1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==(int)iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call BtreeMovetoUnpacked() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtr() => all index nodes & table leaf nodes 1331 */ 1332 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1333 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1334 u8 *pEnd; /* End mark for a varint */ 1335 u32 nSize; /* Size value to return */ 1336 1337 #ifdef SQLITE_DEBUG 1338 /* The value returned by this function should always be the same as 1339 ** the (CellInfo.nSize) value found by doing a full parse of the 1340 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1341 ** this function verifies that this invariant is not violated. */ 1342 CellInfo debuginfo; 1343 pPage->xParseCell(pPage, pCell, &debuginfo); 1344 #endif 1345 1346 nSize = *pIter; 1347 if( nSize>=0x80 ){ 1348 pEnd = &pIter[8]; 1349 nSize &= 0x7f; 1350 do{ 1351 nSize = (nSize<<7) | (*++pIter & 0x7f); 1352 }while( *(pIter)>=0x80 && pIter<pEnd ); 1353 } 1354 pIter++; 1355 if( pPage->intKey ){ 1356 /* pIter now points at the 64-bit integer key value, a variable length 1357 ** integer. The following block moves pIter to point at the first byte 1358 ** past the end of the key value. */ 1359 pEnd = &pIter[9]; 1360 while( (*pIter++)&0x80 && pIter<pEnd ); 1361 } 1362 testcase( nSize==pPage->maxLocal ); 1363 testcase( nSize==(u32)pPage->maxLocal+1 ); 1364 if( nSize<=pPage->maxLocal ){ 1365 nSize += (u32)(pIter - pCell); 1366 if( nSize<4 ) nSize = 4; 1367 }else{ 1368 int minLocal = pPage->minLocal; 1369 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1370 testcase( nSize==pPage->maxLocal ); 1371 testcase( nSize==(u32)pPage->maxLocal+1 ); 1372 if( nSize>pPage->maxLocal ){ 1373 nSize = minLocal; 1374 } 1375 nSize += 4 + (u16)(pIter - pCell); 1376 } 1377 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1378 return (u16)nSize; 1379 } 1380 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1381 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1382 u8 *pEnd; /* End mark for a varint */ 1383 1384 #ifdef SQLITE_DEBUG 1385 /* The value returned by this function should always be the same as 1386 ** the (CellInfo.nSize) value found by doing a full parse of the 1387 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1388 ** this function verifies that this invariant is not violated. */ 1389 CellInfo debuginfo; 1390 pPage->xParseCell(pPage, pCell, &debuginfo); 1391 #else 1392 UNUSED_PARAMETER(pPage); 1393 #endif 1394 1395 assert( pPage->childPtrSize==4 ); 1396 pEnd = pIter + 9; 1397 while( (*pIter++)&0x80 && pIter<pEnd ); 1398 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1399 return (u16)(pIter - pCell); 1400 } 1401 1402 1403 #ifdef SQLITE_DEBUG 1404 /* This variation on cellSizePtr() is used inside of assert() statements 1405 ** only. */ 1406 static u16 cellSize(MemPage *pPage, int iCell){ 1407 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1408 } 1409 #endif 1410 1411 #ifndef SQLITE_OMIT_AUTOVACUUM 1412 /* 1413 ** The cell pCell is currently part of page pSrc but will ultimately be part 1414 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a 1415 ** pointer to an overflow page, insert an entry into the pointer-map for 1416 ** the overflow page that will be valid after pCell has been moved to pPage. 1417 */ 1418 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1419 CellInfo info; 1420 if( *pRC ) return; 1421 assert( pCell!=0 ); 1422 pPage->xParseCell(pPage, pCell, &info); 1423 if( info.nLocal<info.nPayload ){ 1424 Pgno ovfl; 1425 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1426 testcase( pSrc!=pPage ); 1427 *pRC = SQLITE_CORRUPT_BKPT; 1428 return; 1429 } 1430 ovfl = get4byte(&pCell[info.nSize-4]); 1431 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1432 } 1433 } 1434 #endif 1435 1436 1437 /* 1438 ** Defragment the page given. This routine reorganizes cells within the 1439 ** page so that there are no free-blocks on the free-block list. 1440 ** 1441 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1442 ** present in the page after this routine returns. 1443 ** 1444 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1445 ** b-tree page so that there are no freeblocks or fragment bytes, all 1446 ** unused bytes are contained in the unallocated space region, and all 1447 ** cells are packed tightly at the end of the page. 1448 */ 1449 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1450 int i; /* Loop counter */ 1451 int pc; /* Address of the i-th cell */ 1452 int hdr; /* Offset to the page header */ 1453 int size; /* Size of a cell */ 1454 int usableSize; /* Number of usable bytes on a page */ 1455 int cellOffset; /* Offset to the cell pointer array */ 1456 int cbrk; /* Offset to the cell content area */ 1457 int nCell; /* Number of cells on the page */ 1458 unsigned char *data; /* The page data */ 1459 unsigned char *temp; /* Temp area for cell content */ 1460 unsigned char *src; /* Source of content */ 1461 int iCellFirst; /* First allowable cell index */ 1462 int iCellLast; /* Last possible cell index */ 1463 int iCellStart; /* First cell offset in input */ 1464 1465 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1466 assert( pPage->pBt!=0 ); 1467 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1468 assert( pPage->nOverflow==0 ); 1469 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1470 temp = 0; 1471 src = data = pPage->aData; 1472 hdr = pPage->hdrOffset; 1473 cellOffset = pPage->cellOffset; 1474 nCell = pPage->nCell; 1475 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1476 iCellFirst = cellOffset + 2*nCell; 1477 usableSize = pPage->pBt->usableSize; 1478 1479 /* This block handles pages with two or fewer free blocks and nMaxFrag 1480 ** or fewer fragmented bytes. In this case it is faster to move the 1481 ** two (or one) blocks of cells using memmove() and add the required 1482 ** offsets to each pointer in the cell-pointer array than it is to 1483 ** reconstruct the entire page. */ 1484 if( (int)data[hdr+7]<=nMaxFrag ){ 1485 int iFree = get2byte(&data[hdr+1]); 1486 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1487 if( iFree ){ 1488 int iFree2 = get2byte(&data[iFree]); 1489 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1490 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1491 u8 *pEnd = &data[cellOffset + nCell*2]; 1492 u8 *pAddr; 1493 int sz2 = 0; 1494 int sz = get2byte(&data[iFree+2]); 1495 int top = get2byte(&data[hdr+5]); 1496 if( top>=iFree ){ 1497 return SQLITE_CORRUPT_PAGE(pPage); 1498 } 1499 if( iFree2 ){ 1500 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1501 sz2 = get2byte(&data[iFree2+2]); 1502 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1503 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1504 sz += sz2; 1505 }else if( NEVER(iFree+sz>usableSize) ){ 1506 return SQLITE_CORRUPT_PAGE(pPage); 1507 } 1508 1509 cbrk = top+sz; 1510 assert( cbrk+(iFree-top) <= usableSize ); 1511 memmove(&data[cbrk], &data[top], iFree-top); 1512 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1513 pc = get2byte(pAddr); 1514 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1515 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1516 } 1517 goto defragment_out; 1518 } 1519 } 1520 } 1521 1522 cbrk = usableSize; 1523 iCellLast = usableSize - 4; 1524 iCellStart = get2byte(&data[hdr+5]); 1525 for(i=0; i<nCell; i++){ 1526 u8 *pAddr; /* The i-th cell pointer */ 1527 pAddr = &data[cellOffset + i*2]; 1528 pc = get2byte(pAddr); 1529 testcase( pc==iCellFirst ); 1530 testcase( pc==iCellLast ); 1531 /* These conditions have already been verified in btreeInitPage() 1532 ** if PRAGMA cell_size_check=ON. 1533 */ 1534 if( pc<iCellStart || pc>iCellLast ){ 1535 return SQLITE_CORRUPT_PAGE(pPage); 1536 } 1537 assert( pc>=iCellStart && pc<=iCellLast ); 1538 size = pPage->xCellSize(pPage, &src[pc]); 1539 cbrk -= size; 1540 if( cbrk<iCellStart || pc+size>usableSize ){ 1541 return SQLITE_CORRUPT_PAGE(pPage); 1542 } 1543 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1544 testcase( cbrk+size==usableSize ); 1545 testcase( pc+size==usableSize ); 1546 put2byte(pAddr, cbrk); 1547 if( temp==0 ){ 1548 if( cbrk==pc ) continue; 1549 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1550 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1551 src = temp; 1552 } 1553 memcpy(&data[cbrk], &src[pc], size); 1554 } 1555 data[hdr+7] = 0; 1556 1557 defragment_out: 1558 assert( pPage->nFree>=0 ); 1559 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1560 return SQLITE_CORRUPT_PAGE(pPage); 1561 } 1562 assert( cbrk>=iCellFirst ); 1563 put2byte(&data[hdr+5], cbrk); 1564 data[hdr+1] = 0; 1565 data[hdr+2] = 0; 1566 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1567 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1568 return SQLITE_OK; 1569 } 1570 1571 /* 1572 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1573 ** size. If one can be found, return a pointer to the space and remove it 1574 ** from the free-list. 1575 ** 1576 ** If no suitable space can be found on the free-list, return NULL. 1577 ** 1578 ** This function may detect corruption within pPg. If corruption is 1579 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1580 ** 1581 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1582 ** will be ignored if adding the extra space to the fragmentation count 1583 ** causes the fragmentation count to exceed 60. 1584 */ 1585 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1586 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1587 u8 * const aData = pPg->aData; /* Page data */ 1588 int iAddr = hdr + 1; /* Address of ptr to pc */ 1589 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */ 1590 int x; /* Excess size of the slot */ 1591 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1592 int size; /* Size of the free slot */ 1593 1594 assert( pc>0 ); 1595 while( pc<=maxPC ){ 1596 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1597 ** freeblock form a big-endian integer which is the size of the freeblock 1598 ** in bytes, including the 4-byte header. */ 1599 size = get2byte(&aData[pc+2]); 1600 if( (x = size - nByte)>=0 ){ 1601 testcase( x==4 ); 1602 testcase( x==3 ); 1603 if( x<4 ){ 1604 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1605 ** number of bytes in fragments may not exceed 60. */ 1606 if( aData[hdr+7]>57 ) return 0; 1607 1608 /* Remove the slot from the free-list. Update the number of 1609 ** fragmented bytes within the page. */ 1610 memcpy(&aData[iAddr], &aData[pc], 2); 1611 aData[hdr+7] += (u8)x; 1612 }else if( x+pc > maxPC ){ 1613 /* This slot extends off the end of the usable part of the page */ 1614 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1615 return 0; 1616 }else{ 1617 /* The slot remains on the free-list. Reduce its size to account 1618 ** for the portion used by the new allocation. */ 1619 put2byte(&aData[pc+2], x); 1620 } 1621 return &aData[pc + x]; 1622 } 1623 iAddr = pc; 1624 pc = get2byte(&aData[pc]); 1625 if( pc<=iAddr+size ){ 1626 if( pc ){ 1627 /* The next slot in the chain is not past the end of the current slot */ 1628 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1629 } 1630 return 0; 1631 } 1632 } 1633 if( pc>maxPC+nByte-4 ){ 1634 /* The free slot chain extends off the end of the page */ 1635 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1636 } 1637 return 0; 1638 } 1639 1640 /* 1641 ** Allocate nByte bytes of space from within the B-Tree page passed 1642 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1643 ** of the first byte of allocated space. Return either SQLITE_OK or 1644 ** an error code (usually SQLITE_CORRUPT). 1645 ** 1646 ** The caller guarantees that there is sufficient space to make the 1647 ** allocation. This routine might need to defragment in order to bring 1648 ** all the space together, however. This routine will avoid using 1649 ** the first two bytes past the cell pointer area since presumably this 1650 ** allocation is being made in order to insert a new cell, so we will 1651 ** also end up needing a new cell pointer. 1652 */ 1653 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1654 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1655 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1656 int top; /* First byte of cell content area */ 1657 int rc = SQLITE_OK; /* Integer return code */ 1658 int gap; /* First byte of gap between cell pointers and cell content */ 1659 1660 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1661 assert( pPage->pBt ); 1662 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1663 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1664 assert( pPage->nFree>=nByte ); 1665 assert( pPage->nOverflow==0 ); 1666 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1667 1668 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1669 gap = pPage->cellOffset + 2*pPage->nCell; 1670 assert( gap<=65536 ); 1671 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1672 ** and the reserved space is zero (the usual value for reserved space) 1673 ** then the cell content offset of an empty page wants to be 65536. 1674 ** However, that integer is too large to be stored in a 2-byte unsigned 1675 ** integer, so a value of 0 is used in its place. */ 1676 top = get2byte(&data[hdr+5]); 1677 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1678 if( gap>top ){ 1679 if( top==0 && pPage->pBt->usableSize==65536 ){ 1680 top = 65536; 1681 }else{ 1682 return SQLITE_CORRUPT_PAGE(pPage); 1683 } 1684 } 1685 1686 /* If there is enough space between gap and top for one more cell pointer, 1687 ** and if the freelist is not empty, then search the 1688 ** freelist looking for a slot big enough to satisfy the request. 1689 */ 1690 testcase( gap+2==top ); 1691 testcase( gap+1==top ); 1692 testcase( gap==top ); 1693 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1694 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1695 if( pSpace ){ 1696 int g2; 1697 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1698 *pIdx = g2 = (int)(pSpace-data); 1699 if( g2<=gap ){ 1700 return SQLITE_CORRUPT_PAGE(pPage); 1701 }else{ 1702 return SQLITE_OK; 1703 } 1704 }else if( rc ){ 1705 return rc; 1706 } 1707 } 1708 1709 /* The request could not be fulfilled using a freelist slot. Check 1710 ** to see if defragmentation is necessary. 1711 */ 1712 testcase( gap+2+nByte==top ); 1713 if( gap+2+nByte>top ){ 1714 assert( pPage->nCell>0 || CORRUPT_DB ); 1715 assert( pPage->nFree>=0 ); 1716 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1717 if( rc ) return rc; 1718 top = get2byteNotZero(&data[hdr+5]); 1719 assert( gap+2+nByte<=top ); 1720 } 1721 1722 1723 /* Allocate memory from the gap in between the cell pointer array 1724 ** and the cell content area. The btreeComputeFreeSpace() call has already 1725 ** validated the freelist. Given that the freelist is valid, there 1726 ** is no way that the allocation can extend off the end of the page. 1727 ** The assert() below verifies the previous sentence. 1728 */ 1729 top -= nByte; 1730 put2byte(&data[hdr+5], top); 1731 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1732 *pIdx = top; 1733 return SQLITE_OK; 1734 } 1735 1736 /* 1737 ** Return a section of the pPage->aData to the freelist. 1738 ** The first byte of the new free block is pPage->aData[iStart] 1739 ** and the size of the block is iSize bytes. 1740 ** 1741 ** Adjacent freeblocks are coalesced. 1742 ** 1743 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1744 ** that routine will not detect overlap between cells or freeblocks. Nor 1745 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1746 ** at the end of the page. So do additional corruption checks inside this 1747 ** routine and return SQLITE_CORRUPT if any problems are found. 1748 */ 1749 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1750 u16 iPtr; /* Address of ptr to next freeblock */ 1751 u16 iFreeBlk; /* Address of the next freeblock */ 1752 u8 hdr; /* Page header size. 0 or 100 */ 1753 u8 nFrag = 0; /* Reduction in fragmentation */ 1754 u16 iOrigSize = iSize; /* Original value of iSize */ 1755 u16 x; /* Offset to cell content area */ 1756 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1757 unsigned char *data = pPage->aData; /* Page content */ 1758 1759 assert( pPage->pBt!=0 ); 1760 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1761 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1762 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1763 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1764 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1765 assert( iStart<=pPage->pBt->usableSize-4 ); 1766 1767 /* The list of freeblocks must be in ascending order. Find the 1768 ** spot on the list where iStart should be inserted. 1769 */ 1770 hdr = pPage->hdrOffset; 1771 iPtr = hdr + 1; 1772 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1773 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1774 }else{ 1775 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1776 if( iFreeBlk<iPtr+4 ){ 1777 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1778 return SQLITE_CORRUPT_PAGE(pPage); 1779 } 1780 iPtr = iFreeBlk; 1781 } 1782 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1783 return SQLITE_CORRUPT_PAGE(pPage); 1784 } 1785 assert( iFreeBlk>iPtr || iFreeBlk==0 ); 1786 1787 /* At this point: 1788 ** iFreeBlk: First freeblock after iStart, or zero if none 1789 ** iPtr: The address of a pointer to iFreeBlk 1790 ** 1791 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1792 */ 1793 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1794 nFrag = iFreeBlk - iEnd; 1795 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1796 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1797 if( iEnd > pPage->pBt->usableSize ){ 1798 return SQLITE_CORRUPT_PAGE(pPage); 1799 } 1800 iSize = iEnd - iStart; 1801 iFreeBlk = get2byte(&data[iFreeBlk]); 1802 } 1803 1804 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1805 ** pointer in the page header) then check to see if iStart should be 1806 ** coalesced onto the end of iPtr. 1807 */ 1808 if( iPtr>hdr+1 ){ 1809 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1810 if( iPtrEnd+3>=iStart ){ 1811 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1812 nFrag += iStart - iPtrEnd; 1813 iSize = iEnd - iPtr; 1814 iStart = iPtr; 1815 } 1816 } 1817 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1818 data[hdr+7] -= nFrag; 1819 } 1820 x = get2byte(&data[hdr+5]); 1821 if( iStart<=x ){ 1822 /* The new freeblock is at the beginning of the cell content area, 1823 ** so just extend the cell content area rather than create another 1824 ** freelist entry */ 1825 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1826 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1827 put2byte(&data[hdr+1], iFreeBlk); 1828 put2byte(&data[hdr+5], iEnd); 1829 }else{ 1830 /* Insert the new freeblock into the freelist */ 1831 put2byte(&data[iPtr], iStart); 1832 } 1833 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1834 /* Overwrite deleted information with zeros when the secure_delete 1835 ** option is enabled */ 1836 memset(&data[iStart], 0, iSize); 1837 } 1838 put2byte(&data[iStart], iFreeBlk); 1839 put2byte(&data[iStart+2], iSize); 1840 pPage->nFree += iOrigSize; 1841 return SQLITE_OK; 1842 } 1843 1844 /* 1845 ** Decode the flags byte (the first byte of the header) for a page 1846 ** and initialize fields of the MemPage structure accordingly. 1847 ** 1848 ** Only the following combinations are supported. Anything different 1849 ** indicates a corrupt database files: 1850 ** 1851 ** PTF_ZERODATA 1852 ** PTF_ZERODATA | PTF_LEAF 1853 ** PTF_LEAFDATA | PTF_INTKEY 1854 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1855 */ 1856 static int decodeFlags(MemPage *pPage, int flagByte){ 1857 BtShared *pBt; /* A copy of pPage->pBt */ 1858 1859 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1860 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1861 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1862 flagByte &= ~PTF_LEAF; 1863 pPage->childPtrSize = 4-4*pPage->leaf; 1864 pPage->xCellSize = cellSizePtr; 1865 pBt = pPage->pBt; 1866 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1867 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1868 ** interior table b-tree page. */ 1869 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1870 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1871 ** leaf table b-tree page. */ 1872 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1873 pPage->intKey = 1; 1874 if( pPage->leaf ){ 1875 pPage->intKeyLeaf = 1; 1876 pPage->xParseCell = btreeParseCellPtr; 1877 }else{ 1878 pPage->intKeyLeaf = 0; 1879 pPage->xCellSize = cellSizePtrNoPayload; 1880 pPage->xParseCell = btreeParseCellPtrNoPayload; 1881 } 1882 pPage->maxLocal = pBt->maxLeaf; 1883 pPage->minLocal = pBt->minLeaf; 1884 }else if( flagByte==PTF_ZERODATA ){ 1885 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1886 ** interior index b-tree page. */ 1887 assert( (PTF_ZERODATA)==2 ); 1888 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1889 ** leaf index b-tree page. */ 1890 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1891 pPage->intKey = 0; 1892 pPage->intKeyLeaf = 0; 1893 pPage->xParseCell = btreeParseCellPtrIndex; 1894 pPage->maxLocal = pBt->maxLocal; 1895 pPage->minLocal = pBt->minLocal; 1896 }else{ 1897 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1898 ** an error. */ 1899 return SQLITE_CORRUPT_PAGE(pPage); 1900 } 1901 pPage->max1bytePayload = pBt->max1bytePayload; 1902 return SQLITE_OK; 1903 } 1904 1905 /* 1906 ** Compute the amount of freespace on the page. In other words, fill 1907 ** in the pPage->nFree field. 1908 */ 1909 static int btreeComputeFreeSpace(MemPage *pPage){ 1910 int pc; /* Address of a freeblock within pPage->aData[] */ 1911 u8 hdr; /* Offset to beginning of page header */ 1912 u8 *data; /* Equal to pPage->aData */ 1913 int usableSize; /* Amount of usable space on each page */ 1914 int nFree; /* Number of unused bytes on the page */ 1915 int top; /* First byte of the cell content area */ 1916 int iCellFirst; /* First allowable cell or freeblock offset */ 1917 int iCellLast; /* Last possible cell or freeblock offset */ 1918 1919 assert( pPage->pBt!=0 ); 1920 assert( pPage->pBt->db!=0 ); 1921 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1922 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1923 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1924 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1925 assert( pPage->isInit==1 ); 1926 assert( pPage->nFree<0 ); 1927 1928 usableSize = pPage->pBt->usableSize; 1929 hdr = pPage->hdrOffset; 1930 data = pPage->aData; 1931 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1932 ** the start of the cell content area. A zero value for this integer is 1933 ** interpreted as 65536. */ 1934 top = get2byteNotZero(&data[hdr+5]); 1935 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1936 iCellLast = usableSize - 4; 1937 1938 /* Compute the total free space on the page 1939 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1940 ** start of the first freeblock on the page, or is zero if there are no 1941 ** freeblocks. */ 1942 pc = get2byte(&data[hdr+1]); 1943 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 1944 if( pc>0 ){ 1945 u32 next, size; 1946 if( pc<top ){ 1947 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 1948 ** always be at least one cell before the first freeblock. 1949 */ 1950 return SQLITE_CORRUPT_PAGE(pPage); 1951 } 1952 while( 1 ){ 1953 if( pc>iCellLast ){ 1954 /* Freeblock off the end of the page */ 1955 return SQLITE_CORRUPT_PAGE(pPage); 1956 } 1957 next = get2byte(&data[pc]); 1958 size = get2byte(&data[pc+2]); 1959 nFree = nFree + size; 1960 if( next<=pc+size+3 ) break; 1961 pc = next; 1962 } 1963 if( next>0 ){ 1964 /* Freeblock not in ascending order */ 1965 return SQLITE_CORRUPT_PAGE(pPage); 1966 } 1967 if( pc+size>(unsigned int)usableSize ){ 1968 /* Last freeblock extends past page end */ 1969 return SQLITE_CORRUPT_PAGE(pPage); 1970 } 1971 } 1972 1973 /* At this point, nFree contains the sum of the offset to the start 1974 ** of the cell-content area plus the number of free bytes within 1975 ** the cell-content area. If this is greater than the usable-size 1976 ** of the page, then the page must be corrupted. This check also 1977 ** serves to verify that the offset to the start of the cell-content 1978 ** area, according to the page header, lies within the page. 1979 */ 1980 if( nFree>usableSize || nFree<iCellFirst ){ 1981 return SQLITE_CORRUPT_PAGE(pPage); 1982 } 1983 pPage->nFree = (u16)(nFree - iCellFirst); 1984 return SQLITE_OK; 1985 } 1986 1987 /* 1988 ** Do additional sanity check after btreeInitPage() if 1989 ** PRAGMA cell_size_check=ON 1990 */ 1991 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 1992 int iCellFirst; /* First allowable cell or freeblock offset */ 1993 int iCellLast; /* Last possible cell or freeblock offset */ 1994 int i; /* Index into the cell pointer array */ 1995 int sz; /* Size of a cell */ 1996 int pc; /* Address of a freeblock within pPage->aData[] */ 1997 u8 *data; /* Equal to pPage->aData */ 1998 int usableSize; /* Maximum usable space on the page */ 1999 int cellOffset; /* Start of cell content area */ 2000 2001 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2002 usableSize = pPage->pBt->usableSize; 2003 iCellLast = usableSize - 4; 2004 data = pPage->aData; 2005 cellOffset = pPage->cellOffset; 2006 if( !pPage->leaf ) iCellLast--; 2007 for(i=0; i<pPage->nCell; i++){ 2008 pc = get2byteAligned(&data[cellOffset+i*2]); 2009 testcase( pc==iCellFirst ); 2010 testcase( pc==iCellLast ); 2011 if( pc<iCellFirst || pc>iCellLast ){ 2012 return SQLITE_CORRUPT_PAGE(pPage); 2013 } 2014 sz = pPage->xCellSize(pPage, &data[pc]); 2015 testcase( pc+sz==usableSize ); 2016 if( pc+sz>usableSize ){ 2017 return SQLITE_CORRUPT_PAGE(pPage); 2018 } 2019 } 2020 return SQLITE_OK; 2021 } 2022 2023 /* 2024 ** Initialize the auxiliary information for a disk block. 2025 ** 2026 ** Return SQLITE_OK on success. If we see that the page does 2027 ** not contain a well-formed database page, then return 2028 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2029 ** guarantee that the page is well-formed. It only shows that 2030 ** we failed to detect any corruption. 2031 */ 2032 static int btreeInitPage(MemPage *pPage){ 2033 u8 *data; /* Equal to pPage->aData */ 2034 BtShared *pBt; /* The main btree structure */ 2035 2036 assert( pPage->pBt!=0 ); 2037 assert( pPage->pBt->db!=0 ); 2038 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2039 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2040 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2041 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2042 assert( pPage->isInit==0 ); 2043 2044 pBt = pPage->pBt; 2045 data = pPage->aData + pPage->hdrOffset; 2046 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2047 ** the b-tree page type. */ 2048 if( decodeFlags(pPage, data[0]) ){ 2049 return SQLITE_CORRUPT_PAGE(pPage); 2050 } 2051 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2052 pPage->maskPage = (u16)(pBt->pageSize - 1); 2053 pPage->nOverflow = 0; 2054 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2055 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2056 pPage->aDataEnd = pPage->aData + pBt->usableSize; 2057 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2058 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2059 ** number of cells on the page. */ 2060 pPage->nCell = get2byte(&data[3]); 2061 if( pPage->nCell>MX_CELL(pBt) ){ 2062 /* To many cells for a single page. The page must be corrupt */ 2063 return SQLITE_CORRUPT_PAGE(pPage); 2064 } 2065 testcase( pPage->nCell==MX_CELL(pBt) ); 2066 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2067 ** possible for a root page of a table that contains no rows) then the 2068 ** offset to the cell content area will equal the page size minus the 2069 ** bytes of reserved space. */ 2070 assert( pPage->nCell>0 2071 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2072 || CORRUPT_DB ); 2073 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2074 pPage->isInit = 1; 2075 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2076 return btreeCellSizeCheck(pPage); 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Set up a raw page so that it looks like a database page holding 2083 ** no entries. 2084 */ 2085 static void zeroPage(MemPage *pPage, int flags){ 2086 unsigned char *data = pPage->aData; 2087 BtShared *pBt = pPage->pBt; 2088 u8 hdr = pPage->hdrOffset; 2089 u16 first; 2090 2091 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); 2092 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2093 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2094 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2095 assert( sqlite3_mutex_held(pBt->mutex) ); 2096 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2097 memset(&data[hdr], 0, pBt->usableSize - hdr); 2098 } 2099 data[hdr] = (char)flags; 2100 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2101 memset(&data[hdr+1], 0, 4); 2102 data[hdr+7] = 0; 2103 put2byte(&data[hdr+5], pBt->usableSize); 2104 pPage->nFree = (u16)(pBt->usableSize - first); 2105 decodeFlags(pPage, flags); 2106 pPage->cellOffset = first; 2107 pPage->aDataEnd = &data[pBt->usableSize]; 2108 pPage->aCellIdx = &data[first]; 2109 pPage->aDataOfst = &data[pPage->childPtrSize]; 2110 pPage->nOverflow = 0; 2111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2112 pPage->maskPage = (u16)(pBt->pageSize - 1); 2113 pPage->nCell = 0; 2114 pPage->isInit = 1; 2115 } 2116 2117 2118 /* 2119 ** Convert a DbPage obtained from the pager into a MemPage used by 2120 ** the btree layer. 2121 */ 2122 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2123 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2124 if( pgno!=pPage->pgno ){ 2125 pPage->aData = sqlite3PagerGetData(pDbPage); 2126 pPage->pDbPage = pDbPage; 2127 pPage->pBt = pBt; 2128 pPage->pgno = pgno; 2129 pPage->hdrOffset = pgno==1 ? 100 : 0; 2130 } 2131 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2132 return pPage; 2133 } 2134 2135 /* 2136 ** Get a page from the pager. Initialize the MemPage.pBt and 2137 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2138 ** 2139 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2140 ** about the content of the page at this time. So do not go to the disk 2141 ** to fetch the content. Just fill in the content with zeros for now. 2142 ** If in the future we call sqlite3PagerWrite() on this page, that 2143 ** means we have started to be concerned about content and the disk 2144 ** read should occur at that point. 2145 */ 2146 static int btreeGetPage( 2147 BtShared *pBt, /* The btree */ 2148 Pgno pgno, /* Number of the page to fetch */ 2149 MemPage **ppPage, /* Return the page in this parameter */ 2150 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2151 ){ 2152 int rc; 2153 DbPage *pDbPage; 2154 2155 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2156 assert( sqlite3_mutex_held(pBt->mutex) ); 2157 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2158 if( rc ) return rc; 2159 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2160 return SQLITE_OK; 2161 } 2162 2163 /* 2164 ** Retrieve a page from the pager cache. If the requested page is not 2165 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2166 ** MemPage.aData elements if needed. 2167 */ 2168 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2169 DbPage *pDbPage; 2170 assert( sqlite3_mutex_held(pBt->mutex) ); 2171 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2172 if( pDbPage ){ 2173 return btreePageFromDbPage(pDbPage, pgno, pBt); 2174 } 2175 return 0; 2176 } 2177 2178 /* 2179 ** Return the size of the database file in pages. If there is any kind of 2180 ** error, return ((unsigned int)-1). 2181 */ 2182 static Pgno btreePagecount(BtShared *pBt){ 2183 return pBt->nPage; 2184 } 2185 Pgno sqlite3BtreeLastPage(Btree *p){ 2186 assert( sqlite3BtreeHoldsMutex(p) ); 2187 return btreePagecount(p->pBt); 2188 } 2189 2190 /* 2191 ** Get a page from the pager and initialize it. 2192 ** 2193 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2194 ** call. Do additional sanity checking on the page in this case. 2195 ** And if the fetch fails, this routine must decrement pCur->iPage. 2196 ** 2197 ** The page is fetched as read-write unless pCur is not NULL and is 2198 ** a read-only cursor. 2199 ** 2200 ** If an error occurs, then *ppPage is undefined. It 2201 ** may remain unchanged, or it may be set to an invalid value. 2202 */ 2203 static int getAndInitPage( 2204 BtShared *pBt, /* The database file */ 2205 Pgno pgno, /* Number of the page to get */ 2206 MemPage **ppPage, /* Write the page pointer here */ 2207 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2208 int bReadOnly /* True for a read-only page */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 assert( sqlite3_mutex_held(pBt->mutex) ); 2213 assert( pCur==0 || ppPage==&pCur->pPage ); 2214 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2215 assert( pCur==0 || pCur->iPage>0 ); 2216 2217 if( pgno>btreePagecount(pBt) ){ 2218 rc = SQLITE_CORRUPT_BKPT; 2219 goto getAndInitPage_error1; 2220 } 2221 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2222 if( rc ){ 2223 goto getAndInitPage_error1; 2224 } 2225 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2226 if( (*ppPage)->isInit==0 ){ 2227 btreePageFromDbPage(pDbPage, pgno, pBt); 2228 rc = btreeInitPage(*ppPage); 2229 if( rc!=SQLITE_OK ){ 2230 goto getAndInitPage_error2; 2231 } 2232 } 2233 assert( (*ppPage)->pgno==pgno ); 2234 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2235 2236 /* If obtaining a child page for a cursor, we must verify that the page is 2237 ** compatible with the root page. */ 2238 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2239 rc = SQLITE_CORRUPT_PGNO(pgno); 2240 goto getAndInitPage_error2; 2241 } 2242 return SQLITE_OK; 2243 2244 getAndInitPage_error2: 2245 releasePage(*ppPage); 2246 getAndInitPage_error1: 2247 if( pCur ){ 2248 pCur->iPage--; 2249 pCur->pPage = pCur->apPage[pCur->iPage]; 2250 } 2251 testcase( pgno==0 ); 2252 assert( pgno!=0 || rc==SQLITE_CORRUPT ); 2253 return rc; 2254 } 2255 2256 /* 2257 ** Release a MemPage. This should be called once for each prior 2258 ** call to btreeGetPage. 2259 ** 2260 ** Page1 is a special case and must be released using releasePageOne(). 2261 */ 2262 static void releasePageNotNull(MemPage *pPage){ 2263 assert( pPage->aData ); 2264 assert( pPage->pBt ); 2265 assert( pPage->pDbPage!=0 ); 2266 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2267 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2268 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2269 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2270 } 2271 static void releasePage(MemPage *pPage){ 2272 if( pPage ) releasePageNotNull(pPage); 2273 } 2274 static void releasePageOne(MemPage *pPage){ 2275 assert( pPage!=0 ); 2276 assert( pPage->aData ); 2277 assert( pPage->pBt ); 2278 assert( pPage->pDbPage!=0 ); 2279 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2280 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2281 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2282 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2283 } 2284 2285 /* 2286 ** Get an unused page. 2287 ** 2288 ** This works just like btreeGetPage() with the addition: 2289 ** 2290 ** * If the page is already in use for some other purpose, immediately 2291 ** release it and return an SQLITE_CURRUPT error. 2292 ** * Make sure the isInit flag is clear 2293 */ 2294 static int btreeGetUnusedPage( 2295 BtShared *pBt, /* The btree */ 2296 Pgno pgno, /* Number of the page to fetch */ 2297 MemPage **ppPage, /* Return the page in this parameter */ 2298 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2299 ){ 2300 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2301 if( rc==SQLITE_OK ){ 2302 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2303 releasePage(*ppPage); 2304 *ppPage = 0; 2305 return SQLITE_CORRUPT_BKPT; 2306 } 2307 (*ppPage)->isInit = 0; 2308 }else{ 2309 *ppPage = 0; 2310 } 2311 return rc; 2312 } 2313 2314 2315 /* 2316 ** During a rollback, when the pager reloads information into the cache 2317 ** so that the cache is restored to its original state at the start of 2318 ** the transaction, for each page restored this routine is called. 2319 ** 2320 ** This routine needs to reset the extra data section at the end of the 2321 ** page to agree with the restored data. 2322 */ 2323 static void pageReinit(DbPage *pData){ 2324 MemPage *pPage; 2325 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2326 assert( sqlite3PagerPageRefcount(pData)>0 ); 2327 if( pPage->isInit ){ 2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2329 pPage->isInit = 0; 2330 if( sqlite3PagerPageRefcount(pData)>1 ){ 2331 /* pPage might not be a btree page; it might be an overflow page 2332 ** or ptrmap page or a free page. In those cases, the following 2333 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2334 ** But no harm is done by this. And it is very important that 2335 ** btreeInitPage() be called on every btree page so we make 2336 ** the call for every page that comes in for re-initing. */ 2337 btreeInitPage(pPage); 2338 } 2339 } 2340 } 2341 2342 /* 2343 ** Invoke the busy handler for a btree. 2344 */ 2345 static int btreeInvokeBusyHandler(void *pArg){ 2346 BtShared *pBt = (BtShared*)pArg; 2347 assert( pBt->db ); 2348 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2349 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2350 } 2351 2352 /* 2353 ** Open a database file. 2354 ** 2355 ** zFilename is the name of the database file. If zFilename is NULL 2356 ** then an ephemeral database is created. The ephemeral database might 2357 ** be exclusively in memory, or it might use a disk-based memory cache. 2358 ** Either way, the ephemeral database will be automatically deleted 2359 ** when sqlite3BtreeClose() is called. 2360 ** 2361 ** If zFilename is ":memory:" then an in-memory database is created 2362 ** that is automatically destroyed when it is closed. 2363 ** 2364 ** The "flags" parameter is a bitmask that might contain bits like 2365 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2366 ** 2367 ** If the database is already opened in the same database connection 2368 ** and we are in shared cache mode, then the open will fail with an 2369 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2370 ** objects in the same database connection since doing so will lead 2371 ** to problems with locking. 2372 */ 2373 int sqlite3BtreeOpen( 2374 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2375 const char *zFilename, /* Name of the file containing the BTree database */ 2376 sqlite3 *db, /* Associated database handle */ 2377 Btree **ppBtree, /* Pointer to new Btree object written here */ 2378 int flags, /* Options */ 2379 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2380 ){ 2381 BtShared *pBt = 0; /* Shared part of btree structure */ 2382 Btree *p; /* Handle to return */ 2383 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2384 int rc = SQLITE_OK; /* Result code from this function */ 2385 u8 nReserve; /* Byte of unused space on each page */ 2386 unsigned char zDbHeader[100]; /* Database header content */ 2387 2388 /* True if opening an ephemeral, temporary database */ 2389 const int isTempDb = zFilename==0 || zFilename[0]==0; 2390 2391 /* Set the variable isMemdb to true for an in-memory database, or 2392 ** false for a file-based database. 2393 */ 2394 #ifdef SQLITE_OMIT_MEMORYDB 2395 const int isMemdb = 0; 2396 #else 2397 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2398 || (isTempDb && sqlite3TempInMemory(db)) 2399 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2400 #endif 2401 2402 assert( db!=0 ); 2403 assert( pVfs!=0 ); 2404 assert( sqlite3_mutex_held(db->mutex) ); 2405 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2406 2407 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2408 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2409 2410 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2411 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2412 2413 if( isMemdb ){ 2414 flags |= BTREE_MEMORY; 2415 } 2416 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2417 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2418 } 2419 p = sqlite3MallocZero(sizeof(Btree)); 2420 if( !p ){ 2421 return SQLITE_NOMEM_BKPT; 2422 } 2423 p->inTrans = TRANS_NONE; 2424 p->db = db; 2425 #ifndef SQLITE_OMIT_SHARED_CACHE 2426 p->lock.pBtree = p; 2427 p->lock.iTable = 1; 2428 #endif 2429 2430 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2431 /* 2432 ** If this Btree is a candidate for shared cache, try to find an 2433 ** existing BtShared object that we can share with 2434 */ 2435 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2436 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2437 int nFilename = sqlite3Strlen30(zFilename)+1; 2438 int nFullPathname = pVfs->mxPathname+1; 2439 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2440 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2441 2442 p->sharable = 1; 2443 if( !zFullPathname ){ 2444 sqlite3_free(p); 2445 return SQLITE_NOMEM_BKPT; 2446 } 2447 if( isMemdb ){ 2448 memcpy(zFullPathname, zFilename, nFilename); 2449 }else{ 2450 rc = sqlite3OsFullPathname(pVfs, zFilename, 2451 nFullPathname, zFullPathname); 2452 if( rc ){ 2453 if( rc==SQLITE_OK_SYMLINK ){ 2454 rc = SQLITE_OK; 2455 }else{ 2456 sqlite3_free(zFullPathname); 2457 sqlite3_free(p); 2458 return rc; 2459 } 2460 } 2461 } 2462 #if SQLITE_THREADSAFE 2463 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2464 sqlite3_mutex_enter(mutexOpen); 2465 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2466 sqlite3_mutex_enter(mutexShared); 2467 #endif 2468 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2469 assert( pBt->nRef>0 ); 2470 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2471 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2472 int iDb; 2473 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2474 Btree *pExisting = db->aDb[iDb].pBt; 2475 if( pExisting && pExisting->pBt==pBt ){ 2476 sqlite3_mutex_leave(mutexShared); 2477 sqlite3_mutex_leave(mutexOpen); 2478 sqlite3_free(zFullPathname); 2479 sqlite3_free(p); 2480 return SQLITE_CONSTRAINT; 2481 } 2482 } 2483 p->pBt = pBt; 2484 pBt->nRef++; 2485 break; 2486 } 2487 } 2488 sqlite3_mutex_leave(mutexShared); 2489 sqlite3_free(zFullPathname); 2490 } 2491 #ifdef SQLITE_DEBUG 2492 else{ 2493 /* In debug mode, we mark all persistent databases as sharable 2494 ** even when they are not. This exercises the locking code and 2495 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2496 ** statements to find locking problems. 2497 */ 2498 p->sharable = 1; 2499 } 2500 #endif 2501 } 2502 #endif 2503 if( pBt==0 ){ 2504 /* 2505 ** The following asserts make sure that structures used by the btree are 2506 ** the right size. This is to guard against size changes that result 2507 ** when compiling on a different architecture. 2508 */ 2509 assert( sizeof(i64)==8 ); 2510 assert( sizeof(u64)==8 ); 2511 assert( sizeof(u32)==4 ); 2512 assert( sizeof(u16)==2 ); 2513 assert( sizeof(Pgno)==4 ); 2514 2515 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2516 if( pBt==0 ){ 2517 rc = SQLITE_NOMEM_BKPT; 2518 goto btree_open_out; 2519 } 2520 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2521 sizeof(MemPage), flags, vfsFlags, pageReinit); 2522 if( rc==SQLITE_OK ){ 2523 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2524 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2525 } 2526 if( rc!=SQLITE_OK ){ 2527 goto btree_open_out; 2528 } 2529 pBt->openFlags = (u8)flags; 2530 pBt->db = db; 2531 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2532 p->pBt = pBt; 2533 2534 pBt->pCursor = 0; 2535 pBt->pPage1 = 0; 2536 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2537 #if defined(SQLITE_SECURE_DELETE) 2538 pBt->btsFlags |= BTS_SECURE_DELETE; 2539 #elif defined(SQLITE_FAST_SECURE_DELETE) 2540 pBt->btsFlags |= BTS_OVERWRITE; 2541 #endif 2542 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2543 ** determined by the 2-byte integer located at an offset of 16 bytes from 2544 ** the beginning of the database file. */ 2545 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2546 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2547 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2548 pBt->pageSize = 0; 2549 #ifndef SQLITE_OMIT_AUTOVACUUM 2550 /* If the magic name ":memory:" will create an in-memory database, then 2551 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2552 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2553 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2554 ** regular file-name. In this case the auto-vacuum applies as per normal. 2555 */ 2556 if( zFilename && !isMemdb ){ 2557 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2558 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2559 } 2560 #endif 2561 nReserve = 0; 2562 }else{ 2563 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2564 ** determined by the one-byte unsigned integer found at an offset of 20 2565 ** into the database file header. */ 2566 nReserve = zDbHeader[20]; 2567 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2568 #ifndef SQLITE_OMIT_AUTOVACUUM 2569 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2570 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2571 #endif 2572 } 2573 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2574 if( rc ) goto btree_open_out; 2575 pBt->usableSize = pBt->pageSize - nReserve; 2576 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2577 2578 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2579 /* Add the new BtShared object to the linked list sharable BtShareds. 2580 */ 2581 pBt->nRef = 1; 2582 if( p->sharable ){ 2583 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2584 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2585 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2586 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2587 if( pBt->mutex==0 ){ 2588 rc = SQLITE_NOMEM_BKPT; 2589 goto btree_open_out; 2590 } 2591 } 2592 sqlite3_mutex_enter(mutexShared); 2593 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2594 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2595 sqlite3_mutex_leave(mutexShared); 2596 } 2597 #endif 2598 } 2599 2600 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2601 /* If the new Btree uses a sharable pBtShared, then link the new 2602 ** Btree into the list of all sharable Btrees for the same connection. 2603 ** The list is kept in ascending order by pBt address. 2604 */ 2605 if( p->sharable ){ 2606 int i; 2607 Btree *pSib; 2608 for(i=0; i<db->nDb; i++){ 2609 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2610 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2611 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2612 p->pNext = pSib; 2613 p->pPrev = 0; 2614 pSib->pPrev = p; 2615 }else{ 2616 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2617 pSib = pSib->pNext; 2618 } 2619 p->pNext = pSib->pNext; 2620 p->pPrev = pSib; 2621 if( p->pNext ){ 2622 p->pNext->pPrev = p; 2623 } 2624 pSib->pNext = p; 2625 } 2626 break; 2627 } 2628 } 2629 } 2630 #endif 2631 *ppBtree = p; 2632 2633 btree_open_out: 2634 if( rc!=SQLITE_OK ){ 2635 if( pBt && pBt->pPager ){ 2636 sqlite3PagerClose(pBt->pPager, 0); 2637 } 2638 sqlite3_free(pBt); 2639 sqlite3_free(p); 2640 *ppBtree = 0; 2641 }else{ 2642 sqlite3_file *pFile; 2643 2644 /* If the B-Tree was successfully opened, set the pager-cache size to the 2645 ** default value. Except, when opening on an existing shared pager-cache, 2646 ** do not change the pager-cache size. 2647 */ 2648 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2649 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2650 } 2651 2652 pFile = sqlite3PagerFile(pBt->pPager); 2653 if( pFile->pMethods ){ 2654 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2655 } 2656 } 2657 if( mutexOpen ){ 2658 assert( sqlite3_mutex_held(mutexOpen) ); 2659 sqlite3_mutex_leave(mutexOpen); 2660 } 2661 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2662 return rc; 2663 } 2664 2665 /* 2666 ** Decrement the BtShared.nRef counter. When it reaches zero, 2667 ** remove the BtShared structure from the sharing list. Return 2668 ** true if the BtShared.nRef counter reaches zero and return 2669 ** false if it is still positive. 2670 */ 2671 static int removeFromSharingList(BtShared *pBt){ 2672 #ifndef SQLITE_OMIT_SHARED_CACHE 2673 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2674 BtShared *pList; 2675 int removed = 0; 2676 2677 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2678 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2679 sqlite3_mutex_enter(pMainMtx); 2680 pBt->nRef--; 2681 if( pBt->nRef<=0 ){ 2682 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2683 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2684 }else{ 2685 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2686 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2687 pList=pList->pNext; 2688 } 2689 if( ALWAYS(pList) ){ 2690 pList->pNext = pBt->pNext; 2691 } 2692 } 2693 if( SQLITE_THREADSAFE ){ 2694 sqlite3_mutex_free(pBt->mutex); 2695 } 2696 removed = 1; 2697 } 2698 sqlite3_mutex_leave(pMainMtx); 2699 return removed; 2700 #else 2701 return 1; 2702 #endif 2703 } 2704 2705 /* 2706 ** Make sure pBt->pTmpSpace points to an allocation of 2707 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2708 ** pointer. 2709 */ 2710 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2711 assert( pBt!=0 ); 2712 assert( pBt->pTmpSpace==0 ); 2713 /* This routine is called only by btreeCursor() when allocating the 2714 ** first write cursor for the BtShared object */ 2715 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2716 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2717 if( pBt->pTmpSpace==0 ){ 2718 BtCursor *pCur = pBt->pCursor; 2719 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2720 memset(pCur, 0, sizeof(*pCur)); 2721 return SQLITE_NOMEM_BKPT; 2722 } 2723 2724 /* One of the uses of pBt->pTmpSpace is to format cells before 2725 ** inserting them into a leaf page (function fillInCell()). If 2726 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2727 ** by the various routines that manipulate binary cells. Which 2728 ** can mean that fillInCell() only initializes the first 2 or 3 2729 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2730 ** it into a database page. This is not actually a problem, but it 2731 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2732 ** data is passed to system call write(). So to avoid this error, 2733 ** zero the first 4 bytes of temp space here. 2734 ** 2735 ** Also: Provide four bytes of initialized space before the 2736 ** beginning of pTmpSpace as an area available to prepend the 2737 ** left-child pointer to the beginning of a cell. 2738 */ 2739 memset(pBt->pTmpSpace, 0, 8); 2740 pBt->pTmpSpace += 4; 2741 return SQLITE_OK; 2742 } 2743 2744 /* 2745 ** Free the pBt->pTmpSpace allocation 2746 */ 2747 static void freeTempSpace(BtShared *pBt){ 2748 if( pBt->pTmpSpace ){ 2749 pBt->pTmpSpace -= 4; 2750 sqlite3PageFree(pBt->pTmpSpace); 2751 pBt->pTmpSpace = 0; 2752 } 2753 } 2754 2755 /* 2756 ** Close an open database and invalidate all cursors. 2757 */ 2758 int sqlite3BtreeClose(Btree *p){ 2759 BtShared *pBt = p->pBt; 2760 2761 /* Close all cursors opened via this handle. */ 2762 assert( sqlite3_mutex_held(p->db->mutex) ); 2763 sqlite3BtreeEnter(p); 2764 2765 /* Verify that no other cursors have this Btree open */ 2766 #ifdef SQLITE_DEBUG 2767 { 2768 BtCursor *pCur = pBt->pCursor; 2769 while( pCur ){ 2770 BtCursor *pTmp = pCur; 2771 pCur = pCur->pNext; 2772 assert( pTmp->pBtree!=p ); 2773 2774 } 2775 } 2776 #endif 2777 2778 /* Rollback any active transaction and free the handle structure. 2779 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2780 ** this handle. 2781 */ 2782 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2783 sqlite3BtreeLeave(p); 2784 2785 /* If there are still other outstanding references to the shared-btree 2786 ** structure, return now. The remainder of this procedure cleans 2787 ** up the shared-btree. 2788 */ 2789 assert( p->wantToLock==0 && p->locked==0 ); 2790 if( !p->sharable || removeFromSharingList(pBt) ){ 2791 /* The pBt is no longer on the sharing list, so we can access 2792 ** it without having to hold the mutex. 2793 ** 2794 ** Clean out and delete the BtShared object. 2795 */ 2796 assert( !pBt->pCursor ); 2797 sqlite3PagerClose(pBt->pPager, p->db); 2798 if( pBt->xFreeSchema && pBt->pSchema ){ 2799 pBt->xFreeSchema(pBt->pSchema); 2800 } 2801 sqlite3DbFree(0, pBt->pSchema); 2802 freeTempSpace(pBt); 2803 sqlite3_free(pBt); 2804 } 2805 2806 #ifndef SQLITE_OMIT_SHARED_CACHE 2807 assert( p->wantToLock==0 ); 2808 assert( p->locked==0 ); 2809 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2810 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2811 #endif 2812 2813 sqlite3_free(p); 2814 return SQLITE_OK; 2815 } 2816 2817 /* 2818 ** Change the "soft" limit on the number of pages in the cache. 2819 ** Unused and unmodified pages will be recycled when the number of 2820 ** pages in the cache exceeds this soft limit. But the size of the 2821 ** cache is allowed to grow larger than this limit if it contains 2822 ** dirty pages or pages still in active use. 2823 */ 2824 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2825 BtShared *pBt = p->pBt; 2826 assert( sqlite3_mutex_held(p->db->mutex) ); 2827 sqlite3BtreeEnter(p); 2828 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2829 sqlite3BtreeLeave(p); 2830 return SQLITE_OK; 2831 } 2832 2833 /* 2834 ** Change the "spill" limit on the number of pages in the cache. 2835 ** If the number of pages exceeds this limit during a write transaction, 2836 ** the pager might attempt to "spill" pages to the journal early in 2837 ** order to free up memory. 2838 ** 2839 ** The value returned is the current spill size. If zero is passed 2840 ** as an argument, no changes are made to the spill size setting, so 2841 ** using mxPage of 0 is a way to query the current spill size. 2842 */ 2843 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2844 BtShared *pBt = p->pBt; 2845 int res; 2846 assert( sqlite3_mutex_held(p->db->mutex) ); 2847 sqlite3BtreeEnter(p); 2848 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2849 sqlite3BtreeLeave(p); 2850 return res; 2851 } 2852 2853 #if SQLITE_MAX_MMAP_SIZE>0 2854 /* 2855 ** Change the limit on the amount of the database file that may be 2856 ** memory mapped. 2857 */ 2858 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2859 BtShared *pBt = p->pBt; 2860 assert( sqlite3_mutex_held(p->db->mutex) ); 2861 sqlite3BtreeEnter(p); 2862 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2863 sqlite3BtreeLeave(p); 2864 return SQLITE_OK; 2865 } 2866 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2867 2868 /* 2869 ** Change the way data is synced to disk in order to increase or decrease 2870 ** how well the database resists damage due to OS crashes and power 2871 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2872 ** there is a high probability of damage) Level 2 is the default. There 2873 ** is a very low but non-zero probability of damage. Level 3 reduces the 2874 ** probability of damage to near zero but with a write performance reduction. 2875 */ 2876 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2877 int sqlite3BtreeSetPagerFlags( 2878 Btree *p, /* The btree to set the safety level on */ 2879 unsigned pgFlags /* Various PAGER_* flags */ 2880 ){ 2881 BtShared *pBt = p->pBt; 2882 assert( sqlite3_mutex_held(p->db->mutex) ); 2883 sqlite3BtreeEnter(p); 2884 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2885 sqlite3BtreeLeave(p); 2886 return SQLITE_OK; 2887 } 2888 #endif 2889 2890 /* 2891 ** Change the default pages size and the number of reserved bytes per page. 2892 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2893 ** without changing anything. 2894 ** 2895 ** The page size must be a power of 2 between 512 and 65536. If the page 2896 ** size supplied does not meet this constraint then the page size is not 2897 ** changed. 2898 ** 2899 ** Page sizes are constrained to be a power of two so that the region 2900 ** of the database file used for locking (beginning at PENDING_BYTE, 2901 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2902 ** at the beginning of a page. 2903 ** 2904 ** If parameter nReserve is less than zero, then the number of reserved 2905 ** bytes per page is left unchanged. 2906 ** 2907 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2908 ** and autovacuum mode can no longer be changed. 2909 */ 2910 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2911 int rc = SQLITE_OK; 2912 int x; 2913 BtShared *pBt = p->pBt; 2914 assert( nReserve>=0 && nReserve<=255 ); 2915 sqlite3BtreeEnter(p); 2916 pBt->nReserveWanted = nReserve; 2917 x = pBt->pageSize - pBt->usableSize; 2918 if( nReserve<x ) nReserve = x; 2919 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2920 sqlite3BtreeLeave(p); 2921 return SQLITE_READONLY; 2922 } 2923 assert( nReserve>=0 && nReserve<=255 ); 2924 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2925 ((pageSize-1)&pageSize)==0 ){ 2926 assert( (pageSize & 7)==0 ); 2927 assert( !pBt->pCursor ); 2928 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2929 pBt->pageSize = (u32)pageSize; 2930 freeTempSpace(pBt); 2931 } 2932 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2933 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2934 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2935 sqlite3BtreeLeave(p); 2936 return rc; 2937 } 2938 2939 /* 2940 ** Return the currently defined page size 2941 */ 2942 int sqlite3BtreeGetPageSize(Btree *p){ 2943 return p->pBt->pageSize; 2944 } 2945 2946 /* 2947 ** This function is similar to sqlite3BtreeGetReserve(), except that it 2948 ** may only be called if it is guaranteed that the b-tree mutex is already 2949 ** held. 2950 ** 2951 ** This is useful in one special case in the backup API code where it is 2952 ** known that the shared b-tree mutex is held, but the mutex on the 2953 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 2954 ** were to be called, it might collide with some other operation on the 2955 ** database handle that owns *p, causing undefined behavior. 2956 */ 2957 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 2958 int n; 2959 assert( sqlite3_mutex_held(p->pBt->mutex) ); 2960 n = p->pBt->pageSize - p->pBt->usableSize; 2961 return n; 2962 } 2963 2964 /* 2965 ** Return the number of bytes of space at the end of every page that 2966 ** are intentually left unused. This is the "reserved" space that is 2967 ** sometimes used by extensions. 2968 ** 2969 ** The value returned is the larger of the current reserve size and 2970 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 2971 ** The amount of reserve can only grow - never shrink. 2972 */ 2973 int sqlite3BtreeGetRequestedReserve(Btree *p){ 2974 int n1, n2; 2975 sqlite3BtreeEnter(p); 2976 n1 = (int)p->pBt->nReserveWanted; 2977 n2 = sqlite3BtreeGetReserveNoMutex(p); 2978 sqlite3BtreeLeave(p); 2979 return n1>n2 ? n1 : n2; 2980 } 2981 2982 2983 /* 2984 ** Set the maximum page count for a database if mxPage is positive. 2985 ** No changes are made if mxPage is 0 or negative. 2986 ** Regardless of the value of mxPage, return the maximum page count. 2987 */ 2988 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 2989 Pgno n; 2990 sqlite3BtreeEnter(p); 2991 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 2992 sqlite3BtreeLeave(p); 2993 return n; 2994 } 2995 2996 /* 2997 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 2998 ** 2999 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3000 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3001 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3002 ** newFlag==(-1) No changes 3003 ** 3004 ** This routine acts as a query if newFlag is less than zero 3005 ** 3006 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3007 ** freelist leaf pages are not written back to the database. Thus in-page 3008 ** deleted content is cleared, but freelist deleted content is not. 3009 ** 3010 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3011 ** that freelist leaf pages are written back into the database, increasing 3012 ** the amount of disk I/O. 3013 */ 3014 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3015 int b; 3016 if( p==0 ) return 0; 3017 sqlite3BtreeEnter(p); 3018 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3019 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3020 if( newFlag>=0 ){ 3021 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3022 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3023 } 3024 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3025 sqlite3BtreeLeave(p); 3026 return b; 3027 } 3028 3029 /* 3030 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3031 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3032 ** is disabled. The default value for the auto-vacuum property is 3033 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3034 */ 3035 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3036 #ifdef SQLITE_OMIT_AUTOVACUUM 3037 return SQLITE_READONLY; 3038 #else 3039 BtShared *pBt = p->pBt; 3040 int rc = SQLITE_OK; 3041 u8 av = (u8)autoVacuum; 3042 3043 sqlite3BtreeEnter(p); 3044 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3045 rc = SQLITE_READONLY; 3046 }else{ 3047 pBt->autoVacuum = av ?1:0; 3048 pBt->incrVacuum = av==2 ?1:0; 3049 } 3050 sqlite3BtreeLeave(p); 3051 return rc; 3052 #endif 3053 } 3054 3055 /* 3056 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3057 ** enabled 1 is returned. Otherwise 0. 3058 */ 3059 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3060 #ifdef SQLITE_OMIT_AUTOVACUUM 3061 return BTREE_AUTOVACUUM_NONE; 3062 #else 3063 int rc; 3064 sqlite3BtreeEnter(p); 3065 rc = ( 3066 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3067 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3068 BTREE_AUTOVACUUM_INCR 3069 ); 3070 sqlite3BtreeLeave(p); 3071 return rc; 3072 #endif 3073 } 3074 3075 /* 3076 ** If the user has not set the safety-level for this database connection 3077 ** using "PRAGMA synchronous", and if the safety-level is not already 3078 ** set to the value passed to this function as the second parameter, 3079 ** set it so. 3080 */ 3081 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3082 && !defined(SQLITE_OMIT_WAL) 3083 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3084 sqlite3 *db; 3085 Db *pDb; 3086 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3087 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3088 if( pDb->bSyncSet==0 3089 && pDb->safety_level!=safety_level 3090 && pDb!=&db->aDb[1] 3091 ){ 3092 pDb->safety_level = safety_level; 3093 sqlite3PagerSetFlags(pBt->pPager, 3094 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3095 } 3096 } 3097 } 3098 #else 3099 # define setDefaultSyncFlag(pBt,safety_level) 3100 #endif 3101 3102 /* Forward declaration */ 3103 static int newDatabase(BtShared*); 3104 3105 3106 /* 3107 ** Get a reference to pPage1 of the database file. This will 3108 ** also acquire a readlock on that file. 3109 ** 3110 ** SQLITE_OK is returned on success. If the file is not a 3111 ** well-formed database file, then SQLITE_CORRUPT is returned. 3112 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3113 ** is returned if we run out of memory. 3114 */ 3115 static int lockBtree(BtShared *pBt){ 3116 int rc; /* Result code from subfunctions */ 3117 MemPage *pPage1; /* Page 1 of the database file */ 3118 u32 nPage; /* Number of pages in the database */ 3119 u32 nPageFile = 0; /* Number of pages in the database file */ 3120 3121 assert( sqlite3_mutex_held(pBt->mutex) ); 3122 assert( pBt->pPage1==0 ); 3123 rc = sqlite3PagerSharedLock(pBt->pPager); 3124 if( rc!=SQLITE_OK ) return rc; 3125 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3126 if( rc!=SQLITE_OK ) return rc; 3127 3128 /* Do some checking to help insure the file we opened really is 3129 ** a valid database file. 3130 */ 3131 nPage = get4byte(28+(u8*)pPage1->aData); 3132 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3133 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3134 nPage = nPageFile; 3135 } 3136 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3137 nPage = 0; 3138 } 3139 if( nPage>0 ){ 3140 u32 pageSize; 3141 u32 usableSize; 3142 u8 *page1 = pPage1->aData; 3143 rc = SQLITE_NOTADB; 3144 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3145 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3146 ** 61 74 20 33 00. */ 3147 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3148 goto page1_init_failed; 3149 } 3150 3151 #ifdef SQLITE_OMIT_WAL 3152 if( page1[18]>1 ){ 3153 pBt->btsFlags |= BTS_READ_ONLY; 3154 } 3155 if( page1[19]>1 ){ 3156 goto page1_init_failed; 3157 } 3158 #else 3159 if( page1[18]>2 ){ 3160 pBt->btsFlags |= BTS_READ_ONLY; 3161 } 3162 if( page1[19]>2 ){ 3163 goto page1_init_failed; 3164 } 3165 3166 /* If the read version is set to 2, this database should be accessed 3167 ** in WAL mode. If the log is not already open, open it now. Then 3168 ** return SQLITE_OK and return without populating BtShared.pPage1. 3169 ** The caller detects this and calls this function again. This is 3170 ** required as the version of page 1 currently in the page1 buffer 3171 ** may not be the latest version - there may be a newer one in the log 3172 ** file. 3173 */ 3174 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3175 int isOpen = 0; 3176 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3177 if( rc!=SQLITE_OK ){ 3178 goto page1_init_failed; 3179 }else{ 3180 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3181 if( isOpen==0 ){ 3182 releasePageOne(pPage1); 3183 return SQLITE_OK; 3184 } 3185 } 3186 rc = SQLITE_NOTADB; 3187 }else{ 3188 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3189 } 3190 #endif 3191 3192 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3193 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3194 ** 3195 ** The original design allowed these amounts to vary, but as of 3196 ** version 3.6.0, we require them to be fixed. 3197 */ 3198 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3199 goto page1_init_failed; 3200 } 3201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3202 ** determined by the 2-byte integer located at an offset of 16 bytes from 3203 ** the beginning of the database file. */ 3204 pageSize = (page1[16]<<8) | (page1[17]<<16); 3205 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3206 ** between 512 and 65536 inclusive. */ 3207 if( ((pageSize-1)&pageSize)!=0 3208 || pageSize>SQLITE_MAX_PAGE_SIZE 3209 || pageSize<=256 3210 ){ 3211 goto page1_init_failed; 3212 } 3213 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3214 assert( (pageSize & 7)==0 ); 3215 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3216 ** integer at offset 20 is the number of bytes of space at the end of 3217 ** each page to reserve for extensions. 3218 ** 3219 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3220 ** determined by the one-byte unsigned integer found at an offset of 20 3221 ** into the database file header. */ 3222 usableSize = pageSize - page1[20]; 3223 if( (u32)pageSize!=pBt->pageSize ){ 3224 /* After reading the first page of the database assuming a page size 3225 ** of BtShared.pageSize, we have discovered that the page-size is 3226 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3227 ** zero and return SQLITE_OK. The caller will call this function 3228 ** again with the correct page-size. 3229 */ 3230 releasePageOne(pPage1); 3231 pBt->usableSize = usableSize; 3232 pBt->pageSize = pageSize; 3233 freeTempSpace(pBt); 3234 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3235 pageSize-usableSize); 3236 return rc; 3237 } 3238 if( nPage>nPageFile ){ 3239 if( sqlite3WritableSchema(pBt->db)==0 ){ 3240 rc = SQLITE_CORRUPT_BKPT; 3241 goto page1_init_failed; 3242 }else{ 3243 nPage = nPageFile; 3244 } 3245 } 3246 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3247 ** be less than 480. In other words, if the page size is 512, then the 3248 ** reserved space size cannot exceed 32. */ 3249 if( usableSize<480 ){ 3250 goto page1_init_failed; 3251 } 3252 pBt->pageSize = pageSize; 3253 pBt->usableSize = usableSize; 3254 #ifndef SQLITE_OMIT_AUTOVACUUM 3255 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3256 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3257 #endif 3258 } 3259 3260 /* maxLocal is the maximum amount of payload to store locally for 3261 ** a cell. Make sure it is small enough so that at least minFanout 3262 ** cells can will fit on one page. We assume a 10-byte page header. 3263 ** Besides the payload, the cell must store: 3264 ** 2-byte pointer to the cell 3265 ** 4-byte child pointer 3266 ** 9-byte nKey value 3267 ** 4-byte nData value 3268 ** 4-byte overflow page pointer 3269 ** So a cell consists of a 2-byte pointer, a header which is as much as 3270 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3271 ** page pointer. 3272 */ 3273 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3274 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3275 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3276 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3277 if( pBt->maxLocal>127 ){ 3278 pBt->max1bytePayload = 127; 3279 }else{ 3280 pBt->max1bytePayload = (u8)pBt->maxLocal; 3281 } 3282 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3283 pBt->pPage1 = pPage1; 3284 pBt->nPage = nPage; 3285 return SQLITE_OK; 3286 3287 page1_init_failed: 3288 releasePageOne(pPage1); 3289 pBt->pPage1 = 0; 3290 return rc; 3291 } 3292 3293 #ifndef NDEBUG 3294 /* 3295 ** Return the number of cursors open on pBt. This is for use 3296 ** in assert() expressions, so it is only compiled if NDEBUG is not 3297 ** defined. 3298 ** 3299 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3300 ** false then all cursors are counted. 3301 ** 3302 ** For the purposes of this routine, a cursor is any cursor that 3303 ** is capable of reading or writing to the database. Cursors that 3304 ** have been tripped into the CURSOR_FAULT state are not counted. 3305 */ 3306 static int countValidCursors(BtShared *pBt, int wrOnly){ 3307 BtCursor *pCur; 3308 int r = 0; 3309 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3310 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3311 && pCur->eState!=CURSOR_FAULT ) r++; 3312 } 3313 return r; 3314 } 3315 #endif 3316 3317 /* 3318 ** If there are no outstanding cursors and we are not in the middle 3319 ** of a transaction but there is a read lock on the database, then 3320 ** this routine unrefs the first page of the database file which 3321 ** has the effect of releasing the read lock. 3322 ** 3323 ** If there is a transaction in progress, this routine is a no-op. 3324 */ 3325 static void unlockBtreeIfUnused(BtShared *pBt){ 3326 assert( sqlite3_mutex_held(pBt->mutex) ); 3327 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3328 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3329 MemPage *pPage1 = pBt->pPage1; 3330 assert( pPage1->aData ); 3331 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3332 pBt->pPage1 = 0; 3333 releasePageOne(pPage1); 3334 } 3335 } 3336 3337 /* 3338 ** If pBt points to an empty file then convert that empty file 3339 ** into a new empty database by initializing the first page of 3340 ** the database. 3341 */ 3342 static int newDatabase(BtShared *pBt){ 3343 MemPage *pP1; 3344 unsigned char *data; 3345 int rc; 3346 3347 assert( sqlite3_mutex_held(pBt->mutex) ); 3348 if( pBt->nPage>0 ){ 3349 return SQLITE_OK; 3350 } 3351 pP1 = pBt->pPage1; 3352 assert( pP1!=0 ); 3353 data = pP1->aData; 3354 rc = sqlite3PagerWrite(pP1->pDbPage); 3355 if( rc ) return rc; 3356 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3357 assert( sizeof(zMagicHeader)==16 ); 3358 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3359 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3360 data[18] = 1; 3361 data[19] = 1; 3362 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3363 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3364 data[21] = 64; 3365 data[22] = 32; 3366 data[23] = 32; 3367 memset(&data[24], 0, 100-24); 3368 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3369 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3370 #ifndef SQLITE_OMIT_AUTOVACUUM 3371 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3372 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3373 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3374 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3375 #endif 3376 pBt->nPage = 1; 3377 data[31] = 1; 3378 return SQLITE_OK; 3379 } 3380 3381 /* 3382 ** Initialize the first page of the database file (creating a database 3383 ** consisting of a single page and no schema objects). Return SQLITE_OK 3384 ** if successful, or an SQLite error code otherwise. 3385 */ 3386 int sqlite3BtreeNewDb(Btree *p){ 3387 int rc; 3388 sqlite3BtreeEnter(p); 3389 p->pBt->nPage = 0; 3390 rc = newDatabase(p->pBt); 3391 sqlite3BtreeLeave(p); 3392 return rc; 3393 } 3394 3395 /* 3396 ** Attempt to start a new transaction. A write-transaction 3397 ** is started if the second argument is nonzero, otherwise a read- 3398 ** transaction. If the second argument is 2 or more and exclusive 3399 ** transaction is started, meaning that no other process is allowed 3400 ** to access the database. A preexisting transaction may not be 3401 ** upgraded to exclusive by calling this routine a second time - the 3402 ** exclusivity flag only works for a new transaction. 3403 ** 3404 ** A write-transaction must be started before attempting any 3405 ** changes to the database. None of the following routines 3406 ** will work unless a transaction is started first: 3407 ** 3408 ** sqlite3BtreeCreateTable() 3409 ** sqlite3BtreeCreateIndex() 3410 ** sqlite3BtreeClearTable() 3411 ** sqlite3BtreeDropTable() 3412 ** sqlite3BtreeInsert() 3413 ** sqlite3BtreeDelete() 3414 ** sqlite3BtreeUpdateMeta() 3415 ** 3416 ** If an initial attempt to acquire the lock fails because of lock contention 3417 ** and the database was previously unlocked, then invoke the busy handler 3418 ** if there is one. But if there was previously a read-lock, do not 3419 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3420 ** returned when there is already a read-lock in order to avoid a deadlock. 3421 ** 3422 ** Suppose there are two processes A and B. A has a read lock and B has 3423 ** a reserved lock. B tries to promote to exclusive but is blocked because 3424 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3425 ** One or the other of the two processes must give way or there can be 3426 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3427 ** when A already has a read lock, we encourage A to give up and let B 3428 ** proceed. 3429 */ 3430 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3431 BtShared *pBt = p->pBt; 3432 Pager *pPager = pBt->pPager; 3433 int rc = SQLITE_OK; 3434 3435 sqlite3BtreeEnter(p); 3436 btreeIntegrity(p); 3437 3438 /* If the btree is already in a write-transaction, or it 3439 ** is already in a read-transaction and a read-transaction 3440 ** is requested, this is a no-op. 3441 */ 3442 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3443 goto trans_begun; 3444 } 3445 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3446 3447 if( (p->db->flags & SQLITE_ResetDatabase) 3448 && sqlite3PagerIsreadonly(pPager)==0 3449 ){ 3450 pBt->btsFlags &= ~BTS_READ_ONLY; 3451 } 3452 3453 /* Write transactions are not possible on a read-only database */ 3454 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3455 rc = SQLITE_READONLY; 3456 goto trans_begun; 3457 } 3458 3459 #ifndef SQLITE_OMIT_SHARED_CACHE 3460 { 3461 sqlite3 *pBlock = 0; 3462 /* If another database handle has already opened a write transaction 3463 ** on this shared-btree structure and a second write transaction is 3464 ** requested, return SQLITE_LOCKED. 3465 */ 3466 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3467 || (pBt->btsFlags & BTS_PENDING)!=0 3468 ){ 3469 pBlock = pBt->pWriter->db; 3470 }else if( wrflag>1 ){ 3471 BtLock *pIter; 3472 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3473 if( pIter->pBtree!=p ){ 3474 pBlock = pIter->pBtree->db; 3475 break; 3476 } 3477 } 3478 } 3479 if( pBlock ){ 3480 sqlite3ConnectionBlocked(p->db, pBlock); 3481 rc = SQLITE_LOCKED_SHAREDCACHE; 3482 goto trans_begun; 3483 } 3484 } 3485 #endif 3486 3487 /* Any read-only or read-write transaction implies a read-lock on 3488 ** page 1. So if some other shared-cache client already has a write-lock 3489 ** on page 1, the transaction cannot be opened. */ 3490 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3491 if( SQLITE_OK!=rc ) goto trans_begun; 3492 3493 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3494 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3495 do { 3496 sqlite3PagerWalDb(pPager, p->db); 3497 3498 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3499 /* If transitioning from no transaction directly to a write transaction, 3500 ** block for the WRITER lock first if possible. */ 3501 if( pBt->pPage1==0 && wrflag ){ 3502 assert( pBt->inTransaction==TRANS_NONE ); 3503 rc = sqlite3PagerWalWriteLock(pPager, 1); 3504 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3505 } 3506 #endif 3507 3508 /* Call lockBtree() until either pBt->pPage1 is populated or 3509 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3510 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3511 ** reading page 1 it discovers that the page-size of the database 3512 ** file is not pBt->pageSize. In this case lockBtree() will update 3513 ** pBt->pageSize to the page-size of the file on disk. 3514 */ 3515 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3516 3517 if( rc==SQLITE_OK && wrflag ){ 3518 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3519 rc = SQLITE_READONLY; 3520 }else{ 3521 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3522 if( rc==SQLITE_OK ){ 3523 rc = newDatabase(pBt); 3524 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3525 /* if there was no transaction opened when this function was 3526 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3527 ** code to SQLITE_BUSY. */ 3528 rc = SQLITE_BUSY; 3529 } 3530 } 3531 } 3532 3533 if( rc!=SQLITE_OK ){ 3534 (void)sqlite3PagerWalWriteLock(pPager, 0); 3535 unlockBtreeIfUnused(pBt); 3536 } 3537 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3538 btreeInvokeBusyHandler(pBt) ); 3539 sqlite3PagerWalDb(pPager, 0); 3540 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3541 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3542 #endif 3543 3544 if( rc==SQLITE_OK ){ 3545 if( p->inTrans==TRANS_NONE ){ 3546 pBt->nTransaction++; 3547 #ifndef SQLITE_OMIT_SHARED_CACHE 3548 if( p->sharable ){ 3549 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3550 p->lock.eLock = READ_LOCK; 3551 p->lock.pNext = pBt->pLock; 3552 pBt->pLock = &p->lock; 3553 } 3554 #endif 3555 } 3556 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3557 if( p->inTrans>pBt->inTransaction ){ 3558 pBt->inTransaction = p->inTrans; 3559 } 3560 if( wrflag ){ 3561 MemPage *pPage1 = pBt->pPage1; 3562 #ifndef SQLITE_OMIT_SHARED_CACHE 3563 assert( !pBt->pWriter ); 3564 pBt->pWriter = p; 3565 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3566 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3567 #endif 3568 3569 /* If the db-size header field is incorrect (as it may be if an old 3570 ** client has been writing the database file), update it now. Doing 3571 ** this sooner rather than later means the database size can safely 3572 ** re-read the database size from page 1 if a savepoint or transaction 3573 ** rollback occurs within the transaction. 3574 */ 3575 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3576 rc = sqlite3PagerWrite(pPage1->pDbPage); 3577 if( rc==SQLITE_OK ){ 3578 put4byte(&pPage1->aData[28], pBt->nPage); 3579 } 3580 } 3581 } 3582 } 3583 3584 trans_begun: 3585 if( rc==SQLITE_OK ){ 3586 if( pSchemaVersion ){ 3587 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3588 } 3589 if( wrflag ){ 3590 /* This call makes sure that the pager has the correct number of 3591 ** open savepoints. If the second parameter is greater than 0 and 3592 ** the sub-journal is not already open, then it will be opened here. 3593 */ 3594 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3595 } 3596 } 3597 3598 btreeIntegrity(p); 3599 sqlite3BtreeLeave(p); 3600 return rc; 3601 } 3602 3603 #ifndef SQLITE_OMIT_AUTOVACUUM 3604 3605 /* 3606 ** Set the pointer-map entries for all children of page pPage. Also, if 3607 ** pPage contains cells that point to overflow pages, set the pointer 3608 ** map entries for the overflow pages as well. 3609 */ 3610 static int setChildPtrmaps(MemPage *pPage){ 3611 int i; /* Counter variable */ 3612 int nCell; /* Number of cells in page pPage */ 3613 int rc; /* Return code */ 3614 BtShared *pBt = pPage->pBt; 3615 Pgno pgno = pPage->pgno; 3616 3617 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3618 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3619 if( rc!=SQLITE_OK ) return rc; 3620 nCell = pPage->nCell; 3621 3622 for(i=0; i<nCell; i++){ 3623 u8 *pCell = findCell(pPage, i); 3624 3625 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3626 3627 if( !pPage->leaf ){ 3628 Pgno childPgno = get4byte(pCell); 3629 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3630 } 3631 } 3632 3633 if( !pPage->leaf ){ 3634 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3635 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3636 } 3637 3638 return rc; 3639 } 3640 3641 /* 3642 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3643 ** that it points to iTo. Parameter eType describes the type of pointer to 3644 ** be modified, as follows: 3645 ** 3646 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3647 ** page of pPage. 3648 ** 3649 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3650 ** page pointed to by one of the cells on pPage. 3651 ** 3652 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3653 ** overflow page in the list. 3654 */ 3655 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3656 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3657 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3658 if( eType==PTRMAP_OVERFLOW2 ){ 3659 /* The pointer is always the first 4 bytes of the page in this case. */ 3660 if( get4byte(pPage->aData)!=iFrom ){ 3661 return SQLITE_CORRUPT_PAGE(pPage); 3662 } 3663 put4byte(pPage->aData, iTo); 3664 }else{ 3665 int i; 3666 int nCell; 3667 int rc; 3668 3669 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3670 if( rc ) return rc; 3671 nCell = pPage->nCell; 3672 3673 for(i=0; i<nCell; i++){ 3674 u8 *pCell = findCell(pPage, i); 3675 if( eType==PTRMAP_OVERFLOW1 ){ 3676 CellInfo info; 3677 pPage->xParseCell(pPage, pCell, &info); 3678 if( info.nLocal<info.nPayload ){ 3679 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3680 return SQLITE_CORRUPT_PAGE(pPage); 3681 } 3682 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3683 put4byte(pCell+info.nSize-4, iTo); 3684 break; 3685 } 3686 } 3687 }else{ 3688 if( get4byte(pCell)==iFrom ){ 3689 put4byte(pCell, iTo); 3690 break; 3691 } 3692 } 3693 } 3694 3695 if( i==nCell ){ 3696 if( eType!=PTRMAP_BTREE || 3697 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3698 return SQLITE_CORRUPT_PAGE(pPage); 3699 } 3700 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3701 } 3702 } 3703 return SQLITE_OK; 3704 } 3705 3706 3707 /* 3708 ** Move the open database page pDbPage to location iFreePage in the 3709 ** database. The pDbPage reference remains valid. 3710 ** 3711 ** The isCommit flag indicates that there is no need to remember that 3712 ** the journal needs to be sync()ed before database page pDbPage->pgno 3713 ** can be written to. The caller has already promised not to write to that 3714 ** page. 3715 */ 3716 static int relocatePage( 3717 BtShared *pBt, /* Btree */ 3718 MemPage *pDbPage, /* Open page to move */ 3719 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3720 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3721 Pgno iFreePage, /* The location to move pDbPage to */ 3722 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3723 ){ 3724 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3725 Pgno iDbPage = pDbPage->pgno; 3726 Pager *pPager = pBt->pPager; 3727 int rc; 3728 3729 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3730 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3731 assert( sqlite3_mutex_held(pBt->mutex) ); 3732 assert( pDbPage->pBt==pBt ); 3733 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3734 3735 /* Move page iDbPage from its current location to page number iFreePage */ 3736 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3737 iDbPage, iFreePage, iPtrPage, eType)); 3738 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3739 if( rc!=SQLITE_OK ){ 3740 return rc; 3741 } 3742 pDbPage->pgno = iFreePage; 3743 3744 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3745 ** that point to overflow pages. The pointer map entries for all these 3746 ** pages need to be changed. 3747 ** 3748 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3749 ** pointer to a subsequent overflow page. If this is the case, then 3750 ** the pointer map needs to be updated for the subsequent overflow page. 3751 */ 3752 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3753 rc = setChildPtrmaps(pDbPage); 3754 if( rc!=SQLITE_OK ){ 3755 return rc; 3756 } 3757 }else{ 3758 Pgno nextOvfl = get4byte(pDbPage->aData); 3759 if( nextOvfl!=0 ){ 3760 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3761 if( rc!=SQLITE_OK ){ 3762 return rc; 3763 } 3764 } 3765 } 3766 3767 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3768 ** that it points at iFreePage. Also fix the pointer map entry for 3769 ** iPtrPage. 3770 */ 3771 if( eType!=PTRMAP_ROOTPAGE ){ 3772 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3773 if( rc!=SQLITE_OK ){ 3774 return rc; 3775 } 3776 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3777 if( rc!=SQLITE_OK ){ 3778 releasePage(pPtrPage); 3779 return rc; 3780 } 3781 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3782 releasePage(pPtrPage); 3783 if( rc==SQLITE_OK ){ 3784 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3785 } 3786 } 3787 return rc; 3788 } 3789 3790 /* Forward declaration required by incrVacuumStep(). */ 3791 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3792 3793 /* 3794 ** Perform a single step of an incremental-vacuum. If successful, return 3795 ** SQLITE_OK. If there is no work to do (and therefore no point in 3796 ** calling this function again), return SQLITE_DONE. Or, if an error 3797 ** occurs, return some other error code. 3798 ** 3799 ** More specifically, this function attempts to re-organize the database so 3800 ** that the last page of the file currently in use is no longer in use. 3801 ** 3802 ** Parameter nFin is the number of pages that this database would contain 3803 ** were this function called until it returns SQLITE_DONE. 3804 ** 3805 ** If the bCommit parameter is non-zero, this function assumes that the 3806 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3807 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3808 ** operation, or false for an incremental vacuum. 3809 */ 3810 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3811 Pgno nFreeList; /* Number of pages still on the free-list */ 3812 int rc; 3813 3814 assert( sqlite3_mutex_held(pBt->mutex) ); 3815 assert( iLastPg>nFin ); 3816 3817 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3818 u8 eType; 3819 Pgno iPtrPage; 3820 3821 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3822 if( nFreeList==0 ){ 3823 return SQLITE_DONE; 3824 } 3825 3826 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3827 if( rc!=SQLITE_OK ){ 3828 return rc; 3829 } 3830 if( eType==PTRMAP_ROOTPAGE ){ 3831 return SQLITE_CORRUPT_BKPT; 3832 } 3833 3834 if( eType==PTRMAP_FREEPAGE ){ 3835 if( bCommit==0 ){ 3836 /* Remove the page from the files free-list. This is not required 3837 ** if bCommit is non-zero. In that case, the free-list will be 3838 ** truncated to zero after this function returns, so it doesn't 3839 ** matter if it still contains some garbage entries. 3840 */ 3841 Pgno iFreePg; 3842 MemPage *pFreePg; 3843 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3844 if( rc!=SQLITE_OK ){ 3845 return rc; 3846 } 3847 assert( iFreePg==iLastPg ); 3848 releasePage(pFreePg); 3849 } 3850 } else { 3851 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3852 MemPage *pLastPg; 3853 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3854 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3855 3856 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3857 if( rc!=SQLITE_OK ){ 3858 return rc; 3859 } 3860 3861 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3862 ** is swapped with the first free page pulled off the free list. 3863 ** 3864 ** On the other hand, if bCommit is greater than zero, then keep 3865 ** looping until a free-page located within the first nFin pages 3866 ** of the file is found. 3867 */ 3868 if( bCommit==0 ){ 3869 eMode = BTALLOC_LE; 3870 iNear = nFin; 3871 } 3872 do { 3873 MemPage *pFreePg; 3874 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3875 if( rc!=SQLITE_OK ){ 3876 releasePage(pLastPg); 3877 return rc; 3878 } 3879 releasePage(pFreePg); 3880 }while( bCommit && iFreePg>nFin ); 3881 assert( iFreePg<iLastPg ); 3882 3883 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3884 releasePage(pLastPg); 3885 if( rc!=SQLITE_OK ){ 3886 return rc; 3887 } 3888 } 3889 } 3890 3891 if( bCommit==0 ){ 3892 do { 3893 iLastPg--; 3894 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3895 pBt->bDoTruncate = 1; 3896 pBt->nPage = iLastPg; 3897 } 3898 return SQLITE_OK; 3899 } 3900 3901 /* 3902 ** The database opened by the first argument is an auto-vacuum database 3903 ** nOrig pages in size containing nFree free pages. Return the expected 3904 ** size of the database in pages following an auto-vacuum operation. 3905 */ 3906 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3907 int nEntry; /* Number of entries on one ptrmap page */ 3908 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3909 Pgno nFin; /* Return value */ 3910 3911 nEntry = pBt->usableSize/5; 3912 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3913 nFin = nOrig - nFree - nPtrmap; 3914 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3915 nFin--; 3916 } 3917 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3918 nFin--; 3919 } 3920 3921 return nFin; 3922 } 3923 3924 /* 3925 ** A write-transaction must be opened before calling this function. 3926 ** It performs a single unit of work towards an incremental vacuum. 3927 ** 3928 ** If the incremental vacuum is finished after this function has run, 3929 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3930 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3931 */ 3932 int sqlite3BtreeIncrVacuum(Btree *p){ 3933 int rc; 3934 BtShared *pBt = p->pBt; 3935 3936 sqlite3BtreeEnter(p); 3937 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 3938 if( !pBt->autoVacuum ){ 3939 rc = SQLITE_DONE; 3940 }else{ 3941 Pgno nOrig = btreePagecount(pBt); 3942 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 3943 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 3944 3945 if( nOrig<nFin || nFree>=nOrig ){ 3946 rc = SQLITE_CORRUPT_BKPT; 3947 }else if( nFree>0 ){ 3948 rc = saveAllCursors(pBt, 0, 0); 3949 if( rc==SQLITE_OK ){ 3950 invalidateAllOverflowCache(pBt); 3951 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 3952 } 3953 if( rc==SQLITE_OK ){ 3954 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 3955 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 3956 } 3957 }else{ 3958 rc = SQLITE_DONE; 3959 } 3960 } 3961 sqlite3BtreeLeave(p); 3962 return rc; 3963 } 3964 3965 /* 3966 ** This routine is called prior to sqlite3PagerCommit when a transaction 3967 ** is committed for an auto-vacuum database. 3968 */ 3969 static int autoVacuumCommit(Btree *p){ 3970 int rc = SQLITE_OK; 3971 Pager *pPager; 3972 BtShared *pBt; 3973 sqlite3 *db; 3974 VVA_ONLY( int nRef ); 3975 3976 assert( p!=0 ); 3977 pBt = p->pBt; 3978 pPager = pBt->pPager; 3979 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 3980 3981 assert( sqlite3_mutex_held(pBt->mutex) ); 3982 invalidateAllOverflowCache(pBt); 3983 assert(pBt->autoVacuum); 3984 if( !pBt->incrVacuum ){ 3985 Pgno nFin; /* Number of pages in database after autovacuuming */ 3986 Pgno nFree; /* Number of pages on the freelist initially */ 3987 Pgno nVac; /* Number of pages to vacuum */ 3988 Pgno iFree; /* The next page to be freed */ 3989 Pgno nOrig; /* Database size before freeing */ 3990 3991 nOrig = btreePagecount(pBt); 3992 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 3993 /* It is not possible to create a database for which the final page 3994 ** is either a pointer-map page or the pending-byte page. If one 3995 ** is encountered, this indicates corruption. 3996 */ 3997 return SQLITE_CORRUPT_BKPT; 3998 } 3999 4000 nFree = get4byte(&pBt->pPage1->aData[36]); 4001 db = p->db; 4002 if( db->xAutovacPages ){ 4003 int iDb; 4004 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4005 if( db->aDb[iDb].pBt==p ) break; 4006 } 4007 nVac = db->xAutovacPages( 4008 db->pAutovacPagesArg, 4009 db->aDb[iDb].zDbSName, 4010 nOrig, 4011 nFree, 4012 pBt->pageSize 4013 ); 4014 if( nVac>nFree ){ 4015 nVac = nFree; 4016 } 4017 if( nVac==0 ){ 4018 return SQLITE_OK; 4019 } 4020 }else{ 4021 nVac = nFree; 4022 } 4023 nFin = finalDbSize(pBt, nOrig, nVac); 4024 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4025 if( nFin<nOrig ){ 4026 rc = saveAllCursors(pBt, 0, 0); 4027 } 4028 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4029 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4030 } 4031 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4032 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4033 if( nVac==nFree ){ 4034 put4byte(&pBt->pPage1->aData[32], 0); 4035 put4byte(&pBt->pPage1->aData[36], 0); 4036 } 4037 put4byte(&pBt->pPage1->aData[28], nFin); 4038 pBt->bDoTruncate = 1; 4039 pBt->nPage = nFin; 4040 } 4041 if( rc!=SQLITE_OK ){ 4042 sqlite3PagerRollback(pPager); 4043 } 4044 } 4045 4046 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4047 return rc; 4048 } 4049 4050 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4051 # define setChildPtrmaps(x) SQLITE_OK 4052 #endif 4053 4054 /* 4055 ** This routine does the first phase of a two-phase commit. This routine 4056 ** causes a rollback journal to be created (if it does not already exist) 4057 ** and populated with enough information so that if a power loss occurs 4058 ** the database can be restored to its original state by playing back 4059 ** the journal. Then the contents of the journal are flushed out to 4060 ** the disk. After the journal is safely on oxide, the changes to the 4061 ** database are written into the database file and flushed to oxide. 4062 ** At the end of this call, the rollback journal still exists on the 4063 ** disk and we are still holding all locks, so the transaction has not 4064 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4065 ** commit process. 4066 ** 4067 ** This call is a no-op if no write-transaction is currently active on pBt. 4068 ** 4069 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4070 ** the name of a super-journal file that should be written into the 4071 ** individual journal file, or is NULL, indicating no super-journal file 4072 ** (single database transaction). 4073 ** 4074 ** When this is called, the super-journal should already have been 4075 ** created, populated with this journal pointer and synced to disk. 4076 ** 4077 ** Once this is routine has returned, the only thing required to commit 4078 ** the write-transaction for this database file is to delete the journal. 4079 */ 4080 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4081 int rc = SQLITE_OK; 4082 if( p->inTrans==TRANS_WRITE ){ 4083 BtShared *pBt = p->pBt; 4084 sqlite3BtreeEnter(p); 4085 #ifndef SQLITE_OMIT_AUTOVACUUM 4086 if( pBt->autoVacuum ){ 4087 rc = autoVacuumCommit(p); 4088 if( rc!=SQLITE_OK ){ 4089 sqlite3BtreeLeave(p); 4090 return rc; 4091 } 4092 } 4093 if( pBt->bDoTruncate ){ 4094 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4095 } 4096 #endif 4097 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4098 sqlite3BtreeLeave(p); 4099 } 4100 return rc; 4101 } 4102 4103 /* 4104 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4105 ** at the conclusion of a transaction. 4106 */ 4107 static void btreeEndTransaction(Btree *p){ 4108 BtShared *pBt = p->pBt; 4109 sqlite3 *db = p->db; 4110 assert( sqlite3BtreeHoldsMutex(p) ); 4111 4112 #ifndef SQLITE_OMIT_AUTOVACUUM 4113 pBt->bDoTruncate = 0; 4114 #endif 4115 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4116 /* If there are other active statements that belong to this database 4117 ** handle, downgrade to a read-only transaction. The other statements 4118 ** may still be reading from the database. */ 4119 downgradeAllSharedCacheTableLocks(p); 4120 p->inTrans = TRANS_READ; 4121 }else{ 4122 /* If the handle had any kind of transaction open, decrement the 4123 ** transaction count of the shared btree. If the transaction count 4124 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4125 ** call below will unlock the pager. */ 4126 if( p->inTrans!=TRANS_NONE ){ 4127 clearAllSharedCacheTableLocks(p); 4128 pBt->nTransaction--; 4129 if( 0==pBt->nTransaction ){ 4130 pBt->inTransaction = TRANS_NONE; 4131 } 4132 } 4133 4134 /* Set the current transaction state to TRANS_NONE and unlock the 4135 ** pager if this call closed the only read or write transaction. */ 4136 p->inTrans = TRANS_NONE; 4137 unlockBtreeIfUnused(pBt); 4138 } 4139 4140 btreeIntegrity(p); 4141 } 4142 4143 /* 4144 ** Commit the transaction currently in progress. 4145 ** 4146 ** This routine implements the second phase of a 2-phase commit. The 4147 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4148 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4149 ** routine did all the work of writing information out to disk and flushing the 4150 ** contents so that they are written onto the disk platter. All this 4151 ** routine has to do is delete or truncate or zero the header in the 4152 ** the rollback journal (which causes the transaction to commit) and 4153 ** drop locks. 4154 ** 4155 ** Normally, if an error occurs while the pager layer is attempting to 4156 ** finalize the underlying journal file, this function returns an error and 4157 ** the upper layer will attempt a rollback. However, if the second argument 4158 ** is non-zero then this b-tree transaction is part of a multi-file 4159 ** transaction. In this case, the transaction has already been committed 4160 ** (by deleting a super-journal file) and the caller will ignore this 4161 ** functions return code. So, even if an error occurs in the pager layer, 4162 ** reset the b-tree objects internal state to indicate that the write 4163 ** transaction has been closed. This is quite safe, as the pager will have 4164 ** transitioned to the error state. 4165 ** 4166 ** This will release the write lock on the database file. If there 4167 ** are no active cursors, it also releases the read lock. 4168 */ 4169 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4170 4171 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4172 sqlite3BtreeEnter(p); 4173 btreeIntegrity(p); 4174 4175 /* If the handle has a write-transaction open, commit the shared-btrees 4176 ** transaction and set the shared state to TRANS_READ. 4177 */ 4178 if( p->inTrans==TRANS_WRITE ){ 4179 int rc; 4180 BtShared *pBt = p->pBt; 4181 assert( pBt->inTransaction==TRANS_WRITE ); 4182 assert( pBt->nTransaction>0 ); 4183 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4184 if( rc!=SQLITE_OK && bCleanup==0 ){ 4185 sqlite3BtreeLeave(p); 4186 return rc; 4187 } 4188 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4189 pBt->inTransaction = TRANS_READ; 4190 btreeClearHasContent(pBt); 4191 } 4192 4193 btreeEndTransaction(p); 4194 sqlite3BtreeLeave(p); 4195 return SQLITE_OK; 4196 } 4197 4198 /* 4199 ** Do both phases of a commit. 4200 */ 4201 int sqlite3BtreeCommit(Btree *p){ 4202 int rc; 4203 sqlite3BtreeEnter(p); 4204 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4205 if( rc==SQLITE_OK ){ 4206 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4207 } 4208 sqlite3BtreeLeave(p); 4209 return rc; 4210 } 4211 4212 /* 4213 ** This routine sets the state to CURSOR_FAULT and the error 4214 ** code to errCode for every cursor on any BtShared that pBtree 4215 ** references. Or if the writeOnly flag is set to 1, then only 4216 ** trip write cursors and leave read cursors unchanged. 4217 ** 4218 ** Every cursor is a candidate to be tripped, including cursors 4219 ** that belong to other database connections that happen to be 4220 ** sharing the cache with pBtree. 4221 ** 4222 ** This routine gets called when a rollback occurs. If the writeOnly 4223 ** flag is true, then only write-cursors need be tripped - read-only 4224 ** cursors save their current positions so that they may continue 4225 ** following the rollback. Or, if writeOnly is false, all cursors are 4226 ** tripped. In general, writeOnly is false if the transaction being 4227 ** rolled back modified the database schema. In this case b-tree root 4228 ** pages may be moved or deleted from the database altogether, making 4229 ** it unsafe for read cursors to continue. 4230 ** 4231 ** If the writeOnly flag is true and an error is encountered while 4232 ** saving the current position of a read-only cursor, all cursors, 4233 ** including all read-cursors are tripped. 4234 ** 4235 ** SQLITE_OK is returned if successful, or if an error occurs while 4236 ** saving a cursor position, an SQLite error code. 4237 */ 4238 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4239 BtCursor *p; 4240 int rc = SQLITE_OK; 4241 4242 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4243 if( pBtree ){ 4244 sqlite3BtreeEnter(pBtree); 4245 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4246 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4247 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4248 rc = saveCursorPosition(p); 4249 if( rc!=SQLITE_OK ){ 4250 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4251 break; 4252 } 4253 } 4254 }else{ 4255 sqlite3BtreeClearCursor(p); 4256 p->eState = CURSOR_FAULT; 4257 p->skipNext = errCode; 4258 } 4259 btreeReleaseAllCursorPages(p); 4260 } 4261 sqlite3BtreeLeave(pBtree); 4262 } 4263 return rc; 4264 } 4265 4266 /* 4267 ** Set the pBt->nPage field correctly, according to the current 4268 ** state of the database. Assume pBt->pPage1 is valid. 4269 */ 4270 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4271 int nPage = get4byte(&pPage1->aData[28]); 4272 testcase( nPage==0 ); 4273 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4274 testcase( pBt->nPage!=(u32)nPage ); 4275 pBt->nPage = nPage; 4276 } 4277 4278 /* 4279 ** Rollback the transaction in progress. 4280 ** 4281 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4282 ** Only write cursors are tripped if writeOnly is true but all cursors are 4283 ** tripped if writeOnly is false. Any attempt to use 4284 ** a tripped cursor will result in an error. 4285 ** 4286 ** This will release the write lock on the database file. If there 4287 ** are no active cursors, it also releases the read lock. 4288 */ 4289 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4290 int rc; 4291 BtShared *pBt = p->pBt; 4292 MemPage *pPage1; 4293 4294 assert( writeOnly==1 || writeOnly==0 ); 4295 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4296 sqlite3BtreeEnter(p); 4297 if( tripCode==SQLITE_OK ){ 4298 rc = tripCode = saveAllCursors(pBt, 0, 0); 4299 if( rc ) writeOnly = 0; 4300 }else{ 4301 rc = SQLITE_OK; 4302 } 4303 if( tripCode ){ 4304 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4305 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4306 if( rc2!=SQLITE_OK ) rc = rc2; 4307 } 4308 btreeIntegrity(p); 4309 4310 if( p->inTrans==TRANS_WRITE ){ 4311 int rc2; 4312 4313 assert( TRANS_WRITE==pBt->inTransaction ); 4314 rc2 = sqlite3PagerRollback(pBt->pPager); 4315 if( rc2!=SQLITE_OK ){ 4316 rc = rc2; 4317 } 4318 4319 /* The rollback may have destroyed the pPage1->aData value. So 4320 ** call btreeGetPage() on page 1 again to make 4321 ** sure pPage1->aData is set correctly. */ 4322 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4323 btreeSetNPage(pBt, pPage1); 4324 releasePageOne(pPage1); 4325 } 4326 assert( countValidCursors(pBt, 1)==0 ); 4327 pBt->inTransaction = TRANS_READ; 4328 btreeClearHasContent(pBt); 4329 } 4330 4331 btreeEndTransaction(p); 4332 sqlite3BtreeLeave(p); 4333 return rc; 4334 } 4335 4336 /* 4337 ** Start a statement subtransaction. The subtransaction can be rolled 4338 ** back independently of the main transaction. You must start a transaction 4339 ** before starting a subtransaction. The subtransaction is ended automatically 4340 ** if the main transaction commits or rolls back. 4341 ** 4342 ** Statement subtransactions are used around individual SQL statements 4343 ** that are contained within a BEGIN...COMMIT block. If a constraint 4344 ** error occurs within the statement, the effect of that one statement 4345 ** can be rolled back without having to rollback the entire transaction. 4346 ** 4347 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4348 ** value passed as the second parameter is the total number of savepoints, 4349 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4350 ** are no active savepoints and no other statement-transactions open, 4351 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4352 ** using the sqlite3BtreeSavepoint() function. 4353 */ 4354 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4355 int rc; 4356 BtShared *pBt = p->pBt; 4357 sqlite3BtreeEnter(p); 4358 assert( p->inTrans==TRANS_WRITE ); 4359 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4360 assert( iStatement>0 ); 4361 assert( iStatement>p->db->nSavepoint ); 4362 assert( pBt->inTransaction==TRANS_WRITE ); 4363 /* At the pager level, a statement transaction is a savepoint with 4364 ** an index greater than all savepoints created explicitly using 4365 ** SQL statements. It is illegal to open, release or rollback any 4366 ** such savepoints while the statement transaction savepoint is active. 4367 */ 4368 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4369 sqlite3BtreeLeave(p); 4370 return rc; 4371 } 4372 4373 /* 4374 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4375 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4376 ** savepoint identified by parameter iSavepoint, depending on the value 4377 ** of op. 4378 ** 4379 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4380 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4381 ** contents of the entire transaction are rolled back. This is different 4382 ** from a normal transaction rollback, as no locks are released and the 4383 ** transaction remains open. 4384 */ 4385 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4386 int rc = SQLITE_OK; 4387 if( p && p->inTrans==TRANS_WRITE ){ 4388 BtShared *pBt = p->pBt; 4389 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4390 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4391 sqlite3BtreeEnter(p); 4392 if( op==SAVEPOINT_ROLLBACK ){ 4393 rc = saveAllCursors(pBt, 0, 0); 4394 } 4395 if( rc==SQLITE_OK ){ 4396 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4397 } 4398 if( rc==SQLITE_OK ){ 4399 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4400 pBt->nPage = 0; 4401 } 4402 rc = newDatabase(pBt); 4403 btreeSetNPage(pBt, pBt->pPage1); 4404 4405 /* pBt->nPage might be zero if the database was corrupt when 4406 ** the transaction was started. Otherwise, it must be at least 1. */ 4407 assert( CORRUPT_DB || pBt->nPage>0 ); 4408 } 4409 sqlite3BtreeLeave(p); 4410 } 4411 return rc; 4412 } 4413 4414 /* 4415 ** Create a new cursor for the BTree whose root is on the page 4416 ** iTable. If a read-only cursor is requested, it is assumed that 4417 ** the caller already has at least a read-only transaction open 4418 ** on the database already. If a write-cursor is requested, then 4419 ** the caller is assumed to have an open write transaction. 4420 ** 4421 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4422 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4423 ** can be used for reading or for writing if other conditions for writing 4424 ** are also met. These are the conditions that must be met in order 4425 ** for writing to be allowed: 4426 ** 4427 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4428 ** 4429 ** 2: Other database connections that share the same pager cache 4430 ** but which are not in the READ_UNCOMMITTED state may not have 4431 ** cursors open with wrFlag==0 on the same table. Otherwise 4432 ** the changes made by this write cursor would be visible to 4433 ** the read cursors in the other database connection. 4434 ** 4435 ** 3: The database must be writable (not on read-only media) 4436 ** 4437 ** 4: There must be an active transaction. 4438 ** 4439 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4440 ** is set. If FORDELETE is set, that is a hint to the implementation that 4441 ** this cursor will only be used to seek to and delete entries of an index 4442 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4443 ** this implementation. But in a hypothetical alternative storage engine 4444 ** in which index entries are automatically deleted when corresponding table 4445 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4446 ** operations on this cursor can be no-ops and all READ operations can 4447 ** return a null row (2-bytes: 0x01 0x00). 4448 ** 4449 ** No checking is done to make sure that page iTable really is the 4450 ** root page of a b-tree. If it is not, then the cursor acquired 4451 ** will not work correctly. 4452 ** 4453 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4454 ** on pCur to initialize the memory space prior to invoking this routine. 4455 */ 4456 static int btreeCursor( 4457 Btree *p, /* The btree */ 4458 Pgno iTable, /* Root page of table to open */ 4459 int wrFlag, /* 1 to write. 0 read-only */ 4460 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4461 BtCursor *pCur /* Space for new cursor */ 4462 ){ 4463 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4464 BtCursor *pX; /* Looping over other all cursors */ 4465 4466 assert( sqlite3BtreeHoldsMutex(p) ); 4467 assert( wrFlag==0 4468 || wrFlag==BTREE_WRCSR 4469 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4470 ); 4471 4472 /* The following assert statements verify that if this is a sharable 4473 ** b-tree database, the connection is holding the required table locks, 4474 ** and that no other connection has any open cursor that conflicts with 4475 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4476 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4477 || iTable<1 ); 4478 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4479 4480 /* Assert that the caller has opened the required transaction. */ 4481 assert( p->inTrans>TRANS_NONE ); 4482 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4483 assert( pBt->pPage1 && pBt->pPage1->aData ); 4484 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4485 4486 if( iTable<=1 ){ 4487 if( iTable<1 ){ 4488 return SQLITE_CORRUPT_BKPT; 4489 }else if( btreePagecount(pBt)==0 ){ 4490 assert( wrFlag==0 ); 4491 iTable = 0; 4492 } 4493 } 4494 4495 /* Now that no other errors can occur, finish filling in the BtCursor 4496 ** variables and link the cursor into the BtShared list. */ 4497 pCur->pgnoRoot = iTable; 4498 pCur->iPage = -1; 4499 pCur->pKeyInfo = pKeyInfo; 4500 pCur->pBtree = p; 4501 pCur->pBt = pBt; 4502 pCur->curFlags = 0; 4503 /* If there are two or more cursors on the same btree, then all such 4504 ** cursors *must* have the BTCF_Multiple flag set. */ 4505 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4506 if( pX->pgnoRoot==iTable ){ 4507 pX->curFlags |= BTCF_Multiple; 4508 pCur->curFlags = BTCF_Multiple; 4509 } 4510 } 4511 pCur->eState = CURSOR_INVALID; 4512 pCur->pNext = pBt->pCursor; 4513 pBt->pCursor = pCur; 4514 if( wrFlag ){ 4515 pCur->curFlags |= BTCF_WriteFlag; 4516 pCur->curPagerFlags = 0; 4517 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4518 }else{ 4519 pCur->curPagerFlags = PAGER_GET_READONLY; 4520 } 4521 return SQLITE_OK; 4522 } 4523 static int btreeCursorWithLock( 4524 Btree *p, /* The btree */ 4525 Pgno iTable, /* Root page of table to open */ 4526 int wrFlag, /* 1 to write. 0 read-only */ 4527 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4528 BtCursor *pCur /* Space for new cursor */ 4529 ){ 4530 int rc; 4531 sqlite3BtreeEnter(p); 4532 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4533 sqlite3BtreeLeave(p); 4534 return rc; 4535 } 4536 int sqlite3BtreeCursor( 4537 Btree *p, /* The btree */ 4538 Pgno iTable, /* Root page of table to open */ 4539 int wrFlag, /* 1 to write. 0 read-only */ 4540 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4541 BtCursor *pCur /* Write new cursor here */ 4542 ){ 4543 if( p->sharable ){ 4544 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4545 }else{ 4546 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4547 } 4548 } 4549 4550 /* 4551 ** Return the size of a BtCursor object in bytes. 4552 ** 4553 ** This interfaces is needed so that users of cursors can preallocate 4554 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4555 ** to users so they cannot do the sizeof() themselves - they must call 4556 ** this routine. 4557 */ 4558 int sqlite3BtreeCursorSize(void){ 4559 return ROUND8(sizeof(BtCursor)); 4560 } 4561 4562 /* 4563 ** Initialize memory that will be converted into a BtCursor object. 4564 ** 4565 ** The simple approach here would be to memset() the entire object 4566 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4567 ** do not need to be zeroed and they are large, so we can save a lot 4568 ** of run-time by skipping the initialization of those elements. 4569 */ 4570 void sqlite3BtreeCursorZero(BtCursor *p){ 4571 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4572 } 4573 4574 /* 4575 ** Close a cursor. The read lock on the database file is released 4576 ** when the last cursor is closed. 4577 */ 4578 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4579 Btree *pBtree = pCur->pBtree; 4580 if( pBtree ){ 4581 BtShared *pBt = pCur->pBt; 4582 sqlite3BtreeEnter(pBtree); 4583 assert( pBt->pCursor!=0 ); 4584 if( pBt->pCursor==pCur ){ 4585 pBt->pCursor = pCur->pNext; 4586 }else{ 4587 BtCursor *pPrev = pBt->pCursor; 4588 do{ 4589 if( pPrev->pNext==pCur ){ 4590 pPrev->pNext = pCur->pNext; 4591 break; 4592 } 4593 pPrev = pPrev->pNext; 4594 }while( ALWAYS(pPrev) ); 4595 } 4596 btreeReleaseAllCursorPages(pCur); 4597 unlockBtreeIfUnused(pBt); 4598 sqlite3_free(pCur->aOverflow); 4599 sqlite3_free(pCur->pKey); 4600 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4601 /* Since the BtShared is not sharable, there is no need to 4602 ** worry about the missing sqlite3BtreeLeave() call here. */ 4603 assert( pBtree->sharable==0 ); 4604 sqlite3BtreeClose(pBtree); 4605 }else{ 4606 sqlite3BtreeLeave(pBtree); 4607 } 4608 pCur->pBtree = 0; 4609 } 4610 return SQLITE_OK; 4611 } 4612 4613 /* 4614 ** Make sure the BtCursor* given in the argument has a valid 4615 ** BtCursor.info structure. If it is not already valid, call 4616 ** btreeParseCell() to fill it in. 4617 ** 4618 ** BtCursor.info is a cache of the information in the current cell. 4619 ** Using this cache reduces the number of calls to btreeParseCell(). 4620 */ 4621 #ifndef NDEBUG 4622 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4623 if( a->nKey!=b->nKey ) return 0; 4624 if( a->pPayload!=b->pPayload ) return 0; 4625 if( a->nPayload!=b->nPayload ) return 0; 4626 if( a->nLocal!=b->nLocal ) return 0; 4627 if( a->nSize!=b->nSize ) return 0; 4628 return 1; 4629 } 4630 static void assertCellInfo(BtCursor *pCur){ 4631 CellInfo info; 4632 memset(&info, 0, sizeof(info)); 4633 btreeParseCell(pCur->pPage, pCur->ix, &info); 4634 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4635 } 4636 #else 4637 #define assertCellInfo(x) 4638 #endif 4639 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4640 if( pCur->info.nSize==0 ){ 4641 pCur->curFlags |= BTCF_ValidNKey; 4642 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4643 }else{ 4644 assertCellInfo(pCur); 4645 } 4646 } 4647 4648 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4649 /* 4650 ** Return true if the given BtCursor is valid. A valid cursor is one 4651 ** that is currently pointing to a row in a (non-empty) table. 4652 ** This is a verification routine is used only within assert() statements. 4653 */ 4654 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4655 return pCur && pCur->eState==CURSOR_VALID; 4656 } 4657 #endif /* NDEBUG */ 4658 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4659 assert( pCur!=0 ); 4660 return pCur->eState==CURSOR_VALID; 4661 } 4662 4663 /* 4664 ** Return the value of the integer key or "rowid" for a table btree. 4665 ** This routine is only valid for a cursor that is pointing into a 4666 ** ordinary table btree. If the cursor points to an index btree or 4667 ** is invalid, the result of this routine is undefined. 4668 */ 4669 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4670 assert( cursorHoldsMutex(pCur) ); 4671 assert( pCur->eState==CURSOR_VALID ); 4672 assert( pCur->curIntKey ); 4673 getCellInfo(pCur); 4674 return pCur->info.nKey; 4675 } 4676 4677 /* 4678 ** Pin or unpin a cursor. 4679 */ 4680 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4681 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4682 pCur->curFlags |= BTCF_Pinned; 4683 } 4684 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4685 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4686 pCur->curFlags &= ~BTCF_Pinned; 4687 } 4688 4689 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4690 /* 4691 ** Return the offset into the database file for the start of the 4692 ** payload to which the cursor is pointing. 4693 */ 4694 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4695 assert( cursorHoldsMutex(pCur) ); 4696 assert( pCur->eState==CURSOR_VALID ); 4697 getCellInfo(pCur); 4698 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4699 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4700 } 4701 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4702 4703 /* 4704 ** Return the number of bytes of payload for the entry that pCur is 4705 ** currently pointing to. For table btrees, this will be the amount 4706 ** of data. For index btrees, this will be the size of the key. 4707 ** 4708 ** The caller must guarantee that the cursor is pointing to a non-NULL 4709 ** valid entry. In other words, the calling procedure must guarantee 4710 ** that the cursor has Cursor.eState==CURSOR_VALID. 4711 */ 4712 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4713 assert( cursorHoldsMutex(pCur) ); 4714 assert( pCur->eState==CURSOR_VALID ); 4715 getCellInfo(pCur); 4716 return pCur->info.nPayload; 4717 } 4718 4719 /* 4720 ** Return an upper bound on the size of any record for the table 4721 ** that the cursor is pointing into. 4722 ** 4723 ** This is an optimization. Everything will still work if this 4724 ** routine always returns 2147483647 (which is the largest record 4725 ** that SQLite can handle) or more. But returning a smaller value might 4726 ** prevent large memory allocations when trying to interpret a 4727 ** corrupt datrabase. 4728 ** 4729 ** The current implementation merely returns the size of the underlying 4730 ** database file. 4731 */ 4732 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4733 assert( cursorHoldsMutex(pCur) ); 4734 assert( pCur->eState==CURSOR_VALID ); 4735 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4736 } 4737 4738 /* 4739 ** Given the page number of an overflow page in the database (parameter 4740 ** ovfl), this function finds the page number of the next page in the 4741 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4742 ** pointer-map data instead of reading the content of page ovfl to do so. 4743 ** 4744 ** If an error occurs an SQLite error code is returned. Otherwise: 4745 ** 4746 ** The page number of the next overflow page in the linked list is 4747 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4748 ** list, *pPgnoNext is set to zero. 4749 ** 4750 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4751 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4752 ** reference. It is the responsibility of the caller to call releasePage() 4753 ** on *ppPage to free the reference. In no reference was obtained (because 4754 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4755 ** *ppPage is set to zero. 4756 */ 4757 static int getOverflowPage( 4758 BtShared *pBt, /* The database file */ 4759 Pgno ovfl, /* Current overflow page number */ 4760 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4761 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4762 ){ 4763 Pgno next = 0; 4764 MemPage *pPage = 0; 4765 int rc = SQLITE_OK; 4766 4767 assert( sqlite3_mutex_held(pBt->mutex) ); 4768 assert(pPgnoNext); 4769 4770 #ifndef SQLITE_OMIT_AUTOVACUUM 4771 /* Try to find the next page in the overflow list using the 4772 ** autovacuum pointer-map pages. Guess that the next page in 4773 ** the overflow list is page number (ovfl+1). If that guess turns 4774 ** out to be wrong, fall back to loading the data of page 4775 ** number ovfl to determine the next page number. 4776 */ 4777 if( pBt->autoVacuum ){ 4778 Pgno pgno; 4779 Pgno iGuess = ovfl+1; 4780 u8 eType; 4781 4782 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4783 iGuess++; 4784 } 4785 4786 if( iGuess<=btreePagecount(pBt) ){ 4787 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4788 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4789 next = iGuess; 4790 rc = SQLITE_DONE; 4791 } 4792 } 4793 } 4794 #endif 4795 4796 assert( next==0 || rc==SQLITE_DONE ); 4797 if( rc==SQLITE_OK ){ 4798 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4799 assert( rc==SQLITE_OK || pPage==0 ); 4800 if( rc==SQLITE_OK ){ 4801 next = get4byte(pPage->aData); 4802 } 4803 } 4804 4805 *pPgnoNext = next; 4806 if( ppPage ){ 4807 *ppPage = pPage; 4808 }else{ 4809 releasePage(pPage); 4810 } 4811 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4812 } 4813 4814 /* 4815 ** Copy data from a buffer to a page, or from a page to a buffer. 4816 ** 4817 ** pPayload is a pointer to data stored on database page pDbPage. 4818 ** If argument eOp is false, then nByte bytes of data are copied 4819 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4820 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4821 ** of data are copied from the buffer pBuf to pPayload. 4822 ** 4823 ** SQLITE_OK is returned on success, otherwise an error code. 4824 */ 4825 static int copyPayload( 4826 void *pPayload, /* Pointer to page data */ 4827 void *pBuf, /* Pointer to buffer */ 4828 int nByte, /* Number of bytes to copy */ 4829 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4830 DbPage *pDbPage /* Page containing pPayload */ 4831 ){ 4832 if( eOp ){ 4833 /* Copy data from buffer to page (a write operation) */ 4834 int rc = sqlite3PagerWrite(pDbPage); 4835 if( rc!=SQLITE_OK ){ 4836 return rc; 4837 } 4838 memcpy(pPayload, pBuf, nByte); 4839 }else{ 4840 /* Copy data from page to buffer (a read operation) */ 4841 memcpy(pBuf, pPayload, nByte); 4842 } 4843 return SQLITE_OK; 4844 } 4845 4846 /* 4847 ** This function is used to read or overwrite payload information 4848 ** for the entry that the pCur cursor is pointing to. The eOp 4849 ** argument is interpreted as follows: 4850 ** 4851 ** 0: The operation is a read. Populate the overflow cache. 4852 ** 1: The operation is a write. Populate the overflow cache. 4853 ** 4854 ** A total of "amt" bytes are read or written beginning at "offset". 4855 ** Data is read to or from the buffer pBuf. 4856 ** 4857 ** The content being read or written might appear on the main page 4858 ** or be scattered out on multiple overflow pages. 4859 ** 4860 ** If the current cursor entry uses one or more overflow pages 4861 ** this function may allocate space for and lazily populate 4862 ** the overflow page-list cache array (BtCursor.aOverflow). 4863 ** Subsequent calls use this cache to make seeking to the supplied offset 4864 ** more efficient. 4865 ** 4866 ** Once an overflow page-list cache has been allocated, it must be 4867 ** invalidated if some other cursor writes to the same table, or if 4868 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4869 ** mode, the following events may invalidate an overflow page-list cache. 4870 ** 4871 ** * An incremental vacuum, 4872 ** * A commit in auto_vacuum="full" mode, 4873 ** * Creating a table (may require moving an overflow page). 4874 */ 4875 static int accessPayload( 4876 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4877 u32 offset, /* Begin reading this far into payload */ 4878 u32 amt, /* Read this many bytes */ 4879 unsigned char *pBuf, /* Write the bytes into this buffer */ 4880 int eOp /* zero to read. non-zero to write. */ 4881 ){ 4882 unsigned char *aPayload; 4883 int rc = SQLITE_OK; 4884 int iIdx = 0; 4885 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4886 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4887 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4888 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4889 #endif 4890 4891 assert( pPage ); 4892 assert( eOp==0 || eOp==1 ); 4893 assert( pCur->eState==CURSOR_VALID ); 4894 if( pCur->ix>=pPage->nCell ){ 4895 return SQLITE_CORRUPT_PAGE(pPage); 4896 } 4897 assert( cursorHoldsMutex(pCur) ); 4898 4899 getCellInfo(pCur); 4900 aPayload = pCur->info.pPayload; 4901 assert( offset+amt <= pCur->info.nPayload ); 4902 4903 assert( aPayload > pPage->aData ); 4904 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4905 /* Trying to read or write past the end of the data is an error. The 4906 ** conditional above is really: 4907 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4908 ** but is recast into its current form to avoid integer overflow problems 4909 */ 4910 return SQLITE_CORRUPT_PAGE(pPage); 4911 } 4912 4913 /* Check if data must be read/written to/from the btree page itself. */ 4914 if( offset<pCur->info.nLocal ){ 4915 int a = amt; 4916 if( a+offset>pCur->info.nLocal ){ 4917 a = pCur->info.nLocal - offset; 4918 } 4919 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4920 offset = 0; 4921 pBuf += a; 4922 amt -= a; 4923 }else{ 4924 offset -= pCur->info.nLocal; 4925 } 4926 4927 4928 if( rc==SQLITE_OK && amt>0 ){ 4929 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4930 Pgno nextPage; 4931 4932 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4933 4934 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4935 ** 4936 ** The aOverflow[] array is sized at one entry for each overflow page 4937 ** in the overflow chain. The page number of the first overflow page is 4938 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 4939 ** means "not yet known" (the cache is lazily populated). 4940 */ 4941 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 4942 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 4943 if( pCur->aOverflow==0 4944 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 4945 ){ 4946 Pgno *aNew = (Pgno*)sqlite3Realloc( 4947 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 4948 ); 4949 if( aNew==0 ){ 4950 return SQLITE_NOMEM_BKPT; 4951 }else{ 4952 pCur->aOverflow = aNew; 4953 } 4954 } 4955 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 4956 pCur->curFlags |= BTCF_ValidOvfl; 4957 }else{ 4958 /* If the overflow page-list cache has been allocated and the 4959 ** entry for the first required overflow page is valid, skip 4960 ** directly to it. 4961 */ 4962 if( pCur->aOverflow[offset/ovflSize] ){ 4963 iIdx = (offset/ovflSize); 4964 nextPage = pCur->aOverflow[iIdx]; 4965 offset = (offset%ovflSize); 4966 } 4967 } 4968 4969 assert( rc==SQLITE_OK && amt>0 ); 4970 while( nextPage ){ 4971 /* If required, populate the overflow page-list cache. */ 4972 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 4973 assert( pCur->aOverflow[iIdx]==0 4974 || pCur->aOverflow[iIdx]==nextPage 4975 || CORRUPT_DB ); 4976 pCur->aOverflow[iIdx] = nextPage; 4977 4978 if( offset>=ovflSize ){ 4979 /* The only reason to read this page is to obtain the page 4980 ** number for the next page in the overflow chain. The page 4981 ** data is not required. So first try to lookup the overflow 4982 ** page-list cache, if any, then fall back to the getOverflowPage() 4983 ** function. 4984 */ 4985 assert( pCur->curFlags & BTCF_ValidOvfl ); 4986 assert( pCur->pBtree->db==pBt->db ); 4987 if( pCur->aOverflow[iIdx+1] ){ 4988 nextPage = pCur->aOverflow[iIdx+1]; 4989 }else{ 4990 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 4991 } 4992 offset -= ovflSize; 4993 }else{ 4994 /* Need to read this page properly. It contains some of the 4995 ** range of data that is being read (eOp==0) or written (eOp!=0). 4996 */ 4997 int a = amt; 4998 if( a + offset > ovflSize ){ 4999 a = ovflSize - offset; 5000 } 5001 5002 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5003 /* If all the following are true: 5004 ** 5005 ** 1) this is a read operation, and 5006 ** 2) data is required from the start of this overflow page, and 5007 ** 3) there are no dirty pages in the page-cache 5008 ** 4) the database is file-backed, and 5009 ** 5) the page is not in the WAL file 5010 ** 6) at least 4 bytes have already been read into the output buffer 5011 ** 5012 ** then data can be read directly from the database file into the 5013 ** output buffer, bypassing the page-cache altogether. This speeds 5014 ** up loading large records that span many overflow pages. 5015 */ 5016 if( eOp==0 /* (1) */ 5017 && offset==0 /* (2) */ 5018 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5019 && &pBuf[-4]>=pBufStart /* (6) */ 5020 ){ 5021 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5022 u8 aSave[4]; 5023 u8 *aWrite = &pBuf[-4]; 5024 assert( aWrite>=pBufStart ); /* due to (6) */ 5025 memcpy(aSave, aWrite, 4); 5026 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5027 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5028 nextPage = get4byte(aWrite); 5029 memcpy(aWrite, aSave, 4); 5030 }else 5031 #endif 5032 5033 { 5034 DbPage *pDbPage; 5035 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5036 (eOp==0 ? PAGER_GET_READONLY : 0) 5037 ); 5038 if( rc==SQLITE_OK ){ 5039 aPayload = sqlite3PagerGetData(pDbPage); 5040 nextPage = get4byte(aPayload); 5041 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5042 sqlite3PagerUnref(pDbPage); 5043 offset = 0; 5044 } 5045 } 5046 amt -= a; 5047 if( amt==0 ) return rc; 5048 pBuf += a; 5049 } 5050 if( rc ) break; 5051 iIdx++; 5052 } 5053 } 5054 5055 if( rc==SQLITE_OK && amt>0 ){ 5056 /* Overflow chain ends prematurely */ 5057 return SQLITE_CORRUPT_PAGE(pPage); 5058 } 5059 return rc; 5060 } 5061 5062 /* 5063 ** Read part of the payload for the row at which that cursor pCur is currently 5064 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5065 ** begins at "offset". 5066 ** 5067 ** pCur can be pointing to either a table or an index b-tree. 5068 ** If pointing to a table btree, then the content section is read. If 5069 ** pCur is pointing to an index b-tree then the key section is read. 5070 ** 5071 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5072 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5073 ** cursor might be invalid or might need to be restored before being read. 5074 ** 5075 ** Return SQLITE_OK on success or an error code if anything goes 5076 ** wrong. An error is returned if "offset+amt" is larger than 5077 ** the available payload. 5078 */ 5079 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5080 assert( cursorHoldsMutex(pCur) ); 5081 assert( pCur->eState==CURSOR_VALID ); 5082 assert( pCur->iPage>=0 && pCur->pPage ); 5083 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5084 } 5085 5086 /* 5087 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5088 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5089 ** interface. 5090 */ 5091 #ifndef SQLITE_OMIT_INCRBLOB 5092 static SQLITE_NOINLINE int accessPayloadChecked( 5093 BtCursor *pCur, 5094 u32 offset, 5095 u32 amt, 5096 void *pBuf 5097 ){ 5098 int rc; 5099 if ( pCur->eState==CURSOR_INVALID ){ 5100 return SQLITE_ABORT; 5101 } 5102 assert( cursorOwnsBtShared(pCur) ); 5103 rc = btreeRestoreCursorPosition(pCur); 5104 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5105 } 5106 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5107 if( pCur->eState==CURSOR_VALID ){ 5108 assert( cursorOwnsBtShared(pCur) ); 5109 return accessPayload(pCur, offset, amt, pBuf, 0); 5110 }else{ 5111 return accessPayloadChecked(pCur, offset, amt, pBuf); 5112 } 5113 } 5114 #endif /* SQLITE_OMIT_INCRBLOB */ 5115 5116 /* 5117 ** Return a pointer to payload information from the entry that the 5118 ** pCur cursor is pointing to. The pointer is to the beginning of 5119 ** the key if index btrees (pPage->intKey==0) and is the data for 5120 ** table btrees (pPage->intKey==1). The number of bytes of available 5121 ** key/data is written into *pAmt. If *pAmt==0, then the value 5122 ** returned will not be a valid pointer. 5123 ** 5124 ** This routine is an optimization. It is common for the entire key 5125 ** and data to fit on the local page and for there to be no overflow 5126 ** pages. When that is so, this routine can be used to access the 5127 ** key and data without making a copy. If the key and/or data spills 5128 ** onto overflow pages, then accessPayload() must be used to reassemble 5129 ** the key/data and copy it into a preallocated buffer. 5130 ** 5131 ** The pointer returned by this routine looks directly into the cached 5132 ** page of the database. The data might change or move the next time 5133 ** any btree routine is called. 5134 */ 5135 static const void *fetchPayload( 5136 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5137 u32 *pAmt /* Write the number of available bytes here */ 5138 ){ 5139 int amt; 5140 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5141 assert( pCur->eState==CURSOR_VALID ); 5142 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5143 assert( cursorOwnsBtShared(pCur) ); 5144 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5145 assert( pCur->info.nSize>0 ); 5146 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5147 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5148 amt = pCur->info.nLocal; 5149 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5150 /* There is too little space on the page for the expected amount 5151 ** of local content. Database must be corrupt. */ 5152 assert( CORRUPT_DB ); 5153 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5154 } 5155 *pAmt = (u32)amt; 5156 return (void*)pCur->info.pPayload; 5157 } 5158 5159 5160 /* 5161 ** For the entry that cursor pCur is point to, return as 5162 ** many bytes of the key or data as are available on the local 5163 ** b-tree page. Write the number of available bytes into *pAmt. 5164 ** 5165 ** The pointer returned is ephemeral. The key/data may move 5166 ** or be destroyed on the next call to any Btree routine, 5167 ** including calls from other threads against the same cache. 5168 ** Hence, a mutex on the BtShared should be held prior to calling 5169 ** this routine. 5170 ** 5171 ** These routines is used to get quick access to key and data 5172 ** in the common case where no overflow pages are used. 5173 */ 5174 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5175 return fetchPayload(pCur, pAmt); 5176 } 5177 5178 5179 /* 5180 ** Move the cursor down to a new child page. The newPgno argument is the 5181 ** page number of the child page to move to. 5182 ** 5183 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5184 ** the new child page does not match the flags field of the parent (i.e. 5185 ** if an intkey page appears to be the parent of a non-intkey page, or 5186 ** vice-versa). 5187 */ 5188 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5189 BtShared *pBt = pCur->pBt; 5190 5191 assert( cursorOwnsBtShared(pCur) ); 5192 assert( pCur->eState==CURSOR_VALID ); 5193 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5194 assert( pCur->iPage>=0 ); 5195 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5196 return SQLITE_CORRUPT_BKPT; 5197 } 5198 pCur->info.nSize = 0; 5199 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5200 pCur->aiIdx[pCur->iPage] = pCur->ix; 5201 pCur->apPage[pCur->iPage] = pCur->pPage; 5202 pCur->ix = 0; 5203 pCur->iPage++; 5204 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5205 } 5206 5207 #ifdef SQLITE_DEBUG 5208 /* 5209 ** Page pParent is an internal (non-leaf) tree page. This function 5210 ** asserts that page number iChild is the left-child if the iIdx'th 5211 ** cell in page pParent. Or, if iIdx is equal to the total number of 5212 ** cells in pParent, that page number iChild is the right-child of 5213 ** the page. 5214 */ 5215 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5216 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5217 ** in a corrupt database */ 5218 assert( iIdx<=pParent->nCell ); 5219 if( iIdx==pParent->nCell ){ 5220 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5221 }else{ 5222 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5223 } 5224 } 5225 #else 5226 # define assertParentIndex(x,y,z) 5227 #endif 5228 5229 /* 5230 ** Move the cursor up to the parent page. 5231 ** 5232 ** pCur->idx is set to the cell index that contains the pointer 5233 ** to the page we are coming from. If we are coming from the 5234 ** right-most child page then pCur->idx is set to one more than 5235 ** the largest cell index. 5236 */ 5237 static void moveToParent(BtCursor *pCur){ 5238 MemPage *pLeaf; 5239 assert( cursorOwnsBtShared(pCur) ); 5240 assert( pCur->eState==CURSOR_VALID ); 5241 assert( pCur->iPage>0 ); 5242 assert( pCur->pPage ); 5243 assertParentIndex( 5244 pCur->apPage[pCur->iPage-1], 5245 pCur->aiIdx[pCur->iPage-1], 5246 pCur->pPage->pgno 5247 ); 5248 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5249 pCur->info.nSize = 0; 5250 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5251 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5252 pLeaf = pCur->pPage; 5253 pCur->pPage = pCur->apPage[--pCur->iPage]; 5254 releasePageNotNull(pLeaf); 5255 } 5256 5257 /* 5258 ** Move the cursor to point to the root page of its b-tree structure. 5259 ** 5260 ** If the table has a virtual root page, then the cursor is moved to point 5261 ** to the virtual root page instead of the actual root page. A table has a 5262 ** virtual root page when the actual root page contains no cells and a 5263 ** single child page. This can only happen with the table rooted at page 1. 5264 ** 5265 ** If the b-tree structure is empty, the cursor state is set to 5266 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5267 ** the cursor is set to point to the first cell located on the root 5268 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5269 ** 5270 ** If this function returns successfully, it may be assumed that the 5271 ** page-header flags indicate that the [virtual] root-page is the expected 5272 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5273 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5274 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5275 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5276 ** b-tree). 5277 */ 5278 static int moveToRoot(BtCursor *pCur){ 5279 MemPage *pRoot; 5280 int rc = SQLITE_OK; 5281 5282 assert( cursorOwnsBtShared(pCur) ); 5283 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5284 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5285 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5286 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5287 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5288 5289 if( pCur->iPage>=0 ){ 5290 if( pCur->iPage ){ 5291 releasePageNotNull(pCur->pPage); 5292 while( --pCur->iPage ){ 5293 releasePageNotNull(pCur->apPage[pCur->iPage]); 5294 } 5295 pRoot = pCur->pPage = pCur->apPage[0]; 5296 goto skip_init; 5297 } 5298 }else if( pCur->pgnoRoot==0 ){ 5299 pCur->eState = CURSOR_INVALID; 5300 return SQLITE_EMPTY; 5301 }else{ 5302 assert( pCur->iPage==(-1) ); 5303 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5304 if( pCur->eState==CURSOR_FAULT ){ 5305 assert( pCur->skipNext!=SQLITE_OK ); 5306 return pCur->skipNext; 5307 } 5308 sqlite3BtreeClearCursor(pCur); 5309 } 5310 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5311 0, pCur->curPagerFlags); 5312 if( rc!=SQLITE_OK ){ 5313 pCur->eState = CURSOR_INVALID; 5314 return rc; 5315 } 5316 pCur->iPage = 0; 5317 pCur->curIntKey = pCur->pPage->intKey; 5318 } 5319 pRoot = pCur->pPage; 5320 assert( pRoot->pgno==pCur->pgnoRoot ); 5321 5322 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5323 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5324 ** NULL, the caller expects a table b-tree. If this is not the case, 5325 ** return an SQLITE_CORRUPT error. 5326 ** 5327 ** Earlier versions of SQLite assumed that this test could not fail 5328 ** if the root page was already loaded when this function was called (i.e. 5329 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5330 ** in such a way that page pRoot is linked into a second b-tree table 5331 ** (or the freelist). */ 5332 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5333 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5334 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5335 } 5336 5337 skip_init: 5338 pCur->ix = 0; 5339 pCur->info.nSize = 0; 5340 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5341 5342 if( pRoot->nCell>0 ){ 5343 pCur->eState = CURSOR_VALID; 5344 }else if( !pRoot->leaf ){ 5345 Pgno subpage; 5346 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5347 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5348 pCur->eState = CURSOR_VALID; 5349 rc = moveToChild(pCur, subpage); 5350 }else{ 5351 pCur->eState = CURSOR_INVALID; 5352 rc = SQLITE_EMPTY; 5353 } 5354 return rc; 5355 } 5356 5357 /* 5358 ** Move the cursor down to the left-most leaf entry beneath the 5359 ** entry to which it is currently pointing. 5360 ** 5361 ** The left-most leaf is the one with the smallest key - the first 5362 ** in ascending order. 5363 */ 5364 static int moveToLeftmost(BtCursor *pCur){ 5365 Pgno pgno; 5366 int rc = SQLITE_OK; 5367 MemPage *pPage; 5368 5369 assert( cursorOwnsBtShared(pCur) ); 5370 assert( pCur->eState==CURSOR_VALID ); 5371 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5372 assert( pCur->ix<pPage->nCell ); 5373 pgno = get4byte(findCell(pPage, pCur->ix)); 5374 rc = moveToChild(pCur, pgno); 5375 } 5376 return rc; 5377 } 5378 5379 /* 5380 ** Move the cursor down to the right-most leaf entry beneath the 5381 ** page to which it is currently pointing. Notice the difference 5382 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5383 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5384 ** finds the right-most entry beneath the *page*. 5385 ** 5386 ** The right-most entry is the one with the largest key - the last 5387 ** key in ascending order. 5388 */ 5389 static int moveToRightmost(BtCursor *pCur){ 5390 Pgno pgno; 5391 int rc = SQLITE_OK; 5392 MemPage *pPage = 0; 5393 5394 assert( cursorOwnsBtShared(pCur) ); 5395 assert( pCur->eState==CURSOR_VALID ); 5396 while( !(pPage = pCur->pPage)->leaf ){ 5397 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5398 pCur->ix = pPage->nCell; 5399 rc = moveToChild(pCur, pgno); 5400 if( rc ) return rc; 5401 } 5402 pCur->ix = pPage->nCell-1; 5403 assert( pCur->info.nSize==0 ); 5404 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5405 return SQLITE_OK; 5406 } 5407 5408 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5409 ** on success. Set *pRes to 0 if the cursor actually points to something 5410 ** or set *pRes to 1 if the table is empty. 5411 */ 5412 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5413 int rc; 5414 5415 assert( cursorOwnsBtShared(pCur) ); 5416 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5417 rc = moveToRoot(pCur); 5418 if( rc==SQLITE_OK ){ 5419 assert( pCur->pPage->nCell>0 ); 5420 *pRes = 0; 5421 rc = moveToLeftmost(pCur); 5422 }else if( rc==SQLITE_EMPTY ){ 5423 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5424 *pRes = 1; 5425 rc = SQLITE_OK; 5426 } 5427 return rc; 5428 } 5429 5430 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5431 ** on success. Set *pRes to 0 if the cursor actually points to something 5432 ** or set *pRes to 1 if the table is empty. 5433 */ 5434 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5435 int rc; 5436 5437 assert( cursorOwnsBtShared(pCur) ); 5438 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5439 5440 /* If the cursor already points to the last entry, this is a no-op. */ 5441 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5442 #ifdef SQLITE_DEBUG 5443 /* This block serves to assert() that the cursor really does point 5444 ** to the last entry in the b-tree. */ 5445 int ii; 5446 for(ii=0; ii<pCur->iPage; ii++){ 5447 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5448 } 5449 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5450 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5451 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5452 assert( pCur->pPage->leaf ); 5453 #endif 5454 *pRes = 0; 5455 return SQLITE_OK; 5456 } 5457 5458 rc = moveToRoot(pCur); 5459 if( rc==SQLITE_OK ){ 5460 assert( pCur->eState==CURSOR_VALID ); 5461 *pRes = 0; 5462 rc = moveToRightmost(pCur); 5463 if( rc==SQLITE_OK ){ 5464 pCur->curFlags |= BTCF_AtLast; 5465 }else{ 5466 pCur->curFlags &= ~BTCF_AtLast; 5467 } 5468 }else if( rc==SQLITE_EMPTY ){ 5469 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5470 *pRes = 1; 5471 rc = SQLITE_OK; 5472 } 5473 return rc; 5474 } 5475 5476 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5477 ** table near the key intKey. Return a success code. 5478 ** 5479 ** If an exact match is not found, then the cursor is always 5480 ** left pointing at a leaf page which would hold the entry if it 5481 ** were present. The cursor might point to an entry that comes 5482 ** before or after the key. 5483 ** 5484 ** An integer is written into *pRes which is the result of 5485 ** comparing the key with the entry to which the cursor is 5486 ** pointing. The meaning of the integer written into 5487 ** *pRes is as follows: 5488 ** 5489 ** *pRes<0 The cursor is left pointing at an entry that 5490 ** is smaller than intKey or if the table is empty 5491 ** and the cursor is therefore left point to nothing. 5492 ** 5493 ** *pRes==0 The cursor is left pointing at an entry that 5494 ** exactly matches intKey. 5495 ** 5496 ** *pRes>0 The cursor is left pointing at an entry that 5497 ** is larger than intKey. 5498 */ 5499 int sqlite3BtreeTableMoveto( 5500 BtCursor *pCur, /* The cursor to be moved */ 5501 i64 intKey, /* The table key */ 5502 int biasRight, /* If true, bias the search to the high end */ 5503 int *pRes /* Write search results here */ 5504 ){ 5505 int rc; 5506 5507 assert( cursorOwnsBtShared(pCur) ); 5508 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5509 assert( pRes ); 5510 assert( pCur->pKeyInfo==0 ); 5511 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5512 5513 /* If the cursor is already positioned at the point we are trying 5514 ** to move to, then just return without doing any work */ 5515 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5516 if( pCur->info.nKey==intKey ){ 5517 *pRes = 0; 5518 return SQLITE_OK; 5519 } 5520 if( pCur->info.nKey<intKey ){ 5521 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5522 *pRes = -1; 5523 return SQLITE_OK; 5524 } 5525 /* If the requested key is one more than the previous key, then 5526 ** try to get there using sqlite3BtreeNext() rather than a full 5527 ** binary search. This is an optimization only. The correct answer 5528 ** is still obtained without this case, only a little more slowely */ 5529 if( pCur->info.nKey+1==intKey ){ 5530 *pRes = 0; 5531 rc = sqlite3BtreeNext(pCur, 0); 5532 if( rc==SQLITE_OK ){ 5533 getCellInfo(pCur); 5534 if( pCur->info.nKey==intKey ){ 5535 return SQLITE_OK; 5536 } 5537 }else if( rc!=SQLITE_DONE ){ 5538 return rc; 5539 } 5540 } 5541 } 5542 } 5543 5544 #ifdef SQLITE_DEBUG 5545 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5546 #endif 5547 5548 rc = moveToRoot(pCur); 5549 if( rc ){ 5550 if( rc==SQLITE_EMPTY ){ 5551 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5552 *pRes = -1; 5553 return SQLITE_OK; 5554 } 5555 return rc; 5556 } 5557 assert( pCur->pPage ); 5558 assert( pCur->pPage->isInit ); 5559 assert( pCur->eState==CURSOR_VALID ); 5560 assert( pCur->pPage->nCell > 0 ); 5561 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5562 assert( pCur->curIntKey ); 5563 5564 for(;;){ 5565 int lwr, upr, idx, c; 5566 Pgno chldPg; 5567 MemPage *pPage = pCur->pPage; 5568 u8 *pCell; /* Pointer to current cell in pPage */ 5569 5570 /* pPage->nCell must be greater than zero. If this is the root-page 5571 ** the cursor would have been INVALID above and this for(;;) loop 5572 ** not run. If this is not the root-page, then the moveToChild() routine 5573 ** would have already detected db corruption. Similarly, pPage must 5574 ** be the right kind (index or table) of b-tree page. Otherwise 5575 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5576 assert( pPage->nCell>0 ); 5577 assert( pPage->intKey ); 5578 lwr = 0; 5579 upr = pPage->nCell-1; 5580 assert( biasRight==0 || biasRight==1 ); 5581 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5582 for(;;){ 5583 i64 nCellKey; 5584 pCell = findCellPastPtr(pPage, idx); 5585 if( pPage->intKeyLeaf ){ 5586 while( 0x80 <= *(pCell++) ){ 5587 if( pCell>=pPage->aDataEnd ){ 5588 return SQLITE_CORRUPT_PAGE(pPage); 5589 } 5590 } 5591 } 5592 getVarint(pCell, (u64*)&nCellKey); 5593 if( nCellKey<intKey ){ 5594 lwr = idx+1; 5595 if( lwr>upr ){ c = -1; break; } 5596 }else if( nCellKey>intKey ){ 5597 upr = idx-1; 5598 if( lwr>upr ){ c = +1; break; } 5599 }else{ 5600 assert( nCellKey==intKey ); 5601 pCur->ix = (u16)idx; 5602 if( !pPage->leaf ){ 5603 lwr = idx; 5604 goto moveto_table_next_layer; 5605 }else{ 5606 pCur->curFlags |= BTCF_ValidNKey; 5607 pCur->info.nKey = nCellKey; 5608 pCur->info.nSize = 0; 5609 *pRes = 0; 5610 return SQLITE_OK; 5611 } 5612 } 5613 assert( lwr+upr>=0 ); 5614 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5615 } 5616 assert( lwr==upr+1 || !pPage->leaf ); 5617 assert( pPage->isInit ); 5618 if( pPage->leaf ){ 5619 assert( pCur->ix<pCur->pPage->nCell ); 5620 pCur->ix = (u16)idx; 5621 *pRes = c; 5622 rc = SQLITE_OK; 5623 goto moveto_table_finish; 5624 } 5625 moveto_table_next_layer: 5626 if( lwr>=pPage->nCell ){ 5627 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5628 }else{ 5629 chldPg = get4byte(findCell(pPage, lwr)); 5630 } 5631 pCur->ix = (u16)lwr; 5632 rc = moveToChild(pCur, chldPg); 5633 if( rc ) break; 5634 } 5635 moveto_table_finish: 5636 pCur->info.nSize = 0; 5637 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5638 return rc; 5639 } 5640 5641 /* Move the cursor so that it points to an entry in an index table 5642 ** near the key pIdxKey. Return a success code. 5643 ** 5644 ** If an exact match is not found, then the cursor is always 5645 ** left pointing at a leaf page which would hold the entry if it 5646 ** were present. The cursor might point to an entry that comes 5647 ** before or after the key. 5648 ** 5649 ** An integer is written into *pRes which is the result of 5650 ** comparing the key with the entry to which the cursor is 5651 ** pointing. The meaning of the integer written into 5652 ** *pRes is as follows: 5653 ** 5654 ** *pRes<0 The cursor is left pointing at an entry that 5655 ** is smaller than pIdxKey or if the table is empty 5656 ** and the cursor is therefore left point to nothing. 5657 ** 5658 ** *pRes==0 The cursor is left pointing at an entry that 5659 ** exactly matches pIdxKey. 5660 ** 5661 ** *pRes>0 The cursor is left pointing at an entry that 5662 ** is larger than pIdxKey. 5663 ** 5664 ** The pIdxKey->eqSeen field is set to 1 if there 5665 ** exists an entry in the table that exactly matches pIdxKey. 5666 */ 5667 int sqlite3BtreeIndexMoveto( 5668 BtCursor *pCur, /* The cursor to be moved */ 5669 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5670 int *pRes /* Write search results here */ 5671 ){ 5672 int rc; 5673 RecordCompare xRecordCompare; 5674 5675 assert( cursorOwnsBtShared(pCur) ); 5676 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5677 assert( pRes ); 5678 assert( pCur->pKeyInfo!=0 ); 5679 5680 #ifdef SQLITE_DEBUG 5681 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5682 #endif 5683 5684 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5685 pIdxKey->errCode = 0; 5686 assert( pIdxKey->default_rc==1 5687 || pIdxKey->default_rc==0 5688 || pIdxKey->default_rc==-1 5689 ); 5690 5691 rc = moveToRoot(pCur); 5692 if( rc ){ 5693 if( rc==SQLITE_EMPTY ){ 5694 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5695 *pRes = -1; 5696 return SQLITE_OK; 5697 } 5698 return rc; 5699 } 5700 assert( pCur->pPage ); 5701 assert( pCur->pPage->isInit ); 5702 assert( pCur->eState==CURSOR_VALID ); 5703 assert( pCur->pPage->nCell > 0 ); 5704 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5705 assert( pCur->curIntKey || pIdxKey ); 5706 for(;;){ 5707 int lwr, upr, idx, c; 5708 Pgno chldPg; 5709 MemPage *pPage = pCur->pPage; 5710 u8 *pCell; /* Pointer to current cell in pPage */ 5711 5712 /* pPage->nCell must be greater than zero. If this is the root-page 5713 ** the cursor would have been INVALID above and this for(;;) loop 5714 ** not run. If this is not the root-page, then the moveToChild() routine 5715 ** would have already detected db corruption. Similarly, pPage must 5716 ** be the right kind (index or table) of b-tree page. Otherwise 5717 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5718 assert( pPage->nCell>0 ); 5719 assert( pPage->intKey==(pIdxKey==0) ); 5720 lwr = 0; 5721 upr = pPage->nCell-1; 5722 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5723 for(;;){ 5724 int nCell; /* Size of the pCell cell in bytes */ 5725 pCell = findCellPastPtr(pPage, idx); 5726 5727 /* The maximum supported page-size is 65536 bytes. This means that 5728 ** the maximum number of record bytes stored on an index B-Tree 5729 ** page is less than 16384 bytes and may be stored as a 2-byte 5730 ** varint. This information is used to attempt to avoid parsing 5731 ** the entire cell by checking for the cases where the record is 5732 ** stored entirely within the b-tree page by inspecting the first 5733 ** 2 bytes of the cell. 5734 */ 5735 nCell = pCell[0]; 5736 if( nCell<=pPage->max1bytePayload ){ 5737 /* This branch runs if the record-size field of the cell is a 5738 ** single byte varint and the record fits entirely on the main 5739 ** b-tree page. */ 5740 testcase( pCell+nCell+1==pPage->aDataEnd ); 5741 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5742 }else if( !(pCell[1] & 0x80) 5743 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5744 ){ 5745 /* The record-size field is a 2 byte varint and the record 5746 ** fits entirely on the main b-tree page. */ 5747 testcase( pCell+nCell+2==pPage->aDataEnd ); 5748 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5749 }else{ 5750 /* The record flows over onto one or more overflow pages. In 5751 ** this case the whole cell needs to be parsed, a buffer allocated 5752 ** and accessPayload() used to retrieve the record into the 5753 ** buffer before VdbeRecordCompare() can be called. 5754 ** 5755 ** If the record is corrupt, the xRecordCompare routine may read 5756 ** up to two varints past the end of the buffer. An extra 18 5757 ** bytes of padding is allocated at the end of the buffer in 5758 ** case this happens. */ 5759 void *pCellKey; 5760 u8 * const pCellBody = pCell - pPage->childPtrSize; 5761 const int nOverrun = 18; /* Size of the overrun padding */ 5762 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5763 nCell = (int)pCur->info.nKey; 5764 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5765 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5766 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5767 testcase( nCell==2 ); /* Minimum legal index key size */ 5768 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5769 rc = SQLITE_CORRUPT_PAGE(pPage); 5770 goto moveto_index_finish; 5771 } 5772 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5773 if( pCellKey==0 ){ 5774 rc = SQLITE_NOMEM_BKPT; 5775 goto moveto_index_finish; 5776 } 5777 pCur->ix = (u16)idx; 5778 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5779 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5780 pCur->curFlags &= ~BTCF_ValidOvfl; 5781 if( rc ){ 5782 sqlite3_free(pCellKey); 5783 goto moveto_index_finish; 5784 } 5785 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5786 sqlite3_free(pCellKey); 5787 } 5788 assert( 5789 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5790 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5791 ); 5792 if( c<0 ){ 5793 lwr = idx+1; 5794 }else if( c>0 ){ 5795 upr = idx-1; 5796 }else{ 5797 assert( c==0 ); 5798 *pRes = 0; 5799 rc = SQLITE_OK; 5800 pCur->ix = (u16)idx; 5801 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5802 goto moveto_index_finish; 5803 } 5804 if( lwr>upr ) break; 5805 assert( lwr+upr>=0 ); 5806 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5807 } 5808 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5809 assert( pPage->isInit ); 5810 if( pPage->leaf ){ 5811 assert( pCur->ix<pCur->pPage->nCell ); 5812 pCur->ix = (u16)idx; 5813 *pRes = c; 5814 rc = SQLITE_OK; 5815 goto moveto_index_finish; 5816 } 5817 if( lwr>=pPage->nCell ){ 5818 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5819 }else{ 5820 chldPg = get4byte(findCell(pPage, lwr)); 5821 } 5822 pCur->ix = (u16)lwr; 5823 rc = moveToChild(pCur, chldPg); 5824 if( rc ) break; 5825 } 5826 moveto_index_finish: 5827 pCur->info.nSize = 0; 5828 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5829 return rc; 5830 } 5831 5832 5833 /* 5834 ** Return TRUE if the cursor is not pointing at an entry of the table. 5835 ** 5836 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 5837 ** past the last entry in the table or sqlite3BtreePrev() moves past 5838 ** the first entry. TRUE is also returned if the table is empty. 5839 */ 5840 int sqlite3BtreeEof(BtCursor *pCur){ 5841 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 5842 ** have been deleted? This API will need to change to return an error code 5843 ** as well as the boolean result value. 5844 */ 5845 return (CURSOR_VALID!=pCur->eState); 5846 } 5847 5848 /* 5849 ** Return an estimate for the number of rows in the table that pCur is 5850 ** pointing to. Return a negative number if no estimate is currently 5851 ** available. 5852 */ 5853 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 5854 i64 n; 5855 u8 i; 5856 5857 assert( cursorOwnsBtShared(pCur) ); 5858 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5859 5860 /* Currently this interface is only called by the OP_IfSmaller 5861 ** opcode, and it that case the cursor will always be valid and 5862 ** will always point to a leaf node. */ 5863 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 5864 if( NEVER(pCur->pPage->leaf==0) ) return -1; 5865 5866 n = pCur->pPage->nCell; 5867 for(i=0; i<pCur->iPage; i++){ 5868 n *= pCur->apPage[i]->nCell; 5869 } 5870 return n; 5871 } 5872 5873 /* 5874 ** Advance the cursor to the next entry in the database. 5875 ** Return value: 5876 ** 5877 ** SQLITE_OK success 5878 ** SQLITE_DONE cursor is already pointing at the last element 5879 ** otherwise some kind of error occurred 5880 ** 5881 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 5882 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 5883 ** to the next cell on the current page. The (slower) btreeNext() helper 5884 ** routine is called when it is necessary to move to a different page or 5885 ** to restore the cursor. 5886 ** 5887 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 5888 ** cursor corresponds to an SQL index and this routine could have been 5889 ** skipped if the SQL index had been a unique index. The F argument 5890 ** is a hint to the implement. SQLite btree implementation does not use 5891 ** this hint, but COMDB2 does. 5892 */ 5893 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 5894 int rc; 5895 int idx; 5896 MemPage *pPage; 5897 5898 assert( cursorOwnsBtShared(pCur) ); 5899 if( pCur->eState!=CURSOR_VALID ){ 5900 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5901 rc = restoreCursorPosition(pCur); 5902 if( rc!=SQLITE_OK ){ 5903 return rc; 5904 } 5905 if( CURSOR_INVALID==pCur->eState ){ 5906 return SQLITE_DONE; 5907 } 5908 if( pCur->eState==CURSOR_SKIPNEXT ){ 5909 pCur->eState = CURSOR_VALID; 5910 if( pCur->skipNext>0 ) return SQLITE_OK; 5911 } 5912 } 5913 5914 pPage = pCur->pPage; 5915 idx = ++pCur->ix; 5916 if( !pPage->isInit || sqlite3FaultSim(412) ){ 5917 /* The only known way for this to happen is for there to be a 5918 ** recursive SQL function that does a DELETE operation as part of a 5919 ** SELECT which deletes content out from under an active cursor 5920 ** in a corrupt database file where the table being DELETE-ed from 5921 ** has pages in common with the table being queried. See TH3 5922 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 5923 ** example. */ 5924 return SQLITE_CORRUPT_BKPT; 5925 } 5926 5927 if( idx>=pPage->nCell ){ 5928 if( !pPage->leaf ){ 5929 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 5930 if( rc ) return rc; 5931 return moveToLeftmost(pCur); 5932 } 5933 do{ 5934 if( pCur->iPage==0 ){ 5935 pCur->eState = CURSOR_INVALID; 5936 return SQLITE_DONE; 5937 } 5938 moveToParent(pCur); 5939 pPage = pCur->pPage; 5940 }while( pCur->ix>=pPage->nCell ); 5941 if( pPage->intKey ){ 5942 return sqlite3BtreeNext(pCur, 0); 5943 }else{ 5944 return SQLITE_OK; 5945 } 5946 } 5947 if( pPage->leaf ){ 5948 return SQLITE_OK; 5949 }else{ 5950 return moveToLeftmost(pCur); 5951 } 5952 } 5953 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 5954 MemPage *pPage; 5955 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 5956 assert( cursorOwnsBtShared(pCur) ); 5957 assert( flags==0 || flags==1 ); 5958 pCur->info.nSize = 0; 5959 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5960 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 5961 pPage = pCur->pPage; 5962 if( (++pCur->ix)>=pPage->nCell ){ 5963 pCur->ix--; 5964 return btreeNext(pCur); 5965 } 5966 if( pPage->leaf ){ 5967 return SQLITE_OK; 5968 }else{ 5969 return moveToLeftmost(pCur); 5970 } 5971 } 5972 5973 /* 5974 ** Step the cursor to the back to the previous entry in the database. 5975 ** Return values: 5976 ** 5977 ** SQLITE_OK success 5978 ** SQLITE_DONE the cursor is already on the first element of the table 5979 ** otherwise some kind of error occurred 5980 ** 5981 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 5982 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 5983 ** to the previous cell on the current page. The (slower) btreePrevious() 5984 ** helper routine is called when it is necessary to move to a different page 5985 ** or to restore the cursor. 5986 ** 5987 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 5988 ** the cursor corresponds to an SQL index and this routine could have been 5989 ** skipped if the SQL index had been a unique index. The F argument is a 5990 ** hint to the implement. The native SQLite btree implementation does not 5991 ** use this hint, but COMDB2 does. 5992 */ 5993 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 5994 int rc; 5995 MemPage *pPage; 5996 5997 assert( cursorOwnsBtShared(pCur) ); 5998 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 5999 assert( pCur->info.nSize==0 ); 6000 if( pCur->eState!=CURSOR_VALID ){ 6001 rc = restoreCursorPosition(pCur); 6002 if( rc!=SQLITE_OK ){ 6003 return rc; 6004 } 6005 if( CURSOR_INVALID==pCur->eState ){ 6006 return SQLITE_DONE; 6007 } 6008 if( CURSOR_SKIPNEXT==pCur->eState ){ 6009 pCur->eState = CURSOR_VALID; 6010 if( pCur->skipNext<0 ) return SQLITE_OK; 6011 } 6012 } 6013 6014 pPage = pCur->pPage; 6015 assert( pPage->isInit ); 6016 if( !pPage->leaf ){ 6017 int idx = pCur->ix; 6018 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6019 if( rc ) return rc; 6020 rc = moveToRightmost(pCur); 6021 }else{ 6022 while( pCur->ix==0 ){ 6023 if( pCur->iPage==0 ){ 6024 pCur->eState = CURSOR_INVALID; 6025 return SQLITE_DONE; 6026 } 6027 moveToParent(pCur); 6028 } 6029 assert( pCur->info.nSize==0 ); 6030 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6031 6032 pCur->ix--; 6033 pPage = pCur->pPage; 6034 if( pPage->intKey && !pPage->leaf ){ 6035 rc = sqlite3BtreePrevious(pCur, 0); 6036 }else{ 6037 rc = SQLITE_OK; 6038 } 6039 } 6040 return rc; 6041 } 6042 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6043 assert( cursorOwnsBtShared(pCur) ); 6044 assert( flags==0 || flags==1 ); 6045 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6046 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6047 pCur->info.nSize = 0; 6048 if( pCur->eState!=CURSOR_VALID 6049 || pCur->ix==0 6050 || pCur->pPage->leaf==0 6051 ){ 6052 return btreePrevious(pCur); 6053 } 6054 pCur->ix--; 6055 return SQLITE_OK; 6056 } 6057 6058 /* 6059 ** Allocate a new page from the database file. 6060 ** 6061 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6062 ** has already been called on the new page.) The new page has also 6063 ** been referenced and the calling routine is responsible for calling 6064 ** sqlite3PagerUnref() on the new page when it is done. 6065 ** 6066 ** SQLITE_OK is returned on success. Any other return value indicates 6067 ** an error. *ppPage is set to NULL in the event of an error. 6068 ** 6069 ** If the "nearby" parameter is not 0, then an effort is made to 6070 ** locate a page close to the page number "nearby". This can be used in an 6071 ** attempt to keep related pages close to each other in the database file, 6072 ** which in turn can make database access faster. 6073 ** 6074 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6075 ** anywhere on the free-list, then it is guaranteed to be returned. If 6076 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6077 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6078 ** are no restrictions on which page is returned. 6079 */ 6080 static int allocateBtreePage( 6081 BtShared *pBt, /* The btree */ 6082 MemPage **ppPage, /* Store pointer to the allocated page here */ 6083 Pgno *pPgno, /* Store the page number here */ 6084 Pgno nearby, /* Search for a page near this one */ 6085 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6086 ){ 6087 MemPage *pPage1; 6088 int rc; 6089 u32 n; /* Number of pages on the freelist */ 6090 u32 k; /* Number of leaves on the trunk of the freelist */ 6091 MemPage *pTrunk = 0; 6092 MemPage *pPrevTrunk = 0; 6093 Pgno mxPage; /* Total size of the database file */ 6094 6095 assert( sqlite3_mutex_held(pBt->mutex) ); 6096 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6097 pPage1 = pBt->pPage1; 6098 mxPage = btreePagecount(pBt); 6099 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6100 ** stores stores the total number of pages on the freelist. */ 6101 n = get4byte(&pPage1->aData[36]); 6102 testcase( n==mxPage-1 ); 6103 if( n>=mxPage ){ 6104 return SQLITE_CORRUPT_BKPT; 6105 } 6106 if( n>0 ){ 6107 /* There are pages on the freelist. Reuse one of those pages. */ 6108 Pgno iTrunk; 6109 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6110 u32 nSearch = 0; /* Count of the number of search attempts */ 6111 6112 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6113 ** shows that the page 'nearby' is somewhere on the free-list, then 6114 ** the entire-list will be searched for that page. 6115 */ 6116 #ifndef SQLITE_OMIT_AUTOVACUUM 6117 if( eMode==BTALLOC_EXACT ){ 6118 if( nearby<=mxPage ){ 6119 u8 eType; 6120 assert( nearby>0 ); 6121 assert( pBt->autoVacuum ); 6122 rc = ptrmapGet(pBt, nearby, &eType, 0); 6123 if( rc ) return rc; 6124 if( eType==PTRMAP_FREEPAGE ){ 6125 searchList = 1; 6126 } 6127 } 6128 }else if( eMode==BTALLOC_LE ){ 6129 searchList = 1; 6130 } 6131 #endif 6132 6133 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6134 ** first free-list trunk page. iPrevTrunk is initially 1. 6135 */ 6136 rc = sqlite3PagerWrite(pPage1->pDbPage); 6137 if( rc ) return rc; 6138 put4byte(&pPage1->aData[36], n-1); 6139 6140 /* The code within this loop is run only once if the 'searchList' variable 6141 ** is not true. Otherwise, it runs once for each trunk-page on the 6142 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6143 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6144 */ 6145 do { 6146 pPrevTrunk = pTrunk; 6147 if( pPrevTrunk ){ 6148 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6149 ** is the page number of the next freelist trunk page in the list or 6150 ** zero if this is the last freelist trunk page. */ 6151 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6152 }else{ 6153 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6154 ** stores the page number of the first page of the freelist, or zero if 6155 ** the freelist is empty. */ 6156 iTrunk = get4byte(&pPage1->aData[32]); 6157 } 6158 testcase( iTrunk==mxPage ); 6159 if( iTrunk>mxPage || nSearch++ > n ){ 6160 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6161 }else{ 6162 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6163 } 6164 if( rc ){ 6165 pTrunk = 0; 6166 goto end_allocate_page; 6167 } 6168 assert( pTrunk!=0 ); 6169 assert( pTrunk->aData!=0 ); 6170 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6171 ** is the number of leaf page pointers to follow. */ 6172 k = get4byte(&pTrunk->aData[4]); 6173 if( k==0 && !searchList ){ 6174 /* The trunk has no leaves and the list is not being searched. 6175 ** So extract the trunk page itself and use it as the newly 6176 ** allocated page */ 6177 assert( pPrevTrunk==0 ); 6178 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6179 if( rc ){ 6180 goto end_allocate_page; 6181 } 6182 *pPgno = iTrunk; 6183 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6184 *ppPage = pTrunk; 6185 pTrunk = 0; 6186 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6187 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6188 /* Value of k is out of range. Database corruption */ 6189 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6190 goto end_allocate_page; 6191 #ifndef SQLITE_OMIT_AUTOVACUUM 6192 }else if( searchList 6193 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6194 ){ 6195 /* The list is being searched and this trunk page is the page 6196 ** to allocate, regardless of whether it has leaves. 6197 */ 6198 *pPgno = iTrunk; 6199 *ppPage = pTrunk; 6200 searchList = 0; 6201 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6202 if( rc ){ 6203 goto end_allocate_page; 6204 } 6205 if( k==0 ){ 6206 if( !pPrevTrunk ){ 6207 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6208 }else{ 6209 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6210 if( rc!=SQLITE_OK ){ 6211 goto end_allocate_page; 6212 } 6213 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6214 } 6215 }else{ 6216 /* The trunk page is required by the caller but it contains 6217 ** pointers to free-list leaves. The first leaf becomes a trunk 6218 ** page in this case. 6219 */ 6220 MemPage *pNewTrunk; 6221 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6222 if( iNewTrunk>mxPage ){ 6223 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6224 goto end_allocate_page; 6225 } 6226 testcase( iNewTrunk==mxPage ); 6227 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6228 if( rc!=SQLITE_OK ){ 6229 goto end_allocate_page; 6230 } 6231 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6232 if( rc!=SQLITE_OK ){ 6233 releasePage(pNewTrunk); 6234 goto end_allocate_page; 6235 } 6236 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6237 put4byte(&pNewTrunk->aData[4], k-1); 6238 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6239 releasePage(pNewTrunk); 6240 if( !pPrevTrunk ){ 6241 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6242 put4byte(&pPage1->aData[32], iNewTrunk); 6243 }else{ 6244 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6245 if( rc ){ 6246 goto end_allocate_page; 6247 } 6248 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6249 } 6250 } 6251 pTrunk = 0; 6252 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6253 #endif 6254 }else if( k>0 ){ 6255 /* Extract a leaf from the trunk */ 6256 u32 closest; 6257 Pgno iPage; 6258 unsigned char *aData = pTrunk->aData; 6259 if( nearby>0 ){ 6260 u32 i; 6261 closest = 0; 6262 if( eMode==BTALLOC_LE ){ 6263 for(i=0; i<k; i++){ 6264 iPage = get4byte(&aData[8+i*4]); 6265 if( iPage<=nearby ){ 6266 closest = i; 6267 break; 6268 } 6269 } 6270 }else{ 6271 int dist; 6272 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6273 for(i=1; i<k; i++){ 6274 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6275 if( d2<dist ){ 6276 closest = i; 6277 dist = d2; 6278 } 6279 } 6280 } 6281 }else{ 6282 closest = 0; 6283 } 6284 6285 iPage = get4byte(&aData[8+closest*4]); 6286 testcase( iPage==mxPage ); 6287 if( iPage>mxPage || iPage<2 ){ 6288 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6289 goto end_allocate_page; 6290 } 6291 testcase( iPage==mxPage ); 6292 if( !searchList 6293 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6294 ){ 6295 int noContent; 6296 *pPgno = iPage; 6297 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6298 ": %d more free pages\n", 6299 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6300 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6301 if( rc ) goto end_allocate_page; 6302 if( closest<k-1 ){ 6303 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6304 } 6305 put4byte(&aData[4], k-1); 6306 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6307 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6308 if( rc==SQLITE_OK ){ 6309 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6310 if( rc!=SQLITE_OK ){ 6311 releasePage(*ppPage); 6312 *ppPage = 0; 6313 } 6314 } 6315 searchList = 0; 6316 } 6317 } 6318 releasePage(pPrevTrunk); 6319 pPrevTrunk = 0; 6320 }while( searchList ); 6321 }else{ 6322 /* There are no pages on the freelist, so append a new page to the 6323 ** database image. 6324 ** 6325 ** Normally, new pages allocated by this block can be requested from the 6326 ** pager layer with the 'no-content' flag set. This prevents the pager 6327 ** from trying to read the pages content from disk. However, if the 6328 ** current transaction has already run one or more incremental-vacuum 6329 ** steps, then the page we are about to allocate may contain content 6330 ** that is required in the event of a rollback. In this case, do 6331 ** not set the no-content flag. This causes the pager to load and journal 6332 ** the current page content before overwriting it. 6333 ** 6334 ** Note that the pager will not actually attempt to load or journal 6335 ** content for any page that really does lie past the end of the database 6336 ** file on disk. So the effects of disabling the no-content optimization 6337 ** here are confined to those pages that lie between the end of the 6338 ** database image and the end of the database file. 6339 */ 6340 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6341 6342 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6343 if( rc ) return rc; 6344 pBt->nPage++; 6345 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6346 6347 #ifndef SQLITE_OMIT_AUTOVACUUM 6348 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6349 /* If *pPgno refers to a pointer-map page, allocate two new pages 6350 ** at the end of the file instead of one. The first allocated page 6351 ** becomes a new pointer-map page, the second is used by the caller. 6352 */ 6353 MemPage *pPg = 0; 6354 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6355 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6356 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6357 if( rc==SQLITE_OK ){ 6358 rc = sqlite3PagerWrite(pPg->pDbPage); 6359 releasePage(pPg); 6360 } 6361 if( rc ) return rc; 6362 pBt->nPage++; 6363 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6364 } 6365 #endif 6366 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6367 *pPgno = pBt->nPage; 6368 6369 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6370 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6371 if( rc ) return rc; 6372 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6373 if( rc!=SQLITE_OK ){ 6374 releasePage(*ppPage); 6375 *ppPage = 0; 6376 } 6377 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6378 } 6379 6380 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6381 6382 end_allocate_page: 6383 releasePage(pTrunk); 6384 releasePage(pPrevTrunk); 6385 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6386 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6387 return rc; 6388 } 6389 6390 /* 6391 ** This function is used to add page iPage to the database file free-list. 6392 ** It is assumed that the page is not already a part of the free-list. 6393 ** 6394 ** The value passed as the second argument to this function is optional. 6395 ** If the caller happens to have a pointer to the MemPage object 6396 ** corresponding to page iPage handy, it may pass it as the second value. 6397 ** Otherwise, it may pass NULL. 6398 ** 6399 ** If a pointer to a MemPage object is passed as the second argument, 6400 ** its reference count is not altered by this function. 6401 */ 6402 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6403 MemPage *pTrunk = 0; /* Free-list trunk page */ 6404 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6405 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6406 MemPage *pPage; /* Page being freed. May be NULL. */ 6407 int rc; /* Return Code */ 6408 u32 nFree; /* Initial number of pages on free-list */ 6409 6410 assert( sqlite3_mutex_held(pBt->mutex) ); 6411 assert( CORRUPT_DB || iPage>1 ); 6412 assert( !pMemPage || pMemPage->pgno==iPage ); 6413 6414 if( NEVER(iPage<2) || iPage>pBt->nPage ){ 6415 return SQLITE_CORRUPT_BKPT; 6416 } 6417 if( pMemPage ){ 6418 pPage = pMemPage; 6419 sqlite3PagerRef(pPage->pDbPage); 6420 }else{ 6421 pPage = btreePageLookup(pBt, iPage); 6422 } 6423 6424 /* Increment the free page count on pPage1 */ 6425 rc = sqlite3PagerWrite(pPage1->pDbPage); 6426 if( rc ) goto freepage_out; 6427 nFree = get4byte(&pPage1->aData[36]); 6428 put4byte(&pPage1->aData[36], nFree+1); 6429 6430 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6431 /* If the secure_delete option is enabled, then 6432 ** always fully overwrite deleted information with zeros. 6433 */ 6434 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6435 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6436 ){ 6437 goto freepage_out; 6438 } 6439 memset(pPage->aData, 0, pPage->pBt->pageSize); 6440 } 6441 6442 /* If the database supports auto-vacuum, write an entry in the pointer-map 6443 ** to indicate that the page is free. 6444 */ 6445 if( ISAUTOVACUUM ){ 6446 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6447 if( rc ) goto freepage_out; 6448 } 6449 6450 /* Now manipulate the actual database free-list structure. There are two 6451 ** possibilities. If the free-list is currently empty, or if the first 6452 ** trunk page in the free-list is full, then this page will become a 6453 ** new free-list trunk page. Otherwise, it will become a leaf of the 6454 ** first trunk page in the current free-list. This block tests if it 6455 ** is possible to add the page as a new free-list leaf. 6456 */ 6457 if( nFree!=0 ){ 6458 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6459 6460 iTrunk = get4byte(&pPage1->aData[32]); 6461 if( iTrunk>btreePagecount(pBt) ){ 6462 rc = SQLITE_CORRUPT_BKPT; 6463 goto freepage_out; 6464 } 6465 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6466 if( rc!=SQLITE_OK ){ 6467 goto freepage_out; 6468 } 6469 6470 nLeaf = get4byte(&pTrunk->aData[4]); 6471 assert( pBt->usableSize>32 ); 6472 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6473 rc = SQLITE_CORRUPT_BKPT; 6474 goto freepage_out; 6475 } 6476 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6477 /* In this case there is room on the trunk page to insert the page 6478 ** being freed as a new leaf. 6479 ** 6480 ** Note that the trunk page is not really full until it contains 6481 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6482 ** coded. But due to a coding error in versions of SQLite prior to 6483 ** 3.6.0, databases with freelist trunk pages holding more than 6484 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6485 ** to maintain backwards compatibility with older versions of SQLite, 6486 ** we will continue to restrict the number of entries to usableSize/4 - 8 6487 ** for now. At some point in the future (once everyone has upgraded 6488 ** to 3.6.0 or later) we should consider fixing the conditional above 6489 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6490 ** 6491 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6492 ** avoid using the last six entries in the freelist trunk page array in 6493 ** order that database files created by newer versions of SQLite can be 6494 ** read by older versions of SQLite. 6495 */ 6496 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6497 if( rc==SQLITE_OK ){ 6498 put4byte(&pTrunk->aData[4], nLeaf+1); 6499 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6500 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6501 sqlite3PagerDontWrite(pPage->pDbPage); 6502 } 6503 rc = btreeSetHasContent(pBt, iPage); 6504 } 6505 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6506 goto freepage_out; 6507 } 6508 } 6509 6510 /* If control flows to this point, then it was not possible to add the 6511 ** the page being freed as a leaf page of the first trunk in the free-list. 6512 ** Possibly because the free-list is empty, or possibly because the 6513 ** first trunk in the free-list is full. Either way, the page being freed 6514 ** will become the new first trunk page in the free-list. 6515 */ 6516 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6517 goto freepage_out; 6518 } 6519 rc = sqlite3PagerWrite(pPage->pDbPage); 6520 if( rc!=SQLITE_OK ){ 6521 goto freepage_out; 6522 } 6523 put4byte(pPage->aData, iTrunk); 6524 put4byte(&pPage->aData[4], 0); 6525 put4byte(&pPage1->aData[32], iPage); 6526 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6527 6528 freepage_out: 6529 if( pPage ){ 6530 pPage->isInit = 0; 6531 } 6532 releasePage(pPage); 6533 releasePage(pTrunk); 6534 return rc; 6535 } 6536 static void freePage(MemPage *pPage, int *pRC){ 6537 if( (*pRC)==SQLITE_OK ){ 6538 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6539 } 6540 } 6541 6542 /* 6543 ** Free the overflow pages associated with the given Cell. 6544 */ 6545 static SQLITE_NOINLINE int clearCellOverflow( 6546 MemPage *pPage, /* The page that contains the Cell */ 6547 unsigned char *pCell, /* First byte of the Cell */ 6548 CellInfo *pInfo /* Size information about the cell */ 6549 ){ 6550 BtShared *pBt; 6551 Pgno ovflPgno; 6552 int rc; 6553 int nOvfl; 6554 u32 ovflPageSize; 6555 6556 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6557 assert( pInfo->nLocal!=pInfo->nPayload ); 6558 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6559 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6560 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6561 /* Cell extends past end of page */ 6562 return SQLITE_CORRUPT_PAGE(pPage); 6563 } 6564 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6565 pBt = pPage->pBt; 6566 assert( pBt->usableSize > 4 ); 6567 ovflPageSize = pBt->usableSize - 4; 6568 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6569 assert( nOvfl>0 || 6570 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6571 ); 6572 while( nOvfl-- ){ 6573 Pgno iNext = 0; 6574 MemPage *pOvfl = 0; 6575 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6576 /* 0 is not a legal page number and page 1 cannot be an 6577 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6578 ** file the database must be corrupt. */ 6579 return SQLITE_CORRUPT_BKPT; 6580 } 6581 if( nOvfl ){ 6582 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6583 if( rc ) return rc; 6584 } 6585 6586 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6587 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6588 ){ 6589 /* There is no reason any cursor should have an outstanding reference 6590 ** to an overflow page belonging to a cell that is being deleted/updated. 6591 ** So if there exists more than one reference to this page, then it 6592 ** must not really be an overflow page and the database must be corrupt. 6593 ** It is helpful to detect this before calling freePage2(), as 6594 ** freePage2() may zero the page contents if secure-delete mode is 6595 ** enabled. If this 'overflow' page happens to be a page that the 6596 ** caller is iterating through or using in some other way, this 6597 ** can be problematic. 6598 */ 6599 rc = SQLITE_CORRUPT_BKPT; 6600 }else{ 6601 rc = freePage2(pBt, pOvfl, ovflPgno); 6602 } 6603 6604 if( pOvfl ){ 6605 sqlite3PagerUnref(pOvfl->pDbPage); 6606 } 6607 if( rc ) return rc; 6608 ovflPgno = iNext; 6609 } 6610 return SQLITE_OK; 6611 } 6612 6613 /* Call xParseCell to compute the size of a cell. If the cell contains 6614 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6615 ** STore the result code (SQLITE_OK or some error code) in rc. 6616 ** 6617 ** Implemented as macro to force inlining for performance. 6618 */ 6619 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6620 pPage->xParseCell(pPage, pCell, &sInfo); \ 6621 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6622 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6623 }else{ \ 6624 rc = SQLITE_OK; \ 6625 } 6626 6627 6628 /* 6629 ** Create the byte sequence used to represent a cell on page pPage 6630 ** and write that byte sequence into pCell[]. Overflow pages are 6631 ** allocated and filled in as necessary. The calling procedure 6632 ** is responsible for making sure sufficient space has been allocated 6633 ** for pCell[]. 6634 ** 6635 ** Note that pCell does not necessary need to point to the pPage->aData 6636 ** area. pCell might point to some temporary storage. The cell will 6637 ** be constructed in this temporary area then copied into pPage->aData 6638 ** later. 6639 */ 6640 static int fillInCell( 6641 MemPage *pPage, /* The page that contains the cell */ 6642 unsigned char *pCell, /* Complete text of the cell */ 6643 const BtreePayload *pX, /* Payload with which to construct the cell */ 6644 int *pnSize /* Write cell size here */ 6645 ){ 6646 int nPayload; 6647 const u8 *pSrc; 6648 int nSrc, n, rc, mn; 6649 int spaceLeft; 6650 MemPage *pToRelease; 6651 unsigned char *pPrior; 6652 unsigned char *pPayload; 6653 BtShared *pBt; 6654 Pgno pgnoOvfl; 6655 int nHeader; 6656 6657 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6658 6659 /* pPage is not necessarily writeable since pCell might be auxiliary 6660 ** buffer space that is separate from the pPage buffer area */ 6661 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6662 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6663 6664 /* Fill in the header. */ 6665 nHeader = pPage->childPtrSize; 6666 if( pPage->intKey ){ 6667 nPayload = pX->nData + pX->nZero; 6668 pSrc = pX->pData; 6669 nSrc = pX->nData; 6670 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6671 nHeader += putVarint32(&pCell[nHeader], nPayload); 6672 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6673 }else{ 6674 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6675 nSrc = nPayload = (int)pX->nKey; 6676 pSrc = pX->pKey; 6677 nHeader += putVarint32(&pCell[nHeader], nPayload); 6678 } 6679 6680 /* Fill in the payload */ 6681 pPayload = &pCell[nHeader]; 6682 if( nPayload<=pPage->maxLocal ){ 6683 /* This is the common case where everything fits on the btree page 6684 ** and no overflow pages are required. */ 6685 n = nHeader + nPayload; 6686 testcase( n==3 ); 6687 testcase( n==4 ); 6688 if( n<4 ) n = 4; 6689 *pnSize = n; 6690 assert( nSrc<=nPayload ); 6691 testcase( nSrc<nPayload ); 6692 memcpy(pPayload, pSrc, nSrc); 6693 memset(pPayload+nSrc, 0, nPayload-nSrc); 6694 return SQLITE_OK; 6695 } 6696 6697 /* If we reach this point, it means that some of the content will need 6698 ** to spill onto overflow pages. 6699 */ 6700 mn = pPage->minLocal; 6701 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6702 testcase( n==pPage->maxLocal ); 6703 testcase( n==pPage->maxLocal+1 ); 6704 if( n > pPage->maxLocal ) n = mn; 6705 spaceLeft = n; 6706 *pnSize = n + nHeader + 4; 6707 pPrior = &pCell[nHeader+n]; 6708 pToRelease = 0; 6709 pgnoOvfl = 0; 6710 pBt = pPage->pBt; 6711 6712 /* At this point variables should be set as follows: 6713 ** 6714 ** nPayload Total payload size in bytes 6715 ** pPayload Begin writing payload here 6716 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6717 ** that means content must spill into overflow pages. 6718 ** *pnSize Size of the local cell (not counting overflow pages) 6719 ** pPrior Where to write the pgno of the first overflow page 6720 ** 6721 ** Use a call to btreeParseCellPtr() to verify that the values above 6722 ** were computed correctly. 6723 */ 6724 #ifdef SQLITE_DEBUG 6725 { 6726 CellInfo info; 6727 pPage->xParseCell(pPage, pCell, &info); 6728 assert( nHeader==(int)(info.pPayload - pCell) ); 6729 assert( info.nKey==pX->nKey ); 6730 assert( *pnSize == info.nSize ); 6731 assert( spaceLeft == info.nLocal ); 6732 } 6733 #endif 6734 6735 /* Write the payload into the local Cell and any extra into overflow pages */ 6736 while( 1 ){ 6737 n = nPayload; 6738 if( n>spaceLeft ) n = spaceLeft; 6739 6740 /* If pToRelease is not zero than pPayload points into the data area 6741 ** of pToRelease. Make sure pToRelease is still writeable. */ 6742 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6743 6744 /* If pPayload is part of the data area of pPage, then make sure pPage 6745 ** is still writeable */ 6746 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6747 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6748 6749 if( nSrc>=n ){ 6750 memcpy(pPayload, pSrc, n); 6751 }else if( nSrc>0 ){ 6752 n = nSrc; 6753 memcpy(pPayload, pSrc, n); 6754 }else{ 6755 memset(pPayload, 0, n); 6756 } 6757 nPayload -= n; 6758 if( nPayload<=0 ) break; 6759 pPayload += n; 6760 pSrc += n; 6761 nSrc -= n; 6762 spaceLeft -= n; 6763 if( spaceLeft==0 ){ 6764 MemPage *pOvfl = 0; 6765 #ifndef SQLITE_OMIT_AUTOVACUUM 6766 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6767 if( pBt->autoVacuum ){ 6768 do{ 6769 pgnoOvfl++; 6770 } while( 6771 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6772 ); 6773 } 6774 #endif 6775 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6776 #ifndef SQLITE_OMIT_AUTOVACUUM 6777 /* If the database supports auto-vacuum, and the second or subsequent 6778 ** overflow page is being allocated, add an entry to the pointer-map 6779 ** for that page now. 6780 ** 6781 ** If this is the first overflow page, then write a partial entry 6782 ** to the pointer-map. If we write nothing to this pointer-map slot, 6783 ** then the optimistic overflow chain processing in clearCell() 6784 ** may misinterpret the uninitialized values and delete the 6785 ** wrong pages from the database. 6786 */ 6787 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6788 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6789 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6790 if( rc ){ 6791 releasePage(pOvfl); 6792 } 6793 } 6794 #endif 6795 if( rc ){ 6796 releasePage(pToRelease); 6797 return rc; 6798 } 6799 6800 /* If pToRelease is not zero than pPrior points into the data area 6801 ** of pToRelease. Make sure pToRelease is still writeable. */ 6802 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6803 6804 /* If pPrior is part of the data area of pPage, then make sure pPage 6805 ** is still writeable */ 6806 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6807 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6808 6809 put4byte(pPrior, pgnoOvfl); 6810 releasePage(pToRelease); 6811 pToRelease = pOvfl; 6812 pPrior = pOvfl->aData; 6813 put4byte(pPrior, 0); 6814 pPayload = &pOvfl->aData[4]; 6815 spaceLeft = pBt->usableSize - 4; 6816 } 6817 } 6818 releasePage(pToRelease); 6819 return SQLITE_OK; 6820 } 6821 6822 /* 6823 ** Remove the i-th cell from pPage. This routine effects pPage only. 6824 ** The cell content is not freed or deallocated. It is assumed that 6825 ** the cell content has been copied someplace else. This routine just 6826 ** removes the reference to the cell from pPage. 6827 ** 6828 ** "sz" must be the number of bytes in the cell. 6829 */ 6830 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6831 u32 pc; /* Offset to cell content of cell being deleted */ 6832 u8 *data; /* pPage->aData */ 6833 u8 *ptr; /* Used to move bytes around within data[] */ 6834 int rc; /* The return code */ 6835 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6836 6837 if( *pRC ) return; 6838 assert( idx>=0 ); 6839 assert( idx<pPage->nCell ); 6840 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6841 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6842 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6843 assert( pPage->nFree>=0 ); 6844 data = pPage->aData; 6845 ptr = &pPage->aCellIdx[2*idx]; 6846 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 6847 pc = get2byte(ptr); 6848 hdr = pPage->hdrOffset; 6849 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 6850 testcase( pc+sz==pPage->pBt->usableSize ); 6851 if( pc+sz > pPage->pBt->usableSize ){ 6852 *pRC = SQLITE_CORRUPT_BKPT; 6853 return; 6854 } 6855 rc = freeSpace(pPage, pc, sz); 6856 if( rc ){ 6857 *pRC = rc; 6858 return; 6859 } 6860 pPage->nCell--; 6861 if( pPage->nCell==0 ){ 6862 memset(&data[hdr+1], 0, 4); 6863 data[hdr+7] = 0; 6864 put2byte(&data[hdr+5], pPage->pBt->usableSize); 6865 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 6866 - pPage->childPtrSize - 8; 6867 }else{ 6868 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 6869 put2byte(&data[hdr+3], pPage->nCell); 6870 pPage->nFree += 2; 6871 } 6872 } 6873 6874 /* 6875 ** Insert a new cell on pPage at cell index "i". pCell points to the 6876 ** content of the cell. 6877 ** 6878 ** If the cell content will fit on the page, then put it there. If it 6879 ** will not fit, then make a copy of the cell content into pTemp if 6880 ** pTemp is not null. Regardless of pTemp, allocate a new entry 6881 ** in pPage->apOvfl[] and make it point to the cell content (either 6882 ** in pTemp or the original pCell) and also record its index. 6883 ** Allocating a new entry in pPage->aCell[] implies that 6884 ** pPage->nOverflow is incremented. 6885 ** 6886 ** *pRC must be SQLITE_OK when this routine is called. 6887 */ 6888 static void insertCell( 6889 MemPage *pPage, /* Page into which we are copying */ 6890 int i, /* New cell becomes the i-th cell of the page */ 6891 u8 *pCell, /* Content of the new cell */ 6892 int sz, /* Bytes of content in pCell */ 6893 u8 *pTemp, /* Temp storage space for pCell, if needed */ 6894 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 6895 int *pRC /* Read and write return code from here */ 6896 ){ 6897 int idx = 0; /* Where to write new cell content in data[] */ 6898 int j; /* Loop counter */ 6899 u8 *data; /* The content of the whole page */ 6900 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 6901 6902 assert( *pRC==SQLITE_OK ); 6903 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 6904 assert( MX_CELL(pPage->pBt)<=10921 ); 6905 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 6906 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 6907 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 6908 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6909 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 6910 assert( pPage->nFree>=0 ); 6911 if( pPage->nOverflow || sz+2>pPage->nFree ){ 6912 if( pTemp ){ 6913 memcpy(pTemp, pCell, sz); 6914 pCell = pTemp; 6915 } 6916 if( iChild ){ 6917 put4byte(pCell, iChild); 6918 } 6919 j = pPage->nOverflow++; 6920 /* Comparison against ArraySize-1 since we hold back one extra slot 6921 ** as a contingency. In other words, never need more than 3 overflow 6922 ** slots but 4 are allocated, just to be safe. */ 6923 assert( j < ArraySize(pPage->apOvfl)-1 ); 6924 pPage->apOvfl[j] = pCell; 6925 pPage->aiOvfl[j] = (u16)i; 6926 6927 /* When multiple overflows occur, they are always sequential and in 6928 ** sorted order. This invariants arise because multiple overflows can 6929 ** only occur when inserting divider cells into the parent page during 6930 ** balancing, and the dividers are adjacent and sorted. 6931 */ 6932 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 6933 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 6934 }else{ 6935 int rc = sqlite3PagerWrite(pPage->pDbPage); 6936 if( rc!=SQLITE_OK ){ 6937 *pRC = rc; 6938 return; 6939 } 6940 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6941 data = pPage->aData; 6942 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 6943 rc = allocateSpace(pPage, sz, &idx); 6944 if( rc ){ *pRC = rc; return; } 6945 /* The allocateSpace() routine guarantees the following properties 6946 ** if it returns successfully */ 6947 assert( idx >= 0 ); 6948 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 6949 assert( idx+sz <= (int)pPage->pBt->usableSize ); 6950 pPage->nFree -= (u16)(2 + sz); 6951 if( iChild ){ 6952 /* In a corrupt database where an entry in the cell index section of 6953 ** a btree page has a value of 3 or less, the pCell value might point 6954 ** as many as 4 bytes in front of the start of the aData buffer for 6955 ** the source page. Make sure this does not cause problems by not 6956 ** reading the first 4 bytes */ 6957 memcpy(&data[idx+4], pCell+4, sz-4); 6958 put4byte(&data[idx], iChild); 6959 }else{ 6960 memcpy(&data[idx], pCell, sz); 6961 } 6962 pIns = pPage->aCellIdx + i*2; 6963 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 6964 put2byte(pIns, idx); 6965 pPage->nCell++; 6966 /* increment the cell count */ 6967 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 6968 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 6969 #ifndef SQLITE_OMIT_AUTOVACUUM 6970 if( pPage->pBt->autoVacuum ){ 6971 /* The cell may contain a pointer to an overflow page. If so, write 6972 ** the entry for the overflow page into the pointer map. 6973 */ 6974 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 6975 } 6976 #endif 6977 } 6978 } 6979 6980 /* 6981 ** The following parameters determine how many adjacent pages get involved 6982 ** in a balancing operation. NN is the number of neighbors on either side 6983 ** of the page that participate in the balancing operation. NB is the 6984 ** total number of pages that participate, including the target page and 6985 ** NN neighbors on either side. 6986 ** 6987 ** The minimum value of NN is 1 (of course). Increasing NN above 1 6988 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 6989 ** in exchange for a larger degradation in INSERT and UPDATE performance. 6990 ** The value of NN appears to give the best results overall. 6991 ** 6992 ** (Later:) The description above makes it seem as if these values are 6993 ** tunable - as if you could change them and recompile and it would all work. 6994 ** But that is unlikely. NB has been 3 since the inception of SQLite and 6995 ** we have never tested any other value. 6996 */ 6997 #define NN 1 /* Number of neighbors on either side of pPage */ 6998 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 6999 7000 /* 7001 ** A CellArray object contains a cache of pointers and sizes for a 7002 ** consecutive sequence of cells that might be held on multiple pages. 7003 ** 7004 ** The cells in this array are the divider cell or cells from the pParent 7005 ** page plus up to three child pages. There are a total of nCell cells. 7006 ** 7007 ** pRef is a pointer to one of the pages that contributes cells. This is 7008 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7009 ** which should be common to all pages that contribute cells to this array. 7010 ** 7011 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7012 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7013 ** to overflow cells. In other words, some apCel[] pointers might not point 7014 ** to content area of the pages. 7015 ** 7016 ** A szCell[] of zero means the size of that cell has not yet been computed. 7017 ** 7018 ** The cells come from as many as four different pages: 7019 ** 7020 ** ----------- 7021 ** | Parent | 7022 ** ----------- 7023 ** / | \ 7024 ** / | \ 7025 ** --------- --------- --------- 7026 ** |Child-1| |Child-2| |Child-3| 7027 ** --------- --------- --------- 7028 ** 7029 ** The order of cells is in the array is for an index btree is: 7030 ** 7031 ** 1. All cells from Child-1 in order 7032 ** 2. The first divider cell from Parent 7033 ** 3. All cells from Child-2 in order 7034 ** 4. The second divider cell from Parent 7035 ** 5. All cells from Child-3 in order 7036 ** 7037 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7038 ** content exists only in leaves and there are no divider cells. 7039 ** 7040 ** For an index btree, the apEnd[] array holds pointer to the end of page 7041 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7042 ** respectively. The ixNx[] array holds the number of cells contained in 7043 ** each of these 5 stages, and all stages to the left. Hence: 7044 ** 7045 ** ixNx[0] = Number of cells in Child-1. 7046 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7047 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7048 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7049 ** ixNx[4] = Total number of cells. 7050 ** 7051 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7052 ** are used and they point to the leaf pages only, and the ixNx value are: 7053 ** 7054 ** ixNx[0] = Number of cells in Child-1. 7055 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7056 ** ixNx[2] = Total number of cells. 7057 ** 7058 ** Sometimes when deleting, a child page can have zero cells. In those 7059 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7060 ** entries, shift down. The end result is that each ixNx[] entry should 7061 ** be larger than the previous 7062 */ 7063 typedef struct CellArray CellArray; 7064 struct CellArray { 7065 int nCell; /* Number of cells in apCell[] */ 7066 MemPage *pRef; /* Reference page */ 7067 u8 **apCell; /* All cells begin balanced */ 7068 u16 *szCell; /* Local size of all cells in apCell[] */ 7069 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7070 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7071 }; 7072 7073 /* 7074 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7075 ** computed. 7076 */ 7077 static void populateCellCache(CellArray *p, int idx, int N){ 7078 assert( idx>=0 && idx+N<=p->nCell ); 7079 while( N>0 ){ 7080 assert( p->apCell[idx]!=0 ); 7081 if( p->szCell[idx]==0 ){ 7082 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7083 }else{ 7084 assert( CORRUPT_DB || 7085 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7086 } 7087 idx++; 7088 N--; 7089 } 7090 } 7091 7092 /* 7093 ** Return the size of the Nth element of the cell array 7094 */ 7095 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7096 assert( N>=0 && N<p->nCell ); 7097 assert( p->szCell[N]==0 ); 7098 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7099 return p->szCell[N]; 7100 } 7101 static u16 cachedCellSize(CellArray *p, int N){ 7102 assert( N>=0 && N<p->nCell ); 7103 if( p->szCell[N] ) return p->szCell[N]; 7104 return computeCellSize(p, N); 7105 } 7106 7107 /* 7108 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7109 ** szCell[] array contains the size in bytes of each cell. This function 7110 ** replaces the current contents of page pPg with the contents of the cell 7111 ** array. 7112 ** 7113 ** Some of the cells in apCell[] may currently be stored in pPg. This 7114 ** function works around problems caused by this by making a copy of any 7115 ** such cells before overwriting the page data. 7116 ** 7117 ** The MemPage.nFree field is invalidated by this function. It is the 7118 ** responsibility of the caller to set it correctly. 7119 */ 7120 static int rebuildPage( 7121 CellArray *pCArray, /* Content to be added to page pPg */ 7122 int iFirst, /* First cell in pCArray to use */ 7123 int nCell, /* Final number of cells on page */ 7124 MemPage *pPg /* The page to be reconstructed */ 7125 ){ 7126 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7127 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7128 const int usableSize = pPg->pBt->usableSize; 7129 u8 * const pEnd = &aData[usableSize]; 7130 int i = iFirst; /* Which cell to copy from pCArray*/ 7131 u32 j; /* Start of cell content area */ 7132 int iEnd = i+nCell; /* Loop terminator */ 7133 u8 *pCellptr = pPg->aCellIdx; 7134 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7135 u8 *pData; 7136 int k; /* Current slot in pCArray->apEnd[] */ 7137 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7138 7139 assert( i<iEnd ); 7140 j = get2byte(&aData[hdr+5]); 7141 if( j>(u32)usableSize ){ j = 0; } 7142 memcpy(&pTmp[j], &aData[j], usableSize - j); 7143 7144 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7145 pSrcEnd = pCArray->apEnd[k]; 7146 7147 pData = pEnd; 7148 while( 1/*exit by break*/ ){ 7149 u8 *pCell = pCArray->apCell[i]; 7150 u16 sz = pCArray->szCell[i]; 7151 assert( sz>0 ); 7152 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7153 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7154 pCell = &pTmp[pCell - aData]; 7155 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7156 && (uptr)(pCell)<(uptr)pSrcEnd 7157 ){ 7158 return SQLITE_CORRUPT_BKPT; 7159 } 7160 7161 pData -= sz; 7162 put2byte(pCellptr, (pData - aData)); 7163 pCellptr += 2; 7164 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7165 memmove(pData, pCell, sz); 7166 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7167 i++; 7168 if( i>=iEnd ) break; 7169 if( pCArray->ixNx[k]<=i ){ 7170 k++; 7171 pSrcEnd = pCArray->apEnd[k]; 7172 } 7173 } 7174 7175 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7176 pPg->nCell = nCell; 7177 pPg->nOverflow = 0; 7178 7179 put2byte(&aData[hdr+1], 0); 7180 put2byte(&aData[hdr+3], pPg->nCell); 7181 put2byte(&aData[hdr+5], pData - aData); 7182 aData[hdr+7] = 0x00; 7183 return SQLITE_OK; 7184 } 7185 7186 /* 7187 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7188 ** This function attempts to add the cells stored in the array to page pPg. 7189 ** If it cannot (because the page needs to be defragmented before the cells 7190 ** will fit), non-zero is returned. Otherwise, if the cells are added 7191 ** successfully, zero is returned. 7192 ** 7193 ** Argument pCellptr points to the first entry in the cell-pointer array 7194 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7195 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7196 ** cell in the array. It is the responsibility of the caller to ensure 7197 ** that it is safe to overwrite this part of the cell-pointer array. 7198 ** 7199 ** When this function is called, *ppData points to the start of the 7200 ** content area on page pPg. If the size of the content area is extended, 7201 ** *ppData is updated to point to the new start of the content area 7202 ** before returning. 7203 ** 7204 ** Finally, argument pBegin points to the byte immediately following the 7205 ** end of the space required by this page for the cell-pointer area (for 7206 ** all cells - not just those inserted by the current call). If the content 7207 ** area must be extended to before this point in order to accomodate all 7208 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7209 */ 7210 static int pageInsertArray( 7211 MemPage *pPg, /* Page to add cells to */ 7212 u8 *pBegin, /* End of cell-pointer array */ 7213 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7214 u8 *pCellptr, /* Pointer to cell-pointer area */ 7215 int iFirst, /* Index of first cell to add */ 7216 int nCell, /* Number of cells to add to pPg */ 7217 CellArray *pCArray /* Array of cells */ 7218 ){ 7219 int i = iFirst; /* Loop counter - cell index to insert */ 7220 u8 *aData = pPg->aData; /* Complete page */ 7221 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7222 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7223 int k; /* Current slot in pCArray->apEnd[] */ 7224 u8 *pEnd; /* Maximum extent of cell data */ 7225 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7226 if( iEnd<=iFirst ) return 0; 7227 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7228 pEnd = pCArray->apEnd[k]; 7229 while( 1 /*Exit by break*/ ){ 7230 int sz, rc; 7231 u8 *pSlot; 7232 assert( pCArray->szCell[i]!=0 ); 7233 sz = pCArray->szCell[i]; 7234 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7235 if( (pData - pBegin)<sz ) return 1; 7236 pData -= sz; 7237 pSlot = pData; 7238 } 7239 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7240 ** database. But they might for a corrupt database. Hence use memmove() 7241 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7242 assert( (pSlot+sz)<=pCArray->apCell[i] 7243 || pSlot>=(pCArray->apCell[i]+sz) 7244 || CORRUPT_DB ); 7245 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7246 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7247 ){ 7248 assert( CORRUPT_DB ); 7249 (void)SQLITE_CORRUPT_BKPT; 7250 return 1; 7251 } 7252 memmove(pSlot, pCArray->apCell[i], sz); 7253 put2byte(pCellptr, (pSlot - aData)); 7254 pCellptr += 2; 7255 i++; 7256 if( i>=iEnd ) break; 7257 if( pCArray->ixNx[k]<=i ){ 7258 k++; 7259 pEnd = pCArray->apEnd[k]; 7260 } 7261 } 7262 *ppData = pData; 7263 return 0; 7264 } 7265 7266 /* 7267 ** The pCArray object contains pointers to b-tree cells and their sizes. 7268 ** 7269 ** This function adds the space associated with each cell in the array 7270 ** that is currently stored within the body of pPg to the pPg free-list. 7271 ** The cell-pointers and other fields of the page are not updated. 7272 ** 7273 ** This function returns the total number of cells added to the free-list. 7274 */ 7275 static int pageFreeArray( 7276 MemPage *pPg, /* Page to edit */ 7277 int iFirst, /* First cell to delete */ 7278 int nCell, /* Cells to delete */ 7279 CellArray *pCArray /* Array of cells */ 7280 ){ 7281 u8 * const aData = pPg->aData; 7282 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7283 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7284 int nRet = 0; 7285 int i; 7286 int iEnd = iFirst + nCell; 7287 u8 *pFree = 0; 7288 int szFree = 0; 7289 7290 for(i=iFirst; i<iEnd; i++){ 7291 u8 *pCell = pCArray->apCell[i]; 7292 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7293 int sz; 7294 /* No need to use cachedCellSize() here. The sizes of all cells that 7295 ** are to be freed have already been computing while deciding which 7296 ** cells need freeing */ 7297 sz = pCArray->szCell[i]; assert( sz>0 ); 7298 if( pFree!=(pCell + sz) ){ 7299 if( pFree ){ 7300 assert( pFree>aData && (pFree - aData)<65536 ); 7301 freeSpace(pPg, (u16)(pFree - aData), szFree); 7302 } 7303 pFree = pCell; 7304 szFree = sz; 7305 if( pFree+sz>pEnd ){ 7306 return 0; 7307 } 7308 }else{ 7309 pFree = pCell; 7310 szFree += sz; 7311 } 7312 nRet++; 7313 } 7314 } 7315 if( pFree ){ 7316 assert( pFree>aData && (pFree - aData)<65536 ); 7317 freeSpace(pPg, (u16)(pFree - aData), szFree); 7318 } 7319 return nRet; 7320 } 7321 7322 /* 7323 ** pCArray contains pointers to and sizes of all cells in the page being 7324 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7325 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7326 ** starting at apCell[iNew]. 7327 ** 7328 ** This routine makes the necessary adjustments to pPg so that it contains 7329 ** the correct cells after being balanced. 7330 ** 7331 ** The pPg->nFree field is invalid when this function returns. It is the 7332 ** responsibility of the caller to set it correctly. 7333 */ 7334 static int editPage( 7335 MemPage *pPg, /* Edit this page */ 7336 int iOld, /* Index of first cell currently on page */ 7337 int iNew, /* Index of new first cell on page */ 7338 int nNew, /* Final number of cells on page */ 7339 CellArray *pCArray /* Array of cells and sizes */ 7340 ){ 7341 u8 * const aData = pPg->aData; 7342 const int hdr = pPg->hdrOffset; 7343 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7344 int nCell = pPg->nCell; /* Cells stored on pPg */ 7345 u8 *pData; 7346 u8 *pCellptr; 7347 int i; 7348 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7349 int iNewEnd = iNew + nNew; 7350 7351 #ifdef SQLITE_DEBUG 7352 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7353 memcpy(pTmp, aData, pPg->pBt->usableSize); 7354 #endif 7355 7356 /* Remove cells from the start and end of the page */ 7357 assert( nCell>=0 ); 7358 if( iOld<iNew ){ 7359 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7360 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7361 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7362 nCell -= nShift; 7363 } 7364 if( iNewEnd < iOldEnd ){ 7365 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7366 assert( nCell>=nTail ); 7367 nCell -= nTail; 7368 } 7369 7370 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7371 if( pData<pBegin ) goto editpage_fail; 7372 if( pData>pPg->aDataEnd ) goto editpage_fail; 7373 7374 /* Add cells to the start of the page */ 7375 if( iNew<iOld ){ 7376 int nAdd = MIN(nNew,iOld-iNew); 7377 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7378 assert( nAdd>=0 ); 7379 pCellptr = pPg->aCellIdx; 7380 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7381 if( pageInsertArray( 7382 pPg, pBegin, &pData, pCellptr, 7383 iNew, nAdd, pCArray 7384 ) ) goto editpage_fail; 7385 nCell += nAdd; 7386 } 7387 7388 /* Add any overflow cells */ 7389 for(i=0; i<pPg->nOverflow; i++){ 7390 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7391 if( iCell>=0 && iCell<nNew ){ 7392 pCellptr = &pPg->aCellIdx[iCell * 2]; 7393 if( nCell>iCell ){ 7394 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7395 } 7396 nCell++; 7397 cachedCellSize(pCArray, iCell+iNew); 7398 if( pageInsertArray( 7399 pPg, pBegin, &pData, pCellptr, 7400 iCell+iNew, 1, pCArray 7401 ) ) goto editpage_fail; 7402 } 7403 } 7404 7405 /* Append cells to the end of the page */ 7406 assert( nCell>=0 ); 7407 pCellptr = &pPg->aCellIdx[nCell*2]; 7408 if( pageInsertArray( 7409 pPg, pBegin, &pData, pCellptr, 7410 iNew+nCell, nNew-nCell, pCArray 7411 ) ) goto editpage_fail; 7412 7413 pPg->nCell = nNew; 7414 pPg->nOverflow = 0; 7415 7416 put2byte(&aData[hdr+3], pPg->nCell); 7417 put2byte(&aData[hdr+5], pData - aData); 7418 7419 #ifdef SQLITE_DEBUG 7420 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7421 u8 *pCell = pCArray->apCell[i+iNew]; 7422 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7423 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7424 pCell = &pTmp[pCell - aData]; 7425 } 7426 assert( 0==memcmp(pCell, &aData[iOff], 7427 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7428 } 7429 #endif 7430 7431 return SQLITE_OK; 7432 editpage_fail: 7433 /* Unable to edit this page. Rebuild it from scratch instead. */ 7434 populateCellCache(pCArray, iNew, nNew); 7435 return rebuildPage(pCArray, iNew, nNew, pPg); 7436 } 7437 7438 7439 #ifndef SQLITE_OMIT_QUICKBALANCE 7440 /* 7441 ** This version of balance() handles the common special case where 7442 ** a new entry is being inserted on the extreme right-end of the 7443 ** tree, in other words, when the new entry will become the largest 7444 ** entry in the tree. 7445 ** 7446 ** Instead of trying to balance the 3 right-most leaf pages, just add 7447 ** a new page to the right-hand side and put the one new entry in 7448 ** that page. This leaves the right side of the tree somewhat 7449 ** unbalanced. But odds are that we will be inserting new entries 7450 ** at the end soon afterwards so the nearly empty page will quickly 7451 ** fill up. On average. 7452 ** 7453 ** pPage is the leaf page which is the right-most page in the tree. 7454 ** pParent is its parent. pPage must have a single overflow entry 7455 ** which is also the right-most entry on the page. 7456 ** 7457 ** The pSpace buffer is used to store a temporary copy of the divider 7458 ** cell that will be inserted into pParent. Such a cell consists of a 4 7459 ** byte page number followed by a variable length integer. In other 7460 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7461 ** least 13 bytes in size. 7462 */ 7463 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7464 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7465 MemPage *pNew; /* Newly allocated page */ 7466 int rc; /* Return Code */ 7467 Pgno pgnoNew; /* Page number of pNew */ 7468 7469 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7470 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7471 assert( pPage->nOverflow==1 ); 7472 7473 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7474 assert( pPage->nFree>=0 ); 7475 assert( pParent->nFree>=0 ); 7476 7477 /* Allocate a new page. This page will become the right-sibling of 7478 ** pPage. Make the parent page writable, so that the new divider cell 7479 ** may be inserted. If both these operations are successful, proceed. 7480 */ 7481 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7482 7483 if( rc==SQLITE_OK ){ 7484 7485 u8 *pOut = &pSpace[4]; 7486 u8 *pCell = pPage->apOvfl[0]; 7487 u16 szCell = pPage->xCellSize(pPage, pCell); 7488 u8 *pStop; 7489 CellArray b; 7490 7491 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7492 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7493 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7494 b.nCell = 1; 7495 b.pRef = pPage; 7496 b.apCell = &pCell; 7497 b.szCell = &szCell; 7498 b.apEnd[0] = pPage->aDataEnd; 7499 b.ixNx[0] = 2; 7500 rc = rebuildPage(&b, 0, 1, pNew); 7501 if( NEVER(rc) ){ 7502 releasePage(pNew); 7503 return rc; 7504 } 7505 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7506 7507 /* If this is an auto-vacuum database, update the pointer map 7508 ** with entries for the new page, and any pointer from the 7509 ** cell on the page to an overflow page. If either of these 7510 ** operations fails, the return code is set, but the contents 7511 ** of the parent page are still manipulated by thh code below. 7512 ** That is Ok, at this point the parent page is guaranteed to 7513 ** be marked as dirty. Returning an error code will cause a 7514 ** rollback, undoing any changes made to the parent page. 7515 */ 7516 if( ISAUTOVACUUM ){ 7517 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7518 if( szCell>pNew->minLocal ){ 7519 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7520 } 7521 } 7522 7523 /* Create a divider cell to insert into pParent. The divider cell 7524 ** consists of a 4-byte page number (the page number of pPage) and 7525 ** a variable length key value (which must be the same value as the 7526 ** largest key on pPage). 7527 ** 7528 ** To find the largest key value on pPage, first find the right-most 7529 ** cell on pPage. The first two fields of this cell are the 7530 ** record-length (a variable length integer at most 32-bits in size) 7531 ** and the key value (a variable length integer, may have any value). 7532 ** The first of the while(...) loops below skips over the record-length 7533 ** field. The second while(...) loop copies the key value from the 7534 ** cell on pPage into the pSpace buffer. 7535 */ 7536 pCell = findCell(pPage, pPage->nCell-1); 7537 pStop = &pCell[9]; 7538 while( (*(pCell++)&0x80) && pCell<pStop ); 7539 pStop = &pCell[9]; 7540 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7541 7542 /* Insert the new divider cell into pParent. */ 7543 if( rc==SQLITE_OK ){ 7544 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7545 0, pPage->pgno, &rc); 7546 } 7547 7548 /* Set the right-child pointer of pParent to point to the new page. */ 7549 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7550 7551 /* Release the reference to the new page. */ 7552 releasePage(pNew); 7553 } 7554 7555 return rc; 7556 } 7557 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7558 7559 #if 0 7560 /* 7561 ** This function does not contribute anything to the operation of SQLite. 7562 ** it is sometimes activated temporarily while debugging code responsible 7563 ** for setting pointer-map entries. 7564 */ 7565 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7566 int i, j; 7567 for(i=0; i<nPage; i++){ 7568 Pgno n; 7569 u8 e; 7570 MemPage *pPage = apPage[i]; 7571 BtShared *pBt = pPage->pBt; 7572 assert( pPage->isInit ); 7573 7574 for(j=0; j<pPage->nCell; j++){ 7575 CellInfo info; 7576 u8 *z; 7577 7578 z = findCell(pPage, j); 7579 pPage->xParseCell(pPage, z, &info); 7580 if( info.nLocal<info.nPayload ){ 7581 Pgno ovfl = get4byte(&z[info.nSize-4]); 7582 ptrmapGet(pBt, ovfl, &e, &n); 7583 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7584 } 7585 if( !pPage->leaf ){ 7586 Pgno child = get4byte(z); 7587 ptrmapGet(pBt, child, &e, &n); 7588 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7589 } 7590 } 7591 if( !pPage->leaf ){ 7592 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7593 ptrmapGet(pBt, child, &e, &n); 7594 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7595 } 7596 } 7597 return 1; 7598 } 7599 #endif 7600 7601 /* 7602 ** This function is used to copy the contents of the b-tree node stored 7603 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7604 ** the pointer-map entries for each child page are updated so that the 7605 ** parent page stored in the pointer map is page pTo. If pFrom contained 7606 ** any cells with overflow page pointers, then the corresponding pointer 7607 ** map entries are also updated so that the parent page is page pTo. 7608 ** 7609 ** If pFrom is currently carrying any overflow cells (entries in the 7610 ** MemPage.apOvfl[] array), they are not copied to pTo. 7611 ** 7612 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7613 ** 7614 ** The performance of this function is not critical. It is only used by 7615 ** the balance_shallower() and balance_deeper() procedures, neither of 7616 ** which are called often under normal circumstances. 7617 */ 7618 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7619 if( (*pRC)==SQLITE_OK ){ 7620 BtShared * const pBt = pFrom->pBt; 7621 u8 * const aFrom = pFrom->aData; 7622 u8 * const aTo = pTo->aData; 7623 int const iFromHdr = pFrom->hdrOffset; 7624 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7625 int rc; 7626 int iData; 7627 7628 7629 assert( pFrom->isInit ); 7630 assert( pFrom->nFree>=iToHdr ); 7631 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7632 7633 /* Copy the b-tree node content from page pFrom to page pTo. */ 7634 iData = get2byte(&aFrom[iFromHdr+5]); 7635 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7636 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7637 7638 /* Reinitialize page pTo so that the contents of the MemPage structure 7639 ** match the new data. The initialization of pTo can actually fail under 7640 ** fairly obscure circumstances, even though it is a copy of initialized 7641 ** page pFrom. 7642 */ 7643 pTo->isInit = 0; 7644 rc = btreeInitPage(pTo); 7645 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7646 if( rc!=SQLITE_OK ){ 7647 *pRC = rc; 7648 return; 7649 } 7650 7651 /* If this is an auto-vacuum database, update the pointer-map entries 7652 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7653 */ 7654 if( ISAUTOVACUUM ){ 7655 *pRC = setChildPtrmaps(pTo); 7656 } 7657 } 7658 } 7659 7660 /* 7661 ** This routine redistributes cells on the iParentIdx'th child of pParent 7662 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7663 ** same amount of free space. Usually a single sibling on either side of the 7664 ** page are used in the balancing, though both siblings might come from one 7665 ** side if the page is the first or last child of its parent. If the page 7666 ** has fewer than 2 siblings (something which can only happen if the page 7667 ** is a root page or a child of a root page) then all available siblings 7668 ** participate in the balancing. 7669 ** 7670 ** The number of siblings of the page might be increased or decreased by 7671 ** one or two in an effort to keep pages nearly full but not over full. 7672 ** 7673 ** Note that when this routine is called, some of the cells on the page 7674 ** might not actually be stored in MemPage.aData[]. This can happen 7675 ** if the page is overfull. This routine ensures that all cells allocated 7676 ** to the page and its siblings fit into MemPage.aData[] before returning. 7677 ** 7678 ** In the course of balancing the page and its siblings, cells may be 7679 ** inserted into or removed from the parent page (pParent). Doing so 7680 ** may cause the parent page to become overfull or underfull. If this 7681 ** happens, it is the responsibility of the caller to invoke the correct 7682 ** balancing routine to fix this problem (see the balance() routine). 7683 ** 7684 ** If this routine fails for any reason, it might leave the database 7685 ** in a corrupted state. So if this routine fails, the database should 7686 ** be rolled back. 7687 ** 7688 ** The third argument to this function, aOvflSpace, is a pointer to a 7689 ** buffer big enough to hold one page. If while inserting cells into the parent 7690 ** page (pParent) the parent page becomes overfull, this buffer is 7691 ** used to store the parent's overflow cells. Because this function inserts 7692 ** a maximum of four divider cells into the parent page, and the maximum 7693 ** size of a cell stored within an internal node is always less than 1/4 7694 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7695 ** enough for all overflow cells. 7696 ** 7697 ** If aOvflSpace is set to a null pointer, this function returns 7698 ** SQLITE_NOMEM. 7699 */ 7700 static int balance_nonroot( 7701 MemPage *pParent, /* Parent page of siblings being balanced */ 7702 int iParentIdx, /* Index of "the page" in pParent */ 7703 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7704 int isRoot, /* True if pParent is a root-page */ 7705 int bBulk /* True if this call is part of a bulk load */ 7706 ){ 7707 BtShared *pBt; /* The whole database */ 7708 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7709 int nNew = 0; /* Number of pages in apNew[] */ 7710 int nOld; /* Number of pages in apOld[] */ 7711 int i, j, k; /* Loop counters */ 7712 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7713 int rc = SQLITE_OK; /* The return code */ 7714 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7715 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7716 int usableSpace; /* Bytes in pPage beyond the header */ 7717 int pageFlags; /* Value of pPage->aData[0] */ 7718 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7719 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7720 int szScratch; /* Size of scratch memory requested */ 7721 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7722 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7723 u8 *pRight; /* Location in parent of right-sibling pointer */ 7724 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7725 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7726 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7727 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7728 u8 *aSpace1; /* Space for copies of dividers cells */ 7729 Pgno pgno; /* Temp var to store a page number in */ 7730 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7731 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7732 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7733 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7734 CellArray b; /* Parsed information on cells being balanced */ 7735 7736 memset(abDone, 0, sizeof(abDone)); 7737 memset(&b, 0, sizeof(b)); 7738 pBt = pParent->pBt; 7739 assert( sqlite3_mutex_held(pBt->mutex) ); 7740 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7741 7742 /* At this point pParent may have at most one overflow cell. And if 7743 ** this overflow cell is present, it must be the cell with 7744 ** index iParentIdx. This scenario comes about when this function 7745 ** is called (indirectly) from sqlite3BtreeDelete(). 7746 */ 7747 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7748 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7749 7750 if( !aOvflSpace ){ 7751 return SQLITE_NOMEM_BKPT; 7752 } 7753 assert( pParent->nFree>=0 ); 7754 7755 /* Find the sibling pages to balance. Also locate the cells in pParent 7756 ** that divide the siblings. An attempt is made to find NN siblings on 7757 ** either side of pPage. More siblings are taken from one side, however, 7758 ** if there are fewer than NN siblings on the other side. If pParent 7759 ** has NB or fewer children then all children of pParent are taken. 7760 ** 7761 ** This loop also drops the divider cells from the parent page. This 7762 ** way, the remainder of the function does not have to deal with any 7763 ** overflow cells in the parent page, since if any existed they will 7764 ** have already been removed. 7765 */ 7766 i = pParent->nOverflow + pParent->nCell; 7767 if( i<2 ){ 7768 nxDiv = 0; 7769 }else{ 7770 assert( bBulk==0 || bBulk==1 ); 7771 if( iParentIdx==0 ){ 7772 nxDiv = 0; 7773 }else if( iParentIdx==i ){ 7774 nxDiv = i-2+bBulk; 7775 }else{ 7776 nxDiv = iParentIdx-1; 7777 } 7778 i = 2-bBulk; 7779 } 7780 nOld = i+1; 7781 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7782 pRight = &pParent->aData[pParent->hdrOffset+8]; 7783 }else{ 7784 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7785 } 7786 pgno = get4byte(pRight); 7787 while( 1 ){ 7788 if( rc==SQLITE_OK ){ 7789 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7790 } 7791 if( rc ){ 7792 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7793 goto balance_cleanup; 7794 } 7795 if( apOld[i]->nFree<0 ){ 7796 rc = btreeComputeFreeSpace(apOld[i]); 7797 if( rc ){ 7798 memset(apOld, 0, (i)*sizeof(MemPage*)); 7799 goto balance_cleanup; 7800 } 7801 } 7802 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7803 if( (i--)==0 ) break; 7804 7805 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7806 apDiv[i] = pParent->apOvfl[0]; 7807 pgno = get4byte(apDiv[i]); 7808 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7809 pParent->nOverflow = 0; 7810 }else{ 7811 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7812 pgno = get4byte(apDiv[i]); 7813 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7814 7815 /* Drop the cell from the parent page. apDiv[i] still points to 7816 ** the cell within the parent, even though it has been dropped. 7817 ** This is safe because dropping a cell only overwrites the first 7818 ** four bytes of it, and this function does not need the first 7819 ** four bytes of the divider cell. So the pointer is safe to use 7820 ** later on. 7821 ** 7822 ** But not if we are in secure-delete mode. In secure-delete mode, 7823 ** the dropCell() routine will overwrite the entire cell with zeroes. 7824 ** In this case, temporarily copy the cell into the aOvflSpace[] 7825 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7826 ** is allocated. */ 7827 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7828 int iOff; 7829 7830 /* If the following if() condition is not true, the db is corrupted. 7831 ** The call to dropCell() below will detect this. */ 7832 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7833 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7834 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7835 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7836 } 7837 } 7838 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7839 } 7840 } 7841 7842 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7843 ** alignment */ 7844 nMaxCells = (nMaxCells + 3)&~3; 7845 7846 /* 7847 ** Allocate space for memory structures 7848 */ 7849 szScratch = 7850 nMaxCells*sizeof(u8*) /* b.apCell */ 7851 + nMaxCells*sizeof(u16) /* b.szCell */ 7852 + pBt->pageSize; /* aSpace1 */ 7853 7854 assert( szScratch<=7*(int)pBt->pageSize ); 7855 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 7856 if( b.apCell==0 ){ 7857 rc = SQLITE_NOMEM_BKPT; 7858 goto balance_cleanup; 7859 } 7860 b.szCell = (u16*)&b.apCell[nMaxCells]; 7861 aSpace1 = (u8*)&b.szCell[nMaxCells]; 7862 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 7863 7864 /* 7865 ** Load pointers to all cells on sibling pages and the divider cells 7866 ** into the local b.apCell[] array. Make copies of the divider cells 7867 ** into space obtained from aSpace1[]. The divider cells have already 7868 ** been removed from pParent. 7869 ** 7870 ** If the siblings are on leaf pages, then the child pointers of the 7871 ** divider cells are stripped from the cells before they are copied 7872 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 7873 ** child pointers. If siblings are not leaves, then all cell in 7874 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 7875 ** are alike. 7876 ** 7877 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 7878 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 7879 */ 7880 b.pRef = apOld[0]; 7881 leafCorrection = b.pRef->leaf*4; 7882 leafData = b.pRef->intKeyLeaf; 7883 for(i=0; i<nOld; i++){ 7884 MemPage *pOld = apOld[i]; 7885 int limit = pOld->nCell; 7886 u8 *aData = pOld->aData; 7887 u16 maskPage = pOld->maskPage; 7888 u8 *piCell = aData + pOld->cellOffset; 7889 u8 *piEnd; 7890 VVA_ONLY( int nCellAtStart = b.nCell; ) 7891 7892 /* Verify that all sibling pages are of the same "type" (table-leaf, 7893 ** table-interior, index-leaf, or index-interior). 7894 */ 7895 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 7896 rc = SQLITE_CORRUPT_BKPT; 7897 goto balance_cleanup; 7898 } 7899 7900 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 7901 ** contains overflow cells, include them in the b.apCell[] array 7902 ** in the correct spot. 7903 ** 7904 ** Note that when there are multiple overflow cells, it is always the 7905 ** case that they are sequential and adjacent. This invariant arises 7906 ** because multiple overflows can only occurs when inserting divider 7907 ** cells into a parent on a prior balance, and divider cells are always 7908 ** adjacent and are inserted in order. There is an assert() tagged 7909 ** with "NOTE 1" in the overflow cell insertion loop to prove this 7910 ** invariant. 7911 ** 7912 ** This must be done in advance. Once the balance starts, the cell 7913 ** offset section of the btree page will be overwritten and we will no 7914 ** long be able to find the cells if a pointer to each cell is not saved 7915 ** first. 7916 */ 7917 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 7918 if( pOld->nOverflow>0 ){ 7919 if( NEVER(limit<pOld->aiOvfl[0]) ){ 7920 rc = SQLITE_CORRUPT_BKPT; 7921 goto balance_cleanup; 7922 } 7923 limit = pOld->aiOvfl[0]; 7924 for(j=0; j<limit; j++){ 7925 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7926 piCell += 2; 7927 b.nCell++; 7928 } 7929 for(k=0; k<pOld->nOverflow; k++){ 7930 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 7931 b.apCell[b.nCell] = pOld->apOvfl[k]; 7932 b.nCell++; 7933 } 7934 } 7935 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 7936 while( piCell<piEnd ){ 7937 assert( b.nCell<nMaxCells ); 7938 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 7939 piCell += 2; 7940 b.nCell++; 7941 } 7942 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 7943 7944 cntOld[i] = b.nCell; 7945 if( i<nOld-1 && !leafData){ 7946 u16 sz = (u16)szNew[i]; 7947 u8 *pTemp; 7948 assert( b.nCell<nMaxCells ); 7949 b.szCell[b.nCell] = sz; 7950 pTemp = &aSpace1[iSpace1]; 7951 iSpace1 += sz; 7952 assert( sz<=pBt->maxLocal+23 ); 7953 assert( iSpace1 <= (int)pBt->pageSize ); 7954 memcpy(pTemp, apDiv[i], sz); 7955 b.apCell[b.nCell] = pTemp+leafCorrection; 7956 assert( leafCorrection==0 || leafCorrection==4 ); 7957 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 7958 if( !pOld->leaf ){ 7959 assert( leafCorrection==0 ); 7960 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 7961 /* The right pointer of the child page pOld becomes the left 7962 ** pointer of the divider cell */ 7963 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 7964 }else{ 7965 assert( leafCorrection==4 ); 7966 while( b.szCell[b.nCell]<4 ){ 7967 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 7968 ** does exist, pad it with 0x00 bytes. */ 7969 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 7970 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 7971 aSpace1[iSpace1++] = 0x00; 7972 b.szCell[b.nCell]++; 7973 } 7974 } 7975 b.nCell++; 7976 } 7977 } 7978 7979 /* 7980 ** Figure out the number of pages needed to hold all b.nCell cells. 7981 ** Store this number in "k". Also compute szNew[] which is the total 7982 ** size of all cells on the i-th page and cntNew[] which is the index 7983 ** in b.apCell[] of the cell that divides page i from page i+1. 7984 ** cntNew[k] should equal b.nCell. 7985 ** 7986 ** Values computed by this block: 7987 ** 7988 ** k: The total number of sibling pages 7989 ** szNew[i]: Spaced used on the i-th sibling page. 7990 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 7991 ** the right of the i-th sibling page. 7992 ** usableSpace: Number of bytes of space available on each sibling. 7993 ** 7994 */ 7995 usableSpace = pBt->usableSize - 12 + leafCorrection; 7996 for(i=k=0; i<nOld; i++, k++){ 7997 MemPage *p = apOld[i]; 7998 b.apEnd[k] = p->aDataEnd; 7999 b.ixNx[k] = cntOld[i]; 8000 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8001 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8002 } 8003 if( !leafData ){ 8004 k++; 8005 b.apEnd[k] = pParent->aDataEnd; 8006 b.ixNx[k] = cntOld[i]+1; 8007 } 8008 assert( p->nFree>=0 ); 8009 szNew[i] = usableSpace - p->nFree; 8010 for(j=0; j<p->nOverflow; j++){ 8011 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8012 } 8013 cntNew[i] = cntOld[i]; 8014 } 8015 k = nOld; 8016 for(i=0; i<k; i++){ 8017 int sz; 8018 while( szNew[i]>usableSpace ){ 8019 if( i+1>=k ){ 8020 k = i+2; 8021 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8022 szNew[k-1] = 0; 8023 cntNew[k-1] = b.nCell; 8024 } 8025 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8026 szNew[i] -= sz; 8027 if( !leafData ){ 8028 if( cntNew[i]<b.nCell ){ 8029 sz = 2 + cachedCellSize(&b, cntNew[i]); 8030 }else{ 8031 sz = 0; 8032 } 8033 } 8034 szNew[i+1] += sz; 8035 cntNew[i]--; 8036 } 8037 while( cntNew[i]<b.nCell ){ 8038 sz = 2 + cachedCellSize(&b, cntNew[i]); 8039 if( szNew[i]+sz>usableSpace ) break; 8040 szNew[i] += sz; 8041 cntNew[i]++; 8042 if( !leafData ){ 8043 if( cntNew[i]<b.nCell ){ 8044 sz = 2 + cachedCellSize(&b, cntNew[i]); 8045 }else{ 8046 sz = 0; 8047 } 8048 } 8049 szNew[i+1] -= sz; 8050 } 8051 if( cntNew[i]>=b.nCell ){ 8052 k = i+1; 8053 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8054 rc = SQLITE_CORRUPT_BKPT; 8055 goto balance_cleanup; 8056 } 8057 } 8058 8059 /* 8060 ** The packing computed by the previous block is biased toward the siblings 8061 ** on the left side (siblings with smaller keys). The left siblings are 8062 ** always nearly full, while the right-most sibling might be nearly empty. 8063 ** The next block of code attempts to adjust the packing of siblings to 8064 ** get a better balance. 8065 ** 8066 ** This adjustment is more than an optimization. The packing above might 8067 ** be so out of balance as to be illegal. For example, the right-most 8068 ** sibling might be completely empty. This adjustment is not optional. 8069 */ 8070 for(i=k-1; i>0; i--){ 8071 int szRight = szNew[i]; /* Size of sibling on the right */ 8072 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8073 int r; /* Index of right-most cell in left sibling */ 8074 int d; /* Index of first cell to the left of right sibling */ 8075 8076 r = cntNew[i-1] - 1; 8077 d = r + 1 - leafData; 8078 (void)cachedCellSize(&b, d); 8079 do{ 8080 assert( d<nMaxCells ); 8081 assert( r<nMaxCells ); 8082 (void)cachedCellSize(&b, r); 8083 if( szRight!=0 8084 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8085 break; 8086 } 8087 szRight += b.szCell[d] + 2; 8088 szLeft -= b.szCell[r] + 2; 8089 cntNew[i-1] = r; 8090 r--; 8091 d--; 8092 }while( r>=0 ); 8093 szNew[i] = szRight; 8094 szNew[i-1] = szLeft; 8095 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8096 rc = SQLITE_CORRUPT_BKPT; 8097 goto balance_cleanup; 8098 } 8099 } 8100 8101 /* Sanity check: For a non-corrupt database file one of the follwing 8102 ** must be true: 8103 ** (1) We found one or more cells (cntNew[0])>0), or 8104 ** (2) pPage is a virtual root page. A virtual root page is when 8105 ** the real root page is page 1 and we are the only child of 8106 ** that page. 8107 */ 8108 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8109 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8110 apOld[0]->pgno, apOld[0]->nCell, 8111 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8112 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8113 )); 8114 8115 /* 8116 ** Allocate k new pages. Reuse old pages where possible. 8117 */ 8118 pageFlags = apOld[0]->aData[0]; 8119 for(i=0; i<k; i++){ 8120 MemPage *pNew; 8121 if( i<nOld ){ 8122 pNew = apNew[i] = apOld[i]; 8123 apOld[i] = 0; 8124 rc = sqlite3PagerWrite(pNew->pDbPage); 8125 nNew++; 8126 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8127 && rc==SQLITE_OK 8128 ){ 8129 rc = SQLITE_CORRUPT_BKPT; 8130 } 8131 if( rc ) goto balance_cleanup; 8132 }else{ 8133 assert( i>0 ); 8134 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8135 if( rc ) goto balance_cleanup; 8136 zeroPage(pNew, pageFlags); 8137 apNew[i] = pNew; 8138 nNew++; 8139 cntOld[i] = b.nCell; 8140 8141 /* Set the pointer-map entry for the new sibling page. */ 8142 if( ISAUTOVACUUM ){ 8143 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8144 if( rc!=SQLITE_OK ){ 8145 goto balance_cleanup; 8146 } 8147 } 8148 } 8149 } 8150 8151 /* 8152 ** Reassign page numbers so that the new pages are in ascending order. 8153 ** This helps to keep entries in the disk file in order so that a scan 8154 ** of the table is closer to a linear scan through the file. That in turn 8155 ** helps the operating system to deliver pages from the disk more rapidly. 8156 ** 8157 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8158 ** than (NB+2) (a small constant), that should not be a problem. 8159 ** 8160 ** When NB==3, this one optimization makes the database about 25% faster 8161 ** for large insertions and deletions. 8162 */ 8163 for(i=0; i<nNew; i++){ 8164 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8165 aPgFlags[i] = apNew[i]->pDbPage->flags; 8166 for(j=0; j<i; j++){ 8167 if( NEVER(aPgno[j]==aPgno[i]) ){ 8168 /* This branch is taken if the set of sibling pages somehow contains 8169 ** duplicate entries. This can happen if the database is corrupt. 8170 ** It would be simpler to detect this as part of the loop below, but 8171 ** we do the detection here in order to avoid populating the pager 8172 ** cache with two separate objects associated with the same 8173 ** page number. */ 8174 assert( CORRUPT_DB ); 8175 rc = SQLITE_CORRUPT_BKPT; 8176 goto balance_cleanup; 8177 } 8178 } 8179 } 8180 for(i=0; i<nNew; i++){ 8181 int iBest = 0; /* aPgno[] index of page number to use */ 8182 for(j=1; j<nNew; j++){ 8183 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8184 } 8185 pgno = aPgOrder[iBest]; 8186 aPgOrder[iBest] = 0xffffffff; 8187 if( iBest!=i ){ 8188 if( iBest>i ){ 8189 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8190 } 8191 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8192 apNew[i]->pgno = pgno; 8193 } 8194 } 8195 8196 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8197 "%d(%d nc=%d) %d(%d nc=%d)\n", 8198 apNew[0]->pgno, szNew[0], cntNew[0], 8199 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8200 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8201 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8202 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8203 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8204 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8205 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8206 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8207 )); 8208 8209 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8210 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8211 assert( apNew[nNew-1]!=0 ); 8212 put4byte(pRight, apNew[nNew-1]->pgno); 8213 8214 /* If the sibling pages are not leaves, ensure that the right-child pointer 8215 ** of the right-most new sibling page is set to the value that was 8216 ** originally in the same field of the right-most old sibling page. */ 8217 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8218 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8219 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8220 } 8221 8222 /* Make any required updates to pointer map entries associated with 8223 ** cells stored on sibling pages following the balance operation. Pointer 8224 ** map entries associated with divider cells are set by the insertCell() 8225 ** routine. The associated pointer map entries are: 8226 ** 8227 ** a) if the cell contains a reference to an overflow chain, the 8228 ** entry associated with the first page in the overflow chain, and 8229 ** 8230 ** b) if the sibling pages are not leaves, the child page associated 8231 ** with the cell. 8232 ** 8233 ** If the sibling pages are not leaves, then the pointer map entry 8234 ** associated with the right-child of each sibling may also need to be 8235 ** updated. This happens below, after the sibling pages have been 8236 ** populated, not here. 8237 */ 8238 if( ISAUTOVACUUM ){ 8239 MemPage *pOld; 8240 MemPage *pNew = pOld = apNew[0]; 8241 int cntOldNext = pNew->nCell + pNew->nOverflow; 8242 int iNew = 0; 8243 int iOld = 0; 8244 8245 for(i=0; i<b.nCell; i++){ 8246 u8 *pCell = b.apCell[i]; 8247 while( i==cntOldNext ){ 8248 iOld++; 8249 assert( iOld<nNew || iOld<nOld ); 8250 assert( iOld>=0 && iOld<NB ); 8251 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8252 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8253 } 8254 if( i==cntNew[iNew] ){ 8255 pNew = apNew[++iNew]; 8256 if( !leafData ) continue; 8257 } 8258 8259 /* Cell pCell is destined for new sibling page pNew. Originally, it 8260 ** was either part of sibling page iOld (possibly an overflow cell), 8261 ** or else the divider cell to the left of sibling page iOld. So, 8262 ** if sibling page iOld had the same page number as pNew, and if 8263 ** pCell really was a part of sibling page iOld (not a divider or 8264 ** overflow cell), we can skip updating the pointer map entries. */ 8265 if( iOld>=nNew 8266 || pNew->pgno!=aPgno[iOld] 8267 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8268 ){ 8269 if( !leafCorrection ){ 8270 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8271 } 8272 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8273 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8274 } 8275 if( rc ) goto balance_cleanup; 8276 } 8277 } 8278 } 8279 8280 /* Insert new divider cells into pParent. */ 8281 for(i=0; i<nNew-1; i++){ 8282 u8 *pCell; 8283 u8 *pTemp; 8284 int sz; 8285 u8 *pSrcEnd; 8286 MemPage *pNew = apNew[i]; 8287 j = cntNew[i]; 8288 8289 assert( j<nMaxCells ); 8290 assert( b.apCell[j]!=0 ); 8291 pCell = b.apCell[j]; 8292 sz = b.szCell[j] + leafCorrection; 8293 pTemp = &aOvflSpace[iOvflSpace]; 8294 if( !pNew->leaf ){ 8295 memcpy(&pNew->aData[8], pCell, 4); 8296 }else if( leafData ){ 8297 /* If the tree is a leaf-data tree, and the siblings are leaves, 8298 ** then there is no divider cell in b.apCell[]. Instead, the divider 8299 ** cell consists of the integer key for the right-most cell of 8300 ** the sibling-page assembled above only. 8301 */ 8302 CellInfo info; 8303 j--; 8304 pNew->xParseCell(pNew, b.apCell[j], &info); 8305 pCell = pTemp; 8306 sz = 4 + putVarint(&pCell[4], info.nKey); 8307 pTemp = 0; 8308 }else{ 8309 pCell -= 4; 8310 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8311 ** previously stored on a leaf node, and its reported size was 4 8312 ** bytes, then it may actually be smaller than this 8313 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8314 ** any cell). But it is important to pass the correct size to 8315 ** insertCell(), so reparse the cell now. 8316 ** 8317 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8318 ** and WITHOUT ROWID tables with exactly one column which is the 8319 ** primary key. 8320 */ 8321 if( b.szCell[j]==4 ){ 8322 assert(leafCorrection==4); 8323 sz = pParent->xCellSize(pParent, pCell); 8324 } 8325 } 8326 iOvflSpace += sz; 8327 assert( sz<=pBt->maxLocal+23 ); 8328 assert( iOvflSpace <= (int)pBt->pageSize ); 8329 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 8330 pSrcEnd = b.apEnd[k]; 8331 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8332 rc = SQLITE_CORRUPT_BKPT; 8333 goto balance_cleanup; 8334 } 8335 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8336 if( rc!=SQLITE_OK ) goto balance_cleanup; 8337 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8338 } 8339 8340 /* Now update the actual sibling pages. The order in which they are updated 8341 ** is important, as this code needs to avoid disrupting any page from which 8342 ** cells may still to be read. In practice, this means: 8343 ** 8344 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8345 ** then it is not safe to update page apNew[iPg] until after 8346 ** the left-hand sibling apNew[iPg-1] has been updated. 8347 ** 8348 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8349 ** then it is not safe to update page apNew[iPg] until after 8350 ** the right-hand sibling apNew[iPg+1] has been updated. 8351 ** 8352 ** If neither of the above apply, the page is safe to update. 8353 ** 8354 ** The iPg value in the following loop starts at nNew-1 goes down 8355 ** to 0, then back up to nNew-1 again, thus making two passes over 8356 ** the pages. On the initial downward pass, only condition (1) above 8357 ** needs to be tested because (2) will always be true from the previous 8358 ** step. On the upward pass, both conditions are always true, so the 8359 ** upwards pass simply processes pages that were missed on the downward 8360 ** pass. 8361 */ 8362 for(i=1-nNew; i<nNew; i++){ 8363 int iPg = i<0 ? -i : i; 8364 assert( iPg>=0 && iPg<nNew ); 8365 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8366 if( i>=0 /* On the upwards pass, or... */ 8367 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8368 ){ 8369 int iNew; 8370 int iOld; 8371 int nNewCell; 8372 8373 /* Verify condition (1): If cells are moving left, update iPg 8374 ** only after iPg-1 has already been updated. */ 8375 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8376 8377 /* Verify condition (2): If cells are moving right, update iPg 8378 ** only after iPg+1 has already been updated. */ 8379 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8380 8381 if( iPg==0 ){ 8382 iNew = iOld = 0; 8383 nNewCell = cntNew[0]; 8384 }else{ 8385 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8386 iNew = cntNew[iPg-1] + !leafData; 8387 nNewCell = cntNew[iPg] - iNew; 8388 } 8389 8390 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8391 if( rc ) goto balance_cleanup; 8392 abDone[iPg]++; 8393 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8394 assert( apNew[iPg]->nOverflow==0 ); 8395 assert( apNew[iPg]->nCell==nNewCell ); 8396 } 8397 } 8398 8399 /* All pages have been processed exactly once */ 8400 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8401 8402 assert( nOld>0 ); 8403 assert( nNew>0 ); 8404 8405 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8406 /* The root page of the b-tree now contains no cells. The only sibling 8407 ** page is the right-child of the parent. Copy the contents of the 8408 ** child page into the parent, decreasing the overall height of the 8409 ** b-tree structure by one. This is described as the "balance-shallower" 8410 ** sub-algorithm in some documentation. 8411 ** 8412 ** If this is an auto-vacuum database, the call to copyNodeContent() 8413 ** sets all pointer-map entries corresponding to database image pages 8414 ** for which the pointer is stored within the content being copied. 8415 ** 8416 ** It is critical that the child page be defragmented before being 8417 ** copied into the parent, because if the parent is page 1 then it will 8418 ** by smaller than the child due to the database header, and so all the 8419 ** free space needs to be up front. 8420 */ 8421 assert( nNew==1 || CORRUPT_DB ); 8422 rc = defragmentPage(apNew[0], -1); 8423 testcase( rc!=SQLITE_OK ); 8424 assert( apNew[0]->nFree == 8425 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8426 - apNew[0]->nCell*2) 8427 || rc!=SQLITE_OK 8428 ); 8429 copyNodeContent(apNew[0], pParent, &rc); 8430 freePage(apNew[0], &rc); 8431 }else if( ISAUTOVACUUM && !leafCorrection ){ 8432 /* Fix the pointer map entries associated with the right-child of each 8433 ** sibling page. All other pointer map entries have already been taken 8434 ** care of. */ 8435 for(i=0; i<nNew; i++){ 8436 u32 key = get4byte(&apNew[i]->aData[8]); 8437 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8438 } 8439 } 8440 8441 assert( pParent->isInit ); 8442 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8443 nOld, nNew, b.nCell)); 8444 8445 /* Free any old pages that were not reused as new pages. 8446 */ 8447 for(i=nNew; i<nOld; i++){ 8448 freePage(apOld[i], &rc); 8449 } 8450 8451 #if 0 8452 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8453 /* The ptrmapCheckPages() contains assert() statements that verify that 8454 ** all pointer map pages are set correctly. This is helpful while 8455 ** debugging. This is usually disabled because a corrupt database may 8456 ** cause an assert() statement to fail. */ 8457 ptrmapCheckPages(apNew, nNew); 8458 ptrmapCheckPages(&pParent, 1); 8459 } 8460 #endif 8461 8462 /* 8463 ** Cleanup before returning. 8464 */ 8465 balance_cleanup: 8466 sqlite3StackFree(0, b.apCell); 8467 for(i=0; i<nOld; i++){ 8468 releasePage(apOld[i]); 8469 } 8470 for(i=0; i<nNew; i++){ 8471 releasePage(apNew[i]); 8472 } 8473 8474 return rc; 8475 } 8476 8477 8478 /* 8479 ** This function is called when the root page of a b-tree structure is 8480 ** overfull (has one or more overflow pages). 8481 ** 8482 ** A new child page is allocated and the contents of the current root 8483 ** page, including overflow cells, are copied into the child. The root 8484 ** page is then overwritten to make it an empty page with the right-child 8485 ** pointer pointing to the new page. 8486 ** 8487 ** Before returning, all pointer-map entries corresponding to pages 8488 ** that the new child-page now contains pointers to are updated. The 8489 ** entry corresponding to the new right-child pointer of the root 8490 ** page is also updated. 8491 ** 8492 ** If successful, *ppChild is set to contain a reference to the child 8493 ** page and SQLITE_OK is returned. In this case the caller is required 8494 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8495 ** an error code is returned and *ppChild is set to 0. 8496 */ 8497 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8498 int rc; /* Return value from subprocedures */ 8499 MemPage *pChild = 0; /* Pointer to a new child page */ 8500 Pgno pgnoChild = 0; /* Page number of the new child page */ 8501 BtShared *pBt = pRoot->pBt; /* The BTree */ 8502 8503 assert( pRoot->nOverflow>0 ); 8504 assert( sqlite3_mutex_held(pBt->mutex) ); 8505 8506 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8507 ** page that will become the new right-child of pPage. Copy the contents 8508 ** of the node stored on pRoot into the new child page. 8509 */ 8510 rc = sqlite3PagerWrite(pRoot->pDbPage); 8511 if( rc==SQLITE_OK ){ 8512 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8513 copyNodeContent(pRoot, pChild, &rc); 8514 if( ISAUTOVACUUM ){ 8515 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8516 } 8517 } 8518 if( rc ){ 8519 *ppChild = 0; 8520 releasePage(pChild); 8521 return rc; 8522 } 8523 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8524 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8525 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8526 8527 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8528 8529 /* Copy the overflow cells from pRoot to pChild */ 8530 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8531 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8532 memcpy(pChild->apOvfl, pRoot->apOvfl, 8533 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8534 pChild->nOverflow = pRoot->nOverflow; 8535 8536 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8537 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8538 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8539 8540 *ppChild = pChild; 8541 return SQLITE_OK; 8542 } 8543 8544 /* 8545 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8546 ** on the same B-tree as pCur. 8547 ** 8548 ** This can occur if a database is corrupt with two or more SQL tables 8549 ** pointing to the same b-tree. If an insert occurs on one SQL table 8550 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8551 ** table linked to the same b-tree. If the secondary insert causes a 8552 ** rebalance, that can change content out from under the cursor on the 8553 ** first SQL table, violating invariants on the first insert. 8554 */ 8555 static int anotherValidCursor(BtCursor *pCur){ 8556 BtCursor *pOther; 8557 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8558 if( pOther!=pCur 8559 && pOther->eState==CURSOR_VALID 8560 && pOther->pPage==pCur->pPage 8561 ){ 8562 return SQLITE_CORRUPT_BKPT; 8563 } 8564 } 8565 return SQLITE_OK; 8566 } 8567 8568 /* 8569 ** The page that pCur currently points to has just been modified in 8570 ** some way. This function figures out if this modification means the 8571 ** tree needs to be balanced, and if so calls the appropriate balancing 8572 ** routine. Balancing routines are: 8573 ** 8574 ** balance_quick() 8575 ** balance_deeper() 8576 ** balance_nonroot() 8577 */ 8578 static int balance(BtCursor *pCur){ 8579 int rc = SQLITE_OK; 8580 const int nMin = pCur->pBt->usableSize * 2 / 3; 8581 u8 aBalanceQuickSpace[13]; 8582 u8 *pFree = 0; 8583 8584 VVA_ONLY( int balance_quick_called = 0 ); 8585 VVA_ONLY( int balance_deeper_called = 0 ); 8586 8587 do { 8588 int iPage; 8589 MemPage *pPage = pCur->pPage; 8590 8591 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8592 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ 8593 break; 8594 }else if( (iPage = pCur->iPage)==0 ){ 8595 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8596 /* The root page of the b-tree is overfull. In this case call the 8597 ** balance_deeper() function to create a new child for the root-page 8598 ** and copy the current contents of the root-page to it. The 8599 ** next iteration of the do-loop will balance the child page. 8600 */ 8601 assert( balance_deeper_called==0 ); 8602 VVA_ONLY( balance_deeper_called++ ); 8603 rc = balance_deeper(pPage, &pCur->apPage[1]); 8604 if( rc==SQLITE_OK ){ 8605 pCur->iPage = 1; 8606 pCur->ix = 0; 8607 pCur->aiIdx[0] = 0; 8608 pCur->apPage[0] = pPage; 8609 pCur->pPage = pCur->apPage[1]; 8610 assert( pCur->pPage->nOverflow ); 8611 } 8612 }else{ 8613 break; 8614 } 8615 }else{ 8616 MemPage * const pParent = pCur->apPage[iPage-1]; 8617 int const iIdx = pCur->aiIdx[iPage-1]; 8618 8619 rc = sqlite3PagerWrite(pParent->pDbPage); 8620 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8621 rc = btreeComputeFreeSpace(pParent); 8622 } 8623 if( rc==SQLITE_OK ){ 8624 #ifndef SQLITE_OMIT_QUICKBALANCE 8625 if( pPage->intKeyLeaf 8626 && pPage->nOverflow==1 8627 && pPage->aiOvfl[0]==pPage->nCell 8628 && pParent->pgno!=1 8629 && pParent->nCell==iIdx 8630 ){ 8631 /* Call balance_quick() to create a new sibling of pPage on which 8632 ** to store the overflow cell. balance_quick() inserts a new cell 8633 ** into pParent, which may cause pParent overflow. If this 8634 ** happens, the next iteration of the do-loop will balance pParent 8635 ** use either balance_nonroot() or balance_deeper(). Until this 8636 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8637 ** buffer. 8638 ** 8639 ** The purpose of the following assert() is to check that only a 8640 ** single call to balance_quick() is made for each call to this 8641 ** function. If this were not verified, a subtle bug involving reuse 8642 ** of the aBalanceQuickSpace[] might sneak in. 8643 */ 8644 assert( balance_quick_called==0 ); 8645 VVA_ONLY( balance_quick_called++ ); 8646 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8647 }else 8648 #endif 8649 { 8650 /* In this case, call balance_nonroot() to redistribute cells 8651 ** between pPage and up to 2 of its sibling pages. This involves 8652 ** modifying the contents of pParent, which may cause pParent to 8653 ** become overfull or underfull. The next iteration of the do-loop 8654 ** will balance the parent page to correct this. 8655 ** 8656 ** If the parent page becomes overfull, the overflow cell or cells 8657 ** are stored in the pSpace buffer allocated immediately below. 8658 ** A subsequent iteration of the do-loop will deal with this by 8659 ** calling balance_nonroot() (balance_deeper() may be called first, 8660 ** but it doesn't deal with overflow cells - just moves them to a 8661 ** different page). Once this subsequent call to balance_nonroot() 8662 ** has completed, it is safe to release the pSpace buffer used by 8663 ** the previous call, as the overflow cell data will have been 8664 ** copied either into the body of a database page or into the new 8665 ** pSpace buffer passed to the latter call to balance_nonroot(). 8666 */ 8667 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8668 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8669 pCur->hints&BTREE_BULKLOAD); 8670 if( pFree ){ 8671 /* If pFree is not NULL, it points to the pSpace buffer used 8672 ** by a previous call to balance_nonroot(). Its contents are 8673 ** now stored either on real database pages or within the 8674 ** new pSpace buffer, so it may be safely freed here. */ 8675 sqlite3PageFree(pFree); 8676 } 8677 8678 /* The pSpace buffer will be freed after the next call to 8679 ** balance_nonroot(), or just before this function returns, whichever 8680 ** comes first. */ 8681 pFree = pSpace; 8682 } 8683 } 8684 8685 pPage->nOverflow = 0; 8686 8687 /* The next iteration of the do-loop balances the parent page. */ 8688 releasePage(pPage); 8689 pCur->iPage--; 8690 assert( pCur->iPage>=0 ); 8691 pCur->pPage = pCur->apPage[pCur->iPage]; 8692 } 8693 }while( rc==SQLITE_OK ); 8694 8695 if( pFree ){ 8696 sqlite3PageFree(pFree); 8697 } 8698 return rc; 8699 } 8700 8701 /* Overwrite content from pX into pDest. Only do the write if the 8702 ** content is different from what is already there. 8703 */ 8704 static int btreeOverwriteContent( 8705 MemPage *pPage, /* MemPage on which writing will occur */ 8706 u8 *pDest, /* Pointer to the place to start writing */ 8707 const BtreePayload *pX, /* Source of data to write */ 8708 int iOffset, /* Offset of first byte to write */ 8709 int iAmt /* Number of bytes to be written */ 8710 ){ 8711 int nData = pX->nData - iOffset; 8712 if( nData<=0 ){ 8713 /* Overwritting with zeros */ 8714 int i; 8715 for(i=0; i<iAmt && pDest[i]==0; i++){} 8716 if( i<iAmt ){ 8717 int rc = sqlite3PagerWrite(pPage->pDbPage); 8718 if( rc ) return rc; 8719 memset(pDest + i, 0, iAmt - i); 8720 } 8721 }else{ 8722 if( nData<iAmt ){ 8723 /* Mixed read data and zeros at the end. Make a recursive call 8724 ** to write the zeros then fall through to write the real data */ 8725 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8726 iAmt-nData); 8727 if( rc ) return rc; 8728 iAmt = nData; 8729 } 8730 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8731 int rc = sqlite3PagerWrite(pPage->pDbPage); 8732 if( rc ) return rc; 8733 /* In a corrupt database, it is possible for the source and destination 8734 ** buffers to overlap. This is harmless since the database is already 8735 ** corrupt but it does cause valgrind and ASAN warnings. So use 8736 ** memmove(). */ 8737 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8738 } 8739 } 8740 return SQLITE_OK; 8741 } 8742 8743 /* 8744 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8745 ** contained in pX. 8746 */ 8747 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8748 int iOffset; /* Next byte of pX->pData to write */ 8749 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8750 int rc; /* Return code */ 8751 MemPage *pPage = pCur->pPage; /* Page being written */ 8752 BtShared *pBt; /* Btree */ 8753 Pgno ovflPgno; /* Next overflow page to write */ 8754 u32 ovflPageSize; /* Size to write on overflow page */ 8755 8756 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8757 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8758 ){ 8759 return SQLITE_CORRUPT_BKPT; 8760 } 8761 /* Overwrite the local portion first */ 8762 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8763 0, pCur->info.nLocal); 8764 if( rc ) return rc; 8765 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8766 8767 /* Now overwrite the overflow pages */ 8768 iOffset = pCur->info.nLocal; 8769 assert( nTotal>=0 ); 8770 assert( iOffset>=0 ); 8771 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8772 pBt = pPage->pBt; 8773 ovflPageSize = pBt->usableSize - 4; 8774 do{ 8775 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8776 if( rc ) return rc; 8777 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8778 rc = SQLITE_CORRUPT_BKPT; 8779 }else{ 8780 if( iOffset+ovflPageSize<(u32)nTotal ){ 8781 ovflPgno = get4byte(pPage->aData); 8782 }else{ 8783 ovflPageSize = nTotal - iOffset; 8784 } 8785 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8786 iOffset, ovflPageSize); 8787 } 8788 sqlite3PagerUnref(pPage->pDbPage); 8789 if( rc ) return rc; 8790 iOffset += ovflPageSize; 8791 }while( iOffset<nTotal ); 8792 return SQLITE_OK; 8793 } 8794 8795 8796 /* 8797 ** Insert a new record into the BTree. The content of the new record 8798 ** is described by the pX object. The pCur cursor is used only to 8799 ** define what table the record should be inserted into, and is left 8800 ** pointing at a random location. 8801 ** 8802 ** For a table btree (used for rowid tables), only the pX.nKey value of 8803 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8804 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8805 ** hold the content of the row. 8806 ** 8807 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8808 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8809 ** pX.pData,nData,nZero fields must be zero. 8810 ** 8811 ** If the seekResult parameter is non-zero, then a successful call to 8812 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already 8813 ** been performed. In other words, if seekResult!=0 then the cursor 8814 ** is currently pointing to a cell that will be adjacent to the cell 8815 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8816 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8817 ** that is larger than (pKey,nKey). 8818 ** 8819 ** If seekResult==0, that means pCur is pointing at some unknown location. 8820 ** In that case, this routine must seek the cursor to the correct insertion 8821 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8822 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8823 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8824 ** to decode the key. 8825 */ 8826 int sqlite3BtreeInsert( 8827 BtCursor *pCur, /* Insert data into the table of this cursor */ 8828 const BtreePayload *pX, /* Content of the row to be inserted */ 8829 int flags, /* True if this is likely an append */ 8830 int seekResult /* Result of prior MovetoUnpacked() call */ 8831 ){ 8832 int rc; 8833 int loc = seekResult; /* -1: before desired location +1: after */ 8834 int szNew = 0; 8835 int idx; 8836 MemPage *pPage; 8837 Btree *p = pCur->pBtree; 8838 BtShared *pBt = p->pBt; 8839 unsigned char *oldCell; 8840 unsigned char *newCell = 0; 8841 8842 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 8843 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 8844 8845 if( pCur->eState==CURSOR_FAULT ){ 8846 assert( pCur->skipNext!=SQLITE_OK ); 8847 return pCur->skipNext; 8848 } 8849 8850 assert( cursorOwnsBtShared(pCur) ); 8851 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 8852 && pBt->inTransaction==TRANS_WRITE 8853 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 8854 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 8855 8856 /* Assert that the caller has been consistent. If this cursor was opened 8857 ** expecting an index b-tree, then the caller should be inserting blob 8858 ** keys with no associated data. If the cursor was opened expecting an 8859 ** intkey table, the caller should be inserting integer keys with a 8860 ** blob of associated data. */ 8861 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 8862 8863 /* Save the positions of any other cursors open on this table. 8864 ** 8865 ** In some cases, the call to btreeMoveto() below is a no-op. For 8866 ** example, when inserting data into a table with auto-generated integer 8867 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 8868 ** integer key to use. It then calls this function to actually insert the 8869 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 8870 ** that the cursor is already where it needs to be and returns without 8871 ** doing any work. To avoid thwarting these optimizations, it is important 8872 ** not to clear the cursor here. 8873 */ 8874 if( pCur->curFlags & BTCF_Multiple ){ 8875 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 8876 if( rc ) return rc; 8877 if( loc && pCur->iPage<0 ){ 8878 /* This can only happen if the schema is corrupt such that there is more 8879 ** than one table or index with the same root page as used by the cursor. 8880 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 8881 ** the schema was loaded. This cannot be asserted though, as a user might 8882 ** set the flag, load the schema, and then unset the flag. */ 8883 return SQLITE_CORRUPT_BKPT; 8884 } 8885 } 8886 8887 if( pCur->pKeyInfo==0 ){ 8888 assert( pX->pKey==0 ); 8889 /* If this is an insert into a table b-tree, invalidate any incrblob 8890 ** cursors open on the row being replaced */ 8891 if( p->hasIncrblobCur ){ 8892 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 8893 } 8894 8895 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8896 ** to a row with the same key as the new entry being inserted. 8897 */ 8898 #ifdef SQLITE_DEBUG 8899 if( flags & BTREE_SAVEPOSITION ){ 8900 assert( pCur->curFlags & BTCF_ValidNKey ); 8901 assert( pX->nKey==pCur->info.nKey ); 8902 assert( loc==0 ); 8903 } 8904 #endif 8905 8906 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 8907 ** that the cursor is not pointing to a row to be overwritten. 8908 ** So do a complete check. 8909 */ 8910 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 8911 /* The cursor is pointing to the entry that is to be 8912 ** overwritten */ 8913 assert( pX->nData>=0 && pX->nZero>=0 ); 8914 if( pCur->info.nSize!=0 8915 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 8916 ){ 8917 /* New entry is the same size as the old. Do an overwrite */ 8918 return btreeOverwriteCell(pCur, pX); 8919 } 8920 assert( loc==0 ); 8921 }else if( loc==0 ){ 8922 /* The cursor is *not* pointing to the cell to be overwritten, nor 8923 ** to an adjacent cell. Move the cursor so that it is pointing either 8924 ** to the cell to be overwritten or an adjacent cell. 8925 */ 8926 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 8927 (flags & BTREE_APPEND)!=0, &loc); 8928 if( rc ) return rc; 8929 } 8930 }else{ 8931 /* This is an index or a WITHOUT ROWID table */ 8932 8933 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 8934 ** to a row with the same key as the new entry being inserted. 8935 */ 8936 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 8937 8938 /* If the cursor is not already pointing either to the cell to be 8939 ** overwritten, or if a new cell is being inserted, if the cursor is 8940 ** not pointing to an immediately adjacent cell, then move the cursor 8941 ** so that it does. 8942 */ 8943 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 8944 if( pX->nMem ){ 8945 UnpackedRecord r; 8946 r.pKeyInfo = pCur->pKeyInfo; 8947 r.aMem = pX->aMem; 8948 r.nField = pX->nMem; 8949 r.default_rc = 0; 8950 r.eqSeen = 0; 8951 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 8952 }else{ 8953 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 8954 (flags & BTREE_APPEND)!=0, &loc); 8955 } 8956 if( rc ) return rc; 8957 } 8958 8959 /* If the cursor is currently pointing to an entry to be overwritten 8960 ** and the new content is the same as as the old, then use the 8961 ** overwrite optimization. 8962 */ 8963 if( loc==0 ){ 8964 getCellInfo(pCur); 8965 if( pCur->info.nKey==pX->nKey ){ 8966 BtreePayload x2; 8967 x2.pData = pX->pKey; 8968 x2.nData = pX->nKey; 8969 x2.nZero = 0; 8970 return btreeOverwriteCell(pCur, &x2); 8971 } 8972 } 8973 } 8974 assert( pCur->eState==CURSOR_VALID 8975 || (pCur->eState==CURSOR_INVALID && loc) 8976 || CORRUPT_DB ); 8977 8978 pPage = pCur->pPage; 8979 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 8980 assert( pPage->leaf || !pPage->intKey ); 8981 if( pPage->nFree<0 ){ 8982 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 8983 rc = SQLITE_CORRUPT_BKPT; 8984 }else{ 8985 rc = btreeComputeFreeSpace(pPage); 8986 } 8987 if( rc ) return rc; 8988 } 8989 8990 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 8991 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 8992 loc==0 ? "overwrite" : "new entry")); 8993 assert( pPage->isInit ); 8994 newCell = pBt->pTmpSpace; 8995 assert( newCell!=0 ); 8996 if( flags & BTREE_PREFORMAT ){ 8997 rc = SQLITE_OK; 8998 szNew = pBt->nPreformatSize; 8999 if( szNew<4 ) szNew = 4; 9000 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9001 CellInfo info; 9002 pPage->xParseCell(pPage, newCell, &info); 9003 if( info.nPayload!=info.nLocal ){ 9004 Pgno ovfl = get4byte(&newCell[szNew-4]); 9005 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9006 } 9007 } 9008 }else{ 9009 rc = fillInCell(pPage, newCell, pX, &szNew); 9010 } 9011 if( rc ) goto end_insert; 9012 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9013 assert( szNew <= MX_CELL_SIZE(pBt) ); 9014 idx = pCur->ix; 9015 if( loc==0 ){ 9016 CellInfo info; 9017 assert( idx>=0 ); 9018 if( idx>=pPage->nCell ){ 9019 return SQLITE_CORRUPT_BKPT; 9020 } 9021 rc = sqlite3PagerWrite(pPage->pDbPage); 9022 if( rc ){ 9023 goto end_insert; 9024 } 9025 oldCell = findCell(pPage, idx); 9026 if( !pPage->leaf ){ 9027 memcpy(newCell, oldCell, 4); 9028 } 9029 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9030 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9031 invalidateOverflowCache(pCur); 9032 if( info.nSize==szNew && info.nLocal==info.nPayload 9033 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9034 ){ 9035 /* Overwrite the old cell with the new if they are the same size. 9036 ** We could also try to do this if the old cell is smaller, then add 9037 ** the leftover space to the free list. But experiments show that 9038 ** doing that is no faster then skipping this optimization and just 9039 ** calling dropCell() and insertCell(). 9040 ** 9041 ** This optimization cannot be used on an autovacuum database if the 9042 ** new entry uses overflow pages, as the insertCell() call below is 9043 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9044 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9045 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9046 return SQLITE_CORRUPT_BKPT; 9047 } 9048 if( oldCell+szNew > pPage->aDataEnd ){ 9049 return SQLITE_CORRUPT_BKPT; 9050 } 9051 memcpy(oldCell, newCell, szNew); 9052 return SQLITE_OK; 9053 } 9054 dropCell(pPage, idx, info.nSize, &rc); 9055 if( rc ) goto end_insert; 9056 }else if( loc<0 && pPage->nCell>0 ){ 9057 assert( pPage->leaf ); 9058 idx = ++pCur->ix; 9059 pCur->curFlags &= ~BTCF_ValidNKey; 9060 }else{ 9061 assert( pPage->leaf ); 9062 } 9063 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9064 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9065 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9066 9067 /* If no error has occurred and pPage has an overflow cell, call balance() 9068 ** to redistribute the cells within the tree. Since balance() may move 9069 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9070 ** variables. 9071 ** 9072 ** Previous versions of SQLite called moveToRoot() to move the cursor 9073 ** back to the root page as balance() used to invalidate the contents 9074 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9075 ** set the cursor state to "invalid". This makes common insert operations 9076 ** slightly faster. 9077 ** 9078 ** There is a subtle but important optimization here too. When inserting 9079 ** multiple records into an intkey b-tree using a single cursor (as can 9080 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9081 ** is advantageous to leave the cursor pointing to the last entry in 9082 ** the b-tree if possible. If the cursor is left pointing to the last 9083 ** entry in the table, and the next row inserted has an integer key 9084 ** larger than the largest existing key, it is possible to insert the 9085 ** row without seeking the cursor. This can be a big performance boost. 9086 */ 9087 pCur->info.nSize = 0; 9088 if( pPage->nOverflow ){ 9089 assert( rc==SQLITE_OK ); 9090 pCur->curFlags &= ~(BTCF_ValidNKey); 9091 rc = balance(pCur); 9092 9093 /* Must make sure nOverflow is reset to zero even if the balance() 9094 ** fails. Internal data structure corruption will result otherwise. 9095 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9096 ** from trying to save the current position of the cursor. */ 9097 pCur->pPage->nOverflow = 0; 9098 pCur->eState = CURSOR_INVALID; 9099 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9100 btreeReleaseAllCursorPages(pCur); 9101 if( pCur->pKeyInfo ){ 9102 assert( pCur->pKey==0 ); 9103 pCur->pKey = sqlite3Malloc( pX->nKey ); 9104 if( pCur->pKey==0 ){ 9105 rc = SQLITE_NOMEM; 9106 }else{ 9107 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9108 } 9109 } 9110 pCur->eState = CURSOR_REQUIRESEEK; 9111 pCur->nKey = pX->nKey; 9112 } 9113 } 9114 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9115 9116 end_insert: 9117 return rc; 9118 } 9119 9120 /* 9121 ** This function is used as part of copying the current row from cursor 9122 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9123 ** parameter iKey is used as the rowid value when the record is copied 9124 ** into pDest. Otherwise, the record is copied verbatim. 9125 ** 9126 ** This function does not actually write the new value to cursor pDest. 9127 ** Instead, it creates and populates any required overflow pages and 9128 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9129 ** for the destination database. The size of the cell, in bytes, is left 9130 ** in BtShared.nPreformatSize. The caller completes the insertion by 9131 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9132 ** 9133 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9134 */ 9135 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9136 int rc = SQLITE_OK; 9137 BtShared *pBt = pDest->pBt; 9138 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9139 const u8 *aIn; /* Pointer to next input buffer */ 9140 u32 nIn; /* Size of input buffer aIn[] */ 9141 u32 nRem; /* Bytes of data still to copy */ 9142 9143 getCellInfo(pSrc); 9144 aOut += putVarint32(aOut, pSrc->info.nPayload); 9145 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9146 nIn = pSrc->info.nLocal; 9147 aIn = pSrc->info.pPayload; 9148 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9149 return SQLITE_CORRUPT_BKPT; 9150 } 9151 nRem = pSrc->info.nPayload; 9152 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9153 memcpy(aOut, aIn, nIn); 9154 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9155 }else{ 9156 Pager *pSrcPager = pSrc->pBt->pPager; 9157 u8 *pPgnoOut = 0; 9158 Pgno ovflIn = 0; 9159 DbPage *pPageIn = 0; 9160 MemPage *pPageOut = 0; 9161 u32 nOut; /* Size of output buffer aOut[] */ 9162 9163 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9164 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9165 if( nOut<pSrc->info.nPayload ){ 9166 pPgnoOut = &aOut[nOut]; 9167 pBt->nPreformatSize += 4; 9168 } 9169 9170 if( nRem>nIn ){ 9171 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9172 return SQLITE_CORRUPT_BKPT; 9173 } 9174 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9175 } 9176 9177 do { 9178 nRem -= nOut; 9179 do{ 9180 assert( nOut>0 ); 9181 if( nIn>0 ){ 9182 int nCopy = MIN(nOut, nIn); 9183 memcpy(aOut, aIn, nCopy); 9184 nOut -= nCopy; 9185 nIn -= nCopy; 9186 aOut += nCopy; 9187 aIn += nCopy; 9188 } 9189 if( nOut>0 ){ 9190 sqlite3PagerUnref(pPageIn); 9191 pPageIn = 0; 9192 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9193 if( rc==SQLITE_OK ){ 9194 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9195 ovflIn = get4byte(aIn); 9196 aIn += 4; 9197 nIn = pSrc->pBt->usableSize - 4; 9198 } 9199 } 9200 }while( rc==SQLITE_OK && nOut>0 ); 9201 9202 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9203 Pgno pgnoNew; 9204 MemPage *pNew = 0; 9205 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9206 put4byte(pPgnoOut, pgnoNew); 9207 if( ISAUTOVACUUM && pPageOut ){ 9208 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9209 } 9210 releasePage(pPageOut); 9211 pPageOut = pNew; 9212 if( pPageOut ){ 9213 pPgnoOut = pPageOut->aData; 9214 put4byte(pPgnoOut, 0); 9215 aOut = &pPgnoOut[4]; 9216 nOut = MIN(pBt->usableSize - 4, nRem); 9217 } 9218 } 9219 }while( nRem>0 && rc==SQLITE_OK ); 9220 9221 releasePage(pPageOut); 9222 sqlite3PagerUnref(pPageIn); 9223 } 9224 9225 return rc; 9226 } 9227 9228 /* 9229 ** Delete the entry that the cursor is pointing to. 9230 ** 9231 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9232 ** the cursor is left pointing at an arbitrary location after the delete. 9233 ** But if that bit is set, then the cursor is left in a state such that 9234 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9235 ** as it would have been on if the call to BtreeDelete() had been omitted. 9236 ** 9237 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9238 ** associated with a single table entry and its indexes. Only one of those 9239 ** deletes is considered the "primary" delete. The primary delete occurs 9240 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9241 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9242 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9243 ** but which might be used by alternative storage engines. 9244 */ 9245 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9246 Btree *p = pCur->pBtree; 9247 BtShared *pBt = p->pBt; 9248 int rc; /* Return code */ 9249 MemPage *pPage; /* Page to delete cell from */ 9250 unsigned char *pCell; /* Pointer to cell to delete */ 9251 int iCellIdx; /* Index of cell to delete */ 9252 int iCellDepth; /* Depth of node containing pCell */ 9253 CellInfo info; /* Size of the cell being deleted */ 9254 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9255 9256 assert( cursorOwnsBtShared(pCur) ); 9257 assert( pBt->inTransaction==TRANS_WRITE ); 9258 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9259 assert( pCur->curFlags & BTCF_WriteFlag ); 9260 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9261 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9262 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9263 if( pCur->eState==CURSOR_REQUIRESEEK ){ 9264 rc = btreeRestoreCursorPosition(pCur); 9265 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9266 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9267 } 9268 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9269 9270 iCellDepth = pCur->iPage; 9271 iCellIdx = pCur->ix; 9272 pPage = pCur->pPage; 9273 if( pPage->nCell<=iCellIdx ){ 9274 return SQLITE_CORRUPT_BKPT; 9275 } 9276 pCell = findCell(pPage, iCellIdx); 9277 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9278 return SQLITE_CORRUPT_BKPT; 9279 } 9280 9281 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9282 ** be preserved following this delete operation. If the current delete 9283 ** will cause a b-tree rebalance, then this is done by saving the cursor 9284 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9285 ** returning. 9286 ** 9287 ** If the current delete will not cause a rebalance, then the cursor 9288 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9289 ** before or after the deleted entry. 9290 ** 9291 ** The bPreserve value records which path is required: 9292 ** 9293 ** bPreserve==0 Not necessary to save the cursor position 9294 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9295 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9296 */ 9297 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9298 if( bPreserve ){ 9299 if( !pPage->leaf 9300 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) 9301 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9302 ){ 9303 /* A b-tree rebalance will be required after deleting this entry. 9304 ** Save the cursor key. */ 9305 rc = saveCursorKey(pCur); 9306 if( rc ) return rc; 9307 }else{ 9308 bPreserve = 2; 9309 } 9310 } 9311 9312 /* If the page containing the entry to delete is not a leaf page, move 9313 ** the cursor to the largest entry in the tree that is smaller than 9314 ** the entry being deleted. This cell will replace the cell being deleted 9315 ** from the internal node. The 'previous' entry is used for this instead 9316 ** of the 'next' entry, as the previous entry is always a part of the 9317 ** sub-tree headed by the child page of the cell being deleted. This makes 9318 ** balancing the tree following the delete operation easier. */ 9319 if( !pPage->leaf ){ 9320 rc = sqlite3BtreePrevious(pCur, 0); 9321 assert( rc!=SQLITE_DONE ); 9322 if( rc ) return rc; 9323 } 9324 9325 /* Save the positions of any other cursors open on this table before 9326 ** making any modifications. */ 9327 if( pCur->curFlags & BTCF_Multiple ){ 9328 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9329 if( rc ) return rc; 9330 } 9331 9332 /* If this is a delete operation to remove a row from a table b-tree, 9333 ** invalidate any incrblob cursors open on the row being deleted. */ 9334 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9335 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9336 } 9337 9338 /* Make the page containing the entry to be deleted writable. Then free any 9339 ** overflow pages associated with the entry and finally remove the cell 9340 ** itself from within the page. */ 9341 rc = sqlite3PagerWrite(pPage->pDbPage); 9342 if( rc ) return rc; 9343 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9344 dropCell(pPage, iCellIdx, info.nSize, &rc); 9345 if( rc ) return rc; 9346 9347 /* If the cell deleted was not located on a leaf page, then the cursor 9348 ** is currently pointing to the largest entry in the sub-tree headed 9349 ** by the child-page of the cell that was just deleted from an internal 9350 ** node. The cell from the leaf node needs to be moved to the internal 9351 ** node to replace the deleted cell. */ 9352 if( !pPage->leaf ){ 9353 MemPage *pLeaf = pCur->pPage; 9354 int nCell; 9355 Pgno n; 9356 unsigned char *pTmp; 9357 9358 if( pLeaf->nFree<0 ){ 9359 rc = btreeComputeFreeSpace(pLeaf); 9360 if( rc ) return rc; 9361 } 9362 if( iCellDepth<pCur->iPage-1 ){ 9363 n = pCur->apPage[iCellDepth+1]->pgno; 9364 }else{ 9365 n = pCur->pPage->pgno; 9366 } 9367 pCell = findCell(pLeaf, pLeaf->nCell-1); 9368 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9369 nCell = pLeaf->xCellSize(pLeaf, pCell); 9370 assert( MX_CELL_SIZE(pBt) >= nCell ); 9371 pTmp = pBt->pTmpSpace; 9372 assert( pTmp!=0 ); 9373 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9374 if( rc==SQLITE_OK ){ 9375 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9376 } 9377 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9378 if( rc ) return rc; 9379 } 9380 9381 /* Balance the tree. If the entry deleted was located on a leaf page, 9382 ** then the cursor still points to that page. In this case the first 9383 ** call to balance() repairs the tree, and the if(...) condition is 9384 ** never true. 9385 ** 9386 ** Otherwise, if the entry deleted was on an internal node page, then 9387 ** pCur is pointing to the leaf page from which a cell was removed to 9388 ** replace the cell deleted from the internal node. This is slightly 9389 ** tricky as the leaf node may be underfull, and the internal node may 9390 ** be either under or overfull. In this case run the balancing algorithm 9391 ** on the leaf node first. If the balance proceeds far enough up the 9392 ** tree that we can be sure that any problem in the internal node has 9393 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9394 ** walk the cursor up the tree to the internal node and balance it as 9395 ** well. */ 9396 rc = balance(pCur); 9397 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9398 releasePageNotNull(pCur->pPage); 9399 pCur->iPage--; 9400 while( pCur->iPage>iCellDepth ){ 9401 releasePage(pCur->apPage[pCur->iPage--]); 9402 } 9403 pCur->pPage = pCur->apPage[pCur->iPage]; 9404 rc = balance(pCur); 9405 } 9406 9407 if( rc==SQLITE_OK ){ 9408 if( bPreserve>1 ){ 9409 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9410 assert( pPage==pCur->pPage || CORRUPT_DB ); 9411 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9412 pCur->eState = CURSOR_SKIPNEXT; 9413 if( iCellIdx>=pPage->nCell ){ 9414 pCur->skipNext = -1; 9415 pCur->ix = pPage->nCell-1; 9416 }else{ 9417 pCur->skipNext = 1; 9418 } 9419 }else{ 9420 rc = moveToRoot(pCur); 9421 if( bPreserve ){ 9422 btreeReleaseAllCursorPages(pCur); 9423 pCur->eState = CURSOR_REQUIRESEEK; 9424 } 9425 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9426 } 9427 } 9428 return rc; 9429 } 9430 9431 /* 9432 ** Create a new BTree table. Write into *piTable the page 9433 ** number for the root page of the new table. 9434 ** 9435 ** The type of type is determined by the flags parameter. Only the 9436 ** following values of flags are currently in use. Other values for 9437 ** flags might not work: 9438 ** 9439 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9440 ** BTREE_ZERODATA Used for SQL indices 9441 */ 9442 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9443 BtShared *pBt = p->pBt; 9444 MemPage *pRoot; 9445 Pgno pgnoRoot; 9446 int rc; 9447 int ptfFlags; /* Page-type flage for the root page of new table */ 9448 9449 assert( sqlite3BtreeHoldsMutex(p) ); 9450 assert( pBt->inTransaction==TRANS_WRITE ); 9451 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9452 9453 #ifdef SQLITE_OMIT_AUTOVACUUM 9454 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9455 if( rc ){ 9456 return rc; 9457 } 9458 #else 9459 if( pBt->autoVacuum ){ 9460 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9461 MemPage *pPageMove; /* The page to move to. */ 9462 9463 /* Creating a new table may probably require moving an existing database 9464 ** to make room for the new tables root page. In case this page turns 9465 ** out to be an overflow page, delete all overflow page-map caches 9466 ** held by open cursors. 9467 */ 9468 invalidateAllOverflowCache(pBt); 9469 9470 /* Read the value of meta[3] from the database to determine where the 9471 ** root page of the new table should go. meta[3] is the largest root-page 9472 ** created so far, so the new root-page is (meta[3]+1). 9473 */ 9474 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9475 if( pgnoRoot>btreePagecount(pBt) ){ 9476 return SQLITE_CORRUPT_BKPT; 9477 } 9478 pgnoRoot++; 9479 9480 /* The new root-page may not be allocated on a pointer-map page, or the 9481 ** PENDING_BYTE page. 9482 */ 9483 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9484 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9485 pgnoRoot++; 9486 } 9487 assert( pgnoRoot>=3 ); 9488 9489 /* Allocate a page. The page that currently resides at pgnoRoot will 9490 ** be moved to the allocated page (unless the allocated page happens 9491 ** to reside at pgnoRoot). 9492 */ 9493 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9494 if( rc!=SQLITE_OK ){ 9495 return rc; 9496 } 9497 9498 if( pgnoMove!=pgnoRoot ){ 9499 /* pgnoRoot is the page that will be used for the root-page of 9500 ** the new table (assuming an error did not occur). But we were 9501 ** allocated pgnoMove. If required (i.e. if it was not allocated 9502 ** by extending the file), the current page at position pgnoMove 9503 ** is already journaled. 9504 */ 9505 u8 eType = 0; 9506 Pgno iPtrPage = 0; 9507 9508 /* Save the positions of any open cursors. This is required in 9509 ** case they are holding a reference to an xFetch reference 9510 ** corresponding to page pgnoRoot. */ 9511 rc = saveAllCursors(pBt, 0, 0); 9512 releasePage(pPageMove); 9513 if( rc!=SQLITE_OK ){ 9514 return rc; 9515 } 9516 9517 /* Move the page currently at pgnoRoot to pgnoMove. */ 9518 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9519 if( rc!=SQLITE_OK ){ 9520 return rc; 9521 } 9522 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9523 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9524 rc = SQLITE_CORRUPT_BKPT; 9525 } 9526 if( rc!=SQLITE_OK ){ 9527 releasePage(pRoot); 9528 return rc; 9529 } 9530 assert( eType!=PTRMAP_ROOTPAGE ); 9531 assert( eType!=PTRMAP_FREEPAGE ); 9532 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9533 releasePage(pRoot); 9534 9535 /* Obtain the page at pgnoRoot */ 9536 if( rc!=SQLITE_OK ){ 9537 return rc; 9538 } 9539 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9540 if( rc!=SQLITE_OK ){ 9541 return rc; 9542 } 9543 rc = sqlite3PagerWrite(pRoot->pDbPage); 9544 if( rc!=SQLITE_OK ){ 9545 releasePage(pRoot); 9546 return rc; 9547 } 9548 }else{ 9549 pRoot = pPageMove; 9550 } 9551 9552 /* Update the pointer-map and meta-data with the new root-page number. */ 9553 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9554 if( rc ){ 9555 releasePage(pRoot); 9556 return rc; 9557 } 9558 9559 /* When the new root page was allocated, page 1 was made writable in 9560 ** order either to increase the database filesize, or to decrement the 9561 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9562 */ 9563 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9564 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9565 if( NEVER(rc) ){ 9566 releasePage(pRoot); 9567 return rc; 9568 } 9569 9570 }else{ 9571 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9572 if( rc ) return rc; 9573 } 9574 #endif 9575 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9576 if( createTabFlags & BTREE_INTKEY ){ 9577 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9578 }else{ 9579 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9580 } 9581 zeroPage(pRoot, ptfFlags); 9582 sqlite3PagerUnref(pRoot->pDbPage); 9583 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9584 *piTable = pgnoRoot; 9585 return SQLITE_OK; 9586 } 9587 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9588 int rc; 9589 sqlite3BtreeEnter(p); 9590 rc = btreeCreateTable(p, piTable, flags); 9591 sqlite3BtreeLeave(p); 9592 return rc; 9593 } 9594 9595 /* 9596 ** Erase the given database page and all its children. Return 9597 ** the page to the freelist. 9598 */ 9599 static int clearDatabasePage( 9600 BtShared *pBt, /* The BTree that contains the table */ 9601 Pgno pgno, /* Page number to clear */ 9602 int freePageFlag, /* Deallocate page if true */ 9603 i64 *pnChange /* Add number of Cells freed to this counter */ 9604 ){ 9605 MemPage *pPage; 9606 int rc; 9607 unsigned char *pCell; 9608 int i; 9609 int hdr; 9610 CellInfo info; 9611 9612 assert( sqlite3_mutex_held(pBt->mutex) ); 9613 if( pgno>btreePagecount(pBt) ){ 9614 return SQLITE_CORRUPT_BKPT; 9615 } 9616 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9617 if( rc ) return rc; 9618 if( (pBt->openFlags & BTREE_SINGLE)==0 9619 && sqlite3PagerPageRefcount(pPage->pDbPage)!=1 9620 ){ 9621 rc = SQLITE_CORRUPT_BKPT; 9622 goto cleardatabasepage_out; 9623 } 9624 hdr = pPage->hdrOffset; 9625 for(i=0; i<pPage->nCell; i++){ 9626 pCell = findCell(pPage, i); 9627 if( !pPage->leaf ){ 9628 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9629 if( rc ) goto cleardatabasepage_out; 9630 } 9631 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9632 if( rc ) goto cleardatabasepage_out; 9633 } 9634 if( !pPage->leaf ){ 9635 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9636 if( rc ) goto cleardatabasepage_out; 9637 if( pPage->intKey ) pnChange = 0; 9638 } 9639 if( pnChange ){ 9640 testcase( !pPage->intKey ); 9641 *pnChange += pPage->nCell; 9642 } 9643 if( freePageFlag ){ 9644 freePage(pPage, &rc); 9645 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9646 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9647 } 9648 9649 cleardatabasepage_out: 9650 releasePage(pPage); 9651 return rc; 9652 } 9653 9654 /* 9655 ** Delete all information from a single table in the database. iTable is 9656 ** the page number of the root of the table. After this routine returns, 9657 ** the root page is empty, but still exists. 9658 ** 9659 ** This routine will fail with SQLITE_LOCKED if there are any open 9660 ** read cursors on the table. Open write cursors are moved to the 9661 ** root of the table. 9662 ** 9663 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9664 ** is incremented by the number of entries in the table. 9665 */ 9666 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9667 int rc; 9668 BtShared *pBt = p->pBt; 9669 sqlite3BtreeEnter(p); 9670 assert( p->inTrans==TRANS_WRITE ); 9671 9672 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9673 9674 if( SQLITE_OK==rc ){ 9675 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9676 ** is the root of a table b-tree - if it is not, the following call is 9677 ** a no-op). */ 9678 if( p->hasIncrblobCur ){ 9679 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9680 } 9681 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9682 } 9683 sqlite3BtreeLeave(p); 9684 return rc; 9685 } 9686 9687 /* 9688 ** Delete all information from the single table that pCur is open on. 9689 ** 9690 ** This routine only work for pCur on an ephemeral table. 9691 */ 9692 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9693 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9694 } 9695 9696 /* 9697 ** Erase all information in a table and add the root of the table to 9698 ** the freelist. Except, the root of the principle table (the one on 9699 ** page 1) is never added to the freelist. 9700 ** 9701 ** This routine will fail with SQLITE_LOCKED if there are any open 9702 ** cursors on the table. 9703 ** 9704 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9705 ** root page in the database file, then the last root page 9706 ** in the database file is moved into the slot formerly occupied by 9707 ** iTable and that last slot formerly occupied by the last root page 9708 ** is added to the freelist instead of iTable. In this say, all 9709 ** root pages are kept at the beginning of the database file, which 9710 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9711 ** page number that used to be the last root page in the file before 9712 ** the move. If no page gets moved, *piMoved is set to 0. 9713 ** The last root page is recorded in meta[3] and the value of 9714 ** meta[3] is updated by this procedure. 9715 */ 9716 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9717 int rc; 9718 MemPage *pPage = 0; 9719 BtShared *pBt = p->pBt; 9720 9721 assert( sqlite3BtreeHoldsMutex(p) ); 9722 assert( p->inTrans==TRANS_WRITE ); 9723 assert( iTable>=2 ); 9724 if( iTable>btreePagecount(pBt) ){ 9725 return SQLITE_CORRUPT_BKPT; 9726 } 9727 9728 rc = sqlite3BtreeClearTable(p, iTable, 0); 9729 if( rc ) return rc; 9730 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9731 if( NEVER(rc) ){ 9732 releasePage(pPage); 9733 return rc; 9734 } 9735 9736 *piMoved = 0; 9737 9738 #ifdef SQLITE_OMIT_AUTOVACUUM 9739 freePage(pPage, &rc); 9740 releasePage(pPage); 9741 #else 9742 if( pBt->autoVacuum ){ 9743 Pgno maxRootPgno; 9744 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9745 9746 if( iTable==maxRootPgno ){ 9747 /* If the table being dropped is the table with the largest root-page 9748 ** number in the database, put the root page on the free list. 9749 */ 9750 freePage(pPage, &rc); 9751 releasePage(pPage); 9752 if( rc!=SQLITE_OK ){ 9753 return rc; 9754 } 9755 }else{ 9756 /* The table being dropped does not have the largest root-page 9757 ** number in the database. So move the page that does into the 9758 ** gap left by the deleted root-page. 9759 */ 9760 MemPage *pMove; 9761 releasePage(pPage); 9762 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9763 if( rc!=SQLITE_OK ){ 9764 return rc; 9765 } 9766 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9767 releasePage(pMove); 9768 if( rc!=SQLITE_OK ){ 9769 return rc; 9770 } 9771 pMove = 0; 9772 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9773 freePage(pMove, &rc); 9774 releasePage(pMove); 9775 if( rc!=SQLITE_OK ){ 9776 return rc; 9777 } 9778 *piMoved = maxRootPgno; 9779 } 9780 9781 /* Set the new 'max-root-page' value in the database header. This 9782 ** is the old value less one, less one more if that happens to 9783 ** be a root-page number, less one again if that is the 9784 ** PENDING_BYTE_PAGE. 9785 */ 9786 maxRootPgno--; 9787 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9788 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9789 maxRootPgno--; 9790 } 9791 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9792 9793 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9794 }else{ 9795 freePage(pPage, &rc); 9796 releasePage(pPage); 9797 } 9798 #endif 9799 return rc; 9800 } 9801 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9802 int rc; 9803 sqlite3BtreeEnter(p); 9804 rc = btreeDropTable(p, iTable, piMoved); 9805 sqlite3BtreeLeave(p); 9806 return rc; 9807 } 9808 9809 9810 /* 9811 ** This function may only be called if the b-tree connection already 9812 ** has a read or write transaction open on the database. 9813 ** 9814 ** Read the meta-information out of a database file. Meta[0] 9815 ** is the number of free pages currently in the database. Meta[1] 9816 ** through meta[15] are available for use by higher layers. Meta[0] 9817 ** is read-only, the others are read/write. 9818 ** 9819 ** The schema layer numbers meta values differently. At the schema 9820 ** layer (and the SetCookie and ReadCookie opcodes) the number of 9821 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 9822 ** 9823 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 9824 ** of reading the value out of the header, it instead loads the "DataVersion" 9825 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 9826 ** database file. It is a number computed by the pager. But its access 9827 ** pattern is the same as header meta values, and so it is convenient to 9828 ** read it from this routine. 9829 */ 9830 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 9831 BtShared *pBt = p->pBt; 9832 9833 sqlite3BtreeEnter(p); 9834 assert( p->inTrans>TRANS_NONE ); 9835 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 9836 assert( pBt->pPage1 ); 9837 assert( idx>=0 && idx<=15 ); 9838 9839 if( idx==BTREE_DATA_VERSION ){ 9840 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 9841 }else{ 9842 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 9843 } 9844 9845 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 9846 ** database, mark the database as read-only. */ 9847 #ifdef SQLITE_OMIT_AUTOVACUUM 9848 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 9849 pBt->btsFlags |= BTS_READ_ONLY; 9850 } 9851 #endif 9852 9853 sqlite3BtreeLeave(p); 9854 } 9855 9856 /* 9857 ** Write meta-information back into the database. Meta[0] is 9858 ** read-only and may not be written. 9859 */ 9860 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 9861 BtShared *pBt = p->pBt; 9862 unsigned char *pP1; 9863 int rc; 9864 assert( idx>=1 && idx<=15 ); 9865 sqlite3BtreeEnter(p); 9866 assert( p->inTrans==TRANS_WRITE ); 9867 assert( pBt->pPage1!=0 ); 9868 pP1 = pBt->pPage1->aData; 9869 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 9870 if( rc==SQLITE_OK ){ 9871 put4byte(&pP1[36 + idx*4], iMeta); 9872 #ifndef SQLITE_OMIT_AUTOVACUUM 9873 if( idx==BTREE_INCR_VACUUM ){ 9874 assert( pBt->autoVacuum || iMeta==0 ); 9875 assert( iMeta==0 || iMeta==1 ); 9876 pBt->incrVacuum = (u8)iMeta; 9877 } 9878 #endif 9879 } 9880 sqlite3BtreeLeave(p); 9881 return rc; 9882 } 9883 9884 /* 9885 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 9886 ** number of entries in the b-tree and write the result to *pnEntry. 9887 ** 9888 ** SQLITE_OK is returned if the operation is successfully executed. 9889 ** Otherwise, if an error is encountered (i.e. an IO error or database 9890 ** corruption) an SQLite error code is returned. 9891 */ 9892 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 9893 i64 nEntry = 0; /* Value to return in *pnEntry */ 9894 int rc; /* Return code */ 9895 9896 rc = moveToRoot(pCur); 9897 if( rc==SQLITE_EMPTY ){ 9898 *pnEntry = 0; 9899 return SQLITE_OK; 9900 } 9901 9902 /* Unless an error occurs, the following loop runs one iteration for each 9903 ** page in the B-Tree structure (not including overflow pages). 9904 */ 9905 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 9906 int iIdx; /* Index of child node in parent */ 9907 MemPage *pPage; /* Current page of the b-tree */ 9908 9909 /* If this is a leaf page or the tree is not an int-key tree, then 9910 ** this page contains countable entries. Increment the entry counter 9911 ** accordingly. 9912 */ 9913 pPage = pCur->pPage; 9914 if( pPage->leaf || !pPage->intKey ){ 9915 nEntry += pPage->nCell; 9916 } 9917 9918 /* pPage is a leaf node. This loop navigates the cursor so that it 9919 ** points to the first interior cell that it points to the parent of 9920 ** the next page in the tree that has not yet been visited. The 9921 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 9922 ** of the page, or to the number of cells in the page if the next page 9923 ** to visit is the right-child of its parent. 9924 ** 9925 ** If all pages in the tree have been visited, return SQLITE_OK to the 9926 ** caller. 9927 */ 9928 if( pPage->leaf ){ 9929 do { 9930 if( pCur->iPage==0 ){ 9931 /* All pages of the b-tree have been visited. Return successfully. */ 9932 *pnEntry = nEntry; 9933 return moveToRoot(pCur); 9934 } 9935 moveToParent(pCur); 9936 }while ( pCur->ix>=pCur->pPage->nCell ); 9937 9938 pCur->ix++; 9939 pPage = pCur->pPage; 9940 } 9941 9942 /* Descend to the child node of the cell that the cursor currently 9943 ** points at. This is the right-child if (iIdx==pPage->nCell). 9944 */ 9945 iIdx = pCur->ix; 9946 if( iIdx==pPage->nCell ){ 9947 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 9948 }else{ 9949 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 9950 } 9951 } 9952 9953 /* An error has occurred. Return an error code. */ 9954 return rc; 9955 } 9956 9957 /* 9958 ** Return the pager associated with a BTree. This routine is used for 9959 ** testing and debugging only. 9960 */ 9961 Pager *sqlite3BtreePager(Btree *p){ 9962 return p->pBt->pPager; 9963 } 9964 9965 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9966 /* 9967 ** Append a message to the error message string. 9968 */ 9969 static void checkAppendMsg( 9970 IntegrityCk *pCheck, 9971 const char *zFormat, 9972 ... 9973 ){ 9974 va_list ap; 9975 if( !pCheck->mxErr ) return; 9976 pCheck->mxErr--; 9977 pCheck->nErr++; 9978 va_start(ap, zFormat); 9979 if( pCheck->errMsg.nChar ){ 9980 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 9981 } 9982 if( pCheck->zPfx ){ 9983 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 9984 } 9985 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 9986 va_end(ap); 9987 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 9988 pCheck->bOomFault = 1; 9989 } 9990 } 9991 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 9992 9993 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 9994 9995 /* 9996 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 9997 ** corresponds to page iPg is already set. 9998 */ 9999 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10000 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10001 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10002 } 10003 10004 /* 10005 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10006 */ 10007 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10008 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10009 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10010 } 10011 10012 10013 /* 10014 ** Add 1 to the reference count for page iPage. If this is the second 10015 ** reference to the page, add an error message to pCheck->zErrMsg. 10016 ** Return 1 if there are 2 or more references to the page and 0 if 10017 ** if this is the first reference to the page. 10018 ** 10019 ** Also check that the page number is in bounds. 10020 */ 10021 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10022 if( iPage>pCheck->nPage || iPage==0 ){ 10023 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10024 return 1; 10025 } 10026 if( getPageReferenced(pCheck, iPage) ){ 10027 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10028 return 1; 10029 } 10030 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10031 setPageReferenced(pCheck, iPage); 10032 return 0; 10033 } 10034 10035 #ifndef SQLITE_OMIT_AUTOVACUUM 10036 /* 10037 ** Check that the entry in the pointer-map for page iChild maps to 10038 ** page iParent, pointer type ptrType. If not, append an error message 10039 ** to pCheck. 10040 */ 10041 static void checkPtrmap( 10042 IntegrityCk *pCheck, /* Integrity check context */ 10043 Pgno iChild, /* Child page number */ 10044 u8 eType, /* Expected pointer map type */ 10045 Pgno iParent /* Expected pointer map parent page number */ 10046 ){ 10047 int rc; 10048 u8 ePtrmapType; 10049 Pgno iPtrmapParent; 10050 10051 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10052 if( rc!=SQLITE_OK ){ 10053 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10054 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10055 return; 10056 } 10057 10058 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10059 checkAppendMsg(pCheck, 10060 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10061 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10062 } 10063 } 10064 #endif 10065 10066 /* 10067 ** Check the integrity of the freelist or of an overflow page list. 10068 ** Verify that the number of pages on the list is N. 10069 */ 10070 static void checkList( 10071 IntegrityCk *pCheck, /* Integrity checking context */ 10072 int isFreeList, /* True for a freelist. False for overflow page list */ 10073 Pgno iPage, /* Page number for first page in the list */ 10074 u32 N /* Expected number of pages in the list */ 10075 ){ 10076 int i; 10077 u32 expected = N; 10078 int nErrAtStart = pCheck->nErr; 10079 while( iPage!=0 && pCheck->mxErr ){ 10080 DbPage *pOvflPage; 10081 unsigned char *pOvflData; 10082 if( checkRef(pCheck, iPage) ) break; 10083 N--; 10084 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10085 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10086 break; 10087 } 10088 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10089 if( isFreeList ){ 10090 u32 n = (u32)get4byte(&pOvflData[4]); 10091 #ifndef SQLITE_OMIT_AUTOVACUUM 10092 if( pCheck->pBt->autoVacuum ){ 10093 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10094 } 10095 #endif 10096 if( n>pCheck->pBt->usableSize/4-2 ){ 10097 checkAppendMsg(pCheck, 10098 "freelist leaf count too big on page %d", iPage); 10099 N--; 10100 }else{ 10101 for(i=0; i<(int)n; i++){ 10102 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10103 #ifndef SQLITE_OMIT_AUTOVACUUM 10104 if( pCheck->pBt->autoVacuum ){ 10105 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10106 } 10107 #endif 10108 checkRef(pCheck, iFreePage); 10109 } 10110 N -= n; 10111 } 10112 } 10113 #ifndef SQLITE_OMIT_AUTOVACUUM 10114 else{ 10115 /* If this database supports auto-vacuum and iPage is not the last 10116 ** page in this overflow list, check that the pointer-map entry for 10117 ** the following page matches iPage. 10118 */ 10119 if( pCheck->pBt->autoVacuum && N>0 ){ 10120 i = get4byte(pOvflData); 10121 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10122 } 10123 } 10124 #endif 10125 iPage = get4byte(pOvflData); 10126 sqlite3PagerUnref(pOvflPage); 10127 } 10128 if( N && nErrAtStart==pCheck->nErr ){ 10129 checkAppendMsg(pCheck, 10130 "%s is %d but should be %d", 10131 isFreeList ? "size" : "overflow list length", 10132 expected-N, expected); 10133 } 10134 } 10135 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10136 10137 /* 10138 ** An implementation of a min-heap. 10139 ** 10140 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10141 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10142 ** and aHeap[N*2+1]. 10143 ** 10144 ** The heap property is this: Every node is less than or equal to both 10145 ** of its daughter nodes. A consequence of the heap property is that the 10146 ** root node aHeap[1] is always the minimum value currently in the heap. 10147 ** 10148 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10149 ** the heap, preserving the heap property. The btreeHeapPull() routine 10150 ** removes the root element from the heap (the minimum value in the heap) 10151 ** and then moves other nodes around as necessary to preserve the heap 10152 ** property. 10153 ** 10154 ** This heap is used for cell overlap and coverage testing. Each u32 10155 ** entry represents the span of a cell or freeblock on a btree page. 10156 ** The upper 16 bits are the index of the first byte of a range and the 10157 ** lower 16 bits are the index of the last byte of that range. 10158 */ 10159 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10160 u32 j, i = ++aHeap[0]; 10161 aHeap[i] = x; 10162 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10163 x = aHeap[j]; 10164 aHeap[j] = aHeap[i]; 10165 aHeap[i] = x; 10166 i = j; 10167 } 10168 } 10169 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10170 u32 j, i, x; 10171 if( (x = aHeap[0])==0 ) return 0; 10172 *pOut = aHeap[1]; 10173 aHeap[1] = aHeap[x]; 10174 aHeap[x] = 0xffffffff; 10175 aHeap[0]--; 10176 i = 1; 10177 while( (j = i*2)<=aHeap[0] ){ 10178 if( aHeap[j]>aHeap[j+1] ) j++; 10179 if( aHeap[i]<aHeap[j] ) break; 10180 x = aHeap[i]; 10181 aHeap[i] = aHeap[j]; 10182 aHeap[j] = x; 10183 i = j; 10184 } 10185 return 1; 10186 } 10187 10188 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10189 /* 10190 ** Do various sanity checks on a single page of a tree. Return 10191 ** the tree depth. Root pages return 0. Parents of root pages 10192 ** return 1, and so forth. 10193 ** 10194 ** These checks are done: 10195 ** 10196 ** 1. Make sure that cells and freeblocks do not overlap 10197 ** but combine to completely cover the page. 10198 ** 2. Make sure integer cell keys are in order. 10199 ** 3. Check the integrity of overflow pages. 10200 ** 4. Recursively call checkTreePage on all children. 10201 ** 5. Verify that the depth of all children is the same. 10202 */ 10203 static int checkTreePage( 10204 IntegrityCk *pCheck, /* Context for the sanity check */ 10205 Pgno iPage, /* Page number of the page to check */ 10206 i64 *piMinKey, /* Write minimum integer primary key here */ 10207 i64 maxKey /* Error if integer primary key greater than this */ 10208 ){ 10209 MemPage *pPage = 0; /* The page being analyzed */ 10210 int i; /* Loop counter */ 10211 int rc; /* Result code from subroutine call */ 10212 int depth = -1, d2; /* Depth of a subtree */ 10213 int pgno; /* Page number */ 10214 int nFrag; /* Number of fragmented bytes on the page */ 10215 int hdr; /* Offset to the page header */ 10216 int cellStart; /* Offset to the start of the cell pointer array */ 10217 int nCell; /* Number of cells */ 10218 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10219 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10220 ** False if IPK must be strictly less than maxKey */ 10221 u8 *data; /* Page content */ 10222 u8 *pCell; /* Cell content */ 10223 u8 *pCellIdx; /* Next element of the cell pointer array */ 10224 BtShared *pBt; /* The BtShared object that owns pPage */ 10225 u32 pc; /* Address of a cell */ 10226 u32 usableSize; /* Usable size of the page */ 10227 u32 contentOffset; /* Offset to the start of the cell content area */ 10228 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10229 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10230 const char *saved_zPfx = pCheck->zPfx; 10231 int saved_v1 = pCheck->v1; 10232 int saved_v2 = pCheck->v2; 10233 u8 savedIsInit = 0; 10234 10235 /* Check that the page exists 10236 */ 10237 pBt = pCheck->pBt; 10238 usableSize = pBt->usableSize; 10239 if( iPage==0 ) return 0; 10240 if( checkRef(pCheck, iPage) ) return 0; 10241 pCheck->zPfx = "Page %u: "; 10242 pCheck->v1 = iPage; 10243 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10244 checkAppendMsg(pCheck, 10245 "unable to get the page. error code=%d", rc); 10246 goto end_of_check; 10247 } 10248 10249 /* Clear MemPage.isInit to make sure the corruption detection code in 10250 ** btreeInitPage() is executed. */ 10251 savedIsInit = pPage->isInit; 10252 pPage->isInit = 0; 10253 if( (rc = btreeInitPage(pPage))!=0 ){ 10254 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10255 checkAppendMsg(pCheck, 10256 "btreeInitPage() returns error code %d", rc); 10257 goto end_of_check; 10258 } 10259 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10260 assert( rc==SQLITE_CORRUPT ); 10261 checkAppendMsg(pCheck, "free space corruption", rc); 10262 goto end_of_check; 10263 } 10264 data = pPage->aData; 10265 hdr = pPage->hdrOffset; 10266 10267 /* Set up for cell analysis */ 10268 pCheck->zPfx = "On tree page %u cell %d: "; 10269 contentOffset = get2byteNotZero(&data[hdr+5]); 10270 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10271 10272 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10273 ** number of cells on the page. */ 10274 nCell = get2byte(&data[hdr+3]); 10275 assert( pPage->nCell==nCell ); 10276 10277 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10278 ** immediately follows the b-tree page header. */ 10279 cellStart = hdr + 12 - 4*pPage->leaf; 10280 assert( pPage->aCellIdx==&data[cellStart] ); 10281 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10282 10283 if( !pPage->leaf ){ 10284 /* Analyze the right-child page of internal pages */ 10285 pgno = get4byte(&data[hdr+8]); 10286 #ifndef SQLITE_OMIT_AUTOVACUUM 10287 if( pBt->autoVacuum ){ 10288 pCheck->zPfx = "On page %u at right child: "; 10289 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10290 } 10291 #endif 10292 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10293 keyCanBeEqual = 0; 10294 }else{ 10295 /* For leaf pages, the coverage check will occur in the same loop 10296 ** as the other cell checks, so initialize the heap. */ 10297 heap = pCheck->heap; 10298 heap[0] = 0; 10299 } 10300 10301 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10302 ** integer offsets to the cell contents. */ 10303 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10304 CellInfo info; 10305 10306 /* Check cell size */ 10307 pCheck->v2 = i; 10308 assert( pCellIdx==&data[cellStart + i*2] ); 10309 pc = get2byteAligned(pCellIdx); 10310 pCellIdx -= 2; 10311 if( pc<contentOffset || pc>usableSize-4 ){ 10312 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10313 pc, contentOffset, usableSize-4); 10314 doCoverageCheck = 0; 10315 continue; 10316 } 10317 pCell = &data[pc]; 10318 pPage->xParseCell(pPage, pCell, &info); 10319 if( pc+info.nSize>usableSize ){ 10320 checkAppendMsg(pCheck, "Extends off end of page"); 10321 doCoverageCheck = 0; 10322 continue; 10323 } 10324 10325 /* Check for integer primary key out of range */ 10326 if( pPage->intKey ){ 10327 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10328 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10329 } 10330 maxKey = info.nKey; 10331 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10332 } 10333 10334 /* Check the content overflow list */ 10335 if( info.nPayload>info.nLocal ){ 10336 u32 nPage; /* Number of pages on the overflow chain */ 10337 Pgno pgnoOvfl; /* First page of the overflow chain */ 10338 assert( pc + info.nSize - 4 <= usableSize ); 10339 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10340 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10341 #ifndef SQLITE_OMIT_AUTOVACUUM 10342 if( pBt->autoVacuum ){ 10343 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10344 } 10345 #endif 10346 checkList(pCheck, 0, pgnoOvfl, nPage); 10347 } 10348 10349 if( !pPage->leaf ){ 10350 /* Check sanity of left child page for internal pages */ 10351 pgno = get4byte(pCell); 10352 #ifndef SQLITE_OMIT_AUTOVACUUM 10353 if( pBt->autoVacuum ){ 10354 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10355 } 10356 #endif 10357 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10358 keyCanBeEqual = 0; 10359 if( d2!=depth ){ 10360 checkAppendMsg(pCheck, "Child page depth differs"); 10361 depth = d2; 10362 } 10363 }else{ 10364 /* Populate the coverage-checking heap for leaf pages */ 10365 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10366 } 10367 } 10368 *piMinKey = maxKey; 10369 10370 /* Check for complete coverage of the page 10371 */ 10372 pCheck->zPfx = 0; 10373 if( doCoverageCheck && pCheck->mxErr>0 ){ 10374 /* For leaf pages, the min-heap has already been initialized and the 10375 ** cells have already been inserted. But for internal pages, that has 10376 ** not yet been done, so do it now */ 10377 if( !pPage->leaf ){ 10378 heap = pCheck->heap; 10379 heap[0] = 0; 10380 for(i=nCell-1; i>=0; i--){ 10381 u32 size; 10382 pc = get2byteAligned(&data[cellStart+i*2]); 10383 size = pPage->xCellSize(pPage, &data[pc]); 10384 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10385 } 10386 } 10387 /* Add the freeblocks to the min-heap 10388 ** 10389 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10390 ** is the offset of the first freeblock, or zero if there are no 10391 ** freeblocks on the page. 10392 */ 10393 i = get2byte(&data[hdr+1]); 10394 while( i>0 ){ 10395 int size, j; 10396 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10397 size = get2byte(&data[i+2]); 10398 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10399 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10400 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10401 ** big-endian integer which is the offset in the b-tree page of the next 10402 ** freeblock in the chain, or zero if the freeblock is the last on the 10403 ** chain. */ 10404 j = get2byte(&data[i]); 10405 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10406 ** increasing offset. */ 10407 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10408 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10409 i = j; 10410 } 10411 /* Analyze the min-heap looking for overlap between cells and/or 10412 ** freeblocks, and counting the number of untracked bytes in nFrag. 10413 ** 10414 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10415 ** There is an implied first entry the covers the page header, the cell 10416 ** pointer index, and the gap between the cell pointer index and the start 10417 ** of cell content. 10418 ** 10419 ** The loop below pulls entries from the min-heap in order and compares 10420 ** the start_address against the previous end_address. If there is an 10421 ** overlap, that means bytes are used multiple times. If there is a gap, 10422 ** that gap is added to the fragmentation count. 10423 */ 10424 nFrag = 0; 10425 prev = contentOffset - 1; /* Implied first min-heap entry */ 10426 while( btreeHeapPull(heap,&x) ){ 10427 if( (prev&0xffff)>=(x>>16) ){ 10428 checkAppendMsg(pCheck, 10429 "Multiple uses for byte %u of page %u", x>>16, iPage); 10430 break; 10431 }else{ 10432 nFrag += (x>>16) - (prev&0xffff) - 1; 10433 prev = x; 10434 } 10435 } 10436 nFrag += usableSize - (prev&0xffff) - 1; 10437 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10438 ** is stored in the fifth field of the b-tree page header. 10439 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10440 ** number of fragmented free bytes within the cell content area. 10441 */ 10442 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10443 checkAppendMsg(pCheck, 10444 "Fragmentation of %d bytes reported as %d on page %u", 10445 nFrag, data[hdr+7], iPage); 10446 } 10447 } 10448 10449 end_of_check: 10450 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10451 releasePage(pPage); 10452 pCheck->zPfx = saved_zPfx; 10453 pCheck->v1 = saved_v1; 10454 pCheck->v2 = saved_v2; 10455 return depth+1; 10456 } 10457 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10458 10459 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10460 /* 10461 ** This routine does a complete check of the given BTree file. aRoot[] is 10462 ** an array of pages numbers were each page number is the root page of 10463 ** a table. nRoot is the number of entries in aRoot. 10464 ** 10465 ** A read-only or read-write transaction must be opened before calling 10466 ** this function. 10467 ** 10468 ** Write the number of error seen in *pnErr. Except for some memory 10469 ** allocation errors, an error message held in memory obtained from 10470 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10471 ** returned. If a memory allocation error occurs, NULL is returned. 10472 ** 10473 ** If the first entry in aRoot[] is 0, that indicates that the list of 10474 ** root pages is incomplete. This is a "partial integrity-check". This 10475 ** happens when performing an integrity check on a single table. The 10476 ** zero is skipped, of course. But in addition, the freelist checks 10477 ** and the checks to make sure every page is referenced are also skipped, 10478 ** since obviously it is not possible to know which pages are covered by 10479 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10480 ** checks are still performed. 10481 */ 10482 char *sqlite3BtreeIntegrityCheck( 10483 sqlite3 *db, /* Database connection that is running the check */ 10484 Btree *p, /* The btree to be checked */ 10485 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10486 int nRoot, /* Number of entries in aRoot[] */ 10487 int mxErr, /* Stop reporting errors after this many */ 10488 int *pnErr /* Write number of errors seen to this variable */ 10489 ){ 10490 Pgno i; 10491 IntegrityCk sCheck; 10492 BtShared *pBt = p->pBt; 10493 u64 savedDbFlags = pBt->db->flags; 10494 char zErr[100]; 10495 int bPartial = 0; /* True if not checking all btrees */ 10496 int bCkFreelist = 1; /* True to scan the freelist */ 10497 VVA_ONLY( int nRef ); 10498 assert( nRoot>0 ); 10499 10500 /* aRoot[0]==0 means this is a partial check */ 10501 if( aRoot[0]==0 ){ 10502 assert( nRoot>1 ); 10503 bPartial = 1; 10504 if( aRoot[1]!=1 ) bCkFreelist = 0; 10505 } 10506 10507 sqlite3BtreeEnter(p); 10508 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10509 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10510 assert( nRef>=0 ); 10511 sCheck.db = db; 10512 sCheck.pBt = pBt; 10513 sCheck.pPager = pBt->pPager; 10514 sCheck.nPage = btreePagecount(sCheck.pBt); 10515 sCheck.mxErr = mxErr; 10516 sCheck.nErr = 0; 10517 sCheck.bOomFault = 0; 10518 sCheck.zPfx = 0; 10519 sCheck.v1 = 0; 10520 sCheck.v2 = 0; 10521 sCheck.aPgRef = 0; 10522 sCheck.heap = 0; 10523 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10524 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10525 if( sCheck.nPage==0 ){ 10526 goto integrity_ck_cleanup; 10527 } 10528 10529 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10530 if( !sCheck.aPgRef ){ 10531 sCheck.bOomFault = 1; 10532 goto integrity_ck_cleanup; 10533 } 10534 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10535 if( sCheck.heap==0 ){ 10536 sCheck.bOomFault = 1; 10537 goto integrity_ck_cleanup; 10538 } 10539 10540 i = PENDING_BYTE_PAGE(pBt); 10541 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10542 10543 /* Check the integrity of the freelist 10544 */ 10545 if( bCkFreelist ){ 10546 sCheck.zPfx = "Main freelist: "; 10547 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10548 get4byte(&pBt->pPage1->aData[36])); 10549 sCheck.zPfx = 0; 10550 } 10551 10552 /* Check all the tables. 10553 */ 10554 #ifndef SQLITE_OMIT_AUTOVACUUM 10555 if( !bPartial ){ 10556 if( pBt->autoVacuum ){ 10557 Pgno mx = 0; 10558 Pgno mxInHdr; 10559 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10560 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10561 if( mx!=mxInHdr ){ 10562 checkAppendMsg(&sCheck, 10563 "max rootpage (%d) disagrees with header (%d)", 10564 mx, mxInHdr 10565 ); 10566 } 10567 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10568 checkAppendMsg(&sCheck, 10569 "incremental_vacuum enabled with a max rootpage of zero" 10570 ); 10571 } 10572 } 10573 #endif 10574 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10575 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10576 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10577 i64 notUsed; 10578 if( aRoot[i]==0 ) continue; 10579 #ifndef SQLITE_OMIT_AUTOVACUUM 10580 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10581 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10582 } 10583 #endif 10584 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10585 } 10586 pBt->db->flags = savedDbFlags; 10587 10588 /* Make sure every page in the file is referenced 10589 */ 10590 if( !bPartial ){ 10591 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10592 #ifdef SQLITE_OMIT_AUTOVACUUM 10593 if( getPageReferenced(&sCheck, i)==0 ){ 10594 checkAppendMsg(&sCheck, "Page %d is never used", i); 10595 } 10596 #else 10597 /* If the database supports auto-vacuum, make sure no tables contain 10598 ** references to pointer-map pages. 10599 */ 10600 if( getPageReferenced(&sCheck, i)==0 && 10601 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10602 checkAppendMsg(&sCheck, "Page %d is never used", i); 10603 } 10604 if( getPageReferenced(&sCheck, i)!=0 && 10605 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10606 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10607 } 10608 #endif 10609 } 10610 } 10611 10612 /* Clean up and report errors. 10613 */ 10614 integrity_ck_cleanup: 10615 sqlite3PageFree(sCheck.heap); 10616 sqlite3_free(sCheck.aPgRef); 10617 if( sCheck.bOomFault ){ 10618 sqlite3_str_reset(&sCheck.errMsg); 10619 sCheck.nErr++; 10620 } 10621 *pnErr = sCheck.nErr; 10622 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10623 /* Make sure this analysis did not leave any unref() pages. */ 10624 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10625 sqlite3BtreeLeave(p); 10626 return sqlite3StrAccumFinish(&sCheck.errMsg); 10627 } 10628 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10629 10630 /* 10631 ** Return the full pathname of the underlying database file. Return 10632 ** an empty string if the database is in-memory or a TEMP database. 10633 ** 10634 ** The pager filename is invariant as long as the pager is 10635 ** open so it is safe to access without the BtShared mutex. 10636 */ 10637 const char *sqlite3BtreeGetFilename(Btree *p){ 10638 assert( p->pBt->pPager!=0 ); 10639 return sqlite3PagerFilename(p->pBt->pPager, 1); 10640 } 10641 10642 /* 10643 ** Return the pathname of the journal file for this database. The return 10644 ** value of this routine is the same regardless of whether the journal file 10645 ** has been created or not. 10646 ** 10647 ** The pager journal filename is invariant as long as the pager is 10648 ** open so it is safe to access without the BtShared mutex. 10649 */ 10650 const char *sqlite3BtreeGetJournalname(Btree *p){ 10651 assert( p->pBt->pPager!=0 ); 10652 return sqlite3PagerJournalname(p->pBt->pPager); 10653 } 10654 10655 /* 10656 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10657 ** to describe the current transaction state of Btree p. 10658 */ 10659 int sqlite3BtreeTxnState(Btree *p){ 10660 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10661 return p ? p->inTrans : 0; 10662 } 10663 10664 #ifndef SQLITE_OMIT_WAL 10665 /* 10666 ** Run a checkpoint on the Btree passed as the first argument. 10667 ** 10668 ** Return SQLITE_LOCKED if this or any other connection has an open 10669 ** transaction on the shared-cache the argument Btree is connected to. 10670 ** 10671 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10672 */ 10673 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10674 int rc = SQLITE_OK; 10675 if( p ){ 10676 BtShared *pBt = p->pBt; 10677 sqlite3BtreeEnter(p); 10678 if( pBt->inTransaction!=TRANS_NONE ){ 10679 rc = SQLITE_LOCKED; 10680 }else{ 10681 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10682 } 10683 sqlite3BtreeLeave(p); 10684 } 10685 return rc; 10686 } 10687 #endif 10688 10689 /* 10690 ** Return true if there is currently a backup running on Btree p. 10691 */ 10692 int sqlite3BtreeIsInBackup(Btree *p){ 10693 assert( p ); 10694 assert( sqlite3_mutex_held(p->db->mutex) ); 10695 return p->nBackup!=0; 10696 } 10697 10698 /* 10699 ** This function returns a pointer to a blob of memory associated with 10700 ** a single shared-btree. The memory is used by client code for its own 10701 ** purposes (for example, to store a high-level schema associated with 10702 ** the shared-btree). The btree layer manages reference counting issues. 10703 ** 10704 ** The first time this is called on a shared-btree, nBytes bytes of memory 10705 ** are allocated, zeroed, and returned to the caller. For each subsequent 10706 ** call the nBytes parameter is ignored and a pointer to the same blob 10707 ** of memory returned. 10708 ** 10709 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10710 ** allocated, a null pointer is returned. If the blob has already been 10711 ** allocated, it is returned as normal. 10712 ** 10713 ** Just before the shared-btree is closed, the function passed as the 10714 ** xFree argument when the memory allocation was made is invoked on the 10715 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10716 ** on the memory, the btree layer does that. 10717 */ 10718 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10719 BtShared *pBt = p->pBt; 10720 sqlite3BtreeEnter(p); 10721 if( !pBt->pSchema && nBytes ){ 10722 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10723 pBt->xFreeSchema = xFree; 10724 } 10725 sqlite3BtreeLeave(p); 10726 return pBt->pSchema; 10727 } 10728 10729 /* 10730 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10731 ** btree as the argument handle holds an exclusive lock on the 10732 ** sqlite_schema table. Otherwise SQLITE_OK. 10733 */ 10734 int sqlite3BtreeSchemaLocked(Btree *p){ 10735 int rc; 10736 assert( sqlite3_mutex_held(p->db->mutex) ); 10737 sqlite3BtreeEnter(p); 10738 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10739 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10740 sqlite3BtreeLeave(p); 10741 return rc; 10742 } 10743 10744 10745 #ifndef SQLITE_OMIT_SHARED_CACHE 10746 /* 10747 ** Obtain a lock on the table whose root page is iTab. The 10748 ** lock is a write lock if isWritelock is true or a read lock 10749 ** if it is false. 10750 */ 10751 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10752 int rc = SQLITE_OK; 10753 assert( p->inTrans!=TRANS_NONE ); 10754 if( p->sharable ){ 10755 u8 lockType = READ_LOCK + isWriteLock; 10756 assert( READ_LOCK+1==WRITE_LOCK ); 10757 assert( isWriteLock==0 || isWriteLock==1 ); 10758 10759 sqlite3BtreeEnter(p); 10760 rc = querySharedCacheTableLock(p, iTab, lockType); 10761 if( rc==SQLITE_OK ){ 10762 rc = setSharedCacheTableLock(p, iTab, lockType); 10763 } 10764 sqlite3BtreeLeave(p); 10765 } 10766 return rc; 10767 } 10768 #endif 10769 10770 #ifndef SQLITE_OMIT_INCRBLOB 10771 /* 10772 ** Argument pCsr must be a cursor opened for writing on an 10773 ** INTKEY table currently pointing at a valid table entry. 10774 ** This function modifies the data stored as part of that entry. 10775 ** 10776 ** Only the data content may only be modified, it is not possible to 10777 ** change the length of the data stored. If this function is called with 10778 ** parameters that attempt to write past the end of the existing data, 10779 ** no modifications are made and SQLITE_CORRUPT is returned. 10780 */ 10781 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10782 int rc; 10783 assert( cursorOwnsBtShared(pCsr) ); 10784 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10785 assert( pCsr->curFlags & BTCF_Incrblob ); 10786 10787 rc = restoreCursorPosition(pCsr); 10788 if( rc!=SQLITE_OK ){ 10789 return rc; 10790 } 10791 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10792 if( pCsr->eState!=CURSOR_VALID ){ 10793 return SQLITE_ABORT; 10794 } 10795 10796 /* Save the positions of all other cursors open on this table. This is 10797 ** required in case any of them are holding references to an xFetch 10798 ** version of the b-tree page modified by the accessPayload call below. 10799 ** 10800 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10801 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10802 ** saveAllCursors can only return SQLITE_OK. 10803 */ 10804 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10805 assert( rc==SQLITE_OK ); 10806 10807 /* Check some assumptions: 10808 ** (a) the cursor is open for writing, 10809 ** (b) there is a read/write transaction open, 10810 ** (c) the connection holds a write-lock on the table (if required), 10811 ** (d) there are no conflicting read-locks, and 10812 ** (e) the cursor points at a valid row of an intKey table. 10813 */ 10814 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10815 return SQLITE_READONLY; 10816 } 10817 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 10818 && pCsr->pBt->inTransaction==TRANS_WRITE ); 10819 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 10820 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 10821 assert( pCsr->pPage->intKey ); 10822 10823 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 10824 } 10825 10826 /* 10827 ** Mark this cursor as an incremental blob cursor. 10828 */ 10829 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 10830 pCur->curFlags |= BTCF_Incrblob; 10831 pCur->pBtree->hasIncrblobCur = 1; 10832 } 10833 #endif 10834 10835 /* 10836 ** Set both the "read version" (single byte at byte offset 18) and 10837 ** "write version" (single byte at byte offset 19) fields in the database 10838 ** header to iVersion. 10839 */ 10840 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 10841 BtShared *pBt = pBtree->pBt; 10842 int rc; /* Return code */ 10843 10844 assert( iVersion==1 || iVersion==2 ); 10845 10846 /* If setting the version fields to 1, do not automatically open the 10847 ** WAL connection, even if the version fields are currently set to 2. 10848 */ 10849 pBt->btsFlags &= ~BTS_NO_WAL; 10850 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 10851 10852 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 10853 if( rc==SQLITE_OK ){ 10854 u8 *aData = pBt->pPage1->aData; 10855 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 10856 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 10857 if( rc==SQLITE_OK ){ 10858 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10859 if( rc==SQLITE_OK ){ 10860 aData[18] = (u8)iVersion; 10861 aData[19] = (u8)iVersion; 10862 } 10863 } 10864 } 10865 } 10866 10867 pBt->btsFlags &= ~BTS_NO_WAL; 10868 return rc; 10869 } 10870 10871 /* 10872 ** Return true if the cursor has a hint specified. This routine is 10873 ** only used from within assert() statements 10874 */ 10875 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 10876 return (pCsr->hints & mask)!=0; 10877 } 10878 10879 /* 10880 ** Return true if the given Btree is read-only. 10881 */ 10882 int sqlite3BtreeIsReadonly(Btree *p){ 10883 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 10884 } 10885 10886 /* 10887 ** Return the size of the header added to each page by this module. 10888 */ 10889 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 10890 10891 #if !defined(SQLITE_OMIT_SHARED_CACHE) 10892 /* 10893 ** Return true if the Btree passed as the only argument is sharable. 10894 */ 10895 int sqlite3BtreeSharable(Btree *p){ 10896 return p->sharable; 10897 } 10898 10899 /* 10900 ** Return the number of connections to the BtShared object accessed by 10901 ** the Btree handle passed as the only argument. For private caches 10902 ** this is always 1. For shared caches it may be 1 or greater. 10903 */ 10904 int sqlite3BtreeConnectionCount(Btree *p){ 10905 testcase( p->sharable ); 10906 return p->pBt->nRef; 10907 } 10908 #endif 10909