1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call sqlite3BtreeIndexMoveto() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtrTableLeaf() => table leaf nodes 1331 ** cellSizePtr() => all index nodes & table leaf nodes 1332 */ 1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1335 u8 *pEnd; /* End mark for a varint */ 1336 u32 nSize; /* Size value to return */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #endif 1346 1347 nSize = *pIter; 1348 if( nSize>=0x80 ){ 1349 pEnd = &pIter[8]; 1350 nSize &= 0x7f; 1351 do{ 1352 nSize = (nSize<<7) | (*++pIter & 0x7f); 1353 }while( *(pIter)>=0x80 && pIter<pEnd ); 1354 } 1355 pIter++; 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==(u32)pPage->maxLocal+1 ); 1358 if( nSize<=pPage->maxLocal ){ 1359 nSize += (u32)(pIter - pCell); 1360 if( nSize<4 ) nSize = 4; 1361 }else{ 1362 int minLocal = pPage->minLocal; 1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1364 testcase( nSize==pPage->maxLocal ); 1365 testcase( nSize==(u32)pPage->maxLocal+1 ); 1366 if( nSize>pPage->maxLocal ){ 1367 nSize = minLocal; 1368 } 1369 nSize += 4 + (u16)(pIter - pCell); 1370 } 1371 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1372 return (u16)nSize; 1373 } 1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1376 u8 *pEnd; /* End mark for a varint */ 1377 1378 #ifdef SQLITE_DEBUG 1379 /* The value returned by this function should always be the same as 1380 ** the (CellInfo.nSize) value found by doing a full parse of the 1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1382 ** this function verifies that this invariant is not violated. */ 1383 CellInfo debuginfo; 1384 pPage->xParseCell(pPage, pCell, &debuginfo); 1385 #else 1386 UNUSED_PARAMETER(pPage); 1387 #endif 1388 1389 assert( pPage->childPtrSize==4 ); 1390 pEnd = pIter + 9; 1391 while( (*pIter++)&0x80 && pIter<pEnd ); 1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1393 return (u16)(pIter - pCell); 1394 } 1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ 1396 u8 *pIter = pCell; /* For looping over bytes of pCell */ 1397 u8 *pEnd; /* End mark for a varint */ 1398 u32 nSize; /* Size value to return */ 1399 1400 #ifdef SQLITE_DEBUG 1401 /* The value returned by this function should always be the same as 1402 ** the (CellInfo.nSize) value found by doing a full parse of the 1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1404 ** this function verifies that this invariant is not violated. */ 1405 CellInfo debuginfo; 1406 pPage->xParseCell(pPage, pCell, &debuginfo); 1407 #endif 1408 1409 nSize = *pIter; 1410 if( nSize>=0x80 ){ 1411 pEnd = &pIter[8]; 1412 nSize &= 0x7f; 1413 do{ 1414 nSize = (nSize<<7) | (*++pIter & 0x7f); 1415 }while( *(pIter)>=0x80 && pIter<pEnd ); 1416 } 1417 pIter++; 1418 /* pIter now points at the 64-bit integer key value, a variable length 1419 ** integer. The following block moves pIter to point at the first byte 1420 ** past the end of the key value. */ 1421 if( (*pIter++)&0x80 1422 && (*pIter++)&0x80 1423 && (*pIter++)&0x80 1424 && (*pIter++)&0x80 1425 && (*pIter++)&0x80 1426 && (*pIter++)&0x80 1427 && (*pIter++)&0x80 1428 && (*pIter++)&0x80 ){ pIter++; } 1429 testcase( nSize==pPage->maxLocal ); 1430 testcase( nSize==(u32)pPage->maxLocal+1 ); 1431 if( nSize<=pPage->maxLocal ){ 1432 nSize += (u32)(pIter - pCell); 1433 if( nSize<4 ) nSize = 4; 1434 }else{ 1435 int minLocal = pPage->minLocal; 1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1437 testcase( nSize==pPage->maxLocal ); 1438 testcase( nSize==(u32)pPage->maxLocal+1 ); 1439 if( nSize>pPage->maxLocal ){ 1440 nSize = minLocal; 1441 } 1442 nSize += 4 + (u16)(pIter - pCell); 1443 } 1444 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1445 return (u16)nSize; 1446 } 1447 1448 1449 #ifdef SQLITE_DEBUG 1450 /* This variation on cellSizePtr() is used inside of assert() statements 1451 ** only. */ 1452 static u16 cellSize(MemPage *pPage, int iCell){ 1453 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1454 } 1455 #endif 1456 1457 #ifndef SQLITE_OMIT_AUTOVACUUM 1458 /* 1459 ** The cell pCell is currently part of page pSrc but will ultimately be part 1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a 1461 ** pointer to an overflow page, insert an entry into the pointer-map for 1462 ** the overflow page that will be valid after pCell has been moved to pPage. 1463 */ 1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1465 CellInfo info; 1466 if( *pRC ) return; 1467 assert( pCell!=0 ); 1468 pPage->xParseCell(pPage, pCell, &info); 1469 if( info.nLocal<info.nPayload ){ 1470 Pgno ovfl; 1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1472 testcase( pSrc!=pPage ); 1473 *pRC = SQLITE_CORRUPT_BKPT; 1474 return; 1475 } 1476 ovfl = get4byte(&pCell[info.nSize-4]); 1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1478 } 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** Defragment the page given. This routine reorganizes cells within the 1485 ** page so that there are no free-blocks on the free-block list. 1486 ** 1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1488 ** present in the page after this routine returns. 1489 ** 1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1491 ** b-tree page so that there are no freeblocks or fragment bytes, all 1492 ** unused bytes are contained in the unallocated space region, and all 1493 ** cells are packed tightly at the end of the page. 1494 */ 1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1496 int i; /* Loop counter */ 1497 int pc; /* Address of the i-th cell */ 1498 int hdr; /* Offset to the page header */ 1499 int size; /* Size of a cell */ 1500 int usableSize; /* Number of usable bytes on a page */ 1501 int cellOffset; /* Offset to the cell pointer array */ 1502 int cbrk; /* Offset to the cell content area */ 1503 int nCell; /* Number of cells on the page */ 1504 unsigned char *data; /* The page data */ 1505 unsigned char *temp; /* Temp area for cell content */ 1506 unsigned char *src; /* Source of content */ 1507 int iCellFirst; /* First allowable cell index */ 1508 int iCellLast; /* Last possible cell index */ 1509 int iCellStart; /* First cell offset in input */ 1510 1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1512 assert( pPage->pBt!=0 ); 1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1514 assert( pPage->nOverflow==0 ); 1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1516 temp = 0; 1517 src = data = pPage->aData; 1518 hdr = pPage->hdrOffset; 1519 cellOffset = pPage->cellOffset; 1520 nCell = pPage->nCell; 1521 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1522 iCellFirst = cellOffset + 2*nCell; 1523 usableSize = pPage->pBt->usableSize; 1524 1525 /* This block handles pages with two or fewer free blocks and nMaxFrag 1526 ** or fewer fragmented bytes. In this case it is faster to move the 1527 ** two (or one) blocks of cells using memmove() and add the required 1528 ** offsets to each pointer in the cell-pointer array than it is to 1529 ** reconstruct the entire page. */ 1530 if( (int)data[hdr+7]<=nMaxFrag ){ 1531 int iFree = get2byte(&data[hdr+1]); 1532 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1533 if( iFree ){ 1534 int iFree2 = get2byte(&data[iFree]); 1535 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1536 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1537 u8 *pEnd = &data[cellOffset + nCell*2]; 1538 u8 *pAddr; 1539 int sz2 = 0; 1540 int sz = get2byte(&data[iFree+2]); 1541 int top = get2byte(&data[hdr+5]); 1542 if( top>=iFree ){ 1543 return SQLITE_CORRUPT_PAGE(pPage); 1544 } 1545 if( iFree2 ){ 1546 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1547 sz2 = get2byte(&data[iFree2+2]); 1548 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1549 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1550 sz += sz2; 1551 }else if( NEVER(iFree+sz>usableSize) ){ 1552 return SQLITE_CORRUPT_PAGE(pPage); 1553 } 1554 1555 cbrk = top+sz; 1556 assert( cbrk+(iFree-top) <= usableSize ); 1557 memmove(&data[cbrk], &data[top], iFree-top); 1558 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1559 pc = get2byte(pAddr); 1560 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1561 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1562 } 1563 goto defragment_out; 1564 } 1565 } 1566 } 1567 1568 cbrk = usableSize; 1569 iCellLast = usableSize - 4; 1570 iCellStart = get2byte(&data[hdr+5]); 1571 for(i=0; i<nCell; i++){ 1572 u8 *pAddr; /* The i-th cell pointer */ 1573 pAddr = &data[cellOffset + i*2]; 1574 pc = get2byte(pAddr); 1575 testcase( pc==iCellFirst ); 1576 testcase( pc==iCellLast ); 1577 /* These conditions have already been verified in btreeInitPage() 1578 ** if PRAGMA cell_size_check=ON. 1579 */ 1580 if( pc<iCellStart || pc>iCellLast ){ 1581 return SQLITE_CORRUPT_PAGE(pPage); 1582 } 1583 assert( pc>=iCellStart && pc<=iCellLast ); 1584 size = pPage->xCellSize(pPage, &src[pc]); 1585 cbrk -= size; 1586 if( cbrk<iCellStart || pc+size>usableSize ){ 1587 return SQLITE_CORRUPT_PAGE(pPage); 1588 } 1589 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1590 testcase( cbrk+size==usableSize ); 1591 testcase( pc+size==usableSize ); 1592 put2byte(pAddr, cbrk); 1593 if( temp==0 ){ 1594 if( cbrk==pc ) continue; 1595 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1596 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1597 src = temp; 1598 } 1599 memcpy(&data[cbrk], &src[pc], size); 1600 } 1601 data[hdr+7] = 0; 1602 1603 defragment_out: 1604 assert( pPage->nFree>=0 ); 1605 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1606 return SQLITE_CORRUPT_PAGE(pPage); 1607 } 1608 assert( cbrk>=iCellFirst ); 1609 put2byte(&data[hdr+5], cbrk); 1610 data[hdr+1] = 0; 1611 data[hdr+2] = 0; 1612 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1613 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1614 return SQLITE_OK; 1615 } 1616 1617 /* 1618 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1619 ** size. If one can be found, return a pointer to the space and remove it 1620 ** from the free-list. 1621 ** 1622 ** If no suitable space can be found on the free-list, return NULL. 1623 ** 1624 ** This function may detect corruption within pPg. If corruption is 1625 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1626 ** 1627 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1628 ** will be ignored if adding the extra space to the fragmentation count 1629 ** causes the fragmentation count to exceed 60. 1630 */ 1631 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1632 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1633 u8 * const aData = pPg->aData; /* Page data */ 1634 int iAddr = hdr + 1; /* Address of ptr to pc */ 1635 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ 1636 int pc = get2byte(pTmp); /* Address of a free slot */ 1637 int x; /* Excess size of the slot */ 1638 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1639 int size; /* Size of the free slot */ 1640 1641 assert( pc>0 ); 1642 while( pc<=maxPC ){ 1643 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1644 ** freeblock form a big-endian integer which is the size of the freeblock 1645 ** in bytes, including the 4-byte header. */ 1646 pTmp = &aData[pc+2]; 1647 size = get2byte(pTmp); 1648 if( (x = size - nByte)>=0 ){ 1649 testcase( x==4 ); 1650 testcase( x==3 ); 1651 if( x<4 ){ 1652 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1653 ** number of bytes in fragments may not exceed 60. */ 1654 if( aData[hdr+7]>57 ) return 0; 1655 1656 /* Remove the slot from the free-list. Update the number of 1657 ** fragmented bytes within the page. */ 1658 memcpy(&aData[iAddr], &aData[pc], 2); 1659 aData[hdr+7] += (u8)x; 1660 }else if( x+pc > maxPC ){ 1661 /* This slot extends off the end of the usable part of the page */ 1662 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1663 return 0; 1664 }else{ 1665 /* The slot remains on the free-list. Reduce its size to account 1666 ** for the portion used by the new allocation. */ 1667 put2byte(&aData[pc+2], x); 1668 } 1669 return &aData[pc + x]; 1670 } 1671 iAddr = pc; 1672 pTmp = &aData[pc]; 1673 pc = get2byte(pTmp); 1674 if( pc<=iAddr+size ){ 1675 if( pc ){ 1676 /* The next slot in the chain is not past the end of the current slot */ 1677 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1678 } 1679 return 0; 1680 } 1681 } 1682 if( pc>maxPC+nByte-4 ){ 1683 /* The free slot chain extends off the end of the page */ 1684 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1685 } 1686 return 0; 1687 } 1688 1689 /* 1690 ** Allocate nByte bytes of space from within the B-Tree page passed 1691 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1692 ** of the first byte of allocated space. Return either SQLITE_OK or 1693 ** an error code (usually SQLITE_CORRUPT). 1694 ** 1695 ** The caller guarantees that there is sufficient space to make the 1696 ** allocation. This routine might need to defragment in order to bring 1697 ** all the space together, however. This routine will avoid using 1698 ** the first two bytes past the cell pointer area since presumably this 1699 ** allocation is being made in order to insert a new cell, so we will 1700 ** also end up needing a new cell pointer. 1701 */ 1702 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1705 int top; /* First byte of cell content area */ 1706 int rc = SQLITE_OK; /* Integer return code */ 1707 u8 *pTmp; /* Temp ptr into data[] */ 1708 int gap; /* First byte of gap between cell pointers and cell content */ 1709 1710 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1711 assert( pPage->pBt ); 1712 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1713 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1714 assert( pPage->nFree>=nByte ); 1715 assert( pPage->nOverflow==0 ); 1716 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1717 1718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1719 gap = pPage->cellOffset + 2*pPage->nCell; 1720 assert( gap<=65536 ); 1721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1722 ** and the reserved space is zero (the usual value for reserved space) 1723 ** then the cell content offset of an empty page wants to be 65536. 1724 ** However, that integer is too large to be stored in a 2-byte unsigned 1725 ** integer, so a value of 0 is used in its place. */ 1726 pTmp = &data[hdr+5]; 1727 top = get2byte(pTmp); 1728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1729 if( gap>top ){ 1730 if( top==0 && pPage->pBt->usableSize==65536 ){ 1731 top = 65536; 1732 }else{ 1733 return SQLITE_CORRUPT_PAGE(pPage); 1734 } 1735 } 1736 1737 /* If there is enough space between gap and top for one more cell pointer, 1738 ** and if the freelist is not empty, then search the 1739 ** freelist looking for a slot big enough to satisfy the request. 1740 */ 1741 testcase( gap+2==top ); 1742 testcase( gap+1==top ); 1743 testcase( gap==top ); 1744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1746 if( pSpace ){ 1747 int g2; 1748 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1749 *pIdx = g2 = (int)(pSpace-data); 1750 if( g2<=gap ){ 1751 return SQLITE_CORRUPT_PAGE(pPage); 1752 }else{ 1753 return SQLITE_OK; 1754 } 1755 }else if( rc ){ 1756 return rc; 1757 } 1758 } 1759 1760 /* The request could not be fulfilled using a freelist slot. Check 1761 ** to see if defragmentation is necessary. 1762 */ 1763 testcase( gap+2+nByte==top ); 1764 if( gap+2+nByte>top ){ 1765 assert( pPage->nCell>0 || CORRUPT_DB ); 1766 assert( pPage->nFree>=0 ); 1767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1768 if( rc ) return rc; 1769 top = get2byteNotZero(&data[hdr+5]); 1770 assert( gap+2+nByte<=top ); 1771 } 1772 1773 1774 /* Allocate memory from the gap in between the cell pointer array 1775 ** and the cell content area. The btreeComputeFreeSpace() call has already 1776 ** validated the freelist. Given that the freelist is valid, there 1777 ** is no way that the allocation can extend off the end of the page. 1778 ** The assert() below verifies the previous sentence. 1779 */ 1780 top -= nByte; 1781 put2byte(&data[hdr+5], top); 1782 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1783 *pIdx = top; 1784 return SQLITE_OK; 1785 } 1786 1787 /* 1788 ** Return a section of the pPage->aData to the freelist. 1789 ** The first byte of the new free block is pPage->aData[iStart] 1790 ** and the size of the block is iSize bytes. 1791 ** 1792 ** Adjacent freeblocks are coalesced. 1793 ** 1794 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1795 ** that routine will not detect overlap between cells or freeblocks. Nor 1796 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1797 ** at the end of the page. So do additional corruption checks inside this 1798 ** routine and return SQLITE_CORRUPT if any problems are found. 1799 */ 1800 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1801 u16 iPtr; /* Address of ptr to next freeblock */ 1802 u16 iFreeBlk; /* Address of the next freeblock */ 1803 u8 hdr; /* Page header size. 0 or 100 */ 1804 u8 nFrag = 0; /* Reduction in fragmentation */ 1805 u16 iOrigSize = iSize; /* Original value of iSize */ 1806 u16 x; /* Offset to cell content area */ 1807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1808 unsigned char *data = pPage->aData; /* Page content */ 1809 u8 *pTmp; /* Temporary ptr into data[] */ 1810 1811 assert( pPage->pBt!=0 ); 1812 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1815 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1816 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1817 assert( iStart<=pPage->pBt->usableSize-4 ); 1818 1819 /* The list of freeblocks must be in ascending order. Find the 1820 ** spot on the list where iStart should be inserted. 1821 */ 1822 hdr = pPage->hdrOffset; 1823 iPtr = hdr + 1; 1824 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1826 }else{ 1827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1828 if( iFreeBlk<iPtr+4 ){ 1829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1830 return SQLITE_CORRUPT_PAGE(pPage); 1831 } 1832 iPtr = iFreeBlk; 1833 } 1834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1835 return SQLITE_CORRUPT_PAGE(pPage); 1836 } 1837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); 1838 1839 /* At this point: 1840 ** iFreeBlk: First freeblock after iStart, or zero if none 1841 ** iPtr: The address of a pointer to iFreeBlk 1842 ** 1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1844 */ 1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1846 nFrag = iFreeBlk - iEnd; 1847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1849 if( iEnd > pPage->pBt->usableSize ){ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 iSize = iEnd - iStart; 1853 iFreeBlk = get2byte(&data[iFreeBlk]); 1854 } 1855 1856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1857 ** pointer in the page header) then check to see if iStart should be 1858 ** coalesced onto the end of iPtr. 1859 */ 1860 if( iPtr>hdr+1 ){ 1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1862 if( iPtrEnd+3>=iStart ){ 1863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1864 nFrag += iStart - iPtrEnd; 1865 iSize = iEnd - iPtr; 1866 iStart = iPtr; 1867 } 1868 } 1869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1870 data[hdr+7] -= nFrag; 1871 } 1872 pTmp = &data[hdr+5]; 1873 x = get2byte(pTmp); 1874 if( iStart<=x ){ 1875 /* The new freeblock is at the beginning of the cell content area, 1876 ** so just extend the cell content area rather than create another 1877 ** freelist entry */ 1878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1880 put2byte(&data[hdr+1], iFreeBlk); 1881 put2byte(&data[hdr+5], iEnd); 1882 }else{ 1883 /* Insert the new freeblock into the freelist */ 1884 put2byte(&data[iPtr], iStart); 1885 } 1886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1887 /* Overwrite deleted information with zeros when the secure_delete 1888 ** option is enabled */ 1889 memset(&data[iStart], 0, iSize); 1890 } 1891 put2byte(&data[iStart], iFreeBlk); 1892 put2byte(&data[iStart+2], iSize); 1893 pPage->nFree += iOrigSize; 1894 return SQLITE_OK; 1895 } 1896 1897 /* 1898 ** Decode the flags byte (the first byte of the header) for a page 1899 ** and initialize fields of the MemPage structure accordingly. 1900 ** 1901 ** Only the following combinations are supported. Anything different 1902 ** indicates a corrupt database files: 1903 ** 1904 ** PTF_ZERODATA 1905 ** PTF_ZERODATA | PTF_LEAF 1906 ** PTF_LEAFDATA | PTF_INTKEY 1907 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1908 */ 1909 static int decodeFlags(MemPage *pPage, int flagByte){ 1910 BtShared *pBt; /* A copy of pPage->pBt */ 1911 1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1913 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1915 flagByte &= ~PTF_LEAF; 1916 pPage->childPtrSize = 4-4*pPage->leaf; 1917 pBt = pPage->pBt; 1918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1919 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1920 ** interior table b-tree page. */ 1921 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1922 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1923 ** leaf table b-tree page. */ 1924 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1925 pPage->intKey = 1; 1926 if( pPage->leaf ){ 1927 pPage->intKeyLeaf = 1; 1928 pPage->xCellSize = cellSizePtrTableLeaf; 1929 pPage->xParseCell = btreeParseCellPtr; 1930 }else{ 1931 pPage->intKeyLeaf = 0; 1932 pPage->xCellSize = cellSizePtrNoPayload; 1933 pPage->xParseCell = btreeParseCellPtrNoPayload; 1934 } 1935 pPage->maxLocal = pBt->maxLeaf; 1936 pPage->minLocal = pBt->minLeaf; 1937 }else if( flagByte==PTF_ZERODATA ){ 1938 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1939 ** interior index b-tree page. */ 1940 assert( (PTF_ZERODATA)==2 ); 1941 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1942 ** leaf index b-tree page. */ 1943 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1944 pPage->intKey = 0; 1945 pPage->intKeyLeaf = 0; 1946 pPage->xCellSize = cellSizePtr; 1947 pPage->xParseCell = btreeParseCellPtrIndex; 1948 pPage->maxLocal = pBt->maxLocal; 1949 pPage->minLocal = pBt->minLocal; 1950 }else{ 1951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1952 ** an error. */ 1953 pPage->intKey = 0; 1954 pPage->intKeyLeaf = 0; 1955 pPage->xCellSize = cellSizePtr; 1956 pPage->xParseCell = btreeParseCellPtrIndex; 1957 return SQLITE_CORRUPT_PAGE(pPage); 1958 } 1959 pPage->max1bytePayload = pBt->max1bytePayload; 1960 return SQLITE_OK; 1961 } 1962 1963 /* 1964 ** Compute the amount of freespace on the page. In other words, fill 1965 ** in the pPage->nFree field. 1966 */ 1967 static int btreeComputeFreeSpace(MemPage *pPage){ 1968 int pc; /* Address of a freeblock within pPage->aData[] */ 1969 u8 hdr; /* Offset to beginning of page header */ 1970 u8 *data; /* Equal to pPage->aData */ 1971 int usableSize; /* Amount of usable space on each page */ 1972 int nFree; /* Number of unused bytes on the page */ 1973 int top; /* First byte of the cell content area */ 1974 int iCellFirst; /* First allowable cell or freeblock offset */ 1975 int iCellLast; /* Last possible cell or freeblock offset */ 1976 1977 assert( pPage->pBt!=0 ); 1978 assert( pPage->pBt->db!=0 ); 1979 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1980 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1981 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1982 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1983 assert( pPage->isInit==1 ); 1984 assert( pPage->nFree<0 ); 1985 1986 usableSize = pPage->pBt->usableSize; 1987 hdr = pPage->hdrOffset; 1988 data = pPage->aData; 1989 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1990 ** the start of the cell content area. A zero value for this integer is 1991 ** interpreted as 65536. */ 1992 top = get2byteNotZero(&data[hdr+5]); 1993 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1994 iCellLast = usableSize - 4; 1995 1996 /* Compute the total free space on the page 1997 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1998 ** start of the first freeblock on the page, or is zero if there are no 1999 ** freeblocks. */ 2000 pc = get2byte(&data[hdr+1]); 2001 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 2002 if( pc>0 ){ 2003 u32 next, size; 2004 if( pc<top ){ 2005 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 2006 ** always be at least one cell before the first freeblock. 2007 */ 2008 return SQLITE_CORRUPT_PAGE(pPage); 2009 } 2010 while( 1 ){ 2011 if( pc>iCellLast ){ 2012 /* Freeblock off the end of the page */ 2013 return SQLITE_CORRUPT_PAGE(pPage); 2014 } 2015 next = get2byte(&data[pc]); 2016 size = get2byte(&data[pc+2]); 2017 nFree = nFree + size; 2018 if( next<=pc+size+3 ) break; 2019 pc = next; 2020 } 2021 if( next>0 ){ 2022 /* Freeblock not in ascending order */ 2023 return SQLITE_CORRUPT_PAGE(pPage); 2024 } 2025 if( pc+size>(unsigned int)usableSize ){ 2026 /* Last freeblock extends past page end */ 2027 return SQLITE_CORRUPT_PAGE(pPage); 2028 } 2029 } 2030 2031 /* At this point, nFree contains the sum of the offset to the start 2032 ** of the cell-content area plus the number of free bytes within 2033 ** the cell-content area. If this is greater than the usable-size 2034 ** of the page, then the page must be corrupted. This check also 2035 ** serves to verify that the offset to the start of the cell-content 2036 ** area, according to the page header, lies within the page. 2037 */ 2038 if( nFree>usableSize || nFree<iCellFirst ){ 2039 return SQLITE_CORRUPT_PAGE(pPage); 2040 } 2041 pPage->nFree = (u16)(nFree - iCellFirst); 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Do additional sanity check after btreeInitPage() if 2047 ** PRAGMA cell_size_check=ON 2048 */ 2049 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 2050 int iCellFirst; /* First allowable cell or freeblock offset */ 2051 int iCellLast; /* Last possible cell or freeblock offset */ 2052 int i; /* Index into the cell pointer array */ 2053 int sz; /* Size of a cell */ 2054 int pc; /* Address of a freeblock within pPage->aData[] */ 2055 u8 *data; /* Equal to pPage->aData */ 2056 int usableSize; /* Maximum usable space on the page */ 2057 int cellOffset; /* Start of cell content area */ 2058 2059 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2060 usableSize = pPage->pBt->usableSize; 2061 iCellLast = usableSize - 4; 2062 data = pPage->aData; 2063 cellOffset = pPage->cellOffset; 2064 if( !pPage->leaf ) iCellLast--; 2065 for(i=0; i<pPage->nCell; i++){ 2066 pc = get2byteAligned(&data[cellOffset+i*2]); 2067 testcase( pc==iCellFirst ); 2068 testcase( pc==iCellLast ); 2069 if( pc<iCellFirst || pc>iCellLast ){ 2070 return SQLITE_CORRUPT_PAGE(pPage); 2071 } 2072 sz = pPage->xCellSize(pPage, &data[pc]); 2073 testcase( pc+sz==usableSize ); 2074 if( pc+sz>usableSize ){ 2075 return SQLITE_CORRUPT_PAGE(pPage); 2076 } 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Initialize the auxiliary information for a disk block. 2083 ** 2084 ** Return SQLITE_OK on success. If we see that the page does 2085 ** not contain a well-formed database page, then return 2086 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2087 ** guarantee that the page is well-formed. It only shows that 2088 ** we failed to detect any corruption. 2089 */ 2090 static int btreeInitPage(MemPage *pPage){ 2091 u8 *data; /* Equal to pPage->aData */ 2092 BtShared *pBt; /* The main btree structure */ 2093 2094 assert( pPage->pBt!=0 ); 2095 assert( pPage->pBt->db!=0 ); 2096 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2097 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2098 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2099 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2100 assert( pPage->isInit==0 ); 2101 2102 pBt = pPage->pBt; 2103 data = pPage->aData + pPage->hdrOffset; 2104 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2105 ** the b-tree page type. */ 2106 if( decodeFlags(pPage, data[0]) ){ 2107 return SQLITE_CORRUPT_PAGE(pPage); 2108 } 2109 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2110 pPage->maskPage = (u16)(pBt->pageSize - 1); 2111 pPage->nOverflow = 0; 2112 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2113 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2114 pPage->aDataEnd = pPage->aData + pBt->pageSize; 2115 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2117 ** number of cells on the page. */ 2118 pPage->nCell = get2byte(&data[3]); 2119 if( pPage->nCell>MX_CELL(pBt) ){ 2120 /* To many cells for a single page. The page must be corrupt */ 2121 return SQLITE_CORRUPT_PAGE(pPage); 2122 } 2123 testcase( pPage->nCell==MX_CELL(pBt) ); 2124 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2125 ** possible for a root page of a table that contains no rows) then the 2126 ** offset to the cell content area will equal the page size minus the 2127 ** bytes of reserved space. */ 2128 assert( pPage->nCell>0 2129 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2130 || CORRUPT_DB ); 2131 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2132 pPage->isInit = 1; 2133 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2134 return btreeCellSizeCheck(pPage); 2135 } 2136 return SQLITE_OK; 2137 } 2138 2139 /* 2140 ** Set up a raw page so that it looks like a database page holding 2141 ** no entries. 2142 */ 2143 static void zeroPage(MemPage *pPage, int flags){ 2144 unsigned char *data = pPage->aData; 2145 BtShared *pBt = pPage->pBt; 2146 u8 hdr = pPage->hdrOffset; 2147 u16 first; 2148 2149 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); 2150 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2151 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2152 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2153 assert( sqlite3_mutex_held(pBt->mutex) ); 2154 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2155 memset(&data[hdr], 0, pBt->usableSize - hdr); 2156 } 2157 data[hdr] = (char)flags; 2158 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2159 memset(&data[hdr+1], 0, 4); 2160 data[hdr+7] = 0; 2161 put2byte(&data[hdr+5], pBt->usableSize); 2162 pPage->nFree = (u16)(pBt->usableSize - first); 2163 decodeFlags(pPage, flags); 2164 pPage->cellOffset = first; 2165 pPage->aDataEnd = &data[pBt->pageSize]; 2166 pPage->aCellIdx = &data[first]; 2167 pPage->aDataOfst = &data[pPage->childPtrSize]; 2168 pPage->nOverflow = 0; 2169 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2170 pPage->maskPage = (u16)(pBt->pageSize - 1); 2171 pPage->nCell = 0; 2172 pPage->isInit = 1; 2173 } 2174 2175 2176 /* 2177 ** Convert a DbPage obtained from the pager into a MemPage used by 2178 ** the btree layer. 2179 */ 2180 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2181 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2182 if( pgno!=pPage->pgno ){ 2183 pPage->aData = sqlite3PagerGetData(pDbPage); 2184 pPage->pDbPage = pDbPage; 2185 pPage->pBt = pBt; 2186 pPage->pgno = pgno; 2187 pPage->hdrOffset = pgno==1 ? 100 : 0; 2188 } 2189 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2190 return pPage; 2191 } 2192 2193 /* 2194 ** Get a page from the pager. Initialize the MemPage.pBt and 2195 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2196 ** 2197 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2198 ** about the content of the page at this time. So do not go to the disk 2199 ** to fetch the content. Just fill in the content with zeros for now. 2200 ** If in the future we call sqlite3PagerWrite() on this page, that 2201 ** means we have started to be concerned about content and the disk 2202 ** read should occur at that point. 2203 */ 2204 static int btreeGetPage( 2205 BtShared *pBt, /* The btree */ 2206 Pgno pgno, /* Number of the page to fetch */ 2207 MemPage **ppPage, /* Return the page in this parameter */ 2208 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 2213 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2214 assert( sqlite3_mutex_held(pBt->mutex) ); 2215 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2216 if( rc ) return rc; 2217 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2218 return SQLITE_OK; 2219 } 2220 2221 /* 2222 ** Retrieve a page from the pager cache. If the requested page is not 2223 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2224 ** MemPage.aData elements if needed. 2225 */ 2226 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2227 DbPage *pDbPage; 2228 assert( sqlite3_mutex_held(pBt->mutex) ); 2229 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2230 if( pDbPage ){ 2231 return btreePageFromDbPage(pDbPage, pgno, pBt); 2232 } 2233 return 0; 2234 } 2235 2236 /* 2237 ** Return the size of the database file in pages. If there is any kind of 2238 ** error, return ((unsigned int)-1). 2239 */ 2240 static Pgno btreePagecount(BtShared *pBt){ 2241 return pBt->nPage; 2242 } 2243 Pgno sqlite3BtreeLastPage(Btree *p){ 2244 assert( sqlite3BtreeHoldsMutex(p) ); 2245 return btreePagecount(p->pBt); 2246 } 2247 2248 /* 2249 ** Get a page from the pager and initialize it. 2250 ** 2251 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2252 ** call. Do additional sanity checking on the page in this case. 2253 ** And if the fetch fails, this routine must decrement pCur->iPage. 2254 ** 2255 ** The page is fetched as read-write unless pCur is not NULL and is 2256 ** a read-only cursor. 2257 ** 2258 ** If an error occurs, then *ppPage is undefined. It 2259 ** may remain unchanged, or it may be set to an invalid value. 2260 */ 2261 static int getAndInitPage( 2262 BtShared *pBt, /* The database file */ 2263 Pgno pgno, /* Number of the page to get */ 2264 MemPage **ppPage, /* Write the page pointer here */ 2265 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2266 int bReadOnly /* True for a read-only page */ 2267 ){ 2268 int rc; 2269 DbPage *pDbPage; 2270 assert( sqlite3_mutex_held(pBt->mutex) ); 2271 assert( pCur==0 || ppPage==&pCur->pPage ); 2272 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2273 assert( pCur==0 || pCur->iPage>0 ); 2274 2275 if( pgno>btreePagecount(pBt) ){ 2276 rc = SQLITE_CORRUPT_BKPT; 2277 goto getAndInitPage_error1; 2278 } 2279 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2280 if( rc ){ 2281 goto getAndInitPage_error1; 2282 } 2283 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2284 if( (*ppPage)->isInit==0 ){ 2285 btreePageFromDbPage(pDbPage, pgno, pBt); 2286 rc = btreeInitPage(*ppPage); 2287 if( rc!=SQLITE_OK ){ 2288 goto getAndInitPage_error2; 2289 } 2290 } 2291 assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); 2292 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2293 2294 /* If obtaining a child page for a cursor, we must verify that the page is 2295 ** compatible with the root page. */ 2296 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2297 rc = SQLITE_CORRUPT_PGNO(pgno); 2298 goto getAndInitPage_error2; 2299 } 2300 return SQLITE_OK; 2301 2302 getAndInitPage_error2: 2303 releasePage(*ppPage); 2304 getAndInitPage_error1: 2305 if( pCur ){ 2306 pCur->iPage--; 2307 pCur->pPage = pCur->apPage[pCur->iPage]; 2308 } 2309 testcase( pgno==0 ); 2310 assert( pgno!=0 || rc==SQLITE_CORRUPT 2311 || rc==SQLITE_IOERR_NOMEM 2312 || rc==SQLITE_NOMEM ); 2313 return rc; 2314 } 2315 2316 /* 2317 ** Release a MemPage. This should be called once for each prior 2318 ** call to btreeGetPage. 2319 ** 2320 ** Page1 is a special case and must be released using releasePageOne(). 2321 */ 2322 static void releasePageNotNull(MemPage *pPage){ 2323 assert( pPage->aData ); 2324 assert( pPage->pBt ); 2325 assert( pPage->pDbPage!=0 ); 2326 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2327 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2329 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2330 } 2331 static void releasePage(MemPage *pPage){ 2332 if( pPage ) releasePageNotNull(pPage); 2333 } 2334 static void releasePageOne(MemPage *pPage){ 2335 assert( pPage!=0 ); 2336 assert( pPage->aData ); 2337 assert( pPage->pBt ); 2338 assert( pPage->pDbPage!=0 ); 2339 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2340 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2341 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2342 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2343 } 2344 2345 /* 2346 ** Get an unused page. 2347 ** 2348 ** This works just like btreeGetPage() with the addition: 2349 ** 2350 ** * If the page is already in use for some other purpose, immediately 2351 ** release it and return an SQLITE_CURRUPT error. 2352 ** * Make sure the isInit flag is clear 2353 */ 2354 static int btreeGetUnusedPage( 2355 BtShared *pBt, /* The btree */ 2356 Pgno pgno, /* Number of the page to fetch */ 2357 MemPage **ppPage, /* Return the page in this parameter */ 2358 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2359 ){ 2360 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2361 if( rc==SQLITE_OK ){ 2362 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2363 releasePage(*ppPage); 2364 *ppPage = 0; 2365 return SQLITE_CORRUPT_BKPT; 2366 } 2367 (*ppPage)->isInit = 0; 2368 }else{ 2369 *ppPage = 0; 2370 } 2371 return rc; 2372 } 2373 2374 2375 /* 2376 ** During a rollback, when the pager reloads information into the cache 2377 ** so that the cache is restored to its original state at the start of 2378 ** the transaction, for each page restored this routine is called. 2379 ** 2380 ** This routine needs to reset the extra data section at the end of the 2381 ** page to agree with the restored data. 2382 */ 2383 static void pageReinit(DbPage *pData){ 2384 MemPage *pPage; 2385 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2386 assert( sqlite3PagerPageRefcount(pData)>0 ); 2387 if( pPage->isInit ){ 2388 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2389 pPage->isInit = 0; 2390 if( sqlite3PagerPageRefcount(pData)>1 ){ 2391 /* pPage might not be a btree page; it might be an overflow page 2392 ** or ptrmap page or a free page. In those cases, the following 2393 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2394 ** But no harm is done by this. And it is very important that 2395 ** btreeInitPage() be called on every btree page so we make 2396 ** the call for every page that comes in for re-initing. */ 2397 btreeInitPage(pPage); 2398 } 2399 } 2400 } 2401 2402 /* 2403 ** Invoke the busy handler for a btree. 2404 */ 2405 static int btreeInvokeBusyHandler(void *pArg){ 2406 BtShared *pBt = (BtShared*)pArg; 2407 assert( pBt->db ); 2408 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2409 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2410 } 2411 2412 /* 2413 ** Open a database file. 2414 ** 2415 ** zFilename is the name of the database file. If zFilename is NULL 2416 ** then an ephemeral database is created. The ephemeral database might 2417 ** be exclusively in memory, or it might use a disk-based memory cache. 2418 ** Either way, the ephemeral database will be automatically deleted 2419 ** when sqlite3BtreeClose() is called. 2420 ** 2421 ** If zFilename is ":memory:" then an in-memory database is created 2422 ** that is automatically destroyed when it is closed. 2423 ** 2424 ** The "flags" parameter is a bitmask that might contain bits like 2425 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2426 ** 2427 ** If the database is already opened in the same database connection 2428 ** and we are in shared cache mode, then the open will fail with an 2429 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2430 ** objects in the same database connection since doing so will lead 2431 ** to problems with locking. 2432 */ 2433 int sqlite3BtreeOpen( 2434 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2435 const char *zFilename, /* Name of the file containing the BTree database */ 2436 sqlite3 *db, /* Associated database handle */ 2437 Btree **ppBtree, /* Pointer to new Btree object written here */ 2438 int flags, /* Options */ 2439 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2440 ){ 2441 BtShared *pBt = 0; /* Shared part of btree structure */ 2442 Btree *p; /* Handle to return */ 2443 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2444 int rc = SQLITE_OK; /* Result code from this function */ 2445 u8 nReserve; /* Byte of unused space on each page */ 2446 unsigned char zDbHeader[100]; /* Database header content */ 2447 2448 /* True if opening an ephemeral, temporary database */ 2449 const int isTempDb = zFilename==0 || zFilename[0]==0; 2450 2451 /* Set the variable isMemdb to true for an in-memory database, or 2452 ** false for a file-based database. 2453 */ 2454 #ifdef SQLITE_OMIT_MEMORYDB 2455 const int isMemdb = 0; 2456 #else 2457 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2458 || (isTempDb && sqlite3TempInMemory(db)) 2459 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2460 #endif 2461 2462 assert( db!=0 ); 2463 assert( pVfs!=0 ); 2464 assert( sqlite3_mutex_held(db->mutex) ); 2465 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2466 2467 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2468 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2469 2470 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2471 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2472 2473 if( isMemdb ){ 2474 flags |= BTREE_MEMORY; 2475 } 2476 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2477 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2478 } 2479 p = sqlite3MallocZero(sizeof(Btree)); 2480 if( !p ){ 2481 return SQLITE_NOMEM_BKPT; 2482 } 2483 p->inTrans = TRANS_NONE; 2484 p->db = db; 2485 #ifndef SQLITE_OMIT_SHARED_CACHE 2486 p->lock.pBtree = p; 2487 p->lock.iTable = 1; 2488 #endif 2489 2490 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2491 /* 2492 ** If this Btree is a candidate for shared cache, try to find an 2493 ** existing BtShared object that we can share with 2494 */ 2495 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2496 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2497 int nFilename = sqlite3Strlen30(zFilename)+1; 2498 int nFullPathname = pVfs->mxPathname+1; 2499 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2500 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2501 2502 p->sharable = 1; 2503 if( !zFullPathname ){ 2504 sqlite3_free(p); 2505 return SQLITE_NOMEM_BKPT; 2506 } 2507 if( isMemdb ){ 2508 memcpy(zFullPathname, zFilename, nFilename); 2509 }else{ 2510 rc = sqlite3OsFullPathname(pVfs, zFilename, 2511 nFullPathname, zFullPathname); 2512 if( rc ){ 2513 if( rc==SQLITE_OK_SYMLINK ){ 2514 rc = SQLITE_OK; 2515 }else{ 2516 sqlite3_free(zFullPathname); 2517 sqlite3_free(p); 2518 return rc; 2519 } 2520 } 2521 } 2522 #if SQLITE_THREADSAFE 2523 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2524 sqlite3_mutex_enter(mutexOpen); 2525 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2526 sqlite3_mutex_enter(mutexShared); 2527 #endif 2528 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2529 assert( pBt->nRef>0 ); 2530 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2531 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2532 int iDb; 2533 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2534 Btree *pExisting = db->aDb[iDb].pBt; 2535 if( pExisting && pExisting->pBt==pBt ){ 2536 sqlite3_mutex_leave(mutexShared); 2537 sqlite3_mutex_leave(mutexOpen); 2538 sqlite3_free(zFullPathname); 2539 sqlite3_free(p); 2540 return SQLITE_CONSTRAINT; 2541 } 2542 } 2543 p->pBt = pBt; 2544 pBt->nRef++; 2545 break; 2546 } 2547 } 2548 sqlite3_mutex_leave(mutexShared); 2549 sqlite3_free(zFullPathname); 2550 } 2551 #ifdef SQLITE_DEBUG 2552 else{ 2553 /* In debug mode, we mark all persistent databases as sharable 2554 ** even when they are not. This exercises the locking code and 2555 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2556 ** statements to find locking problems. 2557 */ 2558 p->sharable = 1; 2559 } 2560 #endif 2561 } 2562 #endif 2563 if( pBt==0 ){ 2564 /* 2565 ** The following asserts make sure that structures used by the btree are 2566 ** the right size. This is to guard against size changes that result 2567 ** when compiling on a different architecture. 2568 */ 2569 assert( sizeof(i64)==8 ); 2570 assert( sizeof(u64)==8 ); 2571 assert( sizeof(u32)==4 ); 2572 assert( sizeof(u16)==2 ); 2573 assert( sizeof(Pgno)==4 ); 2574 2575 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2576 if( pBt==0 ){ 2577 rc = SQLITE_NOMEM_BKPT; 2578 goto btree_open_out; 2579 } 2580 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2581 sizeof(MemPage), flags, vfsFlags, pageReinit); 2582 if( rc==SQLITE_OK ){ 2583 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2584 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2585 } 2586 if( rc!=SQLITE_OK ){ 2587 goto btree_open_out; 2588 } 2589 pBt->openFlags = (u8)flags; 2590 pBt->db = db; 2591 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2592 p->pBt = pBt; 2593 2594 pBt->pCursor = 0; 2595 pBt->pPage1 = 0; 2596 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2597 #if defined(SQLITE_SECURE_DELETE) 2598 pBt->btsFlags |= BTS_SECURE_DELETE; 2599 #elif defined(SQLITE_FAST_SECURE_DELETE) 2600 pBt->btsFlags |= BTS_OVERWRITE; 2601 #endif 2602 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2603 ** determined by the 2-byte integer located at an offset of 16 bytes from 2604 ** the beginning of the database file. */ 2605 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2606 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2607 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2608 pBt->pageSize = 0; 2609 #ifndef SQLITE_OMIT_AUTOVACUUM 2610 /* If the magic name ":memory:" will create an in-memory database, then 2611 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2612 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2613 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2614 ** regular file-name. In this case the auto-vacuum applies as per normal. 2615 */ 2616 if( zFilename && !isMemdb ){ 2617 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2618 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2619 } 2620 #endif 2621 nReserve = 0; 2622 }else{ 2623 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2624 ** determined by the one-byte unsigned integer found at an offset of 20 2625 ** into the database file header. */ 2626 nReserve = zDbHeader[20]; 2627 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2628 #ifndef SQLITE_OMIT_AUTOVACUUM 2629 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2630 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2631 #endif 2632 } 2633 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2634 if( rc ) goto btree_open_out; 2635 pBt->usableSize = pBt->pageSize - nReserve; 2636 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2637 2638 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2639 /* Add the new BtShared object to the linked list sharable BtShareds. 2640 */ 2641 pBt->nRef = 1; 2642 if( p->sharable ){ 2643 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2644 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2645 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2646 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2647 if( pBt->mutex==0 ){ 2648 rc = SQLITE_NOMEM_BKPT; 2649 goto btree_open_out; 2650 } 2651 } 2652 sqlite3_mutex_enter(mutexShared); 2653 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2654 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2655 sqlite3_mutex_leave(mutexShared); 2656 } 2657 #endif 2658 } 2659 2660 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2661 /* If the new Btree uses a sharable pBtShared, then link the new 2662 ** Btree into the list of all sharable Btrees for the same connection. 2663 ** The list is kept in ascending order by pBt address. 2664 */ 2665 if( p->sharable ){ 2666 int i; 2667 Btree *pSib; 2668 for(i=0; i<db->nDb; i++){ 2669 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2670 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2671 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2672 p->pNext = pSib; 2673 p->pPrev = 0; 2674 pSib->pPrev = p; 2675 }else{ 2676 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2677 pSib = pSib->pNext; 2678 } 2679 p->pNext = pSib->pNext; 2680 p->pPrev = pSib; 2681 if( p->pNext ){ 2682 p->pNext->pPrev = p; 2683 } 2684 pSib->pNext = p; 2685 } 2686 break; 2687 } 2688 } 2689 } 2690 #endif 2691 *ppBtree = p; 2692 2693 btree_open_out: 2694 if( rc!=SQLITE_OK ){ 2695 if( pBt && pBt->pPager ){ 2696 sqlite3PagerClose(pBt->pPager, 0); 2697 } 2698 sqlite3_free(pBt); 2699 sqlite3_free(p); 2700 *ppBtree = 0; 2701 }else{ 2702 sqlite3_file *pFile; 2703 2704 /* If the B-Tree was successfully opened, set the pager-cache size to the 2705 ** default value. Except, when opening on an existing shared pager-cache, 2706 ** do not change the pager-cache size. 2707 */ 2708 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2709 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2710 } 2711 2712 pFile = sqlite3PagerFile(pBt->pPager); 2713 if( pFile->pMethods ){ 2714 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2715 } 2716 } 2717 if( mutexOpen ){ 2718 assert( sqlite3_mutex_held(mutexOpen) ); 2719 sqlite3_mutex_leave(mutexOpen); 2720 } 2721 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2722 return rc; 2723 } 2724 2725 /* 2726 ** Decrement the BtShared.nRef counter. When it reaches zero, 2727 ** remove the BtShared structure from the sharing list. Return 2728 ** true if the BtShared.nRef counter reaches zero and return 2729 ** false if it is still positive. 2730 */ 2731 static int removeFromSharingList(BtShared *pBt){ 2732 #ifndef SQLITE_OMIT_SHARED_CACHE 2733 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2734 BtShared *pList; 2735 int removed = 0; 2736 2737 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2738 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2739 sqlite3_mutex_enter(pMainMtx); 2740 pBt->nRef--; 2741 if( pBt->nRef<=0 ){ 2742 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2743 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2744 }else{ 2745 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2746 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2747 pList=pList->pNext; 2748 } 2749 if( ALWAYS(pList) ){ 2750 pList->pNext = pBt->pNext; 2751 } 2752 } 2753 if( SQLITE_THREADSAFE ){ 2754 sqlite3_mutex_free(pBt->mutex); 2755 } 2756 removed = 1; 2757 } 2758 sqlite3_mutex_leave(pMainMtx); 2759 return removed; 2760 #else 2761 return 1; 2762 #endif 2763 } 2764 2765 /* 2766 ** Make sure pBt->pTmpSpace points to an allocation of 2767 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2768 ** pointer. 2769 */ 2770 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2771 assert( pBt!=0 ); 2772 assert( pBt->pTmpSpace==0 ); 2773 /* This routine is called only by btreeCursor() when allocating the 2774 ** first write cursor for the BtShared object */ 2775 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2776 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2777 if( pBt->pTmpSpace==0 ){ 2778 BtCursor *pCur = pBt->pCursor; 2779 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2780 memset(pCur, 0, sizeof(*pCur)); 2781 return SQLITE_NOMEM_BKPT; 2782 } 2783 2784 /* One of the uses of pBt->pTmpSpace is to format cells before 2785 ** inserting them into a leaf page (function fillInCell()). If 2786 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2787 ** by the various routines that manipulate binary cells. Which 2788 ** can mean that fillInCell() only initializes the first 2 or 3 2789 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2790 ** it into a database page. This is not actually a problem, but it 2791 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2792 ** data is passed to system call write(). So to avoid this error, 2793 ** zero the first 4 bytes of temp space here. 2794 ** 2795 ** Also: Provide four bytes of initialized space before the 2796 ** beginning of pTmpSpace as an area available to prepend the 2797 ** left-child pointer to the beginning of a cell. 2798 */ 2799 memset(pBt->pTmpSpace, 0, 8); 2800 pBt->pTmpSpace += 4; 2801 return SQLITE_OK; 2802 } 2803 2804 /* 2805 ** Free the pBt->pTmpSpace allocation 2806 */ 2807 static void freeTempSpace(BtShared *pBt){ 2808 if( pBt->pTmpSpace ){ 2809 pBt->pTmpSpace -= 4; 2810 sqlite3PageFree(pBt->pTmpSpace); 2811 pBt->pTmpSpace = 0; 2812 } 2813 } 2814 2815 /* 2816 ** Close an open database and invalidate all cursors. 2817 */ 2818 int sqlite3BtreeClose(Btree *p){ 2819 BtShared *pBt = p->pBt; 2820 2821 /* Close all cursors opened via this handle. */ 2822 assert( sqlite3_mutex_held(p->db->mutex) ); 2823 sqlite3BtreeEnter(p); 2824 2825 /* Verify that no other cursors have this Btree open */ 2826 #ifdef SQLITE_DEBUG 2827 { 2828 BtCursor *pCur = pBt->pCursor; 2829 while( pCur ){ 2830 BtCursor *pTmp = pCur; 2831 pCur = pCur->pNext; 2832 assert( pTmp->pBtree!=p ); 2833 2834 } 2835 } 2836 #endif 2837 2838 /* Rollback any active transaction and free the handle structure. 2839 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2840 ** this handle. 2841 */ 2842 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2843 sqlite3BtreeLeave(p); 2844 2845 /* If there are still other outstanding references to the shared-btree 2846 ** structure, return now. The remainder of this procedure cleans 2847 ** up the shared-btree. 2848 */ 2849 assert( p->wantToLock==0 && p->locked==0 ); 2850 if( !p->sharable || removeFromSharingList(pBt) ){ 2851 /* The pBt is no longer on the sharing list, so we can access 2852 ** it without having to hold the mutex. 2853 ** 2854 ** Clean out and delete the BtShared object. 2855 */ 2856 assert( !pBt->pCursor ); 2857 sqlite3PagerClose(pBt->pPager, p->db); 2858 if( pBt->xFreeSchema && pBt->pSchema ){ 2859 pBt->xFreeSchema(pBt->pSchema); 2860 } 2861 sqlite3DbFree(0, pBt->pSchema); 2862 freeTempSpace(pBt); 2863 sqlite3_free(pBt); 2864 } 2865 2866 #ifndef SQLITE_OMIT_SHARED_CACHE 2867 assert( p->wantToLock==0 ); 2868 assert( p->locked==0 ); 2869 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2870 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2871 #endif 2872 2873 sqlite3_free(p); 2874 return SQLITE_OK; 2875 } 2876 2877 /* 2878 ** Change the "soft" limit on the number of pages in the cache. 2879 ** Unused and unmodified pages will be recycled when the number of 2880 ** pages in the cache exceeds this soft limit. But the size of the 2881 ** cache is allowed to grow larger than this limit if it contains 2882 ** dirty pages or pages still in active use. 2883 */ 2884 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2885 BtShared *pBt = p->pBt; 2886 assert( sqlite3_mutex_held(p->db->mutex) ); 2887 sqlite3BtreeEnter(p); 2888 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2889 sqlite3BtreeLeave(p); 2890 return SQLITE_OK; 2891 } 2892 2893 /* 2894 ** Change the "spill" limit on the number of pages in the cache. 2895 ** If the number of pages exceeds this limit during a write transaction, 2896 ** the pager might attempt to "spill" pages to the journal early in 2897 ** order to free up memory. 2898 ** 2899 ** The value returned is the current spill size. If zero is passed 2900 ** as an argument, no changes are made to the spill size setting, so 2901 ** using mxPage of 0 is a way to query the current spill size. 2902 */ 2903 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2904 BtShared *pBt = p->pBt; 2905 int res; 2906 assert( sqlite3_mutex_held(p->db->mutex) ); 2907 sqlite3BtreeEnter(p); 2908 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2909 sqlite3BtreeLeave(p); 2910 return res; 2911 } 2912 2913 #if SQLITE_MAX_MMAP_SIZE>0 2914 /* 2915 ** Change the limit on the amount of the database file that may be 2916 ** memory mapped. 2917 */ 2918 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2919 BtShared *pBt = p->pBt; 2920 assert( sqlite3_mutex_held(p->db->mutex) ); 2921 sqlite3BtreeEnter(p); 2922 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2923 sqlite3BtreeLeave(p); 2924 return SQLITE_OK; 2925 } 2926 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2927 2928 /* 2929 ** Change the way data is synced to disk in order to increase or decrease 2930 ** how well the database resists damage due to OS crashes and power 2931 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2932 ** there is a high probability of damage) Level 2 is the default. There 2933 ** is a very low but non-zero probability of damage. Level 3 reduces the 2934 ** probability of damage to near zero but with a write performance reduction. 2935 */ 2936 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2937 int sqlite3BtreeSetPagerFlags( 2938 Btree *p, /* The btree to set the safety level on */ 2939 unsigned pgFlags /* Various PAGER_* flags */ 2940 ){ 2941 BtShared *pBt = p->pBt; 2942 assert( sqlite3_mutex_held(p->db->mutex) ); 2943 sqlite3BtreeEnter(p); 2944 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2945 sqlite3BtreeLeave(p); 2946 return SQLITE_OK; 2947 } 2948 #endif 2949 2950 /* 2951 ** Change the default pages size and the number of reserved bytes per page. 2952 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2953 ** without changing anything. 2954 ** 2955 ** The page size must be a power of 2 between 512 and 65536. If the page 2956 ** size supplied does not meet this constraint then the page size is not 2957 ** changed. 2958 ** 2959 ** Page sizes are constrained to be a power of two so that the region 2960 ** of the database file used for locking (beginning at PENDING_BYTE, 2961 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2962 ** at the beginning of a page. 2963 ** 2964 ** If parameter nReserve is less than zero, then the number of reserved 2965 ** bytes per page is left unchanged. 2966 ** 2967 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2968 ** and autovacuum mode can no longer be changed. 2969 */ 2970 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2971 int rc = SQLITE_OK; 2972 int x; 2973 BtShared *pBt = p->pBt; 2974 assert( nReserve>=0 && nReserve<=255 ); 2975 sqlite3BtreeEnter(p); 2976 pBt->nReserveWanted = nReserve; 2977 x = pBt->pageSize - pBt->usableSize; 2978 if( nReserve<x ) nReserve = x; 2979 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2980 sqlite3BtreeLeave(p); 2981 return SQLITE_READONLY; 2982 } 2983 assert( nReserve>=0 && nReserve<=255 ); 2984 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2985 ((pageSize-1)&pageSize)==0 ){ 2986 assert( (pageSize & 7)==0 ); 2987 assert( !pBt->pCursor ); 2988 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2989 pBt->pageSize = (u32)pageSize; 2990 freeTempSpace(pBt); 2991 } 2992 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2993 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2994 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2995 sqlite3BtreeLeave(p); 2996 return rc; 2997 } 2998 2999 /* 3000 ** Return the currently defined page size 3001 */ 3002 int sqlite3BtreeGetPageSize(Btree *p){ 3003 return p->pBt->pageSize; 3004 } 3005 3006 /* 3007 ** This function is similar to sqlite3BtreeGetReserve(), except that it 3008 ** may only be called if it is guaranteed that the b-tree mutex is already 3009 ** held. 3010 ** 3011 ** This is useful in one special case in the backup API code where it is 3012 ** known that the shared b-tree mutex is held, but the mutex on the 3013 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 3014 ** were to be called, it might collide with some other operation on the 3015 ** database handle that owns *p, causing undefined behavior. 3016 */ 3017 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 3018 int n; 3019 assert( sqlite3_mutex_held(p->pBt->mutex) ); 3020 n = p->pBt->pageSize - p->pBt->usableSize; 3021 return n; 3022 } 3023 3024 /* 3025 ** Return the number of bytes of space at the end of every page that 3026 ** are intentually left unused. This is the "reserved" space that is 3027 ** sometimes used by extensions. 3028 ** 3029 ** The value returned is the larger of the current reserve size and 3030 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 3031 ** The amount of reserve can only grow - never shrink. 3032 */ 3033 int sqlite3BtreeGetRequestedReserve(Btree *p){ 3034 int n1, n2; 3035 sqlite3BtreeEnter(p); 3036 n1 = (int)p->pBt->nReserveWanted; 3037 n2 = sqlite3BtreeGetReserveNoMutex(p); 3038 sqlite3BtreeLeave(p); 3039 return n1>n2 ? n1 : n2; 3040 } 3041 3042 3043 /* 3044 ** Set the maximum page count for a database if mxPage is positive. 3045 ** No changes are made if mxPage is 0 or negative. 3046 ** Regardless of the value of mxPage, return the maximum page count. 3047 */ 3048 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 3049 Pgno n; 3050 sqlite3BtreeEnter(p); 3051 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 3052 sqlite3BtreeLeave(p); 3053 return n; 3054 } 3055 3056 /* 3057 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 3058 ** 3059 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3060 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3061 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3062 ** newFlag==(-1) No changes 3063 ** 3064 ** This routine acts as a query if newFlag is less than zero 3065 ** 3066 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3067 ** freelist leaf pages are not written back to the database. Thus in-page 3068 ** deleted content is cleared, but freelist deleted content is not. 3069 ** 3070 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3071 ** that freelist leaf pages are written back into the database, increasing 3072 ** the amount of disk I/O. 3073 */ 3074 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3075 int b; 3076 if( p==0 ) return 0; 3077 sqlite3BtreeEnter(p); 3078 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3079 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3080 if( newFlag>=0 ){ 3081 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3082 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3083 } 3084 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3085 sqlite3BtreeLeave(p); 3086 return b; 3087 } 3088 3089 /* 3090 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3091 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3092 ** is disabled. The default value for the auto-vacuum property is 3093 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3094 */ 3095 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3096 #ifdef SQLITE_OMIT_AUTOVACUUM 3097 return SQLITE_READONLY; 3098 #else 3099 BtShared *pBt = p->pBt; 3100 int rc = SQLITE_OK; 3101 u8 av = (u8)autoVacuum; 3102 3103 sqlite3BtreeEnter(p); 3104 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3105 rc = SQLITE_READONLY; 3106 }else{ 3107 pBt->autoVacuum = av ?1:0; 3108 pBt->incrVacuum = av==2 ?1:0; 3109 } 3110 sqlite3BtreeLeave(p); 3111 return rc; 3112 #endif 3113 } 3114 3115 /* 3116 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3117 ** enabled 1 is returned. Otherwise 0. 3118 */ 3119 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3120 #ifdef SQLITE_OMIT_AUTOVACUUM 3121 return BTREE_AUTOVACUUM_NONE; 3122 #else 3123 int rc; 3124 sqlite3BtreeEnter(p); 3125 rc = ( 3126 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3127 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3128 BTREE_AUTOVACUUM_INCR 3129 ); 3130 sqlite3BtreeLeave(p); 3131 return rc; 3132 #endif 3133 } 3134 3135 /* 3136 ** If the user has not set the safety-level for this database connection 3137 ** using "PRAGMA synchronous", and if the safety-level is not already 3138 ** set to the value passed to this function as the second parameter, 3139 ** set it so. 3140 */ 3141 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3142 && !defined(SQLITE_OMIT_WAL) 3143 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3144 sqlite3 *db; 3145 Db *pDb; 3146 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3147 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3148 if( pDb->bSyncSet==0 3149 && pDb->safety_level!=safety_level 3150 && pDb!=&db->aDb[1] 3151 ){ 3152 pDb->safety_level = safety_level; 3153 sqlite3PagerSetFlags(pBt->pPager, 3154 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3155 } 3156 } 3157 } 3158 #else 3159 # define setDefaultSyncFlag(pBt,safety_level) 3160 #endif 3161 3162 /* Forward declaration */ 3163 static int newDatabase(BtShared*); 3164 3165 3166 /* 3167 ** Get a reference to pPage1 of the database file. This will 3168 ** also acquire a readlock on that file. 3169 ** 3170 ** SQLITE_OK is returned on success. If the file is not a 3171 ** well-formed database file, then SQLITE_CORRUPT is returned. 3172 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3173 ** is returned if we run out of memory. 3174 */ 3175 static int lockBtree(BtShared *pBt){ 3176 int rc; /* Result code from subfunctions */ 3177 MemPage *pPage1; /* Page 1 of the database file */ 3178 u32 nPage; /* Number of pages in the database */ 3179 u32 nPageFile = 0; /* Number of pages in the database file */ 3180 3181 assert( sqlite3_mutex_held(pBt->mutex) ); 3182 assert( pBt->pPage1==0 ); 3183 rc = sqlite3PagerSharedLock(pBt->pPager); 3184 if( rc!=SQLITE_OK ) return rc; 3185 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3186 if( rc!=SQLITE_OK ) return rc; 3187 3188 /* Do some checking to help insure the file we opened really is 3189 ** a valid database file. 3190 */ 3191 nPage = get4byte(28+(u8*)pPage1->aData); 3192 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3193 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3194 nPage = nPageFile; 3195 } 3196 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3197 nPage = 0; 3198 } 3199 if( nPage>0 ){ 3200 u32 pageSize; 3201 u32 usableSize; 3202 u8 *page1 = pPage1->aData; 3203 rc = SQLITE_NOTADB; 3204 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3205 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3206 ** 61 74 20 33 00. */ 3207 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3208 goto page1_init_failed; 3209 } 3210 3211 #ifdef SQLITE_OMIT_WAL 3212 if( page1[18]>1 ){ 3213 pBt->btsFlags |= BTS_READ_ONLY; 3214 } 3215 if( page1[19]>1 ){ 3216 goto page1_init_failed; 3217 } 3218 #else 3219 if( page1[18]>2 ){ 3220 pBt->btsFlags |= BTS_READ_ONLY; 3221 } 3222 if( page1[19]>2 ){ 3223 goto page1_init_failed; 3224 } 3225 3226 /* If the read version is set to 2, this database should be accessed 3227 ** in WAL mode. If the log is not already open, open it now. Then 3228 ** return SQLITE_OK and return without populating BtShared.pPage1. 3229 ** The caller detects this and calls this function again. This is 3230 ** required as the version of page 1 currently in the page1 buffer 3231 ** may not be the latest version - there may be a newer one in the log 3232 ** file. 3233 */ 3234 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3235 int isOpen = 0; 3236 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3237 if( rc!=SQLITE_OK ){ 3238 goto page1_init_failed; 3239 }else{ 3240 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3241 if( isOpen==0 ){ 3242 releasePageOne(pPage1); 3243 return SQLITE_OK; 3244 } 3245 } 3246 rc = SQLITE_NOTADB; 3247 }else{ 3248 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3249 } 3250 #endif 3251 3252 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3253 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3254 ** 3255 ** The original design allowed these amounts to vary, but as of 3256 ** version 3.6.0, we require them to be fixed. 3257 */ 3258 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3259 goto page1_init_failed; 3260 } 3261 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3262 ** determined by the 2-byte integer located at an offset of 16 bytes from 3263 ** the beginning of the database file. */ 3264 pageSize = (page1[16]<<8) | (page1[17]<<16); 3265 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3266 ** between 512 and 65536 inclusive. */ 3267 if( ((pageSize-1)&pageSize)!=0 3268 || pageSize>SQLITE_MAX_PAGE_SIZE 3269 || pageSize<=256 3270 ){ 3271 goto page1_init_failed; 3272 } 3273 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3274 assert( (pageSize & 7)==0 ); 3275 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3276 ** integer at offset 20 is the number of bytes of space at the end of 3277 ** each page to reserve for extensions. 3278 ** 3279 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3280 ** determined by the one-byte unsigned integer found at an offset of 20 3281 ** into the database file header. */ 3282 usableSize = pageSize - page1[20]; 3283 if( (u32)pageSize!=pBt->pageSize ){ 3284 /* After reading the first page of the database assuming a page size 3285 ** of BtShared.pageSize, we have discovered that the page-size is 3286 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3287 ** zero and return SQLITE_OK. The caller will call this function 3288 ** again with the correct page-size. 3289 */ 3290 releasePageOne(pPage1); 3291 pBt->usableSize = usableSize; 3292 pBt->pageSize = pageSize; 3293 freeTempSpace(pBt); 3294 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3295 pageSize-usableSize); 3296 return rc; 3297 } 3298 if( nPage>nPageFile ){ 3299 if( sqlite3WritableSchema(pBt->db)==0 ){ 3300 rc = SQLITE_CORRUPT_BKPT; 3301 goto page1_init_failed; 3302 }else{ 3303 nPage = nPageFile; 3304 } 3305 } 3306 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3307 ** be less than 480. In other words, if the page size is 512, then the 3308 ** reserved space size cannot exceed 32. */ 3309 if( usableSize<480 ){ 3310 goto page1_init_failed; 3311 } 3312 pBt->pageSize = pageSize; 3313 pBt->usableSize = usableSize; 3314 #ifndef SQLITE_OMIT_AUTOVACUUM 3315 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3316 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3317 #endif 3318 } 3319 3320 /* maxLocal is the maximum amount of payload to store locally for 3321 ** a cell. Make sure it is small enough so that at least minFanout 3322 ** cells can will fit on one page. We assume a 10-byte page header. 3323 ** Besides the payload, the cell must store: 3324 ** 2-byte pointer to the cell 3325 ** 4-byte child pointer 3326 ** 9-byte nKey value 3327 ** 4-byte nData value 3328 ** 4-byte overflow page pointer 3329 ** So a cell consists of a 2-byte pointer, a header which is as much as 3330 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3331 ** page pointer. 3332 */ 3333 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3334 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3335 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3336 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3337 if( pBt->maxLocal>127 ){ 3338 pBt->max1bytePayload = 127; 3339 }else{ 3340 pBt->max1bytePayload = (u8)pBt->maxLocal; 3341 } 3342 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3343 pBt->pPage1 = pPage1; 3344 pBt->nPage = nPage; 3345 return SQLITE_OK; 3346 3347 page1_init_failed: 3348 releasePageOne(pPage1); 3349 pBt->pPage1 = 0; 3350 return rc; 3351 } 3352 3353 #ifndef NDEBUG 3354 /* 3355 ** Return the number of cursors open on pBt. This is for use 3356 ** in assert() expressions, so it is only compiled if NDEBUG is not 3357 ** defined. 3358 ** 3359 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3360 ** false then all cursors are counted. 3361 ** 3362 ** For the purposes of this routine, a cursor is any cursor that 3363 ** is capable of reading or writing to the database. Cursors that 3364 ** have been tripped into the CURSOR_FAULT state are not counted. 3365 */ 3366 static int countValidCursors(BtShared *pBt, int wrOnly){ 3367 BtCursor *pCur; 3368 int r = 0; 3369 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3370 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3371 && pCur->eState!=CURSOR_FAULT ) r++; 3372 } 3373 return r; 3374 } 3375 #endif 3376 3377 /* 3378 ** If there are no outstanding cursors and we are not in the middle 3379 ** of a transaction but there is a read lock on the database, then 3380 ** this routine unrefs the first page of the database file which 3381 ** has the effect of releasing the read lock. 3382 ** 3383 ** If there is a transaction in progress, this routine is a no-op. 3384 */ 3385 static void unlockBtreeIfUnused(BtShared *pBt){ 3386 assert( sqlite3_mutex_held(pBt->mutex) ); 3387 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3388 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3389 MemPage *pPage1 = pBt->pPage1; 3390 assert( pPage1->aData ); 3391 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3392 pBt->pPage1 = 0; 3393 releasePageOne(pPage1); 3394 } 3395 } 3396 3397 /* 3398 ** If pBt points to an empty file then convert that empty file 3399 ** into a new empty database by initializing the first page of 3400 ** the database. 3401 */ 3402 static int newDatabase(BtShared *pBt){ 3403 MemPage *pP1; 3404 unsigned char *data; 3405 int rc; 3406 3407 assert( sqlite3_mutex_held(pBt->mutex) ); 3408 if( pBt->nPage>0 ){ 3409 return SQLITE_OK; 3410 } 3411 pP1 = pBt->pPage1; 3412 assert( pP1!=0 ); 3413 data = pP1->aData; 3414 rc = sqlite3PagerWrite(pP1->pDbPage); 3415 if( rc ) return rc; 3416 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3417 assert( sizeof(zMagicHeader)==16 ); 3418 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3419 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3420 data[18] = 1; 3421 data[19] = 1; 3422 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3423 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3424 data[21] = 64; 3425 data[22] = 32; 3426 data[23] = 32; 3427 memset(&data[24], 0, 100-24); 3428 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3429 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3430 #ifndef SQLITE_OMIT_AUTOVACUUM 3431 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3432 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3433 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3434 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3435 #endif 3436 pBt->nPage = 1; 3437 data[31] = 1; 3438 return SQLITE_OK; 3439 } 3440 3441 /* 3442 ** Initialize the first page of the database file (creating a database 3443 ** consisting of a single page and no schema objects). Return SQLITE_OK 3444 ** if successful, or an SQLite error code otherwise. 3445 */ 3446 int sqlite3BtreeNewDb(Btree *p){ 3447 int rc; 3448 sqlite3BtreeEnter(p); 3449 p->pBt->nPage = 0; 3450 rc = newDatabase(p->pBt); 3451 sqlite3BtreeLeave(p); 3452 return rc; 3453 } 3454 3455 /* 3456 ** Attempt to start a new transaction. A write-transaction 3457 ** is started if the second argument is nonzero, otherwise a read- 3458 ** transaction. If the second argument is 2 or more and exclusive 3459 ** transaction is started, meaning that no other process is allowed 3460 ** to access the database. A preexisting transaction may not be 3461 ** upgraded to exclusive by calling this routine a second time - the 3462 ** exclusivity flag only works for a new transaction. 3463 ** 3464 ** A write-transaction must be started before attempting any 3465 ** changes to the database. None of the following routines 3466 ** will work unless a transaction is started first: 3467 ** 3468 ** sqlite3BtreeCreateTable() 3469 ** sqlite3BtreeCreateIndex() 3470 ** sqlite3BtreeClearTable() 3471 ** sqlite3BtreeDropTable() 3472 ** sqlite3BtreeInsert() 3473 ** sqlite3BtreeDelete() 3474 ** sqlite3BtreeUpdateMeta() 3475 ** 3476 ** If an initial attempt to acquire the lock fails because of lock contention 3477 ** and the database was previously unlocked, then invoke the busy handler 3478 ** if there is one. But if there was previously a read-lock, do not 3479 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3480 ** returned when there is already a read-lock in order to avoid a deadlock. 3481 ** 3482 ** Suppose there are two processes A and B. A has a read lock and B has 3483 ** a reserved lock. B tries to promote to exclusive but is blocked because 3484 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3485 ** One or the other of the two processes must give way or there can be 3486 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3487 ** when A already has a read lock, we encourage A to give up and let B 3488 ** proceed. 3489 */ 3490 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3491 BtShared *pBt = p->pBt; 3492 Pager *pPager = pBt->pPager; 3493 int rc = SQLITE_OK; 3494 3495 sqlite3BtreeEnter(p); 3496 btreeIntegrity(p); 3497 3498 /* If the btree is already in a write-transaction, or it 3499 ** is already in a read-transaction and a read-transaction 3500 ** is requested, this is a no-op. 3501 */ 3502 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3503 goto trans_begun; 3504 } 3505 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3506 3507 if( (p->db->flags & SQLITE_ResetDatabase) 3508 && sqlite3PagerIsreadonly(pPager)==0 3509 ){ 3510 pBt->btsFlags &= ~BTS_READ_ONLY; 3511 } 3512 3513 /* Write transactions are not possible on a read-only database */ 3514 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3515 rc = SQLITE_READONLY; 3516 goto trans_begun; 3517 } 3518 3519 #ifndef SQLITE_OMIT_SHARED_CACHE 3520 { 3521 sqlite3 *pBlock = 0; 3522 /* If another database handle has already opened a write transaction 3523 ** on this shared-btree structure and a second write transaction is 3524 ** requested, return SQLITE_LOCKED. 3525 */ 3526 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3527 || (pBt->btsFlags & BTS_PENDING)!=0 3528 ){ 3529 pBlock = pBt->pWriter->db; 3530 }else if( wrflag>1 ){ 3531 BtLock *pIter; 3532 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3533 if( pIter->pBtree!=p ){ 3534 pBlock = pIter->pBtree->db; 3535 break; 3536 } 3537 } 3538 } 3539 if( pBlock ){ 3540 sqlite3ConnectionBlocked(p->db, pBlock); 3541 rc = SQLITE_LOCKED_SHAREDCACHE; 3542 goto trans_begun; 3543 } 3544 } 3545 #endif 3546 3547 /* Any read-only or read-write transaction implies a read-lock on 3548 ** page 1. So if some other shared-cache client already has a write-lock 3549 ** on page 1, the transaction cannot be opened. */ 3550 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3551 if( SQLITE_OK!=rc ) goto trans_begun; 3552 3553 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3554 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3555 do { 3556 sqlite3PagerWalDb(pPager, p->db); 3557 3558 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3559 /* If transitioning from no transaction directly to a write transaction, 3560 ** block for the WRITER lock first if possible. */ 3561 if( pBt->pPage1==0 && wrflag ){ 3562 assert( pBt->inTransaction==TRANS_NONE ); 3563 rc = sqlite3PagerWalWriteLock(pPager, 1); 3564 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3565 } 3566 #endif 3567 3568 /* Call lockBtree() until either pBt->pPage1 is populated or 3569 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3570 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3571 ** reading page 1 it discovers that the page-size of the database 3572 ** file is not pBt->pageSize. In this case lockBtree() will update 3573 ** pBt->pageSize to the page-size of the file on disk. 3574 */ 3575 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3576 3577 if( rc==SQLITE_OK && wrflag ){ 3578 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3579 rc = SQLITE_READONLY; 3580 }else{ 3581 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3582 if( rc==SQLITE_OK ){ 3583 rc = newDatabase(pBt); 3584 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3585 /* if there was no transaction opened when this function was 3586 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3587 ** code to SQLITE_BUSY. */ 3588 rc = SQLITE_BUSY; 3589 } 3590 } 3591 } 3592 3593 if( rc!=SQLITE_OK ){ 3594 (void)sqlite3PagerWalWriteLock(pPager, 0); 3595 unlockBtreeIfUnused(pBt); 3596 } 3597 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3598 btreeInvokeBusyHandler(pBt) ); 3599 sqlite3PagerWalDb(pPager, 0); 3600 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3601 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3602 #endif 3603 3604 if( rc==SQLITE_OK ){ 3605 if( p->inTrans==TRANS_NONE ){ 3606 pBt->nTransaction++; 3607 #ifndef SQLITE_OMIT_SHARED_CACHE 3608 if( p->sharable ){ 3609 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3610 p->lock.eLock = READ_LOCK; 3611 p->lock.pNext = pBt->pLock; 3612 pBt->pLock = &p->lock; 3613 } 3614 #endif 3615 } 3616 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3617 if( p->inTrans>pBt->inTransaction ){ 3618 pBt->inTransaction = p->inTrans; 3619 } 3620 if( wrflag ){ 3621 MemPage *pPage1 = pBt->pPage1; 3622 #ifndef SQLITE_OMIT_SHARED_CACHE 3623 assert( !pBt->pWriter ); 3624 pBt->pWriter = p; 3625 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3626 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3627 #endif 3628 3629 /* If the db-size header field is incorrect (as it may be if an old 3630 ** client has been writing the database file), update it now. Doing 3631 ** this sooner rather than later means the database size can safely 3632 ** re-read the database size from page 1 if a savepoint or transaction 3633 ** rollback occurs within the transaction. 3634 */ 3635 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3636 rc = sqlite3PagerWrite(pPage1->pDbPage); 3637 if( rc==SQLITE_OK ){ 3638 put4byte(&pPage1->aData[28], pBt->nPage); 3639 } 3640 } 3641 } 3642 } 3643 3644 trans_begun: 3645 if( rc==SQLITE_OK ){ 3646 if( pSchemaVersion ){ 3647 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3648 } 3649 if( wrflag ){ 3650 /* This call makes sure that the pager has the correct number of 3651 ** open savepoints. If the second parameter is greater than 0 and 3652 ** the sub-journal is not already open, then it will be opened here. 3653 */ 3654 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3655 } 3656 } 3657 3658 btreeIntegrity(p); 3659 sqlite3BtreeLeave(p); 3660 return rc; 3661 } 3662 3663 #ifndef SQLITE_OMIT_AUTOVACUUM 3664 3665 /* 3666 ** Set the pointer-map entries for all children of page pPage. Also, if 3667 ** pPage contains cells that point to overflow pages, set the pointer 3668 ** map entries for the overflow pages as well. 3669 */ 3670 static int setChildPtrmaps(MemPage *pPage){ 3671 int i; /* Counter variable */ 3672 int nCell; /* Number of cells in page pPage */ 3673 int rc; /* Return code */ 3674 BtShared *pBt = pPage->pBt; 3675 Pgno pgno = pPage->pgno; 3676 3677 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3678 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3679 if( rc!=SQLITE_OK ) return rc; 3680 nCell = pPage->nCell; 3681 3682 for(i=0; i<nCell; i++){ 3683 u8 *pCell = findCell(pPage, i); 3684 3685 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3686 3687 if( !pPage->leaf ){ 3688 Pgno childPgno = get4byte(pCell); 3689 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3690 } 3691 } 3692 3693 if( !pPage->leaf ){ 3694 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3695 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3696 } 3697 3698 return rc; 3699 } 3700 3701 /* 3702 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3703 ** that it points to iTo. Parameter eType describes the type of pointer to 3704 ** be modified, as follows: 3705 ** 3706 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3707 ** page of pPage. 3708 ** 3709 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3710 ** page pointed to by one of the cells on pPage. 3711 ** 3712 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3713 ** overflow page in the list. 3714 */ 3715 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3716 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3717 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3718 if( eType==PTRMAP_OVERFLOW2 ){ 3719 /* The pointer is always the first 4 bytes of the page in this case. */ 3720 if( get4byte(pPage->aData)!=iFrom ){ 3721 return SQLITE_CORRUPT_PAGE(pPage); 3722 } 3723 put4byte(pPage->aData, iTo); 3724 }else{ 3725 int i; 3726 int nCell; 3727 int rc; 3728 3729 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3730 if( rc ) return rc; 3731 nCell = pPage->nCell; 3732 3733 for(i=0; i<nCell; i++){ 3734 u8 *pCell = findCell(pPage, i); 3735 if( eType==PTRMAP_OVERFLOW1 ){ 3736 CellInfo info; 3737 pPage->xParseCell(pPage, pCell, &info); 3738 if( info.nLocal<info.nPayload ){ 3739 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3740 return SQLITE_CORRUPT_PAGE(pPage); 3741 } 3742 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3743 put4byte(pCell+info.nSize-4, iTo); 3744 break; 3745 } 3746 } 3747 }else{ 3748 if( get4byte(pCell)==iFrom ){ 3749 put4byte(pCell, iTo); 3750 break; 3751 } 3752 } 3753 } 3754 3755 if( i==nCell ){ 3756 if( eType!=PTRMAP_BTREE || 3757 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3758 return SQLITE_CORRUPT_PAGE(pPage); 3759 } 3760 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3761 } 3762 } 3763 return SQLITE_OK; 3764 } 3765 3766 3767 /* 3768 ** Move the open database page pDbPage to location iFreePage in the 3769 ** database. The pDbPage reference remains valid. 3770 ** 3771 ** The isCommit flag indicates that there is no need to remember that 3772 ** the journal needs to be sync()ed before database page pDbPage->pgno 3773 ** can be written to. The caller has already promised not to write to that 3774 ** page. 3775 */ 3776 static int relocatePage( 3777 BtShared *pBt, /* Btree */ 3778 MemPage *pDbPage, /* Open page to move */ 3779 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3780 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3781 Pgno iFreePage, /* The location to move pDbPage to */ 3782 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3783 ){ 3784 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3785 Pgno iDbPage = pDbPage->pgno; 3786 Pager *pPager = pBt->pPager; 3787 int rc; 3788 3789 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3790 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3791 assert( sqlite3_mutex_held(pBt->mutex) ); 3792 assert( pDbPage->pBt==pBt ); 3793 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3794 3795 /* Move page iDbPage from its current location to page number iFreePage */ 3796 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3797 iDbPage, iFreePage, iPtrPage, eType)); 3798 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3799 if( rc!=SQLITE_OK ){ 3800 return rc; 3801 } 3802 pDbPage->pgno = iFreePage; 3803 3804 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3805 ** that point to overflow pages. The pointer map entries for all these 3806 ** pages need to be changed. 3807 ** 3808 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3809 ** pointer to a subsequent overflow page. If this is the case, then 3810 ** the pointer map needs to be updated for the subsequent overflow page. 3811 */ 3812 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3813 rc = setChildPtrmaps(pDbPage); 3814 if( rc!=SQLITE_OK ){ 3815 return rc; 3816 } 3817 }else{ 3818 Pgno nextOvfl = get4byte(pDbPage->aData); 3819 if( nextOvfl!=0 ){ 3820 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3821 if( rc!=SQLITE_OK ){ 3822 return rc; 3823 } 3824 } 3825 } 3826 3827 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3828 ** that it points at iFreePage. Also fix the pointer map entry for 3829 ** iPtrPage. 3830 */ 3831 if( eType!=PTRMAP_ROOTPAGE ){ 3832 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3833 if( rc!=SQLITE_OK ){ 3834 return rc; 3835 } 3836 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3837 if( rc!=SQLITE_OK ){ 3838 releasePage(pPtrPage); 3839 return rc; 3840 } 3841 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3842 releasePage(pPtrPage); 3843 if( rc==SQLITE_OK ){ 3844 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3845 } 3846 } 3847 return rc; 3848 } 3849 3850 /* Forward declaration required by incrVacuumStep(). */ 3851 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3852 3853 /* 3854 ** Perform a single step of an incremental-vacuum. If successful, return 3855 ** SQLITE_OK. If there is no work to do (and therefore no point in 3856 ** calling this function again), return SQLITE_DONE. Or, if an error 3857 ** occurs, return some other error code. 3858 ** 3859 ** More specifically, this function attempts to re-organize the database so 3860 ** that the last page of the file currently in use is no longer in use. 3861 ** 3862 ** Parameter nFin is the number of pages that this database would contain 3863 ** were this function called until it returns SQLITE_DONE. 3864 ** 3865 ** If the bCommit parameter is non-zero, this function assumes that the 3866 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3867 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3868 ** operation, or false for an incremental vacuum. 3869 */ 3870 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3871 Pgno nFreeList; /* Number of pages still on the free-list */ 3872 int rc; 3873 3874 assert( sqlite3_mutex_held(pBt->mutex) ); 3875 assert( iLastPg>nFin ); 3876 3877 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3878 u8 eType; 3879 Pgno iPtrPage; 3880 3881 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3882 if( nFreeList==0 ){ 3883 return SQLITE_DONE; 3884 } 3885 3886 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3887 if( rc!=SQLITE_OK ){ 3888 return rc; 3889 } 3890 if( eType==PTRMAP_ROOTPAGE ){ 3891 return SQLITE_CORRUPT_BKPT; 3892 } 3893 3894 if( eType==PTRMAP_FREEPAGE ){ 3895 if( bCommit==0 ){ 3896 /* Remove the page from the files free-list. This is not required 3897 ** if bCommit is non-zero. In that case, the free-list will be 3898 ** truncated to zero after this function returns, so it doesn't 3899 ** matter if it still contains some garbage entries. 3900 */ 3901 Pgno iFreePg; 3902 MemPage *pFreePg; 3903 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3904 if( rc!=SQLITE_OK ){ 3905 return rc; 3906 } 3907 assert( iFreePg==iLastPg ); 3908 releasePage(pFreePg); 3909 } 3910 } else { 3911 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3912 MemPage *pLastPg; 3913 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3914 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3915 3916 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3917 if( rc!=SQLITE_OK ){ 3918 return rc; 3919 } 3920 3921 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3922 ** is swapped with the first free page pulled off the free list. 3923 ** 3924 ** On the other hand, if bCommit is greater than zero, then keep 3925 ** looping until a free-page located within the first nFin pages 3926 ** of the file is found. 3927 */ 3928 if( bCommit==0 ){ 3929 eMode = BTALLOC_LE; 3930 iNear = nFin; 3931 } 3932 do { 3933 MemPage *pFreePg; 3934 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3935 if( rc!=SQLITE_OK ){ 3936 releasePage(pLastPg); 3937 return rc; 3938 } 3939 releasePage(pFreePg); 3940 }while( bCommit && iFreePg>nFin ); 3941 assert( iFreePg<iLastPg ); 3942 3943 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3944 releasePage(pLastPg); 3945 if( rc!=SQLITE_OK ){ 3946 return rc; 3947 } 3948 } 3949 } 3950 3951 if( bCommit==0 ){ 3952 do { 3953 iLastPg--; 3954 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3955 pBt->bDoTruncate = 1; 3956 pBt->nPage = iLastPg; 3957 } 3958 return SQLITE_OK; 3959 } 3960 3961 /* 3962 ** The database opened by the first argument is an auto-vacuum database 3963 ** nOrig pages in size containing nFree free pages. Return the expected 3964 ** size of the database in pages following an auto-vacuum operation. 3965 */ 3966 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3967 int nEntry; /* Number of entries on one ptrmap page */ 3968 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3969 Pgno nFin; /* Return value */ 3970 3971 nEntry = pBt->usableSize/5; 3972 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3973 nFin = nOrig - nFree - nPtrmap; 3974 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3975 nFin--; 3976 } 3977 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3978 nFin--; 3979 } 3980 3981 return nFin; 3982 } 3983 3984 /* 3985 ** A write-transaction must be opened before calling this function. 3986 ** It performs a single unit of work towards an incremental vacuum. 3987 ** 3988 ** If the incremental vacuum is finished after this function has run, 3989 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3990 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3991 */ 3992 int sqlite3BtreeIncrVacuum(Btree *p){ 3993 int rc; 3994 BtShared *pBt = p->pBt; 3995 3996 sqlite3BtreeEnter(p); 3997 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3998 if( !pBt->autoVacuum ){ 3999 rc = SQLITE_DONE; 4000 }else{ 4001 Pgno nOrig = btreePagecount(pBt); 4002 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 4003 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 4004 4005 if( nOrig<nFin || nFree>=nOrig ){ 4006 rc = SQLITE_CORRUPT_BKPT; 4007 }else if( nFree>0 ){ 4008 rc = saveAllCursors(pBt, 0, 0); 4009 if( rc==SQLITE_OK ){ 4010 invalidateAllOverflowCache(pBt); 4011 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 4012 } 4013 if( rc==SQLITE_OK ){ 4014 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4015 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 4016 } 4017 }else{ 4018 rc = SQLITE_DONE; 4019 } 4020 } 4021 sqlite3BtreeLeave(p); 4022 return rc; 4023 } 4024 4025 /* 4026 ** This routine is called prior to sqlite3PagerCommit when a transaction 4027 ** is committed for an auto-vacuum database. 4028 */ 4029 static int autoVacuumCommit(Btree *p){ 4030 int rc = SQLITE_OK; 4031 Pager *pPager; 4032 BtShared *pBt; 4033 sqlite3 *db; 4034 VVA_ONLY( int nRef ); 4035 4036 assert( p!=0 ); 4037 pBt = p->pBt; 4038 pPager = pBt->pPager; 4039 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 4040 4041 assert( sqlite3_mutex_held(pBt->mutex) ); 4042 invalidateAllOverflowCache(pBt); 4043 assert(pBt->autoVacuum); 4044 if( !pBt->incrVacuum ){ 4045 Pgno nFin; /* Number of pages in database after autovacuuming */ 4046 Pgno nFree; /* Number of pages on the freelist initially */ 4047 Pgno nVac; /* Number of pages to vacuum */ 4048 Pgno iFree; /* The next page to be freed */ 4049 Pgno nOrig; /* Database size before freeing */ 4050 4051 nOrig = btreePagecount(pBt); 4052 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 4053 /* It is not possible to create a database for which the final page 4054 ** is either a pointer-map page or the pending-byte page. If one 4055 ** is encountered, this indicates corruption. 4056 */ 4057 return SQLITE_CORRUPT_BKPT; 4058 } 4059 4060 nFree = get4byte(&pBt->pPage1->aData[36]); 4061 db = p->db; 4062 if( db->xAutovacPages ){ 4063 int iDb; 4064 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4065 if( db->aDb[iDb].pBt==p ) break; 4066 } 4067 nVac = db->xAutovacPages( 4068 db->pAutovacPagesArg, 4069 db->aDb[iDb].zDbSName, 4070 nOrig, 4071 nFree, 4072 pBt->pageSize 4073 ); 4074 if( nVac>nFree ){ 4075 nVac = nFree; 4076 } 4077 if( nVac==0 ){ 4078 return SQLITE_OK; 4079 } 4080 }else{ 4081 nVac = nFree; 4082 } 4083 nFin = finalDbSize(pBt, nOrig, nVac); 4084 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4085 if( nFin<nOrig ){ 4086 rc = saveAllCursors(pBt, 0, 0); 4087 } 4088 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4089 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4090 } 4091 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4092 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4093 if( nVac==nFree ){ 4094 put4byte(&pBt->pPage1->aData[32], 0); 4095 put4byte(&pBt->pPage1->aData[36], 0); 4096 } 4097 put4byte(&pBt->pPage1->aData[28], nFin); 4098 pBt->bDoTruncate = 1; 4099 pBt->nPage = nFin; 4100 } 4101 if( rc!=SQLITE_OK ){ 4102 sqlite3PagerRollback(pPager); 4103 } 4104 } 4105 4106 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4107 return rc; 4108 } 4109 4110 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4111 # define setChildPtrmaps(x) SQLITE_OK 4112 #endif 4113 4114 /* 4115 ** This routine does the first phase of a two-phase commit. This routine 4116 ** causes a rollback journal to be created (if it does not already exist) 4117 ** and populated with enough information so that if a power loss occurs 4118 ** the database can be restored to its original state by playing back 4119 ** the journal. Then the contents of the journal are flushed out to 4120 ** the disk. After the journal is safely on oxide, the changes to the 4121 ** database are written into the database file and flushed to oxide. 4122 ** At the end of this call, the rollback journal still exists on the 4123 ** disk and we are still holding all locks, so the transaction has not 4124 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4125 ** commit process. 4126 ** 4127 ** This call is a no-op if no write-transaction is currently active on pBt. 4128 ** 4129 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4130 ** the name of a super-journal file that should be written into the 4131 ** individual journal file, or is NULL, indicating no super-journal file 4132 ** (single database transaction). 4133 ** 4134 ** When this is called, the super-journal should already have been 4135 ** created, populated with this journal pointer and synced to disk. 4136 ** 4137 ** Once this is routine has returned, the only thing required to commit 4138 ** the write-transaction for this database file is to delete the journal. 4139 */ 4140 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4141 int rc = SQLITE_OK; 4142 if( p->inTrans==TRANS_WRITE ){ 4143 BtShared *pBt = p->pBt; 4144 sqlite3BtreeEnter(p); 4145 #ifndef SQLITE_OMIT_AUTOVACUUM 4146 if( pBt->autoVacuum ){ 4147 rc = autoVacuumCommit(p); 4148 if( rc!=SQLITE_OK ){ 4149 sqlite3BtreeLeave(p); 4150 return rc; 4151 } 4152 } 4153 if( pBt->bDoTruncate ){ 4154 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4155 } 4156 #endif 4157 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4158 sqlite3BtreeLeave(p); 4159 } 4160 return rc; 4161 } 4162 4163 /* 4164 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4165 ** at the conclusion of a transaction. 4166 */ 4167 static void btreeEndTransaction(Btree *p){ 4168 BtShared *pBt = p->pBt; 4169 sqlite3 *db = p->db; 4170 assert( sqlite3BtreeHoldsMutex(p) ); 4171 4172 #ifndef SQLITE_OMIT_AUTOVACUUM 4173 pBt->bDoTruncate = 0; 4174 #endif 4175 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4176 /* If there are other active statements that belong to this database 4177 ** handle, downgrade to a read-only transaction. The other statements 4178 ** may still be reading from the database. */ 4179 downgradeAllSharedCacheTableLocks(p); 4180 p->inTrans = TRANS_READ; 4181 }else{ 4182 /* If the handle had any kind of transaction open, decrement the 4183 ** transaction count of the shared btree. If the transaction count 4184 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4185 ** call below will unlock the pager. */ 4186 if( p->inTrans!=TRANS_NONE ){ 4187 clearAllSharedCacheTableLocks(p); 4188 pBt->nTransaction--; 4189 if( 0==pBt->nTransaction ){ 4190 pBt->inTransaction = TRANS_NONE; 4191 } 4192 } 4193 4194 /* Set the current transaction state to TRANS_NONE and unlock the 4195 ** pager if this call closed the only read or write transaction. */ 4196 p->inTrans = TRANS_NONE; 4197 unlockBtreeIfUnused(pBt); 4198 } 4199 4200 btreeIntegrity(p); 4201 } 4202 4203 /* 4204 ** Commit the transaction currently in progress. 4205 ** 4206 ** This routine implements the second phase of a 2-phase commit. The 4207 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4208 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4209 ** routine did all the work of writing information out to disk and flushing the 4210 ** contents so that they are written onto the disk platter. All this 4211 ** routine has to do is delete or truncate or zero the header in the 4212 ** the rollback journal (which causes the transaction to commit) and 4213 ** drop locks. 4214 ** 4215 ** Normally, if an error occurs while the pager layer is attempting to 4216 ** finalize the underlying journal file, this function returns an error and 4217 ** the upper layer will attempt a rollback. However, if the second argument 4218 ** is non-zero then this b-tree transaction is part of a multi-file 4219 ** transaction. In this case, the transaction has already been committed 4220 ** (by deleting a super-journal file) and the caller will ignore this 4221 ** functions return code. So, even if an error occurs in the pager layer, 4222 ** reset the b-tree objects internal state to indicate that the write 4223 ** transaction has been closed. This is quite safe, as the pager will have 4224 ** transitioned to the error state. 4225 ** 4226 ** This will release the write lock on the database file. If there 4227 ** are no active cursors, it also releases the read lock. 4228 */ 4229 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4230 4231 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4232 sqlite3BtreeEnter(p); 4233 btreeIntegrity(p); 4234 4235 /* If the handle has a write-transaction open, commit the shared-btrees 4236 ** transaction and set the shared state to TRANS_READ. 4237 */ 4238 if( p->inTrans==TRANS_WRITE ){ 4239 int rc; 4240 BtShared *pBt = p->pBt; 4241 assert( pBt->inTransaction==TRANS_WRITE ); 4242 assert( pBt->nTransaction>0 ); 4243 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4244 if( rc!=SQLITE_OK && bCleanup==0 ){ 4245 sqlite3BtreeLeave(p); 4246 return rc; 4247 } 4248 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4249 pBt->inTransaction = TRANS_READ; 4250 btreeClearHasContent(pBt); 4251 } 4252 4253 btreeEndTransaction(p); 4254 sqlite3BtreeLeave(p); 4255 return SQLITE_OK; 4256 } 4257 4258 /* 4259 ** Do both phases of a commit. 4260 */ 4261 int sqlite3BtreeCommit(Btree *p){ 4262 int rc; 4263 sqlite3BtreeEnter(p); 4264 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4265 if( rc==SQLITE_OK ){ 4266 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4267 } 4268 sqlite3BtreeLeave(p); 4269 return rc; 4270 } 4271 4272 /* 4273 ** This routine sets the state to CURSOR_FAULT and the error 4274 ** code to errCode for every cursor on any BtShared that pBtree 4275 ** references. Or if the writeOnly flag is set to 1, then only 4276 ** trip write cursors and leave read cursors unchanged. 4277 ** 4278 ** Every cursor is a candidate to be tripped, including cursors 4279 ** that belong to other database connections that happen to be 4280 ** sharing the cache with pBtree. 4281 ** 4282 ** This routine gets called when a rollback occurs. If the writeOnly 4283 ** flag is true, then only write-cursors need be tripped - read-only 4284 ** cursors save their current positions so that they may continue 4285 ** following the rollback. Or, if writeOnly is false, all cursors are 4286 ** tripped. In general, writeOnly is false if the transaction being 4287 ** rolled back modified the database schema. In this case b-tree root 4288 ** pages may be moved or deleted from the database altogether, making 4289 ** it unsafe for read cursors to continue. 4290 ** 4291 ** If the writeOnly flag is true and an error is encountered while 4292 ** saving the current position of a read-only cursor, all cursors, 4293 ** including all read-cursors are tripped. 4294 ** 4295 ** SQLITE_OK is returned if successful, or if an error occurs while 4296 ** saving a cursor position, an SQLite error code. 4297 */ 4298 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4299 BtCursor *p; 4300 int rc = SQLITE_OK; 4301 4302 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4303 if( pBtree ){ 4304 sqlite3BtreeEnter(pBtree); 4305 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4306 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4307 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4308 rc = saveCursorPosition(p); 4309 if( rc!=SQLITE_OK ){ 4310 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4311 break; 4312 } 4313 } 4314 }else{ 4315 sqlite3BtreeClearCursor(p); 4316 p->eState = CURSOR_FAULT; 4317 p->skipNext = errCode; 4318 } 4319 btreeReleaseAllCursorPages(p); 4320 } 4321 sqlite3BtreeLeave(pBtree); 4322 } 4323 return rc; 4324 } 4325 4326 /* 4327 ** Set the pBt->nPage field correctly, according to the current 4328 ** state of the database. Assume pBt->pPage1 is valid. 4329 */ 4330 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4331 int nPage = get4byte(&pPage1->aData[28]); 4332 testcase( nPage==0 ); 4333 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4334 testcase( pBt->nPage!=(u32)nPage ); 4335 pBt->nPage = nPage; 4336 } 4337 4338 /* 4339 ** Rollback the transaction in progress. 4340 ** 4341 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4342 ** Only write cursors are tripped if writeOnly is true but all cursors are 4343 ** tripped if writeOnly is false. Any attempt to use 4344 ** a tripped cursor will result in an error. 4345 ** 4346 ** This will release the write lock on the database file. If there 4347 ** are no active cursors, it also releases the read lock. 4348 */ 4349 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4350 int rc; 4351 BtShared *pBt = p->pBt; 4352 MemPage *pPage1; 4353 4354 assert( writeOnly==1 || writeOnly==0 ); 4355 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4356 sqlite3BtreeEnter(p); 4357 if( tripCode==SQLITE_OK ){ 4358 rc = tripCode = saveAllCursors(pBt, 0, 0); 4359 if( rc ) writeOnly = 0; 4360 }else{ 4361 rc = SQLITE_OK; 4362 } 4363 if( tripCode ){ 4364 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4365 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4366 if( rc2!=SQLITE_OK ) rc = rc2; 4367 } 4368 btreeIntegrity(p); 4369 4370 if( p->inTrans==TRANS_WRITE ){ 4371 int rc2; 4372 4373 assert( TRANS_WRITE==pBt->inTransaction ); 4374 rc2 = sqlite3PagerRollback(pBt->pPager); 4375 if( rc2!=SQLITE_OK ){ 4376 rc = rc2; 4377 } 4378 4379 /* The rollback may have destroyed the pPage1->aData value. So 4380 ** call btreeGetPage() on page 1 again to make 4381 ** sure pPage1->aData is set correctly. */ 4382 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4383 btreeSetNPage(pBt, pPage1); 4384 releasePageOne(pPage1); 4385 } 4386 assert( countValidCursors(pBt, 1)==0 ); 4387 pBt->inTransaction = TRANS_READ; 4388 btreeClearHasContent(pBt); 4389 } 4390 4391 btreeEndTransaction(p); 4392 sqlite3BtreeLeave(p); 4393 return rc; 4394 } 4395 4396 /* 4397 ** Start a statement subtransaction. The subtransaction can be rolled 4398 ** back independently of the main transaction. You must start a transaction 4399 ** before starting a subtransaction. The subtransaction is ended automatically 4400 ** if the main transaction commits or rolls back. 4401 ** 4402 ** Statement subtransactions are used around individual SQL statements 4403 ** that are contained within a BEGIN...COMMIT block. If a constraint 4404 ** error occurs within the statement, the effect of that one statement 4405 ** can be rolled back without having to rollback the entire transaction. 4406 ** 4407 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4408 ** value passed as the second parameter is the total number of savepoints, 4409 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4410 ** are no active savepoints and no other statement-transactions open, 4411 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4412 ** using the sqlite3BtreeSavepoint() function. 4413 */ 4414 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4415 int rc; 4416 BtShared *pBt = p->pBt; 4417 sqlite3BtreeEnter(p); 4418 assert( p->inTrans==TRANS_WRITE ); 4419 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4420 assert( iStatement>0 ); 4421 assert( iStatement>p->db->nSavepoint ); 4422 assert( pBt->inTransaction==TRANS_WRITE ); 4423 /* At the pager level, a statement transaction is a savepoint with 4424 ** an index greater than all savepoints created explicitly using 4425 ** SQL statements. It is illegal to open, release or rollback any 4426 ** such savepoints while the statement transaction savepoint is active. 4427 */ 4428 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4429 sqlite3BtreeLeave(p); 4430 return rc; 4431 } 4432 4433 /* 4434 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4435 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4436 ** savepoint identified by parameter iSavepoint, depending on the value 4437 ** of op. 4438 ** 4439 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4440 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4441 ** contents of the entire transaction are rolled back. This is different 4442 ** from a normal transaction rollback, as no locks are released and the 4443 ** transaction remains open. 4444 */ 4445 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4446 int rc = SQLITE_OK; 4447 if( p && p->inTrans==TRANS_WRITE ){ 4448 BtShared *pBt = p->pBt; 4449 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4450 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4451 sqlite3BtreeEnter(p); 4452 if( op==SAVEPOINT_ROLLBACK ){ 4453 rc = saveAllCursors(pBt, 0, 0); 4454 } 4455 if( rc==SQLITE_OK ){ 4456 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4457 } 4458 if( rc==SQLITE_OK ){ 4459 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4460 pBt->nPage = 0; 4461 } 4462 rc = newDatabase(pBt); 4463 btreeSetNPage(pBt, pBt->pPage1); 4464 4465 /* pBt->nPage might be zero if the database was corrupt when 4466 ** the transaction was started. Otherwise, it must be at least 1. */ 4467 assert( CORRUPT_DB || pBt->nPage>0 ); 4468 } 4469 sqlite3BtreeLeave(p); 4470 } 4471 return rc; 4472 } 4473 4474 /* 4475 ** Create a new cursor for the BTree whose root is on the page 4476 ** iTable. If a read-only cursor is requested, it is assumed that 4477 ** the caller already has at least a read-only transaction open 4478 ** on the database already. If a write-cursor is requested, then 4479 ** the caller is assumed to have an open write transaction. 4480 ** 4481 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4482 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4483 ** can be used for reading or for writing if other conditions for writing 4484 ** are also met. These are the conditions that must be met in order 4485 ** for writing to be allowed: 4486 ** 4487 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4488 ** 4489 ** 2: Other database connections that share the same pager cache 4490 ** but which are not in the READ_UNCOMMITTED state may not have 4491 ** cursors open with wrFlag==0 on the same table. Otherwise 4492 ** the changes made by this write cursor would be visible to 4493 ** the read cursors in the other database connection. 4494 ** 4495 ** 3: The database must be writable (not on read-only media) 4496 ** 4497 ** 4: There must be an active transaction. 4498 ** 4499 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4500 ** is set. If FORDELETE is set, that is a hint to the implementation that 4501 ** this cursor will only be used to seek to and delete entries of an index 4502 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4503 ** this implementation. But in a hypothetical alternative storage engine 4504 ** in which index entries are automatically deleted when corresponding table 4505 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4506 ** operations on this cursor can be no-ops and all READ operations can 4507 ** return a null row (2-bytes: 0x01 0x00). 4508 ** 4509 ** No checking is done to make sure that page iTable really is the 4510 ** root page of a b-tree. If it is not, then the cursor acquired 4511 ** will not work correctly. 4512 ** 4513 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4514 ** on pCur to initialize the memory space prior to invoking this routine. 4515 */ 4516 static int btreeCursor( 4517 Btree *p, /* The btree */ 4518 Pgno iTable, /* Root page of table to open */ 4519 int wrFlag, /* 1 to write. 0 read-only */ 4520 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4521 BtCursor *pCur /* Space for new cursor */ 4522 ){ 4523 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4524 BtCursor *pX; /* Looping over other all cursors */ 4525 4526 assert( sqlite3BtreeHoldsMutex(p) ); 4527 assert( wrFlag==0 4528 || wrFlag==BTREE_WRCSR 4529 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4530 ); 4531 4532 /* The following assert statements verify that if this is a sharable 4533 ** b-tree database, the connection is holding the required table locks, 4534 ** and that no other connection has any open cursor that conflicts with 4535 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4536 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4537 || iTable<1 ); 4538 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4539 4540 /* Assert that the caller has opened the required transaction. */ 4541 assert( p->inTrans>TRANS_NONE ); 4542 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4543 assert( pBt->pPage1 && pBt->pPage1->aData ); 4544 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4545 4546 if( iTable<=1 ){ 4547 if( iTable<1 ){ 4548 return SQLITE_CORRUPT_BKPT; 4549 }else if( btreePagecount(pBt)==0 ){ 4550 assert( wrFlag==0 ); 4551 iTable = 0; 4552 } 4553 } 4554 4555 /* Now that no other errors can occur, finish filling in the BtCursor 4556 ** variables and link the cursor into the BtShared list. */ 4557 pCur->pgnoRoot = iTable; 4558 pCur->iPage = -1; 4559 pCur->pKeyInfo = pKeyInfo; 4560 pCur->pBtree = p; 4561 pCur->pBt = pBt; 4562 pCur->curFlags = 0; 4563 /* If there are two or more cursors on the same btree, then all such 4564 ** cursors *must* have the BTCF_Multiple flag set. */ 4565 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4566 if( pX->pgnoRoot==iTable ){ 4567 pX->curFlags |= BTCF_Multiple; 4568 pCur->curFlags = BTCF_Multiple; 4569 } 4570 } 4571 pCur->eState = CURSOR_INVALID; 4572 pCur->pNext = pBt->pCursor; 4573 pBt->pCursor = pCur; 4574 if( wrFlag ){ 4575 pCur->curFlags |= BTCF_WriteFlag; 4576 pCur->curPagerFlags = 0; 4577 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4578 }else{ 4579 pCur->curPagerFlags = PAGER_GET_READONLY; 4580 } 4581 return SQLITE_OK; 4582 } 4583 static int btreeCursorWithLock( 4584 Btree *p, /* The btree */ 4585 Pgno iTable, /* Root page of table to open */ 4586 int wrFlag, /* 1 to write. 0 read-only */ 4587 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4588 BtCursor *pCur /* Space for new cursor */ 4589 ){ 4590 int rc; 4591 sqlite3BtreeEnter(p); 4592 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4593 sqlite3BtreeLeave(p); 4594 return rc; 4595 } 4596 int sqlite3BtreeCursor( 4597 Btree *p, /* The btree */ 4598 Pgno iTable, /* Root page of table to open */ 4599 int wrFlag, /* 1 to write. 0 read-only */ 4600 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4601 BtCursor *pCur /* Write new cursor here */ 4602 ){ 4603 if( p->sharable ){ 4604 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4605 }else{ 4606 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4607 } 4608 } 4609 4610 /* 4611 ** Return the size of a BtCursor object in bytes. 4612 ** 4613 ** This interfaces is needed so that users of cursors can preallocate 4614 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4615 ** to users so they cannot do the sizeof() themselves - they must call 4616 ** this routine. 4617 */ 4618 int sqlite3BtreeCursorSize(void){ 4619 return ROUND8(sizeof(BtCursor)); 4620 } 4621 4622 /* 4623 ** Initialize memory that will be converted into a BtCursor object. 4624 ** 4625 ** The simple approach here would be to memset() the entire object 4626 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4627 ** do not need to be zeroed and they are large, so we can save a lot 4628 ** of run-time by skipping the initialization of those elements. 4629 */ 4630 void sqlite3BtreeCursorZero(BtCursor *p){ 4631 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4632 } 4633 4634 /* 4635 ** Close a cursor. The read lock on the database file is released 4636 ** when the last cursor is closed. 4637 */ 4638 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4639 Btree *pBtree = pCur->pBtree; 4640 if( pBtree ){ 4641 BtShared *pBt = pCur->pBt; 4642 sqlite3BtreeEnter(pBtree); 4643 assert( pBt->pCursor!=0 ); 4644 if( pBt->pCursor==pCur ){ 4645 pBt->pCursor = pCur->pNext; 4646 }else{ 4647 BtCursor *pPrev = pBt->pCursor; 4648 do{ 4649 if( pPrev->pNext==pCur ){ 4650 pPrev->pNext = pCur->pNext; 4651 break; 4652 } 4653 pPrev = pPrev->pNext; 4654 }while( ALWAYS(pPrev) ); 4655 } 4656 btreeReleaseAllCursorPages(pCur); 4657 unlockBtreeIfUnused(pBt); 4658 sqlite3_free(pCur->aOverflow); 4659 sqlite3_free(pCur->pKey); 4660 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4661 /* Since the BtShared is not sharable, there is no need to 4662 ** worry about the missing sqlite3BtreeLeave() call here. */ 4663 assert( pBtree->sharable==0 ); 4664 sqlite3BtreeClose(pBtree); 4665 }else{ 4666 sqlite3BtreeLeave(pBtree); 4667 } 4668 pCur->pBtree = 0; 4669 } 4670 return SQLITE_OK; 4671 } 4672 4673 /* 4674 ** Make sure the BtCursor* given in the argument has a valid 4675 ** BtCursor.info structure. If it is not already valid, call 4676 ** btreeParseCell() to fill it in. 4677 ** 4678 ** BtCursor.info is a cache of the information in the current cell. 4679 ** Using this cache reduces the number of calls to btreeParseCell(). 4680 */ 4681 #ifndef NDEBUG 4682 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4683 if( a->nKey!=b->nKey ) return 0; 4684 if( a->pPayload!=b->pPayload ) return 0; 4685 if( a->nPayload!=b->nPayload ) return 0; 4686 if( a->nLocal!=b->nLocal ) return 0; 4687 if( a->nSize!=b->nSize ) return 0; 4688 return 1; 4689 } 4690 static void assertCellInfo(BtCursor *pCur){ 4691 CellInfo info; 4692 memset(&info, 0, sizeof(info)); 4693 btreeParseCell(pCur->pPage, pCur->ix, &info); 4694 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4695 } 4696 #else 4697 #define assertCellInfo(x) 4698 #endif 4699 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4700 if( pCur->info.nSize==0 ){ 4701 pCur->curFlags |= BTCF_ValidNKey; 4702 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4703 }else{ 4704 assertCellInfo(pCur); 4705 } 4706 } 4707 4708 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4709 /* 4710 ** Return true if the given BtCursor is valid. A valid cursor is one 4711 ** that is currently pointing to a row in a (non-empty) table. 4712 ** This is a verification routine is used only within assert() statements. 4713 */ 4714 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4715 return pCur && pCur->eState==CURSOR_VALID; 4716 } 4717 #endif /* NDEBUG */ 4718 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4719 assert( pCur!=0 ); 4720 return pCur->eState==CURSOR_VALID; 4721 } 4722 4723 /* 4724 ** Return the value of the integer key or "rowid" for a table btree. 4725 ** This routine is only valid for a cursor that is pointing into a 4726 ** ordinary table btree. If the cursor points to an index btree or 4727 ** is invalid, the result of this routine is undefined. 4728 */ 4729 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4730 assert( cursorHoldsMutex(pCur) ); 4731 assert( pCur->eState==CURSOR_VALID ); 4732 assert( pCur->curIntKey ); 4733 getCellInfo(pCur); 4734 return pCur->info.nKey; 4735 } 4736 4737 /* 4738 ** Pin or unpin a cursor. 4739 */ 4740 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4741 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4742 pCur->curFlags |= BTCF_Pinned; 4743 } 4744 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4745 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4746 pCur->curFlags &= ~BTCF_Pinned; 4747 } 4748 4749 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4750 /* 4751 ** Return the offset into the database file for the start of the 4752 ** payload to which the cursor is pointing. 4753 */ 4754 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4755 assert( cursorHoldsMutex(pCur) ); 4756 assert( pCur->eState==CURSOR_VALID ); 4757 getCellInfo(pCur); 4758 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4759 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4760 } 4761 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4762 4763 /* 4764 ** Return the number of bytes of payload for the entry that pCur is 4765 ** currently pointing to. For table btrees, this will be the amount 4766 ** of data. For index btrees, this will be the size of the key. 4767 ** 4768 ** The caller must guarantee that the cursor is pointing to a non-NULL 4769 ** valid entry. In other words, the calling procedure must guarantee 4770 ** that the cursor has Cursor.eState==CURSOR_VALID. 4771 */ 4772 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4773 assert( cursorHoldsMutex(pCur) ); 4774 assert( pCur->eState==CURSOR_VALID ); 4775 getCellInfo(pCur); 4776 return pCur->info.nPayload; 4777 } 4778 4779 /* 4780 ** Return an upper bound on the size of any record for the table 4781 ** that the cursor is pointing into. 4782 ** 4783 ** This is an optimization. Everything will still work if this 4784 ** routine always returns 2147483647 (which is the largest record 4785 ** that SQLite can handle) or more. But returning a smaller value might 4786 ** prevent large memory allocations when trying to interpret a 4787 ** corrupt datrabase. 4788 ** 4789 ** The current implementation merely returns the size of the underlying 4790 ** database file. 4791 */ 4792 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4793 assert( cursorHoldsMutex(pCur) ); 4794 assert( pCur->eState==CURSOR_VALID ); 4795 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4796 } 4797 4798 /* 4799 ** Given the page number of an overflow page in the database (parameter 4800 ** ovfl), this function finds the page number of the next page in the 4801 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4802 ** pointer-map data instead of reading the content of page ovfl to do so. 4803 ** 4804 ** If an error occurs an SQLite error code is returned. Otherwise: 4805 ** 4806 ** The page number of the next overflow page in the linked list is 4807 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4808 ** list, *pPgnoNext is set to zero. 4809 ** 4810 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4811 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4812 ** reference. It is the responsibility of the caller to call releasePage() 4813 ** on *ppPage to free the reference. In no reference was obtained (because 4814 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4815 ** *ppPage is set to zero. 4816 */ 4817 static int getOverflowPage( 4818 BtShared *pBt, /* The database file */ 4819 Pgno ovfl, /* Current overflow page number */ 4820 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4821 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4822 ){ 4823 Pgno next = 0; 4824 MemPage *pPage = 0; 4825 int rc = SQLITE_OK; 4826 4827 assert( sqlite3_mutex_held(pBt->mutex) ); 4828 assert(pPgnoNext); 4829 4830 #ifndef SQLITE_OMIT_AUTOVACUUM 4831 /* Try to find the next page in the overflow list using the 4832 ** autovacuum pointer-map pages. Guess that the next page in 4833 ** the overflow list is page number (ovfl+1). If that guess turns 4834 ** out to be wrong, fall back to loading the data of page 4835 ** number ovfl to determine the next page number. 4836 */ 4837 if( pBt->autoVacuum ){ 4838 Pgno pgno; 4839 Pgno iGuess = ovfl+1; 4840 u8 eType; 4841 4842 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4843 iGuess++; 4844 } 4845 4846 if( iGuess<=btreePagecount(pBt) ){ 4847 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4848 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4849 next = iGuess; 4850 rc = SQLITE_DONE; 4851 } 4852 } 4853 } 4854 #endif 4855 4856 assert( next==0 || rc==SQLITE_DONE ); 4857 if( rc==SQLITE_OK ){ 4858 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4859 assert( rc==SQLITE_OK || pPage==0 ); 4860 if( rc==SQLITE_OK ){ 4861 next = get4byte(pPage->aData); 4862 } 4863 } 4864 4865 *pPgnoNext = next; 4866 if( ppPage ){ 4867 *ppPage = pPage; 4868 }else{ 4869 releasePage(pPage); 4870 } 4871 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4872 } 4873 4874 /* 4875 ** Copy data from a buffer to a page, or from a page to a buffer. 4876 ** 4877 ** pPayload is a pointer to data stored on database page pDbPage. 4878 ** If argument eOp is false, then nByte bytes of data are copied 4879 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4880 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4881 ** of data are copied from the buffer pBuf to pPayload. 4882 ** 4883 ** SQLITE_OK is returned on success, otherwise an error code. 4884 */ 4885 static int copyPayload( 4886 void *pPayload, /* Pointer to page data */ 4887 void *pBuf, /* Pointer to buffer */ 4888 int nByte, /* Number of bytes to copy */ 4889 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4890 DbPage *pDbPage /* Page containing pPayload */ 4891 ){ 4892 if( eOp ){ 4893 /* Copy data from buffer to page (a write operation) */ 4894 int rc = sqlite3PagerWrite(pDbPage); 4895 if( rc!=SQLITE_OK ){ 4896 return rc; 4897 } 4898 memcpy(pPayload, pBuf, nByte); 4899 }else{ 4900 /* Copy data from page to buffer (a read operation) */ 4901 memcpy(pBuf, pPayload, nByte); 4902 } 4903 return SQLITE_OK; 4904 } 4905 4906 /* 4907 ** This function is used to read or overwrite payload information 4908 ** for the entry that the pCur cursor is pointing to. The eOp 4909 ** argument is interpreted as follows: 4910 ** 4911 ** 0: The operation is a read. Populate the overflow cache. 4912 ** 1: The operation is a write. Populate the overflow cache. 4913 ** 4914 ** A total of "amt" bytes are read or written beginning at "offset". 4915 ** Data is read to or from the buffer pBuf. 4916 ** 4917 ** The content being read or written might appear on the main page 4918 ** or be scattered out on multiple overflow pages. 4919 ** 4920 ** If the current cursor entry uses one or more overflow pages 4921 ** this function may allocate space for and lazily populate 4922 ** the overflow page-list cache array (BtCursor.aOverflow). 4923 ** Subsequent calls use this cache to make seeking to the supplied offset 4924 ** more efficient. 4925 ** 4926 ** Once an overflow page-list cache has been allocated, it must be 4927 ** invalidated if some other cursor writes to the same table, or if 4928 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4929 ** mode, the following events may invalidate an overflow page-list cache. 4930 ** 4931 ** * An incremental vacuum, 4932 ** * A commit in auto_vacuum="full" mode, 4933 ** * Creating a table (may require moving an overflow page). 4934 */ 4935 static int accessPayload( 4936 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4937 u32 offset, /* Begin reading this far into payload */ 4938 u32 amt, /* Read this many bytes */ 4939 unsigned char *pBuf, /* Write the bytes into this buffer */ 4940 int eOp /* zero to read. non-zero to write. */ 4941 ){ 4942 unsigned char *aPayload; 4943 int rc = SQLITE_OK; 4944 int iIdx = 0; 4945 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4946 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4947 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4948 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4949 #endif 4950 4951 assert( pPage ); 4952 assert( eOp==0 || eOp==1 ); 4953 assert( pCur->eState==CURSOR_VALID ); 4954 if( pCur->ix>=pPage->nCell ){ 4955 return SQLITE_CORRUPT_PAGE(pPage); 4956 } 4957 assert( cursorHoldsMutex(pCur) ); 4958 4959 getCellInfo(pCur); 4960 aPayload = pCur->info.pPayload; 4961 assert( offset+amt <= pCur->info.nPayload ); 4962 4963 assert( aPayload > pPage->aData ); 4964 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4965 /* Trying to read or write past the end of the data is an error. The 4966 ** conditional above is really: 4967 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4968 ** but is recast into its current form to avoid integer overflow problems 4969 */ 4970 return SQLITE_CORRUPT_PAGE(pPage); 4971 } 4972 4973 /* Check if data must be read/written to/from the btree page itself. */ 4974 if( offset<pCur->info.nLocal ){ 4975 int a = amt; 4976 if( a+offset>pCur->info.nLocal ){ 4977 a = pCur->info.nLocal - offset; 4978 } 4979 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4980 offset = 0; 4981 pBuf += a; 4982 amt -= a; 4983 }else{ 4984 offset -= pCur->info.nLocal; 4985 } 4986 4987 4988 if( rc==SQLITE_OK && amt>0 ){ 4989 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4990 Pgno nextPage; 4991 4992 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4993 4994 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4995 ** 4996 ** The aOverflow[] array is sized at one entry for each overflow page 4997 ** in the overflow chain. The page number of the first overflow page is 4998 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4999 ** means "not yet known" (the cache is lazily populated). 5000 */ 5001 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 5002 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 5003 if( pCur->aOverflow==0 5004 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 5005 ){ 5006 Pgno *aNew = (Pgno*)sqlite3Realloc( 5007 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 5008 ); 5009 if( aNew==0 ){ 5010 return SQLITE_NOMEM_BKPT; 5011 }else{ 5012 pCur->aOverflow = aNew; 5013 } 5014 } 5015 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 5016 pCur->curFlags |= BTCF_ValidOvfl; 5017 }else{ 5018 /* If the overflow page-list cache has been allocated and the 5019 ** entry for the first required overflow page is valid, skip 5020 ** directly to it. 5021 */ 5022 if( pCur->aOverflow[offset/ovflSize] ){ 5023 iIdx = (offset/ovflSize); 5024 nextPage = pCur->aOverflow[iIdx]; 5025 offset = (offset%ovflSize); 5026 } 5027 } 5028 5029 assert( rc==SQLITE_OK && amt>0 ); 5030 while( nextPage ){ 5031 /* If required, populate the overflow page-list cache. */ 5032 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 5033 assert( pCur->aOverflow[iIdx]==0 5034 || pCur->aOverflow[iIdx]==nextPage 5035 || CORRUPT_DB ); 5036 pCur->aOverflow[iIdx] = nextPage; 5037 5038 if( offset>=ovflSize ){ 5039 /* The only reason to read this page is to obtain the page 5040 ** number for the next page in the overflow chain. The page 5041 ** data is not required. So first try to lookup the overflow 5042 ** page-list cache, if any, then fall back to the getOverflowPage() 5043 ** function. 5044 */ 5045 assert( pCur->curFlags & BTCF_ValidOvfl ); 5046 assert( pCur->pBtree->db==pBt->db ); 5047 if( pCur->aOverflow[iIdx+1] ){ 5048 nextPage = pCur->aOverflow[iIdx+1]; 5049 }else{ 5050 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 5051 } 5052 offset -= ovflSize; 5053 }else{ 5054 /* Need to read this page properly. It contains some of the 5055 ** range of data that is being read (eOp==0) or written (eOp!=0). 5056 */ 5057 int a = amt; 5058 if( a + offset > ovflSize ){ 5059 a = ovflSize - offset; 5060 } 5061 5062 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5063 /* If all the following are true: 5064 ** 5065 ** 1) this is a read operation, and 5066 ** 2) data is required from the start of this overflow page, and 5067 ** 3) there are no dirty pages in the page-cache 5068 ** 4) the database is file-backed, and 5069 ** 5) the page is not in the WAL file 5070 ** 6) at least 4 bytes have already been read into the output buffer 5071 ** 5072 ** then data can be read directly from the database file into the 5073 ** output buffer, bypassing the page-cache altogether. This speeds 5074 ** up loading large records that span many overflow pages. 5075 */ 5076 if( eOp==0 /* (1) */ 5077 && offset==0 /* (2) */ 5078 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5079 && &pBuf[-4]>=pBufStart /* (6) */ 5080 ){ 5081 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5082 u8 aSave[4]; 5083 u8 *aWrite = &pBuf[-4]; 5084 assert( aWrite>=pBufStart ); /* due to (6) */ 5085 memcpy(aSave, aWrite, 4); 5086 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5087 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5088 nextPage = get4byte(aWrite); 5089 memcpy(aWrite, aSave, 4); 5090 }else 5091 #endif 5092 5093 { 5094 DbPage *pDbPage; 5095 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5096 (eOp==0 ? PAGER_GET_READONLY : 0) 5097 ); 5098 if( rc==SQLITE_OK ){ 5099 aPayload = sqlite3PagerGetData(pDbPage); 5100 nextPage = get4byte(aPayload); 5101 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5102 sqlite3PagerUnref(pDbPage); 5103 offset = 0; 5104 } 5105 } 5106 amt -= a; 5107 if( amt==0 ) return rc; 5108 pBuf += a; 5109 } 5110 if( rc ) break; 5111 iIdx++; 5112 } 5113 } 5114 5115 if( rc==SQLITE_OK && amt>0 ){ 5116 /* Overflow chain ends prematurely */ 5117 return SQLITE_CORRUPT_PAGE(pPage); 5118 } 5119 return rc; 5120 } 5121 5122 /* 5123 ** Read part of the payload for the row at which that cursor pCur is currently 5124 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5125 ** begins at "offset". 5126 ** 5127 ** pCur can be pointing to either a table or an index b-tree. 5128 ** If pointing to a table btree, then the content section is read. If 5129 ** pCur is pointing to an index b-tree then the key section is read. 5130 ** 5131 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5132 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5133 ** cursor might be invalid or might need to be restored before being read. 5134 ** 5135 ** Return SQLITE_OK on success or an error code if anything goes 5136 ** wrong. An error is returned if "offset+amt" is larger than 5137 ** the available payload. 5138 */ 5139 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5140 assert( cursorHoldsMutex(pCur) ); 5141 assert( pCur->eState==CURSOR_VALID ); 5142 assert( pCur->iPage>=0 && pCur->pPage ); 5143 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5144 } 5145 5146 /* 5147 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5148 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5149 ** interface. 5150 */ 5151 #ifndef SQLITE_OMIT_INCRBLOB 5152 static SQLITE_NOINLINE int accessPayloadChecked( 5153 BtCursor *pCur, 5154 u32 offset, 5155 u32 amt, 5156 void *pBuf 5157 ){ 5158 int rc; 5159 if ( pCur->eState==CURSOR_INVALID ){ 5160 return SQLITE_ABORT; 5161 } 5162 assert( cursorOwnsBtShared(pCur) ); 5163 rc = btreeRestoreCursorPosition(pCur); 5164 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5165 } 5166 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5167 if( pCur->eState==CURSOR_VALID ){ 5168 assert( cursorOwnsBtShared(pCur) ); 5169 return accessPayload(pCur, offset, amt, pBuf, 0); 5170 }else{ 5171 return accessPayloadChecked(pCur, offset, amt, pBuf); 5172 } 5173 } 5174 #endif /* SQLITE_OMIT_INCRBLOB */ 5175 5176 /* 5177 ** Return a pointer to payload information from the entry that the 5178 ** pCur cursor is pointing to. The pointer is to the beginning of 5179 ** the key if index btrees (pPage->intKey==0) and is the data for 5180 ** table btrees (pPage->intKey==1). The number of bytes of available 5181 ** key/data is written into *pAmt. If *pAmt==0, then the value 5182 ** returned will not be a valid pointer. 5183 ** 5184 ** This routine is an optimization. It is common for the entire key 5185 ** and data to fit on the local page and for there to be no overflow 5186 ** pages. When that is so, this routine can be used to access the 5187 ** key and data without making a copy. If the key and/or data spills 5188 ** onto overflow pages, then accessPayload() must be used to reassemble 5189 ** the key/data and copy it into a preallocated buffer. 5190 ** 5191 ** The pointer returned by this routine looks directly into the cached 5192 ** page of the database. The data might change or move the next time 5193 ** any btree routine is called. 5194 */ 5195 static const void *fetchPayload( 5196 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5197 u32 *pAmt /* Write the number of available bytes here */ 5198 ){ 5199 int amt; 5200 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5201 assert( pCur->eState==CURSOR_VALID ); 5202 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5203 assert( cursorOwnsBtShared(pCur) ); 5204 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5205 assert( pCur->info.nSize>0 ); 5206 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5207 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5208 amt = pCur->info.nLocal; 5209 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5210 /* There is too little space on the page for the expected amount 5211 ** of local content. Database must be corrupt. */ 5212 assert( CORRUPT_DB ); 5213 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5214 } 5215 *pAmt = (u32)amt; 5216 return (void*)pCur->info.pPayload; 5217 } 5218 5219 5220 /* 5221 ** For the entry that cursor pCur is point to, return as 5222 ** many bytes of the key or data as are available on the local 5223 ** b-tree page. Write the number of available bytes into *pAmt. 5224 ** 5225 ** The pointer returned is ephemeral. The key/data may move 5226 ** or be destroyed on the next call to any Btree routine, 5227 ** including calls from other threads against the same cache. 5228 ** Hence, a mutex on the BtShared should be held prior to calling 5229 ** this routine. 5230 ** 5231 ** These routines is used to get quick access to key and data 5232 ** in the common case where no overflow pages are used. 5233 */ 5234 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5235 return fetchPayload(pCur, pAmt); 5236 } 5237 5238 5239 /* 5240 ** Move the cursor down to a new child page. The newPgno argument is the 5241 ** page number of the child page to move to. 5242 ** 5243 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5244 ** the new child page does not match the flags field of the parent (i.e. 5245 ** if an intkey page appears to be the parent of a non-intkey page, or 5246 ** vice-versa). 5247 */ 5248 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5249 BtShared *pBt = pCur->pBt; 5250 5251 assert( cursorOwnsBtShared(pCur) ); 5252 assert( pCur->eState==CURSOR_VALID ); 5253 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5254 assert( pCur->iPage>=0 ); 5255 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5256 return SQLITE_CORRUPT_BKPT; 5257 } 5258 pCur->info.nSize = 0; 5259 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5260 pCur->aiIdx[pCur->iPage] = pCur->ix; 5261 pCur->apPage[pCur->iPage] = pCur->pPage; 5262 pCur->ix = 0; 5263 pCur->iPage++; 5264 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5265 } 5266 5267 #ifdef SQLITE_DEBUG 5268 /* 5269 ** Page pParent is an internal (non-leaf) tree page. This function 5270 ** asserts that page number iChild is the left-child if the iIdx'th 5271 ** cell in page pParent. Or, if iIdx is equal to the total number of 5272 ** cells in pParent, that page number iChild is the right-child of 5273 ** the page. 5274 */ 5275 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5276 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5277 ** in a corrupt database */ 5278 assert( iIdx<=pParent->nCell ); 5279 if( iIdx==pParent->nCell ){ 5280 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5281 }else{ 5282 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5283 } 5284 } 5285 #else 5286 # define assertParentIndex(x,y,z) 5287 #endif 5288 5289 /* 5290 ** Move the cursor up to the parent page. 5291 ** 5292 ** pCur->idx is set to the cell index that contains the pointer 5293 ** to the page we are coming from. If we are coming from the 5294 ** right-most child page then pCur->idx is set to one more than 5295 ** the largest cell index. 5296 */ 5297 static void moveToParent(BtCursor *pCur){ 5298 MemPage *pLeaf; 5299 assert( cursorOwnsBtShared(pCur) ); 5300 assert( pCur->eState==CURSOR_VALID ); 5301 assert( pCur->iPage>0 ); 5302 assert( pCur->pPage ); 5303 assertParentIndex( 5304 pCur->apPage[pCur->iPage-1], 5305 pCur->aiIdx[pCur->iPage-1], 5306 pCur->pPage->pgno 5307 ); 5308 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5309 pCur->info.nSize = 0; 5310 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5311 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5312 pLeaf = pCur->pPage; 5313 pCur->pPage = pCur->apPage[--pCur->iPage]; 5314 releasePageNotNull(pLeaf); 5315 } 5316 5317 /* 5318 ** Move the cursor to point to the root page of its b-tree structure. 5319 ** 5320 ** If the table has a virtual root page, then the cursor is moved to point 5321 ** to the virtual root page instead of the actual root page. A table has a 5322 ** virtual root page when the actual root page contains no cells and a 5323 ** single child page. This can only happen with the table rooted at page 1. 5324 ** 5325 ** If the b-tree structure is empty, the cursor state is set to 5326 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5327 ** the cursor is set to point to the first cell located on the root 5328 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5329 ** 5330 ** If this function returns successfully, it may be assumed that the 5331 ** page-header flags indicate that the [virtual] root-page is the expected 5332 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5333 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5334 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5335 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5336 ** b-tree). 5337 */ 5338 static int moveToRoot(BtCursor *pCur){ 5339 MemPage *pRoot; 5340 int rc = SQLITE_OK; 5341 5342 assert( cursorOwnsBtShared(pCur) ); 5343 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5344 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5345 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5346 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5347 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5348 5349 if( pCur->iPage>=0 ){ 5350 if( pCur->iPage ){ 5351 releasePageNotNull(pCur->pPage); 5352 while( --pCur->iPage ){ 5353 releasePageNotNull(pCur->apPage[pCur->iPage]); 5354 } 5355 pRoot = pCur->pPage = pCur->apPage[0]; 5356 goto skip_init; 5357 } 5358 }else if( pCur->pgnoRoot==0 ){ 5359 pCur->eState = CURSOR_INVALID; 5360 return SQLITE_EMPTY; 5361 }else{ 5362 assert( pCur->iPage==(-1) ); 5363 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5364 if( pCur->eState==CURSOR_FAULT ){ 5365 assert( pCur->skipNext!=SQLITE_OK ); 5366 return pCur->skipNext; 5367 } 5368 sqlite3BtreeClearCursor(pCur); 5369 } 5370 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5371 0, pCur->curPagerFlags); 5372 if( rc!=SQLITE_OK ){ 5373 pCur->eState = CURSOR_INVALID; 5374 return rc; 5375 } 5376 pCur->iPage = 0; 5377 pCur->curIntKey = pCur->pPage->intKey; 5378 } 5379 pRoot = pCur->pPage; 5380 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); 5381 5382 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5383 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5384 ** NULL, the caller expects a table b-tree. If this is not the case, 5385 ** return an SQLITE_CORRUPT error. 5386 ** 5387 ** Earlier versions of SQLite assumed that this test could not fail 5388 ** if the root page was already loaded when this function was called (i.e. 5389 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5390 ** in such a way that page pRoot is linked into a second b-tree table 5391 ** (or the freelist). */ 5392 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5393 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5394 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5395 } 5396 5397 skip_init: 5398 pCur->ix = 0; 5399 pCur->info.nSize = 0; 5400 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5401 5402 if( pRoot->nCell>0 ){ 5403 pCur->eState = CURSOR_VALID; 5404 }else if( !pRoot->leaf ){ 5405 Pgno subpage; 5406 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5407 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5408 pCur->eState = CURSOR_VALID; 5409 rc = moveToChild(pCur, subpage); 5410 }else{ 5411 pCur->eState = CURSOR_INVALID; 5412 rc = SQLITE_EMPTY; 5413 } 5414 return rc; 5415 } 5416 5417 /* 5418 ** Move the cursor down to the left-most leaf entry beneath the 5419 ** entry to which it is currently pointing. 5420 ** 5421 ** The left-most leaf is the one with the smallest key - the first 5422 ** in ascending order. 5423 */ 5424 static int moveToLeftmost(BtCursor *pCur){ 5425 Pgno pgno; 5426 int rc = SQLITE_OK; 5427 MemPage *pPage; 5428 5429 assert( cursorOwnsBtShared(pCur) ); 5430 assert( pCur->eState==CURSOR_VALID ); 5431 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5432 assert( pCur->ix<pPage->nCell ); 5433 pgno = get4byte(findCell(pPage, pCur->ix)); 5434 rc = moveToChild(pCur, pgno); 5435 } 5436 return rc; 5437 } 5438 5439 /* 5440 ** Move the cursor down to the right-most leaf entry beneath the 5441 ** page to which it is currently pointing. Notice the difference 5442 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5443 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5444 ** finds the right-most entry beneath the *page*. 5445 ** 5446 ** The right-most entry is the one with the largest key - the last 5447 ** key in ascending order. 5448 */ 5449 static int moveToRightmost(BtCursor *pCur){ 5450 Pgno pgno; 5451 int rc = SQLITE_OK; 5452 MemPage *pPage = 0; 5453 5454 assert( cursorOwnsBtShared(pCur) ); 5455 assert( pCur->eState==CURSOR_VALID ); 5456 while( !(pPage = pCur->pPage)->leaf ){ 5457 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5458 pCur->ix = pPage->nCell; 5459 rc = moveToChild(pCur, pgno); 5460 if( rc ) return rc; 5461 } 5462 pCur->ix = pPage->nCell-1; 5463 assert( pCur->info.nSize==0 ); 5464 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5465 return SQLITE_OK; 5466 } 5467 5468 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5469 ** on success. Set *pRes to 0 if the cursor actually points to something 5470 ** or set *pRes to 1 if the table is empty. 5471 */ 5472 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5473 int rc; 5474 5475 assert( cursorOwnsBtShared(pCur) ); 5476 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5477 rc = moveToRoot(pCur); 5478 if( rc==SQLITE_OK ){ 5479 assert( pCur->pPage->nCell>0 ); 5480 *pRes = 0; 5481 rc = moveToLeftmost(pCur); 5482 }else if( rc==SQLITE_EMPTY ){ 5483 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5484 *pRes = 1; 5485 rc = SQLITE_OK; 5486 } 5487 return rc; 5488 } 5489 5490 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5491 ** on success. Set *pRes to 0 if the cursor actually points to something 5492 ** or set *pRes to 1 if the table is empty. 5493 */ 5494 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5495 int rc; 5496 5497 assert( cursorOwnsBtShared(pCur) ); 5498 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5499 5500 /* If the cursor already points to the last entry, this is a no-op. */ 5501 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5502 #ifdef SQLITE_DEBUG 5503 /* This block serves to assert() that the cursor really does point 5504 ** to the last entry in the b-tree. */ 5505 int ii; 5506 for(ii=0; ii<pCur->iPage; ii++){ 5507 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5508 } 5509 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5510 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5511 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5512 assert( pCur->pPage->leaf ); 5513 #endif 5514 *pRes = 0; 5515 return SQLITE_OK; 5516 } 5517 5518 rc = moveToRoot(pCur); 5519 if( rc==SQLITE_OK ){ 5520 assert( pCur->eState==CURSOR_VALID ); 5521 *pRes = 0; 5522 rc = moveToRightmost(pCur); 5523 if( rc==SQLITE_OK ){ 5524 pCur->curFlags |= BTCF_AtLast; 5525 }else{ 5526 pCur->curFlags &= ~BTCF_AtLast; 5527 } 5528 }else if( rc==SQLITE_EMPTY ){ 5529 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5530 *pRes = 1; 5531 rc = SQLITE_OK; 5532 } 5533 return rc; 5534 } 5535 5536 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5537 ** table near the key intKey. Return a success code. 5538 ** 5539 ** If an exact match is not found, then the cursor is always 5540 ** left pointing at a leaf page which would hold the entry if it 5541 ** were present. The cursor might point to an entry that comes 5542 ** before or after the key. 5543 ** 5544 ** An integer is written into *pRes which is the result of 5545 ** comparing the key with the entry to which the cursor is 5546 ** pointing. The meaning of the integer written into 5547 ** *pRes is as follows: 5548 ** 5549 ** *pRes<0 The cursor is left pointing at an entry that 5550 ** is smaller than intKey or if the table is empty 5551 ** and the cursor is therefore left point to nothing. 5552 ** 5553 ** *pRes==0 The cursor is left pointing at an entry that 5554 ** exactly matches intKey. 5555 ** 5556 ** *pRes>0 The cursor is left pointing at an entry that 5557 ** is larger than intKey. 5558 */ 5559 int sqlite3BtreeTableMoveto( 5560 BtCursor *pCur, /* The cursor to be moved */ 5561 i64 intKey, /* The table key */ 5562 int biasRight, /* If true, bias the search to the high end */ 5563 int *pRes /* Write search results here */ 5564 ){ 5565 int rc; 5566 5567 assert( cursorOwnsBtShared(pCur) ); 5568 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5569 assert( pRes ); 5570 assert( pCur->pKeyInfo==0 ); 5571 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5572 5573 /* If the cursor is already positioned at the point we are trying 5574 ** to move to, then just return without doing any work */ 5575 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5576 if( pCur->info.nKey==intKey ){ 5577 *pRes = 0; 5578 return SQLITE_OK; 5579 } 5580 if( pCur->info.nKey<intKey ){ 5581 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5582 *pRes = -1; 5583 return SQLITE_OK; 5584 } 5585 /* If the requested key is one more than the previous key, then 5586 ** try to get there using sqlite3BtreeNext() rather than a full 5587 ** binary search. This is an optimization only. The correct answer 5588 ** is still obtained without this case, only a little more slowely */ 5589 if( pCur->info.nKey+1==intKey ){ 5590 *pRes = 0; 5591 rc = sqlite3BtreeNext(pCur, 0); 5592 if( rc==SQLITE_OK ){ 5593 getCellInfo(pCur); 5594 if( pCur->info.nKey==intKey ){ 5595 return SQLITE_OK; 5596 } 5597 }else if( rc!=SQLITE_DONE ){ 5598 return rc; 5599 } 5600 } 5601 } 5602 } 5603 5604 #ifdef SQLITE_DEBUG 5605 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5606 #endif 5607 5608 rc = moveToRoot(pCur); 5609 if( rc ){ 5610 if( rc==SQLITE_EMPTY ){ 5611 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5612 *pRes = -1; 5613 return SQLITE_OK; 5614 } 5615 return rc; 5616 } 5617 assert( pCur->pPage ); 5618 assert( pCur->pPage->isInit ); 5619 assert( pCur->eState==CURSOR_VALID ); 5620 assert( pCur->pPage->nCell > 0 ); 5621 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5622 assert( pCur->curIntKey ); 5623 5624 for(;;){ 5625 int lwr, upr, idx, c; 5626 Pgno chldPg; 5627 MemPage *pPage = pCur->pPage; 5628 u8 *pCell; /* Pointer to current cell in pPage */ 5629 5630 /* pPage->nCell must be greater than zero. If this is the root-page 5631 ** the cursor would have been INVALID above and this for(;;) loop 5632 ** not run. If this is not the root-page, then the moveToChild() routine 5633 ** would have already detected db corruption. Similarly, pPage must 5634 ** be the right kind (index or table) of b-tree page. Otherwise 5635 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5636 assert( pPage->nCell>0 ); 5637 assert( pPage->intKey ); 5638 lwr = 0; 5639 upr = pPage->nCell-1; 5640 assert( biasRight==0 || biasRight==1 ); 5641 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5642 for(;;){ 5643 i64 nCellKey; 5644 pCell = findCellPastPtr(pPage, idx); 5645 if( pPage->intKeyLeaf ){ 5646 while( 0x80 <= *(pCell++) ){ 5647 if( pCell>=pPage->aDataEnd ){ 5648 return SQLITE_CORRUPT_PAGE(pPage); 5649 } 5650 } 5651 } 5652 getVarint(pCell, (u64*)&nCellKey); 5653 if( nCellKey<intKey ){ 5654 lwr = idx+1; 5655 if( lwr>upr ){ c = -1; break; } 5656 }else if( nCellKey>intKey ){ 5657 upr = idx-1; 5658 if( lwr>upr ){ c = +1; break; } 5659 }else{ 5660 assert( nCellKey==intKey ); 5661 pCur->ix = (u16)idx; 5662 if( !pPage->leaf ){ 5663 lwr = idx; 5664 goto moveto_table_next_layer; 5665 }else{ 5666 pCur->curFlags |= BTCF_ValidNKey; 5667 pCur->info.nKey = nCellKey; 5668 pCur->info.nSize = 0; 5669 *pRes = 0; 5670 return SQLITE_OK; 5671 } 5672 } 5673 assert( lwr+upr>=0 ); 5674 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5675 } 5676 assert( lwr==upr+1 || !pPage->leaf ); 5677 assert( pPage->isInit ); 5678 if( pPage->leaf ){ 5679 assert( pCur->ix<pCur->pPage->nCell ); 5680 pCur->ix = (u16)idx; 5681 *pRes = c; 5682 rc = SQLITE_OK; 5683 goto moveto_table_finish; 5684 } 5685 moveto_table_next_layer: 5686 if( lwr>=pPage->nCell ){ 5687 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5688 }else{ 5689 chldPg = get4byte(findCell(pPage, lwr)); 5690 } 5691 pCur->ix = (u16)lwr; 5692 rc = moveToChild(pCur, chldPg); 5693 if( rc ) break; 5694 } 5695 moveto_table_finish: 5696 pCur->info.nSize = 0; 5697 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5698 return rc; 5699 } 5700 5701 /* 5702 ** Compare the "idx"-th cell on the page the cursor pCur is currently 5703 ** pointing to to pIdxKey using xRecordCompare. Return negative or 5704 ** zero if the cell is less than or equal pIdxKey. Return positive 5705 ** if unknown. 5706 ** 5707 ** Return value negative: Cell at pCur[idx] less than pIdxKey 5708 ** 5709 ** Return value is zero: Cell at pCur[idx] equals pIdxKey 5710 ** 5711 ** Return value positive: Nothing is known about the relationship 5712 ** of the cell at pCur[idx] and pIdxKey. 5713 ** 5714 ** This routine is part of an optimization. It is always safe to return 5715 ** a positive value as that will cause the optimization to be skipped. 5716 */ 5717 static int indexCellCompare( 5718 BtCursor *pCur, 5719 int idx, 5720 UnpackedRecord *pIdxKey, 5721 RecordCompare xRecordCompare 5722 ){ 5723 MemPage *pPage = pCur->pPage; 5724 int c; 5725 int nCell; /* Size of the pCell cell in bytes */ 5726 u8 *pCell = findCellPastPtr(pPage, idx); 5727 5728 nCell = pCell[0]; 5729 if( nCell<=pPage->max1bytePayload ){ 5730 /* This branch runs if the record-size field of the cell is a 5731 ** single byte varint and the record fits entirely on the main 5732 ** b-tree page. */ 5733 testcase( pCell+nCell+1==pPage->aDataEnd ); 5734 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5735 }else if( !(pCell[1] & 0x80) 5736 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5737 ){ 5738 /* The record-size field is a 2 byte varint and the record 5739 ** fits entirely on the main b-tree page. */ 5740 testcase( pCell+nCell+2==pPage->aDataEnd ); 5741 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5742 }else{ 5743 /* If the record extends into overflow pages, do not attempt 5744 ** the optimization. */ 5745 c = 99; 5746 } 5747 return c; 5748 } 5749 5750 /* 5751 ** Return true (non-zero) if pCur is current pointing to the last 5752 ** page of a table. 5753 */ 5754 static int cursorOnLastPage(BtCursor *pCur){ 5755 int i; 5756 assert( pCur->eState==CURSOR_VALID ); 5757 for(i=0; i<pCur->iPage; i++){ 5758 MemPage *pPage = pCur->apPage[i]; 5759 if( pCur->aiIdx[i]<pPage->nCell ) return 0; 5760 } 5761 return 1; 5762 } 5763 5764 /* Move the cursor so that it points to an entry in an index table 5765 ** near the key pIdxKey. Return a success code. 5766 ** 5767 ** If an exact match is not found, then the cursor is always 5768 ** left pointing at a leaf page which would hold the entry if it 5769 ** were present. The cursor might point to an entry that comes 5770 ** before or after the key. 5771 ** 5772 ** An integer is written into *pRes which is the result of 5773 ** comparing the key with the entry to which the cursor is 5774 ** pointing. The meaning of the integer written into 5775 ** *pRes is as follows: 5776 ** 5777 ** *pRes<0 The cursor is left pointing at an entry that 5778 ** is smaller than pIdxKey or if the table is empty 5779 ** and the cursor is therefore left point to nothing. 5780 ** 5781 ** *pRes==0 The cursor is left pointing at an entry that 5782 ** exactly matches pIdxKey. 5783 ** 5784 ** *pRes>0 The cursor is left pointing at an entry that 5785 ** is larger than pIdxKey. 5786 ** 5787 ** The pIdxKey->eqSeen field is set to 1 if there 5788 ** exists an entry in the table that exactly matches pIdxKey. 5789 */ 5790 int sqlite3BtreeIndexMoveto( 5791 BtCursor *pCur, /* The cursor to be moved */ 5792 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5793 int *pRes /* Write search results here */ 5794 ){ 5795 int rc; 5796 RecordCompare xRecordCompare; 5797 5798 assert( cursorOwnsBtShared(pCur) ); 5799 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5800 assert( pRes ); 5801 assert( pCur->pKeyInfo!=0 ); 5802 5803 #ifdef SQLITE_DEBUG 5804 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5805 #endif 5806 5807 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5808 pIdxKey->errCode = 0; 5809 assert( pIdxKey->default_rc==1 5810 || pIdxKey->default_rc==0 5811 || pIdxKey->default_rc==-1 5812 ); 5813 5814 5815 /* Check to see if we can skip a lot of work. Two cases: 5816 ** 5817 ** (1) If the cursor is already pointing to the very last cell 5818 ** in the table and the pIdxKey search key is greater than or 5819 ** equal to that last cell, then no movement is required. 5820 ** 5821 ** (2) If the cursor is on the last page of the table and the first 5822 ** cell on that last page is less than or equal to the pIdxKey 5823 ** search key, then we can start the search on the current page 5824 ** without needing to go back to root. 5825 */ 5826 if( pCur->eState==CURSOR_VALID 5827 && pCur->pPage->leaf 5828 && cursorOnLastPage(pCur) 5829 ){ 5830 int c; 5831 if( pCur->ix==pCur->pPage->nCell-1 5832 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 5833 ){ 5834 *pRes = c; 5835 if( pIdxKey->errCode ) return SQLITE_CORRUPT_BKPT; 5836 return SQLITE_OK; /* Cursor already pointing at the correct spot */ 5837 } 5838 if( pCur->iPage>0 5839 && (c = indexCellCompare(pCur, 0, pIdxKey, xRecordCompare))<=0 5840 ){ 5841 pCur->curFlags &= ~BTCF_ValidOvfl; 5842 if( pIdxKey->errCode ){ *pRes = 0; return SQLITE_CORRUPT_BKPT; } 5843 goto bypass_moveto_root; /* Start search on the current page */ 5844 } 5845 } 5846 5847 rc = moveToRoot(pCur); 5848 if( rc ){ 5849 if( rc==SQLITE_EMPTY ){ 5850 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5851 *pRes = -1; 5852 return SQLITE_OK; 5853 } 5854 return rc; 5855 } 5856 5857 bypass_moveto_root: 5858 assert( pCur->pPage ); 5859 assert( pCur->pPage->isInit ); 5860 assert( pCur->eState==CURSOR_VALID ); 5861 assert( pCur->pPage->nCell > 0 ); 5862 assert( pCur->curIntKey==0 ); 5863 assert( pIdxKey!=0 ); 5864 for(;;){ 5865 int lwr, upr, idx, c; 5866 Pgno chldPg; 5867 MemPage *pPage = pCur->pPage; 5868 u8 *pCell; /* Pointer to current cell in pPage */ 5869 5870 /* pPage->nCell must be greater than zero. If this is the root-page 5871 ** the cursor would have been INVALID above and this for(;;) loop 5872 ** not run. If this is not the root-page, then the moveToChild() routine 5873 ** would have already detected db corruption. Similarly, pPage must 5874 ** be the right kind (index or table) of b-tree page. Otherwise 5875 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5876 assert( pPage->nCell>0 ); 5877 assert( pPage->intKey==0 ); 5878 lwr = 0; 5879 upr = pPage->nCell-1; 5880 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5881 for(;;){ 5882 int nCell; /* Size of the pCell cell in bytes */ 5883 pCell = findCellPastPtr(pPage, idx); 5884 5885 /* The maximum supported page-size is 65536 bytes. This means that 5886 ** the maximum number of record bytes stored on an index B-Tree 5887 ** page is less than 16384 bytes and may be stored as a 2-byte 5888 ** varint. This information is used to attempt to avoid parsing 5889 ** the entire cell by checking for the cases where the record is 5890 ** stored entirely within the b-tree page by inspecting the first 5891 ** 2 bytes of the cell. 5892 */ 5893 nCell = pCell[0]; 5894 if( nCell<=pPage->max1bytePayload ){ 5895 /* This branch runs if the record-size field of the cell is a 5896 ** single byte varint and the record fits entirely on the main 5897 ** b-tree page. */ 5898 testcase( pCell+nCell+1==pPage->aDataEnd ); 5899 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5900 }else if( !(pCell[1] & 0x80) 5901 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5902 ){ 5903 /* The record-size field is a 2 byte varint and the record 5904 ** fits entirely on the main b-tree page. */ 5905 testcase( pCell+nCell+2==pPage->aDataEnd ); 5906 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5907 }else{ 5908 /* The record flows over onto one or more overflow pages. In 5909 ** this case the whole cell needs to be parsed, a buffer allocated 5910 ** and accessPayload() used to retrieve the record into the 5911 ** buffer before VdbeRecordCompare() can be called. 5912 ** 5913 ** If the record is corrupt, the xRecordCompare routine may read 5914 ** up to two varints past the end of the buffer. An extra 18 5915 ** bytes of padding is allocated at the end of the buffer in 5916 ** case this happens. */ 5917 void *pCellKey; 5918 u8 * const pCellBody = pCell - pPage->childPtrSize; 5919 const int nOverrun = 18; /* Size of the overrun padding */ 5920 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5921 nCell = (int)pCur->info.nKey; 5922 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5923 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5924 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5925 testcase( nCell==2 ); /* Minimum legal index key size */ 5926 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5927 rc = SQLITE_CORRUPT_PAGE(pPage); 5928 goto moveto_index_finish; 5929 } 5930 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5931 if( pCellKey==0 ){ 5932 rc = SQLITE_NOMEM_BKPT; 5933 goto moveto_index_finish; 5934 } 5935 pCur->ix = (u16)idx; 5936 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5937 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5938 pCur->curFlags &= ~BTCF_ValidOvfl; 5939 if( rc ){ 5940 sqlite3_free(pCellKey); 5941 goto moveto_index_finish; 5942 } 5943 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5944 sqlite3_free(pCellKey); 5945 } 5946 assert( 5947 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5948 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5949 ); 5950 if( c<0 ){ 5951 lwr = idx+1; 5952 }else if( c>0 ){ 5953 upr = idx-1; 5954 }else{ 5955 assert( c==0 ); 5956 *pRes = 0; 5957 rc = SQLITE_OK; 5958 pCur->ix = (u16)idx; 5959 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5960 goto moveto_index_finish; 5961 } 5962 if( lwr>upr ) break; 5963 assert( lwr+upr>=0 ); 5964 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5965 } 5966 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5967 assert( pPage->isInit ); 5968 if( pPage->leaf ){ 5969 assert( pCur->ix<pCur->pPage->nCell ); 5970 pCur->ix = (u16)idx; 5971 *pRes = c; 5972 rc = SQLITE_OK; 5973 goto moveto_index_finish; 5974 } 5975 if( lwr>=pPage->nCell ){ 5976 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5977 }else{ 5978 chldPg = get4byte(findCell(pPage, lwr)); 5979 } 5980 pCur->ix = (u16)lwr; 5981 rc = moveToChild(pCur, chldPg); 5982 if( rc ) break; 5983 } 5984 moveto_index_finish: 5985 pCur->info.nSize = 0; 5986 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5987 return rc; 5988 } 5989 5990 5991 /* 5992 ** Return TRUE if the cursor is not pointing at an entry of the table. 5993 ** 5994 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5995 ** past the last entry in the table or sqlite3BtreePrev() moves past 5996 ** the first entry. TRUE is also returned if the table is empty. 5997 */ 5998 int sqlite3BtreeEof(BtCursor *pCur){ 5999 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 6000 ** have been deleted? This API will need to change to return an error code 6001 ** as well as the boolean result value. 6002 */ 6003 return (CURSOR_VALID!=pCur->eState); 6004 } 6005 6006 /* 6007 ** Return an estimate for the number of rows in the table that pCur is 6008 ** pointing to. Return a negative number if no estimate is currently 6009 ** available. 6010 */ 6011 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 6012 i64 n; 6013 u8 i; 6014 6015 assert( cursorOwnsBtShared(pCur) ); 6016 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 6017 6018 /* Currently this interface is only called by the OP_IfSmaller 6019 ** opcode, and it that case the cursor will always be valid and 6020 ** will always point to a leaf node. */ 6021 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 6022 if( NEVER(pCur->pPage->leaf==0) ) return -1; 6023 6024 n = pCur->pPage->nCell; 6025 for(i=0; i<pCur->iPage; i++){ 6026 n *= pCur->apPage[i]->nCell; 6027 } 6028 return n; 6029 } 6030 6031 /* 6032 ** Advance the cursor to the next entry in the database. 6033 ** Return value: 6034 ** 6035 ** SQLITE_OK success 6036 ** SQLITE_DONE cursor is already pointing at the last element 6037 ** otherwise some kind of error occurred 6038 ** 6039 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 6040 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 6041 ** to the next cell on the current page. The (slower) btreeNext() helper 6042 ** routine is called when it is necessary to move to a different page or 6043 ** to restore the cursor. 6044 ** 6045 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 6046 ** cursor corresponds to an SQL index and this routine could have been 6047 ** skipped if the SQL index had been a unique index. The F argument 6048 ** is a hint to the implement. SQLite btree implementation does not use 6049 ** this hint, but COMDB2 does. 6050 */ 6051 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 6052 int rc; 6053 int idx; 6054 MemPage *pPage; 6055 6056 assert( cursorOwnsBtShared(pCur) ); 6057 if( pCur->eState!=CURSOR_VALID ){ 6058 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 6059 rc = restoreCursorPosition(pCur); 6060 if( rc!=SQLITE_OK ){ 6061 return rc; 6062 } 6063 if( CURSOR_INVALID==pCur->eState ){ 6064 return SQLITE_DONE; 6065 } 6066 if( pCur->eState==CURSOR_SKIPNEXT ){ 6067 pCur->eState = CURSOR_VALID; 6068 if( pCur->skipNext>0 ) return SQLITE_OK; 6069 } 6070 } 6071 6072 pPage = pCur->pPage; 6073 idx = ++pCur->ix; 6074 if( !pPage->isInit || sqlite3FaultSim(412) ){ 6075 /* The only known way for this to happen is for there to be a 6076 ** recursive SQL function that does a DELETE operation as part of a 6077 ** SELECT which deletes content out from under an active cursor 6078 ** in a corrupt database file where the table being DELETE-ed from 6079 ** has pages in common with the table being queried. See TH3 6080 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 6081 ** example. */ 6082 return SQLITE_CORRUPT_BKPT; 6083 } 6084 6085 if( idx>=pPage->nCell ){ 6086 if( !pPage->leaf ){ 6087 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 6088 if( rc ) return rc; 6089 return moveToLeftmost(pCur); 6090 } 6091 do{ 6092 if( pCur->iPage==0 ){ 6093 pCur->eState = CURSOR_INVALID; 6094 return SQLITE_DONE; 6095 } 6096 moveToParent(pCur); 6097 pPage = pCur->pPage; 6098 }while( pCur->ix>=pPage->nCell ); 6099 if( pPage->intKey ){ 6100 return sqlite3BtreeNext(pCur, 0); 6101 }else{ 6102 return SQLITE_OK; 6103 } 6104 } 6105 if( pPage->leaf ){ 6106 return SQLITE_OK; 6107 }else{ 6108 return moveToLeftmost(pCur); 6109 } 6110 } 6111 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 6112 MemPage *pPage; 6113 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6114 assert( cursorOwnsBtShared(pCur) ); 6115 assert( flags==0 || flags==1 ); 6116 pCur->info.nSize = 0; 6117 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 6118 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 6119 pPage = pCur->pPage; 6120 if( (++pCur->ix)>=pPage->nCell ){ 6121 pCur->ix--; 6122 return btreeNext(pCur); 6123 } 6124 if( pPage->leaf ){ 6125 return SQLITE_OK; 6126 }else{ 6127 return moveToLeftmost(pCur); 6128 } 6129 } 6130 6131 /* 6132 ** Step the cursor to the back to the previous entry in the database. 6133 ** Return values: 6134 ** 6135 ** SQLITE_OK success 6136 ** SQLITE_DONE the cursor is already on the first element of the table 6137 ** otherwise some kind of error occurred 6138 ** 6139 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 6140 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 6141 ** to the previous cell on the current page. The (slower) btreePrevious() 6142 ** helper routine is called when it is necessary to move to a different page 6143 ** or to restore the cursor. 6144 ** 6145 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 6146 ** the cursor corresponds to an SQL index and this routine could have been 6147 ** skipped if the SQL index had been a unique index. The F argument is a 6148 ** hint to the implement. The native SQLite btree implementation does not 6149 ** use this hint, but COMDB2 does. 6150 */ 6151 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 6152 int rc; 6153 MemPage *pPage; 6154 6155 assert( cursorOwnsBtShared(pCur) ); 6156 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 6157 assert( pCur->info.nSize==0 ); 6158 if( pCur->eState!=CURSOR_VALID ){ 6159 rc = restoreCursorPosition(pCur); 6160 if( rc!=SQLITE_OK ){ 6161 return rc; 6162 } 6163 if( CURSOR_INVALID==pCur->eState ){ 6164 return SQLITE_DONE; 6165 } 6166 if( CURSOR_SKIPNEXT==pCur->eState ){ 6167 pCur->eState = CURSOR_VALID; 6168 if( pCur->skipNext<0 ) return SQLITE_OK; 6169 } 6170 } 6171 6172 pPage = pCur->pPage; 6173 assert( pPage->isInit ); 6174 if( !pPage->leaf ){ 6175 int idx = pCur->ix; 6176 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6177 if( rc ) return rc; 6178 rc = moveToRightmost(pCur); 6179 }else{ 6180 while( pCur->ix==0 ){ 6181 if( pCur->iPage==0 ){ 6182 pCur->eState = CURSOR_INVALID; 6183 return SQLITE_DONE; 6184 } 6185 moveToParent(pCur); 6186 } 6187 assert( pCur->info.nSize==0 ); 6188 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6189 6190 pCur->ix--; 6191 pPage = pCur->pPage; 6192 if( pPage->intKey && !pPage->leaf ){ 6193 rc = sqlite3BtreePrevious(pCur, 0); 6194 }else{ 6195 rc = SQLITE_OK; 6196 } 6197 } 6198 return rc; 6199 } 6200 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6201 assert( cursorOwnsBtShared(pCur) ); 6202 assert( flags==0 || flags==1 ); 6203 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6204 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6205 pCur->info.nSize = 0; 6206 if( pCur->eState!=CURSOR_VALID 6207 || pCur->ix==0 6208 || pCur->pPage->leaf==0 6209 ){ 6210 return btreePrevious(pCur); 6211 } 6212 pCur->ix--; 6213 return SQLITE_OK; 6214 } 6215 6216 /* 6217 ** Allocate a new page from the database file. 6218 ** 6219 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6220 ** has already been called on the new page.) The new page has also 6221 ** been referenced and the calling routine is responsible for calling 6222 ** sqlite3PagerUnref() on the new page when it is done. 6223 ** 6224 ** SQLITE_OK is returned on success. Any other return value indicates 6225 ** an error. *ppPage is set to NULL in the event of an error. 6226 ** 6227 ** If the "nearby" parameter is not 0, then an effort is made to 6228 ** locate a page close to the page number "nearby". This can be used in an 6229 ** attempt to keep related pages close to each other in the database file, 6230 ** which in turn can make database access faster. 6231 ** 6232 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6233 ** anywhere on the free-list, then it is guaranteed to be returned. If 6234 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6235 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6236 ** are no restrictions on which page is returned. 6237 */ 6238 static int allocateBtreePage( 6239 BtShared *pBt, /* The btree */ 6240 MemPage **ppPage, /* Store pointer to the allocated page here */ 6241 Pgno *pPgno, /* Store the page number here */ 6242 Pgno nearby, /* Search for a page near this one */ 6243 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6244 ){ 6245 MemPage *pPage1; 6246 int rc; 6247 u32 n; /* Number of pages on the freelist */ 6248 u32 k; /* Number of leaves on the trunk of the freelist */ 6249 MemPage *pTrunk = 0; 6250 MemPage *pPrevTrunk = 0; 6251 Pgno mxPage; /* Total size of the database file */ 6252 6253 assert( sqlite3_mutex_held(pBt->mutex) ); 6254 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6255 pPage1 = pBt->pPage1; 6256 mxPage = btreePagecount(pBt); 6257 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6258 ** stores stores the total number of pages on the freelist. */ 6259 n = get4byte(&pPage1->aData[36]); 6260 testcase( n==mxPage-1 ); 6261 if( n>=mxPage ){ 6262 return SQLITE_CORRUPT_BKPT; 6263 } 6264 if( n>0 ){ 6265 /* There are pages on the freelist. Reuse one of those pages. */ 6266 Pgno iTrunk; 6267 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6268 u32 nSearch = 0; /* Count of the number of search attempts */ 6269 6270 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6271 ** shows that the page 'nearby' is somewhere on the free-list, then 6272 ** the entire-list will be searched for that page. 6273 */ 6274 #ifndef SQLITE_OMIT_AUTOVACUUM 6275 if( eMode==BTALLOC_EXACT ){ 6276 if( nearby<=mxPage ){ 6277 u8 eType; 6278 assert( nearby>0 ); 6279 assert( pBt->autoVacuum ); 6280 rc = ptrmapGet(pBt, nearby, &eType, 0); 6281 if( rc ) return rc; 6282 if( eType==PTRMAP_FREEPAGE ){ 6283 searchList = 1; 6284 } 6285 } 6286 }else if( eMode==BTALLOC_LE ){ 6287 searchList = 1; 6288 } 6289 #endif 6290 6291 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6292 ** first free-list trunk page. iPrevTrunk is initially 1. 6293 */ 6294 rc = sqlite3PagerWrite(pPage1->pDbPage); 6295 if( rc ) return rc; 6296 put4byte(&pPage1->aData[36], n-1); 6297 6298 /* The code within this loop is run only once if the 'searchList' variable 6299 ** is not true. Otherwise, it runs once for each trunk-page on the 6300 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6301 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6302 */ 6303 do { 6304 pPrevTrunk = pTrunk; 6305 if( pPrevTrunk ){ 6306 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6307 ** is the page number of the next freelist trunk page in the list or 6308 ** zero if this is the last freelist trunk page. */ 6309 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6310 }else{ 6311 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6312 ** stores the page number of the first page of the freelist, or zero if 6313 ** the freelist is empty. */ 6314 iTrunk = get4byte(&pPage1->aData[32]); 6315 } 6316 testcase( iTrunk==mxPage ); 6317 if( iTrunk>mxPage || nSearch++ > n ){ 6318 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6319 }else{ 6320 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6321 } 6322 if( rc ){ 6323 pTrunk = 0; 6324 goto end_allocate_page; 6325 } 6326 assert( pTrunk!=0 ); 6327 assert( pTrunk->aData!=0 ); 6328 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6329 ** is the number of leaf page pointers to follow. */ 6330 k = get4byte(&pTrunk->aData[4]); 6331 if( k==0 && !searchList ){ 6332 /* The trunk has no leaves and the list is not being searched. 6333 ** So extract the trunk page itself and use it as the newly 6334 ** allocated page */ 6335 assert( pPrevTrunk==0 ); 6336 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6337 if( rc ){ 6338 goto end_allocate_page; 6339 } 6340 *pPgno = iTrunk; 6341 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6342 *ppPage = pTrunk; 6343 pTrunk = 0; 6344 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6345 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6346 /* Value of k is out of range. Database corruption */ 6347 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6348 goto end_allocate_page; 6349 #ifndef SQLITE_OMIT_AUTOVACUUM 6350 }else if( searchList 6351 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6352 ){ 6353 /* The list is being searched and this trunk page is the page 6354 ** to allocate, regardless of whether it has leaves. 6355 */ 6356 *pPgno = iTrunk; 6357 *ppPage = pTrunk; 6358 searchList = 0; 6359 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6360 if( rc ){ 6361 goto end_allocate_page; 6362 } 6363 if( k==0 ){ 6364 if( !pPrevTrunk ){ 6365 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6366 }else{ 6367 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6368 if( rc!=SQLITE_OK ){ 6369 goto end_allocate_page; 6370 } 6371 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6372 } 6373 }else{ 6374 /* The trunk page is required by the caller but it contains 6375 ** pointers to free-list leaves. The first leaf becomes a trunk 6376 ** page in this case. 6377 */ 6378 MemPage *pNewTrunk; 6379 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6380 if( iNewTrunk>mxPage ){ 6381 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6382 goto end_allocate_page; 6383 } 6384 testcase( iNewTrunk==mxPage ); 6385 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6386 if( rc!=SQLITE_OK ){ 6387 goto end_allocate_page; 6388 } 6389 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6390 if( rc!=SQLITE_OK ){ 6391 releasePage(pNewTrunk); 6392 goto end_allocate_page; 6393 } 6394 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6395 put4byte(&pNewTrunk->aData[4], k-1); 6396 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6397 releasePage(pNewTrunk); 6398 if( !pPrevTrunk ){ 6399 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6400 put4byte(&pPage1->aData[32], iNewTrunk); 6401 }else{ 6402 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6403 if( rc ){ 6404 goto end_allocate_page; 6405 } 6406 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6407 } 6408 } 6409 pTrunk = 0; 6410 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6411 #endif 6412 }else if( k>0 ){ 6413 /* Extract a leaf from the trunk */ 6414 u32 closest; 6415 Pgno iPage; 6416 unsigned char *aData = pTrunk->aData; 6417 if( nearby>0 ){ 6418 u32 i; 6419 closest = 0; 6420 if( eMode==BTALLOC_LE ){ 6421 for(i=0; i<k; i++){ 6422 iPage = get4byte(&aData[8+i*4]); 6423 if( iPage<=nearby ){ 6424 closest = i; 6425 break; 6426 } 6427 } 6428 }else{ 6429 int dist; 6430 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6431 for(i=1; i<k; i++){ 6432 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6433 if( d2<dist ){ 6434 closest = i; 6435 dist = d2; 6436 } 6437 } 6438 } 6439 }else{ 6440 closest = 0; 6441 } 6442 6443 iPage = get4byte(&aData[8+closest*4]); 6444 testcase( iPage==mxPage ); 6445 if( iPage>mxPage || iPage<2 ){ 6446 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6447 goto end_allocate_page; 6448 } 6449 testcase( iPage==mxPage ); 6450 if( !searchList 6451 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6452 ){ 6453 int noContent; 6454 *pPgno = iPage; 6455 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6456 ": %d more free pages\n", 6457 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6458 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6459 if( rc ) goto end_allocate_page; 6460 if( closest<k-1 ){ 6461 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6462 } 6463 put4byte(&aData[4], k-1); 6464 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6465 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6466 if( rc==SQLITE_OK ){ 6467 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6468 if( rc!=SQLITE_OK ){ 6469 releasePage(*ppPage); 6470 *ppPage = 0; 6471 } 6472 } 6473 searchList = 0; 6474 } 6475 } 6476 releasePage(pPrevTrunk); 6477 pPrevTrunk = 0; 6478 }while( searchList ); 6479 }else{ 6480 /* There are no pages on the freelist, so append a new page to the 6481 ** database image. 6482 ** 6483 ** Normally, new pages allocated by this block can be requested from the 6484 ** pager layer with the 'no-content' flag set. This prevents the pager 6485 ** from trying to read the pages content from disk. However, if the 6486 ** current transaction has already run one or more incremental-vacuum 6487 ** steps, then the page we are about to allocate may contain content 6488 ** that is required in the event of a rollback. In this case, do 6489 ** not set the no-content flag. This causes the pager to load and journal 6490 ** the current page content before overwriting it. 6491 ** 6492 ** Note that the pager will not actually attempt to load or journal 6493 ** content for any page that really does lie past the end of the database 6494 ** file on disk. So the effects of disabling the no-content optimization 6495 ** here are confined to those pages that lie between the end of the 6496 ** database image and the end of the database file. 6497 */ 6498 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6499 6500 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6501 if( rc ) return rc; 6502 pBt->nPage++; 6503 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6504 6505 #ifndef SQLITE_OMIT_AUTOVACUUM 6506 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6507 /* If *pPgno refers to a pointer-map page, allocate two new pages 6508 ** at the end of the file instead of one. The first allocated page 6509 ** becomes a new pointer-map page, the second is used by the caller. 6510 */ 6511 MemPage *pPg = 0; 6512 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6513 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6514 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6515 if( rc==SQLITE_OK ){ 6516 rc = sqlite3PagerWrite(pPg->pDbPage); 6517 releasePage(pPg); 6518 } 6519 if( rc ) return rc; 6520 pBt->nPage++; 6521 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6522 } 6523 #endif 6524 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6525 *pPgno = pBt->nPage; 6526 6527 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6528 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6529 if( rc ) return rc; 6530 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6531 if( rc!=SQLITE_OK ){ 6532 releasePage(*ppPage); 6533 *ppPage = 0; 6534 } 6535 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6536 } 6537 6538 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6539 6540 end_allocate_page: 6541 releasePage(pTrunk); 6542 releasePage(pPrevTrunk); 6543 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6544 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6545 return rc; 6546 } 6547 6548 /* 6549 ** This function is used to add page iPage to the database file free-list. 6550 ** It is assumed that the page is not already a part of the free-list. 6551 ** 6552 ** The value passed as the second argument to this function is optional. 6553 ** If the caller happens to have a pointer to the MemPage object 6554 ** corresponding to page iPage handy, it may pass it as the second value. 6555 ** Otherwise, it may pass NULL. 6556 ** 6557 ** If a pointer to a MemPage object is passed as the second argument, 6558 ** its reference count is not altered by this function. 6559 */ 6560 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6561 MemPage *pTrunk = 0; /* Free-list trunk page */ 6562 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6563 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6564 MemPage *pPage; /* Page being freed. May be NULL. */ 6565 int rc; /* Return Code */ 6566 u32 nFree; /* Initial number of pages on free-list */ 6567 6568 assert( sqlite3_mutex_held(pBt->mutex) ); 6569 assert( CORRUPT_DB || iPage>1 ); 6570 assert( !pMemPage || pMemPage->pgno==iPage ); 6571 6572 if( iPage<2 || iPage>pBt->nPage ){ 6573 return SQLITE_CORRUPT_BKPT; 6574 } 6575 if( pMemPage ){ 6576 pPage = pMemPage; 6577 sqlite3PagerRef(pPage->pDbPage); 6578 }else{ 6579 pPage = btreePageLookup(pBt, iPage); 6580 } 6581 6582 /* Increment the free page count on pPage1 */ 6583 rc = sqlite3PagerWrite(pPage1->pDbPage); 6584 if( rc ) goto freepage_out; 6585 nFree = get4byte(&pPage1->aData[36]); 6586 put4byte(&pPage1->aData[36], nFree+1); 6587 6588 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6589 /* If the secure_delete option is enabled, then 6590 ** always fully overwrite deleted information with zeros. 6591 */ 6592 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6593 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6594 ){ 6595 goto freepage_out; 6596 } 6597 memset(pPage->aData, 0, pPage->pBt->pageSize); 6598 } 6599 6600 /* If the database supports auto-vacuum, write an entry in the pointer-map 6601 ** to indicate that the page is free. 6602 */ 6603 if( ISAUTOVACUUM ){ 6604 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6605 if( rc ) goto freepage_out; 6606 } 6607 6608 /* Now manipulate the actual database free-list structure. There are two 6609 ** possibilities. If the free-list is currently empty, or if the first 6610 ** trunk page in the free-list is full, then this page will become a 6611 ** new free-list trunk page. Otherwise, it will become a leaf of the 6612 ** first trunk page in the current free-list. This block tests if it 6613 ** is possible to add the page as a new free-list leaf. 6614 */ 6615 if( nFree!=0 ){ 6616 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6617 6618 iTrunk = get4byte(&pPage1->aData[32]); 6619 if( iTrunk>btreePagecount(pBt) ){ 6620 rc = SQLITE_CORRUPT_BKPT; 6621 goto freepage_out; 6622 } 6623 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6624 if( rc!=SQLITE_OK ){ 6625 goto freepage_out; 6626 } 6627 6628 nLeaf = get4byte(&pTrunk->aData[4]); 6629 assert( pBt->usableSize>32 ); 6630 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6631 rc = SQLITE_CORRUPT_BKPT; 6632 goto freepage_out; 6633 } 6634 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6635 /* In this case there is room on the trunk page to insert the page 6636 ** being freed as a new leaf. 6637 ** 6638 ** Note that the trunk page is not really full until it contains 6639 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6640 ** coded. But due to a coding error in versions of SQLite prior to 6641 ** 3.6.0, databases with freelist trunk pages holding more than 6642 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6643 ** to maintain backwards compatibility with older versions of SQLite, 6644 ** we will continue to restrict the number of entries to usableSize/4 - 8 6645 ** for now. At some point in the future (once everyone has upgraded 6646 ** to 3.6.0 or later) we should consider fixing the conditional above 6647 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6648 ** 6649 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6650 ** avoid using the last six entries in the freelist trunk page array in 6651 ** order that database files created by newer versions of SQLite can be 6652 ** read by older versions of SQLite. 6653 */ 6654 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6655 if( rc==SQLITE_OK ){ 6656 put4byte(&pTrunk->aData[4], nLeaf+1); 6657 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6658 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6659 sqlite3PagerDontWrite(pPage->pDbPage); 6660 } 6661 rc = btreeSetHasContent(pBt, iPage); 6662 } 6663 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6664 goto freepage_out; 6665 } 6666 } 6667 6668 /* If control flows to this point, then it was not possible to add the 6669 ** the page being freed as a leaf page of the first trunk in the free-list. 6670 ** Possibly because the free-list is empty, or possibly because the 6671 ** first trunk in the free-list is full. Either way, the page being freed 6672 ** will become the new first trunk page in the free-list. 6673 */ 6674 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6675 goto freepage_out; 6676 } 6677 rc = sqlite3PagerWrite(pPage->pDbPage); 6678 if( rc!=SQLITE_OK ){ 6679 goto freepage_out; 6680 } 6681 put4byte(pPage->aData, iTrunk); 6682 put4byte(&pPage->aData[4], 0); 6683 put4byte(&pPage1->aData[32], iPage); 6684 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6685 6686 freepage_out: 6687 if( pPage ){ 6688 pPage->isInit = 0; 6689 } 6690 releasePage(pPage); 6691 releasePage(pTrunk); 6692 return rc; 6693 } 6694 static void freePage(MemPage *pPage, int *pRC){ 6695 if( (*pRC)==SQLITE_OK ){ 6696 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6697 } 6698 } 6699 6700 /* 6701 ** Free the overflow pages associated with the given Cell. 6702 */ 6703 static SQLITE_NOINLINE int clearCellOverflow( 6704 MemPage *pPage, /* The page that contains the Cell */ 6705 unsigned char *pCell, /* First byte of the Cell */ 6706 CellInfo *pInfo /* Size information about the cell */ 6707 ){ 6708 BtShared *pBt; 6709 Pgno ovflPgno; 6710 int rc; 6711 int nOvfl; 6712 u32 ovflPageSize; 6713 6714 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6715 assert( pInfo->nLocal!=pInfo->nPayload ); 6716 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6717 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6718 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6719 /* Cell extends past end of page */ 6720 return SQLITE_CORRUPT_PAGE(pPage); 6721 } 6722 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6723 pBt = pPage->pBt; 6724 assert( pBt->usableSize > 4 ); 6725 ovflPageSize = pBt->usableSize - 4; 6726 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6727 assert( nOvfl>0 || 6728 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6729 ); 6730 while( nOvfl-- ){ 6731 Pgno iNext = 0; 6732 MemPage *pOvfl = 0; 6733 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6734 /* 0 is not a legal page number and page 1 cannot be an 6735 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6736 ** file the database must be corrupt. */ 6737 return SQLITE_CORRUPT_BKPT; 6738 } 6739 if( nOvfl ){ 6740 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6741 if( rc ) return rc; 6742 } 6743 6744 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6745 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6746 ){ 6747 /* There is no reason any cursor should have an outstanding reference 6748 ** to an overflow page belonging to a cell that is being deleted/updated. 6749 ** So if there exists more than one reference to this page, then it 6750 ** must not really be an overflow page and the database must be corrupt. 6751 ** It is helpful to detect this before calling freePage2(), as 6752 ** freePage2() may zero the page contents if secure-delete mode is 6753 ** enabled. If this 'overflow' page happens to be a page that the 6754 ** caller is iterating through or using in some other way, this 6755 ** can be problematic. 6756 */ 6757 rc = SQLITE_CORRUPT_BKPT; 6758 }else{ 6759 rc = freePage2(pBt, pOvfl, ovflPgno); 6760 } 6761 6762 if( pOvfl ){ 6763 sqlite3PagerUnref(pOvfl->pDbPage); 6764 } 6765 if( rc ) return rc; 6766 ovflPgno = iNext; 6767 } 6768 return SQLITE_OK; 6769 } 6770 6771 /* Call xParseCell to compute the size of a cell. If the cell contains 6772 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6773 ** STore the result code (SQLITE_OK or some error code) in rc. 6774 ** 6775 ** Implemented as macro to force inlining for performance. 6776 */ 6777 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6778 pPage->xParseCell(pPage, pCell, &sInfo); \ 6779 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6780 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6781 }else{ \ 6782 rc = SQLITE_OK; \ 6783 } 6784 6785 6786 /* 6787 ** Create the byte sequence used to represent a cell on page pPage 6788 ** and write that byte sequence into pCell[]. Overflow pages are 6789 ** allocated and filled in as necessary. The calling procedure 6790 ** is responsible for making sure sufficient space has been allocated 6791 ** for pCell[]. 6792 ** 6793 ** Note that pCell does not necessary need to point to the pPage->aData 6794 ** area. pCell might point to some temporary storage. The cell will 6795 ** be constructed in this temporary area then copied into pPage->aData 6796 ** later. 6797 */ 6798 static int fillInCell( 6799 MemPage *pPage, /* The page that contains the cell */ 6800 unsigned char *pCell, /* Complete text of the cell */ 6801 const BtreePayload *pX, /* Payload with which to construct the cell */ 6802 int *pnSize /* Write cell size here */ 6803 ){ 6804 int nPayload; 6805 const u8 *pSrc; 6806 int nSrc, n, rc, mn; 6807 int spaceLeft; 6808 MemPage *pToRelease; 6809 unsigned char *pPrior; 6810 unsigned char *pPayload; 6811 BtShared *pBt; 6812 Pgno pgnoOvfl; 6813 int nHeader; 6814 6815 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6816 6817 /* pPage is not necessarily writeable since pCell might be auxiliary 6818 ** buffer space that is separate from the pPage buffer area */ 6819 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6820 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6821 6822 /* Fill in the header. */ 6823 nHeader = pPage->childPtrSize; 6824 if( pPage->intKey ){ 6825 nPayload = pX->nData + pX->nZero; 6826 pSrc = pX->pData; 6827 nSrc = pX->nData; 6828 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6829 nHeader += putVarint32(&pCell[nHeader], nPayload); 6830 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6831 }else{ 6832 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6833 nSrc = nPayload = (int)pX->nKey; 6834 pSrc = pX->pKey; 6835 nHeader += putVarint32(&pCell[nHeader], nPayload); 6836 } 6837 6838 /* Fill in the payload */ 6839 pPayload = &pCell[nHeader]; 6840 if( nPayload<=pPage->maxLocal ){ 6841 /* This is the common case where everything fits on the btree page 6842 ** and no overflow pages are required. */ 6843 n = nHeader + nPayload; 6844 testcase( n==3 ); 6845 testcase( n==4 ); 6846 if( n<4 ) n = 4; 6847 *pnSize = n; 6848 assert( nSrc<=nPayload ); 6849 testcase( nSrc<nPayload ); 6850 memcpy(pPayload, pSrc, nSrc); 6851 memset(pPayload+nSrc, 0, nPayload-nSrc); 6852 return SQLITE_OK; 6853 } 6854 6855 /* If we reach this point, it means that some of the content will need 6856 ** to spill onto overflow pages. 6857 */ 6858 mn = pPage->minLocal; 6859 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6860 testcase( n==pPage->maxLocal ); 6861 testcase( n==pPage->maxLocal+1 ); 6862 if( n > pPage->maxLocal ) n = mn; 6863 spaceLeft = n; 6864 *pnSize = n + nHeader + 4; 6865 pPrior = &pCell[nHeader+n]; 6866 pToRelease = 0; 6867 pgnoOvfl = 0; 6868 pBt = pPage->pBt; 6869 6870 /* At this point variables should be set as follows: 6871 ** 6872 ** nPayload Total payload size in bytes 6873 ** pPayload Begin writing payload here 6874 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6875 ** that means content must spill into overflow pages. 6876 ** *pnSize Size of the local cell (not counting overflow pages) 6877 ** pPrior Where to write the pgno of the first overflow page 6878 ** 6879 ** Use a call to btreeParseCellPtr() to verify that the values above 6880 ** were computed correctly. 6881 */ 6882 #ifdef SQLITE_DEBUG 6883 { 6884 CellInfo info; 6885 pPage->xParseCell(pPage, pCell, &info); 6886 assert( nHeader==(int)(info.pPayload - pCell) ); 6887 assert( info.nKey==pX->nKey ); 6888 assert( *pnSize == info.nSize ); 6889 assert( spaceLeft == info.nLocal ); 6890 } 6891 #endif 6892 6893 /* Write the payload into the local Cell and any extra into overflow pages */ 6894 while( 1 ){ 6895 n = nPayload; 6896 if( n>spaceLeft ) n = spaceLeft; 6897 6898 /* If pToRelease is not zero than pPayload points into the data area 6899 ** of pToRelease. Make sure pToRelease is still writeable. */ 6900 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6901 6902 /* If pPayload is part of the data area of pPage, then make sure pPage 6903 ** is still writeable */ 6904 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6905 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6906 6907 if( nSrc>=n ){ 6908 memcpy(pPayload, pSrc, n); 6909 }else if( nSrc>0 ){ 6910 n = nSrc; 6911 memcpy(pPayload, pSrc, n); 6912 }else{ 6913 memset(pPayload, 0, n); 6914 } 6915 nPayload -= n; 6916 if( nPayload<=0 ) break; 6917 pPayload += n; 6918 pSrc += n; 6919 nSrc -= n; 6920 spaceLeft -= n; 6921 if( spaceLeft==0 ){ 6922 MemPage *pOvfl = 0; 6923 #ifndef SQLITE_OMIT_AUTOVACUUM 6924 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6925 if( pBt->autoVacuum ){ 6926 do{ 6927 pgnoOvfl++; 6928 } while( 6929 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6930 ); 6931 } 6932 #endif 6933 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6934 #ifndef SQLITE_OMIT_AUTOVACUUM 6935 /* If the database supports auto-vacuum, and the second or subsequent 6936 ** overflow page is being allocated, add an entry to the pointer-map 6937 ** for that page now. 6938 ** 6939 ** If this is the first overflow page, then write a partial entry 6940 ** to the pointer-map. If we write nothing to this pointer-map slot, 6941 ** then the optimistic overflow chain processing in clearCell() 6942 ** may misinterpret the uninitialized values and delete the 6943 ** wrong pages from the database. 6944 */ 6945 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6946 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6947 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6948 if( rc ){ 6949 releasePage(pOvfl); 6950 } 6951 } 6952 #endif 6953 if( rc ){ 6954 releasePage(pToRelease); 6955 return rc; 6956 } 6957 6958 /* If pToRelease is not zero than pPrior points into the data area 6959 ** of pToRelease. Make sure pToRelease is still writeable. */ 6960 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6961 6962 /* If pPrior is part of the data area of pPage, then make sure pPage 6963 ** is still writeable */ 6964 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6965 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6966 6967 put4byte(pPrior, pgnoOvfl); 6968 releasePage(pToRelease); 6969 pToRelease = pOvfl; 6970 pPrior = pOvfl->aData; 6971 put4byte(pPrior, 0); 6972 pPayload = &pOvfl->aData[4]; 6973 spaceLeft = pBt->usableSize - 4; 6974 } 6975 } 6976 releasePage(pToRelease); 6977 return SQLITE_OK; 6978 } 6979 6980 /* 6981 ** Remove the i-th cell from pPage. This routine effects pPage only. 6982 ** The cell content is not freed or deallocated. It is assumed that 6983 ** the cell content has been copied someplace else. This routine just 6984 ** removes the reference to the cell from pPage. 6985 ** 6986 ** "sz" must be the number of bytes in the cell. 6987 */ 6988 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6989 u32 pc; /* Offset to cell content of cell being deleted */ 6990 u8 *data; /* pPage->aData */ 6991 u8 *ptr; /* Used to move bytes around within data[] */ 6992 int rc; /* The return code */ 6993 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6994 6995 if( *pRC ) return; 6996 assert( idx>=0 ); 6997 assert( idx<pPage->nCell ); 6998 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6999 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7000 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7001 assert( pPage->nFree>=0 ); 7002 data = pPage->aData; 7003 ptr = &pPage->aCellIdx[2*idx]; 7004 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 7005 pc = get2byte(ptr); 7006 hdr = pPage->hdrOffset; 7007 #if 0 /* Not required. Omit for efficiency */ 7008 if( pc<hdr+pPage->nCell*2 ){ 7009 *pRC = SQLITE_CORRUPT_BKPT; 7010 return; 7011 } 7012 #endif 7013 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 7014 testcase( pc+sz==pPage->pBt->usableSize ); 7015 if( pc+sz > pPage->pBt->usableSize ){ 7016 *pRC = SQLITE_CORRUPT_BKPT; 7017 return; 7018 } 7019 rc = freeSpace(pPage, pc, sz); 7020 if( rc ){ 7021 *pRC = rc; 7022 return; 7023 } 7024 pPage->nCell--; 7025 if( pPage->nCell==0 ){ 7026 memset(&data[hdr+1], 0, 4); 7027 data[hdr+7] = 0; 7028 put2byte(&data[hdr+5], pPage->pBt->usableSize); 7029 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 7030 - pPage->childPtrSize - 8; 7031 }else{ 7032 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 7033 put2byte(&data[hdr+3], pPage->nCell); 7034 pPage->nFree += 2; 7035 } 7036 } 7037 7038 /* 7039 ** Insert a new cell on pPage at cell index "i". pCell points to the 7040 ** content of the cell. 7041 ** 7042 ** If the cell content will fit on the page, then put it there. If it 7043 ** will not fit, then make a copy of the cell content into pTemp if 7044 ** pTemp is not null. Regardless of pTemp, allocate a new entry 7045 ** in pPage->apOvfl[] and make it point to the cell content (either 7046 ** in pTemp or the original pCell) and also record its index. 7047 ** Allocating a new entry in pPage->aCell[] implies that 7048 ** pPage->nOverflow is incremented. 7049 ** 7050 ** *pRC must be SQLITE_OK when this routine is called. 7051 */ 7052 static void insertCell( 7053 MemPage *pPage, /* Page into which we are copying */ 7054 int i, /* New cell becomes the i-th cell of the page */ 7055 u8 *pCell, /* Content of the new cell */ 7056 int sz, /* Bytes of content in pCell */ 7057 u8 *pTemp, /* Temp storage space for pCell, if needed */ 7058 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 7059 int *pRC /* Read and write return code from here */ 7060 ){ 7061 int idx = 0; /* Where to write new cell content in data[] */ 7062 int j; /* Loop counter */ 7063 u8 *data; /* The content of the whole page */ 7064 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 7065 7066 assert( *pRC==SQLITE_OK ); 7067 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 7068 assert( MX_CELL(pPage->pBt)<=10921 ); 7069 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 7070 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 7071 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 7072 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7073 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 7074 assert( pPage->nFree>=0 ); 7075 if( pPage->nOverflow || sz+2>pPage->nFree ){ 7076 if( pTemp ){ 7077 memcpy(pTemp, pCell, sz); 7078 pCell = pTemp; 7079 } 7080 if( iChild ){ 7081 put4byte(pCell, iChild); 7082 } 7083 j = pPage->nOverflow++; 7084 /* Comparison against ArraySize-1 since we hold back one extra slot 7085 ** as a contingency. In other words, never need more than 3 overflow 7086 ** slots but 4 are allocated, just to be safe. */ 7087 assert( j < ArraySize(pPage->apOvfl)-1 ); 7088 pPage->apOvfl[j] = pCell; 7089 pPage->aiOvfl[j] = (u16)i; 7090 7091 /* When multiple overflows occur, they are always sequential and in 7092 ** sorted order. This invariants arise because multiple overflows can 7093 ** only occur when inserting divider cells into the parent page during 7094 ** balancing, and the dividers are adjacent and sorted. 7095 */ 7096 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 7097 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 7098 }else{ 7099 int rc = sqlite3PagerWrite(pPage->pDbPage); 7100 if( rc!=SQLITE_OK ){ 7101 *pRC = rc; 7102 return; 7103 } 7104 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7105 data = pPage->aData; 7106 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 7107 rc = allocateSpace(pPage, sz, &idx); 7108 if( rc ){ *pRC = rc; return; } 7109 /* The allocateSpace() routine guarantees the following properties 7110 ** if it returns successfully */ 7111 assert( idx >= 0 ); 7112 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 7113 assert( idx+sz <= (int)pPage->pBt->usableSize ); 7114 pPage->nFree -= (u16)(2 + sz); 7115 if( iChild ){ 7116 /* In a corrupt database where an entry in the cell index section of 7117 ** a btree page has a value of 3 or less, the pCell value might point 7118 ** as many as 4 bytes in front of the start of the aData buffer for 7119 ** the source page. Make sure this does not cause problems by not 7120 ** reading the first 4 bytes */ 7121 memcpy(&data[idx+4], pCell+4, sz-4); 7122 put4byte(&data[idx], iChild); 7123 }else{ 7124 memcpy(&data[idx], pCell, sz); 7125 } 7126 pIns = pPage->aCellIdx + i*2; 7127 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 7128 put2byte(pIns, idx); 7129 pPage->nCell++; 7130 /* increment the cell count */ 7131 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 7132 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 7133 #ifndef SQLITE_OMIT_AUTOVACUUM 7134 if( pPage->pBt->autoVacuum ){ 7135 /* The cell may contain a pointer to an overflow page. If so, write 7136 ** the entry for the overflow page into the pointer map. 7137 */ 7138 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 7139 } 7140 #endif 7141 } 7142 } 7143 7144 /* 7145 ** The following parameters determine how many adjacent pages get involved 7146 ** in a balancing operation. NN is the number of neighbors on either side 7147 ** of the page that participate in the balancing operation. NB is the 7148 ** total number of pages that participate, including the target page and 7149 ** NN neighbors on either side. 7150 ** 7151 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7152 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7153 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7154 ** The value of NN appears to give the best results overall. 7155 ** 7156 ** (Later:) The description above makes it seem as if these values are 7157 ** tunable - as if you could change them and recompile and it would all work. 7158 ** But that is unlikely. NB has been 3 since the inception of SQLite and 7159 ** we have never tested any other value. 7160 */ 7161 #define NN 1 /* Number of neighbors on either side of pPage */ 7162 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 7163 7164 /* 7165 ** A CellArray object contains a cache of pointers and sizes for a 7166 ** consecutive sequence of cells that might be held on multiple pages. 7167 ** 7168 ** The cells in this array are the divider cell or cells from the pParent 7169 ** page plus up to three child pages. There are a total of nCell cells. 7170 ** 7171 ** pRef is a pointer to one of the pages that contributes cells. This is 7172 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7173 ** which should be common to all pages that contribute cells to this array. 7174 ** 7175 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7176 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7177 ** to overflow cells. In other words, some apCel[] pointers might not point 7178 ** to content area of the pages. 7179 ** 7180 ** A szCell[] of zero means the size of that cell has not yet been computed. 7181 ** 7182 ** The cells come from as many as four different pages: 7183 ** 7184 ** ----------- 7185 ** | Parent | 7186 ** ----------- 7187 ** / | \ 7188 ** / | \ 7189 ** --------- --------- --------- 7190 ** |Child-1| |Child-2| |Child-3| 7191 ** --------- --------- --------- 7192 ** 7193 ** The order of cells is in the array is for an index btree is: 7194 ** 7195 ** 1. All cells from Child-1 in order 7196 ** 2. The first divider cell from Parent 7197 ** 3. All cells from Child-2 in order 7198 ** 4. The second divider cell from Parent 7199 ** 5. All cells from Child-3 in order 7200 ** 7201 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7202 ** content exists only in leaves and there are no divider cells. 7203 ** 7204 ** For an index btree, the apEnd[] array holds pointer to the end of page 7205 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7206 ** respectively. The ixNx[] array holds the number of cells contained in 7207 ** each of these 5 stages, and all stages to the left. Hence: 7208 ** 7209 ** ixNx[0] = Number of cells in Child-1. 7210 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7211 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7212 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7213 ** ixNx[4] = Total number of cells. 7214 ** 7215 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7216 ** are used and they point to the leaf pages only, and the ixNx value are: 7217 ** 7218 ** ixNx[0] = Number of cells in Child-1. 7219 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7220 ** ixNx[2] = Total number of cells. 7221 ** 7222 ** Sometimes when deleting, a child page can have zero cells. In those 7223 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7224 ** entries, shift down. The end result is that each ixNx[] entry should 7225 ** be larger than the previous 7226 */ 7227 typedef struct CellArray CellArray; 7228 struct CellArray { 7229 int nCell; /* Number of cells in apCell[] */ 7230 MemPage *pRef; /* Reference page */ 7231 u8 **apCell; /* All cells begin balanced */ 7232 u16 *szCell; /* Local size of all cells in apCell[] */ 7233 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7234 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7235 }; 7236 7237 /* 7238 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7239 ** computed. 7240 */ 7241 static void populateCellCache(CellArray *p, int idx, int N){ 7242 assert( idx>=0 && idx+N<=p->nCell ); 7243 while( N>0 ){ 7244 assert( p->apCell[idx]!=0 ); 7245 if( p->szCell[idx]==0 ){ 7246 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7247 }else{ 7248 assert( CORRUPT_DB || 7249 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7250 } 7251 idx++; 7252 N--; 7253 } 7254 } 7255 7256 /* 7257 ** Return the size of the Nth element of the cell array 7258 */ 7259 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7260 assert( N>=0 && N<p->nCell ); 7261 assert( p->szCell[N]==0 ); 7262 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7263 return p->szCell[N]; 7264 } 7265 static u16 cachedCellSize(CellArray *p, int N){ 7266 assert( N>=0 && N<p->nCell ); 7267 if( p->szCell[N] ) return p->szCell[N]; 7268 return computeCellSize(p, N); 7269 } 7270 7271 /* 7272 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7273 ** szCell[] array contains the size in bytes of each cell. This function 7274 ** replaces the current contents of page pPg with the contents of the cell 7275 ** array. 7276 ** 7277 ** Some of the cells in apCell[] may currently be stored in pPg. This 7278 ** function works around problems caused by this by making a copy of any 7279 ** such cells before overwriting the page data. 7280 ** 7281 ** The MemPage.nFree field is invalidated by this function. It is the 7282 ** responsibility of the caller to set it correctly. 7283 */ 7284 static int rebuildPage( 7285 CellArray *pCArray, /* Content to be added to page pPg */ 7286 int iFirst, /* First cell in pCArray to use */ 7287 int nCell, /* Final number of cells on page */ 7288 MemPage *pPg /* The page to be reconstructed */ 7289 ){ 7290 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7291 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7292 const int usableSize = pPg->pBt->usableSize; 7293 u8 * const pEnd = &aData[usableSize]; 7294 int i = iFirst; /* Which cell to copy from pCArray*/ 7295 u32 j; /* Start of cell content area */ 7296 int iEnd = i+nCell; /* Loop terminator */ 7297 u8 *pCellptr = pPg->aCellIdx; 7298 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7299 u8 *pData; 7300 int k; /* Current slot in pCArray->apEnd[] */ 7301 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7302 7303 assert( i<iEnd ); 7304 j = get2byte(&aData[hdr+5]); 7305 if( j>(u32)usableSize ){ j = 0; } 7306 memcpy(&pTmp[j], &aData[j], usableSize - j); 7307 7308 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7309 pSrcEnd = pCArray->apEnd[k]; 7310 7311 pData = pEnd; 7312 while( 1/*exit by break*/ ){ 7313 u8 *pCell = pCArray->apCell[i]; 7314 u16 sz = pCArray->szCell[i]; 7315 assert( sz>0 ); 7316 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7317 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7318 pCell = &pTmp[pCell - aData]; 7319 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7320 && (uptr)(pCell)<(uptr)pSrcEnd 7321 ){ 7322 return SQLITE_CORRUPT_BKPT; 7323 } 7324 7325 pData -= sz; 7326 put2byte(pCellptr, (pData - aData)); 7327 pCellptr += 2; 7328 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7329 memmove(pData, pCell, sz); 7330 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7331 i++; 7332 if( i>=iEnd ) break; 7333 if( pCArray->ixNx[k]<=i ){ 7334 k++; 7335 pSrcEnd = pCArray->apEnd[k]; 7336 } 7337 } 7338 7339 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7340 pPg->nCell = nCell; 7341 pPg->nOverflow = 0; 7342 7343 put2byte(&aData[hdr+1], 0); 7344 put2byte(&aData[hdr+3], pPg->nCell); 7345 put2byte(&aData[hdr+5], pData - aData); 7346 aData[hdr+7] = 0x00; 7347 return SQLITE_OK; 7348 } 7349 7350 /* 7351 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7352 ** This function attempts to add the cells stored in the array to page pPg. 7353 ** If it cannot (because the page needs to be defragmented before the cells 7354 ** will fit), non-zero is returned. Otherwise, if the cells are added 7355 ** successfully, zero is returned. 7356 ** 7357 ** Argument pCellptr points to the first entry in the cell-pointer array 7358 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7359 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7360 ** cell in the array. It is the responsibility of the caller to ensure 7361 ** that it is safe to overwrite this part of the cell-pointer array. 7362 ** 7363 ** When this function is called, *ppData points to the start of the 7364 ** content area on page pPg. If the size of the content area is extended, 7365 ** *ppData is updated to point to the new start of the content area 7366 ** before returning. 7367 ** 7368 ** Finally, argument pBegin points to the byte immediately following the 7369 ** end of the space required by this page for the cell-pointer area (for 7370 ** all cells - not just those inserted by the current call). If the content 7371 ** area must be extended to before this point in order to accomodate all 7372 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7373 */ 7374 static int pageInsertArray( 7375 MemPage *pPg, /* Page to add cells to */ 7376 u8 *pBegin, /* End of cell-pointer array */ 7377 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7378 u8 *pCellptr, /* Pointer to cell-pointer area */ 7379 int iFirst, /* Index of first cell to add */ 7380 int nCell, /* Number of cells to add to pPg */ 7381 CellArray *pCArray /* Array of cells */ 7382 ){ 7383 int i = iFirst; /* Loop counter - cell index to insert */ 7384 u8 *aData = pPg->aData; /* Complete page */ 7385 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7386 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7387 int k; /* Current slot in pCArray->apEnd[] */ 7388 u8 *pEnd; /* Maximum extent of cell data */ 7389 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7390 if( iEnd<=iFirst ) return 0; 7391 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7392 pEnd = pCArray->apEnd[k]; 7393 while( 1 /*Exit by break*/ ){ 7394 int sz, rc; 7395 u8 *pSlot; 7396 assert( pCArray->szCell[i]!=0 ); 7397 sz = pCArray->szCell[i]; 7398 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7399 if( (pData - pBegin)<sz ) return 1; 7400 pData -= sz; 7401 pSlot = pData; 7402 } 7403 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7404 ** database. But they might for a corrupt database. Hence use memmove() 7405 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7406 assert( (pSlot+sz)<=pCArray->apCell[i] 7407 || pSlot>=(pCArray->apCell[i]+sz) 7408 || CORRUPT_DB ); 7409 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7410 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7411 ){ 7412 assert( CORRUPT_DB ); 7413 (void)SQLITE_CORRUPT_BKPT; 7414 return 1; 7415 } 7416 memmove(pSlot, pCArray->apCell[i], sz); 7417 put2byte(pCellptr, (pSlot - aData)); 7418 pCellptr += 2; 7419 i++; 7420 if( i>=iEnd ) break; 7421 if( pCArray->ixNx[k]<=i ){ 7422 k++; 7423 pEnd = pCArray->apEnd[k]; 7424 } 7425 } 7426 *ppData = pData; 7427 return 0; 7428 } 7429 7430 /* 7431 ** The pCArray object contains pointers to b-tree cells and their sizes. 7432 ** 7433 ** This function adds the space associated with each cell in the array 7434 ** that is currently stored within the body of pPg to the pPg free-list. 7435 ** The cell-pointers and other fields of the page are not updated. 7436 ** 7437 ** This function returns the total number of cells added to the free-list. 7438 */ 7439 static int pageFreeArray( 7440 MemPage *pPg, /* Page to edit */ 7441 int iFirst, /* First cell to delete */ 7442 int nCell, /* Cells to delete */ 7443 CellArray *pCArray /* Array of cells */ 7444 ){ 7445 u8 * const aData = pPg->aData; 7446 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7447 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7448 int nRet = 0; 7449 int i; 7450 int iEnd = iFirst + nCell; 7451 u8 *pFree = 0; 7452 int szFree = 0; 7453 7454 for(i=iFirst; i<iEnd; i++){ 7455 u8 *pCell = pCArray->apCell[i]; 7456 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7457 int sz; 7458 /* No need to use cachedCellSize() here. The sizes of all cells that 7459 ** are to be freed have already been computing while deciding which 7460 ** cells need freeing */ 7461 sz = pCArray->szCell[i]; assert( sz>0 ); 7462 if( pFree!=(pCell + sz) ){ 7463 if( pFree ){ 7464 assert( pFree>aData && (pFree - aData)<65536 ); 7465 freeSpace(pPg, (u16)(pFree - aData), szFree); 7466 } 7467 pFree = pCell; 7468 szFree = sz; 7469 if( pFree+sz>pEnd ){ 7470 return 0; 7471 } 7472 }else{ 7473 pFree = pCell; 7474 szFree += sz; 7475 } 7476 nRet++; 7477 } 7478 } 7479 if( pFree ){ 7480 assert( pFree>aData && (pFree - aData)<65536 ); 7481 freeSpace(pPg, (u16)(pFree - aData), szFree); 7482 } 7483 return nRet; 7484 } 7485 7486 /* 7487 ** pCArray contains pointers to and sizes of all cells in the page being 7488 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7489 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7490 ** starting at apCell[iNew]. 7491 ** 7492 ** This routine makes the necessary adjustments to pPg so that it contains 7493 ** the correct cells after being balanced. 7494 ** 7495 ** The pPg->nFree field is invalid when this function returns. It is the 7496 ** responsibility of the caller to set it correctly. 7497 */ 7498 static int editPage( 7499 MemPage *pPg, /* Edit this page */ 7500 int iOld, /* Index of first cell currently on page */ 7501 int iNew, /* Index of new first cell on page */ 7502 int nNew, /* Final number of cells on page */ 7503 CellArray *pCArray /* Array of cells and sizes */ 7504 ){ 7505 u8 * const aData = pPg->aData; 7506 const int hdr = pPg->hdrOffset; 7507 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7508 int nCell = pPg->nCell; /* Cells stored on pPg */ 7509 u8 *pData; 7510 u8 *pCellptr; 7511 int i; 7512 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7513 int iNewEnd = iNew + nNew; 7514 7515 #ifdef SQLITE_DEBUG 7516 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7517 memcpy(pTmp, aData, pPg->pBt->usableSize); 7518 #endif 7519 7520 /* Remove cells from the start and end of the page */ 7521 assert( nCell>=0 ); 7522 if( iOld<iNew ){ 7523 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7524 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7525 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7526 nCell -= nShift; 7527 } 7528 if( iNewEnd < iOldEnd ){ 7529 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7530 assert( nCell>=nTail ); 7531 nCell -= nTail; 7532 } 7533 7534 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7535 if( pData<pBegin ) goto editpage_fail; 7536 if( pData>pPg->aDataEnd ) goto editpage_fail; 7537 7538 /* Add cells to the start of the page */ 7539 if( iNew<iOld ){ 7540 int nAdd = MIN(nNew,iOld-iNew); 7541 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7542 assert( nAdd>=0 ); 7543 pCellptr = pPg->aCellIdx; 7544 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7545 if( pageInsertArray( 7546 pPg, pBegin, &pData, pCellptr, 7547 iNew, nAdd, pCArray 7548 ) ) goto editpage_fail; 7549 nCell += nAdd; 7550 } 7551 7552 /* Add any overflow cells */ 7553 for(i=0; i<pPg->nOverflow; i++){ 7554 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7555 if( iCell>=0 && iCell<nNew ){ 7556 pCellptr = &pPg->aCellIdx[iCell * 2]; 7557 if( nCell>iCell ){ 7558 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7559 } 7560 nCell++; 7561 cachedCellSize(pCArray, iCell+iNew); 7562 if( pageInsertArray( 7563 pPg, pBegin, &pData, pCellptr, 7564 iCell+iNew, 1, pCArray 7565 ) ) goto editpage_fail; 7566 } 7567 } 7568 7569 /* Append cells to the end of the page */ 7570 assert( nCell>=0 ); 7571 pCellptr = &pPg->aCellIdx[nCell*2]; 7572 if( pageInsertArray( 7573 pPg, pBegin, &pData, pCellptr, 7574 iNew+nCell, nNew-nCell, pCArray 7575 ) ) goto editpage_fail; 7576 7577 pPg->nCell = nNew; 7578 pPg->nOverflow = 0; 7579 7580 put2byte(&aData[hdr+3], pPg->nCell); 7581 put2byte(&aData[hdr+5], pData - aData); 7582 7583 #ifdef SQLITE_DEBUG 7584 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7585 u8 *pCell = pCArray->apCell[i+iNew]; 7586 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7587 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7588 pCell = &pTmp[pCell - aData]; 7589 } 7590 assert( 0==memcmp(pCell, &aData[iOff], 7591 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7592 } 7593 #endif 7594 7595 return SQLITE_OK; 7596 editpage_fail: 7597 /* Unable to edit this page. Rebuild it from scratch instead. */ 7598 populateCellCache(pCArray, iNew, nNew); 7599 return rebuildPage(pCArray, iNew, nNew, pPg); 7600 } 7601 7602 7603 #ifndef SQLITE_OMIT_QUICKBALANCE 7604 /* 7605 ** This version of balance() handles the common special case where 7606 ** a new entry is being inserted on the extreme right-end of the 7607 ** tree, in other words, when the new entry will become the largest 7608 ** entry in the tree. 7609 ** 7610 ** Instead of trying to balance the 3 right-most leaf pages, just add 7611 ** a new page to the right-hand side and put the one new entry in 7612 ** that page. This leaves the right side of the tree somewhat 7613 ** unbalanced. But odds are that we will be inserting new entries 7614 ** at the end soon afterwards so the nearly empty page will quickly 7615 ** fill up. On average. 7616 ** 7617 ** pPage is the leaf page which is the right-most page in the tree. 7618 ** pParent is its parent. pPage must have a single overflow entry 7619 ** which is also the right-most entry on the page. 7620 ** 7621 ** The pSpace buffer is used to store a temporary copy of the divider 7622 ** cell that will be inserted into pParent. Such a cell consists of a 4 7623 ** byte page number followed by a variable length integer. In other 7624 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7625 ** least 13 bytes in size. 7626 */ 7627 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7628 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7629 MemPage *pNew; /* Newly allocated page */ 7630 int rc; /* Return Code */ 7631 Pgno pgnoNew; /* Page number of pNew */ 7632 7633 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7634 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7635 assert( pPage->nOverflow==1 ); 7636 7637 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7638 assert( pPage->nFree>=0 ); 7639 assert( pParent->nFree>=0 ); 7640 7641 /* Allocate a new page. This page will become the right-sibling of 7642 ** pPage. Make the parent page writable, so that the new divider cell 7643 ** may be inserted. If both these operations are successful, proceed. 7644 */ 7645 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7646 7647 if( rc==SQLITE_OK ){ 7648 7649 u8 *pOut = &pSpace[4]; 7650 u8 *pCell = pPage->apOvfl[0]; 7651 u16 szCell = pPage->xCellSize(pPage, pCell); 7652 u8 *pStop; 7653 CellArray b; 7654 7655 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7656 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7657 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7658 b.nCell = 1; 7659 b.pRef = pPage; 7660 b.apCell = &pCell; 7661 b.szCell = &szCell; 7662 b.apEnd[0] = pPage->aDataEnd; 7663 b.ixNx[0] = 2; 7664 rc = rebuildPage(&b, 0, 1, pNew); 7665 if( NEVER(rc) ){ 7666 releasePage(pNew); 7667 return rc; 7668 } 7669 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7670 7671 /* If this is an auto-vacuum database, update the pointer map 7672 ** with entries for the new page, and any pointer from the 7673 ** cell on the page to an overflow page. If either of these 7674 ** operations fails, the return code is set, but the contents 7675 ** of the parent page are still manipulated by thh code below. 7676 ** That is Ok, at this point the parent page is guaranteed to 7677 ** be marked as dirty. Returning an error code will cause a 7678 ** rollback, undoing any changes made to the parent page. 7679 */ 7680 if( ISAUTOVACUUM ){ 7681 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7682 if( szCell>pNew->minLocal ){ 7683 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7684 } 7685 } 7686 7687 /* Create a divider cell to insert into pParent. The divider cell 7688 ** consists of a 4-byte page number (the page number of pPage) and 7689 ** a variable length key value (which must be the same value as the 7690 ** largest key on pPage). 7691 ** 7692 ** To find the largest key value on pPage, first find the right-most 7693 ** cell on pPage. The first two fields of this cell are the 7694 ** record-length (a variable length integer at most 32-bits in size) 7695 ** and the key value (a variable length integer, may have any value). 7696 ** The first of the while(...) loops below skips over the record-length 7697 ** field. The second while(...) loop copies the key value from the 7698 ** cell on pPage into the pSpace buffer. 7699 */ 7700 pCell = findCell(pPage, pPage->nCell-1); 7701 pStop = &pCell[9]; 7702 while( (*(pCell++)&0x80) && pCell<pStop ); 7703 pStop = &pCell[9]; 7704 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7705 7706 /* Insert the new divider cell into pParent. */ 7707 if( rc==SQLITE_OK ){ 7708 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7709 0, pPage->pgno, &rc); 7710 } 7711 7712 /* Set the right-child pointer of pParent to point to the new page. */ 7713 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7714 7715 /* Release the reference to the new page. */ 7716 releasePage(pNew); 7717 } 7718 7719 return rc; 7720 } 7721 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7722 7723 #if 0 7724 /* 7725 ** This function does not contribute anything to the operation of SQLite. 7726 ** it is sometimes activated temporarily while debugging code responsible 7727 ** for setting pointer-map entries. 7728 */ 7729 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7730 int i, j; 7731 for(i=0; i<nPage; i++){ 7732 Pgno n; 7733 u8 e; 7734 MemPage *pPage = apPage[i]; 7735 BtShared *pBt = pPage->pBt; 7736 assert( pPage->isInit ); 7737 7738 for(j=0; j<pPage->nCell; j++){ 7739 CellInfo info; 7740 u8 *z; 7741 7742 z = findCell(pPage, j); 7743 pPage->xParseCell(pPage, z, &info); 7744 if( info.nLocal<info.nPayload ){ 7745 Pgno ovfl = get4byte(&z[info.nSize-4]); 7746 ptrmapGet(pBt, ovfl, &e, &n); 7747 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7748 } 7749 if( !pPage->leaf ){ 7750 Pgno child = get4byte(z); 7751 ptrmapGet(pBt, child, &e, &n); 7752 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7753 } 7754 } 7755 if( !pPage->leaf ){ 7756 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7757 ptrmapGet(pBt, child, &e, &n); 7758 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7759 } 7760 } 7761 return 1; 7762 } 7763 #endif 7764 7765 /* 7766 ** This function is used to copy the contents of the b-tree node stored 7767 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7768 ** the pointer-map entries for each child page are updated so that the 7769 ** parent page stored in the pointer map is page pTo. If pFrom contained 7770 ** any cells with overflow page pointers, then the corresponding pointer 7771 ** map entries are also updated so that the parent page is page pTo. 7772 ** 7773 ** If pFrom is currently carrying any overflow cells (entries in the 7774 ** MemPage.apOvfl[] array), they are not copied to pTo. 7775 ** 7776 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7777 ** 7778 ** The performance of this function is not critical. It is only used by 7779 ** the balance_shallower() and balance_deeper() procedures, neither of 7780 ** which are called often under normal circumstances. 7781 */ 7782 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7783 if( (*pRC)==SQLITE_OK ){ 7784 BtShared * const pBt = pFrom->pBt; 7785 u8 * const aFrom = pFrom->aData; 7786 u8 * const aTo = pTo->aData; 7787 int const iFromHdr = pFrom->hdrOffset; 7788 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7789 int rc; 7790 int iData; 7791 7792 7793 assert( pFrom->isInit ); 7794 assert( pFrom->nFree>=iToHdr ); 7795 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7796 7797 /* Copy the b-tree node content from page pFrom to page pTo. */ 7798 iData = get2byte(&aFrom[iFromHdr+5]); 7799 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7800 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7801 7802 /* Reinitialize page pTo so that the contents of the MemPage structure 7803 ** match the new data. The initialization of pTo can actually fail under 7804 ** fairly obscure circumstances, even though it is a copy of initialized 7805 ** page pFrom. 7806 */ 7807 pTo->isInit = 0; 7808 rc = btreeInitPage(pTo); 7809 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7810 if( rc!=SQLITE_OK ){ 7811 *pRC = rc; 7812 return; 7813 } 7814 7815 /* If this is an auto-vacuum database, update the pointer-map entries 7816 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7817 */ 7818 if( ISAUTOVACUUM ){ 7819 *pRC = setChildPtrmaps(pTo); 7820 } 7821 } 7822 } 7823 7824 /* 7825 ** This routine redistributes cells on the iParentIdx'th child of pParent 7826 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7827 ** same amount of free space. Usually a single sibling on either side of the 7828 ** page are used in the balancing, though both siblings might come from one 7829 ** side if the page is the first or last child of its parent. If the page 7830 ** has fewer than 2 siblings (something which can only happen if the page 7831 ** is a root page or a child of a root page) then all available siblings 7832 ** participate in the balancing. 7833 ** 7834 ** The number of siblings of the page might be increased or decreased by 7835 ** one or two in an effort to keep pages nearly full but not over full. 7836 ** 7837 ** Note that when this routine is called, some of the cells on the page 7838 ** might not actually be stored in MemPage.aData[]. This can happen 7839 ** if the page is overfull. This routine ensures that all cells allocated 7840 ** to the page and its siblings fit into MemPage.aData[] before returning. 7841 ** 7842 ** In the course of balancing the page and its siblings, cells may be 7843 ** inserted into or removed from the parent page (pParent). Doing so 7844 ** may cause the parent page to become overfull or underfull. If this 7845 ** happens, it is the responsibility of the caller to invoke the correct 7846 ** balancing routine to fix this problem (see the balance() routine). 7847 ** 7848 ** If this routine fails for any reason, it might leave the database 7849 ** in a corrupted state. So if this routine fails, the database should 7850 ** be rolled back. 7851 ** 7852 ** The third argument to this function, aOvflSpace, is a pointer to a 7853 ** buffer big enough to hold one page. If while inserting cells into the parent 7854 ** page (pParent) the parent page becomes overfull, this buffer is 7855 ** used to store the parent's overflow cells. Because this function inserts 7856 ** a maximum of four divider cells into the parent page, and the maximum 7857 ** size of a cell stored within an internal node is always less than 1/4 7858 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7859 ** enough for all overflow cells. 7860 ** 7861 ** If aOvflSpace is set to a null pointer, this function returns 7862 ** SQLITE_NOMEM. 7863 */ 7864 static int balance_nonroot( 7865 MemPage *pParent, /* Parent page of siblings being balanced */ 7866 int iParentIdx, /* Index of "the page" in pParent */ 7867 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7868 int isRoot, /* True if pParent is a root-page */ 7869 int bBulk /* True if this call is part of a bulk load */ 7870 ){ 7871 BtShared *pBt; /* The whole database */ 7872 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7873 int nNew = 0; /* Number of pages in apNew[] */ 7874 int nOld; /* Number of pages in apOld[] */ 7875 int i, j, k; /* Loop counters */ 7876 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7877 int rc = SQLITE_OK; /* The return code */ 7878 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7879 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7880 int usableSpace; /* Bytes in pPage beyond the header */ 7881 int pageFlags; /* Value of pPage->aData[0] */ 7882 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7883 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7884 int szScratch; /* Size of scratch memory requested */ 7885 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7886 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7887 u8 *pRight; /* Location in parent of right-sibling pointer */ 7888 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7889 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7890 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7891 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7892 u8 *aSpace1; /* Space for copies of dividers cells */ 7893 Pgno pgno; /* Temp var to store a page number in */ 7894 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7895 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7896 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7897 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7898 CellArray b; /* Parsed information on cells being balanced */ 7899 7900 memset(abDone, 0, sizeof(abDone)); 7901 memset(&b, 0, sizeof(b)); 7902 pBt = pParent->pBt; 7903 assert( sqlite3_mutex_held(pBt->mutex) ); 7904 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7905 7906 /* At this point pParent may have at most one overflow cell. And if 7907 ** this overflow cell is present, it must be the cell with 7908 ** index iParentIdx. This scenario comes about when this function 7909 ** is called (indirectly) from sqlite3BtreeDelete(). 7910 */ 7911 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7912 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7913 7914 if( !aOvflSpace ){ 7915 return SQLITE_NOMEM_BKPT; 7916 } 7917 assert( pParent->nFree>=0 ); 7918 7919 /* Find the sibling pages to balance. Also locate the cells in pParent 7920 ** that divide the siblings. An attempt is made to find NN siblings on 7921 ** either side of pPage. More siblings are taken from one side, however, 7922 ** if there are fewer than NN siblings on the other side. If pParent 7923 ** has NB or fewer children then all children of pParent are taken. 7924 ** 7925 ** This loop also drops the divider cells from the parent page. This 7926 ** way, the remainder of the function does not have to deal with any 7927 ** overflow cells in the parent page, since if any existed they will 7928 ** have already been removed. 7929 */ 7930 i = pParent->nOverflow + pParent->nCell; 7931 if( i<2 ){ 7932 nxDiv = 0; 7933 }else{ 7934 assert( bBulk==0 || bBulk==1 ); 7935 if( iParentIdx==0 ){ 7936 nxDiv = 0; 7937 }else if( iParentIdx==i ){ 7938 nxDiv = i-2+bBulk; 7939 }else{ 7940 nxDiv = iParentIdx-1; 7941 } 7942 i = 2-bBulk; 7943 } 7944 nOld = i+1; 7945 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7946 pRight = &pParent->aData[pParent->hdrOffset+8]; 7947 }else{ 7948 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7949 } 7950 pgno = get4byte(pRight); 7951 while( 1 ){ 7952 if( rc==SQLITE_OK ){ 7953 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7954 } 7955 if( rc ){ 7956 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7957 goto balance_cleanup; 7958 } 7959 if( apOld[i]->nFree<0 ){ 7960 rc = btreeComputeFreeSpace(apOld[i]); 7961 if( rc ){ 7962 memset(apOld, 0, (i)*sizeof(MemPage*)); 7963 goto balance_cleanup; 7964 } 7965 } 7966 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7967 if( (i--)==0 ) break; 7968 7969 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7970 apDiv[i] = pParent->apOvfl[0]; 7971 pgno = get4byte(apDiv[i]); 7972 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7973 pParent->nOverflow = 0; 7974 }else{ 7975 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7976 pgno = get4byte(apDiv[i]); 7977 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7978 7979 /* Drop the cell from the parent page. apDiv[i] still points to 7980 ** the cell within the parent, even though it has been dropped. 7981 ** This is safe because dropping a cell only overwrites the first 7982 ** four bytes of it, and this function does not need the first 7983 ** four bytes of the divider cell. So the pointer is safe to use 7984 ** later on. 7985 ** 7986 ** But not if we are in secure-delete mode. In secure-delete mode, 7987 ** the dropCell() routine will overwrite the entire cell with zeroes. 7988 ** In this case, temporarily copy the cell into the aOvflSpace[] 7989 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7990 ** is allocated. */ 7991 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7992 int iOff; 7993 7994 /* If the following if() condition is not true, the db is corrupted. 7995 ** The call to dropCell() below will detect this. */ 7996 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7997 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7998 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7999 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 8000 } 8001 } 8002 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 8003 } 8004 } 8005 8006 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 8007 ** alignment */ 8008 nMaxCells = (nMaxCells + 3)&~3; 8009 8010 /* 8011 ** Allocate space for memory structures 8012 */ 8013 szScratch = 8014 nMaxCells*sizeof(u8*) /* b.apCell */ 8015 + nMaxCells*sizeof(u16) /* b.szCell */ 8016 + pBt->pageSize; /* aSpace1 */ 8017 8018 assert( szScratch<=7*(int)pBt->pageSize ); 8019 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 8020 if( b.apCell==0 ){ 8021 rc = SQLITE_NOMEM_BKPT; 8022 goto balance_cleanup; 8023 } 8024 b.szCell = (u16*)&b.apCell[nMaxCells]; 8025 aSpace1 = (u8*)&b.szCell[nMaxCells]; 8026 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 8027 8028 /* 8029 ** Load pointers to all cells on sibling pages and the divider cells 8030 ** into the local b.apCell[] array. Make copies of the divider cells 8031 ** into space obtained from aSpace1[]. The divider cells have already 8032 ** been removed from pParent. 8033 ** 8034 ** If the siblings are on leaf pages, then the child pointers of the 8035 ** divider cells are stripped from the cells before they are copied 8036 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 8037 ** child pointers. If siblings are not leaves, then all cell in 8038 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 8039 ** are alike. 8040 ** 8041 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 8042 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 8043 */ 8044 b.pRef = apOld[0]; 8045 leafCorrection = b.pRef->leaf*4; 8046 leafData = b.pRef->intKeyLeaf; 8047 for(i=0; i<nOld; i++){ 8048 MemPage *pOld = apOld[i]; 8049 int limit = pOld->nCell; 8050 u8 *aData = pOld->aData; 8051 u16 maskPage = pOld->maskPage; 8052 u8 *piCell = aData + pOld->cellOffset; 8053 u8 *piEnd; 8054 VVA_ONLY( int nCellAtStart = b.nCell; ) 8055 8056 /* Verify that all sibling pages are of the same "type" (table-leaf, 8057 ** table-interior, index-leaf, or index-interior). 8058 */ 8059 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 8060 rc = SQLITE_CORRUPT_BKPT; 8061 goto balance_cleanup; 8062 } 8063 8064 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 8065 ** contains overflow cells, include them in the b.apCell[] array 8066 ** in the correct spot. 8067 ** 8068 ** Note that when there are multiple overflow cells, it is always the 8069 ** case that they are sequential and adjacent. This invariant arises 8070 ** because multiple overflows can only occurs when inserting divider 8071 ** cells into a parent on a prior balance, and divider cells are always 8072 ** adjacent and are inserted in order. There is an assert() tagged 8073 ** with "NOTE 1" in the overflow cell insertion loop to prove this 8074 ** invariant. 8075 ** 8076 ** This must be done in advance. Once the balance starts, the cell 8077 ** offset section of the btree page will be overwritten and we will no 8078 ** long be able to find the cells if a pointer to each cell is not saved 8079 ** first. 8080 */ 8081 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 8082 if( pOld->nOverflow>0 ){ 8083 if( NEVER(limit<pOld->aiOvfl[0]) ){ 8084 rc = SQLITE_CORRUPT_BKPT; 8085 goto balance_cleanup; 8086 } 8087 limit = pOld->aiOvfl[0]; 8088 for(j=0; j<limit; j++){ 8089 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8090 piCell += 2; 8091 b.nCell++; 8092 } 8093 for(k=0; k<pOld->nOverflow; k++){ 8094 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 8095 b.apCell[b.nCell] = pOld->apOvfl[k]; 8096 b.nCell++; 8097 } 8098 } 8099 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 8100 while( piCell<piEnd ){ 8101 assert( b.nCell<nMaxCells ); 8102 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8103 piCell += 2; 8104 b.nCell++; 8105 } 8106 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 8107 8108 cntOld[i] = b.nCell; 8109 if( i<nOld-1 && !leafData){ 8110 u16 sz = (u16)szNew[i]; 8111 u8 *pTemp; 8112 assert( b.nCell<nMaxCells ); 8113 b.szCell[b.nCell] = sz; 8114 pTemp = &aSpace1[iSpace1]; 8115 iSpace1 += sz; 8116 assert( sz<=pBt->maxLocal+23 ); 8117 assert( iSpace1 <= (int)pBt->pageSize ); 8118 memcpy(pTemp, apDiv[i], sz); 8119 b.apCell[b.nCell] = pTemp+leafCorrection; 8120 assert( leafCorrection==0 || leafCorrection==4 ); 8121 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 8122 if( !pOld->leaf ){ 8123 assert( leafCorrection==0 ); 8124 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 8125 /* The right pointer of the child page pOld becomes the left 8126 ** pointer of the divider cell */ 8127 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 8128 }else{ 8129 assert( leafCorrection==4 ); 8130 while( b.szCell[b.nCell]<4 ){ 8131 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 8132 ** does exist, pad it with 0x00 bytes. */ 8133 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 8134 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 8135 aSpace1[iSpace1++] = 0x00; 8136 b.szCell[b.nCell]++; 8137 } 8138 } 8139 b.nCell++; 8140 } 8141 } 8142 8143 /* 8144 ** Figure out the number of pages needed to hold all b.nCell cells. 8145 ** Store this number in "k". Also compute szNew[] which is the total 8146 ** size of all cells on the i-th page and cntNew[] which is the index 8147 ** in b.apCell[] of the cell that divides page i from page i+1. 8148 ** cntNew[k] should equal b.nCell. 8149 ** 8150 ** Values computed by this block: 8151 ** 8152 ** k: The total number of sibling pages 8153 ** szNew[i]: Spaced used on the i-th sibling page. 8154 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 8155 ** the right of the i-th sibling page. 8156 ** usableSpace: Number of bytes of space available on each sibling. 8157 ** 8158 */ 8159 usableSpace = pBt->usableSize - 12 + leafCorrection; 8160 for(i=k=0; i<nOld; i++, k++){ 8161 MemPage *p = apOld[i]; 8162 b.apEnd[k] = p->aDataEnd; 8163 b.ixNx[k] = cntOld[i]; 8164 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8165 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8166 } 8167 if( !leafData ){ 8168 k++; 8169 b.apEnd[k] = pParent->aDataEnd; 8170 b.ixNx[k] = cntOld[i]+1; 8171 } 8172 assert( p->nFree>=0 ); 8173 szNew[i] = usableSpace - p->nFree; 8174 for(j=0; j<p->nOverflow; j++){ 8175 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8176 } 8177 cntNew[i] = cntOld[i]; 8178 } 8179 k = nOld; 8180 for(i=0; i<k; i++){ 8181 int sz; 8182 while( szNew[i]>usableSpace ){ 8183 if( i+1>=k ){ 8184 k = i+2; 8185 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8186 szNew[k-1] = 0; 8187 cntNew[k-1] = b.nCell; 8188 } 8189 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8190 szNew[i] -= sz; 8191 if( !leafData ){ 8192 if( cntNew[i]<b.nCell ){ 8193 sz = 2 + cachedCellSize(&b, cntNew[i]); 8194 }else{ 8195 sz = 0; 8196 } 8197 } 8198 szNew[i+1] += sz; 8199 cntNew[i]--; 8200 } 8201 while( cntNew[i]<b.nCell ){ 8202 sz = 2 + cachedCellSize(&b, cntNew[i]); 8203 if( szNew[i]+sz>usableSpace ) break; 8204 szNew[i] += sz; 8205 cntNew[i]++; 8206 if( !leafData ){ 8207 if( cntNew[i]<b.nCell ){ 8208 sz = 2 + cachedCellSize(&b, cntNew[i]); 8209 }else{ 8210 sz = 0; 8211 } 8212 } 8213 szNew[i+1] -= sz; 8214 } 8215 if( cntNew[i]>=b.nCell ){ 8216 k = i+1; 8217 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8218 rc = SQLITE_CORRUPT_BKPT; 8219 goto balance_cleanup; 8220 } 8221 } 8222 8223 /* 8224 ** The packing computed by the previous block is biased toward the siblings 8225 ** on the left side (siblings with smaller keys). The left siblings are 8226 ** always nearly full, while the right-most sibling might be nearly empty. 8227 ** The next block of code attempts to adjust the packing of siblings to 8228 ** get a better balance. 8229 ** 8230 ** This adjustment is more than an optimization. The packing above might 8231 ** be so out of balance as to be illegal. For example, the right-most 8232 ** sibling might be completely empty. This adjustment is not optional. 8233 */ 8234 for(i=k-1; i>0; i--){ 8235 int szRight = szNew[i]; /* Size of sibling on the right */ 8236 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8237 int r; /* Index of right-most cell in left sibling */ 8238 int d; /* Index of first cell to the left of right sibling */ 8239 8240 r = cntNew[i-1] - 1; 8241 d = r + 1 - leafData; 8242 (void)cachedCellSize(&b, d); 8243 do{ 8244 assert( d<nMaxCells ); 8245 assert( r<nMaxCells ); 8246 (void)cachedCellSize(&b, r); 8247 if( szRight!=0 8248 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8249 break; 8250 } 8251 szRight += b.szCell[d] + 2; 8252 szLeft -= b.szCell[r] + 2; 8253 cntNew[i-1] = r; 8254 r--; 8255 d--; 8256 }while( r>=0 ); 8257 szNew[i] = szRight; 8258 szNew[i-1] = szLeft; 8259 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8260 rc = SQLITE_CORRUPT_BKPT; 8261 goto balance_cleanup; 8262 } 8263 } 8264 8265 /* Sanity check: For a non-corrupt database file one of the follwing 8266 ** must be true: 8267 ** (1) We found one or more cells (cntNew[0])>0), or 8268 ** (2) pPage is a virtual root page. A virtual root page is when 8269 ** the real root page is page 1 and we are the only child of 8270 ** that page. 8271 */ 8272 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8273 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8274 apOld[0]->pgno, apOld[0]->nCell, 8275 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8276 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8277 )); 8278 8279 /* 8280 ** Allocate k new pages. Reuse old pages where possible. 8281 */ 8282 pageFlags = apOld[0]->aData[0]; 8283 for(i=0; i<k; i++){ 8284 MemPage *pNew; 8285 if( i<nOld ){ 8286 pNew = apNew[i] = apOld[i]; 8287 apOld[i] = 0; 8288 rc = sqlite3PagerWrite(pNew->pDbPage); 8289 nNew++; 8290 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8291 && rc==SQLITE_OK 8292 ){ 8293 rc = SQLITE_CORRUPT_BKPT; 8294 } 8295 if( rc ) goto balance_cleanup; 8296 }else{ 8297 assert( i>0 ); 8298 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8299 if( rc ) goto balance_cleanup; 8300 zeroPage(pNew, pageFlags); 8301 apNew[i] = pNew; 8302 nNew++; 8303 cntOld[i] = b.nCell; 8304 8305 /* Set the pointer-map entry for the new sibling page. */ 8306 if( ISAUTOVACUUM ){ 8307 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8308 if( rc!=SQLITE_OK ){ 8309 goto balance_cleanup; 8310 } 8311 } 8312 } 8313 } 8314 8315 /* 8316 ** Reassign page numbers so that the new pages are in ascending order. 8317 ** This helps to keep entries in the disk file in order so that a scan 8318 ** of the table is closer to a linear scan through the file. That in turn 8319 ** helps the operating system to deliver pages from the disk more rapidly. 8320 ** 8321 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8322 ** than (NB+2) (a small constant), that should not be a problem. 8323 ** 8324 ** When NB==3, this one optimization makes the database about 25% faster 8325 ** for large insertions and deletions. 8326 */ 8327 for(i=0; i<nNew; i++){ 8328 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8329 aPgFlags[i] = apNew[i]->pDbPage->flags; 8330 for(j=0; j<i; j++){ 8331 if( NEVER(aPgno[j]==aPgno[i]) ){ 8332 /* This branch is taken if the set of sibling pages somehow contains 8333 ** duplicate entries. This can happen if the database is corrupt. 8334 ** It would be simpler to detect this as part of the loop below, but 8335 ** we do the detection here in order to avoid populating the pager 8336 ** cache with two separate objects associated with the same 8337 ** page number. */ 8338 assert( CORRUPT_DB ); 8339 rc = SQLITE_CORRUPT_BKPT; 8340 goto balance_cleanup; 8341 } 8342 } 8343 } 8344 for(i=0; i<nNew; i++){ 8345 int iBest = 0; /* aPgno[] index of page number to use */ 8346 for(j=1; j<nNew; j++){ 8347 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8348 } 8349 pgno = aPgOrder[iBest]; 8350 aPgOrder[iBest] = 0xffffffff; 8351 if( iBest!=i ){ 8352 if( iBest>i ){ 8353 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8354 } 8355 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8356 apNew[i]->pgno = pgno; 8357 } 8358 } 8359 8360 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8361 "%d(%d nc=%d) %d(%d nc=%d)\n", 8362 apNew[0]->pgno, szNew[0], cntNew[0], 8363 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8364 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8365 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8366 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8367 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8368 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8369 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8370 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8371 )); 8372 8373 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8374 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8375 assert( apNew[nNew-1]!=0 ); 8376 put4byte(pRight, apNew[nNew-1]->pgno); 8377 8378 /* If the sibling pages are not leaves, ensure that the right-child pointer 8379 ** of the right-most new sibling page is set to the value that was 8380 ** originally in the same field of the right-most old sibling page. */ 8381 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8382 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8383 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8384 } 8385 8386 /* Make any required updates to pointer map entries associated with 8387 ** cells stored on sibling pages following the balance operation. Pointer 8388 ** map entries associated with divider cells are set by the insertCell() 8389 ** routine. The associated pointer map entries are: 8390 ** 8391 ** a) if the cell contains a reference to an overflow chain, the 8392 ** entry associated with the first page in the overflow chain, and 8393 ** 8394 ** b) if the sibling pages are not leaves, the child page associated 8395 ** with the cell. 8396 ** 8397 ** If the sibling pages are not leaves, then the pointer map entry 8398 ** associated with the right-child of each sibling may also need to be 8399 ** updated. This happens below, after the sibling pages have been 8400 ** populated, not here. 8401 */ 8402 if( ISAUTOVACUUM ){ 8403 MemPage *pOld; 8404 MemPage *pNew = pOld = apNew[0]; 8405 int cntOldNext = pNew->nCell + pNew->nOverflow; 8406 int iNew = 0; 8407 int iOld = 0; 8408 8409 for(i=0; i<b.nCell; i++){ 8410 u8 *pCell = b.apCell[i]; 8411 while( i==cntOldNext ){ 8412 iOld++; 8413 assert( iOld<nNew || iOld<nOld ); 8414 assert( iOld>=0 && iOld<NB ); 8415 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8416 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8417 } 8418 if( i==cntNew[iNew] ){ 8419 pNew = apNew[++iNew]; 8420 if( !leafData ) continue; 8421 } 8422 8423 /* Cell pCell is destined for new sibling page pNew. Originally, it 8424 ** was either part of sibling page iOld (possibly an overflow cell), 8425 ** or else the divider cell to the left of sibling page iOld. So, 8426 ** if sibling page iOld had the same page number as pNew, and if 8427 ** pCell really was a part of sibling page iOld (not a divider or 8428 ** overflow cell), we can skip updating the pointer map entries. */ 8429 if( iOld>=nNew 8430 || pNew->pgno!=aPgno[iOld] 8431 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8432 ){ 8433 if( !leafCorrection ){ 8434 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8435 } 8436 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8437 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8438 } 8439 if( rc ) goto balance_cleanup; 8440 } 8441 } 8442 } 8443 8444 /* Insert new divider cells into pParent. */ 8445 for(i=0; i<nNew-1; i++){ 8446 u8 *pCell; 8447 u8 *pTemp; 8448 int sz; 8449 u8 *pSrcEnd; 8450 MemPage *pNew = apNew[i]; 8451 j = cntNew[i]; 8452 8453 assert( j<nMaxCells ); 8454 assert( b.apCell[j]!=0 ); 8455 pCell = b.apCell[j]; 8456 sz = b.szCell[j] + leafCorrection; 8457 pTemp = &aOvflSpace[iOvflSpace]; 8458 if( !pNew->leaf ){ 8459 memcpy(&pNew->aData[8], pCell, 4); 8460 }else if( leafData ){ 8461 /* If the tree is a leaf-data tree, and the siblings are leaves, 8462 ** then there is no divider cell in b.apCell[]. Instead, the divider 8463 ** cell consists of the integer key for the right-most cell of 8464 ** the sibling-page assembled above only. 8465 */ 8466 CellInfo info; 8467 j--; 8468 pNew->xParseCell(pNew, b.apCell[j], &info); 8469 pCell = pTemp; 8470 sz = 4 + putVarint(&pCell[4], info.nKey); 8471 pTemp = 0; 8472 }else{ 8473 pCell -= 4; 8474 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8475 ** previously stored on a leaf node, and its reported size was 4 8476 ** bytes, then it may actually be smaller than this 8477 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8478 ** any cell). But it is important to pass the correct size to 8479 ** insertCell(), so reparse the cell now. 8480 ** 8481 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8482 ** and WITHOUT ROWID tables with exactly one column which is the 8483 ** primary key. 8484 */ 8485 if( b.szCell[j]==4 ){ 8486 assert(leafCorrection==4); 8487 sz = pParent->xCellSize(pParent, pCell); 8488 } 8489 } 8490 iOvflSpace += sz; 8491 assert( sz<=pBt->maxLocal+23 ); 8492 assert( iOvflSpace <= (int)pBt->pageSize ); 8493 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 8494 pSrcEnd = b.apEnd[k]; 8495 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8496 rc = SQLITE_CORRUPT_BKPT; 8497 goto balance_cleanup; 8498 } 8499 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8500 if( rc!=SQLITE_OK ) goto balance_cleanup; 8501 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8502 } 8503 8504 /* Now update the actual sibling pages. The order in which they are updated 8505 ** is important, as this code needs to avoid disrupting any page from which 8506 ** cells may still to be read. In practice, this means: 8507 ** 8508 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8509 ** then it is not safe to update page apNew[iPg] until after 8510 ** the left-hand sibling apNew[iPg-1] has been updated. 8511 ** 8512 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8513 ** then it is not safe to update page apNew[iPg] until after 8514 ** the right-hand sibling apNew[iPg+1] has been updated. 8515 ** 8516 ** If neither of the above apply, the page is safe to update. 8517 ** 8518 ** The iPg value in the following loop starts at nNew-1 goes down 8519 ** to 0, then back up to nNew-1 again, thus making two passes over 8520 ** the pages. On the initial downward pass, only condition (1) above 8521 ** needs to be tested because (2) will always be true from the previous 8522 ** step. On the upward pass, both conditions are always true, so the 8523 ** upwards pass simply processes pages that were missed on the downward 8524 ** pass. 8525 */ 8526 for(i=1-nNew; i<nNew; i++){ 8527 int iPg = i<0 ? -i : i; 8528 assert( iPg>=0 && iPg<nNew ); 8529 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8530 if( i>=0 /* On the upwards pass, or... */ 8531 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8532 ){ 8533 int iNew; 8534 int iOld; 8535 int nNewCell; 8536 8537 /* Verify condition (1): If cells are moving left, update iPg 8538 ** only after iPg-1 has already been updated. */ 8539 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8540 8541 /* Verify condition (2): If cells are moving right, update iPg 8542 ** only after iPg+1 has already been updated. */ 8543 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8544 8545 if( iPg==0 ){ 8546 iNew = iOld = 0; 8547 nNewCell = cntNew[0]; 8548 }else{ 8549 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8550 iNew = cntNew[iPg-1] + !leafData; 8551 nNewCell = cntNew[iPg] - iNew; 8552 } 8553 8554 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8555 if( rc ) goto balance_cleanup; 8556 abDone[iPg]++; 8557 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8558 assert( apNew[iPg]->nOverflow==0 ); 8559 assert( apNew[iPg]->nCell==nNewCell ); 8560 } 8561 } 8562 8563 /* All pages have been processed exactly once */ 8564 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8565 8566 assert( nOld>0 ); 8567 assert( nNew>0 ); 8568 8569 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8570 /* The root page of the b-tree now contains no cells. The only sibling 8571 ** page is the right-child of the parent. Copy the contents of the 8572 ** child page into the parent, decreasing the overall height of the 8573 ** b-tree structure by one. This is described as the "balance-shallower" 8574 ** sub-algorithm in some documentation. 8575 ** 8576 ** If this is an auto-vacuum database, the call to copyNodeContent() 8577 ** sets all pointer-map entries corresponding to database image pages 8578 ** for which the pointer is stored within the content being copied. 8579 ** 8580 ** It is critical that the child page be defragmented before being 8581 ** copied into the parent, because if the parent is page 1 then it will 8582 ** by smaller than the child due to the database header, and so all the 8583 ** free space needs to be up front. 8584 */ 8585 assert( nNew==1 || CORRUPT_DB ); 8586 rc = defragmentPage(apNew[0], -1); 8587 testcase( rc!=SQLITE_OK ); 8588 assert( apNew[0]->nFree == 8589 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8590 - apNew[0]->nCell*2) 8591 || rc!=SQLITE_OK 8592 ); 8593 copyNodeContent(apNew[0], pParent, &rc); 8594 freePage(apNew[0], &rc); 8595 }else if( ISAUTOVACUUM && !leafCorrection ){ 8596 /* Fix the pointer map entries associated with the right-child of each 8597 ** sibling page. All other pointer map entries have already been taken 8598 ** care of. */ 8599 for(i=0; i<nNew; i++){ 8600 u32 key = get4byte(&apNew[i]->aData[8]); 8601 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8602 } 8603 } 8604 8605 assert( pParent->isInit ); 8606 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8607 nOld, nNew, b.nCell)); 8608 8609 /* Free any old pages that were not reused as new pages. 8610 */ 8611 for(i=nNew; i<nOld; i++){ 8612 freePage(apOld[i], &rc); 8613 } 8614 8615 #if 0 8616 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8617 /* The ptrmapCheckPages() contains assert() statements that verify that 8618 ** all pointer map pages are set correctly. This is helpful while 8619 ** debugging. This is usually disabled because a corrupt database may 8620 ** cause an assert() statement to fail. */ 8621 ptrmapCheckPages(apNew, nNew); 8622 ptrmapCheckPages(&pParent, 1); 8623 } 8624 #endif 8625 8626 /* 8627 ** Cleanup before returning. 8628 */ 8629 balance_cleanup: 8630 sqlite3StackFree(0, b.apCell); 8631 for(i=0; i<nOld; i++){ 8632 releasePage(apOld[i]); 8633 } 8634 for(i=0; i<nNew; i++){ 8635 releasePage(apNew[i]); 8636 } 8637 8638 return rc; 8639 } 8640 8641 8642 /* 8643 ** This function is called when the root page of a b-tree structure is 8644 ** overfull (has one or more overflow pages). 8645 ** 8646 ** A new child page is allocated and the contents of the current root 8647 ** page, including overflow cells, are copied into the child. The root 8648 ** page is then overwritten to make it an empty page with the right-child 8649 ** pointer pointing to the new page. 8650 ** 8651 ** Before returning, all pointer-map entries corresponding to pages 8652 ** that the new child-page now contains pointers to are updated. The 8653 ** entry corresponding to the new right-child pointer of the root 8654 ** page is also updated. 8655 ** 8656 ** If successful, *ppChild is set to contain a reference to the child 8657 ** page and SQLITE_OK is returned. In this case the caller is required 8658 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8659 ** an error code is returned and *ppChild is set to 0. 8660 */ 8661 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8662 int rc; /* Return value from subprocedures */ 8663 MemPage *pChild = 0; /* Pointer to a new child page */ 8664 Pgno pgnoChild = 0; /* Page number of the new child page */ 8665 BtShared *pBt = pRoot->pBt; /* The BTree */ 8666 8667 assert( pRoot->nOverflow>0 ); 8668 assert( sqlite3_mutex_held(pBt->mutex) ); 8669 8670 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8671 ** page that will become the new right-child of pPage. Copy the contents 8672 ** of the node stored on pRoot into the new child page. 8673 */ 8674 rc = sqlite3PagerWrite(pRoot->pDbPage); 8675 if( rc==SQLITE_OK ){ 8676 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8677 copyNodeContent(pRoot, pChild, &rc); 8678 if( ISAUTOVACUUM ){ 8679 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8680 } 8681 } 8682 if( rc ){ 8683 *ppChild = 0; 8684 releasePage(pChild); 8685 return rc; 8686 } 8687 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8688 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8689 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8690 8691 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8692 8693 /* Copy the overflow cells from pRoot to pChild */ 8694 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8695 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8696 memcpy(pChild->apOvfl, pRoot->apOvfl, 8697 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8698 pChild->nOverflow = pRoot->nOverflow; 8699 8700 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8701 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8702 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8703 8704 *ppChild = pChild; 8705 return SQLITE_OK; 8706 } 8707 8708 /* 8709 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8710 ** on the same B-tree as pCur. 8711 ** 8712 ** This can occur if a database is corrupt with two or more SQL tables 8713 ** pointing to the same b-tree. If an insert occurs on one SQL table 8714 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8715 ** table linked to the same b-tree. If the secondary insert causes a 8716 ** rebalance, that can change content out from under the cursor on the 8717 ** first SQL table, violating invariants on the first insert. 8718 */ 8719 static int anotherValidCursor(BtCursor *pCur){ 8720 BtCursor *pOther; 8721 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8722 if( pOther!=pCur 8723 && pOther->eState==CURSOR_VALID 8724 && pOther->pPage==pCur->pPage 8725 ){ 8726 return SQLITE_CORRUPT_BKPT; 8727 } 8728 } 8729 return SQLITE_OK; 8730 } 8731 8732 /* 8733 ** The page that pCur currently points to has just been modified in 8734 ** some way. This function figures out if this modification means the 8735 ** tree needs to be balanced, and if so calls the appropriate balancing 8736 ** routine. Balancing routines are: 8737 ** 8738 ** balance_quick() 8739 ** balance_deeper() 8740 ** balance_nonroot() 8741 */ 8742 static int balance(BtCursor *pCur){ 8743 int rc = SQLITE_OK; 8744 const int nMin = pCur->pBt->usableSize * 2 / 3; 8745 u8 aBalanceQuickSpace[13]; 8746 u8 *pFree = 0; 8747 8748 VVA_ONLY( int balance_quick_called = 0 ); 8749 VVA_ONLY( int balance_deeper_called = 0 ); 8750 8751 do { 8752 int iPage; 8753 MemPage *pPage = pCur->pPage; 8754 8755 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8756 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8757 break; 8758 }else if( (iPage = pCur->iPage)==0 ){ 8759 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8760 /* The root page of the b-tree is overfull. In this case call the 8761 ** balance_deeper() function to create a new child for the root-page 8762 ** and copy the current contents of the root-page to it. The 8763 ** next iteration of the do-loop will balance the child page. 8764 */ 8765 assert( balance_deeper_called==0 ); 8766 VVA_ONLY( balance_deeper_called++ ); 8767 rc = balance_deeper(pPage, &pCur->apPage[1]); 8768 if( rc==SQLITE_OK ){ 8769 pCur->iPage = 1; 8770 pCur->ix = 0; 8771 pCur->aiIdx[0] = 0; 8772 pCur->apPage[0] = pPage; 8773 pCur->pPage = pCur->apPage[1]; 8774 assert( pCur->pPage->nOverflow ); 8775 } 8776 }else{ 8777 break; 8778 } 8779 }else{ 8780 MemPage * const pParent = pCur->apPage[iPage-1]; 8781 int const iIdx = pCur->aiIdx[iPage-1]; 8782 8783 rc = sqlite3PagerWrite(pParent->pDbPage); 8784 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8785 rc = btreeComputeFreeSpace(pParent); 8786 } 8787 if( rc==SQLITE_OK ){ 8788 #ifndef SQLITE_OMIT_QUICKBALANCE 8789 if( pPage->intKeyLeaf 8790 && pPage->nOverflow==1 8791 && pPage->aiOvfl[0]==pPage->nCell 8792 && pParent->pgno!=1 8793 && pParent->nCell==iIdx 8794 ){ 8795 /* Call balance_quick() to create a new sibling of pPage on which 8796 ** to store the overflow cell. balance_quick() inserts a new cell 8797 ** into pParent, which may cause pParent overflow. If this 8798 ** happens, the next iteration of the do-loop will balance pParent 8799 ** use either balance_nonroot() or balance_deeper(). Until this 8800 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8801 ** buffer. 8802 ** 8803 ** The purpose of the following assert() is to check that only a 8804 ** single call to balance_quick() is made for each call to this 8805 ** function. If this were not verified, a subtle bug involving reuse 8806 ** of the aBalanceQuickSpace[] might sneak in. 8807 */ 8808 assert( balance_quick_called==0 ); 8809 VVA_ONLY( balance_quick_called++ ); 8810 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8811 }else 8812 #endif 8813 { 8814 /* In this case, call balance_nonroot() to redistribute cells 8815 ** between pPage and up to 2 of its sibling pages. This involves 8816 ** modifying the contents of pParent, which may cause pParent to 8817 ** become overfull or underfull. The next iteration of the do-loop 8818 ** will balance the parent page to correct this. 8819 ** 8820 ** If the parent page becomes overfull, the overflow cell or cells 8821 ** are stored in the pSpace buffer allocated immediately below. 8822 ** A subsequent iteration of the do-loop will deal with this by 8823 ** calling balance_nonroot() (balance_deeper() may be called first, 8824 ** but it doesn't deal with overflow cells - just moves them to a 8825 ** different page). Once this subsequent call to balance_nonroot() 8826 ** has completed, it is safe to release the pSpace buffer used by 8827 ** the previous call, as the overflow cell data will have been 8828 ** copied either into the body of a database page or into the new 8829 ** pSpace buffer passed to the latter call to balance_nonroot(). 8830 */ 8831 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8832 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8833 pCur->hints&BTREE_BULKLOAD); 8834 if( pFree ){ 8835 /* If pFree is not NULL, it points to the pSpace buffer used 8836 ** by a previous call to balance_nonroot(). Its contents are 8837 ** now stored either on real database pages or within the 8838 ** new pSpace buffer, so it may be safely freed here. */ 8839 sqlite3PageFree(pFree); 8840 } 8841 8842 /* The pSpace buffer will be freed after the next call to 8843 ** balance_nonroot(), or just before this function returns, whichever 8844 ** comes first. */ 8845 pFree = pSpace; 8846 } 8847 } 8848 8849 pPage->nOverflow = 0; 8850 8851 /* The next iteration of the do-loop balances the parent page. */ 8852 releasePage(pPage); 8853 pCur->iPage--; 8854 assert( pCur->iPage>=0 ); 8855 pCur->pPage = pCur->apPage[pCur->iPage]; 8856 } 8857 }while( rc==SQLITE_OK ); 8858 8859 if( pFree ){ 8860 sqlite3PageFree(pFree); 8861 } 8862 return rc; 8863 } 8864 8865 /* Overwrite content from pX into pDest. Only do the write if the 8866 ** content is different from what is already there. 8867 */ 8868 static int btreeOverwriteContent( 8869 MemPage *pPage, /* MemPage on which writing will occur */ 8870 u8 *pDest, /* Pointer to the place to start writing */ 8871 const BtreePayload *pX, /* Source of data to write */ 8872 int iOffset, /* Offset of first byte to write */ 8873 int iAmt /* Number of bytes to be written */ 8874 ){ 8875 int nData = pX->nData - iOffset; 8876 if( nData<=0 ){ 8877 /* Overwritting with zeros */ 8878 int i; 8879 for(i=0; i<iAmt && pDest[i]==0; i++){} 8880 if( i<iAmt ){ 8881 int rc = sqlite3PagerWrite(pPage->pDbPage); 8882 if( rc ) return rc; 8883 memset(pDest + i, 0, iAmt - i); 8884 } 8885 }else{ 8886 if( nData<iAmt ){ 8887 /* Mixed read data and zeros at the end. Make a recursive call 8888 ** to write the zeros then fall through to write the real data */ 8889 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8890 iAmt-nData); 8891 if( rc ) return rc; 8892 iAmt = nData; 8893 } 8894 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8895 int rc = sqlite3PagerWrite(pPage->pDbPage); 8896 if( rc ) return rc; 8897 /* In a corrupt database, it is possible for the source and destination 8898 ** buffers to overlap. This is harmless since the database is already 8899 ** corrupt but it does cause valgrind and ASAN warnings. So use 8900 ** memmove(). */ 8901 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8902 } 8903 } 8904 return SQLITE_OK; 8905 } 8906 8907 /* 8908 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8909 ** contained in pX. 8910 */ 8911 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8912 int iOffset; /* Next byte of pX->pData to write */ 8913 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8914 int rc; /* Return code */ 8915 MemPage *pPage = pCur->pPage; /* Page being written */ 8916 BtShared *pBt; /* Btree */ 8917 Pgno ovflPgno; /* Next overflow page to write */ 8918 u32 ovflPageSize; /* Size to write on overflow page */ 8919 8920 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8921 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8922 ){ 8923 return SQLITE_CORRUPT_BKPT; 8924 } 8925 /* Overwrite the local portion first */ 8926 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8927 0, pCur->info.nLocal); 8928 if( rc ) return rc; 8929 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8930 8931 /* Now overwrite the overflow pages */ 8932 iOffset = pCur->info.nLocal; 8933 assert( nTotal>=0 ); 8934 assert( iOffset>=0 ); 8935 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8936 pBt = pPage->pBt; 8937 ovflPageSize = pBt->usableSize - 4; 8938 do{ 8939 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8940 if( rc ) return rc; 8941 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8942 rc = SQLITE_CORRUPT_BKPT; 8943 }else{ 8944 if( iOffset+ovflPageSize<(u32)nTotal ){ 8945 ovflPgno = get4byte(pPage->aData); 8946 }else{ 8947 ovflPageSize = nTotal - iOffset; 8948 } 8949 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8950 iOffset, ovflPageSize); 8951 } 8952 sqlite3PagerUnref(pPage->pDbPage); 8953 if( rc ) return rc; 8954 iOffset += ovflPageSize; 8955 }while( iOffset<nTotal ); 8956 return SQLITE_OK; 8957 } 8958 8959 8960 /* 8961 ** Insert a new record into the BTree. The content of the new record 8962 ** is described by the pX object. The pCur cursor is used only to 8963 ** define what table the record should be inserted into, and is left 8964 ** pointing at a random location. 8965 ** 8966 ** For a table btree (used for rowid tables), only the pX.nKey value of 8967 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8968 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8969 ** hold the content of the row. 8970 ** 8971 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8972 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8973 ** pX.pData,nData,nZero fields must be zero. 8974 ** 8975 ** If the seekResult parameter is non-zero, then a successful call to 8976 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already 8977 ** been performed. In other words, if seekResult!=0 then the cursor 8978 ** is currently pointing to a cell that will be adjacent to the cell 8979 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8980 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8981 ** that is larger than (pKey,nKey). 8982 ** 8983 ** If seekResult==0, that means pCur is pointing at some unknown location. 8984 ** In that case, this routine must seek the cursor to the correct insertion 8985 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8986 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8987 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8988 ** to decode the key. 8989 */ 8990 int sqlite3BtreeInsert( 8991 BtCursor *pCur, /* Insert data into the table of this cursor */ 8992 const BtreePayload *pX, /* Content of the row to be inserted */ 8993 int flags, /* True if this is likely an append */ 8994 int seekResult /* Result of prior IndexMoveto() call */ 8995 ){ 8996 int rc; 8997 int loc = seekResult; /* -1: before desired location +1: after */ 8998 int szNew = 0; 8999 int idx; 9000 MemPage *pPage; 9001 Btree *p = pCur->pBtree; 9002 BtShared *pBt = p->pBt; 9003 unsigned char *oldCell; 9004 unsigned char *newCell = 0; 9005 9006 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 9007 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 9008 9009 if( pCur->eState==CURSOR_FAULT ){ 9010 assert( pCur->skipNext!=SQLITE_OK ); 9011 return pCur->skipNext; 9012 } 9013 9014 assert( cursorOwnsBtShared(pCur) ); 9015 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 9016 && pBt->inTransaction==TRANS_WRITE 9017 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9018 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9019 9020 /* Assert that the caller has been consistent. If this cursor was opened 9021 ** expecting an index b-tree, then the caller should be inserting blob 9022 ** keys with no associated data. If the cursor was opened expecting an 9023 ** intkey table, the caller should be inserting integer keys with a 9024 ** blob of associated data. */ 9025 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 9026 9027 /* Save the positions of any other cursors open on this table. 9028 ** 9029 ** In some cases, the call to btreeMoveto() below is a no-op. For 9030 ** example, when inserting data into a table with auto-generated integer 9031 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 9032 ** integer key to use. It then calls this function to actually insert the 9033 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 9034 ** that the cursor is already where it needs to be and returns without 9035 ** doing any work. To avoid thwarting these optimizations, it is important 9036 ** not to clear the cursor here. 9037 */ 9038 if( pCur->curFlags & BTCF_Multiple ){ 9039 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9040 if( rc ) return rc; 9041 if( loc && pCur->iPage<0 ){ 9042 /* This can only happen if the schema is corrupt such that there is more 9043 ** than one table or index with the same root page as used by the cursor. 9044 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 9045 ** the schema was loaded. This cannot be asserted though, as a user might 9046 ** set the flag, load the schema, and then unset the flag. */ 9047 return SQLITE_CORRUPT_BKPT; 9048 } 9049 } 9050 9051 if( pCur->pKeyInfo==0 ){ 9052 assert( pX->pKey==0 ); 9053 /* If this is an insert into a table b-tree, invalidate any incrblob 9054 ** cursors open on the row being replaced */ 9055 if( p->hasIncrblobCur ){ 9056 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 9057 } 9058 9059 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9060 ** to a row with the same key as the new entry being inserted. 9061 */ 9062 #ifdef SQLITE_DEBUG 9063 if( flags & BTREE_SAVEPOSITION ){ 9064 assert( pCur->curFlags & BTCF_ValidNKey ); 9065 assert( pX->nKey==pCur->info.nKey ); 9066 assert( loc==0 ); 9067 } 9068 #endif 9069 9070 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 9071 ** that the cursor is not pointing to a row to be overwritten. 9072 ** So do a complete check. 9073 */ 9074 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 9075 /* The cursor is pointing to the entry that is to be 9076 ** overwritten */ 9077 assert( pX->nData>=0 && pX->nZero>=0 ); 9078 if( pCur->info.nSize!=0 9079 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 9080 ){ 9081 /* New entry is the same size as the old. Do an overwrite */ 9082 return btreeOverwriteCell(pCur, pX); 9083 } 9084 assert( loc==0 ); 9085 }else if( loc==0 ){ 9086 /* The cursor is *not* pointing to the cell to be overwritten, nor 9087 ** to an adjacent cell. Move the cursor so that it is pointing either 9088 ** to the cell to be overwritten or an adjacent cell. 9089 */ 9090 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 9091 (flags & BTREE_APPEND)!=0, &loc); 9092 if( rc ) return rc; 9093 } 9094 }else{ 9095 /* This is an index or a WITHOUT ROWID table */ 9096 9097 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9098 ** to a row with the same key as the new entry being inserted. 9099 */ 9100 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 9101 9102 /* If the cursor is not already pointing either to the cell to be 9103 ** overwritten, or if a new cell is being inserted, if the cursor is 9104 ** not pointing to an immediately adjacent cell, then move the cursor 9105 ** so that it does. 9106 */ 9107 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 9108 if( pX->nMem ){ 9109 UnpackedRecord r; 9110 r.pKeyInfo = pCur->pKeyInfo; 9111 r.aMem = pX->aMem; 9112 r.nField = pX->nMem; 9113 r.default_rc = 0; 9114 r.eqSeen = 0; 9115 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 9116 }else{ 9117 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 9118 (flags & BTREE_APPEND)!=0, &loc); 9119 } 9120 if( rc ) return rc; 9121 } 9122 9123 /* If the cursor is currently pointing to an entry to be overwritten 9124 ** and the new content is the same as as the old, then use the 9125 ** overwrite optimization. 9126 */ 9127 if( loc==0 ){ 9128 getCellInfo(pCur); 9129 if( pCur->info.nKey==pX->nKey ){ 9130 BtreePayload x2; 9131 x2.pData = pX->pKey; 9132 x2.nData = pX->nKey; 9133 x2.nZero = 0; 9134 return btreeOverwriteCell(pCur, &x2); 9135 } 9136 } 9137 } 9138 assert( pCur->eState==CURSOR_VALID 9139 || (pCur->eState==CURSOR_INVALID && loc) 9140 || CORRUPT_DB ); 9141 9142 pPage = pCur->pPage; 9143 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 9144 assert( pPage->leaf || !pPage->intKey ); 9145 if( pPage->nFree<0 ){ 9146 if( pCur->eState>CURSOR_INVALID ){ 9147 rc = SQLITE_CORRUPT_BKPT; 9148 }else{ 9149 rc = btreeComputeFreeSpace(pPage); 9150 } 9151 if( rc ) return rc; 9152 } 9153 9154 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 9155 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 9156 loc==0 ? "overwrite" : "new entry")); 9157 assert( pPage->isInit ); 9158 newCell = pBt->pTmpSpace; 9159 assert( newCell!=0 ); 9160 if( flags & BTREE_PREFORMAT ){ 9161 rc = SQLITE_OK; 9162 szNew = pBt->nPreformatSize; 9163 if( szNew<4 ) szNew = 4; 9164 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9165 CellInfo info; 9166 pPage->xParseCell(pPage, newCell, &info); 9167 if( info.nPayload!=info.nLocal ){ 9168 Pgno ovfl = get4byte(&newCell[szNew-4]); 9169 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9170 } 9171 } 9172 }else{ 9173 rc = fillInCell(pPage, newCell, pX, &szNew); 9174 } 9175 if( rc ) goto end_insert; 9176 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9177 assert( szNew <= MX_CELL_SIZE(pBt) ); 9178 idx = pCur->ix; 9179 if( loc==0 ){ 9180 CellInfo info; 9181 assert( idx>=0 ); 9182 if( idx>=pPage->nCell ){ 9183 return SQLITE_CORRUPT_BKPT; 9184 } 9185 rc = sqlite3PagerWrite(pPage->pDbPage); 9186 if( rc ){ 9187 goto end_insert; 9188 } 9189 oldCell = findCell(pPage, idx); 9190 if( !pPage->leaf ){ 9191 memcpy(newCell, oldCell, 4); 9192 } 9193 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9194 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9195 invalidateOverflowCache(pCur); 9196 if( info.nSize==szNew && info.nLocal==info.nPayload 9197 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9198 ){ 9199 /* Overwrite the old cell with the new if they are the same size. 9200 ** We could also try to do this if the old cell is smaller, then add 9201 ** the leftover space to the free list. But experiments show that 9202 ** doing that is no faster then skipping this optimization and just 9203 ** calling dropCell() and insertCell(). 9204 ** 9205 ** This optimization cannot be used on an autovacuum database if the 9206 ** new entry uses overflow pages, as the insertCell() call below is 9207 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9208 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9209 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9210 return SQLITE_CORRUPT_BKPT; 9211 } 9212 if( oldCell+szNew > pPage->aDataEnd ){ 9213 return SQLITE_CORRUPT_BKPT; 9214 } 9215 memcpy(oldCell, newCell, szNew); 9216 return SQLITE_OK; 9217 } 9218 dropCell(pPage, idx, info.nSize, &rc); 9219 if( rc ) goto end_insert; 9220 }else if( loc<0 && pPage->nCell>0 ){ 9221 assert( pPage->leaf ); 9222 idx = ++pCur->ix; 9223 pCur->curFlags &= ~BTCF_ValidNKey; 9224 }else{ 9225 assert( pPage->leaf ); 9226 } 9227 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9228 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9229 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9230 9231 /* If no error has occurred and pPage has an overflow cell, call balance() 9232 ** to redistribute the cells within the tree. Since balance() may move 9233 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9234 ** variables. 9235 ** 9236 ** Previous versions of SQLite called moveToRoot() to move the cursor 9237 ** back to the root page as balance() used to invalidate the contents 9238 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9239 ** set the cursor state to "invalid". This makes common insert operations 9240 ** slightly faster. 9241 ** 9242 ** There is a subtle but important optimization here too. When inserting 9243 ** multiple records into an intkey b-tree using a single cursor (as can 9244 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9245 ** is advantageous to leave the cursor pointing to the last entry in 9246 ** the b-tree if possible. If the cursor is left pointing to the last 9247 ** entry in the table, and the next row inserted has an integer key 9248 ** larger than the largest existing key, it is possible to insert the 9249 ** row without seeking the cursor. This can be a big performance boost. 9250 */ 9251 pCur->info.nSize = 0; 9252 if( pPage->nOverflow ){ 9253 assert( rc==SQLITE_OK ); 9254 pCur->curFlags &= ~(BTCF_ValidNKey); 9255 rc = balance(pCur); 9256 9257 /* Must make sure nOverflow is reset to zero even if the balance() 9258 ** fails. Internal data structure corruption will result otherwise. 9259 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9260 ** from trying to save the current position of the cursor. */ 9261 pCur->pPage->nOverflow = 0; 9262 pCur->eState = CURSOR_INVALID; 9263 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9264 btreeReleaseAllCursorPages(pCur); 9265 if( pCur->pKeyInfo ){ 9266 assert( pCur->pKey==0 ); 9267 pCur->pKey = sqlite3Malloc( pX->nKey ); 9268 if( pCur->pKey==0 ){ 9269 rc = SQLITE_NOMEM; 9270 }else{ 9271 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9272 } 9273 } 9274 pCur->eState = CURSOR_REQUIRESEEK; 9275 pCur->nKey = pX->nKey; 9276 } 9277 } 9278 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9279 9280 end_insert: 9281 return rc; 9282 } 9283 9284 /* 9285 ** This function is used as part of copying the current row from cursor 9286 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9287 ** parameter iKey is used as the rowid value when the record is copied 9288 ** into pDest. Otherwise, the record is copied verbatim. 9289 ** 9290 ** This function does not actually write the new value to cursor pDest. 9291 ** Instead, it creates and populates any required overflow pages and 9292 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9293 ** for the destination database. The size of the cell, in bytes, is left 9294 ** in BtShared.nPreformatSize. The caller completes the insertion by 9295 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9296 ** 9297 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9298 */ 9299 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9300 int rc = SQLITE_OK; 9301 BtShared *pBt = pDest->pBt; 9302 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9303 const u8 *aIn; /* Pointer to next input buffer */ 9304 u32 nIn; /* Size of input buffer aIn[] */ 9305 u32 nRem; /* Bytes of data still to copy */ 9306 9307 getCellInfo(pSrc); 9308 aOut += putVarint32(aOut, pSrc->info.nPayload); 9309 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9310 nIn = pSrc->info.nLocal; 9311 aIn = pSrc->info.pPayload; 9312 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9313 return SQLITE_CORRUPT_BKPT; 9314 } 9315 nRem = pSrc->info.nPayload; 9316 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9317 memcpy(aOut, aIn, nIn); 9318 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9319 }else{ 9320 Pager *pSrcPager = pSrc->pBt->pPager; 9321 u8 *pPgnoOut = 0; 9322 Pgno ovflIn = 0; 9323 DbPage *pPageIn = 0; 9324 MemPage *pPageOut = 0; 9325 u32 nOut; /* Size of output buffer aOut[] */ 9326 9327 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9328 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9329 if( nOut<pSrc->info.nPayload ){ 9330 pPgnoOut = &aOut[nOut]; 9331 pBt->nPreformatSize += 4; 9332 } 9333 9334 if( nRem>nIn ){ 9335 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9336 return SQLITE_CORRUPT_BKPT; 9337 } 9338 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9339 } 9340 9341 do { 9342 nRem -= nOut; 9343 do{ 9344 assert( nOut>0 ); 9345 if( nIn>0 ){ 9346 int nCopy = MIN(nOut, nIn); 9347 memcpy(aOut, aIn, nCopy); 9348 nOut -= nCopy; 9349 nIn -= nCopy; 9350 aOut += nCopy; 9351 aIn += nCopy; 9352 } 9353 if( nOut>0 ){ 9354 sqlite3PagerUnref(pPageIn); 9355 pPageIn = 0; 9356 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9357 if( rc==SQLITE_OK ){ 9358 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9359 ovflIn = get4byte(aIn); 9360 aIn += 4; 9361 nIn = pSrc->pBt->usableSize - 4; 9362 } 9363 } 9364 }while( rc==SQLITE_OK && nOut>0 ); 9365 9366 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9367 Pgno pgnoNew; 9368 MemPage *pNew = 0; 9369 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9370 put4byte(pPgnoOut, pgnoNew); 9371 if( ISAUTOVACUUM && pPageOut ){ 9372 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9373 } 9374 releasePage(pPageOut); 9375 pPageOut = pNew; 9376 if( pPageOut ){ 9377 pPgnoOut = pPageOut->aData; 9378 put4byte(pPgnoOut, 0); 9379 aOut = &pPgnoOut[4]; 9380 nOut = MIN(pBt->usableSize - 4, nRem); 9381 } 9382 } 9383 }while( nRem>0 && rc==SQLITE_OK ); 9384 9385 releasePage(pPageOut); 9386 sqlite3PagerUnref(pPageIn); 9387 } 9388 9389 return rc; 9390 } 9391 9392 /* 9393 ** Delete the entry that the cursor is pointing to. 9394 ** 9395 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9396 ** the cursor is left pointing at an arbitrary location after the delete. 9397 ** But if that bit is set, then the cursor is left in a state such that 9398 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9399 ** as it would have been on if the call to BtreeDelete() had been omitted. 9400 ** 9401 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9402 ** associated with a single table entry and its indexes. Only one of those 9403 ** deletes is considered the "primary" delete. The primary delete occurs 9404 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9405 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9406 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9407 ** but which might be used by alternative storage engines. 9408 */ 9409 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9410 Btree *p = pCur->pBtree; 9411 BtShared *pBt = p->pBt; 9412 int rc; /* Return code */ 9413 MemPage *pPage; /* Page to delete cell from */ 9414 unsigned char *pCell; /* Pointer to cell to delete */ 9415 int iCellIdx; /* Index of cell to delete */ 9416 int iCellDepth; /* Depth of node containing pCell */ 9417 CellInfo info; /* Size of the cell being deleted */ 9418 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9419 9420 assert( cursorOwnsBtShared(pCur) ); 9421 assert( pBt->inTransaction==TRANS_WRITE ); 9422 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9423 assert( pCur->curFlags & BTCF_WriteFlag ); 9424 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9425 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9426 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9427 if( pCur->eState==CURSOR_REQUIRESEEK ){ 9428 rc = btreeRestoreCursorPosition(pCur); 9429 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9430 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9431 } 9432 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9433 9434 iCellDepth = pCur->iPage; 9435 iCellIdx = pCur->ix; 9436 pPage = pCur->pPage; 9437 if( pPage->nCell<=iCellIdx ){ 9438 return SQLITE_CORRUPT_BKPT; 9439 } 9440 pCell = findCell(pPage, iCellIdx); 9441 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9442 return SQLITE_CORRUPT_BKPT; 9443 } 9444 9445 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9446 ** be preserved following this delete operation. If the current delete 9447 ** will cause a b-tree rebalance, then this is done by saving the cursor 9448 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9449 ** returning. 9450 ** 9451 ** If the current delete will not cause a rebalance, then the cursor 9452 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9453 ** before or after the deleted entry. 9454 ** 9455 ** The bPreserve value records which path is required: 9456 ** 9457 ** bPreserve==0 Not necessary to save the cursor position 9458 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9459 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9460 */ 9461 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9462 if( bPreserve ){ 9463 if( !pPage->leaf 9464 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 9465 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9466 ){ 9467 /* A b-tree rebalance will be required after deleting this entry. 9468 ** Save the cursor key. */ 9469 rc = saveCursorKey(pCur); 9470 if( rc ) return rc; 9471 }else{ 9472 bPreserve = 2; 9473 } 9474 } 9475 9476 /* If the page containing the entry to delete is not a leaf page, move 9477 ** the cursor to the largest entry in the tree that is smaller than 9478 ** the entry being deleted. This cell will replace the cell being deleted 9479 ** from the internal node. The 'previous' entry is used for this instead 9480 ** of the 'next' entry, as the previous entry is always a part of the 9481 ** sub-tree headed by the child page of the cell being deleted. This makes 9482 ** balancing the tree following the delete operation easier. */ 9483 if( !pPage->leaf ){ 9484 rc = sqlite3BtreePrevious(pCur, 0); 9485 assert( rc!=SQLITE_DONE ); 9486 if( rc ) return rc; 9487 } 9488 9489 /* Save the positions of any other cursors open on this table before 9490 ** making any modifications. */ 9491 if( pCur->curFlags & BTCF_Multiple ){ 9492 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9493 if( rc ) return rc; 9494 } 9495 9496 /* If this is a delete operation to remove a row from a table b-tree, 9497 ** invalidate any incrblob cursors open on the row being deleted. */ 9498 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9499 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9500 } 9501 9502 /* Make the page containing the entry to be deleted writable. Then free any 9503 ** overflow pages associated with the entry and finally remove the cell 9504 ** itself from within the page. */ 9505 rc = sqlite3PagerWrite(pPage->pDbPage); 9506 if( rc ) return rc; 9507 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9508 dropCell(pPage, iCellIdx, info.nSize, &rc); 9509 if( rc ) return rc; 9510 9511 /* If the cell deleted was not located on a leaf page, then the cursor 9512 ** is currently pointing to the largest entry in the sub-tree headed 9513 ** by the child-page of the cell that was just deleted from an internal 9514 ** node. The cell from the leaf node needs to be moved to the internal 9515 ** node to replace the deleted cell. */ 9516 if( !pPage->leaf ){ 9517 MemPage *pLeaf = pCur->pPage; 9518 int nCell; 9519 Pgno n; 9520 unsigned char *pTmp; 9521 9522 if( pLeaf->nFree<0 ){ 9523 rc = btreeComputeFreeSpace(pLeaf); 9524 if( rc ) return rc; 9525 } 9526 if( iCellDepth<pCur->iPage-1 ){ 9527 n = pCur->apPage[iCellDepth+1]->pgno; 9528 }else{ 9529 n = pCur->pPage->pgno; 9530 } 9531 pCell = findCell(pLeaf, pLeaf->nCell-1); 9532 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9533 nCell = pLeaf->xCellSize(pLeaf, pCell); 9534 assert( MX_CELL_SIZE(pBt) >= nCell ); 9535 pTmp = pBt->pTmpSpace; 9536 assert( pTmp!=0 ); 9537 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9538 if( rc==SQLITE_OK ){ 9539 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9540 } 9541 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9542 if( rc ) return rc; 9543 } 9544 9545 /* Balance the tree. If the entry deleted was located on a leaf page, 9546 ** then the cursor still points to that page. In this case the first 9547 ** call to balance() repairs the tree, and the if(...) condition is 9548 ** never true. 9549 ** 9550 ** Otherwise, if the entry deleted was on an internal node page, then 9551 ** pCur is pointing to the leaf page from which a cell was removed to 9552 ** replace the cell deleted from the internal node. This is slightly 9553 ** tricky as the leaf node may be underfull, and the internal node may 9554 ** be either under or overfull. In this case run the balancing algorithm 9555 ** on the leaf node first. If the balance proceeds far enough up the 9556 ** tree that we can be sure that any problem in the internal node has 9557 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9558 ** walk the cursor up the tree to the internal node and balance it as 9559 ** well. */ 9560 rc = balance(pCur); 9561 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9562 releasePageNotNull(pCur->pPage); 9563 pCur->iPage--; 9564 while( pCur->iPage>iCellDepth ){ 9565 releasePage(pCur->apPage[pCur->iPage--]); 9566 } 9567 pCur->pPage = pCur->apPage[pCur->iPage]; 9568 rc = balance(pCur); 9569 } 9570 9571 if( rc==SQLITE_OK ){ 9572 if( bPreserve>1 ){ 9573 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9574 assert( pPage==pCur->pPage || CORRUPT_DB ); 9575 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9576 pCur->eState = CURSOR_SKIPNEXT; 9577 if( iCellIdx>=pPage->nCell ){ 9578 pCur->skipNext = -1; 9579 pCur->ix = pPage->nCell-1; 9580 }else{ 9581 pCur->skipNext = 1; 9582 } 9583 }else{ 9584 rc = moveToRoot(pCur); 9585 if( bPreserve ){ 9586 btreeReleaseAllCursorPages(pCur); 9587 pCur->eState = CURSOR_REQUIRESEEK; 9588 } 9589 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9590 } 9591 } 9592 return rc; 9593 } 9594 9595 /* 9596 ** Create a new BTree table. Write into *piTable the page 9597 ** number for the root page of the new table. 9598 ** 9599 ** The type of type is determined by the flags parameter. Only the 9600 ** following values of flags are currently in use. Other values for 9601 ** flags might not work: 9602 ** 9603 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9604 ** BTREE_ZERODATA Used for SQL indices 9605 */ 9606 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9607 BtShared *pBt = p->pBt; 9608 MemPage *pRoot; 9609 Pgno pgnoRoot; 9610 int rc; 9611 int ptfFlags; /* Page-type flage for the root page of new table */ 9612 9613 assert( sqlite3BtreeHoldsMutex(p) ); 9614 assert( pBt->inTransaction==TRANS_WRITE ); 9615 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9616 9617 #ifdef SQLITE_OMIT_AUTOVACUUM 9618 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9619 if( rc ){ 9620 return rc; 9621 } 9622 #else 9623 if( pBt->autoVacuum ){ 9624 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9625 MemPage *pPageMove; /* The page to move to. */ 9626 9627 /* Creating a new table may probably require moving an existing database 9628 ** to make room for the new tables root page. In case this page turns 9629 ** out to be an overflow page, delete all overflow page-map caches 9630 ** held by open cursors. 9631 */ 9632 invalidateAllOverflowCache(pBt); 9633 9634 /* Read the value of meta[3] from the database to determine where the 9635 ** root page of the new table should go. meta[3] is the largest root-page 9636 ** created so far, so the new root-page is (meta[3]+1). 9637 */ 9638 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9639 if( pgnoRoot>btreePagecount(pBt) ){ 9640 return SQLITE_CORRUPT_BKPT; 9641 } 9642 pgnoRoot++; 9643 9644 /* The new root-page may not be allocated on a pointer-map page, or the 9645 ** PENDING_BYTE page. 9646 */ 9647 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9648 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9649 pgnoRoot++; 9650 } 9651 assert( pgnoRoot>=3 ); 9652 9653 /* Allocate a page. The page that currently resides at pgnoRoot will 9654 ** be moved to the allocated page (unless the allocated page happens 9655 ** to reside at pgnoRoot). 9656 */ 9657 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9658 if( rc!=SQLITE_OK ){ 9659 return rc; 9660 } 9661 9662 if( pgnoMove!=pgnoRoot ){ 9663 /* pgnoRoot is the page that will be used for the root-page of 9664 ** the new table (assuming an error did not occur). But we were 9665 ** allocated pgnoMove. If required (i.e. if it was not allocated 9666 ** by extending the file), the current page at position pgnoMove 9667 ** is already journaled. 9668 */ 9669 u8 eType = 0; 9670 Pgno iPtrPage = 0; 9671 9672 /* Save the positions of any open cursors. This is required in 9673 ** case they are holding a reference to an xFetch reference 9674 ** corresponding to page pgnoRoot. */ 9675 rc = saveAllCursors(pBt, 0, 0); 9676 releasePage(pPageMove); 9677 if( rc!=SQLITE_OK ){ 9678 return rc; 9679 } 9680 9681 /* Move the page currently at pgnoRoot to pgnoMove. */ 9682 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9683 if( rc!=SQLITE_OK ){ 9684 return rc; 9685 } 9686 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9687 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9688 rc = SQLITE_CORRUPT_BKPT; 9689 } 9690 if( rc!=SQLITE_OK ){ 9691 releasePage(pRoot); 9692 return rc; 9693 } 9694 assert( eType!=PTRMAP_ROOTPAGE ); 9695 assert( eType!=PTRMAP_FREEPAGE ); 9696 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9697 releasePage(pRoot); 9698 9699 /* Obtain the page at pgnoRoot */ 9700 if( rc!=SQLITE_OK ){ 9701 return rc; 9702 } 9703 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9704 if( rc!=SQLITE_OK ){ 9705 return rc; 9706 } 9707 rc = sqlite3PagerWrite(pRoot->pDbPage); 9708 if( rc!=SQLITE_OK ){ 9709 releasePage(pRoot); 9710 return rc; 9711 } 9712 }else{ 9713 pRoot = pPageMove; 9714 } 9715 9716 /* Update the pointer-map and meta-data with the new root-page number. */ 9717 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9718 if( rc ){ 9719 releasePage(pRoot); 9720 return rc; 9721 } 9722 9723 /* When the new root page was allocated, page 1 was made writable in 9724 ** order either to increase the database filesize, or to decrement the 9725 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9726 */ 9727 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9728 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9729 if( NEVER(rc) ){ 9730 releasePage(pRoot); 9731 return rc; 9732 } 9733 9734 }else{ 9735 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9736 if( rc ) return rc; 9737 } 9738 #endif 9739 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9740 if( createTabFlags & BTREE_INTKEY ){ 9741 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9742 }else{ 9743 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9744 } 9745 zeroPage(pRoot, ptfFlags); 9746 sqlite3PagerUnref(pRoot->pDbPage); 9747 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9748 *piTable = pgnoRoot; 9749 return SQLITE_OK; 9750 } 9751 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9752 int rc; 9753 sqlite3BtreeEnter(p); 9754 rc = btreeCreateTable(p, piTable, flags); 9755 sqlite3BtreeLeave(p); 9756 return rc; 9757 } 9758 9759 /* 9760 ** Erase the given database page and all its children. Return 9761 ** the page to the freelist. 9762 */ 9763 static int clearDatabasePage( 9764 BtShared *pBt, /* The BTree that contains the table */ 9765 Pgno pgno, /* Page number to clear */ 9766 int freePageFlag, /* Deallocate page if true */ 9767 i64 *pnChange /* Add number of Cells freed to this counter */ 9768 ){ 9769 MemPage *pPage; 9770 int rc; 9771 unsigned char *pCell; 9772 int i; 9773 int hdr; 9774 CellInfo info; 9775 9776 assert( sqlite3_mutex_held(pBt->mutex) ); 9777 if( pgno>btreePagecount(pBt) ){ 9778 return SQLITE_CORRUPT_BKPT; 9779 } 9780 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9781 if( rc ) return rc; 9782 if( (pBt->openFlags & BTREE_SINGLE)==0 9783 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) 9784 ){ 9785 rc = SQLITE_CORRUPT_BKPT; 9786 goto cleardatabasepage_out; 9787 } 9788 hdr = pPage->hdrOffset; 9789 for(i=0; i<pPage->nCell; i++){ 9790 pCell = findCell(pPage, i); 9791 if( !pPage->leaf ){ 9792 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9793 if( rc ) goto cleardatabasepage_out; 9794 } 9795 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9796 if( rc ) goto cleardatabasepage_out; 9797 } 9798 if( !pPage->leaf ){ 9799 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9800 if( rc ) goto cleardatabasepage_out; 9801 if( pPage->intKey ) pnChange = 0; 9802 } 9803 if( pnChange ){ 9804 testcase( !pPage->intKey ); 9805 *pnChange += pPage->nCell; 9806 } 9807 if( freePageFlag ){ 9808 freePage(pPage, &rc); 9809 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9810 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9811 } 9812 9813 cleardatabasepage_out: 9814 releasePage(pPage); 9815 return rc; 9816 } 9817 9818 /* 9819 ** Delete all information from a single table in the database. iTable is 9820 ** the page number of the root of the table. After this routine returns, 9821 ** the root page is empty, but still exists. 9822 ** 9823 ** This routine will fail with SQLITE_LOCKED if there are any open 9824 ** read cursors on the table. Open write cursors are moved to the 9825 ** root of the table. 9826 ** 9827 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9828 ** is incremented by the number of entries in the table. 9829 */ 9830 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9831 int rc; 9832 BtShared *pBt = p->pBt; 9833 sqlite3BtreeEnter(p); 9834 assert( p->inTrans==TRANS_WRITE ); 9835 9836 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9837 9838 if( SQLITE_OK==rc ){ 9839 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9840 ** is the root of a table b-tree - if it is not, the following call is 9841 ** a no-op). */ 9842 if( p->hasIncrblobCur ){ 9843 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9844 } 9845 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9846 } 9847 sqlite3BtreeLeave(p); 9848 return rc; 9849 } 9850 9851 /* 9852 ** Delete all information from the single table that pCur is open on. 9853 ** 9854 ** This routine only work for pCur on an ephemeral table. 9855 */ 9856 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9857 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9858 } 9859 9860 /* 9861 ** Erase all information in a table and add the root of the table to 9862 ** the freelist. Except, the root of the principle table (the one on 9863 ** page 1) is never added to the freelist. 9864 ** 9865 ** This routine will fail with SQLITE_LOCKED if there are any open 9866 ** cursors on the table. 9867 ** 9868 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9869 ** root page in the database file, then the last root page 9870 ** in the database file is moved into the slot formerly occupied by 9871 ** iTable and that last slot formerly occupied by the last root page 9872 ** is added to the freelist instead of iTable. In this say, all 9873 ** root pages are kept at the beginning of the database file, which 9874 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9875 ** page number that used to be the last root page in the file before 9876 ** the move. If no page gets moved, *piMoved is set to 0. 9877 ** The last root page is recorded in meta[3] and the value of 9878 ** meta[3] is updated by this procedure. 9879 */ 9880 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9881 int rc; 9882 MemPage *pPage = 0; 9883 BtShared *pBt = p->pBt; 9884 9885 assert( sqlite3BtreeHoldsMutex(p) ); 9886 assert( p->inTrans==TRANS_WRITE ); 9887 assert( iTable>=2 ); 9888 if( iTable>btreePagecount(pBt) ){ 9889 return SQLITE_CORRUPT_BKPT; 9890 } 9891 9892 rc = sqlite3BtreeClearTable(p, iTable, 0); 9893 if( rc ) return rc; 9894 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9895 if( NEVER(rc) ){ 9896 releasePage(pPage); 9897 return rc; 9898 } 9899 9900 *piMoved = 0; 9901 9902 #ifdef SQLITE_OMIT_AUTOVACUUM 9903 freePage(pPage, &rc); 9904 releasePage(pPage); 9905 #else 9906 if( pBt->autoVacuum ){ 9907 Pgno maxRootPgno; 9908 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9909 9910 if( iTable==maxRootPgno ){ 9911 /* If the table being dropped is the table with the largest root-page 9912 ** number in the database, put the root page on the free list. 9913 */ 9914 freePage(pPage, &rc); 9915 releasePage(pPage); 9916 if( rc!=SQLITE_OK ){ 9917 return rc; 9918 } 9919 }else{ 9920 /* The table being dropped does not have the largest root-page 9921 ** number in the database. So move the page that does into the 9922 ** gap left by the deleted root-page. 9923 */ 9924 MemPage *pMove; 9925 releasePage(pPage); 9926 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9927 if( rc!=SQLITE_OK ){ 9928 return rc; 9929 } 9930 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9931 releasePage(pMove); 9932 if( rc!=SQLITE_OK ){ 9933 return rc; 9934 } 9935 pMove = 0; 9936 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9937 freePage(pMove, &rc); 9938 releasePage(pMove); 9939 if( rc!=SQLITE_OK ){ 9940 return rc; 9941 } 9942 *piMoved = maxRootPgno; 9943 } 9944 9945 /* Set the new 'max-root-page' value in the database header. This 9946 ** is the old value less one, less one more if that happens to 9947 ** be a root-page number, less one again if that is the 9948 ** PENDING_BYTE_PAGE. 9949 */ 9950 maxRootPgno--; 9951 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9952 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9953 maxRootPgno--; 9954 } 9955 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9956 9957 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9958 }else{ 9959 freePage(pPage, &rc); 9960 releasePage(pPage); 9961 } 9962 #endif 9963 return rc; 9964 } 9965 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9966 int rc; 9967 sqlite3BtreeEnter(p); 9968 rc = btreeDropTable(p, iTable, piMoved); 9969 sqlite3BtreeLeave(p); 9970 return rc; 9971 } 9972 9973 9974 /* 9975 ** This function may only be called if the b-tree connection already 9976 ** has a read or write transaction open on the database. 9977 ** 9978 ** Read the meta-information out of a database file. Meta[0] 9979 ** is the number of free pages currently in the database. Meta[1] 9980 ** through meta[15] are available for use by higher layers. Meta[0] 9981 ** is read-only, the others are read/write. 9982 ** 9983 ** The schema layer numbers meta values differently. At the schema 9984 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9985 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9986 ** 9987 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9988 ** of reading the value out of the header, it instead loads the "DataVersion" 9989 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9990 ** database file. It is a number computed by the pager. But its access 9991 ** pattern is the same as header meta values, and so it is convenient to 9992 ** read it from this routine. 9993 */ 9994 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9995 BtShared *pBt = p->pBt; 9996 9997 sqlite3BtreeEnter(p); 9998 assert( p->inTrans>TRANS_NONE ); 9999 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 10000 assert( pBt->pPage1 ); 10001 assert( idx>=0 && idx<=15 ); 10002 10003 if( idx==BTREE_DATA_VERSION ){ 10004 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 10005 }else{ 10006 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 10007 } 10008 10009 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 10010 ** database, mark the database as read-only. */ 10011 #ifdef SQLITE_OMIT_AUTOVACUUM 10012 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 10013 pBt->btsFlags |= BTS_READ_ONLY; 10014 } 10015 #endif 10016 10017 sqlite3BtreeLeave(p); 10018 } 10019 10020 /* 10021 ** Write meta-information back into the database. Meta[0] is 10022 ** read-only and may not be written. 10023 */ 10024 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 10025 BtShared *pBt = p->pBt; 10026 unsigned char *pP1; 10027 int rc; 10028 assert( idx>=1 && idx<=15 ); 10029 sqlite3BtreeEnter(p); 10030 assert( p->inTrans==TRANS_WRITE ); 10031 assert( pBt->pPage1!=0 ); 10032 pP1 = pBt->pPage1->aData; 10033 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10034 if( rc==SQLITE_OK ){ 10035 put4byte(&pP1[36 + idx*4], iMeta); 10036 #ifndef SQLITE_OMIT_AUTOVACUUM 10037 if( idx==BTREE_INCR_VACUUM ){ 10038 assert( pBt->autoVacuum || iMeta==0 ); 10039 assert( iMeta==0 || iMeta==1 ); 10040 pBt->incrVacuum = (u8)iMeta; 10041 } 10042 #endif 10043 } 10044 sqlite3BtreeLeave(p); 10045 return rc; 10046 } 10047 10048 /* 10049 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 10050 ** number of entries in the b-tree and write the result to *pnEntry. 10051 ** 10052 ** SQLITE_OK is returned if the operation is successfully executed. 10053 ** Otherwise, if an error is encountered (i.e. an IO error or database 10054 ** corruption) an SQLite error code is returned. 10055 */ 10056 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 10057 i64 nEntry = 0; /* Value to return in *pnEntry */ 10058 int rc; /* Return code */ 10059 10060 rc = moveToRoot(pCur); 10061 if( rc==SQLITE_EMPTY ){ 10062 *pnEntry = 0; 10063 return SQLITE_OK; 10064 } 10065 10066 /* Unless an error occurs, the following loop runs one iteration for each 10067 ** page in the B-Tree structure (not including overflow pages). 10068 */ 10069 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 10070 int iIdx; /* Index of child node in parent */ 10071 MemPage *pPage; /* Current page of the b-tree */ 10072 10073 /* If this is a leaf page or the tree is not an int-key tree, then 10074 ** this page contains countable entries. Increment the entry counter 10075 ** accordingly. 10076 */ 10077 pPage = pCur->pPage; 10078 if( pPage->leaf || !pPage->intKey ){ 10079 nEntry += pPage->nCell; 10080 } 10081 10082 /* pPage is a leaf node. This loop navigates the cursor so that it 10083 ** points to the first interior cell that it points to the parent of 10084 ** the next page in the tree that has not yet been visited. The 10085 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 10086 ** of the page, or to the number of cells in the page if the next page 10087 ** to visit is the right-child of its parent. 10088 ** 10089 ** If all pages in the tree have been visited, return SQLITE_OK to the 10090 ** caller. 10091 */ 10092 if( pPage->leaf ){ 10093 do { 10094 if( pCur->iPage==0 ){ 10095 /* All pages of the b-tree have been visited. Return successfully. */ 10096 *pnEntry = nEntry; 10097 return moveToRoot(pCur); 10098 } 10099 moveToParent(pCur); 10100 }while ( pCur->ix>=pCur->pPage->nCell ); 10101 10102 pCur->ix++; 10103 pPage = pCur->pPage; 10104 } 10105 10106 /* Descend to the child node of the cell that the cursor currently 10107 ** points at. This is the right-child if (iIdx==pPage->nCell). 10108 */ 10109 iIdx = pCur->ix; 10110 if( iIdx==pPage->nCell ){ 10111 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 10112 }else{ 10113 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 10114 } 10115 } 10116 10117 /* An error has occurred. Return an error code. */ 10118 return rc; 10119 } 10120 10121 /* 10122 ** Return the pager associated with a BTree. This routine is used for 10123 ** testing and debugging only. 10124 */ 10125 Pager *sqlite3BtreePager(Btree *p){ 10126 return p->pBt->pPager; 10127 } 10128 10129 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10130 /* 10131 ** Append a message to the error message string. 10132 */ 10133 static void checkAppendMsg( 10134 IntegrityCk *pCheck, 10135 const char *zFormat, 10136 ... 10137 ){ 10138 va_list ap; 10139 if( !pCheck->mxErr ) return; 10140 pCheck->mxErr--; 10141 pCheck->nErr++; 10142 va_start(ap, zFormat); 10143 if( pCheck->errMsg.nChar ){ 10144 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 10145 } 10146 if( pCheck->zPfx ){ 10147 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 10148 } 10149 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 10150 va_end(ap); 10151 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 10152 pCheck->bOomFault = 1; 10153 } 10154 } 10155 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10156 10157 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10158 10159 /* 10160 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 10161 ** corresponds to page iPg is already set. 10162 */ 10163 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10164 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10165 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10166 } 10167 10168 /* 10169 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10170 */ 10171 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10172 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10173 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10174 } 10175 10176 10177 /* 10178 ** Add 1 to the reference count for page iPage. If this is the second 10179 ** reference to the page, add an error message to pCheck->zErrMsg. 10180 ** Return 1 if there are 2 or more references to the page and 0 if 10181 ** if this is the first reference to the page. 10182 ** 10183 ** Also check that the page number is in bounds. 10184 */ 10185 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10186 if( iPage>pCheck->nPage || iPage==0 ){ 10187 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10188 return 1; 10189 } 10190 if( getPageReferenced(pCheck, iPage) ){ 10191 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10192 return 1; 10193 } 10194 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10195 setPageReferenced(pCheck, iPage); 10196 return 0; 10197 } 10198 10199 #ifndef SQLITE_OMIT_AUTOVACUUM 10200 /* 10201 ** Check that the entry in the pointer-map for page iChild maps to 10202 ** page iParent, pointer type ptrType. If not, append an error message 10203 ** to pCheck. 10204 */ 10205 static void checkPtrmap( 10206 IntegrityCk *pCheck, /* Integrity check context */ 10207 Pgno iChild, /* Child page number */ 10208 u8 eType, /* Expected pointer map type */ 10209 Pgno iParent /* Expected pointer map parent page number */ 10210 ){ 10211 int rc; 10212 u8 ePtrmapType; 10213 Pgno iPtrmapParent; 10214 10215 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10216 if( rc!=SQLITE_OK ){ 10217 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10218 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10219 return; 10220 } 10221 10222 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10223 checkAppendMsg(pCheck, 10224 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10225 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10226 } 10227 } 10228 #endif 10229 10230 /* 10231 ** Check the integrity of the freelist or of an overflow page list. 10232 ** Verify that the number of pages on the list is N. 10233 */ 10234 static void checkList( 10235 IntegrityCk *pCheck, /* Integrity checking context */ 10236 int isFreeList, /* True for a freelist. False for overflow page list */ 10237 Pgno iPage, /* Page number for first page in the list */ 10238 u32 N /* Expected number of pages in the list */ 10239 ){ 10240 int i; 10241 u32 expected = N; 10242 int nErrAtStart = pCheck->nErr; 10243 while( iPage!=0 && pCheck->mxErr ){ 10244 DbPage *pOvflPage; 10245 unsigned char *pOvflData; 10246 if( checkRef(pCheck, iPage) ) break; 10247 N--; 10248 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10249 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10250 break; 10251 } 10252 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10253 if( isFreeList ){ 10254 u32 n = (u32)get4byte(&pOvflData[4]); 10255 #ifndef SQLITE_OMIT_AUTOVACUUM 10256 if( pCheck->pBt->autoVacuum ){ 10257 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10258 } 10259 #endif 10260 if( n>pCheck->pBt->usableSize/4-2 ){ 10261 checkAppendMsg(pCheck, 10262 "freelist leaf count too big on page %d", iPage); 10263 N--; 10264 }else{ 10265 for(i=0; i<(int)n; i++){ 10266 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10267 #ifndef SQLITE_OMIT_AUTOVACUUM 10268 if( pCheck->pBt->autoVacuum ){ 10269 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10270 } 10271 #endif 10272 checkRef(pCheck, iFreePage); 10273 } 10274 N -= n; 10275 } 10276 } 10277 #ifndef SQLITE_OMIT_AUTOVACUUM 10278 else{ 10279 /* If this database supports auto-vacuum and iPage is not the last 10280 ** page in this overflow list, check that the pointer-map entry for 10281 ** the following page matches iPage. 10282 */ 10283 if( pCheck->pBt->autoVacuum && N>0 ){ 10284 i = get4byte(pOvflData); 10285 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10286 } 10287 } 10288 #endif 10289 iPage = get4byte(pOvflData); 10290 sqlite3PagerUnref(pOvflPage); 10291 } 10292 if( N && nErrAtStart==pCheck->nErr ){ 10293 checkAppendMsg(pCheck, 10294 "%s is %d but should be %d", 10295 isFreeList ? "size" : "overflow list length", 10296 expected-N, expected); 10297 } 10298 } 10299 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10300 10301 /* 10302 ** An implementation of a min-heap. 10303 ** 10304 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10305 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10306 ** and aHeap[N*2+1]. 10307 ** 10308 ** The heap property is this: Every node is less than or equal to both 10309 ** of its daughter nodes. A consequence of the heap property is that the 10310 ** root node aHeap[1] is always the minimum value currently in the heap. 10311 ** 10312 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10313 ** the heap, preserving the heap property. The btreeHeapPull() routine 10314 ** removes the root element from the heap (the minimum value in the heap) 10315 ** and then moves other nodes around as necessary to preserve the heap 10316 ** property. 10317 ** 10318 ** This heap is used for cell overlap and coverage testing. Each u32 10319 ** entry represents the span of a cell or freeblock on a btree page. 10320 ** The upper 16 bits are the index of the first byte of a range and the 10321 ** lower 16 bits are the index of the last byte of that range. 10322 */ 10323 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10324 u32 j, i = ++aHeap[0]; 10325 aHeap[i] = x; 10326 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10327 x = aHeap[j]; 10328 aHeap[j] = aHeap[i]; 10329 aHeap[i] = x; 10330 i = j; 10331 } 10332 } 10333 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10334 u32 j, i, x; 10335 if( (x = aHeap[0])==0 ) return 0; 10336 *pOut = aHeap[1]; 10337 aHeap[1] = aHeap[x]; 10338 aHeap[x] = 0xffffffff; 10339 aHeap[0]--; 10340 i = 1; 10341 while( (j = i*2)<=aHeap[0] ){ 10342 if( aHeap[j]>aHeap[j+1] ) j++; 10343 if( aHeap[i]<aHeap[j] ) break; 10344 x = aHeap[i]; 10345 aHeap[i] = aHeap[j]; 10346 aHeap[j] = x; 10347 i = j; 10348 } 10349 return 1; 10350 } 10351 10352 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10353 /* 10354 ** Do various sanity checks on a single page of a tree. Return 10355 ** the tree depth. Root pages return 0. Parents of root pages 10356 ** return 1, and so forth. 10357 ** 10358 ** These checks are done: 10359 ** 10360 ** 1. Make sure that cells and freeblocks do not overlap 10361 ** but combine to completely cover the page. 10362 ** 2. Make sure integer cell keys are in order. 10363 ** 3. Check the integrity of overflow pages. 10364 ** 4. Recursively call checkTreePage on all children. 10365 ** 5. Verify that the depth of all children is the same. 10366 */ 10367 static int checkTreePage( 10368 IntegrityCk *pCheck, /* Context for the sanity check */ 10369 Pgno iPage, /* Page number of the page to check */ 10370 i64 *piMinKey, /* Write minimum integer primary key here */ 10371 i64 maxKey /* Error if integer primary key greater than this */ 10372 ){ 10373 MemPage *pPage = 0; /* The page being analyzed */ 10374 int i; /* Loop counter */ 10375 int rc; /* Result code from subroutine call */ 10376 int depth = -1, d2; /* Depth of a subtree */ 10377 int pgno; /* Page number */ 10378 int nFrag; /* Number of fragmented bytes on the page */ 10379 int hdr; /* Offset to the page header */ 10380 int cellStart; /* Offset to the start of the cell pointer array */ 10381 int nCell; /* Number of cells */ 10382 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10383 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10384 ** False if IPK must be strictly less than maxKey */ 10385 u8 *data; /* Page content */ 10386 u8 *pCell; /* Cell content */ 10387 u8 *pCellIdx; /* Next element of the cell pointer array */ 10388 BtShared *pBt; /* The BtShared object that owns pPage */ 10389 u32 pc; /* Address of a cell */ 10390 u32 usableSize; /* Usable size of the page */ 10391 u32 contentOffset; /* Offset to the start of the cell content area */ 10392 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10393 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10394 const char *saved_zPfx = pCheck->zPfx; 10395 int saved_v1 = pCheck->v1; 10396 int saved_v2 = pCheck->v2; 10397 u8 savedIsInit = 0; 10398 10399 /* Check that the page exists 10400 */ 10401 pBt = pCheck->pBt; 10402 usableSize = pBt->usableSize; 10403 if( iPage==0 ) return 0; 10404 if( checkRef(pCheck, iPage) ) return 0; 10405 pCheck->zPfx = "Page %u: "; 10406 pCheck->v1 = iPage; 10407 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10408 checkAppendMsg(pCheck, 10409 "unable to get the page. error code=%d", rc); 10410 goto end_of_check; 10411 } 10412 10413 /* Clear MemPage.isInit to make sure the corruption detection code in 10414 ** btreeInitPage() is executed. */ 10415 savedIsInit = pPage->isInit; 10416 pPage->isInit = 0; 10417 if( (rc = btreeInitPage(pPage))!=0 ){ 10418 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10419 checkAppendMsg(pCheck, 10420 "btreeInitPage() returns error code %d", rc); 10421 goto end_of_check; 10422 } 10423 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10424 assert( rc==SQLITE_CORRUPT ); 10425 checkAppendMsg(pCheck, "free space corruption", rc); 10426 goto end_of_check; 10427 } 10428 data = pPage->aData; 10429 hdr = pPage->hdrOffset; 10430 10431 /* Set up for cell analysis */ 10432 pCheck->zPfx = "On tree page %u cell %d: "; 10433 contentOffset = get2byteNotZero(&data[hdr+5]); 10434 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10435 10436 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10437 ** number of cells on the page. */ 10438 nCell = get2byte(&data[hdr+3]); 10439 assert( pPage->nCell==nCell ); 10440 10441 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10442 ** immediately follows the b-tree page header. */ 10443 cellStart = hdr + 12 - 4*pPage->leaf; 10444 assert( pPage->aCellIdx==&data[cellStart] ); 10445 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10446 10447 if( !pPage->leaf ){ 10448 /* Analyze the right-child page of internal pages */ 10449 pgno = get4byte(&data[hdr+8]); 10450 #ifndef SQLITE_OMIT_AUTOVACUUM 10451 if( pBt->autoVacuum ){ 10452 pCheck->zPfx = "On page %u at right child: "; 10453 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10454 } 10455 #endif 10456 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10457 keyCanBeEqual = 0; 10458 }else{ 10459 /* For leaf pages, the coverage check will occur in the same loop 10460 ** as the other cell checks, so initialize the heap. */ 10461 heap = pCheck->heap; 10462 heap[0] = 0; 10463 } 10464 10465 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10466 ** integer offsets to the cell contents. */ 10467 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10468 CellInfo info; 10469 10470 /* Check cell size */ 10471 pCheck->v2 = i; 10472 assert( pCellIdx==&data[cellStart + i*2] ); 10473 pc = get2byteAligned(pCellIdx); 10474 pCellIdx -= 2; 10475 if( pc<contentOffset || pc>usableSize-4 ){ 10476 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10477 pc, contentOffset, usableSize-4); 10478 doCoverageCheck = 0; 10479 continue; 10480 } 10481 pCell = &data[pc]; 10482 pPage->xParseCell(pPage, pCell, &info); 10483 if( pc+info.nSize>usableSize ){ 10484 checkAppendMsg(pCheck, "Extends off end of page"); 10485 doCoverageCheck = 0; 10486 continue; 10487 } 10488 10489 /* Check for integer primary key out of range */ 10490 if( pPage->intKey ){ 10491 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10492 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10493 } 10494 maxKey = info.nKey; 10495 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10496 } 10497 10498 /* Check the content overflow list */ 10499 if( info.nPayload>info.nLocal ){ 10500 u32 nPage; /* Number of pages on the overflow chain */ 10501 Pgno pgnoOvfl; /* First page of the overflow chain */ 10502 assert( pc + info.nSize - 4 <= usableSize ); 10503 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10504 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10505 #ifndef SQLITE_OMIT_AUTOVACUUM 10506 if( pBt->autoVacuum ){ 10507 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10508 } 10509 #endif 10510 checkList(pCheck, 0, pgnoOvfl, nPage); 10511 } 10512 10513 if( !pPage->leaf ){ 10514 /* Check sanity of left child page for internal pages */ 10515 pgno = get4byte(pCell); 10516 #ifndef SQLITE_OMIT_AUTOVACUUM 10517 if( pBt->autoVacuum ){ 10518 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10519 } 10520 #endif 10521 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10522 keyCanBeEqual = 0; 10523 if( d2!=depth ){ 10524 checkAppendMsg(pCheck, "Child page depth differs"); 10525 depth = d2; 10526 } 10527 }else{ 10528 /* Populate the coverage-checking heap for leaf pages */ 10529 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10530 } 10531 } 10532 *piMinKey = maxKey; 10533 10534 /* Check for complete coverage of the page 10535 */ 10536 pCheck->zPfx = 0; 10537 if( doCoverageCheck && pCheck->mxErr>0 ){ 10538 /* For leaf pages, the min-heap has already been initialized and the 10539 ** cells have already been inserted. But for internal pages, that has 10540 ** not yet been done, so do it now */ 10541 if( !pPage->leaf ){ 10542 heap = pCheck->heap; 10543 heap[0] = 0; 10544 for(i=nCell-1; i>=0; i--){ 10545 u32 size; 10546 pc = get2byteAligned(&data[cellStart+i*2]); 10547 size = pPage->xCellSize(pPage, &data[pc]); 10548 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10549 } 10550 } 10551 /* Add the freeblocks to the min-heap 10552 ** 10553 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10554 ** is the offset of the first freeblock, or zero if there are no 10555 ** freeblocks on the page. 10556 */ 10557 i = get2byte(&data[hdr+1]); 10558 while( i>0 ){ 10559 int size, j; 10560 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10561 size = get2byte(&data[i+2]); 10562 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10563 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10564 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10565 ** big-endian integer which is the offset in the b-tree page of the next 10566 ** freeblock in the chain, or zero if the freeblock is the last on the 10567 ** chain. */ 10568 j = get2byte(&data[i]); 10569 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10570 ** increasing offset. */ 10571 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10572 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10573 i = j; 10574 } 10575 /* Analyze the min-heap looking for overlap between cells and/or 10576 ** freeblocks, and counting the number of untracked bytes in nFrag. 10577 ** 10578 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10579 ** There is an implied first entry the covers the page header, the cell 10580 ** pointer index, and the gap between the cell pointer index and the start 10581 ** of cell content. 10582 ** 10583 ** The loop below pulls entries from the min-heap in order and compares 10584 ** the start_address against the previous end_address. If there is an 10585 ** overlap, that means bytes are used multiple times. If there is a gap, 10586 ** that gap is added to the fragmentation count. 10587 */ 10588 nFrag = 0; 10589 prev = contentOffset - 1; /* Implied first min-heap entry */ 10590 while( btreeHeapPull(heap,&x) ){ 10591 if( (prev&0xffff)>=(x>>16) ){ 10592 checkAppendMsg(pCheck, 10593 "Multiple uses for byte %u of page %u", x>>16, iPage); 10594 break; 10595 }else{ 10596 nFrag += (x>>16) - (prev&0xffff) - 1; 10597 prev = x; 10598 } 10599 } 10600 nFrag += usableSize - (prev&0xffff) - 1; 10601 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10602 ** is stored in the fifth field of the b-tree page header. 10603 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10604 ** number of fragmented free bytes within the cell content area. 10605 */ 10606 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10607 checkAppendMsg(pCheck, 10608 "Fragmentation of %d bytes reported as %d on page %u", 10609 nFrag, data[hdr+7], iPage); 10610 } 10611 } 10612 10613 end_of_check: 10614 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10615 releasePage(pPage); 10616 pCheck->zPfx = saved_zPfx; 10617 pCheck->v1 = saved_v1; 10618 pCheck->v2 = saved_v2; 10619 return depth+1; 10620 } 10621 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10622 10623 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10624 /* 10625 ** This routine does a complete check of the given BTree file. aRoot[] is 10626 ** an array of pages numbers were each page number is the root page of 10627 ** a table. nRoot is the number of entries in aRoot. 10628 ** 10629 ** A read-only or read-write transaction must be opened before calling 10630 ** this function. 10631 ** 10632 ** Write the number of error seen in *pnErr. Except for some memory 10633 ** allocation errors, an error message held in memory obtained from 10634 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10635 ** returned. If a memory allocation error occurs, NULL is returned. 10636 ** 10637 ** If the first entry in aRoot[] is 0, that indicates that the list of 10638 ** root pages is incomplete. This is a "partial integrity-check". This 10639 ** happens when performing an integrity check on a single table. The 10640 ** zero is skipped, of course. But in addition, the freelist checks 10641 ** and the checks to make sure every page is referenced are also skipped, 10642 ** since obviously it is not possible to know which pages are covered by 10643 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10644 ** checks are still performed. 10645 */ 10646 char *sqlite3BtreeIntegrityCheck( 10647 sqlite3 *db, /* Database connection that is running the check */ 10648 Btree *p, /* The btree to be checked */ 10649 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10650 int nRoot, /* Number of entries in aRoot[] */ 10651 int mxErr, /* Stop reporting errors after this many */ 10652 int *pnErr /* Write number of errors seen to this variable */ 10653 ){ 10654 Pgno i; 10655 IntegrityCk sCheck; 10656 BtShared *pBt = p->pBt; 10657 u64 savedDbFlags = pBt->db->flags; 10658 char zErr[100]; 10659 int bPartial = 0; /* True if not checking all btrees */ 10660 int bCkFreelist = 1; /* True to scan the freelist */ 10661 VVA_ONLY( int nRef ); 10662 assert( nRoot>0 ); 10663 10664 /* aRoot[0]==0 means this is a partial check */ 10665 if( aRoot[0]==0 ){ 10666 assert( nRoot>1 ); 10667 bPartial = 1; 10668 if( aRoot[1]!=1 ) bCkFreelist = 0; 10669 } 10670 10671 sqlite3BtreeEnter(p); 10672 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10673 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10674 assert( nRef>=0 ); 10675 sCheck.db = db; 10676 sCheck.pBt = pBt; 10677 sCheck.pPager = pBt->pPager; 10678 sCheck.nPage = btreePagecount(sCheck.pBt); 10679 sCheck.mxErr = mxErr; 10680 sCheck.nErr = 0; 10681 sCheck.bOomFault = 0; 10682 sCheck.zPfx = 0; 10683 sCheck.v1 = 0; 10684 sCheck.v2 = 0; 10685 sCheck.aPgRef = 0; 10686 sCheck.heap = 0; 10687 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10688 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10689 if( sCheck.nPage==0 ){ 10690 goto integrity_ck_cleanup; 10691 } 10692 10693 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10694 if( !sCheck.aPgRef ){ 10695 sCheck.bOomFault = 1; 10696 goto integrity_ck_cleanup; 10697 } 10698 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10699 if( sCheck.heap==0 ){ 10700 sCheck.bOomFault = 1; 10701 goto integrity_ck_cleanup; 10702 } 10703 10704 i = PENDING_BYTE_PAGE(pBt); 10705 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10706 10707 /* Check the integrity of the freelist 10708 */ 10709 if( bCkFreelist ){ 10710 sCheck.zPfx = "Main freelist: "; 10711 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10712 get4byte(&pBt->pPage1->aData[36])); 10713 sCheck.zPfx = 0; 10714 } 10715 10716 /* Check all the tables. 10717 */ 10718 #ifndef SQLITE_OMIT_AUTOVACUUM 10719 if( !bPartial ){ 10720 if( pBt->autoVacuum ){ 10721 Pgno mx = 0; 10722 Pgno mxInHdr; 10723 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10724 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10725 if( mx!=mxInHdr ){ 10726 checkAppendMsg(&sCheck, 10727 "max rootpage (%d) disagrees with header (%d)", 10728 mx, mxInHdr 10729 ); 10730 } 10731 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10732 checkAppendMsg(&sCheck, 10733 "incremental_vacuum enabled with a max rootpage of zero" 10734 ); 10735 } 10736 } 10737 #endif 10738 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10739 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10740 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10741 i64 notUsed; 10742 if( aRoot[i]==0 ) continue; 10743 #ifndef SQLITE_OMIT_AUTOVACUUM 10744 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10745 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10746 } 10747 #endif 10748 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10749 } 10750 pBt->db->flags = savedDbFlags; 10751 10752 /* Make sure every page in the file is referenced 10753 */ 10754 if( !bPartial ){ 10755 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10756 #ifdef SQLITE_OMIT_AUTOVACUUM 10757 if( getPageReferenced(&sCheck, i)==0 ){ 10758 checkAppendMsg(&sCheck, "Page %d is never used", i); 10759 } 10760 #else 10761 /* If the database supports auto-vacuum, make sure no tables contain 10762 ** references to pointer-map pages. 10763 */ 10764 if( getPageReferenced(&sCheck, i)==0 && 10765 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10766 checkAppendMsg(&sCheck, "Page %d is never used", i); 10767 } 10768 if( getPageReferenced(&sCheck, i)!=0 && 10769 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10770 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10771 } 10772 #endif 10773 } 10774 } 10775 10776 /* Clean up and report errors. 10777 */ 10778 integrity_ck_cleanup: 10779 sqlite3PageFree(sCheck.heap); 10780 sqlite3_free(sCheck.aPgRef); 10781 if( sCheck.bOomFault ){ 10782 sqlite3_str_reset(&sCheck.errMsg); 10783 sCheck.nErr++; 10784 } 10785 *pnErr = sCheck.nErr; 10786 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10787 /* Make sure this analysis did not leave any unref() pages. */ 10788 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10789 sqlite3BtreeLeave(p); 10790 return sqlite3StrAccumFinish(&sCheck.errMsg); 10791 } 10792 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10793 10794 /* 10795 ** Return the full pathname of the underlying database file. Return 10796 ** an empty string if the database is in-memory or a TEMP database. 10797 ** 10798 ** The pager filename is invariant as long as the pager is 10799 ** open so it is safe to access without the BtShared mutex. 10800 */ 10801 const char *sqlite3BtreeGetFilename(Btree *p){ 10802 assert( p->pBt->pPager!=0 ); 10803 return sqlite3PagerFilename(p->pBt->pPager, 1); 10804 } 10805 10806 /* 10807 ** Return the pathname of the journal file for this database. The return 10808 ** value of this routine is the same regardless of whether the journal file 10809 ** has been created or not. 10810 ** 10811 ** The pager journal filename is invariant as long as the pager is 10812 ** open so it is safe to access without the BtShared mutex. 10813 */ 10814 const char *sqlite3BtreeGetJournalname(Btree *p){ 10815 assert( p->pBt->pPager!=0 ); 10816 return sqlite3PagerJournalname(p->pBt->pPager); 10817 } 10818 10819 /* 10820 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10821 ** to describe the current transaction state of Btree p. 10822 */ 10823 int sqlite3BtreeTxnState(Btree *p){ 10824 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10825 return p ? p->inTrans : 0; 10826 } 10827 10828 #ifndef SQLITE_OMIT_WAL 10829 /* 10830 ** Run a checkpoint on the Btree passed as the first argument. 10831 ** 10832 ** Return SQLITE_LOCKED if this or any other connection has an open 10833 ** transaction on the shared-cache the argument Btree is connected to. 10834 ** 10835 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10836 */ 10837 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10838 int rc = SQLITE_OK; 10839 if( p ){ 10840 BtShared *pBt = p->pBt; 10841 sqlite3BtreeEnter(p); 10842 if( pBt->inTransaction!=TRANS_NONE ){ 10843 rc = SQLITE_LOCKED; 10844 }else{ 10845 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10846 } 10847 sqlite3BtreeLeave(p); 10848 } 10849 return rc; 10850 } 10851 #endif 10852 10853 /* 10854 ** Return true if there is currently a backup running on Btree p. 10855 */ 10856 int sqlite3BtreeIsInBackup(Btree *p){ 10857 assert( p ); 10858 assert( sqlite3_mutex_held(p->db->mutex) ); 10859 return p->nBackup!=0; 10860 } 10861 10862 /* 10863 ** This function returns a pointer to a blob of memory associated with 10864 ** a single shared-btree. The memory is used by client code for its own 10865 ** purposes (for example, to store a high-level schema associated with 10866 ** the shared-btree). The btree layer manages reference counting issues. 10867 ** 10868 ** The first time this is called on a shared-btree, nBytes bytes of memory 10869 ** are allocated, zeroed, and returned to the caller. For each subsequent 10870 ** call the nBytes parameter is ignored and a pointer to the same blob 10871 ** of memory returned. 10872 ** 10873 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10874 ** allocated, a null pointer is returned. If the blob has already been 10875 ** allocated, it is returned as normal. 10876 ** 10877 ** Just before the shared-btree is closed, the function passed as the 10878 ** xFree argument when the memory allocation was made is invoked on the 10879 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10880 ** on the memory, the btree layer does that. 10881 */ 10882 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10883 BtShared *pBt = p->pBt; 10884 sqlite3BtreeEnter(p); 10885 if( !pBt->pSchema && nBytes ){ 10886 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10887 pBt->xFreeSchema = xFree; 10888 } 10889 sqlite3BtreeLeave(p); 10890 return pBt->pSchema; 10891 } 10892 10893 /* 10894 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10895 ** btree as the argument handle holds an exclusive lock on the 10896 ** sqlite_schema table. Otherwise SQLITE_OK. 10897 */ 10898 int sqlite3BtreeSchemaLocked(Btree *p){ 10899 int rc; 10900 assert( sqlite3_mutex_held(p->db->mutex) ); 10901 sqlite3BtreeEnter(p); 10902 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10903 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10904 sqlite3BtreeLeave(p); 10905 return rc; 10906 } 10907 10908 10909 #ifndef SQLITE_OMIT_SHARED_CACHE 10910 /* 10911 ** Obtain a lock on the table whose root page is iTab. The 10912 ** lock is a write lock if isWritelock is true or a read lock 10913 ** if it is false. 10914 */ 10915 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10916 int rc = SQLITE_OK; 10917 assert( p->inTrans!=TRANS_NONE ); 10918 if( p->sharable ){ 10919 u8 lockType = READ_LOCK + isWriteLock; 10920 assert( READ_LOCK+1==WRITE_LOCK ); 10921 assert( isWriteLock==0 || isWriteLock==1 ); 10922 10923 sqlite3BtreeEnter(p); 10924 rc = querySharedCacheTableLock(p, iTab, lockType); 10925 if( rc==SQLITE_OK ){ 10926 rc = setSharedCacheTableLock(p, iTab, lockType); 10927 } 10928 sqlite3BtreeLeave(p); 10929 } 10930 return rc; 10931 } 10932 #endif 10933 10934 #ifndef SQLITE_OMIT_INCRBLOB 10935 /* 10936 ** Argument pCsr must be a cursor opened for writing on an 10937 ** INTKEY table currently pointing at a valid table entry. 10938 ** This function modifies the data stored as part of that entry. 10939 ** 10940 ** Only the data content may only be modified, it is not possible to 10941 ** change the length of the data stored. If this function is called with 10942 ** parameters that attempt to write past the end of the existing data, 10943 ** no modifications are made and SQLITE_CORRUPT is returned. 10944 */ 10945 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10946 int rc; 10947 assert( cursorOwnsBtShared(pCsr) ); 10948 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10949 assert( pCsr->curFlags & BTCF_Incrblob ); 10950 10951 rc = restoreCursorPosition(pCsr); 10952 if( rc!=SQLITE_OK ){ 10953 return rc; 10954 } 10955 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10956 if( pCsr->eState!=CURSOR_VALID ){ 10957 return SQLITE_ABORT; 10958 } 10959 10960 /* Save the positions of all other cursors open on this table. This is 10961 ** required in case any of them are holding references to an xFetch 10962 ** version of the b-tree page modified by the accessPayload call below. 10963 ** 10964 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10965 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10966 ** saveAllCursors can only return SQLITE_OK. 10967 */ 10968 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10969 assert( rc==SQLITE_OK ); 10970 10971 /* Check some assumptions: 10972 ** (a) the cursor is open for writing, 10973 ** (b) there is a read/write transaction open, 10974 ** (c) the connection holds a write-lock on the table (if required), 10975 ** (d) there are no conflicting read-locks, and 10976 ** (e) the cursor points at a valid row of an intKey table. 10977 */ 10978 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10979 return SQLITE_READONLY; 10980 } 10981 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10982 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10983 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10984 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10985 assert( pCsr->pPage->intKey ); 10986 10987 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10988 } 10989 10990 /* 10991 ** Mark this cursor as an incremental blob cursor. 10992 */ 10993 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10994 pCur->curFlags |= BTCF_Incrblob; 10995 pCur->pBtree->hasIncrblobCur = 1; 10996 } 10997 #endif 10998 10999 /* 11000 ** Set both the "read version" (single byte at byte offset 18) and 11001 ** "write version" (single byte at byte offset 19) fields in the database 11002 ** header to iVersion. 11003 */ 11004 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 11005 BtShared *pBt = pBtree->pBt; 11006 int rc; /* Return code */ 11007 11008 assert( iVersion==1 || iVersion==2 ); 11009 11010 /* If setting the version fields to 1, do not automatically open the 11011 ** WAL connection, even if the version fields are currently set to 2. 11012 */ 11013 pBt->btsFlags &= ~BTS_NO_WAL; 11014 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 11015 11016 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 11017 if( rc==SQLITE_OK ){ 11018 u8 *aData = pBt->pPage1->aData; 11019 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 11020 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 11021 if( rc==SQLITE_OK ){ 11022 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 11023 if( rc==SQLITE_OK ){ 11024 aData[18] = (u8)iVersion; 11025 aData[19] = (u8)iVersion; 11026 } 11027 } 11028 } 11029 } 11030 11031 pBt->btsFlags &= ~BTS_NO_WAL; 11032 return rc; 11033 } 11034 11035 /* 11036 ** Return true if the cursor has a hint specified. This routine is 11037 ** only used from within assert() statements 11038 */ 11039 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 11040 return (pCsr->hints & mask)!=0; 11041 } 11042 11043 /* 11044 ** Return true if the given Btree is read-only. 11045 */ 11046 int sqlite3BtreeIsReadonly(Btree *p){ 11047 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 11048 } 11049 11050 /* 11051 ** Return the size of the header added to each page by this module. 11052 */ 11053 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 11054 11055 #if !defined(SQLITE_OMIT_SHARED_CACHE) 11056 /* 11057 ** Return true if the Btree passed as the only argument is sharable. 11058 */ 11059 int sqlite3BtreeSharable(Btree *p){ 11060 return p->sharable; 11061 } 11062 11063 /* 11064 ** Return the number of connections to the BtShared object accessed by 11065 ** the Btree handle passed as the only argument. For private caches 11066 ** this is always 1. For shared caches it may be 1 or greater. 11067 */ 11068 int sqlite3BtreeConnectionCount(Btree *p){ 11069 testcase( p->sharable ); 11070 return p->pBt->nRef; 11071 } 11072 #endif 11073