xref: /sqlite-3.40.0/src/btree.c (revision 74bbd37d)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 /*
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118 **
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
123 */
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126   char *zMsg;
127   sqlite3BeginBenignMalloc();
128   zMsg = sqlite3_mprintf("database corruption page %d of %s",
129       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130   );
131   sqlite3EndBenignMalloc();
132   if( zMsg ){
133     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134   }
135   sqlite3_free(zMsg);
136   return SQLITE_CORRUPT_BKPT;
137 }
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
142 
143 #ifndef SQLITE_OMIT_SHARED_CACHE
144 
145 #ifdef SQLITE_DEBUG
146 /*
147 **** This function is only used as part of an assert() statement. ***
148 **
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot.   Return 1 if it does and 0 if not.
151 **
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
154 **
155 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156 **
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
163 **
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
167 */
168 static int hasSharedCacheTableLock(
169   Btree *pBtree,         /* Handle that must hold lock */
170   Pgno iRoot,            /* Root page of b-tree */
171   int isIndex,           /* True if iRoot is the root of an index b-tree */
172   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
173 ){
174   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175   Pgno iTab = 0;
176   BtLock *pLock;
177 
178   /* If this database is not shareable, or if the client is reading
179   ** and has the read-uncommitted flag set, then no lock is required.
180   ** Return true immediately.
181   */
182   if( (pBtree->sharable==0)
183    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
184   ){
185     return 1;
186   }
187 
188   /* If the client is reading  or writing an index and the schema is
189   ** not loaded, then it is too difficult to actually check to see if
190   ** the correct locks are held.  So do not bother - just return true.
191   ** This case does not come up very often anyhow.
192   */
193   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194     return 1;
195   }
196 
197   /* Figure out the root-page that the lock should be held on. For table
198   ** b-trees, this is just the root page of the b-tree being read or
199   ** written. For index b-trees, it is the root page of the associated
200   ** table.  */
201   if( isIndex ){
202     HashElem *p;
203     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204       Index *pIdx = (Index *)sqliteHashData(p);
205       if( pIdx->tnum==(int)iRoot ){
206         if( iTab ){
207           /* Two or more indexes share the same root page.  There must
208           ** be imposter tables.  So just return true.  The assert is not
209           ** useful in that case. */
210           return 1;
211         }
212         iTab = pIdx->pTable->tnum;
213       }
214     }
215   }else{
216     iTab = iRoot;
217   }
218 
219   /* Search for the required lock. Either a write-lock on root-page iTab, a
220   ** write-lock on the schema table, or (if the client is reading) a
221   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
222   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223     if( pLock->pBtree==pBtree
224      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225      && pLock->eLock>=eLockType
226     ){
227       return 1;
228     }
229   }
230 
231   /* Failed to find the required lock. */
232   return 0;
233 }
234 #endif /* SQLITE_DEBUG */
235 
236 #ifdef SQLITE_DEBUG
237 /*
238 **** This function may be used as part of assert() statements only. ****
239 **
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
243 **
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table.  Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
249 **
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
252 **
253 **    assert( !hasReadConflicts(pBtree, iRoot) );
254 */
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256   BtCursor *p;
257   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258     if( p->pgnoRoot==iRoot
259      && p->pBtree!=pBtree
260      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
261     ){
262       return 1;
263     }
264   }
265   return 0;
266 }
267 #endif    /* #ifdef SQLITE_DEBUG */
268 
269 /*
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
274 */
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276   BtShared *pBt = p->pBt;
277   BtLock *pIter;
278 
279   assert( sqlite3BtreeHoldsMutex(p) );
280   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281   assert( p->db!=0 );
282   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
283 
284   /* If requesting a write-lock, then the Btree must have an open write
285   ** transaction on this file. And, obviously, for this to be so there
286   ** must be an open write transaction on the file itself.
287   */
288   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290 
291   /* This routine is a no-op if the shared-cache is not enabled */
292   if( !p->sharable ){
293     return SQLITE_OK;
294   }
295 
296   /* If some other connection is holding an exclusive lock, the
297   ** requested lock may not be obtained.
298   */
299   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301     return SQLITE_LOCKED_SHAREDCACHE;
302   }
303 
304   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305     /* The condition (pIter->eLock!=eLock) in the following if(...)
306     ** statement is a simplification of:
307     **
308     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309     **
310     ** since we know that if eLock==WRITE_LOCK, then no other connection
311     ** may hold a WRITE_LOCK on any table in this file (since there can
312     ** only be a single writer).
313     */
314     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318       if( eLock==WRITE_LOCK ){
319         assert( p==pBt->pWriter );
320         pBt->btsFlags |= BTS_PENDING;
321       }
322       return SQLITE_LOCKED_SHAREDCACHE;
323     }
324   }
325   return SQLITE_OK;
326 }
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
328 
329 #ifndef SQLITE_OMIT_SHARED_CACHE
330 /*
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
334 **
335 ** This function assumes the following:
336 **
337 **   (a) The specified Btree object p is connected to a sharable
338 **       database (one with the BtShared.sharable flag set), and
339 **
340 **   (b) No other Btree objects hold a lock that conflicts
341 **       with the requested lock (i.e. querySharedCacheTableLock() has
342 **       already been called and returned SQLITE_OK).
343 **
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
346 */
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348   BtShared *pBt = p->pBt;
349   BtLock *pLock = 0;
350   BtLock *pIter;
351 
352   assert( sqlite3BtreeHoldsMutex(p) );
353   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354   assert( p->db!=0 );
355 
356   /* A connection with the read-uncommitted flag set will never try to
357   ** obtain a read-lock using this function. The only read-lock obtained
358   ** by a connection in read-uncommitted mode is on the sqlite_master
359   ** table, and that lock is obtained in BtreeBeginTrans().  */
360   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
361 
362   /* This function should only be called on a sharable b-tree after it
363   ** has been determined that no other b-tree holds a conflicting lock.  */
364   assert( p->sharable );
365   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
366 
367   /* First search the list for an existing lock on this table. */
368   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369     if( pIter->iTable==iTable && pIter->pBtree==p ){
370       pLock = pIter;
371       break;
372     }
373   }
374 
375   /* If the above search did not find a BtLock struct associating Btree p
376   ** with table iTable, allocate one and link it into the list.
377   */
378   if( !pLock ){
379     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380     if( !pLock ){
381       return SQLITE_NOMEM_BKPT;
382     }
383     pLock->iTable = iTable;
384     pLock->pBtree = p;
385     pLock->pNext = pBt->pLock;
386     pBt->pLock = pLock;
387   }
388 
389   /* Set the BtLock.eLock variable to the maximum of the current lock
390   ** and the requested lock. This means if a write-lock was already held
391   ** and a read-lock requested, we don't incorrectly downgrade the lock.
392   */
393   assert( WRITE_LOCK>READ_LOCK );
394   if( eLock>pLock->eLock ){
395     pLock->eLock = eLock;
396   }
397 
398   return SQLITE_OK;
399 }
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
401 
402 #ifndef SQLITE_OMIT_SHARED_CACHE
403 /*
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
406 **
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
410 */
411 static void clearAllSharedCacheTableLocks(Btree *p){
412   BtShared *pBt = p->pBt;
413   BtLock **ppIter = &pBt->pLock;
414 
415   assert( sqlite3BtreeHoldsMutex(p) );
416   assert( p->sharable || 0==*ppIter );
417   assert( p->inTrans>0 );
418 
419   while( *ppIter ){
420     BtLock *pLock = *ppIter;
421     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422     assert( pLock->pBtree->inTrans>=pLock->eLock );
423     if( pLock->pBtree==p ){
424       *ppIter = pLock->pNext;
425       assert( pLock->iTable!=1 || pLock==&p->lock );
426       if( pLock->iTable!=1 ){
427         sqlite3_free(pLock);
428       }
429     }else{
430       ppIter = &pLock->pNext;
431     }
432   }
433 
434   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435   if( pBt->pWriter==p ){
436     pBt->pWriter = 0;
437     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438   }else if( pBt->nTransaction==2 ){
439     /* This function is called when Btree p is concluding its
440     ** transaction. If there currently exists a writer, and p is not
441     ** that writer, then the number of locks held by connections other
442     ** than the writer must be about to drop to zero. In this case
443     ** set the BTS_PENDING flag to 0.
444     **
445     ** If there is not currently a writer, then BTS_PENDING must
446     ** be zero already. So this next line is harmless in that case.
447     */
448     pBt->btsFlags &= ~BTS_PENDING;
449   }
450 }
451 
452 /*
453 ** This function changes all write-locks held by Btree p into read-locks.
454 */
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456   BtShared *pBt = p->pBt;
457   if( pBt->pWriter==p ){
458     BtLock *pLock;
459     pBt->pWriter = 0;
460     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463       pLock->eLock = READ_LOCK;
464     }
465   }
466 }
467 
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
469 
470 static void releasePage(MemPage *pPage);         /* Forward reference */
471 static void releasePageOne(MemPage *pPage);      /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
473 
474 /*
475 ***** This routine is used inside of assert() only ****
476 **
477 ** Verify that the cursor holds the mutex on its BtShared
478 */
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481   return sqlite3_mutex_held(p->pBt->mutex);
482 }
483 
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed.  This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
491 */
492 static int cursorOwnsBtShared(BtCursor *p){
493   assert( cursorHoldsMutex(p) );
494   return (p->pBtree->db==p->pBt->db);
495 }
496 #endif
497 
498 /*
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
501 */
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
503 
504 /*
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
507 */
508 static void invalidateAllOverflowCache(BtShared *pBt){
509   BtCursor *p;
510   assert( sqlite3_mutex_held(pBt->mutex) );
511   for(p=pBt->pCursor; p; p=p->pNext){
512     invalidateOverflowCache(p);
513   }
514 }
515 
516 #ifndef SQLITE_OMIT_INCRBLOB
517 /*
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
521 **
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
525 **
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
529 */
530 static void invalidateIncrblobCursors(
531   Btree *pBtree,          /* The database file to check */
532   Pgno pgnoRoot,          /* The table that might be changing */
533   i64 iRow,               /* The rowid that might be changing */
534   int isClearTable        /* True if all rows are being deleted */
535 ){
536   BtCursor *p;
537   if( pBtree->hasIncrblobCur==0 ) return;
538   assert( sqlite3BtreeHoldsMutex(pBtree) );
539   pBtree->hasIncrblobCur = 0;
540   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541     if( (p->curFlags & BTCF_Incrblob)!=0 ){
542       pBtree->hasIncrblobCur = 1;
543       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544         p->eState = CURSOR_INVALID;
545       }
546     }
547   }
548 }
549 
550 #else
551   /* Stub function when INCRBLOB is omitted */
552   #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
554 
555 /*
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
559 **
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
563 **
564 **   1) When all data is deleted from a page and the page becomes
565 **      a free-list leaf page, the page is not written to the database
566 **      (as free-list leaf pages contain no meaningful data). Sometimes
567 **      such a page is not even journalled (as it will not be modified,
568 **      why bother journalling it?).
569 **
570 **   2) When a free-list leaf page is reused, its content is not read
571 **      from the database or written to the journal file (why should it
572 **      be, if it is not at all meaningful?).
573 **
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
582 **
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
589 */
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591   int rc = SQLITE_OK;
592   if( !pBt->pHasContent ){
593     assert( pgno<=pBt->nPage );
594     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595     if( !pBt->pHasContent ){
596       rc = SQLITE_NOMEM_BKPT;
597     }
598   }
599   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601   }
602   return rc;
603 }
604 
605 /*
606 ** Query the BtShared.pHasContent vector.
607 **
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
611 */
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613   Bitvec *p = pBt->pHasContent;
614   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
615 }
616 
617 /*
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
620 */
621 static void btreeClearHasContent(BtShared *pBt){
622   sqlite3BitvecDestroy(pBt->pHasContent);
623   pBt->pHasContent = 0;
624 }
625 
626 /*
627 ** Release all of the apPage[] pages for a cursor.
628 */
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630   int i;
631   if( pCur->iPage>=0 ){
632     for(i=0; i<pCur->iPage; i++){
633       releasePageNotNull(pCur->apPage[i]);
634     }
635     releasePageNotNull(pCur->pPage);
636     pCur->iPage = -1;
637   }
638 }
639 
640 /*
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
646 **
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
652 */
653 static int saveCursorKey(BtCursor *pCur){
654   int rc = SQLITE_OK;
655   assert( CURSOR_VALID==pCur->eState );
656   assert( 0==pCur->pKey );
657   assert( cursorHoldsMutex(pCur) );
658 
659   if( pCur->curIntKey ){
660     /* Only the rowid is required for a table btree */
661     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662   }else{
663     /* For an index btree, save the complete key content. It is possible
664     ** that the current key is corrupt. In that case, it is possible that
665     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666     ** up to the size of 1 varint plus 1 8-byte value when the cursor
667     ** position is restored. Hence the 17 bytes of padding allocated
668     ** below. */
669     void *pKey;
670     pCur->nKey = sqlite3BtreePayloadSize(pCur);
671     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
672     if( pKey ){
673       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
674       if( rc==SQLITE_OK ){
675         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
676         pCur->pKey = pKey;
677       }else{
678         sqlite3_free(pKey);
679       }
680     }else{
681       rc = SQLITE_NOMEM_BKPT;
682     }
683   }
684   assert( !pCur->curIntKey || !pCur->pKey );
685   return rc;
686 }
687 
688 /*
689 ** Save the current cursor position in the variables BtCursor.nKey
690 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
691 **
692 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693 ** prior to calling this routine.
694 */
695 static int saveCursorPosition(BtCursor *pCur){
696   int rc;
697 
698   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
699   assert( 0==pCur->pKey );
700   assert( cursorHoldsMutex(pCur) );
701 
702   if( pCur->curFlags & BTCF_Pinned ){
703     return SQLITE_CONSTRAINT_PINNED;
704   }
705   if( pCur->eState==CURSOR_SKIPNEXT ){
706     pCur->eState = CURSOR_VALID;
707   }else{
708     pCur->skipNext = 0;
709   }
710 
711   rc = saveCursorKey(pCur);
712   if( rc==SQLITE_OK ){
713     btreeReleaseAllCursorPages(pCur);
714     pCur->eState = CURSOR_REQUIRESEEK;
715   }
716 
717   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
718   return rc;
719 }
720 
721 /* Forward reference */
722 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
723 
724 /*
725 ** Save the positions of all cursors (except pExcept) that are open on
726 ** the table with root-page iRoot.  "Saving the cursor position" means that
727 ** the location in the btree is remembered in such a way that it can be
728 ** moved back to the same spot after the btree has been modified.  This
729 ** routine is called just before cursor pExcept is used to modify the
730 ** table, for example in BtreeDelete() or BtreeInsert().
731 **
732 ** If there are two or more cursors on the same btree, then all such
733 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
734 ** routine enforces that rule.  This routine only needs to be called in
735 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
736 **
737 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
738 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
739 ** pointless call to this routine.
740 **
741 ** Implementation note:  This routine merely checks to see if any cursors
742 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
743 ** event that cursors are in need to being saved.
744 */
745 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
746   BtCursor *p;
747   assert( sqlite3_mutex_held(pBt->mutex) );
748   assert( pExcept==0 || pExcept->pBt==pBt );
749   for(p=pBt->pCursor; p; p=p->pNext){
750     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
751   }
752   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
753   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
754   return SQLITE_OK;
755 }
756 
757 /* This helper routine to saveAllCursors does the actual work of saving
758 ** the cursors if and when a cursor is found that actually requires saving.
759 ** The common case is that no cursors need to be saved, so this routine is
760 ** broken out from its caller to avoid unnecessary stack pointer movement.
761 */
762 static int SQLITE_NOINLINE saveCursorsOnList(
763   BtCursor *p,         /* The first cursor that needs saving */
764   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
765   BtCursor *pExcept    /* Do not save this cursor */
766 ){
767   do{
768     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
769       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
770         int rc = saveCursorPosition(p);
771         if( SQLITE_OK!=rc ){
772           return rc;
773         }
774       }else{
775         testcase( p->iPage>=0 );
776         btreeReleaseAllCursorPages(p);
777       }
778     }
779     p = p->pNext;
780   }while( p );
781   return SQLITE_OK;
782 }
783 
784 /*
785 ** Clear the current cursor position.
786 */
787 void sqlite3BtreeClearCursor(BtCursor *pCur){
788   assert( cursorHoldsMutex(pCur) );
789   sqlite3_free(pCur->pKey);
790   pCur->pKey = 0;
791   pCur->eState = CURSOR_INVALID;
792 }
793 
794 /*
795 ** In this version of BtreeMoveto, pKey is a packed index record
796 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
797 ** record and then call BtreeMovetoUnpacked() to do the work.
798 */
799 static int btreeMoveto(
800   BtCursor *pCur,     /* Cursor open on the btree to be searched */
801   const void *pKey,   /* Packed key if the btree is an index */
802   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
803   int bias,           /* Bias search to the high end */
804   int *pRes           /* Write search results here */
805 ){
806   int rc;                    /* Status code */
807   UnpackedRecord *pIdxKey;   /* Unpacked index key */
808 
809   if( pKey ){
810     KeyInfo *pKeyInfo = pCur->pKeyInfo;
811     assert( nKey==(i64)(int)nKey );
812     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
813     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
814     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
815     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
816       rc = SQLITE_CORRUPT_BKPT;
817       goto moveto_done;
818     }
819   }else{
820     pIdxKey = 0;
821   }
822   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
823 moveto_done:
824   if( pIdxKey ){
825     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
826   }
827   return rc;
828 }
829 
830 /*
831 ** Restore the cursor to the position it was in (or as close to as possible)
832 ** when saveCursorPosition() was called. Note that this call deletes the
833 ** saved position info stored by saveCursorPosition(), so there can be
834 ** at most one effective restoreCursorPosition() call after each
835 ** saveCursorPosition().
836 */
837 static int btreeRestoreCursorPosition(BtCursor *pCur){
838   int rc;
839   int skipNext = 0;
840   assert( cursorOwnsBtShared(pCur) );
841   assert( pCur->eState>=CURSOR_REQUIRESEEK );
842   if( pCur->eState==CURSOR_FAULT ){
843     return pCur->skipNext;
844   }
845   pCur->eState = CURSOR_INVALID;
846   if( sqlite3FaultSim(410) ){
847     rc = SQLITE_IOERR;
848   }else{
849     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
850   }
851   if( rc==SQLITE_OK ){
852     sqlite3_free(pCur->pKey);
853     pCur->pKey = 0;
854     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
855     if( skipNext ) pCur->skipNext = skipNext;
856     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
857       pCur->eState = CURSOR_SKIPNEXT;
858     }
859   }
860   return rc;
861 }
862 
863 #define restoreCursorPosition(p) \
864   (p->eState>=CURSOR_REQUIRESEEK ? \
865          btreeRestoreCursorPosition(p) : \
866          SQLITE_OK)
867 
868 /*
869 ** Determine whether or not a cursor has moved from the position where
870 ** it was last placed, or has been invalidated for any other reason.
871 ** Cursors can move when the row they are pointing at is deleted out
872 ** from under them, for example.  Cursor might also move if a btree
873 ** is rebalanced.
874 **
875 ** Calling this routine with a NULL cursor pointer returns false.
876 **
877 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
878 ** back to where it ought to be if this routine returns true.
879 */
880 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
881   assert( EIGHT_BYTE_ALIGNMENT(pCur)
882        || pCur==sqlite3BtreeFakeValidCursor() );
883   assert( offsetof(BtCursor, eState)==0 );
884   assert( sizeof(pCur->eState)==1 );
885   return CURSOR_VALID != *(u8*)pCur;
886 }
887 
888 /*
889 ** Return a pointer to a fake BtCursor object that will always answer
890 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
891 ** cursor returned must not be used with any other Btree interface.
892 */
893 BtCursor *sqlite3BtreeFakeValidCursor(void){
894   static u8 fakeCursor = CURSOR_VALID;
895   assert( offsetof(BtCursor, eState)==0 );
896   return (BtCursor*)&fakeCursor;
897 }
898 
899 /*
900 ** This routine restores a cursor back to its original position after it
901 ** has been moved by some outside activity (such as a btree rebalance or
902 ** a row having been deleted out from under the cursor).
903 **
904 ** On success, the *pDifferentRow parameter is false if the cursor is left
905 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
906 ** was pointing to has been deleted, forcing the cursor to point to some
907 ** nearby row.
908 **
909 ** This routine should only be called for a cursor that just returned
910 ** TRUE from sqlite3BtreeCursorHasMoved().
911 */
912 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
913   int rc;
914 
915   assert( pCur!=0 );
916   assert( pCur->eState!=CURSOR_VALID );
917   rc = restoreCursorPosition(pCur);
918   if( rc ){
919     *pDifferentRow = 1;
920     return rc;
921   }
922   if( pCur->eState!=CURSOR_VALID ){
923     *pDifferentRow = 1;
924   }else{
925     *pDifferentRow = 0;
926   }
927   return SQLITE_OK;
928 }
929 
930 #ifdef SQLITE_ENABLE_CURSOR_HINTS
931 /*
932 ** Provide hints to the cursor.  The particular hint given (and the type
933 ** and number of the varargs parameters) is determined by the eHintType
934 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
935 */
936 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
937   /* Used only by system that substitute their own storage engine */
938 }
939 #endif
940 
941 /*
942 ** Provide flag hints to the cursor.
943 */
944 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
945   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
946   pCur->hints = x;
947 }
948 
949 
950 #ifndef SQLITE_OMIT_AUTOVACUUM
951 /*
952 ** Given a page number of a regular database page, return the page
953 ** number for the pointer-map page that contains the entry for the
954 ** input page number.
955 **
956 ** Return 0 (not a valid page) for pgno==1 since there is
957 ** no pointer map associated with page 1.  The integrity_check logic
958 ** requires that ptrmapPageno(*,1)!=1.
959 */
960 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
961   int nPagesPerMapPage;
962   Pgno iPtrMap, ret;
963   assert( sqlite3_mutex_held(pBt->mutex) );
964   if( pgno<2 ) return 0;
965   nPagesPerMapPage = (pBt->usableSize/5)+1;
966   iPtrMap = (pgno-2)/nPagesPerMapPage;
967   ret = (iPtrMap*nPagesPerMapPage) + 2;
968   if( ret==PENDING_BYTE_PAGE(pBt) ){
969     ret++;
970   }
971   return ret;
972 }
973 
974 /*
975 ** Write an entry into the pointer map.
976 **
977 ** This routine updates the pointer map entry for page number 'key'
978 ** so that it maps to type 'eType' and parent page number 'pgno'.
979 **
980 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
981 ** a no-op.  If an error occurs, the appropriate error code is written
982 ** into *pRC.
983 */
984 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
985   DbPage *pDbPage;  /* The pointer map page */
986   u8 *pPtrmap;      /* The pointer map data */
987   Pgno iPtrmap;     /* The pointer map page number */
988   int offset;       /* Offset in pointer map page */
989   int rc;           /* Return code from subfunctions */
990 
991   if( *pRC ) return;
992 
993   assert( sqlite3_mutex_held(pBt->mutex) );
994   /* The master-journal page number must never be used as a pointer map page */
995   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
996 
997   assert( pBt->autoVacuum );
998   if( key==0 ){
999     *pRC = SQLITE_CORRUPT_BKPT;
1000     return;
1001   }
1002   iPtrmap = PTRMAP_PAGENO(pBt, key);
1003   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1004   if( rc!=SQLITE_OK ){
1005     *pRC = rc;
1006     return;
1007   }
1008   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1009     /* The first byte of the extra data is the MemPage.isInit byte.
1010     ** If that byte is set, it means this page is also being used
1011     ** as a btree page. */
1012     *pRC = SQLITE_CORRUPT_BKPT;
1013     goto ptrmap_exit;
1014   }
1015   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1016   if( offset<0 ){
1017     *pRC = SQLITE_CORRUPT_BKPT;
1018     goto ptrmap_exit;
1019   }
1020   assert( offset <= (int)pBt->usableSize-5 );
1021   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1022 
1023   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1024     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1025     *pRC= rc = sqlite3PagerWrite(pDbPage);
1026     if( rc==SQLITE_OK ){
1027       pPtrmap[offset] = eType;
1028       put4byte(&pPtrmap[offset+1], parent);
1029     }
1030   }
1031 
1032 ptrmap_exit:
1033   sqlite3PagerUnref(pDbPage);
1034 }
1035 
1036 /*
1037 ** Read an entry from the pointer map.
1038 **
1039 ** This routine retrieves the pointer map entry for page 'key', writing
1040 ** the type and parent page number to *pEType and *pPgno respectively.
1041 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1042 */
1043 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1044   DbPage *pDbPage;   /* The pointer map page */
1045   int iPtrmap;       /* Pointer map page index */
1046   u8 *pPtrmap;       /* Pointer map page data */
1047   int offset;        /* Offset of entry in pointer map */
1048   int rc;
1049 
1050   assert( sqlite3_mutex_held(pBt->mutex) );
1051 
1052   iPtrmap = PTRMAP_PAGENO(pBt, key);
1053   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1054   if( rc!=0 ){
1055     return rc;
1056   }
1057   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1058 
1059   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1060   if( offset<0 ){
1061     sqlite3PagerUnref(pDbPage);
1062     return SQLITE_CORRUPT_BKPT;
1063   }
1064   assert( offset <= (int)pBt->usableSize-5 );
1065   assert( pEType!=0 );
1066   *pEType = pPtrmap[offset];
1067   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1068 
1069   sqlite3PagerUnref(pDbPage);
1070   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1071   return SQLITE_OK;
1072 }
1073 
1074 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1075   #define ptrmapPut(w,x,y,z,rc)
1076   #define ptrmapGet(w,x,y,z) SQLITE_OK
1077   #define ptrmapPutOvflPtr(x, y, z, rc)
1078 #endif
1079 
1080 /*
1081 ** Given a btree page and a cell index (0 means the first cell on
1082 ** the page, 1 means the second cell, and so forth) return a pointer
1083 ** to the cell content.
1084 **
1085 ** findCellPastPtr() does the same except it skips past the initial
1086 ** 4-byte child pointer found on interior pages, if there is one.
1087 **
1088 ** This routine works only for pages that do not contain overflow cells.
1089 */
1090 #define findCell(P,I) \
1091   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1092 #define findCellPastPtr(P,I) \
1093   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1094 
1095 
1096 /*
1097 ** This is common tail processing for btreeParseCellPtr() and
1098 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1099 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1100 ** structure.
1101 */
1102 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1103   MemPage *pPage,         /* Page containing the cell */
1104   u8 *pCell,              /* Pointer to the cell text. */
1105   CellInfo *pInfo         /* Fill in this structure */
1106 ){
1107   /* If the payload will not fit completely on the local page, we have
1108   ** to decide how much to store locally and how much to spill onto
1109   ** overflow pages.  The strategy is to minimize the amount of unused
1110   ** space on overflow pages while keeping the amount of local storage
1111   ** in between minLocal and maxLocal.
1112   **
1113   ** Warning:  changing the way overflow payload is distributed in any
1114   ** way will result in an incompatible file format.
1115   */
1116   int minLocal;  /* Minimum amount of payload held locally */
1117   int maxLocal;  /* Maximum amount of payload held locally */
1118   int surplus;   /* Overflow payload available for local storage */
1119 
1120   minLocal = pPage->minLocal;
1121   maxLocal = pPage->maxLocal;
1122   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1123   testcase( surplus==maxLocal );
1124   testcase( surplus==maxLocal+1 );
1125   if( surplus <= maxLocal ){
1126     pInfo->nLocal = (u16)surplus;
1127   }else{
1128     pInfo->nLocal = (u16)minLocal;
1129   }
1130   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1131 }
1132 
1133 /*
1134 ** The following routines are implementations of the MemPage.xParseCell()
1135 ** method.
1136 **
1137 ** Parse a cell content block and fill in the CellInfo structure.
1138 **
1139 ** btreeParseCellPtr()        =>   table btree leaf nodes
1140 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1141 ** btreeParseCellPtrIndex()   =>   index btree nodes
1142 **
1143 ** There is also a wrapper function btreeParseCell() that works for
1144 ** all MemPage types and that references the cell by index rather than
1145 ** by pointer.
1146 */
1147 static void btreeParseCellPtrNoPayload(
1148   MemPage *pPage,         /* Page containing the cell */
1149   u8 *pCell,              /* Pointer to the cell text. */
1150   CellInfo *pInfo         /* Fill in this structure */
1151 ){
1152   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1153   assert( pPage->leaf==0 );
1154   assert( pPage->childPtrSize==4 );
1155 #ifndef SQLITE_DEBUG
1156   UNUSED_PARAMETER(pPage);
1157 #endif
1158   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1159   pInfo->nPayload = 0;
1160   pInfo->nLocal = 0;
1161   pInfo->pPayload = 0;
1162   return;
1163 }
1164 static void btreeParseCellPtr(
1165   MemPage *pPage,         /* Page containing the cell */
1166   u8 *pCell,              /* Pointer to the cell text. */
1167   CellInfo *pInfo         /* Fill in this structure */
1168 ){
1169   u8 *pIter;              /* For scanning through pCell */
1170   u32 nPayload;           /* Number of bytes of cell payload */
1171   u64 iKey;               /* Extracted Key value */
1172 
1173   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1174   assert( pPage->leaf==0 || pPage->leaf==1 );
1175   assert( pPage->intKeyLeaf );
1176   assert( pPage->childPtrSize==0 );
1177   pIter = pCell;
1178 
1179   /* The next block of code is equivalent to:
1180   **
1181   **     pIter += getVarint32(pIter, nPayload);
1182   **
1183   ** The code is inlined to avoid a function call.
1184   */
1185   nPayload = *pIter;
1186   if( nPayload>=0x80 ){
1187     u8 *pEnd = &pIter[8];
1188     nPayload &= 0x7f;
1189     do{
1190       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191     }while( (*pIter)>=0x80 && pIter<pEnd );
1192   }
1193   pIter++;
1194 
1195   /* The next block of code is equivalent to:
1196   **
1197   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1198   **
1199   ** The code is inlined to avoid a function call.
1200   */
1201   iKey = *pIter;
1202   if( iKey>=0x80 ){
1203     u8 *pEnd = &pIter[7];
1204     iKey &= 0x7f;
1205     while(1){
1206       iKey = (iKey<<7) | (*++pIter & 0x7f);
1207       if( (*pIter)<0x80 ) break;
1208       if( pIter>=pEnd ){
1209         iKey = (iKey<<8) | *++pIter;
1210         break;
1211       }
1212     }
1213   }
1214   pIter++;
1215 
1216   pInfo->nKey = *(i64*)&iKey;
1217   pInfo->nPayload = nPayload;
1218   pInfo->pPayload = pIter;
1219   testcase( nPayload==pPage->maxLocal );
1220   testcase( nPayload==pPage->maxLocal+1 );
1221   if( nPayload<=pPage->maxLocal ){
1222     /* This is the (easy) common case where the entire payload fits
1223     ** on the local page.  No overflow is required.
1224     */
1225     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1226     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1227     pInfo->nLocal = (u16)nPayload;
1228   }else{
1229     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1230   }
1231 }
1232 static void btreeParseCellPtrIndex(
1233   MemPage *pPage,         /* Page containing the cell */
1234   u8 *pCell,              /* Pointer to the cell text. */
1235   CellInfo *pInfo         /* Fill in this structure */
1236 ){
1237   u8 *pIter;              /* For scanning through pCell */
1238   u32 nPayload;           /* Number of bytes of cell payload */
1239 
1240   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1241   assert( pPage->leaf==0 || pPage->leaf==1 );
1242   assert( pPage->intKeyLeaf==0 );
1243   pIter = pCell + pPage->childPtrSize;
1244   nPayload = *pIter;
1245   if( nPayload>=0x80 ){
1246     u8 *pEnd = &pIter[8];
1247     nPayload &= 0x7f;
1248     do{
1249       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1250     }while( *(pIter)>=0x80 && pIter<pEnd );
1251   }
1252   pIter++;
1253   pInfo->nKey = nPayload;
1254   pInfo->nPayload = nPayload;
1255   pInfo->pPayload = pIter;
1256   testcase( nPayload==pPage->maxLocal );
1257   testcase( nPayload==pPage->maxLocal+1 );
1258   if( nPayload<=pPage->maxLocal ){
1259     /* This is the (easy) common case where the entire payload fits
1260     ** on the local page.  No overflow is required.
1261     */
1262     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1263     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1264     pInfo->nLocal = (u16)nPayload;
1265   }else{
1266     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1267   }
1268 }
1269 static void btreeParseCell(
1270   MemPage *pPage,         /* Page containing the cell */
1271   int iCell,              /* The cell index.  First cell is 0 */
1272   CellInfo *pInfo         /* Fill in this structure */
1273 ){
1274   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1275 }
1276 
1277 /*
1278 ** The following routines are implementations of the MemPage.xCellSize
1279 ** method.
1280 **
1281 ** Compute the total number of bytes that a Cell needs in the cell
1282 ** data area of the btree-page.  The return number includes the cell
1283 ** data header and the local payload, but not any overflow page or
1284 ** the space used by the cell pointer.
1285 **
1286 ** cellSizePtrNoPayload()    =>   table internal nodes
1287 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1288 */
1289 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1290   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1291   u8 *pEnd;                                /* End mark for a varint */
1292   u32 nSize;                               /* Size value to return */
1293 
1294 #ifdef SQLITE_DEBUG
1295   /* The value returned by this function should always be the same as
1296   ** the (CellInfo.nSize) value found by doing a full parse of the
1297   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1298   ** this function verifies that this invariant is not violated. */
1299   CellInfo debuginfo;
1300   pPage->xParseCell(pPage, pCell, &debuginfo);
1301 #endif
1302 
1303   nSize = *pIter;
1304   if( nSize>=0x80 ){
1305     pEnd = &pIter[8];
1306     nSize &= 0x7f;
1307     do{
1308       nSize = (nSize<<7) | (*++pIter & 0x7f);
1309     }while( *(pIter)>=0x80 && pIter<pEnd );
1310   }
1311   pIter++;
1312   if( pPage->intKey ){
1313     /* pIter now points at the 64-bit integer key value, a variable length
1314     ** integer. The following block moves pIter to point at the first byte
1315     ** past the end of the key value. */
1316     pEnd = &pIter[9];
1317     while( (*pIter++)&0x80 && pIter<pEnd );
1318   }
1319   testcase( nSize==pPage->maxLocal );
1320   testcase( nSize==pPage->maxLocal+1 );
1321   if( nSize<=pPage->maxLocal ){
1322     nSize += (u32)(pIter - pCell);
1323     if( nSize<4 ) nSize = 4;
1324   }else{
1325     int minLocal = pPage->minLocal;
1326     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1327     testcase( nSize==pPage->maxLocal );
1328     testcase( nSize==pPage->maxLocal+1 );
1329     if( nSize>pPage->maxLocal ){
1330       nSize = minLocal;
1331     }
1332     nSize += 4 + (u16)(pIter - pCell);
1333   }
1334   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1335   return (u16)nSize;
1336 }
1337 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1338   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1339   u8 *pEnd;              /* End mark for a varint */
1340 
1341 #ifdef SQLITE_DEBUG
1342   /* The value returned by this function should always be the same as
1343   ** the (CellInfo.nSize) value found by doing a full parse of the
1344   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1345   ** this function verifies that this invariant is not violated. */
1346   CellInfo debuginfo;
1347   pPage->xParseCell(pPage, pCell, &debuginfo);
1348 #else
1349   UNUSED_PARAMETER(pPage);
1350 #endif
1351 
1352   assert( pPage->childPtrSize==4 );
1353   pEnd = pIter + 9;
1354   while( (*pIter++)&0x80 && pIter<pEnd );
1355   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1356   return (u16)(pIter - pCell);
1357 }
1358 
1359 
1360 #ifdef SQLITE_DEBUG
1361 /* This variation on cellSizePtr() is used inside of assert() statements
1362 ** only. */
1363 static u16 cellSize(MemPage *pPage, int iCell){
1364   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1365 }
1366 #endif
1367 
1368 #ifndef SQLITE_OMIT_AUTOVACUUM
1369 /*
1370 ** The cell pCell is currently part of page pSrc but will ultimately be part
1371 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1372 ** pointer to an overflow page, insert an entry into the pointer-map for
1373 ** the overflow page that will be valid after pCell has been moved to pPage.
1374 */
1375 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1376   CellInfo info;
1377   if( *pRC ) return;
1378   assert( pCell!=0 );
1379   pPage->xParseCell(pPage, pCell, &info);
1380   if( info.nLocal<info.nPayload ){
1381     Pgno ovfl;
1382     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1383       testcase( pSrc!=pPage );
1384       *pRC = SQLITE_CORRUPT_BKPT;
1385       return;
1386     }
1387     ovfl = get4byte(&pCell[info.nSize-4]);
1388     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1389   }
1390 }
1391 #endif
1392 
1393 
1394 /*
1395 ** Defragment the page given. This routine reorganizes cells within the
1396 ** page so that there are no free-blocks on the free-block list.
1397 **
1398 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1399 ** present in the page after this routine returns.
1400 **
1401 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1402 ** b-tree page so that there are no freeblocks or fragment bytes, all
1403 ** unused bytes are contained in the unallocated space region, and all
1404 ** cells are packed tightly at the end of the page.
1405 */
1406 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1407   int i;                     /* Loop counter */
1408   int pc;                    /* Address of the i-th cell */
1409   int hdr;                   /* Offset to the page header */
1410   int size;                  /* Size of a cell */
1411   int usableSize;            /* Number of usable bytes on a page */
1412   int cellOffset;            /* Offset to the cell pointer array */
1413   int cbrk;                  /* Offset to the cell content area */
1414   int nCell;                 /* Number of cells on the page */
1415   unsigned char *data;       /* The page data */
1416   unsigned char *temp;       /* Temp area for cell content */
1417   unsigned char *src;        /* Source of content */
1418   int iCellFirst;            /* First allowable cell index */
1419   int iCellLast;             /* Last possible cell index */
1420 
1421   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1422   assert( pPage->pBt!=0 );
1423   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1424   assert( pPage->nOverflow==0 );
1425   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1426   temp = 0;
1427   src = data = pPage->aData;
1428   hdr = pPage->hdrOffset;
1429   cellOffset = pPage->cellOffset;
1430   nCell = pPage->nCell;
1431   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1432   iCellFirst = cellOffset + 2*nCell;
1433   usableSize = pPage->pBt->usableSize;
1434 
1435   /* This block handles pages with two or fewer free blocks and nMaxFrag
1436   ** or fewer fragmented bytes. In this case it is faster to move the
1437   ** two (or one) blocks of cells using memmove() and add the required
1438   ** offsets to each pointer in the cell-pointer array than it is to
1439   ** reconstruct the entire page.  */
1440   if( (int)data[hdr+7]<=nMaxFrag ){
1441     int iFree = get2byte(&data[hdr+1]);
1442     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1443     if( iFree ){
1444       int iFree2 = get2byte(&data[iFree]);
1445       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1446       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1447         u8 *pEnd = &data[cellOffset + nCell*2];
1448         u8 *pAddr;
1449         int sz2 = 0;
1450         int sz = get2byte(&data[iFree+2]);
1451         int top = get2byte(&data[hdr+5]);
1452         if( top>=iFree ){
1453           return SQLITE_CORRUPT_PAGE(pPage);
1454         }
1455         if( iFree2 ){
1456           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1457           sz2 = get2byte(&data[iFree2+2]);
1458           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1459           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1460           sz += sz2;
1461         }else if( NEVER(iFree+sz>usableSize) ){
1462           return SQLITE_CORRUPT_PAGE(pPage);
1463         }
1464 
1465         cbrk = top+sz;
1466         assert( cbrk+(iFree-top) <= usableSize );
1467         memmove(&data[cbrk], &data[top], iFree-top);
1468         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1469           pc = get2byte(pAddr);
1470           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1471           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1472         }
1473         goto defragment_out;
1474       }
1475     }
1476   }
1477 
1478   cbrk = usableSize;
1479   iCellLast = usableSize - 4;
1480   for(i=0; i<nCell; i++){
1481     u8 *pAddr;     /* The i-th cell pointer */
1482     pAddr = &data[cellOffset + i*2];
1483     pc = get2byte(pAddr);
1484     testcase( pc==iCellFirst );
1485     testcase( pc==iCellLast );
1486     /* These conditions have already been verified in btreeInitPage()
1487     ** if PRAGMA cell_size_check=ON.
1488     */
1489     if( pc<iCellFirst || pc>iCellLast ){
1490       return SQLITE_CORRUPT_PAGE(pPage);
1491     }
1492     assert( pc>=iCellFirst && pc<=iCellLast );
1493     size = pPage->xCellSize(pPage, &src[pc]);
1494     cbrk -= size;
1495     if( cbrk<iCellFirst || pc+size>usableSize ){
1496       return SQLITE_CORRUPT_PAGE(pPage);
1497     }
1498     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1499     testcase( cbrk+size==usableSize );
1500     testcase( pc+size==usableSize );
1501     put2byte(pAddr, cbrk);
1502     if( temp==0 ){
1503       int x;
1504       if( cbrk==pc ) continue;
1505       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1506       x = get2byte(&data[hdr+5]);
1507       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1508       src = temp;
1509     }
1510     memcpy(&data[cbrk], &src[pc], size);
1511   }
1512   data[hdr+7] = 0;
1513 
1514  defragment_out:
1515   assert( pPage->nFree>=0 );
1516   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1517     return SQLITE_CORRUPT_PAGE(pPage);
1518   }
1519   assert( cbrk>=iCellFirst );
1520   put2byte(&data[hdr+5], cbrk);
1521   data[hdr+1] = 0;
1522   data[hdr+2] = 0;
1523   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1524   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1525   return SQLITE_OK;
1526 }
1527 
1528 /*
1529 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1530 ** size. If one can be found, return a pointer to the space and remove it
1531 ** from the free-list.
1532 **
1533 ** If no suitable space can be found on the free-list, return NULL.
1534 **
1535 ** This function may detect corruption within pPg.  If corruption is
1536 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1537 **
1538 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1539 ** will be ignored if adding the extra space to the fragmentation count
1540 ** causes the fragmentation count to exceed 60.
1541 */
1542 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1543   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1544   u8 * const aData = pPg->aData;             /* Page data */
1545   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1546   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1547   int x;                                     /* Excess size of the slot */
1548   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1549   int size;                                  /* Size of the free slot */
1550 
1551   assert( pc>0 );
1552   while( pc<=maxPC ){
1553     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1554     ** freeblock form a big-endian integer which is the size of the freeblock
1555     ** in bytes, including the 4-byte header. */
1556     size = get2byte(&aData[pc+2]);
1557     if( (x = size - nByte)>=0 ){
1558       testcase( x==4 );
1559       testcase( x==3 );
1560       if( x<4 ){
1561         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1562         ** number of bytes in fragments may not exceed 60. */
1563         if( aData[hdr+7]>57 ) return 0;
1564 
1565         /* Remove the slot from the free-list. Update the number of
1566         ** fragmented bytes within the page. */
1567         memcpy(&aData[iAddr], &aData[pc], 2);
1568         aData[hdr+7] += (u8)x;
1569       }else if( x+pc > maxPC ){
1570         /* This slot extends off the end of the usable part of the page */
1571         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1572         return 0;
1573       }else{
1574         /* The slot remains on the free-list. Reduce its size to account
1575         ** for the portion used by the new allocation. */
1576         put2byte(&aData[pc+2], x);
1577       }
1578       return &aData[pc + x];
1579     }
1580     iAddr = pc;
1581     pc = get2byte(&aData[pc]);
1582     if( pc<=iAddr+size ){
1583       if( pc ){
1584         /* The next slot in the chain is not past the end of the current slot */
1585         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1586       }
1587       return 0;
1588     }
1589   }
1590   if( pc>maxPC+nByte-4 ){
1591     /* The free slot chain extends off the end of the page */
1592     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1593   }
1594   return 0;
1595 }
1596 
1597 /*
1598 ** Allocate nByte bytes of space from within the B-Tree page passed
1599 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1600 ** of the first byte of allocated space. Return either SQLITE_OK or
1601 ** an error code (usually SQLITE_CORRUPT).
1602 **
1603 ** The caller guarantees that there is sufficient space to make the
1604 ** allocation.  This routine might need to defragment in order to bring
1605 ** all the space together, however.  This routine will avoid using
1606 ** the first two bytes past the cell pointer area since presumably this
1607 ** allocation is being made in order to insert a new cell, so we will
1608 ** also end up needing a new cell pointer.
1609 */
1610 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1611   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1612   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1613   int top;                             /* First byte of cell content area */
1614   int rc = SQLITE_OK;                  /* Integer return code */
1615   int gap;        /* First byte of gap between cell pointers and cell content */
1616 
1617   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1618   assert( pPage->pBt );
1619   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1620   assert( nByte>=0 );  /* Minimum cell size is 4 */
1621   assert( pPage->nFree>=nByte );
1622   assert( pPage->nOverflow==0 );
1623   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1624 
1625   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1626   gap = pPage->cellOffset + 2*pPage->nCell;
1627   assert( gap<=65536 );
1628   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1629   ** and the reserved space is zero (the usual value for reserved space)
1630   ** then the cell content offset of an empty page wants to be 65536.
1631   ** However, that integer is too large to be stored in a 2-byte unsigned
1632   ** integer, so a value of 0 is used in its place. */
1633   top = get2byte(&data[hdr+5]);
1634   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1635   if( gap>top ){
1636     if( top==0 && pPage->pBt->usableSize==65536 ){
1637       top = 65536;
1638     }else{
1639       return SQLITE_CORRUPT_PAGE(pPage);
1640     }
1641   }
1642 
1643   /* If there is enough space between gap and top for one more cell pointer,
1644   ** and if the freelist is not empty, then search the
1645   ** freelist looking for a slot big enough to satisfy the request.
1646   */
1647   testcase( gap+2==top );
1648   testcase( gap+1==top );
1649   testcase( gap==top );
1650   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1651     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1652     if( pSpace ){
1653       int g2;
1654       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1655       *pIdx = g2 = (int)(pSpace-data);
1656       if( NEVER(g2<=gap) ){
1657         return SQLITE_CORRUPT_PAGE(pPage);
1658       }else{
1659         return SQLITE_OK;
1660       }
1661     }else if( rc ){
1662       return rc;
1663     }
1664   }
1665 
1666   /* The request could not be fulfilled using a freelist slot.  Check
1667   ** to see if defragmentation is necessary.
1668   */
1669   testcase( gap+2+nByte==top );
1670   if( gap+2+nByte>top ){
1671     assert( pPage->nCell>0 || CORRUPT_DB );
1672     assert( pPage->nFree>=0 );
1673     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1674     if( rc ) return rc;
1675     top = get2byteNotZero(&data[hdr+5]);
1676     assert( gap+2+nByte<=top );
1677   }
1678 
1679 
1680   /* Allocate memory from the gap in between the cell pointer array
1681   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1682   ** validated the freelist.  Given that the freelist is valid, there
1683   ** is no way that the allocation can extend off the end of the page.
1684   ** The assert() below verifies the previous sentence.
1685   */
1686   top -= nByte;
1687   put2byte(&data[hdr+5], top);
1688   assert( top+nByte <= (int)pPage->pBt->usableSize );
1689   *pIdx = top;
1690   return SQLITE_OK;
1691 }
1692 
1693 /*
1694 ** Return a section of the pPage->aData to the freelist.
1695 ** The first byte of the new free block is pPage->aData[iStart]
1696 ** and the size of the block is iSize bytes.
1697 **
1698 ** Adjacent freeblocks are coalesced.
1699 **
1700 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1701 ** that routine will not detect overlap between cells or freeblocks.  Nor
1702 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1703 ** at the end of the page.  So do additional corruption checks inside this
1704 ** routine and return SQLITE_CORRUPT if any problems are found.
1705 */
1706 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1707   u16 iPtr;                             /* Address of ptr to next freeblock */
1708   u16 iFreeBlk;                         /* Address of the next freeblock */
1709   u8 hdr;                               /* Page header size.  0 or 100 */
1710   u8 nFrag = 0;                         /* Reduction in fragmentation */
1711   u16 iOrigSize = iSize;                /* Original value of iSize */
1712   u16 x;                                /* Offset to cell content area */
1713   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1714   unsigned char *data = pPage->aData;   /* Page content */
1715 
1716   assert( pPage->pBt!=0 );
1717   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1718   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1719   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1720   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1721   assert( iSize>=4 );   /* Minimum cell size is 4 */
1722   assert( iStart<=pPage->pBt->usableSize-4 );
1723 
1724   /* The list of freeblocks must be in ascending order.  Find the
1725   ** spot on the list where iStart should be inserted.
1726   */
1727   hdr = pPage->hdrOffset;
1728   iPtr = hdr + 1;
1729   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1730     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1731   }else{
1732     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1733       if( iFreeBlk<iPtr+4 ){
1734         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1735         return SQLITE_CORRUPT_PAGE(pPage);
1736       }
1737       iPtr = iFreeBlk;
1738     }
1739     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1740       return SQLITE_CORRUPT_PAGE(pPage);
1741     }
1742     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1743 
1744     /* At this point:
1745     **    iFreeBlk:   First freeblock after iStart, or zero if none
1746     **    iPtr:       The address of a pointer to iFreeBlk
1747     **
1748     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1749     */
1750     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1751       nFrag = iFreeBlk - iEnd;
1752       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1753       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1754       if( iEnd > pPage->pBt->usableSize ){
1755         return SQLITE_CORRUPT_PAGE(pPage);
1756       }
1757       iSize = iEnd - iStart;
1758       iFreeBlk = get2byte(&data[iFreeBlk]);
1759     }
1760 
1761     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1762     ** pointer in the page header) then check to see if iStart should be
1763     ** coalesced onto the end of iPtr.
1764     */
1765     if( iPtr>hdr+1 ){
1766       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1767       if( iPtrEnd+3>=iStart ){
1768         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1769         nFrag += iStart - iPtrEnd;
1770         iSize = iEnd - iPtr;
1771         iStart = iPtr;
1772       }
1773     }
1774     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1775     data[hdr+7] -= nFrag;
1776   }
1777   x = get2byte(&data[hdr+5]);
1778   if( iStart<=x ){
1779     /* The new freeblock is at the beginning of the cell content area,
1780     ** so just extend the cell content area rather than create another
1781     ** freelist entry */
1782     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1783     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1784     put2byte(&data[hdr+1], iFreeBlk);
1785     put2byte(&data[hdr+5], iEnd);
1786   }else{
1787     /* Insert the new freeblock into the freelist */
1788     put2byte(&data[iPtr], iStart);
1789   }
1790   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1791     /* Overwrite deleted information with zeros when the secure_delete
1792     ** option is enabled */
1793     memset(&data[iStart], 0, iSize);
1794   }
1795   put2byte(&data[iStart], iFreeBlk);
1796   put2byte(&data[iStart+2], iSize);
1797   pPage->nFree += iOrigSize;
1798   return SQLITE_OK;
1799 }
1800 
1801 /*
1802 ** Decode the flags byte (the first byte of the header) for a page
1803 ** and initialize fields of the MemPage structure accordingly.
1804 **
1805 ** Only the following combinations are supported.  Anything different
1806 ** indicates a corrupt database files:
1807 **
1808 **         PTF_ZERODATA
1809 **         PTF_ZERODATA | PTF_LEAF
1810 **         PTF_LEAFDATA | PTF_INTKEY
1811 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1812 */
1813 static int decodeFlags(MemPage *pPage, int flagByte){
1814   BtShared *pBt;     /* A copy of pPage->pBt */
1815 
1816   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1817   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1818   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1819   flagByte &= ~PTF_LEAF;
1820   pPage->childPtrSize = 4-4*pPage->leaf;
1821   pPage->xCellSize = cellSizePtr;
1822   pBt = pPage->pBt;
1823   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1824     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1825     ** interior table b-tree page. */
1826     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1827     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1828     ** leaf table b-tree page. */
1829     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1830     pPage->intKey = 1;
1831     if( pPage->leaf ){
1832       pPage->intKeyLeaf = 1;
1833       pPage->xParseCell = btreeParseCellPtr;
1834     }else{
1835       pPage->intKeyLeaf = 0;
1836       pPage->xCellSize = cellSizePtrNoPayload;
1837       pPage->xParseCell = btreeParseCellPtrNoPayload;
1838     }
1839     pPage->maxLocal = pBt->maxLeaf;
1840     pPage->minLocal = pBt->minLeaf;
1841   }else if( flagByte==PTF_ZERODATA ){
1842     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1843     ** interior index b-tree page. */
1844     assert( (PTF_ZERODATA)==2 );
1845     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1846     ** leaf index b-tree page. */
1847     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1848     pPage->intKey = 0;
1849     pPage->intKeyLeaf = 0;
1850     pPage->xParseCell = btreeParseCellPtrIndex;
1851     pPage->maxLocal = pBt->maxLocal;
1852     pPage->minLocal = pBt->minLocal;
1853   }else{
1854     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1855     ** an error. */
1856     return SQLITE_CORRUPT_PAGE(pPage);
1857   }
1858   pPage->max1bytePayload = pBt->max1bytePayload;
1859   return SQLITE_OK;
1860 }
1861 
1862 /*
1863 ** Compute the amount of freespace on the page.  In other words, fill
1864 ** in the pPage->nFree field.
1865 */
1866 static int btreeComputeFreeSpace(MemPage *pPage){
1867   int pc;            /* Address of a freeblock within pPage->aData[] */
1868   u8 hdr;            /* Offset to beginning of page header */
1869   u8 *data;          /* Equal to pPage->aData */
1870   int usableSize;    /* Amount of usable space on each page */
1871   int nFree;         /* Number of unused bytes on the page */
1872   int top;           /* First byte of the cell content area */
1873   int iCellFirst;    /* First allowable cell or freeblock offset */
1874   int iCellLast;     /* Last possible cell or freeblock offset */
1875 
1876   assert( pPage->pBt!=0 );
1877   assert( pPage->pBt->db!=0 );
1878   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1879   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1880   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1881   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1882   assert( pPage->isInit==1 );
1883   assert( pPage->nFree<0 );
1884 
1885   usableSize = pPage->pBt->usableSize;
1886   hdr = pPage->hdrOffset;
1887   data = pPage->aData;
1888   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1889   ** the start of the cell content area. A zero value for this integer is
1890   ** interpreted as 65536. */
1891   top = get2byteNotZero(&data[hdr+5]);
1892   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1893   iCellLast = usableSize - 4;
1894 
1895   /* Compute the total free space on the page
1896   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1897   ** start of the first freeblock on the page, or is zero if there are no
1898   ** freeblocks. */
1899   pc = get2byte(&data[hdr+1]);
1900   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1901   if( pc>0 ){
1902     u32 next, size;
1903     if( pc<top ){
1904       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1905       ** always be at least one cell before the first freeblock.
1906       */
1907       return SQLITE_CORRUPT_PAGE(pPage);
1908     }
1909     while( 1 ){
1910       if( pc>iCellLast ){
1911         /* Freeblock off the end of the page */
1912         return SQLITE_CORRUPT_PAGE(pPage);
1913       }
1914       next = get2byte(&data[pc]);
1915       size = get2byte(&data[pc+2]);
1916       nFree = nFree + size;
1917       if( next<=pc+size+3 ) break;
1918       pc = next;
1919     }
1920     if( next>0 ){
1921       /* Freeblock not in ascending order */
1922       return SQLITE_CORRUPT_PAGE(pPage);
1923     }
1924     if( pc+size>(unsigned int)usableSize ){
1925       /* Last freeblock extends past page end */
1926       return SQLITE_CORRUPT_PAGE(pPage);
1927     }
1928   }
1929 
1930   /* At this point, nFree contains the sum of the offset to the start
1931   ** of the cell-content area plus the number of free bytes within
1932   ** the cell-content area. If this is greater than the usable-size
1933   ** of the page, then the page must be corrupted. This check also
1934   ** serves to verify that the offset to the start of the cell-content
1935   ** area, according to the page header, lies within the page.
1936   */
1937   if( nFree>usableSize || nFree<iCellFirst ){
1938     return SQLITE_CORRUPT_PAGE(pPage);
1939   }
1940   pPage->nFree = (u16)(nFree - iCellFirst);
1941   return SQLITE_OK;
1942 }
1943 
1944 /*
1945 ** Do additional sanity check after btreeInitPage() if
1946 ** PRAGMA cell_size_check=ON
1947 */
1948 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1949   int iCellFirst;    /* First allowable cell or freeblock offset */
1950   int iCellLast;     /* Last possible cell or freeblock offset */
1951   int i;             /* Index into the cell pointer array */
1952   int sz;            /* Size of a cell */
1953   int pc;            /* Address of a freeblock within pPage->aData[] */
1954   u8 *data;          /* Equal to pPage->aData */
1955   int usableSize;    /* Maximum usable space on the page */
1956   int cellOffset;    /* Start of cell content area */
1957 
1958   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1959   usableSize = pPage->pBt->usableSize;
1960   iCellLast = usableSize - 4;
1961   data = pPage->aData;
1962   cellOffset = pPage->cellOffset;
1963   if( !pPage->leaf ) iCellLast--;
1964   for(i=0; i<pPage->nCell; i++){
1965     pc = get2byteAligned(&data[cellOffset+i*2]);
1966     testcase( pc==iCellFirst );
1967     testcase( pc==iCellLast );
1968     if( pc<iCellFirst || pc>iCellLast ){
1969       return SQLITE_CORRUPT_PAGE(pPage);
1970     }
1971     sz = pPage->xCellSize(pPage, &data[pc]);
1972     testcase( pc+sz==usableSize );
1973     if( pc+sz>usableSize ){
1974       return SQLITE_CORRUPT_PAGE(pPage);
1975     }
1976   }
1977   return SQLITE_OK;
1978 }
1979 
1980 /*
1981 ** Initialize the auxiliary information for a disk block.
1982 **
1983 ** Return SQLITE_OK on success.  If we see that the page does
1984 ** not contain a well-formed database page, then return
1985 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1986 ** guarantee that the page is well-formed.  It only shows that
1987 ** we failed to detect any corruption.
1988 */
1989 static int btreeInitPage(MemPage *pPage){
1990   u8 *data;          /* Equal to pPage->aData */
1991   BtShared *pBt;        /* The main btree structure */
1992 
1993   assert( pPage->pBt!=0 );
1994   assert( pPage->pBt->db!=0 );
1995   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1996   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1997   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1998   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1999   assert( pPage->isInit==0 );
2000 
2001   pBt = pPage->pBt;
2002   data = pPage->aData + pPage->hdrOffset;
2003   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2004   ** the b-tree page type. */
2005   if( decodeFlags(pPage, data[0]) ){
2006     return SQLITE_CORRUPT_PAGE(pPage);
2007   }
2008   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2009   pPage->maskPage = (u16)(pBt->pageSize - 1);
2010   pPage->nOverflow = 0;
2011   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2012   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2013   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2014   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2015   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2016   ** number of cells on the page. */
2017   pPage->nCell = get2byte(&data[3]);
2018   if( pPage->nCell>MX_CELL(pBt) ){
2019     /* To many cells for a single page.  The page must be corrupt */
2020     return SQLITE_CORRUPT_PAGE(pPage);
2021   }
2022   testcase( pPage->nCell==MX_CELL(pBt) );
2023   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2024   ** possible for a root page of a table that contains no rows) then the
2025   ** offset to the cell content area will equal the page size minus the
2026   ** bytes of reserved space. */
2027   assert( pPage->nCell>0
2028        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2029        || CORRUPT_DB );
2030   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2031   pPage->isInit = 1;
2032   if( pBt->db->flags & SQLITE_CellSizeCk ){
2033     return btreeCellSizeCheck(pPage);
2034   }
2035   return SQLITE_OK;
2036 }
2037 
2038 /*
2039 ** Set up a raw page so that it looks like a database page holding
2040 ** no entries.
2041 */
2042 static void zeroPage(MemPage *pPage, int flags){
2043   unsigned char *data = pPage->aData;
2044   BtShared *pBt = pPage->pBt;
2045   u8 hdr = pPage->hdrOffset;
2046   u16 first;
2047 
2048   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2049   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2050   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2051   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2052   assert( sqlite3_mutex_held(pBt->mutex) );
2053   if( pBt->btsFlags & BTS_FAST_SECURE ){
2054     memset(&data[hdr], 0, pBt->usableSize - hdr);
2055   }
2056   data[hdr] = (char)flags;
2057   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2058   memset(&data[hdr+1], 0, 4);
2059   data[hdr+7] = 0;
2060   put2byte(&data[hdr+5], pBt->usableSize);
2061   pPage->nFree = (u16)(pBt->usableSize - first);
2062   decodeFlags(pPage, flags);
2063   pPage->cellOffset = first;
2064   pPage->aDataEnd = &data[pBt->usableSize];
2065   pPage->aCellIdx = &data[first];
2066   pPage->aDataOfst = &data[pPage->childPtrSize];
2067   pPage->nOverflow = 0;
2068   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2069   pPage->maskPage = (u16)(pBt->pageSize - 1);
2070   pPage->nCell = 0;
2071   pPage->isInit = 1;
2072 }
2073 
2074 
2075 /*
2076 ** Convert a DbPage obtained from the pager into a MemPage used by
2077 ** the btree layer.
2078 */
2079 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2080   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2081   if( pgno!=pPage->pgno ){
2082     pPage->aData = sqlite3PagerGetData(pDbPage);
2083     pPage->pDbPage = pDbPage;
2084     pPage->pBt = pBt;
2085     pPage->pgno = pgno;
2086     pPage->hdrOffset = pgno==1 ? 100 : 0;
2087   }
2088   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2089   return pPage;
2090 }
2091 
2092 /*
2093 ** Get a page from the pager.  Initialize the MemPage.pBt and
2094 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2095 **
2096 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2097 ** about the content of the page at this time.  So do not go to the disk
2098 ** to fetch the content.  Just fill in the content with zeros for now.
2099 ** If in the future we call sqlite3PagerWrite() on this page, that
2100 ** means we have started to be concerned about content and the disk
2101 ** read should occur at that point.
2102 */
2103 static int btreeGetPage(
2104   BtShared *pBt,       /* The btree */
2105   Pgno pgno,           /* Number of the page to fetch */
2106   MemPage **ppPage,    /* Return the page in this parameter */
2107   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2108 ){
2109   int rc;
2110   DbPage *pDbPage;
2111 
2112   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2113   assert( sqlite3_mutex_held(pBt->mutex) );
2114   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2115   if( rc ) return rc;
2116   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2117   return SQLITE_OK;
2118 }
2119 
2120 /*
2121 ** Retrieve a page from the pager cache. If the requested page is not
2122 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2123 ** MemPage.aData elements if needed.
2124 */
2125 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2126   DbPage *pDbPage;
2127   assert( sqlite3_mutex_held(pBt->mutex) );
2128   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2129   if( pDbPage ){
2130     return btreePageFromDbPage(pDbPage, pgno, pBt);
2131   }
2132   return 0;
2133 }
2134 
2135 /*
2136 ** Return the size of the database file in pages. If there is any kind of
2137 ** error, return ((unsigned int)-1).
2138 */
2139 static Pgno btreePagecount(BtShared *pBt){
2140   assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
2141   return pBt->nPage;
2142 }
2143 u32 sqlite3BtreeLastPage(Btree *p){
2144   assert( sqlite3BtreeHoldsMutex(p) );
2145   return btreePagecount(p->pBt) & 0x7fffffff;
2146 }
2147 
2148 /*
2149 ** Get a page from the pager and initialize it.
2150 **
2151 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2152 ** call.  Do additional sanity checking on the page in this case.
2153 ** And if the fetch fails, this routine must decrement pCur->iPage.
2154 **
2155 ** The page is fetched as read-write unless pCur is not NULL and is
2156 ** a read-only cursor.
2157 **
2158 ** If an error occurs, then *ppPage is undefined. It
2159 ** may remain unchanged, or it may be set to an invalid value.
2160 */
2161 static int getAndInitPage(
2162   BtShared *pBt,                  /* The database file */
2163   Pgno pgno,                      /* Number of the page to get */
2164   MemPage **ppPage,               /* Write the page pointer here */
2165   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2166   int bReadOnly                   /* True for a read-only page */
2167 ){
2168   int rc;
2169   DbPage *pDbPage;
2170   assert( sqlite3_mutex_held(pBt->mutex) );
2171   assert( pCur==0 || ppPage==&pCur->pPage );
2172   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2173   assert( pCur==0 || pCur->iPage>0 );
2174 
2175   if( pgno>btreePagecount(pBt) ){
2176     rc = SQLITE_CORRUPT_BKPT;
2177     goto getAndInitPage_error1;
2178   }
2179   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2180   if( rc ){
2181     goto getAndInitPage_error1;
2182   }
2183   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2184   if( (*ppPage)->isInit==0 ){
2185     btreePageFromDbPage(pDbPage, pgno, pBt);
2186     rc = btreeInitPage(*ppPage);
2187     if( rc!=SQLITE_OK ){
2188       goto getAndInitPage_error2;
2189     }
2190   }
2191   assert( (*ppPage)->pgno==pgno );
2192   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2193 
2194   /* If obtaining a child page for a cursor, we must verify that the page is
2195   ** compatible with the root page. */
2196   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2197     rc = SQLITE_CORRUPT_PGNO(pgno);
2198     goto getAndInitPage_error2;
2199   }
2200   return SQLITE_OK;
2201 
2202 getAndInitPage_error2:
2203   releasePage(*ppPage);
2204 getAndInitPage_error1:
2205   if( pCur ){
2206     pCur->iPage--;
2207     pCur->pPage = pCur->apPage[pCur->iPage];
2208   }
2209   testcase( pgno==0 );
2210   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2211   return rc;
2212 }
2213 
2214 /*
2215 ** Release a MemPage.  This should be called once for each prior
2216 ** call to btreeGetPage.
2217 **
2218 ** Page1 is a special case and must be released using releasePageOne().
2219 */
2220 static void releasePageNotNull(MemPage *pPage){
2221   assert( pPage->aData );
2222   assert( pPage->pBt );
2223   assert( pPage->pDbPage!=0 );
2224   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2225   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2226   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2227   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2228 }
2229 static void releasePage(MemPage *pPage){
2230   if( pPage ) releasePageNotNull(pPage);
2231 }
2232 static void releasePageOne(MemPage *pPage){
2233   assert( pPage!=0 );
2234   assert( pPage->aData );
2235   assert( pPage->pBt );
2236   assert( pPage->pDbPage!=0 );
2237   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2238   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2239   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2240   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2241 }
2242 
2243 /*
2244 ** Get an unused page.
2245 **
2246 ** This works just like btreeGetPage() with the addition:
2247 **
2248 **   *  If the page is already in use for some other purpose, immediately
2249 **      release it and return an SQLITE_CURRUPT error.
2250 **   *  Make sure the isInit flag is clear
2251 */
2252 static int btreeGetUnusedPage(
2253   BtShared *pBt,       /* The btree */
2254   Pgno pgno,           /* Number of the page to fetch */
2255   MemPage **ppPage,    /* Return the page in this parameter */
2256   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2257 ){
2258   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2259   if( rc==SQLITE_OK ){
2260     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2261       releasePage(*ppPage);
2262       *ppPage = 0;
2263       return SQLITE_CORRUPT_BKPT;
2264     }
2265     (*ppPage)->isInit = 0;
2266   }else{
2267     *ppPage = 0;
2268   }
2269   return rc;
2270 }
2271 
2272 
2273 /*
2274 ** During a rollback, when the pager reloads information into the cache
2275 ** so that the cache is restored to its original state at the start of
2276 ** the transaction, for each page restored this routine is called.
2277 **
2278 ** This routine needs to reset the extra data section at the end of the
2279 ** page to agree with the restored data.
2280 */
2281 static void pageReinit(DbPage *pData){
2282   MemPage *pPage;
2283   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2284   assert( sqlite3PagerPageRefcount(pData)>0 );
2285   if( pPage->isInit ){
2286     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2287     pPage->isInit = 0;
2288     if( sqlite3PagerPageRefcount(pData)>1 ){
2289       /* pPage might not be a btree page;  it might be an overflow page
2290       ** or ptrmap page or a free page.  In those cases, the following
2291       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2292       ** But no harm is done by this.  And it is very important that
2293       ** btreeInitPage() be called on every btree page so we make
2294       ** the call for every page that comes in for re-initing. */
2295       btreeInitPage(pPage);
2296     }
2297   }
2298 }
2299 
2300 /*
2301 ** Invoke the busy handler for a btree.
2302 */
2303 static int btreeInvokeBusyHandler(void *pArg){
2304   BtShared *pBt = (BtShared*)pArg;
2305   assert( pBt->db );
2306   assert( sqlite3_mutex_held(pBt->db->mutex) );
2307   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2308 }
2309 
2310 /*
2311 ** Open a database file.
2312 **
2313 ** zFilename is the name of the database file.  If zFilename is NULL
2314 ** then an ephemeral database is created.  The ephemeral database might
2315 ** be exclusively in memory, or it might use a disk-based memory cache.
2316 ** Either way, the ephemeral database will be automatically deleted
2317 ** when sqlite3BtreeClose() is called.
2318 **
2319 ** If zFilename is ":memory:" then an in-memory database is created
2320 ** that is automatically destroyed when it is closed.
2321 **
2322 ** The "flags" parameter is a bitmask that might contain bits like
2323 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2324 **
2325 ** If the database is already opened in the same database connection
2326 ** and we are in shared cache mode, then the open will fail with an
2327 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2328 ** objects in the same database connection since doing so will lead
2329 ** to problems with locking.
2330 */
2331 int sqlite3BtreeOpen(
2332   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2333   const char *zFilename,  /* Name of the file containing the BTree database */
2334   sqlite3 *db,            /* Associated database handle */
2335   Btree **ppBtree,        /* Pointer to new Btree object written here */
2336   int flags,              /* Options */
2337   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2338 ){
2339   BtShared *pBt = 0;             /* Shared part of btree structure */
2340   Btree *p;                      /* Handle to return */
2341   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2342   int rc = SQLITE_OK;            /* Result code from this function */
2343   u8 nReserve;                   /* Byte of unused space on each page */
2344   unsigned char zDbHeader[100];  /* Database header content */
2345 
2346   /* True if opening an ephemeral, temporary database */
2347   const int isTempDb = zFilename==0 || zFilename[0]==0;
2348 
2349   /* Set the variable isMemdb to true for an in-memory database, or
2350   ** false for a file-based database.
2351   */
2352 #ifdef SQLITE_OMIT_MEMORYDB
2353   const int isMemdb = 0;
2354 #else
2355   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2356                        || (isTempDb && sqlite3TempInMemory(db))
2357                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2358 #endif
2359 
2360   assert( db!=0 );
2361   assert( pVfs!=0 );
2362   assert( sqlite3_mutex_held(db->mutex) );
2363   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2364 
2365   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2366   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2367 
2368   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2369   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2370 
2371   if( isMemdb ){
2372     flags |= BTREE_MEMORY;
2373   }
2374   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2375     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2376   }
2377   p = sqlite3MallocZero(sizeof(Btree));
2378   if( !p ){
2379     return SQLITE_NOMEM_BKPT;
2380   }
2381   p->inTrans = TRANS_NONE;
2382   p->db = db;
2383 #ifndef SQLITE_OMIT_SHARED_CACHE
2384   p->lock.pBtree = p;
2385   p->lock.iTable = 1;
2386 #endif
2387 
2388 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2389   /*
2390   ** If this Btree is a candidate for shared cache, try to find an
2391   ** existing BtShared object that we can share with
2392   */
2393   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2394     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2395       int nFilename = sqlite3Strlen30(zFilename)+1;
2396       int nFullPathname = pVfs->mxPathname+1;
2397       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2398       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2399 
2400       p->sharable = 1;
2401       if( !zFullPathname ){
2402         sqlite3_free(p);
2403         return SQLITE_NOMEM_BKPT;
2404       }
2405       if( isMemdb ){
2406         memcpy(zFullPathname, zFilename, nFilename);
2407       }else{
2408         rc = sqlite3OsFullPathname(pVfs, zFilename,
2409                                    nFullPathname, zFullPathname);
2410         if( rc ){
2411           if( rc==SQLITE_OK_SYMLINK ){
2412             rc = SQLITE_OK;
2413           }else{
2414             sqlite3_free(zFullPathname);
2415             sqlite3_free(p);
2416             return rc;
2417           }
2418         }
2419       }
2420 #if SQLITE_THREADSAFE
2421       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2422       sqlite3_mutex_enter(mutexOpen);
2423       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2424       sqlite3_mutex_enter(mutexShared);
2425 #endif
2426       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2427         assert( pBt->nRef>0 );
2428         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2429                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2430           int iDb;
2431           for(iDb=db->nDb-1; iDb>=0; iDb--){
2432             Btree *pExisting = db->aDb[iDb].pBt;
2433             if( pExisting && pExisting->pBt==pBt ){
2434               sqlite3_mutex_leave(mutexShared);
2435               sqlite3_mutex_leave(mutexOpen);
2436               sqlite3_free(zFullPathname);
2437               sqlite3_free(p);
2438               return SQLITE_CONSTRAINT;
2439             }
2440           }
2441           p->pBt = pBt;
2442           pBt->nRef++;
2443           break;
2444         }
2445       }
2446       sqlite3_mutex_leave(mutexShared);
2447       sqlite3_free(zFullPathname);
2448     }
2449 #ifdef SQLITE_DEBUG
2450     else{
2451       /* In debug mode, we mark all persistent databases as sharable
2452       ** even when they are not.  This exercises the locking code and
2453       ** gives more opportunity for asserts(sqlite3_mutex_held())
2454       ** statements to find locking problems.
2455       */
2456       p->sharable = 1;
2457     }
2458 #endif
2459   }
2460 #endif
2461   if( pBt==0 ){
2462     /*
2463     ** The following asserts make sure that structures used by the btree are
2464     ** the right size.  This is to guard against size changes that result
2465     ** when compiling on a different architecture.
2466     */
2467     assert( sizeof(i64)==8 );
2468     assert( sizeof(u64)==8 );
2469     assert( sizeof(u32)==4 );
2470     assert( sizeof(u16)==2 );
2471     assert( sizeof(Pgno)==4 );
2472 
2473     pBt = sqlite3MallocZero( sizeof(*pBt) );
2474     if( pBt==0 ){
2475       rc = SQLITE_NOMEM_BKPT;
2476       goto btree_open_out;
2477     }
2478     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2479                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2480     if( rc==SQLITE_OK ){
2481       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2482       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2483     }
2484     if( rc!=SQLITE_OK ){
2485       goto btree_open_out;
2486     }
2487     pBt->openFlags = (u8)flags;
2488     pBt->db = db;
2489     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2490     p->pBt = pBt;
2491 
2492     pBt->pCursor = 0;
2493     pBt->pPage1 = 0;
2494     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2495 #if defined(SQLITE_SECURE_DELETE)
2496     pBt->btsFlags |= BTS_SECURE_DELETE;
2497 #elif defined(SQLITE_FAST_SECURE_DELETE)
2498     pBt->btsFlags |= BTS_OVERWRITE;
2499 #endif
2500     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2501     ** determined by the 2-byte integer located at an offset of 16 bytes from
2502     ** the beginning of the database file. */
2503     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2504     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2505          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2506       pBt->pageSize = 0;
2507 #ifndef SQLITE_OMIT_AUTOVACUUM
2508       /* If the magic name ":memory:" will create an in-memory database, then
2509       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2510       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2511       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2512       ** regular file-name. In this case the auto-vacuum applies as per normal.
2513       */
2514       if( zFilename && !isMemdb ){
2515         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2516         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2517       }
2518 #endif
2519       nReserve = 0;
2520     }else{
2521       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2522       ** determined by the one-byte unsigned integer found at an offset of 20
2523       ** into the database file header. */
2524       nReserve = zDbHeader[20];
2525       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2526 #ifndef SQLITE_OMIT_AUTOVACUUM
2527       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2528       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2529 #endif
2530     }
2531     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2532     if( rc ) goto btree_open_out;
2533     pBt->usableSize = pBt->pageSize - nReserve;
2534     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2535 
2536 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2537     /* Add the new BtShared object to the linked list sharable BtShareds.
2538     */
2539     pBt->nRef = 1;
2540     if( p->sharable ){
2541       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2542       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2543       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2544         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2545         if( pBt->mutex==0 ){
2546           rc = SQLITE_NOMEM_BKPT;
2547           goto btree_open_out;
2548         }
2549       }
2550       sqlite3_mutex_enter(mutexShared);
2551       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2552       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2553       sqlite3_mutex_leave(mutexShared);
2554     }
2555 #endif
2556   }
2557 
2558 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2559   /* If the new Btree uses a sharable pBtShared, then link the new
2560   ** Btree into the list of all sharable Btrees for the same connection.
2561   ** The list is kept in ascending order by pBt address.
2562   */
2563   if( p->sharable ){
2564     int i;
2565     Btree *pSib;
2566     for(i=0; i<db->nDb; i++){
2567       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2568         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2569         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2570           p->pNext = pSib;
2571           p->pPrev = 0;
2572           pSib->pPrev = p;
2573         }else{
2574           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2575             pSib = pSib->pNext;
2576           }
2577           p->pNext = pSib->pNext;
2578           p->pPrev = pSib;
2579           if( p->pNext ){
2580             p->pNext->pPrev = p;
2581           }
2582           pSib->pNext = p;
2583         }
2584         break;
2585       }
2586     }
2587   }
2588 #endif
2589   *ppBtree = p;
2590 
2591 btree_open_out:
2592   if( rc!=SQLITE_OK ){
2593     if( pBt && pBt->pPager ){
2594       sqlite3PagerClose(pBt->pPager, 0);
2595     }
2596     sqlite3_free(pBt);
2597     sqlite3_free(p);
2598     *ppBtree = 0;
2599   }else{
2600     sqlite3_file *pFile;
2601 
2602     /* If the B-Tree was successfully opened, set the pager-cache size to the
2603     ** default value. Except, when opening on an existing shared pager-cache,
2604     ** do not change the pager-cache size.
2605     */
2606     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2607       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2608     }
2609 
2610     pFile = sqlite3PagerFile(pBt->pPager);
2611     if( pFile->pMethods ){
2612       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2613     }
2614   }
2615   if( mutexOpen ){
2616     assert( sqlite3_mutex_held(mutexOpen) );
2617     sqlite3_mutex_leave(mutexOpen);
2618   }
2619   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2620   return rc;
2621 }
2622 
2623 /*
2624 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2625 ** remove the BtShared structure from the sharing list.  Return
2626 ** true if the BtShared.nRef counter reaches zero and return
2627 ** false if it is still positive.
2628 */
2629 static int removeFromSharingList(BtShared *pBt){
2630 #ifndef SQLITE_OMIT_SHARED_CACHE
2631   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2632   BtShared *pList;
2633   int removed = 0;
2634 
2635   assert( sqlite3_mutex_notheld(pBt->mutex) );
2636   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2637   sqlite3_mutex_enter(pMaster);
2638   pBt->nRef--;
2639   if( pBt->nRef<=0 ){
2640     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2641       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2642     }else{
2643       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2644       while( ALWAYS(pList) && pList->pNext!=pBt ){
2645         pList=pList->pNext;
2646       }
2647       if( ALWAYS(pList) ){
2648         pList->pNext = pBt->pNext;
2649       }
2650     }
2651     if( SQLITE_THREADSAFE ){
2652       sqlite3_mutex_free(pBt->mutex);
2653     }
2654     removed = 1;
2655   }
2656   sqlite3_mutex_leave(pMaster);
2657   return removed;
2658 #else
2659   return 1;
2660 #endif
2661 }
2662 
2663 /*
2664 ** Make sure pBt->pTmpSpace points to an allocation of
2665 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2666 ** pointer.
2667 */
2668 static void allocateTempSpace(BtShared *pBt){
2669   if( !pBt->pTmpSpace ){
2670     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2671 
2672     /* One of the uses of pBt->pTmpSpace is to format cells before
2673     ** inserting them into a leaf page (function fillInCell()). If
2674     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2675     ** by the various routines that manipulate binary cells. Which
2676     ** can mean that fillInCell() only initializes the first 2 or 3
2677     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2678     ** it into a database page. This is not actually a problem, but it
2679     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2680     ** data is passed to system call write(). So to avoid this error,
2681     ** zero the first 4 bytes of temp space here.
2682     **
2683     ** Also:  Provide four bytes of initialized space before the
2684     ** beginning of pTmpSpace as an area available to prepend the
2685     ** left-child pointer to the beginning of a cell.
2686     */
2687     if( pBt->pTmpSpace ){
2688       memset(pBt->pTmpSpace, 0, 8);
2689       pBt->pTmpSpace += 4;
2690     }
2691   }
2692 }
2693 
2694 /*
2695 ** Free the pBt->pTmpSpace allocation
2696 */
2697 static void freeTempSpace(BtShared *pBt){
2698   if( pBt->pTmpSpace ){
2699     pBt->pTmpSpace -= 4;
2700     sqlite3PageFree(pBt->pTmpSpace);
2701     pBt->pTmpSpace = 0;
2702   }
2703 }
2704 
2705 /*
2706 ** Close an open database and invalidate all cursors.
2707 */
2708 int sqlite3BtreeClose(Btree *p){
2709   BtShared *pBt = p->pBt;
2710   BtCursor *pCur;
2711 
2712   /* Close all cursors opened via this handle.  */
2713   assert( sqlite3_mutex_held(p->db->mutex) );
2714   sqlite3BtreeEnter(p);
2715   pCur = pBt->pCursor;
2716   while( pCur ){
2717     BtCursor *pTmp = pCur;
2718     pCur = pCur->pNext;
2719     if( pTmp->pBtree==p ){
2720       sqlite3BtreeCloseCursor(pTmp);
2721     }
2722   }
2723 
2724   /* Rollback any active transaction and free the handle structure.
2725   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2726   ** this handle.
2727   */
2728   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2729   sqlite3BtreeLeave(p);
2730 
2731   /* If there are still other outstanding references to the shared-btree
2732   ** structure, return now. The remainder of this procedure cleans
2733   ** up the shared-btree.
2734   */
2735   assert( p->wantToLock==0 && p->locked==0 );
2736   if( !p->sharable || removeFromSharingList(pBt) ){
2737     /* The pBt is no longer on the sharing list, so we can access
2738     ** it without having to hold the mutex.
2739     **
2740     ** Clean out and delete the BtShared object.
2741     */
2742     assert( !pBt->pCursor );
2743     sqlite3PagerClose(pBt->pPager, p->db);
2744     if( pBt->xFreeSchema && pBt->pSchema ){
2745       pBt->xFreeSchema(pBt->pSchema);
2746     }
2747     sqlite3DbFree(0, pBt->pSchema);
2748     freeTempSpace(pBt);
2749     sqlite3_free(pBt);
2750   }
2751 
2752 #ifndef SQLITE_OMIT_SHARED_CACHE
2753   assert( p->wantToLock==0 );
2754   assert( p->locked==0 );
2755   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2756   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2757 #endif
2758 
2759   sqlite3_free(p);
2760   return SQLITE_OK;
2761 }
2762 
2763 /*
2764 ** Change the "soft" limit on the number of pages in the cache.
2765 ** Unused and unmodified pages will be recycled when the number of
2766 ** pages in the cache exceeds this soft limit.  But the size of the
2767 ** cache is allowed to grow larger than this limit if it contains
2768 ** dirty pages or pages still in active use.
2769 */
2770 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2771   BtShared *pBt = p->pBt;
2772   assert( sqlite3_mutex_held(p->db->mutex) );
2773   sqlite3BtreeEnter(p);
2774   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2775   sqlite3BtreeLeave(p);
2776   return SQLITE_OK;
2777 }
2778 
2779 /*
2780 ** Change the "spill" limit on the number of pages in the cache.
2781 ** If the number of pages exceeds this limit during a write transaction,
2782 ** the pager might attempt to "spill" pages to the journal early in
2783 ** order to free up memory.
2784 **
2785 ** The value returned is the current spill size.  If zero is passed
2786 ** as an argument, no changes are made to the spill size setting, so
2787 ** using mxPage of 0 is a way to query the current spill size.
2788 */
2789 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2790   BtShared *pBt = p->pBt;
2791   int res;
2792   assert( sqlite3_mutex_held(p->db->mutex) );
2793   sqlite3BtreeEnter(p);
2794   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2795   sqlite3BtreeLeave(p);
2796   return res;
2797 }
2798 
2799 #if SQLITE_MAX_MMAP_SIZE>0
2800 /*
2801 ** Change the limit on the amount of the database file that may be
2802 ** memory mapped.
2803 */
2804 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2805   BtShared *pBt = p->pBt;
2806   assert( sqlite3_mutex_held(p->db->mutex) );
2807   sqlite3BtreeEnter(p);
2808   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2809   sqlite3BtreeLeave(p);
2810   return SQLITE_OK;
2811 }
2812 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2813 
2814 /*
2815 ** Change the way data is synced to disk in order to increase or decrease
2816 ** how well the database resists damage due to OS crashes and power
2817 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2818 ** there is a high probability of damage)  Level 2 is the default.  There
2819 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2820 ** probability of damage to near zero but with a write performance reduction.
2821 */
2822 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2823 int sqlite3BtreeSetPagerFlags(
2824   Btree *p,              /* The btree to set the safety level on */
2825   unsigned pgFlags       /* Various PAGER_* flags */
2826 ){
2827   BtShared *pBt = p->pBt;
2828   assert( sqlite3_mutex_held(p->db->mutex) );
2829   sqlite3BtreeEnter(p);
2830   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2831   sqlite3BtreeLeave(p);
2832   return SQLITE_OK;
2833 }
2834 #endif
2835 
2836 /*
2837 ** Change the default pages size and the number of reserved bytes per page.
2838 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2839 ** without changing anything.
2840 **
2841 ** The page size must be a power of 2 between 512 and 65536.  If the page
2842 ** size supplied does not meet this constraint then the page size is not
2843 ** changed.
2844 **
2845 ** Page sizes are constrained to be a power of two so that the region
2846 ** of the database file used for locking (beginning at PENDING_BYTE,
2847 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2848 ** at the beginning of a page.
2849 **
2850 ** If parameter nReserve is less than zero, then the number of reserved
2851 ** bytes per page is left unchanged.
2852 **
2853 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2854 ** and autovacuum mode can no longer be changed.
2855 */
2856 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2857   int rc = SQLITE_OK;
2858   int x;
2859   BtShared *pBt = p->pBt;
2860   assert( nReserve>=0 && nReserve<=255 );
2861   sqlite3BtreeEnter(p);
2862   pBt->nReserveWanted = nReserve;
2863   x = pBt->pageSize - pBt->usableSize;
2864   if( nReserve<x ) nReserve = x;
2865   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2866     sqlite3BtreeLeave(p);
2867     return SQLITE_READONLY;
2868   }
2869   assert( nReserve>=0 && nReserve<=255 );
2870   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2871         ((pageSize-1)&pageSize)==0 ){
2872     assert( (pageSize & 7)==0 );
2873     assert( !pBt->pCursor );
2874     pBt->pageSize = (u32)pageSize;
2875     freeTempSpace(pBt);
2876   }
2877   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2878   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2879   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2880   sqlite3BtreeLeave(p);
2881   return rc;
2882 }
2883 
2884 /*
2885 ** Return the currently defined page size
2886 */
2887 int sqlite3BtreeGetPageSize(Btree *p){
2888   return p->pBt->pageSize;
2889 }
2890 
2891 /*
2892 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2893 ** may only be called if it is guaranteed that the b-tree mutex is already
2894 ** held.
2895 **
2896 ** This is useful in one special case in the backup API code where it is
2897 ** known that the shared b-tree mutex is held, but the mutex on the
2898 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2899 ** were to be called, it might collide with some other operation on the
2900 ** database handle that owns *p, causing undefined behavior.
2901 */
2902 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2903   int n;
2904   assert( sqlite3_mutex_held(p->pBt->mutex) );
2905   n = p->pBt->pageSize - p->pBt->usableSize;
2906   return n;
2907 }
2908 
2909 /*
2910 ** Return the number of bytes of space at the end of every page that
2911 ** are intentually left unused.  This is the "reserved" space that is
2912 ** sometimes used by extensions.
2913 **
2914 ** The value returned is the larger of the current reserve size and
2915 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2916 ** The amount of reserve can only grow - never shrink.
2917 */
2918 int sqlite3BtreeGetRequestedReserve(Btree *p){
2919   int n1, n2;
2920   sqlite3BtreeEnter(p);
2921   n1 = (int)p->pBt->nReserveWanted;
2922   n2 = sqlite3BtreeGetReserveNoMutex(p);
2923   sqlite3BtreeLeave(p);
2924   return n1>n2 ? n1 : n2;
2925 }
2926 
2927 
2928 /*
2929 ** Set the maximum page count for a database if mxPage is positive.
2930 ** No changes are made if mxPage is 0 or negative.
2931 ** Regardless of the value of mxPage, return the maximum page count.
2932 */
2933 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2934   int n;
2935   sqlite3BtreeEnter(p);
2936   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2937   sqlite3BtreeLeave(p);
2938   return n;
2939 }
2940 
2941 /*
2942 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2943 **
2944 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2945 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2946 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2947 **    newFlag==(-1)    No changes
2948 **
2949 ** This routine acts as a query if newFlag is less than zero
2950 **
2951 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2952 ** freelist leaf pages are not written back to the database.  Thus in-page
2953 ** deleted content is cleared, but freelist deleted content is not.
2954 **
2955 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2956 ** that freelist leaf pages are written back into the database, increasing
2957 ** the amount of disk I/O.
2958 */
2959 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2960   int b;
2961   if( p==0 ) return 0;
2962   sqlite3BtreeEnter(p);
2963   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2964   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2965   if( newFlag>=0 ){
2966     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2967     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2968   }
2969   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2970   sqlite3BtreeLeave(p);
2971   return b;
2972 }
2973 
2974 /*
2975 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2976 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2977 ** is disabled. The default value for the auto-vacuum property is
2978 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2979 */
2980 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2981 #ifdef SQLITE_OMIT_AUTOVACUUM
2982   return SQLITE_READONLY;
2983 #else
2984   BtShared *pBt = p->pBt;
2985   int rc = SQLITE_OK;
2986   u8 av = (u8)autoVacuum;
2987 
2988   sqlite3BtreeEnter(p);
2989   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2990     rc = SQLITE_READONLY;
2991   }else{
2992     pBt->autoVacuum = av ?1:0;
2993     pBt->incrVacuum = av==2 ?1:0;
2994   }
2995   sqlite3BtreeLeave(p);
2996   return rc;
2997 #endif
2998 }
2999 
3000 /*
3001 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3002 ** enabled 1 is returned. Otherwise 0.
3003 */
3004 int sqlite3BtreeGetAutoVacuum(Btree *p){
3005 #ifdef SQLITE_OMIT_AUTOVACUUM
3006   return BTREE_AUTOVACUUM_NONE;
3007 #else
3008   int rc;
3009   sqlite3BtreeEnter(p);
3010   rc = (
3011     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3012     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3013     BTREE_AUTOVACUUM_INCR
3014   );
3015   sqlite3BtreeLeave(p);
3016   return rc;
3017 #endif
3018 }
3019 
3020 /*
3021 ** If the user has not set the safety-level for this database connection
3022 ** using "PRAGMA synchronous", and if the safety-level is not already
3023 ** set to the value passed to this function as the second parameter,
3024 ** set it so.
3025 */
3026 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3027     && !defined(SQLITE_OMIT_WAL)
3028 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3029   sqlite3 *db;
3030   Db *pDb;
3031   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3032     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3033     if( pDb->bSyncSet==0
3034      && pDb->safety_level!=safety_level
3035      && pDb!=&db->aDb[1]
3036     ){
3037       pDb->safety_level = safety_level;
3038       sqlite3PagerSetFlags(pBt->pPager,
3039           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3040     }
3041   }
3042 }
3043 #else
3044 # define setDefaultSyncFlag(pBt,safety_level)
3045 #endif
3046 
3047 /* Forward declaration */
3048 static int newDatabase(BtShared*);
3049 
3050 
3051 /*
3052 ** Get a reference to pPage1 of the database file.  This will
3053 ** also acquire a readlock on that file.
3054 **
3055 ** SQLITE_OK is returned on success.  If the file is not a
3056 ** well-formed database file, then SQLITE_CORRUPT is returned.
3057 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3058 ** is returned if we run out of memory.
3059 */
3060 static int lockBtree(BtShared *pBt){
3061   int rc;              /* Result code from subfunctions */
3062   MemPage *pPage1;     /* Page 1 of the database file */
3063   u32 nPage;           /* Number of pages in the database */
3064   u32 nPageFile = 0;   /* Number of pages in the database file */
3065   u32 nPageHeader;     /* Number of pages in the database according to hdr */
3066 
3067   assert( sqlite3_mutex_held(pBt->mutex) );
3068   assert( pBt->pPage1==0 );
3069   rc = sqlite3PagerSharedLock(pBt->pPager);
3070   if( rc!=SQLITE_OK ) return rc;
3071   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3072   if( rc!=SQLITE_OK ) return rc;
3073 
3074   /* Do some checking to help insure the file we opened really is
3075   ** a valid database file.
3076   */
3077   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3078   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3079   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3080     nPage = nPageFile;
3081   }
3082   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3083     nPage = 0;
3084   }
3085   if( nPage>0 ){
3086     u32 pageSize;
3087     u32 usableSize;
3088     u8 *page1 = pPage1->aData;
3089     rc = SQLITE_NOTADB;
3090     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3091     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3092     ** 61 74 20 33 00. */
3093     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3094       goto page1_init_failed;
3095     }
3096 
3097 #ifdef SQLITE_OMIT_WAL
3098     if( page1[18]>1 ){
3099       pBt->btsFlags |= BTS_READ_ONLY;
3100     }
3101     if( page1[19]>1 ){
3102       goto page1_init_failed;
3103     }
3104 #else
3105     if( page1[18]>2 ){
3106       pBt->btsFlags |= BTS_READ_ONLY;
3107     }
3108     if( page1[19]>2 ){
3109       goto page1_init_failed;
3110     }
3111 
3112     /* If the write version is set to 2, this database should be accessed
3113     ** in WAL mode. If the log is not already open, open it now. Then
3114     ** return SQLITE_OK and return without populating BtShared.pPage1.
3115     ** The caller detects this and calls this function again. This is
3116     ** required as the version of page 1 currently in the page1 buffer
3117     ** may not be the latest version - there may be a newer one in the log
3118     ** file.
3119     */
3120     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3121       int isOpen = 0;
3122       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3123       if( rc!=SQLITE_OK ){
3124         goto page1_init_failed;
3125       }else{
3126         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3127         if( isOpen==0 ){
3128           releasePageOne(pPage1);
3129           return SQLITE_OK;
3130         }
3131       }
3132       rc = SQLITE_NOTADB;
3133     }else{
3134       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3135     }
3136 #endif
3137 
3138     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3139     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3140     **
3141     ** The original design allowed these amounts to vary, but as of
3142     ** version 3.6.0, we require them to be fixed.
3143     */
3144     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3145       goto page1_init_failed;
3146     }
3147     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3148     ** determined by the 2-byte integer located at an offset of 16 bytes from
3149     ** the beginning of the database file. */
3150     pageSize = (page1[16]<<8) | (page1[17]<<16);
3151     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3152     ** between 512 and 65536 inclusive. */
3153     if( ((pageSize-1)&pageSize)!=0
3154      || pageSize>SQLITE_MAX_PAGE_SIZE
3155      || pageSize<=256
3156     ){
3157       goto page1_init_failed;
3158     }
3159     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3160     assert( (pageSize & 7)==0 );
3161     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3162     ** integer at offset 20 is the number of bytes of space at the end of
3163     ** each page to reserve for extensions.
3164     **
3165     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3166     ** determined by the one-byte unsigned integer found at an offset of 20
3167     ** into the database file header. */
3168     usableSize = pageSize - page1[20];
3169     if( (u32)pageSize!=pBt->pageSize ){
3170       /* After reading the first page of the database assuming a page size
3171       ** of BtShared.pageSize, we have discovered that the page-size is
3172       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3173       ** zero and return SQLITE_OK. The caller will call this function
3174       ** again with the correct page-size.
3175       */
3176       releasePageOne(pPage1);
3177       pBt->usableSize = usableSize;
3178       pBt->pageSize = pageSize;
3179       freeTempSpace(pBt);
3180       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3181                                    pageSize-usableSize);
3182       return rc;
3183     }
3184     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3185       rc = SQLITE_CORRUPT_BKPT;
3186       goto page1_init_failed;
3187     }
3188     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3189     ** be less than 480. In other words, if the page size is 512, then the
3190     ** reserved space size cannot exceed 32. */
3191     if( usableSize<480 ){
3192       goto page1_init_failed;
3193     }
3194     pBt->pageSize = pageSize;
3195     pBt->usableSize = usableSize;
3196 #ifndef SQLITE_OMIT_AUTOVACUUM
3197     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3198     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3199 #endif
3200   }
3201 
3202   /* maxLocal is the maximum amount of payload to store locally for
3203   ** a cell.  Make sure it is small enough so that at least minFanout
3204   ** cells can will fit on one page.  We assume a 10-byte page header.
3205   ** Besides the payload, the cell must store:
3206   **     2-byte pointer to the cell
3207   **     4-byte child pointer
3208   **     9-byte nKey value
3209   **     4-byte nData value
3210   **     4-byte overflow page pointer
3211   ** So a cell consists of a 2-byte pointer, a header which is as much as
3212   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3213   ** page pointer.
3214   */
3215   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3216   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3217   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3218   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3219   if( pBt->maxLocal>127 ){
3220     pBt->max1bytePayload = 127;
3221   }else{
3222     pBt->max1bytePayload = (u8)pBt->maxLocal;
3223   }
3224   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3225   pBt->pPage1 = pPage1;
3226   pBt->nPage = nPage;
3227   return SQLITE_OK;
3228 
3229 page1_init_failed:
3230   releasePageOne(pPage1);
3231   pBt->pPage1 = 0;
3232   return rc;
3233 }
3234 
3235 #ifndef NDEBUG
3236 /*
3237 ** Return the number of cursors open on pBt. This is for use
3238 ** in assert() expressions, so it is only compiled if NDEBUG is not
3239 ** defined.
3240 **
3241 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3242 ** false then all cursors are counted.
3243 **
3244 ** For the purposes of this routine, a cursor is any cursor that
3245 ** is capable of reading or writing to the database.  Cursors that
3246 ** have been tripped into the CURSOR_FAULT state are not counted.
3247 */
3248 static int countValidCursors(BtShared *pBt, int wrOnly){
3249   BtCursor *pCur;
3250   int r = 0;
3251   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3252     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3253      && pCur->eState!=CURSOR_FAULT ) r++;
3254   }
3255   return r;
3256 }
3257 #endif
3258 
3259 /*
3260 ** If there are no outstanding cursors and we are not in the middle
3261 ** of a transaction but there is a read lock on the database, then
3262 ** this routine unrefs the first page of the database file which
3263 ** has the effect of releasing the read lock.
3264 **
3265 ** If there is a transaction in progress, this routine is a no-op.
3266 */
3267 static void unlockBtreeIfUnused(BtShared *pBt){
3268   assert( sqlite3_mutex_held(pBt->mutex) );
3269   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3270   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3271     MemPage *pPage1 = pBt->pPage1;
3272     assert( pPage1->aData );
3273     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3274     pBt->pPage1 = 0;
3275     releasePageOne(pPage1);
3276   }
3277 }
3278 
3279 /*
3280 ** If pBt points to an empty file then convert that empty file
3281 ** into a new empty database by initializing the first page of
3282 ** the database.
3283 */
3284 static int newDatabase(BtShared *pBt){
3285   MemPage *pP1;
3286   unsigned char *data;
3287   int rc;
3288 
3289   assert( sqlite3_mutex_held(pBt->mutex) );
3290   if( pBt->nPage>0 ){
3291     return SQLITE_OK;
3292   }
3293   pP1 = pBt->pPage1;
3294   assert( pP1!=0 );
3295   data = pP1->aData;
3296   rc = sqlite3PagerWrite(pP1->pDbPage);
3297   if( rc ) return rc;
3298   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3299   assert( sizeof(zMagicHeader)==16 );
3300   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3301   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3302   data[18] = 1;
3303   data[19] = 1;
3304   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3305   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3306   data[21] = 64;
3307   data[22] = 32;
3308   data[23] = 32;
3309   memset(&data[24], 0, 100-24);
3310   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3311   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3312 #ifndef SQLITE_OMIT_AUTOVACUUM
3313   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3314   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3315   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3316   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3317 #endif
3318   pBt->nPage = 1;
3319   data[31] = 1;
3320   return SQLITE_OK;
3321 }
3322 
3323 /*
3324 ** Initialize the first page of the database file (creating a database
3325 ** consisting of a single page and no schema objects). Return SQLITE_OK
3326 ** if successful, or an SQLite error code otherwise.
3327 */
3328 int sqlite3BtreeNewDb(Btree *p){
3329   int rc;
3330   sqlite3BtreeEnter(p);
3331   p->pBt->nPage = 0;
3332   rc = newDatabase(p->pBt);
3333   sqlite3BtreeLeave(p);
3334   return rc;
3335 }
3336 
3337 /*
3338 ** Attempt to start a new transaction. A write-transaction
3339 ** is started if the second argument is nonzero, otherwise a read-
3340 ** transaction.  If the second argument is 2 or more and exclusive
3341 ** transaction is started, meaning that no other process is allowed
3342 ** to access the database.  A preexisting transaction may not be
3343 ** upgraded to exclusive by calling this routine a second time - the
3344 ** exclusivity flag only works for a new transaction.
3345 **
3346 ** A write-transaction must be started before attempting any
3347 ** changes to the database.  None of the following routines
3348 ** will work unless a transaction is started first:
3349 **
3350 **      sqlite3BtreeCreateTable()
3351 **      sqlite3BtreeCreateIndex()
3352 **      sqlite3BtreeClearTable()
3353 **      sqlite3BtreeDropTable()
3354 **      sqlite3BtreeInsert()
3355 **      sqlite3BtreeDelete()
3356 **      sqlite3BtreeUpdateMeta()
3357 **
3358 ** If an initial attempt to acquire the lock fails because of lock contention
3359 ** and the database was previously unlocked, then invoke the busy handler
3360 ** if there is one.  But if there was previously a read-lock, do not
3361 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3362 ** returned when there is already a read-lock in order to avoid a deadlock.
3363 **
3364 ** Suppose there are two processes A and B.  A has a read lock and B has
3365 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3366 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3367 ** One or the other of the two processes must give way or there can be
3368 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3369 ** when A already has a read lock, we encourage A to give up and let B
3370 ** proceed.
3371 */
3372 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3373   BtShared *pBt = p->pBt;
3374   Pager *pPager = pBt->pPager;
3375   int rc = SQLITE_OK;
3376 
3377   sqlite3BtreeEnter(p);
3378   btreeIntegrity(p);
3379 
3380   /* If the btree is already in a write-transaction, or it
3381   ** is already in a read-transaction and a read-transaction
3382   ** is requested, this is a no-op.
3383   */
3384   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3385     goto trans_begun;
3386   }
3387   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3388 
3389   if( (p->db->flags & SQLITE_ResetDatabase)
3390    && sqlite3PagerIsreadonly(pPager)==0
3391   ){
3392     pBt->btsFlags &= ~BTS_READ_ONLY;
3393   }
3394 
3395   /* Write transactions are not possible on a read-only database */
3396   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3397     rc = SQLITE_READONLY;
3398     goto trans_begun;
3399   }
3400 
3401 #ifndef SQLITE_OMIT_SHARED_CACHE
3402   {
3403     sqlite3 *pBlock = 0;
3404     /* If another database handle has already opened a write transaction
3405     ** on this shared-btree structure and a second write transaction is
3406     ** requested, return SQLITE_LOCKED.
3407     */
3408     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3409      || (pBt->btsFlags & BTS_PENDING)!=0
3410     ){
3411       pBlock = pBt->pWriter->db;
3412     }else if( wrflag>1 ){
3413       BtLock *pIter;
3414       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3415         if( pIter->pBtree!=p ){
3416           pBlock = pIter->pBtree->db;
3417           break;
3418         }
3419       }
3420     }
3421     if( pBlock ){
3422       sqlite3ConnectionBlocked(p->db, pBlock);
3423       rc = SQLITE_LOCKED_SHAREDCACHE;
3424       goto trans_begun;
3425     }
3426   }
3427 #endif
3428 
3429   /* Any read-only or read-write transaction implies a read-lock on
3430   ** page 1. So if some other shared-cache client already has a write-lock
3431   ** on page 1, the transaction cannot be opened. */
3432   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3433   if( SQLITE_OK!=rc ) goto trans_begun;
3434 
3435   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3436   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3437   do {
3438     sqlite3PagerWalDb(pPager, p->db);
3439 
3440 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3441     /* If transitioning from no transaction directly to a write transaction,
3442     ** block for the WRITER lock first if possible. */
3443     if( pBt->pPage1==0 && wrflag ){
3444       assert( pBt->inTransaction==TRANS_NONE );
3445       rc = sqlite3PagerWalWriteLock(pPager, 1);
3446       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3447     }
3448 #endif
3449 
3450     /* Call lockBtree() until either pBt->pPage1 is populated or
3451     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3452     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3453     ** reading page 1 it discovers that the page-size of the database
3454     ** file is not pBt->pageSize. In this case lockBtree() will update
3455     ** pBt->pageSize to the page-size of the file on disk.
3456     */
3457     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3458 
3459     if( rc==SQLITE_OK && wrflag ){
3460       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3461         rc = SQLITE_READONLY;
3462       }else{
3463         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3464         if( rc==SQLITE_OK ){
3465           rc = newDatabase(pBt);
3466         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3467           /* if there was no transaction opened when this function was
3468           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3469           ** code to SQLITE_BUSY. */
3470           rc = SQLITE_BUSY;
3471         }
3472       }
3473     }
3474 
3475     if( rc!=SQLITE_OK ){
3476       (void)sqlite3PagerWalWriteLock(pPager, 0);
3477       unlockBtreeIfUnused(pBt);
3478     }
3479   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3480           btreeInvokeBusyHandler(pBt) );
3481   sqlite3PagerWalDb(pPager, 0);
3482 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3483   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3484 #endif
3485 
3486   if( rc==SQLITE_OK ){
3487     if( p->inTrans==TRANS_NONE ){
3488       pBt->nTransaction++;
3489 #ifndef SQLITE_OMIT_SHARED_CACHE
3490       if( p->sharable ){
3491         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3492         p->lock.eLock = READ_LOCK;
3493         p->lock.pNext = pBt->pLock;
3494         pBt->pLock = &p->lock;
3495       }
3496 #endif
3497     }
3498     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3499     if( p->inTrans>pBt->inTransaction ){
3500       pBt->inTransaction = p->inTrans;
3501     }
3502     if( wrflag ){
3503       MemPage *pPage1 = pBt->pPage1;
3504 #ifndef SQLITE_OMIT_SHARED_CACHE
3505       assert( !pBt->pWriter );
3506       pBt->pWriter = p;
3507       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3508       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3509 #endif
3510 
3511       /* If the db-size header field is incorrect (as it may be if an old
3512       ** client has been writing the database file), update it now. Doing
3513       ** this sooner rather than later means the database size can safely
3514       ** re-read the database size from page 1 if a savepoint or transaction
3515       ** rollback occurs within the transaction.
3516       */
3517       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3518         rc = sqlite3PagerWrite(pPage1->pDbPage);
3519         if( rc==SQLITE_OK ){
3520           put4byte(&pPage1->aData[28], pBt->nPage);
3521         }
3522       }
3523     }
3524   }
3525 
3526 trans_begun:
3527   if( rc==SQLITE_OK ){
3528     if( pSchemaVersion ){
3529       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3530     }
3531     if( wrflag ){
3532       /* This call makes sure that the pager has the correct number of
3533       ** open savepoints. If the second parameter is greater than 0 and
3534       ** the sub-journal is not already open, then it will be opened here.
3535       */
3536       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3537     }
3538   }
3539 
3540   btreeIntegrity(p);
3541   sqlite3BtreeLeave(p);
3542   return rc;
3543 }
3544 
3545 #ifndef SQLITE_OMIT_AUTOVACUUM
3546 
3547 /*
3548 ** Set the pointer-map entries for all children of page pPage. Also, if
3549 ** pPage contains cells that point to overflow pages, set the pointer
3550 ** map entries for the overflow pages as well.
3551 */
3552 static int setChildPtrmaps(MemPage *pPage){
3553   int i;                             /* Counter variable */
3554   int nCell;                         /* Number of cells in page pPage */
3555   int rc;                            /* Return code */
3556   BtShared *pBt = pPage->pBt;
3557   Pgno pgno = pPage->pgno;
3558 
3559   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3560   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3561   if( rc!=SQLITE_OK ) return rc;
3562   nCell = pPage->nCell;
3563 
3564   for(i=0; i<nCell; i++){
3565     u8 *pCell = findCell(pPage, i);
3566 
3567     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3568 
3569     if( !pPage->leaf ){
3570       Pgno childPgno = get4byte(pCell);
3571       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3572     }
3573   }
3574 
3575   if( !pPage->leaf ){
3576     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3577     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3578   }
3579 
3580   return rc;
3581 }
3582 
3583 /*
3584 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3585 ** that it points to iTo. Parameter eType describes the type of pointer to
3586 ** be modified, as  follows:
3587 **
3588 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3589 **                   page of pPage.
3590 **
3591 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3592 **                   page pointed to by one of the cells on pPage.
3593 **
3594 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3595 **                   overflow page in the list.
3596 */
3597 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3598   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3599   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3600   if( eType==PTRMAP_OVERFLOW2 ){
3601     /* The pointer is always the first 4 bytes of the page in this case.  */
3602     if( get4byte(pPage->aData)!=iFrom ){
3603       return SQLITE_CORRUPT_PAGE(pPage);
3604     }
3605     put4byte(pPage->aData, iTo);
3606   }else{
3607     int i;
3608     int nCell;
3609     int rc;
3610 
3611     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3612     if( rc ) return rc;
3613     nCell = pPage->nCell;
3614 
3615     for(i=0; i<nCell; i++){
3616       u8 *pCell = findCell(pPage, i);
3617       if( eType==PTRMAP_OVERFLOW1 ){
3618         CellInfo info;
3619         pPage->xParseCell(pPage, pCell, &info);
3620         if( info.nLocal<info.nPayload ){
3621           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3622             return SQLITE_CORRUPT_PAGE(pPage);
3623           }
3624           if( iFrom==get4byte(pCell+info.nSize-4) ){
3625             put4byte(pCell+info.nSize-4, iTo);
3626             break;
3627           }
3628         }
3629       }else{
3630         if( get4byte(pCell)==iFrom ){
3631           put4byte(pCell, iTo);
3632           break;
3633         }
3634       }
3635     }
3636 
3637     if( i==nCell ){
3638       if( eType!=PTRMAP_BTREE ||
3639           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3640         return SQLITE_CORRUPT_PAGE(pPage);
3641       }
3642       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3643     }
3644   }
3645   return SQLITE_OK;
3646 }
3647 
3648 
3649 /*
3650 ** Move the open database page pDbPage to location iFreePage in the
3651 ** database. The pDbPage reference remains valid.
3652 **
3653 ** The isCommit flag indicates that there is no need to remember that
3654 ** the journal needs to be sync()ed before database page pDbPage->pgno
3655 ** can be written to. The caller has already promised not to write to that
3656 ** page.
3657 */
3658 static int relocatePage(
3659   BtShared *pBt,           /* Btree */
3660   MemPage *pDbPage,        /* Open page to move */
3661   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3662   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3663   Pgno iFreePage,          /* The location to move pDbPage to */
3664   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3665 ){
3666   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3667   Pgno iDbPage = pDbPage->pgno;
3668   Pager *pPager = pBt->pPager;
3669   int rc;
3670 
3671   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3672       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3673   assert( sqlite3_mutex_held(pBt->mutex) );
3674   assert( pDbPage->pBt==pBt );
3675   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3676 
3677   /* Move page iDbPage from its current location to page number iFreePage */
3678   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3679       iDbPage, iFreePage, iPtrPage, eType));
3680   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3681   if( rc!=SQLITE_OK ){
3682     return rc;
3683   }
3684   pDbPage->pgno = iFreePage;
3685 
3686   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3687   ** that point to overflow pages. The pointer map entries for all these
3688   ** pages need to be changed.
3689   **
3690   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3691   ** pointer to a subsequent overflow page. If this is the case, then
3692   ** the pointer map needs to be updated for the subsequent overflow page.
3693   */
3694   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3695     rc = setChildPtrmaps(pDbPage);
3696     if( rc!=SQLITE_OK ){
3697       return rc;
3698     }
3699   }else{
3700     Pgno nextOvfl = get4byte(pDbPage->aData);
3701     if( nextOvfl!=0 ){
3702       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3703       if( rc!=SQLITE_OK ){
3704         return rc;
3705       }
3706     }
3707   }
3708 
3709   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3710   ** that it points at iFreePage. Also fix the pointer map entry for
3711   ** iPtrPage.
3712   */
3713   if( eType!=PTRMAP_ROOTPAGE ){
3714     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3715     if( rc!=SQLITE_OK ){
3716       return rc;
3717     }
3718     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3719     if( rc!=SQLITE_OK ){
3720       releasePage(pPtrPage);
3721       return rc;
3722     }
3723     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3724     releasePage(pPtrPage);
3725     if( rc==SQLITE_OK ){
3726       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3727     }
3728   }
3729   return rc;
3730 }
3731 
3732 /* Forward declaration required by incrVacuumStep(). */
3733 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3734 
3735 /*
3736 ** Perform a single step of an incremental-vacuum. If successful, return
3737 ** SQLITE_OK. If there is no work to do (and therefore no point in
3738 ** calling this function again), return SQLITE_DONE. Or, if an error
3739 ** occurs, return some other error code.
3740 **
3741 ** More specifically, this function attempts to re-organize the database so
3742 ** that the last page of the file currently in use is no longer in use.
3743 **
3744 ** Parameter nFin is the number of pages that this database would contain
3745 ** were this function called until it returns SQLITE_DONE.
3746 **
3747 ** If the bCommit parameter is non-zero, this function assumes that the
3748 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3749 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3750 ** operation, or false for an incremental vacuum.
3751 */
3752 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3753   Pgno nFreeList;           /* Number of pages still on the free-list */
3754   int rc;
3755 
3756   assert( sqlite3_mutex_held(pBt->mutex) );
3757   assert( iLastPg>nFin );
3758 
3759   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3760     u8 eType;
3761     Pgno iPtrPage;
3762 
3763     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3764     if( nFreeList==0 ){
3765       return SQLITE_DONE;
3766     }
3767 
3768     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3769     if( rc!=SQLITE_OK ){
3770       return rc;
3771     }
3772     if( eType==PTRMAP_ROOTPAGE ){
3773       return SQLITE_CORRUPT_BKPT;
3774     }
3775 
3776     if( eType==PTRMAP_FREEPAGE ){
3777       if( bCommit==0 ){
3778         /* Remove the page from the files free-list. This is not required
3779         ** if bCommit is non-zero. In that case, the free-list will be
3780         ** truncated to zero after this function returns, so it doesn't
3781         ** matter if it still contains some garbage entries.
3782         */
3783         Pgno iFreePg;
3784         MemPage *pFreePg;
3785         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3786         if( rc!=SQLITE_OK ){
3787           return rc;
3788         }
3789         assert( iFreePg==iLastPg );
3790         releasePage(pFreePg);
3791       }
3792     } else {
3793       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3794       MemPage *pLastPg;
3795       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3796       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3797 
3798       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3799       if( rc!=SQLITE_OK ){
3800         return rc;
3801       }
3802 
3803       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3804       ** is swapped with the first free page pulled off the free list.
3805       **
3806       ** On the other hand, if bCommit is greater than zero, then keep
3807       ** looping until a free-page located within the first nFin pages
3808       ** of the file is found.
3809       */
3810       if( bCommit==0 ){
3811         eMode = BTALLOC_LE;
3812         iNear = nFin;
3813       }
3814       do {
3815         MemPage *pFreePg;
3816         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3817         if( rc!=SQLITE_OK ){
3818           releasePage(pLastPg);
3819           return rc;
3820         }
3821         releasePage(pFreePg);
3822       }while( bCommit && iFreePg>nFin );
3823       assert( iFreePg<iLastPg );
3824 
3825       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3826       releasePage(pLastPg);
3827       if( rc!=SQLITE_OK ){
3828         return rc;
3829       }
3830     }
3831   }
3832 
3833   if( bCommit==0 ){
3834     do {
3835       iLastPg--;
3836     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3837     pBt->bDoTruncate = 1;
3838     pBt->nPage = iLastPg;
3839   }
3840   return SQLITE_OK;
3841 }
3842 
3843 /*
3844 ** The database opened by the first argument is an auto-vacuum database
3845 ** nOrig pages in size containing nFree free pages. Return the expected
3846 ** size of the database in pages following an auto-vacuum operation.
3847 */
3848 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3849   int nEntry;                     /* Number of entries on one ptrmap page */
3850   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3851   Pgno nFin;                      /* Return value */
3852 
3853   nEntry = pBt->usableSize/5;
3854   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3855   nFin = nOrig - nFree - nPtrmap;
3856   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3857     nFin--;
3858   }
3859   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3860     nFin--;
3861   }
3862 
3863   return nFin;
3864 }
3865 
3866 /*
3867 ** A write-transaction must be opened before calling this function.
3868 ** It performs a single unit of work towards an incremental vacuum.
3869 **
3870 ** If the incremental vacuum is finished after this function has run,
3871 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3872 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3873 */
3874 int sqlite3BtreeIncrVacuum(Btree *p){
3875   int rc;
3876   BtShared *pBt = p->pBt;
3877 
3878   sqlite3BtreeEnter(p);
3879   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3880   if( !pBt->autoVacuum ){
3881     rc = SQLITE_DONE;
3882   }else{
3883     Pgno nOrig = btreePagecount(pBt);
3884     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3885     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3886 
3887     if( nOrig<nFin ){
3888       rc = SQLITE_CORRUPT_BKPT;
3889     }else if( nFree>0 ){
3890       rc = saveAllCursors(pBt, 0, 0);
3891       if( rc==SQLITE_OK ){
3892         invalidateAllOverflowCache(pBt);
3893         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3894       }
3895       if( rc==SQLITE_OK ){
3896         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3897         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3898       }
3899     }else{
3900       rc = SQLITE_DONE;
3901     }
3902   }
3903   sqlite3BtreeLeave(p);
3904   return rc;
3905 }
3906 
3907 /*
3908 ** This routine is called prior to sqlite3PagerCommit when a transaction
3909 ** is committed for an auto-vacuum database.
3910 **
3911 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3912 ** the database file should be truncated to during the commit process.
3913 ** i.e. the database has been reorganized so that only the first *pnTrunc
3914 ** pages are in use.
3915 */
3916 static int autoVacuumCommit(BtShared *pBt){
3917   int rc = SQLITE_OK;
3918   Pager *pPager = pBt->pPager;
3919   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3920 
3921   assert( sqlite3_mutex_held(pBt->mutex) );
3922   invalidateAllOverflowCache(pBt);
3923   assert(pBt->autoVacuum);
3924   if( !pBt->incrVacuum ){
3925     Pgno nFin;         /* Number of pages in database after autovacuuming */
3926     Pgno nFree;        /* Number of pages on the freelist initially */
3927     Pgno iFree;        /* The next page to be freed */
3928     Pgno nOrig;        /* Database size before freeing */
3929 
3930     nOrig = btreePagecount(pBt);
3931     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3932       /* It is not possible to create a database for which the final page
3933       ** is either a pointer-map page or the pending-byte page. If one
3934       ** is encountered, this indicates corruption.
3935       */
3936       return SQLITE_CORRUPT_BKPT;
3937     }
3938 
3939     nFree = get4byte(&pBt->pPage1->aData[36]);
3940     nFin = finalDbSize(pBt, nOrig, nFree);
3941     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3942     if( nFin<nOrig ){
3943       rc = saveAllCursors(pBt, 0, 0);
3944     }
3945     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3946       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3947     }
3948     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3949       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3950       put4byte(&pBt->pPage1->aData[32], 0);
3951       put4byte(&pBt->pPage1->aData[36], 0);
3952       put4byte(&pBt->pPage1->aData[28], nFin);
3953       pBt->bDoTruncate = 1;
3954       pBt->nPage = nFin;
3955     }
3956     if( rc!=SQLITE_OK ){
3957       sqlite3PagerRollback(pPager);
3958     }
3959   }
3960 
3961   assert( nRef>=sqlite3PagerRefcount(pPager) );
3962   return rc;
3963 }
3964 
3965 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3966 # define setChildPtrmaps(x) SQLITE_OK
3967 #endif
3968 
3969 /*
3970 ** This routine does the first phase of a two-phase commit.  This routine
3971 ** causes a rollback journal to be created (if it does not already exist)
3972 ** and populated with enough information so that if a power loss occurs
3973 ** the database can be restored to its original state by playing back
3974 ** the journal.  Then the contents of the journal are flushed out to
3975 ** the disk.  After the journal is safely on oxide, the changes to the
3976 ** database are written into the database file and flushed to oxide.
3977 ** At the end of this call, the rollback journal still exists on the
3978 ** disk and we are still holding all locks, so the transaction has not
3979 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3980 ** commit process.
3981 **
3982 ** This call is a no-op if no write-transaction is currently active on pBt.
3983 **
3984 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3985 ** the name of a master journal file that should be written into the
3986 ** individual journal file, or is NULL, indicating no master journal file
3987 ** (single database transaction).
3988 **
3989 ** When this is called, the master journal should already have been
3990 ** created, populated with this journal pointer and synced to disk.
3991 **
3992 ** Once this is routine has returned, the only thing required to commit
3993 ** the write-transaction for this database file is to delete the journal.
3994 */
3995 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3996   int rc = SQLITE_OK;
3997   if( p->inTrans==TRANS_WRITE ){
3998     BtShared *pBt = p->pBt;
3999     sqlite3BtreeEnter(p);
4000 #ifndef SQLITE_OMIT_AUTOVACUUM
4001     if( pBt->autoVacuum ){
4002       rc = autoVacuumCommit(pBt);
4003       if( rc!=SQLITE_OK ){
4004         sqlite3BtreeLeave(p);
4005         return rc;
4006       }
4007     }
4008     if( pBt->bDoTruncate ){
4009       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4010     }
4011 #endif
4012     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
4013     sqlite3BtreeLeave(p);
4014   }
4015   return rc;
4016 }
4017 
4018 /*
4019 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4020 ** at the conclusion of a transaction.
4021 */
4022 static void btreeEndTransaction(Btree *p){
4023   BtShared *pBt = p->pBt;
4024   sqlite3 *db = p->db;
4025   assert( sqlite3BtreeHoldsMutex(p) );
4026 
4027 #ifndef SQLITE_OMIT_AUTOVACUUM
4028   pBt->bDoTruncate = 0;
4029 #endif
4030   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4031     /* If there are other active statements that belong to this database
4032     ** handle, downgrade to a read-only transaction. The other statements
4033     ** may still be reading from the database.  */
4034     downgradeAllSharedCacheTableLocks(p);
4035     p->inTrans = TRANS_READ;
4036   }else{
4037     /* If the handle had any kind of transaction open, decrement the
4038     ** transaction count of the shared btree. If the transaction count
4039     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4040     ** call below will unlock the pager.  */
4041     if( p->inTrans!=TRANS_NONE ){
4042       clearAllSharedCacheTableLocks(p);
4043       pBt->nTransaction--;
4044       if( 0==pBt->nTransaction ){
4045         pBt->inTransaction = TRANS_NONE;
4046       }
4047     }
4048 
4049     /* Set the current transaction state to TRANS_NONE and unlock the
4050     ** pager if this call closed the only read or write transaction.  */
4051     p->inTrans = TRANS_NONE;
4052     unlockBtreeIfUnused(pBt);
4053   }
4054 
4055   btreeIntegrity(p);
4056 }
4057 
4058 /*
4059 ** Commit the transaction currently in progress.
4060 **
4061 ** This routine implements the second phase of a 2-phase commit.  The
4062 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4063 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4064 ** routine did all the work of writing information out to disk and flushing the
4065 ** contents so that they are written onto the disk platter.  All this
4066 ** routine has to do is delete or truncate or zero the header in the
4067 ** the rollback journal (which causes the transaction to commit) and
4068 ** drop locks.
4069 **
4070 ** Normally, if an error occurs while the pager layer is attempting to
4071 ** finalize the underlying journal file, this function returns an error and
4072 ** the upper layer will attempt a rollback. However, if the second argument
4073 ** is non-zero then this b-tree transaction is part of a multi-file
4074 ** transaction. In this case, the transaction has already been committed
4075 ** (by deleting a master journal file) and the caller will ignore this
4076 ** functions return code. So, even if an error occurs in the pager layer,
4077 ** reset the b-tree objects internal state to indicate that the write
4078 ** transaction has been closed. This is quite safe, as the pager will have
4079 ** transitioned to the error state.
4080 **
4081 ** This will release the write lock on the database file.  If there
4082 ** are no active cursors, it also releases the read lock.
4083 */
4084 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4085 
4086   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4087   sqlite3BtreeEnter(p);
4088   btreeIntegrity(p);
4089 
4090   /* If the handle has a write-transaction open, commit the shared-btrees
4091   ** transaction and set the shared state to TRANS_READ.
4092   */
4093   if( p->inTrans==TRANS_WRITE ){
4094     int rc;
4095     BtShared *pBt = p->pBt;
4096     assert( pBt->inTransaction==TRANS_WRITE );
4097     assert( pBt->nTransaction>0 );
4098     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4099     if( rc!=SQLITE_OK && bCleanup==0 ){
4100       sqlite3BtreeLeave(p);
4101       return rc;
4102     }
4103     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4104     pBt->inTransaction = TRANS_READ;
4105     btreeClearHasContent(pBt);
4106   }
4107 
4108   btreeEndTransaction(p);
4109   sqlite3BtreeLeave(p);
4110   return SQLITE_OK;
4111 }
4112 
4113 /*
4114 ** Do both phases of a commit.
4115 */
4116 int sqlite3BtreeCommit(Btree *p){
4117   int rc;
4118   sqlite3BtreeEnter(p);
4119   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4120   if( rc==SQLITE_OK ){
4121     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4122   }
4123   sqlite3BtreeLeave(p);
4124   return rc;
4125 }
4126 
4127 /*
4128 ** This routine sets the state to CURSOR_FAULT and the error
4129 ** code to errCode for every cursor on any BtShared that pBtree
4130 ** references.  Or if the writeOnly flag is set to 1, then only
4131 ** trip write cursors and leave read cursors unchanged.
4132 **
4133 ** Every cursor is a candidate to be tripped, including cursors
4134 ** that belong to other database connections that happen to be
4135 ** sharing the cache with pBtree.
4136 **
4137 ** This routine gets called when a rollback occurs. If the writeOnly
4138 ** flag is true, then only write-cursors need be tripped - read-only
4139 ** cursors save their current positions so that they may continue
4140 ** following the rollback. Or, if writeOnly is false, all cursors are
4141 ** tripped. In general, writeOnly is false if the transaction being
4142 ** rolled back modified the database schema. In this case b-tree root
4143 ** pages may be moved or deleted from the database altogether, making
4144 ** it unsafe for read cursors to continue.
4145 **
4146 ** If the writeOnly flag is true and an error is encountered while
4147 ** saving the current position of a read-only cursor, all cursors,
4148 ** including all read-cursors are tripped.
4149 **
4150 ** SQLITE_OK is returned if successful, or if an error occurs while
4151 ** saving a cursor position, an SQLite error code.
4152 */
4153 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4154   BtCursor *p;
4155   int rc = SQLITE_OK;
4156 
4157   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4158   if( pBtree ){
4159     sqlite3BtreeEnter(pBtree);
4160     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4161       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4162         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4163           rc = saveCursorPosition(p);
4164           if( rc!=SQLITE_OK ){
4165             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4166             break;
4167           }
4168         }
4169       }else{
4170         sqlite3BtreeClearCursor(p);
4171         p->eState = CURSOR_FAULT;
4172         p->skipNext = errCode;
4173       }
4174       btreeReleaseAllCursorPages(p);
4175     }
4176     sqlite3BtreeLeave(pBtree);
4177   }
4178   return rc;
4179 }
4180 
4181 /*
4182 ** Set the pBt->nPage field correctly, according to the current
4183 ** state of the database.  Assume pBt->pPage1 is valid.
4184 */
4185 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4186   int nPage = get4byte(&pPage1->aData[28]);
4187   testcase( nPage==0 );
4188   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4189   testcase( pBt->nPage!=nPage );
4190   pBt->nPage = nPage;
4191 }
4192 
4193 /*
4194 ** Rollback the transaction in progress.
4195 **
4196 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4197 ** Only write cursors are tripped if writeOnly is true but all cursors are
4198 ** tripped if writeOnly is false.  Any attempt to use
4199 ** a tripped cursor will result in an error.
4200 **
4201 ** This will release the write lock on the database file.  If there
4202 ** are no active cursors, it also releases the read lock.
4203 */
4204 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4205   int rc;
4206   BtShared *pBt = p->pBt;
4207   MemPage *pPage1;
4208 
4209   assert( writeOnly==1 || writeOnly==0 );
4210   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4211   sqlite3BtreeEnter(p);
4212   if( tripCode==SQLITE_OK ){
4213     rc = tripCode = saveAllCursors(pBt, 0, 0);
4214     if( rc ) writeOnly = 0;
4215   }else{
4216     rc = SQLITE_OK;
4217   }
4218   if( tripCode ){
4219     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4220     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4221     if( rc2!=SQLITE_OK ) rc = rc2;
4222   }
4223   btreeIntegrity(p);
4224 
4225   if( p->inTrans==TRANS_WRITE ){
4226     int rc2;
4227 
4228     assert( TRANS_WRITE==pBt->inTransaction );
4229     rc2 = sqlite3PagerRollback(pBt->pPager);
4230     if( rc2!=SQLITE_OK ){
4231       rc = rc2;
4232     }
4233 
4234     /* The rollback may have destroyed the pPage1->aData value.  So
4235     ** call btreeGetPage() on page 1 again to make
4236     ** sure pPage1->aData is set correctly. */
4237     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4238       btreeSetNPage(pBt, pPage1);
4239       releasePageOne(pPage1);
4240     }
4241     assert( countValidCursors(pBt, 1)==0 );
4242     pBt->inTransaction = TRANS_READ;
4243     btreeClearHasContent(pBt);
4244   }
4245 
4246   btreeEndTransaction(p);
4247   sqlite3BtreeLeave(p);
4248   return rc;
4249 }
4250 
4251 /*
4252 ** Start a statement subtransaction. The subtransaction can be rolled
4253 ** back independently of the main transaction. You must start a transaction
4254 ** before starting a subtransaction. The subtransaction is ended automatically
4255 ** if the main transaction commits or rolls back.
4256 **
4257 ** Statement subtransactions are used around individual SQL statements
4258 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4259 ** error occurs within the statement, the effect of that one statement
4260 ** can be rolled back without having to rollback the entire transaction.
4261 **
4262 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4263 ** value passed as the second parameter is the total number of savepoints,
4264 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4265 ** are no active savepoints and no other statement-transactions open,
4266 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4267 ** using the sqlite3BtreeSavepoint() function.
4268 */
4269 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4270   int rc;
4271   BtShared *pBt = p->pBt;
4272   sqlite3BtreeEnter(p);
4273   assert( p->inTrans==TRANS_WRITE );
4274   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4275   assert( iStatement>0 );
4276   assert( iStatement>p->db->nSavepoint );
4277   assert( pBt->inTransaction==TRANS_WRITE );
4278   /* At the pager level, a statement transaction is a savepoint with
4279   ** an index greater than all savepoints created explicitly using
4280   ** SQL statements. It is illegal to open, release or rollback any
4281   ** such savepoints while the statement transaction savepoint is active.
4282   */
4283   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4284   sqlite3BtreeLeave(p);
4285   return rc;
4286 }
4287 
4288 /*
4289 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4290 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4291 ** savepoint identified by parameter iSavepoint, depending on the value
4292 ** of op.
4293 **
4294 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4295 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4296 ** contents of the entire transaction are rolled back. This is different
4297 ** from a normal transaction rollback, as no locks are released and the
4298 ** transaction remains open.
4299 */
4300 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4301   int rc = SQLITE_OK;
4302   if( p && p->inTrans==TRANS_WRITE ){
4303     BtShared *pBt = p->pBt;
4304     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4305     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4306     sqlite3BtreeEnter(p);
4307     if( op==SAVEPOINT_ROLLBACK ){
4308       rc = saveAllCursors(pBt, 0, 0);
4309     }
4310     if( rc==SQLITE_OK ){
4311       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4312     }
4313     if( rc==SQLITE_OK ){
4314       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4315         pBt->nPage = 0;
4316       }
4317       rc = newDatabase(pBt);
4318       btreeSetNPage(pBt, pBt->pPage1);
4319 
4320       /* pBt->nPage might be zero if the database was corrupt when
4321       ** the transaction was started. Otherwise, it must be at least 1.  */
4322       assert( CORRUPT_DB || pBt->nPage>0 );
4323     }
4324     sqlite3BtreeLeave(p);
4325   }
4326   return rc;
4327 }
4328 
4329 /*
4330 ** Create a new cursor for the BTree whose root is on the page
4331 ** iTable. If a read-only cursor is requested, it is assumed that
4332 ** the caller already has at least a read-only transaction open
4333 ** on the database already. If a write-cursor is requested, then
4334 ** the caller is assumed to have an open write transaction.
4335 **
4336 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4337 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4338 ** can be used for reading or for writing if other conditions for writing
4339 ** are also met.  These are the conditions that must be met in order
4340 ** for writing to be allowed:
4341 **
4342 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4343 **
4344 ** 2:  Other database connections that share the same pager cache
4345 **     but which are not in the READ_UNCOMMITTED state may not have
4346 **     cursors open with wrFlag==0 on the same table.  Otherwise
4347 **     the changes made by this write cursor would be visible to
4348 **     the read cursors in the other database connection.
4349 **
4350 ** 3:  The database must be writable (not on read-only media)
4351 **
4352 ** 4:  There must be an active transaction.
4353 **
4354 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4355 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4356 ** this cursor will only be used to seek to and delete entries of an index
4357 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4358 ** this implementation.  But in a hypothetical alternative storage engine
4359 ** in which index entries are automatically deleted when corresponding table
4360 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4361 ** operations on this cursor can be no-ops and all READ operations can
4362 ** return a null row (2-bytes: 0x01 0x00).
4363 **
4364 ** No checking is done to make sure that page iTable really is the
4365 ** root page of a b-tree.  If it is not, then the cursor acquired
4366 ** will not work correctly.
4367 **
4368 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4369 ** on pCur to initialize the memory space prior to invoking this routine.
4370 */
4371 static int btreeCursor(
4372   Btree *p,                              /* The btree */
4373   int iTable,                            /* Root page of table to open */
4374   int wrFlag,                            /* 1 to write. 0 read-only */
4375   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4376   BtCursor *pCur                         /* Space for new cursor */
4377 ){
4378   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4379   BtCursor *pX;                          /* Looping over other all cursors */
4380 
4381   assert( sqlite3BtreeHoldsMutex(p) );
4382   assert( wrFlag==0
4383        || wrFlag==BTREE_WRCSR
4384        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4385   );
4386 
4387   /* The following assert statements verify that if this is a sharable
4388   ** b-tree database, the connection is holding the required table locks,
4389   ** and that no other connection has any open cursor that conflicts with
4390   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4391   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4392           || iTable<1 );
4393   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4394 
4395   /* Assert that the caller has opened the required transaction. */
4396   assert( p->inTrans>TRANS_NONE );
4397   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4398   assert( pBt->pPage1 && pBt->pPage1->aData );
4399   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4400 
4401   if( wrFlag ){
4402     allocateTempSpace(pBt);
4403     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4404   }
4405   if( iTable<=1 ){
4406     if( iTable<1 ){
4407       return SQLITE_CORRUPT_BKPT;
4408     }else if( btreePagecount(pBt)==0 ){
4409       assert( wrFlag==0 );
4410       iTable = 0;
4411     }
4412   }
4413 
4414   /* Now that no other errors can occur, finish filling in the BtCursor
4415   ** variables and link the cursor into the BtShared list.  */
4416   pCur->pgnoRoot = (Pgno)iTable;
4417   pCur->iPage = -1;
4418   pCur->pKeyInfo = pKeyInfo;
4419   pCur->pBtree = p;
4420   pCur->pBt = pBt;
4421   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4422   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4423   /* If there are two or more cursors on the same btree, then all such
4424   ** cursors *must* have the BTCF_Multiple flag set. */
4425   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4426     if( pX->pgnoRoot==(Pgno)iTable ){
4427       pX->curFlags |= BTCF_Multiple;
4428       pCur->curFlags |= BTCF_Multiple;
4429     }
4430   }
4431   pCur->pNext = pBt->pCursor;
4432   pBt->pCursor = pCur;
4433   pCur->eState = CURSOR_INVALID;
4434   return SQLITE_OK;
4435 }
4436 static int btreeCursorWithLock(
4437   Btree *p,                              /* The btree */
4438   int iTable,                            /* Root page of table to open */
4439   int wrFlag,                            /* 1 to write. 0 read-only */
4440   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4441   BtCursor *pCur                         /* Space for new cursor */
4442 ){
4443   int rc;
4444   sqlite3BtreeEnter(p);
4445   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4446   sqlite3BtreeLeave(p);
4447   return rc;
4448 }
4449 int sqlite3BtreeCursor(
4450   Btree *p,                                   /* The btree */
4451   int iTable,                                 /* Root page of table to open */
4452   int wrFlag,                                 /* 1 to write. 0 read-only */
4453   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4454   BtCursor *pCur                              /* Write new cursor here */
4455 ){
4456   if( p->sharable ){
4457     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4458   }else{
4459     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4460   }
4461 }
4462 
4463 /*
4464 ** Return the size of a BtCursor object in bytes.
4465 **
4466 ** This interfaces is needed so that users of cursors can preallocate
4467 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4468 ** to users so they cannot do the sizeof() themselves - they must call
4469 ** this routine.
4470 */
4471 int sqlite3BtreeCursorSize(void){
4472   return ROUND8(sizeof(BtCursor));
4473 }
4474 
4475 /*
4476 ** Initialize memory that will be converted into a BtCursor object.
4477 **
4478 ** The simple approach here would be to memset() the entire object
4479 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4480 ** do not need to be zeroed and they are large, so we can save a lot
4481 ** of run-time by skipping the initialization of those elements.
4482 */
4483 void sqlite3BtreeCursorZero(BtCursor *p){
4484   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4485 }
4486 
4487 /*
4488 ** Close a cursor.  The read lock on the database file is released
4489 ** when the last cursor is closed.
4490 */
4491 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4492   Btree *pBtree = pCur->pBtree;
4493   if( pBtree ){
4494     BtShared *pBt = pCur->pBt;
4495     sqlite3BtreeEnter(pBtree);
4496     assert( pBt->pCursor!=0 );
4497     if( pBt->pCursor==pCur ){
4498       pBt->pCursor = pCur->pNext;
4499     }else{
4500       BtCursor *pPrev = pBt->pCursor;
4501       do{
4502         if( pPrev->pNext==pCur ){
4503           pPrev->pNext = pCur->pNext;
4504           break;
4505         }
4506         pPrev = pPrev->pNext;
4507       }while( ALWAYS(pPrev) );
4508     }
4509     btreeReleaseAllCursorPages(pCur);
4510     unlockBtreeIfUnused(pBt);
4511     sqlite3_free(pCur->aOverflow);
4512     sqlite3_free(pCur->pKey);
4513     sqlite3BtreeLeave(pBtree);
4514     pCur->pBtree = 0;
4515   }
4516   return SQLITE_OK;
4517 }
4518 
4519 /*
4520 ** Make sure the BtCursor* given in the argument has a valid
4521 ** BtCursor.info structure.  If it is not already valid, call
4522 ** btreeParseCell() to fill it in.
4523 **
4524 ** BtCursor.info is a cache of the information in the current cell.
4525 ** Using this cache reduces the number of calls to btreeParseCell().
4526 */
4527 #ifndef NDEBUG
4528   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4529     if( a->nKey!=b->nKey ) return 0;
4530     if( a->pPayload!=b->pPayload ) return 0;
4531     if( a->nPayload!=b->nPayload ) return 0;
4532     if( a->nLocal!=b->nLocal ) return 0;
4533     if( a->nSize!=b->nSize ) return 0;
4534     return 1;
4535   }
4536   static void assertCellInfo(BtCursor *pCur){
4537     CellInfo info;
4538     memset(&info, 0, sizeof(info));
4539     btreeParseCell(pCur->pPage, pCur->ix, &info);
4540     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4541   }
4542 #else
4543   #define assertCellInfo(x)
4544 #endif
4545 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4546   if( pCur->info.nSize==0 ){
4547     pCur->curFlags |= BTCF_ValidNKey;
4548     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4549   }else{
4550     assertCellInfo(pCur);
4551   }
4552 }
4553 
4554 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4555 /*
4556 ** Return true if the given BtCursor is valid.  A valid cursor is one
4557 ** that is currently pointing to a row in a (non-empty) table.
4558 ** This is a verification routine is used only within assert() statements.
4559 */
4560 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4561   return pCur && pCur->eState==CURSOR_VALID;
4562 }
4563 #endif /* NDEBUG */
4564 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4565   assert( pCur!=0 );
4566   return pCur->eState==CURSOR_VALID;
4567 }
4568 
4569 /*
4570 ** Return the value of the integer key or "rowid" for a table btree.
4571 ** This routine is only valid for a cursor that is pointing into a
4572 ** ordinary table btree.  If the cursor points to an index btree or
4573 ** is invalid, the result of this routine is undefined.
4574 */
4575 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4576   assert( cursorHoldsMutex(pCur) );
4577   assert( pCur->eState==CURSOR_VALID );
4578   assert( pCur->curIntKey );
4579   getCellInfo(pCur);
4580   return pCur->info.nKey;
4581 }
4582 
4583 /*
4584 ** Pin or unpin a cursor.
4585 */
4586 void sqlite3BtreeCursorPin(BtCursor *pCur){
4587   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4588   pCur->curFlags |= BTCF_Pinned;
4589 }
4590 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4591   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4592   pCur->curFlags &= ~BTCF_Pinned;
4593 }
4594 
4595 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4596 /*
4597 ** Return the offset into the database file for the start of the
4598 ** payload to which the cursor is pointing.
4599 */
4600 i64 sqlite3BtreeOffset(BtCursor *pCur){
4601   assert( cursorHoldsMutex(pCur) );
4602   assert( pCur->eState==CURSOR_VALID );
4603   getCellInfo(pCur);
4604   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4605          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4606 }
4607 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4608 
4609 /*
4610 ** Return the number of bytes of payload for the entry that pCur is
4611 ** currently pointing to.  For table btrees, this will be the amount
4612 ** of data.  For index btrees, this will be the size of the key.
4613 **
4614 ** The caller must guarantee that the cursor is pointing to a non-NULL
4615 ** valid entry.  In other words, the calling procedure must guarantee
4616 ** that the cursor has Cursor.eState==CURSOR_VALID.
4617 */
4618 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4619   assert( cursorHoldsMutex(pCur) );
4620   assert( pCur->eState==CURSOR_VALID );
4621   getCellInfo(pCur);
4622   return pCur->info.nPayload;
4623 }
4624 
4625 /*
4626 ** Return an upper bound on the size of any record for the table
4627 ** that the cursor is pointing into.
4628 **
4629 ** This is an optimization.  Everything will still work if this
4630 ** routine always returns 2147483647 (which is the largest record
4631 ** that SQLite can handle) or more.  But returning a smaller value might
4632 ** prevent large memory allocations when trying to interpret a
4633 ** corrupt datrabase.
4634 **
4635 ** The current implementation merely returns the size of the underlying
4636 ** database file.
4637 */
4638 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4639   assert( cursorHoldsMutex(pCur) );
4640   assert( pCur->eState==CURSOR_VALID );
4641   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4642 }
4643 
4644 /*
4645 ** Given the page number of an overflow page in the database (parameter
4646 ** ovfl), this function finds the page number of the next page in the
4647 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4648 ** pointer-map data instead of reading the content of page ovfl to do so.
4649 **
4650 ** If an error occurs an SQLite error code is returned. Otherwise:
4651 **
4652 ** The page number of the next overflow page in the linked list is
4653 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4654 ** list, *pPgnoNext is set to zero.
4655 **
4656 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4657 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4658 ** reference. It is the responsibility of the caller to call releasePage()
4659 ** on *ppPage to free the reference. In no reference was obtained (because
4660 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4661 ** *ppPage is set to zero.
4662 */
4663 static int getOverflowPage(
4664   BtShared *pBt,               /* The database file */
4665   Pgno ovfl,                   /* Current overflow page number */
4666   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4667   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4668 ){
4669   Pgno next = 0;
4670   MemPage *pPage = 0;
4671   int rc = SQLITE_OK;
4672 
4673   assert( sqlite3_mutex_held(pBt->mutex) );
4674   assert(pPgnoNext);
4675 
4676 #ifndef SQLITE_OMIT_AUTOVACUUM
4677   /* Try to find the next page in the overflow list using the
4678   ** autovacuum pointer-map pages. Guess that the next page in
4679   ** the overflow list is page number (ovfl+1). If that guess turns
4680   ** out to be wrong, fall back to loading the data of page
4681   ** number ovfl to determine the next page number.
4682   */
4683   if( pBt->autoVacuum ){
4684     Pgno pgno;
4685     Pgno iGuess = ovfl+1;
4686     u8 eType;
4687 
4688     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4689       iGuess++;
4690     }
4691 
4692     if( iGuess<=btreePagecount(pBt) ){
4693       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4694       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4695         next = iGuess;
4696         rc = SQLITE_DONE;
4697       }
4698     }
4699   }
4700 #endif
4701 
4702   assert( next==0 || rc==SQLITE_DONE );
4703   if( rc==SQLITE_OK ){
4704     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4705     assert( rc==SQLITE_OK || pPage==0 );
4706     if( rc==SQLITE_OK ){
4707       next = get4byte(pPage->aData);
4708     }
4709   }
4710 
4711   *pPgnoNext = next;
4712   if( ppPage ){
4713     *ppPage = pPage;
4714   }else{
4715     releasePage(pPage);
4716   }
4717   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4718 }
4719 
4720 /*
4721 ** Copy data from a buffer to a page, or from a page to a buffer.
4722 **
4723 ** pPayload is a pointer to data stored on database page pDbPage.
4724 ** If argument eOp is false, then nByte bytes of data are copied
4725 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4726 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4727 ** of data are copied from the buffer pBuf to pPayload.
4728 **
4729 ** SQLITE_OK is returned on success, otherwise an error code.
4730 */
4731 static int copyPayload(
4732   void *pPayload,           /* Pointer to page data */
4733   void *pBuf,               /* Pointer to buffer */
4734   int nByte,                /* Number of bytes to copy */
4735   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4736   DbPage *pDbPage           /* Page containing pPayload */
4737 ){
4738   if( eOp ){
4739     /* Copy data from buffer to page (a write operation) */
4740     int rc = sqlite3PagerWrite(pDbPage);
4741     if( rc!=SQLITE_OK ){
4742       return rc;
4743     }
4744     memcpy(pPayload, pBuf, nByte);
4745   }else{
4746     /* Copy data from page to buffer (a read operation) */
4747     memcpy(pBuf, pPayload, nByte);
4748   }
4749   return SQLITE_OK;
4750 }
4751 
4752 /*
4753 ** This function is used to read or overwrite payload information
4754 ** for the entry that the pCur cursor is pointing to. The eOp
4755 ** argument is interpreted as follows:
4756 **
4757 **   0: The operation is a read. Populate the overflow cache.
4758 **   1: The operation is a write. Populate the overflow cache.
4759 **
4760 ** A total of "amt" bytes are read or written beginning at "offset".
4761 ** Data is read to or from the buffer pBuf.
4762 **
4763 ** The content being read or written might appear on the main page
4764 ** or be scattered out on multiple overflow pages.
4765 **
4766 ** If the current cursor entry uses one or more overflow pages
4767 ** this function may allocate space for and lazily populate
4768 ** the overflow page-list cache array (BtCursor.aOverflow).
4769 ** Subsequent calls use this cache to make seeking to the supplied offset
4770 ** more efficient.
4771 **
4772 ** Once an overflow page-list cache has been allocated, it must be
4773 ** invalidated if some other cursor writes to the same table, or if
4774 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4775 ** mode, the following events may invalidate an overflow page-list cache.
4776 **
4777 **   * An incremental vacuum,
4778 **   * A commit in auto_vacuum="full" mode,
4779 **   * Creating a table (may require moving an overflow page).
4780 */
4781 static int accessPayload(
4782   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4783   u32 offset,          /* Begin reading this far into payload */
4784   u32 amt,             /* Read this many bytes */
4785   unsigned char *pBuf, /* Write the bytes into this buffer */
4786   int eOp              /* zero to read. non-zero to write. */
4787 ){
4788   unsigned char *aPayload;
4789   int rc = SQLITE_OK;
4790   int iIdx = 0;
4791   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4792   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4793 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4794   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4795 #endif
4796 
4797   assert( pPage );
4798   assert( eOp==0 || eOp==1 );
4799   assert( pCur->eState==CURSOR_VALID );
4800   assert( pCur->ix<pPage->nCell );
4801   assert( cursorHoldsMutex(pCur) );
4802 
4803   getCellInfo(pCur);
4804   aPayload = pCur->info.pPayload;
4805   assert( offset+amt <= pCur->info.nPayload );
4806 
4807   assert( aPayload > pPage->aData );
4808   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4809     /* Trying to read or write past the end of the data is an error.  The
4810     ** conditional above is really:
4811     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4812     ** but is recast into its current form to avoid integer overflow problems
4813     */
4814     return SQLITE_CORRUPT_PAGE(pPage);
4815   }
4816 
4817   /* Check if data must be read/written to/from the btree page itself. */
4818   if( offset<pCur->info.nLocal ){
4819     int a = amt;
4820     if( a+offset>pCur->info.nLocal ){
4821       a = pCur->info.nLocal - offset;
4822     }
4823     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4824     offset = 0;
4825     pBuf += a;
4826     amt -= a;
4827   }else{
4828     offset -= pCur->info.nLocal;
4829   }
4830 
4831 
4832   if( rc==SQLITE_OK && amt>0 ){
4833     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4834     Pgno nextPage;
4835 
4836     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4837 
4838     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4839     **
4840     ** The aOverflow[] array is sized at one entry for each overflow page
4841     ** in the overflow chain. The page number of the first overflow page is
4842     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4843     ** means "not yet known" (the cache is lazily populated).
4844     */
4845     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4846       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4847       if( pCur->aOverflow==0
4848        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4849       ){
4850         Pgno *aNew = (Pgno*)sqlite3Realloc(
4851             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4852         );
4853         if( aNew==0 ){
4854           return SQLITE_NOMEM_BKPT;
4855         }else{
4856           pCur->aOverflow = aNew;
4857         }
4858       }
4859       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4860       pCur->curFlags |= BTCF_ValidOvfl;
4861     }else{
4862       /* If the overflow page-list cache has been allocated and the
4863       ** entry for the first required overflow page is valid, skip
4864       ** directly to it.
4865       */
4866       if( pCur->aOverflow[offset/ovflSize] ){
4867         iIdx = (offset/ovflSize);
4868         nextPage = pCur->aOverflow[iIdx];
4869         offset = (offset%ovflSize);
4870       }
4871     }
4872 
4873     assert( rc==SQLITE_OK && amt>0 );
4874     while( nextPage ){
4875       /* If required, populate the overflow page-list cache. */
4876       assert( pCur->aOverflow[iIdx]==0
4877               || pCur->aOverflow[iIdx]==nextPage
4878               || CORRUPT_DB );
4879       pCur->aOverflow[iIdx] = nextPage;
4880 
4881       if( offset>=ovflSize ){
4882         /* The only reason to read this page is to obtain the page
4883         ** number for the next page in the overflow chain. The page
4884         ** data is not required. So first try to lookup the overflow
4885         ** page-list cache, if any, then fall back to the getOverflowPage()
4886         ** function.
4887         */
4888         assert( pCur->curFlags & BTCF_ValidOvfl );
4889         assert( pCur->pBtree->db==pBt->db );
4890         if( pCur->aOverflow[iIdx+1] ){
4891           nextPage = pCur->aOverflow[iIdx+1];
4892         }else{
4893           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4894         }
4895         offset -= ovflSize;
4896       }else{
4897         /* Need to read this page properly. It contains some of the
4898         ** range of data that is being read (eOp==0) or written (eOp!=0).
4899         */
4900         int a = amt;
4901         if( a + offset > ovflSize ){
4902           a = ovflSize - offset;
4903         }
4904 
4905 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4906         /* If all the following are true:
4907         **
4908         **   1) this is a read operation, and
4909         **   2) data is required from the start of this overflow page, and
4910         **   3) there are no dirty pages in the page-cache
4911         **   4) the database is file-backed, and
4912         **   5) the page is not in the WAL file
4913         **   6) at least 4 bytes have already been read into the output buffer
4914         **
4915         ** then data can be read directly from the database file into the
4916         ** output buffer, bypassing the page-cache altogether. This speeds
4917         ** up loading large records that span many overflow pages.
4918         */
4919         if( eOp==0                                             /* (1) */
4920          && offset==0                                          /* (2) */
4921          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
4922          && &pBuf[-4]>=pBufStart                               /* (6) */
4923         ){
4924           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
4925           u8 aSave[4];
4926           u8 *aWrite = &pBuf[-4];
4927           assert( aWrite>=pBufStart );                         /* due to (6) */
4928           memcpy(aSave, aWrite, 4);
4929           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4930           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
4931           nextPage = get4byte(aWrite);
4932           memcpy(aWrite, aSave, 4);
4933         }else
4934 #endif
4935 
4936         {
4937           DbPage *pDbPage;
4938           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4939               (eOp==0 ? PAGER_GET_READONLY : 0)
4940           );
4941           if( rc==SQLITE_OK ){
4942             aPayload = sqlite3PagerGetData(pDbPage);
4943             nextPage = get4byte(aPayload);
4944             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4945             sqlite3PagerUnref(pDbPage);
4946             offset = 0;
4947           }
4948         }
4949         amt -= a;
4950         if( amt==0 ) return rc;
4951         pBuf += a;
4952       }
4953       if( rc ) break;
4954       iIdx++;
4955     }
4956   }
4957 
4958   if( rc==SQLITE_OK && amt>0 ){
4959     /* Overflow chain ends prematurely */
4960     return SQLITE_CORRUPT_PAGE(pPage);
4961   }
4962   return rc;
4963 }
4964 
4965 /*
4966 ** Read part of the payload for the row at which that cursor pCur is currently
4967 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4968 ** begins at "offset".
4969 **
4970 ** pCur can be pointing to either a table or an index b-tree.
4971 ** If pointing to a table btree, then the content section is read.  If
4972 ** pCur is pointing to an index b-tree then the key section is read.
4973 **
4974 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4975 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4976 ** cursor might be invalid or might need to be restored before being read.
4977 **
4978 ** Return SQLITE_OK on success or an error code if anything goes
4979 ** wrong.  An error is returned if "offset+amt" is larger than
4980 ** the available payload.
4981 */
4982 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4983   assert( cursorHoldsMutex(pCur) );
4984   assert( pCur->eState==CURSOR_VALID );
4985   assert( pCur->iPage>=0 && pCur->pPage );
4986   assert( pCur->ix<pCur->pPage->nCell );
4987   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4988 }
4989 
4990 /*
4991 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4992 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4993 ** interface.
4994 */
4995 #ifndef SQLITE_OMIT_INCRBLOB
4996 static SQLITE_NOINLINE int accessPayloadChecked(
4997   BtCursor *pCur,
4998   u32 offset,
4999   u32 amt,
5000   void *pBuf
5001 ){
5002   int rc;
5003   if ( pCur->eState==CURSOR_INVALID ){
5004     return SQLITE_ABORT;
5005   }
5006   assert( cursorOwnsBtShared(pCur) );
5007   rc = btreeRestoreCursorPosition(pCur);
5008   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5009 }
5010 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5011   if( pCur->eState==CURSOR_VALID ){
5012     assert( cursorOwnsBtShared(pCur) );
5013     return accessPayload(pCur, offset, amt, pBuf, 0);
5014   }else{
5015     return accessPayloadChecked(pCur, offset, amt, pBuf);
5016   }
5017 }
5018 #endif /* SQLITE_OMIT_INCRBLOB */
5019 
5020 /*
5021 ** Return a pointer to payload information from the entry that the
5022 ** pCur cursor is pointing to.  The pointer is to the beginning of
5023 ** the key if index btrees (pPage->intKey==0) and is the data for
5024 ** table btrees (pPage->intKey==1). The number of bytes of available
5025 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5026 ** returned will not be a valid pointer.
5027 **
5028 ** This routine is an optimization.  It is common for the entire key
5029 ** and data to fit on the local page and for there to be no overflow
5030 ** pages.  When that is so, this routine can be used to access the
5031 ** key and data without making a copy.  If the key and/or data spills
5032 ** onto overflow pages, then accessPayload() must be used to reassemble
5033 ** the key/data and copy it into a preallocated buffer.
5034 **
5035 ** The pointer returned by this routine looks directly into the cached
5036 ** page of the database.  The data might change or move the next time
5037 ** any btree routine is called.
5038 */
5039 static const void *fetchPayload(
5040   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5041   u32 *pAmt            /* Write the number of available bytes here */
5042 ){
5043   int amt;
5044   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5045   assert( pCur->eState==CURSOR_VALID );
5046   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5047   assert( cursorOwnsBtShared(pCur) );
5048   assert( pCur->ix<pCur->pPage->nCell );
5049   assert( pCur->info.nSize>0 );
5050   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5051   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5052   amt = pCur->info.nLocal;
5053   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5054     /* There is too little space on the page for the expected amount
5055     ** of local content. Database must be corrupt. */
5056     assert( CORRUPT_DB );
5057     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5058   }
5059   *pAmt = (u32)amt;
5060   return (void*)pCur->info.pPayload;
5061 }
5062 
5063 
5064 /*
5065 ** For the entry that cursor pCur is point to, return as
5066 ** many bytes of the key or data as are available on the local
5067 ** b-tree page.  Write the number of available bytes into *pAmt.
5068 **
5069 ** The pointer returned is ephemeral.  The key/data may move
5070 ** or be destroyed on the next call to any Btree routine,
5071 ** including calls from other threads against the same cache.
5072 ** Hence, a mutex on the BtShared should be held prior to calling
5073 ** this routine.
5074 **
5075 ** These routines is used to get quick access to key and data
5076 ** in the common case where no overflow pages are used.
5077 */
5078 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5079   return fetchPayload(pCur, pAmt);
5080 }
5081 
5082 
5083 /*
5084 ** Move the cursor down to a new child page.  The newPgno argument is the
5085 ** page number of the child page to move to.
5086 **
5087 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5088 ** the new child page does not match the flags field of the parent (i.e.
5089 ** if an intkey page appears to be the parent of a non-intkey page, or
5090 ** vice-versa).
5091 */
5092 static int moveToChild(BtCursor *pCur, u32 newPgno){
5093   BtShared *pBt = pCur->pBt;
5094 
5095   assert( cursorOwnsBtShared(pCur) );
5096   assert( pCur->eState==CURSOR_VALID );
5097   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5098   assert( pCur->iPage>=0 );
5099   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5100     return SQLITE_CORRUPT_BKPT;
5101   }
5102   pCur->info.nSize = 0;
5103   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5104   pCur->aiIdx[pCur->iPage] = pCur->ix;
5105   pCur->apPage[pCur->iPage] = pCur->pPage;
5106   pCur->ix = 0;
5107   pCur->iPage++;
5108   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5109 }
5110 
5111 #ifdef SQLITE_DEBUG
5112 /*
5113 ** Page pParent is an internal (non-leaf) tree page. This function
5114 ** asserts that page number iChild is the left-child if the iIdx'th
5115 ** cell in page pParent. Or, if iIdx is equal to the total number of
5116 ** cells in pParent, that page number iChild is the right-child of
5117 ** the page.
5118 */
5119 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5120   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5121                             ** in a corrupt database */
5122   assert( iIdx<=pParent->nCell );
5123   if( iIdx==pParent->nCell ){
5124     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5125   }else{
5126     assert( get4byte(findCell(pParent, iIdx))==iChild );
5127   }
5128 }
5129 #else
5130 #  define assertParentIndex(x,y,z)
5131 #endif
5132 
5133 /*
5134 ** Move the cursor up to the parent page.
5135 **
5136 ** pCur->idx is set to the cell index that contains the pointer
5137 ** to the page we are coming from.  If we are coming from the
5138 ** right-most child page then pCur->idx is set to one more than
5139 ** the largest cell index.
5140 */
5141 static void moveToParent(BtCursor *pCur){
5142   MemPage *pLeaf;
5143   assert( cursorOwnsBtShared(pCur) );
5144   assert( pCur->eState==CURSOR_VALID );
5145   assert( pCur->iPage>0 );
5146   assert( pCur->pPage );
5147   assertParentIndex(
5148     pCur->apPage[pCur->iPage-1],
5149     pCur->aiIdx[pCur->iPage-1],
5150     pCur->pPage->pgno
5151   );
5152   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5153   pCur->info.nSize = 0;
5154   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5155   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5156   pLeaf = pCur->pPage;
5157   pCur->pPage = pCur->apPage[--pCur->iPage];
5158   releasePageNotNull(pLeaf);
5159 }
5160 
5161 /*
5162 ** Move the cursor to point to the root page of its b-tree structure.
5163 **
5164 ** If the table has a virtual root page, then the cursor is moved to point
5165 ** to the virtual root page instead of the actual root page. A table has a
5166 ** virtual root page when the actual root page contains no cells and a
5167 ** single child page. This can only happen with the table rooted at page 1.
5168 **
5169 ** If the b-tree structure is empty, the cursor state is set to
5170 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5171 ** the cursor is set to point to the first cell located on the root
5172 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5173 **
5174 ** If this function returns successfully, it may be assumed that the
5175 ** page-header flags indicate that the [virtual] root-page is the expected
5176 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5177 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5178 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5179 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5180 ** b-tree).
5181 */
5182 static int moveToRoot(BtCursor *pCur){
5183   MemPage *pRoot;
5184   int rc = SQLITE_OK;
5185 
5186   assert( cursorOwnsBtShared(pCur) );
5187   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5188   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5189   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5190   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5191   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5192 
5193   if( pCur->iPage>=0 ){
5194     if( pCur->iPage ){
5195       releasePageNotNull(pCur->pPage);
5196       while( --pCur->iPage ){
5197         releasePageNotNull(pCur->apPage[pCur->iPage]);
5198       }
5199       pCur->pPage = pCur->apPage[0];
5200       goto skip_init;
5201     }
5202   }else if( pCur->pgnoRoot==0 ){
5203     pCur->eState = CURSOR_INVALID;
5204     return SQLITE_EMPTY;
5205   }else{
5206     assert( pCur->iPage==(-1) );
5207     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5208       if( pCur->eState==CURSOR_FAULT ){
5209         assert( pCur->skipNext!=SQLITE_OK );
5210         return pCur->skipNext;
5211       }
5212       sqlite3BtreeClearCursor(pCur);
5213     }
5214     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5215                         0, pCur->curPagerFlags);
5216     if( rc!=SQLITE_OK ){
5217       pCur->eState = CURSOR_INVALID;
5218       return rc;
5219     }
5220     pCur->iPage = 0;
5221     pCur->curIntKey = pCur->pPage->intKey;
5222   }
5223   pRoot = pCur->pPage;
5224   assert( pRoot->pgno==pCur->pgnoRoot );
5225 
5226   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5227   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5228   ** NULL, the caller expects a table b-tree. If this is not the case,
5229   ** return an SQLITE_CORRUPT error.
5230   **
5231   ** Earlier versions of SQLite assumed that this test could not fail
5232   ** if the root page was already loaded when this function was called (i.e.
5233   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5234   ** in such a way that page pRoot is linked into a second b-tree table
5235   ** (or the freelist).  */
5236   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5237   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5238     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5239   }
5240 
5241 skip_init:
5242   pCur->ix = 0;
5243   pCur->info.nSize = 0;
5244   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5245 
5246   pRoot = pCur->pPage;
5247   if( pRoot->nCell>0 ){
5248     pCur->eState = CURSOR_VALID;
5249   }else if( !pRoot->leaf ){
5250     Pgno subpage;
5251     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5252     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5253     pCur->eState = CURSOR_VALID;
5254     rc = moveToChild(pCur, subpage);
5255   }else{
5256     pCur->eState = CURSOR_INVALID;
5257     rc = SQLITE_EMPTY;
5258   }
5259   return rc;
5260 }
5261 
5262 /*
5263 ** Move the cursor down to the left-most leaf entry beneath the
5264 ** entry to which it is currently pointing.
5265 **
5266 ** The left-most leaf is the one with the smallest key - the first
5267 ** in ascending order.
5268 */
5269 static int moveToLeftmost(BtCursor *pCur){
5270   Pgno pgno;
5271   int rc = SQLITE_OK;
5272   MemPage *pPage;
5273 
5274   assert( cursorOwnsBtShared(pCur) );
5275   assert( pCur->eState==CURSOR_VALID );
5276   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5277     assert( pCur->ix<pPage->nCell );
5278     pgno = get4byte(findCell(pPage, pCur->ix));
5279     rc = moveToChild(pCur, pgno);
5280   }
5281   return rc;
5282 }
5283 
5284 /*
5285 ** Move the cursor down to the right-most leaf entry beneath the
5286 ** page to which it is currently pointing.  Notice the difference
5287 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5288 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5289 ** finds the right-most entry beneath the *page*.
5290 **
5291 ** The right-most entry is the one with the largest key - the last
5292 ** key in ascending order.
5293 */
5294 static int moveToRightmost(BtCursor *pCur){
5295   Pgno pgno;
5296   int rc = SQLITE_OK;
5297   MemPage *pPage = 0;
5298 
5299   assert( cursorOwnsBtShared(pCur) );
5300   assert( pCur->eState==CURSOR_VALID );
5301   while( !(pPage = pCur->pPage)->leaf ){
5302     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5303     pCur->ix = pPage->nCell;
5304     rc = moveToChild(pCur, pgno);
5305     if( rc ) return rc;
5306   }
5307   pCur->ix = pPage->nCell-1;
5308   assert( pCur->info.nSize==0 );
5309   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5310   return SQLITE_OK;
5311 }
5312 
5313 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5314 ** on success.  Set *pRes to 0 if the cursor actually points to something
5315 ** or set *pRes to 1 if the table is empty.
5316 */
5317 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5318   int rc;
5319 
5320   assert( cursorOwnsBtShared(pCur) );
5321   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5322   rc = moveToRoot(pCur);
5323   if( rc==SQLITE_OK ){
5324     assert( pCur->pPage->nCell>0 );
5325     *pRes = 0;
5326     rc = moveToLeftmost(pCur);
5327   }else if( rc==SQLITE_EMPTY ){
5328     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5329     *pRes = 1;
5330     rc = SQLITE_OK;
5331   }
5332   return rc;
5333 }
5334 
5335 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5336 ** on success.  Set *pRes to 0 if the cursor actually points to something
5337 ** or set *pRes to 1 if the table is empty.
5338 */
5339 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5340   int rc;
5341 
5342   assert( cursorOwnsBtShared(pCur) );
5343   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5344 
5345   /* If the cursor already points to the last entry, this is a no-op. */
5346   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5347 #ifdef SQLITE_DEBUG
5348     /* This block serves to assert() that the cursor really does point
5349     ** to the last entry in the b-tree. */
5350     int ii;
5351     for(ii=0; ii<pCur->iPage; ii++){
5352       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5353     }
5354     assert( pCur->ix==pCur->pPage->nCell-1 );
5355     assert( pCur->pPage->leaf );
5356 #endif
5357     *pRes = 0;
5358     return SQLITE_OK;
5359   }
5360 
5361   rc = moveToRoot(pCur);
5362   if( rc==SQLITE_OK ){
5363     assert( pCur->eState==CURSOR_VALID );
5364     *pRes = 0;
5365     rc = moveToRightmost(pCur);
5366     if( rc==SQLITE_OK ){
5367       pCur->curFlags |= BTCF_AtLast;
5368     }else{
5369       pCur->curFlags &= ~BTCF_AtLast;
5370     }
5371   }else if( rc==SQLITE_EMPTY ){
5372     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5373     *pRes = 1;
5374     rc = SQLITE_OK;
5375   }
5376   return rc;
5377 }
5378 
5379 /* Move the cursor so that it points to an entry near the key
5380 ** specified by pIdxKey or intKey.   Return a success code.
5381 **
5382 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5383 ** must be NULL.  For index tables, pIdxKey is used and intKey
5384 ** is ignored.
5385 **
5386 ** If an exact match is not found, then the cursor is always
5387 ** left pointing at a leaf page which would hold the entry if it
5388 ** were present.  The cursor might point to an entry that comes
5389 ** before or after the key.
5390 **
5391 ** An integer is written into *pRes which is the result of
5392 ** comparing the key with the entry to which the cursor is
5393 ** pointing.  The meaning of the integer written into
5394 ** *pRes is as follows:
5395 **
5396 **     *pRes<0      The cursor is left pointing at an entry that
5397 **                  is smaller than intKey/pIdxKey or if the table is empty
5398 **                  and the cursor is therefore left point to nothing.
5399 **
5400 **     *pRes==0     The cursor is left pointing at an entry that
5401 **                  exactly matches intKey/pIdxKey.
5402 **
5403 **     *pRes>0      The cursor is left pointing at an entry that
5404 **                  is larger than intKey/pIdxKey.
5405 **
5406 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5407 ** exists an entry in the table that exactly matches pIdxKey.
5408 */
5409 int sqlite3BtreeMovetoUnpacked(
5410   BtCursor *pCur,          /* The cursor to be moved */
5411   UnpackedRecord *pIdxKey, /* Unpacked index key */
5412   i64 intKey,              /* The table key */
5413   int biasRight,           /* If true, bias the search to the high end */
5414   int *pRes                /* Write search results here */
5415 ){
5416   int rc;
5417   RecordCompare xRecordCompare;
5418 
5419   assert( cursorOwnsBtShared(pCur) );
5420   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5421   assert( pRes );
5422   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5423   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5424 
5425   /* If the cursor is already positioned at the point we are trying
5426   ** to move to, then just return without doing any work */
5427   if( pIdxKey==0
5428    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5429   ){
5430     if( pCur->info.nKey==intKey ){
5431       *pRes = 0;
5432       return SQLITE_OK;
5433     }
5434     if( pCur->info.nKey<intKey ){
5435       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5436         *pRes = -1;
5437         return SQLITE_OK;
5438       }
5439       /* If the requested key is one more than the previous key, then
5440       ** try to get there using sqlite3BtreeNext() rather than a full
5441       ** binary search.  This is an optimization only.  The correct answer
5442       ** is still obtained without this case, only a little more slowely */
5443       if( pCur->info.nKey+1==intKey ){
5444         *pRes = 0;
5445         rc = sqlite3BtreeNext(pCur, 0);
5446         if( rc==SQLITE_OK ){
5447           getCellInfo(pCur);
5448           if( pCur->info.nKey==intKey ){
5449             return SQLITE_OK;
5450           }
5451         }else if( rc==SQLITE_DONE ){
5452           rc = SQLITE_OK;
5453         }else{
5454           return rc;
5455         }
5456       }
5457     }
5458   }
5459 
5460   if( pIdxKey ){
5461     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5462     pIdxKey->errCode = 0;
5463     assert( pIdxKey->default_rc==1
5464          || pIdxKey->default_rc==0
5465          || pIdxKey->default_rc==-1
5466     );
5467   }else{
5468     xRecordCompare = 0; /* All keys are integers */
5469   }
5470 
5471   rc = moveToRoot(pCur);
5472   if( rc ){
5473     if( rc==SQLITE_EMPTY ){
5474       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5475       *pRes = -1;
5476       return SQLITE_OK;
5477     }
5478     return rc;
5479   }
5480   assert( pCur->pPage );
5481   assert( pCur->pPage->isInit );
5482   assert( pCur->eState==CURSOR_VALID );
5483   assert( pCur->pPage->nCell > 0 );
5484   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5485   assert( pCur->curIntKey || pIdxKey );
5486   for(;;){
5487     int lwr, upr, idx, c;
5488     Pgno chldPg;
5489     MemPage *pPage = pCur->pPage;
5490     u8 *pCell;                          /* Pointer to current cell in pPage */
5491 
5492     /* pPage->nCell must be greater than zero. If this is the root-page
5493     ** the cursor would have been INVALID above and this for(;;) loop
5494     ** not run. If this is not the root-page, then the moveToChild() routine
5495     ** would have already detected db corruption. Similarly, pPage must
5496     ** be the right kind (index or table) of b-tree page. Otherwise
5497     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5498     assert( pPage->nCell>0 );
5499     assert( pPage->intKey==(pIdxKey==0) );
5500     lwr = 0;
5501     upr = pPage->nCell-1;
5502     assert( biasRight==0 || biasRight==1 );
5503     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5504     pCur->ix = (u16)idx;
5505     if( xRecordCompare==0 ){
5506       for(;;){
5507         i64 nCellKey;
5508         pCell = findCellPastPtr(pPage, idx);
5509         if( pPage->intKeyLeaf ){
5510           while( 0x80 <= *(pCell++) ){
5511             if( pCell>=pPage->aDataEnd ){
5512               return SQLITE_CORRUPT_PAGE(pPage);
5513             }
5514           }
5515         }
5516         getVarint(pCell, (u64*)&nCellKey);
5517         if( nCellKey<intKey ){
5518           lwr = idx+1;
5519           if( lwr>upr ){ c = -1; break; }
5520         }else if( nCellKey>intKey ){
5521           upr = idx-1;
5522           if( lwr>upr ){ c = +1; break; }
5523         }else{
5524           assert( nCellKey==intKey );
5525           pCur->ix = (u16)idx;
5526           if( !pPage->leaf ){
5527             lwr = idx;
5528             goto moveto_next_layer;
5529           }else{
5530             pCur->curFlags |= BTCF_ValidNKey;
5531             pCur->info.nKey = nCellKey;
5532             pCur->info.nSize = 0;
5533             *pRes = 0;
5534             return SQLITE_OK;
5535           }
5536         }
5537         assert( lwr+upr>=0 );
5538         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5539       }
5540     }else{
5541       for(;;){
5542         int nCell;  /* Size of the pCell cell in bytes */
5543         pCell = findCellPastPtr(pPage, idx);
5544 
5545         /* The maximum supported page-size is 65536 bytes. This means that
5546         ** the maximum number of record bytes stored on an index B-Tree
5547         ** page is less than 16384 bytes and may be stored as a 2-byte
5548         ** varint. This information is used to attempt to avoid parsing
5549         ** the entire cell by checking for the cases where the record is
5550         ** stored entirely within the b-tree page by inspecting the first
5551         ** 2 bytes of the cell.
5552         */
5553         nCell = pCell[0];
5554         if( nCell<=pPage->max1bytePayload ){
5555           /* This branch runs if the record-size field of the cell is a
5556           ** single byte varint and the record fits entirely on the main
5557           ** b-tree page.  */
5558           testcase( pCell+nCell+1==pPage->aDataEnd );
5559           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5560         }else if( !(pCell[1] & 0x80)
5561           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5562         ){
5563           /* The record-size field is a 2 byte varint and the record
5564           ** fits entirely on the main b-tree page.  */
5565           testcase( pCell+nCell+2==pPage->aDataEnd );
5566           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5567         }else{
5568           /* The record flows over onto one or more overflow pages. In
5569           ** this case the whole cell needs to be parsed, a buffer allocated
5570           ** and accessPayload() used to retrieve the record into the
5571           ** buffer before VdbeRecordCompare() can be called.
5572           **
5573           ** If the record is corrupt, the xRecordCompare routine may read
5574           ** up to two varints past the end of the buffer. An extra 18
5575           ** bytes of padding is allocated at the end of the buffer in
5576           ** case this happens.  */
5577           void *pCellKey;
5578           u8 * const pCellBody = pCell - pPage->childPtrSize;
5579           const int nOverrun = 18;  /* Size of the overrun padding */
5580           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5581           nCell = (int)pCur->info.nKey;
5582           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5583           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5584           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5585           testcase( nCell==2 );  /* Minimum legal index key size */
5586           if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5587             rc = SQLITE_CORRUPT_PAGE(pPage);
5588             goto moveto_finish;
5589           }
5590           pCellKey = sqlite3Malloc( nCell+nOverrun );
5591           if( pCellKey==0 ){
5592             rc = SQLITE_NOMEM_BKPT;
5593             goto moveto_finish;
5594           }
5595           pCur->ix = (u16)idx;
5596           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5597           memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5598           pCur->curFlags &= ~BTCF_ValidOvfl;
5599           if( rc ){
5600             sqlite3_free(pCellKey);
5601             goto moveto_finish;
5602           }
5603           c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5604           sqlite3_free(pCellKey);
5605         }
5606         assert(
5607             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5608          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5609         );
5610         if( c<0 ){
5611           lwr = idx+1;
5612         }else if( c>0 ){
5613           upr = idx-1;
5614         }else{
5615           assert( c==0 );
5616           *pRes = 0;
5617           rc = SQLITE_OK;
5618           pCur->ix = (u16)idx;
5619           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5620           goto moveto_finish;
5621         }
5622         if( lwr>upr ) break;
5623         assert( lwr+upr>=0 );
5624         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5625       }
5626     }
5627     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5628     assert( pPage->isInit );
5629     if( pPage->leaf ){
5630       assert( pCur->ix<pCur->pPage->nCell );
5631       pCur->ix = (u16)idx;
5632       *pRes = c;
5633       rc = SQLITE_OK;
5634       goto moveto_finish;
5635     }
5636 moveto_next_layer:
5637     if( lwr>=pPage->nCell ){
5638       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5639     }else{
5640       chldPg = get4byte(findCell(pPage, lwr));
5641     }
5642     pCur->ix = (u16)lwr;
5643     rc = moveToChild(pCur, chldPg);
5644     if( rc ) break;
5645   }
5646 moveto_finish:
5647   pCur->info.nSize = 0;
5648   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5649   return rc;
5650 }
5651 
5652 
5653 /*
5654 ** Return TRUE if the cursor is not pointing at an entry of the table.
5655 **
5656 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5657 ** past the last entry in the table or sqlite3BtreePrev() moves past
5658 ** the first entry.  TRUE is also returned if the table is empty.
5659 */
5660 int sqlite3BtreeEof(BtCursor *pCur){
5661   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5662   ** have been deleted? This API will need to change to return an error code
5663   ** as well as the boolean result value.
5664   */
5665   return (CURSOR_VALID!=pCur->eState);
5666 }
5667 
5668 /*
5669 ** Return an estimate for the number of rows in the table that pCur is
5670 ** pointing to.  Return a negative number if no estimate is currently
5671 ** available.
5672 */
5673 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5674   i64 n;
5675   u8 i;
5676 
5677   assert( cursorOwnsBtShared(pCur) );
5678   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5679 
5680   /* Currently this interface is only called by the OP_IfSmaller
5681   ** opcode, and it that case the cursor will always be valid and
5682   ** will always point to a leaf node. */
5683   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5684   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5685 
5686   n = pCur->pPage->nCell;
5687   for(i=0; i<pCur->iPage; i++){
5688     n *= pCur->apPage[i]->nCell;
5689   }
5690   return n;
5691 }
5692 
5693 /*
5694 ** Advance the cursor to the next entry in the database.
5695 ** Return value:
5696 **
5697 **    SQLITE_OK        success
5698 **    SQLITE_DONE      cursor is already pointing at the last element
5699 **    otherwise        some kind of error occurred
5700 **
5701 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5702 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5703 ** to the next cell on the current page.  The (slower) btreeNext() helper
5704 ** routine is called when it is necessary to move to a different page or
5705 ** to restore the cursor.
5706 **
5707 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5708 ** cursor corresponds to an SQL index and this routine could have been
5709 ** skipped if the SQL index had been a unique index.  The F argument
5710 ** is a hint to the implement.  SQLite btree implementation does not use
5711 ** this hint, but COMDB2 does.
5712 */
5713 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5714   int rc;
5715   int idx;
5716   MemPage *pPage;
5717 
5718   assert( cursorOwnsBtShared(pCur) );
5719   if( pCur->eState!=CURSOR_VALID ){
5720     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5721     rc = restoreCursorPosition(pCur);
5722     if( rc!=SQLITE_OK ){
5723       return rc;
5724     }
5725     if( CURSOR_INVALID==pCur->eState ){
5726       return SQLITE_DONE;
5727     }
5728     if( pCur->eState==CURSOR_SKIPNEXT ){
5729       pCur->eState = CURSOR_VALID;
5730       if( pCur->skipNext>0 ) return SQLITE_OK;
5731     }
5732   }
5733 
5734   pPage = pCur->pPage;
5735   idx = ++pCur->ix;
5736   if( !pPage->isInit ){
5737     /* The only known way for this to happen is for there to be a
5738     ** recursive SQL function that does a DELETE operation as part of a
5739     ** SELECT which deletes content out from under an active cursor
5740     ** in a corrupt database file where the table being DELETE-ed from
5741     ** has pages in common with the table being queried.  See TH3
5742     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5743     ** example. */
5744     return SQLITE_CORRUPT_BKPT;
5745   }
5746 
5747   /* If the database file is corrupt, it is possible for the value of idx
5748   ** to be invalid here. This can only occur if a second cursor modifies
5749   ** the page while cursor pCur is holding a reference to it. Which can
5750   ** only happen if the database is corrupt in such a way as to link the
5751   ** page into more than one b-tree structure.
5752   **
5753   ** Update 2019-12-23: appears to long longer be possible after the
5754   ** addition of anotherValidCursor() condition on balance_deeper().  */
5755   harmless( idx>pPage->nCell );
5756 
5757   if( idx>=pPage->nCell ){
5758     if( !pPage->leaf ){
5759       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5760       if( rc ) return rc;
5761       return moveToLeftmost(pCur);
5762     }
5763     do{
5764       if( pCur->iPage==0 ){
5765         pCur->eState = CURSOR_INVALID;
5766         return SQLITE_DONE;
5767       }
5768       moveToParent(pCur);
5769       pPage = pCur->pPage;
5770     }while( pCur->ix>=pPage->nCell );
5771     if( pPage->intKey ){
5772       return sqlite3BtreeNext(pCur, 0);
5773     }else{
5774       return SQLITE_OK;
5775     }
5776   }
5777   if( pPage->leaf ){
5778     return SQLITE_OK;
5779   }else{
5780     return moveToLeftmost(pCur);
5781   }
5782 }
5783 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5784   MemPage *pPage;
5785   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5786   assert( cursorOwnsBtShared(pCur) );
5787   assert( flags==0 || flags==1 );
5788   pCur->info.nSize = 0;
5789   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5790   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5791   pPage = pCur->pPage;
5792   if( (++pCur->ix)>=pPage->nCell ){
5793     pCur->ix--;
5794     return btreeNext(pCur);
5795   }
5796   if( pPage->leaf ){
5797     return SQLITE_OK;
5798   }else{
5799     return moveToLeftmost(pCur);
5800   }
5801 }
5802 
5803 /*
5804 ** Step the cursor to the back to the previous entry in the database.
5805 ** Return values:
5806 **
5807 **     SQLITE_OK     success
5808 **     SQLITE_DONE   the cursor is already on the first element of the table
5809 **     otherwise     some kind of error occurred
5810 **
5811 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5812 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5813 ** to the previous cell on the current page.  The (slower) btreePrevious()
5814 ** helper routine is called when it is necessary to move to a different page
5815 ** or to restore the cursor.
5816 **
5817 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5818 ** the cursor corresponds to an SQL index and this routine could have been
5819 ** skipped if the SQL index had been a unique index.  The F argument is a
5820 ** hint to the implement.  The native SQLite btree implementation does not
5821 ** use this hint, but COMDB2 does.
5822 */
5823 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5824   int rc;
5825   MemPage *pPage;
5826 
5827   assert( cursorOwnsBtShared(pCur) );
5828   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5829   assert( pCur->info.nSize==0 );
5830   if( pCur->eState!=CURSOR_VALID ){
5831     rc = restoreCursorPosition(pCur);
5832     if( rc!=SQLITE_OK ){
5833       return rc;
5834     }
5835     if( CURSOR_INVALID==pCur->eState ){
5836       return SQLITE_DONE;
5837     }
5838     if( CURSOR_SKIPNEXT==pCur->eState ){
5839       pCur->eState = CURSOR_VALID;
5840       if( pCur->skipNext<0 ) return SQLITE_OK;
5841     }
5842   }
5843 
5844   pPage = pCur->pPage;
5845   assert( pPage->isInit );
5846   if( !pPage->leaf ){
5847     int idx = pCur->ix;
5848     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5849     if( rc ) return rc;
5850     rc = moveToRightmost(pCur);
5851   }else{
5852     while( pCur->ix==0 ){
5853       if( pCur->iPage==0 ){
5854         pCur->eState = CURSOR_INVALID;
5855         return SQLITE_DONE;
5856       }
5857       moveToParent(pCur);
5858     }
5859     assert( pCur->info.nSize==0 );
5860     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5861 
5862     pCur->ix--;
5863     pPage = pCur->pPage;
5864     if( pPage->intKey && !pPage->leaf ){
5865       rc = sqlite3BtreePrevious(pCur, 0);
5866     }else{
5867       rc = SQLITE_OK;
5868     }
5869   }
5870   return rc;
5871 }
5872 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5873   assert( cursorOwnsBtShared(pCur) );
5874   assert( flags==0 || flags==1 );
5875   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5876   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5877   pCur->info.nSize = 0;
5878   if( pCur->eState!=CURSOR_VALID
5879    || pCur->ix==0
5880    || pCur->pPage->leaf==0
5881   ){
5882     return btreePrevious(pCur);
5883   }
5884   pCur->ix--;
5885   return SQLITE_OK;
5886 }
5887 
5888 /*
5889 ** Allocate a new page from the database file.
5890 **
5891 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5892 ** has already been called on the new page.)  The new page has also
5893 ** been referenced and the calling routine is responsible for calling
5894 ** sqlite3PagerUnref() on the new page when it is done.
5895 **
5896 ** SQLITE_OK is returned on success.  Any other return value indicates
5897 ** an error.  *ppPage is set to NULL in the event of an error.
5898 **
5899 ** If the "nearby" parameter is not 0, then an effort is made to
5900 ** locate a page close to the page number "nearby".  This can be used in an
5901 ** attempt to keep related pages close to each other in the database file,
5902 ** which in turn can make database access faster.
5903 **
5904 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5905 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5906 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5907 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5908 ** are no restrictions on which page is returned.
5909 */
5910 static int allocateBtreePage(
5911   BtShared *pBt,         /* The btree */
5912   MemPage **ppPage,      /* Store pointer to the allocated page here */
5913   Pgno *pPgno,           /* Store the page number here */
5914   Pgno nearby,           /* Search for a page near this one */
5915   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5916 ){
5917   MemPage *pPage1;
5918   int rc;
5919   u32 n;     /* Number of pages on the freelist */
5920   u32 k;     /* Number of leaves on the trunk of the freelist */
5921   MemPage *pTrunk = 0;
5922   MemPage *pPrevTrunk = 0;
5923   Pgno mxPage;     /* Total size of the database file */
5924 
5925   assert( sqlite3_mutex_held(pBt->mutex) );
5926   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5927   pPage1 = pBt->pPage1;
5928   mxPage = btreePagecount(pBt);
5929   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5930   ** stores stores the total number of pages on the freelist. */
5931   n = get4byte(&pPage1->aData[36]);
5932   testcase( n==mxPage-1 );
5933   if( n>=mxPage ){
5934     return SQLITE_CORRUPT_BKPT;
5935   }
5936   if( n>0 ){
5937     /* There are pages on the freelist.  Reuse one of those pages. */
5938     Pgno iTrunk;
5939     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5940     u32 nSearch = 0;   /* Count of the number of search attempts */
5941 
5942     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5943     ** shows that the page 'nearby' is somewhere on the free-list, then
5944     ** the entire-list will be searched for that page.
5945     */
5946 #ifndef SQLITE_OMIT_AUTOVACUUM
5947     if( eMode==BTALLOC_EXACT ){
5948       if( nearby<=mxPage ){
5949         u8 eType;
5950         assert( nearby>0 );
5951         assert( pBt->autoVacuum );
5952         rc = ptrmapGet(pBt, nearby, &eType, 0);
5953         if( rc ) return rc;
5954         if( eType==PTRMAP_FREEPAGE ){
5955           searchList = 1;
5956         }
5957       }
5958     }else if( eMode==BTALLOC_LE ){
5959       searchList = 1;
5960     }
5961 #endif
5962 
5963     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5964     ** first free-list trunk page. iPrevTrunk is initially 1.
5965     */
5966     rc = sqlite3PagerWrite(pPage1->pDbPage);
5967     if( rc ) return rc;
5968     put4byte(&pPage1->aData[36], n-1);
5969 
5970     /* The code within this loop is run only once if the 'searchList' variable
5971     ** is not true. Otherwise, it runs once for each trunk-page on the
5972     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5973     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5974     */
5975     do {
5976       pPrevTrunk = pTrunk;
5977       if( pPrevTrunk ){
5978         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5979         ** is the page number of the next freelist trunk page in the list or
5980         ** zero if this is the last freelist trunk page. */
5981         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5982       }else{
5983         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5984         ** stores the page number of the first page of the freelist, or zero if
5985         ** the freelist is empty. */
5986         iTrunk = get4byte(&pPage1->aData[32]);
5987       }
5988       testcase( iTrunk==mxPage );
5989       if( iTrunk>mxPage || nSearch++ > n ){
5990         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5991       }else{
5992         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5993       }
5994       if( rc ){
5995         pTrunk = 0;
5996         goto end_allocate_page;
5997       }
5998       assert( pTrunk!=0 );
5999       assert( pTrunk->aData!=0 );
6000       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6001       ** is the number of leaf page pointers to follow. */
6002       k = get4byte(&pTrunk->aData[4]);
6003       if( k==0 && !searchList ){
6004         /* The trunk has no leaves and the list is not being searched.
6005         ** So extract the trunk page itself and use it as the newly
6006         ** allocated page */
6007         assert( pPrevTrunk==0 );
6008         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6009         if( rc ){
6010           goto end_allocate_page;
6011         }
6012         *pPgno = iTrunk;
6013         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6014         *ppPage = pTrunk;
6015         pTrunk = 0;
6016         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6017       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6018         /* Value of k is out of range.  Database corruption */
6019         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6020         goto end_allocate_page;
6021 #ifndef SQLITE_OMIT_AUTOVACUUM
6022       }else if( searchList
6023             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6024       ){
6025         /* The list is being searched and this trunk page is the page
6026         ** to allocate, regardless of whether it has leaves.
6027         */
6028         *pPgno = iTrunk;
6029         *ppPage = pTrunk;
6030         searchList = 0;
6031         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6032         if( rc ){
6033           goto end_allocate_page;
6034         }
6035         if( k==0 ){
6036           if( !pPrevTrunk ){
6037             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6038           }else{
6039             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6040             if( rc!=SQLITE_OK ){
6041               goto end_allocate_page;
6042             }
6043             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6044           }
6045         }else{
6046           /* The trunk page is required by the caller but it contains
6047           ** pointers to free-list leaves. The first leaf becomes a trunk
6048           ** page in this case.
6049           */
6050           MemPage *pNewTrunk;
6051           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6052           if( iNewTrunk>mxPage ){
6053             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6054             goto end_allocate_page;
6055           }
6056           testcase( iNewTrunk==mxPage );
6057           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6058           if( rc!=SQLITE_OK ){
6059             goto end_allocate_page;
6060           }
6061           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6062           if( rc!=SQLITE_OK ){
6063             releasePage(pNewTrunk);
6064             goto end_allocate_page;
6065           }
6066           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6067           put4byte(&pNewTrunk->aData[4], k-1);
6068           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6069           releasePage(pNewTrunk);
6070           if( !pPrevTrunk ){
6071             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6072             put4byte(&pPage1->aData[32], iNewTrunk);
6073           }else{
6074             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6075             if( rc ){
6076               goto end_allocate_page;
6077             }
6078             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6079           }
6080         }
6081         pTrunk = 0;
6082         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6083 #endif
6084       }else if( k>0 ){
6085         /* Extract a leaf from the trunk */
6086         u32 closest;
6087         Pgno iPage;
6088         unsigned char *aData = pTrunk->aData;
6089         if( nearby>0 ){
6090           u32 i;
6091           closest = 0;
6092           if( eMode==BTALLOC_LE ){
6093             for(i=0; i<k; i++){
6094               iPage = get4byte(&aData[8+i*4]);
6095               if( iPage<=nearby ){
6096                 closest = i;
6097                 break;
6098               }
6099             }
6100           }else{
6101             int dist;
6102             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6103             for(i=1; i<k; i++){
6104               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6105               if( d2<dist ){
6106                 closest = i;
6107                 dist = d2;
6108               }
6109             }
6110           }
6111         }else{
6112           closest = 0;
6113         }
6114 
6115         iPage = get4byte(&aData[8+closest*4]);
6116         testcase( iPage==mxPage );
6117         if( iPage>mxPage ){
6118           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6119           goto end_allocate_page;
6120         }
6121         testcase( iPage==mxPage );
6122         if( !searchList
6123          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6124         ){
6125           int noContent;
6126           *pPgno = iPage;
6127           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6128                  ": %d more free pages\n",
6129                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6130           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6131           if( rc ) goto end_allocate_page;
6132           if( closest<k-1 ){
6133             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6134           }
6135           put4byte(&aData[4], k-1);
6136           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6137           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6138           if( rc==SQLITE_OK ){
6139             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6140             if( rc!=SQLITE_OK ){
6141               releasePage(*ppPage);
6142               *ppPage = 0;
6143             }
6144           }
6145           searchList = 0;
6146         }
6147       }
6148       releasePage(pPrevTrunk);
6149       pPrevTrunk = 0;
6150     }while( searchList );
6151   }else{
6152     /* There are no pages on the freelist, so append a new page to the
6153     ** database image.
6154     **
6155     ** Normally, new pages allocated by this block can be requested from the
6156     ** pager layer with the 'no-content' flag set. This prevents the pager
6157     ** from trying to read the pages content from disk. However, if the
6158     ** current transaction has already run one or more incremental-vacuum
6159     ** steps, then the page we are about to allocate may contain content
6160     ** that is required in the event of a rollback. In this case, do
6161     ** not set the no-content flag. This causes the pager to load and journal
6162     ** the current page content before overwriting it.
6163     **
6164     ** Note that the pager will not actually attempt to load or journal
6165     ** content for any page that really does lie past the end of the database
6166     ** file on disk. So the effects of disabling the no-content optimization
6167     ** here are confined to those pages that lie between the end of the
6168     ** database image and the end of the database file.
6169     */
6170     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6171 
6172     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6173     if( rc ) return rc;
6174     pBt->nPage++;
6175     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6176 
6177 #ifndef SQLITE_OMIT_AUTOVACUUM
6178     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6179       /* If *pPgno refers to a pointer-map page, allocate two new pages
6180       ** at the end of the file instead of one. The first allocated page
6181       ** becomes a new pointer-map page, the second is used by the caller.
6182       */
6183       MemPage *pPg = 0;
6184       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6185       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6186       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6187       if( rc==SQLITE_OK ){
6188         rc = sqlite3PagerWrite(pPg->pDbPage);
6189         releasePage(pPg);
6190       }
6191       if( rc ) return rc;
6192       pBt->nPage++;
6193       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6194     }
6195 #endif
6196     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6197     *pPgno = pBt->nPage;
6198 
6199     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6200     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6201     if( rc ) return rc;
6202     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6203     if( rc!=SQLITE_OK ){
6204       releasePage(*ppPage);
6205       *ppPage = 0;
6206     }
6207     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6208   }
6209 
6210   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6211 
6212 end_allocate_page:
6213   releasePage(pTrunk);
6214   releasePage(pPrevTrunk);
6215   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6216   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6217   return rc;
6218 }
6219 
6220 /*
6221 ** This function is used to add page iPage to the database file free-list.
6222 ** It is assumed that the page is not already a part of the free-list.
6223 **
6224 ** The value passed as the second argument to this function is optional.
6225 ** If the caller happens to have a pointer to the MemPage object
6226 ** corresponding to page iPage handy, it may pass it as the second value.
6227 ** Otherwise, it may pass NULL.
6228 **
6229 ** If a pointer to a MemPage object is passed as the second argument,
6230 ** its reference count is not altered by this function.
6231 */
6232 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6233   MemPage *pTrunk = 0;                /* Free-list trunk page */
6234   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6235   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6236   MemPage *pPage;                     /* Page being freed. May be NULL. */
6237   int rc;                             /* Return Code */
6238   u32 nFree;                          /* Initial number of pages on free-list */
6239 
6240   assert( sqlite3_mutex_held(pBt->mutex) );
6241   assert( CORRUPT_DB || iPage>1 );
6242   assert( !pMemPage || pMemPage->pgno==iPage );
6243 
6244   if( iPage<2 || iPage>pBt->nPage ){
6245     return SQLITE_CORRUPT_BKPT;
6246   }
6247   if( pMemPage ){
6248     pPage = pMemPage;
6249     sqlite3PagerRef(pPage->pDbPage);
6250   }else{
6251     pPage = btreePageLookup(pBt, iPage);
6252   }
6253 
6254   /* Increment the free page count on pPage1 */
6255   rc = sqlite3PagerWrite(pPage1->pDbPage);
6256   if( rc ) goto freepage_out;
6257   nFree = get4byte(&pPage1->aData[36]);
6258   put4byte(&pPage1->aData[36], nFree+1);
6259 
6260   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6261     /* If the secure_delete option is enabled, then
6262     ** always fully overwrite deleted information with zeros.
6263     */
6264     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6265      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6266     ){
6267       goto freepage_out;
6268     }
6269     memset(pPage->aData, 0, pPage->pBt->pageSize);
6270   }
6271 
6272   /* If the database supports auto-vacuum, write an entry in the pointer-map
6273   ** to indicate that the page is free.
6274   */
6275   if( ISAUTOVACUUM ){
6276     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6277     if( rc ) goto freepage_out;
6278   }
6279 
6280   /* Now manipulate the actual database free-list structure. There are two
6281   ** possibilities. If the free-list is currently empty, or if the first
6282   ** trunk page in the free-list is full, then this page will become a
6283   ** new free-list trunk page. Otherwise, it will become a leaf of the
6284   ** first trunk page in the current free-list. This block tests if it
6285   ** is possible to add the page as a new free-list leaf.
6286   */
6287   if( nFree!=0 ){
6288     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6289 
6290     iTrunk = get4byte(&pPage1->aData[32]);
6291     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6292     if( rc!=SQLITE_OK ){
6293       goto freepage_out;
6294     }
6295 
6296     nLeaf = get4byte(&pTrunk->aData[4]);
6297     assert( pBt->usableSize>32 );
6298     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6299       rc = SQLITE_CORRUPT_BKPT;
6300       goto freepage_out;
6301     }
6302     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6303       /* In this case there is room on the trunk page to insert the page
6304       ** being freed as a new leaf.
6305       **
6306       ** Note that the trunk page is not really full until it contains
6307       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6308       ** coded.  But due to a coding error in versions of SQLite prior to
6309       ** 3.6.0, databases with freelist trunk pages holding more than
6310       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6311       ** to maintain backwards compatibility with older versions of SQLite,
6312       ** we will continue to restrict the number of entries to usableSize/4 - 8
6313       ** for now.  At some point in the future (once everyone has upgraded
6314       ** to 3.6.0 or later) we should consider fixing the conditional above
6315       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6316       **
6317       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6318       ** avoid using the last six entries in the freelist trunk page array in
6319       ** order that database files created by newer versions of SQLite can be
6320       ** read by older versions of SQLite.
6321       */
6322       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6323       if( rc==SQLITE_OK ){
6324         put4byte(&pTrunk->aData[4], nLeaf+1);
6325         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6326         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6327           sqlite3PagerDontWrite(pPage->pDbPage);
6328         }
6329         rc = btreeSetHasContent(pBt, iPage);
6330       }
6331       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6332       goto freepage_out;
6333     }
6334   }
6335 
6336   /* If control flows to this point, then it was not possible to add the
6337   ** the page being freed as a leaf page of the first trunk in the free-list.
6338   ** Possibly because the free-list is empty, or possibly because the
6339   ** first trunk in the free-list is full. Either way, the page being freed
6340   ** will become the new first trunk page in the free-list.
6341   */
6342   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6343     goto freepage_out;
6344   }
6345   rc = sqlite3PagerWrite(pPage->pDbPage);
6346   if( rc!=SQLITE_OK ){
6347     goto freepage_out;
6348   }
6349   put4byte(pPage->aData, iTrunk);
6350   put4byte(&pPage->aData[4], 0);
6351   put4byte(&pPage1->aData[32], iPage);
6352   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6353 
6354 freepage_out:
6355   if( pPage ){
6356     pPage->isInit = 0;
6357   }
6358   releasePage(pPage);
6359   releasePage(pTrunk);
6360   return rc;
6361 }
6362 static void freePage(MemPage *pPage, int *pRC){
6363   if( (*pRC)==SQLITE_OK ){
6364     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6365   }
6366 }
6367 
6368 /*
6369 ** Free any overflow pages associated with the given Cell.  Store
6370 ** size information about the cell in pInfo.
6371 */
6372 static int clearCell(
6373   MemPage *pPage,          /* The page that contains the Cell */
6374   unsigned char *pCell,    /* First byte of the Cell */
6375   CellInfo *pInfo          /* Size information about the cell */
6376 ){
6377   BtShared *pBt;
6378   Pgno ovflPgno;
6379   int rc;
6380   int nOvfl;
6381   u32 ovflPageSize;
6382 
6383   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6384   pPage->xParseCell(pPage, pCell, pInfo);
6385   if( pInfo->nLocal==pInfo->nPayload ){
6386     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6387   }
6388   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6389   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6390   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6391     /* Cell extends past end of page */
6392     return SQLITE_CORRUPT_PAGE(pPage);
6393   }
6394   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6395   pBt = pPage->pBt;
6396   assert( pBt->usableSize > 4 );
6397   ovflPageSize = pBt->usableSize - 4;
6398   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6399   assert( nOvfl>0 ||
6400     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6401   );
6402   while( nOvfl-- ){
6403     Pgno iNext = 0;
6404     MemPage *pOvfl = 0;
6405     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6406       /* 0 is not a legal page number and page 1 cannot be an
6407       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6408       ** file the database must be corrupt. */
6409       return SQLITE_CORRUPT_BKPT;
6410     }
6411     if( nOvfl ){
6412       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6413       if( rc ) return rc;
6414     }
6415 
6416     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6417      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6418     ){
6419       /* There is no reason any cursor should have an outstanding reference
6420       ** to an overflow page belonging to a cell that is being deleted/updated.
6421       ** So if there exists more than one reference to this page, then it
6422       ** must not really be an overflow page and the database must be corrupt.
6423       ** It is helpful to detect this before calling freePage2(), as
6424       ** freePage2() may zero the page contents if secure-delete mode is
6425       ** enabled. If this 'overflow' page happens to be a page that the
6426       ** caller is iterating through or using in some other way, this
6427       ** can be problematic.
6428       */
6429       rc = SQLITE_CORRUPT_BKPT;
6430     }else{
6431       rc = freePage2(pBt, pOvfl, ovflPgno);
6432     }
6433 
6434     if( pOvfl ){
6435       sqlite3PagerUnref(pOvfl->pDbPage);
6436     }
6437     if( rc ) return rc;
6438     ovflPgno = iNext;
6439   }
6440   return SQLITE_OK;
6441 }
6442 
6443 /*
6444 ** Create the byte sequence used to represent a cell on page pPage
6445 ** and write that byte sequence into pCell[].  Overflow pages are
6446 ** allocated and filled in as necessary.  The calling procedure
6447 ** is responsible for making sure sufficient space has been allocated
6448 ** for pCell[].
6449 **
6450 ** Note that pCell does not necessary need to point to the pPage->aData
6451 ** area.  pCell might point to some temporary storage.  The cell will
6452 ** be constructed in this temporary area then copied into pPage->aData
6453 ** later.
6454 */
6455 static int fillInCell(
6456   MemPage *pPage,                /* The page that contains the cell */
6457   unsigned char *pCell,          /* Complete text of the cell */
6458   const BtreePayload *pX,        /* Payload with which to construct the cell */
6459   int *pnSize                    /* Write cell size here */
6460 ){
6461   int nPayload;
6462   const u8 *pSrc;
6463   int nSrc, n, rc, mn;
6464   int spaceLeft;
6465   MemPage *pToRelease;
6466   unsigned char *pPrior;
6467   unsigned char *pPayload;
6468   BtShared *pBt;
6469   Pgno pgnoOvfl;
6470   int nHeader;
6471 
6472   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6473 
6474   /* pPage is not necessarily writeable since pCell might be auxiliary
6475   ** buffer space that is separate from the pPage buffer area */
6476   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6477             || sqlite3PagerIswriteable(pPage->pDbPage) );
6478 
6479   /* Fill in the header. */
6480   nHeader = pPage->childPtrSize;
6481   if( pPage->intKey ){
6482     nPayload = pX->nData + pX->nZero;
6483     pSrc = pX->pData;
6484     nSrc = pX->nData;
6485     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6486     nHeader += putVarint32(&pCell[nHeader], nPayload);
6487     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6488   }else{
6489     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6490     nSrc = nPayload = (int)pX->nKey;
6491     pSrc = pX->pKey;
6492     nHeader += putVarint32(&pCell[nHeader], nPayload);
6493   }
6494 
6495   /* Fill in the payload */
6496   pPayload = &pCell[nHeader];
6497   if( nPayload<=pPage->maxLocal ){
6498     /* This is the common case where everything fits on the btree page
6499     ** and no overflow pages are required. */
6500     n = nHeader + nPayload;
6501     testcase( n==3 );
6502     testcase( n==4 );
6503     if( n<4 ) n = 4;
6504     *pnSize = n;
6505     assert( nSrc<=nPayload );
6506     testcase( nSrc<nPayload );
6507     memcpy(pPayload, pSrc, nSrc);
6508     memset(pPayload+nSrc, 0, nPayload-nSrc);
6509     return SQLITE_OK;
6510   }
6511 
6512   /* If we reach this point, it means that some of the content will need
6513   ** to spill onto overflow pages.
6514   */
6515   mn = pPage->minLocal;
6516   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6517   testcase( n==pPage->maxLocal );
6518   testcase( n==pPage->maxLocal+1 );
6519   if( n > pPage->maxLocal ) n = mn;
6520   spaceLeft = n;
6521   *pnSize = n + nHeader + 4;
6522   pPrior = &pCell[nHeader+n];
6523   pToRelease = 0;
6524   pgnoOvfl = 0;
6525   pBt = pPage->pBt;
6526 
6527   /* At this point variables should be set as follows:
6528   **
6529   **   nPayload           Total payload size in bytes
6530   **   pPayload           Begin writing payload here
6531   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6532   **                      that means content must spill into overflow pages.
6533   **   *pnSize            Size of the local cell (not counting overflow pages)
6534   **   pPrior             Where to write the pgno of the first overflow page
6535   **
6536   ** Use a call to btreeParseCellPtr() to verify that the values above
6537   ** were computed correctly.
6538   */
6539 #ifdef SQLITE_DEBUG
6540   {
6541     CellInfo info;
6542     pPage->xParseCell(pPage, pCell, &info);
6543     assert( nHeader==(int)(info.pPayload - pCell) );
6544     assert( info.nKey==pX->nKey );
6545     assert( *pnSize == info.nSize );
6546     assert( spaceLeft == info.nLocal );
6547   }
6548 #endif
6549 
6550   /* Write the payload into the local Cell and any extra into overflow pages */
6551   while( 1 ){
6552     n = nPayload;
6553     if( n>spaceLeft ) n = spaceLeft;
6554 
6555     /* If pToRelease is not zero than pPayload points into the data area
6556     ** of pToRelease.  Make sure pToRelease is still writeable. */
6557     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6558 
6559     /* If pPayload is part of the data area of pPage, then make sure pPage
6560     ** is still writeable */
6561     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6562             || sqlite3PagerIswriteable(pPage->pDbPage) );
6563 
6564     if( nSrc>=n ){
6565       memcpy(pPayload, pSrc, n);
6566     }else if( nSrc>0 ){
6567       n = nSrc;
6568       memcpy(pPayload, pSrc, n);
6569     }else{
6570       memset(pPayload, 0, n);
6571     }
6572     nPayload -= n;
6573     if( nPayload<=0 ) break;
6574     pPayload += n;
6575     pSrc += n;
6576     nSrc -= n;
6577     spaceLeft -= n;
6578     if( spaceLeft==0 ){
6579       MemPage *pOvfl = 0;
6580 #ifndef SQLITE_OMIT_AUTOVACUUM
6581       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6582       if( pBt->autoVacuum ){
6583         do{
6584           pgnoOvfl++;
6585         } while(
6586           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6587         );
6588       }
6589 #endif
6590       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6591 #ifndef SQLITE_OMIT_AUTOVACUUM
6592       /* If the database supports auto-vacuum, and the second or subsequent
6593       ** overflow page is being allocated, add an entry to the pointer-map
6594       ** for that page now.
6595       **
6596       ** If this is the first overflow page, then write a partial entry
6597       ** to the pointer-map. If we write nothing to this pointer-map slot,
6598       ** then the optimistic overflow chain processing in clearCell()
6599       ** may misinterpret the uninitialized values and delete the
6600       ** wrong pages from the database.
6601       */
6602       if( pBt->autoVacuum && rc==SQLITE_OK ){
6603         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6604         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6605         if( rc ){
6606           releasePage(pOvfl);
6607         }
6608       }
6609 #endif
6610       if( rc ){
6611         releasePage(pToRelease);
6612         return rc;
6613       }
6614 
6615       /* If pToRelease is not zero than pPrior points into the data area
6616       ** of pToRelease.  Make sure pToRelease is still writeable. */
6617       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6618 
6619       /* If pPrior is part of the data area of pPage, then make sure pPage
6620       ** is still writeable */
6621       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6622             || sqlite3PagerIswriteable(pPage->pDbPage) );
6623 
6624       put4byte(pPrior, pgnoOvfl);
6625       releasePage(pToRelease);
6626       pToRelease = pOvfl;
6627       pPrior = pOvfl->aData;
6628       put4byte(pPrior, 0);
6629       pPayload = &pOvfl->aData[4];
6630       spaceLeft = pBt->usableSize - 4;
6631     }
6632   }
6633   releasePage(pToRelease);
6634   return SQLITE_OK;
6635 }
6636 
6637 /*
6638 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6639 ** The cell content is not freed or deallocated.  It is assumed that
6640 ** the cell content has been copied someplace else.  This routine just
6641 ** removes the reference to the cell from pPage.
6642 **
6643 ** "sz" must be the number of bytes in the cell.
6644 */
6645 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6646   u32 pc;         /* Offset to cell content of cell being deleted */
6647   u8 *data;       /* pPage->aData */
6648   u8 *ptr;        /* Used to move bytes around within data[] */
6649   int rc;         /* The return code */
6650   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6651 
6652   if( *pRC ) return;
6653   assert( idx>=0 && idx<pPage->nCell );
6654   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6655   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6656   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6657   assert( pPage->nFree>=0 );
6658   data = pPage->aData;
6659   ptr = &pPage->aCellIdx[2*idx];
6660   pc = get2byte(ptr);
6661   hdr = pPage->hdrOffset;
6662   testcase( pc==get2byte(&data[hdr+5]) );
6663   testcase( pc+sz==pPage->pBt->usableSize );
6664   if( pc+sz > pPage->pBt->usableSize ){
6665     *pRC = SQLITE_CORRUPT_BKPT;
6666     return;
6667   }
6668   rc = freeSpace(pPage, pc, sz);
6669   if( rc ){
6670     *pRC = rc;
6671     return;
6672   }
6673   pPage->nCell--;
6674   if( pPage->nCell==0 ){
6675     memset(&data[hdr+1], 0, 4);
6676     data[hdr+7] = 0;
6677     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6678     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6679                        - pPage->childPtrSize - 8;
6680   }else{
6681     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6682     put2byte(&data[hdr+3], pPage->nCell);
6683     pPage->nFree += 2;
6684   }
6685 }
6686 
6687 /*
6688 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6689 ** content of the cell.
6690 **
6691 ** If the cell content will fit on the page, then put it there.  If it
6692 ** will not fit, then make a copy of the cell content into pTemp if
6693 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6694 ** in pPage->apOvfl[] and make it point to the cell content (either
6695 ** in pTemp or the original pCell) and also record its index.
6696 ** Allocating a new entry in pPage->aCell[] implies that
6697 ** pPage->nOverflow is incremented.
6698 **
6699 ** *pRC must be SQLITE_OK when this routine is called.
6700 */
6701 static void insertCell(
6702   MemPage *pPage,   /* Page into which we are copying */
6703   int i,            /* New cell becomes the i-th cell of the page */
6704   u8 *pCell,        /* Content of the new cell */
6705   int sz,           /* Bytes of content in pCell */
6706   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6707   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6708   int *pRC          /* Read and write return code from here */
6709 ){
6710   int idx = 0;      /* Where to write new cell content in data[] */
6711   int j;            /* Loop counter */
6712   u8 *data;         /* The content of the whole page */
6713   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6714 
6715   assert( *pRC==SQLITE_OK );
6716   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6717   assert( MX_CELL(pPage->pBt)<=10921 );
6718   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6719   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6720   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6721   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6722   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6723   assert( pPage->nFree>=0 );
6724   if( pPage->nOverflow || sz+2>pPage->nFree ){
6725     if( pTemp ){
6726       memcpy(pTemp, pCell, sz);
6727       pCell = pTemp;
6728     }
6729     if( iChild ){
6730       put4byte(pCell, iChild);
6731     }
6732     j = pPage->nOverflow++;
6733     /* Comparison against ArraySize-1 since we hold back one extra slot
6734     ** as a contingency.  In other words, never need more than 3 overflow
6735     ** slots but 4 are allocated, just to be safe. */
6736     assert( j < ArraySize(pPage->apOvfl)-1 );
6737     pPage->apOvfl[j] = pCell;
6738     pPage->aiOvfl[j] = (u16)i;
6739 
6740     /* When multiple overflows occur, they are always sequential and in
6741     ** sorted order.  This invariants arise because multiple overflows can
6742     ** only occur when inserting divider cells into the parent page during
6743     ** balancing, and the dividers are adjacent and sorted.
6744     */
6745     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6746     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6747   }else{
6748     int rc = sqlite3PagerWrite(pPage->pDbPage);
6749     if( rc!=SQLITE_OK ){
6750       *pRC = rc;
6751       return;
6752     }
6753     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6754     data = pPage->aData;
6755     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6756     rc = allocateSpace(pPage, sz, &idx);
6757     if( rc ){ *pRC = rc; return; }
6758     /* The allocateSpace() routine guarantees the following properties
6759     ** if it returns successfully */
6760     assert( idx >= 0 );
6761     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6762     assert( idx+sz <= (int)pPage->pBt->usableSize );
6763     pPage->nFree -= (u16)(2 + sz);
6764     if( iChild ){
6765       /* In a corrupt database where an entry in the cell index section of
6766       ** a btree page has a value of 3 or less, the pCell value might point
6767       ** as many as 4 bytes in front of the start of the aData buffer for
6768       ** the source page.  Make sure this does not cause problems by not
6769       ** reading the first 4 bytes */
6770       memcpy(&data[idx+4], pCell+4, sz-4);
6771       put4byte(&data[idx], iChild);
6772     }else{
6773       memcpy(&data[idx], pCell, sz);
6774     }
6775     pIns = pPage->aCellIdx + i*2;
6776     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6777     put2byte(pIns, idx);
6778     pPage->nCell++;
6779     /* increment the cell count */
6780     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6781     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6782 #ifndef SQLITE_OMIT_AUTOVACUUM
6783     if( pPage->pBt->autoVacuum ){
6784       /* The cell may contain a pointer to an overflow page. If so, write
6785       ** the entry for the overflow page into the pointer map.
6786       */
6787       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6788     }
6789 #endif
6790   }
6791 }
6792 
6793 /*
6794 ** The following parameters determine how many adjacent pages get involved
6795 ** in a balancing operation.  NN is the number of neighbors on either side
6796 ** of the page that participate in the balancing operation.  NB is the
6797 ** total number of pages that participate, including the target page and
6798 ** NN neighbors on either side.
6799 **
6800 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6801 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6802 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6803 ** The value of NN appears to give the best results overall.
6804 **
6805 ** (Later:) The description above makes it seem as if these values are
6806 ** tunable - as if you could change them and recompile and it would all work.
6807 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6808 ** we have never tested any other value.
6809 */
6810 #define NN 1             /* Number of neighbors on either side of pPage */
6811 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6812 
6813 /*
6814 ** A CellArray object contains a cache of pointers and sizes for a
6815 ** consecutive sequence of cells that might be held on multiple pages.
6816 **
6817 ** The cells in this array are the divider cell or cells from the pParent
6818 ** page plus up to three child pages.  There are a total of nCell cells.
6819 **
6820 ** pRef is a pointer to one of the pages that contributes cells.  This is
6821 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6822 ** which should be common to all pages that contribute cells to this array.
6823 **
6824 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6825 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6826 ** to overflow cells.  In other words, some apCel[] pointers might not point
6827 ** to content area of the pages.
6828 **
6829 ** A szCell[] of zero means the size of that cell has not yet been computed.
6830 **
6831 ** The cells come from as many as four different pages:
6832 **
6833 **             -----------
6834 **             | Parent  |
6835 **             -----------
6836 **            /     |     \
6837 **           /      |      \
6838 **  ---------   ---------   ---------
6839 **  |Child-1|   |Child-2|   |Child-3|
6840 **  ---------   ---------   ---------
6841 **
6842 ** The order of cells is in the array is for an index btree is:
6843 **
6844 **       1.  All cells from Child-1 in order
6845 **       2.  The first divider cell from Parent
6846 **       3.  All cells from Child-2 in order
6847 **       4.  The second divider cell from Parent
6848 **       5.  All cells from Child-3 in order
6849 **
6850 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6851 ** content exists only in leaves and there are no divider cells.
6852 **
6853 ** For an index btree, the apEnd[] array holds pointer to the end of page
6854 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6855 ** respectively. The ixNx[] array holds the number of cells contained in
6856 ** each of these 5 stages, and all stages to the left.  Hence:
6857 **
6858 **    ixNx[0] = Number of cells in Child-1.
6859 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6860 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6861 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6862 **    ixNx[4] = Total number of cells.
6863 **
6864 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6865 ** are used and they point to the leaf pages only, and the ixNx value are:
6866 **
6867 **    ixNx[0] = Number of cells in Child-1.
6868 **    ixNx[1] = Number of cells in Child-1 and Child-2.
6869 **    ixNx[2] = Total number of cells.
6870 **
6871 ** Sometimes when deleting, a child page can have zero cells.  In those
6872 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6873 ** entries, shift down.  The end result is that each ixNx[] entry should
6874 ** be larger than the previous
6875 */
6876 typedef struct CellArray CellArray;
6877 struct CellArray {
6878   int nCell;              /* Number of cells in apCell[] */
6879   MemPage *pRef;          /* Reference page */
6880   u8 **apCell;            /* All cells begin balanced */
6881   u16 *szCell;            /* Local size of all cells in apCell[] */
6882   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
6883   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
6884 };
6885 
6886 /*
6887 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6888 ** computed.
6889 */
6890 static void populateCellCache(CellArray *p, int idx, int N){
6891   assert( idx>=0 && idx+N<=p->nCell );
6892   while( N>0 ){
6893     assert( p->apCell[idx]!=0 );
6894     if( p->szCell[idx]==0 ){
6895       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6896     }else{
6897       assert( CORRUPT_DB ||
6898               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6899     }
6900     idx++;
6901     N--;
6902   }
6903 }
6904 
6905 /*
6906 ** Return the size of the Nth element of the cell array
6907 */
6908 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6909   assert( N>=0 && N<p->nCell );
6910   assert( p->szCell[N]==0 );
6911   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6912   return p->szCell[N];
6913 }
6914 static u16 cachedCellSize(CellArray *p, int N){
6915   assert( N>=0 && N<p->nCell );
6916   if( p->szCell[N] ) return p->szCell[N];
6917   return computeCellSize(p, N);
6918 }
6919 
6920 /*
6921 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6922 ** szCell[] array contains the size in bytes of each cell. This function
6923 ** replaces the current contents of page pPg with the contents of the cell
6924 ** array.
6925 **
6926 ** Some of the cells in apCell[] may currently be stored in pPg. This
6927 ** function works around problems caused by this by making a copy of any
6928 ** such cells before overwriting the page data.
6929 **
6930 ** The MemPage.nFree field is invalidated by this function. It is the
6931 ** responsibility of the caller to set it correctly.
6932 */
6933 static int rebuildPage(
6934   CellArray *pCArray,             /* Content to be added to page pPg */
6935   int iFirst,                     /* First cell in pCArray to use */
6936   int nCell,                      /* Final number of cells on page */
6937   MemPage *pPg                    /* The page to be reconstructed */
6938 ){
6939   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6940   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6941   const int usableSize = pPg->pBt->usableSize;
6942   u8 * const pEnd = &aData[usableSize];
6943   int i = iFirst;                 /* Which cell to copy from pCArray*/
6944   u32 j;                          /* Start of cell content area */
6945   int iEnd = i+nCell;             /* Loop terminator */
6946   u8 *pCellptr = pPg->aCellIdx;
6947   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6948   u8 *pData;
6949   int k;                          /* Current slot in pCArray->apEnd[] */
6950   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
6951 
6952   assert( i<iEnd );
6953   j = get2byte(&aData[hdr+5]);
6954   if( NEVER(j>(u32)usableSize) ){ j = 0; }
6955   memcpy(&pTmp[j], &aData[j], usableSize - j);
6956 
6957   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6958   pSrcEnd = pCArray->apEnd[k];
6959 
6960   pData = pEnd;
6961   while( 1/*exit by break*/ ){
6962     u8 *pCell = pCArray->apCell[i];
6963     u16 sz = pCArray->szCell[i];
6964     assert( sz>0 );
6965     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6966       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
6967       pCell = &pTmp[pCell - aData];
6968     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6969            && (uptr)(pCell)<(uptr)pSrcEnd
6970     ){
6971       return SQLITE_CORRUPT_BKPT;
6972     }
6973 
6974     pData -= sz;
6975     put2byte(pCellptr, (pData - aData));
6976     pCellptr += 2;
6977     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6978     memcpy(pData, pCell, sz);
6979     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6980     testcase( sz!=pPg->xCellSize(pPg,pCell) )
6981     i++;
6982     if( i>=iEnd ) break;
6983     if( pCArray->ixNx[k]<=i ){
6984       k++;
6985       pSrcEnd = pCArray->apEnd[k];
6986     }
6987   }
6988 
6989   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6990   pPg->nCell = nCell;
6991   pPg->nOverflow = 0;
6992 
6993   put2byte(&aData[hdr+1], 0);
6994   put2byte(&aData[hdr+3], pPg->nCell);
6995   put2byte(&aData[hdr+5], pData - aData);
6996   aData[hdr+7] = 0x00;
6997   return SQLITE_OK;
6998 }
6999 
7000 /*
7001 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7002 ** This function attempts to add the cells stored in the array to page pPg.
7003 ** If it cannot (because the page needs to be defragmented before the cells
7004 ** will fit), non-zero is returned. Otherwise, if the cells are added
7005 ** successfully, zero is returned.
7006 **
7007 ** Argument pCellptr points to the first entry in the cell-pointer array
7008 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7009 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7010 ** cell in the array. It is the responsibility of the caller to ensure
7011 ** that it is safe to overwrite this part of the cell-pointer array.
7012 **
7013 ** When this function is called, *ppData points to the start of the
7014 ** content area on page pPg. If the size of the content area is extended,
7015 ** *ppData is updated to point to the new start of the content area
7016 ** before returning.
7017 **
7018 ** Finally, argument pBegin points to the byte immediately following the
7019 ** end of the space required by this page for the cell-pointer area (for
7020 ** all cells - not just those inserted by the current call). If the content
7021 ** area must be extended to before this point in order to accomodate all
7022 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7023 */
7024 static int pageInsertArray(
7025   MemPage *pPg,                   /* Page to add cells to */
7026   u8 *pBegin,                     /* End of cell-pointer array */
7027   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7028   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7029   int iFirst,                     /* Index of first cell to add */
7030   int nCell,                      /* Number of cells to add to pPg */
7031   CellArray *pCArray              /* Array of cells */
7032 ){
7033   int i = iFirst;                 /* Loop counter - cell index to insert */
7034   u8 *aData = pPg->aData;         /* Complete page */
7035   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7036   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7037   int k;                          /* Current slot in pCArray->apEnd[] */
7038   u8 *pEnd;                       /* Maximum extent of cell data */
7039   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7040   if( iEnd<=iFirst ) return 0;
7041   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7042   pEnd = pCArray->apEnd[k];
7043   while( 1 /*Exit by break*/ ){
7044     int sz, rc;
7045     u8 *pSlot;
7046     assert( pCArray->szCell[i]!=0 );
7047     sz = pCArray->szCell[i];
7048     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7049       if( (pData - pBegin)<sz ) return 1;
7050       pData -= sz;
7051       pSlot = pData;
7052     }
7053     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7054     ** database.  But they might for a corrupt database.  Hence use memmove()
7055     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7056     assert( (pSlot+sz)<=pCArray->apCell[i]
7057          || pSlot>=(pCArray->apCell[i]+sz)
7058          || CORRUPT_DB );
7059     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7060      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7061     ){
7062       assert( CORRUPT_DB );
7063       (void)SQLITE_CORRUPT_BKPT;
7064       return 1;
7065     }
7066     memmove(pSlot, pCArray->apCell[i], sz);
7067     put2byte(pCellptr, (pSlot - aData));
7068     pCellptr += 2;
7069     i++;
7070     if( i>=iEnd ) break;
7071     if( pCArray->ixNx[k]<=i ){
7072       k++;
7073       pEnd = pCArray->apEnd[k];
7074     }
7075   }
7076   *ppData = pData;
7077   return 0;
7078 }
7079 
7080 /*
7081 ** The pCArray object contains pointers to b-tree cells and their sizes.
7082 **
7083 ** This function adds the space associated with each cell in the array
7084 ** that is currently stored within the body of pPg to the pPg free-list.
7085 ** The cell-pointers and other fields of the page are not updated.
7086 **
7087 ** This function returns the total number of cells added to the free-list.
7088 */
7089 static int pageFreeArray(
7090   MemPage *pPg,                   /* Page to edit */
7091   int iFirst,                     /* First cell to delete */
7092   int nCell,                      /* Cells to delete */
7093   CellArray *pCArray              /* Array of cells */
7094 ){
7095   u8 * const aData = pPg->aData;
7096   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7097   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7098   int nRet = 0;
7099   int i;
7100   int iEnd = iFirst + nCell;
7101   u8 *pFree = 0;
7102   int szFree = 0;
7103 
7104   for(i=iFirst; i<iEnd; i++){
7105     u8 *pCell = pCArray->apCell[i];
7106     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7107       int sz;
7108       /* No need to use cachedCellSize() here.  The sizes of all cells that
7109       ** are to be freed have already been computing while deciding which
7110       ** cells need freeing */
7111       sz = pCArray->szCell[i];  assert( sz>0 );
7112       if( pFree!=(pCell + sz) ){
7113         if( pFree ){
7114           assert( pFree>aData && (pFree - aData)<65536 );
7115           freeSpace(pPg, (u16)(pFree - aData), szFree);
7116         }
7117         pFree = pCell;
7118         szFree = sz;
7119         if( pFree+sz>pEnd ) return 0;
7120       }else{
7121         pFree = pCell;
7122         szFree += sz;
7123       }
7124       nRet++;
7125     }
7126   }
7127   if( pFree ){
7128     assert( pFree>aData && (pFree - aData)<65536 );
7129     freeSpace(pPg, (u16)(pFree - aData), szFree);
7130   }
7131   return nRet;
7132 }
7133 
7134 /*
7135 ** pCArray contains pointers to and sizes of all cells in the page being
7136 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7137 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7138 ** starting at apCell[iNew].
7139 **
7140 ** This routine makes the necessary adjustments to pPg so that it contains
7141 ** the correct cells after being balanced.
7142 **
7143 ** The pPg->nFree field is invalid when this function returns. It is the
7144 ** responsibility of the caller to set it correctly.
7145 */
7146 static int editPage(
7147   MemPage *pPg,                   /* Edit this page */
7148   int iOld,                       /* Index of first cell currently on page */
7149   int iNew,                       /* Index of new first cell on page */
7150   int nNew,                       /* Final number of cells on page */
7151   CellArray *pCArray              /* Array of cells and sizes */
7152 ){
7153   u8 * const aData = pPg->aData;
7154   const int hdr = pPg->hdrOffset;
7155   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7156   int nCell = pPg->nCell;       /* Cells stored on pPg */
7157   u8 *pData;
7158   u8 *pCellptr;
7159   int i;
7160   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7161   int iNewEnd = iNew + nNew;
7162 
7163 #ifdef SQLITE_DEBUG
7164   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7165   memcpy(pTmp, aData, pPg->pBt->usableSize);
7166 #endif
7167 
7168   /* Remove cells from the start and end of the page */
7169   assert( nCell>=0 );
7170   if( iOld<iNew ){
7171     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7172     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7173     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7174     nCell -= nShift;
7175   }
7176   if( iNewEnd < iOldEnd ){
7177     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7178     assert( nCell>=nTail );
7179     nCell -= nTail;
7180   }
7181 
7182   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7183   if( pData<pBegin ) goto editpage_fail;
7184 
7185   /* Add cells to the start of the page */
7186   if( iNew<iOld ){
7187     int nAdd = MIN(nNew,iOld-iNew);
7188     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7189     assert( nAdd>=0 );
7190     pCellptr = pPg->aCellIdx;
7191     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7192     if( pageInsertArray(
7193           pPg, pBegin, &pData, pCellptr,
7194           iNew, nAdd, pCArray
7195     ) ) goto editpage_fail;
7196     nCell += nAdd;
7197   }
7198 
7199   /* Add any overflow cells */
7200   for(i=0; i<pPg->nOverflow; i++){
7201     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7202     if( iCell>=0 && iCell<nNew ){
7203       pCellptr = &pPg->aCellIdx[iCell * 2];
7204       if( nCell>iCell ){
7205         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7206       }
7207       nCell++;
7208       cachedCellSize(pCArray, iCell+iNew);
7209       if( pageInsertArray(
7210             pPg, pBegin, &pData, pCellptr,
7211             iCell+iNew, 1, pCArray
7212       ) ) goto editpage_fail;
7213     }
7214   }
7215 
7216   /* Append cells to the end of the page */
7217   assert( nCell>=0 );
7218   pCellptr = &pPg->aCellIdx[nCell*2];
7219   if( pageInsertArray(
7220         pPg, pBegin, &pData, pCellptr,
7221         iNew+nCell, nNew-nCell, pCArray
7222   ) ) goto editpage_fail;
7223 
7224   pPg->nCell = nNew;
7225   pPg->nOverflow = 0;
7226 
7227   put2byte(&aData[hdr+3], pPg->nCell);
7228   put2byte(&aData[hdr+5], pData - aData);
7229 
7230 #ifdef SQLITE_DEBUG
7231   for(i=0; i<nNew && !CORRUPT_DB; i++){
7232     u8 *pCell = pCArray->apCell[i+iNew];
7233     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7234     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7235       pCell = &pTmp[pCell - aData];
7236     }
7237     assert( 0==memcmp(pCell, &aData[iOff],
7238             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7239   }
7240 #endif
7241 
7242   return SQLITE_OK;
7243  editpage_fail:
7244   /* Unable to edit this page. Rebuild it from scratch instead. */
7245   populateCellCache(pCArray, iNew, nNew);
7246   return rebuildPage(pCArray, iNew, nNew, pPg);
7247 }
7248 
7249 
7250 #ifndef SQLITE_OMIT_QUICKBALANCE
7251 /*
7252 ** This version of balance() handles the common special case where
7253 ** a new entry is being inserted on the extreme right-end of the
7254 ** tree, in other words, when the new entry will become the largest
7255 ** entry in the tree.
7256 **
7257 ** Instead of trying to balance the 3 right-most leaf pages, just add
7258 ** a new page to the right-hand side and put the one new entry in
7259 ** that page.  This leaves the right side of the tree somewhat
7260 ** unbalanced.  But odds are that we will be inserting new entries
7261 ** at the end soon afterwards so the nearly empty page will quickly
7262 ** fill up.  On average.
7263 **
7264 ** pPage is the leaf page which is the right-most page in the tree.
7265 ** pParent is its parent.  pPage must have a single overflow entry
7266 ** which is also the right-most entry on the page.
7267 **
7268 ** The pSpace buffer is used to store a temporary copy of the divider
7269 ** cell that will be inserted into pParent. Such a cell consists of a 4
7270 ** byte page number followed by a variable length integer. In other
7271 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7272 ** least 13 bytes in size.
7273 */
7274 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7275   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7276   MemPage *pNew;                       /* Newly allocated page */
7277   int rc;                              /* Return Code */
7278   Pgno pgnoNew;                        /* Page number of pNew */
7279 
7280   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7281   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7282   assert( pPage->nOverflow==1 );
7283 
7284   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7285   assert( pPage->nFree>=0 );
7286   assert( pParent->nFree>=0 );
7287 
7288   /* Allocate a new page. This page will become the right-sibling of
7289   ** pPage. Make the parent page writable, so that the new divider cell
7290   ** may be inserted. If both these operations are successful, proceed.
7291   */
7292   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7293 
7294   if( rc==SQLITE_OK ){
7295 
7296     u8 *pOut = &pSpace[4];
7297     u8 *pCell = pPage->apOvfl[0];
7298     u16 szCell = pPage->xCellSize(pPage, pCell);
7299     u8 *pStop;
7300     CellArray b;
7301 
7302     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7303     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7304     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7305     b.nCell = 1;
7306     b.pRef = pPage;
7307     b.apCell = &pCell;
7308     b.szCell = &szCell;
7309     b.apEnd[0] = pPage->aDataEnd;
7310     b.ixNx[0] = 2;
7311     rc = rebuildPage(&b, 0, 1, pNew);
7312     if( NEVER(rc) ){
7313       releasePage(pNew);
7314       return rc;
7315     }
7316     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7317 
7318     /* If this is an auto-vacuum database, update the pointer map
7319     ** with entries for the new page, and any pointer from the
7320     ** cell on the page to an overflow page. If either of these
7321     ** operations fails, the return code is set, but the contents
7322     ** of the parent page are still manipulated by thh code below.
7323     ** That is Ok, at this point the parent page is guaranteed to
7324     ** be marked as dirty. Returning an error code will cause a
7325     ** rollback, undoing any changes made to the parent page.
7326     */
7327     if( ISAUTOVACUUM ){
7328       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7329       if( szCell>pNew->minLocal ){
7330         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7331       }
7332     }
7333 
7334     /* Create a divider cell to insert into pParent. The divider cell
7335     ** consists of a 4-byte page number (the page number of pPage) and
7336     ** a variable length key value (which must be the same value as the
7337     ** largest key on pPage).
7338     **
7339     ** To find the largest key value on pPage, first find the right-most
7340     ** cell on pPage. The first two fields of this cell are the
7341     ** record-length (a variable length integer at most 32-bits in size)
7342     ** and the key value (a variable length integer, may have any value).
7343     ** The first of the while(...) loops below skips over the record-length
7344     ** field. The second while(...) loop copies the key value from the
7345     ** cell on pPage into the pSpace buffer.
7346     */
7347     pCell = findCell(pPage, pPage->nCell-1);
7348     pStop = &pCell[9];
7349     while( (*(pCell++)&0x80) && pCell<pStop );
7350     pStop = &pCell[9];
7351     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7352 
7353     /* Insert the new divider cell into pParent. */
7354     if( rc==SQLITE_OK ){
7355       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7356                    0, pPage->pgno, &rc);
7357     }
7358 
7359     /* Set the right-child pointer of pParent to point to the new page. */
7360     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7361 
7362     /* Release the reference to the new page. */
7363     releasePage(pNew);
7364   }
7365 
7366   return rc;
7367 }
7368 #endif /* SQLITE_OMIT_QUICKBALANCE */
7369 
7370 #if 0
7371 /*
7372 ** This function does not contribute anything to the operation of SQLite.
7373 ** it is sometimes activated temporarily while debugging code responsible
7374 ** for setting pointer-map entries.
7375 */
7376 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7377   int i, j;
7378   for(i=0; i<nPage; i++){
7379     Pgno n;
7380     u8 e;
7381     MemPage *pPage = apPage[i];
7382     BtShared *pBt = pPage->pBt;
7383     assert( pPage->isInit );
7384 
7385     for(j=0; j<pPage->nCell; j++){
7386       CellInfo info;
7387       u8 *z;
7388 
7389       z = findCell(pPage, j);
7390       pPage->xParseCell(pPage, z, &info);
7391       if( info.nLocal<info.nPayload ){
7392         Pgno ovfl = get4byte(&z[info.nSize-4]);
7393         ptrmapGet(pBt, ovfl, &e, &n);
7394         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7395       }
7396       if( !pPage->leaf ){
7397         Pgno child = get4byte(z);
7398         ptrmapGet(pBt, child, &e, &n);
7399         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7400       }
7401     }
7402     if( !pPage->leaf ){
7403       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7404       ptrmapGet(pBt, child, &e, &n);
7405       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7406     }
7407   }
7408   return 1;
7409 }
7410 #endif
7411 
7412 /*
7413 ** This function is used to copy the contents of the b-tree node stored
7414 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7415 ** the pointer-map entries for each child page are updated so that the
7416 ** parent page stored in the pointer map is page pTo. If pFrom contained
7417 ** any cells with overflow page pointers, then the corresponding pointer
7418 ** map entries are also updated so that the parent page is page pTo.
7419 **
7420 ** If pFrom is currently carrying any overflow cells (entries in the
7421 ** MemPage.apOvfl[] array), they are not copied to pTo.
7422 **
7423 ** Before returning, page pTo is reinitialized using btreeInitPage().
7424 **
7425 ** The performance of this function is not critical. It is only used by
7426 ** the balance_shallower() and balance_deeper() procedures, neither of
7427 ** which are called often under normal circumstances.
7428 */
7429 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7430   if( (*pRC)==SQLITE_OK ){
7431     BtShared * const pBt = pFrom->pBt;
7432     u8 * const aFrom = pFrom->aData;
7433     u8 * const aTo = pTo->aData;
7434     int const iFromHdr = pFrom->hdrOffset;
7435     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7436     int rc;
7437     int iData;
7438 
7439 
7440     assert( pFrom->isInit );
7441     assert( pFrom->nFree>=iToHdr );
7442     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7443 
7444     /* Copy the b-tree node content from page pFrom to page pTo. */
7445     iData = get2byte(&aFrom[iFromHdr+5]);
7446     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7447     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7448 
7449     /* Reinitialize page pTo so that the contents of the MemPage structure
7450     ** match the new data. The initialization of pTo can actually fail under
7451     ** fairly obscure circumstances, even though it is a copy of initialized
7452     ** page pFrom.
7453     */
7454     pTo->isInit = 0;
7455     rc = btreeInitPage(pTo);
7456     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7457     if( rc!=SQLITE_OK ){
7458       *pRC = rc;
7459       return;
7460     }
7461 
7462     /* If this is an auto-vacuum database, update the pointer-map entries
7463     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7464     */
7465     if( ISAUTOVACUUM ){
7466       *pRC = setChildPtrmaps(pTo);
7467     }
7468   }
7469 }
7470 
7471 /*
7472 ** This routine redistributes cells on the iParentIdx'th child of pParent
7473 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7474 ** same amount of free space. Usually a single sibling on either side of the
7475 ** page are used in the balancing, though both siblings might come from one
7476 ** side if the page is the first or last child of its parent. If the page
7477 ** has fewer than 2 siblings (something which can only happen if the page
7478 ** is a root page or a child of a root page) then all available siblings
7479 ** participate in the balancing.
7480 **
7481 ** The number of siblings of the page might be increased or decreased by
7482 ** one or two in an effort to keep pages nearly full but not over full.
7483 **
7484 ** Note that when this routine is called, some of the cells on the page
7485 ** might not actually be stored in MemPage.aData[]. This can happen
7486 ** if the page is overfull. This routine ensures that all cells allocated
7487 ** to the page and its siblings fit into MemPage.aData[] before returning.
7488 **
7489 ** In the course of balancing the page and its siblings, cells may be
7490 ** inserted into or removed from the parent page (pParent). Doing so
7491 ** may cause the parent page to become overfull or underfull. If this
7492 ** happens, it is the responsibility of the caller to invoke the correct
7493 ** balancing routine to fix this problem (see the balance() routine).
7494 **
7495 ** If this routine fails for any reason, it might leave the database
7496 ** in a corrupted state. So if this routine fails, the database should
7497 ** be rolled back.
7498 **
7499 ** The third argument to this function, aOvflSpace, is a pointer to a
7500 ** buffer big enough to hold one page. If while inserting cells into the parent
7501 ** page (pParent) the parent page becomes overfull, this buffer is
7502 ** used to store the parent's overflow cells. Because this function inserts
7503 ** a maximum of four divider cells into the parent page, and the maximum
7504 ** size of a cell stored within an internal node is always less than 1/4
7505 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7506 ** enough for all overflow cells.
7507 **
7508 ** If aOvflSpace is set to a null pointer, this function returns
7509 ** SQLITE_NOMEM.
7510 */
7511 static int balance_nonroot(
7512   MemPage *pParent,               /* Parent page of siblings being balanced */
7513   int iParentIdx,                 /* Index of "the page" in pParent */
7514   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7515   int isRoot,                     /* True if pParent is a root-page */
7516   int bBulk                       /* True if this call is part of a bulk load */
7517 ){
7518   BtShared *pBt;               /* The whole database */
7519   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7520   int nNew = 0;                /* Number of pages in apNew[] */
7521   int nOld;                    /* Number of pages in apOld[] */
7522   int i, j, k;                 /* Loop counters */
7523   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7524   int rc = SQLITE_OK;          /* The return code */
7525   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7526   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7527   int usableSpace;             /* Bytes in pPage beyond the header */
7528   int pageFlags;               /* Value of pPage->aData[0] */
7529   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7530   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7531   int szScratch;               /* Size of scratch memory requested */
7532   MemPage *apOld[NB];          /* pPage and up to two siblings */
7533   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7534   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7535   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7536   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7537   int cntOld[NB+2];            /* Old index in b.apCell[] */
7538   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7539   u8 *aSpace1;                 /* Space for copies of dividers cells */
7540   Pgno pgno;                   /* Temp var to store a page number in */
7541   u8 abDone[NB+2];             /* True after i'th new page is populated */
7542   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7543   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7544   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7545   CellArray b;                  /* Parsed information on cells being balanced */
7546 
7547   memset(abDone, 0, sizeof(abDone));
7548   b.nCell = 0;
7549   b.apCell = 0;
7550   pBt = pParent->pBt;
7551   assert( sqlite3_mutex_held(pBt->mutex) );
7552   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7553 
7554   /* At this point pParent may have at most one overflow cell. And if
7555   ** this overflow cell is present, it must be the cell with
7556   ** index iParentIdx. This scenario comes about when this function
7557   ** is called (indirectly) from sqlite3BtreeDelete().
7558   */
7559   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7560   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7561 
7562   if( !aOvflSpace ){
7563     return SQLITE_NOMEM_BKPT;
7564   }
7565   assert( pParent->nFree>=0 );
7566 
7567   /* Find the sibling pages to balance. Also locate the cells in pParent
7568   ** that divide the siblings. An attempt is made to find NN siblings on
7569   ** either side of pPage. More siblings are taken from one side, however,
7570   ** if there are fewer than NN siblings on the other side. If pParent
7571   ** has NB or fewer children then all children of pParent are taken.
7572   **
7573   ** This loop also drops the divider cells from the parent page. This
7574   ** way, the remainder of the function does not have to deal with any
7575   ** overflow cells in the parent page, since if any existed they will
7576   ** have already been removed.
7577   */
7578   i = pParent->nOverflow + pParent->nCell;
7579   if( i<2 ){
7580     nxDiv = 0;
7581   }else{
7582     assert( bBulk==0 || bBulk==1 );
7583     if( iParentIdx==0 ){
7584       nxDiv = 0;
7585     }else if( iParentIdx==i ){
7586       nxDiv = i-2+bBulk;
7587     }else{
7588       nxDiv = iParentIdx-1;
7589     }
7590     i = 2-bBulk;
7591   }
7592   nOld = i+1;
7593   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7594     pRight = &pParent->aData[pParent->hdrOffset+8];
7595   }else{
7596     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7597   }
7598   pgno = get4byte(pRight);
7599   while( 1 ){
7600     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7601     if( rc ){
7602       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7603       goto balance_cleanup;
7604     }
7605     if( apOld[i]->nFree<0 ){
7606       rc = btreeComputeFreeSpace(apOld[i]);
7607       if( rc ){
7608         memset(apOld, 0, (i)*sizeof(MemPage*));
7609         goto balance_cleanup;
7610       }
7611     }
7612     if( (i--)==0 ) break;
7613 
7614     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7615       apDiv[i] = pParent->apOvfl[0];
7616       pgno = get4byte(apDiv[i]);
7617       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7618       pParent->nOverflow = 0;
7619     }else{
7620       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7621       pgno = get4byte(apDiv[i]);
7622       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7623 
7624       /* Drop the cell from the parent page. apDiv[i] still points to
7625       ** the cell within the parent, even though it has been dropped.
7626       ** This is safe because dropping a cell only overwrites the first
7627       ** four bytes of it, and this function does not need the first
7628       ** four bytes of the divider cell. So the pointer is safe to use
7629       ** later on.
7630       **
7631       ** But not if we are in secure-delete mode. In secure-delete mode,
7632       ** the dropCell() routine will overwrite the entire cell with zeroes.
7633       ** In this case, temporarily copy the cell into the aOvflSpace[]
7634       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7635       ** is allocated.  */
7636       if( pBt->btsFlags & BTS_FAST_SECURE ){
7637         int iOff;
7638 
7639         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7640         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7641           rc = SQLITE_CORRUPT_BKPT;
7642           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7643           goto balance_cleanup;
7644         }else{
7645           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7646           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7647         }
7648       }
7649       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7650     }
7651   }
7652 
7653   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7654   ** alignment */
7655   nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
7656   nMaxCells = (nMaxCells + 3)&~3;
7657 
7658   /*
7659   ** Allocate space for memory structures
7660   */
7661   szScratch =
7662        nMaxCells*sizeof(u8*)                       /* b.apCell */
7663      + nMaxCells*sizeof(u16)                       /* b.szCell */
7664      + pBt->pageSize;                              /* aSpace1 */
7665 
7666   assert( szScratch<=7*(int)pBt->pageSize );
7667   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7668   if( b.apCell==0 ){
7669     rc = SQLITE_NOMEM_BKPT;
7670     goto balance_cleanup;
7671   }
7672   b.szCell = (u16*)&b.apCell[nMaxCells];
7673   aSpace1 = (u8*)&b.szCell[nMaxCells];
7674   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7675 
7676   /*
7677   ** Load pointers to all cells on sibling pages and the divider cells
7678   ** into the local b.apCell[] array.  Make copies of the divider cells
7679   ** into space obtained from aSpace1[]. The divider cells have already
7680   ** been removed from pParent.
7681   **
7682   ** If the siblings are on leaf pages, then the child pointers of the
7683   ** divider cells are stripped from the cells before they are copied
7684   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7685   ** child pointers.  If siblings are not leaves, then all cell in
7686   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7687   ** are alike.
7688   **
7689   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7690   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7691   */
7692   b.pRef = apOld[0];
7693   leafCorrection = b.pRef->leaf*4;
7694   leafData = b.pRef->intKeyLeaf;
7695   for(i=0; i<nOld; i++){
7696     MemPage *pOld = apOld[i];
7697     int limit = pOld->nCell;
7698     u8 *aData = pOld->aData;
7699     u16 maskPage = pOld->maskPage;
7700     u8 *piCell = aData + pOld->cellOffset;
7701     u8 *piEnd;
7702     VVA_ONLY( int nCellAtStart = b.nCell; )
7703 
7704     /* Verify that all sibling pages are of the same "type" (table-leaf,
7705     ** table-interior, index-leaf, or index-interior).
7706     */
7707     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7708       rc = SQLITE_CORRUPT_BKPT;
7709       goto balance_cleanup;
7710     }
7711 
7712     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7713     ** contains overflow cells, include them in the b.apCell[] array
7714     ** in the correct spot.
7715     **
7716     ** Note that when there are multiple overflow cells, it is always the
7717     ** case that they are sequential and adjacent.  This invariant arises
7718     ** because multiple overflows can only occurs when inserting divider
7719     ** cells into a parent on a prior balance, and divider cells are always
7720     ** adjacent and are inserted in order.  There is an assert() tagged
7721     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7722     ** invariant.
7723     **
7724     ** This must be done in advance.  Once the balance starts, the cell
7725     ** offset section of the btree page will be overwritten and we will no
7726     ** long be able to find the cells if a pointer to each cell is not saved
7727     ** first.
7728     */
7729     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7730     if( pOld->nOverflow>0 ){
7731       if( NEVER(limit<pOld->aiOvfl[0]) ){
7732         rc = SQLITE_CORRUPT_BKPT;
7733         goto balance_cleanup;
7734       }
7735       limit = pOld->aiOvfl[0];
7736       for(j=0; j<limit; j++){
7737         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7738         piCell += 2;
7739         b.nCell++;
7740       }
7741       for(k=0; k<pOld->nOverflow; k++){
7742         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7743         b.apCell[b.nCell] = pOld->apOvfl[k];
7744         b.nCell++;
7745       }
7746     }
7747     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7748     while( piCell<piEnd ){
7749       assert( b.nCell<nMaxCells );
7750       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7751       piCell += 2;
7752       b.nCell++;
7753     }
7754     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7755 
7756     cntOld[i] = b.nCell;
7757     if( i<nOld-1 && !leafData){
7758       u16 sz = (u16)szNew[i];
7759       u8 *pTemp;
7760       assert( b.nCell<nMaxCells );
7761       b.szCell[b.nCell] = sz;
7762       pTemp = &aSpace1[iSpace1];
7763       iSpace1 += sz;
7764       assert( sz<=pBt->maxLocal+23 );
7765       assert( iSpace1 <= (int)pBt->pageSize );
7766       memcpy(pTemp, apDiv[i], sz);
7767       b.apCell[b.nCell] = pTemp+leafCorrection;
7768       assert( leafCorrection==0 || leafCorrection==4 );
7769       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7770       if( !pOld->leaf ){
7771         assert( leafCorrection==0 );
7772         assert( pOld->hdrOffset==0 );
7773         /* The right pointer of the child page pOld becomes the left
7774         ** pointer of the divider cell */
7775         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7776       }else{
7777         assert( leafCorrection==4 );
7778         while( b.szCell[b.nCell]<4 ){
7779           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7780           ** does exist, pad it with 0x00 bytes. */
7781           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7782           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7783           aSpace1[iSpace1++] = 0x00;
7784           b.szCell[b.nCell]++;
7785         }
7786       }
7787       b.nCell++;
7788     }
7789   }
7790 
7791   /*
7792   ** Figure out the number of pages needed to hold all b.nCell cells.
7793   ** Store this number in "k".  Also compute szNew[] which is the total
7794   ** size of all cells on the i-th page and cntNew[] which is the index
7795   ** in b.apCell[] of the cell that divides page i from page i+1.
7796   ** cntNew[k] should equal b.nCell.
7797   **
7798   ** Values computed by this block:
7799   **
7800   **           k: The total number of sibling pages
7801   **    szNew[i]: Spaced used on the i-th sibling page.
7802   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7803   **              the right of the i-th sibling page.
7804   ** usableSpace: Number of bytes of space available on each sibling.
7805   **
7806   */
7807   usableSpace = pBt->usableSize - 12 + leafCorrection;
7808   for(i=k=0; i<nOld; i++, k++){
7809     MemPage *p = apOld[i];
7810     b.apEnd[k] = p->aDataEnd;
7811     b.ixNx[k] = cntOld[i];
7812     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7813       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7814     }
7815     if( !leafData ){
7816       k++;
7817       b.apEnd[k] = pParent->aDataEnd;
7818       b.ixNx[k] = cntOld[i]+1;
7819     }
7820     assert( p->nFree>=0 );
7821     szNew[i] = usableSpace - p->nFree;
7822     for(j=0; j<p->nOverflow; j++){
7823       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7824     }
7825     cntNew[i] = cntOld[i];
7826   }
7827   k = nOld;
7828   for(i=0; i<k; i++){
7829     int sz;
7830     while( szNew[i]>usableSpace ){
7831       if( i+1>=k ){
7832         k = i+2;
7833         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7834         szNew[k-1] = 0;
7835         cntNew[k-1] = b.nCell;
7836       }
7837       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7838       szNew[i] -= sz;
7839       if( !leafData ){
7840         if( cntNew[i]<b.nCell ){
7841           sz = 2 + cachedCellSize(&b, cntNew[i]);
7842         }else{
7843           sz = 0;
7844         }
7845       }
7846       szNew[i+1] += sz;
7847       cntNew[i]--;
7848     }
7849     while( cntNew[i]<b.nCell ){
7850       sz = 2 + cachedCellSize(&b, cntNew[i]);
7851       if( szNew[i]+sz>usableSpace ) break;
7852       szNew[i] += sz;
7853       cntNew[i]++;
7854       if( !leafData ){
7855         if( cntNew[i]<b.nCell ){
7856           sz = 2 + cachedCellSize(&b, cntNew[i]);
7857         }else{
7858           sz = 0;
7859         }
7860       }
7861       szNew[i+1] -= sz;
7862     }
7863     if( cntNew[i]>=b.nCell ){
7864       k = i+1;
7865     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7866       rc = SQLITE_CORRUPT_BKPT;
7867       goto balance_cleanup;
7868     }
7869   }
7870 
7871   /*
7872   ** The packing computed by the previous block is biased toward the siblings
7873   ** on the left side (siblings with smaller keys). The left siblings are
7874   ** always nearly full, while the right-most sibling might be nearly empty.
7875   ** The next block of code attempts to adjust the packing of siblings to
7876   ** get a better balance.
7877   **
7878   ** This adjustment is more than an optimization.  The packing above might
7879   ** be so out of balance as to be illegal.  For example, the right-most
7880   ** sibling might be completely empty.  This adjustment is not optional.
7881   */
7882   for(i=k-1; i>0; i--){
7883     int szRight = szNew[i];  /* Size of sibling on the right */
7884     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7885     int r;              /* Index of right-most cell in left sibling */
7886     int d;              /* Index of first cell to the left of right sibling */
7887 
7888     r = cntNew[i-1] - 1;
7889     d = r + 1 - leafData;
7890     (void)cachedCellSize(&b, d);
7891     do{
7892       assert( d<nMaxCells );
7893       assert( r<nMaxCells );
7894       (void)cachedCellSize(&b, r);
7895       if( szRight!=0
7896        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7897         break;
7898       }
7899       szRight += b.szCell[d] + 2;
7900       szLeft -= b.szCell[r] + 2;
7901       cntNew[i-1] = r;
7902       r--;
7903       d--;
7904     }while( r>=0 );
7905     szNew[i] = szRight;
7906     szNew[i-1] = szLeft;
7907     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7908       rc = SQLITE_CORRUPT_BKPT;
7909       goto balance_cleanup;
7910     }
7911   }
7912 
7913   /* Sanity check:  For a non-corrupt database file one of the follwing
7914   ** must be true:
7915   **    (1) We found one or more cells (cntNew[0])>0), or
7916   **    (2) pPage is a virtual root page.  A virtual root page is when
7917   **        the real root page is page 1 and we are the only child of
7918   **        that page.
7919   */
7920   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7921   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7922     apOld[0]->pgno, apOld[0]->nCell,
7923     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7924     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7925   ));
7926 
7927   /*
7928   ** Allocate k new pages.  Reuse old pages where possible.
7929   */
7930   pageFlags = apOld[0]->aData[0];
7931   for(i=0; i<k; i++){
7932     MemPage *pNew;
7933     if( i<nOld ){
7934       pNew = apNew[i] = apOld[i];
7935       apOld[i] = 0;
7936       rc = sqlite3PagerWrite(pNew->pDbPage);
7937       nNew++;
7938       if( rc ) goto balance_cleanup;
7939     }else{
7940       assert( i>0 );
7941       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7942       if( rc ) goto balance_cleanup;
7943       zeroPage(pNew, pageFlags);
7944       apNew[i] = pNew;
7945       nNew++;
7946       cntOld[i] = b.nCell;
7947 
7948       /* Set the pointer-map entry for the new sibling page. */
7949       if( ISAUTOVACUUM ){
7950         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7951         if( rc!=SQLITE_OK ){
7952           goto balance_cleanup;
7953         }
7954       }
7955     }
7956   }
7957 
7958   /*
7959   ** Reassign page numbers so that the new pages are in ascending order.
7960   ** This helps to keep entries in the disk file in order so that a scan
7961   ** of the table is closer to a linear scan through the file. That in turn
7962   ** helps the operating system to deliver pages from the disk more rapidly.
7963   **
7964   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7965   ** than (NB+2) (a small constant), that should not be a problem.
7966   **
7967   ** When NB==3, this one optimization makes the database about 25% faster
7968   ** for large insertions and deletions.
7969   */
7970   for(i=0; i<nNew; i++){
7971     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7972     aPgFlags[i] = apNew[i]->pDbPage->flags;
7973     for(j=0; j<i; j++){
7974       if( aPgno[j]==aPgno[i] ){
7975         /* This branch is taken if the set of sibling pages somehow contains
7976         ** duplicate entries. This can happen if the database is corrupt.
7977         ** It would be simpler to detect this as part of the loop below, but
7978         ** we do the detection here in order to avoid populating the pager
7979         ** cache with two separate objects associated with the same
7980         ** page number.  */
7981         assert( CORRUPT_DB );
7982         rc = SQLITE_CORRUPT_BKPT;
7983         goto balance_cleanup;
7984       }
7985     }
7986   }
7987   for(i=0; i<nNew; i++){
7988     int iBest = 0;                /* aPgno[] index of page number to use */
7989     for(j=1; j<nNew; j++){
7990       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7991     }
7992     pgno = aPgOrder[iBest];
7993     aPgOrder[iBest] = 0xffffffff;
7994     if( iBest!=i ){
7995       if( iBest>i ){
7996         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7997       }
7998       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7999       apNew[i]->pgno = pgno;
8000     }
8001   }
8002 
8003   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8004          "%d(%d nc=%d) %d(%d nc=%d)\n",
8005     apNew[0]->pgno, szNew[0], cntNew[0],
8006     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8007     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8008     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8009     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8010     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8011     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8012     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8013     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8014   ));
8015 
8016   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8017   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8018   assert( apNew[nNew-1]!=0 );
8019   put4byte(pRight, apNew[nNew-1]->pgno);
8020 
8021   /* If the sibling pages are not leaves, ensure that the right-child pointer
8022   ** of the right-most new sibling page is set to the value that was
8023   ** originally in the same field of the right-most old sibling page. */
8024   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8025     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8026     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8027   }
8028 
8029   /* Make any required updates to pointer map entries associated with
8030   ** cells stored on sibling pages following the balance operation. Pointer
8031   ** map entries associated with divider cells are set by the insertCell()
8032   ** routine. The associated pointer map entries are:
8033   **
8034   **   a) if the cell contains a reference to an overflow chain, the
8035   **      entry associated with the first page in the overflow chain, and
8036   **
8037   **   b) if the sibling pages are not leaves, the child page associated
8038   **      with the cell.
8039   **
8040   ** If the sibling pages are not leaves, then the pointer map entry
8041   ** associated with the right-child of each sibling may also need to be
8042   ** updated. This happens below, after the sibling pages have been
8043   ** populated, not here.
8044   */
8045   if( ISAUTOVACUUM ){
8046     MemPage *pOld;
8047     MemPage *pNew = pOld = apNew[0];
8048     int cntOldNext = pNew->nCell + pNew->nOverflow;
8049     int iNew = 0;
8050     int iOld = 0;
8051 
8052     for(i=0; i<b.nCell; i++){
8053       u8 *pCell = b.apCell[i];
8054       while( i==cntOldNext ){
8055         iOld++;
8056         assert( iOld<nNew || iOld<nOld );
8057         assert( iOld>=0 && iOld<NB );
8058         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8059         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8060       }
8061       if( i==cntNew[iNew] ){
8062         pNew = apNew[++iNew];
8063         if( !leafData ) continue;
8064       }
8065 
8066       /* Cell pCell is destined for new sibling page pNew. Originally, it
8067       ** was either part of sibling page iOld (possibly an overflow cell),
8068       ** or else the divider cell to the left of sibling page iOld. So,
8069       ** if sibling page iOld had the same page number as pNew, and if
8070       ** pCell really was a part of sibling page iOld (not a divider or
8071       ** overflow cell), we can skip updating the pointer map entries.  */
8072       if( iOld>=nNew
8073        || pNew->pgno!=aPgno[iOld]
8074        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8075       ){
8076         if( !leafCorrection ){
8077           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8078         }
8079         if( cachedCellSize(&b,i)>pNew->minLocal ){
8080           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8081         }
8082         if( rc ) goto balance_cleanup;
8083       }
8084     }
8085   }
8086 
8087   /* Insert new divider cells into pParent. */
8088   for(i=0; i<nNew-1; i++){
8089     u8 *pCell;
8090     u8 *pTemp;
8091     int sz;
8092     MemPage *pNew = apNew[i];
8093     j = cntNew[i];
8094 
8095     assert( j<nMaxCells );
8096     assert( b.apCell[j]!=0 );
8097     pCell = b.apCell[j];
8098     sz = b.szCell[j] + leafCorrection;
8099     pTemp = &aOvflSpace[iOvflSpace];
8100     if( !pNew->leaf ){
8101       memcpy(&pNew->aData[8], pCell, 4);
8102     }else if( leafData ){
8103       /* If the tree is a leaf-data tree, and the siblings are leaves,
8104       ** then there is no divider cell in b.apCell[]. Instead, the divider
8105       ** cell consists of the integer key for the right-most cell of
8106       ** the sibling-page assembled above only.
8107       */
8108       CellInfo info;
8109       j--;
8110       pNew->xParseCell(pNew, b.apCell[j], &info);
8111       pCell = pTemp;
8112       sz = 4 + putVarint(&pCell[4], info.nKey);
8113       pTemp = 0;
8114     }else{
8115       pCell -= 4;
8116       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8117       ** previously stored on a leaf node, and its reported size was 4
8118       ** bytes, then it may actually be smaller than this
8119       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8120       ** any cell). But it is important to pass the correct size to
8121       ** insertCell(), so reparse the cell now.
8122       **
8123       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8124       ** and WITHOUT ROWID tables with exactly one column which is the
8125       ** primary key.
8126       */
8127       if( b.szCell[j]==4 ){
8128         assert(leafCorrection==4);
8129         sz = pParent->xCellSize(pParent, pCell);
8130       }
8131     }
8132     iOvflSpace += sz;
8133     assert( sz<=pBt->maxLocal+23 );
8134     assert( iOvflSpace <= (int)pBt->pageSize );
8135     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8136     if( rc!=SQLITE_OK ) goto balance_cleanup;
8137     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8138   }
8139 
8140   /* Now update the actual sibling pages. The order in which they are updated
8141   ** is important, as this code needs to avoid disrupting any page from which
8142   ** cells may still to be read. In practice, this means:
8143   **
8144   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8145   **      then it is not safe to update page apNew[iPg] until after
8146   **      the left-hand sibling apNew[iPg-1] has been updated.
8147   **
8148   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8149   **      then it is not safe to update page apNew[iPg] until after
8150   **      the right-hand sibling apNew[iPg+1] has been updated.
8151   **
8152   ** If neither of the above apply, the page is safe to update.
8153   **
8154   ** The iPg value in the following loop starts at nNew-1 goes down
8155   ** to 0, then back up to nNew-1 again, thus making two passes over
8156   ** the pages.  On the initial downward pass, only condition (1) above
8157   ** needs to be tested because (2) will always be true from the previous
8158   ** step.  On the upward pass, both conditions are always true, so the
8159   ** upwards pass simply processes pages that were missed on the downward
8160   ** pass.
8161   */
8162   for(i=1-nNew; i<nNew; i++){
8163     int iPg = i<0 ? -i : i;
8164     assert( iPg>=0 && iPg<nNew );
8165     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8166     if( i>=0                            /* On the upwards pass, or... */
8167      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8168     ){
8169       int iNew;
8170       int iOld;
8171       int nNewCell;
8172 
8173       /* Verify condition (1):  If cells are moving left, update iPg
8174       ** only after iPg-1 has already been updated. */
8175       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8176 
8177       /* Verify condition (2):  If cells are moving right, update iPg
8178       ** only after iPg+1 has already been updated. */
8179       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8180 
8181       if( iPg==0 ){
8182         iNew = iOld = 0;
8183         nNewCell = cntNew[0];
8184       }else{
8185         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8186         iNew = cntNew[iPg-1] + !leafData;
8187         nNewCell = cntNew[iPg] - iNew;
8188       }
8189 
8190       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8191       if( rc ) goto balance_cleanup;
8192       abDone[iPg]++;
8193       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8194       assert( apNew[iPg]->nOverflow==0 );
8195       assert( apNew[iPg]->nCell==nNewCell );
8196     }
8197   }
8198 
8199   /* All pages have been processed exactly once */
8200   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8201 
8202   assert( nOld>0 );
8203   assert( nNew>0 );
8204 
8205   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8206     /* The root page of the b-tree now contains no cells. The only sibling
8207     ** page is the right-child of the parent. Copy the contents of the
8208     ** child page into the parent, decreasing the overall height of the
8209     ** b-tree structure by one. This is described as the "balance-shallower"
8210     ** sub-algorithm in some documentation.
8211     **
8212     ** If this is an auto-vacuum database, the call to copyNodeContent()
8213     ** sets all pointer-map entries corresponding to database image pages
8214     ** for which the pointer is stored within the content being copied.
8215     **
8216     ** It is critical that the child page be defragmented before being
8217     ** copied into the parent, because if the parent is page 1 then it will
8218     ** by smaller than the child due to the database header, and so all the
8219     ** free space needs to be up front.
8220     */
8221     assert( nNew==1 || CORRUPT_DB );
8222     rc = defragmentPage(apNew[0], -1);
8223     testcase( rc!=SQLITE_OK );
8224     assert( apNew[0]->nFree ==
8225         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8226           - apNew[0]->nCell*2)
8227       || rc!=SQLITE_OK
8228     );
8229     copyNodeContent(apNew[0], pParent, &rc);
8230     freePage(apNew[0], &rc);
8231   }else if( ISAUTOVACUUM && !leafCorrection ){
8232     /* Fix the pointer map entries associated with the right-child of each
8233     ** sibling page. All other pointer map entries have already been taken
8234     ** care of.  */
8235     for(i=0; i<nNew; i++){
8236       u32 key = get4byte(&apNew[i]->aData[8]);
8237       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8238     }
8239   }
8240 
8241   assert( pParent->isInit );
8242   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8243           nOld, nNew, b.nCell));
8244 
8245   /* Free any old pages that were not reused as new pages.
8246   */
8247   for(i=nNew; i<nOld; i++){
8248     freePage(apOld[i], &rc);
8249   }
8250 
8251 #if 0
8252   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8253     /* The ptrmapCheckPages() contains assert() statements that verify that
8254     ** all pointer map pages are set correctly. This is helpful while
8255     ** debugging. This is usually disabled because a corrupt database may
8256     ** cause an assert() statement to fail.  */
8257     ptrmapCheckPages(apNew, nNew);
8258     ptrmapCheckPages(&pParent, 1);
8259   }
8260 #endif
8261 
8262   /*
8263   ** Cleanup before returning.
8264   */
8265 balance_cleanup:
8266   sqlite3StackFree(0, b.apCell);
8267   for(i=0; i<nOld; i++){
8268     releasePage(apOld[i]);
8269   }
8270   for(i=0; i<nNew; i++){
8271     releasePage(apNew[i]);
8272   }
8273 
8274   return rc;
8275 }
8276 
8277 
8278 /*
8279 ** This function is called when the root page of a b-tree structure is
8280 ** overfull (has one or more overflow pages).
8281 **
8282 ** A new child page is allocated and the contents of the current root
8283 ** page, including overflow cells, are copied into the child. The root
8284 ** page is then overwritten to make it an empty page with the right-child
8285 ** pointer pointing to the new page.
8286 **
8287 ** Before returning, all pointer-map entries corresponding to pages
8288 ** that the new child-page now contains pointers to are updated. The
8289 ** entry corresponding to the new right-child pointer of the root
8290 ** page is also updated.
8291 **
8292 ** If successful, *ppChild is set to contain a reference to the child
8293 ** page and SQLITE_OK is returned. In this case the caller is required
8294 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8295 ** an error code is returned and *ppChild is set to 0.
8296 */
8297 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8298   int rc;                        /* Return value from subprocedures */
8299   MemPage *pChild = 0;           /* Pointer to a new child page */
8300   Pgno pgnoChild = 0;            /* Page number of the new child page */
8301   BtShared *pBt = pRoot->pBt;    /* The BTree */
8302 
8303   assert( pRoot->nOverflow>0 );
8304   assert( sqlite3_mutex_held(pBt->mutex) );
8305 
8306   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8307   ** page that will become the new right-child of pPage. Copy the contents
8308   ** of the node stored on pRoot into the new child page.
8309   */
8310   rc = sqlite3PagerWrite(pRoot->pDbPage);
8311   if( rc==SQLITE_OK ){
8312     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8313     copyNodeContent(pRoot, pChild, &rc);
8314     if( ISAUTOVACUUM ){
8315       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8316     }
8317   }
8318   if( rc ){
8319     *ppChild = 0;
8320     releasePage(pChild);
8321     return rc;
8322   }
8323   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8324   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8325   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8326 
8327   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8328 
8329   /* Copy the overflow cells from pRoot to pChild */
8330   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8331          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8332   memcpy(pChild->apOvfl, pRoot->apOvfl,
8333          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8334   pChild->nOverflow = pRoot->nOverflow;
8335 
8336   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8337   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8338   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8339 
8340   *ppChild = pChild;
8341   return SQLITE_OK;
8342 }
8343 
8344 /*
8345 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8346 ** on the same B-tree as pCur.
8347 **
8348 ** This can if a database is corrupt with two or more SQL tables
8349 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8350 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8351 ** table linked to the same b-tree.  If the secondary insert causes a
8352 ** rebalance, that can change content out from under the cursor on the
8353 ** first SQL table, violating invariants on the first insert.
8354 */
8355 static int anotherValidCursor(BtCursor *pCur){
8356   BtCursor *pOther;
8357   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8358     if( pOther!=pCur
8359      && pOther->eState==CURSOR_VALID
8360      && pOther->pPage==pCur->pPage
8361     ){
8362       return SQLITE_CORRUPT_BKPT;
8363     }
8364   }
8365   return SQLITE_OK;
8366 }
8367 
8368 /*
8369 ** The page that pCur currently points to has just been modified in
8370 ** some way. This function figures out if this modification means the
8371 ** tree needs to be balanced, and if so calls the appropriate balancing
8372 ** routine. Balancing routines are:
8373 **
8374 **   balance_quick()
8375 **   balance_deeper()
8376 **   balance_nonroot()
8377 */
8378 static int balance(BtCursor *pCur){
8379   int rc = SQLITE_OK;
8380   const int nMin = pCur->pBt->usableSize * 2 / 3;
8381   u8 aBalanceQuickSpace[13];
8382   u8 *pFree = 0;
8383 
8384   VVA_ONLY( int balance_quick_called = 0 );
8385   VVA_ONLY( int balance_deeper_called = 0 );
8386 
8387   do {
8388     int iPage;
8389     MemPage *pPage = pCur->pPage;
8390 
8391     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8392     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8393       break;
8394     }else if( (iPage = pCur->iPage)==0 ){
8395       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8396         /* The root page of the b-tree is overfull. In this case call the
8397         ** balance_deeper() function to create a new child for the root-page
8398         ** and copy the current contents of the root-page to it. The
8399         ** next iteration of the do-loop will balance the child page.
8400         */
8401         assert( balance_deeper_called==0 );
8402         VVA_ONLY( balance_deeper_called++ );
8403         rc = balance_deeper(pPage, &pCur->apPage[1]);
8404         if( rc==SQLITE_OK ){
8405           pCur->iPage = 1;
8406           pCur->ix = 0;
8407           pCur->aiIdx[0] = 0;
8408           pCur->apPage[0] = pPage;
8409           pCur->pPage = pCur->apPage[1];
8410           assert( pCur->pPage->nOverflow );
8411         }
8412       }else{
8413         break;
8414       }
8415     }else{
8416       MemPage * const pParent = pCur->apPage[iPage-1];
8417       int const iIdx = pCur->aiIdx[iPage-1];
8418 
8419       rc = sqlite3PagerWrite(pParent->pDbPage);
8420       if( rc==SQLITE_OK && pParent->nFree<0 ){
8421         rc = btreeComputeFreeSpace(pParent);
8422       }
8423       if( rc==SQLITE_OK ){
8424 #ifndef SQLITE_OMIT_QUICKBALANCE
8425         if( pPage->intKeyLeaf
8426          && pPage->nOverflow==1
8427          && pPage->aiOvfl[0]==pPage->nCell
8428          && pParent->pgno!=1
8429          && pParent->nCell==iIdx
8430         ){
8431           /* Call balance_quick() to create a new sibling of pPage on which
8432           ** to store the overflow cell. balance_quick() inserts a new cell
8433           ** into pParent, which may cause pParent overflow. If this
8434           ** happens, the next iteration of the do-loop will balance pParent
8435           ** use either balance_nonroot() or balance_deeper(). Until this
8436           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8437           ** buffer.
8438           **
8439           ** The purpose of the following assert() is to check that only a
8440           ** single call to balance_quick() is made for each call to this
8441           ** function. If this were not verified, a subtle bug involving reuse
8442           ** of the aBalanceQuickSpace[] might sneak in.
8443           */
8444           assert( balance_quick_called==0 );
8445           VVA_ONLY( balance_quick_called++ );
8446           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8447         }else
8448 #endif
8449         {
8450           /* In this case, call balance_nonroot() to redistribute cells
8451           ** between pPage and up to 2 of its sibling pages. This involves
8452           ** modifying the contents of pParent, which may cause pParent to
8453           ** become overfull or underfull. The next iteration of the do-loop
8454           ** will balance the parent page to correct this.
8455           **
8456           ** If the parent page becomes overfull, the overflow cell or cells
8457           ** are stored in the pSpace buffer allocated immediately below.
8458           ** A subsequent iteration of the do-loop will deal with this by
8459           ** calling balance_nonroot() (balance_deeper() may be called first,
8460           ** but it doesn't deal with overflow cells - just moves them to a
8461           ** different page). Once this subsequent call to balance_nonroot()
8462           ** has completed, it is safe to release the pSpace buffer used by
8463           ** the previous call, as the overflow cell data will have been
8464           ** copied either into the body of a database page or into the new
8465           ** pSpace buffer passed to the latter call to balance_nonroot().
8466           */
8467           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8468           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8469                                pCur->hints&BTREE_BULKLOAD);
8470           if( pFree ){
8471             /* If pFree is not NULL, it points to the pSpace buffer used
8472             ** by a previous call to balance_nonroot(). Its contents are
8473             ** now stored either on real database pages or within the
8474             ** new pSpace buffer, so it may be safely freed here. */
8475             sqlite3PageFree(pFree);
8476           }
8477 
8478           /* The pSpace buffer will be freed after the next call to
8479           ** balance_nonroot(), or just before this function returns, whichever
8480           ** comes first. */
8481           pFree = pSpace;
8482         }
8483       }
8484 
8485       pPage->nOverflow = 0;
8486 
8487       /* The next iteration of the do-loop balances the parent page. */
8488       releasePage(pPage);
8489       pCur->iPage--;
8490       assert( pCur->iPage>=0 );
8491       pCur->pPage = pCur->apPage[pCur->iPage];
8492     }
8493   }while( rc==SQLITE_OK );
8494 
8495   if( pFree ){
8496     sqlite3PageFree(pFree);
8497   }
8498   return rc;
8499 }
8500 
8501 /* Overwrite content from pX into pDest.  Only do the write if the
8502 ** content is different from what is already there.
8503 */
8504 static int btreeOverwriteContent(
8505   MemPage *pPage,           /* MemPage on which writing will occur */
8506   u8 *pDest,                /* Pointer to the place to start writing */
8507   const BtreePayload *pX,   /* Source of data to write */
8508   int iOffset,              /* Offset of first byte to write */
8509   int iAmt                  /* Number of bytes to be written */
8510 ){
8511   int nData = pX->nData - iOffset;
8512   if( nData<=0 ){
8513     /* Overwritting with zeros */
8514     int i;
8515     for(i=0; i<iAmt && pDest[i]==0; i++){}
8516     if( i<iAmt ){
8517       int rc = sqlite3PagerWrite(pPage->pDbPage);
8518       if( rc ) return rc;
8519       memset(pDest + i, 0, iAmt - i);
8520     }
8521   }else{
8522     if( nData<iAmt ){
8523       /* Mixed read data and zeros at the end.  Make a recursive call
8524       ** to write the zeros then fall through to write the real data */
8525       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8526                                  iAmt-nData);
8527       if( rc ) return rc;
8528       iAmt = nData;
8529     }
8530     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8531       int rc = sqlite3PagerWrite(pPage->pDbPage);
8532       if( rc ) return rc;
8533       /* In a corrupt database, it is possible for the source and destination
8534       ** buffers to overlap.  This is harmless since the database is already
8535       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8536       ** memmove(). */
8537       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8538     }
8539   }
8540   return SQLITE_OK;
8541 }
8542 
8543 /*
8544 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8545 ** contained in pX.
8546 */
8547 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8548   int iOffset;                        /* Next byte of pX->pData to write */
8549   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8550   int rc;                             /* Return code */
8551   MemPage *pPage = pCur->pPage;       /* Page being written */
8552   BtShared *pBt;                      /* Btree */
8553   Pgno ovflPgno;                      /* Next overflow page to write */
8554   u32 ovflPageSize;                   /* Size to write on overflow page */
8555 
8556   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8557    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8558   ){
8559     return SQLITE_CORRUPT_BKPT;
8560   }
8561   /* Overwrite the local portion first */
8562   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8563                              0, pCur->info.nLocal);
8564   if( rc ) return rc;
8565   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8566 
8567   /* Now overwrite the overflow pages */
8568   iOffset = pCur->info.nLocal;
8569   assert( nTotal>=0 );
8570   assert( iOffset>=0 );
8571   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8572   pBt = pPage->pBt;
8573   ovflPageSize = pBt->usableSize - 4;
8574   do{
8575     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8576     if( rc ) return rc;
8577     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
8578       rc = SQLITE_CORRUPT_BKPT;
8579     }else{
8580       if( iOffset+ovflPageSize<(u32)nTotal ){
8581         ovflPgno = get4byte(pPage->aData);
8582       }else{
8583         ovflPageSize = nTotal - iOffset;
8584       }
8585       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8586                                  iOffset, ovflPageSize);
8587     }
8588     sqlite3PagerUnref(pPage->pDbPage);
8589     if( rc ) return rc;
8590     iOffset += ovflPageSize;
8591   }while( iOffset<nTotal );
8592   return SQLITE_OK;
8593 }
8594 
8595 
8596 /*
8597 ** Insert a new record into the BTree.  The content of the new record
8598 ** is described by the pX object.  The pCur cursor is used only to
8599 ** define what table the record should be inserted into, and is left
8600 ** pointing at a random location.
8601 **
8602 ** For a table btree (used for rowid tables), only the pX.nKey value of
8603 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8604 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8605 ** hold the content of the row.
8606 **
8607 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8608 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8609 ** pX.pData,nData,nZero fields must be zero.
8610 **
8611 ** If the seekResult parameter is non-zero, then a successful call to
8612 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8613 ** been performed.  In other words, if seekResult!=0 then the cursor
8614 ** is currently pointing to a cell that will be adjacent to the cell
8615 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8616 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8617 ** that is larger than (pKey,nKey).
8618 **
8619 ** If seekResult==0, that means pCur is pointing at some unknown location.
8620 ** In that case, this routine must seek the cursor to the correct insertion
8621 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8622 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8623 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8624 ** to decode the key.
8625 */
8626 int sqlite3BtreeInsert(
8627   BtCursor *pCur,                /* Insert data into the table of this cursor */
8628   const BtreePayload *pX,        /* Content of the row to be inserted */
8629   int flags,                     /* True if this is likely an append */
8630   int seekResult                 /* Result of prior MovetoUnpacked() call */
8631 ){
8632   int rc;
8633   int loc = seekResult;          /* -1: before desired location  +1: after */
8634   int szNew = 0;
8635   int idx;
8636   MemPage *pPage;
8637   Btree *p = pCur->pBtree;
8638   BtShared *pBt = p->pBt;
8639   unsigned char *oldCell;
8640   unsigned char *newCell = 0;
8641 
8642   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8643 
8644   if( pCur->eState==CURSOR_FAULT ){
8645     assert( pCur->skipNext!=SQLITE_OK );
8646     return pCur->skipNext;
8647   }
8648 
8649   assert( cursorOwnsBtShared(pCur) );
8650   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8651               && pBt->inTransaction==TRANS_WRITE
8652               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8653   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8654 
8655   /* Assert that the caller has been consistent. If this cursor was opened
8656   ** expecting an index b-tree, then the caller should be inserting blob
8657   ** keys with no associated data. If the cursor was opened expecting an
8658   ** intkey table, the caller should be inserting integer keys with a
8659   ** blob of associated data.  */
8660   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8661 
8662   /* Save the positions of any other cursors open on this table.
8663   **
8664   ** In some cases, the call to btreeMoveto() below is a no-op. For
8665   ** example, when inserting data into a table with auto-generated integer
8666   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8667   ** integer key to use. It then calls this function to actually insert the
8668   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8669   ** that the cursor is already where it needs to be and returns without
8670   ** doing any work. To avoid thwarting these optimizations, it is important
8671   ** not to clear the cursor here.
8672   */
8673   if( pCur->curFlags & BTCF_Multiple ){
8674     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8675     if( rc ) return rc;
8676   }
8677 
8678   if( pCur->pKeyInfo==0 ){
8679     assert( pX->pKey==0 );
8680     /* If this is an insert into a table b-tree, invalidate any incrblob
8681     ** cursors open on the row being replaced */
8682     invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8683 
8684     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8685     ** to a row with the same key as the new entry being inserted.
8686     */
8687 #ifdef SQLITE_DEBUG
8688     if( flags & BTREE_SAVEPOSITION ){
8689       assert( pCur->curFlags & BTCF_ValidNKey );
8690       assert( pX->nKey==pCur->info.nKey );
8691       assert( loc==0 );
8692     }
8693 #endif
8694 
8695     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8696     ** that the cursor is not pointing to a row to be overwritten.
8697     ** So do a complete check.
8698     */
8699     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8700       /* The cursor is pointing to the entry that is to be
8701       ** overwritten */
8702       assert( pX->nData>=0 && pX->nZero>=0 );
8703       if( pCur->info.nSize!=0
8704        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8705       ){
8706         /* New entry is the same size as the old.  Do an overwrite */
8707         return btreeOverwriteCell(pCur, pX);
8708       }
8709       assert( loc==0 );
8710     }else if( loc==0 ){
8711       /* The cursor is *not* pointing to the cell to be overwritten, nor
8712       ** to an adjacent cell.  Move the cursor so that it is pointing either
8713       ** to the cell to be overwritten or an adjacent cell.
8714       */
8715       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8716       if( rc ) return rc;
8717     }
8718   }else{
8719     /* This is an index or a WITHOUT ROWID table */
8720 
8721     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8722     ** to a row with the same key as the new entry being inserted.
8723     */
8724     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8725 
8726     /* If the cursor is not already pointing either to the cell to be
8727     ** overwritten, or if a new cell is being inserted, if the cursor is
8728     ** not pointing to an immediately adjacent cell, then move the cursor
8729     ** so that it does.
8730     */
8731     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8732       if( pX->nMem ){
8733         UnpackedRecord r;
8734         r.pKeyInfo = pCur->pKeyInfo;
8735         r.aMem = pX->aMem;
8736         r.nField = pX->nMem;
8737         r.default_rc = 0;
8738         r.errCode = 0;
8739         r.r1 = 0;
8740         r.r2 = 0;
8741         r.eqSeen = 0;
8742         rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8743       }else{
8744         rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8745       }
8746       if( rc ) return rc;
8747     }
8748 
8749     /* If the cursor is currently pointing to an entry to be overwritten
8750     ** and the new content is the same as as the old, then use the
8751     ** overwrite optimization.
8752     */
8753     if( loc==0 ){
8754       getCellInfo(pCur);
8755       if( pCur->info.nKey==pX->nKey ){
8756         BtreePayload x2;
8757         x2.pData = pX->pKey;
8758         x2.nData = pX->nKey;
8759         x2.nZero = 0;
8760         return btreeOverwriteCell(pCur, &x2);
8761       }
8762     }
8763 
8764   }
8765   assert( pCur->eState==CURSOR_VALID
8766        || (pCur->eState==CURSOR_INVALID && loc)
8767        || CORRUPT_DB );
8768 
8769   pPage = pCur->pPage;
8770   assert( pPage->intKey || pX->nKey>=0 );
8771   assert( pPage->leaf || !pPage->intKey );
8772   if( pPage->nFree<0 ){
8773     rc = btreeComputeFreeSpace(pPage);
8774     if( rc ) return rc;
8775   }
8776 
8777   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8778           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8779           loc==0 ? "overwrite" : "new entry"));
8780   assert( pPage->isInit );
8781   newCell = pBt->pTmpSpace;
8782   assert( newCell!=0 );
8783   rc = fillInCell(pPage, newCell, pX, &szNew);
8784   if( rc ) goto end_insert;
8785   assert( szNew==pPage->xCellSize(pPage, newCell) );
8786   assert( szNew <= MX_CELL_SIZE(pBt) );
8787   idx = pCur->ix;
8788   if( loc==0 ){
8789     CellInfo info;
8790     assert( idx<pPage->nCell );
8791     rc = sqlite3PagerWrite(pPage->pDbPage);
8792     if( rc ){
8793       goto end_insert;
8794     }
8795     oldCell = findCell(pPage, idx);
8796     if( !pPage->leaf ){
8797       memcpy(newCell, oldCell, 4);
8798     }
8799     rc = clearCell(pPage, oldCell, &info);
8800     testcase( pCur->curFlags & BTCF_ValidOvfl );
8801     invalidateOverflowCache(pCur);
8802     if( info.nSize==szNew && info.nLocal==info.nPayload
8803      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8804     ){
8805       /* Overwrite the old cell with the new if they are the same size.
8806       ** We could also try to do this if the old cell is smaller, then add
8807       ** the leftover space to the free list.  But experiments show that
8808       ** doing that is no faster then skipping this optimization and just
8809       ** calling dropCell() and insertCell().
8810       **
8811       ** This optimization cannot be used on an autovacuum database if the
8812       ** new entry uses overflow pages, as the insertCell() call below is
8813       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
8814       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8815       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8816         return SQLITE_CORRUPT_BKPT;
8817       }
8818       if( oldCell+szNew > pPage->aDataEnd ){
8819         return SQLITE_CORRUPT_BKPT;
8820       }
8821       memcpy(oldCell, newCell, szNew);
8822       return SQLITE_OK;
8823     }
8824     dropCell(pPage, idx, info.nSize, &rc);
8825     if( rc ) goto end_insert;
8826   }else if( loc<0 && pPage->nCell>0 ){
8827     assert( pPage->leaf );
8828     idx = ++pCur->ix;
8829     pCur->curFlags &= ~BTCF_ValidNKey;
8830   }else{
8831     assert( pPage->leaf );
8832   }
8833   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8834   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8835   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8836 
8837   /* If no error has occurred and pPage has an overflow cell, call balance()
8838   ** to redistribute the cells within the tree. Since balance() may move
8839   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8840   ** variables.
8841   **
8842   ** Previous versions of SQLite called moveToRoot() to move the cursor
8843   ** back to the root page as balance() used to invalidate the contents
8844   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8845   ** set the cursor state to "invalid". This makes common insert operations
8846   ** slightly faster.
8847   **
8848   ** There is a subtle but important optimization here too. When inserting
8849   ** multiple records into an intkey b-tree using a single cursor (as can
8850   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8851   ** is advantageous to leave the cursor pointing to the last entry in
8852   ** the b-tree if possible. If the cursor is left pointing to the last
8853   ** entry in the table, and the next row inserted has an integer key
8854   ** larger than the largest existing key, it is possible to insert the
8855   ** row without seeking the cursor. This can be a big performance boost.
8856   */
8857   pCur->info.nSize = 0;
8858   if( pPage->nOverflow ){
8859     assert( rc==SQLITE_OK );
8860     pCur->curFlags &= ~(BTCF_ValidNKey);
8861     rc = balance(pCur);
8862 
8863     /* Must make sure nOverflow is reset to zero even if the balance()
8864     ** fails. Internal data structure corruption will result otherwise.
8865     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8866     ** from trying to save the current position of the cursor.  */
8867     pCur->pPage->nOverflow = 0;
8868     pCur->eState = CURSOR_INVALID;
8869     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8870       btreeReleaseAllCursorPages(pCur);
8871       if( pCur->pKeyInfo ){
8872         assert( pCur->pKey==0 );
8873         pCur->pKey = sqlite3Malloc( pX->nKey );
8874         if( pCur->pKey==0 ){
8875           rc = SQLITE_NOMEM;
8876         }else{
8877           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8878         }
8879       }
8880       pCur->eState = CURSOR_REQUIRESEEK;
8881       pCur->nKey = pX->nKey;
8882     }
8883   }
8884   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8885 
8886 end_insert:
8887   return rc;
8888 }
8889 
8890 /*
8891 ** Delete the entry that the cursor is pointing to.
8892 **
8893 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8894 ** the cursor is left pointing at an arbitrary location after the delete.
8895 ** But if that bit is set, then the cursor is left in a state such that
8896 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8897 ** as it would have been on if the call to BtreeDelete() had been omitted.
8898 **
8899 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8900 ** associated with a single table entry and its indexes.  Only one of those
8901 ** deletes is considered the "primary" delete.  The primary delete occurs
8902 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8903 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8904 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8905 ** but which might be used by alternative storage engines.
8906 */
8907 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8908   Btree *p = pCur->pBtree;
8909   BtShared *pBt = p->pBt;
8910   int rc;                              /* Return code */
8911   MemPage *pPage;                      /* Page to delete cell from */
8912   unsigned char *pCell;                /* Pointer to cell to delete */
8913   int iCellIdx;                        /* Index of cell to delete */
8914   int iCellDepth;                      /* Depth of node containing pCell */
8915   CellInfo info;                       /* Size of the cell being deleted */
8916   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8917   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8918 
8919   assert( cursorOwnsBtShared(pCur) );
8920   assert( pBt->inTransaction==TRANS_WRITE );
8921   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8922   assert( pCur->curFlags & BTCF_WriteFlag );
8923   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8924   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8925   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8926   if( pCur->eState==CURSOR_REQUIRESEEK ){
8927     rc = btreeRestoreCursorPosition(pCur);
8928     if( rc ) return rc;
8929   }
8930   assert( pCur->eState==CURSOR_VALID );
8931 
8932   iCellDepth = pCur->iPage;
8933   iCellIdx = pCur->ix;
8934   pPage = pCur->pPage;
8935   pCell = findCell(pPage, iCellIdx);
8936   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
8937 
8938   /* If the bPreserve flag is set to true, then the cursor position must
8939   ** be preserved following this delete operation. If the current delete
8940   ** will cause a b-tree rebalance, then this is done by saving the cursor
8941   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8942   ** returning.
8943   **
8944   ** Or, if the current delete will not cause a rebalance, then the cursor
8945   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8946   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8947   if( bPreserve ){
8948     if( !pPage->leaf
8949      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8950      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
8951     ){
8952       /* A b-tree rebalance will be required after deleting this entry.
8953       ** Save the cursor key.  */
8954       rc = saveCursorKey(pCur);
8955       if( rc ) return rc;
8956     }else{
8957       bSkipnext = 1;
8958     }
8959   }
8960 
8961   /* If the page containing the entry to delete is not a leaf page, move
8962   ** the cursor to the largest entry in the tree that is smaller than
8963   ** the entry being deleted. This cell will replace the cell being deleted
8964   ** from the internal node. The 'previous' entry is used for this instead
8965   ** of the 'next' entry, as the previous entry is always a part of the
8966   ** sub-tree headed by the child page of the cell being deleted. This makes
8967   ** balancing the tree following the delete operation easier.  */
8968   if( !pPage->leaf ){
8969     rc = sqlite3BtreePrevious(pCur, 0);
8970     assert( rc!=SQLITE_DONE );
8971     if( rc ) return rc;
8972   }
8973 
8974   /* Save the positions of any other cursors open on this table before
8975   ** making any modifications.  */
8976   if( pCur->curFlags & BTCF_Multiple ){
8977     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8978     if( rc ) return rc;
8979   }
8980 
8981   /* If this is a delete operation to remove a row from a table b-tree,
8982   ** invalidate any incrblob cursors open on the row being deleted.  */
8983   if( pCur->pKeyInfo==0 ){
8984     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8985   }
8986 
8987   /* Make the page containing the entry to be deleted writable. Then free any
8988   ** overflow pages associated with the entry and finally remove the cell
8989   ** itself from within the page.  */
8990   rc = sqlite3PagerWrite(pPage->pDbPage);
8991   if( rc ) return rc;
8992   rc = clearCell(pPage, pCell, &info);
8993   dropCell(pPage, iCellIdx, info.nSize, &rc);
8994   if( rc ) return rc;
8995 
8996   /* If the cell deleted was not located on a leaf page, then the cursor
8997   ** is currently pointing to the largest entry in the sub-tree headed
8998   ** by the child-page of the cell that was just deleted from an internal
8999   ** node. The cell from the leaf node needs to be moved to the internal
9000   ** node to replace the deleted cell.  */
9001   if( !pPage->leaf ){
9002     MemPage *pLeaf = pCur->pPage;
9003     int nCell;
9004     Pgno n;
9005     unsigned char *pTmp;
9006 
9007     if( pLeaf->nFree<0 ){
9008       rc = btreeComputeFreeSpace(pLeaf);
9009       if( rc ) return rc;
9010     }
9011     if( iCellDepth<pCur->iPage-1 ){
9012       n = pCur->apPage[iCellDepth+1]->pgno;
9013     }else{
9014       n = pCur->pPage->pgno;
9015     }
9016     pCell = findCell(pLeaf, pLeaf->nCell-1);
9017     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9018     nCell = pLeaf->xCellSize(pLeaf, pCell);
9019     assert( MX_CELL_SIZE(pBt) >= nCell );
9020     pTmp = pBt->pTmpSpace;
9021     assert( pTmp!=0 );
9022     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9023     if( rc==SQLITE_OK ){
9024       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9025     }
9026     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9027     if( rc ) return rc;
9028   }
9029 
9030   /* Balance the tree. If the entry deleted was located on a leaf page,
9031   ** then the cursor still points to that page. In this case the first
9032   ** call to balance() repairs the tree, and the if(...) condition is
9033   ** never true.
9034   **
9035   ** Otherwise, if the entry deleted was on an internal node page, then
9036   ** pCur is pointing to the leaf page from which a cell was removed to
9037   ** replace the cell deleted from the internal node. This is slightly
9038   ** tricky as the leaf node may be underfull, and the internal node may
9039   ** be either under or overfull. In this case run the balancing algorithm
9040   ** on the leaf node first. If the balance proceeds far enough up the
9041   ** tree that we can be sure that any problem in the internal node has
9042   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9043   ** walk the cursor up the tree to the internal node and balance it as
9044   ** well.  */
9045   rc = balance(pCur);
9046   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9047     releasePageNotNull(pCur->pPage);
9048     pCur->iPage--;
9049     while( pCur->iPage>iCellDepth ){
9050       releasePage(pCur->apPage[pCur->iPage--]);
9051     }
9052     pCur->pPage = pCur->apPage[pCur->iPage];
9053     rc = balance(pCur);
9054   }
9055 
9056   if( rc==SQLITE_OK ){
9057     if( bSkipnext ){
9058       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9059       assert( pPage==pCur->pPage || CORRUPT_DB );
9060       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9061       pCur->eState = CURSOR_SKIPNEXT;
9062       if( iCellIdx>=pPage->nCell ){
9063         pCur->skipNext = -1;
9064         pCur->ix = pPage->nCell-1;
9065       }else{
9066         pCur->skipNext = 1;
9067       }
9068     }else{
9069       rc = moveToRoot(pCur);
9070       if( bPreserve ){
9071         btreeReleaseAllCursorPages(pCur);
9072         pCur->eState = CURSOR_REQUIRESEEK;
9073       }
9074       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9075     }
9076   }
9077   return rc;
9078 }
9079 
9080 /*
9081 ** Create a new BTree table.  Write into *piTable the page
9082 ** number for the root page of the new table.
9083 **
9084 ** The type of type is determined by the flags parameter.  Only the
9085 ** following values of flags are currently in use.  Other values for
9086 ** flags might not work:
9087 **
9088 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9089 **     BTREE_ZERODATA                  Used for SQL indices
9090 */
9091 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
9092   BtShared *pBt = p->pBt;
9093   MemPage *pRoot;
9094   Pgno pgnoRoot;
9095   int rc;
9096   int ptfFlags;          /* Page-type flage for the root page of new table */
9097 
9098   assert( sqlite3BtreeHoldsMutex(p) );
9099   assert( pBt->inTransaction==TRANS_WRITE );
9100   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9101 
9102 #ifdef SQLITE_OMIT_AUTOVACUUM
9103   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9104   if( rc ){
9105     return rc;
9106   }
9107 #else
9108   if( pBt->autoVacuum ){
9109     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9110     MemPage *pPageMove; /* The page to move to. */
9111 
9112     /* Creating a new table may probably require moving an existing database
9113     ** to make room for the new tables root page. In case this page turns
9114     ** out to be an overflow page, delete all overflow page-map caches
9115     ** held by open cursors.
9116     */
9117     invalidateAllOverflowCache(pBt);
9118 
9119     /* Read the value of meta[3] from the database to determine where the
9120     ** root page of the new table should go. meta[3] is the largest root-page
9121     ** created so far, so the new root-page is (meta[3]+1).
9122     */
9123     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9124     pgnoRoot++;
9125 
9126     /* The new root-page may not be allocated on a pointer-map page, or the
9127     ** PENDING_BYTE page.
9128     */
9129     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9130         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9131       pgnoRoot++;
9132     }
9133     assert( pgnoRoot>=3 || CORRUPT_DB );
9134     testcase( pgnoRoot<3 );
9135 
9136     /* Allocate a page. The page that currently resides at pgnoRoot will
9137     ** be moved to the allocated page (unless the allocated page happens
9138     ** to reside at pgnoRoot).
9139     */
9140     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9141     if( rc!=SQLITE_OK ){
9142       return rc;
9143     }
9144 
9145     if( pgnoMove!=pgnoRoot ){
9146       /* pgnoRoot is the page that will be used for the root-page of
9147       ** the new table (assuming an error did not occur). But we were
9148       ** allocated pgnoMove. If required (i.e. if it was not allocated
9149       ** by extending the file), the current page at position pgnoMove
9150       ** is already journaled.
9151       */
9152       u8 eType = 0;
9153       Pgno iPtrPage = 0;
9154 
9155       /* Save the positions of any open cursors. This is required in
9156       ** case they are holding a reference to an xFetch reference
9157       ** corresponding to page pgnoRoot.  */
9158       rc = saveAllCursors(pBt, 0, 0);
9159       releasePage(pPageMove);
9160       if( rc!=SQLITE_OK ){
9161         return rc;
9162       }
9163 
9164       /* Move the page currently at pgnoRoot to pgnoMove. */
9165       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9166       if( rc!=SQLITE_OK ){
9167         return rc;
9168       }
9169       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9170       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9171         rc = SQLITE_CORRUPT_BKPT;
9172       }
9173       if( rc!=SQLITE_OK ){
9174         releasePage(pRoot);
9175         return rc;
9176       }
9177       assert( eType!=PTRMAP_ROOTPAGE );
9178       assert( eType!=PTRMAP_FREEPAGE );
9179       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9180       releasePage(pRoot);
9181 
9182       /* Obtain the page at pgnoRoot */
9183       if( rc!=SQLITE_OK ){
9184         return rc;
9185       }
9186       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9187       if( rc!=SQLITE_OK ){
9188         return rc;
9189       }
9190       rc = sqlite3PagerWrite(pRoot->pDbPage);
9191       if( rc!=SQLITE_OK ){
9192         releasePage(pRoot);
9193         return rc;
9194       }
9195     }else{
9196       pRoot = pPageMove;
9197     }
9198 
9199     /* Update the pointer-map and meta-data with the new root-page number. */
9200     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9201     if( rc ){
9202       releasePage(pRoot);
9203       return rc;
9204     }
9205 
9206     /* When the new root page was allocated, page 1 was made writable in
9207     ** order either to increase the database filesize, or to decrement the
9208     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9209     */
9210     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9211     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9212     if( NEVER(rc) ){
9213       releasePage(pRoot);
9214       return rc;
9215     }
9216 
9217   }else{
9218     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9219     if( rc ) return rc;
9220   }
9221 #endif
9222   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9223   if( createTabFlags & BTREE_INTKEY ){
9224     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9225   }else{
9226     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9227   }
9228   zeroPage(pRoot, ptfFlags);
9229   sqlite3PagerUnref(pRoot->pDbPage);
9230   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9231   *piTable = (int)pgnoRoot;
9232   return SQLITE_OK;
9233 }
9234 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9235   int rc;
9236   sqlite3BtreeEnter(p);
9237   rc = btreeCreateTable(p, piTable, flags);
9238   sqlite3BtreeLeave(p);
9239   return rc;
9240 }
9241 
9242 /*
9243 ** Erase the given database page and all its children.  Return
9244 ** the page to the freelist.
9245 */
9246 static int clearDatabasePage(
9247   BtShared *pBt,           /* The BTree that contains the table */
9248   Pgno pgno,               /* Page number to clear */
9249   int freePageFlag,        /* Deallocate page if true */
9250   int *pnChange            /* Add number of Cells freed to this counter */
9251 ){
9252   MemPage *pPage;
9253   int rc;
9254   unsigned char *pCell;
9255   int i;
9256   int hdr;
9257   CellInfo info;
9258 
9259   assert( sqlite3_mutex_held(pBt->mutex) );
9260   if( pgno>btreePagecount(pBt) ){
9261     return SQLITE_CORRUPT_BKPT;
9262   }
9263   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9264   if( rc ) return rc;
9265   if( pPage->bBusy ){
9266     rc = SQLITE_CORRUPT_BKPT;
9267     goto cleardatabasepage_out;
9268   }
9269   pPage->bBusy = 1;
9270   hdr = pPage->hdrOffset;
9271   for(i=0; i<pPage->nCell; i++){
9272     pCell = findCell(pPage, i);
9273     if( !pPage->leaf ){
9274       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9275       if( rc ) goto cleardatabasepage_out;
9276     }
9277     rc = clearCell(pPage, pCell, &info);
9278     if( rc ) goto cleardatabasepage_out;
9279   }
9280   if( !pPage->leaf ){
9281     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9282     if( rc ) goto cleardatabasepage_out;
9283   }else if( pnChange ){
9284     assert( pPage->intKey || CORRUPT_DB );
9285     testcase( !pPage->intKey );
9286     *pnChange += pPage->nCell;
9287   }
9288   if( freePageFlag ){
9289     freePage(pPage, &rc);
9290   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9291     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9292   }
9293 
9294 cleardatabasepage_out:
9295   pPage->bBusy = 0;
9296   releasePage(pPage);
9297   return rc;
9298 }
9299 
9300 /*
9301 ** Delete all information from a single table in the database.  iTable is
9302 ** the page number of the root of the table.  After this routine returns,
9303 ** the root page is empty, but still exists.
9304 **
9305 ** This routine will fail with SQLITE_LOCKED if there are any open
9306 ** read cursors on the table.  Open write cursors are moved to the
9307 ** root of the table.
9308 **
9309 ** If pnChange is not NULL, then table iTable must be an intkey table. The
9310 ** integer value pointed to by pnChange is incremented by the number of
9311 ** entries in the table.
9312 */
9313 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
9314   int rc;
9315   BtShared *pBt = p->pBt;
9316   sqlite3BtreeEnter(p);
9317   assert( p->inTrans==TRANS_WRITE );
9318 
9319   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9320 
9321   if( SQLITE_OK==rc ){
9322     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9323     ** is the root of a table b-tree - if it is not, the following call is
9324     ** a no-op).  */
9325     invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9326     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9327   }
9328   sqlite3BtreeLeave(p);
9329   return rc;
9330 }
9331 
9332 /*
9333 ** Delete all information from the single table that pCur is open on.
9334 **
9335 ** This routine only work for pCur on an ephemeral table.
9336 */
9337 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9338   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9339 }
9340 
9341 /*
9342 ** Erase all information in a table and add the root of the table to
9343 ** the freelist.  Except, the root of the principle table (the one on
9344 ** page 1) is never added to the freelist.
9345 **
9346 ** This routine will fail with SQLITE_LOCKED if there are any open
9347 ** cursors on the table.
9348 **
9349 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9350 ** root page in the database file, then the last root page
9351 ** in the database file is moved into the slot formerly occupied by
9352 ** iTable and that last slot formerly occupied by the last root page
9353 ** is added to the freelist instead of iTable.  In this say, all
9354 ** root pages are kept at the beginning of the database file, which
9355 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9356 ** page number that used to be the last root page in the file before
9357 ** the move.  If no page gets moved, *piMoved is set to 0.
9358 ** The last root page is recorded in meta[3] and the value of
9359 ** meta[3] is updated by this procedure.
9360 */
9361 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9362   int rc;
9363   MemPage *pPage = 0;
9364   BtShared *pBt = p->pBt;
9365 
9366   assert( sqlite3BtreeHoldsMutex(p) );
9367   assert( p->inTrans==TRANS_WRITE );
9368   assert( iTable>=2 );
9369   if( iTable>btreePagecount(pBt) ){
9370     return SQLITE_CORRUPT_BKPT;
9371   }
9372 
9373   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9374   if( rc ) return rc;
9375   rc = sqlite3BtreeClearTable(p, iTable, 0);
9376   if( rc ){
9377     releasePage(pPage);
9378     return rc;
9379   }
9380 
9381   *piMoved = 0;
9382 
9383 #ifdef SQLITE_OMIT_AUTOVACUUM
9384   freePage(pPage, &rc);
9385   releasePage(pPage);
9386 #else
9387   if( pBt->autoVacuum ){
9388     Pgno maxRootPgno;
9389     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9390 
9391     if( iTable==maxRootPgno ){
9392       /* If the table being dropped is the table with the largest root-page
9393       ** number in the database, put the root page on the free list.
9394       */
9395       freePage(pPage, &rc);
9396       releasePage(pPage);
9397       if( rc!=SQLITE_OK ){
9398         return rc;
9399       }
9400     }else{
9401       /* The table being dropped does not have the largest root-page
9402       ** number in the database. So move the page that does into the
9403       ** gap left by the deleted root-page.
9404       */
9405       MemPage *pMove;
9406       releasePage(pPage);
9407       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9408       if( rc!=SQLITE_OK ){
9409         return rc;
9410       }
9411       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9412       releasePage(pMove);
9413       if( rc!=SQLITE_OK ){
9414         return rc;
9415       }
9416       pMove = 0;
9417       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9418       freePage(pMove, &rc);
9419       releasePage(pMove);
9420       if( rc!=SQLITE_OK ){
9421         return rc;
9422       }
9423       *piMoved = maxRootPgno;
9424     }
9425 
9426     /* Set the new 'max-root-page' value in the database header. This
9427     ** is the old value less one, less one more if that happens to
9428     ** be a root-page number, less one again if that is the
9429     ** PENDING_BYTE_PAGE.
9430     */
9431     maxRootPgno--;
9432     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9433            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9434       maxRootPgno--;
9435     }
9436     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9437 
9438     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9439   }else{
9440     freePage(pPage, &rc);
9441     releasePage(pPage);
9442   }
9443 #endif
9444   return rc;
9445 }
9446 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9447   int rc;
9448   sqlite3BtreeEnter(p);
9449   rc = btreeDropTable(p, iTable, piMoved);
9450   sqlite3BtreeLeave(p);
9451   return rc;
9452 }
9453 
9454 
9455 /*
9456 ** This function may only be called if the b-tree connection already
9457 ** has a read or write transaction open on the database.
9458 **
9459 ** Read the meta-information out of a database file.  Meta[0]
9460 ** is the number of free pages currently in the database.  Meta[1]
9461 ** through meta[15] are available for use by higher layers.  Meta[0]
9462 ** is read-only, the others are read/write.
9463 **
9464 ** The schema layer numbers meta values differently.  At the schema
9465 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9466 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9467 **
9468 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9469 ** of reading the value out of the header, it instead loads the "DataVersion"
9470 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9471 ** database file.  It is a number computed by the pager.  But its access
9472 ** pattern is the same as header meta values, and so it is convenient to
9473 ** read it from this routine.
9474 */
9475 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9476   BtShared *pBt = p->pBt;
9477 
9478   sqlite3BtreeEnter(p);
9479   assert( p->inTrans>TRANS_NONE );
9480   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9481   assert( pBt->pPage1 );
9482   assert( idx>=0 && idx<=15 );
9483 
9484   if( idx==BTREE_DATA_VERSION ){
9485     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
9486   }else{
9487     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9488   }
9489 
9490   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9491   ** database, mark the database as read-only.  */
9492 #ifdef SQLITE_OMIT_AUTOVACUUM
9493   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9494     pBt->btsFlags |= BTS_READ_ONLY;
9495   }
9496 #endif
9497 
9498   sqlite3BtreeLeave(p);
9499 }
9500 
9501 /*
9502 ** Write meta-information back into the database.  Meta[0] is
9503 ** read-only and may not be written.
9504 */
9505 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9506   BtShared *pBt = p->pBt;
9507   unsigned char *pP1;
9508   int rc;
9509   assert( idx>=1 && idx<=15 );
9510   sqlite3BtreeEnter(p);
9511   assert( p->inTrans==TRANS_WRITE );
9512   assert( pBt->pPage1!=0 );
9513   pP1 = pBt->pPage1->aData;
9514   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9515   if( rc==SQLITE_OK ){
9516     put4byte(&pP1[36 + idx*4], iMeta);
9517 #ifndef SQLITE_OMIT_AUTOVACUUM
9518     if( idx==BTREE_INCR_VACUUM ){
9519       assert( pBt->autoVacuum || iMeta==0 );
9520       assert( iMeta==0 || iMeta==1 );
9521       pBt->incrVacuum = (u8)iMeta;
9522     }
9523 #endif
9524   }
9525   sqlite3BtreeLeave(p);
9526   return rc;
9527 }
9528 
9529 /*
9530 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9531 ** number of entries in the b-tree and write the result to *pnEntry.
9532 **
9533 ** SQLITE_OK is returned if the operation is successfully executed.
9534 ** Otherwise, if an error is encountered (i.e. an IO error or database
9535 ** corruption) an SQLite error code is returned.
9536 */
9537 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9538   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9539   int rc;                              /* Return code */
9540 
9541   rc = moveToRoot(pCur);
9542   if( rc==SQLITE_EMPTY ){
9543     *pnEntry = 0;
9544     return SQLITE_OK;
9545   }
9546 
9547   /* Unless an error occurs, the following loop runs one iteration for each
9548   ** page in the B-Tree structure (not including overflow pages).
9549   */
9550   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9551     int iIdx;                          /* Index of child node in parent */
9552     MemPage *pPage;                    /* Current page of the b-tree */
9553 
9554     /* If this is a leaf page or the tree is not an int-key tree, then
9555     ** this page contains countable entries. Increment the entry counter
9556     ** accordingly.
9557     */
9558     pPage = pCur->pPage;
9559     if( pPage->leaf || !pPage->intKey ){
9560       nEntry += pPage->nCell;
9561     }
9562 
9563     /* pPage is a leaf node. This loop navigates the cursor so that it
9564     ** points to the first interior cell that it points to the parent of
9565     ** the next page in the tree that has not yet been visited. The
9566     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9567     ** of the page, or to the number of cells in the page if the next page
9568     ** to visit is the right-child of its parent.
9569     **
9570     ** If all pages in the tree have been visited, return SQLITE_OK to the
9571     ** caller.
9572     */
9573     if( pPage->leaf ){
9574       do {
9575         if( pCur->iPage==0 ){
9576           /* All pages of the b-tree have been visited. Return successfully. */
9577           *pnEntry = nEntry;
9578           return moveToRoot(pCur);
9579         }
9580         moveToParent(pCur);
9581       }while ( pCur->ix>=pCur->pPage->nCell );
9582 
9583       pCur->ix++;
9584       pPage = pCur->pPage;
9585     }
9586 
9587     /* Descend to the child node of the cell that the cursor currently
9588     ** points at. This is the right-child if (iIdx==pPage->nCell).
9589     */
9590     iIdx = pCur->ix;
9591     if( iIdx==pPage->nCell ){
9592       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9593     }else{
9594       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9595     }
9596   }
9597 
9598   /* An error has occurred. Return an error code. */
9599   return rc;
9600 }
9601 
9602 /*
9603 ** Return the pager associated with a BTree.  This routine is used for
9604 ** testing and debugging only.
9605 */
9606 Pager *sqlite3BtreePager(Btree *p){
9607   return p->pBt->pPager;
9608 }
9609 
9610 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9611 /*
9612 ** Append a message to the error message string.
9613 */
9614 static void checkAppendMsg(
9615   IntegrityCk *pCheck,
9616   const char *zFormat,
9617   ...
9618 ){
9619   va_list ap;
9620   if( !pCheck->mxErr ) return;
9621   pCheck->mxErr--;
9622   pCheck->nErr++;
9623   va_start(ap, zFormat);
9624   if( pCheck->errMsg.nChar ){
9625     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9626   }
9627   if( pCheck->zPfx ){
9628     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9629   }
9630   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9631   va_end(ap);
9632   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9633     pCheck->mallocFailed = 1;
9634   }
9635 }
9636 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9637 
9638 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9639 
9640 /*
9641 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9642 ** corresponds to page iPg is already set.
9643 */
9644 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9645   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9646   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9647 }
9648 
9649 /*
9650 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9651 */
9652 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9653   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9654   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9655 }
9656 
9657 
9658 /*
9659 ** Add 1 to the reference count for page iPage.  If this is the second
9660 ** reference to the page, add an error message to pCheck->zErrMsg.
9661 ** Return 1 if there are 2 or more references to the page and 0 if
9662 ** if this is the first reference to the page.
9663 **
9664 ** Also check that the page number is in bounds.
9665 */
9666 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9667   if( iPage>pCheck->nPage || iPage==0 ){
9668     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9669     return 1;
9670   }
9671   if( getPageReferenced(pCheck, iPage) ){
9672     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9673     return 1;
9674   }
9675   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
9676   setPageReferenced(pCheck, iPage);
9677   return 0;
9678 }
9679 
9680 #ifndef SQLITE_OMIT_AUTOVACUUM
9681 /*
9682 ** Check that the entry in the pointer-map for page iChild maps to
9683 ** page iParent, pointer type ptrType. If not, append an error message
9684 ** to pCheck.
9685 */
9686 static void checkPtrmap(
9687   IntegrityCk *pCheck,   /* Integrity check context */
9688   Pgno iChild,           /* Child page number */
9689   u8 eType,              /* Expected pointer map type */
9690   Pgno iParent           /* Expected pointer map parent page number */
9691 ){
9692   int rc;
9693   u8 ePtrmapType;
9694   Pgno iPtrmapParent;
9695 
9696   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9697   if( rc!=SQLITE_OK ){
9698     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9699     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9700     return;
9701   }
9702 
9703   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9704     checkAppendMsg(pCheck,
9705       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9706       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9707   }
9708 }
9709 #endif
9710 
9711 /*
9712 ** Check the integrity of the freelist or of an overflow page list.
9713 ** Verify that the number of pages on the list is N.
9714 */
9715 static void checkList(
9716   IntegrityCk *pCheck,  /* Integrity checking context */
9717   int isFreeList,       /* True for a freelist.  False for overflow page list */
9718   int iPage,            /* Page number for first page in the list */
9719   u32 N                 /* Expected number of pages in the list */
9720 ){
9721   int i;
9722   u32 expected = N;
9723   int nErrAtStart = pCheck->nErr;
9724   while( iPage!=0 && pCheck->mxErr ){
9725     DbPage *pOvflPage;
9726     unsigned char *pOvflData;
9727     if( checkRef(pCheck, iPage) ) break;
9728     N--;
9729     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9730       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9731       break;
9732     }
9733     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9734     if( isFreeList ){
9735       u32 n = (u32)get4byte(&pOvflData[4]);
9736 #ifndef SQLITE_OMIT_AUTOVACUUM
9737       if( pCheck->pBt->autoVacuum ){
9738         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9739       }
9740 #endif
9741       if( n>pCheck->pBt->usableSize/4-2 ){
9742         checkAppendMsg(pCheck,
9743            "freelist leaf count too big on page %d", iPage);
9744         N--;
9745       }else{
9746         for(i=0; i<(int)n; i++){
9747           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9748 #ifndef SQLITE_OMIT_AUTOVACUUM
9749           if( pCheck->pBt->autoVacuum ){
9750             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9751           }
9752 #endif
9753           checkRef(pCheck, iFreePage);
9754         }
9755         N -= n;
9756       }
9757     }
9758 #ifndef SQLITE_OMIT_AUTOVACUUM
9759     else{
9760       /* If this database supports auto-vacuum and iPage is not the last
9761       ** page in this overflow list, check that the pointer-map entry for
9762       ** the following page matches iPage.
9763       */
9764       if( pCheck->pBt->autoVacuum && N>0 ){
9765         i = get4byte(pOvflData);
9766         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9767       }
9768     }
9769 #endif
9770     iPage = get4byte(pOvflData);
9771     sqlite3PagerUnref(pOvflPage);
9772   }
9773   if( N && nErrAtStart==pCheck->nErr ){
9774     checkAppendMsg(pCheck,
9775       "%s is %d but should be %d",
9776       isFreeList ? "size" : "overflow list length",
9777       expected-N, expected);
9778   }
9779 }
9780 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9781 
9782 /*
9783 ** An implementation of a min-heap.
9784 **
9785 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9786 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9787 ** and aHeap[N*2+1].
9788 **
9789 ** The heap property is this:  Every node is less than or equal to both
9790 ** of its daughter nodes.  A consequence of the heap property is that the
9791 ** root node aHeap[1] is always the minimum value currently in the heap.
9792 **
9793 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9794 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9795 ** removes the root element from the heap (the minimum value in the heap)
9796 ** and then moves other nodes around as necessary to preserve the heap
9797 ** property.
9798 **
9799 ** This heap is used for cell overlap and coverage testing.  Each u32
9800 ** entry represents the span of a cell or freeblock on a btree page.
9801 ** The upper 16 bits are the index of the first byte of a range and the
9802 ** lower 16 bits are the index of the last byte of that range.
9803 */
9804 static void btreeHeapInsert(u32 *aHeap, u32 x){
9805   u32 j, i = ++aHeap[0];
9806   aHeap[i] = x;
9807   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9808     x = aHeap[j];
9809     aHeap[j] = aHeap[i];
9810     aHeap[i] = x;
9811     i = j;
9812   }
9813 }
9814 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9815   u32 j, i, x;
9816   if( (x = aHeap[0])==0 ) return 0;
9817   *pOut = aHeap[1];
9818   aHeap[1] = aHeap[x];
9819   aHeap[x] = 0xffffffff;
9820   aHeap[0]--;
9821   i = 1;
9822   while( (j = i*2)<=aHeap[0] ){
9823     if( aHeap[j]>aHeap[j+1] ) j++;
9824     if( aHeap[i]<aHeap[j] ) break;
9825     x = aHeap[i];
9826     aHeap[i] = aHeap[j];
9827     aHeap[j] = x;
9828     i = j;
9829   }
9830   return 1;
9831 }
9832 
9833 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9834 /*
9835 ** Do various sanity checks on a single page of a tree.  Return
9836 ** the tree depth.  Root pages return 0.  Parents of root pages
9837 ** return 1, and so forth.
9838 **
9839 ** These checks are done:
9840 **
9841 **      1.  Make sure that cells and freeblocks do not overlap
9842 **          but combine to completely cover the page.
9843 **      2.  Make sure integer cell keys are in order.
9844 **      3.  Check the integrity of overflow pages.
9845 **      4.  Recursively call checkTreePage on all children.
9846 **      5.  Verify that the depth of all children is the same.
9847 */
9848 static int checkTreePage(
9849   IntegrityCk *pCheck,  /* Context for the sanity check */
9850   int iPage,            /* Page number of the page to check */
9851   i64 *piMinKey,        /* Write minimum integer primary key here */
9852   i64 maxKey            /* Error if integer primary key greater than this */
9853 ){
9854   MemPage *pPage = 0;      /* The page being analyzed */
9855   int i;                   /* Loop counter */
9856   int rc;                  /* Result code from subroutine call */
9857   int depth = -1, d2;      /* Depth of a subtree */
9858   int pgno;                /* Page number */
9859   int nFrag;               /* Number of fragmented bytes on the page */
9860   int hdr;                 /* Offset to the page header */
9861   int cellStart;           /* Offset to the start of the cell pointer array */
9862   int nCell;               /* Number of cells */
9863   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9864   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9865                            ** False if IPK must be strictly less than maxKey */
9866   u8 *data;                /* Page content */
9867   u8 *pCell;               /* Cell content */
9868   u8 *pCellIdx;            /* Next element of the cell pointer array */
9869   BtShared *pBt;           /* The BtShared object that owns pPage */
9870   u32 pc;                  /* Address of a cell */
9871   u32 usableSize;          /* Usable size of the page */
9872   u32 contentOffset;       /* Offset to the start of the cell content area */
9873   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9874   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9875   const char *saved_zPfx = pCheck->zPfx;
9876   int saved_v1 = pCheck->v1;
9877   int saved_v2 = pCheck->v2;
9878   u8 savedIsInit = 0;
9879 
9880   /* Check that the page exists
9881   */
9882   pBt = pCheck->pBt;
9883   usableSize = pBt->usableSize;
9884   if( iPage==0 ) return 0;
9885   if( checkRef(pCheck, iPage) ) return 0;
9886   pCheck->zPfx = "Page %d: ";
9887   pCheck->v1 = iPage;
9888   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9889     checkAppendMsg(pCheck,
9890        "unable to get the page. error code=%d", rc);
9891     goto end_of_check;
9892   }
9893 
9894   /* Clear MemPage.isInit to make sure the corruption detection code in
9895   ** btreeInitPage() is executed.  */
9896   savedIsInit = pPage->isInit;
9897   pPage->isInit = 0;
9898   if( (rc = btreeInitPage(pPage))!=0 ){
9899     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9900     checkAppendMsg(pCheck,
9901                    "btreeInitPage() returns error code %d", rc);
9902     goto end_of_check;
9903   }
9904   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9905     assert( rc==SQLITE_CORRUPT );
9906     checkAppendMsg(pCheck, "free space corruption", rc);
9907     goto end_of_check;
9908   }
9909   data = pPage->aData;
9910   hdr = pPage->hdrOffset;
9911 
9912   /* Set up for cell analysis */
9913   pCheck->zPfx = "On tree page %d cell %d: ";
9914   contentOffset = get2byteNotZero(&data[hdr+5]);
9915   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9916 
9917   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9918   ** number of cells on the page. */
9919   nCell = get2byte(&data[hdr+3]);
9920   assert( pPage->nCell==nCell );
9921 
9922   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9923   ** immediately follows the b-tree page header. */
9924   cellStart = hdr + 12 - 4*pPage->leaf;
9925   assert( pPage->aCellIdx==&data[cellStart] );
9926   pCellIdx = &data[cellStart + 2*(nCell-1)];
9927 
9928   if( !pPage->leaf ){
9929     /* Analyze the right-child page of internal pages */
9930     pgno = get4byte(&data[hdr+8]);
9931 #ifndef SQLITE_OMIT_AUTOVACUUM
9932     if( pBt->autoVacuum ){
9933       pCheck->zPfx = "On page %d at right child: ";
9934       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9935     }
9936 #endif
9937     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9938     keyCanBeEqual = 0;
9939   }else{
9940     /* For leaf pages, the coverage check will occur in the same loop
9941     ** as the other cell checks, so initialize the heap.  */
9942     heap = pCheck->heap;
9943     heap[0] = 0;
9944   }
9945 
9946   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9947   ** integer offsets to the cell contents. */
9948   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9949     CellInfo info;
9950 
9951     /* Check cell size */
9952     pCheck->v2 = i;
9953     assert( pCellIdx==&data[cellStart + i*2] );
9954     pc = get2byteAligned(pCellIdx);
9955     pCellIdx -= 2;
9956     if( pc<contentOffset || pc>usableSize-4 ){
9957       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9958                              pc, contentOffset, usableSize-4);
9959       doCoverageCheck = 0;
9960       continue;
9961     }
9962     pCell = &data[pc];
9963     pPage->xParseCell(pPage, pCell, &info);
9964     if( pc+info.nSize>usableSize ){
9965       checkAppendMsg(pCheck, "Extends off end of page");
9966       doCoverageCheck = 0;
9967       continue;
9968     }
9969 
9970     /* Check for integer primary key out of range */
9971     if( pPage->intKey ){
9972       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9973         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9974       }
9975       maxKey = info.nKey;
9976       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
9977     }
9978 
9979     /* Check the content overflow list */
9980     if( info.nPayload>info.nLocal ){
9981       u32 nPage;       /* Number of pages on the overflow chain */
9982       Pgno pgnoOvfl;   /* First page of the overflow chain */
9983       assert( pc + info.nSize - 4 <= usableSize );
9984       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9985       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9986 #ifndef SQLITE_OMIT_AUTOVACUUM
9987       if( pBt->autoVacuum ){
9988         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9989       }
9990 #endif
9991       checkList(pCheck, 0, pgnoOvfl, nPage);
9992     }
9993 
9994     if( !pPage->leaf ){
9995       /* Check sanity of left child page for internal pages */
9996       pgno = get4byte(pCell);
9997 #ifndef SQLITE_OMIT_AUTOVACUUM
9998       if( pBt->autoVacuum ){
9999         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10000       }
10001 #endif
10002       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10003       keyCanBeEqual = 0;
10004       if( d2!=depth ){
10005         checkAppendMsg(pCheck, "Child page depth differs");
10006         depth = d2;
10007       }
10008     }else{
10009       /* Populate the coverage-checking heap for leaf pages */
10010       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10011     }
10012   }
10013   *piMinKey = maxKey;
10014 
10015   /* Check for complete coverage of the page
10016   */
10017   pCheck->zPfx = 0;
10018   if( doCoverageCheck && pCheck->mxErr>0 ){
10019     /* For leaf pages, the min-heap has already been initialized and the
10020     ** cells have already been inserted.  But for internal pages, that has
10021     ** not yet been done, so do it now */
10022     if( !pPage->leaf ){
10023       heap = pCheck->heap;
10024       heap[0] = 0;
10025       for(i=nCell-1; i>=0; i--){
10026         u32 size;
10027         pc = get2byteAligned(&data[cellStart+i*2]);
10028         size = pPage->xCellSize(pPage, &data[pc]);
10029         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10030       }
10031     }
10032     /* Add the freeblocks to the min-heap
10033     **
10034     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10035     ** is the offset of the first freeblock, or zero if there are no
10036     ** freeblocks on the page.
10037     */
10038     i = get2byte(&data[hdr+1]);
10039     while( i>0 ){
10040       int size, j;
10041       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10042       size = get2byte(&data[i+2]);
10043       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10044       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10045       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10046       ** big-endian integer which is the offset in the b-tree page of the next
10047       ** freeblock in the chain, or zero if the freeblock is the last on the
10048       ** chain. */
10049       j = get2byte(&data[i]);
10050       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10051       ** increasing offset. */
10052       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10053       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10054       i = j;
10055     }
10056     /* Analyze the min-heap looking for overlap between cells and/or
10057     ** freeblocks, and counting the number of untracked bytes in nFrag.
10058     **
10059     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10060     ** There is an implied first entry the covers the page header, the cell
10061     ** pointer index, and the gap between the cell pointer index and the start
10062     ** of cell content.
10063     **
10064     ** The loop below pulls entries from the min-heap in order and compares
10065     ** the start_address against the previous end_address.  If there is an
10066     ** overlap, that means bytes are used multiple times.  If there is a gap,
10067     ** that gap is added to the fragmentation count.
10068     */
10069     nFrag = 0;
10070     prev = contentOffset - 1;   /* Implied first min-heap entry */
10071     while( btreeHeapPull(heap,&x) ){
10072       if( (prev&0xffff)>=(x>>16) ){
10073         checkAppendMsg(pCheck,
10074           "Multiple uses for byte %u of page %d", x>>16, iPage);
10075         break;
10076       }else{
10077         nFrag += (x>>16) - (prev&0xffff) - 1;
10078         prev = x;
10079       }
10080     }
10081     nFrag += usableSize - (prev&0xffff) - 1;
10082     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10083     ** is stored in the fifth field of the b-tree page header.
10084     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10085     ** number of fragmented free bytes within the cell content area.
10086     */
10087     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10088       checkAppendMsg(pCheck,
10089           "Fragmentation of %d bytes reported as %d on page %d",
10090           nFrag, data[hdr+7], iPage);
10091     }
10092   }
10093 
10094 end_of_check:
10095   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10096   releasePage(pPage);
10097   pCheck->zPfx = saved_zPfx;
10098   pCheck->v1 = saved_v1;
10099   pCheck->v2 = saved_v2;
10100   return depth+1;
10101 }
10102 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10103 
10104 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10105 /*
10106 ** This routine does a complete check of the given BTree file.  aRoot[] is
10107 ** an array of pages numbers were each page number is the root page of
10108 ** a table.  nRoot is the number of entries in aRoot.
10109 **
10110 ** A read-only or read-write transaction must be opened before calling
10111 ** this function.
10112 **
10113 ** Write the number of error seen in *pnErr.  Except for some memory
10114 ** allocation errors,  an error message held in memory obtained from
10115 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10116 ** returned.  If a memory allocation error occurs, NULL is returned.
10117 */
10118 char *sqlite3BtreeIntegrityCheck(
10119   sqlite3 *db,  /* Database connection that is running the check */
10120   Btree *p,     /* The btree to be checked */
10121   int *aRoot,   /* An array of root pages numbers for individual trees */
10122   int nRoot,    /* Number of entries in aRoot[] */
10123   int mxErr,    /* Stop reporting errors after this many */
10124   int *pnErr    /* Write number of errors seen to this variable */
10125 ){
10126   Pgno i;
10127   IntegrityCk sCheck;
10128   BtShared *pBt = p->pBt;
10129   u64 savedDbFlags = pBt->db->flags;
10130   char zErr[100];
10131   VVA_ONLY( int nRef );
10132 
10133   sqlite3BtreeEnter(p);
10134   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10135   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10136   assert( nRef>=0 );
10137   sCheck.db = db;
10138   sCheck.pBt = pBt;
10139   sCheck.pPager = pBt->pPager;
10140   sCheck.nPage = btreePagecount(sCheck.pBt);
10141   sCheck.mxErr = mxErr;
10142   sCheck.nErr = 0;
10143   sCheck.mallocFailed = 0;
10144   sCheck.zPfx = 0;
10145   sCheck.v1 = 0;
10146   sCheck.v2 = 0;
10147   sCheck.aPgRef = 0;
10148   sCheck.heap = 0;
10149   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10150   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10151   if( sCheck.nPage==0 ){
10152     goto integrity_ck_cleanup;
10153   }
10154 
10155   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10156   if( !sCheck.aPgRef ){
10157     sCheck.mallocFailed = 1;
10158     goto integrity_ck_cleanup;
10159   }
10160   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10161   if( sCheck.heap==0 ){
10162     sCheck.mallocFailed = 1;
10163     goto integrity_ck_cleanup;
10164   }
10165 
10166   i = PENDING_BYTE_PAGE(pBt);
10167   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10168 
10169   /* Check the integrity of the freelist
10170   */
10171   sCheck.zPfx = "Main freelist: ";
10172   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10173             get4byte(&pBt->pPage1->aData[36]));
10174   sCheck.zPfx = 0;
10175 
10176   /* Check all the tables.
10177   */
10178 #ifndef SQLITE_OMIT_AUTOVACUUM
10179   if( pBt->autoVacuum ){
10180     int mx = 0;
10181     int mxInHdr;
10182     for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10183     mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10184     if( mx!=mxInHdr ){
10185       checkAppendMsg(&sCheck,
10186         "max rootpage (%d) disagrees with header (%d)",
10187         mx, mxInHdr
10188       );
10189     }
10190   }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10191     checkAppendMsg(&sCheck,
10192       "incremental_vacuum enabled with a max rootpage of zero"
10193     );
10194   }
10195 #endif
10196   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10197   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10198   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10199     i64 notUsed;
10200     if( aRoot[i]==0 ) continue;
10201 #ifndef SQLITE_OMIT_AUTOVACUUM
10202     if( pBt->autoVacuum && aRoot[i]>1 ){
10203       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10204     }
10205 #endif
10206     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10207   }
10208   pBt->db->flags = savedDbFlags;
10209 
10210   /* Make sure every page in the file is referenced
10211   */
10212   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10213 #ifdef SQLITE_OMIT_AUTOVACUUM
10214     if( getPageReferenced(&sCheck, i)==0 ){
10215       checkAppendMsg(&sCheck, "Page %d is never used", i);
10216     }
10217 #else
10218     /* If the database supports auto-vacuum, make sure no tables contain
10219     ** references to pointer-map pages.
10220     */
10221     if( getPageReferenced(&sCheck, i)==0 &&
10222        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10223       checkAppendMsg(&sCheck, "Page %d is never used", i);
10224     }
10225     if( getPageReferenced(&sCheck, i)!=0 &&
10226        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10227       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10228     }
10229 #endif
10230   }
10231 
10232   /* Clean  up and report errors.
10233   */
10234 integrity_ck_cleanup:
10235   sqlite3PageFree(sCheck.heap);
10236   sqlite3_free(sCheck.aPgRef);
10237   if( sCheck.mallocFailed ){
10238     sqlite3_str_reset(&sCheck.errMsg);
10239     sCheck.nErr++;
10240   }
10241   *pnErr = sCheck.nErr;
10242   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10243   /* Make sure this analysis did not leave any unref() pages. */
10244   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10245   sqlite3BtreeLeave(p);
10246   return sqlite3StrAccumFinish(&sCheck.errMsg);
10247 }
10248 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10249 
10250 /*
10251 ** Return the full pathname of the underlying database file.  Return
10252 ** an empty string if the database is in-memory or a TEMP database.
10253 **
10254 ** The pager filename is invariant as long as the pager is
10255 ** open so it is safe to access without the BtShared mutex.
10256 */
10257 const char *sqlite3BtreeGetFilename(Btree *p){
10258   assert( p->pBt->pPager!=0 );
10259   return sqlite3PagerFilename(p->pBt->pPager, 1);
10260 }
10261 
10262 /*
10263 ** Return the pathname of the journal file for this database. The return
10264 ** value of this routine is the same regardless of whether the journal file
10265 ** has been created or not.
10266 **
10267 ** The pager journal filename is invariant as long as the pager is
10268 ** open so it is safe to access without the BtShared mutex.
10269 */
10270 const char *sqlite3BtreeGetJournalname(Btree *p){
10271   assert( p->pBt->pPager!=0 );
10272   return sqlite3PagerJournalname(p->pBt->pPager);
10273 }
10274 
10275 /*
10276 ** Return non-zero if a transaction is active.
10277 */
10278 int sqlite3BtreeIsInTrans(Btree *p){
10279   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10280   return (p && (p->inTrans==TRANS_WRITE));
10281 }
10282 
10283 #ifndef SQLITE_OMIT_WAL
10284 /*
10285 ** Run a checkpoint on the Btree passed as the first argument.
10286 **
10287 ** Return SQLITE_LOCKED if this or any other connection has an open
10288 ** transaction on the shared-cache the argument Btree is connected to.
10289 **
10290 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10291 */
10292 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10293   int rc = SQLITE_OK;
10294   if( p ){
10295     BtShared *pBt = p->pBt;
10296     sqlite3BtreeEnter(p);
10297     if( pBt->inTransaction!=TRANS_NONE ){
10298       rc = SQLITE_LOCKED;
10299     }else{
10300       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10301     }
10302     sqlite3BtreeLeave(p);
10303   }
10304   return rc;
10305 }
10306 #endif
10307 
10308 /*
10309 ** Return non-zero if a read (or write) transaction is active.
10310 */
10311 int sqlite3BtreeIsInReadTrans(Btree *p){
10312   assert( p );
10313   assert( sqlite3_mutex_held(p->db->mutex) );
10314   return p->inTrans!=TRANS_NONE;
10315 }
10316 
10317 int sqlite3BtreeIsInBackup(Btree *p){
10318   assert( p );
10319   assert( sqlite3_mutex_held(p->db->mutex) );
10320   return p->nBackup!=0;
10321 }
10322 
10323 /*
10324 ** This function returns a pointer to a blob of memory associated with
10325 ** a single shared-btree. The memory is used by client code for its own
10326 ** purposes (for example, to store a high-level schema associated with
10327 ** the shared-btree). The btree layer manages reference counting issues.
10328 **
10329 ** The first time this is called on a shared-btree, nBytes bytes of memory
10330 ** are allocated, zeroed, and returned to the caller. For each subsequent
10331 ** call the nBytes parameter is ignored and a pointer to the same blob
10332 ** of memory returned.
10333 **
10334 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10335 ** allocated, a null pointer is returned. If the blob has already been
10336 ** allocated, it is returned as normal.
10337 **
10338 ** Just before the shared-btree is closed, the function passed as the
10339 ** xFree argument when the memory allocation was made is invoked on the
10340 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10341 ** on the memory, the btree layer does that.
10342 */
10343 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10344   BtShared *pBt = p->pBt;
10345   sqlite3BtreeEnter(p);
10346   if( !pBt->pSchema && nBytes ){
10347     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10348     pBt->xFreeSchema = xFree;
10349   }
10350   sqlite3BtreeLeave(p);
10351   return pBt->pSchema;
10352 }
10353 
10354 /*
10355 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10356 ** btree as the argument handle holds an exclusive lock on the
10357 ** sqlite_master table. Otherwise SQLITE_OK.
10358 */
10359 int sqlite3BtreeSchemaLocked(Btree *p){
10360   int rc;
10361   assert( sqlite3_mutex_held(p->db->mutex) );
10362   sqlite3BtreeEnter(p);
10363   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10364   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10365   sqlite3BtreeLeave(p);
10366   return rc;
10367 }
10368 
10369 
10370 #ifndef SQLITE_OMIT_SHARED_CACHE
10371 /*
10372 ** Obtain a lock on the table whose root page is iTab.  The
10373 ** lock is a write lock if isWritelock is true or a read lock
10374 ** if it is false.
10375 */
10376 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10377   int rc = SQLITE_OK;
10378   assert( p->inTrans!=TRANS_NONE );
10379   if( p->sharable ){
10380     u8 lockType = READ_LOCK + isWriteLock;
10381     assert( READ_LOCK+1==WRITE_LOCK );
10382     assert( isWriteLock==0 || isWriteLock==1 );
10383 
10384     sqlite3BtreeEnter(p);
10385     rc = querySharedCacheTableLock(p, iTab, lockType);
10386     if( rc==SQLITE_OK ){
10387       rc = setSharedCacheTableLock(p, iTab, lockType);
10388     }
10389     sqlite3BtreeLeave(p);
10390   }
10391   return rc;
10392 }
10393 #endif
10394 
10395 #ifndef SQLITE_OMIT_INCRBLOB
10396 /*
10397 ** Argument pCsr must be a cursor opened for writing on an
10398 ** INTKEY table currently pointing at a valid table entry.
10399 ** This function modifies the data stored as part of that entry.
10400 **
10401 ** Only the data content may only be modified, it is not possible to
10402 ** change the length of the data stored. If this function is called with
10403 ** parameters that attempt to write past the end of the existing data,
10404 ** no modifications are made and SQLITE_CORRUPT is returned.
10405 */
10406 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10407   int rc;
10408   assert( cursorOwnsBtShared(pCsr) );
10409   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10410   assert( pCsr->curFlags & BTCF_Incrblob );
10411 
10412   rc = restoreCursorPosition(pCsr);
10413   if( rc!=SQLITE_OK ){
10414     return rc;
10415   }
10416   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10417   if( pCsr->eState!=CURSOR_VALID ){
10418     return SQLITE_ABORT;
10419   }
10420 
10421   /* Save the positions of all other cursors open on this table. This is
10422   ** required in case any of them are holding references to an xFetch
10423   ** version of the b-tree page modified by the accessPayload call below.
10424   **
10425   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10426   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10427   ** saveAllCursors can only return SQLITE_OK.
10428   */
10429   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10430   assert( rc==SQLITE_OK );
10431 
10432   /* Check some assumptions:
10433   **   (a) the cursor is open for writing,
10434   **   (b) there is a read/write transaction open,
10435   **   (c) the connection holds a write-lock on the table (if required),
10436   **   (d) there are no conflicting read-locks, and
10437   **   (e) the cursor points at a valid row of an intKey table.
10438   */
10439   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10440     return SQLITE_READONLY;
10441   }
10442   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10443               && pCsr->pBt->inTransaction==TRANS_WRITE );
10444   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10445   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10446   assert( pCsr->pPage->intKey );
10447 
10448   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10449 }
10450 
10451 /*
10452 ** Mark this cursor as an incremental blob cursor.
10453 */
10454 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10455   pCur->curFlags |= BTCF_Incrblob;
10456   pCur->pBtree->hasIncrblobCur = 1;
10457 }
10458 #endif
10459 
10460 /*
10461 ** Set both the "read version" (single byte at byte offset 18) and
10462 ** "write version" (single byte at byte offset 19) fields in the database
10463 ** header to iVersion.
10464 */
10465 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10466   BtShared *pBt = pBtree->pBt;
10467   int rc;                         /* Return code */
10468 
10469   assert( iVersion==1 || iVersion==2 );
10470 
10471   /* If setting the version fields to 1, do not automatically open the
10472   ** WAL connection, even if the version fields are currently set to 2.
10473   */
10474   pBt->btsFlags &= ~BTS_NO_WAL;
10475   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10476 
10477   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10478   if( rc==SQLITE_OK ){
10479     u8 *aData = pBt->pPage1->aData;
10480     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10481       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10482       if( rc==SQLITE_OK ){
10483         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10484         if( rc==SQLITE_OK ){
10485           aData[18] = (u8)iVersion;
10486           aData[19] = (u8)iVersion;
10487         }
10488       }
10489     }
10490   }
10491 
10492   pBt->btsFlags &= ~BTS_NO_WAL;
10493   return rc;
10494 }
10495 
10496 /*
10497 ** Return true if the cursor has a hint specified.  This routine is
10498 ** only used from within assert() statements
10499 */
10500 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10501   return (pCsr->hints & mask)!=0;
10502 }
10503 
10504 /*
10505 ** Return true if the given Btree is read-only.
10506 */
10507 int sqlite3BtreeIsReadonly(Btree *p){
10508   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10509 }
10510 
10511 /*
10512 ** Return the size of the header added to each page by this module.
10513 */
10514 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10515 
10516 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10517 /*
10518 ** Return true if the Btree passed as the only argument is sharable.
10519 */
10520 int sqlite3BtreeSharable(Btree *p){
10521   return p->sharable;
10522 }
10523 
10524 /*
10525 ** Return the number of connections to the BtShared object accessed by
10526 ** the Btree handle passed as the only argument. For private caches
10527 ** this is always 1. For shared caches it may be 1 or greater.
10528 */
10529 int sqlite3BtreeConnectionCount(Btree *p){
10530   testcase( p->sharable );
10531   return p->pBt->nRef;
10532 }
10533 #endif
10534