xref: /sqlite-3.40.0/src/btree.c (revision 7aa3ebee)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         if( iTab ){
179           /* Two or more indexes share the same root page.  There must
180           ** be imposter tables.  So just return true.  The assert is not
181           ** useful in that case. */
182           return 1;
183         }
184         iTab = pIdx->pTable->tnum;
185       }
186     }
187   }else{
188     iTab = iRoot;
189   }
190 
191   /* Search for the required lock. Either a write-lock on root-page iTab, a
192   ** write-lock on the schema table, or (if the client is reading) a
193   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
194   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195     if( pLock->pBtree==pBtree
196      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197      && pLock->eLock>=eLockType
198     ){
199       return 1;
200     }
201   }
202 
203   /* Failed to find the required lock. */
204   return 0;
205 }
206 #endif /* SQLITE_DEBUG */
207 
208 #ifdef SQLITE_DEBUG
209 /*
210 **** This function may be used as part of assert() statements only. ****
211 **
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
215 **
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table.  Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
221 **
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
224 **
225 **    assert( !hasReadConflicts(pBtree, iRoot) );
226 */
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228   BtCursor *p;
229   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230     if( p->pgnoRoot==iRoot
231      && p->pBtree!=pBtree
232      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233     ){
234       return 1;
235     }
236   }
237   return 0;
238 }
239 #endif    /* #ifdef SQLITE_DEBUG */
240 
241 /*
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
246 */
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248   BtShared *pBt = p->pBt;
249   BtLock *pIter;
250 
251   assert( sqlite3BtreeHoldsMutex(p) );
252   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253   assert( p->db!=0 );
254   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
255 
256   /* If requesting a write-lock, then the Btree must have an open write
257   ** transaction on this file. And, obviously, for this to be so there
258   ** must be an open write transaction on the file itself.
259   */
260   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262 
263   /* This routine is a no-op if the shared-cache is not enabled */
264   if( !p->sharable ){
265     return SQLITE_OK;
266   }
267 
268   /* If some other connection is holding an exclusive lock, the
269   ** requested lock may not be obtained.
270   */
271   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273     return SQLITE_LOCKED_SHAREDCACHE;
274   }
275 
276   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277     /* The condition (pIter->eLock!=eLock) in the following if(...)
278     ** statement is a simplification of:
279     **
280     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281     **
282     ** since we know that if eLock==WRITE_LOCK, then no other connection
283     ** may hold a WRITE_LOCK on any table in this file (since there can
284     ** only be a single writer).
285     */
286     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290       if( eLock==WRITE_LOCK ){
291         assert( p==pBt->pWriter );
292         pBt->btsFlags |= BTS_PENDING;
293       }
294       return SQLITE_LOCKED_SHAREDCACHE;
295     }
296   }
297   return SQLITE_OK;
298 }
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
300 
301 #ifndef SQLITE_OMIT_SHARED_CACHE
302 /*
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
306 **
307 ** This function assumes the following:
308 **
309 **   (a) The specified Btree object p is connected to a sharable
310 **       database (one with the BtShared.sharable flag set), and
311 **
312 **   (b) No other Btree objects hold a lock that conflicts
313 **       with the requested lock (i.e. querySharedCacheTableLock() has
314 **       already been called and returned SQLITE_OK).
315 **
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
318 */
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320   BtShared *pBt = p->pBt;
321   BtLock *pLock = 0;
322   BtLock *pIter;
323 
324   assert( sqlite3BtreeHoldsMutex(p) );
325   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326   assert( p->db!=0 );
327 
328   /* A connection with the read-uncommitted flag set will never try to
329   ** obtain a read-lock using this function. The only read-lock obtained
330   ** by a connection in read-uncommitted mode is on the sqlite_master
331   ** table, and that lock is obtained in BtreeBeginTrans().  */
332   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333 
334   /* This function should only be called on a sharable b-tree after it
335   ** has been determined that no other b-tree holds a conflicting lock.  */
336   assert( p->sharable );
337   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
338 
339   /* First search the list for an existing lock on this table. */
340   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341     if( pIter->iTable==iTable && pIter->pBtree==p ){
342       pLock = pIter;
343       break;
344     }
345   }
346 
347   /* If the above search did not find a BtLock struct associating Btree p
348   ** with table iTable, allocate one and link it into the list.
349   */
350   if( !pLock ){
351     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352     if( !pLock ){
353       return SQLITE_NOMEM_BKPT;
354     }
355     pLock->iTable = iTable;
356     pLock->pBtree = p;
357     pLock->pNext = pBt->pLock;
358     pBt->pLock = pLock;
359   }
360 
361   /* Set the BtLock.eLock variable to the maximum of the current lock
362   ** and the requested lock. This means if a write-lock was already held
363   ** and a read-lock requested, we don't incorrectly downgrade the lock.
364   */
365   assert( WRITE_LOCK>READ_LOCK );
366   if( eLock>pLock->eLock ){
367     pLock->eLock = eLock;
368   }
369 
370   return SQLITE_OK;
371 }
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
373 
374 #ifndef SQLITE_OMIT_SHARED_CACHE
375 /*
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
378 **
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
382 */
383 static void clearAllSharedCacheTableLocks(Btree *p){
384   BtShared *pBt = p->pBt;
385   BtLock **ppIter = &pBt->pLock;
386 
387   assert( sqlite3BtreeHoldsMutex(p) );
388   assert( p->sharable || 0==*ppIter );
389   assert( p->inTrans>0 );
390 
391   while( *ppIter ){
392     BtLock *pLock = *ppIter;
393     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394     assert( pLock->pBtree->inTrans>=pLock->eLock );
395     if( pLock->pBtree==p ){
396       *ppIter = pLock->pNext;
397       assert( pLock->iTable!=1 || pLock==&p->lock );
398       if( pLock->iTable!=1 ){
399         sqlite3_free(pLock);
400       }
401     }else{
402       ppIter = &pLock->pNext;
403     }
404   }
405 
406   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407   if( pBt->pWriter==p ){
408     pBt->pWriter = 0;
409     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410   }else if( pBt->nTransaction==2 ){
411     /* This function is called when Btree p is concluding its
412     ** transaction. If there currently exists a writer, and p is not
413     ** that writer, then the number of locks held by connections other
414     ** than the writer must be about to drop to zero. In this case
415     ** set the BTS_PENDING flag to 0.
416     **
417     ** If there is not currently a writer, then BTS_PENDING must
418     ** be zero already. So this next line is harmless in that case.
419     */
420     pBt->btsFlags &= ~BTS_PENDING;
421   }
422 }
423 
424 /*
425 ** This function changes all write-locks held by Btree p into read-locks.
426 */
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428   BtShared *pBt = p->pBt;
429   if( pBt->pWriter==p ){
430     BtLock *pLock;
431     pBt->pWriter = 0;
432     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435       pLock->eLock = READ_LOCK;
436     }
437   }
438 }
439 
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
441 
442 static void releasePage(MemPage *pPage);  /* Forward reference */
443 
444 /*
445 ***** This routine is used inside of assert() only ****
446 **
447 ** Verify that the cursor holds the mutex on its BtShared
448 */
449 #ifdef SQLITE_DEBUG
450 static int cursorHoldsMutex(BtCursor *p){
451   return sqlite3_mutex_held(p->pBt->mutex);
452 }
453 static int cursorOwnsBtShared(BtCursor *p){
454   assert( cursorHoldsMutex(p) );
455   return (p->pBtree->db==p->pBt->db);
456 }
457 #endif
458 
459 /*
460 ** Invalidate the overflow cache of the cursor passed as the first argument.
461 ** on the shared btree structure pBt.
462 */
463 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
464 
465 /*
466 ** Invalidate the overflow page-list cache for all cursors opened
467 ** on the shared btree structure pBt.
468 */
469 static void invalidateAllOverflowCache(BtShared *pBt){
470   BtCursor *p;
471   assert( sqlite3_mutex_held(pBt->mutex) );
472   for(p=pBt->pCursor; p; p=p->pNext){
473     invalidateOverflowCache(p);
474   }
475 }
476 
477 #ifndef SQLITE_OMIT_INCRBLOB
478 /*
479 ** This function is called before modifying the contents of a table
480 ** to invalidate any incrblob cursors that are open on the
481 ** row or one of the rows being modified.
482 **
483 ** If argument isClearTable is true, then the entire contents of the
484 ** table is about to be deleted. In this case invalidate all incrblob
485 ** cursors open on any row within the table with root-page pgnoRoot.
486 **
487 ** Otherwise, if argument isClearTable is false, then the row with
488 ** rowid iRow is being replaced or deleted. In this case invalidate
489 ** only those incrblob cursors open on that specific row.
490 */
491 static void invalidateIncrblobCursors(
492   Btree *pBtree,          /* The database file to check */
493   i64 iRow,               /* The rowid that might be changing */
494   int isClearTable        /* True if all rows are being deleted */
495 ){
496   BtCursor *p;
497   if( pBtree->hasIncrblobCur==0 ) return;
498   assert( sqlite3BtreeHoldsMutex(pBtree) );
499   pBtree->hasIncrblobCur = 0;
500   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
501     if( (p->curFlags & BTCF_Incrblob)!=0 ){
502       pBtree->hasIncrblobCur = 1;
503       if( isClearTable || p->info.nKey==iRow ){
504         p->eState = CURSOR_INVALID;
505       }
506     }
507   }
508 }
509 
510 #else
511   /* Stub function when INCRBLOB is omitted */
512   #define invalidateIncrblobCursors(x,y,z)
513 #endif /* SQLITE_OMIT_INCRBLOB */
514 
515 /*
516 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
517 ** when a page that previously contained data becomes a free-list leaf
518 ** page.
519 **
520 ** The BtShared.pHasContent bitvec exists to work around an obscure
521 ** bug caused by the interaction of two useful IO optimizations surrounding
522 ** free-list leaf pages:
523 **
524 **   1) When all data is deleted from a page and the page becomes
525 **      a free-list leaf page, the page is not written to the database
526 **      (as free-list leaf pages contain no meaningful data). Sometimes
527 **      such a page is not even journalled (as it will not be modified,
528 **      why bother journalling it?).
529 **
530 **   2) When a free-list leaf page is reused, its content is not read
531 **      from the database or written to the journal file (why should it
532 **      be, if it is not at all meaningful?).
533 **
534 ** By themselves, these optimizations work fine and provide a handy
535 ** performance boost to bulk delete or insert operations. However, if
536 ** a page is moved to the free-list and then reused within the same
537 ** transaction, a problem comes up. If the page is not journalled when
538 ** it is moved to the free-list and it is also not journalled when it
539 ** is extracted from the free-list and reused, then the original data
540 ** may be lost. In the event of a rollback, it may not be possible
541 ** to restore the database to its original configuration.
542 **
543 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
544 ** moved to become a free-list leaf page, the corresponding bit is
545 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
546 ** optimization 2 above is omitted if the corresponding bit is already
547 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
548 ** at the end of every transaction.
549 */
550 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
551   int rc = SQLITE_OK;
552   if( !pBt->pHasContent ){
553     assert( pgno<=pBt->nPage );
554     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
555     if( !pBt->pHasContent ){
556       rc = SQLITE_NOMEM_BKPT;
557     }
558   }
559   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
560     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
561   }
562   return rc;
563 }
564 
565 /*
566 ** Query the BtShared.pHasContent vector.
567 **
568 ** This function is called when a free-list leaf page is removed from the
569 ** free-list for reuse. It returns false if it is safe to retrieve the
570 ** page from the pager layer with the 'no-content' flag set. True otherwise.
571 */
572 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
573   Bitvec *p = pBt->pHasContent;
574   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
575 }
576 
577 /*
578 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
579 ** invoked at the conclusion of each write-transaction.
580 */
581 static void btreeClearHasContent(BtShared *pBt){
582   sqlite3BitvecDestroy(pBt->pHasContent);
583   pBt->pHasContent = 0;
584 }
585 
586 /*
587 ** Release all of the apPage[] pages for a cursor.
588 */
589 static void btreeReleaseAllCursorPages(BtCursor *pCur){
590   int i;
591   for(i=0; i<=pCur->iPage; i++){
592     releasePage(pCur->apPage[i]);
593     pCur->apPage[i] = 0;
594   }
595   pCur->iPage = -1;
596 }
597 
598 /*
599 ** The cursor passed as the only argument must point to a valid entry
600 ** when this function is called (i.e. have eState==CURSOR_VALID). This
601 ** function saves the current cursor key in variables pCur->nKey and
602 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
603 ** code otherwise.
604 **
605 ** If the cursor is open on an intkey table, then the integer key
606 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
607 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
608 ** set to point to a malloced buffer pCur->nKey bytes in size containing
609 ** the key.
610 */
611 static int saveCursorKey(BtCursor *pCur){
612   int rc;
613   assert( CURSOR_VALID==pCur->eState );
614   assert( 0==pCur->pKey );
615   assert( cursorHoldsMutex(pCur) );
616 
617   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
618   assert( rc==SQLITE_OK );  /* KeySize() cannot fail */
619 
620   /* If this is an intKey table, then the above call to BtreeKeySize()
621   ** stores the integer key in pCur->nKey. In this case this value is
622   ** all that is required. Otherwise, if pCur is not open on an intKey
623   ** table, then malloc space for and store the pCur->nKey bytes of key
624   ** data.  */
625   if( 0==pCur->curIntKey ){
626     void *pKey = sqlite3Malloc( pCur->nKey );
627     if( pKey ){
628       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
629       if( rc==SQLITE_OK ){
630         pCur->pKey = pKey;
631       }else{
632         sqlite3_free(pKey);
633       }
634     }else{
635       rc = SQLITE_NOMEM_BKPT;
636     }
637   }
638   assert( !pCur->curIntKey || !pCur->pKey );
639   return rc;
640 }
641 
642 /*
643 ** Save the current cursor position in the variables BtCursor.nKey
644 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
645 **
646 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
647 ** prior to calling this routine.
648 */
649 static int saveCursorPosition(BtCursor *pCur){
650   int rc;
651 
652   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
653   assert( 0==pCur->pKey );
654   assert( cursorHoldsMutex(pCur) );
655 
656   if( pCur->eState==CURSOR_SKIPNEXT ){
657     pCur->eState = CURSOR_VALID;
658   }else{
659     pCur->skipNext = 0;
660   }
661 
662   rc = saveCursorKey(pCur);
663   if( rc==SQLITE_OK ){
664     btreeReleaseAllCursorPages(pCur);
665     pCur->eState = CURSOR_REQUIRESEEK;
666   }
667 
668   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
669   return rc;
670 }
671 
672 /* Forward reference */
673 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
674 
675 /*
676 ** Save the positions of all cursors (except pExcept) that are open on
677 ** the table with root-page iRoot.  "Saving the cursor position" means that
678 ** the location in the btree is remembered in such a way that it can be
679 ** moved back to the same spot after the btree has been modified.  This
680 ** routine is called just before cursor pExcept is used to modify the
681 ** table, for example in BtreeDelete() or BtreeInsert().
682 **
683 ** If there are two or more cursors on the same btree, then all such
684 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
685 ** routine enforces that rule.  This routine only needs to be called in
686 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
687 **
688 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
689 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
690 ** pointless call to this routine.
691 **
692 ** Implementation note:  This routine merely checks to see if any cursors
693 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
694 ** event that cursors are in need to being saved.
695 */
696 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
697   BtCursor *p;
698   assert( sqlite3_mutex_held(pBt->mutex) );
699   assert( pExcept==0 || pExcept->pBt==pBt );
700   for(p=pBt->pCursor; p; p=p->pNext){
701     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
702   }
703   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
704   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
705   return SQLITE_OK;
706 }
707 
708 /* This helper routine to saveAllCursors does the actual work of saving
709 ** the cursors if and when a cursor is found that actually requires saving.
710 ** The common case is that no cursors need to be saved, so this routine is
711 ** broken out from its caller to avoid unnecessary stack pointer movement.
712 */
713 static int SQLITE_NOINLINE saveCursorsOnList(
714   BtCursor *p,         /* The first cursor that needs saving */
715   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
716   BtCursor *pExcept    /* Do not save this cursor */
717 ){
718   do{
719     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
720       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
721         int rc = saveCursorPosition(p);
722         if( SQLITE_OK!=rc ){
723           return rc;
724         }
725       }else{
726         testcase( p->iPage>0 );
727         btreeReleaseAllCursorPages(p);
728       }
729     }
730     p = p->pNext;
731   }while( p );
732   return SQLITE_OK;
733 }
734 
735 /*
736 ** Clear the current cursor position.
737 */
738 void sqlite3BtreeClearCursor(BtCursor *pCur){
739   assert( cursorHoldsMutex(pCur) );
740   sqlite3_free(pCur->pKey);
741   pCur->pKey = 0;
742   pCur->eState = CURSOR_INVALID;
743 }
744 
745 /*
746 ** In this version of BtreeMoveto, pKey is a packed index record
747 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
748 ** record and then call BtreeMovetoUnpacked() to do the work.
749 */
750 static int btreeMoveto(
751   BtCursor *pCur,     /* Cursor open on the btree to be searched */
752   const void *pKey,   /* Packed key if the btree is an index */
753   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
754   int bias,           /* Bias search to the high end */
755   int *pRes           /* Write search results here */
756 ){
757   int rc;                    /* Status code */
758   UnpackedRecord *pIdxKey;   /* Unpacked index key */
759   char aSpace[200];          /* Temp space for pIdxKey - to avoid a malloc */
760   char *pFree = 0;
761 
762   if( pKey ){
763     assert( nKey==(i64)(int)nKey );
764     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
765         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
766     );
767     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
768     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
769     if( pIdxKey->nField==0 ){
770       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
771       return SQLITE_CORRUPT_BKPT;
772     }
773   }else{
774     pIdxKey = 0;
775   }
776   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
777   if( pFree ){
778     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
779   }
780   return rc;
781 }
782 
783 /*
784 ** Restore the cursor to the position it was in (or as close to as possible)
785 ** when saveCursorPosition() was called. Note that this call deletes the
786 ** saved position info stored by saveCursorPosition(), so there can be
787 ** at most one effective restoreCursorPosition() call after each
788 ** saveCursorPosition().
789 */
790 static int btreeRestoreCursorPosition(BtCursor *pCur){
791   int rc;
792   int skipNext;
793   assert( cursorOwnsBtShared(pCur) );
794   assert( pCur->eState>=CURSOR_REQUIRESEEK );
795   if( pCur->eState==CURSOR_FAULT ){
796     return pCur->skipNext;
797   }
798   pCur->eState = CURSOR_INVALID;
799   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
800   if( rc==SQLITE_OK ){
801     sqlite3_free(pCur->pKey);
802     pCur->pKey = 0;
803     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
804     pCur->skipNext |= skipNext;
805     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
806       pCur->eState = CURSOR_SKIPNEXT;
807     }
808   }
809   return rc;
810 }
811 
812 #define restoreCursorPosition(p) \
813   (p->eState>=CURSOR_REQUIRESEEK ? \
814          btreeRestoreCursorPosition(p) : \
815          SQLITE_OK)
816 
817 /*
818 ** Determine whether or not a cursor has moved from the position where
819 ** it was last placed, or has been invalidated for any other reason.
820 ** Cursors can move when the row they are pointing at is deleted out
821 ** from under them, for example.  Cursor might also move if a btree
822 ** is rebalanced.
823 **
824 ** Calling this routine with a NULL cursor pointer returns false.
825 **
826 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
827 ** back to where it ought to be if this routine returns true.
828 */
829 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
830   return pCur->eState!=CURSOR_VALID;
831 }
832 
833 /*
834 ** This routine restores a cursor back to its original position after it
835 ** has been moved by some outside activity (such as a btree rebalance or
836 ** a row having been deleted out from under the cursor).
837 **
838 ** On success, the *pDifferentRow parameter is false if the cursor is left
839 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
840 ** was pointing to has been deleted, forcing the cursor to point to some
841 ** nearby row.
842 **
843 ** This routine should only be called for a cursor that just returned
844 ** TRUE from sqlite3BtreeCursorHasMoved().
845 */
846 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
847   int rc;
848 
849   assert( pCur!=0 );
850   assert( pCur->eState!=CURSOR_VALID );
851   rc = restoreCursorPosition(pCur);
852   if( rc ){
853     *pDifferentRow = 1;
854     return rc;
855   }
856   if( pCur->eState!=CURSOR_VALID ){
857     *pDifferentRow = 1;
858   }else{
859     assert( pCur->skipNext==0 );
860     *pDifferentRow = 0;
861   }
862   return SQLITE_OK;
863 }
864 
865 #ifdef SQLITE_ENABLE_CURSOR_HINTS
866 /*
867 ** Provide hints to the cursor.  The particular hint given (and the type
868 ** and number of the varargs parameters) is determined by the eHintType
869 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
870 */
871 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
872   /* Used only by system that substitute their own storage engine */
873 }
874 #endif
875 
876 /*
877 ** Provide flag hints to the cursor.
878 */
879 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
880   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
881   pCur->hints = x;
882 }
883 
884 
885 #ifndef SQLITE_OMIT_AUTOVACUUM
886 /*
887 ** Given a page number of a regular database page, return the page
888 ** number for the pointer-map page that contains the entry for the
889 ** input page number.
890 **
891 ** Return 0 (not a valid page) for pgno==1 since there is
892 ** no pointer map associated with page 1.  The integrity_check logic
893 ** requires that ptrmapPageno(*,1)!=1.
894 */
895 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
896   int nPagesPerMapPage;
897   Pgno iPtrMap, ret;
898   assert( sqlite3_mutex_held(pBt->mutex) );
899   if( pgno<2 ) return 0;
900   nPagesPerMapPage = (pBt->usableSize/5)+1;
901   iPtrMap = (pgno-2)/nPagesPerMapPage;
902   ret = (iPtrMap*nPagesPerMapPage) + 2;
903   if( ret==PENDING_BYTE_PAGE(pBt) ){
904     ret++;
905   }
906   return ret;
907 }
908 
909 /*
910 ** Write an entry into the pointer map.
911 **
912 ** This routine updates the pointer map entry for page number 'key'
913 ** so that it maps to type 'eType' and parent page number 'pgno'.
914 **
915 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
916 ** a no-op.  If an error occurs, the appropriate error code is written
917 ** into *pRC.
918 */
919 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
920   DbPage *pDbPage;  /* The pointer map page */
921   u8 *pPtrmap;      /* The pointer map data */
922   Pgno iPtrmap;     /* The pointer map page number */
923   int offset;       /* Offset in pointer map page */
924   int rc;           /* Return code from subfunctions */
925 
926   if( *pRC ) return;
927 
928   assert( sqlite3_mutex_held(pBt->mutex) );
929   /* The master-journal page number must never be used as a pointer map page */
930   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
931 
932   assert( pBt->autoVacuum );
933   if( key==0 ){
934     *pRC = SQLITE_CORRUPT_BKPT;
935     return;
936   }
937   iPtrmap = PTRMAP_PAGENO(pBt, key);
938   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
939   if( rc!=SQLITE_OK ){
940     *pRC = rc;
941     return;
942   }
943   offset = PTRMAP_PTROFFSET(iPtrmap, key);
944   if( offset<0 ){
945     *pRC = SQLITE_CORRUPT_BKPT;
946     goto ptrmap_exit;
947   }
948   assert( offset <= (int)pBt->usableSize-5 );
949   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
950 
951   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
952     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
953     *pRC= rc = sqlite3PagerWrite(pDbPage);
954     if( rc==SQLITE_OK ){
955       pPtrmap[offset] = eType;
956       put4byte(&pPtrmap[offset+1], parent);
957     }
958   }
959 
960 ptrmap_exit:
961   sqlite3PagerUnref(pDbPage);
962 }
963 
964 /*
965 ** Read an entry from the pointer map.
966 **
967 ** This routine retrieves the pointer map entry for page 'key', writing
968 ** the type and parent page number to *pEType and *pPgno respectively.
969 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
970 */
971 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
972   DbPage *pDbPage;   /* The pointer map page */
973   int iPtrmap;       /* Pointer map page index */
974   u8 *pPtrmap;       /* Pointer map page data */
975   int offset;        /* Offset of entry in pointer map */
976   int rc;
977 
978   assert( sqlite3_mutex_held(pBt->mutex) );
979 
980   iPtrmap = PTRMAP_PAGENO(pBt, key);
981   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
982   if( rc!=0 ){
983     return rc;
984   }
985   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
986 
987   offset = PTRMAP_PTROFFSET(iPtrmap, key);
988   if( offset<0 ){
989     sqlite3PagerUnref(pDbPage);
990     return SQLITE_CORRUPT_BKPT;
991   }
992   assert( offset <= (int)pBt->usableSize-5 );
993   assert( pEType!=0 );
994   *pEType = pPtrmap[offset];
995   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
996 
997   sqlite3PagerUnref(pDbPage);
998   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
999   return SQLITE_OK;
1000 }
1001 
1002 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1003   #define ptrmapPut(w,x,y,z,rc)
1004   #define ptrmapGet(w,x,y,z) SQLITE_OK
1005   #define ptrmapPutOvflPtr(x, y, rc)
1006 #endif
1007 
1008 /*
1009 ** Given a btree page and a cell index (0 means the first cell on
1010 ** the page, 1 means the second cell, and so forth) return a pointer
1011 ** to the cell content.
1012 **
1013 ** findCellPastPtr() does the same except it skips past the initial
1014 ** 4-byte child pointer found on interior pages, if there is one.
1015 **
1016 ** This routine works only for pages that do not contain overflow cells.
1017 */
1018 #define findCell(P,I) \
1019   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1020 #define findCellPastPtr(P,I) \
1021   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1022 
1023 
1024 /*
1025 ** This is common tail processing for btreeParseCellPtr() and
1026 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1027 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1028 ** structure.
1029 */
1030 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1031   MemPage *pPage,         /* Page containing the cell */
1032   u8 *pCell,              /* Pointer to the cell text. */
1033   CellInfo *pInfo         /* Fill in this structure */
1034 ){
1035   /* If the payload will not fit completely on the local page, we have
1036   ** to decide how much to store locally and how much to spill onto
1037   ** overflow pages.  The strategy is to minimize the amount of unused
1038   ** space on overflow pages while keeping the amount of local storage
1039   ** in between minLocal and maxLocal.
1040   **
1041   ** Warning:  changing the way overflow payload is distributed in any
1042   ** way will result in an incompatible file format.
1043   */
1044   int minLocal;  /* Minimum amount of payload held locally */
1045   int maxLocal;  /* Maximum amount of payload held locally */
1046   int surplus;   /* Overflow payload available for local storage */
1047 
1048   minLocal = pPage->minLocal;
1049   maxLocal = pPage->maxLocal;
1050   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1051   testcase( surplus==maxLocal );
1052   testcase( surplus==maxLocal+1 );
1053   if( surplus <= maxLocal ){
1054     pInfo->nLocal = (u16)surplus;
1055   }else{
1056     pInfo->nLocal = (u16)minLocal;
1057   }
1058   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1059 }
1060 
1061 /*
1062 ** The following routines are implementations of the MemPage.xParseCell()
1063 ** method.
1064 **
1065 ** Parse a cell content block and fill in the CellInfo structure.
1066 **
1067 ** btreeParseCellPtr()        =>   table btree leaf nodes
1068 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1069 ** btreeParseCellPtrIndex()   =>   index btree nodes
1070 **
1071 ** There is also a wrapper function btreeParseCell() that works for
1072 ** all MemPage types and that references the cell by index rather than
1073 ** by pointer.
1074 */
1075 static void btreeParseCellPtrNoPayload(
1076   MemPage *pPage,         /* Page containing the cell */
1077   u8 *pCell,              /* Pointer to the cell text. */
1078   CellInfo *pInfo         /* Fill in this structure */
1079 ){
1080   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1081   assert( pPage->leaf==0 );
1082   assert( pPage->childPtrSize==4 );
1083 #ifndef SQLITE_DEBUG
1084   UNUSED_PARAMETER(pPage);
1085 #endif
1086   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1087   pInfo->nPayload = 0;
1088   pInfo->nLocal = 0;
1089   pInfo->pPayload = 0;
1090   return;
1091 }
1092 static void btreeParseCellPtr(
1093   MemPage *pPage,         /* Page containing the cell */
1094   u8 *pCell,              /* Pointer to the cell text. */
1095   CellInfo *pInfo         /* Fill in this structure */
1096 ){
1097   u8 *pIter;              /* For scanning through pCell */
1098   u32 nPayload;           /* Number of bytes of cell payload */
1099   u64 iKey;               /* Extracted Key value */
1100 
1101   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1102   assert( pPage->leaf==0 || pPage->leaf==1 );
1103   assert( pPage->intKeyLeaf );
1104   assert( pPage->childPtrSize==0 );
1105   pIter = pCell;
1106 
1107   /* The next block of code is equivalent to:
1108   **
1109   **     pIter += getVarint32(pIter, nPayload);
1110   **
1111   ** The code is inlined to avoid a function call.
1112   */
1113   nPayload = *pIter;
1114   if( nPayload>=0x80 ){
1115     u8 *pEnd = &pIter[8];
1116     nPayload &= 0x7f;
1117     do{
1118       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1119     }while( (*pIter)>=0x80 && pIter<pEnd );
1120   }
1121   pIter++;
1122 
1123   /* The next block of code is equivalent to:
1124   **
1125   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1126   **
1127   ** The code is inlined to avoid a function call.
1128   */
1129   iKey = *pIter;
1130   if( iKey>=0x80 ){
1131     u8 *pEnd = &pIter[7];
1132     iKey &= 0x7f;
1133     while(1){
1134       iKey = (iKey<<7) | (*++pIter & 0x7f);
1135       if( (*pIter)<0x80 ) break;
1136       if( pIter>=pEnd ){
1137         iKey = (iKey<<8) | *++pIter;
1138         break;
1139       }
1140     }
1141   }
1142   pIter++;
1143 
1144   pInfo->nKey = *(i64*)&iKey;
1145   pInfo->nPayload = nPayload;
1146   pInfo->pPayload = pIter;
1147   testcase( nPayload==pPage->maxLocal );
1148   testcase( nPayload==pPage->maxLocal+1 );
1149   if( nPayload<=pPage->maxLocal ){
1150     /* This is the (easy) common case where the entire payload fits
1151     ** on the local page.  No overflow is required.
1152     */
1153     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1154     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1155     pInfo->nLocal = (u16)nPayload;
1156   }else{
1157     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1158   }
1159 }
1160 static void btreeParseCellPtrIndex(
1161   MemPage *pPage,         /* Page containing the cell */
1162   u8 *pCell,              /* Pointer to the cell text. */
1163   CellInfo *pInfo         /* Fill in this structure */
1164 ){
1165   u8 *pIter;              /* For scanning through pCell */
1166   u32 nPayload;           /* Number of bytes of cell payload */
1167 
1168   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1169   assert( pPage->leaf==0 || pPage->leaf==1 );
1170   assert( pPage->intKeyLeaf==0 );
1171   pIter = pCell + pPage->childPtrSize;
1172   nPayload = *pIter;
1173   if( nPayload>=0x80 ){
1174     u8 *pEnd = &pIter[8];
1175     nPayload &= 0x7f;
1176     do{
1177       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1178     }while( *(pIter)>=0x80 && pIter<pEnd );
1179   }
1180   pIter++;
1181   pInfo->nKey = nPayload;
1182   pInfo->nPayload = nPayload;
1183   pInfo->pPayload = pIter;
1184   testcase( nPayload==pPage->maxLocal );
1185   testcase( nPayload==pPage->maxLocal+1 );
1186   if( nPayload<=pPage->maxLocal ){
1187     /* This is the (easy) common case where the entire payload fits
1188     ** on the local page.  No overflow is required.
1189     */
1190     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1191     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1192     pInfo->nLocal = (u16)nPayload;
1193   }else{
1194     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1195   }
1196 }
1197 static void btreeParseCell(
1198   MemPage *pPage,         /* Page containing the cell */
1199   int iCell,              /* The cell index.  First cell is 0 */
1200   CellInfo *pInfo         /* Fill in this structure */
1201 ){
1202   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1203 }
1204 
1205 /*
1206 ** The following routines are implementations of the MemPage.xCellSize
1207 ** method.
1208 **
1209 ** Compute the total number of bytes that a Cell needs in the cell
1210 ** data area of the btree-page.  The return number includes the cell
1211 ** data header and the local payload, but not any overflow page or
1212 ** the space used by the cell pointer.
1213 **
1214 ** cellSizePtrNoPayload()    =>   table internal nodes
1215 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1216 */
1217 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1218   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1219   u8 *pEnd;                                /* End mark for a varint */
1220   u32 nSize;                               /* Size value to return */
1221 
1222 #ifdef SQLITE_DEBUG
1223   /* The value returned by this function should always be the same as
1224   ** the (CellInfo.nSize) value found by doing a full parse of the
1225   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1226   ** this function verifies that this invariant is not violated. */
1227   CellInfo debuginfo;
1228   pPage->xParseCell(pPage, pCell, &debuginfo);
1229 #endif
1230 
1231   nSize = *pIter;
1232   if( nSize>=0x80 ){
1233     pEnd = &pIter[8];
1234     nSize &= 0x7f;
1235     do{
1236       nSize = (nSize<<7) | (*++pIter & 0x7f);
1237     }while( *(pIter)>=0x80 && pIter<pEnd );
1238   }
1239   pIter++;
1240   if( pPage->intKey ){
1241     /* pIter now points at the 64-bit integer key value, a variable length
1242     ** integer. The following block moves pIter to point at the first byte
1243     ** past the end of the key value. */
1244     pEnd = &pIter[9];
1245     while( (*pIter++)&0x80 && pIter<pEnd );
1246   }
1247   testcase( nSize==pPage->maxLocal );
1248   testcase( nSize==pPage->maxLocal+1 );
1249   if( nSize<=pPage->maxLocal ){
1250     nSize += (u32)(pIter - pCell);
1251     if( nSize<4 ) nSize = 4;
1252   }else{
1253     int minLocal = pPage->minLocal;
1254     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1255     testcase( nSize==pPage->maxLocal );
1256     testcase( nSize==pPage->maxLocal+1 );
1257     if( nSize>pPage->maxLocal ){
1258       nSize = minLocal;
1259     }
1260     nSize += 4 + (u16)(pIter - pCell);
1261   }
1262   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1263   return (u16)nSize;
1264 }
1265 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1266   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1267   u8 *pEnd;              /* End mark for a varint */
1268 
1269 #ifdef SQLITE_DEBUG
1270   /* The value returned by this function should always be the same as
1271   ** the (CellInfo.nSize) value found by doing a full parse of the
1272   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1273   ** this function verifies that this invariant is not violated. */
1274   CellInfo debuginfo;
1275   pPage->xParseCell(pPage, pCell, &debuginfo);
1276 #else
1277   UNUSED_PARAMETER(pPage);
1278 #endif
1279 
1280   assert( pPage->childPtrSize==4 );
1281   pEnd = pIter + 9;
1282   while( (*pIter++)&0x80 && pIter<pEnd );
1283   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1284   return (u16)(pIter - pCell);
1285 }
1286 
1287 
1288 #ifdef SQLITE_DEBUG
1289 /* This variation on cellSizePtr() is used inside of assert() statements
1290 ** only. */
1291 static u16 cellSize(MemPage *pPage, int iCell){
1292   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1293 }
1294 #endif
1295 
1296 #ifndef SQLITE_OMIT_AUTOVACUUM
1297 /*
1298 ** If the cell pCell, part of page pPage contains a pointer
1299 ** to an overflow page, insert an entry into the pointer-map
1300 ** for the overflow page.
1301 */
1302 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1303   CellInfo info;
1304   if( *pRC ) return;
1305   assert( pCell!=0 );
1306   pPage->xParseCell(pPage, pCell, &info);
1307   if( info.nLocal<info.nPayload ){
1308     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1309     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1310   }
1311 }
1312 #endif
1313 
1314 
1315 /*
1316 ** Defragment the page given.  All Cells are moved to the
1317 ** end of the page and all free space is collected into one
1318 ** big FreeBlk that occurs in between the header and cell
1319 ** pointer array and the cell content area.
1320 **
1321 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1322 ** b-tree page so that there are no freeblocks or fragment bytes, all
1323 ** unused bytes are contained in the unallocated space region, and all
1324 ** cells are packed tightly at the end of the page.
1325 */
1326 static int defragmentPage(MemPage *pPage){
1327   int i;                     /* Loop counter */
1328   int pc;                    /* Address of the i-th cell */
1329   int hdr;                   /* Offset to the page header */
1330   int size;                  /* Size of a cell */
1331   int usableSize;            /* Number of usable bytes on a page */
1332   int cellOffset;            /* Offset to the cell pointer array */
1333   int cbrk;                  /* Offset to the cell content area */
1334   int nCell;                 /* Number of cells on the page */
1335   unsigned char *data;       /* The page data */
1336   unsigned char *temp;       /* Temp area for cell content */
1337   unsigned char *src;        /* Source of content */
1338   int iCellFirst;            /* First allowable cell index */
1339   int iCellLast;             /* Last possible cell index */
1340 
1341 
1342   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1343   assert( pPage->pBt!=0 );
1344   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1345   assert( pPage->nOverflow==0 );
1346   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1347   temp = 0;
1348   src = data = pPage->aData;
1349   hdr = pPage->hdrOffset;
1350   cellOffset = pPage->cellOffset;
1351   nCell = pPage->nCell;
1352   assert( nCell==get2byte(&data[hdr+3]) );
1353   usableSize = pPage->pBt->usableSize;
1354   cbrk = usableSize;
1355   iCellFirst = cellOffset + 2*nCell;
1356   iCellLast = usableSize - 4;
1357   for(i=0; i<nCell; i++){
1358     u8 *pAddr;     /* The i-th cell pointer */
1359     pAddr = &data[cellOffset + i*2];
1360     pc = get2byte(pAddr);
1361     testcase( pc==iCellFirst );
1362     testcase( pc==iCellLast );
1363     /* These conditions have already been verified in btreeInitPage()
1364     ** if PRAGMA cell_size_check=ON.
1365     */
1366     if( pc<iCellFirst || pc>iCellLast ){
1367       return SQLITE_CORRUPT_BKPT;
1368     }
1369     assert( pc>=iCellFirst && pc<=iCellLast );
1370     size = pPage->xCellSize(pPage, &src[pc]);
1371     cbrk -= size;
1372     if( cbrk<iCellFirst || pc+size>usableSize ){
1373       return SQLITE_CORRUPT_BKPT;
1374     }
1375     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1376     testcase( cbrk+size==usableSize );
1377     testcase( pc+size==usableSize );
1378     put2byte(pAddr, cbrk);
1379     if( temp==0 ){
1380       int x;
1381       if( cbrk==pc ) continue;
1382       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1383       x = get2byte(&data[hdr+5]);
1384       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1385       src = temp;
1386     }
1387     memcpy(&data[cbrk], &src[pc], size);
1388   }
1389   assert( cbrk>=iCellFirst );
1390   put2byte(&data[hdr+5], cbrk);
1391   data[hdr+1] = 0;
1392   data[hdr+2] = 0;
1393   data[hdr+7] = 0;
1394   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1395   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1396   if( cbrk-iCellFirst!=pPage->nFree ){
1397     return SQLITE_CORRUPT_BKPT;
1398   }
1399   return SQLITE_OK;
1400 }
1401 
1402 /*
1403 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1404 ** size. If one can be found, return a pointer to the space and remove it
1405 ** from the free-list.
1406 **
1407 ** If no suitable space can be found on the free-list, return NULL.
1408 **
1409 ** This function may detect corruption within pPg.  If corruption is
1410 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1411 **
1412 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1413 ** will be ignored if adding the extra space to the fragmentation count
1414 ** causes the fragmentation count to exceed 60.
1415 */
1416 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1417   const int hdr = pPg->hdrOffset;
1418   u8 * const aData = pPg->aData;
1419   int iAddr = hdr + 1;
1420   int pc = get2byte(&aData[iAddr]);
1421   int x;
1422   int usableSize = pPg->pBt->usableSize;
1423 
1424   assert( pc>0 );
1425   do{
1426     int size;            /* Size of the free slot */
1427     /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1428     ** increasing offset. */
1429     if( pc>usableSize-4 || pc<iAddr+4 ){
1430       *pRc = SQLITE_CORRUPT_BKPT;
1431       return 0;
1432     }
1433     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1434     ** freeblock form a big-endian integer which is the size of the freeblock
1435     ** in bytes, including the 4-byte header. */
1436     size = get2byte(&aData[pc+2]);
1437     if( (x = size - nByte)>=0 ){
1438       testcase( x==4 );
1439       testcase( x==3 );
1440       if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1441         *pRc = SQLITE_CORRUPT_BKPT;
1442         return 0;
1443       }else if( x<4 ){
1444         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1445         ** number of bytes in fragments may not exceed 60. */
1446         if( aData[hdr+7]>57 ) return 0;
1447 
1448         /* Remove the slot from the free-list. Update the number of
1449         ** fragmented bytes within the page. */
1450         memcpy(&aData[iAddr], &aData[pc], 2);
1451         aData[hdr+7] += (u8)x;
1452       }else{
1453         /* The slot remains on the free-list. Reduce its size to account
1454          ** for the portion used by the new allocation. */
1455         put2byte(&aData[pc+2], x);
1456       }
1457       return &aData[pc + x];
1458     }
1459     iAddr = pc;
1460     pc = get2byte(&aData[pc]);
1461   }while( pc );
1462 
1463   return 0;
1464 }
1465 
1466 /*
1467 ** Allocate nByte bytes of space from within the B-Tree page passed
1468 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1469 ** of the first byte of allocated space. Return either SQLITE_OK or
1470 ** an error code (usually SQLITE_CORRUPT).
1471 **
1472 ** The caller guarantees that there is sufficient space to make the
1473 ** allocation.  This routine might need to defragment in order to bring
1474 ** all the space together, however.  This routine will avoid using
1475 ** the first two bytes past the cell pointer area since presumably this
1476 ** allocation is being made in order to insert a new cell, so we will
1477 ** also end up needing a new cell pointer.
1478 */
1479 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1480   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1481   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1482   int top;                             /* First byte of cell content area */
1483   int rc = SQLITE_OK;                  /* Integer return code */
1484   int gap;        /* First byte of gap between cell pointers and cell content */
1485 
1486   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1487   assert( pPage->pBt );
1488   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1489   assert( nByte>=0 );  /* Minimum cell size is 4 */
1490   assert( pPage->nFree>=nByte );
1491   assert( pPage->nOverflow==0 );
1492   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1493 
1494   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1495   gap = pPage->cellOffset + 2*pPage->nCell;
1496   assert( gap<=65536 );
1497   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1498   ** and the reserved space is zero (the usual value for reserved space)
1499   ** then the cell content offset of an empty page wants to be 65536.
1500   ** However, that integer is too large to be stored in a 2-byte unsigned
1501   ** integer, so a value of 0 is used in its place. */
1502   top = get2byte(&data[hdr+5]);
1503   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1504   if( gap>top ){
1505     if( top==0 && pPage->pBt->usableSize==65536 ){
1506       top = 65536;
1507     }else{
1508       return SQLITE_CORRUPT_BKPT;
1509     }
1510   }
1511 
1512   /* If there is enough space between gap and top for one more cell pointer
1513   ** array entry offset, and if the freelist is not empty, then search the
1514   ** freelist looking for a free slot big enough to satisfy the request.
1515   */
1516   testcase( gap+2==top );
1517   testcase( gap+1==top );
1518   testcase( gap==top );
1519   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1520     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1521     if( pSpace ){
1522       assert( pSpace>=data && (pSpace - data)<65536 );
1523       *pIdx = (int)(pSpace - data);
1524       return SQLITE_OK;
1525     }else if( rc ){
1526       return rc;
1527     }
1528   }
1529 
1530   /* The request could not be fulfilled using a freelist slot.  Check
1531   ** to see if defragmentation is necessary.
1532   */
1533   testcase( gap+2+nByte==top );
1534   if( gap+2+nByte>top ){
1535     assert( pPage->nCell>0 || CORRUPT_DB );
1536     rc = defragmentPage(pPage);
1537     if( rc ) return rc;
1538     top = get2byteNotZero(&data[hdr+5]);
1539     assert( gap+nByte<=top );
1540   }
1541 
1542 
1543   /* Allocate memory from the gap in between the cell pointer array
1544   ** and the cell content area.  The btreeInitPage() call has already
1545   ** validated the freelist.  Given that the freelist is valid, there
1546   ** is no way that the allocation can extend off the end of the page.
1547   ** The assert() below verifies the previous sentence.
1548   */
1549   top -= nByte;
1550   put2byte(&data[hdr+5], top);
1551   assert( top+nByte <= (int)pPage->pBt->usableSize );
1552   *pIdx = top;
1553   return SQLITE_OK;
1554 }
1555 
1556 /*
1557 ** Return a section of the pPage->aData to the freelist.
1558 ** The first byte of the new free block is pPage->aData[iStart]
1559 ** and the size of the block is iSize bytes.
1560 **
1561 ** Adjacent freeblocks are coalesced.
1562 **
1563 ** Note that even though the freeblock list was checked by btreeInitPage(),
1564 ** that routine will not detect overlap between cells or freeblocks.  Nor
1565 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1566 ** at the end of the page.  So do additional corruption checks inside this
1567 ** routine and return SQLITE_CORRUPT if any problems are found.
1568 */
1569 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1570   u16 iPtr;                             /* Address of ptr to next freeblock */
1571   u16 iFreeBlk;                         /* Address of the next freeblock */
1572   u8 hdr;                               /* Page header size.  0 or 100 */
1573   u8 nFrag = 0;                         /* Reduction in fragmentation */
1574   u16 iOrigSize = iSize;                /* Original value of iSize */
1575   u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1576   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1577   unsigned char *data = pPage->aData;   /* Page content */
1578 
1579   assert( pPage->pBt!=0 );
1580   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1581   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1582   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1583   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1584   assert( iSize>=4 );   /* Minimum cell size is 4 */
1585   assert( iStart<=iLast );
1586 
1587   /* Overwrite deleted information with zeros when the secure_delete
1588   ** option is enabled */
1589   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1590     memset(&data[iStart], 0, iSize);
1591   }
1592 
1593   /* The list of freeblocks must be in ascending order.  Find the
1594   ** spot on the list where iStart should be inserted.
1595   */
1596   hdr = pPage->hdrOffset;
1597   iPtr = hdr + 1;
1598   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1599     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1600   }else{
1601     while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1602       if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1603       iPtr = iFreeBlk;
1604     }
1605     if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1606     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1607 
1608     /* At this point:
1609     **    iFreeBlk:   First freeblock after iStart, or zero if none
1610     **    iPtr:       The address of a pointer to iFreeBlk
1611     **
1612     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1613     */
1614     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1615       nFrag = iFreeBlk - iEnd;
1616       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1617       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1618       if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
1619       iSize = iEnd - iStart;
1620       iFreeBlk = get2byte(&data[iFreeBlk]);
1621     }
1622 
1623     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1624     ** pointer in the page header) then check to see if iStart should be
1625     ** coalesced onto the end of iPtr.
1626     */
1627     if( iPtr>hdr+1 ){
1628       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1629       if( iPtrEnd+3>=iStart ){
1630         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1631         nFrag += iStart - iPtrEnd;
1632         iSize = iEnd - iPtr;
1633         iStart = iPtr;
1634       }
1635     }
1636     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1637     data[hdr+7] -= nFrag;
1638   }
1639   if( iStart==get2byte(&data[hdr+5]) ){
1640     /* The new freeblock is at the beginning of the cell content area,
1641     ** so just extend the cell content area rather than create another
1642     ** freelist entry */
1643     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1644     put2byte(&data[hdr+1], iFreeBlk);
1645     put2byte(&data[hdr+5], iEnd);
1646   }else{
1647     /* Insert the new freeblock into the freelist */
1648     put2byte(&data[iPtr], iStart);
1649     put2byte(&data[iStart], iFreeBlk);
1650     put2byte(&data[iStart+2], iSize);
1651   }
1652   pPage->nFree += iOrigSize;
1653   return SQLITE_OK;
1654 }
1655 
1656 /*
1657 ** Decode the flags byte (the first byte of the header) for a page
1658 ** and initialize fields of the MemPage structure accordingly.
1659 **
1660 ** Only the following combinations are supported.  Anything different
1661 ** indicates a corrupt database files:
1662 **
1663 **         PTF_ZERODATA
1664 **         PTF_ZERODATA | PTF_LEAF
1665 **         PTF_LEAFDATA | PTF_INTKEY
1666 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1667 */
1668 static int decodeFlags(MemPage *pPage, int flagByte){
1669   BtShared *pBt;     /* A copy of pPage->pBt */
1670 
1671   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1672   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1673   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1674   flagByte &= ~PTF_LEAF;
1675   pPage->childPtrSize = 4-4*pPage->leaf;
1676   pPage->xCellSize = cellSizePtr;
1677   pBt = pPage->pBt;
1678   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1679     /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1680     ** table b-tree page. */
1681     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1682     /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1683     ** table b-tree page. */
1684     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1685     pPage->intKey = 1;
1686     if( pPage->leaf ){
1687       pPage->intKeyLeaf = 1;
1688       pPage->xParseCell = btreeParseCellPtr;
1689     }else{
1690       pPage->intKeyLeaf = 0;
1691       pPage->xCellSize = cellSizePtrNoPayload;
1692       pPage->xParseCell = btreeParseCellPtrNoPayload;
1693     }
1694     pPage->maxLocal = pBt->maxLeaf;
1695     pPage->minLocal = pBt->minLeaf;
1696   }else if( flagByte==PTF_ZERODATA ){
1697     /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1698     ** index b-tree page. */
1699     assert( (PTF_ZERODATA)==2 );
1700     /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1701     ** index b-tree page. */
1702     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1703     pPage->intKey = 0;
1704     pPage->intKeyLeaf = 0;
1705     pPage->xParseCell = btreeParseCellPtrIndex;
1706     pPage->maxLocal = pBt->maxLocal;
1707     pPage->minLocal = pBt->minLocal;
1708   }else{
1709     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1710     ** an error. */
1711     return SQLITE_CORRUPT_BKPT;
1712   }
1713   pPage->max1bytePayload = pBt->max1bytePayload;
1714   return SQLITE_OK;
1715 }
1716 
1717 /*
1718 ** Initialize the auxiliary information for a disk block.
1719 **
1720 ** Return SQLITE_OK on success.  If we see that the page does
1721 ** not contain a well-formed database page, then return
1722 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1723 ** guarantee that the page is well-formed.  It only shows that
1724 ** we failed to detect any corruption.
1725 */
1726 static int btreeInitPage(MemPage *pPage){
1727 
1728   assert( pPage->pBt!=0 );
1729   assert( pPage->pBt->db!=0 );
1730   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1731   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1732   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1733   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1734 
1735   if( !pPage->isInit ){
1736     u16 pc;            /* Address of a freeblock within pPage->aData[] */
1737     u8 hdr;            /* Offset to beginning of page header */
1738     u8 *data;          /* Equal to pPage->aData */
1739     BtShared *pBt;        /* The main btree structure */
1740     int usableSize;    /* Amount of usable space on each page */
1741     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1742     int nFree;         /* Number of unused bytes on the page */
1743     int top;           /* First byte of the cell content area */
1744     int iCellFirst;    /* First allowable cell or freeblock offset */
1745     int iCellLast;     /* Last possible cell or freeblock offset */
1746 
1747     pBt = pPage->pBt;
1748 
1749     hdr = pPage->hdrOffset;
1750     data = pPage->aData;
1751     /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1752     ** the b-tree page type. */
1753     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1754     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1755     pPage->maskPage = (u16)(pBt->pageSize - 1);
1756     pPage->nOverflow = 0;
1757     usableSize = pBt->usableSize;
1758     pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1759     pPage->aDataEnd = &data[usableSize];
1760     pPage->aCellIdx = &data[cellOffset];
1761     pPage->aDataOfst = &data[pPage->childPtrSize];
1762     /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1763     ** the start of the cell content area. A zero value for this integer is
1764     ** interpreted as 65536. */
1765     top = get2byteNotZero(&data[hdr+5]);
1766     /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1767     ** number of cells on the page. */
1768     pPage->nCell = get2byte(&data[hdr+3]);
1769     if( pPage->nCell>MX_CELL(pBt) ){
1770       /* To many cells for a single page.  The page must be corrupt */
1771       return SQLITE_CORRUPT_BKPT;
1772     }
1773     testcase( pPage->nCell==MX_CELL(pBt) );
1774     /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1775     ** possible for a root page of a table that contains no rows) then the
1776     ** offset to the cell content area will equal the page size minus the
1777     ** bytes of reserved space. */
1778     assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1779 
1780     /* A malformed database page might cause us to read past the end
1781     ** of page when parsing a cell.
1782     **
1783     ** The following block of code checks early to see if a cell extends
1784     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1785     ** returned if it does.
1786     */
1787     iCellFirst = cellOffset + 2*pPage->nCell;
1788     iCellLast = usableSize - 4;
1789     if( pBt->db->flags & SQLITE_CellSizeCk ){
1790       int i;            /* Index into the cell pointer array */
1791       int sz;           /* Size of a cell */
1792 
1793       if( !pPage->leaf ) iCellLast--;
1794       for(i=0; i<pPage->nCell; i++){
1795         pc = get2byteAligned(&data[cellOffset+i*2]);
1796         testcase( pc==iCellFirst );
1797         testcase( pc==iCellLast );
1798         if( pc<iCellFirst || pc>iCellLast ){
1799           return SQLITE_CORRUPT_BKPT;
1800         }
1801         sz = pPage->xCellSize(pPage, &data[pc]);
1802         testcase( pc+sz==usableSize );
1803         if( pc+sz>usableSize ){
1804           return SQLITE_CORRUPT_BKPT;
1805         }
1806       }
1807       if( !pPage->leaf ) iCellLast++;
1808     }
1809 
1810     /* Compute the total free space on the page
1811     ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1812     ** start of the first freeblock on the page, or is zero if there are no
1813     ** freeblocks. */
1814     pc = get2byte(&data[hdr+1]);
1815     nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1816     while( pc>0 ){
1817       u16 next, size;
1818       if( pc<iCellFirst || pc>iCellLast ){
1819         /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1820         ** always be at least one cell before the first freeblock.
1821         **
1822         ** Or, the freeblock is off the end of the page
1823         */
1824         return SQLITE_CORRUPT_BKPT;
1825       }
1826       next = get2byte(&data[pc]);
1827       size = get2byte(&data[pc+2]);
1828       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1829         /* Free blocks must be in ascending order. And the last byte of
1830         ** the free-block must lie on the database page.  */
1831         return SQLITE_CORRUPT_BKPT;
1832       }
1833       nFree = nFree + size;
1834       pc = next;
1835     }
1836 
1837     /* At this point, nFree contains the sum of the offset to the start
1838     ** of the cell-content area plus the number of free bytes within
1839     ** the cell-content area. If this is greater than the usable-size
1840     ** of the page, then the page must be corrupted. This check also
1841     ** serves to verify that the offset to the start of the cell-content
1842     ** area, according to the page header, lies within the page.
1843     */
1844     if( nFree>usableSize ){
1845       return SQLITE_CORRUPT_BKPT;
1846     }
1847     pPage->nFree = (u16)(nFree - iCellFirst);
1848     pPage->isInit = 1;
1849   }
1850   return SQLITE_OK;
1851 }
1852 
1853 /*
1854 ** Set up a raw page so that it looks like a database page holding
1855 ** no entries.
1856 */
1857 static void zeroPage(MemPage *pPage, int flags){
1858   unsigned char *data = pPage->aData;
1859   BtShared *pBt = pPage->pBt;
1860   u8 hdr = pPage->hdrOffset;
1861   u16 first;
1862 
1863   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1864   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1865   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1866   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1867   assert( sqlite3_mutex_held(pBt->mutex) );
1868   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1869     memset(&data[hdr], 0, pBt->usableSize - hdr);
1870   }
1871   data[hdr] = (char)flags;
1872   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1873   memset(&data[hdr+1], 0, 4);
1874   data[hdr+7] = 0;
1875   put2byte(&data[hdr+5], pBt->usableSize);
1876   pPage->nFree = (u16)(pBt->usableSize - first);
1877   decodeFlags(pPage, flags);
1878   pPage->cellOffset = first;
1879   pPage->aDataEnd = &data[pBt->usableSize];
1880   pPage->aCellIdx = &data[first];
1881   pPage->aDataOfst = &data[pPage->childPtrSize];
1882   pPage->nOverflow = 0;
1883   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1884   pPage->maskPage = (u16)(pBt->pageSize - 1);
1885   pPage->nCell = 0;
1886   pPage->isInit = 1;
1887 }
1888 
1889 
1890 /*
1891 ** Convert a DbPage obtained from the pager into a MemPage used by
1892 ** the btree layer.
1893 */
1894 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1895   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1896   if( pgno!=pPage->pgno ){
1897     pPage->aData = sqlite3PagerGetData(pDbPage);
1898     pPage->pDbPage = pDbPage;
1899     pPage->pBt = pBt;
1900     pPage->pgno = pgno;
1901     pPage->hdrOffset = pgno==1 ? 100 : 0;
1902   }
1903   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
1904   return pPage;
1905 }
1906 
1907 /*
1908 ** Get a page from the pager.  Initialize the MemPage.pBt and
1909 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
1910 **
1911 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1912 ** about the content of the page at this time.  So do not go to the disk
1913 ** to fetch the content.  Just fill in the content with zeros for now.
1914 ** If in the future we call sqlite3PagerWrite() on this page, that
1915 ** means we have started to be concerned about content and the disk
1916 ** read should occur at that point.
1917 */
1918 static int btreeGetPage(
1919   BtShared *pBt,       /* The btree */
1920   Pgno pgno,           /* Number of the page to fetch */
1921   MemPage **ppPage,    /* Return the page in this parameter */
1922   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1923 ){
1924   int rc;
1925   DbPage *pDbPage;
1926 
1927   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1928   assert( sqlite3_mutex_held(pBt->mutex) );
1929   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1930   if( rc ) return rc;
1931   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1932   return SQLITE_OK;
1933 }
1934 
1935 /*
1936 ** Retrieve a page from the pager cache. If the requested page is not
1937 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1938 ** MemPage.aData elements if needed.
1939 */
1940 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1941   DbPage *pDbPage;
1942   assert( sqlite3_mutex_held(pBt->mutex) );
1943   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1944   if( pDbPage ){
1945     return btreePageFromDbPage(pDbPage, pgno, pBt);
1946   }
1947   return 0;
1948 }
1949 
1950 /*
1951 ** Return the size of the database file in pages. If there is any kind of
1952 ** error, return ((unsigned int)-1).
1953 */
1954 static Pgno btreePagecount(BtShared *pBt){
1955   return pBt->nPage;
1956 }
1957 u32 sqlite3BtreeLastPage(Btree *p){
1958   assert( sqlite3BtreeHoldsMutex(p) );
1959   assert( ((p->pBt->nPage)&0x8000000)==0 );
1960   return btreePagecount(p->pBt);
1961 }
1962 
1963 /*
1964 ** Get a page from the pager and initialize it.
1965 **
1966 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
1967 ** call.  Do additional sanity checking on the page in this case.
1968 ** And if the fetch fails, this routine must decrement pCur->iPage.
1969 **
1970 ** The page is fetched as read-write unless pCur is not NULL and is
1971 ** a read-only cursor.
1972 **
1973 ** If an error occurs, then *ppPage is undefined. It
1974 ** may remain unchanged, or it may be set to an invalid value.
1975 */
1976 static int getAndInitPage(
1977   BtShared *pBt,                  /* The database file */
1978   Pgno pgno,                      /* Number of the page to get */
1979   MemPage **ppPage,               /* Write the page pointer here */
1980   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
1981   int bReadOnly                   /* True for a read-only page */
1982 ){
1983   int rc;
1984   DbPage *pDbPage;
1985   assert( sqlite3_mutex_held(pBt->mutex) );
1986   assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1987   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
1988   assert( pCur==0 || pCur->iPage>0 );
1989 
1990   if( pgno>btreePagecount(pBt) ){
1991     rc = SQLITE_CORRUPT_BKPT;
1992     goto getAndInitPage_error;
1993   }
1994   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
1995   if( rc ){
1996     goto getAndInitPage_error;
1997   }
1998   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1999   if( (*ppPage)->isInit==0 ){
2000     btreePageFromDbPage(pDbPage, pgno, pBt);
2001     rc = btreeInitPage(*ppPage);
2002     if( rc!=SQLITE_OK ){
2003       releasePage(*ppPage);
2004       goto getAndInitPage_error;
2005     }
2006   }
2007   assert( (*ppPage)->pgno==pgno );
2008   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2009 
2010   /* If obtaining a child page for a cursor, we must verify that the page is
2011   ** compatible with the root page. */
2012   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2013     rc = SQLITE_CORRUPT_BKPT;
2014     releasePage(*ppPage);
2015     goto getAndInitPage_error;
2016   }
2017   return SQLITE_OK;
2018 
2019 getAndInitPage_error:
2020   if( pCur ) pCur->iPage--;
2021   testcase( pgno==0 );
2022   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2023   return rc;
2024 }
2025 
2026 /*
2027 ** Release a MemPage.  This should be called once for each prior
2028 ** call to btreeGetPage.
2029 */
2030 static void releasePageNotNull(MemPage *pPage){
2031   assert( pPage->aData );
2032   assert( pPage->pBt );
2033   assert( pPage->pDbPage!=0 );
2034   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2035   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2036   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2037   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2038 }
2039 static void releasePage(MemPage *pPage){
2040   if( pPage ) releasePageNotNull(pPage);
2041 }
2042 
2043 /*
2044 ** Get an unused page.
2045 **
2046 ** This works just like btreeGetPage() with the addition:
2047 **
2048 **   *  If the page is already in use for some other purpose, immediately
2049 **      release it and return an SQLITE_CURRUPT error.
2050 **   *  Make sure the isInit flag is clear
2051 */
2052 static int btreeGetUnusedPage(
2053   BtShared *pBt,       /* The btree */
2054   Pgno pgno,           /* Number of the page to fetch */
2055   MemPage **ppPage,    /* Return the page in this parameter */
2056   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2057 ){
2058   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2059   if( rc==SQLITE_OK ){
2060     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2061       releasePage(*ppPage);
2062       *ppPage = 0;
2063       return SQLITE_CORRUPT_BKPT;
2064     }
2065     (*ppPage)->isInit = 0;
2066   }else{
2067     *ppPage = 0;
2068   }
2069   return rc;
2070 }
2071 
2072 
2073 /*
2074 ** During a rollback, when the pager reloads information into the cache
2075 ** so that the cache is restored to its original state at the start of
2076 ** the transaction, for each page restored this routine is called.
2077 **
2078 ** This routine needs to reset the extra data section at the end of the
2079 ** page to agree with the restored data.
2080 */
2081 static void pageReinit(DbPage *pData){
2082   MemPage *pPage;
2083   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2084   assert( sqlite3PagerPageRefcount(pData)>0 );
2085   if( pPage->isInit ){
2086     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2087     pPage->isInit = 0;
2088     if( sqlite3PagerPageRefcount(pData)>1 ){
2089       /* pPage might not be a btree page;  it might be an overflow page
2090       ** or ptrmap page or a free page.  In those cases, the following
2091       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2092       ** But no harm is done by this.  And it is very important that
2093       ** btreeInitPage() be called on every btree page so we make
2094       ** the call for every page that comes in for re-initing. */
2095       btreeInitPage(pPage);
2096     }
2097   }
2098 }
2099 
2100 /*
2101 ** Invoke the busy handler for a btree.
2102 */
2103 static int btreeInvokeBusyHandler(void *pArg){
2104   BtShared *pBt = (BtShared*)pArg;
2105   assert( pBt->db );
2106   assert( sqlite3_mutex_held(pBt->db->mutex) );
2107   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2108 }
2109 
2110 /*
2111 ** Open a database file.
2112 **
2113 ** zFilename is the name of the database file.  If zFilename is NULL
2114 ** then an ephemeral database is created.  The ephemeral database might
2115 ** be exclusively in memory, or it might use a disk-based memory cache.
2116 ** Either way, the ephemeral database will be automatically deleted
2117 ** when sqlite3BtreeClose() is called.
2118 **
2119 ** If zFilename is ":memory:" then an in-memory database is created
2120 ** that is automatically destroyed when it is closed.
2121 **
2122 ** The "flags" parameter is a bitmask that might contain bits like
2123 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2124 **
2125 ** If the database is already opened in the same database connection
2126 ** and we are in shared cache mode, then the open will fail with an
2127 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2128 ** objects in the same database connection since doing so will lead
2129 ** to problems with locking.
2130 */
2131 int sqlite3BtreeOpen(
2132   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2133   const char *zFilename,  /* Name of the file containing the BTree database */
2134   sqlite3 *db,            /* Associated database handle */
2135   Btree **ppBtree,        /* Pointer to new Btree object written here */
2136   int flags,              /* Options */
2137   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2138 ){
2139   BtShared *pBt = 0;             /* Shared part of btree structure */
2140   Btree *p;                      /* Handle to return */
2141   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2142   int rc = SQLITE_OK;            /* Result code from this function */
2143   u8 nReserve;                   /* Byte of unused space on each page */
2144   unsigned char zDbHeader[100];  /* Database header content */
2145 
2146   /* True if opening an ephemeral, temporary database */
2147   const int isTempDb = zFilename==0 || zFilename[0]==0;
2148 
2149   /* Set the variable isMemdb to true for an in-memory database, or
2150   ** false for a file-based database.
2151   */
2152 #ifdef SQLITE_OMIT_MEMORYDB
2153   const int isMemdb = 0;
2154 #else
2155   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2156                        || (isTempDb && sqlite3TempInMemory(db))
2157                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2158 #endif
2159 
2160   assert( db!=0 );
2161   assert( pVfs!=0 );
2162   assert( sqlite3_mutex_held(db->mutex) );
2163   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2164 
2165   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2166   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2167 
2168   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2169   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2170 
2171   if( isMemdb ){
2172     flags |= BTREE_MEMORY;
2173   }
2174   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2175     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2176   }
2177   p = sqlite3MallocZero(sizeof(Btree));
2178   if( !p ){
2179     return SQLITE_NOMEM_BKPT;
2180   }
2181   p->inTrans = TRANS_NONE;
2182   p->db = db;
2183 #ifndef SQLITE_OMIT_SHARED_CACHE
2184   p->lock.pBtree = p;
2185   p->lock.iTable = 1;
2186 #endif
2187 
2188 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2189   /*
2190   ** If this Btree is a candidate for shared cache, try to find an
2191   ** existing BtShared object that we can share with
2192   */
2193   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2194     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2195       int nFilename = sqlite3Strlen30(zFilename)+1;
2196       int nFullPathname = pVfs->mxPathname+1;
2197       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2198       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2199 
2200       p->sharable = 1;
2201       if( !zFullPathname ){
2202         sqlite3_free(p);
2203         return SQLITE_NOMEM_BKPT;
2204       }
2205       if( isMemdb ){
2206         memcpy(zFullPathname, zFilename, nFilename);
2207       }else{
2208         rc = sqlite3OsFullPathname(pVfs, zFilename,
2209                                    nFullPathname, zFullPathname);
2210         if( rc ){
2211           sqlite3_free(zFullPathname);
2212           sqlite3_free(p);
2213           return rc;
2214         }
2215       }
2216 #if SQLITE_THREADSAFE
2217       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2218       sqlite3_mutex_enter(mutexOpen);
2219       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2220       sqlite3_mutex_enter(mutexShared);
2221 #endif
2222       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2223         assert( pBt->nRef>0 );
2224         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2225                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2226           int iDb;
2227           for(iDb=db->nDb-1; iDb>=0; iDb--){
2228             Btree *pExisting = db->aDb[iDb].pBt;
2229             if( pExisting && pExisting->pBt==pBt ){
2230               sqlite3_mutex_leave(mutexShared);
2231               sqlite3_mutex_leave(mutexOpen);
2232               sqlite3_free(zFullPathname);
2233               sqlite3_free(p);
2234               return SQLITE_CONSTRAINT;
2235             }
2236           }
2237           p->pBt = pBt;
2238           pBt->nRef++;
2239           break;
2240         }
2241       }
2242       sqlite3_mutex_leave(mutexShared);
2243       sqlite3_free(zFullPathname);
2244     }
2245 #ifdef SQLITE_DEBUG
2246     else{
2247       /* In debug mode, we mark all persistent databases as sharable
2248       ** even when they are not.  This exercises the locking code and
2249       ** gives more opportunity for asserts(sqlite3_mutex_held())
2250       ** statements to find locking problems.
2251       */
2252       p->sharable = 1;
2253     }
2254 #endif
2255   }
2256 #endif
2257   if( pBt==0 ){
2258     /*
2259     ** The following asserts make sure that structures used by the btree are
2260     ** the right size.  This is to guard against size changes that result
2261     ** when compiling on a different architecture.
2262     */
2263     assert( sizeof(i64)==8 );
2264     assert( sizeof(u64)==8 );
2265     assert( sizeof(u32)==4 );
2266     assert( sizeof(u16)==2 );
2267     assert( sizeof(Pgno)==4 );
2268 
2269     pBt = sqlite3MallocZero( sizeof(*pBt) );
2270     if( pBt==0 ){
2271       rc = SQLITE_NOMEM_BKPT;
2272       goto btree_open_out;
2273     }
2274     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2275                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
2276     if( rc==SQLITE_OK ){
2277       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2278       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2279     }
2280     if( rc!=SQLITE_OK ){
2281       goto btree_open_out;
2282     }
2283     pBt->openFlags = (u8)flags;
2284     pBt->db = db;
2285     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2286     p->pBt = pBt;
2287 
2288     pBt->pCursor = 0;
2289     pBt->pPage1 = 0;
2290     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2291 #ifdef SQLITE_SECURE_DELETE
2292     pBt->btsFlags |= BTS_SECURE_DELETE;
2293 #endif
2294     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2295     ** determined by the 2-byte integer located at an offset of 16 bytes from
2296     ** the beginning of the database file. */
2297     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2298     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2299          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2300       pBt->pageSize = 0;
2301 #ifndef SQLITE_OMIT_AUTOVACUUM
2302       /* If the magic name ":memory:" will create an in-memory database, then
2303       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2304       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2305       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2306       ** regular file-name. In this case the auto-vacuum applies as per normal.
2307       */
2308       if( zFilename && !isMemdb ){
2309         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2310         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2311       }
2312 #endif
2313       nReserve = 0;
2314     }else{
2315       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2316       ** determined by the one-byte unsigned integer found at an offset of 20
2317       ** into the database file header. */
2318       nReserve = zDbHeader[20];
2319       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2320 #ifndef SQLITE_OMIT_AUTOVACUUM
2321       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2322       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2323 #endif
2324     }
2325     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2326     if( rc ) goto btree_open_out;
2327     pBt->usableSize = pBt->pageSize - nReserve;
2328     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2329 
2330 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2331     /* Add the new BtShared object to the linked list sharable BtShareds.
2332     */
2333     if( p->sharable ){
2334       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2335       pBt->nRef = 1;
2336       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2337       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2338         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2339         if( pBt->mutex==0 ){
2340           rc = SQLITE_NOMEM_BKPT;
2341           goto btree_open_out;
2342         }
2343       }
2344       sqlite3_mutex_enter(mutexShared);
2345       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2346       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2347       sqlite3_mutex_leave(mutexShared);
2348     }
2349 #endif
2350   }
2351 
2352 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2353   /* If the new Btree uses a sharable pBtShared, then link the new
2354   ** Btree into the list of all sharable Btrees for the same connection.
2355   ** The list is kept in ascending order by pBt address.
2356   */
2357   if( p->sharable ){
2358     int i;
2359     Btree *pSib;
2360     for(i=0; i<db->nDb; i++){
2361       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2362         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2363         if( p->pBt<pSib->pBt ){
2364           p->pNext = pSib;
2365           p->pPrev = 0;
2366           pSib->pPrev = p;
2367         }else{
2368           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
2369             pSib = pSib->pNext;
2370           }
2371           p->pNext = pSib->pNext;
2372           p->pPrev = pSib;
2373           if( p->pNext ){
2374             p->pNext->pPrev = p;
2375           }
2376           pSib->pNext = p;
2377         }
2378         break;
2379       }
2380     }
2381   }
2382 #endif
2383   *ppBtree = p;
2384 
2385 btree_open_out:
2386   if( rc!=SQLITE_OK ){
2387     if( pBt && pBt->pPager ){
2388       sqlite3PagerClose(pBt->pPager);
2389     }
2390     sqlite3_free(pBt);
2391     sqlite3_free(p);
2392     *ppBtree = 0;
2393   }else{
2394     /* If the B-Tree was successfully opened, set the pager-cache size to the
2395     ** default value. Except, when opening on an existing shared pager-cache,
2396     ** do not change the pager-cache size.
2397     */
2398     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2399       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2400     }
2401   }
2402   if( mutexOpen ){
2403     assert( sqlite3_mutex_held(mutexOpen) );
2404     sqlite3_mutex_leave(mutexOpen);
2405   }
2406   return rc;
2407 }
2408 
2409 /*
2410 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2411 ** remove the BtShared structure from the sharing list.  Return
2412 ** true if the BtShared.nRef counter reaches zero and return
2413 ** false if it is still positive.
2414 */
2415 static int removeFromSharingList(BtShared *pBt){
2416 #ifndef SQLITE_OMIT_SHARED_CACHE
2417   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2418   BtShared *pList;
2419   int removed = 0;
2420 
2421   assert( sqlite3_mutex_notheld(pBt->mutex) );
2422   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2423   sqlite3_mutex_enter(pMaster);
2424   pBt->nRef--;
2425   if( pBt->nRef<=0 ){
2426     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2427       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2428     }else{
2429       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2430       while( ALWAYS(pList) && pList->pNext!=pBt ){
2431         pList=pList->pNext;
2432       }
2433       if( ALWAYS(pList) ){
2434         pList->pNext = pBt->pNext;
2435       }
2436     }
2437     if( SQLITE_THREADSAFE ){
2438       sqlite3_mutex_free(pBt->mutex);
2439     }
2440     removed = 1;
2441   }
2442   sqlite3_mutex_leave(pMaster);
2443   return removed;
2444 #else
2445   return 1;
2446 #endif
2447 }
2448 
2449 /*
2450 ** Make sure pBt->pTmpSpace points to an allocation of
2451 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2452 ** pointer.
2453 */
2454 static void allocateTempSpace(BtShared *pBt){
2455   if( !pBt->pTmpSpace ){
2456     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2457 
2458     /* One of the uses of pBt->pTmpSpace is to format cells before
2459     ** inserting them into a leaf page (function fillInCell()). If
2460     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2461     ** by the various routines that manipulate binary cells. Which
2462     ** can mean that fillInCell() only initializes the first 2 or 3
2463     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2464     ** it into a database page. This is not actually a problem, but it
2465     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2466     ** data is passed to system call write(). So to avoid this error,
2467     ** zero the first 4 bytes of temp space here.
2468     **
2469     ** Also:  Provide four bytes of initialized space before the
2470     ** beginning of pTmpSpace as an area available to prepend the
2471     ** left-child pointer to the beginning of a cell.
2472     */
2473     if( pBt->pTmpSpace ){
2474       memset(pBt->pTmpSpace, 0, 8);
2475       pBt->pTmpSpace += 4;
2476     }
2477   }
2478 }
2479 
2480 /*
2481 ** Free the pBt->pTmpSpace allocation
2482 */
2483 static void freeTempSpace(BtShared *pBt){
2484   if( pBt->pTmpSpace ){
2485     pBt->pTmpSpace -= 4;
2486     sqlite3PageFree(pBt->pTmpSpace);
2487     pBt->pTmpSpace = 0;
2488   }
2489 }
2490 
2491 /*
2492 ** Close an open database and invalidate all cursors.
2493 */
2494 int sqlite3BtreeClose(Btree *p){
2495   BtShared *pBt = p->pBt;
2496   BtCursor *pCur;
2497 
2498   /* Close all cursors opened via this handle.  */
2499   assert( sqlite3_mutex_held(p->db->mutex) );
2500   sqlite3BtreeEnter(p);
2501   pCur = pBt->pCursor;
2502   while( pCur ){
2503     BtCursor *pTmp = pCur;
2504     pCur = pCur->pNext;
2505     if( pTmp->pBtree==p ){
2506       sqlite3BtreeCloseCursor(pTmp);
2507     }
2508   }
2509 
2510   /* Rollback any active transaction and free the handle structure.
2511   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2512   ** this handle.
2513   */
2514   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2515   sqlite3BtreeLeave(p);
2516 
2517   /* If there are still other outstanding references to the shared-btree
2518   ** structure, return now. The remainder of this procedure cleans
2519   ** up the shared-btree.
2520   */
2521   assert( p->wantToLock==0 && p->locked==0 );
2522   if( !p->sharable || removeFromSharingList(pBt) ){
2523     /* The pBt is no longer on the sharing list, so we can access
2524     ** it without having to hold the mutex.
2525     **
2526     ** Clean out and delete the BtShared object.
2527     */
2528     assert( !pBt->pCursor );
2529     sqlite3PagerClose(pBt->pPager);
2530     if( pBt->xFreeSchema && pBt->pSchema ){
2531       pBt->xFreeSchema(pBt->pSchema);
2532     }
2533     sqlite3DbFree(0, pBt->pSchema);
2534     freeTempSpace(pBt);
2535     sqlite3_free(pBt);
2536   }
2537 
2538 #ifndef SQLITE_OMIT_SHARED_CACHE
2539   assert( p->wantToLock==0 );
2540   assert( p->locked==0 );
2541   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2542   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2543 #endif
2544 
2545   sqlite3_free(p);
2546   return SQLITE_OK;
2547 }
2548 
2549 /*
2550 ** Change the "soft" limit on the number of pages in the cache.
2551 ** Unused and unmodified pages will be recycled when the number of
2552 ** pages in the cache exceeds this soft limit.  But the size of the
2553 ** cache is allowed to grow larger than this limit if it contains
2554 ** dirty pages or pages still in active use.
2555 */
2556 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2557   BtShared *pBt = p->pBt;
2558   assert( sqlite3_mutex_held(p->db->mutex) );
2559   sqlite3BtreeEnter(p);
2560   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2561   sqlite3BtreeLeave(p);
2562   return SQLITE_OK;
2563 }
2564 
2565 /*
2566 ** Change the "spill" limit on the number of pages in the cache.
2567 ** If the number of pages exceeds this limit during a write transaction,
2568 ** the pager might attempt to "spill" pages to the journal early in
2569 ** order to free up memory.
2570 **
2571 ** The value returned is the current spill size.  If zero is passed
2572 ** as an argument, no changes are made to the spill size setting, so
2573 ** using mxPage of 0 is a way to query the current spill size.
2574 */
2575 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2576   BtShared *pBt = p->pBt;
2577   int res;
2578   assert( sqlite3_mutex_held(p->db->mutex) );
2579   sqlite3BtreeEnter(p);
2580   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2581   sqlite3BtreeLeave(p);
2582   return res;
2583 }
2584 
2585 #if SQLITE_MAX_MMAP_SIZE>0
2586 /*
2587 ** Change the limit on the amount of the database file that may be
2588 ** memory mapped.
2589 */
2590 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2591   BtShared *pBt = p->pBt;
2592   assert( sqlite3_mutex_held(p->db->mutex) );
2593   sqlite3BtreeEnter(p);
2594   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2595   sqlite3BtreeLeave(p);
2596   return SQLITE_OK;
2597 }
2598 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2599 
2600 /*
2601 ** Change the way data is synced to disk in order to increase or decrease
2602 ** how well the database resists damage due to OS crashes and power
2603 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2604 ** there is a high probability of damage)  Level 2 is the default.  There
2605 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2606 ** probability of damage to near zero but with a write performance reduction.
2607 */
2608 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2609 int sqlite3BtreeSetPagerFlags(
2610   Btree *p,              /* The btree to set the safety level on */
2611   unsigned pgFlags       /* Various PAGER_* flags */
2612 ){
2613   BtShared *pBt = p->pBt;
2614   assert( sqlite3_mutex_held(p->db->mutex) );
2615   sqlite3BtreeEnter(p);
2616   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2617   sqlite3BtreeLeave(p);
2618   return SQLITE_OK;
2619 }
2620 #endif
2621 
2622 /*
2623 ** Change the default pages size and the number of reserved bytes per page.
2624 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2625 ** without changing anything.
2626 **
2627 ** The page size must be a power of 2 between 512 and 65536.  If the page
2628 ** size supplied does not meet this constraint then the page size is not
2629 ** changed.
2630 **
2631 ** Page sizes are constrained to be a power of two so that the region
2632 ** of the database file used for locking (beginning at PENDING_BYTE,
2633 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2634 ** at the beginning of a page.
2635 **
2636 ** If parameter nReserve is less than zero, then the number of reserved
2637 ** bytes per page is left unchanged.
2638 **
2639 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2640 ** and autovacuum mode can no longer be changed.
2641 */
2642 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2643   int rc = SQLITE_OK;
2644   BtShared *pBt = p->pBt;
2645   assert( nReserve>=-1 && nReserve<=255 );
2646   sqlite3BtreeEnter(p);
2647 #if SQLITE_HAS_CODEC
2648   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2649 #endif
2650   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2651     sqlite3BtreeLeave(p);
2652     return SQLITE_READONLY;
2653   }
2654   if( nReserve<0 ){
2655     nReserve = pBt->pageSize - pBt->usableSize;
2656   }
2657   assert( nReserve>=0 && nReserve<=255 );
2658   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2659         ((pageSize-1)&pageSize)==0 ){
2660     assert( (pageSize & 7)==0 );
2661     assert( !pBt->pCursor );
2662     pBt->pageSize = (u32)pageSize;
2663     freeTempSpace(pBt);
2664   }
2665   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2666   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2667   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2668   sqlite3BtreeLeave(p);
2669   return rc;
2670 }
2671 
2672 /*
2673 ** Return the currently defined page size
2674 */
2675 int sqlite3BtreeGetPageSize(Btree *p){
2676   return p->pBt->pageSize;
2677 }
2678 
2679 /*
2680 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2681 ** may only be called if it is guaranteed that the b-tree mutex is already
2682 ** held.
2683 **
2684 ** This is useful in one special case in the backup API code where it is
2685 ** known that the shared b-tree mutex is held, but the mutex on the
2686 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2687 ** were to be called, it might collide with some other operation on the
2688 ** database handle that owns *p, causing undefined behavior.
2689 */
2690 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2691   int n;
2692   assert( sqlite3_mutex_held(p->pBt->mutex) );
2693   n = p->pBt->pageSize - p->pBt->usableSize;
2694   return n;
2695 }
2696 
2697 /*
2698 ** Return the number of bytes of space at the end of every page that
2699 ** are intentually left unused.  This is the "reserved" space that is
2700 ** sometimes used by extensions.
2701 **
2702 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2703 ** greater of the current reserved space and the maximum requested
2704 ** reserve space.
2705 */
2706 int sqlite3BtreeGetOptimalReserve(Btree *p){
2707   int n;
2708   sqlite3BtreeEnter(p);
2709   n = sqlite3BtreeGetReserveNoMutex(p);
2710 #ifdef SQLITE_HAS_CODEC
2711   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2712 #endif
2713   sqlite3BtreeLeave(p);
2714   return n;
2715 }
2716 
2717 
2718 /*
2719 ** Set the maximum page count for a database if mxPage is positive.
2720 ** No changes are made if mxPage is 0 or negative.
2721 ** Regardless of the value of mxPage, return the maximum page count.
2722 */
2723 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2724   int n;
2725   sqlite3BtreeEnter(p);
2726   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2727   sqlite3BtreeLeave(p);
2728   return n;
2729 }
2730 
2731 /*
2732 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2733 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2734 ** setting after the change.
2735 */
2736 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2737   int b;
2738   if( p==0 ) return 0;
2739   sqlite3BtreeEnter(p);
2740   if( newFlag>=0 ){
2741     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2742     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2743   }
2744   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2745   sqlite3BtreeLeave(p);
2746   return b;
2747 }
2748 
2749 /*
2750 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2751 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2752 ** is disabled. The default value for the auto-vacuum property is
2753 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2754 */
2755 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2756 #ifdef SQLITE_OMIT_AUTOVACUUM
2757   return SQLITE_READONLY;
2758 #else
2759   BtShared *pBt = p->pBt;
2760   int rc = SQLITE_OK;
2761   u8 av = (u8)autoVacuum;
2762 
2763   sqlite3BtreeEnter(p);
2764   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2765     rc = SQLITE_READONLY;
2766   }else{
2767     pBt->autoVacuum = av ?1:0;
2768     pBt->incrVacuum = av==2 ?1:0;
2769   }
2770   sqlite3BtreeLeave(p);
2771   return rc;
2772 #endif
2773 }
2774 
2775 /*
2776 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2777 ** enabled 1 is returned. Otherwise 0.
2778 */
2779 int sqlite3BtreeGetAutoVacuum(Btree *p){
2780 #ifdef SQLITE_OMIT_AUTOVACUUM
2781   return BTREE_AUTOVACUUM_NONE;
2782 #else
2783   int rc;
2784   sqlite3BtreeEnter(p);
2785   rc = (
2786     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2787     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2788     BTREE_AUTOVACUUM_INCR
2789   );
2790   sqlite3BtreeLeave(p);
2791   return rc;
2792 #endif
2793 }
2794 
2795 
2796 /*
2797 ** Get a reference to pPage1 of the database file.  This will
2798 ** also acquire a readlock on that file.
2799 **
2800 ** SQLITE_OK is returned on success.  If the file is not a
2801 ** well-formed database file, then SQLITE_CORRUPT is returned.
2802 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2803 ** is returned if we run out of memory.
2804 */
2805 static int lockBtree(BtShared *pBt){
2806   int rc;              /* Result code from subfunctions */
2807   MemPage *pPage1;     /* Page 1 of the database file */
2808   int nPage;           /* Number of pages in the database */
2809   int nPageFile = 0;   /* Number of pages in the database file */
2810   int nPageHeader;     /* Number of pages in the database according to hdr */
2811 
2812   assert( sqlite3_mutex_held(pBt->mutex) );
2813   assert( pBt->pPage1==0 );
2814   rc = sqlite3PagerSharedLock(pBt->pPager);
2815   if( rc!=SQLITE_OK ) return rc;
2816   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2817   if( rc!=SQLITE_OK ) return rc;
2818 
2819   /* Do some checking to help insure the file we opened really is
2820   ** a valid database file.
2821   */
2822   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2823   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2824   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2825     nPage = nPageFile;
2826   }
2827   if( nPage>0 ){
2828     u32 pageSize;
2829     u32 usableSize;
2830     u8 *page1 = pPage1->aData;
2831     rc = SQLITE_NOTADB;
2832     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2833     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2834     ** 61 74 20 33 00. */
2835     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2836       goto page1_init_failed;
2837     }
2838 
2839 #ifdef SQLITE_OMIT_WAL
2840     if( page1[18]>1 ){
2841       pBt->btsFlags |= BTS_READ_ONLY;
2842     }
2843     if( page1[19]>1 ){
2844       goto page1_init_failed;
2845     }
2846 #else
2847     if( page1[18]>2 ){
2848       pBt->btsFlags |= BTS_READ_ONLY;
2849     }
2850     if( page1[19]>2 ){
2851       goto page1_init_failed;
2852     }
2853 
2854     /* If the write version is set to 2, this database should be accessed
2855     ** in WAL mode. If the log is not already open, open it now. Then
2856     ** return SQLITE_OK and return without populating BtShared.pPage1.
2857     ** The caller detects this and calls this function again. This is
2858     ** required as the version of page 1 currently in the page1 buffer
2859     ** may not be the latest version - there may be a newer one in the log
2860     ** file.
2861     */
2862     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2863       int isOpen = 0;
2864       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2865       if( rc!=SQLITE_OK ){
2866         goto page1_init_failed;
2867       }else if( isOpen==0 ){
2868         releasePage(pPage1);
2869         return SQLITE_OK;
2870       }
2871       rc = SQLITE_NOTADB;
2872     }
2873 #endif
2874 
2875     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2876     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2877     **
2878     ** The original design allowed these amounts to vary, but as of
2879     ** version 3.6.0, we require them to be fixed.
2880     */
2881     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2882       goto page1_init_failed;
2883     }
2884     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2885     ** determined by the 2-byte integer located at an offset of 16 bytes from
2886     ** the beginning of the database file. */
2887     pageSize = (page1[16]<<8) | (page1[17]<<16);
2888     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2889     ** between 512 and 65536 inclusive. */
2890     if( ((pageSize-1)&pageSize)!=0
2891      || pageSize>SQLITE_MAX_PAGE_SIZE
2892      || pageSize<=256
2893     ){
2894       goto page1_init_failed;
2895     }
2896     assert( (pageSize & 7)==0 );
2897     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2898     ** integer at offset 20 is the number of bytes of space at the end of
2899     ** each page to reserve for extensions.
2900     **
2901     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2902     ** determined by the one-byte unsigned integer found at an offset of 20
2903     ** into the database file header. */
2904     usableSize = pageSize - page1[20];
2905     if( (u32)pageSize!=pBt->pageSize ){
2906       /* After reading the first page of the database assuming a page size
2907       ** of BtShared.pageSize, we have discovered that the page-size is
2908       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2909       ** zero and return SQLITE_OK. The caller will call this function
2910       ** again with the correct page-size.
2911       */
2912       releasePage(pPage1);
2913       pBt->usableSize = usableSize;
2914       pBt->pageSize = pageSize;
2915       freeTempSpace(pBt);
2916       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2917                                    pageSize-usableSize);
2918       return rc;
2919     }
2920     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2921       rc = SQLITE_CORRUPT_BKPT;
2922       goto page1_init_failed;
2923     }
2924     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2925     ** be less than 480. In other words, if the page size is 512, then the
2926     ** reserved space size cannot exceed 32. */
2927     if( usableSize<480 ){
2928       goto page1_init_failed;
2929     }
2930     pBt->pageSize = pageSize;
2931     pBt->usableSize = usableSize;
2932 #ifndef SQLITE_OMIT_AUTOVACUUM
2933     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2934     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2935 #endif
2936   }
2937 
2938   /* maxLocal is the maximum amount of payload to store locally for
2939   ** a cell.  Make sure it is small enough so that at least minFanout
2940   ** cells can will fit on one page.  We assume a 10-byte page header.
2941   ** Besides the payload, the cell must store:
2942   **     2-byte pointer to the cell
2943   **     4-byte child pointer
2944   **     9-byte nKey value
2945   **     4-byte nData value
2946   **     4-byte overflow page pointer
2947   ** So a cell consists of a 2-byte pointer, a header which is as much as
2948   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2949   ** page pointer.
2950   */
2951   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2952   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2953   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2954   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2955   if( pBt->maxLocal>127 ){
2956     pBt->max1bytePayload = 127;
2957   }else{
2958     pBt->max1bytePayload = (u8)pBt->maxLocal;
2959   }
2960   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2961   pBt->pPage1 = pPage1;
2962   pBt->nPage = nPage;
2963   return SQLITE_OK;
2964 
2965 page1_init_failed:
2966   releasePage(pPage1);
2967   pBt->pPage1 = 0;
2968   return rc;
2969 }
2970 
2971 #ifndef NDEBUG
2972 /*
2973 ** Return the number of cursors open on pBt. This is for use
2974 ** in assert() expressions, so it is only compiled if NDEBUG is not
2975 ** defined.
2976 **
2977 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
2978 ** false then all cursors are counted.
2979 **
2980 ** For the purposes of this routine, a cursor is any cursor that
2981 ** is capable of reading or writing to the database.  Cursors that
2982 ** have been tripped into the CURSOR_FAULT state are not counted.
2983 */
2984 static int countValidCursors(BtShared *pBt, int wrOnly){
2985   BtCursor *pCur;
2986   int r = 0;
2987   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2988     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2989      && pCur->eState!=CURSOR_FAULT ) r++;
2990   }
2991   return r;
2992 }
2993 #endif
2994 
2995 /*
2996 ** If there are no outstanding cursors and we are not in the middle
2997 ** of a transaction but there is a read lock on the database, then
2998 ** this routine unrefs the first page of the database file which
2999 ** has the effect of releasing the read lock.
3000 **
3001 ** If there is a transaction in progress, this routine is a no-op.
3002 */
3003 static void unlockBtreeIfUnused(BtShared *pBt){
3004   assert( sqlite3_mutex_held(pBt->mutex) );
3005   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3006   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3007     MemPage *pPage1 = pBt->pPage1;
3008     assert( pPage1->aData );
3009     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3010     pBt->pPage1 = 0;
3011     releasePageNotNull(pPage1);
3012   }
3013 }
3014 
3015 /*
3016 ** If pBt points to an empty file then convert that empty file
3017 ** into a new empty database by initializing the first page of
3018 ** the database.
3019 */
3020 static int newDatabase(BtShared *pBt){
3021   MemPage *pP1;
3022   unsigned char *data;
3023   int rc;
3024 
3025   assert( sqlite3_mutex_held(pBt->mutex) );
3026   if( pBt->nPage>0 ){
3027     return SQLITE_OK;
3028   }
3029   pP1 = pBt->pPage1;
3030   assert( pP1!=0 );
3031   data = pP1->aData;
3032   rc = sqlite3PagerWrite(pP1->pDbPage);
3033   if( rc ) return rc;
3034   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3035   assert( sizeof(zMagicHeader)==16 );
3036   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3037   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3038   data[18] = 1;
3039   data[19] = 1;
3040   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3041   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3042   data[21] = 64;
3043   data[22] = 32;
3044   data[23] = 32;
3045   memset(&data[24], 0, 100-24);
3046   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3047   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3048 #ifndef SQLITE_OMIT_AUTOVACUUM
3049   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3050   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3051   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3052   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3053 #endif
3054   pBt->nPage = 1;
3055   data[31] = 1;
3056   return SQLITE_OK;
3057 }
3058 
3059 /*
3060 ** Initialize the first page of the database file (creating a database
3061 ** consisting of a single page and no schema objects). Return SQLITE_OK
3062 ** if successful, or an SQLite error code otherwise.
3063 */
3064 int sqlite3BtreeNewDb(Btree *p){
3065   int rc;
3066   sqlite3BtreeEnter(p);
3067   p->pBt->nPage = 0;
3068   rc = newDatabase(p->pBt);
3069   sqlite3BtreeLeave(p);
3070   return rc;
3071 }
3072 
3073 /*
3074 ** Attempt to start a new transaction. A write-transaction
3075 ** is started if the second argument is nonzero, otherwise a read-
3076 ** transaction.  If the second argument is 2 or more and exclusive
3077 ** transaction is started, meaning that no other process is allowed
3078 ** to access the database.  A preexisting transaction may not be
3079 ** upgraded to exclusive by calling this routine a second time - the
3080 ** exclusivity flag only works for a new transaction.
3081 **
3082 ** A write-transaction must be started before attempting any
3083 ** changes to the database.  None of the following routines
3084 ** will work unless a transaction is started first:
3085 **
3086 **      sqlite3BtreeCreateTable()
3087 **      sqlite3BtreeCreateIndex()
3088 **      sqlite3BtreeClearTable()
3089 **      sqlite3BtreeDropTable()
3090 **      sqlite3BtreeInsert()
3091 **      sqlite3BtreeDelete()
3092 **      sqlite3BtreeUpdateMeta()
3093 **
3094 ** If an initial attempt to acquire the lock fails because of lock contention
3095 ** and the database was previously unlocked, then invoke the busy handler
3096 ** if there is one.  But if there was previously a read-lock, do not
3097 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3098 ** returned when there is already a read-lock in order to avoid a deadlock.
3099 **
3100 ** Suppose there are two processes A and B.  A has a read lock and B has
3101 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3102 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3103 ** One or the other of the two processes must give way or there can be
3104 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3105 ** when A already has a read lock, we encourage A to give up and let B
3106 ** proceed.
3107 */
3108 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3109   BtShared *pBt = p->pBt;
3110   int rc = SQLITE_OK;
3111 
3112   sqlite3BtreeEnter(p);
3113   btreeIntegrity(p);
3114 
3115   /* If the btree is already in a write-transaction, or it
3116   ** is already in a read-transaction and a read-transaction
3117   ** is requested, this is a no-op.
3118   */
3119   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3120     goto trans_begun;
3121   }
3122   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3123 
3124   /* Write transactions are not possible on a read-only database */
3125   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3126     rc = SQLITE_READONLY;
3127     goto trans_begun;
3128   }
3129 
3130 #ifndef SQLITE_OMIT_SHARED_CACHE
3131   {
3132     sqlite3 *pBlock = 0;
3133     /* If another database handle has already opened a write transaction
3134     ** on this shared-btree structure and a second write transaction is
3135     ** requested, return SQLITE_LOCKED.
3136     */
3137     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3138      || (pBt->btsFlags & BTS_PENDING)!=0
3139     ){
3140       pBlock = pBt->pWriter->db;
3141     }else if( wrflag>1 ){
3142       BtLock *pIter;
3143       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3144         if( pIter->pBtree!=p ){
3145           pBlock = pIter->pBtree->db;
3146           break;
3147         }
3148       }
3149     }
3150     if( pBlock ){
3151       sqlite3ConnectionBlocked(p->db, pBlock);
3152       rc = SQLITE_LOCKED_SHAREDCACHE;
3153       goto trans_begun;
3154     }
3155   }
3156 #endif
3157 
3158   /* Any read-only or read-write transaction implies a read-lock on
3159   ** page 1. So if some other shared-cache client already has a write-lock
3160   ** on page 1, the transaction cannot be opened. */
3161   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3162   if( SQLITE_OK!=rc ) goto trans_begun;
3163 
3164   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3165   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3166   do {
3167     /* Call lockBtree() until either pBt->pPage1 is populated or
3168     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3169     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3170     ** reading page 1 it discovers that the page-size of the database
3171     ** file is not pBt->pageSize. In this case lockBtree() will update
3172     ** pBt->pageSize to the page-size of the file on disk.
3173     */
3174     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3175 
3176     if( rc==SQLITE_OK && wrflag ){
3177       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3178         rc = SQLITE_READONLY;
3179       }else{
3180         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3181         if( rc==SQLITE_OK ){
3182           rc = newDatabase(pBt);
3183         }
3184       }
3185     }
3186 
3187     if( rc!=SQLITE_OK ){
3188       unlockBtreeIfUnused(pBt);
3189     }
3190   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3191           btreeInvokeBusyHandler(pBt) );
3192 
3193   if( rc==SQLITE_OK ){
3194     if( p->inTrans==TRANS_NONE ){
3195       pBt->nTransaction++;
3196 #ifndef SQLITE_OMIT_SHARED_CACHE
3197       if( p->sharable ){
3198         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3199         p->lock.eLock = READ_LOCK;
3200         p->lock.pNext = pBt->pLock;
3201         pBt->pLock = &p->lock;
3202       }
3203 #endif
3204     }
3205     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3206     if( p->inTrans>pBt->inTransaction ){
3207       pBt->inTransaction = p->inTrans;
3208     }
3209     if( wrflag ){
3210       MemPage *pPage1 = pBt->pPage1;
3211 #ifndef SQLITE_OMIT_SHARED_CACHE
3212       assert( !pBt->pWriter );
3213       pBt->pWriter = p;
3214       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3215       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3216 #endif
3217 
3218       /* If the db-size header field is incorrect (as it may be if an old
3219       ** client has been writing the database file), update it now. Doing
3220       ** this sooner rather than later means the database size can safely
3221       ** re-read the database size from page 1 if a savepoint or transaction
3222       ** rollback occurs within the transaction.
3223       */
3224       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3225         rc = sqlite3PagerWrite(pPage1->pDbPage);
3226         if( rc==SQLITE_OK ){
3227           put4byte(&pPage1->aData[28], pBt->nPage);
3228         }
3229       }
3230     }
3231   }
3232 
3233 
3234 trans_begun:
3235   if( rc==SQLITE_OK && wrflag ){
3236     /* This call makes sure that the pager has the correct number of
3237     ** open savepoints. If the second parameter is greater than 0 and
3238     ** the sub-journal is not already open, then it will be opened here.
3239     */
3240     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3241   }
3242 
3243   btreeIntegrity(p);
3244   sqlite3BtreeLeave(p);
3245   return rc;
3246 }
3247 
3248 #ifndef SQLITE_OMIT_AUTOVACUUM
3249 
3250 /*
3251 ** Set the pointer-map entries for all children of page pPage. Also, if
3252 ** pPage contains cells that point to overflow pages, set the pointer
3253 ** map entries for the overflow pages as well.
3254 */
3255 static int setChildPtrmaps(MemPage *pPage){
3256   int i;                             /* Counter variable */
3257   int nCell;                         /* Number of cells in page pPage */
3258   int rc;                            /* Return code */
3259   BtShared *pBt = pPage->pBt;
3260   u8 isInitOrig = pPage->isInit;
3261   Pgno pgno = pPage->pgno;
3262 
3263   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3264   rc = btreeInitPage(pPage);
3265   if( rc!=SQLITE_OK ){
3266     goto set_child_ptrmaps_out;
3267   }
3268   nCell = pPage->nCell;
3269 
3270   for(i=0; i<nCell; i++){
3271     u8 *pCell = findCell(pPage, i);
3272 
3273     ptrmapPutOvflPtr(pPage, pCell, &rc);
3274 
3275     if( !pPage->leaf ){
3276       Pgno childPgno = get4byte(pCell);
3277       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3278     }
3279   }
3280 
3281   if( !pPage->leaf ){
3282     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3283     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3284   }
3285 
3286 set_child_ptrmaps_out:
3287   pPage->isInit = isInitOrig;
3288   return rc;
3289 }
3290 
3291 /*
3292 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3293 ** that it points to iTo. Parameter eType describes the type of pointer to
3294 ** be modified, as  follows:
3295 **
3296 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3297 **                   page of pPage.
3298 **
3299 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3300 **                   page pointed to by one of the cells on pPage.
3301 **
3302 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3303 **                   overflow page in the list.
3304 */
3305 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3306   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3307   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3308   if( eType==PTRMAP_OVERFLOW2 ){
3309     /* The pointer is always the first 4 bytes of the page in this case.  */
3310     if( get4byte(pPage->aData)!=iFrom ){
3311       return SQLITE_CORRUPT_BKPT;
3312     }
3313     put4byte(pPage->aData, iTo);
3314   }else{
3315     u8 isInitOrig = pPage->isInit;
3316     int i;
3317     int nCell;
3318     int rc;
3319 
3320     rc = btreeInitPage(pPage);
3321     if( rc ) return rc;
3322     nCell = pPage->nCell;
3323 
3324     for(i=0; i<nCell; i++){
3325       u8 *pCell = findCell(pPage, i);
3326       if( eType==PTRMAP_OVERFLOW1 ){
3327         CellInfo info;
3328         pPage->xParseCell(pPage, pCell, &info);
3329         if( info.nLocal<info.nPayload
3330          && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3331          && iFrom==get4byte(pCell+info.nSize-4)
3332         ){
3333           put4byte(pCell+info.nSize-4, iTo);
3334           break;
3335         }
3336       }else{
3337         if( get4byte(pCell)==iFrom ){
3338           put4byte(pCell, iTo);
3339           break;
3340         }
3341       }
3342     }
3343 
3344     if( i==nCell ){
3345       if( eType!=PTRMAP_BTREE ||
3346           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3347         return SQLITE_CORRUPT_BKPT;
3348       }
3349       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3350     }
3351 
3352     pPage->isInit = isInitOrig;
3353   }
3354   return SQLITE_OK;
3355 }
3356 
3357 
3358 /*
3359 ** Move the open database page pDbPage to location iFreePage in the
3360 ** database. The pDbPage reference remains valid.
3361 **
3362 ** The isCommit flag indicates that there is no need to remember that
3363 ** the journal needs to be sync()ed before database page pDbPage->pgno
3364 ** can be written to. The caller has already promised not to write to that
3365 ** page.
3366 */
3367 static int relocatePage(
3368   BtShared *pBt,           /* Btree */
3369   MemPage *pDbPage,        /* Open page to move */
3370   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3371   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3372   Pgno iFreePage,          /* The location to move pDbPage to */
3373   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3374 ){
3375   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3376   Pgno iDbPage = pDbPage->pgno;
3377   Pager *pPager = pBt->pPager;
3378   int rc;
3379 
3380   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3381       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3382   assert( sqlite3_mutex_held(pBt->mutex) );
3383   assert( pDbPage->pBt==pBt );
3384 
3385   /* Move page iDbPage from its current location to page number iFreePage */
3386   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3387       iDbPage, iFreePage, iPtrPage, eType));
3388   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3389   if( rc!=SQLITE_OK ){
3390     return rc;
3391   }
3392   pDbPage->pgno = iFreePage;
3393 
3394   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3395   ** that point to overflow pages. The pointer map entries for all these
3396   ** pages need to be changed.
3397   **
3398   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3399   ** pointer to a subsequent overflow page. If this is the case, then
3400   ** the pointer map needs to be updated for the subsequent overflow page.
3401   */
3402   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3403     rc = setChildPtrmaps(pDbPage);
3404     if( rc!=SQLITE_OK ){
3405       return rc;
3406     }
3407   }else{
3408     Pgno nextOvfl = get4byte(pDbPage->aData);
3409     if( nextOvfl!=0 ){
3410       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3411       if( rc!=SQLITE_OK ){
3412         return rc;
3413       }
3414     }
3415   }
3416 
3417   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3418   ** that it points at iFreePage. Also fix the pointer map entry for
3419   ** iPtrPage.
3420   */
3421   if( eType!=PTRMAP_ROOTPAGE ){
3422     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3423     if( rc!=SQLITE_OK ){
3424       return rc;
3425     }
3426     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3427     if( rc!=SQLITE_OK ){
3428       releasePage(pPtrPage);
3429       return rc;
3430     }
3431     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3432     releasePage(pPtrPage);
3433     if( rc==SQLITE_OK ){
3434       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3435     }
3436   }
3437   return rc;
3438 }
3439 
3440 /* Forward declaration required by incrVacuumStep(). */
3441 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3442 
3443 /*
3444 ** Perform a single step of an incremental-vacuum. If successful, return
3445 ** SQLITE_OK. If there is no work to do (and therefore no point in
3446 ** calling this function again), return SQLITE_DONE. Or, if an error
3447 ** occurs, return some other error code.
3448 **
3449 ** More specifically, this function attempts to re-organize the database so
3450 ** that the last page of the file currently in use is no longer in use.
3451 **
3452 ** Parameter nFin is the number of pages that this database would contain
3453 ** were this function called until it returns SQLITE_DONE.
3454 **
3455 ** If the bCommit parameter is non-zero, this function assumes that the
3456 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3457 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3458 ** operation, or false for an incremental vacuum.
3459 */
3460 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3461   Pgno nFreeList;           /* Number of pages still on the free-list */
3462   int rc;
3463 
3464   assert( sqlite3_mutex_held(pBt->mutex) );
3465   assert( iLastPg>nFin );
3466 
3467   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3468     u8 eType;
3469     Pgno iPtrPage;
3470 
3471     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3472     if( nFreeList==0 ){
3473       return SQLITE_DONE;
3474     }
3475 
3476     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3477     if( rc!=SQLITE_OK ){
3478       return rc;
3479     }
3480     if( eType==PTRMAP_ROOTPAGE ){
3481       return SQLITE_CORRUPT_BKPT;
3482     }
3483 
3484     if( eType==PTRMAP_FREEPAGE ){
3485       if( bCommit==0 ){
3486         /* Remove the page from the files free-list. This is not required
3487         ** if bCommit is non-zero. In that case, the free-list will be
3488         ** truncated to zero after this function returns, so it doesn't
3489         ** matter if it still contains some garbage entries.
3490         */
3491         Pgno iFreePg;
3492         MemPage *pFreePg;
3493         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3494         if( rc!=SQLITE_OK ){
3495           return rc;
3496         }
3497         assert( iFreePg==iLastPg );
3498         releasePage(pFreePg);
3499       }
3500     } else {
3501       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3502       MemPage *pLastPg;
3503       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3504       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3505 
3506       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3507       if( rc!=SQLITE_OK ){
3508         return rc;
3509       }
3510 
3511       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3512       ** is swapped with the first free page pulled off the free list.
3513       **
3514       ** On the other hand, if bCommit is greater than zero, then keep
3515       ** looping until a free-page located within the first nFin pages
3516       ** of the file is found.
3517       */
3518       if( bCommit==0 ){
3519         eMode = BTALLOC_LE;
3520         iNear = nFin;
3521       }
3522       do {
3523         MemPage *pFreePg;
3524         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3525         if( rc!=SQLITE_OK ){
3526           releasePage(pLastPg);
3527           return rc;
3528         }
3529         releasePage(pFreePg);
3530       }while( bCommit && iFreePg>nFin );
3531       assert( iFreePg<iLastPg );
3532 
3533       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3534       releasePage(pLastPg);
3535       if( rc!=SQLITE_OK ){
3536         return rc;
3537       }
3538     }
3539   }
3540 
3541   if( bCommit==0 ){
3542     do {
3543       iLastPg--;
3544     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3545     pBt->bDoTruncate = 1;
3546     pBt->nPage = iLastPg;
3547   }
3548   return SQLITE_OK;
3549 }
3550 
3551 /*
3552 ** The database opened by the first argument is an auto-vacuum database
3553 ** nOrig pages in size containing nFree free pages. Return the expected
3554 ** size of the database in pages following an auto-vacuum operation.
3555 */
3556 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3557   int nEntry;                     /* Number of entries on one ptrmap page */
3558   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3559   Pgno nFin;                      /* Return value */
3560 
3561   nEntry = pBt->usableSize/5;
3562   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3563   nFin = nOrig - nFree - nPtrmap;
3564   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3565     nFin--;
3566   }
3567   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3568     nFin--;
3569   }
3570 
3571   return nFin;
3572 }
3573 
3574 /*
3575 ** A write-transaction must be opened before calling this function.
3576 ** It performs a single unit of work towards an incremental vacuum.
3577 **
3578 ** If the incremental vacuum is finished after this function has run,
3579 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3580 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3581 */
3582 int sqlite3BtreeIncrVacuum(Btree *p){
3583   int rc;
3584   BtShared *pBt = p->pBt;
3585 
3586   sqlite3BtreeEnter(p);
3587   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3588   if( !pBt->autoVacuum ){
3589     rc = SQLITE_DONE;
3590   }else{
3591     Pgno nOrig = btreePagecount(pBt);
3592     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3593     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3594 
3595     if( nOrig<nFin ){
3596       rc = SQLITE_CORRUPT_BKPT;
3597     }else if( nFree>0 ){
3598       rc = saveAllCursors(pBt, 0, 0);
3599       if( rc==SQLITE_OK ){
3600         invalidateAllOverflowCache(pBt);
3601         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3602       }
3603       if( rc==SQLITE_OK ){
3604         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3605         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3606       }
3607     }else{
3608       rc = SQLITE_DONE;
3609     }
3610   }
3611   sqlite3BtreeLeave(p);
3612   return rc;
3613 }
3614 
3615 /*
3616 ** This routine is called prior to sqlite3PagerCommit when a transaction
3617 ** is committed for an auto-vacuum database.
3618 **
3619 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3620 ** the database file should be truncated to during the commit process.
3621 ** i.e. the database has been reorganized so that only the first *pnTrunc
3622 ** pages are in use.
3623 */
3624 static int autoVacuumCommit(BtShared *pBt){
3625   int rc = SQLITE_OK;
3626   Pager *pPager = pBt->pPager;
3627   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3628 
3629   assert( sqlite3_mutex_held(pBt->mutex) );
3630   invalidateAllOverflowCache(pBt);
3631   assert(pBt->autoVacuum);
3632   if( !pBt->incrVacuum ){
3633     Pgno nFin;         /* Number of pages in database after autovacuuming */
3634     Pgno nFree;        /* Number of pages on the freelist initially */
3635     Pgno iFree;        /* The next page to be freed */
3636     Pgno nOrig;        /* Database size before freeing */
3637 
3638     nOrig = btreePagecount(pBt);
3639     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3640       /* It is not possible to create a database for which the final page
3641       ** is either a pointer-map page or the pending-byte page. If one
3642       ** is encountered, this indicates corruption.
3643       */
3644       return SQLITE_CORRUPT_BKPT;
3645     }
3646 
3647     nFree = get4byte(&pBt->pPage1->aData[36]);
3648     nFin = finalDbSize(pBt, nOrig, nFree);
3649     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3650     if( nFin<nOrig ){
3651       rc = saveAllCursors(pBt, 0, 0);
3652     }
3653     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3654       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3655     }
3656     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3657       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3658       put4byte(&pBt->pPage1->aData[32], 0);
3659       put4byte(&pBt->pPage1->aData[36], 0);
3660       put4byte(&pBt->pPage1->aData[28], nFin);
3661       pBt->bDoTruncate = 1;
3662       pBt->nPage = nFin;
3663     }
3664     if( rc!=SQLITE_OK ){
3665       sqlite3PagerRollback(pPager);
3666     }
3667   }
3668 
3669   assert( nRef>=sqlite3PagerRefcount(pPager) );
3670   return rc;
3671 }
3672 
3673 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3674 # define setChildPtrmaps(x) SQLITE_OK
3675 #endif
3676 
3677 /*
3678 ** This routine does the first phase of a two-phase commit.  This routine
3679 ** causes a rollback journal to be created (if it does not already exist)
3680 ** and populated with enough information so that if a power loss occurs
3681 ** the database can be restored to its original state by playing back
3682 ** the journal.  Then the contents of the journal are flushed out to
3683 ** the disk.  After the journal is safely on oxide, the changes to the
3684 ** database are written into the database file and flushed to oxide.
3685 ** At the end of this call, the rollback journal still exists on the
3686 ** disk and we are still holding all locks, so the transaction has not
3687 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3688 ** commit process.
3689 **
3690 ** This call is a no-op if no write-transaction is currently active on pBt.
3691 **
3692 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3693 ** the name of a master journal file that should be written into the
3694 ** individual journal file, or is NULL, indicating no master journal file
3695 ** (single database transaction).
3696 **
3697 ** When this is called, the master journal should already have been
3698 ** created, populated with this journal pointer and synced to disk.
3699 **
3700 ** Once this is routine has returned, the only thing required to commit
3701 ** the write-transaction for this database file is to delete the journal.
3702 */
3703 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3704   int rc = SQLITE_OK;
3705   if( p->inTrans==TRANS_WRITE ){
3706     BtShared *pBt = p->pBt;
3707     sqlite3BtreeEnter(p);
3708 #ifndef SQLITE_OMIT_AUTOVACUUM
3709     if( pBt->autoVacuum ){
3710       rc = autoVacuumCommit(pBt);
3711       if( rc!=SQLITE_OK ){
3712         sqlite3BtreeLeave(p);
3713         return rc;
3714       }
3715     }
3716     if( pBt->bDoTruncate ){
3717       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3718     }
3719 #endif
3720     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3721     sqlite3BtreeLeave(p);
3722   }
3723   return rc;
3724 }
3725 
3726 /*
3727 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3728 ** at the conclusion of a transaction.
3729 */
3730 static void btreeEndTransaction(Btree *p){
3731   BtShared *pBt = p->pBt;
3732   sqlite3 *db = p->db;
3733   assert( sqlite3BtreeHoldsMutex(p) );
3734 
3735 #ifndef SQLITE_OMIT_AUTOVACUUM
3736   pBt->bDoTruncate = 0;
3737 #endif
3738   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3739     /* If there are other active statements that belong to this database
3740     ** handle, downgrade to a read-only transaction. The other statements
3741     ** may still be reading from the database.  */
3742     downgradeAllSharedCacheTableLocks(p);
3743     p->inTrans = TRANS_READ;
3744   }else{
3745     /* If the handle had any kind of transaction open, decrement the
3746     ** transaction count of the shared btree. If the transaction count
3747     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3748     ** call below will unlock the pager.  */
3749     if( p->inTrans!=TRANS_NONE ){
3750       clearAllSharedCacheTableLocks(p);
3751       pBt->nTransaction--;
3752       if( 0==pBt->nTransaction ){
3753         pBt->inTransaction = TRANS_NONE;
3754       }
3755     }
3756 
3757     /* Set the current transaction state to TRANS_NONE and unlock the
3758     ** pager if this call closed the only read or write transaction.  */
3759     p->inTrans = TRANS_NONE;
3760     unlockBtreeIfUnused(pBt);
3761   }
3762 
3763   btreeIntegrity(p);
3764 }
3765 
3766 /*
3767 ** Commit the transaction currently in progress.
3768 **
3769 ** This routine implements the second phase of a 2-phase commit.  The
3770 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3771 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3772 ** routine did all the work of writing information out to disk and flushing the
3773 ** contents so that they are written onto the disk platter.  All this
3774 ** routine has to do is delete or truncate or zero the header in the
3775 ** the rollback journal (which causes the transaction to commit) and
3776 ** drop locks.
3777 **
3778 ** Normally, if an error occurs while the pager layer is attempting to
3779 ** finalize the underlying journal file, this function returns an error and
3780 ** the upper layer will attempt a rollback. However, if the second argument
3781 ** is non-zero then this b-tree transaction is part of a multi-file
3782 ** transaction. In this case, the transaction has already been committed
3783 ** (by deleting a master journal file) and the caller will ignore this
3784 ** functions return code. So, even if an error occurs in the pager layer,
3785 ** reset the b-tree objects internal state to indicate that the write
3786 ** transaction has been closed. This is quite safe, as the pager will have
3787 ** transitioned to the error state.
3788 **
3789 ** This will release the write lock on the database file.  If there
3790 ** are no active cursors, it also releases the read lock.
3791 */
3792 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3793 
3794   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3795   sqlite3BtreeEnter(p);
3796   btreeIntegrity(p);
3797 
3798   /* If the handle has a write-transaction open, commit the shared-btrees
3799   ** transaction and set the shared state to TRANS_READ.
3800   */
3801   if( p->inTrans==TRANS_WRITE ){
3802     int rc;
3803     BtShared *pBt = p->pBt;
3804     assert( pBt->inTransaction==TRANS_WRITE );
3805     assert( pBt->nTransaction>0 );
3806     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3807     if( rc!=SQLITE_OK && bCleanup==0 ){
3808       sqlite3BtreeLeave(p);
3809       return rc;
3810     }
3811     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3812     pBt->inTransaction = TRANS_READ;
3813     btreeClearHasContent(pBt);
3814   }
3815 
3816   btreeEndTransaction(p);
3817   sqlite3BtreeLeave(p);
3818   return SQLITE_OK;
3819 }
3820 
3821 /*
3822 ** Do both phases of a commit.
3823 */
3824 int sqlite3BtreeCommit(Btree *p){
3825   int rc;
3826   sqlite3BtreeEnter(p);
3827   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3828   if( rc==SQLITE_OK ){
3829     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3830   }
3831   sqlite3BtreeLeave(p);
3832   return rc;
3833 }
3834 
3835 /*
3836 ** This routine sets the state to CURSOR_FAULT and the error
3837 ** code to errCode for every cursor on any BtShared that pBtree
3838 ** references.  Or if the writeOnly flag is set to 1, then only
3839 ** trip write cursors and leave read cursors unchanged.
3840 **
3841 ** Every cursor is a candidate to be tripped, including cursors
3842 ** that belong to other database connections that happen to be
3843 ** sharing the cache with pBtree.
3844 **
3845 ** This routine gets called when a rollback occurs. If the writeOnly
3846 ** flag is true, then only write-cursors need be tripped - read-only
3847 ** cursors save their current positions so that they may continue
3848 ** following the rollback. Or, if writeOnly is false, all cursors are
3849 ** tripped. In general, writeOnly is false if the transaction being
3850 ** rolled back modified the database schema. In this case b-tree root
3851 ** pages may be moved or deleted from the database altogether, making
3852 ** it unsafe for read cursors to continue.
3853 **
3854 ** If the writeOnly flag is true and an error is encountered while
3855 ** saving the current position of a read-only cursor, all cursors,
3856 ** including all read-cursors are tripped.
3857 **
3858 ** SQLITE_OK is returned if successful, or if an error occurs while
3859 ** saving a cursor position, an SQLite error code.
3860 */
3861 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3862   BtCursor *p;
3863   int rc = SQLITE_OK;
3864 
3865   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3866   if( pBtree ){
3867     sqlite3BtreeEnter(pBtree);
3868     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3869       int i;
3870       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3871         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
3872           rc = saveCursorPosition(p);
3873           if( rc!=SQLITE_OK ){
3874             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3875             break;
3876           }
3877         }
3878       }else{
3879         sqlite3BtreeClearCursor(p);
3880         p->eState = CURSOR_FAULT;
3881         p->skipNext = errCode;
3882       }
3883       for(i=0; i<=p->iPage; i++){
3884         releasePage(p->apPage[i]);
3885         p->apPage[i] = 0;
3886       }
3887     }
3888     sqlite3BtreeLeave(pBtree);
3889   }
3890   return rc;
3891 }
3892 
3893 /*
3894 ** Rollback the transaction in progress.
3895 **
3896 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3897 ** Only write cursors are tripped if writeOnly is true but all cursors are
3898 ** tripped if writeOnly is false.  Any attempt to use
3899 ** a tripped cursor will result in an error.
3900 **
3901 ** This will release the write lock on the database file.  If there
3902 ** are no active cursors, it also releases the read lock.
3903 */
3904 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3905   int rc;
3906   BtShared *pBt = p->pBt;
3907   MemPage *pPage1;
3908 
3909   assert( writeOnly==1 || writeOnly==0 );
3910   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3911   sqlite3BtreeEnter(p);
3912   if( tripCode==SQLITE_OK ){
3913     rc = tripCode = saveAllCursors(pBt, 0, 0);
3914     if( rc ) writeOnly = 0;
3915   }else{
3916     rc = SQLITE_OK;
3917   }
3918   if( tripCode ){
3919     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3920     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3921     if( rc2!=SQLITE_OK ) rc = rc2;
3922   }
3923   btreeIntegrity(p);
3924 
3925   if( p->inTrans==TRANS_WRITE ){
3926     int rc2;
3927 
3928     assert( TRANS_WRITE==pBt->inTransaction );
3929     rc2 = sqlite3PagerRollback(pBt->pPager);
3930     if( rc2!=SQLITE_OK ){
3931       rc = rc2;
3932     }
3933 
3934     /* The rollback may have destroyed the pPage1->aData value.  So
3935     ** call btreeGetPage() on page 1 again to make
3936     ** sure pPage1->aData is set correctly. */
3937     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3938       int nPage = get4byte(28+(u8*)pPage1->aData);
3939       testcase( nPage==0 );
3940       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3941       testcase( pBt->nPage!=nPage );
3942       pBt->nPage = nPage;
3943       releasePage(pPage1);
3944     }
3945     assert( countValidCursors(pBt, 1)==0 );
3946     pBt->inTransaction = TRANS_READ;
3947     btreeClearHasContent(pBt);
3948   }
3949 
3950   btreeEndTransaction(p);
3951   sqlite3BtreeLeave(p);
3952   return rc;
3953 }
3954 
3955 /*
3956 ** Start a statement subtransaction. The subtransaction can be rolled
3957 ** back independently of the main transaction. You must start a transaction
3958 ** before starting a subtransaction. The subtransaction is ended automatically
3959 ** if the main transaction commits or rolls back.
3960 **
3961 ** Statement subtransactions are used around individual SQL statements
3962 ** that are contained within a BEGIN...COMMIT block.  If a constraint
3963 ** error occurs within the statement, the effect of that one statement
3964 ** can be rolled back without having to rollback the entire transaction.
3965 **
3966 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3967 ** value passed as the second parameter is the total number of savepoints,
3968 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3969 ** are no active savepoints and no other statement-transactions open,
3970 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3971 ** using the sqlite3BtreeSavepoint() function.
3972 */
3973 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3974   int rc;
3975   BtShared *pBt = p->pBt;
3976   sqlite3BtreeEnter(p);
3977   assert( p->inTrans==TRANS_WRITE );
3978   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3979   assert( iStatement>0 );
3980   assert( iStatement>p->db->nSavepoint );
3981   assert( pBt->inTransaction==TRANS_WRITE );
3982   /* At the pager level, a statement transaction is a savepoint with
3983   ** an index greater than all savepoints created explicitly using
3984   ** SQL statements. It is illegal to open, release or rollback any
3985   ** such savepoints while the statement transaction savepoint is active.
3986   */
3987   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
3988   sqlite3BtreeLeave(p);
3989   return rc;
3990 }
3991 
3992 /*
3993 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3994 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3995 ** savepoint identified by parameter iSavepoint, depending on the value
3996 ** of op.
3997 **
3998 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3999 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4000 ** contents of the entire transaction are rolled back. This is different
4001 ** from a normal transaction rollback, as no locks are released and the
4002 ** transaction remains open.
4003 */
4004 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4005   int rc = SQLITE_OK;
4006   if( p && p->inTrans==TRANS_WRITE ){
4007     BtShared *pBt = p->pBt;
4008     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4009     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4010     sqlite3BtreeEnter(p);
4011     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4012     if( rc==SQLITE_OK ){
4013       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4014         pBt->nPage = 0;
4015       }
4016       rc = newDatabase(pBt);
4017       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4018 
4019       /* The database size was written into the offset 28 of the header
4020       ** when the transaction started, so we know that the value at offset
4021       ** 28 is nonzero. */
4022       assert( pBt->nPage>0 );
4023     }
4024     sqlite3BtreeLeave(p);
4025   }
4026   return rc;
4027 }
4028 
4029 /*
4030 ** Create a new cursor for the BTree whose root is on the page
4031 ** iTable. If a read-only cursor is requested, it is assumed that
4032 ** the caller already has at least a read-only transaction open
4033 ** on the database already. If a write-cursor is requested, then
4034 ** the caller is assumed to have an open write transaction.
4035 **
4036 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4037 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4038 ** can be used for reading or for writing if other conditions for writing
4039 ** are also met.  These are the conditions that must be met in order
4040 ** for writing to be allowed:
4041 **
4042 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4043 **
4044 ** 2:  Other database connections that share the same pager cache
4045 **     but which are not in the READ_UNCOMMITTED state may not have
4046 **     cursors open with wrFlag==0 on the same table.  Otherwise
4047 **     the changes made by this write cursor would be visible to
4048 **     the read cursors in the other database connection.
4049 **
4050 ** 3:  The database must be writable (not on read-only media)
4051 **
4052 ** 4:  There must be an active transaction.
4053 **
4054 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4055 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4056 ** this cursor will only be used to seek to and delete entries of an index
4057 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4058 ** this implementation.  But in a hypothetical alternative storage engine
4059 ** in which index entries are automatically deleted when corresponding table
4060 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4061 ** operations on this cursor can be no-ops and all READ operations can
4062 ** return a null row (2-bytes: 0x01 0x00).
4063 **
4064 ** No checking is done to make sure that page iTable really is the
4065 ** root page of a b-tree.  If it is not, then the cursor acquired
4066 ** will not work correctly.
4067 **
4068 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4069 ** on pCur to initialize the memory space prior to invoking this routine.
4070 */
4071 static int btreeCursor(
4072   Btree *p,                              /* The btree */
4073   int iTable,                            /* Root page of table to open */
4074   int wrFlag,                            /* 1 to write. 0 read-only */
4075   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4076   BtCursor *pCur                         /* Space for new cursor */
4077 ){
4078   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4079   BtCursor *pX;                          /* Looping over other all cursors */
4080 
4081   assert( sqlite3BtreeHoldsMutex(p) );
4082   assert( wrFlag==0
4083        || wrFlag==BTREE_WRCSR
4084        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4085   );
4086 
4087   /* The following assert statements verify that if this is a sharable
4088   ** b-tree database, the connection is holding the required table locks,
4089   ** and that no other connection has any open cursor that conflicts with
4090   ** this lock.  */
4091   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4092   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4093 
4094   /* Assert that the caller has opened the required transaction. */
4095   assert( p->inTrans>TRANS_NONE );
4096   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4097   assert( pBt->pPage1 && pBt->pPage1->aData );
4098   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4099 
4100   if( wrFlag ){
4101     allocateTempSpace(pBt);
4102     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4103   }
4104   if( iTable==1 && btreePagecount(pBt)==0 ){
4105     assert( wrFlag==0 );
4106     iTable = 0;
4107   }
4108 
4109   /* Now that no other errors can occur, finish filling in the BtCursor
4110   ** variables and link the cursor into the BtShared list.  */
4111   pCur->pgnoRoot = (Pgno)iTable;
4112   pCur->iPage = -1;
4113   pCur->pKeyInfo = pKeyInfo;
4114   pCur->pBtree = p;
4115   pCur->pBt = pBt;
4116   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4117   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4118   /* If there are two or more cursors on the same btree, then all such
4119   ** cursors *must* have the BTCF_Multiple flag set. */
4120   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4121     if( pX->pgnoRoot==(Pgno)iTable ){
4122       pX->curFlags |= BTCF_Multiple;
4123       pCur->curFlags |= BTCF_Multiple;
4124     }
4125   }
4126   pCur->pNext = pBt->pCursor;
4127   pBt->pCursor = pCur;
4128   pCur->eState = CURSOR_INVALID;
4129   return SQLITE_OK;
4130 }
4131 int sqlite3BtreeCursor(
4132   Btree *p,                                   /* The btree */
4133   int iTable,                                 /* Root page of table to open */
4134   int wrFlag,                                 /* 1 to write. 0 read-only */
4135   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4136   BtCursor *pCur                              /* Write new cursor here */
4137 ){
4138   int rc;
4139   if( iTable<1 ){
4140     rc = SQLITE_CORRUPT_BKPT;
4141   }else{
4142     sqlite3BtreeEnter(p);
4143     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4144     sqlite3BtreeLeave(p);
4145   }
4146   return rc;
4147 }
4148 
4149 /*
4150 ** Return the size of a BtCursor object in bytes.
4151 **
4152 ** This interfaces is needed so that users of cursors can preallocate
4153 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4154 ** to users so they cannot do the sizeof() themselves - they must call
4155 ** this routine.
4156 */
4157 int sqlite3BtreeCursorSize(void){
4158   return ROUND8(sizeof(BtCursor));
4159 }
4160 
4161 /*
4162 ** Initialize memory that will be converted into a BtCursor object.
4163 **
4164 ** The simple approach here would be to memset() the entire object
4165 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4166 ** do not need to be zeroed and they are large, so we can save a lot
4167 ** of run-time by skipping the initialization of those elements.
4168 */
4169 void sqlite3BtreeCursorZero(BtCursor *p){
4170   memset(p, 0, offsetof(BtCursor, iPage));
4171 }
4172 
4173 /*
4174 ** Close a cursor.  The read lock on the database file is released
4175 ** when the last cursor is closed.
4176 */
4177 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4178   Btree *pBtree = pCur->pBtree;
4179   if( pBtree ){
4180     int i;
4181     BtShared *pBt = pCur->pBt;
4182     sqlite3BtreeEnter(pBtree);
4183     sqlite3BtreeClearCursor(pCur);
4184     assert( pBt->pCursor!=0 );
4185     if( pBt->pCursor==pCur ){
4186       pBt->pCursor = pCur->pNext;
4187     }else{
4188       BtCursor *pPrev = pBt->pCursor;
4189       do{
4190         if( pPrev->pNext==pCur ){
4191           pPrev->pNext = pCur->pNext;
4192           break;
4193         }
4194         pPrev = pPrev->pNext;
4195       }while( ALWAYS(pPrev) );
4196     }
4197     for(i=0; i<=pCur->iPage; i++){
4198       releasePage(pCur->apPage[i]);
4199     }
4200     unlockBtreeIfUnused(pBt);
4201     sqlite3_free(pCur->aOverflow);
4202     /* sqlite3_free(pCur); */
4203     sqlite3BtreeLeave(pBtree);
4204   }
4205   return SQLITE_OK;
4206 }
4207 
4208 /*
4209 ** Make sure the BtCursor* given in the argument has a valid
4210 ** BtCursor.info structure.  If it is not already valid, call
4211 ** btreeParseCell() to fill it in.
4212 **
4213 ** BtCursor.info is a cache of the information in the current cell.
4214 ** Using this cache reduces the number of calls to btreeParseCell().
4215 */
4216 #ifndef NDEBUG
4217   static void assertCellInfo(BtCursor *pCur){
4218     CellInfo info;
4219     int iPage = pCur->iPage;
4220     memset(&info, 0, sizeof(info));
4221     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
4222     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4223   }
4224 #else
4225   #define assertCellInfo(x)
4226 #endif
4227 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4228   if( pCur->info.nSize==0 ){
4229     int iPage = pCur->iPage;
4230     pCur->curFlags |= BTCF_ValidNKey;
4231     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4232   }else{
4233     assertCellInfo(pCur);
4234   }
4235 }
4236 
4237 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4238 /*
4239 ** Return true if the given BtCursor is valid.  A valid cursor is one
4240 ** that is currently pointing to a row in a (non-empty) table.
4241 ** This is a verification routine is used only within assert() statements.
4242 */
4243 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4244   return pCur && pCur->eState==CURSOR_VALID;
4245 }
4246 #endif /* NDEBUG */
4247 
4248 /*
4249 ** Set *pSize to the size of the buffer needed to hold the value of
4250 ** the key for the current entry.  If the cursor is not pointing
4251 ** to a valid entry, *pSize is set to 0.
4252 **
4253 ** For a table with the INTKEY flag set, this routine returns the key
4254 ** itself, not the number of bytes in the key.
4255 **
4256 ** The caller must position the cursor prior to invoking this routine.
4257 **
4258 ** This routine cannot fail.  It always returns SQLITE_OK.
4259 */
4260 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
4261   assert( cursorHoldsMutex(pCur) );
4262   assert( pCur->eState==CURSOR_VALID );
4263   getCellInfo(pCur);
4264   *pSize = pCur->info.nKey;
4265   return SQLITE_OK;
4266 }
4267 
4268 /*
4269 ** Set *pSize to the number of bytes of data in the entry the
4270 ** cursor currently points to.
4271 **
4272 ** The caller must guarantee that the cursor is pointing to a non-NULL
4273 ** valid entry.  In other words, the calling procedure must guarantee
4274 ** that the cursor has Cursor.eState==CURSOR_VALID.
4275 **
4276 ** Failure is not possible.  This function always returns SQLITE_OK.
4277 ** It might just as well be a procedure (returning void) but we continue
4278 ** to return an integer result code for historical reasons.
4279 */
4280 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
4281   assert( cursorOwnsBtShared(pCur) );
4282   assert( pCur->eState==CURSOR_VALID );
4283   assert( pCur->iPage>=0 );
4284   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4285   assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
4286   getCellInfo(pCur);
4287   *pSize = pCur->info.nPayload;
4288   return SQLITE_OK;
4289 }
4290 
4291 /*
4292 ** Given the page number of an overflow page in the database (parameter
4293 ** ovfl), this function finds the page number of the next page in the
4294 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4295 ** pointer-map data instead of reading the content of page ovfl to do so.
4296 **
4297 ** If an error occurs an SQLite error code is returned. Otherwise:
4298 **
4299 ** The page number of the next overflow page in the linked list is
4300 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4301 ** list, *pPgnoNext is set to zero.
4302 **
4303 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4304 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4305 ** reference. It is the responsibility of the caller to call releasePage()
4306 ** on *ppPage to free the reference. In no reference was obtained (because
4307 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4308 ** *ppPage is set to zero.
4309 */
4310 static int getOverflowPage(
4311   BtShared *pBt,               /* The database file */
4312   Pgno ovfl,                   /* Current overflow page number */
4313   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4314   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4315 ){
4316   Pgno next = 0;
4317   MemPage *pPage = 0;
4318   int rc = SQLITE_OK;
4319 
4320   assert( sqlite3_mutex_held(pBt->mutex) );
4321   assert(pPgnoNext);
4322 
4323 #ifndef SQLITE_OMIT_AUTOVACUUM
4324   /* Try to find the next page in the overflow list using the
4325   ** autovacuum pointer-map pages. Guess that the next page in
4326   ** the overflow list is page number (ovfl+1). If that guess turns
4327   ** out to be wrong, fall back to loading the data of page
4328   ** number ovfl to determine the next page number.
4329   */
4330   if( pBt->autoVacuum ){
4331     Pgno pgno;
4332     Pgno iGuess = ovfl+1;
4333     u8 eType;
4334 
4335     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4336       iGuess++;
4337     }
4338 
4339     if( iGuess<=btreePagecount(pBt) ){
4340       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4341       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4342         next = iGuess;
4343         rc = SQLITE_DONE;
4344       }
4345     }
4346   }
4347 #endif
4348 
4349   assert( next==0 || rc==SQLITE_DONE );
4350   if( rc==SQLITE_OK ){
4351     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4352     assert( rc==SQLITE_OK || pPage==0 );
4353     if( rc==SQLITE_OK ){
4354       next = get4byte(pPage->aData);
4355     }
4356   }
4357 
4358   *pPgnoNext = next;
4359   if( ppPage ){
4360     *ppPage = pPage;
4361   }else{
4362     releasePage(pPage);
4363   }
4364   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4365 }
4366 
4367 /*
4368 ** Copy data from a buffer to a page, or from a page to a buffer.
4369 **
4370 ** pPayload is a pointer to data stored on database page pDbPage.
4371 ** If argument eOp is false, then nByte bytes of data are copied
4372 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4373 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4374 ** of data are copied from the buffer pBuf to pPayload.
4375 **
4376 ** SQLITE_OK is returned on success, otherwise an error code.
4377 */
4378 static int copyPayload(
4379   void *pPayload,           /* Pointer to page data */
4380   void *pBuf,               /* Pointer to buffer */
4381   int nByte,                /* Number of bytes to copy */
4382   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4383   DbPage *pDbPage           /* Page containing pPayload */
4384 ){
4385   if( eOp ){
4386     /* Copy data from buffer to page (a write operation) */
4387     int rc = sqlite3PagerWrite(pDbPage);
4388     if( rc!=SQLITE_OK ){
4389       return rc;
4390     }
4391     memcpy(pPayload, pBuf, nByte);
4392   }else{
4393     /* Copy data from page to buffer (a read operation) */
4394     memcpy(pBuf, pPayload, nByte);
4395   }
4396   return SQLITE_OK;
4397 }
4398 
4399 /*
4400 ** This function is used to read or overwrite payload information
4401 ** for the entry that the pCur cursor is pointing to. The eOp
4402 ** argument is interpreted as follows:
4403 **
4404 **   0: The operation is a read. Populate the overflow cache.
4405 **   1: The operation is a write. Populate the overflow cache.
4406 **   2: The operation is a read. Do not populate the overflow cache.
4407 **
4408 ** A total of "amt" bytes are read or written beginning at "offset".
4409 ** Data is read to or from the buffer pBuf.
4410 **
4411 ** The content being read or written might appear on the main page
4412 ** or be scattered out on multiple overflow pages.
4413 **
4414 ** If the current cursor entry uses one or more overflow pages and the
4415 ** eOp argument is not 2, this function may allocate space for and lazily
4416 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4417 ** Subsequent calls use this cache to make seeking to the supplied offset
4418 ** more efficient.
4419 **
4420 ** Once an overflow page-list cache has been allocated, it may be
4421 ** invalidated if some other cursor writes to the same table, or if
4422 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4423 ** mode, the following events may invalidate an overflow page-list cache.
4424 **
4425 **   * An incremental vacuum,
4426 **   * A commit in auto_vacuum="full" mode,
4427 **   * Creating a table (may require moving an overflow page).
4428 */
4429 static int accessPayload(
4430   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4431   u32 offset,          /* Begin reading this far into payload */
4432   u32 amt,             /* Read this many bytes */
4433   unsigned char *pBuf, /* Write the bytes into this buffer */
4434   int eOp              /* zero to read. non-zero to write. */
4435 ){
4436   unsigned char *aPayload;
4437   int rc = SQLITE_OK;
4438   int iIdx = 0;
4439   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4440   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4441 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4442   unsigned char * const pBufStart = pBuf;
4443   int bEnd;                                 /* True if reading to end of data */
4444 #endif
4445 
4446   assert( pPage );
4447   assert( pCur->eState==CURSOR_VALID );
4448   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4449   assert( cursorHoldsMutex(pCur) );
4450   assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */
4451 
4452   getCellInfo(pCur);
4453   aPayload = pCur->info.pPayload;
4454 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4455   bEnd = offset+amt==pCur->info.nPayload;
4456 #endif
4457   assert( offset+amt <= pCur->info.nPayload );
4458 
4459   if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
4460     /* Trying to read or write past the end of the data is an error */
4461     return SQLITE_CORRUPT_BKPT;
4462   }
4463 
4464   /* Check if data must be read/written to/from the btree page itself. */
4465   if( offset<pCur->info.nLocal ){
4466     int a = amt;
4467     if( a+offset>pCur->info.nLocal ){
4468       a = pCur->info.nLocal - offset;
4469     }
4470     rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
4471     offset = 0;
4472     pBuf += a;
4473     amt -= a;
4474   }else{
4475     offset -= pCur->info.nLocal;
4476   }
4477 
4478 
4479   if( rc==SQLITE_OK && amt>0 ){
4480     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4481     Pgno nextPage;
4482 
4483     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4484 
4485     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4486     ** Except, do not allocate aOverflow[] for eOp==2.
4487     **
4488     ** The aOverflow[] array is sized at one entry for each overflow page
4489     ** in the overflow chain. The page number of the first overflow page is
4490     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4491     ** means "not yet known" (the cache is lazily populated).
4492     */
4493     if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4494       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4495       if( nOvfl>pCur->nOvflAlloc ){
4496         Pgno *aNew = (Pgno*)sqlite3Realloc(
4497             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4498         );
4499         if( aNew==0 ){
4500           rc = SQLITE_NOMEM_BKPT;
4501         }else{
4502           pCur->nOvflAlloc = nOvfl*2;
4503           pCur->aOverflow = aNew;
4504         }
4505       }
4506       if( rc==SQLITE_OK ){
4507         memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4508         pCur->curFlags |= BTCF_ValidOvfl;
4509       }
4510     }
4511 
4512     /* If the overflow page-list cache has been allocated and the
4513     ** entry for the first required overflow page is valid, skip
4514     ** directly to it.
4515     */
4516     if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4517      && pCur->aOverflow[offset/ovflSize]
4518     ){
4519       iIdx = (offset/ovflSize);
4520       nextPage = pCur->aOverflow[iIdx];
4521       offset = (offset%ovflSize);
4522     }
4523 
4524     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4525 
4526       /* If required, populate the overflow page-list cache. */
4527       if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
4528         assert( pCur->aOverflow[iIdx]==0
4529                 || pCur->aOverflow[iIdx]==nextPage
4530                 || CORRUPT_DB );
4531         pCur->aOverflow[iIdx] = nextPage;
4532       }
4533 
4534       if( offset>=ovflSize ){
4535         /* The only reason to read this page is to obtain the page
4536         ** number for the next page in the overflow chain. The page
4537         ** data is not required. So first try to lookup the overflow
4538         ** page-list cache, if any, then fall back to the getOverflowPage()
4539         ** function.
4540         **
4541         ** Note that the aOverflow[] array must be allocated because eOp!=2
4542         ** here.  If eOp==2, then offset==0 and this branch is never taken.
4543         */
4544         assert( eOp!=2 );
4545         assert( pCur->curFlags & BTCF_ValidOvfl );
4546         assert( pCur->pBtree->db==pBt->db );
4547         if( pCur->aOverflow[iIdx+1] ){
4548           nextPage = pCur->aOverflow[iIdx+1];
4549         }else{
4550           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4551         }
4552         offset -= ovflSize;
4553       }else{
4554         /* Need to read this page properly. It contains some of the
4555         ** range of data that is being read (eOp==0) or written (eOp!=0).
4556         */
4557 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4558         sqlite3_file *fd;
4559 #endif
4560         int a = amt;
4561         if( a + offset > ovflSize ){
4562           a = ovflSize - offset;
4563         }
4564 
4565 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4566         /* If all the following are true:
4567         **
4568         **   1) this is a read operation, and
4569         **   2) data is required from the start of this overflow page, and
4570         **   3) the database is file-backed, and
4571         **   4) there is no open write-transaction, and
4572         **   5) the database is not a WAL database,
4573         **   6) all data from the page is being read.
4574         **   7) at least 4 bytes have already been read into the output buffer
4575         **
4576         ** then data can be read directly from the database file into the
4577         ** output buffer, bypassing the page-cache altogether. This speeds
4578         ** up loading large records that span many overflow pages.
4579         */
4580         if( (eOp&0x01)==0                                      /* (1) */
4581          && offset==0                                          /* (2) */
4582          && (bEnd || a==ovflSize)                              /* (6) */
4583          && pBt->inTransaction==TRANS_READ                     /* (4) */
4584          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
4585          && pBt->pPage1->aData[19]==0x01                       /* (5) */
4586          && &pBuf[-4]>=pBufStart                               /* (7) */
4587         ){
4588           u8 aSave[4];
4589           u8 *aWrite = &pBuf[-4];
4590           assert( aWrite>=pBufStart );                         /* hence (7) */
4591           memcpy(aSave, aWrite, 4);
4592           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4593           nextPage = get4byte(aWrite);
4594           memcpy(aWrite, aSave, 4);
4595         }else
4596 #endif
4597 
4598         {
4599           DbPage *pDbPage;
4600           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4601               ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4602           );
4603           if( rc==SQLITE_OK ){
4604             aPayload = sqlite3PagerGetData(pDbPage);
4605             nextPage = get4byte(aPayload);
4606             rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4607             sqlite3PagerUnref(pDbPage);
4608             offset = 0;
4609           }
4610         }
4611         amt -= a;
4612         pBuf += a;
4613       }
4614     }
4615   }
4616 
4617   if( rc==SQLITE_OK && amt>0 ){
4618     return SQLITE_CORRUPT_BKPT;
4619   }
4620   return rc;
4621 }
4622 
4623 /*
4624 ** Read part of the key associated with cursor pCur.  Exactly
4625 ** "amt" bytes will be transferred into pBuf[].  The transfer
4626 ** begins at "offset".
4627 **
4628 ** The caller must ensure that pCur is pointing to a valid row
4629 ** in the table.
4630 **
4631 ** Return SQLITE_OK on success or an error code if anything goes
4632 ** wrong.  An error is returned if "offset+amt" is larger than
4633 ** the available payload.
4634 */
4635 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4636   assert( cursorHoldsMutex(pCur) );
4637   assert( pCur->eState==CURSOR_VALID );
4638   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4639   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4640   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4641 }
4642 
4643 /*
4644 ** Read part of the data associated with cursor pCur.  Exactly
4645 ** "amt" bytes will be transfered into pBuf[].  The transfer
4646 ** begins at "offset".
4647 **
4648 ** Return SQLITE_OK on success or an error code if anything goes
4649 ** wrong.  An error is returned if "offset+amt" is larger than
4650 ** the available payload.
4651 */
4652 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4653   int rc;
4654 
4655 #ifndef SQLITE_OMIT_INCRBLOB
4656   if ( pCur->eState==CURSOR_INVALID ){
4657     return SQLITE_ABORT;
4658   }
4659 #endif
4660 
4661   assert( cursorOwnsBtShared(pCur) );
4662   rc = restoreCursorPosition(pCur);
4663   if( rc==SQLITE_OK ){
4664     assert( pCur->eState==CURSOR_VALID );
4665     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4666     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4667     rc = accessPayload(pCur, offset, amt, pBuf, 0);
4668   }
4669   return rc;
4670 }
4671 
4672 /*
4673 ** Return a pointer to payload information from the entry that the
4674 ** pCur cursor is pointing to.  The pointer is to the beginning of
4675 ** the key if index btrees (pPage->intKey==0) and is the data for
4676 ** table btrees (pPage->intKey==1). The number of bytes of available
4677 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4678 ** returned will not be a valid pointer.
4679 **
4680 ** This routine is an optimization.  It is common for the entire key
4681 ** and data to fit on the local page and for there to be no overflow
4682 ** pages.  When that is so, this routine can be used to access the
4683 ** key and data without making a copy.  If the key and/or data spills
4684 ** onto overflow pages, then accessPayload() must be used to reassemble
4685 ** the key/data and copy it into a preallocated buffer.
4686 **
4687 ** The pointer returned by this routine looks directly into the cached
4688 ** page of the database.  The data might change or move the next time
4689 ** any btree routine is called.
4690 */
4691 static const void *fetchPayload(
4692   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4693   u32 *pAmt            /* Write the number of available bytes here */
4694 ){
4695   u32 amt;
4696   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4697   assert( pCur->eState==CURSOR_VALID );
4698   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4699   assert( cursorOwnsBtShared(pCur) );
4700   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4701   assert( pCur->info.nSize>0 );
4702   assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4703   assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4704   amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4705   if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4706   *pAmt = amt;
4707   return (void*)pCur->info.pPayload;
4708 }
4709 
4710 
4711 /*
4712 ** For the entry that cursor pCur is point to, return as
4713 ** many bytes of the key or data as are available on the local
4714 ** b-tree page.  Write the number of available bytes into *pAmt.
4715 **
4716 ** The pointer returned is ephemeral.  The key/data may move
4717 ** or be destroyed on the next call to any Btree routine,
4718 ** including calls from other threads against the same cache.
4719 ** Hence, a mutex on the BtShared should be held prior to calling
4720 ** this routine.
4721 **
4722 ** These routines is used to get quick access to key and data
4723 ** in the common case where no overflow pages are used.
4724 */
4725 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4726   return fetchPayload(pCur, pAmt);
4727 }
4728 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4729   return fetchPayload(pCur, pAmt);
4730 }
4731 
4732 
4733 /*
4734 ** Move the cursor down to a new child page.  The newPgno argument is the
4735 ** page number of the child page to move to.
4736 **
4737 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4738 ** the new child page does not match the flags field of the parent (i.e.
4739 ** if an intkey page appears to be the parent of a non-intkey page, or
4740 ** vice-versa).
4741 */
4742 static int moveToChild(BtCursor *pCur, u32 newPgno){
4743   BtShared *pBt = pCur->pBt;
4744 
4745   assert( cursorOwnsBtShared(pCur) );
4746   assert( pCur->eState==CURSOR_VALID );
4747   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4748   assert( pCur->iPage>=0 );
4749   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4750     return SQLITE_CORRUPT_BKPT;
4751   }
4752   pCur->info.nSize = 0;
4753   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4754   pCur->iPage++;
4755   pCur->aiIdx[pCur->iPage] = 0;
4756   return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4757                         pCur, pCur->curPagerFlags);
4758 }
4759 
4760 #if SQLITE_DEBUG
4761 /*
4762 ** Page pParent is an internal (non-leaf) tree page. This function
4763 ** asserts that page number iChild is the left-child if the iIdx'th
4764 ** cell in page pParent. Or, if iIdx is equal to the total number of
4765 ** cells in pParent, that page number iChild is the right-child of
4766 ** the page.
4767 */
4768 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4769   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4770                             ** in a corrupt database */
4771   assert( iIdx<=pParent->nCell );
4772   if( iIdx==pParent->nCell ){
4773     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4774   }else{
4775     assert( get4byte(findCell(pParent, iIdx))==iChild );
4776   }
4777 }
4778 #else
4779 #  define assertParentIndex(x,y,z)
4780 #endif
4781 
4782 /*
4783 ** Move the cursor up to the parent page.
4784 **
4785 ** pCur->idx is set to the cell index that contains the pointer
4786 ** to the page we are coming from.  If we are coming from the
4787 ** right-most child page then pCur->idx is set to one more than
4788 ** the largest cell index.
4789 */
4790 static void moveToParent(BtCursor *pCur){
4791   assert( cursorOwnsBtShared(pCur) );
4792   assert( pCur->eState==CURSOR_VALID );
4793   assert( pCur->iPage>0 );
4794   assert( pCur->apPage[pCur->iPage] );
4795   assertParentIndex(
4796     pCur->apPage[pCur->iPage-1],
4797     pCur->aiIdx[pCur->iPage-1],
4798     pCur->apPage[pCur->iPage]->pgno
4799   );
4800   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4801   pCur->info.nSize = 0;
4802   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4803   releasePageNotNull(pCur->apPage[pCur->iPage--]);
4804 }
4805 
4806 /*
4807 ** Move the cursor to point to the root page of its b-tree structure.
4808 **
4809 ** If the table has a virtual root page, then the cursor is moved to point
4810 ** to the virtual root page instead of the actual root page. A table has a
4811 ** virtual root page when the actual root page contains no cells and a
4812 ** single child page. This can only happen with the table rooted at page 1.
4813 **
4814 ** If the b-tree structure is empty, the cursor state is set to
4815 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4816 ** cell located on the root (or virtual root) page and the cursor state
4817 ** is set to CURSOR_VALID.
4818 **
4819 ** If this function returns successfully, it may be assumed that the
4820 ** page-header flags indicate that the [virtual] root-page is the expected
4821 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4822 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4823 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4824 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4825 ** b-tree).
4826 */
4827 static int moveToRoot(BtCursor *pCur){
4828   MemPage *pRoot;
4829   int rc = SQLITE_OK;
4830 
4831   assert( cursorOwnsBtShared(pCur) );
4832   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4833   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4834   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4835   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4836     if( pCur->eState==CURSOR_FAULT ){
4837       assert( pCur->skipNext!=SQLITE_OK );
4838       return pCur->skipNext;
4839     }
4840     sqlite3BtreeClearCursor(pCur);
4841   }
4842 
4843   if( pCur->iPage>=0 ){
4844     while( pCur->iPage ){
4845       assert( pCur->apPage[pCur->iPage]!=0 );
4846       releasePageNotNull(pCur->apPage[pCur->iPage--]);
4847     }
4848   }else if( pCur->pgnoRoot==0 ){
4849     pCur->eState = CURSOR_INVALID;
4850     return SQLITE_OK;
4851   }else{
4852     assert( pCur->iPage==(-1) );
4853     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4854                         0, pCur->curPagerFlags);
4855     if( rc!=SQLITE_OK ){
4856       pCur->eState = CURSOR_INVALID;
4857       return rc;
4858     }
4859     pCur->iPage = 0;
4860     pCur->curIntKey = pCur->apPage[0]->intKey;
4861   }
4862   pRoot = pCur->apPage[0];
4863   assert( pRoot->pgno==pCur->pgnoRoot );
4864 
4865   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4866   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4867   ** NULL, the caller expects a table b-tree. If this is not the case,
4868   ** return an SQLITE_CORRUPT error.
4869   **
4870   ** Earlier versions of SQLite assumed that this test could not fail
4871   ** if the root page was already loaded when this function was called (i.e.
4872   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4873   ** in such a way that page pRoot is linked into a second b-tree table
4874   ** (or the freelist).  */
4875   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4876   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4877     return SQLITE_CORRUPT_BKPT;
4878   }
4879 
4880   pCur->aiIdx[0] = 0;
4881   pCur->info.nSize = 0;
4882   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4883 
4884   if( pRoot->nCell>0 ){
4885     pCur->eState = CURSOR_VALID;
4886   }else if( !pRoot->leaf ){
4887     Pgno subpage;
4888     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4889     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4890     pCur->eState = CURSOR_VALID;
4891     rc = moveToChild(pCur, subpage);
4892   }else{
4893     pCur->eState = CURSOR_INVALID;
4894   }
4895   return rc;
4896 }
4897 
4898 /*
4899 ** Move the cursor down to the left-most leaf entry beneath the
4900 ** entry to which it is currently pointing.
4901 **
4902 ** The left-most leaf is the one with the smallest key - the first
4903 ** in ascending order.
4904 */
4905 static int moveToLeftmost(BtCursor *pCur){
4906   Pgno pgno;
4907   int rc = SQLITE_OK;
4908   MemPage *pPage;
4909 
4910   assert( cursorOwnsBtShared(pCur) );
4911   assert( pCur->eState==CURSOR_VALID );
4912   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4913     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4914     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4915     rc = moveToChild(pCur, pgno);
4916   }
4917   return rc;
4918 }
4919 
4920 /*
4921 ** Move the cursor down to the right-most leaf entry beneath the
4922 ** page to which it is currently pointing.  Notice the difference
4923 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
4924 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4925 ** finds the right-most entry beneath the *page*.
4926 **
4927 ** The right-most entry is the one with the largest key - the last
4928 ** key in ascending order.
4929 */
4930 static int moveToRightmost(BtCursor *pCur){
4931   Pgno pgno;
4932   int rc = SQLITE_OK;
4933   MemPage *pPage = 0;
4934 
4935   assert( cursorOwnsBtShared(pCur) );
4936   assert( pCur->eState==CURSOR_VALID );
4937   while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4938     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4939     pCur->aiIdx[pCur->iPage] = pPage->nCell;
4940     rc = moveToChild(pCur, pgno);
4941     if( rc ) return rc;
4942   }
4943   pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4944   assert( pCur->info.nSize==0 );
4945   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4946   return SQLITE_OK;
4947 }
4948 
4949 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
4950 ** on success.  Set *pRes to 0 if the cursor actually points to something
4951 ** or set *pRes to 1 if the table is empty.
4952 */
4953 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4954   int rc;
4955 
4956   assert( cursorOwnsBtShared(pCur) );
4957   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4958   rc = moveToRoot(pCur);
4959   if( rc==SQLITE_OK ){
4960     if( pCur->eState==CURSOR_INVALID ){
4961       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4962       *pRes = 1;
4963     }else{
4964       assert( pCur->apPage[pCur->iPage]->nCell>0 );
4965       *pRes = 0;
4966       rc = moveToLeftmost(pCur);
4967     }
4968   }
4969   return rc;
4970 }
4971 
4972 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
4973 ** on success.  Set *pRes to 0 if the cursor actually points to something
4974 ** or set *pRes to 1 if the table is empty.
4975 */
4976 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4977   int rc;
4978 
4979   assert( cursorOwnsBtShared(pCur) );
4980   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4981 
4982   /* If the cursor already points to the last entry, this is a no-op. */
4983   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
4984 #ifdef SQLITE_DEBUG
4985     /* This block serves to assert() that the cursor really does point
4986     ** to the last entry in the b-tree. */
4987     int ii;
4988     for(ii=0; ii<pCur->iPage; ii++){
4989       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4990     }
4991     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4992     assert( pCur->apPage[pCur->iPage]->leaf );
4993 #endif
4994     return SQLITE_OK;
4995   }
4996 
4997   rc = moveToRoot(pCur);
4998   if( rc==SQLITE_OK ){
4999     if( CURSOR_INVALID==pCur->eState ){
5000       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5001       *pRes = 1;
5002     }else{
5003       assert( pCur->eState==CURSOR_VALID );
5004       *pRes = 0;
5005       rc = moveToRightmost(pCur);
5006       if( rc==SQLITE_OK ){
5007         pCur->curFlags |= BTCF_AtLast;
5008       }else{
5009         pCur->curFlags &= ~BTCF_AtLast;
5010       }
5011 
5012     }
5013   }
5014   return rc;
5015 }
5016 
5017 /* Move the cursor so that it points to an entry near the key
5018 ** specified by pIdxKey or intKey.   Return a success code.
5019 **
5020 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5021 ** must be NULL.  For index tables, pIdxKey is used and intKey
5022 ** is ignored.
5023 **
5024 ** If an exact match is not found, then the cursor is always
5025 ** left pointing at a leaf page which would hold the entry if it
5026 ** were present.  The cursor might point to an entry that comes
5027 ** before or after the key.
5028 **
5029 ** An integer is written into *pRes which is the result of
5030 ** comparing the key with the entry to which the cursor is
5031 ** pointing.  The meaning of the integer written into
5032 ** *pRes is as follows:
5033 **
5034 **     *pRes<0      The cursor is left pointing at an entry that
5035 **                  is smaller than intKey/pIdxKey or if the table is empty
5036 **                  and the cursor is therefore left point to nothing.
5037 **
5038 **     *pRes==0     The cursor is left pointing at an entry that
5039 **                  exactly matches intKey/pIdxKey.
5040 **
5041 **     *pRes>0      The cursor is left pointing at an entry that
5042 **                  is larger than intKey/pIdxKey.
5043 **
5044 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5045 ** exists an entry in the table that exactly matches pIdxKey.
5046 */
5047 int sqlite3BtreeMovetoUnpacked(
5048   BtCursor *pCur,          /* The cursor to be moved */
5049   UnpackedRecord *pIdxKey, /* Unpacked index key */
5050   i64 intKey,              /* The table key */
5051   int biasRight,           /* If true, bias the search to the high end */
5052   int *pRes                /* Write search results here */
5053 ){
5054   int rc;
5055   RecordCompare xRecordCompare;
5056 
5057   assert( cursorOwnsBtShared(pCur) );
5058   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5059   assert( pRes );
5060   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5061 
5062   /* If the cursor is already positioned at the point we are trying
5063   ** to move to, then just return without doing any work */
5064   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5065    && pCur->curIntKey
5066   ){
5067     if( pCur->info.nKey==intKey ){
5068       *pRes = 0;
5069       return SQLITE_OK;
5070     }
5071     if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
5072       *pRes = -1;
5073       return SQLITE_OK;
5074     }
5075   }
5076 
5077   if( pIdxKey ){
5078     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5079     pIdxKey->errCode = 0;
5080     assert( pIdxKey->default_rc==1
5081          || pIdxKey->default_rc==0
5082          || pIdxKey->default_rc==-1
5083     );
5084   }else{
5085     xRecordCompare = 0; /* All keys are integers */
5086   }
5087 
5088   rc = moveToRoot(pCur);
5089   if( rc ){
5090     return rc;
5091   }
5092   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5093   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5094   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
5095   if( pCur->eState==CURSOR_INVALID ){
5096     *pRes = -1;
5097     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5098     return SQLITE_OK;
5099   }
5100   assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5101   assert( pCur->curIntKey || pIdxKey );
5102   for(;;){
5103     int lwr, upr, idx, c;
5104     Pgno chldPg;
5105     MemPage *pPage = pCur->apPage[pCur->iPage];
5106     u8 *pCell;                          /* Pointer to current cell in pPage */
5107 
5108     /* pPage->nCell must be greater than zero. If this is the root-page
5109     ** the cursor would have been INVALID above and this for(;;) loop
5110     ** not run. If this is not the root-page, then the moveToChild() routine
5111     ** would have already detected db corruption. Similarly, pPage must
5112     ** be the right kind (index or table) of b-tree page. Otherwise
5113     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5114     assert( pPage->nCell>0 );
5115     assert( pPage->intKey==(pIdxKey==0) );
5116     lwr = 0;
5117     upr = pPage->nCell-1;
5118     assert( biasRight==0 || biasRight==1 );
5119     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5120     pCur->aiIdx[pCur->iPage] = (u16)idx;
5121     if( xRecordCompare==0 ){
5122       for(;;){
5123         i64 nCellKey;
5124         pCell = findCellPastPtr(pPage, idx);
5125         if( pPage->intKeyLeaf ){
5126           while( 0x80 <= *(pCell++) ){
5127             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5128           }
5129         }
5130         getVarint(pCell, (u64*)&nCellKey);
5131         if( nCellKey<intKey ){
5132           lwr = idx+1;
5133           if( lwr>upr ){ c = -1; break; }
5134         }else if( nCellKey>intKey ){
5135           upr = idx-1;
5136           if( lwr>upr ){ c = +1; break; }
5137         }else{
5138           assert( nCellKey==intKey );
5139           pCur->curFlags |= BTCF_ValidNKey;
5140           pCur->info.nKey = nCellKey;
5141           pCur->aiIdx[pCur->iPage] = (u16)idx;
5142           if( !pPage->leaf ){
5143             lwr = idx;
5144             goto moveto_next_layer;
5145           }else{
5146             *pRes = 0;
5147             rc = SQLITE_OK;
5148             goto moveto_finish;
5149           }
5150         }
5151         assert( lwr+upr>=0 );
5152         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5153       }
5154     }else{
5155       for(;;){
5156         int nCell;  /* Size of the pCell cell in bytes */
5157         pCell = findCellPastPtr(pPage, idx);
5158 
5159         /* The maximum supported page-size is 65536 bytes. This means that
5160         ** the maximum number of record bytes stored on an index B-Tree
5161         ** page is less than 16384 bytes and may be stored as a 2-byte
5162         ** varint. This information is used to attempt to avoid parsing
5163         ** the entire cell by checking for the cases where the record is
5164         ** stored entirely within the b-tree page by inspecting the first
5165         ** 2 bytes of the cell.
5166         */
5167         nCell = pCell[0];
5168         if( nCell<=pPage->max1bytePayload ){
5169           /* This branch runs if the record-size field of the cell is a
5170           ** single byte varint and the record fits entirely on the main
5171           ** b-tree page.  */
5172           testcase( pCell+nCell+1==pPage->aDataEnd );
5173           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5174         }else if( !(pCell[1] & 0x80)
5175           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5176         ){
5177           /* The record-size field is a 2 byte varint and the record
5178           ** fits entirely on the main b-tree page.  */
5179           testcase( pCell+nCell+2==pPage->aDataEnd );
5180           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5181         }else{
5182           /* The record flows over onto one or more overflow pages. In
5183           ** this case the whole cell needs to be parsed, a buffer allocated
5184           ** and accessPayload() used to retrieve the record into the
5185           ** buffer before VdbeRecordCompare() can be called.
5186           **
5187           ** If the record is corrupt, the xRecordCompare routine may read
5188           ** up to two varints past the end of the buffer. An extra 18
5189           ** bytes of padding is allocated at the end of the buffer in
5190           ** case this happens.  */
5191           void *pCellKey;
5192           u8 * const pCellBody = pCell - pPage->childPtrSize;
5193           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5194           nCell = (int)pCur->info.nKey;
5195           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5196           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5197           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5198           testcase( nCell==2 );  /* Minimum legal index key size */
5199           if( nCell<2 ){
5200             rc = SQLITE_CORRUPT_BKPT;
5201             goto moveto_finish;
5202           }
5203           pCellKey = sqlite3Malloc( nCell+18 );
5204           if( pCellKey==0 ){
5205             rc = SQLITE_NOMEM_BKPT;
5206             goto moveto_finish;
5207           }
5208           pCur->aiIdx[pCur->iPage] = (u16)idx;
5209           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
5210           if( rc ){
5211             sqlite3_free(pCellKey);
5212             goto moveto_finish;
5213           }
5214           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5215           sqlite3_free(pCellKey);
5216         }
5217         assert(
5218             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5219          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5220         );
5221         if( c<0 ){
5222           lwr = idx+1;
5223         }else if( c>0 ){
5224           upr = idx-1;
5225         }else{
5226           assert( c==0 );
5227           *pRes = 0;
5228           rc = SQLITE_OK;
5229           pCur->aiIdx[pCur->iPage] = (u16)idx;
5230           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
5231           goto moveto_finish;
5232         }
5233         if( lwr>upr ) break;
5234         assert( lwr+upr>=0 );
5235         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5236       }
5237     }
5238     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5239     assert( pPage->isInit );
5240     if( pPage->leaf ){
5241       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
5242       pCur->aiIdx[pCur->iPage] = (u16)idx;
5243       *pRes = c;
5244       rc = SQLITE_OK;
5245       goto moveto_finish;
5246     }
5247 moveto_next_layer:
5248     if( lwr>=pPage->nCell ){
5249       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5250     }else{
5251       chldPg = get4byte(findCell(pPage, lwr));
5252     }
5253     pCur->aiIdx[pCur->iPage] = (u16)lwr;
5254     rc = moveToChild(pCur, chldPg);
5255     if( rc ) break;
5256   }
5257 moveto_finish:
5258   pCur->info.nSize = 0;
5259   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5260   return rc;
5261 }
5262 
5263 
5264 /*
5265 ** Return TRUE if the cursor is not pointing at an entry of the table.
5266 **
5267 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5268 ** past the last entry in the table or sqlite3BtreePrev() moves past
5269 ** the first entry.  TRUE is also returned if the table is empty.
5270 */
5271 int sqlite3BtreeEof(BtCursor *pCur){
5272   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5273   ** have been deleted? This API will need to change to return an error code
5274   ** as well as the boolean result value.
5275   */
5276   return (CURSOR_VALID!=pCur->eState);
5277 }
5278 
5279 /*
5280 ** Advance the cursor to the next entry in the database.  If
5281 ** successful then set *pRes=0.  If the cursor
5282 ** was already pointing to the last entry in the database before
5283 ** this routine was called, then set *pRes=1.
5284 **
5285 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5286 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5287 ** to the next cell on the current page.  The (slower) btreeNext() helper
5288 ** routine is called when it is necessary to move to a different page or
5289 ** to restore the cursor.
5290 **
5291 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5292 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5293 ** if this routine could have been skipped if that SQL index had been
5294 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5295 ** Zero is the common case. The btree implementation is free to use the
5296 ** initial *pRes value as a hint to improve performance, but the current
5297 ** SQLite btree implementation does not. (Note that the comdb2 btree
5298 ** implementation does use this hint, however.)
5299 */
5300 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
5301   int rc;
5302   int idx;
5303   MemPage *pPage;
5304 
5305   assert( cursorOwnsBtShared(pCur) );
5306   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5307   assert( *pRes==0 );
5308   if( pCur->eState!=CURSOR_VALID ){
5309     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5310     rc = restoreCursorPosition(pCur);
5311     if( rc!=SQLITE_OK ){
5312       return rc;
5313     }
5314     if( CURSOR_INVALID==pCur->eState ){
5315       *pRes = 1;
5316       return SQLITE_OK;
5317     }
5318     if( pCur->skipNext ){
5319       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5320       pCur->eState = CURSOR_VALID;
5321       if( pCur->skipNext>0 ){
5322         pCur->skipNext = 0;
5323         return SQLITE_OK;
5324       }
5325       pCur->skipNext = 0;
5326     }
5327   }
5328 
5329   pPage = pCur->apPage[pCur->iPage];
5330   idx = ++pCur->aiIdx[pCur->iPage];
5331   assert( pPage->isInit );
5332 
5333   /* If the database file is corrupt, it is possible for the value of idx
5334   ** to be invalid here. This can only occur if a second cursor modifies
5335   ** the page while cursor pCur is holding a reference to it. Which can
5336   ** only happen if the database is corrupt in such a way as to link the
5337   ** page into more than one b-tree structure. */
5338   testcase( idx>pPage->nCell );
5339 
5340   if( idx>=pPage->nCell ){
5341     if( !pPage->leaf ){
5342       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5343       if( rc ) return rc;
5344       return moveToLeftmost(pCur);
5345     }
5346     do{
5347       if( pCur->iPage==0 ){
5348         *pRes = 1;
5349         pCur->eState = CURSOR_INVALID;
5350         return SQLITE_OK;
5351       }
5352       moveToParent(pCur);
5353       pPage = pCur->apPage[pCur->iPage];
5354     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
5355     if( pPage->intKey ){
5356       return sqlite3BtreeNext(pCur, pRes);
5357     }else{
5358       return SQLITE_OK;
5359     }
5360   }
5361   if( pPage->leaf ){
5362     return SQLITE_OK;
5363   }else{
5364     return moveToLeftmost(pCur);
5365   }
5366 }
5367 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5368   MemPage *pPage;
5369   assert( cursorOwnsBtShared(pCur) );
5370   assert( pRes!=0 );
5371   assert( *pRes==0 || *pRes==1 );
5372   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5373   pCur->info.nSize = 0;
5374   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5375   *pRes = 0;
5376   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5377   pPage = pCur->apPage[pCur->iPage];
5378   if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5379     pCur->aiIdx[pCur->iPage]--;
5380     return btreeNext(pCur, pRes);
5381   }
5382   if( pPage->leaf ){
5383     return SQLITE_OK;
5384   }else{
5385     return moveToLeftmost(pCur);
5386   }
5387 }
5388 
5389 /*
5390 ** Step the cursor to the back to the previous entry in the database.  If
5391 ** successful then set *pRes=0.  If the cursor
5392 ** was already pointing to the first entry in the database before
5393 ** this routine was called, then set *pRes=1.
5394 **
5395 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5396 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5397 ** to the previous cell on the current page.  The (slower) btreePrevious()
5398 ** helper routine is called when it is necessary to move to a different page
5399 ** or to restore the cursor.
5400 **
5401 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5402 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5403 ** if this routine could have been skipped if that SQL index had been
5404 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5405 ** Zero is the common case. The btree implementation is free to use the
5406 ** initial *pRes value as a hint to improve performance, but the current
5407 ** SQLite btree implementation does not. (Note that the comdb2 btree
5408 ** implementation does use this hint, however.)
5409 */
5410 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5411   int rc;
5412   MemPage *pPage;
5413 
5414   assert( cursorOwnsBtShared(pCur) );
5415   assert( pRes!=0 );
5416   assert( *pRes==0 );
5417   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5418   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5419   assert( pCur->info.nSize==0 );
5420   if( pCur->eState!=CURSOR_VALID ){
5421     rc = restoreCursorPosition(pCur);
5422     if( rc!=SQLITE_OK ){
5423       return rc;
5424     }
5425     if( CURSOR_INVALID==pCur->eState ){
5426       *pRes = 1;
5427       return SQLITE_OK;
5428     }
5429     if( pCur->skipNext ){
5430       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5431       pCur->eState = CURSOR_VALID;
5432       if( pCur->skipNext<0 ){
5433         pCur->skipNext = 0;
5434         return SQLITE_OK;
5435       }
5436       pCur->skipNext = 0;
5437     }
5438   }
5439 
5440   pPage = pCur->apPage[pCur->iPage];
5441   assert( pPage->isInit );
5442   if( !pPage->leaf ){
5443     int idx = pCur->aiIdx[pCur->iPage];
5444     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5445     if( rc ) return rc;
5446     rc = moveToRightmost(pCur);
5447   }else{
5448     while( pCur->aiIdx[pCur->iPage]==0 ){
5449       if( pCur->iPage==0 ){
5450         pCur->eState = CURSOR_INVALID;
5451         *pRes = 1;
5452         return SQLITE_OK;
5453       }
5454       moveToParent(pCur);
5455     }
5456     assert( pCur->info.nSize==0 );
5457     assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
5458 
5459     pCur->aiIdx[pCur->iPage]--;
5460     pPage = pCur->apPage[pCur->iPage];
5461     if( pPage->intKey && !pPage->leaf ){
5462       rc = sqlite3BtreePrevious(pCur, pRes);
5463     }else{
5464       rc = SQLITE_OK;
5465     }
5466   }
5467   return rc;
5468 }
5469 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5470   assert( cursorOwnsBtShared(pCur) );
5471   assert( pRes!=0 );
5472   assert( *pRes==0 || *pRes==1 );
5473   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5474   *pRes = 0;
5475   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5476   pCur->info.nSize = 0;
5477   if( pCur->eState!=CURSOR_VALID
5478    || pCur->aiIdx[pCur->iPage]==0
5479    || pCur->apPage[pCur->iPage]->leaf==0
5480   ){
5481     return btreePrevious(pCur, pRes);
5482   }
5483   pCur->aiIdx[pCur->iPage]--;
5484   return SQLITE_OK;
5485 }
5486 
5487 /*
5488 ** Allocate a new page from the database file.
5489 **
5490 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5491 ** has already been called on the new page.)  The new page has also
5492 ** been referenced and the calling routine is responsible for calling
5493 ** sqlite3PagerUnref() on the new page when it is done.
5494 **
5495 ** SQLITE_OK is returned on success.  Any other return value indicates
5496 ** an error.  *ppPage is set to NULL in the event of an error.
5497 **
5498 ** If the "nearby" parameter is not 0, then an effort is made to
5499 ** locate a page close to the page number "nearby".  This can be used in an
5500 ** attempt to keep related pages close to each other in the database file,
5501 ** which in turn can make database access faster.
5502 **
5503 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5504 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5505 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5506 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5507 ** are no restrictions on which page is returned.
5508 */
5509 static int allocateBtreePage(
5510   BtShared *pBt,         /* The btree */
5511   MemPage **ppPage,      /* Store pointer to the allocated page here */
5512   Pgno *pPgno,           /* Store the page number here */
5513   Pgno nearby,           /* Search for a page near this one */
5514   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5515 ){
5516   MemPage *pPage1;
5517   int rc;
5518   u32 n;     /* Number of pages on the freelist */
5519   u32 k;     /* Number of leaves on the trunk of the freelist */
5520   MemPage *pTrunk = 0;
5521   MemPage *pPrevTrunk = 0;
5522   Pgno mxPage;     /* Total size of the database file */
5523 
5524   assert( sqlite3_mutex_held(pBt->mutex) );
5525   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5526   pPage1 = pBt->pPage1;
5527   mxPage = btreePagecount(pBt);
5528   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5529   ** stores stores the total number of pages on the freelist. */
5530   n = get4byte(&pPage1->aData[36]);
5531   testcase( n==mxPage-1 );
5532   if( n>=mxPage ){
5533     return SQLITE_CORRUPT_BKPT;
5534   }
5535   if( n>0 ){
5536     /* There are pages on the freelist.  Reuse one of those pages. */
5537     Pgno iTrunk;
5538     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5539     u32 nSearch = 0;   /* Count of the number of search attempts */
5540 
5541     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5542     ** shows that the page 'nearby' is somewhere on the free-list, then
5543     ** the entire-list will be searched for that page.
5544     */
5545 #ifndef SQLITE_OMIT_AUTOVACUUM
5546     if( eMode==BTALLOC_EXACT ){
5547       if( nearby<=mxPage ){
5548         u8 eType;
5549         assert( nearby>0 );
5550         assert( pBt->autoVacuum );
5551         rc = ptrmapGet(pBt, nearby, &eType, 0);
5552         if( rc ) return rc;
5553         if( eType==PTRMAP_FREEPAGE ){
5554           searchList = 1;
5555         }
5556       }
5557     }else if( eMode==BTALLOC_LE ){
5558       searchList = 1;
5559     }
5560 #endif
5561 
5562     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5563     ** first free-list trunk page. iPrevTrunk is initially 1.
5564     */
5565     rc = sqlite3PagerWrite(pPage1->pDbPage);
5566     if( rc ) return rc;
5567     put4byte(&pPage1->aData[36], n-1);
5568 
5569     /* The code within this loop is run only once if the 'searchList' variable
5570     ** is not true. Otherwise, it runs once for each trunk-page on the
5571     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5572     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5573     */
5574     do {
5575       pPrevTrunk = pTrunk;
5576       if( pPrevTrunk ){
5577         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5578         ** is the page number of the next freelist trunk page in the list or
5579         ** zero if this is the last freelist trunk page. */
5580         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5581       }else{
5582         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5583         ** stores the page number of the first page of the freelist, or zero if
5584         ** the freelist is empty. */
5585         iTrunk = get4byte(&pPage1->aData[32]);
5586       }
5587       testcase( iTrunk==mxPage );
5588       if( iTrunk>mxPage || nSearch++ > n ){
5589         rc = SQLITE_CORRUPT_BKPT;
5590       }else{
5591         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5592       }
5593       if( rc ){
5594         pTrunk = 0;
5595         goto end_allocate_page;
5596       }
5597       assert( pTrunk!=0 );
5598       assert( pTrunk->aData!=0 );
5599       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5600       ** is the number of leaf page pointers to follow. */
5601       k = get4byte(&pTrunk->aData[4]);
5602       if( k==0 && !searchList ){
5603         /* The trunk has no leaves and the list is not being searched.
5604         ** So extract the trunk page itself and use it as the newly
5605         ** allocated page */
5606         assert( pPrevTrunk==0 );
5607         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5608         if( rc ){
5609           goto end_allocate_page;
5610         }
5611         *pPgno = iTrunk;
5612         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5613         *ppPage = pTrunk;
5614         pTrunk = 0;
5615         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5616       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5617         /* Value of k is out of range.  Database corruption */
5618         rc = SQLITE_CORRUPT_BKPT;
5619         goto end_allocate_page;
5620 #ifndef SQLITE_OMIT_AUTOVACUUM
5621       }else if( searchList
5622             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5623       ){
5624         /* The list is being searched and this trunk page is the page
5625         ** to allocate, regardless of whether it has leaves.
5626         */
5627         *pPgno = iTrunk;
5628         *ppPage = pTrunk;
5629         searchList = 0;
5630         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5631         if( rc ){
5632           goto end_allocate_page;
5633         }
5634         if( k==0 ){
5635           if( !pPrevTrunk ){
5636             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5637           }else{
5638             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5639             if( rc!=SQLITE_OK ){
5640               goto end_allocate_page;
5641             }
5642             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5643           }
5644         }else{
5645           /* The trunk page is required by the caller but it contains
5646           ** pointers to free-list leaves. The first leaf becomes a trunk
5647           ** page in this case.
5648           */
5649           MemPage *pNewTrunk;
5650           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5651           if( iNewTrunk>mxPage ){
5652             rc = SQLITE_CORRUPT_BKPT;
5653             goto end_allocate_page;
5654           }
5655           testcase( iNewTrunk==mxPage );
5656           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5657           if( rc!=SQLITE_OK ){
5658             goto end_allocate_page;
5659           }
5660           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5661           if( rc!=SQLITE_OK ){
5662             releasePage(pNewTrunk);
5663             goto end_allocate_page;
5664           }
5665           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5666           put4byte(&pNewTrunk->aData[4], k-1);
5667           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5668           releasePage(pNewTrunk);
5669           if( !pPrevTrunk ){
5670             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5671             put4byte(&pPage1->aData[32], iNewTrunk);
5672           }else{
5673             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5674             if( rc ){
5675               goto end_allocate_page;
5676             }
5677             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5678           }
5679         }
5680         pTrunk = 0;
5681         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5682 #endif
5683       }else if( k>0 ){
5684         /* Extract a leaf from the trunk */
5685         u32 closest;
5686         Pgno iPage;
5687         unsigned char *aData = pTrunk->aData;
5688         if( nearby>0 ){
5689           u32 i;
5690           closest = 0;
5691           if( eMode==BTALLOC_LE ){
5692             for(i=0; i<k; i++){
5693               iPage = get4byte(&aData[8+i*4]);
5694               if( iPage<=nearby ){
5695                 closest = i;
5696                 break;
5697               }
5698             }
5699           }else{
5700             int dist;
5701             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5702             for(i=1; i<k; i++){
5703               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5704               if( d2<dist ){
5705                 closest = i;
5706                 dist = d2;
5707               }
5708             }
5709           }
5710         }else{
5711           closest = 0;
5712         }
5713 
5714         iPage = get4byte(&aData[8+closest*4]);
5715         testcase( iPage==mxPage );
5716         if( iPage>mxPage ){
5717           rc = SQLITE_CORRUPT_BKPT;
5718           goto end_allocate_page;
5719         }
5720         testcase( iPage==mxPage );
5721         if( !searchList
5722          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5723         ){
5724           int noContent;
5725           *pPgno = iPage;
5726           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5727                  ": %d more free pages\n",
5728                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5729           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5730           if( rc ) goto end_allocate_page;
5731           if( closest<k-1 ){
5732             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5733           }
5734           put4byte(&aData[4], k-1);
5735           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5736           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5737           if( rc==SQLITE_OK ){
5738             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5739             if( rc!=SQLITE_OK ){
5740               releasePage(*ppPage);
5741               *ppPage = 0;
5742             }
5743           }
5744           searchList = 0;
5745         }
5746       }
5747       releasePage(pPrevTrunk);
5748       pPrevTrunk = 0;
5749     }while( searchList );
5750   }else{
5751     /* There are no pages on the freelist, so append a new page to the
5752     ** database image.
5753     **
5754     ** Normally, new pages allocated by this block can be requested from the
5755     ** pager layer with the 'no-content' flag set. This prevents the pager
5756     ** from trying to read the pages content from disk. However, if the
5757     ** current transaction has already run one or more incremental-vacuum
5758     ** steps, then the page we are about to allocate may contain content
5759     ** that is required in the event of a rollback. In this case, do
5760     ** not set the no-content flag. This causes the pager to load and journal
5761     ** the current page content before overwriting it.
5762     **
5763     ** Note that the pager will not actually attempt to load or journal
5764     ** content for any page that really does lie past the end of the database
5765     ** file on disk. So the effects of disabling the no-content optimization
5766     ** here are confined to those pages that lie between the end of the
5767     ** database image and the end of the database file.
5768     */
5769     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5770 
5771     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5772     if( rc ) return rc;
5773     pBt->nPage++;
5774     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5775 
5776 #ifndef SQLITE_OMIT_AUTOVACUUM
5777     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5778       /* If *pPgno refers to a pointer-map page, allocate two new pages
5779       ** at the end of the file instead of one. The first allocated page
5780       ** becomes a new pointer-map page, the second is used by the caller.
5781       */
5782       MemPage *pPg = 0;
5783       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5784       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5785       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5786       if( rc==SQLITE_OK ){
5787         rc = sqlite3PagerWrite(pPg->pDbPage);
5788         releasePage(pPg);
5789       }
5790       if( rc ) return rc;
5791       pBt->nPage++;
5792       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5793     }
5794 #endif
5795     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5796     *pPgno = pBt->nPage;
5797 
5798     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5799     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5800     if( rc ) return rc;
5801     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5802     if( rc!=SQLITE_OK ){
5803       releasePage(*ppPage);
5804       *ppPage = 0;
5805     }
5806     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5807   }
5808 
5809   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5810 
5811 end_allocate_page:
5812   releasePage(pTrunk);
5813   releasePage(pPrevTrunk);
5814   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5815   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5816   return rc;
5817 }
5818 
5819 /*
5820 ** This function is used to add page iPage to the database file free-list.
5821 ** It is assumed that the page is not already a part of the free-list.
5822 **
5823 ** The value passed as the second argument to this function is optional.
5824 ** If the caller happens to have a pointer to the MemPage object
5825 ** corresponding to page iPage handy, it may pass it as the second value.
5826 ** Otherwise, it may pass NULL.
5827 **
5828 ** If a pointer to a MemPage object is passed as the second argument,
5829 ** its reference count is not altered by this function.
5830 */
5831 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5832   MemPage *pTrunk = 0;                /* Free-list trunk page */
5833   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5834   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5835   MemPage *pPage;                     /* Page being freed. May be NULL. */
5836   int rc;                             /* Return Code */
5837   int nFree;                          /* Initial number of pages on free-list */
5838 
5839   assert( sqlite3_mutex_held(pBt->mutex) );
5840   assert( CORRUPT_DB || iPage>1 );
5841   assert( !pMemPage || pMemPage->pgno==iPage );
5842 
5843   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
5844   if( pMemPage ){
5845     pPage = pMemPage;
5846     sqlite3PagerRef(pPage->pDbPage);
5847   }else{
5848     pPage = btreePageLookup(pBt, iPage);
5849   }
5850 
5851   /* Increment the free page count on pPage1 */
5852   rc = sqlite3PagerWrite(pPage1->pDbPage);
5853   if( rc ) goto freepage_out;
5854   nFree = get4byte(&pPage1->aData[36]);
5855   put4byte(&pPage1->aData[36], nFree+1);
5856 
5857   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5858     /* If the secure_delete option is enabled, then
5859     ** always fully overwrite deleted information with zeros.
5860     */
5861     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5862      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5863     ){
5864       goto freepage_out;
5865     }
5866     memset(pPage->aData, 0, pPage->pBt->pageSize);
5867   }
5868 
5869   /* If the database supports auto-vacuum, write an entry in the pointer-map
5870   ** to indicate that the page is free.
5871   */
5872   if( ISAUTOVACUUM ){
5873     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5874     if( rc ) goto freepage_out;
5875   }
5876 
5877   /* Now manipulate the actual database free-list structure. There are two
5878   ** possibilities. If the free-list is currently empty, or if the first
5879   ** trunk page in the free-list is full, then this page will become a
5880   ** new free-list trunk page. Otherwise, it will become a leaf of the
5881   ** first trunk page in the current free-list. This block tests if it
5882   ** is possible to add the page as a new free-list leaf.
5883   */
5884   if( nFree!=0 ){
5885     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
5886 
5887     iTrunk = get4byte(&pPage1->aData[32]);
5888     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5889     if( rc!=SQLITE_OK ){
5890       goto freepage_out;
5891     }
5892 
5893     nLeaf = get4byte(&pTrunk->aData[4]);
5894     assert( pBt->usableSize>32 );
5895     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5896       rc = SQLITE_CORRUPT_BKPT;
5897       goto freepage_out;
5898     }
5899     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5900       /* In this case there is room on the trunk page to insert the page
5901       ** being freed as a new leaf.
5902       **
5903       ** Note that the trunk page is not really full until it contains
5904       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5905       ** coded.  But due to a coding error in versions of SQLite prior to
5906       ** 3.6.0, databases with freelist trunk pages holding more than
5907       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
5908       ** to maintain backwards compatibility with older versions of SQLite,
5909       ** we will continue to restrict the number of entries to usableSize/4 - 8
5910       ** for now.  At some point in the future (once everyone has upgraded
5911       ** to 3.6.0 or later) we should consider fixing the conditional above
5912       ** to read "usableSize/4-2" instead of "usableSize/4-8".
5913       **
5914       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5915       ** avoid using the last six entries in the freelist trunk page array in
5916       ** order that database files created by newer versions of SQLite can be
5917       ** read by older versions of SQLite.
5918       */
5919       rc = sqlite3PagerWrite(pTrunk->pDbPage);
5920       if( rc==SQLITE_OK ){
5921         put4byte(&pTrunk->aData[4], nLeaf+1);
5922         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5923         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5924           sqlite3PagerDontWrite(pPage->pDbPage);
5925         }
5926         rc = btreeSetHasContent(pBt, iPage);
5927       }
5928       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5929       goto freepage_out;
5930     }
5931   }
5932 
5933   /* If control flows to this point, then it was not possible to add the
5934   ** the page being freed as a leaf page of the first trunk in the free-list.
5935   ** Possibly because the free-list is empty, or possibly because the
5936   ** first trunk in the free-list is full. Either way, the page being freed
5937   ** will become the new first trunk page in the free-list.
5938   */
5939   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5940     goto freepage_out;
5941   }
5942   rc = sqlite3PagerWrite(pPage->pDbPage);
5943   if( rc!=SQLITE_OK ){
5944     goto freepage_out;
5945   }
5946   put4byte(pPage->aData, iTrunk);
5947   put4byte(&pPage->aData[4], 0);
5948   put4byte(&pPage1->aData[32], iPage);
5949   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5950 
5951 freepage_out:
5952   if( pPage ){
5953     pPage->isInit = 0;
5954   }
5955   releasePage(pPage);
5956   releasePage(pTrunk);
5957   return rc;
5958 }
5959 static void freePage(MemPage *pPage, int *pRC){
5960   if( (*pRC)==SQLITE_OK ){
5961     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5962   }
5963 }
5964 
5965 /*
5966 ** Free any overflow pages associated with the given Cell.  Write the
5967 ** local Cell size (the number of bytes on the original page, omitting
5968 ** overflow) into *pnSize.
5969 */
5970 static int clearCell(
5971   MemPage *pPage,          /* The page that contains the Cell */
5972   unsigned char *pCell,    /* First byte of the Cell */
5973   u16 *pnSize              /* Write the size of the Cell here */
5974 ){
5975   BtShared *pBt = pPage->pBt;
5976   CellInfo info;
5977   Pgno ovflPgno;
5978   int rc;
5979   int nOvfl;
5980   u32 ovflPageSize;
5981 
5982   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5983   pPage->xParseCell(pPage, pCell, &info);
5984   *pnSize = info.nSize;
5985   if( info.nLocal==info.nPayload ){
5986     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
5987   }
5988   if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
5989     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
5990   }
5991   ovflPgno = get4byte(pCell + info.nSize - 4);
5992   assert( pBt->usableSize > 4 );
5993   ovflPageSize = pBt->usableSize - 4;
5994   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5995   assert( nOvfl>0 ||
5996     (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5997   );
5998   while( nOvfl-- ){
5999     Pgno iNext = 0;
6000     MemPage *pOvfl = 0;
6001     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6002       /* 0 is not a legal page number and page 1 cannot be an
6003       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6004       ** file the database must be corrupt. */
6005       return SQLITE_CORRUPT_BKPT;
6006     }
6007     if( nOvfl ){
6008       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6009       if( rc ) return rc;
6010     }
6011 
6012     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6013      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6014     ){
6015       /* There is no reason any cursor should have an outstanding reference
6016       ** to an overflow page belonging to a cell that is being deleted/updated.
6017       ** So if there exists more than one reference to this page, then it
6018       ** must not really be an overflow page and the database must be corrupt.
6019       ** It is helpful to detect this before calling freePage2(), as
6020       ** freePage2() may zero the page contents if secure-delete mode is
6021       ** enabled. If this 'overflow' page happens to be a page that the
6022       ** caller is iterating through or using in some other way, this
6023       ** can be problematic.
6024       */
6025       rc = SQLITE_CORRUPT_BKPT;
6026     }else{
6027       rc = freePage2(pBt, pOvfl, ovflPgno);
6028     }
6029 
6030     if( pOvfl ){
6031       sqlite3PagerUnref(pOvfl->pDbPage);
6032     }
6033     if( rc ) return rc;
6034     ovflPgno = iNext;
6035   }
6036   return SQLITE_OK;
6037 }
6038 
6039 /*
6040 ** Create the byte sequence used to represent a cell on page pPage
6041 ** and write that byte sequence into pCell[].  Overflow pages are
6042 ** allocated and filled in as necessary.  The calling procedure
6043 ** is responsible for making sure sufficient space has been allocated
6044 ** for pCell[].
6045 **
6046 ** Note that pCell does not necessary need to point to the pPage->aData
6047 ** area.  pCell might point to some temporary storage.  The cell will
6048 ** be constructed in this temporary area then copied into pPage->aData
6049 ** later.
6050 */
6051 static int fillInCell(
6052   MemPage *pPage,                /* The page that contains the cell */
6053   unsigned char *pCell,          /* Complete text of the cell */
6054   const void *pKey, i64 nKey,    /* The key */
6055   const void *pData,int nData,   /* The data */
6056   int nZero,                     /* Extra zero bytes to append to pData */
6057   int *pnSize                    /* Write cell size here */
6058 ){
6059   int nPayload;
6060   const u8 *pSrc;
6061   int nSrc, n, rc;
6062   int spaceLeft;
6063   MemPage *pOvfl = 0;
6064   MemPage *pToRelease = 0;
6065   unsigned char *pPrior;
6066   unsigned char *pPayload;
6067   BtShared *pBt = pPage->pBt;
6068   Pgno pgnoOvfl = 0;
6069   int nHeader;
6070 
6071   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6072 
6073   /* pPage is not necessarily writeable since pCell might be auxiliary
6074   ** buffer space that is separate from the pPage buffer area */
6075   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6076             || sqlite3PagerIswriteable(pPage->pDbPage) );
6077 
6078   /* Fill in the header. */
6079   nHeader = pPage->childPtrSize;
6080   nPayload = nData + nZero;
6081   if( pPage->intKeyLeaf ){
6082     nHeader += putVarint32(&pCell[nHeader], nPayload);
6083   }else{
6084     assert( nData==0 );
6085     assert( nZero==0 );
6086   }
6087   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
6088 
6089   /* Fill in the payload size */
6090   if( pPage->intKey ){
6091     pSrc = pData;
6092     nSrc = nData;
6093     nData = 0;
6094   }else{
6095     assert( nKey<=0x7fffffff && pKey!=0 );
6096     nPayload = (int)nKey;
6097     pSrc = pKey;
6098     nSrc = (int)nKey;
6099   }
6100   if( nPayload<=pPage->maxLocal ){
6101     n = nHeader + nPayload;
6102     testcase( n==3 );
6103     testcase( n==4 );
6104     if( n<4 ) n = 4;
6105     *pnSize = n;
6106     spaceLeft = nPayload;
6107     pPrior = pCell;
6108   }else{
6109     int mn = pPage->minLocal;
6110     n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6111     testcase( n==pPage->maxLocal );
6112     testcase( n==pPage->maxLocal+1 );
6113     if( n > pPage->maxLocal ) n = mn;
6114     spaceLeft = n;
6115     *pnSize = n + nHeader + 4;
6116     pPrior = &pCell[nHeader+n];
6117   }
6118   pPayload = &pCell[nHeader];
6119 
6120   /* At this point variables should be set as follows:
6121   **
6122   **   nPayload           Total payload size in bytes
6123   **   pPayload           Begin writing payload here
6124   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6125   **                      that means content must spill into overflow pages.
6126   **   *pnSize            Size of the local cell (not counting overflow pages)
6127   **   pPrior             Where to write the pgno of the first overflow page
6128   **
6129   ** Use a call to btreeParseCellPtr() to verify that the values above
6130   ** were computed correctly.
6131   */
6132 #if SQLITE_DEBUG
6133   {
6134     CellInfo info;
6135     pPage->xParseCell(pPage, pCell, &info);
6136     assert( nHeader==(int)(info.pPayload - pCell) );
6137     assert( info.nKey==nKey );
6138     assert( *pnSize == info.nSize );
6139     assert( spaceLeft == info.nLocal );
6140   }
6141 #endif
6142 
6143   /* Write the payload into the local Cell and any extra into overflow pages */
6144   while( nPayload>0 ){
6145     if( spaceLeft==0 ){
6146 #ifndef SQLITE_OMIT_AUTOVACUUM
6147       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6148       if( pBt->autoVacuum ){
6149         do{
6150           pgnoOvfl++;
6151         } while(
6152           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6153         );
6154       }
6155 #endif
6156       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6157 #ifndef SQLITE_OMIT_AUTOVACUUM
6158       /* If the database supports auto-vacuum, and the second or subsequent
6159       ** overflow page is being allocated, add an entry to the pointer-map
6160       ** for that page now.
6161       **
6162       ** If this is the first overflow page, then write a partial entry
6163       ** to the pointer-map. If we write nothing to this pointer-map slot,
6164       ** then the optimistic overflow chain processing in clearCell()
6165       ** may misinterpret the uninitialized values and delete the
6166       ** wrong pages from the database.
6167       */
6168       if( pBt->autoVacuum && rc==SQLITE_OK ){
6169         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6170         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6171         if( rc ){
6172           releasePage(pOvfl);
6173         }
6174       }
6175 #endif
6176       if( rc ){
6177         releasePage(pToRelease);
6178         return rc;
6179       }
6180 
6181       /* If pToRelease is not zero than pPrior points into the data area
6182       ** of pToRelease.  Make sure pToRelease is still writeable. */
6183       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6184 
6185       /* If pPrior is part of the data area of pPage, then make sure pPage
6186       ** is still writeable */
6187       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6188             || sqlite3PagerIswriteable(pPage->pDbPage) );
6189 
6190       put4byte(pPrior, pgnoOvfl);
6191       releasePage(pToRelease);
6192       pToRelease = pOvfl;
6193       pPrior = pOvfl->aData;
6194       put4byte(pPrior, 0);
6195       pPayload = &pOvfl->aData[4];
6196       spaceLeft = pBt->usableSize - 4;
6197     }
6198     n = nPayload;
6199     if( n>spaceLeft ) n = spaceLeft;
6200 
6201     /* If pToRelease is not zero than pPayload points into the data area
6202     ** of pToRelease.  Make sure pToRelease is still writeable. */
6203     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6204 
6205     /* If pPayload is part of the data area of pPage, then make sure pPage
6206     ** is still writeable */
6207     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6208             || sqlite3PagerIswriteable(pPage->pDbPage) );
6209 
6210     if( nSrc>0 ){
6211       if( n>nSrc ) n = nSrc;
6212       assert( pSrc );
6213       memcpy(pPayload, pSrc, n);
6214     }else{
6215       memset(pPayload, 0, n);
6216     }
6217     nPayload -= n;
6218     pPayload += n;
6219     pSrc += n;
6220     nSrc -= n;
6221     spaceLeft -= n;
6222     if( nSrc==0 ){
6223       nSrc = nData;
6224       pSrc = pData;
6225     }
6226   }
6227   releasePage(pToRelease);
6228   return SQLITE_OK;
6229 }
6230 
6231 /*
6232 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6233 ** The cell content is not freed or deallocated.  It is assumed that
6234 ** the cell content has been copied someplace else.  This routine just
6235 ** removes the reference to the cell from pPage.
6236 **
6237 ** "sz" must be the number of bytes in the cell.
6238 */
6239 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6240   u32 pc;         /* Offset to cell content of cell being deleted */
6241   u8 *data;       /* pPage->aData */
6242   u8 *ptr;        /* Used to move bytes around within data[] */
6243   int rc;         /* The return code */
6244   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6245 
6246   if( *pRC ) return;
6247 
6248   assert( idx>=0 && idx<pPage->nCell );
6249   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6250   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6251   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6252   data = pPage->aData;
6253   ptr = &pPage->aCellIdx[2*idx];
6254   pc = get2byte(ptr);
6255   hdr = pPage->hdrOffset;
6256   testcase( pc==get2byte(&data[hdr+5]) );
6257   testcase( pc+sz==pPage->pBt->usableSize );
6258   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
6259     *pRC = SQLITE_CORRUPT_BKPT;
6260     return;
6261   }
6262   rc = freeSpace(pPage, pc, sz);
6263   if( rc ){
6264     *pRC = rc;
6265     return;
6266   }
6267   pPage->nCell--;
6268   if( pPage->nCell==0 ){
6269     memset(&data[hdr+1], 0, 4);
6270     data[hdr+7] = 0;
6271     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6272     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6273                        - pPage->childPtrSize - 8;
6274   }else{
6275     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6276     put2byte(&data[hdr+3], pPage->nCell);
6277     pPage->nFree += 2;
6278   }
6279 }
6280 
6281 /*
6282 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6283 ** content of the cell.
6284 **
6285 ** If the cell content will fit on the page, then put it there.  If it
6286 ** will not fit, then make a copy of the cell content into pTemp if
6287 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6288 ** in pPage->apOvfl[] and make it point to the cell content (either
6289 ** in pTemp or the original pCell) and also record its index.
6290 ** Allocating a new entry in pPage->aCell[] implies that
6291 ** pPage->nOverflow is incremented.
6292 */
6293 static void insertCell(
6294   MemPage *pPage,   /* Page into which we are copying */
6295   int i,            /* New cell becomes the i-th cell of the page */
6296   u8 *pCell,        /* Content of the new cell */
6297   int sz,           /* Bytes of content in pCell */
6298   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6299   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6300   int *pRC          /* Read and write return code from here */
6301 ){
6302   int idx = 0;      /* Where to write new cell content in data[] */
6303   int j;            /* Loop counter */
6304   u8 *data;         /* The content of the whole page */
6305   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6306 
6307   if( *pRC ) return;
6308 
6309   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6310   assert( MX_CELL(pPage->pBt)<=10921 );
6311   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6312   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6313   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6314   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6315   /* The cell should normally be sized correctly.  However, when moving a
6316   ** malformed cell from a leaf page to an interior page, if the cell size
6317   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6318   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6319   ** the term after the || in the following assert(). */
6320   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6321   if( pPage->nOverflow || sz+2>pPage->nFree ){
6322     if( pTemp ){
6323       memcpy(pTemp, pCell, sz);
6324       pCell = pTemp;
6325     }
6326     if( iChild ){
6327       put4byte(pCell, iChild);
6328     }
6329     j = pPage->nOverflow++;
6330     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6331     pPage->apOvfl[j] = pCell;
6332     pPage->aiOvfl[j] = (u16)i;
6333 
6334     /* When multiple overflows occur, they are always sequential and in
6335     ** sorted order.  This invariants arise because multiple overflows can
6336     ** only occur when inserting divider cells into the parent page during
6337     ** balancing, and the dividers are adjacent and sorted.
6338     */
6339     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6340     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6341   }else{
6342     int rc = sqlite3PagerWrite(pPage->pDbPage);
6343     if( rc!=SQLITE_OK ){
6344       *pRC = rc;
6345       return;
6346     }
6347     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6348     data = pPage->aData;
6349     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6350     rc = allocateSpace(pPage, sz, &idx);
6351     if( rc ){ *pRC = rc; return; }
6352     /* The allocateSpace() routine guarantees the following properties
6353     ** if it returns successfully */
6354     assert( idx >= 0 );
6355     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6356     assert( idx+sz <= (int)pPage->pBt->usableSize );
6357     pPage->nFree -= (u16)(2 + sz);
6358     memcpy(&data[idx], pCell, sz);
6359     if( iChild ){
6360       put4byte(&data[idx], iChild);
6361     }
6362     pIns = pPage->aCellIdx + i*2;
6363     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6364     put2byte(pIns, idx);
6365     pPage->nCell++;
6366     /* increment the cell count */
6367     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6368     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6369 #ifndef SQLITE_OMIT_AUTOVACUUM
6370     if( pPage->pBt->autoVacuum ){
6371       /* The cell may contain a pointer to an overflow page. If so, write
6372       ** the entry for the overflow page into the pointer map.
6373       */
6374       ptrmapPutOvflPtr(pPage, pCell, pRC);
6375     }
6376 #endif
6377   }
6378 }
6379 
6380 /*
6381 ** A CellArray object contains a cache of pointers and sizes for a
6382 ** consecutive sequence of cells that might be held multiple pages.
6383 */
6384 typedef struct CellArray CellArray;
6385 struct CellArray {
6386   int nCell;              /* Number of cells in apCell[] */
6387   MemPage *pRef;          /* Reference page */
6388   u8 **apCell;            /* All cells begin balanced */
6389   u16 *szCell;            /* Local size of all cells in apCell[] */
6390 };
6391 
6392 /*
6393 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6394 ** computed.
6395 */
6396 static void populateCellCache(CellArray *p, int idx, int N){
6397   assert( idx>=0 && idx+N<=p->nCell );
6398   while( N>0 ){
6399     assert( p->apCell[idx]!=0 );
6400     if( p->szCell[idx]==0 ){
6401       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6402     }else{
6403       assert( CORRUPT_DB ||
6404               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6405     }
6406     idx++;
6407     N--;
6408   }
6409 }
6410 
6411 /*
6412 ** Return the size of the Nth element of the cell array
6413 */
6414 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6415   assert( N>=0 && N<p->nCell );
6416   assert( p->szCell[N]==0 );
6417   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6418   return p->szCell[N];
6419 }
6420 static u16 cachedCellSize(CellArray *p, int N){
6421   assert( N>=0 && N<p->nCell );
6422   if( p->szCell[N] ) return p->szCell[N];
6423   return computeCellSize(p, N);
6424 }
6425 
6426 /*
6427 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6428 ** szCell[] array contains the size in bytes of each cell. This function
6429 ** replaces the current contents of page pPg with the contents of the cell
6430 ** array.
6431 **
6432 ** Some of the cells in apCell[] may currently be stored in pPg. This
6433 ** function works around problems caused by this by making a copy of any
6434 ** such cells before overwriting the page data.
6435 **
6436 ** The MemPage.nFree field is invalidated by this function. It is the
6437 ** responsibility of the caller to set it correctly.
6438 */
6439 static int rebuildPage(
6440   MemPage *pPg,                   /* Edit this page */
6441   int nCell,                      /* Final number of cells on page */
6442   u8 **apCell,                    /* Array of cells */
6443   u16 *szCell                     /* Array of cell sizes */
6444 ){
6445   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6446   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6447   const int usableSize = pPg->pBt->usableSize;
6448   u8 * const pEnd = &aData[usableSize];
6449   int i;
6450   u8 *pCellptr = pPg->aCellIdx;
6451   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6452   u8 *pData;
6453 
6454   i = get2byte(&aData[hdr+5]);
6455   memcpy(&pTmp[i], &aData[i], usableSize - i);
6456 
6457   pData = pEnd;
6458   for(i=0; i<nCell; i++){
6459     u8 *pCell = apCell[i];
6460     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6461       pCell = &pTmp[pCell - aData];
6462     }
6463     pData -= szCell[i];
6464     put2byte(pCellptr, (pData - aData));
6465     pCellptr += 2;
6466     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6467     memcpy(pData, pCell, szCell[i]);
6468     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6469     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6470   }
6471 
6472   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6473   pPg->nCell = nCell;
6474   pPg->nOverflow = 0;
6475 
6476   put2byte(&aData[hdr+1], 0);
6477   put2byte(&aData[hdr+3], pPg->nCell);
6478   put2byte(&aData[hdr+5], pData - aData);
6479   aData[hdr+7] = 0x00;
6480   return SQLITE_OK;
6481 }
6482 
6483 /*
6484 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6485 ** contains the size in bytes of each such cell. This function attempts to
6486 ** add the cells stored in the array to page pPg. If it cannot (because
6487 ** the page needs to be defragmented before the cells will fit), non-zero
6488 ** is returned. Otherwise, if the cells are added successfully, zero is
6489 ** returned.
6490 **
6491 ** Argument pCellptr points to the first entry in the cell-pointer array
6492 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6493 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6494 ** cell in the array. It is the responsibility of the caller to ensure
6495 ** that it is safe to overwrite this part of the cell-pointer array.
6496 **
6497 ** When this function is called, *ppData points to the start of the
6498 ** content area on page pPg. If the size of the content area is extended,
6499 ** *ppData is updated to point to the new start of the content area
6500 ** before returning.
6501 **
6502 ** Finally, argument pBegin points to the byte immediately following the
6503 ** end of the space required by this page for the cell-pointer area (for
6504 ** all cells - not just those inserted by the current call). If the content
6505 ** area must be extended to before this point in order to accomodate all
6506 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6507 */
6508 static int pageInsertArray(
6509   MemPage *pPg,                   /* Page to add cells to */
6510   u8 *pBegin,                     /* End of cell-pointer array */
6511   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6512   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6513   int iFirst,                     /* Index of first cell to add */
6514   int nCell,                      /* Number of cells to add to pPg */
6515   CellArray *pCArray              /* Array of cells */
6516 ){
6517   int i;
6518   u8 *aData = pPg->aData;
6519   u8 *pData = *ppData;
6520   int iEnd = iFirst + nCell;
6521   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6522   for(i=iFirst; i<iEnd; i++){
6523     int sz, rc;
6524     u8 *pSlot;
6525     sz = cachedCellSize(pCArray, i);
6526     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6527       pData -= sz;
6528       if( pData<pBegin ) return 1;
6529       pSlot = pData;
6530     }
6531     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6532     ** database.  But they might for a corrupt database.  Hence use memmove()
6533     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6534     assert( (pSlot+sz)<=pCArray->apCell[i]
6535          || pSlot>=(pCArray->apCell[i]+sz)
6536          || CORRUPT_DB );
6537     memmove(pSlot, pCArray->apCell[i], sz);
6538     put2byte(pCellptr, (pSlot - aData));
6539     pCellptr += 2;
6540   }
6541   *ppData = pData;
6542   return 0;
6543 }
6544 
6545 /*
6546 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6547 ** contains the size in bytes of each such cell. This function adds the
6548 ** space associated with each cell in the array that is currently stored
6549 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6550 ** fields of the page are not updated.
6551 **
6552 ** This function returns the total number of cells added to the free-list.
6553 */
6554 static int pageFreeArray(
6555   MemPage *pPg,                   /* Page to edit */
6556   int iFirst,                     /* First cell to delete */
6557   int nCell,                      /* Cells to delete */
6558   CellArray *pCArray              /* Array of cells */
6559 ){
6560   u8 * const aData = pPg->aData;
6561   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6562   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6563   int nRet = 0;
6564   int i;
6565   int iEnd = iFirst + nCell;
6566   u8 *pFree = 0;
6567   int szFree = 0;
6568 
6569   for(i=iFirst; i<iEnd; i++){
6570     u8 *pCell = pCArray->apCell[i];
6571     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6572       int sz;
6573       /* No need to use cachedCellSize() here.  The sizes of all cells that
6574       ** are to be freed have already been computing while deciding which
6575       ** cells need freeing */
6576       sz = pCArray->szCell[i];  assert( sz>0 );
6577       if( pFree!=(pCell + sz) ){
6578         if( pFree ){
6579           assert( pFree>aData && (pFree - aData)<65536 );
6580           freeSpace(pPg, (u16)(pFree - aData), szFree);
6581         }
6582         pFree = pCell;
6583         szFree = sz;
6584         if( pFree+sz>pEnd ) return 0;
6585       }else{
6586         pFree = pCell;
6587         szFree += sz;
6588       }
6589       nRet++;
6590     }
6591   }
6592   if( pFree ){
6593     assert( pFree>aData && (pFree - aData)<65536 );
6594     freeSpace(pPg, (u16)(pFree - aData), szFree);
6595   }
6596   return nRet;
6597 }
6598 
6599 /*
6600 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6601 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6602 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6603 ** starting at apCell[iNew].
6604 **
6605 ** This routine makes the necessary adjustments to pPg so that it contains
6606 ** the correct cells after being balanced.
6607 **
6608 ** The pPg->nFree field is invalid when this function returns. It is the
6609 ** responsibility of the caller to set it correctly.
6610 */
6611 static int editPage(
6612   MemPage *pPg,                   /* Edit this page */
6613   int iOld,                       /* Index of first cell currently on page */
6614   int iNew,                       /* Index of new first cell on page */
6615   int nNew,                       /* Final number of cells on page */
6616   CellArray *pCArray              /* Array of cells and sizes */
6617 ){
6618   u8 * const aData = pPg->aData;
6619   const int hdr = pPg->hdrOffset;
6620   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6621   int nCell = pPg->nCell;       /* Cells stored on pPg */
6622   u8 *pData;
6623   u8 *pCellptr;
6624   int i;
6625   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6626   int iNewEnd = iNew + nNew;
6627 
6628 #ifdef SQLITE_DEBUG
6629   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6630   memcpy(pTmp, aData, pPg->pBt->usableSize);
6631 #endif
6632 
6633   /* Remove cells from the start and end of the page */
6634   if( iOld<iNew ){
6635     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6636     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6637     nCell -= nShift;
6638   }
6639   if( iNewEnd < iOldEnd ){
6640     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6641   }
6642 
6643   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6644   if( pData<pBegin ) goto editpage_fail;
6645 
6646   /* Add cells to the start of the page */
6647   if( iNew<iOld ){
6648     int nAdd = MIN(nNew,iOld-iNew);
6649     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6650     pCellptr = pPg->aCellIdx;
6651     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6652     if( pageInsertArray(
6653           pPg, pBegin, &pData, pCellptr,
6654           iNew, nAdd, pCArray
6655     ) ) goto editpage_fail;
6656     nCell += nAdd;
6657   }
6658 
6659   /* Add any overflow cells */
6660   for(i=0; i<pPg->nOverflow; i++){
6661     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6662     if( iCell>=0 && iCell<nNew ){
6663       pCellptr = &pPg->aCellIdx[iCell * 2];
6664       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6665       nCell++;
6666       if( pageInsertArray(
6667             pPg, pBegin, &pData, pCellptr,
6668             iCell+iNew, 1, pCArray
6669       ) ) goto editpage_fail;
6670     }
6671   }
6672 
6673   /* Append cells to the end of the page */
6674   pCellptr = &pPg->aCellIdx[nCell*2];
6675   if( pageInsertArray(
6676         pPg, pBegin, &pData, pCellptr,
6677         iNew+nCell, nNew-nCell, pCArray
6678   ) ) goto editpage_fail;
6679 
6680   pPg->nCell = nNew;
6681   pPg->nOverflow = 0;
6682 
6683   put2byte(&aData[hdr+3], pPg->nCell);
6684   put2byte(&aData[hdr+5], pData - aData);
6685 
6686 #ifdef SQLITE_DEBUG
6687   for(i=0; i<nNew && !CORRUPT_DB; i++){
6688     u8 *pCell = pCArray->apCell[i+iNew];
6689     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6690     if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6691       pCell = &pTmp[pCell - aData];
6692     }
6693     assert( 0==memcmp(pCell, &aData[iOff],
6694             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6695   }
6696 #endif
6697 
6698   return SQLITE_OK;
6699  editpage_fail:
6700   /* Unable to edit this page. Rebuild it from scratch instead. */
6701   populateCellCache(pCArray, iNew, nNew);
6702   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6703 }
6704 
6705 /*
6706 ** The following parameters determine how many adjacent pages get involved
6707 ** in a balancing operation.  NN is the number of neighbors on either side
6708 ** of the page that participate in the balancing operation.  NB is the
6709 ** total number of pages that participate, including the target page and
6710 ** NN neighbors on either side.
6711 **
6712 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6713 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6714 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6715 ** The value of NN appears to give the best results overall.
6716 */
6717 #define NN 1             /* Number of neighbors on either side of pPage */
6718 #define NB (NN*2+1)      /* Total pages involved in the balance */
6719 
6720 
6721 #ifndef SQLITE_OMIT_QUICKBALANCE
6722 /*
6723 ** This version of balance() handles the common special case where
6724 ** a new entry is being inserted on the extreme right-end of the
6725 ** tree, in other words, when the new entry will become the largest
6726 ** entry in the tree.
6727 **
6728 ** Instead of trying to balance the 3 right-most leaf pages, just add
6729 ** a new page to the right-hand side and put the one new entry in
6730 ** that page.  This leaves the right side of the tree somewhat
6731 ** unbalanced.  But odds are that we will be inserting new entries
6732 ** at the end soon afterwards so the nearly empty page will quickly
6733 ** fill up.  On average.
6734 **
6735 ** pPage is the leaf page which is the right-most page in the tree.
6736 ** pParent is its parent.  pPage must have a single overflow entry
6737 ** which is also the right-most entry on the page.
6738 **
6739 ** The pSpace buffer is used to store a temporary copy of the divider
6740 ** cell that will be inserted into pParent. Such a cell consists of a 4
6741 ** byte page number followed by a variable length integer. In other
6742 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6743 ** least 13 bytes in size.
6744 */
6745 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6746   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6747   MemPage *pNew;                       /* Newly allocated page */
6748   int rc;                              /* Return Code */
6749   Pgno pgnoNew;                        /* Page number of pNew */
6750 
6751   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6752   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6753   assert( pPage->nOverflow==1 );
6754 
6755   /* This error condition is now caught prior to reaching this function */
6756   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6757 
6758   /* Allocate a new page. This page will become the right-sibling of
6759   ** pPage. Make the parent page writable, so that the new divider cell
6760   ** may be inserted. If both these operations are successful, proceed.
6761   */
6762   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6763 
6764   if( rc==SQLITE_OK ){
6765 
6766     u8 *pOut = &pSpace[4];
6767     u8 *pCell = pPage->apOvfl[0];
6768     u16 szCell = pPage->xCellSize(pPage, pCell);
6769     u8 *pStop;
6770 
6771     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6772     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6773     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6774     rc = rebuildPage(pNew, 1, &pCell, &szCell);
6775     if( NEVER(rc) ) return rc;
6776     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6777 
6778     /* If this is an auto-vacuum database, update the pointer map
6779     ** with entries for the new page, and any pointer from the
6780     ** cell on the page to an overflow page. If either of these
6781     ** operations fails, the return code is set, but the contents
6782     ** of the parent page are still manipulated by thh code below.
6783     ** That is Ok, at this point the parent page is guaranteed to
6784     ** be marked as dirty. Returning an error code will cause a
6785     ** rollback, undoing any changes made to the parent page.
6786     */
6787     if( ISAUTOVACUUM ){
6788       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6789       if( szCell>pNew->minLocal ){
6790         ptrmapPutOvflPtr(pNew, pCell, &rc);
6791       }
6792     }
6793 
6794     /* Create a divider cell to insert into pParent. The divider cell
6795     ** consists of a 4-byte page number (the page number of pPage) and
6796     ** a variable length key value (which must be the same value as the
6797     ** largest key on pPage).
6798     **
6799     ** To find the largest key value on pPage, first find the right-most
6800     ** cell on pPage. The first two fields of this cell are the
6801     ** record-length (a variable length integer at most 32-bits in size)
6802     ** and the key value (a variable length integer, may have any value).
6803     ** The first of the while(...) loops below skips over the record-length
6804     ** field. The second while(...) loop copies the key value from the
6805     ** cell on pPage into the pSpace buffer.
6806     */
6807     pCell = findCell(pPage, pPage->nCell-1);
6808     pStop = &pCell[9];
6809     while( (*(pCell++)&0x80) && pCell<pStop );
6810     pStop = &pCell[9];
6811     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6812 
6813     /* Insert the new divider cell into pParent. */
6814     insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6815                0, pPage->pgno, &rc);
6816 
6817     /* Set the right-child pointer of pParent to point to the new page. */
6818     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6819 
6820     /* Release the reference to the new page. */
6821     releasePage(pNew);
6822   }
6823 
6824   return rc;
6825 }
6826 #endif /* SQLITE_OMIT_QUICKBALANCE */
6827 
6828 #if 0
6829 /*
6830 ** This function does not contribute anything to the operation of SQLite.
6831 ** it is sometimes activated temporarily while debugging code responsible
6832 ** for setting pointer-map entries.
6833 */
6834 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6835   int i, j;
6836   for(i=0; i<nPage; i++){
6837     Pgno n;
6838     u8 e;
6839     MemPage *pPage = apPage[i];
6840     BtShared *pBt = pPage->pBt;
6841     assert( pPage->isInit );
6842 
6843     for(j=0; j<pPage->nCell; j++){
6844       CellInfo info;
6845       u8 *z;
6846 
6847       z = findCell(pPage, j);
6848       pPage->xParseCell(pPage, z, &info);
6849       if( info.nLocal<info.nPayload ){
6850         Pgno ovfl = get4byte(&z[info.nSize-4]);
6851         ptrmapGet(pBt, ovfl, &e, &n);
6852         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6853       }
6854       if( !pPage->leaf ){
6855         Pgno child = get4byte(z);
6856         ptrmapGet(pBt, child, &e, &n);
6857         assert( n==pPage->pgno && e==PTRMAP_BTREE );
6858       }
6859     }
6860     if( !pPage->leaf ){
6861       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6862       ptrmapGet(pBt, child, &e, &n);
6863       assert( n==pPage->pgno && e==PTRMAP_BTREE );
6864     }
6865   }
6866   return 1;
6867 }
6868 #endif
6869 
6870 /*
6871 ** This function is used to copy the contents of the b-tree node stored
6872 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6873 ** the pointer-map entries for each child page are updated so that the
6874 ** parent page stored in the pointer map is page pTo. If pFrom contained
6875 ** any cells with overflow page pointers, then the corresponding pointer
6876 ** map entries are also updated so that the parent page is page pTo.
6877 **
6878 ** If pFrom is currently carrying any overflow cells (entries in the
6879 ** MemPage.apOvfl[] array), they are not copied to pTo.
6880 **
6881 ** Before returning, page pTo is reinitialized using btreeInitPage().
6882 **
6883 ** The performance of this function is not critical. It is only used by
6884 ** the balance_shallower() and balance_deeper() procedures, neither of
6885 ** which are called often under normal circumstances.
6886 */
6887 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6888   if( (*pRC)==SQLITE_OK ){
6889     BtShared * const pBt = pFrom->pBt;
6890     u8 * const aFrom = pFrom->aData;
6891     u8 * const aTo = pTo->aData;
6892     int const iFromHdr = pFrom->hdrOffset;
6893     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
6894     int rc;
6895     int iData;
6896 
6897 
6898     assert( pFrom->isInit );
6899     assert( pFrom->nFree>=iToHdr );
6900     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6901 
6902     /* Copy the b-tree node content from page pFrom to page pTo. */
6903     iData = get2byte(&aFrom[iFromHdr+5]);
6904     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6905     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6906 
6907     /* Reinitialize page pTo so that the contents of the MemPage structure
6908     ** match the new data. The initialization of pTo can actually fail under
6909     ** fairly obscure circumstances, even though it is a copy of initialized
6910     ** page pFrom.
6911     */
6912     pTo->isInit = 0;
6913     rc = btreeInitPage(pTo);
6914     if( rc!=SQLITE_OK ){
6915       *pRC = rc;
6916       return;
6917     }
6918 
6919     /* If this is an auto-vacuum database, update the pointer-map entries
6920     ** for any b-tree or overflow pages that pTo now contains the pointers to.
6921     */
6922     if( ISAUTOVACUUM ){
6923       *pRC = setChildPtrmaps(pTo);
6924     }
6925   }
6926 }
6927 
6928 /*
6929 ** This routine redistributes cells on the iParentIdx'th child of pParent
6930 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6931 ** same amount of free space. Usually a single sibling on either side of the
6932 ** page are used in the balancing, though both siblings might come from one
6933 ** side if the page is the first or last child of its parent. If the page
6934 ** has fewer than 2 siblings (something which can only happen if the page
6935 ** is a root page or a child of a root page) then all available siblings
6936 ** participate in the balancing.
6937 **
6938 ** The number of siblings of the page might be increased or decreased by
6939 ** one or two in an effort to keep pages nearly full but not over full.
6940 **
6941 ** Note that when this routine is called, some of the cells on the page
6942 ** might not actually be stored in MemPage.aData[]. This can happen
6943 ** if the page is overfull. This routine ensures that all cells allocated
6944 ** to the page and its siblings fit into MemPage.aData[] before returning.
6945 **
6946 ** In the course of balancing the page and its siblings, cells may be
6947 ** inserted into or removed from the parent page (pParent). Doing so
6948 ** may cause the parent page to become overfull or underfull. If this
6949 ** happens, it is the responsibility of the caller to invoke the correct
6950 ** balancing routine to fix this problem (see the balance() routine).
6951 **
6952 ** If this routine fails for any reason, it might leave the database
6953 ** in a corrupted state. So if this routine fails, the database should
6954 ** be rolled back.
6955 **
6956 ** The third argument to this function, aOvflSpace, is a pointer to a
6957 ** buffer big enough to hold one page. If while inserting cells into the parent
6958 ** page (pParent) the parent page becomes overfull, this buffer is
6959 ** used to store the parent's overflow cells. Because this function inserts
6960 ** a maximum of four divider cells into the parent page, and the maximum
6961 ** size of a cell stored within an internal node is always less than 1/4
6962 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6963 ** enough for all overflow cells.
6964 **
6965 ** If aOvflSpace is set to a null pointer, this function returns
6966 ** SQLITE_NOMEM.
6967 */
6968 static int balance_nonroot(
6969   MemPage *pParent,               /* Parent page of siblings being balanced */
6970   int iParentIdx,                 /* Index of "the page" in pParent */
6971   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
6972   int isRoot,                     /* True if pParent is a root-page */
6973   int bBulk                       /* True if this call is part of a bulk load */
6974 ){
6975   BtShared *pBt;               /* The whole database */
6976   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
6977   int nNew = 0;                /* Number of pages in apNew[] */
6978   int nOld;                    /* Number of pages in apOld[] */
6979   int i, j, k;                 /* Loop counters */
6980   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
6981   int rc = SQLITE_OK;          /* The return code */
6982   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
6983   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
6984   int usableSpace;             /* Bytes in pPage beyond the header */
6985   int pageFlags;               /* Value of pPage->aData[0] */
6986   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
6987   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
6988   int szScratch;               /* Size of scratch memory requested */
6989   MemPage *apOld[NB];          /* pPage and up to two siblings */
6990   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
6991   u8 *pRight;                  /* Location in parent of right-sibling pointer */
6992   u8 *apDiv[NB-1];             /* Divider cells in pParent */
6993   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
6994   int cntOld[NB+2];            /* Old index in b.apCell[] */
6995   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
6996   u8 *aSpace1;                 /* Space for copies of dividers cells */
6997   Pgno pgno;                   /* Temp var to store a page number in */
6998   u8 abDone[NB+2];             /* True after i'th new page is populated */
6999   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7000   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7001   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7002   CellArray b;                  /* Parsed information on cells being balanced */
7003 
7004   memset(abDone, 0, sizeof(abDone));
7005   b.nCell = 0;
7006   b.apCell = 0;
7007   pBt = pParent->pBt;
7008   assert( sqlite3_mutex_held(pBt->mutex) );
7009   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7010 
7011 #if 0
7012   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7013 #endif
7014 
7015   /* At this point pParent may have at most one overflow cell. And if
7016   ** this overflow cell is present, it must be the cell with
7017   ** index iParentIdx. This scenario comes about when this function
7018   ** is called (indirectly) from sqlite3BtreeDelete().
7019   */
7020   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7021   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7022 
7023   if( !aOvflSpace ){
7024     return SQLITE_NOMEM_BKPT;
7025   }
7026 
7027   /* Find the sibling pages to balance. Also locate the cells in pParent
7028   ** that divide the siblings. An attempt is made to find NN siblings on
7029   ** either side of pPage. More siblings are taken from one side, however,
7030   ** if there are fewer than NN siblings on the other side. If pParent
7031   ** has NB or fewer children then all children of pParent are taken.
7032   **
7033   ** This loop also drops the divider cells from the parent page. This
7034   ** way, the remainder of the function does not have to deal with any
7035   ** overflow cells in the parent page, since if any existed they will
7036   ** have already been removed.
7037   */
7038   i = pParent->nOverflow + pParent->nCell;
7039   if( i<2 ){
7040     nxDiv = 0;
7041   }else{
7042     assert( bBulk==0 || bBulk==1 );
7043     if( iParentIdx==0 ){
7044       nxDiv = 0;
7045     }else if( iParentIdx==i ){
7046       nxDiv = i-2+bBulk;
7047     }else{
7048       nxDiv = iParentIdx-1;
7049     }
7050     i = 2-bBulk;
7051   }
7052   nOld = i+1;
7053   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7054     pRight = &pParent->aData[pParent->hdrOffset+8];
7055   }else{
7056     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7057   }
7058   pgno = get4byte(pRight);
7059   while( 1 ){
7060     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7061     if( rc ){
7062       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7063       goto balance_cleanup;
7064     }
7065     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7066     if( (i--)==0 ) break;
7067 
7068     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7069       apDiv[i] = pParent->apOvfl[0];
7070       pgno = get4byte(apDiv[i]);
7071       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7072       pParent->nOverflow = 0;
7073     }else{
7074       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7075       pgno = get4byte(apDiv[i]);
7076       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7077 
7078       /* Drop the cell from the parent page. apDiv[i] still points to
7079       ** the cell within the parent, even though it has been dropped.
7080       ** This is safe because dropping a cell only overwrites the first
7081       ** four bytes of it, and this function does not need the first
7082       ** four bytes of the divider cell. So the pointer is safe to use
7083       ** later on.
7084       **
7085       ** But not if we are in secure-delete mode. In secure-delete mode,
7086       ** the dropCell() routine will overwrite the entire cell with zeroes.
7087       ** In this case, temporarily copy the cell into the aOvflSpace[]
7088       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7089       ** is allocated.  */
7090       if( pBt->btsFlags & BTS_SECURE_DELETE ){
7091         int iOff;
7092 
7093         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7094         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7095           rc = SQLITE_CORRUPT_BKPT;
7096           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7097           goto balance_cleanup;
7098         }else{
7099           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7100           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7101         }
7102       }
7103       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7104     }
7105   }
7106 
7107   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7108   ** alignment */
7109   nMaxCells = (nMaxCells + 3)&~3;
7110 
7111   /*
7112   ** Allocate space for memory structures
7113   */
7114   szScratch =
7115        nMaxCells*sizeof(u8*)                       /* b.apCell */
7116      + nMaxCells*sizeof(u16)                       /* b.szCell */
7117      + pBt->pageSize;                              /* aSpace1 */
7118 
7119   /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7120   ** that is more than 6 times the database page size. */
7121   assert( szScratch<=6*(int)pBt->pageSize );
7122   b.apCell = sqlite3ScratchMalloc( szScratch );
7123   if( b.apCell==0 ){
7124     rc = SQLITE_NOMEM_BKPT;
7125     goto balance_cleanup;
7126   }
7127   b.szCell = (u16*)&b.apCell[nMaxCells];
7128   aSpace1 = (u8*)&b.szCell[nMaxCells];
7129   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7130 
7131   /*
7132   ** Load pointers to all cells on sibling pages and the divider cells
7133   ** into the local b.apCell[] array.  Make copies of the divider cells
7134   ** into space obtained from aSpace1[]. The divider cells have already
7135   ** been removed from pParent.
7136   **
7137   ** If the siblings are on leaf pages, then the child pointers of the
7138   ** divider cells are stripped from the cells before they are copied
7139   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7140   ** child pointers.  If siblings are not leaves, then all cell in
7141   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7142   ** are alike.
7143   **
7144   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7145   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7146   */
7147   b.pRef = apOld[0];
7148   leafCorrection = b.pRef->leaf*4;
7149   leafData = b.pRef->intKeyLeaf;
7150   for(i=0; i<nOld; i++){
7151     MemPage *pOld = apOld[i];
7152     int limit = pOld->nCell;
7153     u8 *aData = pOld->aData;
7154     u16 maskPage = pOld->maskPage;
7155     u8 *piCell = aData + pOld->cellOffset;
7156     u8 *piEnd;
7157 
7158     /* Verify that all sibling pages are of the same "type" (table-leaf,
7159     ** table-interior, index-leaf, or index-interior).
7160     */
7161     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7162       rc = SQLITE_CORRUPT_BKPT;
7163       goto balance_cleanup;
7164     }
7165 
7166     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7167     ** constains overflow cells, include them in the b.apCell[] array
7168     ** in the correct spot.
7169     **
7170     ** Note that when there are multiple overflow cells, it is always the
7171     ** case that they are sequential and adjacent.  This invariant arises
7172     ** because multiple overflows can only occurs when inserting divider
7173     ** cells into a parent on a prior balance, and divider cells are always
7174     ** adjacent and are inserted in order.  There is an assert() tagged
7175     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7176     ** invariant.
7177     **
7178     ** This must be done in advance.  Once the balance starts, the cell
7179     ** offset section of the btree page will be overwritten and we will no
7180     ** long be able to find the cells if a pointer to each cell is not saved
7181     ** first.
7182     */
7183     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7184     if( pOld->nOverflow>0 ){
7185       limit = pOld->aiOvfl[0];
7186       for(j=0; j<limit; j++){
7187         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7188         piCell += 2;
7189         b.nCell++;
7190       }
7191       for(k=0; k<pOld->nOverflow; k++){
7192         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7193         b.apCell[b.nCell] = pOld->apOvfl[k];
7194         b.nCell++;
7195       }
7196     }
7197     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7198     while( piCell<piEnd ){
7199       assert( b.nCell<nMaxCells );
7200       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7201       piCell += 2;
7202       b.nCell++;
7203     }
7204 
7205     cntOld[i] = b.nCell;
7206     if( i<nOld-1 && !leafData){
7207       u16 sz = (u16)szNew[i];
7208       u8 *pTemp;
7209       assert( b.nCell<nMaxCells );
7210       b.szCell[b.nCell] = sz;
7211       pTemp = &aSpace1[iSpace1];
7212       iSpace1 += sz;
7213       assert( sz<=pBt->maxLocal+23 );
7214       assert( iSpace1 <= (int)pBt->pageSize );
7215       memcpy(pTemp, apDiv[i], sz);
7216       b.apCell[b.nCell] = pTemp+leafCorrection;
7217       assert( leafCorrection==0 || leafCorrection==4 );
7218       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7219       if( !pOld->leaf ){
7220         assert( leafCorrection==0 );
7221         assert( pOld->hdrOffset==0 );
7222         /* The right pointer of the child page pOld becomes the left
7223         ** pointer of the divider cell */
7224         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7225       }else{
7226         assert( leafCorrection==4 );
7227         while( b.szCell[b.nCell]<4 ){
7228           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7229           ** does exist, pad it with 0x00 bytes. */
7230           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7231           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7232           aSpace1[iSpace1++] = 0x00;
7233           b.szCell[b.nCell]++;
7234         }
7235       }
7236       b.nCell++;
7237     }
7238   }
7239 
7240   /*
7241   ** Figure out the number of pages needed to hold all b.nCell cells.
7242   ** Store this number in "k".  Also compute szNew[] which is the total
7243   ** size of all cells on the i-th page and cntNew[] which is the index
7244   ** in b.apCell[] of the cell that divides page i from page i+1.
7245   ** cntNew[k] should equal b.nCell.
7246   **
7247   ** Values computed by this block:
7248   **
7249   **           k: The total number of sibling pages
7250   **    szNew[i]: Spaced used on the i-th sibling page.
7251   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7252   **              the right of the i-th sibling page.
7253   ** usableSpace: Number of bytes of space available on each sibling.
7254   **
7255   */
7256   usableSpace = pBt->usableSize - 12 + leafCorrection;
7257   for(i=0; i<nOld; i++){
7258     MemPage *p = apOld[i];
7259     szNew[i] = usableSpace - p->nFree;
7260     if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7261     for(j=0; j<p->nOverflow; j++){
7262       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7263     }
7264     cntNew[i] = cntOld[i];
7265   }
7266   k = nOld;
7267   for(i=0; i<k; i++){
7268     int sz;
7269     while( szNew[i]>usableSpace ){
7270       if( i+1>=k ){
7271         k = i+2;
7272         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7273         szNew[k-1] = 0;
7274         cntNew[k-1] = b.nCell;
7275       }
7276       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7277       szNew[i] -= sz;
7278       if( !leafData ){
7279         if( cntNew[i]<b.nCell ){
7280           sz = 2 + cachedCellSize(&b, cntNew[i]);
7281         }else{
7282           sz = 0;
7283         }
7284       }
7285       szNew[i+1] += sz;
7286       cntNew[i]--;
7287     }
7288     while( cntNew[i]<b.nCell ){
7289       sz = 2 + cachedCellSize(&b, cntNew[i]);
7290       if( szNew[i]+sz>usableSpace ) break;
7291       szNew[i] += sz;
7292       cntNew[i]++;
7293       if( !leafData ){
7294         if( cntNew[i]<b.nCell ){
7295           sz = 2 + cachedCellSize(&b, cntNew[i]);
7296         }else{
7297           sz = 0;
7298         }
7299       }
7300       szNew[i+1] -= sz;
7301     }
7302     if( cntNew[i]>=b.nCell ){
7303       k = i+1;
7304     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7305       rc = SQLITE_CORRUPT_BKPT;
7306       goto balance_cleanup;
7307     }
7308   }
7309 
7310   /*
7311   ** The packing computed by the previous block is biased toward the siblings
7312   ** on the left side (siblings with smaller keys). The left siblings are
7313   ** always nearly full, while the right-most sibling might be nearly empty.
7314   ** The next block of code attempts to adjust the packing of siblings to
7315   ** get a better balance.
7316   **
7317   ** This adjustment is more than an optimization.  The packing above might
7318   ** be so out of balance as to be illegal.  For example, the right-most
7319   ** sibling might be completely empty.  This adjustment is not optional.
7320   */
7321   for(i=k-1; i>0; i--){
7322     int szRight = szNew[i];  /* Size of sibling on the right */
7323     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7324     int r;              /* Index of right-most cell in left sibling */
7325     int d;              /* Index of first cell to the left of right sibling */
7326 
7327     r = cntNew[i-1] - 1;
7328     d = r + 1 - leafData;
7329     (void)cachedCellSize(&b, d);
7330     do{
7331       assert( d<nMaxCells );
7332       assert( r<nMaxCells );
7333       (void)cachedCellSize(&b, r);
7334       if( szRight!=0
7335        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7336         break;
7337       }
7338       szRight += b.szCell[d] + 2;
7339       szLeft -= b.szCell[r] + 2;
7340       cntNew[i-1] = r;
7341       r--;
7342       d--;
7343     }while( r>=0 );
7344     szNew[i] = szRight;
7345     szNew[i-1] = szLeft;
7346     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7347       rc = SQLITE_CORRUPT_BKPT;
7348       goto balance_cleanup;
7349     }
7350   }
7351 
7352   /* Sanity check:  For a non-corrupt database file one of the follwing
7353   ** must be true:
7354   **    (1) We found one or more cells (cntNew[0])>0), or
7355   **    (2) pPage is a virtual root page.  A virtual root page is when
7356   **        the real root page is page 1 and we are the only child of
7357   **        that page.
7358   */
7359   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7360   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7361     apOld[0]->pgno, apOld[0]->nCell,
7362     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7363     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7364   ));
7365 
7366   /*
7367   ** Allocate k new pages.  Reuse old pages where possible.
7368   */
7369   pageFlags = apOld[0]->aData[0];
7370   for(i=0; i<k; i++){
7371     MemPage *pNew;
7372     if( i<nOld ){
7373       pNew = apNew[i] = apOld[i];
7374       apOld[i] = 0;
7375       rc = sqlite3PagerWrite(pNew->pDbPage);
7376       nNew++;
7377       if( rc ) goto balance_cleanup;
7378     }else{
7379       assert( i>0 );
7380       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7381       if( rc ) goto balance_cleanup;
7382       zeroPage(pNew, pageFlags);
7383       apNew[i] = pNew;
7384       nNew++;
7385       cntOld[i] = b.nCell;
7386 
7387       /* Set the pointer-map entry for the new sibling page. */
7388       if( ISAUTOVACUUM ){
7389         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7390         if( rc!=SQLITE_OK ){
7391           goto balance_cleanup;
7392         }
7393       }
7394     }
7395   }
7396 
7397   /*
7398   ** Reassign page numbers so that the new pages are in ascending order.
7399   ** This helps to keep entries in the disk file in order so that a scan
7400   ** of the table is closer to a linear scan through the file. That in turn
7401   ** helps the operating system to deliver pages from the disk more rapidly.
7402   **
7403   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7404   ** than (NB+2) (a small constant), that should not be a problem.
7405   **
7406   ** When NB==3, this one optimization makes the database about 25% faster
7407   ** for large insertions and deletions.
7408   */
7409   for(i=0; i<nNew; i++){
7410     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7411     aPgFlags[i] = apNew[i]->pDbPage->flags;
7412     for(j=0; j<i; j++){
7413       if( aPgno[j]==aPgno[i] ){
7414         /* This branch is taken if the set of sibling pages somehow contains
7415         ** duplicate entries. This can happen if the database is corrupt.
7416         ** It would be simpler to detect this as part of the loop below, but
7417         ** we do the detection here in order to avoid populating the pager
7418         ** cache with two separate objects associated with the same
7419         ** page number.  */
7420         assert( CORRUPT_DB );
7421         rc = SQLITE_CORRUPT_BKPT;
7422         goto balance_cleanup;
7423       }
7424     }
7425   }
7426   for(i=0; i<nNew; i++){
7427     int iBest = 0;                /* aPgno[] index of page number to use */
7428     for(j=1; j<nNew; j++){
7429       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7430     }
7431     pgno = aPgOrder[iBest];
7432     aPgOrder[iBest] = 0xffffffff;
7433     if( iBest!=i ){
7434       if( iBest>i ){
7435         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7436       }
7437       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7438       apNew[i]->pgno = pgno;
7439     }
7440   }
7441 
7442   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7443          "%d(%d nc=%d) %d(%d nc=%d)\n",
7444     apNew[0]->pgno, szNew[0], cntNew[0],
7445     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7446     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7447     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7448     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7449     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7450     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7451     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7452     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7453   ));
7454 
7455   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7456   put4byte(pRight, apNew[nNew-1]->pgno);
7457 
7458   /* If the sibling pages are not leaves, ensure that the right-child pointer
7459   ** of the right-most new sibling page is set to the value that was
7460   ** originally in the same field of the right-most old sibling page. */
7461   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7462     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7463     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7464   }
7465 
7466   /* Make any required updates to pointer map entries associated with
7467   ** cells stored on sibling pages following the balance operation. Pointer
7468   ** map entries associated with divider cells are set by the insertCell()
7469   ** routine. The associated pointer map entries are:
7470   **
7471   **   a) if the cell contains a reference to an overflow chain, the
7472   **      entry associated with the first page in the overflow chain, and
7473   **
7474   **   b) if the sibling pages are not leaves, the child page associated
7475   **      with the cell.
7476   **
7477   ** If the sibling pages are not leaves, then the pointer map entry
7478   ** associated with the right-child of each sibling may also need to be
7479   ** updated. This happens below, after the sibling pages have been
7480   ** populated, not here.
7481   */
7482   if( ISAUTOVACUUM ){
7483     MemPage *pNew = apNew[0];
7484     u8 *aOld = pNew->aData;
7485     int cntOldNext = pNew->nCell + pNew->nOverflow;
7486     int usableSize = pBt->usableSize;
7487     int iNew = 0;
7488     int iOld = 0;
7489 
7490     for(i=0; i<b.nCell; i++){
7491       u8 *pCell = b.apCell[i];
7492       if( i==cntOldNext ){
7493         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7494         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7495         aOld = pOld->aData;
7496       }
7497       if( i==cntNew[iNew] ){
7498         pNew = apNew[++iNew];
7499         if( !leafData ) continue;
7500       }
7501 
7502       /* Cell pCell is destined for new sibling page pNew. Originally, it
7503       ** was either part of sibling page iOld (possibly an overflow cell),
7504       ** or else the divider cell to the left of sibling page iOld. So,
7505       ** if sibling page iOld had the same page number as pNew, and if
7506       ** pCell really was a part of sibling page iOld (not a divider or
7507       ** overflow cell), we can skip updating the pointer map entries.  */
7508       if( iOld>=nNew
7509        || pNew->pgno!=aPgno[iOld]
7510        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7511       ){
7512         if( !leafCorrection ){
7513           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7514         }
7515         if( cachedCellSize(&b,i)>pNew->minLocal ){
7516           ptrmapPutOvflPtr(pNew, pCell, &rc);
7517         }
7518         if( rc ) goto balance_cleanup;
7519       }
7520     }
7521   }
7522 
7523   /* Insert new divider cells into pParent. */
7524   for(i=0; i<nNew-1; i++){
7525     u8 *pCell;
7526     u8 *pTemp;
7527     int sz;
7528     MemPage *pNew = apNew[i];
7529     j = cntNew[i];
7530 
7531     assert( j<nMaxCells );
7532     assert( b.apCell[j]!=0 );
7533     pCell = b.apCell[j];
7534     sz = b.szCell[j] + leafCorrection;
7535     pTemp = &aOvflSpace[iOvflSpace];
7536     if( !pNew->leaf ){
7537       memcpy(&pNew->aData[8], pCell, 4);
7538     }else if( leafData ){
7539       /* If the tree is a leaf-data tree, and the siblings are leaves,
7540       ** then there is no divider cell in b.apCell[]. Instead, the divider
7541       ** cell consists of the integer key for the right-most cell of
7542       ** the sibling-page assembled above only.
7543       */
7544       CellInfo info;
7545       j--;
7546       pNew->xParseCell(pNew, b.apCell[j], &info);
7547       pCell = pTemp;
7548       sz = 4 + putVarint(&pCell[4], info.nKey);
7549       pTemp = 0;
7550     }else{
7551       pCell -= 4;
7552       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7553       ** previously stored on a leaf node, and its reported size was 4
7554       ** bytes, then it may actually be smaller than this
7555       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7556       ** any cell). But it is important to pass the correct size to
7557       ** insertCell(), so reparse the cell now.
7558       **
7559       ** Note that this can never happen in an SQLite data file, as all
7560       ** cells are at least 4 bytes. It only happens in b-trees used
7561       ** to evaluate "IN (SELECT ...)" and similar clauses.
7562       */
7563       if( b.szCell[j]==4 ){
7564         assert(leafCorrection==4);
7565         sz = pParent->xCellSize(pParent, pCell);
7566       }
7567     }
7568     iOvflSpace += sz;
7569     assert( sz<=pBt->maxLocal+23 );
7570     assert( iOvflSpace <= (int)pBt->pageSize );
7571     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7572     if( rc!=SQLITE_OK ) goto balance_cleanup;
7573     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7574   }
7575 
7576   /* Now update the actual sibling pages. The order in which they are updated
7577   ** is important, as this code needs to avoid disrupting any page from which
7578   ** cells may still to be read. In practice, this means:
7579   **
7580   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7581   **      then it is not safe to update page apNew[iPg] until after
7582   **      the left-hand sibling apNew[iPg-1] has been updated.
7583   **
7584   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7585   **      then it is not safe to update page apNew[iPg] until after
7586   **      the right-hand sibling apNew[iPg+1] has been updated.
7587   **
7588   ** If neither of the above apply, the page is safe to update.
7589   **
7590   ** The iPg value in the following loop starts at nNew-1 goes down
7591   ** to 0, then back up to nNew-1 again, thus making two passes over
7592   ** the pages.  On the initial downward pass, only condition (1) above
7593   ** needs to be tested because (2) will always be true from the previous
7594   ** step.  On the upward pass, both conditions are always true, so the
7595   ** upwards pass simply processes pages that were missed on the downward
7596   ** pass.
7597   */
7598   for(i=1-nNew; i<nNew; i++){
7599     int iPg = i<0 ? -i : i;
7600     assert( iPg>=0 && iPg<nNew );
7601     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7602     if( i>=0                            /* On the upwards pass, or... */
7603      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7604     ){
7605       int iNew;
7606       int iOld;
7607       int nNewCell;
7608 
7609       /* Verify condition (1):  If cells are moving left, update iPg
7610       ** only after iPg-1 has already been updated. */
7611       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7612 
7613       /* Verify condition (2):  If cells are moving right, update iPg
7614       ** only after iPg+1 has already been updated. */
7615       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7616 
7617       if( iPg==0 ){
7618         iNew = iOld = 0;
7619         nNewCell = cntNew[0];
7620       }else{
7621         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7622         iNew = cntNew[iPg-1] + !leafData;
7623         nNewCell = cntNew[iPg] - iNew;
7624       }
7625 
7626       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7627       if( rc ) goto balance_cleanup;
7628       abDone[iPg]++;
7629       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7630       assert( apNew[iPg]->nOverflow==0 );
7631       assert( apNew[iPg]->nCell==nNewCell );
7632     }
7633   }
7634 
7635   /* All pages have been processed exactly once */
7636   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7637 
7638   assert( nOld>0 );
7639   assert( nNew>0 );
7640 
7641   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7642     /* The root page of the b-tree now contains no cells. The only sibling
7643     ** page is the right-child of the parent. Copy the contents of the
7644     ** child page into the parent, decreasing the overall height of the
7645     ** b-tree structure by one. This is described as the "balance-shallower"
7646     ** sub-algorithm in some documentation.
7647     **
7648     ** If this is an auto-vacuum database, the call to copyNodeContent()
7649     ** sets all pointer-map entries corresponding to database image pages
7650     ** for which the pointer is stored within the content being copied.
7651     **
7652     ** It is critical that the child page be defragmented before being
7653     ** copied into the parent, because if the parent is page 1 then it will
7654     ** by smaller than the child due to the database header, and so all the
7655     ** free space needs to be up front.
7656     */
7657     assert( nNew==1 || CORRUPT_DB );
7658     rc = defragmentPage(apNew[0]);
7659     testcase( rc!=SQLITE_OK );
7660     assert( apNew[0]->nFree ==
7661         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7662       || rc!=SQLITE_OK
7663     );
7664     copyNodeContent(apNew[0], pParent, &rc);
7665     freePage(apNew[0], &rc);
7666   }else if( ISAUTOVACUUM && !leafCorrection ){
7667     /* Fix the pointer map entries associated with the right-child of each
7668     ** sibling page. All other pointer map entries have already been taken
7669     ** care of.  */
7670     for(i=0; i<nNew; i++){
7671       u32 key = get4byte(&apNew[i]->aData[8]);
7672       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7673     }
7674   }
7675 
7676   assert( pParent->isInit );
7677   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7678           nOld, nNew, b.nCell));
7679 
7680   /* Free any old pages that were not reused as new pages.
7681   */
7682   for(i=nNew; i<nOld; i++){
7683     freePage(apOld[i], &rc);
7684   }
7685 
7686 #if 0
7687   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7688     /* The ptrmapCheckPages() contains assert() statements that verify that
7689     ** all pointer map pages are set correctly. This is helpful while
7690     ** debugging. This is usually disabled because a corrupt database may
7691     ** cause an assert() statement to fail.  */
7692     ptrmapCheckPages(apNew, nNew);
7693     ptrmapCheckPages(&pParent, 1);
7694   }
7695 #endif
7696 
7697   /*
7698   ** Cleanup before returning.
7699   */
7700 balance_cleanup:
7701   sqlite3ScratchFree(b.apCell);
7702   for(i=0; i<nOld; i++){
7703     releasePage(apOld[i]);
7704   }
7705   for(i=0; i<nNew; i++){
7706     releasePage(apNew[i]);
7707   }
7708 
7709   return rc;
7710 }
7711 
7712 
7713 /*
7714 ** This function is called when the root page of a b-tree structure is
7715 ** overfull (has one or more overflow pages).
7716 **
7717 ** A new child page is allocated and the contents of the current root
7718 ** page, including overflow cells, are copied into the child. The root
7719 ** page is then overwritten to make it an empty page with the right-child
7720 ** pointer pointing to the new page.
7721 **
7722 ** Before returning, all pointer-map entries corresponding to pages
7723 ** that the new child-page now contains pointers to are updated. The
7724 ** entry corresponding to the new right-child pointer of the root
7725 ** page is also updated.
7726 **
7727 ** If successful, *ppChild is set to contain a reference to the child
7728 ** page and SQLITE_OK is returned. In this case the caller is required
7729 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7730 ** an error code is returned and *ppChild is set to 0.
7731 */
7732 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7733   int rc;                        /* Return value from subprocedures */
7734   MemPage *pChild = 0;           /* Pointer to a new child page */
7735   Pgno pgnoChild = 0;            /* Page number of the new child page */
7736   BtShared *pBt = pRoot->pBt;    /* The BTree */
7737 
7738   assert( pRoot->nOverflow>0 );
7739   assert( sqlite3_mutex_held(pBt->mutex) );
7740 
7741   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7742   ** page that will become the new right-child of pPage. Copy the contents
7743   ** of the node stored on pRoot into the new child page.
7744   */
7745   rc = sqlite3PagerWrite(pRoot->pDbPage);
7746   if( rc==SQLITE_OK ){
7747     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7748     copyNodeContent(pRoot, pChild, &rc);
7749     if( ISAUTOVACUUM ){
7750       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7751     }
7752   }
7753   if( rc ){
7754     *ppChild = 0;
7755     releasePage(pChild);
7756     return rc;
7757   }
7758   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7759   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7760   assert( pChild->nCell==pRoot->nCell );
7761 
7762   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7763 
7764   /* Copy the overflow cells from pRoot to pChild */
7765   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7766          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7767   memcpy(pChild->apOvfl, pRoot->apOvfl,
7768          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7769   pChild->nOverflow = pRoot->nOverflow;
7770 
7771   /* Zero the contents of pRoot. Then install pChild as the right-child. */
7772   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7773   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7774 
7775   *ppChild = pChild;
7776   return SQLITE_OK;
7777 }
7778 
7779 /*
7780 ** The page that pCur currently points to has just been modified in
7781 ** some way. This function figures out if this modification means the
7782 ** tree needs to be balanced, and if so calls the appropriate balancing
7783 ** routine. Balancing routines are:
7784 **
7785 **   balance_quick()
7786 **   balance_deeper()
7787 **   balance_nonroot()
7788 */
7789 static int balance(BtCursor *pCur){
7790   int rc = SQLITE_OK;
7791   const int nMin = pCur->pBt->usableSize * 2 / 3;
7792   u8 aBalanceQuickSpace[13];
7793   u8 *pFree = 0;
7794 
7795   VVA_ONLY( int balance_quick_called = 0 );
7796   VVA_ONLY( int balance_deeper_called = 0 );
7797 
7798   do {
7799     int iPage = pCur->iPage;
7800     MemPage *pPage = pCur->apPage[iPage];
7801 
7802     if( iPage==0 ){
7803       if( pPage->nOverflow ){
7804         /* The root page of the b-tree is overfull. In this case call the
7805         ** balance_deeper() function to create a new child for the root-page
7806         ** and copy the current contents of the root-page to it. The
7807         ** next iteration of the do-loop will balance the child page.
7808         */
7809         assert( balance_deeper_called==0 );
7810         VVA_ONLY( balance_deeper_called++ );
7811         rc = balance_deeper(pPage, &pCur->apPage[1]);
7812         if( rc==SQLITE_OK ){
7813           pCur->iPage = 1;
7814           pCur->aiIdx[0] = 0;
7815           pCur->aiIdx[1] = 0;
7816           assert( pCur->apPage[1]->nOverflow );
7817         }
7818       }else{
7819         break;
7820       }
7821     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7822       break;
7823     }else{
7824       MemPage * const pParent = pCur->apPage[iPage-1];
7825       int const iIdx = pCur->aiIdx[iPage-1];
7826 
7827       rc = sqlite3PagerWrite(pParent->pDbPage);
7828       if( rc==SQLITE_OK ){
7829 #ifndef SQLITE_OMIT_QUICKBALANCE
7830         if( pPage->intKeyLeaf
7831          && pPage->nOverflow==1
7832          && pPage->aiOvfl[0]==pPage->nCell
7833          && pParent->pgno!=1
7834          && pParent->nCell==iIdx
7835         ){
7836           /* Call balance_quick() to create a new sibling of pPage on which
7837           ** to store the overflow cell. balance_quick() inserts a new cell
7838           ** into pParent, which may cause pParent overflow. If this
7839           ** happens, the next iteration of the do-loop will balance pParent
7840           ** use either balance_nonroot() or balance_deeper(). Until this
7841           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7842           ** buffer.
7843           **
7844           ** The purpose of the following assert() is to check that only a
7845           ** single call to balance_quick() is made for each call to this
7846           ** function. If this were not verified, a subtle bug involving reuse
7847           ** of the aBalanceQuickSpace[] might sneak in.
7848           */
7849           assert( balance_quick_called==0 );
7850           VVA_ONLY( balance_quick_called++ );
7851           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7852         }else
7853 #endif
7854         {
7855           /* In this case, call balance_nonroot() to redistribute cells
7856           ** between pPage and up to 2 of its sibling pages. This involves
7857           ** modifying the contents of pParent, which may cause pParent to
7858           ** become overfull or underfull. The next iteration of the do-loop
7859           ** will balance the parent page to correct this.
7860           **
7861           ** If the parent page becomes overfull, the overflow cell or cells
7862           ** are stored in the pSpace buffer allocated immediately below.
7863           ** A subsequent iteration of the do-loop will deal with this by
7864           ** calling balance_nonroot() (balance_deeper() may be called first,
7865           ** but it doesn't deal with overflow cells - just moves them to a
7866           ** different page). Once this subsequent call to balance_nonroot()
7867           ** has completed, it is safe to release the pSpace buffer used by
7868           ** the previous call, as the overflow cell data will have been
7869           ** copied either into the body of a database page or into the new
7870           ** pSpace buffer passed to the latter call to balance_nonroot().
7871           */
7872           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7873           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7874                                pCur->hints&BTREE_BULKLOAD);
7875           if( pFree ){
7876             /* If pFree is not NULL, it points to the pSpace buffer used
7877             ** by a previous call to balance_nonroot(). Its contents are
7878             ** now stored either on real database pages or within the
7879             ** new pSpace buffer, so it may be safely freed here. */
7880             sqlite3PageFree(pFree);
7881           }
7882 
7883           /* The pSpace buffer will be freed after the next call to
7884           ** balance_nonroot(), or just before this function returns, whichever
7885           ** comes first. */
7886           pFree = pSpace;
7887         }
7888       }
7889 
7890       pPage->nOverflow = 0;
7891 
7892       /* The next iteration of the do-loop balances the parent page. */
7893       releasePage(pPage);
7894       pCur->iPage--;
7895       assert( pCur->iPage>=0 );
7896     }
7897   }while( rc==SQLITE_OK );
7898 
7899   if( pFree ){
7900     sqlite3PageFree(pFree);
7901   }
7902   return rc;
7903 }
7904 
7905 
7906 /*
7907 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
7908 ** and the data is given by (pData,nData).  The cursor is used only to
7909 ** define what table the record should be inserted into.  The cursor
7910 ** is left pointing at a random location.
7911 **
7912 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
7913 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
7914 **
7915 ** If the seekResult parameter is non-zero, then a successful call to
7916 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7917 ** been performed. seekResult is the search result returned (a negative
7918 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7919 ** a positive value if pCur points at an entry that is larger than
7920 ** (pKey, nKey)).
7921 **
7922 ** If the seekResult parameter is non-zero, then the caller guarantees that
7923 ** cursor pCur is pointing at the existing copy of a row that is to be
7924 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
7925 ** point to any entry or to no entry at all and so this function has to seek
7926 ** the cursor before the new key can be inserted.
7927 */
7928 int sqlite3BtreeInsert(
7929   BtCursor *pCur,                /* Insert data into the table of this cursor */
7930   const void *pKey, i64 nKey,    /* The key of the new record */
7931   const void *pData, int nData,  /* The data of the new record */
7932   int nZero,                     /* Number of extra 0 bytes to append to data */
7933   int appendBias,                /* True if this is likely an append */
7934   int seekResult                 /* Result of prior MovetoUnpacked() call */
7935 ){
7936   int rc;
7937   int loc = seekResult;          /* -1: before desired location  +1: after */
7938   int szNew = 0;
7939   int idx;
7940   MemPage *pPage;
7941   Btree *p = pCur->pBtree;
7942   BtShared *pBt = p->pBt;
7943   unsigned char *oldCell;
7944   unsigned char *newCell = 0;
7945 
7946   if( pCur->eState==CURSOR_FAULT ){
7947     assert( pCur->skipNext!=SQLITE_OK );
7948     return pCur->skipNext;
7949   }
7950 
7951   assert( cursorOwnsBtShared(pCur) );
7952   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7953               && pBt->inTransaction==TRANS_WRITE
7954               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
7955   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7956 
7957   /* Assert that the caller has been consistent. If this cursor was opened
7958   ** expecting an index b-tree, then the caller should be inserting blob
7959   ** keys with no associated data. If the cursor was opened expecting an
7960   ** intkey table, the caller should be inserting integer keys with a
7961   ** blob of associated data.  */
7962   assert( (pKey==0)==(pCur->pKeyInfo==0) );
7963 
7964   /* Save the positions of any other cursors open on this table.
7965   **
7966   ** In some cases, the call to btreeMoveto() below is a no-op. For
7967   ** example, when inserting data into a table with auto-generated integer
7968   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7969   ** integer key to use. It then calls this function to actually insert the
7970   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7971   ** that the cursor is already where it needs to be and returns without
7972   ** doing any work. To avoid thwarting these optimizations, it is important
7973   ** not to clear the cursor here.
7974   */
7975   if( pCur->curFlags & BTCF_Multiple ){
7976     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7977     if( rc ) return rc;
7978   }
7979 
7980   if( pCur->pKeyInfo==0 ){
7981     assert( pKey==0 );
7982     /* If this is an insert into a table b-tree, invalidate any incrblob
7983     ** cursors open on the row being replaced */
7984     invalidateIncrblobCursors(p, nKey, 0);
7985 
7986     /* If the cursor is currently on the last row and we are appending a
7987     ** new row onto the end, set the "loc" to avoid an unnecessary
7988     ** btreeMoveto() call */
7989     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7990       && pCur->info.nKey==nKey-1 ){
7991        loc = -1;
7992     }else if( loc==0 ){
7993       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7994       if( rc ) return rc;
7995     }
7996   }else if( loc==0 ){
7997     rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7998     if( rc ) return rc;
7999   }
8000   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8001 
8002   pPage = pCur->apPage[pCur->iPage];
8003   assert( pPage->intKey || nKey>=0 );
8004   assert( pPage->leaf || !pPage->intKey );
8005 
8006   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8007           pCur->pgnoRoot, nKey, nData, pPage->pgno,
8008           loc==0 ? "overwrite" : "new entry"));
8009   assert( pPage->isInit );
8010   newCell = pBt->pTmpSpace;
8011   assert( newCell!=0 );
8012   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
8013   if( rc ) goto end_insert;
8014   assert( szNew==pPage->xCellSize(pPage, newCell) );
8015   assert( szNew <= MX_CELL_SIZE(pBt) );
8016   idx = pCur->aiIdx[pCur->iPage];
8017   if( loc==0 ){
8018     u16 szOld;
8019     assert( idx<pPage->nCell );
8020     rc = sqlite3PagerWrite(pPage->pDbPage);
8021     if( rc ){
8022       goto end_insert;
8023     }
8024     oldCell = findCell(pPage, idx);
8025     if( !pPage->leaf ){
8026       memcpy(newCell, oldCell, 4);
8027     }
8028     rc = clearCell(pPage, oldCell, &szOld);
8029     dropCell(pPage, idx, szOld, &rc);
8030     if( rc ) goto end_insert;
8031   }else if( loc<0 && pPage->nCell>0 ){
8032     assert( pPage->leaf );
8033     idx = ++pCur->aiIdx[pCur->iPage];
8034   }else{
8035     assert( pPage->leaf );
8036   }
8037   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8038   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8039 
8040   /* If no error has occurred and pPage has an overflow cell, call balance()
8041   ** to redistribute the cells within the tree. Since balance() may move
8042   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8043   ** variables.
8044   **
8045   ** Previous versions of SQLite called moveToRoot() to move the cursor
8046   ** back to the root page as balance() used to invalidate the contents
8047   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8048   ** set the cursor state to "invalid". This makes common insert operations
8049   ** slightly faster.
8050   **
8051   ** There is a subtle but important optimization here too. When inserting
8052   ** multiple records into an intkey b-tree using a single cursor (as can
8053   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8054   ** is advantageous to leave the cursor pointing to the last entry in
8055   ** the b-tree if possible. If the cursor is left pointing to the last
8056   ** entry in the table, and the next row inserted has an integer key
8057   ** larger than the largest existing key, it is possible to insert the
8058   ** row without seeking the cursor. This can be a big performance boost.
8059   */
8060   pCur->info.nSize = 0;
8061   if( rc==SQLITE_OK && pPage->nOverflow ){
8062     pCur->curFlags &= ~(BTCF_ValidNKey);
8063     rc = balance(pCur);
8064 
8065     /* Must make sure nOverflow is reset to zero even if the balance()
8066     ** fails. Internal data structure corruption will result otherwise.
8067     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8068     ** from trying to save the current position of the cursor.  */
8069     pCur->apPage[pCur->iPage]->nOverflow = 0;
8070     pCur->eState = CURSOR_INVALID;
8071   }
8072   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
8073 
8074 end_insert:
8075   return rc;
8076 }
8077 
8078 /*
8079 ** Delete the entry that the cursor is pointing to.
8080 **
8081 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8082 ** the cursor is left pointing at an arbitrary location after the delete.
8083 ** But if that bit is set, then the cursor is left in a state such that
8084 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8085 ** as it would have been on if the call to BtreeDelete() had been omitted.
8086 **
8087 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8088 ** associated with a single table entry and its indexes.  Only one of those
8089 ** deletes is considered the "primary" delete.  The primary delete occurs
8090 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8091 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8092 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8093 ** but which might be used by alternative storage engines.
8094 */
8095 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8096   Btree *p = pCur->pBtree;
8097   BtShared *pBt = p->pBt;
8098   int rc;                              /* Return code */
8099   MemPage *pPage;                      /* Page to delete cell from */
8100   unsigned char *pCell;                /* Pointer to cell to delete */
8101   int iCellIdx;                        /* Index of cell to delete */
8102   int iCellDepth;                      /* Depth of node containing pCell */
8103   u16 szCell;                          /* Size of the cell being deleted */
8104   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8105   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8106 
8107   assert( cursorOwnsBtShared(pCur) );
8108   assert( pBt->inTransaction==TRANS_WRITE );
8109   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8110   assert( pCur->curFlags & BTCF_WriteFlag );
8111   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8112   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8113   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8114   assert( pCur->eState==CURSOR_VALID );
8115   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8116 
8117   iCellDepth = pCur->iPage;
8118   iCellIdx = pCur->aiIdx[iCellDepth];
8119   pPage = pCur->apPage[iCellDepth];
8120   pCell = findCell(pPage, iCellIdx);
8121 
8122   /* If the page containing the entry to delete is not a leaf page, move
8123   ** the cursor to the largest entry in the tree that is smaller than
8124   ** the entry being deleted. This cell will replace the cell being deleted
8125   ** from the internal node. The 'previous' entry is used for this instead
8126   ** of the 'next' entry, as the previous entry is always a part of the
8127   ** sub-tree headed by the child page of the cell being deleted. This makes
8128   ** balancing the tree following the delete operation easier.  */
8129   if( !pPage->leaf ){
8130     int notUsed = 0;
8131     rc = sqlite3BtreePrevious(pCur, &notUsed);
8132     if( rc ) return rc;
8133   }
8134 
8135   /* Save the positions of any other cursors open on this table before
8136   ** making any modifications.  */
8137   if( pCur->curFlags & BTCF_Multiple ){
8138     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8139     if( rc ) return rc;
8140   }
8141 
8142   /* If this is a delete operation to remove a row from a table b-tree,
8143   ** invalidate any incrblob cursors open on the row being deleted.  */
8144   if( pCur->pKeyInfo==0 ){
8145     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8146   }
8147 
8148   /* If the bPreserve flag is set to true, then the cursor position must
8149   ** be preserved following this delete operation. If the current delete
8150   ** will cause a b-tree rebalance, then this is done by saving the cursor
8151   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8152   ** returning.
8153   **
8154   ** Or, if the current delete will not cause a rebalance, then the cursor
8155   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8156   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8157   if( bPreserve ){
8158     if( !pPage->leaf
8159      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8160     ){
8161       /* A b-tree rebalance will be required after deleting this entry.
8162       ** Save the cursor key.  */
8163       rc = saveCursorKey(pCur);
8164       if( rc ) return rc;
8165     }else{
8166       bSkipnext = 1;
8167     }
8168   }
8169 
8170   /* Make the page containing the entry to be deleted writable. Then free any
8171   ** overflow pages associated with the entry and finally remove the cell
8172   ** itself from within the page.  */
8173   rc = sqlite3PagerWrite(pPage->pDbPage);
8174   if( rc ) return rc;
8175   rc = clearCell(pPage, pCell, &szCell);
8176   dropCell(pPage, iCellIdx, szCell, &rc);
8177   if( rc ) return rc;
8178 
8179   /* If the cell deleted was not located on a leaf page, then the cursor
8180   ** is currently pointing to the largest entry in the sub-tree headed
8181   ** by the child-page of the cell that was just deleted from an internal
8182   ** node. The cell from the leaf node needs to be moved to the internal
8183   ** node to replace the deleted cell.  */
8184   if( !pPage->leaf ){
8185     MemPage *pLeaf = pCur->apPage[pCur->iPage];
8186     int nCell;
8187     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8188     unsigned char *pTmp;
8189 
8190     pCell = findCell(pLeaf, pLeaf->nCell-1);
8191     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8192     nCell = pLeaf->xCellSize(pLeaf, pCell);
8193     assert( MX_CELL_SIZE(pBt) >= nCell );
8194     pTmp = pBt->pTmpSpace;
8195     assert( pTmp!=0 );
8196     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8197     insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8198     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8199     if( rc ) return rc;
8200   }
8201 
8202   /* Balance the tree. If the entry deleted was located on a leaf page,
8203   ** then the cursor still points to that page. In this case the first
8204   ** call to balance() repairs the tree, and the if(...) condition is
8205   ** never true.
8206   **
8207   ** Otherwise, if the entry deleted was on an internal node page, then
8208   ** pCur is pointing to the leaf page from which a cell was removed to
8209   ** replace the cell deleted from the internal node. This is slightly
8210   ** tricky as the leaf node may be underfull, and the internal node may
8211   ** be either under or overfull. In this case run the balancing algorithm
8212   ** on the leaf node first. If the balance proceeds far enough up the
8213   ** tree that we can be sure that any problem in the internal node has
8214   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8215   ** walk the cursor up the tree to the internal node and balance it as
8216   ** well.  */
8217   rc = balance(pCur);
8218   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8219     while( pCur->iPage>iCellDepth ){
8220       releasePage(pCur->apPage[pCur->iPage--]);
8221     }
8222     rc = balance(pCur);
8223   }
8224 
8225   if( rc==SQLITE_OK ){
8226     if( bSkipnext ){
8227       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8228       assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
8229       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8230       pCur->eState = CURSOR_SKIPNEXT;
8231       if( iCellIdx>=pPage->nCell ){
8232         pCur->skipNext = -1;
8233         pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8234       }else{
8235         pCur->skipNext = 1;
8236       }
8237     }else{
8238       rc = moveToRoot(pCur);
8239       if( bPreserve ){
8240         pCur->eState = CURSOR_REQUIRESEEK;
8241       }
8242     }
8243   }
8244   return rc;
8245 }
8246 
8247 /*
8248 ** Create a new BTree table.  Write into *piTable the page
8249 ** number for the root page of the new table.
8250 **
8251 ** The type of type is determined by the flags parameter.  Only the
8252 ** following values of flags are currently in use.  Other values for
8253 ** flags might not work:
8254 **
8255 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8256 **     BTREE_ZERODATA                  Used for SQL indices
8257 */
8258 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8259   BtShared *pBt = p->pBt;
8260   MemPage *pRoot;
8261   Pgno pgnoRoot;
8262   int rc;
8263   int ptfFlags;          /* Page-type flage for the root page of new table */
8264 
8265   assert( sqlite3BtreeHoldsMutex(p) );
8266   assert( pBt->inTransaction==TRANS_WRITE );
8267   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8268 
8269 #ifdef SQLITE_OMIT_AUTOVACUUM
8270   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8271   if( rc ){
8272     return rc;
8273   }
8274 #else
8275   if( pBt->autoVacuum ){
8276     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8277     MemPage *pPageMove; /* The page to move to. */
8278 
8279     /* Creating a new table may probably require moving an existing database
8280     ** to make room for the new tables root page. In case this page turns
8281     ** out to be an overflow page, delete all overflow page-map caches
8282     ** held by open cursors.
8283     */
8284     invalidateAllOverflowCache(pBt);
8285 
8286     /* Read the value of meta[3] from the database to determine where the
8287     ** root page of the new table should go. meta[3] is the largest root-page
8288     ** created so far, so the new root-page is (meta[3]+1).
8289     */
8290     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8291     pgnoRoot++;
8292 
8293     /* The new root-page may not be allocated on a pointer-map page, or the
8294     ** PENDING_BYTE page.
8295     */
8296     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8297         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8298       pgnoRoot++;
8299     }
8300     assert( pgnoRoot>=3 || CORRUPT_DB );
8301     testcase( pgnoRoot<3 );
8302 
8303     /* Allocate a page. The page that currently resides at pgnoRoot will
8304     ** be moved to the allocated page (unless the allocated page happens
8305     ** to reside at pgnoRoot).
8306     */
8307     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8308     if( rc!=SQLITE_OK ){
8309       return rc;
8310     }
8311 
8312     if( pgnoMove!=pgnoRoot ){
8313       /* pgnoRoot is the page that will be used for the root-page of
8314       ** the new table (assuming an error did not occur). But we were
8315       ** allocated pgnoMove. If required (i.e. if it was not allocated
8316       ** by extending the file), the current page at position pgnoMove
8317       ** is already journaled.
8318       */
8319       u8 eType = 0;
8320       Pgno iPtrPage = 0;
8321 
8322       /* Save the positions of any open cursors. This is required in
8323       ** case they are holding a reference to an xFetch reference
8324       ** corresponding to page pgnoRoot.  */
8325       rc = saveAllCursors(pBt, 0, 0);
8326       releasePage(pPageMove);
8327       if( rc!=SQLITE_OK ){
8328         return rc;
8329       }
8330 
8331       /* Move the page currently at pgnoRoot to pgnoMove. */
8332       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8333       if( rc!=SQLITE_OK ){
8334         return rc;
8335       }
8336       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8337       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8338         rc = SQLITE_CORRUPT_BKPT;
8339       }
8340       if( rc!=SQLITE_OK ){
8341         releasePage(pRoot);
8342         return rc;
8343       }
8344       assert( eType!=PTRMAP_ROOTPAGE );
8345       assert( eType!=PTRMAP_FREEPAGE );
8346       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8347       releasePage(pRoot);
8348 
8349       /* Obtain the page at pgnoRoot */
8350       if( rc!=SQLITE_OK ){
8351         return rc;
8352       }
8353       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8354       if( rc!=SQLITE_OK ){
8355         return rc;
8356       }
8357       rc = sqlite3PagerWrite(pRoot->pDbPage);
8358       if( rc!=SQLITE_OK ){
8359         releasePage(pRoot);
8360         return rc;
8361       }
8362     }else{
8363       pRoot = pPageMove;
8364     }
8365 
8366     /* Update the pointer-map and meta-data with the new root-page number. */
8367     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8368     if( rc ){
8369       releasePage(pRoot);
8370       return rc;
8371     }
8372 
8373     /* When the new root page was allocated, page 1 was made writable in
8374     ** order either to increase the database filesize, or to decrement the
8375     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8376     */
8377     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8378     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8379     if( NEVER(rc) ){
8380       releasePage(pRoot);
8381       return rc;
8382     }
8383 
8384   }else{
8385     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8386     if( rc ) return rc;
8387   }
8388 #endif
8389   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8390   if( createTabFlags & BTREE_INTKEY ){
8391     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8392   }else{
8393     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8394   }
8395   zeroPage(pRoot, ptfFlags);
8396   sqlite3PagerUnref(pRoot->pDbPage);
8397   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8398   *piTable = (int)pgnoRoot;
8399   return SQLITE_OK;
8400 }
8401 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8402   int rc;
8403   sqlite3BtreeEnter(p);
8404   rc = btreeCreateTable(p, piTable, flags);
8405   sqlite3BtreeLeave(p);
8406   return rc;
8407 }
8408 
8409 /*
8410 ** Erase the given database page and all its children.  Return
8411 ** the page to the freelist.
8412 */
8413 static int clearDatabasePage(
8414   BtShared *pBt,           /* The BTree that contains the table */
8415   Pgno pgno,               /* Page number to clear */
8416   int freePageFlag,        /* Deallocate page if true */
8417   int *pnChange            /* Add number of Cells freed to this counter */
8418 ){
8419   MemPage *pPage;
8420   int rc;
8421   unsigned char *pCell;
8422   int i;
8423   int hdr;
8424   u16 szCell;
8425 
8426   assert( sqlite3_mutex_held(pBt->mutex) );
8427   if( pgno>btreePagecount(pBt) ){
8428     return SQLITE_CORRUPT_BKPT;
8429   }
8430   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8431   if( rc ) return rc;
8432   if( pPage->bBusy ){
8433     rc = SQLITE_CORRUPT_BKPT;
8434     goto cleardatabasepage_out;
8435   }
8436   pPage->bBusy = 1;
8437   hdr = pPage->hdrOffset;
8438   for(i=0; i<pPage->nCell; i++){
8439     pCell = findCell(pPage, i);
8440     if( !pPage->leaf ){
8441       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8442       if( rc ) goto cleardatabasepage_out;
8443     }
8444     rc = clearCell(pPage, pCell, &szCell);
8445     if( rc ) goto cleardatabasepage_out;
8446   }
8447   if( !pPage->leaf ){
8448     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8449     if( rc ) goto cleardatabasepage_out;
8450   }else if( pnChange ){
8451     assert( pPage->intKey || CORRUPT_DB );
8452     testcase( !pPage->intKey );
8453     *pnChange += pPage->nCell;
8454   }
8455   if( freePageFlag ){
8456     freePage(pPage, &rc);
8457   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8458     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8459   }
8460 
8461 cleardatabasepage_out:
8462   pPage->bBusy = 0;
8463   releasePage(pPage);
8464   return rc;
8465 }
8466 
8467 /*
8468 ** Delete all information from a single table in the database.  iTable is
8469 ** the page number of the root of the table.  After this routine returns,
8470 ** the root page is empty, but still exists.
8471 **
8472 ** This routine will fail with SQLITE_LOCKED if there are any open
8473 ** read cursors on the table.  Open write cursors are moved to the
8474 ** root of the table.
8475 **
8476 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8477 ** integer value pointed to by pnChange is incremented by the number of
8478 ** entries in the table.
8479 */
8480 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8481   int rc;
8482   BtShared *pBt = p->pBt;
8483   sqlite3BtreeEnter(p);
8484   assert( p->inTrans==TRANS_WRITE );
8485 
8486   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8487 
8488   if( SQLITE_OK==rc ){
8489     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8490     ** is the root of a table b-tree - if it is not, the following call is
8491     ** a no-op).  */
8492     invalidateIncrblobCursors(p, 0, 1);
8493     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8494   }
8495   sqlite3BtreeLeave(p);
8496   return rc;
8497 }
8498 
8499 /*
8500 ** Delete all information from the single table that pCur is open on.
8501 **
8502 ** This routine only work for pCur on an ephemeral table.
8503 */
8504 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8505   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8506 }
8507 
8508 /*
8509 ** Erase all information in a table and add the root of the table to
8510 ** the freelist.  Except, the root of the principle table (the one on
8511 ** page 1) is never added to the freelist.
8512 **
8513 ** This routine will fail with SQLITE_LOCKED if there are any open
8514 ** cursors on the table.
8515 **
8516 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8517 ** root page in the database file, then the last root page
8518 ** in the database file is moved into the slot formerly occupied by
8519 ** iTable and that last slot formerly occupied by the last root page
8520 ** is added to the freelist instead of iTable.  In this say, all
8521 ** root pages are kept at the beginning of the database file, which
8522 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8523 ** page number that used to be the last root page in the file before
8524 ** the move.  If no page gets moved, *piMoved is set to 0.
8525 ** The last root page is recorded in meta[3] and the value of
8526 ** meta[3] is updated by this procedure.
8527 */
8528 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8529   int rc;
8530   MemPage *pPage = 0;
8531   BtShared *pBt = p->pBt;
8532 
8533   assert( sqlite3BtreeHoldsMutex(p) );
8534   assert( p->inTrans==TRANS_WRITE );
8535 
8536   /* It is illegal to drop a table if any cursors are open on the
8537   ** database. This is because in auto-vacuum mode the backend may
8538   ** need to move another root-page to fill a gap left by the deleted
8539   ** root page. If an open cursor was using this page a problem would
8540   ** occur.
8541   **
8542   ** This error is caught long before control reaches this point.
8543   */
8544   if( NEVER(pBt->pCursor) ){
8545     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8546     return SQLITE_LOCKED_SHAREDCACHE;
8547   }
8548 
8549   /*
8550   ** It is illegal to drop the sqlite_master table on page 1.  But again,
8551   ** this error is caught long before reaching this point.
8552   */
8553   if( NEVER(iTable<2) ){
8554     return SQLITE_CORRUPT_BKPT;
8555   }
8556 
8557   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8558   if( rc ) return rc;
8559   rc = sqlite3BtreeClearTable(p, iTable, 0);
8560   if( rc ){
8561     releasePage(pPage);
8562     return rc;
8563   }
8564 
8565   *piMoved = 0;
8566 
8567 #ifdef SQLITE_OMIT_AUTOVACUUM
8568   freePage(pPage, &rc);
8569   releasePage(pPage);
8570 #else
8571   if( pBt->autoVacuum ){
8572     Pgno maxRootPgno;
8573     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8574 
8575     if( iTable==maxRootPgno ){
8576       /* If the table being dropped is the table with the largest root-page
8577       ** number in the database, put the root page on the free list.
8578       */
8579       freePage(pPage, &rc);
8580       releasePage(pPage);
8581       if( rc!=SQLITE_OK ){
8582         return rc;
8583       }
8584     }else{
8585       /* The table being dropped does not have the largest root-page
8586       ** number in the database. So move the page that does into the
8587       ** gap left by the deleted root-page.
8588       */
8589       MemPage *pMove;
8590       releasePage(pPage);
8591       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8592       if( rc!=SQLITE_OK ){
8593         return rc;
8594       }
8595       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8596       releasePage(pMove);
8597       if( rc!=SQLITE_OK ){
8598         return rc;
8599       }
8600       pMove = 0;
8601       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8602       freePage(pMove, &rc);
8603       releasePage(pMove);
8604       if( rc!=SQLITE_OK ){
8605         return rc;
8606       }
8607       *piMoved = maxRootPgno;
8608     }
8609 
8610     /* Set the new 'max-root-page' value in the database header. This
8611     ** is the old value less one, less one more if that happens to
8612     ** be a root-page number, less one again if that is the
8613     ** PENDING_BYTE_PAGE.
8614     */
8615     maxRootPgno--;
8616     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8617            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8618       maxRootPgno--;
8619     }
8620     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8621 
8622     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8623   }else{
8624     freePage(pPage, &rc);
8625     releasePage(pPage);
8626   }
8627 #endif
8628   return rc;
8629 }
8630 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8631   int rc;
8632   sqlite3BtreeEnter(p);
8633   rc = btreeDropTable(p, iTable, piMoved);
8634   sqlite3BtreeLeave(p);
8635   return rc;
8636 }
8637 
8638 
8639 /*
8640 ** This function may only be called if the b-tree connection already
8641 ** has a read or write transaction open on the database.
8642 **
8643 ** Read the meta-information out of a database file.  Meta[0]
8644 ** is the number of free pages currently in the database.  Meta[1]
8645 ** through meta[15] are available for use by higher layers.  Meta[0]
8646 ** is read-only, the others are read/write.
8647 **
8648 ** The schema layer numbers meta values differently.  At the schema
8649 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8650 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8651 **
8652 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8653 ** of reading the value out of the header, it instead loads the "DataVersion"
8654 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8655 ** database file.  It is a number computed by the pager.  But its access
8656 ** pattern is the same as header meta values, and so it is convenient to
8657 ** read it from this routine.
8658 */
8659 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8660   BtShared *pBt = p->pBt;
8661 
8662   sqlite3BtreeEnter(p);
8663   assert( p->inTrans>TRANS_NONE );
8664   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8665   assert( pBt->pPage1 );
8666   assert( idx>=0 && idx<=15 );
8667 
8668   if( idx==BTREE_DATA_VERSION ){
8669     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8670   }else{
8671     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8672   }
8673 
8674   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8675   ** database, mark the database as read-only.  */
8676 #ifdef SQLITE_OMIT_AUTOVACUUM
8677   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8678     pBt->btsFlags |= BTS_READ_ONLY;
8679   }
8680 #endif
8681 
8682   sqlite3BtreeLeave(p);
8683 }
8684 
8685 /*
8686 ** Write meta-information back into the database.  Meta[0] is
8687 ** read-only and may not be written.
8688 */
8689 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8690   BtShared *pBt = p->pBt;
8691   unsigned char *pP1;
8692   int rc;
8693   assert( idx>=1 && idx<=15 );
8694   sqlite3BtreeEnter(p);
8695   assert( p->inTrans==TRANS_WRITE );
8696   assert( pBt->pPage1!=0 );
8697   pP1 = pBt->pPage1->aData;
8698   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8699   if( rc==SQLITE_OK ){
8700     put4byte(&pP1[36 + idx*4], iMeta);
8701 #ifndef SQLITE_OMIT_AUTOVACUUM
8702     if( idx==BTREE_INCR_VACUUM ){
8703       assert( pBt->autoVacuum || iMeta==0 );
8704       assert( iMeta==0 || iMeta==1 );
8705       pBt->incrVacuum = (u8)iMeta;
8706     }
8707 #endif
8708   }
8709   sqlite3BtreeLeave(p);
8710   return rc;
8711 }
8712 
8713 #ifndef SQLITE_OMIT_BTREECOUNT
8714 /*
8715 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8716 ** number of entries in the b-tree and write the result to *pnEntry.
8717 **
8718 ** SQLITE_OK is returned if the operation is successfully executed.
8719 ** Otherwise, if an error is encountered (i.e. an IO error or database
8720 ** corruption) an SQLite error code is returned.
8721 */
8722 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8723   i64 nEntry = 0;                      /* Value to return in *pnEntry */
8724   int rc;                              /* Return code */
8725 
8726   if( pCur->pgnoRoot==0 ){
8727     *pnEntry = 0;
8728     return SQLITE_OK;
8729   }
8730   rc = moveToRoot(pCur);
8731 
8732   /* Unless an error occurs, the following loop runs one iteration for each
8733   ** page in the B-Tree structure (not including overflow pages).
8734   */
8735   while( rc==SQLITE_OK ){
8736     int iIdx;                          /* Index of child node in parent */
8737     MemPage *pPage;                    /* Current page of the b-tree */
8738 
8739     /* If this is a leaf page or the tree is not an int-key tree, then
8740     ** this page contains countable entries. Increment the entry counter
8741     ** accordingly.
8742     */
8743     pPage = pCur->apPage[pCur->iPage];
8744     if( pPage->leaf || !pPage->intKey ){
8745       nEntry += pPage->nCell;
8746     }
8747 
8748     /* pPage is a leaf node. This loop navigates the cursor so that it
8749     ** points to the first interior cell that it points to the parent of
8750     ** the next page in the tree that has not yet been visited. The
8751     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8752     ** of the page, or to the number of cells in the page if the next page
8753     ** to visit is the right-child of its parent.
8754     **
8755     ** If all pages in the tree have been visited, return SQLITE_OK to the
8756     ** caller.
8757     */
8758     if( pPage->leaf ){
8759       do {
8760         if( pCur->iPage==0 ){
8761           /* All pages of the b-tree have been visited. Return successfully. */
8762           *pnEntry = nEntry;
8763           return moveToRoot(pCur);
8764         }
8765         moveToParent(pCur);
8766       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8767 
8768       pCur->aiIdx[pCur->iPage]++;
8769       pPage = pCur->apPage[pCur->iPage];
8770     }
8771 
8772     /* Descend to the child node of the cell that the cursor currently
8773     ** points at. This is the right-child if (iIdx==pPage->nCell).
8774     */
8775     iIdx = pCur->aiIdx[pCur->iPage];
8776     if( iIdx==pPage->nCell ){
8777       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8778     }else{
8779       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8780     }
8781   }
8782 
8783   /* An error has occurred. Return an error code. */
8784   return rc;
8785 }
8786 #endif
8787 
8788 /*
8789 ** Return the pager associated with a BTree.  This routine is used for
8790 ** testing and debugging only.
8791 */
8792 Pager *sqlite3BtreePager(Btree *p){
8793   return p->pBt->pPager;
8794 }
8795 
8796 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8797 /*
8798 ** Append a message to the error message string.
8799 */
8800 static void checkAppendMsg(
8801   IntegrityCk *pCheck,
8802   const char *zFormat,
8803   ...
8804 ){
8805   va_list ap;
8806   if( !pCheck->mxErr ) return;
8807   pCheck->mxErr--;
8808   pCheck->nErr++;
8809   va_start(ap, zFormat);
8810   if( pCheck->errMsg.nChar ){
8811     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
8812   }
8813   if( pCheck->zPfx ){
8814     sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
8815   }
8816   sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
8817   va_end(ap);
8818   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
8819     pCheck->mallocFailed = 1;
8820   }
8821 }
8822 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8823 
8824 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8825 
8826 /*
8827 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8828 ** corresponds to page iPg is already set.
8829 */
8830 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8831   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8832   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8833 }
8834 
8835 /*
8836 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8837 */
8838 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8839   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8840   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8841 }
8842 
8843 
8844 /*
8845 ** Add 1 to the reference count for page iPage.  If this is the second
8846 ** reference to the page, add an error message to pCheck->zErrMsg.
8847 ** Return 1 if there are 2 or more references to the page and 0 if
8848 ** if this is the first reference to the page.
8849 **
8850 ** Also check that the page number is in bounds.
8851 */
8852 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
8853   if( iPage==0 ) return 1;
8854   if( iPage>pCheck->nPage ){
8855     checkAppendMsg(pCheck, "invalid page number %d", iPage);
8856     return 1;
8857   }
8858   if( getPageReferenced(pCheck, iPage) ){
8859     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
8860     return 1;
8861   }
8862   setPageReferenced(pCheck, iPage);
8863   return 0;
8864 }
8865 
8866 #ifndef SQLITE_OMIT_AUTOVACUUM
8867 /*
8868 ** Check that the entry in the pointer-map for page iChild maps to
8869 ** page iParent, pointer type ptrType. If not, append an error message
8870 ** to pCheck.
8871 */
8872 static void checkPtrmap(
8873   IntegrityCk *pCheck,   /* Integrity check context */
8874   Pgno iChild,           /* Child page number */
8875   u8 eType,              /* Expected pointer map type */
8876   Pgno iParent           /* Expected pointer map parent page number */
8877 ){
8878   int rc;
8879   u8 ePtrmapType;
8880   Pgno iPtrmapParent;
8881 
8882   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8883   if( rc!=SQLITE_OK ){
8884     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
8885     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
8886     return;
8887   }
8888 
8889   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
8890     checkAppendMsg(pCheck,
8891       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8892       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8893   }
8894 }
8895 #endif
8896 
8897 /*
8898 ** Check the integrity of the freelist or of an overflow page list.
8899 ** Verify that the number of pages on the list is N.
8900 */
8901 static void checkList(
8902   IntegrityCk *pCheck,  /* Integrity checking context */
8903   int isFreeList,       /* True for a freelist.  False for overflow page list */
8904   int iPage,            /* Page number for first page in the list */
8905   int N                 /* Expected number of pages in the list */
8906 ){
8907   int i;
8908   int expected = N;
8909   int iFirst = iPage;
8910   while( N-- > 0 && pCheck->mxErr ){
8911     DbPage *pOvflPage;
8912     unsigned char *pOvflData;
8913     if( iPage<1 ){
8914       checkAppendMsg(pCheck,
8915          "%d of %d pages missing from overflow list starting at %d",
8916           N+1, expected, iFirst);
8917       break;
8918     }
8919     if( checkRef(pCheck, iPage) ) break;
8920     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
8921       checkAppendMsg(pCheck, "failed to get page %d", iPage);
8922       break;
8923     }
8924     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
8925     if( isFreeList ){
8926       int n = get4byte(&pOvflData[4]);
8927 #ifndef SQLITE_OMIT_AUTOVACUUM
8928       if( pCheck->pBt->autoVacuum ){
8929         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
8930       }
8931 #endif
8932       if( n>(int)pCheck->pBt->usableSize/4-2 ){
8933         checkAppendMsg(pCheck,
8934            "freelist leaf count too big on page %d", iPage);
8935         N--;
8936       }else{
8937         for(i=0; i<n; i++){
8938           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
8939 #ifndef SQLITE_OMIT_AUTOVACUUM
8940           if( pCheck->pBt->autoVacuum ){
8941             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
8942           }
8943 #endif
8944           checkRef(pCheck, iFreePage);
8945         }
8946         N -= n;
8947       }
8948     }
8949 #ifndef SQLITE_OMIT_AUTOVACUUM
8950     else{
8951       /* If this database supports auto-vacuum and iPage is not the last
8952       ** page in this overflow list, check that the pointer-map entry for
8953       ** the following page matches iPage.
8954       */
8955       if( pCheck->pBt->autoVacuum && N>0 ){
8956         i = get4byte(pOvflData);
8957         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
8958       }
8959     }
8960 #endif
8961     iPage = get4byte(pOvflData);
8962     sqlite3PagerUnref(pOvflPage);
8963 
8964     if( isFreeList && N<(iPage!=0) ){
8965       checkAppendMsg(pCheck, "free-page count in header is too small");
8966     }
8967   }
8968 }
8969 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8970 
8971 /*
8972 ** An implementation of a min-heap.
8973 **
8974 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
8975 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
8976 ** and aHeap[N*2+1].
8977 **
8978 ** The heap property is this:  Every node is less than or equal to both
8979 ** of its daughter nodes.  A consequence of the heap property is that the
8980 ** root node aHeap[1] is always the minimum value currently in the heap.
8981 **
8982 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8983 ** the heap, preserving the heap property.  The btreeHeapPull() routine
8984 ** removes the root element from the heap (the minimum value in the heap)
8985 ** and then moves other nodes around as necessary to preserve the heap
8986 ** property.
8987 **
8988 ** This heap is used for cell overlap and coverage testing.  Each u32
8989 ** entry represents the span of a cell or freeblock on a btree page.
8990 ** The upper 16 bits are the index of the first byte of a range and the
8991 ** lower 16 bits are the index of the last byte of that range.
8992 */
8993 static void btreeHeapInsert(u32 *aHeap, u32 x){
8994   u32 j, i = ++aHeap[0];
8995   aHeap[i] = x;
8996   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
8997     x = aHeap[j];
8998     aHeap[j] = aHeap[i];
8999     aHeap[i] = x;
9000     i = j;
9001   }
9002 }
9003 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9004   u32 j, i, x;
9005   if( (x = aHeap[0])==0 ) return 0;
9006   *pOut = aHeap[1];
9007   aHeap[1] = aHeap[x];
9008   aHeap[x] = 0xffffffff;
9009   aHeap[0]--;
9010   i = 1;
9011   while( (j = i*2)<=aHeap[0] ){
9012     if( aHeap[j]>aHeap[j+1] ) j++;
9013     if( aHeap[i]<aHeap[j] ) break;
9014     x = aHeap[i];
9015     aHeap[i] = aHeap[j];
9016     aHeap[j] = x;
9017     i = j;
9018   }
9019   return 1;
9020 }
9021 
9022 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9023 /*
9024 ** Do various sanity checks on a single page of a tree.  Return
9025 ** the tree depth.  Root pages return 0.  Parents of root pages
9026 ** return 1, and so forth.
9027 **
9028 ** These checks are done:
9029 **
9030 **      1.  Make sure that cells and freeblocks do not overlap
9031 **          but combine to completely cover the page.
9032 **      2.  Make sure integer cell keys are in order.
9033 **      3.  Check the integrity of overflow pages.
9034 **      4.  Recursively call checkTreePage on all children.
9035 **      5.  Verify that the depth of all children is the same.
9036 */
9037 static int checkTreePage(
9038   IntegrityCk *pCheck,  /* Context for the sanity check */
9039   int iPage,            /* Page number of the page to check */
9040   i64 *piMinKey,        /* Write minimum integer primary key here */
9041   i64 maxKey            /* Error if integer primary key greater than this */
9042 ){
9043   MemPage *pPage = 0;      /* The page being analyzed */
9044   int i;                   /* Loop counter */
9045   int rc;                  /* Result code from subroutine call */
9046   int depth = -1, d2;      /* Depth of a subtree */
9047   int pgno;                /* Page number */
9048   int nFrag;               /* Number of fragmented bytes on the page */
9049   int hdr;                 /* Offset to the page header */
9050   int cellStart;           /* Offset to the start of the cell pointer array */
9051   int nCell;               /* Number of cells */
9052   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9053   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9054                            ** False if IPK must be strictly less than maxKey */
9055   u8 *data;                /* Page content */
9056   u8 *pCell;               /* Cell content */
9057   u8 *pCellIdx;            /* Next element of the cell pointer array */
9058   BtShared *pBt;           /* The BtShared object that owns pPage */
9059   u32 pc;                  /* Address of a cell */
9060   u32 usableSize;          /* Usable size of the page */
9061   u32 contentOffset;       /* Offset to the start of the cell content area */
9062   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9063   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9064   const char *saved_zPfx = pCheck->zPfx;
9065   int saved_v1 = pCheck->v1;
9066   int saved_v2 = pCheck->v2;
9067   u8 savedIsInit = 0;
9068 
9069   /* Check that the page exists
9070   */
9071   pBt = pCheck->pBt;
9072   usableSize = pBt->usableSize;
9073   if( iPage==0 ) return 0;
9074   if( checkRef(pCheck, iPage) ) return 0;
9075   pCheck->zPfx = "Page %d: ";
9076   pCheck->v1 = iPage;
9077   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9078     checkAppendMsg(pCheck,
9079        "unable to get the page. error code=%d", rc);
9080     goto end_of_check;
9081   }
9082 
9083   /* Clear MemPage.isInit to make sure the corruption detection code in
9084   ** btreeInitPage() is executed.  */
9085   savedIsInit = pPage->isInit;
9086   pPage->isInit = 0;
9087   if( (rc = btreeInitPage(pPage))!=0 ){
9088     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9089     checkAppendMsg(pCheck,
9090                    "btreeInitPage() returns error code %d", rc);
9091     goto end_of_check;
9092   }
9093   data = pPage->aData;
9094   hdr = pPage->hdrOffset;
9095 
9096   /* Set up for cell analysis */
9097   pCheck->zPfx = "On tree page %d cell %d: ";
9098   contentOffset = get2byteNotZero(&data[hdr+5]);
9099   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9100 
9101   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9102   ** number of cells on the page. */
9103   nCell = get2byte(&data[hdr+3]);
9104   assert( pPage->nCell==nCell );
9105 
9106   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9107   ** immediately follows the b-tree page header. */
9108   cellStart = hdr + 12 - 4*pPage->leaf;
9109   assert( pPage->aCellIdx==&data[cellStart] );
9110   pCellIdx = &data[cellStart + 2*(nCell-1)];
9111 
9112   if( !pPage->leaf ){
9113     /* Analyze the right-child page of internal pages */
9114     pgno = get4byte(&data[hdr+8]);
9115 #ifndef SQLITE_OMIT_AUTOVACUUM
9116     if( pBt->autoVacuum ){
9117       pCheck->zPfx = "On page %d at right child: ";
9118       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9119     }
9120 #endif
9121     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9122     keyCanBeEqual = 0;
9123   }else{
9124     /* For leaf pages, the coverage check will occur in the same loop
9125     ** as the other cell checks, so initialize the heap.  */
9126     heap = pCheck->heap;
9127     heap[0] = 0;
9128   }
9129 
9130   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9131   ** integer offsets to the cell contents. */
9132   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9133     CellInfo info;
9134 
9135     /* Check cell size */
9136     pCheck->v2 = i;
9137     assert( pCellIdx==&data[cellStart + i*2] );
9138     pc = get2byteAligned(pCellIdx);
9139     pCellIdx -= 2;
9140     if( pc<contentOffset || pc>usableSize-4 ){
9141       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9142                              pc, contentOffset, usableSize-4);
9143       doCoverageCheck = 0;
9144       continue;
9145     }
9146     pCell = &data[pc];
9147     pPage->xParseCell(pPage, pCell, &info);
9148     if( pc+info.nSize>usableSize ){
9149       checkAppendMsg(pCheck, "Extends off end of page");
9150       doCoverageCheck = 0;
9151       continue;
9152     }
9153 
9154     /* Check for integer primary key out of range */
9155     if( pPage->intKey ){
9156       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9157         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9158       }
9159       maxKey = info.nKey;
9160     }
9161 
9162     /* Check the content overflow list */
9163     if( info.nPayload>info.nLocal ){
9164       int nPage;       /* Number of pages on the overflow chain */
9165       Pgno pgnoOvfl;   /* First page of the overflow chain */
9166       assert( pc + info.nSize - 4 <= usableSize );
9167       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9168       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9169 #ifndef SQLITE_OMIT_AUTOVACUUM
9170       if( pBt->autoVacuum ){
9171         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9172       }
9173 #endif
9174       checkList(pCheck, 0, pgnoOvfl, nPage);
9175     }
9176 
9177     if( !pPage->leaf ){
9178       /* Check sanity of left child page for internal pages */
9179       pgno = get4byte(pCell);
9180 #ifndef SQLITE_OMIT_AUTOVACUUM
9181       if( pBt->autoVacuum ){
9182         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9183       }
9184 #endif
9185       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9186       keyCanBeEqual = 0;
9187       if( d2!=depth ){
9188         checkAppendMsg(pCheck, "Child page depth differs");
9189         depth = d2;
9190       }
9191     }else{
9192       /* Populate the coverage-checking heap for leaf pages */
9193       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9194     }
9195   }
9196   *piMinKey = maxKey;
9197 
9198   /* Check for complete coverage of the page
9199   */
9200   pCheck->zPfx = 0;
9201   if( doCoverageCheck && pCheck->mxErr>0 ){
9202     /* For leaf pages, the min-heap has already been initialized and the
9203     ** cells have already been inserted.  But for internal pages, that has
9204     ** not yet been done, so do it now */
9205     if( !pPage->leaf ){
9206       heap = pCheck->heap;
9207       heap[0] = 0;
9208       for(i=nCell-1; i>=0; i--){
9209         u32 size;
9210         pc = get2byteAligned(&data[cellStart+i*2]);
9211         size = pPage->xCellSize(pPage, &data[pc]);
9212         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9213       }
9214     }
9215     /* Add the freeblocks to the min-heap
9216     **
9217     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9218     ** is the offset of the first freeblock, or zero if there are no
9219     ** freeblocks on the page.
9220     */
9221     i = get2byte(&data[hdr+1]);
9222     while( i>0 ){
9223       int size, j;
9224       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9225       size = get2byte(&data[i+2]);
9226       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9227       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9228       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9229       ** big-endian integer which is the offset in the b-tree page of the next
9230       ** freeblock in the chain, or zero if the freeblock is the last on the
9231       ** chain. */
9232       j = get2byte(&data[i]);
9233       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9234       ** increasing offset. */
9235       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9236       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9237       i = j;
9238     }
9239     /* Analyze the min-heap looking for overlap between cells and/or
9240     ** freeblocks, and counting the number of untracked bytes in nFrag.
9241     **
9242     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9243     ** There is an implied first entry the covers the page header, the cell
9244     ** pointer index, and the gap between the cell pointer index and the start
9245     ** of cell content.
9246     **
9247     ** The loop below pulls entries from the min-heap in order and compares
9248     ** the start_address against the previous end_address.  If there is an
9249     ** overlap, that means bytes are used multiple times.  If there is a gap,
9250     ** that gap is added to the fragmentation count.
9251     */
9252     nFrag = 0;
9253     prev = contentOffset - 1;   /* Implied first min-heap entry */
9254     while( btreeHeapPull(heap,&x) ){
9255       if( (prev&0xffff)>=(x>>16) ){
9256         checkAppendMsg(pCheck,
9257           "Multiple uses for byte %u of page %d", x>>16, iPage);
9258         break;
9259       }else{
9260         nFrag += (x>>16) - (prev&0xffff) - 1;
9261         prev = x;
9262       }
9263     }
9264     nFrag += usableSize - (prev&0xffff) - 1;
9265     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9266     ** is stored in the fifth field of the b-tree page header.
9267     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9268     ** number of fragmented free bytes within the cell content area.
9269     */
9270     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9271       checkAppendMsg(pCheck,
9272           "Fragmentation of %d bytes reported as %d on page %d",
9273           nFrag, data[hdr+7], iPage);
9274     }
9275   }
9276 
9277 end_of_check:
9278   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9279   releasePage(pPage);
9280   pCheck->zPfx = saved_zPfx;
9281   pCheck->v1 = saved_v1;
9282   pCheck->v2 = saved_v2;
9283   return depth+1;
9284 }
9285 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9286 
9287 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9288 /*
9289 ** This routine does a complete check of the given BTree file.  aRoot[] is
9290 ** an array of pages numbers were each page number is the root page of
9291 ** a table.  nRoot is the number of entries in aRoot.
9292 **
9293 ** A read-only or read-write transaction must be opened before calling
9294 ** this function.
9295 **
9296 ** Write the number of error seen in *pnErr.  Except for some memory
9297 ** allocation errors,  an error message held in memory obtained from
9298 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9299 ** returned.  If a memory allocation error occurs, NULL is returned.
9300 */
9301 char *sqlite3BtreeIntegrityCheck(
9302   Btree *p,     /* The btree to be checked */
9303   int *aRoot,   /* An array of root pages numbers for individual trees */
9304   int nRoot,    /* Number of entries in aRoot[] */
9305   int mxErr,    /* Stop reporting errors after this many */
9306   int *pnErr    /* Write number of errors seen to this variable */
9307 ){
9308   Pgno i;
9309   IntegrityCk sCheck;
9310   BtShared *pBt = p->pBt;
9311   int savedDbFlags = pBt->db->flags;
9312   char zErr[100];
9313   VVA_ONLY( int nRef );
9314 
9315   sqlite3BtreeEnter(p);
9316   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9317   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9318   assert( nRef>=0 );
9319   sCheck.pBt = pBt;
9320   sCheck.pPager = pBt->pPager;
9321   sCheck.nPage = btreePagecount(sCheck.pBt);
9322   sCheck.mxErr = mxErr;
9323   sCheck.nErr = 0;
9324   sCheck.mallocFailed = 0;
9325   sCheck.zPfx = 0;
9326   sCheck.v1 = 0;
9327   sCheck.v2 = 0;
9328   sCheck.aPgRef = 0;
9329   sCheck.heap = 0;
9330   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9331   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9332   if( sCheck.nPage==0 ){
9333     goto integrity_ck_cleanup;
9334   }
9335 
9336   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9337   if( !sCheck.aPgRef ){
9338     sCheck.mallocFailed = 1;
9339     goto integrity_ck_cleanup;
9340   }
9341   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9342   if( sCheck.heap==0 ){
9343     sCheck.mallocFailed = 1;
9344     goto integrity_ck_cleanup;
9345   }
9346 
9347   i = PENDING_BYTE_PAGE(pBt);
9348   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9349 
9350   /* Check the integrity of the freelist
9351   */
9352   sCheck.zPfx = "Main freelist: ";
9353   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9354             get4byte(&pBt->pPage1->aData[36]));
9355   sCheck.zPfx = 0;
9356 
9357   /* Check all the tables.
9358   */
9359   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9360   pBt->db->flags &= ~SQLITE_CellSizeCk;
9361   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9362     i64 notUsed;
9363     if( aRoot[i]==0 ) continue;
9364 #ifndef SQLITE_OMIT_AUTOVACUUM
9365     if( pBt->autoVacuum && aRoot[i]>1 ){
9366       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9367     }
9368 #endif
9369     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9370   }
9371   pBt->db->flags = savedDbFlags;
9372 
9373   /* Make sure every page in the file is referenced
9374   */
9375   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9376 #ifdef SQLITE_OMIT_AUTOVACUUM
9377     if( getPageReferenced(&sCheck, i)==0 ){
9378       checkAppendMsg(&sCheck, "Page %d is never used", i);
9379     }
9380 #else
9381     /* If the database supports auto-vacuum, make sure no tables contain
9382     ** references to pointer-map pages.
9383     */
9384     if( getPageReferenced(&sCheck, i)==0 &&
9385        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9386       checkAppendMsg(&sCheck, "Page %d is never used", i);
9387     }
9388     if( getPageReferenced(&sCheck, i)!=0 &&
9389        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9390       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9391     }
9392 #endif
9393   }
9394 
9395   /* Clean  up and report errors.
9396   */
9397 integrity_ck_cleanup:
9398   sqlite3PageFree(sCheck.heap);
9399   sqlite3_free(sCheck.aPgRef);
9400   if( sCheck.mallocFailed ){
9401     sqlite3StrAccumReset(&sCheck.errMsg);
9402     sCheck.nErr++;
9403   }
9404   *pnErr = sCheck.nErr;
9405   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9406   /* Make sure this analysis did not leave any unref() pages. */
9407   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9408   sqlite3BtreeLeave(p);
9409   return sqlite3StrAccumFinish(&sCheck.errMsg);
9410 }
9411 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9412 
9413 /*
9414 ** Return the full pathname of the underlying database file.  Return
9415 ** an empty string if the database is in-memory or a TEMP database.
9416 **
9417 ** The pager filename is invariant as long as the pager is
9418 ** open so it is safe to access without the BtShared mutex.
9419 */
9420 const char *sqlite3BtreeGetFilename(Btree *p){
9421   assert( p->pBt->pPager!=0 );
9422   return sqlite3PagerFilename(p->pBt->pPager, 1);
9423 }
9424 
9425 /*
9426 ** Return the pathname of the journal file for this database. The return
9427 ** value of this routine is the same regardless of whether the journal file
9428 ** has been created or not.
9429 **
9430 ** The pager journal filename is invariant as long as the pager is
9431 ** open so it is safe to access without the BtShared mutex.
9432 */
9433 const char *sqlite3BtreeGetJournalname(Btree *p){
9434   assert( p->pBt->pPager!=0 );
9435   return sqlite3PagerJournalname(p->pBt->pPager);
9436 }
9437 
9438 /*
9439 ** Return non-zero if a transaction is active.
9440 */
9441 int sqlite3BtreeIsInTrans(Btree *p){
9442   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9443   return (p && (p->inTrans==TRANS_WRITE));
9444 }
9445 
9446 #ifndef SQLITE_OMIT_WAL
9447 /*
9448 ** Run a checkpoint on the Btree passed as the first argument.
9449 **
9450 ** Return SQLITE_LOCKED if this or any other connection has an open
9451 ** transaction on the shared-cache the argument Btree is connected to.
9452 **
9453 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9454 */
9455 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9456   int rc = SQLITE_OK;
9457   if( p ){
9458     BtShared *pBt = p->pBt;
9459     sqlite3BtreeEnter(p);
9460     if( pBt->inTransaction!=TRANS_NONE ){
9461       rc = SQLITE_LOCKED;
9462     }else{
9463       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
9464     }
9465     sqlite3BtreeLeave(p);
9466   }
9467   return rc;
9468 }
9469 #endif
9470 
9471 /*
9472 ** Return non-zero if a read (or write) transaction is active.
9473 */
9474 int sqlite3BtreeIsInReadTrans(Btree *p){
9475   assert( p );
9476   assert( sqlite3_mutex_held(p->db->mutex) );
9477   return p->inTrans!=TRANS_NONE;
9478 }
9479 
9480 int sqlite3BtreeIsInBackup(Btree *p){
9481   assert( p );
9482   assert( sqlite3_mutex_held(p->db->mutex) );
9483   return p->nBackup!=0;
9484 }
9485 
9486 /*
9487 ** This function returns a pointer to a blob of memory associated with
9488 ** a single shared-btree. The memory is used by client code for its own
9489 ** purposes (for example, to store a high-level schema associated with
9490 ** the shared-btree). The btree layer manages reference counting issues.
9491 **
9492 ** The first time this is called on a shared-btree, nBytes bytes of memory
9493 ** are allocated, zeroed, and returned to the caller. For each subsequent
9494 ** call the nBytes parameter is ignored and a pointer to the same blob
9495 ** of memory returned.
9496 **
9497 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9498 ** allocated, a null pointer is returned. If the blob has already been
9499 ** allocated, it is returned as normal.
9500 **
9501 ** Just before the shared-btree is closed, the function passed as the
9502 ** xFree argument when the memory allocation was made is invoked on the
9503 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9504 ** on the memory, the btree layer does that.
9505 */
9506 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9507   BtShared *pBt = p->pBt;
9508   sqlite3BtreeEnter(p);
9509   if( !pBt->pSchema && nBytes ){
9510     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9511     pBt->xFreeSchema = xFree;
9512   }
9513   sqlite3BtreeLeave(p);
9514   return pBt->pSchema;
9515 }
9516 
9517 /*
9518 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9519 ** btree as the argument handle holds an exclusive lock on the
9520 ** sqlite_master table. Otherwise SQLITE_OK.
9521 */
9522 int sqlite3BtreeSchemaLocked(Btree *p){
9523   int rc;
9524   assert( sqlite3_mutex_held(p->db->mutex) );
9525   sqlite3BtreeEnter(p);
9526   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9527   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9528   sqlite3BtreeLeave(p);
9529   return rc;
9530 }
9531 
9532 
9533 #ifndef SQLITE_OMIT_SHARED_CACHE
9534 /*
9535 ** Obtain a lock on the table whose root page is iTab.  The
9536 ** lock is a write lock if isWritelock is true or a read lock
9537 ** if it is false.
9538 */
9539 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9540   int rc = SQLITE_OK;
9541   assert( p->inTrans!=TRANS_NONE );
9542   if( p->sharable ){
9543     u8 lockType = READ_LOCK + isWriteLock;
9544     assert( READ_LOCK+1==WRITE_LOCK );
9545     assert( isWriteLock==0 || isWriteLock==1 );
9546 
9547     sqlite3BtreeEnter(p);
9548     rc = querySharedCacheTableLock(p, iTab, lockType);
9549     if( rc==SQLITE_OK ){
9550       rc = setSharedCacheTableLock(p, iTab, lockType);
9551     }
9552     sqlite3BtreeLeave(p);
9553   }
9554   return rc;
9555 }
9556 #endif
9557 
9558 #ifndef SQLITE_OMIT_INCRBLOB
9559 /*
9560 ** Argument pCsr must be a cursor opened for writing on an
9561 ** INTKEY table currently pointing at a valid table entry.
9562 ** This function modifies the data stored as part of that entry.
9563 **
9564 ** Only the data content may only be modified, it is not possible to
9565 ** change the length of the data stored. If this function is called with
9566 ** parameters that attempt to write past the end of the existing data,
9567 ** no modifications are made and SQLITE_CORRUPT is returned.
9568 */
9569 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9570   int rc;
9571   assert( cursorOwnsBtShared(pCsr) );
9572   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9573   assert( pCsr->curFlags & BTCF_Incrblob );
9574 
9575   rc = restoreCursorPosition(pCsr);
9576   if( rc!=SQLITE_OK ){
9577     return rc;
9578   }
9579   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9580   if( pCsr->eState!=CURSOR_VALID ){
9581     return SQLITE_ABORT;
9582   }
9583 
9584   /* Save the positions of all other cursors open on this table. This is
9585   ** required in case any of them are holding references to an xFetch
9586   ** version of the b-tree page modified by the accessPayload call below.
9587   **
9588   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9589   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9590   ** saveAllCursors can only return SQLITE_OK.
9591   */
9592   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9593   assert( rc==SQLITE_OK );
9594 
9595   /* Check some assumptions:
9596   **   (a) the cursor is open for writing,
9597   **   (b) there is a read/write transaction open,
9598   **   (c) the connection holds a write-lock on the table (if required),
9599   **   (d) there are no conflicting read-locks, and
9600   **   (e) the cursor points at a valid row of an intKey table.
9601   */
9602   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9603     return SQLITE_READONLY;
9604   }
9605   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9606               && pCsr->pBt->inTransaction==TRANS_WRITE );
9607   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9608   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9609   assert( pCsr->apPage[pCsr->iPage]->intKey );
9610 
9611   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9612 }
9613 
9614 /*
9615 ** Mark this cursor as an incremental blob cursor.
9616 */
9617 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9618   pCur->curFlags |= BTCF_Incrblob;
9619   pCur->pBtree->hasIncrblobCur = 1;
9620 }
9621 #endif
9622 
9623 /*
9624 ** Set both the "read version" (single byte at byte offset 18) and
9625 ** "write version" (single byte at byte offset 19) fields in the database
9626 ** header to iVersion.
9627 */
9628 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9629   BtShared *pBt = pBtree->pBt;
9630   int rc;                         /* Return code */
9631 
9632   assert( iVersion==1 || iVersion==2 );
9633 
9634   /* If setting the version fields to 1, do not automatically open the
9635   ** WAL connection, even if the version fields are currently set to 2.
9636   */
9637   pBt->btsFlags &= ~BTS_NO_WAL;
9638   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9639 
9640   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9641   if( rc==SQLITE_OK ){
9642     u8 *aData = pBt->pPage1->aData;
9643     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9644       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9645       if( rc==SQLITE_OK ){
9646         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9647         if( rc==SQLITE_OK ){
9648           aData[18] = (u8)iVersion;
9649           aData[19] = (u8)iVersion;
9650         }
9651       }
9652     }
9653   }
9654 
9655   pBt->btsFlags &= ~BTS_NO_WAL;
9656   return rc;
9657 }
9658 
9659 /*
9660 ** Return true if the cursor has a hint specified.  This routine is
9661 ** only used from within assert() statements
9662 */
9663 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9664   return (pCsr->hints & mask)!=0;
9665 }
9666 
9667 /*
9668 ** Return true if the given Btree is read-only.
9669 */
9670 int sqlite3BtreeIsReadonly(Btree *p){
9671   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9672 }
9673 
9674 /*
9675 ** Return the size of the header added to each page by this module.
9676 */
9677 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9678 
9679 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9680 /*
9681 ** Return true if the Btree passed as the only argument is sharable.
9682 */
9683 int sqlite3BtreeSharable(Btree *p){
9684   return p->sharable;
9685 }
9686 #endif
9687