 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 6820 assert( (pSlot+sz)<=pCArray->apCell[i] 6821 || pSlot>=(pCArray->apCell[i]+sz) 6822 || CORRUPT_DB ); 6823 memmove(pSlot, pCArray->apCell[i], sz); 6824 put2byte(pCellptr, (pSlot - aData)); 6825 pCellptr += 2; 6826 } 6827 *ppData = pData; 6828 return 0; 6829 } 6830 6831 /* 6832 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 6833 ** contains the size in bytes of each such cell. This function adds the 6834 ** space associated with each cell in the array that is currently stored 6835 ** within the body of pPg to the pPg free-list. The cell-pointers and other 6836 ** fields of the page are not updated. 6837 ** 6838 ** This function returns the total number of cells added to the free-list. 6839 */ 6840 static int pageFreeArray( 6841 MemPage *pPg, /* Page to edit */ 6842 int iFirst, /* First cell to delete */ 6843 int nCell, /* Cells to delete */ 6844 CellArray *pCArray /* Array of cells */ 6845 ){ 6846 u8 * const aData = pPg->aData; 6847 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 6848 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 6849 int nRet = 0; 6850 int i; 6851 int iEnd = iFirst + nCell; 6852 u8 *pFree = 0; 6853 int szFree = 0; 6854 6855 for(i=iFirst; i<iEnd; i++){ 6856 u8 *pCell = pCArray->apCell[i]; 6857 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 6858 int sz; 6859 /* No need to use cachedCellSize() here. The sizes of all cells that 6860 ** are to be freed have already been computing while deciding which 6861 ** cells need freeing */ 6862 sz = pCArray->szCell[i]; assert( sz>0 ); 6863 if( pFree!=(pCell + sz) ){ 6864 if( pFree ){ 6865 assert( pFree>aData && (pFree - aData)<65536 ); 6866 freeSpace(pPg, (u16)(pFree - aData), szFree); 6867 } 6868 pFree = pCell; 6869 szFree = sz; 6870 if( pFree+sz>pEnd ) return 0; 6871 }else{ 6872 pFree = pCell; 6873 szFree += sz; 6874 } 6875 nRet++; 6876 } 6877 } 6878 if( pFree ){ 6879 assert( pFree>aData && (pFree - aData)<65536 ); 6880 freeSpace(pPg, (u16)(pFree - aData), szFree); 6881 } 6882 return nRet; 6883 } 6884 6885 /* 6886 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the 6887 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting 6888 ** with apCell[iOld]. After balancing, this page should hold nNew cells 6889 ** starting at apCell[iNew]. 6890 ** 6891 ** This routine makes the necessary adjustments to pPg so that it contains 6892 ** the correct cells after being balanced. 6893 ** 6894 ** The pPg->nFree field is invalid when this function returns. It is the 6895 ** responsibility of the caller to set it correctly. 6896 */ 6897 static int editPage( 6898 MemPage *pPg, /* Edit this page */ 6899 int iOld, /* Index of first cell currently on page */ 6900 int iNew, /* Index of new first cell on page */ 6901 int nNew, /* Final number of cells on page */ 6902 CellArray *pCArray /* Array of cells and sizes */ 6903 ){ 6904 u8 * const aData = pPg->aData; 6905 const int hdr = pPg->hdrOffset; 6906 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 6907 int nCell = pPg->nCell; /* Cells stored on pPg */ 6908 u8 *pData; 6909 u8 *pCellptr; 6910 int i; 6911 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 6912 int iNewEnd = iNew + nNew; 6913 6914 #ifdef SQLITE_DEBUG 6915 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 6916 memcpy(pTmp, aData, pPg->pBt->usableSize); 6917 #endif 6918 6919 /* Remove cells from the start and end of the page */ 6920 if( iOld<iNew ){ 6921 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 6922 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 6923 nCell -= nShift; 6924 } 6925 if( iNewEnd < iOldEnd ){ 6926 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 6927 } 6928 6929 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 6930 if( pData<pBegin ) goto editpage_fail; 6931 6932 /* Add cells to the start of the page */ 6933 if( iNew<iOld ){ 6934 int nAdd = MIN(nNew,iOld-iNew); 6935 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 6936 pCellptr = pPg->aCellIdx; 6937 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 6938 if( pageInsertArray( 6939 pPg, pBegin, &pData, pCellptr, 6940 iNew, nAdd, pCArray 6941 ) ) goto editpage_fail; 6942 nCell += nAdd; 6943 } 6944 6945 /* Add any overflow cells */ 6946 for(i=0; i<pPg->nOverflow; i++){ 6947 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 6948 if( iCell>=0 && iCell<nNew ){ 6949 pCellptr = &pPg->aCellIdx[iCell * 2]; 6950 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 6951 nCell++; 6952 if( pageInsertArray( 6953 pPg, pBegin, &pData, pCellptr, 6954 iCell+iNew, 1, pCArray 6955 ) ) goto editpage_fail; 6956 } 6957 } 6958 6959 /* Append cells to the end of the page */ 6960 pCellptr = &pPg->aCellIdx[nCell*2]; 6961 if( pageInsertArray( 6962 pPg, pBegin, &pData, pCellptr, 6963 iNew+nCell, nNew-nCell, pCArray 6964 ) ) goto editpage_fail; 6965 6966 pPg->nCell = nNew; 6967 pPg->nOverflow = 0; 6968 6969 put2byte(&aData[hdr+3], pPg->nCell); 6970 put2byte(&aData[hdr+5], pData - aData); 6971 6972 #ifdef SQLITE_DEBUG 6973 for(i=0; i<nNew && !CORRUPT_DB; i++){ 6974 u8 *pCell = pCArray->apCell[i+iNew]; 6975 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 6976 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 6977 pCell = &pTmp[pCell - aData]; 6978 } 6979 assert( 0==memcmp(pCell, &aData[iOff], 6980 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 6981 } 6982 #endif 6983 6984 return SQLITE_OK; 6985 editpage_fail: 6986 /* Unable to edit this page. Rebuild it from scratch instead. */ 6987 populateCellCache(pCArray, iNew, nNew); 6988 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); 6989 } 6990 6991 /* 6992 ** The following parameters determine how many adjacent pages get involved 6993 ** in a balancing operation. NN is the number of neighbors on either side 6994 ** of the page that participate in the balancing operation. NB is the 6995 ** total number of pages that participate, including the target page and 6996 ** NN neighbors on either side. 6997 ** 6998 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6999 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7000 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7001 ** The value of NN appears to give the best results overall. 7002 */ 7003 #define NN 1 /* Number of neighbors on either side of pPage */ 7004 #define NB (NN*2+1) /* Total pages involved in the balance */ 7005 7006 7007 #ifndef SQLITE_OMIT_QUICKBALANCE 7008 /* 7009 ** This version of balance() handles the common special case where 7010 ** a new entry is being inserted on the extreme right-end of the 7011 ** tree, in other words, when the new entry will become the largest 7012 ** entry in the tree. 7013 ** 7014 ** Instead of trying to balance the 3 right-most leaf pages, just add 7015 ** a new page to the right-hand side and put the one new entry in 7016 ** that page. This leaves the right side of the tree somewhat 7017 ** unbalanced. But odds are that we will be inserting new entries 7018 ** at the end soon afterwards so the nearly empty page will quickly 7019 ** fill up. On average. 7020 ** 7021 ** pPage is the leaf page which is the right-most page in the tree. 7022 ** pParent is its parent. pPage must have a single overflow entry 7023 ** which is also the right-most entry on the page. 7024 ** 7025 ** The pSpace buffer is used to store a temporary copy of the divider 7026 ** cell that will be inserted into pParent. Such a cell consists of a 4 7027 ** byte page number followed by a variable length integer. In other 7028 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7029 ** least 13 bytes in size. 7030 */ 7031 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7032 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7033 MemPage *pNew; /* Newly allocated page */ 7034 int rc; /* Return Code */ 7035 Pgno pgnoNew; /* Page number of pNew */ 7036 7037 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7038 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7039 assert( pPage->nOverflow==1 ); 7040 7041 /* This error condition is now caught prior to reaching this function */ 7042 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; 7043 7044 /* Allocate a new page. This page will become the right-sibling of 7045 ** pPage. Make the parent page writable, so that the new divider cell 7046 ** may be inserted. If both these operations are successful, proceed. 7047 */ 7048 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7049 7050 if( rc==SQLITE_OK ){ 7051 7052 u8 *pOut = &pSpace[4]; 7053 u8 *pCell = pPage->apOvfl[0]; 7054 u16 szCell = pPage->xCellSize(pPage, pCell); 7055 u8 *pStop; 7056 7057 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7058 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7059 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7060 rc = rebuildPage(pNew, 1, &pCell, &szCell); 7061 if( NEVER(rc) ) return rc; 7062 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7063 7064 /* If this is an auto-vacuum database, update the pointer map 7065 ** with entries for the new page, and any pointer from the 7066 ** cell on the page to an overflow page. If either of these 7067 ** operations fails, the return code is set, but the contents 7068 ** of the parent page are still manipulated by thh code below. 7069 ** That is Ok, at this point the parent page is guaranteed to 7070 ** be marked as dirty. Returning an error code will cause a 7071 ** rollback, undoing any changes made to the parent page. 7072 */ 7073 if( ISAUTOVACUUM ){ 7074 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7075 if( szCell>pNew->minLocal ){ 7076 ptrmapPutOvflPtr(pNew, pCell, &rc); 7077 } 7078 } 7079 7080 /* Create a divider cell to insert into pParent. The divider cell 7081 ** consists of a 4-byte page number (the page number of pPage) and 7082 ** a variable length key value (which must be the same value as the 7083 ** largest key on pPage). 7084 ** 7085 ** To find the largest key value on pPage, first find the right-most 7086 ** cell on pPage. The first two fields of this cell are the 7087 ** record-length (a variable length integer at most 32-bits in size) 7088 ** and the key value (a variable length integer, may have any value). 7089 ** The first of the while(...) loops below skips over the record-length 7090 ** field. The second while(...) loop copies the key value from the 7091 ** cell on pPage into the pSpace buffer. 7092 */ 7093 pCell = findCell(pPage, pPage->nCell-1); 7094 pStop = &pCell[9]; 7095 while( (*(pCell++)&0x80) && pCell<pStop ); 7096 pStop = &pCell[9]; 7097 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7098 7099 /* Insert the new divider cell into pParent. */ 7100 if( rc==SQLITE_OK ){ 7101 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7102 0, pPage->pgno, &rc); 7103 } 7104 7105 /* Set the right-child pointer of pParent to point to the new page. */ 7106 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7107 7108 /* Release the reference to the new page. */ 7109 releasePage(pNew); 7110 } 7111 7112 return rc; 7113 } 7114 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7115 7116 #if 0 7117 /* 7118 ** This function does not contribute anything to the operation of SQLite. 7119 ** it is sometimes activated temporarily while debugging code responsible 7120 ** for setting pointer-map entries. 7121 */ 7122 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7123 int i, j; 7124 for(i=0; i<nPage; i++){ 7125 Pgno n; 7126 u8 e; 7127 MemPage *pPage = apPage[i]; 7128 BtShared *pBt = pPage->pBt; 7129 assert( pPage->isInit ); 7130 7131 for(j=0; j<pPage->nCell; j++){ 7132 CellInfo info; 7133 u8 *z; 7134 7135 z = findCell(pPage, j); 7136 pPage->xParseCell(pPage, z, &info); 7137 if( info.nLocal<info.nPayload ){ 7138 Pgno ovfl = get4byte(&z[info.nSize-4]); 7139 ptrmapGet(pBt, ovfl, &e, &n); 7140 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7141 } 7142 if( !pPage->leaf ){ 7143 Pgno child = get4byte(z); 7144 ptrmapGet(pBt, child, &e, &n); 7145 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7146 } 7147 } 7148 if( !pPage->leaf ){ 7149 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7150 ptrmapGet(pBt, child, &e, &n); 7151 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7152 } 7153 } 7154 return 1; 7155 } 7156 #endif 7157 7158 /* 7159 ** This function is used to copy the contents of the b-tree node stored 7160 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7161 ** the pointer-map entries for each child page are updated so that the 7162 ** parent page stored in the pointer map is page pTo. If pFrom contained 7163 ** any cells with overflow page pointers, then the corresponding pointer 7164 ** map entries are also updated so that the parent page is page pTo. 7165 ** 7166 ** If pFrom is currently carrying any overflow cells (entries in the 7167 ** MemPage.apOvfl[] array), they are not copied to pTo. 7168 ** 7169 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7170 ** 7171 ** The performance of this function is not critical. It is only used by 7172 ** the balance_shallower() and balance_deeper() procedures, neither of 7173 ** which are called often under normal circumstances. 7174 */ 7175 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7176 if( (*pRC)==SQLITE_OK ){ 7177 BtShared * const pBt = pFrom->pBt; 7178 u8 * const aFrom = pFrom->aData; 7179 u8 * const aTo = pTo->aData; 7180 int const iFromHdr = pFrom->hdrOffset; 7181 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7182 int rc; 7183 int iData; 7184 7185 7186 assert( pFrom->isInit ); 7187 assert( pFrom->nFree>=iToHdr ); 7188 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7189 7190 /* Copy the b-tree node content from page pFrom to page pTo. */ 7191 iData = get2byte(&aFrom[iFromHdr+5]); 7192 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7193 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7194 7195 /* Reinitialize page pTo so that the contents of the MemPage structure 7196 ** match the new data. The initialization of pTo can actually fail under 7197 ** fairly obscure circumstances, even though it is a copy of initialized 7198 ** page pFrom. 7199 */ 7200 pTo->isInit = 0; 7201 rc = btreeInitPage(pTo); 7202 if( rc!=SQLITE_OK ){ 7203 *pRC = rc; 7204 return; 7205 } 7206 7207 /* If this is an auto-vacuum database, update the pointer-map entries 7208 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7209 */ 7210 if( ISAUTOVACUUM ){ 7211 *pRC = setChildPtrmaps(pTo); 7212 } 7213 } 7214 } 7215 7216 /* 7217 ** This routine redistributes cells on the iParentIdx'th child of pParent 7218 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7219 ** same amount of free space. Usually a single sibling on either side of the 7220 ** page are used in the balancing, though both siblings might come from one 7221 ** side if the page is the first or last child of its parent. If the page 7222 ** has fewer than 2 siblings (something which can only happen if the page 7223 ** is a root page or a child of a root page) then all available siblings 7224 ** participate in the balancing. 7225 ** 7226 ** The number of siblings of the page might be increased or decreased by 7227 ** one or two in an effort to keep pages nearly full but not over full. 7228 ** 7229 ** Note that when this routine is called, some of the cells on the page 7230 ** might not actually be stored in MemPage.aData[]. This can happen 7231 ** if the page is overfull. This routine ensures that all cells allocated 7232 ** to the page and its siblings fit into MemPage.aData[] before returning. 7233 ** 7234 ** In the course of balancing the page and its siblings, cells may be 7235 ** inserted into or removed from the parent page (pParent). Doing so 7236 ** may cause the parent page to become overfull or underfull. If this 7237 ** happens, it is the responsibility of the caller to invoke the correct 7238 ** balancing routine to fix this problem (see the balance() routine). 7239 ** 7240 ** If this routine fails for any reason, it might leave the database 7241 ** in a corrupted state. So if this routine fails, the database should 7242 ** be rolled back. 7243 ** 7244 ** The third argument to this function, aOvflSpace, is a pointer to a 7245 ** buffer big enough to hold one page. If while inserting cells into the parent 7246 ** page (pParent) the parent page becomes overfull, this buffer is 7247 ** used to store the parent's overflow cells. Because this function inserts 7248 ** a maximum of four divider cells into the parent page, and the maximum 7249 ** size of a cell stored within an internal node is always less than 1/4 7250 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7251 ** enough for all overflow cells. 7252 ** 7253 ** If aOvflSpace is set to a null pointer, this function returns 7254 ** SQLITE_NOMEM. 7255 */ 7256 static int balance_nonroot( 7257 MemPage *pParent, /* Parent page of siblings being balanced */ 7258 int iParentIdx, /* Index of "the page" in pParent */ 7259 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7260 int isRoot, /* True if pParent is a root-page */ 7261 int bBulk /* True if this call is part of a bulk load */ 7262 ){ 7263 BtShared *pBt; /* The whole database */ 7264 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7265 int nNew = 0; /* Number of pages in apNew[] */ 7266 int nOld; /* Number of pages in apOld[] */ 7267 int i, j, k; /* Loop counters */ 7268 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7269 int rc = SQLITE_OK; /* The return code */ 7270 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7271 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7272 int usableSpace; /* Bytes in pPage beyond the header */ 7273 int pageFlags; /* Value of pPage->aData[0] */ 7274 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7275 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7276 int szScratch; /* Size of scratch memory requested */ 7277 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7278 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7279 u8 *pRight; /* Location in parent of right-sibling pointer */ 7280 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7281 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7282 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7283 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7284 u8 *aSpace1; /* Space for copies of dividers cells */ 7285 Pgno pgno; /* Temp var to store a page number in */ 7286 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7287 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7288 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7289 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7290 CellArray b; /* Parsed information on cells being balanced */ 7291 7292 memset(abDone, 0, sizeof(abDone)); 7293 b.nCell = 0; 7294 b.apCell = 0; 7295 pBt = pParent->pBt; 7296 assert( sqlite3_mutex_held(pBt->mutex) ); 7297 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7298 7299 #if 0 7300 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); 7301 #endif 7302 7303 /* At this point pParent may have at most one overflow cell. And if 7304 ** this overflow cell is present, it must be the cell with 7305 ** index iParentIdx. This scenario comes about when this function 7306 ** is called (indirectly) from sqlite3BtreeDelete(). 7307 */ 7308 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7309 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7310 7311 if( !aOvflSpace ){ 7312 return SQLITE_NOMEM_BKPT; 7313 } 7314 7315 /* Find the sibling pages to balance. Also locate the cells in pParent 7316 ** that divide the siblings. An attempt is made to find NN siblings on 7317 ** either side of pPage. More siblings are taken from one side, however, 7318 ** if there are fewer than NN siblings on the other side. If pParent 7319 ** has NB or fewer children then all children of pParent are taken. 7320 ** 7321 ** This loop also drops the divider cells from the parent page. This 7322 ** way, the remainder of the function does not have to deal with any 7323 ** overflow cells in the parent page, since if any existed they will 7324 ** have already been removed. 7325 */ 7326 i = pParent->nOverflow + pParent->nCell; 7327 if( i<2 ){ 7328 nxDiv = 0; 7329 }else{ 7330 assert( bBulk==0 || bBulk==1 ); 7331 if( iParentIdx==0 ){ 7332 nxDiv = 0; 7333 }else if( iParentIdx==i ){ 7334 nxDiv = i-2+bBulk; 7335 }else{ 7336 nxDiv = iParentIdx-1; 7337 } 7338 i = 2-bBulk; 7339 } 7340 nOld = i+1; 7341 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7342 pRight = &pParent->aData[pParent->hdrOffset+8]; 7343 }else{ 7344 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7345 } 7346 pgno = get4byte(pRight); 7347 while( 1 ){ 7348 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7349 if( rc ){ 7350 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7351 goto balance_cleanup; 7352 } 7353 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; 7354 if( (i--)==0 ) break; 7355 7356 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7357 apDiv[i] = pParent->apOvfl[0]; 7358 pgno = get4byte(apDiv[i]); 7359 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7360 pParent->nOverflow = 0; 7361 }else{ 7362 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7363 pgno = get4byte(apDiv[i]); 7364 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7365 7366 /* Drop the cell from the parent page. apDiv[i] still points to 7367 ** the cell within the parent, even though it has been dropped. 7368 ** This is safe because dropping a cell only overwrites the first 7369 ** four bytes of it, and this function does not need the first 7370 ** four bytes of the divider cell. So the pointer is safe to use 7371 ** later on. 7372 ** 7373 ** But not if we are in secure-delete mode. In secure-delete mode, 7374 ** the dropCell() routine will overwrite the entire cell with zeroes. 7375 ** In this case, temporarily copy the cell into the aOvflSpace[] 7376 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7377 ** is allocated. */ 7378 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7379 int iOff; 7380 7381 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7382 if( (iOff+szNew[i])>(int)pBt->usableSize ){ 7383 rc = SQLITE_CORRUPT_BKPT; 7384 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7385 goto balance_cleanup; 7386 }else{ 7387 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7388 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7389 } 7390 } 7391 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7392 } 7393 } 7394 7395 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7396 ** alignment */ 7397 nMaxCells = (nMaxCells + 3)&~3; 7398 7399 /* 7400 ** Allocate space for memory structures 7401 */ 7402 szScratch = 7403 nMaxCells*sizeof(u8*) /* b.apCell */ 7404 + nMaxCells*sizeof(u16) /* b.szCell */ 7405 + pBt->pageSize; /* aSpace1 */ 7406 7407 assert( szScratch<=6*(int)pBt->pageSize ); 7408 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7409 if( b.apCell==0 ){ 7410 rc = SQLITE_NOMEM_BKPT; 7411 goto balance_cleanup; 7412 } 7413 b.szCell = (u16*)&b.apCell[nMaxCells]; 7414 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7415 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7416 7417 /* 7418 ** Load pointers to all cells on sibling pages and the divider cells 7419 ** into the local b.apCell[] array. Make copies of the divider cells 7420 ** into space obtained from aSpace1[]. The divider cells have already 7421 ** been removed from pParent. 7422 ** 7423 ** If the siblings are on leaf pages, then the child pointers of the 7424 ** divider cells are stripped from the cells before they are copied 7425 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7426 ** child pointers. If siblings are not leaves, then all cell in 7427 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7428 ** are alike. 7429 ** 7430 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7431 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7432 */ 7433 b.pRef = apOld[0]; 7434 leafCorrection = b.pRef->leaf*4; 7435 leafData = b.pRef->intKeyLeaf; 7436 for(i=0; i<nOld; i++){ 7437 MemPage *pOld = apOld[i]; 7438 int limit = pOld->nCell; 7439 u8 *aData = pOld->aData; 7440 u16 maskPage = pOld->maskPage; 7441 u8 *piCell = aData + pOld->cellOffset; 7442 u8 *piEnd; 7443 7444 /* Verify that all sibling pages are of the same "type" (table-leaf, 7445 ** table-interior, index-leaf, or index-interior). 7446 */ 7447 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7448 rc = SQLITE_CORRUPT_BKPT; 7449 goto balance_cleanup; 7450 } 7451 7452 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7453 ** contains overflow cells, include them in the b.apCell[] array 7454 ** in the correct spot. 7455 ** 7456 ** Note that when there are multiple overflow cells, it is always the 7457 ** case that they are sequential and adjacent. This invariant arises 7458 ** because multiple overflows can only occurs when inserting divider 7459 ** cells into a parent on a prior balance, and divider cells are always 7460 ** adjacent and are inserted in order. There is an assert() tagged 7461 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7462 ** invariant. 7463 ** 7464 ** This must be done in advance. Once the balance starts, the cell 7465 ** offset section of the btree page will be overwritten and we will no 7466 ** long be able to find the cells if a pointer to each cell is not saved 7467 ** first. 7468 */ 7469 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7470 if( pOld->nOverflow>0 ){ 7471 limit = pOld->aiOvfl[0]; 7472 for(j=0; j<limit; j++){ 7473 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7474 piCell += 2; 7475 b.nCell++; 7476 } 7477 for(k=0; k<pOld->nOverflow; k++){ 7478 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7479 b.apCell[b.nCell] = pOld->apOvfl[k]; 7480 b.nCell++; 7481 } 7482 } 7483 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7484 while( piCell<piEnd ){ 7485 assert( b.nCell<nMaxCells ); 7486 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7487 piCell += 2; 7488 b.nCell++; 7489 } 7490 7491 cntOld[i] = b.nCell; 7492 if( i<nOld-1 && !leafData){ 7493 u16 sz = (u16)szNew[i]; 7494 u8 *pTemp; 7495 assert( b.nCell<nMaxCells ); 7496 b.szCell[b.nCell] = sz; 7497 pTemp = &aSpace1[iSpace1]; 7498 iSpace1 += sz; 7499 assert( sz<=pBt->maxLocal+23 ); 7500 assert( iSpace1 <= (int)pBt->pageSize ); 7501 memcpy(pTemp, apDiv[i], sz); 7502 b.apCell[b.nCell] = pTemp+leafCorrection; 7503 assert( leafCorrection==0 || leafCorrection==4 ); 7504 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7505 if( !pOld->leaf ){ 7506 assert( leafCorrection==0 ); 7507 assert( pOld->hdrOffset==0 ); 7508 /* The right pointer of the child page pOld becomes the left 7509 ** pointer of the divider cell */ 7510 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7511 }else{ 7512 assert( leafCorrection==4 ); 7513 while( b.szCell[b.nCell]<4 ){ 7514 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7515 ** does exist, pad it with 0x00 bytes. */ 7516 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7517 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7518 aSpace1[iSpace1++] = 0x00; 7519 b.szCell[b.nCell]++; 7520 } 7521 } 7522 b.nCell++; 7523 } 7524 } 7525 7526 /* 7527 ** Figure out the number of pages needed to hold all b.nCell cells. 7528 ** Store this number in "k". Also compute szNew[] which is the total 7529 ** size of all cells on the i-th page and cntNew[] which is the index 7530 ** in b.apCell[] of the cell that divides page i from page i+1. 7531 ** cntNew[k] should equal b.nCell. 7532 ** 7533 ** Values computed by this block: 7534 ** 7535 ** k: The total number of sibling pages 7536 ** szNew[i]: Spaced used on the i-th sibling page. 7537 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7538 ** the right of the i-th sibling page. 7539 ** usableSpace: Number of bytes of space available on each sibling. 7540 ** 7541 */ 7542 usableSpace = pBt->usableSize - 12 + leafCorrection; 7543 for(i=0; i<nOld; i++){ 7544 MemPage *p = apOld[i]; 7545 szNew[i] = usableSpace - p->nFree; 7546 for(j=0; j<p->nOverflow; j++){ 7547 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 7548 } 7549 cntNew[i] = cntOld[i]; 7550 } 7551 k = nOld; 7552 for(i=0; i<k; i++){ 7553 int sz; 7554 while( szNew[i]>usableSpace ){ 7555 if( i+1>=k ){ 7556 k = i+2; 7557 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 7558 szNew[k-1] = 0; 7559 cntNew[k-1] = b.nCell; 7560 } 7561 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 7562 szNew[i] -= sz; 7563 if( !leafData ){ 7564 if( cntNew[i]<b.nCell ){ 7565 sz = 2 + cachedCellSize(&b, cntNew[i]); 7566 }else{ 7567 sz = 0; 7568 } 7569 } 7570 szNew[i+1] += sz; 7571 cntNew[i]--; 7572 } 7573 while( cntNew[i]<b.nCell ){ 7574 sz = 2 + cachedCellSize(&b, cntNew[i]); 7575 if( szNew[i]+sz>usableSpace ) break; 7576 szNew[i] += sz; 7577 cntNew[i]++; 7578 if( !leafData ){ 7579 if( cntNew[i]<b.nCell ){ 7580 sz = 2 + cachedCellSize(&b, cntNew[i]); 7581 }else{ 7582 sz = 0; 7583 } 7584 } 7585 szNew[i+1] -= sz; 7586 } 7587 if( cntNew[i]>=b.nCell ){ 7588 k = i+1; 7589 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 7590 rc = SQLITE_CORRUPT_BKPT; 7591 goto balance_cleanup; 7592 } 7593 } 7594 7595 /* 7596 ** The packing computed by the previous block is biased toward the siblings 7597 ** on the left side (siblings with smaller keys). The left siblings are 7598 ** always nearly full, while the right-most sibling might be nearly empty. 7599 ** The next block of code attempts to adjust the packing of siblings to 7600 ** get a better balance. 7601 ** 7602 ** This adjustment is more than an optimization. The packing above might 7603 ** be so out of balance as to be illegal. For example, the right-most 7604 ** sibling might be completely empty. This adjustment is not optional. 7605 */ 7606 for(i=k-1; i>0; i--){ 7607 int szRight = szNew[i]; /* Size of sibling on the right */ 7608 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 7609 int r; /* Index of right-most cell in left sibling */ 7610 int d; /* Index of first cell to the left of right sibling */ 7611 7612 r = cntNew[i-1] - 1; 7613 d = r + 1 - leafData; 7614 (void)cachedCellSize(&b, d); 7615 do{ 7616 assert( d<nMaxCells ); 7617 assert( r<nMaxCells ); 7618 (void)cachedCellSize(&b, r); 7619 if( szRight!=0 7620 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 7621 break; 7622 } 7623 szRight += b.szCell[d] + 2; 7624 szLeft -= b.szCell[r] + 2; 7625 cntNew[i-1] = r; 7626 r--; 7627 d--; 7628 }while( r>=0 ); 7629 szNew[i] = szRight; 7630 szNew[i-1] = szLeft; 7631 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 7632 rc = SQLITE_CORRUPT_BKPT; 7633 goto balance_cleanup; 7634 } 7635 } 7636 7637 /* Sanity check: For a non-corrupt database file one of the follwing 7638 ** must be true: 7639 ** (1) We found one or more cells (cntNew[0])>0), or 7640 ** (2) pPage is a virtual root page. A virtual root page is when 7641 ** the real root page is page 1 and we are the only child of 7642 ** that page. 7643 */ 7644 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 7645 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 7646 apOld[0]->pgno, apOld[0]->nCell, 7647 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 7648 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 7649 )); 7650 7651 /* 7652 ** Allocate k new pages. Reuse old pages where possible. 7653 */ 7654 pageFlags = apOld[0]->aData[0]; 7655 for(i=0; i<k; i++){ 7656 MemPage *pNew; 7657 if( i<nOld ){ 7658 pNew = apNew[i] = apOld[i]; 7659 apOld[i] = 0; 7660 rc = sqlite3PagerWrite(pNew->pDbPage); 7661 nNew++; 7662 if( rc ) goto balance_cleanup; 7663 }else{ 7664 assert( i>0 ); 7665 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 7666 if( rc ) goto balance_cleanup; 7667 zeroPage(pNew, pageFlags); 7668 apNew[i] = pNew; 7669 nNew++; 7670 cntOld[i] = b.nCell; 7671 7672 /* Set the pointer-map entry for the new sibling page. */ 7673 if( ISAUTOVACUUM ){ 7674 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 7675 if( rc!=SQLITE_OK ){ 7676 goto balance_cleanup; 7677 } 7678 } 7679 } 7680 } 7681 7682 /* 7683 ** Reassign page numbers so that the new pages are in ascending order. 7684 ** This helps to keep entries in the disk file in order so that a scan 7685 ** of the table is closer to a linear scan through the file. That in turn 7686 ** helps the operating system to deliver pages from the disk more rapidly. 7687 ** 7688 ** An O(n^2) insertion sort algorithm is used, but since n is never more 7689 ** than (NB+2) (a small constant), that should not be a problem. 7690 ** 7691 ** When NB==3, this one optimization makes the database about 25% faster 7692 ** for large insertions and deletions. 7693 */ 7694 for(i=0; i<nNew; i++){ 7695 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 7696 aPgFlags[i] = apNew[i]->pDbPage->flags; 7697 for(j=0; j<i; j++){ 7698 if( aPgno[j]==aPgno[i] ){ 7699 /* This branch is taken if the set of sibling pages somehow contains 7700 ** duplicate entries. This can happen if the database is corrupt. 7701 ** It would be simpler to detect this as part of the loop below, but 7702 ** we do the detection here in order to avoid populating the pager 7703 ** cache with two separate objects associated with the same 7704 ** page number. */ 7705 assert( CORRUPT_DB ); 7706 rc = SQLITE_CORRUPT_BKPT; 7707 goto balance_cleanup; 7708 } 7709 } 7710 } 7711 for(i=0; i<nNew; i++){ 7712 int iBest = 0; /* aPgno[] index of page number to use */ 7713 for(j=1; j<nNew; j++){ 7714 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 7715 } 7716 pgno = aPgOrder[iBest]; 7717 aPgOrder[iBest] = 0xffffffff; 7718 if( iBest!=i ){ 7719 if( iBest>i ){ 7720 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 7721 } 7722 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 7723 apNew[i]->pgno = pgno; 7724 } 7725 } 7726 7727 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 7728 "%d(%d nc=%d) %d(%d nc=%d)\n", 7729 apNew[0]->pgno, szNew[0], cntNew[0], 7730 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 7731 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 7732 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 7733 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 7734 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 7735 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 7736 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 7737 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 7738 )); 7739 7740 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7741 put4byte(pRight, apNew[nNew-1]->pgno); 7742 7743 /* If the sibling pages are not leaves, ensure that the right-child pointer 7744 ** of the right-most new sibling page is set to the value that was 7745 ** originally in the same field of the right-most old sibling page. */ 7746 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 7747 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 7748 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 7749 } 7750 7751 /* Make any required updates to pointer map entries associated with 7752 ** cells stored on sibling pages following the balance operation. Pointer 7753 ** map entries associated with divider cells are set by the insertCell() 7754 ** routine. The associated pointer map entries are: 7755 ** 7756 ** a) if the cell contains a reference to an overflow chain, the 7757 ** entry associated with the first page in the overflow chain, and 7758 ** 7759 ** b) if the sibling pages are not leaves, the child page associated 7760 ** with the cell. 7761 ** 7762 ** If the sibling pages are not leaves, then the pointer map entry 7763 ** associated with the right-child of each sibling may also need to be 7764 ** updated. This happens below, after the sibling pages have been 7765 ** populated, not here. 7766 */ 7767 if( ISAUTOVACUUM ){ 7768 MemPage *pNew = apNew[0]; 7769 u8 *aOld = pNew->aData; 7770 int cntOldNext = pNew->nCell + pNew->nOverflow; 7771 int usableSize = pBt->usableSize; 7772 int iNew = 0; 7773 int iOld = 0; 7774 7775 for(i=0; i<b.nCell; i++){ 7776 u8 *pCell = b.apCell[i]; 7777 if( i==cntOldNext ){ 7778 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; 7779 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 7780 aOld = pOld->aData; 7781 } 7782 if( i==cntNew[iNew] ){ 7783 pNew = apNew[++iNew]; 7784 if( !leafData ) continue; 7785 } 7786 7787 /* Cell pCell is destined for new sibling page pNew. Originally, it 7788 ** was either part of sibling page iOld (possibly an overflow cell), 7789 ** or else the divider cell to the left of sibling page iOld. So, 7790 ** if sibling page iOld had the same page number as pNew, and if 7791 ** pCell really was a part of sibling page iOld (not a divider or 7792 ** overflow cell), we can skip updating the pointer map entries. */ 7793 if( iOld>=nNew 7794 || pNew->pgno!=aPgno[iOld] 7795 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) 7796 ){ 7797 if( !leafCorrection ){ 7798 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 7799 } 7800 if( cachedCellSize(&b,i)>pNew->minLocal ){ 7801 ptrmapPutOvflPtr(pNew, pCell, &rc); 7802 } 7803 if( rc ) goto balance_cleanup; 7804 } 7805 } 7806 } 7807 7808 /* Insert new divider cells into pParent. */ 7809 for(i=0; i<nNew-1; i++){ 7810 u8 *pCell; 7811 u8 *pTemp; 7812 int sz; 7813 MemPage *pNew = apNew[i]; 7814 j = cntNew[i]; 7815 7816 assert( j<nMaxCells ); 7817 assert( b.apCell[j]!=0 ); 7818 pCell = b.apCell[j]; 7819 sz = b.szCell[j] + leafCorrection; 7820 pTemp = &aOvflSpace[iOvflSpace]; 7821 if( !pNew->leaf ){ 7822 memcpy(&pNew->aData[8], pCell, 4); 7823 }else if( leafData ){ 7824 /* If the tree is a leaf-data tree, and the siblings are leaves, 7825 ** then there is no divider cell in b.apCell[]. Instead, the divider 7826 ** cell consists of the integer key for the right-most cell of 7827 ** the sibling-page assembled above only. 7828 */ 7829 CellInfo info; 7830 j--; 7831 pNew->xParseCell(pNew, b.apCell[j], &info); 7832 pCell = pTemp; 7833 sz = 4 + putVarint(&pCell[4], info.nKey); 7834 pTemp = 0; 7835 }else{ 7836 pCell -= 4; 7837 /* Obscure case for non-leaf-data trees: If the cell at pCell was 7838 ** previously stored on a leaf node, and its reported size was 4 7839 ** bytes, then it may actually be smaller than this 7840 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 7841 ** any cell). But it is important to pass the correct size to 7842 ** insertCell(), so reparse the cell now. 7843 ** 7844 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 7845 ** and WITHOUT ROWID tables with exactly one column which is the 7846 ** primary key. 7847 */ 7848 if( b.szCell[j]==4 ){ 7849 assert(leafCorrection==4); 7850 sz = pParent->xCellSize(pParent, pCell); 7851 } 7852 } 7853 iOvflSpace += sz; 7854 assert( sz<=pBt->maxLocal+23 ); 7855 assert( iOvflSpace <= (int)pBt->pageSize ); 7856 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 7857 if( rc!=SQLITE_OK ) goto balance_cleanup; 7858 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7859 } 7860 7861 /* Now update the actual sibling pages. The order in which they are updated 7862 ** is important, as this code needs to avoid disrupting any page from which 7863 ** cells may still to be read. In practice, this means: 7864 ** 7865 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 7866 ** then it is not safe to update page apNew[iPg] until after 7867 ** the left-hand sibling apNew[iPg-1] has been updated. 7868 ** 7869 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 7870 ** then it is not safe to update page apNew[iPg] until after 7871 ** the right-hand sibling apNew[iPg+1] has been updated. 7872 ** 7873 ** If neither of the above apply, the page is safe to update. 7874 ** 7875 ** The iPg value in the following loop starts at nNew-1 goes down 7876 ** to 0, then back up to nNew-1 again, thus making two passes over 7877 ** the pages. On the initial downward pass, only condition (1) above 7878 ** needs to be tested because (2) will always be true from the previous 7879 ** step. On the upward pass, both conditions are always true, so the 7880 ** upwards pass simply processes pages that were missed on the downward 7881 ** pass. 7882 */ 7883 for(i=1-nNew; i<nNew; i++){ 7884 int iPg = i<0 ? -i : i; 7885 assert( iPg>=0 && iPg<nNew ); 7886 if( abDone[iPg] ) continue; /* Skip pages already processed */ 7887 if( i>=0 /* On the upwards pass, or... */ 7888 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 7889 ){ 7890 int iNew; 7891 int iOld; 7892 int nNewCell; 7893 7894 /* Verify condition (1): If cells are moving left, update iPg 7895 ** only after iPg-1 has already been updated. */ 7896 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 7897 7898 /* Verify condition (2): If cells are moving right, update iPg 7899 ** only after iPg+1 has already been updated. */ 7900 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 7901 7902 if( iPg==0 ){ 7903 iNew = iOld = 0; 7904 nNewCell = cntNew[0]; 7905 }else{ 7906 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 7907 iNew = cntNew[iPg-1] + !leafData; 7908 nNewCell = cntNew[iPg] - iNew; 7909 } 7910 7911 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 7912 if( rc ) goto balance_cleanup; 7913 abDone[iPg]++; 7914 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 7915 assert( apNew[iPg]->nOverflow==0 ); 7916 assert( apNew[iPg]->nCell==nNewCell ); 7917 } 7918 } 7919 7920 /* All pages have been processed exactly once */ 7921 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 7922 7923 assert( nOld>0 ); 7924 assert( nNew>0 ); 7925 7926 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 7927 /* The root page of the b-tree now contains no cells. The only sibling 7928 ** page is the right-child of the parent. Copy the contents of the 7929 ** child page into the parent, decreasing the overall height of the 7930 ** b-tree structure by one. This is described as the "balance-shallower" 7931 ** sub-algorithm in some documentation. 7932 ** 7933 ** If this is an auto-vacuum database, the call to copyNodeContent() 7934 ** sets all pointer-map entries corresponding to database image pages 7935 ** for which the pointer is stored within the content being copied. 7936 ** 7937 ** It is critical that the child page be defragmented before being 7938 ** copied into the parent, because if the parent is page 1 then it will 7939 ** by smaller than the child due to the database header, and so all the 7940 ** free space needs to be up front. 7941 */ 7942 assert( nNew==1 || CORRUPT_DB ); 7943 rc = defragmentPage(apNew[0], -1); 7944 testcase( rc!=SQLITE_OK ); 7945 assert( apNew[0]->nFree == 7946 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 7947 || rc!=SQLITE_OK 7948 ); 7949 copyNodeContent(apNew[0], pParent, &rc); 7950 freePage(apNew[0], &rc); 7951 }else if( ISAUTOVACUUM && !leafCorrection ){ 7952 /* Fix the pointer map entries associated with the right-child of each 7953 ** sibling page. All other pointer map entries have already been taken 7954 ** care of. */ 7955 for(i=0; i<nNew; i++){ 7956 u32 key = get4byte(&apNew[i]->aData[8]); 7957 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 7958 } 7959 } 7960 7961 assert( pParent->isInit ); 7962 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 7963 nOld, nNew, b.nCell)); 7964 7965 /* Free any old pages that were not reused as new pages. 7966 */ 7967 for(i=nNew; i<nOld; i++){ 7968 freePage(apOld[i], &rc); 7969 } 7970 7971 #if 0 7972 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 7973 /* The ptrmapCheckPages() contains assert() statements that verify that 7974 ** all pointer map pages are set correctly. This is helpful while 7975 ** debugging. This is usually disabled because a corrupt database may 7976 ** cause an assert() statement to fail. */ 7977 ptrmapCheckPages(apNew, nNew); 7978 ptrmapCheckPages(&pParent, 1); 7979 } 7980 #endif 7981 7982 /* 7983 ** Cleanup before returning. 7984 */ 7985 balance_cleanup: 7986 sqlite3StackFree(0, b.apCell); 7987 for(i=0; i<nOld; i++){ 7988 releasePage(apOld[i]); 7989 } 7990 for(i=0; i<nNew; i++){ 7991 releasePage(apNew[i]); 7992 } 7993 7994 return rc; 7995 } 7996 7997 7998 /* 7999 ** This function is called when the root page of a b-tree structure is 8000 ** overfull (has one or more overflow pages). 8001 ** 8002 ** A new child page is allocated and the contents of the current root 8003 ** page, including overflow cells, are copied into the child. The root 8004 ** page is then overwritten to make it an empty page with the right-child 8005 ** pointer pointing to the new page. 8006 ** 8007 ** Before returning, all pointer-map entries corresponding to pages 8008 ** that the new child-page now contains pointers to are updated. The 8009 ** entry corresponding to the new right-child pointer of the root 8010 ** page is also updated. 8011 ** 8012 ** If successful, *ppChild is set to contain a reference to the child 8013 ** page and SQLITE_OK is returned. In this case the caller is required 8014 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8015 ** an error code is returned and *ppChild is set to 0. 8016 */ 8017 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8018 int rc; /* Return value from subprocedures */ 8019 MemPage *pChild = 0; /* Pointer to a new child page */ 8020 Pgno pgnoChild = 0; /* Page number of the new child page */ 8021 BtShared *pBt = pRoot->pBt; /* The BTree */ 8022 8023 assert( pRoot->nOverflow>0 ); 8024 assert( sqlite3_mutex_held(pBt->mutex) ); 8025 8026 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8027 ** page that will become the new right-child of pPage. Copy the contents 8028 ** of the node stored on pRoot into the new child page. 8029 */ 8030 rc = sqlite3PagerWrite(pRoot->pDbPage); 8031 if( rc==SQLITE_OK ){ 8032 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8033 copyNodeContent(pRoot, pChild, &rc); 8034 if( ISAUTOVACUUM ){ 8035 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8036 } 8037 } 8038 if( rc ){ 8039 *ppChild = 0; 8040 releasePage(pChild); 8041 return rc; 8042 } 8043 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8044 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8045 assert( pChild->nCell==pRoot->nCell ); 8046 8047 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8048 8049 /* Copy the overflow cells from pRoot to pChild */ 8050 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8051 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8052 memcpy(pChild->apOvfl, pRoot->apOvfl, 8053 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8054 pChild->nOverflow = pRoot->nOverflow; 8055 8056 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8057 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8058 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8059 8060 *ppChild = pChild; 8061 return SQLITE_OK; 8062 } 8063 8064 /* 8065 ** The page that pCur currently points to has just been modified in 8066 ** some way. This function figures out if this modification means the 8067 ** tree needs to be balanced, and if so calls the appropriate balancing 8068 ** routine. Balancing routines are: 8069 ** 8070 ** balance_quick() 8071 ** balance_deeper() 8072 ** balance_nonroot() 8073 */ 8074 static int balance(BtCursor *pCur){ 8075 int rc = SQLITE_OK; 8076 const int nMin = pCur->pBt->usableSize * 2 / 3; 8077 u8 aBalanceQuickSpace[13]; 8078 u8 *pFree = 0; 8079 8080 VVA_ONLY( int balance_quick_called = 0 ); 8081 VVA_ONLY( int balance_deeper_called = 0 ); 8082 8083 do { 8084 int iPage = pCur->iPage; 8085 MemPage *pPage = pCur->pPage; 8086 8087 if( iPage==0 ){ 8088 if( pPage->nOverflow ){ 8089 /* The root page of the b-tree is overfull. In this case call the 8090 ** balance_deeper() function to create a new child for the root-page 8091 ** and copy the current contents of the root-page to it. The 8092 ** next iteration of the do-loop will balance the child page. 8093 */ 8094 assert( balance_deeper_called==0 ); 8095 VVA_ONLY( balance_deeper_called++ ); 8096 rc = balance_deeper(pPage, &pCur->apPage[1]); 8097 if( rc==SQLITE_OK ){ 8098 pCur->iPage = 1; 8099 pCur->ix = 0; 8100 pCur->aiIdx[0] = 0; 8101 pCur->apPage[0] = pPage; 8102 pCur->pPage = pCur->apPage[1]; 8103 assert( pCur->pPage->nOverflow ); 8104 } 8105 }else{ 8106 break; 8107 } 8108 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8109 break; 8110 }else{ 8111 MemPage * const pParent = pCur->apPage[iPage-1]; 8112 int const iIdx = pCur->aiIdx[iPage-1]; 8113 8114 rc = sqlite3PagerWrite(pParent->pDbPage); 8115 if( rc==SQLITE_OK ){ 8116 #ifndef SQLITE_OMIT_QUICKBALANCE 8117 if( pPage->intKeyLeaf 8118 && pPage->nOverflow==1 8119 && pPage->aiOvfl[0]==pPage->nCell 8120 && pParent->pgno!=1 8121 && pParent->nCell==iIdx 8122 ){ 8123 /* Call balance_quick() to create a new sibling of pPage on which 8124 ** to store the overflow cell. balance_quick() inserts a new cell 8125 ** into pParent, which may cause pParent overflow. If this 8126 ** happens, the next iteration of the do-loop will balance pParent 8127 ** use either balance_nonroot() or balance_deeper(). Until this 8128 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8129 ** buffer. 8130 ** 8131 ** The purpose of the following assert() is to check that only a 8132 ** single call to balance_quick() is made for each call to this 8133 ** function. If this were not verified, a subtle bug involving reuse 8134 ** of the aBalanceQuickSpace[] might sneak in. 8135 */ 8136 assert( balance_quick_called==0 ); 8137 VVA_ONLY( balance_quick_called++ ); 8138 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8139 }else 8140 #endif 8141 { 8142 /* In this case, call balance_nonroot() to redistribute cells 8143 ** between pPage and up to 2 of its sibling pages. This involves 8144 ** modifying the contents of pParent, which may cause pParent to 8145 ** become overfull or underfull. The next iteration of the do-loop 8146 ** will balance the parent page to correct this. 8147 ** 8148 ** If the parent page becomes overfull, the overflow cell or cells 8149 ** are stored in the pSpace buffer allocated immediately below. 8150 ** A subsequent iteration of the do-loop will deal with this by 8151 ** calling balance_nonroot() (balance_deeper() may be called first, 8152 ** but it doesn't deal with overflow cells - just moves them to a 8153 ** different page). Once this subsequent call to balance_nonroot() 8154 ** has completed, it is safe to release the pSpace buffer used by 8155 ** the previous call, as the overflow cell data will have been 8156 ** copied either into the body of a database page or into the new 8157 ** pSpace buffer passed to the latter call to balance_nonroot(). 8158 */ 8159 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8160 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8161 pCur->hints&BTREE_BULKLOAD); 8162 if( pFree ){ 8163 /* If pFree is not NULL, it points to the pSpace buffer used 8164 ** by a previous call to balance_nonroot(). Its contents are 8165 ** now stored either on real database pages or within the 8166 ** new pSpace buffer, so it may be safely freed here. */ 8167 sqlite3PageFree(pFree); 8168 } 8169 8170 /* The pSpace buffer will be freed after the next call to 8171 ** balance_nonroot(), or just before this function returns, whichever 8172 ** comes first. */ 8173 pFree = pSpace; 8174 } 8175 } 8176 8177 pPage->nOverflow = 0; 8178 8179 /* The next iteration of the do-loop balances the parent page. */ 8180 releasePage(pPage); 8181 pCur->iPage--; 8182 assert( pCur->iPage>=0 ); 8183 pCur->pPage = pCur->apPage[pCur->iPage]; 8184 } 8185 }while( rc==SQLITE_OK ); 8186 8187 if( pFree ){ 8188 sqlite3PageFree(pFree); 8189 } 8190 return rc; 8191 } 8192 8193 /* Overwrite content from pX into pDest. Only do the write if the 8194 ** content is different from what is already there. 8195 */ 8196 static int btreeOverwriteContent( 8197 MemPage *pPage, /* MemPage on which writing will occur */ 8198 u8 *pDest, /* Pointer to the place to start writing */ 8199 const BtreePayload *pX, /* Source of data to write */ 8200 int iOffset, /* Offset of first byte to write */ 8201 int iAmt /* Number of bytes to be written */ 8202 ){ 8203 int nData = pX->nData - iOffset; 8204 if( nData<=0 ){ 8205 /* Overwritting with zeros */ 8206 int i; 8207 for(i=0; i<iAmt && pDest[i]==0; i++){} 8208 if( i<iAmt ){ 8209 int rc = sqlite3PagerWrite(pPage->pDbPage); 8210 if( rc ) return rc; 8211 memset(pDest + i, 0, iAmt - i); 8212 } 8213 }else{ 8214 if( nData<iAmt ){ 8215 /* Mixed read data and zeros at the end. Make a recursive call 8216 ** to write the zeros then fall through to write the real data */ 8217 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8218 iAmt-nData); 8219 if( rc ) return rc; 8220 iAmt = nData; 8221 } 8222 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8223 int rc = sqlite3PagerWrite(pPage->pDbPage); 8224 if( rc ) return rc; 8225 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8226 } 8227 } 8228 return SQLITE_OK; 8229 } 8230 8231 /* 8232 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8233 ** contained in pX. 8234 */ 8235 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8236 int iOffset; /* Next byte of pX->pData to write */ 8237 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8238 int rc; /* Return code */ 8239 MemPage *pPage = pCur->pPage; /* Page being written */ 8240 BtShared *pBt; /* Btree */ 8241 Pgno ovflPgno; /* Next overflow page to write */ 8242 u32 ovflPageSize; /* Size to write on overflow page */ 8243 8244 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){ 8245 return SQLITE_CORRUPT_BKPT; 8246 } 8247 /* Overwrite the local portion first */ 8248 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8249 0, pCur->info.nLocal); 8250 if( rc ) return rc; 8251 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8252 8253 /* Now overwrite the overflow pages */ 8254 iOffset = pCur->info.nLocal; 8255 assert( nTotal>=0 ); 8256 assert( iOffset>=0 ); 8257 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8258 pBt = pPage->pBt; 8259 ovflPageSize = pBt->usableSize - 4; 8260 do{ 8261 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8262 if( rc ) return rc; 8263 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){ 8264 rc = SQLITE_CORRUPT_BKPT; 8265 }else{ 8266 if( iOffset+ovflPageSize<(u32)nTotal ){ 8267 ovflPgno = get4byte(pPage->aData); 8268 }else{ 8269 ovflPageSize = nTotal - iOffset; 8270 } 8271 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8272 iOffset, ovflPageSize); 8273 } 8274 sqlite3PagerUnref(pPage->pDbPage); 8275 if( rc ) return rc; 8276 iOffset += ovflPageSize; 8277 }while( iOffset<nTotal ); 8278 return SQLITE_OK; 8279 } 8280 8281 8282 /* 8283 ** Insert a new record into the BTree. The content of the new record 8284 ** is described by the pX object. The pCur cursor is used only to 8285 ** define what table the record should be inserted into, and is left 8286 ** pointing at a random location. 8287 ** 8288 ** For a table btree (used for rowid tables), only the pX.nKey value of 8289 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8290 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8291 ** hold the content of the row. 8292 ** 8293 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8294 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8295 ** pX.pData,nData,nZero fields must be zero. 8296 ** 8297 ** If the seekResult parameter is non-zero, then a successful call to 8298 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8299 ** been performed. In other words, if seekResult!=0 then the cursor 8300 ** is currently pointing to a cell that will be adjacent to the cell 8301 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8302 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8303 ** that is larger than (pKey,nKey). 8304 ** 8305 ** If seekResult==0, that means pCur is pointing at some unknown location. 8306 ** In that case, this routine must seek the cursor to the correct insertion 8307 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8308 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8309 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8310 ** to decode the key. 8311 */ 8312 int sqlite3BtreeInsert( 8313 BtCursor *pCur, /* Insert data into the table of this cursor */ 8314 const BtreePayload *pX, /* Content of the row to be inserted */ 8315 int flags, /* True if this is likely an append */ 8316 int seekResult /* Result of prior MovetoUnpacked() call */ 8317 ){ 8318 int rc; 8319 int loc = seekResult; /* -1: before desired location +1: after */ 8320 int szNew = 0; 8321 int idx; 8322 MemPage *pPage; 8323 Btree *p = pCur->pBtree; 8324 BtShared *pBt = p->pBt; 8325 unsigned char *oldCell; 8326 unsigned char *newCell = 0; 8327 8328 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); 8329 8330 if( pCur->eState==CURSOR_FAULT ){ 8331 assert( pCur->skipNext!=SQLITE_OK ); 8332 return pCur->skipNext; 8333 } 8334 8335 assert( cursorOwnsBtShared(pCur) ); 8336 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8337 && pBt->inTransaction==TRANS_WRITE 8338 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8339 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8340 8341 /* Assert that the caller has been consistent. If this cursor was opened 8342 ** expecting an index b-tree, then the caller should be inserting blob 8343 ** keys with no associated data. If the cursor was opened expecting an 8344 ** intkey table, the caller should be inserting integer keys with a 8345 ** blob of associated data. */ 8346 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8347 8348 /* Save the positions of any other cursors open on this table. 8349 ** 8350 ** In some cases, the call to btreeMoveto() below is a no-op. For 8351 ** example, when inserting data into a table with auto-generated integer 8352 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8353 ** integer key to use. It then calls this function to actually insert the 8354 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8355 ** that the cursor is already where it needs to be and returns without 8356 ** doing any work. To avoid thwarting these optimizations, it is important 8357 ** not to clear the cursor here. 8358 */ 8359 if( pCur->curFlags & BTCF_Multiple ){ 8360 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8361 if( rc ) return rc; 8362 } 8363 8364 if( pCur->pKeyInfo==0 ){ 8365 assert( pX->pKey==0 ); 8366 /* If this is an insert into a table b-tree, invalidate any incrblob 8367 ** cursors open on the row being replaced */ 8368 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8369 8370 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8371 ** to a row with the same key as the new entry being inserted. 8372 */ 8373 #ifdef SQLITE_DEBUG 8374 if( flags & BTREE_SAVEPOSITION ){ 8375 assert( pCur->curFlags & BTCF_ValidNKey ); 8376 assert( pX->nKey==pCur->info.nKey ); 8377 assert( pCur->info.nSize!=0 ); 8378 assert( loc==0 ); 8379 } 8380 #endif 8381 8382 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8383 ** that the cursor is not pointing to a row to be overwritten. 8384 ** So do a complete check. 8385 */ 8386 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8387 /* The cursor is pointing to the entry that is to be 8388 ** overwritten */ 8389 assert( pX->nData>=0 && pX->nZero>=0 ); 8390 if( pCur->info.nSize!=0 8391 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8392 ){ 8393 /* New entry is the same size as the old. Do an overwrite */ 8394 return btreeOverwriteCell(pCur, pX); 8395 } 8396 assert( loc==0 ); 8397 }else if( loc==0 ){ 8398 /* The cursor is *not* pointing to the cell to be overwritten, nor 8399 ** to an adjacent cell. Move the cursor so that it is pointing either 8400 ** to the cell to be overwritten or an adjacent cell. 8401 */ 8402 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); 8403 if( rc ) return rc; 8404 } 8405 }else{ 8406 /* This is an index or a WITHOUT ROWID table */ 8407 8408 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8409 ** to a row with the same key as the new entry being inserted. 8410 */ 8411 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8412 8413 /* If the cursor is not already pointing either to the cell to be 8414 ** overwritten, or if a new cell is being inserted, if the cursor is 8415 ** not pointing to an immediately adjacent cell, then move the cursor 8416 ** so that it does. 8417 */ 8418 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8419 if( pX->nMem ){ 8420 UnpackedRecord r; 8421 r.pKeyInfo = pCur->pKeyInfo; 8422 r.aMem = pX->aMem; 8423 r.nField = pX->nMem; 8424 r.default_rc = 0; 8425 r.errCode = 0; 8426 r.r1 = 0; 8427 r.r2 = 0; 8428 r.eqSeen = 0; 8429 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); 8430 }else{ 8431 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); 8432 } 8433 if( rc ) return rc; 8434 } 8435 8436 /* If the cursor is currently pointing to an entry to be overwritten 8437 ** and the new content is the same as as the old, then use the 8438 ** overwrite optimization. 8439 */ 8440 if( loc==0 ){ 8441 getCellInfo(pCur); 8442 if( pCur->info.nKey==pX->nKey ){ 8443 BtreePayload x2; 8444 x2.pData = pX->pKey; 8445 x2.nData = pX->nKey; 8446 x2.nZero = 0; 8447 return btreeOverwriteCell(pCur, &x2); 8448 } 8449 } 8450 8451 } 8452 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); 8453 8454 pPage = pCur->pPage; 8455 assert( pPage->intKey || pX->nKey>=0 ); 8456 assert( pPage->leaf || !pPage->intKey ); 8457 8458 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8459 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8460 loc==0 ? "overwrite" : "new entry")); 8461 assert( pPage->isInit ); 8462 newCell = pBt->pTmpSpace; 8463 assert( newCell!=0 ); 8464 rc = fillInCell(pPage, newCell, pX, &szNew); 8465 if( rc ) goto end_insert; 8466 assert( szNew==pPage->xCellSize(pPage, newCell) ); 8467 assert( szNew <= MX_CELL_SIZE(pBt) ); 8468 idx = pCur->ix; 8469 if( loc==0 ){ 8470 CellInfo info; 8471 assert( idx<pPage->nCell ); 8472 rc = sqlite3PagerWrite(pPage->pDbPage); 8473 if( rc ){ 8474 goto end_insert; 8475 } 8476 oldCell = findCell(pPage, idx); 8477 if( !pPage->leaf ){ 8478 memcpy(newCell, oldCell, 4); 8479 } 8480 rc = clearCell(pPage, oldCell, &info); 8481 if( info.nSize==szNew && info.nLocal==info.nPayload 8482 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 8483 ){ 8484 /* Overwrite the old cell with the new if they are the same size. 8485 ** We could also try to do this if the old cell is smaller, then add 8486 ** the leftover space to the free list. But experiments show that 8487 ** doing that is no faster then skipping this optimization and just 8488 ** calling dropCell() and insertCell(). 8489 ** 8490 ** This optimization cannot be used on an autovacuum database if the 8491 ** new entry uses overflow pages, as the insertCell() call below is 8492 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 8493 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 8494 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; 8495 memcpy(oldCell, newCell, szNew); 8496 return SQLITE_OK; 8497 } 8498 dropCell(pPage, idx, info.nSize, &rc); 8499 if( rc ) goto end_insert; 8500 }else if( loc<0 && pPage->nCell>0 ){ 8501 assert( pPage->leaf ); 8502 idx = ++pCur->ix; 8503 pCur->curFlags &= ~BTCF_ValidNKey; 8504 }else{ 8505 assert( pPage->leaf ); 8506 } 8507 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 8508 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 8509 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 8510 8511 /* If no error has occurred and pPage has an overflow cell, call balance() 8512 ** to redistribute the cells within the tree. Since balance() may move 8513 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 8514 ** variables. 8515 ** 8516 ** Previous versions of SQLite called moveToRoot() to move the cursor 8517 ** back to the root page as balance() used to invalidate the contents 8518 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 8519 ** set the cursor state to "invalid". This makes common insert operations 8520 ** slightly faster. 8521 ** 8522 ** There is a subtle but important optimization here too. When inserting 8523 ** multiple records into an intkey b-tree using a single cursor (as can 8524 ** happen while processing an "INSERT INTO ... SELECT" statement), it 8525 ** is advantageous to leave the cursor pointing to the last entry in 8526 ** the b-tree if possible. If the cursor is left pointing to the last 8527 ** entry in the table, and the next row inserted has an integer key 8528 ** larger than the largest existing key, it is possible to insert the 8529 ** row without seeking the cursor. This can be a big performance boost. 8530 */ 8531 pCur->info.nSize = 0; 8532 if( pPage->nOverflow ){ 8533 assert( rc==SQLITE_OK ); 8534 pCur->curFlags &= ~(BTCF_ValidNKey); 8535 rc = balance(pCur); 8536 8537 /* Must make sure nOverflow is reset to zero even if the balance() 8538 ** fails. Internal data structure corruption will result otherwise. 8539 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 8540 ** from trying to save the current position of the cursor. */ 8541 pCur->pPage->nOverflow = 0; 8542 pCur->eState = CURSOR_INVALID; 8543 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 8544 btreeReleaseAllCursorPages(pCur); 8545 if( pCur->pKeyInfo ){ 8546 assert( pCur->pKey==0 ); 8547 pCur->pKey = sqlite3Malloc( pX->nKey ); 8548 if( pCur->pKey==0 ){ 8549 rc = SQLITE_NOMEM; 8550 }else{ 8551 memcpy(pCur->pKey, pX->pKey, pX->nKey); 8552 } 8553 } 8554 pCur->eState = CURSOR_REQUIRESEEK; 8555 pCur->nKey = pX->nKey; 8556 } 8557 } 8558 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 8559 8560 end_insert: 8561 return rc; 8562 } 8563 8564 /* 8565 ** Delete the entry that the cursor is pointing to. 8566 ** 8567 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 8568 ** the cursor is left pointing at an arbitrary location after the delete. 8569 ** But if that bit is set, then the cursor is left in a state such that 8570 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 8571 ** as it would have been on if the call to BtreeDelete() had been omitted. 8572 ** 8573 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 8574 ** associated with a single table entry and its indexes. Only one of those 8575 ** deletes is considered the "primary" delete. The primary delete occurs 8576 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 8577 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 8578 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 8579 ** but which might be used by alternative storage engines. 8580 */ 8581 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 8582 Btree *p = pCur->pBtree; 8583 BtShared *pBt = p->pBt; 8584 int rc; /* Return code */ 8585 MemPage *pPage; /* Page to delete cell from */ 8586 unsigned char *pCell; /* Pointer to cell to delete */ 8587 int iCellIdx; /* Index of cell to delete */ 8588 int iCellDepth; /* Depth of node containing pCell */ 8589 CellInfo info; /* Size of the cell being deleted */ 8590 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ 8591 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ 8592 8593 assert( cursorOwnsBtShared(pCur) ); 8594 assert( pBt->inTransaction==TRANS_WRITE ); 8595 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8596 assert( pCur->curFlags & BTCF_WriteFlag ); 8597 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8598 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 8599 assert( pCur->ix<pCur->pPage->nCell ); 8600 assert( pCur->eState==CURSOR_VALID ); 8601 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 8602 8603 iCellDepth = pCur->iPage; 8604 iCellIdx = pCur->ix; 8605 pPage = pCur->pPage; 8606 pCell = findCell(pPage, iCellIdx); 8607 8608 /* If the bPreserve flag is set to true, then the cursor position must 8609 ** be preserved following this delete operation. If the current delete 8610 ** will cause a b-tree rebalance, then this is done by saving the cursor 8611 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 8612 ** returning. 8613 ** 8614 ** Or, if the current delete will not cause a rebalance, then the cursor 8615 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 8616 ** before or after the deleted entry. In this case set bSkipnext to true. */ 8617 if( bPreserve ){ 8618 if( !pPage->leaf 8619 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 8620 ){ 8621 /* A b-tree rebalance will be required after deleting this entry. 8622 ** Save the cursor key. */ 8623 rc = saveCursorKey(pCur); 8624 if( rc ) return rc; 8625 }else{ 8626 bSkipnext = 1; 8627 } 8628 } 8629 8630 /* If the page containing the entry to delete is not a leaf page, move 8631 ** the cursor to the largest entry in the tree that is smaller than 8632 ** the entry being deleted. This cell will replace the cell being deleted 8633 ** from the internal node. The 'previous' entry is used for this instead 8634 ** of the 'next' entry, as the previous entry is always a part of the 8635 ** sub-tree headed by the child page of the cell being deleted. This makes 8636 ** balancing the tree following the delete operation easier. */ 8637 if( !pPage->leaf ){ 8638 rc = sqlite3BtreePrevious(pCur, 0); 8639 assert( rc!=SQLITE_DONE ); 8640 if( rc ) return rc; 8641 } 8642 8643 /* Save the positions of any other cursors open on this table before 8644 ** making any modifications. */ 8645 if( pCur->curFlags & BTCF_Multiple ){ 8646 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8647 if( rc ) return rc; 8648 } 8649 8650 /* If this is a delete operation to remove a row from a table b-tree, 8651 ** invalidate any incrblob cursors open on the row being deleted. */ 8652 if( pCur->pKeyInfo==0 ){ 8653 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 8654 } 8655 8656 /* Make the page containing the entry to be deleted writable. Then free any 8657 ** overflow pages associated with the entry and finally remove the cell 8658 ** itself from within the page. */ 8659 rc = sqlite3PagerWrite(pPage->pDbPage); 8660 if( rc ) return rc; 8661 rc = clearCell(pPage, pCell, &info); 8662 dropCell(pPage, iCellIdx, info.nSize, &rc); 8663 if( rc ) return rc; 8664 8665 /* If the cell deleted was not located on a leaf page, then the cursor 8666 ** is currently pointing to the largest entry in the sub-tree headed 8667 ** by the child-page of the cell that was just deleted from an internal 8668 ** node. The cell from the leaf node needs to be moved to the internal 8669 ** node to replace the deleted cell. */ 8670 if( !pPage->leaf ){ 8671 MemPage *pLeaf = pCur->pPage; 8672 int nCell; 8673 Pgno n; 8674 unsigned char *pTmp; 8675 8676 if( iCellDepth<pCur->iPage-1 ){ 8677 n = pCur->apPage[iCellDepth+1]->pgno; 8678 }else{ 8679 n = pCur->pPage->pgno; 8680 } 8681 pCell = findCell(pLeaf, pLeaf->nCell-1); 8682 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 8683 nCell = pLeaf->xCellSize(pLeaf, pCell); 8684 assert( MX_CELL_SIZE(pBt) >= nCell ); 8685 pTmp = pBt->pTmpSpace; 8686 assert( pTmp!=0 ); 8687 rc = sqlite3PagerWrite(pLeaf->pDbPage); 8688 if( rc==SQLITE_OK ){ 8689 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 8690 } 8691 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 8692 if( rc ) return rc; 8693 } 8694 8695 /* Balance the tree. If the entry deleted was located on a leaf page, 8696 ** then the cursor still points to that page. In this case the first 8697 ** call to balance() repairs the tree, and the if(...) condition is 8698 ** never true. 8699 ** 8700 ** Otherwise, if the entry deleted was on an internal node page, then 8701 ** pCur is pointing to the leaf page from which a cell was removed to 8702 ** replace the cell deleted from the internal node. This is slightly 8703 ** tricky as the leaf node may be underfull, and the internal node may 8704 ** be either under or overfull. In this case run the balancing algorithm 8705 ** on the leaf node first. If the balance proceeds far enough up the 8706 ** tree that we can be sure that any problem in the internal node has 8707 ** been corrected, so be it. Otherwise, after balancing the leaf node, 8708 ** walk the cursor up the tree to the internal node and balance it as 8709 ** well. */ 8710 rc = balance(pCur); 8711 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 8712 releasePageNotNull(pCur->pPage); 8713 pCur->iPage--; 8714 while( pCur->iPage>iCellDepth ){ 8715 releasePage(pCur->apPage[pCur->iPage--]); 8716 } 8717 pCur->pPage = pCur->apPage[pCur->iPage]; 8718 rc = balance(pCur); 8719 } 8720 8721 if( rc==SQLITE_OK ){ 8722 if( bSkipnext ){ 8723 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); 8724 assert( pPage==pCur->pPage || CORRUPT_DB ); 8725 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 8726 pCur->eState = CURSOR_SKIPNEXT; 8727 if( iCellIdx>=pPage->nCell ){ 8728 pCur->skipNext = -1; 8729 pCur->ix = pPage->nCell-1; 8730 }else{ 8731 pCur->skipNext = 1; 8732 } 8733 }else{ 8734 rc = moveToRoot(pCur); 8735 if( bPreserve ){ 8736 btreeReleaseAllCursorPages(pCur); 8737 pCur->eState = CURSOR_REQUIRESEEK; 8738 } 8739 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 8740 } 8741 } 8742 return rc; 8743 } 8744 8745 /* 8746 ** Create a new BTree table. Write into *piTable the page 8747 ** number for the root page of the new table. 8748 ** 8749 ** The type of type is determined by the flags parameter. Only the 8750 ** following values of flags are currently in use. Other values for 8751 ** flags might not work: 8752 ** 8753 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 8754 ** BTREE_ZERODATA Used for SQL indices 8755 */ 8756 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ 8757 BtShared *pBt = p->pBt; 8758 MemPage *pRoot; 8759 Pgno pgnoRoot; 8760 int rc; 8761 int ptfFlags; /* Page-type flage for the root page of new table */ 8762 8763 assert( sqlite3BtreeHoldsMutex(p) ); 8764 assert( pBt->inTransaction==TRANS_WRITE ); 8765 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8766 8767 #ifdef SQLITE_OMIT_AUTOVACUUM 8768 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8769 if( rc ){ 8770 return rc; 8771 } 8772 #else 8773 if( pBt->autoVacuum ){ 8774 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 8775 MemPage *pPageMove; /* The page to move to. */ 8776 8777 /* Creating a new table may probably require moving an existing database 8778 ** to make room for the new tables root page. In case this page turns 8779 ** out to be an overflow page, delete all overflow page-map caches 8780 ** held by open cursors. 8781 */ 8782 invalidateAllOverflowCache(pBt); 8783 8784 /* Read the value of meta[3] from the database to determine where the 8785 ** root page of the new table should go. meta[3] is the largest root-page 8786 ** created so far, so the new root-page is (meta[3]+1). 8787 */ 8788 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 8789 pgnoRoot++; 8790 8791 /* The new root-page may not be allocated on a pointer-map page, or the 8792 ** PENDING_BYTE page. 8793 */ 8794 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 8795 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 8796 pgnoRoot++; 8797 } 8798 assert( pgnoRoot>=3 || CORRUPT_DB ); 8799 testcase( pgnoRoot<3 ); 8800 8801 /* Allocate a page. The page that currently resides at pgnoRoot will 8802 ** be moved to the allocated page (unless the allocated page happens 8803 ** to reside at pgnoRoot). 8804 */ 8805 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 8806 if( rc!=SQLITE_OK ){ 8807 return rc; 8808 } 8809 8810 if( pgnoMove!=pgnoRoot ){ 8811 /* pgnoRoot is the page that will be used for the root-page of 8812 ** the new table (assuming an error did not occur). But we were 8813 ** allocated pgnoMove. If required (i.e. if it was not allocated 8814 ** by extending the file), the current page at position pgnoMove 8815 ** is already journaled. 8816 */ 8817 u8 eType = 0; 8818 Pgno iPtrPage = 0; 8819 8820 /* Save the positions of any open cursors. This is required in 8821 ** case they are holding a reference to an xFetch reference 8822 ** corresponding to page pgnoRoot. */ 8823 rc = saveAllCursors(pBt, 0, 0); 8824 releasePage(pPageMove); 8825 if( rc!=SQLITE_OK ){ 8826 return rc; 8827 } 8828 8829 /* Move the page currently at pgnoRoot to pgnoMove. */ 8830 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8831 if( rc!=SQLITE_OK ){ 8832 return rc; 8833 } 8834 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 8835 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 8836 rc = SQLITE_CORRUPT_BKPT; 8837 } 8838 if( rc!=SQLITE_OK ){ 8839 releasePage(pRoot); 8840 return rc; 8841 } 8842 assert( eType!=PTRMAP_ROOTPAGE ); 8843 assert( eType!=PTRMAP_FREEPAGE ); 8844 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 8845 releasePage(pRoot); 8846 8847 /* Obtain the page at pgnoRoot */ 8848 if( rc!=SQLITE_OK ){ 8849 return rc; 8850 } 8851 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 8852 if( rc!=SQLITE_OK ){ 8853 return rc; 8854 } 8855 rc = sqlite3PagerWrite(pRoot->pDbPage); 8856 if( rc!=SQLITE_OK ){ 8857 releasePage(pRoot); 8858 return rc; 8859 } 8860 }else{ 8861 pRoot = pPageMove; 8862 } 8863 8864 /* Update the pointer-map and meta-data with the new root-page number. */ 8865 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 8866 if( rc ){ 8867 releasePage(pRoot); 8868 return rc; 8869 } 8870 8871 /* When the new root page was allocated, page 1 was made writable in 8872 ** order either to increase the database filesize, or to decrement the 8873 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 8874 */ 8875 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 8876 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 8877 if( NEVER(rc) ){ 8878 releasePage(pRoot); 8879 return rc; 8880 } 8881 8882 }else{ 8883 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 8884 if( rc ) return rc; 8885 } 8886 #endif 8887 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8888 if( createTabFlags & BTREE_INTKEY ){ 8889 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 8890 }else{ 8891 ptfFlags = PTF_ZERODATA | PTF_LEAF; 8892 } 8893 zeroPage(pRoot, ptfFlags); 8894 sqlite3PagerUnref(pRoot->pDbPage); 8895 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 8896 *piTable = (int)pgnoRoot; 8897 return SQLITE_OK; 8898 } 8899 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ 8900 int rc; 8901 sqlite3BtreeEnter(p); 8902 rc = btreeCreateTable(p, piTable, flags); 8903 sqlite3BtreeLeave(p); 8904 return rc; 8905 } 8906 8907 /* 8908 ** Erase the given database page and all its children. Return 8909 ** the page to the freelist. 8910 */ 8911 static int clearDatabasePage( 8912 BtShared *pBt, /* The BTree that contains the table */ 8913 Pgno pgno, /* Page number to clear */ 8914 int freePageFlag, /* Deallocate page if true */ 8915 int *pnChange /* Add number of Cells freed to this counter */ 8916 ){ 8917 MemPage *pPage; 8918 int rc; 8919 unsigned char *pCell; 8920 int i; 8921 int hdr; 8922 CellInfo info; 8923 8924 assert( sqlite3_mutex_held(pBt->mutex) ); 8925 if( pgno>btreePagecount(pBt) ){ 8926 return SQLITE_CORRUPT_BKPT; 8927 } 8928 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 8929 if( rc ) return rc; 8930 if( pPage->bBusy ){ 8931 rc = SQLITE_CORRUPT_BKPT; 8932 goto cleardatabasepage_out; 8933 } 8934 pPage->bBusy = 1; 8935 hdr = pPage->hdrOffset; 8936 for(i=0; i<pPage->nCell; i++){ 8937 pCell = findCell(pPage, i); 8938 if( !pPage->leaf ){ 8939 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 8940 if( rc ) goto cleardatabasepage_out; 8941 } 8942 rc = clearCell(pPage, pCell, &info); 8943 if( rc ) goto cleardatabasepage_out; 8944 } 8945 if( !pPage->leaf ){ 8946 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 8947 if( rc ) goto cleardatabasepage_out; 8948 }else if( pnChange ){ 8949 assert( pPage->intKey || CORRUPT_DB ); 8950 testcase( !pPage->intKey ); 8951 *pnChange += pPage->nCell; 8952 } 8953 if( freePageFlag ){ 8954 freePage(pPage, &rc); 8955 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 8956 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 8957 } 8958 8959 cleardatabasepage_out: 8960 pPage->bBusy = 0; 8961 releasePage(pPage); 8962 return rc; 8963 } 8964 8965 /* 8966 ** Delete all information from a single table in the database. iTable is 8967 ** the page number of the root of the table. After this routine returns, 8968 ** the root page is empty, but still exists. 8969 ** 8970 ** This routine will fail with SQLITE_LOCKED if there are any open 8971 ** read cursors on the table. Open write cursors are moved to the 8972 ** root of the table. 8973 ** 8974 ** If pnChange is not NULL, then table iTable must be an intkey table. The 8975 ** integer value pointed to by pnChange is incremented by the number of 8976 ** entries in the table. 8977 */ 8978 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ 8979 int rc; 8980 BtShared *pBt = p->pBt; 8981 sqlite3BtreeEnter(p); 8982 assert( p->inTrans==TRANS_WRITE ); 8983 8984 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 8985 8986 if( SQLITE_OK==rc ){ 8987 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 8988 ** is the root of a table b-tree - if it is not, the following call is 8989 ** a no-op). */ 8990 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 8991 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 8992 } 8993 sqlite3BtreeLeave(p); 8994 return rc; 8995 } 8996 8997 /* 8998 ** Delete all information from the single table that pCur is open on. 8999 ** 9000 ** This routine only work for pCur on an ephemeral table. 9001 */ 9002 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9003 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9004 } 9005 9006 /* 9007 ** Erase all information in a table and add the root of the table to 9008 ** the freelist. Except, the root of the principle table (the one on 9009 ** page 1) is never added to the freelist. 9010 ** 9011 ** This routine will fail with SQLITE_LOCKED if there are any open 9012 ** cursors on the table. 9013 ** 9014 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9015 ** root page in the database file, then the last root page 9016 ** in the database file is moved into the slot formerly occupied by 9017 ** iTable and that last slot formerly occupied by the last root page 9018 ** is added to the freelist instead of iTable. In this say, all 9019 ** root pages are kept at the beginning of the database file, which 9020 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9021 ** page number that used to be the last root page in the file before 9022 ** the move. If no page gets moved, *piMoved is set to 0. 9023 ** The last root page is recorded in meta[3] and the value of 9024 ** meta[3] is updated by this procedure. 9025 */ 9026 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9027 int rc; 9028 MemPage *pPage = 0; 9029 BtShared *pBt = p->pBt; 9030 9031 assert( sqlite3BtreeHoldsMutex(p) ); 9032 assert( p->inTrans==TRANS_WRITE ); 9033 assert( iTable>=2 ); 9034 9035 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9036 if( rc ) return rc; 9037 rc = sqlite3BtreeClearTable(p, iTable, 0); 9038 if( rc ){ 9039 releasePage(pPage); 9040 return rc; 9041 } 9042 9043 *piMoved = 0; 9044 9045 #ifdef SQLITE_OMIT_AUTOVACUUM 9046 freePage(pPage, &rc); 9047 releasePage(pPage); 9048 #else 9049 if( pBt->autoVacuum ){ 9050 Pgno maxRootPgno; 9051 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9052 9053 if( iTable==maxRootPgno ){ 9054 /* If the table being dropped is the table with the largest root-page 9055 ** number in the database, put the root page on the free list. 9056 */ 9057 freePage(pPage, &rc); 9058 releasePage(pPage); 9059 if( rc!=SQLITE_OK ){ 9060 return rc; 9061 } 9062 }else{ 9063 /* The table being dropped does not have the largest root-page 9064 ** number in the database. So move the page that does into the 9065 ** gap left by the deleted root-page. 9066 */ 9067 MemPage *pMove; 9068 releasePage(pPage); 9069 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9070 if( rc!=SQLITE_OK ){ 9071 return rc; 9072 } 9073 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9074 releasePage(pMove); 9075 if( rc!=SQLITE_OK ){ 9076 return rc; 9077 } 9078 pMove = 0; 9079 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9080 freePage(pMove, &rc); 9081 releasePage(pMove); 9082 if( rc!=SQLITE_OK ){ 9083 return rc; 9084 } 9085 *piMoved = maxRootPgno; 9086 } 9087 9088 /* Set the new 'max-root-page' value in the database header. This 9089 ** is the old value less one, less one more if that happens to 9090 ** be a root-page number, less one again if that is the 9091 ** PENDING_BYTE_PAGE. 9092 */ 9093 maxRootPgno--; 9094 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9095 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9096 maxRootPgno--; 9097 } 9098 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9099 9100 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9101 }else{ 9102 freePage(pPage, &rc); 9103 releasePage(pPage); 9104 } 9105 #endif 9106 return rc; 9107 } 9108 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9109 int rc; 9110 sqlite3BtreeEnter(p); 9111 rc = btreeDropTable(p, iTable, piMoved); 9112 sqlite3BtreeLeave(p); 9113 return rc; 9114 } 9115 9116 9117 /* 9118 ** This function may only be called if the b-tree connection already 9119 ** has a read or write transaction open on the database. 9120 ** 9121 ** Read the meta-information out of a database file. Meta[0] 9122 ** is the number of free pages currently in the database. Meta[1] 9123 ** through meta[15] are available for use by higher layers. Meta[0] 9124 ** is read-only, the others are read/write. 9125 ** 9126 ** The schema layer numbers meta values differently. At the schema 9127 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9128 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9129 ** 9130 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9131 ** of reading the value out of the header, it instead loads the "DataVersion" 9132 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9133 ** database file. It is a number computed by the pager. But its access 9134 ** pattern is the same as header meta values, and so it is convenient to 9135 ** read it from this routine. 9136 */ 9137 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9138 BtShared *pBt = p->pBt; 9139 9140 sqlite3BtreeEnter(p); 9141 assert( p->inTrans>TRANS_NONE ); 9142 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); 9143 assert( pBt->pPage1 ); 9144 assert( idx>=0 && idx<=15 ); 9145 9146 if( idx==BTREE_DATA_VERSION ){ 9147 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; 9148 }else{ 9149 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9150 } 9151 9152 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9153 ** database, mark the database as read-only. */ 9154 #ifdef SQLITE_OMIT_AUTOVACUUM 9155 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9156 pBt->btsFlags |= BTS_READ_ONLY; 9157 } 9158 #endif 9159 9160 sqlite3BtreeLeave(p); 9161 } 9162 9163 /* 9164 ** Write meta-information back into the database. Meta[0] is 9165 ** read-only and may not be written. 9166 */ 9167 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9168 BtShared *pBt = p->pBt; 9169 unsigned char *pP1; 9170 int rc; 9171 assert( idx>=1 && idx<=15 ); 9172 sqlite3BtreeEnter(p); 9173 assert( p->inTrans==TRANS_WRITE ); 9174 assert( pBt->pPage1!=0 ); 9175 pP1 = pBt->pPage1->aData; 9176 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9177 if( rc==SQLITE_OK ){ 9178 put4byte(&pP1[36 + idx*4], iMeta); 9179 #ifndef SQLITE_OMIT_AUTOVACUUM 9180 if( idx==BTREE_INCR_VACUUM ){ 9181 assert( pBt->autoVacuum || iMeta==0 ); 9182 assert( iMeta==0 || iMeta==1 ); 9183 pBt->incrVacuum = (u8)iMeta; 9184 } 9185 #endif 9186 } 9187 sqlite3BtreeLeave(p); 9188 return rc; 9189 } 9190 9191 #ifndef SQLITE_OMIT_BTREECOUNT 9192 /* 9193 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9194 ** number of entries in the b-tree and write the result to *pnEntry. 9195 ** 9196 ** SQLITE_OK is returned if the operation is successfully executed. 9197 ** Otherwise, if an error is encountered (i.e. an IO error or database 9198 ** corruption) an SQLite error code is returned. 9199 */ 9200 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ 9201 i64 nEntry = 0; /* Value to return in *pnEntry */ 9202 int rc; /* Return code */ 9203 9204 rc = moveToRoot(pCur); 9205 if( rc==SQLITE_EMPTY ){ 9206 *pnEntry = 0; 9207 return SQLITE_OK; 9208 } 9209 9210 /* Unless an error occurs, the following loop runs one iteration for each 9211 ** page in the B-Tree structure (not including overflow pages). 9212 */ 9213 while( rc==SQLITE_OK ){ 9214 int iIdx; /* Index of child node in parent */ 9215 MemPage *pPage; /* Current page of the b-tree */ 9216 9217 /* If this is a leaf page or the tree is not an int-key tree, then 9218 ** this page contains countable entries. Increment the entry counter 9219 ** accordingly. 9220 */ 9221 pPage = pCur->pPage; 9222 if( pPage->leaf || !pPage->intKey ){ 9223 nEntry += pPage->nCell; 9224 } 9225 9226 /* pPage is a leaf node. This loop navigates the cursor so that it 9227 ** points to the first interior cell that it points to the parent of 9228 ** the next page in the tree that has not yet been visited. The 9229 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9230 ** of the page, or to the number of cells in the page if the next page 9231 ** to visit is the right-child of its parent. 9232 ** 9233 ** If all pages in the tree have been visited, return SQLITE_OK to the 9234 ** caller. 9235 */ 9236 if( pPage->leaf ){ 9237 do { 9238 if( pCur->iPage==0 ){ 9239 /* All pages of the b-tree have been visited. Return successfully. */ 9240 *pnEntry = nEntry; 9241 return moveToRoot(pCur); 9242 } 9243 moveToParent(pCur); 9244 }while ( pCur->ix>=pCur->pPage->nCell ); 9245 9246 pCur->ix++; 9247 pPage = pCur->pPage; 9248 } 9249 9250 /* Descend to the child node of the cell that the cursor currently 9251 ** points at. This is the right-child if (iIdx==pPage->nCell). 9252 */ 9253 iIdx = pCur->ix; 9254 if( iIdx==pPage->nCell ){ 9255 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9256 }else{ 9257 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9258 } 9259 } 9260 9261 /* An error has occurred. Return an error code. */ 9262 return rc; 9263 } 9264 #endif 9265 9266 /* 9267 ** Return the pager associated with a BTree. This routine is used for 9268 ** testing and debugging only. 9269 */ 9270 Pager *sqlite3BtreePager(Btree *p){ 9271 return p->pBt->pPager; 9272 } 9273 9274 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9275 /* 9276 ** Append a message to the error message string. 9277 */ 9278 static void checkAppendMsg( 9279 IntegrityCk *pCheck, 9280 const char *zFormat, 9281 ... 9282 ){ 9283 va_list ap; 9284 if( !pCheck->mxErr ) return; 9285 pCheck->mxErr--; 9286 pCheck->nErr++; 9287 va_start(ap, zFormat); 9288 if( pCheck->errMsg.nChar ){ 9289 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9290 } 9291 if( pCheck->zPfx ){ 9292 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9293 } 9294 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9295 va_end(ap); 9296 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9297 pCheck->mallocFailed = 1; 9298 } 9299 } 9300 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9301 9302 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9303 9304 /* 9305 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9306 ** corresponds to page iPg is already set. 9307 */ 9308 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9309 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9310 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 9311 } 9312 9313 /* 9314 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 9315 */ 9316 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 9317 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 9318 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 9319 } 9320 9321 9322 /* 9323 ** Add 1 to the reference count for page iPage. If this is the second 9324 ** reference to the page, add an error message to pCheck->zErrMsg. 9325 ** Return 1 if there are 2 or more references to the page and 0 if 9326 ** if this is the first reference to the page. 9327 ** 9328 ** Also check that the page number is in bounds. 9329 */ 9330 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 9331 if( iPage==0 ) return 1; 9332 if( iPage>pCheck->nPage ){ 9333 checkAppendMsg(pCheck, "invalid page number %d", iPage); 9334 return 1; 9335 } 9336 if( getPageReferenced(pCheck, iPage) ){ 9337 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 9338 return 1; 9339 } 9340 setPageReferenced(pCheck, iPage); 9341 return 0; 9342 } 9343 9344 #ifndef SQLITE_OMIT_AUTOVACUUM 9345 /* 9346 ** Check that the entry in the pointer-map for page iChild maps to 9347 ** page iParent, pointer type ptrType. If not, append an error message 9348 ** to pCheck. 9349 */ 9350 static void checkPtrmap( 9351 IntegrityCk *pCheck, /* Integrity check context */ 9352 Pgno iChild, /* Child page number */ 9353 u8 eType, /* Expected pointer map type */ 9354 Pgno iParent /* Expected pointer map parent page number */ 9355 ){ 9356 int rc; 9357 u8 ePtrmapType; 9358 Pgno iPtrmapParent; 9359 9360 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 9361 if( rc!=SQLITE_OK ){ 9362 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; 9363 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 9364 return; 9365 } 9366 9367 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 9368 checkAppendMsg(pCheck, 9369 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 9370 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 9371 } 9372 } 9373 #endif 9374 9375 /* 9376 ** Check the integrity of the freelist or of an overflow page list. 9377 ** Verify that the number of pages on the list is N. 9378 */ 9379 static void checkList( 9380 IntegrityCk *pCheck, /* Integrity checking context */ 9381 int isFreeList, /* True for a freelist. False for overflow page list */ 9382 int iPage, /* Page number for first page in the list */ 9383 int N /* Expected number of pages in the list */ 9384 ){ 9385 int i; 9386 int expected = N; 9387 int iFirst = iPage; 9388 while( N-- > 0 && pCheck->mxErr ){ 9389 DbPage *pOvflPage; 9390 unsigned char *pOvflData; 9391 if( iPage<1 ){ 9392 checkAppendMsg(pCheck, 9393 "%d of %d pages missing from overflow list starting at %d", 9394 N+1, expected, iFirst); 9395 break; 9396 } 9397 if( checkRef(pCheck, iPage) ) break; 9398 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 9399 checkAppendMsg(pCheck, "failed to get page %d", iPage); 9400 break; 9401 } 9402 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 9403 if( isFreeList ){ 9404 int n = get4byte(&pOvflData[4]); 9405 #ifndef SQLITE_OMIT_AUTOVACUUM 9406 if( pCheck->pBt->autoVacuum ){ 9407 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 9408 } 9409 #endif 9410 if( n>(int)pCheck->pBt->usableSize/4-2 ){ 9411 checkAppendMsg(pCheck, 9412 "freelist leaf count too big on page %d", iPage); 9413 N--; 9414 }else{ 9415 for(i=0; i<n; i++){ 9416 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 9417 #ifndef SQLITE_OMIT_AUTOVACUUM 9418 if( pCheck->pBt->autoVacuum ){ 9419 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 9420 } 9421 #endif 9422 checkRef(pCheck, iFreePage); 9423 } 9424 N -= n; 9425 } 9426 } 9427 #ifndef SQLITE_OMIT_AUTOVACUUM 9428 else{ 9429 /* If this database supports auto-vacuum and iPage is not the last 9430 ** page in this overflow list, check that the pointer-map entry for 9431 ** the following page matches iPage. 9432 */ 9433 if( pCheck->pBt->autoVacuum && N>0 ){ 9434 i = get4byte(pOvflData); 9435 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 9436 } 9437 } 9438 #endif 9439 iPage = get4byte(pOvflData); 9440 sqlite3PagerUnref(pOvflPage); 9441 9442 if( isFreeList && N<(iPage!=0) ){ 9443 checkAppendMsg(pCheck, "free-page count in header is too small"); 9444 } 9445 } 9446 } 9447 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9448 9449 /* 9450 ** An implementation of a min-heap. 9451 ** 9452 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 9453 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 9454 ** and aHeap[N*2+1]. 9455 ** 9456 ** The heap property is this: Every node is less than or equal to both 9457 ** of its daughter nodes. A consequence of the heap property is that the 9458 ** root node aHeap[1] is always the minimum value currently in the heap. 9459 ** 9460 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 9461 ** the heap, preserving the heap property. The btreeHeapPull() routine 9462 ** removes the root element from the heap (the minimum value in the heap) 9463 ** and then moves other nodes around as necessary to preserve the heap 9464 ** property. 9465 ** 9466 ** This heap is used for cell overlap and coverage testing. Each u32 9467 ** entry represents the span of a cell or freeblock on a btree page. 9468 ** The upper 16 bits are the index of the first byte of a range and the 9469 ** lower 16 bits are the index of the last byte of that range. 9470 */ 9471 static void btreeHeapInsert(u32 *aHeap, u32 x){ 9472 u32 j, i = ++aHeap[0]; 9473 aHeap[i] = x; 9474 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 9475 x = aHeap[j]; 9476 aHeap[j] = aHeap[i]; 9477 aHeap[i] = x; 9478 i = j; 9479 } 9480 } 9481 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 9482 u32 j, i, x; 9483 if( (x = aHeap[0])==0 ) return 0; 9484 *pOut = aHeap[1]; 9485 aHeap[1] = aHeap[x]; 9486 aHeap[x] = 0xffffffff; 9487 aHeap[0]--; 9488 i = 1; 9489 while( (j = i*2)<=aHeap[0] ){ 9490 if( aHeap[j]>aHeap[j+1] ) j++; 9491 if( aHeap[i]<aHeap[j] ) break; 9492 x = aHeap[i]; 9493 aHeap[i] = aHeap[j]; 9494 aHeap[j] = x; 9495 i = j; 9496 } 9497 return 1; 9498 } 9499 9500 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9501 /* 9502 ** Do various sanity checks on a single page of a tree. Return 9503 ** the tree depth. Root pages return 0. Parents of root pages 9504 ** return 1, and so forth. 9505 ** 9506 ** These checks are done: 9507 ** 9508 ** 1. Make sure that cells and freeblocks do not overlap 9509 ** but combine to completely cover the page. 9510 ** 2. Make sure integer cell keys are in order. 9511 ** 3. Check the integrity of overflow pages. 9512 ** 4. Recursively call checkTreePage on all children. 9513 ** 5. Verify that the depth of all children is the same. 9514 */ 9515 static int checkTreePage( 9516 IntegrityCk *pCheck, /* Context for the sanity check */ 9517 int iPage, /* Page number of the page to check */ 9518 i64 *piMinKey, /* Write minimum integer primary key here */ 9519 i64 maxKey /* Error if integer primary key greater than this */ 9520 ){ 9521 MemPage *pPage = 0; /* The page being analyzed */ 9522 int i; /* Loop counter */ 9523 int rc; /* Result code from subroutine call */ 9524 int depth = -1, d2; /* Depth of a subtree */ 9525 int pgno; /* Page number */ 9526 int nFrag; /* Number of fragmented bytes on the page */ 9527 int hdr; /* Offset to the page header */ 9528 int cellStart; /* Offset to the start of the cell pointer array */ 9529 int nCell; /* Number of cells */ 9530 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 9531 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 9532 ** False if IPK must be strictly less than maxKey */ 9533 u8 *data; /* Page content */ 9534 u8 *pCell; /* Cell content */ 9535 u8 *pCellIdx; /* Next element of the cell pointer array */ 9536 BtShared *pBt; /* The BtShared object that owns pPage */ 9537 u32 pc; /* Address of a cell */ 9538 u32 usableSize; /* Usable size of the page */ 9539 u32 contentOffset; /* Offset to the start of the cell content area */ 9540 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 9541 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 9542 const char *saved_zPfx = pCheck->zPfx; 9543 int saved_v1 = pCheck->v1; 9544 int saved_v2 = pCheck->v2; 9545 u8 savedIsInit = 0; 9546 9547 /* Check that the page exists 9548 */ 9549 pBt = pCheck->pBt; 9550 usableSize = pBt->usableSize; 9551 if( iPage==0 ) return 0; 9552 if( checkRef(pCheck, iPage) ) return 0; 9553 pCheck->zPfx = "Page %d: "; 9554 pCheck->v1 = iPage; 9555 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ 9556 checkAppendMsg(pCheck, 9557 "unable to get the page. error code=%d", rc); 9558 goto end_of_check; 9559 } 9560 9561 /* Clear MemPage.isInit to make sure the corruption detection code in 9562 ** btreeInitPage() is executed. */ 9563 savedIsInit = pPage->isInit; 9564 pPage->isInit = 0; 9565 if( (rc = btreeInitPage(pPage))!=0 ){ 9566 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 9567 checkAppendMsg(pCheck, 9568 "btreeInitPage() returns error code %d", rc); 9569 goto end_of_check; 9570 } 9571 data = pPage->aData; 9572 hdr = pPage->hdrOffset; 9573 9574 /* Set up for cell analysis */ 9575 pCheck->zPfx = "On tree page %d cell %d: "; 9576 contentOffset = get2byteNotZero(&data[hdr+5]); 9577 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 9578 9579 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 9580 ** number of cells on the page. */ 9581 nCell = get2byte(&data[hdr+3]); 9582 assert( pPage->nCell==nCell ); 9583 9584 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 9585 ** immediately follows the b-tree page header. */ 9586 cellStart = hdr + 12 - 4*pPage->leaf; 9587 assert( pPage->aCellIdx==&data[cellStart] ); 9588 pCellIdx = &data[cellStart + 2*(nCell-1)]; 9589 9590 if( !pPage->leaf ){ 9591 /* Analyze the right-child page of internal pages */ 9592 pgno = get4byte(&data[hdr+8]); 9593 #ifndef SQLITE_OMIT_AUTOVACUUM 9594 if( pBt->autoVacuum ){ 9595 pCheck->zPfx = "On page %d at right child: "; 9596 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9597 } 9598 #endif 9599 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9600 keyCanBeEqual = 0; 9601 }else{ 9602 /* For leaf pages, the coverage check will occur in the same loop 9603 ** as the other cell checks, so initialize the heap. */ 9604 heap = pCheck->heap; 9605 heap[0] = 0; 9606 } 9607 9608 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 9609 ** integer offsets to the cell contents. */ 9610 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 9611 CellInfo info; 9612 9613 /* Check cell size */ 9614 pCheck->v2 = i; 9615 assert( pCellIdx==&data[cellStart + i*2] ); 9616 pc = get2byteAligned(pCellIdx); 9617 pCellIdx -= 2; 9618 if( pc<contentOffset || pc>usableSize-4 ){ 9619 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 9620 pc, contentOffset, usableSize-4); 9621 doCoverageCheck = 0; 9622 continue; 9623 } 9624 pCell = &data[pc]; 9625 pPage->xParseCell(pPage, pCell, &info); 9626 if( pc+info.nSize>usableSize ){ 9627 checkAppendMsg(pCheck, "Extends off end of page"); 9628 doCoverageCheck = 0; 9629 continue; 9630 } 9631 9632 /* Check for integer primary key out of range */ 9633 if( pPage->intKey ){ 9634 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 9635 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 9636 } 9637 maxKey = info.nKey; 9638 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 9639 } 9640 9641 /* Check the content overflow list */ 9642 if( info.nPayload>info.nLocal ){ 9643 int nPage; /* Number of pages on the overflow chain */ 9644 Pgno pgnoOvfl; /* First page of the overflow chain */ 9645 assert( pc + info.nSize - 4 <= usableSize ); 9646 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 9647 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 9648 #ifndef SQLITE_OMIT_AUTOVACUUM 9649 if( pBt->autoVacuum ){ 9650 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 9651 } 9652 #endif 9653 checkList(pCheck, 0, pgnoOvfl, nPage); 9654 } 9655 9656 if( !pPage->leaf ){ 9657 /* Check sanity of left child page for internal pages */ 9658 pgno = get4byte(pCell); 9659 #ifndef SQLITE_OMIT_AUTOVACUUM 9660 if( pBt->autoVacuum ){ 9661 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 9662 } 9663 #endif 9664 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 9665 keyCanBeEqual = 0; 9666 if( d2!=depth ){ 9667 checkAppendMsg(pCheck, "Child page depth differs"); 9668 depth = d2; 9669 } 9670 }else{ 9671 /* Populate the coverage-checking heap for leaf pages */ 9672 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 9673 } 9674 } 9675 *piMinKey = maxKey; 9676 9677 /* Check for complete coverage of the page 9678 */ 9679 pCheck->zPfx = 0; 9680 if( doCoverageCheck && pCheck->mxErr>0 ){ 9681 /* For leaf pages, the min-heap has already been initialized and the 9682 ** cells have already been inserted. But for internal pages, that has 9683 ** not yet been done, so do it now */ 9684 if( !pPage->leaf ){ 9685 heap = pCheck->heap; 9686 heap[0] = 0; 9687 for(i=nCell-1; i>=0; i--){ 9688 u32 size; 9689 pc = get2byteAligned(&data[cellStart+i*2]); 9690 size = pPage->xCellSize(pPage, &data[pc]); 9691 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 9692 } 9693 } 9694 /* Add the freeblocks to the min-heap 9695 ** 9696 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 9697 ** is the offset of the first freeblock, or zero if there are no 9698 ** freeblocks on the page. 9699 */ 9700 i = get2byte(&data[hdr+1]); 9701 while( i>0 ){ 9702 int size, j; 9703 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9704 size = get2byte(&data[i+2]); 9705 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ 9706 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 9707 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 9708 ** big-endian integer which is the offset in the b-tree page of the next 9709 ** freeblock in the chain, or zero if the freeblock is the last on the 9710 ** chain. */ 9711 j = get2byte(&data[i]); 9712 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 9713 ** increasing offset. */ 9714 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ 9715 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ 9716 i = j; 9717 } 9718 /* Analyze the min-heap looking for overlap between cells and/or 9719 ** freeblocks, and counting the number of untracked bytes in nFrag. 9720 ** 9721 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 9722 ** There is an implied first entry the covers the page header, the cell 9723 ** pointer index, and the gap between the cell pointer index and the start 9724 ** of cell content. 9725 ** 9726 ** The loop below pulls entries from the min-heap in order and compares 9727 ** the start_address against the previous end_address. If there is an 9728 ** overlap, that means bytes are used multiple times. If there is a gap, 9729 ** that gap is added to the fragmentation count. 9730 */ 9731 nFrag = 0; 9732 prev = contentOffset - 1; /* Implied first min-heap entry */ 9733 while( btreeHeapPull(heap,&x) ){ 9734 if( (prev&0xffff)>=(x>>16) ){ 9735 checkAppendMsg(pCheck, 9736 "Multiple uses for byte %u of page %d", x>>16, iPage); 9737 break; 9738 }else{ 9739 nFrag += (x>>16) - (prev&0xffff) - 1; 9740 prev = x; 9741 } 9742 } 9743 nFrag += usableSize - (prev&0xffff) - 1; 9744 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 9745 ** is stored in the fifth field of the b-tree page header. 9746 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 9747 ** number of fragmented free bytes within the cell content area. 9748 */ 9749 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 9750 checkAppendMsg(pCheck, 9751 "Fragmentation of %d bytes reported as %d on page %d", 9752 nFrag, data[hdr+7], iPage); 9753 } 9754 } 9755 9756 end_of_check: 9757 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 9758 releasePage(pPage); 9759 pCheck->zPfx = saved_zPfx; 9760 pCheck->v1 = saved_v1; 9761 pCheck->v2 = saved_v2; 9762 return depth+1; 9763 } 9764 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9765 9766 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9767 /* 9768 ** This routine does a complete check of the given BTree file. aRoot[] is 9769 ** an array of pages numbers were each page number is the root page of 9770 ** a table. nRoot is the number of entries in aRoot. 9771 ** 9772 ** A read-only or read-write transaction must be opened before calling 9773 ** this function. 9774 ** 9775 ** Write the number of error seen in *pnErr. Except for some memory 9776 ** allocation errors, an error message held in memory obtained from 9777 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 9778 ** returned. If a memory allocation error occurs, NULL is returned. 9779 */ 9780 char *sqlite3BtreeIntegrityCheck( 9781 Btree *p, /* The btree to be checked */ 9782 int *aRoot, /* An array of root pages numbers for individual trees */ 9783 int nRoot, /* Number of entries in aRoot[] */ 9784 int mxErr, /* Stop reporting errors after this many */ 9785 int *pnErr /* Write number of errors seen to this variable */ 9786 ){ 9787 Pgno i; 9788 IntegrityCk sCheck; 9789 BtShared *pBt = p->pBt; 9790 int savedDbFlags = pBt->db->flags; 9791 char zErr[100]; 9792 VVA_ONLY( int nRef ); 9793 9794 sqlite3BtreeEnter(p); 9795 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 9796 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 9797 assert( nRef>=0 ); 9798 sCheck.pBt = pBt; 9799 sCheck.pPager = pBt->pPager; 9800 sCheck.nPage = btreePagecount(sCheck.pBt); 9801 sCheck.mxErr = mxErr; 9802 sCheck.nErr = 0; 9803 sCheck.mallocFailed = 0; 9804 sCheck.zPfx = 0; 9805 sCheck.v1 = 0; 9806 sCheck.v2 = 0; 9807 sCheck.aPgRef = 0; 9808 sCheck.heap = 0; 9809 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 9810 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 9811 if( sCheck.nPage==0 ){ 9812 goto integrity_ck_cleanup; 9813 } 9814 9815 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 9816 if( !sCheck.aPgRef ){ 9817 sCheck.mallocFailed = 1; 9818 goto integrity_ck_cleanup; 9819 } 9820 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 9821 if( sCheck.heap==0 ){ 9822 sCheck.mallocFailed = 1; 9823 goto integrity_ck_cleanup; 9824 } 9825 9826 i = PENDING_BYTE_PAGE(pBt); 9827 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 9828 9829 /* Check the integrity of the freelist 9830 */ 9831 sCheck.zPfx = "Main freelist: "; 9832 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 9833 get4byte(&pBt->pPage1->aData[36])); 9834 sCheck.zPfx = 0; 9835 9836 /* Check all the tables. 9837 */ 9838 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 9839 pBt->db->flags &= ~SQLITE_CellSizeCk; 9840 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 9841 i64 notUsed; 9842 if( aRoot[i]==0 ) continue; 9843 #ifndef SQLITE_OMIT_AUTOVACUUM 9844 if( pBt->autoVacuum && aRoot[i]>1 ){ 9845 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 9846 } 9847 #endif 9848 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 9849 } 9850 pBt->db->flags = savedDbFlags; 9851 9852 /* Make sure every page in the file is referenced 9853 */ 9854 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 9855 #ifdef SQLITE_OMIT_AUTOVACUUM 9856 if( getPageReferenced(&sCheck, i)==0 ){ 9857 checkAppendMsg(&sCheck, "Page %d is never used", i); 9858 } 9859 #else 9860 /* If the database supports auto-vacuum, make sure no tables contain 9861 ** references to pointer-map pages. 9862 */ 9863 if( getPageReferenced(&sCheck, i)==0 && 9864 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 9865 checkAppendMsg(&sCheck, "Page %d is never used", i); 9866 } 9867 if( getPageReferenced(&sCheck, i)!=0 && 9868 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 9869 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 9870 } 9871 #endif 9872 } 9873 9874 /* Clean up and report errors. 9875 */ 9876 integrity_ck_cleanup: 9877 sqlite3PageFree(sCheck.heap); 9878 sqlite3_free(sCheck.aPgRef); 9879 if( sCheck.mallocFailed ){ 9880 sqlite3_str_reset(&sCheck.errMsg); 9881 sCheck.nErr++; 9882 } 9883 *pnErr = sCheck.nErr; 9884 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 9885 /* Make sure this analysis did not leave any unref() pages. */ 9886 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 9887 sqlite3BtreeLeave(p); 9888 return sqlite3StrAccumFinish(&sCheck.errMsg); 9889 } 9890 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9891 9892 /* 9893 ** Return the full pathname of the underlying database file. Return 9894 ** an empty string if the database is in-memory or a TEMP database. 9895 ** 9896 ** The pager filename is invariant as long as the pager is 9897 ** open so it is safe to access without the BtShared mutex. 9898 */ 9899 const char *sqlite3BtreeGetFilename(Btree *p){ 9900 assert( p->pBt->pPager!=0 ); 9901 return sqlite3PagerFilename(p->pBt->pPager, 1); 9902 } 9903 9904 /* 9905 ** Return the pathname of the journal file for this database. The return 9906 ** value of this routine is the same regardless of whether the journal file 9907 ** has been created or not. 9908 ** 9909 ** The pager journal filename is invariant as long as the pager is 9910 ** open so it is safe to access without the BtShared mutex. 9911 */ 9912 const char *sqlite3BtreeGetJournalname(Btree *p){ 9913 assert( p->pBt->pPager!=0 ); 9914 return sqlite3PagerJournalname(p->pBt->pPager); 9915 } 9916 9917 /* 9918 ** Return non-zero if a transaction is active. 9919 */ 9920 int sqlite3BtreeIsInTrans(Btree *p){ 9921 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 9922 return (p && (p->inTrans==TRANS_WRITE)); 9923 } 9924 9925 #ifndef SQLITE_OMIT_WAL 9926 /* 9927 ** Run a checkpoint on the Btree passed as the first argument. 9928 ** 9929 ** Return SQLITE_LOCKED if this or any other connection has an open 9930 ** transaction on the shared-cache the argument Btree is connected to. 9931 ** 9932 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 9933 */ 9934 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 9935 int rc = SQLITE_OK; 9936 if( p ){ 9937 BtShared *pBt = p->pBt; 9938 sqlite3BtreeEnter(p); 9939 if( pBt->inTransaction!=TRANS_NONE ){ 9940 rc = SQLITE_LOCKED; 9941 }else{ 9942 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 9943 } 9944 sqlite3BtreeLeave(p); 9945 } 9946 return rc; 9947 } 9948 #endif 9949 9950 /* 9951 ** Return non-zero if a read (or write) transaction is active. 9952 */ 9953 int sqlite3BtreeIsInReadTrans(Btree *p){ 9954 assert( p ); 9955 assert( sqlite3_mutex_held(p->db->mutex) ); 9956 return p->inTrans!=TRANS_NONE; 9957 } 9958 9959 int sqlite3BtreeIsInBackup(Btree *p){ 9960 assert( p ); 9961 assert( sqlite3_mutex_held(p->db->mutex) ); 9962 return p->nBackup!=0; 9963 } 9964 9965 /* 9966 ** This function returns a pointer to a blob of memory associated with 9967 ** a single shared-btree. The memory is used by client code for its own 9968 ** purposes (for example, to store a high-level schema associated with 9969 ** the shared-btree). The btree layer manages reference counting issues. 9970 ** 9971 ** The first time this is called on a shared-btree, nBytes bytes of memory 9972 ** are allocated, zeroed, and returned to the caller. For each subsequent 9973 ** call the nBytes parameter is ignored and a pointer to the same blob 9974 ** of memory returned. 9975 ** 9976 ** If the nBytes parameter is 0 and the blob of memory has not yet been 9977 ** allocated, a null pointer is returned. If the blob has already been 9978 ** allocated, it is returned as normal. 9979 ** 9980 ** Just before the shared-btree is closed, the function passed as the 9981 ** xFree argument when the memory allocation was made is invoked on the 9982 ** blob of allocated memory. The xFree function should not call sqlite3_free() 9983 ** on the memory, the btree layer does that. 9984 */ 9985 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 9986 BtShared *pBt = p->pBt; 9987 sqlite3BtreeEnter(p); 9988 if( !pBt->pSchema && nBytes ){ 9989 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 9990 pBt->xFreeSchema = xFree; 9991 } 9992 sqlite3BtreeLeave(p); 9993 return pBt->pSchema; 9994 } 9995 9996 /* 9997 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 9998 ** btree as the argument handle holds an exclusive lock on the 9999 ** sqlite_master table. Otherwise SQLITE_OK. 10000 */ 10001 int sqlite3BtreeSchemaLocked(Btree *p){ 10002 int rc; 10003 assert( sqlite3_mutex_held(p->db->mutex) ); 10004 sqlite3BtreeEnter(p); 10005 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); 10006 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10007 sqlite3BtreeLeave(p); 10008 return rc; 10009 } 10010 10011 10012 #ifndef SQLITE_OMIT_SHARED_CACHE 10013 /* 10014 ** Obtain a lock on the table whose root page is iTab. The 10015 ** lock is a write lock if isWritelock is true or a read lock 10016 ** if it is false. 10017 */ 10018 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10019 int rc = SQLITE_OK; 10020 assert( p->inTrans!=TRANS_NONE ); 10021 if( p->sharable ){ 10022 u8 lockType = READ_LOCK + isWriteLock; 10023 assert( READ_LOCK+1==WRITE_LOCK ); 10024 assert( isWriteLock==0 || isWriteLock==1 ); 10025 10026 sqlite3BtreeEnter(p); 10027 rc = querySharedCacheTableLock(p, iTab, lockType); 10028 if( rc==SQLITE_OK ){ 10029 rc = setSharedCacheTableLock(p, iTab, lockType); 10030 } 10031 sqlite3BtreeLeave(p); 10032 } 10033 return rc; 10034 } 10035 #endif 10036 10037 #ifndef SQLITE_OMIT_INCRBLOB 10038 /* 10039 ** Argument pCsr must be a cursor opened for writing on an 10040 ** INTKEY table currently pointing at a valid table entry. 10041 ** This function modifies the data stored as part of that entry. 10042 ** 10043 ** Only the data content may only be modified, it is not possible to 10044 ** change the length of the data stored. If this function is called with 10045 ** parameters that attempt to write past the end of the existing data, 10046 ** no modifications are made and SQLITE_CORRUPT is returned. 10047 */ 10048 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10049 int rc; 10050 assert( cursorOwnsBtShared(pCsr) ); 10051 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10052 assert( pCsr->curFlags & BTCF_Incrblob ); 10053 10054 rc = restoreCursorPosition(pCsr); 10055 if( rc!=SQLITE_OK ){ 10056 return rc; 10057 } 10058 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10059 if( pCsr->eState!=CURSOR_VALID ){ 10060 return SQLITE_ABORT; 10061 } 10062 10063 /* Save the positions of all other cursors open on this table. This is 10064 ** required in case any of them are holding references to an xFetch 10065 ** version of the b-tree page modified by the accessPayload call below. 10066 ** 10067 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10068 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10069 ** saveAllCursors can only return SQLITE_OK. 10070 */ 10071 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10072 assert( rc==SQLITE_OK ); 10073 10074 /* Check some assumptions: 10075 ** (a) the cursor is open for writing, 10076 ** (b) there is a read/write transaction open, 10077 ** (c) the connection holds a write-lock on the table (if required), 10078 ** (d) there are no conflicting read-locks, and 10079 ** (e) the cursor points at a valid row of an intKey table. 10080 */ 10081 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10082 return SQLITE_READONLY; 10083 } 10084 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10085 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10086 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10087 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10088 assert( pCsr->pPage->intKey ); 10089 10090 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10091 } 10092 10093 /* 10094 ** Mark this cursor as an incremental blob cursor. 10095 */ 10096 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10097 pCur->curFlags |= BTCF_Incrblob; 10098 pCur->pBtree->hasIncrblobCur = 1; 10099 } 10100 #endif 10101 10102 /* 10103 ** Set both the "read version" (single byte at byte offset 18) and 10104 ** "write version" (single byte at byte offset 19) fields in the database 10105 ** header to iVersion. 10106 */ 10107 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10108 BtShared *pBt = pBtree->pBt; 10109 int rc; /* Return code */ 10110 10111 assert( iVersion==1 || iVersion==2 ); 10112 10113 /* If setting the version fields to 1, do not automatically open the 10114 ** WAL connection, even if the version fields are currently set to 2. 10115 */ 10116 pBt->btsFlags &= ~BTS_NO_WAL; 10117 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10118 10119 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10120 if( rc==SQLITE_OK ){ 10121 u8 *aData = pBt->pPage1->aData; 10122 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10123 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10124 if( rc==SQLITE_OK ){ 10125 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10126 if( rc==SQLITE_OK ){ 10127 aData[18] = (u8)iVersion; 10128 aData[19] = (u8)iVersion; 10129 } 10130 } 10131 } 10132 } 10133 10134 pBt->btsFlags &= ~BTS_NO_WAL; 10135 return rc; 10136 } 10137 10138 /* 10139 ** Return true if the cursor has a hint specified. This routine is 10140 ** only used from within assert() statements 10141 */ 10142 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10143 return (pCsr->hints & mask)!=0; 10144 } 10145 10146 /* 10147 ** Return true if the given Btree is read-only. 10148 */ 10149 int sqlite3BtreeIsReadonly(Btree *p){ 10150 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10151 } 10152 10153 /* 10154 ** Return the size of the header added to each page by this module. 10155 */ 10156 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10157 10158 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10159 /* 10160 ** Return true if the Btree passed as the only argument is sharable. 10161 */ 10162 int sqlite3BtreeSharable(Btree *p){ 10163 return p->sharable; 10164 } 10165 10166 /* 10167 ** Return the number of connections to the BtShared object accessed by 10168 ** the Btree handle passed as the only argument. For private caches 10169 ** this is always 1. For shared caches it may be 1 or greater. 10170 */ 10171 int sqlite3BtreeConnectionCount(Btree *p){ 10172 testcase( p->sharable ); 10173 return p->pBt->nRef; 10174 } 10175 #endif 10176