1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call sqlite3BtreeIndexMoveto() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtrTableLeaf() => table leaf nodes 1331 ** cellSizePtr() => all index nodes & table leaf nodes 1332 */ 1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1335 u8 *pEnd; /* End mark for a varint */ 1336 u32 nSize; /* Size value to return */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #endif 1346 1347 nSize = *pIter; 1348 if( nSize>=0x80 ){ 1349 pEnd = &pIter[8]; 1350 nSize &= 0x7f; 1351 do{ 1352 nSize = (nSize<<7) | (*++pIter & 0x7f); 1353 }while( *(pIter)>=0x80 && pIter<pEnd ); 1354 } 1355 pIter++; 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==(u32)pPage->maxLocal+1 ); 1358 if( nSize<=pPage->maxLocal ){ 1359 nSize += (u32)(pIter - pCell); 1360 if( nSize<4 ) nSize = 4; 1361 }else{ 1362 int minLocal = pPage->minLocal; 1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1364 testcase( nSize==pPage->maxLocal ); 1365 testcase( nSize==(u32)pPage->maxLocal+1 ); 1366 if( nSize>pPage->maxLocal ){ 1367 nSize = minLocal; 1368 } 1369 nSize += 4 + (u16)(pIter - pCell); 1370 } 1371 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1372 return (u16)nSize; 1373 } 1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1376 u8 *pEnd; /* End mark for a varint */ 1377 1378 #ifdef SQLITE_DEBUG 1379 /* The value returned by this function should always be the same as 1380 ** the (CellInfo.nSize) value found by doing a full parse of the 1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1382 ** this function verifies that this invariant is not violated. */ 1383 CellInfo debuginfo; 1384 pPage->xParseCell(pPage, pCell, &debuginfo); 1385 #else 1386 UNUSED_PARAMETER(pPage); 1387 #endif 1388 1389 assert( pPage->childPtrSize==4 ); 1390 pEnd = pIter + 9; 1391 while( (*pIter++)&0x80 && pIter<pEnd ); 1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1393 return (u16)(pIter - pCell); 1394 } 1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ 1396 u8 *pIter = pCell; /* For looping over bytes of pCell */ 1397 u8 *pEnd; /* End mark for a varint */ 1398 u32 nSize; /* Size value to return */ 1399 1400 #ifdef SQLITE_DEBUG 1401 /* The value returned by this function should always be the same as 1402 ** the (CellInfo.nSize) value found by doing a full parse of the 1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1404 ** this function verifies that this invariant is not violated. */ 1405 CellInfo debuginfo; 1406 pPage->xParseCell(pPage, pCell, &debuginfo); 1407 #endif 1408 1409 nSize = *pIter; 1410 if( nSize>=0x80 ){ 1411 pEnd = &pIter[8]; 1412 nSize &= 0x7f; 1413 do{ 1414 nSize = (nSize<<7) | (*++pIter & 0x7f); 1415 }while( *(pIter)>=0x80 && pIter<pEnd ); 1416 } 1417 pIter++; 1418 /* pIter now points at the 64-bit integer key value, a variable length 1419 ** integer. The following block moves pIter to point at the first byte 1420 ** past the end of the key value. */ 1421 if( (*pIter++)&0x80 1422 && (*pIter++)&0x80 1423 && (*pIter++)&0x80 1424 && (*pIter++)&0x80 1425 && (*pIter++)&0x80 1426 && (*pIter++)&0x80 1427 && (*pIter++)&0x80 1428 && (*pIter++)&0x80 ){ pIter++; } 1429 testcase( nSize==pPage->maxLocal ); 1430 testcase( nSize==(u32)pPage->maxLocal+1 ); 1431 if( nSize<=pPage->maxLocal ){ 1432 nSize += (u32)(pIter - pCell); 1433 if( nSize<4 ) nSize = 4; 1434 }else{ 1435 int minLocal = pPage->minLocal; 1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1437 testcase( nSize==pPage->maxLocal ); 1438 testcase( nSize==(u32)pPage->maxLocal+1 ); 1439 if( nSize>pPage->maxLocal ){ 1440 nSize = minLocal; 1441 } 1442 nSize += 4 + (u16)(pIter - pCell); 1443 } 1444 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1445 return (u16)nSize; 1446 } 1447 1448 1449 #ifdef SQLITE_DEBUG 1450 /* This variation on cellSizePtr() is used inside of assert() statements 1451 ** only. */ 1452 static u16 cellSize(MemPage *pPage, int iCell){ 1453 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1454 } 1455 #endif 1456 1457 #ifndef SQLITE_OMIT_AUTOVACUUM 1458 /* 1459 ** The cell pCell is currently part of page pSrc but will ultimately be part 1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a 1461 ** pointer to an overflow page, insert an entry into the pointer-map for 1462 ** the overflow page that will be valid after pCell has been moved to pPage. 1463 */ 1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1465 CellInfo info; 1466 if( *pRC ) return; 1467 assert( pCell!=0 ); 1468 pPage->xParseCell(pPage, pCell, &info); 1469 if( info.nLocal<info.nPayload ){ 1470 Pgno ovfl; 1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1472 testcase( pSrc!=pPage ); 1473 *pRC = SQLITE_CORRUPT_BKPT; 1474 return; 1475 } 1476 ovfl = get4byte(&pCell[info.nSize-4]); 1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1478 } 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** Defragment the page given. This routine reorganizes cells within the 1485 ** page so that there are no free-blocks on the free-block list. 1486 ** 1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1488 ** present in the page after this routine returns. 1489 ** 1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1491 ** b-tree page so that there are no freeblocks or fragment bytes, all 1492 ** unused bytes are contained in the unallocated space region, and all 1493 ** cells are packed tightly at the end of the page. 1494 */ 1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1496 int i; /* Loop counter */ 1497 int pc; /* Address of the i-th cell */ 1498 int hdr; /* Offset to the page header */ 1499 int size; /* Size of a cell */ 1500 int usableSize; /* Number of usable bytes on a page */ 1501 int cellOffset; /* Offset to the cell pointer array */ 1502 int cbrk; /* Offset to the cell content area */ 1503 int nCell; /* Number of cells on the page */ 1504 unsigned char *data; /* The page data */ 1505 unsigned char *temp; /* Temp area for cell content */ 1506 unsigned char *src; /* Source of content */ 1507 int iCellFirst; /* First allowable cell index */ 1508 int iCellLast; /* Last possible cell index */ 1509 int iCellStart; /* First cell offset in input */ 1510 1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1512 assert( pPage->pBt!=0 ); 1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1514 assert( pPage->nOverflow==0 ); 1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1516 data = pPage->aData; 1517 hdr = pPage->hdrOffset; 1518 cellOffset = pPage->cellOffset; 1519 nCell = pPage->nCell; 1520 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1521 iCellFirst = cellOffset + 2*nCell; 1522 usableSize = pPage->pBt->usableSize; 1523 1524 /* This block handles pages with two or fewer free blocks and nMaxFrag 1525 ** or fewer fragmented bytes. In this case it is faster to move the 1526 ** two (or one) blocks of cells using memmove() and add the required 1527 ** offsets to each pointer in the cell-pointer array than it is to 1528 ** reconstruct the entire page. */ 1529 if( (int)data[hdr+7]<=nMaxFrag ){ 1530 int iFree = get2byte(&data[hdr+1]); 1531 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1532 if( iFree ){ 1533 int iFree2 = get2byte(&data[iFree]); 1534 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1535 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1536 u8 *pEnd = &data[cellOffset + nCell*2]; 1537 u8 *pAddr; 1538 int sz2 = 0; 1539 int sz = get2byte(&data[iFree+2]); 1540 int top = get2byte(&data[hdr+5]); 1541 if( top>=iFree ){ 1542 return SQLITE_CORRUPT_PAGE(pPage); 1543 } 1544 if( iFree2 ){ 1545 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1546 sz2 = get2byte(&data[iFree2+2]); 1547 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1548 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1549 sz += sz2; 1550 }else if( iFree+sz>usableSize ){ 1551 return SQLITE_CORRUPT_PAGE(pPage); 1552 } 1553 1554 cbrk = top+sz; 1555 assert( cbrk+(iFree-top) <= usableSize ); 1556 memmove(&data[cbrk], &data[top], iFree-top); 1557 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1558 pc = get2byte(pAddr); 1559 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1560 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1561 } 1562 goto defragment_out; 1563 } 1564 } 1565 } 1566 1567 cbrk = usableSize; 1568 iCellLast = usableSize - 4; 1569 iCellStart = get2byte(&data[hdr+5]); 1570 if( nCell>0 ){ 1571 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1572 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1573 src = temp; 1574 for(i=0; i<nCell; i++){ 1575 u8 *pAddr; /* The i-th cell pointer */ 1576 pAddr = &data[cellOffset + i*2]; 1577 pc = get2byte(pAddr); 1578 testcase( pc==iCellFirst ); 1579 testcase( pc==iCellLast ); 1580 /* These conditions have already been verified in btreeInitPage() 1581 ** if PRAGMA cell_size_check=ON. 1582 */ 1583 if( pc<iCellStart || pc>iCellLast ){ 1584 return SQLITE_CORRUPT_PAGE(pPage); 1585 } 1586 assert( pc>=iCellStart && pc<=iCellLast ); 1587 size = pPage->xCellSize(pPage, &src[pc]); 1588 cbrk -= size; 1589 if( cbrk<iCellStart || pc+size>usableSize ){ 1590 return SQLITE_CORRUPT_PAGE(pPage); 1591 } 1592 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1593 testcase( cbrk+size==usableSize ); 1594 testcase( pc+size==usableSize ); 1595 put2byte(pAddr, cbrk); 1596 memcpy(&data[cbrk], &src[pc], size); 1597 } 1598 } 1599 data[hdr+7] = 0; 1600 1601 defragment_out: 1602 assert( pPage->nFree>=0 ); 1603 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1604 return SQLITE_CORRUPT_PAGE(pPage); 1605 } 1606 assert( cbrk>=iCellFirst ); 1607 put2byte(&data[hdr+5], cbrk); 1608 data[hdr+1] = 0; 1609 data[hdr+2] = 0; 1610 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1611 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1612 return SQLITE_OK; 1613 } 1614 1615 /* 1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1617 ** size. If one can be found, return a pointer to the space and remove it 1618 ** from the free-list. 1619 ** 1620 ** If no suitable space can be found on the free-list, return NULL. 1621 ** 1622 ** This function may detect corruption within pPg. If corruption is 1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1624 ** 1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1626 ** will be ignored if adding the extra space to the fragmentation count 1627 ** causes the fragmentation count to exceed 60. 1628 */ 1629 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1630 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1631 u8 * const aData = pPg->aData; /* Page data */ 1632 int iAddr = hdr + 1; /* Address of ptr to pc */ 1633 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ 1634 int pc = get2byte(pTmp); /* Address of a free slot */ 1635 int x; /* Excess size of the slot */ 1636 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1637 int size; /* Size of the free slot */ 1638 1639 assert( pc>0 ); 1640 while( pc<=maxPC ){ 1641 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1642 ** freeblock form a big-endian integer which is the size of the freeblock 1643 ** in bytes, including the 4-byte header. */ 1644 pTmp = &aData[pc+2]; 1645 size = get2byte(pTmp); 1646 if( (x = size - nByte)>=0 ){ 1647 testcase( x==4 ); 1648 testcase( x==3 ); 1649 if( x<4 ){ 1650 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1651 ** number of bytes in fragments may not exceed 60. */ 1652 if( aData[hdr+7]>57 ) return 0; 1653 1654 /* Remove the slot from the free-list. Update the number of 1655 ** fragmented bytes within the page. */ 1656 memcpy(&aData[iAddr], &aData[pc], 2); 1657 aData[hdr+7] += (u8)x; 1658 testcase( pc+x>maxPC ); 1659 return &aData[pc]; 1660 }else if( x+pc > maxPC ){ 1661 /* This slot extends off the end of the usable part of the page */ 1662 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1663 return 0; 1664 }else{ 1665 /* The slot remains on the free-list. Reduce its size to account 1666 ** for the portion used by the new allocation. */ 1667 put2byte(&aData[pc+2], x); 1668 } 1669 return &aData[pc + x]; 1670 } 1671 iAddr = pc; 1672 pTmp = &aData[pc]; 1673 pc = get2byte(pTmp); 1674 if( pc<=iAddr ){ 1675 if( pc ){ 1676 /* The next slot in the chain comes before the current slot */ 1677 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1678 } 1679 return 0; 1680 } 1681 } 1682 if( pc>maxPC+nByte-4 ){ 1683 /* The free slot chain extends off the end of the page */ 1684 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1685 } 1686 return 0; 1687 } 1688 1689 /* 1690 ** Allocate nByte bytes of space from within the B-Tree page passed 1691 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1692 ** of the first byte of allocated space. Return either SQLITE_OK or 1693 ** an error code (usually SQLITE_CORRUPT). 1694 ** 1695 ** The caller guarantees that there is sufficient space to make the 1696 ** allocation. This routine might need to defragment in order to bring 1697 ** all the space together, however. This routine will avoid using 1698 ** the first two bytes past the cell pointer area since presumably this 1699 ** allocation is being made in order to insert a new cell, so we will 1700 ** also end up needing a new cell pointer. 1701 */ 1702 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1703 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1704 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1705 int top; /* First byte of cell content area */ 1706 int rc = SQLITE_OK; /* Integer return code */ 1707 u8 *pTmp; /* Temp ptr into data[] */ 1708 int gap; /* First byte of gap between cell pointers and cell content */ 1709 1710 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1711 assert( pPage->pBt ); 1712 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1713 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1714 assert( pPage->nFree>=nByte ); 1715 assert( pPage->nOverflow==0 ); 1716 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1717 1718 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1719 gap = pPage->cellOffset + 2*pPage->nCell; 1720 assert( gap<=65536 ); 1721 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1722 ** and the reserved space is zero (the usual value for reserved space) 1723 ** then the cell content offset of an empty page wants to be 65536. 1724 ** However, that integer is too large to be stored in a 2-byte unsigned 1725 ** integer, so a value of 0 is used in its place. */ 1726 pTmp = &data[hdr+5]; 1727 top = get2byte(pTmp); 1728 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1729 if( gap>top ){ 1730 if( top==0 && pPage->pBt->usableSize==65536 ){ 1731 top = 65536; 1732 }else{ 1733 return SQLITE_CORRUPT_PAGE(pPage); 1734 } 1735 } 1736 1737 /* If there is enough space between gap and top for one more cell pointer, 1738 ** and if the freelist is not empty, then search the 1739 ** freelist looking for a slot big enough to satisfy the request. 1740 */ 1741 testcase( gap+2==top ); 1742 testcase( gap+1==top ); 1743 testcase( gap==top ); 1744 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1745 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1746 if( pSpace ){ 1747 int g2; 1748 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1749 *pIdx = g2 = (int)(pSpace-data); 1750 if( g2<=gap ){ 1751 return SQLITE_CORRUPT_PAGE(pPage); 1752 }else{ 1753 return SQLITE_OK; 1754 } 1755 }else if( rc ){ 1756 return rc; 1757 } 1758 } 1759 1760 /* The request could not be fulfilled using a freelist slot. Check 1761 ** to see if defragmentation is necessary. 1762 */ 1763 testcase( gap+2+nByte==top ); 1764 if( gap+2+nByte>top ){ 1765 assert( pPage->nCell>0 || CORRUPT_DB ); 1766 assert( pPage->nFree>=0 ); 1767 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1768 if( rc ) return rc; 1769 top = get2byteNotZero(&data[hdr+5]); 1770 assert( gap+2+nByte<=top ); 1771 } 1772 1773 1774 /* Allocate memory from the gap in between the cell pointer array 1775 ** and the cell content area. The btreeComputeFreeSpace() call has already 1776 ** validated the freelist. Given that the freelist is valid, there 1777 ** is no way that the allocation can extend off the end of the page. 1778 ** The assert() below verifies the previous sentence. 1779 */ 1780 top -= nByte; 1781 put2byte(&data[hdr+5], top); 1782 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1783 *pIdx = top; 1784 return SQLITE_OK; 1785 } 1786 1787 /* 1788 ** Return a section of the pPage->aData to the freelist. 1789 ** The first byte of the new free block is pPage->aData[iStart] 1790 ** and the size of the block is iSize bytes. 1791 ** 1792 ** Adjacent freeblocks are coalesced. 1793 ** 1794 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1795 ** that routine will not detect overlap between cells or freeblocks. Nor 1796 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1797 ** at the end of the page. So do additional corruption checks inside this 1798 ** routine and return SQLITE_CORRUPT if any problems are found. 1799 */ 1800 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1801 u16 iPtr; /* Address of ptr to next freeblock */ 1802 u16 iFreeBlk; /* Address of the next freeblock */ 1803 u8 hdr; /* Page header size. 0 or 100 */ 1804 u8 nFrag = 0; /* Reduction in fragmentation */ 1805 u16 iOrigSize = iSize; /* Original value of iSize */ 1806 u16 x; /* Offset to cell content area */ 1807 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1808 unsigned char *data = pPage->aData; /* Page content */ 1809 u8 *pTmp; /* Temporary ptr into data[] */ 1810 1811 assert( pPage->pBt!=0 ); 1812 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1813 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1814 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1815 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1816 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1817 assert( iStart<=pPage->pBt->usableSize-4 ); 1818 1819 /* The list of freeblocks must be in ascending order. Find the 1820 ** spot on the list where iStart should be inserted. 1821 */ 1822 hdr = pPage->hdrOffset; 1823 iPtr = hdr + 1; 1824 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1825 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1826 }else{ 1827 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1828 if( iFreeBlk<=iPtr ){ 1829 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1830 return SQLITE_CORRUPT_PAGE(pPage); 1831 } 1832 iPtr = iFreeBlk; 1833 } 1834 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1835 return SQLITE_CORRUPT_PAGE(pPage); 1836 } 1837 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); 1838 1839 /* At this point: 1840 ** iFreeBlk: First freeblock after iStart, or zero if none 1841 ** iPtr: The address of a pointer to iFreeBlk 1842 ** 1843 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1844 */ 1845 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1846 nFrag = iFreeBlk - iEnd; 1847 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1848 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1849 if( iEnd > pPage->pBt->usableSize ){ 1850 return SQLITE_CORRUPT_PAGE(pPage); 1851 } 1852 iSize = iEnd - iStart; 1853 iFreeBlk = get2byte(&data[iFreeBlk]); 1854 } 1855 1856 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1857 ** pointer in the page header) then check to see if iStart should be 1858 ** coalesced onto the end of iPtr. 1859 */ 1860 if( iPtr>hdr+1 ){ 1861 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1862 if( iPtrEnd+3>=iStart ){ 1863 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1864 nFrag += iStart - iPtrEnd; 1865 iSize = iEnd - iPtr; 1866 iStart = iPtr; 1867 } 1868 } 1869 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1870 data[hdr+7] -= nFrag; 1871 } 1872 pTmp = &data[hdr+5]; 1873 x = get2byte(pTmp); 1874 if( iStart<=x ){ 1875 /* The new freeblock is at the beginning of the cell content area, 1876 ** so just extend the cell content area rather than create another 1877 ** freelist entry */ 1878 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1879 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1880 put2byte(&data[hdr+1], iFreeBlk); 1881 put2byte(&data[hdr+5], iEnd); 1882 }else{ 1883 /* Insert the new freeblock into the freelist */ 1884 put2byte(&data[iPtr], iStart); 1885 } 1886 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1887 /* Overwrite deleted information with zeros when the secure_delete 1888 ** option is enabled */ 1889 memset(&data[iStart], 0, iSize); 1890 } 1891 put2byte(&data[iStart], iFreeBlk); 1892 put2byte(&data[iStart+2], iSize); 1893 pPage->nFree += iOrigSize; 1894 return SQLITE_OK; 1895 } 1896 1897 /* 1898 ** Decode the flags byte (the first byte of the header) for a page 1899 ** and initialize fields of the MemPage structure accordingly. 1900 ** 1901 ** Only the following combinations are supported. Anything different 1902 ** indicates a corrupt database files: 1903 ** 1904 ** PTF_ZERODATA 1905 ** PTF_ZERODATA | PTF_LEAF 1906 ** PTF_LEAFDATA | PTF_INTKEY 1907 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1908 */ 1909 static int decodeFlags(MemPage *pPage, int flagByte){ 1910 BtShared *pBt; /* A copy of pPage->pBt */ 1911 1912 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1913 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1914 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1915 flagByte &= ~PTF_LEAF; 1916 pPage->childPtrSize = 4-4*pPage->leaf; 1917 pBt = pPage->pBt; 1918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1919 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1920 ** interior table b-tree page. */ 1921 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1922 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1923 ** leaf table b-tree page. */ 1924 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1925 pPage->intKey = 1; 1926 if( pPage->leaf ){ 1927 pPage->intKeyLeaf = 1; 1928 pPage->xCellSize = cellSizePtrTableLeaf; 1929 pPage->xParseCell = btreeParseCellPtr; 1930 }else{ 1931 pPage->intKeyLeaf = 0; 1932 pPage->xCellSize = cellSizePtrNoPayload; 1933 pPage->xParseCell = btreeParseCellPtrNoPayload; 1934 } 1935 pPage->maxLocal = pBt->maxLeaf; 1936 pPage->minLocal = pBt->minLeaf; 1937 }else if( flagByte==PTF_ZERODATA ){ 1938 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1939 ** interior index b-tree page. */ 1940 assert( (PTF_ZERODATA)==2 ); 1941 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1942 ** leaf index b-tree page. */ 1943 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1944 pPage->intKey = 0; 1945 pPage->intKeyLeaf = 0; 1946 pPage->xCellSize = cellSizePtr; 1947 pPage->xParseCell = btreeParseCellPtrIndex; 1948 pPage->maxLocal = pBt->maxLocal; 1949 pPage->minLocal = pBt->minLocal; 1950 }else{ 1951 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1952 ** an error. */ 1953 pPage->intKey = 0; 1954 pPage->intKeyLeaf = 0; 1955 pPage->xCellSize = cellSizePtr; 1956 pPage->xParseCell = btreeParseCellPtrIndex; 1957 return SQLITE_CORRUPT_PAGE(pPage); 1958 } 1959 pPage->max1bytePayload = pBt->max1bytePayload; 1960 return SQLITE_OK; 1961 } 1962 1963 /* 1964 ** Compute the amount of freespace on the page. In other words, fill 1965 ** in the pPage->nFree field. 1966 */ 1967 static int btreeComputeFreeSpace(MemPage *pPage){ 1968 int pc; /* Address of a freeblock within pPage->aData[] */ 1969 u8 hdr; /* Offset to beginning of page header */ 1970 u8 *data; /* Equal to pPage->aData */ 1971 int usableSize; /* Amount of usable space on each page */ 1972 int nFree; /* Number of unused bytes on the page */ 1973 int top; /* First byte of the cell content area */ 1974 int iCellFirst; /* First allowable cell or freeblock offset */ 1975 int iCellLast; /* Last possible cell or freeblock offset */ 1976 1977 assert( pPage->pBt!=0 ); 1978 assert( pPage->pBt->db!=0 ); 1979 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1980 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1981 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1982 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1983 assert( pPage->isInit==1 ); 1984 assert( pPage->nFree<0 ); 1985 1986 usableSize = pPage->pBt->usableSize; 1987 hdr = pPage->hdrOffset; 1988 data = pPage->aData; 1989 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1990 ** the start of the cell content area. A zero value for this integer is 1991 ** interpreted as 65536. */ 1992 top = get2byteNotZero(&data[hdr+5]); 1993 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1994 iCellLast = usableSize - 4; 1995 1996 /* Compute the total free space on the page 1997 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 1998 ** start of the first freeblock on the page, or is zero if there are no 1999 ** freeblocks. */ 2000 pc = get2byte(&data[hdr+1]); 2001 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 2002 if( pc>0 ){ 2003 u32 next, size; 2004 if( pc<top ){ 2005 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 2006 ** always be at least one cell before the first freeblock. 2007 */ 2008 return SQLITE_CORRUPT_PAGE(pPage); 2009 } 2010 while( 1 ){ 2011 if( pc>iCellLast ){ 2012 /* Freeblock off the end of the page */ 2013 return SQLITE_CORRUPT_PAGE(pPage); 2014 } 2015 next = get2byte(&data[pc]); 2016 size = get2byte(&data[pc+2]); 2017 nFree = nFree + size; 2018 if( next<=pc+size+3 ) break; 2019 pc = next; 2020 } 2021 if( next>0 ){ 2022 /* Freeblock not in ascending order */ 2023 return SQLITE_CORRUPT_PAGE(pPage); 2024 } 2025 if( pc+size>(unsigned int)usableSize ){ 2026 /* Last freeblock extends past page end */ 2027 return SQLITE_CORRUPT_PAGE(pPage); 2028 } 2029 } 2030 2031 /* At this point, nFree contains the sum of the offset to the start 2032 ** of the cell-content area plus the number of free bytes within 2033 ** the cell-content area. If this is greater than the usable-size 2034 ** of the page, then the page must be corrupted. This check also 2035 ** serves to verify that the offset to the start of the cell-content 2036 ** area, according to the page header, lies within the page. 2037 */ 2038 if( nFree>usableSize || nFree<iCellFirst ){ 2039 return SQLITE_CORRUPT_PAGE(pPage); 2040 } 2041 pPage->nFree = (u16)(nFree - iCellFirst); 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Do additional sanity check after btreeInitPage() if 2047 ** PRAGMA cell_size_check=ON 2048 */ 2049 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 2050 int iCellFirst; /* First allowable cell or freeblock offset */ 2051 int iCellLast; /* Last possible cell or freeblock offset */ 2052 int i; /* Index into the cell pointer array */ 2053 int sz; /* Size of a cell */ 2054 int pc; /* Address of a freeblock within pPage->aData[] */ 2055 u8 *data; /* Equal to pPage->aData */ 2056 int usableSize; /* Maximum usable space on the page */ 2057 int cellOffset; /* Start of cell content area */ 2058 2059 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2060 usableSize = pPage->pBt->usableSize; 2061 iCellLast = usableSize - 4; 2062 data = pPage->aData; 2063 cellOffset = pPage->cellOffset; 2064 if( !pPage->leaf ) iCellLast--; 2065 for(i=0; i<pPage->nCell; i++){ 2066 pc = get2byteAligned(&data[cellOffset+i*2]); 2067 testcase( pc==iCellFirst ); 2068 testcase( pc==iCellLast ); 2069 if( pc<iCellFirst || pc>iCellLast ){ 2070 return SQLITE_CORRUPT_PAGE(pPage); 2071 } 2072 sz = pPage->xCellSize(pPage, &data[pc]); 2073 testcase( pc+sz==usableSize ); 2074 if( pc+sz>usableSize ){ 2075 return SQLITE_CORRUPT_PAGE(pPage); 2076 } 2077 } 2078 return SQLITE_OK; 2079 } 2080 2081 /* 2082 ** Initialize the auxiliary information for a disk block. 2083 ** 2084 ** Return SQLITE_OK on success. If we see that the page does 2085 ** not contain a well-formed database page, then return 2086 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2087 ** guarantee that the page is well-formed. It only shows that 2088 ** we failed to detect any corruption. 2089 */ 2090 static int btreeInitPage(MemPage *pPage){ 2091 u8 *data; /* Equal to pPage->aData */ 2092 BtShared *pBt; /* The main btree structure */ 2093 2094 assert( pPage->pBt!=0 ); 2095 assert( pPage->pBt->db!=0 ); 2096 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2097 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2098 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2099 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2100 assert( pPage->isInit==0 ); 2101 2102 pBt = pPage->pBt; 2103 data = pPage->aData + pPage->hdrOffset; 2104 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2105 ** the b-tree page type. */ 2106 if( decodeFlags(pPage, data[0]) ){ 2107 return SQLITE_CORRUPT_PAGE(pPage); 2108 } 2109 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2110 pPage->maskPage = (u16)(pBt->pageSize - 1); 2111 pPage->nOverflow = 0; 2112 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2113 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2114 pPage->aDataEnd = pPage->aData + pBt->pageSize; 2115 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2117 ** number of cells on the page. */ 2118 pPage->nCell = get2byte(&data[3]); 2119 if( pPage->nCell>MX_CELL(pBt) ){ 2120 /* To many cells for a single page. The page must be corrupt */ 2121 return SQLITE_CORRUPT_PAGE(pPage); 2122 } 2123 testcase( pPage->nCell==MX_CELL(pBt) ); 2124 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2125 ** possible for a root page of a table that contains no rows) then the 2126 ** offset to the cell content area will equal the page size minus the 2127 ** bytes of reserved space. */ 2128 assert( pPage->nCell>0 2129 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2130 || CORRUPT_DB ); 2131 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2132 pPage->isInit = 1; 2133 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2134 return btreeCellSizeCheck(pPage); 2135 } 2136 return SQLITE_OK; 2137 } 2138 2139 /* 2140 ** Set up a raw page so that it looks like a database page holding 2141 ** no entries. 2142 */ 2143 static void zeroPage(MemPage *pPage, int flags){ 2144 unsigned char *data = pPage->aData; 2145 BtShared *pBt = pPage->pBt; 2146 u8 hdr = pPage->hdrOffset; 2147 u16 first; 2148 2149 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); 2150 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2151 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2152 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2153 assert( sqlite3_mutex_held(pBt->mutex) ); 2154 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2155 memset(&data[hdr], 0, pBt->usableSize - hdr); 2156 } 2157 data[hdr] = (char)flags; 2158 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2159 memset(&data[hdr+1], 0, 4); 2160 data[hdr+7] = 0; 2161 put2byte(&data[hdr+5], pBt->usableSize); 2162 pPage->nFree = (u16)(pBt->usableSize - first); 2163 decodeFlags(pPage, flags); 2164 pPage->cellOffset = first; 2165 pPage->aDataEnd = &data[pBt->pageSize]; 2166 pPage->aCellIdx = &data[first]; 2167 pPage->aDataOfst = &data[pPage->childPtrSize]; 2168 pPage->nOverflow = 0; 2169 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2170 pPage->maskPage = (u16)(pBt->pageSize - 1); 2171 pPage->nCell = 0; 2172 pPage->isInit = 1; 2173 } 2174 2175 2176 /* 2177 ** Convert a DbPage obtained from the pager into a MemPage used by 2178 ** the btree layer. 2179 */ 2180 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2181 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2182 if( pgno!=pPage->pgno ){ 2183 pPage->aData = sqlite3PagerGetData(pDbPage); 2184 pPage->pDbPage = pDbPage; 2185 pPage->pBt = pBt; 2186 pPage->pgno = pgno; 2187 pPage->hdrOffset = pgno==1 ? 100 : 0; 2188 } 2189 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2190 return pPage; 2191 } 2192 2193 /* 2194 ** Get a page from the pager. Initialize the MemPage.pBt and 2195 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2196 ** 2197 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2198 ** about the content of the page at this time. So do not go to the disk 2199 ** to fetch the content. Just fill in the content with zeros for now. 2200 ** If in the future we call sqlite3PagerWrite() on this page, that 2201 ** means we have started to be concerned about content and the disk 2202 ** read should occur at that point. 2203 */ 2204 static int btreeGetPage( 2205 BtShared *pBt, /* The btree */ 2206 Pgno pgno, /* Number of the page to fetch */ 2207 MemPage **ppPage, /* Return the page in this parameter */ 2208 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2209 ){ 2210 int rc; 2211 DbPage *pDbPage; 2212 2213 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2214 assert( sqlite3_mutex_held(pBt->mutex) ); 2215 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2216 if( rc ) return rc; 2217 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2218 return SQLITE_OK; 2219 } 2220 2221 /* 2222 ** Retrieve a page from the pager cache. If the requested page is not 2223 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2224 ** MemPage.aData elements if needed. 2225 */ 2226 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2227 DbPage *pDbPage; 2228 assert( sqlite3_mutex_held(pBt->mutex) ); 2229 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2230 if( pDbPage ){ 2231 return btreePageFromDbPage(pDbPage, pgno, pBt); 2232 } 2233 return 0; 2234 } 2235 2236 /* 2237 ** Return the size of the database file in pages. If there is any kind of 2238 ** error, return ((unsigned int)-1). 2239 */ 2240 static Pgno btreePagecount(BtShared *pBt){ 2241 return pBt->nPage; 2242 } 2243 Pgno sqlite3BtreeLastPage(Btree *p){ 2244 assert( sqlite3BtreeHoldsMutex(p) ); 2245 return btreePagecount(p->pBt); 2246 } 2247 2248 /* 2249 ** Get a page from the pager and initialize it. 2250 ** 2251 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2252 ** call. Do additional sanity checking on the page in this case. 2253 ** And if the fetch fails, this routine must decrement pCur->iPage. 2254 ** 2255 ** The page is fetched as read-write unless pCur is not NULL and is 2256 ** a read-only cursor. 2257 ** 2258 ** If an error occurs, then *ppPage is undefined. It 2259 ** may remain unchanged, or it may be set to an invalid value. 2260 */ 2261 static int getAndInitPage( 2262 BtShared *pBt, /* The database file */ 2263 Pgno pgno, /* Number of the page to get */ 2264 MemPage **ppPage, /* Write the page pointer here */ 2265 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2266 int bReadOnly /* True for a read-only page */ 2267 ){ 2268 int rc; 2269 DbPage *pDbPage; 2270 assert( sqlite3_mutex_held(pBt->mutex) ); 2271 assert( pCur==0 || ppPage==&pCur->pPage ); 2272 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2273 assert( pCur==0 || pCur->iPage>0 ); 2274 2275 if( pgno>btreePagecount(pBt) ){ 2276 rc = SQLITE_CORRUPT_BKPT; 2277 goto getAndInitPage_error1; 2278 } 2279 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2280 if( rc ){ 2281 goto getAndInitPage_error1; 2282 } 2283 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2284 if( (*ppPage)->isInit==0 ){ 2285 btreePageFromDbPage(pDbPage, pgno, pBt); 2286 rc = btreeInitPage(*ppPage); 2287 if( rc!=SQLITE_OK ){ 2288 goto getAndInitPage_error2; 2289 } 2290 } 2291 assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); 2292 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2293 2294 /* If obtaining a child page for a cursor, we must verify that the page is 2295 ** compatible with the root page. */ 2296 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2297 rc = SQLITE_CORRUPT_PGNO(pgno); 2298 goto getAndInitPage_error2; 2299 } 2300 return SQLITE_OK; 2301 2302 getAndInitPage_error2: 2303 releasePage(*ppPage); 2304 getAndInitPage_error1: 2305 if( pCur ){ 2306 pCur->iPage--; 2307 pCur->pPage = pCur->apPage[pCur->iPage]; 2308 } 2309 testcase( pgno==0 ); 2310 assert( pgno!=0 || rc!=SQLITE_OK ); 2311 return rc; 2312 } 2313 2314 /* 2315 ** Release a MemPage. This should be called once for each prior 2316 ** call to btreeGetPage. 2317 ** 2318 ** Page1 is a special case and must be released using releasePageOne(). 2319 */ 2320 static void releasePageNotNull(MemPage *pPage){ 2321 assert( pPage->aData ); 2322 assert( pPage->pBt ); 2323 assert( pPage->pDbPage!=0 ); 2324 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2325 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2326 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2327 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2328 } 2329 static void releasePage(MemPage *pPage){ 2330 if( pPage ) releasePageNotNull(pPage); 2331 } 2332 static void releasePageOne(MemPage *pPage){ 2333 assert( pPage!=0 ); 2334 assert( pPage->aData ); 2335 assert( pPage->pBt ); 2336 assert( pPage->pDbPage!=0 ); 2337 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2338 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2339 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2340 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2341 } 2342 2343 /* 2344 ** Get an unused page. 2345 ** 2346 ** This works just like btreeGetPage() with the addition: 2347 ** 2348 ** * If the page is already in use for some other purpose, immediately 2349 ** release it and return an SQLITE_CURRUPT error. 2350 ** * Make sure the isInit flag is clear 2351 */ 2352 static int btreeGetUnusedPage( 2353 BtShared *pBt, /* The btree */ 2354 Pgno pgno, /* Number of the page to fetch */ 2355 MemPage **ppPage, /* Return the page in this parameter */ 2356 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2357 ){ 2358 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2359 if( rc==SQLITE_OK ){ 2360 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2361 releasePage(*ppPage); 2362 *ppPage = 0; 2363 return SQLITE_CORRUPT_BKPT; 2364 } 2365 (*ppPage)->isInit = 0; 2366 }else{ 2367 *ppPage = 0; 2368 } 2369 return rc; 2370 } 2371 2372 2373 /* 2374 ** During a rollback, when the pager reloads information into the cache 2375 ** so that the cache is restored to its original state at the start of 2376 ** the transaction, for each page restored this routine is called. 2377 ** 2378 ** This routine needs to reset the extra data section at the end of the 2379 ** page to agree with the restored data. 2380 */ 2381 static void pageReinit(DbPage *pData){ 2382 MemPage *pPage; 2383 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2384 assert( sqlite3PagerPageRefcount(pData)>0 ); 2385 if( pPage->isInit ){ 2386 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2387 pPage->isInit = 0; 2388 if( sqlite3PagerPageRefcount(pData)>1 ){ 2389 /* pPage might not be a btree page; it might be an overflow page 2390 ** or ptrmap page or a free page. In those cases, the following 2391 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2392 ** But no harm is done by this. And it is very important that 2393 ** btreeInitPage() be called on every btree page so we make 2394 ** the call for every page that comes in for re-initing. */ 2395 btreeInitPage(pPage); 2396 } 2397 } 2398 } 2399 2400 /* 2401 ** Invoke the busy handler for a btree. 2402 */ 2403 static int btreeInvokeBusyHandler(void *pArg){ 2404 BtShared *pBt = (BtShared*)pArg; 2405 assert( pBt->db ); 2406 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2407 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2408 } 2409 2410 /* 2411 ** Open a database file. 2412 ** 2413 ** zFilename is the name of the database file. If zFilename is NULL 2414 ** then an ephemeral database is created. The ephemeral database might 2415 ** be exclusively in memory, or it might use a disk-based memory cache. 2416 ** Either way, the ephemeral database will be automatically deleted 2417 ** when sqlite3BtreeClose() is called. 2418 ** 2419 ** If zFilename is ":memory:" then an in-memory database is created 2420 ** that is automatically destroyed when it is closed. 2421 ** 2422 ** The "flags" parameter is a bitmask that might contain bits like 2423 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2424 ** 2425 ** If the database is already opened in the same database connection 2426 ** and we are in shared cache mode, then the open will fail with an 2427 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2428 ** objects in the same database connection since doing so will lead 2429 ** to problems with locking. 2430 */ 2431 int sqlite3BtreeOpen( 2432 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2433 const char *zFilename, /* Name of the file containing the BTree database */ 2434 sqlite3 *db, /* Associated database handle */ 2435 Btree **ppBtree, /* Pointer to new Btree object written here */ 2436 int flags, /* Options */ 2437 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2438 ){ 2439 BtShared *pBt = 0; /* Shared part of btree structure */ 2440 Btree *p; /* Handle to return */ 2441 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2442 int rc = SQLITE_OK; /* Result code from this function */ 2443 u8 nReserve; /* Byte of unused space on each page */ 2444 unsigned char zDbHeader[100]; /* Database header content */ 2445 2446 /* True if opening an ephemeral, temporary database */ 2447 const int isTempDb = zFilename==0 || zFilename[0]==0; 2448 2449 /* Set the variable isMemdb to true for an in-memory database, or 2450 ** false for a file-based database. 2451 */ 2452 #ifdef SQLITE_OMIT_MEMORYDB 2453 const int isMemdb = 0; 2454 #else 2455 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2456 || (isTempDb && sqlite3TempInMemory(db)) 2457 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2458 #endif 2459 2460 assert( db!=0 ); 2461 assert( pVfs!=0 ); 2462 assert( sqlite3_mutex_held(db->mutex) ); 2463 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2464 2465 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2466 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2467 2468 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2469 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2470 2471 if( isMemdb ){ 2472 flags |= BTREE_MEMORY; 2473 } 2474 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2475 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2476 } 2477 p = sqlite3MallocZero(sizeof(Btree)); 2478 if( !p ){ 2479 return SQLITE_NOMEM_BKPT; 2480 } 2481 p->inTrans = TRANS_NONE; 2482 p->db = db; 2483 #ifndef SQLITE_OMIT_SHARED_CACHE 2484 p->lock.pBtree = p; 2485 p->lock.iTable = 1; 2486 #endif 2487 2488 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2489 /* 2490 ** If this Btree is a candidate for shared cache, try to find an 2491 ** existing BtShared object that we can share with 2492 */ 2493 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2494 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2495 int nFilename = sqlite3Strlen30(zFilename)+1; 2496 int nFullPathname = pVfs->mxPathname+1; 2497 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2498 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2499 2500 p->sharable = 1; 2501 if( !zFullPathname ){ 2502 sqlite3_free(p); 2503 return SQLITE_NOMEM_BKPT; 2504 } 2505 if( isMemdb ){ 2506 memcpy(zFullPathname, zFilename, nFilename); 2507 }else{ 2508 rc = sqlite3OsFullPathname(pVfs, zFilename, 2509 nFullPathname, zFullPathname); 2510 if( rc ){ 2511 if( rc==SQLITE_OK_SYMLINK ){ 2512 rc = SQLITE_OK; 2513 }else{ 2514 sqlite3_free(zFullPathname); 2515 sqlite3_free(p); 2516 return rc; 2517 } 2518 } 2519 } 2520 #if SQLITE_THREADSAFE 2521 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2522 sqlite3_mutex_enter(mutexOpen); 2523 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2524 sqlite3_mutex_enter(mutexShared); 2525 #endif 2526 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2527 assert( pBt->nRef>0 ); 2528 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2529 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2530 int iDb; 2531 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2532 Btree *pExisting = db->aDb[iDb].pBt; 2533 if( pExisting && pExisting->pBt==pBt ){ 2534 sqlite3_mutex_leave(mutexShared); 2535 sqlite3_mutex_leave(mutexOpen); 2536 sqlite3_free(zFullPathname); 2537 sqlite3_free(p); 2538 return SQLITE_CONSTRAINT; 2539 } 2540 } 2541 p->pBt = pBt; 2542 pBt->nRef++; 2543 break; 2544 } 2545 } 2546 sqlite3_mutex_leave(mutexShared); 2547 sqlite3_free(zFullPathname); 2548 } 2549 #ifdef SQLITE_DEBUG 2550 else{ 2551 /* In debug mode, we mark all persistent databases as sharable 2552 ** even when they are not. This exercises the locking code and 2553 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2554 ** statements to find locking problems. 2555 */ 2556 p->sharable = 1; 2557 } 2558 #endif 2559 } 2560 #endif 2561 if( pBt==0 ){ 2562 /* 2563 ** The following asserts make sure that structures used by the btree are 2564 ** the right size. This is to guard against size changes that result 2565 ** when compiling on a different architecture. 2566 */ 2567 assert( sizeof(i64)==8 ); 2568 assert( sizeof(u64)==8 ); 2569 assert( sizeof(u32)==4 ); 2570 assert( sizeof(u16)==2 ); 2571 assert( sizeof(Pgno)==4 ); 2572 2573 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2574 if( pBt==0 ){ 2575 rc = SQLITE_NOMEM_BKPT; 2576 goto btree_open_out; 2577 } 2578 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2579 sizeof(MemPage), flags, vfsFlags, pageReinit); 2580 if( rc==SQLITE_OK ){ 2581 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2582 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2583 } 2584 if( rc!=SQLITE_OK ){ 2585 goto btree_open_out; 2586 } 2587 pBt->openFlags = (u8)flags; 2588 pBt->db = db; 2589 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2590 p->pBt = pBt; 2591 2592 pBt->pCursor = 0; 2593 pBt->pPage1 = 0; 2594 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2595 #if defined(SQLITE_SECURE_DELETE) 2596 pBt->btsFlags |= BTS_SECURE_DELETE; 2597 #elif defined(SQLITE_FAST_SECURE_DELETE) 2598 pBt->btsFlags |= BTS_OVERWRITE; 2599 #endif 2600 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2601 ** determined by the 2-byte integer located at an offset of 16 bytes from 2602 ** the beginning of the database file. */ 2603 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2604 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2605 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2606 pBt->pageSize = 0; 2607 #ifndef SQLITE_OMIT_AUTOVACUUM 2608 /* If the magic name ":memory:" will create an in-memory database, then 2609 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2610 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2611 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2612 ** regular file-name. In this case the auto-vacuum applies as per normal. 2613 */ 2614 if( zFilename && !isMemdb ){ 2615 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2616 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2617 } 2618 #endif 2619 nReserve = 0; 2620 }else{ 2621 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2622 ** determined by the one-byte unsigned integer found at an offset of 20 2623 ** into the database file header. */ 2624 nReserve = zDbHeader[20]; 2625 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2626 #ifndef SQLITE_OMIT_AUTOVACUUM 2627 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2628 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2629 #endif 2630 } 2631 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2632 if( rc ) goto btree_open_out; 2633 pBt->usableSize = pBt->pageSize - nReserve; 2634 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2635 2636 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2637 /* Add the new BtShared object to the linked list sharable BtShareds. 2638 */ 2639 pBt->nRef = 1; 2640 if( p->sharable ){ 2641 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2642 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2643 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2644 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2645 if( pBt->mutex==0 ){ 2646 rc = SQLITE_NOMEM_BKPT; 2647 goto btree_open_out; 2648 } 2649 } 2650 sqlite3_mutex_enter(mutexShared); 2651 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2652 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2653 sqlite3_mutex_leave(mutexShared); 2654 } 2655 #endif 2656 } 2657 2658 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2659 /* If the new Btree uses a sharable pBtShared, then link the new 2660 ** Btree into the list of all sharable Btrees for the same connection. 2661 ** The list is kept in ascending order by pBt address. 2662 */ 2663 if( p->sharable ){ 2664 int i; 2665 Btree *pSib; 2666 for(i=0; i<db->nDb; i++){ 2667 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2668 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2669 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2670 p->pNext = pSib; 2671 p->pPrev = 0; 2672 pSib->pPrev = p; 2673 }else{ 2674 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2675 pSib = pSib->pNext; 2676 } 2677 p->pNext = pSib->pNext; 2678 p->pPrev = pSib; 2679 if( p->pNext ){ 2680 p->pNext->pPrev = p; 2681 } 2682 pSib->pNext = p; 2683 } 2684 break; 2685 } 2686 } 2687 } 2688 #endif 2689 *ppBtree = p; 2690 2691 btree_open_out: 2692 if( rc!=SQLITE_OK ){ 2693 if( pBt && pBt->pPager ){ 2694 sqlite3PagerClose(pBt->pPager, 0); 2695 } 2696 sqlite3_free(pBt); 2697 sqlite3_free(p); 2698 *ppBtree = 0; 2699 }else{ 2700 sqlite3_file *pFile; 2701 2702 /* If the B-Tree was successfully opened, set the pager-cache size to the 2703 ** default value. Except, when opening on an existing shared pager-cache, 2704 ** do not change the pager-cache size. 2705 */ 2706 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2707 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2708 } 2709 2710 pFile = sqlite3PagerFile(pBt->pPager); 2711 if( pFile->pMethods ){ 2712 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2713 } 2714 } 2715 if( mutexOpen ){ 2716 assert( sqlite3_mutex_held(mutexOpen) ); 2717 sqlite3_mutex_leave(mutexOpen); 2718 } 2719 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2720 return rc; 2721 } 2722 2723 /* 2724 ** Decrement the BtShared.nRef counter. When it reaches zero, 2725 ** remove the BtShared structure from the sharing list. Return 2726 ** true if the BtShared.nRef counter reaches zero and return 2727 ** false if it is still positive. 2728 */ 2729 static int removeFromSharingList(BtShared *pBt){ 2730 #ifndef SQLITE_OMIT_SHARED_CACHE 2731 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2732 BtShared *pList; 2733 int removed = 0; 2734 2735 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2736 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2737 sqlite3_mutex_enter(pMainMtx); 2738 pBt->nRef--; 2739 if( pBt->nRef<=0 ){ 2740 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2741 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2742 }else{ 2743 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2744 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2745 pList=pList->pNext; 2746 } 2747 if( ALWAYS(pList) ){ 2748 pList->pNext = pBt->pNext; 2749 } 2750 } 2751 if( SQLITE_THREADSAFE ){ 2752 sqlite3_mutex_free(pBt->mutex); 2753 } 2754 removed = 1; 2755 } 2756 sqlite3_mutex_leave(pMainMtx); 2757 return removed; 2758 #else 2759 return 1; 2760 #endif 2761 } 2762 2763 /* 2764 ** Make sure pBt->pTmpSpace points to an allocation of 2765 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2766 ** pointer. 2767 */ 2768 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2769 assert( pBt!=0 ); 2770 assert( pBt->pTmpSpace==0 ); 2771 /* This routine is called only by btreeCursor() when allocating the 2772 ** first write cursor for the BtShared object */ 2773 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2774 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2775 if( pBt->pTmpSpace==0 ){ 2776 BtCursor *pCur = pBt->pCursor; 2777 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2778 memset(pCur, 0, sizeof(*pCur)); 2779 return SQLITE_NOMEM_BKPT; 2780 } 2781 2782 /* One of the uses of pBt->pTmpSpace is to format cells before 2783 ** inserting them into a leaf page (function fillInCell()). If 2784 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2785 ** by the various routines that manipulate binary cells. Which 2786 ** can mean that fillInCell() only initializes the first 2 or 3 2787 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2788 ** it into a database page. This is not actually a problem, but it 2789 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2790 ** data is passed to system call write(). So to avoid this error, 2791 ** zero the first 4 bytes of temp space here. 2792 ** 2793 ** Also: Provide four bytes of initialized space before the 2794 ** beginning of pTmpSpace as an area available to prepend the 2795 ** left-child pointer to the beginning of a cell. 2796 */ 2797 memset(pBt->pTmpSpace, 0, 8); 2798 pBt->pTmpSpace += 4; 2799 return SQLITE_OK; 2800 } 2801 2802 /* 2803 ** Free the pBt->pTmpSpace allocation 2804 */ 2805 static void freeTempSpace(BtShared *pBt){ 2806 if( pBt->pTmpSpace ){ 2807 pBt->pTmpSpace -= 4; 2808 sqlite3PageFree(pBt->pTmpSpace); 2809 pBt->pTmpSpace = 0; 2810 } 2811 } 2812 2813 /* 2814 ** Close an open database and invalidate all cursors. 2815 */ 2816 int sqlite3BtreeClose(Btree *p){ 2817 BtShared *pBt = p->pBt; 2818 2819 /* Close all cursors opened via this handle. */ 2820 assert( sqlite3_mutex_held(p->db->mutex) ); 2821 sqlite3BtreeEnter(p); 2822 2823 /* Verify that no other cursors have this Btree open */ 2824 #ifdef SQLITE_DEBUG 2825 { 2826 BtCursor *pCur = pBt->pCursor; 2827 while( pCur ){ 2828 BtCursor *pTmp = pCur; 2829 pCur = pCur->pNext; 2830 assert( pTmp->pBtree!=p ); 2831 2832 } 2833 } 2834 #endif 2835 2836 /* Rollback any active transaction and free the handle structure. 2837 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2838 ** this handle. 2839 */ 2840 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2841 sqlite3BtreeLeave(p); 2842 2843 /* If there are still other outstanding references to the shared-btree 2844 ** structure, return now. The remainder of this procedure cleans 2845 ** up the shared-btree. 2846 */ 2847 assert( p->wantToLock==0 && p->locked==0 ); 2848 if( !p->sharable || removeFromSharingList(pBt) ){ 2849 /* The pBt is no longer on the sharing list, so we can access 2850 ** it without having to hold the mutex. 2851 ** 2852 ** Clean out and delete the BtShared object. 2853 */ 2854 assert( !pBt->pCursor ); 2855 sqlite3PagerClose(pBt->pPager, p->db); 2856 if( pBt->xFreeSchema && pBt->pSchema ){ 2857 pBt->xFreeSchema(pBt->pSchema); 2858 } 2859 sqlite3DbFree(0, pBt->pSchema); 2860 freeTempSpace(pBt); 2861 sqlite3_free(pBt); 2862 } 2863 2864 #ifndef SQLITE_OMIT_SHARED_CACHE 2865 assert( p->wantToLock==0 ); 2866 assert( p->locked==0 ); 2867 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2868 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2869 #endif 2870 2871 sqlite3_free(p); 2872 return SQLITE_OK; 2873 } 2874 2875 /* 2876 ** Change the "soft" limit on the number of pages in the cache. 2877 ** Unused and unmodified pages will be recycled when the number of 2878 ** pages in the cache exceeds this soft limit. But the size of the 2879 ** cache is allowed to grow larger than this limit if it contains 2880 ** dirty pages or pages still in active use. 2881 */ 2882 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2883 BtShared *pBt = p->pBt; 2884 assert( sqlite3_mutex_held(p->db->mutex) ); 2885 sqlite3BtreeEnter(p); 2886 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2887 sqlite3BtreeLeave(p); 2888 return SQLITE_OK; 2889 } 2890 2891 /* 2892 ** Change the "spill" limit on the number of pages in the cache. 2893 ** If the number of pages exceeds this limit during a write transaction, 2894 ** the pager might attempt to "spill" pages to the journal early in 2895 ** order to free up memory. 2896 ** 2897 ** The value returned is the current spill size. If zero is passed 2898 ** as an argument, no changes are made to the spill size setting, so 2899 ** using mxPage of 0 is a way to query the current spill size. 2900 */ 2901 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2902 BtShared *pBt = p->pBt; 2903 int res; 2904 assert( sqlite3_mutex_held(p->db->mutex) ); 2905 sqlite3BtreeEnter(p); 2906 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2907 sqlite3BtreeLeave(p); 2908 return res; 2909 } 2910 2911 #if SQLITE_MAX_MMAP_SIZE>0 2912 /* 2913 ** Change the limit on the amount of the database file that may be 2914 ** memory mapped. 2915 */ 2916 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2917 BtShared *pBt = p->pBt; 2918 assert( sqlite3_mutex_held(p->db->mutex) ); 2919 sqlite3BtreeEnter(p); 2920 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2921 sqlite3BtreeLeave(p); 2922 return SQLITE_OK; 2923 } 2924 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2925 2926 /* 2927 ** Change the way data is synced to disk in order to increase or decrease 2928 ** how well the database resists damage due to OS crashes and power 2929 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2930 ** there is a high probability of damage) Level 2 is the default. There 2931 ** is a very low but non-zero probability of damage. Level 3 reduces the 2932 ** probability of damage to near zero but with a write performance reduction. 2933 */ 2934 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2935 int sqlite3BtreeSetPagerFlags( 2936 Btree *p, /* The btree to set the safety level on */ 2937 unsigned pgFlags /* Various PAGER_* flags */ 2938 ){ 2939 BtShared *pBt = p->pBt; 2940 assert( sqlite3_mutex_held(p->db->mutex) ); 2941 sqlite3BtreeEnter(p); 2942 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2943 sqlite3BtreeLeave(p); 2944 return SQLITE_OK; 2945 } 2946 #endif 2947 2948 /* 2949 ** Change the default pages size and the number of reserved bytes per page. 2950 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2951 ** without changing anything. 2952 ** 2953 ** The page size must be a power of 2 between 512 and 65536. If the page 2954 ** size supplied does not meet this constraint then the page size is not 2955 ** changed. 2956 ** 2957 ** Page sizes are constrained to be a power of two so that the region 2958 ** of the database file used for locking (beginning at PENDING_BYTE, 2959 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2960 ** at the beginning of a page. 2961 ** 2962 ** If parameter nReserve is less than zero, then the number of reserved 2963 ** bytes per page is left unchanged. 2964 ** 2965 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2966 ** and autovacuum mode can no longer be changed. 2967 */ 2968 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2969 int rc = SQLITE_OK; 2970 int x; 2971 BtShared *pBt = p->pBt; 2972 assert( nReserve>=0 && nReserve<=255 ); 2973 sqlite3BtreeEnter(p); 2974 pBt->nReserveWanted = nReserve; 2975 x = pBt->pageSize - pBt->usableSize; 2976 if( nReserve<x ) nReserve = x; 2977 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2978 sqlite3BtreeLeave(p); 2979 return SQLITE_READONLY; 2980 } 2981 assert( nReserve>=0 && nReserve<=255 ); 2982 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2983 ((pageSize-1)&pageSize)==0 ){ 2984 assert( (pageSize & 7)==0 ); 2985 assert( !pBt->pCursor ); 2986 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2987 pBt->pageSize = (u32)pageSize; 2988 freeTempSpace(pBt); 2989 } 2990 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2991 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2992 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2993 sqlite3BtreeLeave(p); 2994 return rc; 2995 } 2996 2997 /* 2998 ** Return the currently defined page size 2999 */ 3000 int sqlite3BtreeGetPageSize(Btree *p){ 3001 return p->pBt->pageSize; 3002 } 3003 3004 /* 3005 ** This function is similar to sqlite3BtreeGetReserve(), except that it 3006 ** may only be called if it is guaranteed that the b-tree mutex is already 3007 ** held. 3008 ** 3009 ** This is useful in one special case in the backup API code where it is 3010 ** known that the shared b-tree mutex is held, but the mutex on the 3011 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 3012 ** were to be called, it might collide with some other operation on the 3013 ** database handle that owns *p, causing undefined behavior. 3014 */ 3015 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 3016 int n; 3017 assert( sqlite3_mutex_held(p->pBt->mutex) ); 3018 n = p->pBt->pageSize - p->pBt->usableSize; 3019 return n; 3020 } 3021 3022 /* 3023 ** Return the number of bytes of space at the end of every page that 3024 ** are intentually left unused. This is the "reserved" space that is 3025 ** sometimes used by extensions. 3026 ** 3027 ** The value returned is the larger of the current reserve size and 3028 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 3029 ** The amount of reserve can only grow - never shrink. 3030 */ 3031 int sqlite3BtreeGetRequestedReserve(Btree *p){ 3032 int n1, n2; 3033 sqlite3BtreeEnter(p); 3034 n1 = (int)p->pBt->nReserveWanted; 3035 n2 = sqlite3BtreeGetReserveNoMutex(p); 3036 sqlite3BtreeLeave(p); 3037 return n1>n2 ? n1 : n2; 3038 } 3039 3040 3041 /* 3042 ** Set the maximum page count for a database if mxPage is positive. 3043 ** No changes are made if mxPage is 0 or negative. 3044 ** Regardless of the value of mxPage, return the maximum page count. 3045 */ 3046 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 3047 Pgno n; 3048 sqlite3BtreeEnter(p); 3049 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 3050 sqlite3BtreeLeave(p); 3051 return n; 3052 } 3053 3054 /* 3055 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 3056 ** 3057 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3058 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3059 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3060 ** newFlag==(-1) No changes 3061 ** 3062 ** This routine acts as a query if newFlag is less than zero 3063 ** 3064 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3065 ** freelist leaf pages are not written back to the database. Thus in-page 3066 ** deleted content is cleared, but freelist deleted content is not. 3067 ** 3068 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3069 ** that freelist leaf pages are written back into the database, increasing 3070 ** the amount of disk I/O. 3071 */ 3072 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3073 int b; 3074 if( p==0 ) return 0; 3075 sqlite3BtreeEnter(p); 3076 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3077 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3078 if( newFlag>=0 ){ 3079 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3080 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3081 } 3082 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3083 sqlite3BtreeLeave(p); 3084 return b; 3085 } 3086 3087 /* 3088 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3089 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3090 ** is disabled. The default value for the auto-vacuum property is 3091 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3092 */ 3093 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3094 #ifdef SQLITE_OMIT_AUTOVACUUM 3095 return SQLITE_READONLY; 3096 #else 3097 BtShared *pBt = p->pBt; 3098 int rc = SQLITE_OK; 3099 u8 av = (u8)autoVacuum; 3100 3101 sqlite3BtreeEnter(p); 3102 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3103 rc = SQLITE_READONLY; 3104 }else{ 3105 pBt->autoVacuum = av ?1:0; 3106 pBt->incrVacuum = av==2 ?1:0; 3107 } 3108 sqlite3BtreeLeave(p); 3109 return rc; 3110 #endif 3111 } 3112 3113 /* 3114 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3115 ** enabled 1 is returned. Otherwise 0. 3116 */ 3117 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3118 #ifdef SQLITE_OMIT_AUTOVACUUM 3119 return BTREE_AUTOVACUUM_NONE; 3120 #else 3121 int rc; 3122 sqlite3BtreeEnter(p); 3123 rc = ( 3124 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3125 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3126 BTREE_AUTOVACUUM_INCR 3127 ); 3128 sqlite3BtreeLeave(p); 3129 return rc; 3130 #endif 3131 } 3132 3133 /* 3134 ** If the user has not set the safety-level for this database connection 3135 ** using "PRAGMA synchronous", and if the safety-level is not already 3136 ** set to the value passed to this function as the second parameter, 3137 ** set it so. 3138 */ 3139 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3140 && !defined(SQLITE_OMIT_WAL) 3141 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3142 sqlite3 *db; 3143 Db *pDb; 3144 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3145 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3146 if( pDb->bSyncSet==0 3147 && pDb->safety_level!=safety_level 3148 && pDb!=&db->aDb[1] 3149 ){ 3150 pDb->safety_level = safety_level; 3151 sqlite3PagerSetFlags(pBt->pPager, 3152 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3153 } 3154 } 3155 } 3156 #else 3157 # define setDefaultSyncFlag(pBt,safety_level) 3158 #endif 3159 3160 /* Forward declaration */ 3161 static int newDatabase(BtShared*); 3162 3163 3164 /* 3165 ** Get a reference to pPage1 of the database file. This will 3166 ** also acquire a readlock on that file. 3167 ** 3168 ** SQLITE_OK is returned on success. If the file is not a 3169 ** well-formed database file, then SQLITE_CORRUPT is returned. 3170 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3171 ** is returned if we run out of memory. 3172 */ 3173 static int lockBtree(BtShared *pBt){ 3174 int rc; /* Result code from subfunctions */ 3175 MemPage *pPage1; /* Page 1 of the database file */ 3176 u32 nPage; /* Number of pages in the database */ 3177 u32 nPageFile = 0; /* Number of pages in the database file */ 3178 3179 assert( sqlite3_mutex_held(pBt->mutex) ); 3180 assert( pBt->pPage1==0 ); 3181 rc = sqlite3PagerSharedLock(pBt->pPager); 3182 if( rc!=SQLITE_OK ) return rc; 3183 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3184 if( rc!=SQLITE_OK ) return rc; 3185 3186 /* Do some checking to help insure the file we opened really is 3187 ** a valid database file. 3188 */ 3189 nPage = get4byte(28+(u8*)pPage1->aData); 3190 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3191 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3192 nPage = nPageFile; 3193 } 3194 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3195 nPage = 0; 3196 } 3197 if( nPage>0 ){ 3198 u32 pageSize; 3199 u32 usableSize; 3200 u8 *page1 = pPage1->aData; 3201 rc = SQLITE_NOTADB; 3202 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3203 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3204 ** 61 74 20 33 00. */ 3205 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3206 goto page1_init_failed; 3207 } 3208 3209 #ifdef SQLITE_OMIT_WAL 3210 if( page1[18]>1 ){ 3211 pBt->btsFlags |= BTS_READ_ONLY; 3212 } 3213 if( page1[19]>1 ){ 3214 goto page1_init_failed; 3215 } 3216 #else 3217 if( page1[18]>2 ){ 3218 pBt->btsFlags |= BTS_READ_ONLY; 3219 } 3220 if( page1[19]>2 ){ 3221 goto page1_init_failed; 3222 } 3223 3224 /* If the read version is set to 2, this database should be accessed 3225 ** in WAL mode. If the log is not already open, open it now. Then 3226 ** return SQLITE_OK and return without populating BtShared.pPage1. 3227 ** The caller detects this and calls this function again. This is 3228 ** required as the version of page 1 currently in the page1 buffer 3229 ** may not be the latest version - there may be a newer one in the log 3230 ** file. 3231 */ 3232 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3233 int isOpen = 0; 3234 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3235 if( rc!=SQLITE_OK ){ 3236 goto page1_init_failed; 3237 }else{ 3238 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3239 if( isOpen==0 ){ 3240 releasePageOne(pPage1); 3241 return SQLITE_OK; 3242 } 3243 } 3244 rc = SQLITE_NOTADB; 3245 }else{ 3246 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3247 } 3248 #endif 3249 3250 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3251 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3252 ** 3253 ** The original design allowed these amounts to vary, but as of 3254 ** version 3.6.0, we require them to be fixed. 3255 */ 3256 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3257 goto page1_init_failed; 3258 } 3259 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3260 ** determined by the 2-byte integer located at an offset of 16 bytes from 3261 ** the beginning of the database file. */ 3262 pageSize = (page1[16]<<8) | (page1[17]<<16); 3263 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3264 ** between 512 and 65536 inclusive. */ 3265 if( ((pageSize-1)&pageSize)!=0 3266 || pageSize>SQLITE_MAX_PAGE_SIZE 3267 || pageSize<=256 3268 ){ 3269 goto page1_init_failed; 3270 } 3271 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3272 assert( (pageSize & 7)==0 ); 3273 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3274 ** integer at offset 20 is the number of bytes of space at the end of 3275 ** each page to reserve for extensions. 3276 ** 3277 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3278 ** determined by the one-byte unsigned integer found at an offset of 20 3279 ** into the database file header. */ 3280 usableSize = pageSize - page1[20]; 3281 if( (u32)pageSize!=pBt->pageSize ){ 3282 /* After reading the first page of the database assuming a page size 3283 ** of BtShared.pageSize, we have discovered that the page-size is 3284 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3285 ** zero and return SQLITE_OK. The caller will call this function 3286 ** again with the correct page-size. 3287 */ 3288 releasePageOne(pPage1); 3289 pBt->usableSize = usableSize; 3290 pBt->pageSize = pageSize; 3291 freeTempSpace(pBt); 3292 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3293 pageSize-usableSize); 3294 return rc; 3295 } 3296 if( nPage>nPageFile ){ 3297 if( sqlite3WritableSchema(pBt->db)==0 ){ 3298 rc = SQLITE_CORRUPT_BKPT; 3299 goto page1_init_failed; 3300 }else{ 3301 nPage = nPageFile; 3302 } 3303 } 3304 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3305 ** be less than 480. In other words, if the page size is 512, then the 3306 ** reserved space size cannot exceed 32. */ 3307 if( usableSize<480 ){ 3308 goto page1_init_failed; 3309 } 3310 pBt->pageSize = pageSize; 3311 pBt->usableSize = usableSize; 3312 #ifndef SQLITE_OMIT_AUTOVACUUM 3313 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3314 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3315 #endif 3316 } 3317 3318 /* maxLocal is the maximum amount of payload to store locally for 3319 ** a cell. Make sure it is small enough so that at least minFanout 3320 ** cells can will fit on one page. We assume a 10-byte page header. 3321 ** Besides the payload, the cell must store: 3322 ** 2-byte pointer to the cell 3323 ** 4-byte child pointer 3324 ** 9-byte nKey value 3325 ** 4-byte nData value 3326 ** 4-byte overflow page pointer 3327 ** So a cell consists of a 2-byte pointer, a header which is as much as 3328 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3329 ** page pointer. 3330 */ 3331 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3332 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3333 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3334 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3335 if( pBt->maxLocal>127 ){ 3336 pBt->max1bytePayload = 127; 3337 }else{ 3338 pBt->max1bytePayload = (u8)pBt->maxLocal; 3339 } 3340 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3341 pBt->pPage1 = pPage1; 3342 pBt->nPage = nPage; 3343 return SQLITE_OK; 3344 3345 page1_init_failed: 3346 releasePageOne(pPage1); 3347 pBt->pPage1 = 0; 3348 return rc; 3349 } 3350 3351 #ifndef NDEBUG 3352 /* 3353 ** Return the number of cursors open on pBt. This is for use 3354 ** in assert() expressions, so it is only compiled if NDEBUG is not 3355 ** defined. 3356 ** 3357 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3358 ** false then all cursors are counted. 3359 ** 3360 ** For the purposes of this routine, a cursor is any cursor that 3361 ** is capable of reading or writing to the database. Cursors that 3362 ** have been tripped into the CURSOR_FAULT state are not counted. 3363 */ 3364 static int countValidCursors(BtShared *pBt, int wrOnly){ 3365 BtCursor *pCur; 3366 int r = 0; 3367 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3368 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3369 && pCur->eState!=CURSOR_FAULT ) r++; 3370 } 3371 return r; 3372 } 3373 #endif 3374 3375 /* 3376 ** If there are no outstanding cursors and we are not in the middle 3377 ** of a transaction but there is a read lock on the database, then 3378 ** this routine unrefs the first page of the database file which 3379 ** has the effect of releasing the read lock. 3380 ** 3381 ** If there is a transaction in progress, this routine is a no-op. 3382 */ 3383 static void unlockBtreeIfUnused(BtShared *pBt){ 3384 assert( sqlite3_mutex_held(pBt->mutex) ); 3385 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3386 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3387 MemPage *pPage1 = pBt->pPage1; 3388 assert( pPage1->aData ); 3389 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3390 pBt->pPage1 = 0; 3391 releasePageOne(pPage1); 3392 } 3393 } 3394 3395 /* 3396 ** If pBt points to an empty file then convert that empty file 3397 ** into a new empty database by initializing the first page of 3398 ** the database. 3399 */ 3400 static int newDatabase(BtShared *pBt){ 3401 MemPage *pP1; 3402 unsigned char *data; 3403 int rc; 3404 3405 assert( sqlite3_mutex_held(pBt->mutex) ); 3406 if( pBt->nPage>0 ){ 3407 return SQLITE_OK; 3408 } 3409 pP1 = pBt->pPage1; 3410 assert( pP1!=0 ); 3411 data = pP1->aData; 3412 rc = sqlite3PagerWrite(pP1->pDbPage); 3413 if( rc ) return rc; 3414 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3415 assert( sizeof(zMagicHeader)==16 ); 3416 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3417 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3418 data[18] = 1; 3419 data[19] = 1; 3420 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3421 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3422 data[21] = 64; 3423 data[22] = 32; 3424 data[23] = 32; 3425 memset(&data[24], 0, 100-24); 3426 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3427 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3428 #ifndef SQLITE_OMIT_AUTOVACUUM 3429 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3430 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3431 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3432 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3433 #endif 3434 pBt->nPage = 1; 3435 data[31] = 1; 3436 return SQLITE_OK; 3437 } 3438 3439 /* 3440 ** Initialize the first page of the database file (creating a database 3441 ** consisting of a single page and no schema objects). Return SQLITE_OK 3442 ** if successful, or an SQLite error code otherwise. 3443 */ 3444 int sqlite3BtreeNewDb(Btree *p){ 3445 int rc; 3446 sqlite3BtreeEnter(p); 3447 p->pBt->nPage = 0; 3448 rc = newDatabase(p->pBt); 3449 sqlite3BtreeLeave(p); 3450 return rc; 3451 } 3452 3453 /* 3454 ** Attempt to start a new transaction. A write-transaction 3455 ** is started if the second argument is nonzero, otherwise a read- 3456 ** transaction. If the second argument is 2 or more and exclusive 3457 ** transaction is started, meaning that no other process is allowed 3458 ** to access the database. A preexisting transaction may not be 3459 ** upgraded to exclusive by calling this routine a second time - the 3460 ** exclusivity flag only works for a new transaction. 3461 ** 3462 ** A write-transaction must be started before attempting any 3463 ** changes to the database. None of the following routines 3464 ** will work unless a transaction is started first: 3465 ** 3466 ** sqlite3BtreeCreateTable() 3467 ** sqlite3BtreeCreateIndex() 3468 ** sqlite3BtreeClearTable() 3469 ** sqlite3BtreeDropTable() 3470 ** sqlite3BtreeInsert() 3471 ** sqlite3BtreeDelete() 3472 ** sqlite3BtreeUpdateMeta() 3473 ** 3474 ** If an initial attempt to acquire the lock fails because of lock contention 3475 ** and the database was previously unlocked, then invoke the busy handler 3476 ** if there is one. But if there was previously a read-lock, do not 3477 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3478 ** returned when there is already a read-lock in order to avoid a deadlock. 3479 ** 3480 ** Suppose there are two processes A and B. A has a read lock and B has 3481 ** a reserved lock. B tries to promote to exclusive but is blocked because 3482 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3483 ** One or the other of the two processes must give way or there can be 3484 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3485 ** when A already has a read lock, we encourage A to give up and let B 3486 ** proceed. 3487 */ 3488 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3489 BtShared *pBt = p->pBt; 3490 Pager *pPager = pBt->pPager; 3491 int rc = SQLITE_OK; 3492 3493 sqlite3BtreeEnter(p); 3494 btreeIntegrity(p); 3495 3496 /* If the btree is already in a write-transaction, or it 3497 ** is already in a read-transaction and a read-transaction 3498 ** is requested, this is a no-op. 3499 */ 3500 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3501 goto trans_begun; 3502 } 3503 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3504 3505 if( (p->db->flags & SQLITE_ResetDatabase) 3506 && sqlite3PagerIsreadonly(pPager)==0 3507 ){ 3508 pBt->btsFlags &= ~BTS_READ_ONLY; 3509 } 3510 3511 /* Write transactions are not possible on a read-only database */ 3512 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3513 rc = SQLITE_READONLY; 3514 goto trans_begun; 3515 } 3516 3517 #ifndef SQLITE_OMIT_SHARED_CACHE 3518 { 3519 sqlite3 *pBlock = 0; 3520 /* If another database handle has already opened a write transaction 3521 ** on this shared-btree structure and a second write transaction is 3522 ** requested, return SQLITE_LOCKED. 3523 */ 3524 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3525 || (pBt->btsFlags & BTS_PENDING)!=0 3526 ){ 3527 pBlock = pBt->pWriter->db; 3528 }else if( wrflag>1 ){ 3529 BtLock *pIter; 3530 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3531 if( pIter->pBtree!=p ){ 3532 pBlock = pIter->pBtree->db; 3533 break; 3534 } 3535 } 3536 } 3537 if( pBlock ){ 3538 sqlite3ConnectionBlocked(p->db, pBlock); 3539 rc = SQLITE_LOCKED_SHAREDCACHE; 3540 goto trans_begun; 3541 } 3542 } 3543 #endif 3544 3545 /* Any read-only or read-write transaction implies a read-lock on 3546 ** page 1. So if some other shared-cache client already has a write-lock 3547 ** on page 1, the transaction cannot be opened. */ 3548 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3549 if( SQLITE_OK!=rc ) goto trans_begun; 3550 3551 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3552 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3553 do { 3554 sqlite3PagerWalDb(pPager, p->db); 3555 3556 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3557 /* If transitioning from no transaction directly to a write transaction, 3558 ** block for the WRITER lock first if possible. */ 3559 if( pBt->pPage1==0 && wrflag ){ 3560 assert( pBt->inTransaction==TRANS_NONE ); 3561 rc = sqlite3PagerWalWriteLock(pPager, 1); 3562 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3563 } 3564 #endif 3565 3566 /* Call lockBtree() until either pBt->pPage1 is populated or 3567 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3568 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3569 ** reading page 1 it discovers that the page-size of the database 3570 ** file is not pBt->pageSize. In this case lockBtree() will update 3571 ** pBt->pageSize to the page-size of the file on disk. 3572 */ 3573 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3574 3575 if( rc==SQLITE_OK && wrflag ){ 3576 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3577 rc = SQLITE_READONLY; 3578 }else{ 3579 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3580 if( rc==SQLITE_OK ){ 3581 rc = newDatabase(pBt); 3582 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3583 /* if there was no transaction opened when this function was 3584 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3585 ** code to SQLITE_BUSY. */ 3586 rc = SQLITE_BUSY; 3587 } 3588 } 3589 } 3590 3591 if( rc!=SQLITE_OK ){ 3592 (void)sqlite3PagerWalWriteLock(pPager, 0); 3593 unlockBtreeIfUnused(pBt); 3594 } 3595 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3596 btreeInvokeBusyHandler(pBt) ); 3597 sqlite3PagerWalDb(pPager, 0); 3598 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3599 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3600 #endif 3601 3602 if( rc==SQLITE_OK ){ 3603 if( p->inTrans==TRANS_NONE ){ 3604 pBt->nTransaction++; 3605 #ifndef SQLITE_OMIT_SHARED_CACHE 3606 if( p->sharable ){ 3607 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3608 p->lock.eLock = READ_LOCK; 3609 p->lock.pNext = pBt->pLock; 3610 pBt->pLock = &p->lock; 3611 } 3612 #endif 3613 } 3614 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3615 if( p->inTrans>pBt->inTransaction ){ 3616 pBt->inTransaction = p->inTrans; 3617 } 3618 if( wrflag ){ 3619 MemPage *pPage1 = pBt->pPage1; 3620 #ifndef SQLITE_OMIT_SHARED_CACHE 3621 assert( !pBt->pWriter ); 3622 pBt->pWriter = p; 3623 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3624 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3625 #endif 3626 3627 /* If the db-size header field is incorrect (as it may be if an old 3628 ** client has been writing the database file), update it now. Doing 3629 ** this sooner rather than later means the database size can safely 3630 ** re-read the database size from page 1 if a savepoint or transaction 3631 ** rollback occurs within the transaction. 3632 */ 3633 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3634 rc = sqlite3PagerWrite(pPage1->pDbPage); 3635 if( rc==SQLITE_OK ){ 3636 put4byte(&pPage1->aData[28], pBt->nPage); 3637 } 3638 } 3639 } 3640 } 3641 3642 trans_begun: 3643 if( rc==SQLITE_OK ){ 3644 if( pSchemaVersion ){ 3645 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3646 } 3647 if( wrflag ){ 3648 /* This call makes sure that the pager has the correct number of 3649 ** open savepoints. If the second parameter is greater than 0 and 3650 ** the sub-journal is not already open, then it will be opened here. 3651 */ 3652 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3653 } 3654 } 3655 3656 btreeIntegrity(p); 3657 sqlite3BtreeLeave(p); 3658 return rc; 3659 } 3660 3661 #ifndef SQLITE_OMIT_AUTOVACUUM 3662 3663 /* 3664 ** Set the pointer-map entries for all children of page pPage. Also, if 3665 ** pPage contains cells that point to overflow pages, set the pointer 3666 ** map entries for the overflow pages as well. 3667 */ 3668 static int setChildPtrmaps(MemPage *pPage){ 3669 int i; /* Counter variable */ 3670 int nCell; /* Number of cells in page pPage */ 3671 int rc; /* Return code */ 3672 BtShared *pBt = pPage->pBt; 3673 Pgno pgno = pPage->pgno; 3674 3675 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3676 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3677 if( rc!=SQLITE_OK ) return rc; 3678 nCell = pPage->nCell; 3679 3680 for(i=0; i<nCell; i++){ 3681 u8 *pCell = findCell(pPage, i); 3682 3683 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3684 3685 if( !pPage->leaf ){ 3686 Pgno childPgno = get4byte(pCell); 3687 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3688 } 3689 } 3690 3691 if( !pPage->leaf ){ 3692 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3693 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3694 } 3695 3696 return rc; 3697 } 3698 3699 /* 3700 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3701 ** that it points to iTo. Parameter eType describes the type of pointer to 3702 ** be modified, as follows: 3703 ** 3704 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3705 ** page of pPage. 3706 ** 3707 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3708 ** page pointed to by one of the cells on pPage. 3709 ** 3710 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3711 ** overflow page in the list. 3712 */ 3713 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3714 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3715 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3716 if( eType==PTRMAP_OVERFLOW2 ){ 3717 /* The pointer is always the first 4 bytes of the page in this case. */ 3718 if( get4byte(pPage->aData)!=iFrom ){ 3719 return SQLITE_CORRUPT_PAGE(pPage); 3720 } 3721 put4byte(pPage->aData, iTo); 3722 }else{ 3723 int i; 3724 int nCell; 3725 int rc; 3726 3727 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3728 if( rc ) return rc; 3729 nCell = pPage->nCell; 3730 3731 for(i=0; i<nCell; i++){ 3732 u8 *pCell = findCell(pPage, i); 3733 if( eType==PTRMAP_OVERFLOW1 ){ 3734 CellInfo info; 3735 pPage->xParseCell(pPage, pCell, &info); 3736 if( info.nLocal<info.nPayload ){ 3737 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3738 return SQLITE_CORRUPT_PAGE(pPage); 3739 } 3740 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3741 put4byte(pCell+info.nSize-4, iTo); 3742 break; 3743 } 3744 } 3745 }else{ 3746 if( get4byte(pCell)==iFrom ){ 3747 put4byte(pCell, iTo); 3748 break; 3749 } 3750 } 3751 } 3752 3753 if( i==nCell ){ 3754 if( eType!=PTRMAP_BTREE || 3755 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3756 return SQLITE_CORRUPT_PAGE(pPage); 3757 } 3758 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3759 } 3760 } 3761 return SQLITE_OK; 3762 } 3763 3764 3765 /* 3766 ** Move the open database page pDbPage to location iFreePage in the 3767 ** database. The pDbPage reference remains valid. 3768 ** 3769 ** The isCommit flag indicates that there is no need to remember that 3770 ** the journal needs to be sync()ed before database page pDbPage->pgno 3771 ** can be written to. The caller has already promised not to write to that 3772 ** page. 3773 */ 3774 static int relocatePage( 3775 BtShared *pBt, /* Btree */ 3776 MemPage *pDbPage, /* Open page to move */ 3777 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3778 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3779 Pgno iFreePage, /* The location to move pDbPage to */ 3780 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3781 ){ 3782 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3783 Pgno iDbPage = pDbPage->pgno; 3784 Pager *pPager = pBt->pPager; 3785 int rc; 3786 3787 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3788 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3789 assert( sqlite3_mutex_held(pBt->mutex) ); 3790 assert( pDbPage->pBt==pBt ); 3791 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3792 3793 /* Move page iDbPage from its current location to page number iFreePage */ 3794 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3795 iDbPage, iFreePage, iPtrPage, eType)); 3796 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3797 if( rc!=SQLITE_OK ){ 3798 return rc; 3799 } 3800 pDbPage->pgno = iFreePage; 3801 3802 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3803 ** that point to overflow pages. The pointer map entries for all these 3804 ** pages need to be changed. 3805 ** 3806 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3807 ** pointer to a subsequent overflow page. If this is the case, then 3808 ** the pointer map needs to be updated for the subsequent overflow page. 3809 */ 3810 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3811 rc = setChildPtrmaps(pDbPage); 3812 if( rc!=SQLITE_OK ){ 3813 return rc; 3814 } 3815 }else{ 3816 Pgno nextOvfl = get4byte(pDbPage->aData); 3817 if( nextOvfl!=0 ){ 3818 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3819 if( rc!=SQLITE_OK ){ 3820 return rc; 3821 } 3822 } 3823 } 3824 3825 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3826 ** that it points at iFreePage. Also fix the pointer map entry for 3827 ** iPtrPage. 3828 */ 3829 if( eType!=PTRMAP_ROOTPAGE ){ 3830 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3831 if( rc!=SQLITE_OK ){ 3832 return rc; 3833 } 3834 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3835 if( rc!=SQLITE_OK ){ 3836 releasePage(pPtrPage); 3837 return rc; 3838 } 3839 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3840 releasePage(pPtrPage); 3841 if( rc==SQLITE_OK ){ 3842 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3843 } 3844 } 3845 return rc; 3846 } 3847 3848 /* Forward declaration required by incrVacuumStep(). */ 3849 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3850 3851 /* 3852 ** Perform a single step of an incremental-vacuum. If successful, return 3853 ** SQLITE_OK. If there is no work to do (and therefore no point in 3854 ** calling this function again), return SQLITE_DONE. Or, if an error 3855 ** occurs, return some other error code. 3856 ** 3857 ** More specifically, this function attempts to re-organize the database so 3858 ** that the last page of the file currently in use is no longer in use. 3859 ** 3860 ** Parameter nFin is the number of pages that this database would contain 3861 ** were this function called until it returns SQLITE_DONE. 3862 ** 3863 ** If the bCommit parameter is non-zero, this function assumes that the 3864 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3865 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3866 ** operation, or false for an incremental vacuum. 3867 */ 3868 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3869 Pgno nFreeList; /* Number of pages still on the free-list */ 3870 int rc; 3871 3872 assert( sqlite3_mutex_held(pBt->mutex) ); 3873 assert( iLastPg>nFin ); 3874 3875 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3876 u8 eType; 3877 Pgno iPtrPage; 3878 3879 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3880 if( nFreeList==0 ){ 3881 return SQLITE_DONE; 3882 } 3883 3884 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3885 if( rc!=SQLITE_OK ){ 3886 return rc; 3887 } 3888 if( eType==PTRMAP_ROOTPAGE ){ 3889 return SQLITE_CORRUPT_BKPT; 3890 } 3891 3892 if( eType==PTRMAP_FREEPAGE ){ 3893 if( bCommit==0 ){ 3894 /* Remove the page from the files free-list. This is not required 3895 ** if bCommit is non-zero. In that case, the free-list will be 3896 ** truncated to zero after this function returns, so it doesn't 3897 ** matter if it still contains some garbage entries. 3898 */ 3899 Pgno iFreePg; 3900 MemPage *pFreePg; 3901 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3902 if( rc!=SQLITE_OK ){ 3903 return rc; 3904 } 3905 assert( iFreePg==iLastPg ); 3906 releasePage(pFreePg); 3907 } 3908 } else { 3909 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3910 MemPage *pLastPg; 3911 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3912 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3913 3914 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3915 if( rc!=SQLITE_OK ){ 3916 return rc; 3917 } 3918 3919 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3920 ** is swapped with the first free page pulled off the free list. 3921 ** 3922 ** On the other hand, if bCommit is greater than zero, then keep 3923 ** looping until a free-page located within the first nFin pages 3924 ** of the file is found. 3925 */ 3926 if( bCommit==0 ){ 3927 eMode = BTALLOC_LE; 3928 iNear = nFin; 3929 } 3930 do { 3931 MemPage *pFreePg; 3932 Pgno dbSize = btreePagecount(pBt); 3933 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3934 if( rc!=SQLITE_OK ){ 3935 releasePage(pLastPg); 3936 return rc; 3937 } 3938 releasePage(pFreePg); 3939 if( iFreePg>dbSize ){ 3940 releasePage(pLastPg); 3941 return SQLITE_CORRUPT_BKPT; 3942 } 3943 }while( bCommit && iFreePg>nFin ); 3944 assert( iFreePg<iLastPg ); 3945 3946 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3947 releasePage(pLastPg); 3948 if( rc!=SQLITE_OK ){ 3949 return rc; 3950 } 3951 } 3952 } 3953 3954 if( bCommit==0 ){ 3955 do { 3956 iLastPg--; 3957 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3958 pBt->bDoTruncate = 1; 3959 pBt->nPage = iLastPg; 3960 } 3961 return SQLITE_OK; 3962 } 3963 3964 /* 3965 ** The database opened by the first argument is an auto-vacuum database 3966 ** nOrig pages in size containing nFree free pages. Return the expected 3967 ** size of the database in pages following an auto-vacuum operation. 3968 */ 3969 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3970 int nEntry; /* Number of entries on one ptrmap page */ 3971 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3972 Pgno nFin; /* Return value */ 3973 3974 nEntry = pBt->usableSize/5; 3975 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3976 nFin = nOrig - nFree - nPtrmap; 3977 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3978 nFin--; 3979 } 3980 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3981 nFin--; 3982 } 3983 3984 return nFin; 3985 } 3986 3987 /* 3988 ** A write-transaction must be opened before calling this function. 3989 ** It performs a single unit of work towards an incremental vacuum. 3990 ** 3991 ** If the incremental vacuum is finished after this function has run, 3992 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3993 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3994 */ 3995 int sqlite3BtreeIncrVacuum(Btree *p){ 3996 int rc; 3997 BtShared *pBt = p->pBt; 3998 3999 sqlite3BtreeEnter(p); 4000 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 4001 if( !pBt->autoVacuum ){ 4002 rc = SQLITE_DONE; 4003 }else{ 4004 Pgno nOrig = btreePagecount(pBt); 4005 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 4006 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 4007 4008 if( nOrig<nFin || nFree>=nOrig ){ 4009 rc = SQLITE_CORRUPT_BKPT; 4010 }else if( nFree>0 ){ 4011 rc = saveAllCursors(pBt, 0, 0); 4012 if( rc==SQLITE_OK ){ 4013 invalidateAllOverflowCache(pBt); 4014 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 4015 } 4016 if( rc==SQLITE_OK ){ 4017 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4018 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 4019 } 4020 }else{ 4021 rc = SQLITE_DONE; 4022 } 4023 } 4024 sqlite3BtreeLeave(p); 4025 return rc; 4026 } 4027 4028 /* 4029 ** This routine is called prior to sqlite3PagerCommit when a transaction 4030 ** is committed for an auto-vacuum database. 4031 */ 4032 static int autoVacuumCommit(Btree *p){ 4033 int rc = SQLITE_OK; 4034 Pager *pPager; 4035 BtShared *pBt; 4036 sqlite3 *db; 4037 VVA_ONLY( int nRef ); 4038 4039 assert( p!=0 ); 4040 pBt = p->pBt; 4041 pPager = pBt->pPager; 4042 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 4043 4044 assert( sqlite3_mutex_held(pBt->mutex) ); 4045 invalidateAllOverflowCache(pBt); 4046 assert(pBt->autoVacuum); 4047 if( !pBt->incrVacuum ){ 4048 Pgno nFin; /* Number of pages in database after autovacuuming */ 4049 Pgno nFree; /* Number of pages on the freelist initially */ 4050 Pgno nVac; /* Number of pages to vacuum */ 4051 Pgno iFree; /* The next page to be freed */ 4052 Pgno nOrig; /* Database size before freeing */ 4053 4054 nOrig = btreePagecount(pBt); 4055 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 4056 /* It is not possible to create a database for which the final page 4057 ** is either a pointer-map page or the pending-byte page. If one 4058 ** is encountered, this indicates corruption. 4059 */ 4060 return SQLITE_CORRUPT_BKPT; 4061 } 4062 4063 nFree = get4byte(&pBt->pPage1->aData[36]); 4064 db = p->db; 4065 if( db->xAutovacPages ){ 4066 int iDb; 4067 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4068 if( db->aDb[iDb].pBt==p ) break; 4069 } 4070 nVac = db->xAutovacPages( 4071 db->pAutovacPagesArg, 4072 db->aDb[iDb].zDbSName, 4073 nOrig, 4074 nFree, 4075 pBt->pageSize 4076 ); 4077 if( nVac>nFree ){ 4078 nVac = nFree; 4079 } 4080 if( nVac==0 ){ 4081 return SQLITE_OK; 4082 } 4083 }else{ 4084 nVac = nFree; 4085 } 4086 nFin = finalDbSize(pBt, nOrig, nVac); 4087 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4088 if( nFin<nOrig ){ 4089 rc = saveAllCursors(pBt, 0, 0); 4090 } 4091 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4092 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4093 } 4094 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4095 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4096 if( nVac==nFree ){ 4097 put4byte(&pBt->pPage1->aData[32], 0); 4098 put4byte(&pBt->pPage1->aData[36], 0); 4099 } 4100 put4byte(&pBt->pPage1->aData[28], nFin); 4101 pBt->bDoTruncate = 1; 4102 pBt->nPage = nFin; 4103 } 4104 if( rc!=SQLITE_OK ){ 4105 sqlite3PagerRollback(pPager); 4106 } 4107 } 4108 4109 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4110 return rc; 4111 } 4112 4113 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4114 # define setChildPtrmaps(x) SQLITE_OK 4115 #endif 4116 4117 /* 4118 ** This routine does the first phase of a two-phase commit. This routine 4119 ** causes a rollback journal to be created (if it does not already exist) 4120 ** and populated with enough information so that if a power loss occurs 4121 ** the database can be restored to its original state by playing back 4122 ** the journal. Then the contents of the journal are flushed out to 4123 ** the disk. After the journal is safely on oxide, the changes to the 4124 ** database are written into the database file and flushed to oxide. 4125 ** At the end of this call, the rollback journal still exists on the 4126 ** disk and we are still holding all locks, so the transaction has not 4127 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4128 ** commit process. 4129 ** 4130 ** This call is a no-op if no write-transaction is currently active on pBt. 4131 ** 4132 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4133 ** the name of a super-journal file that should be written into the 4134 ** individual journal file, or is NULL, indicating no super-journal file 4135 ** (single database transaction). 4136 ** 4137 ** When this is called, the super-journal should already have been 4138 ** created, populated with this journal pointer and synced to disk. 4139 ** 4140 ** Once this is routine has returned, the only thing required to commit 4141 ** the write-transaction for this database file is to delete the journal. 4142 */ 4143 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4144 int rc = SQLITE_OK; 4145 if( p->inTrans==TRANS_WRITE ){ 4146 BtShared *pBt = p->pBt; 4147 sqlite3BtreeEnter(p); 4148 #ifndef SQLITE_OMIT_AUTOVACUUM 4149 if( pBt->autoVacuum ){ 4150 rc = autoVacuumCommit(p); 4151 if( rc!=SQLITE_OK ){ 4152 sqlite3BtreeLeave(p); 4153 return rc; 4154 } 4155 } 4156 if( pBt->bDoTruncate ){ 4157 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4158 } 4159 #endif 4160 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4161 sqlite3BtreeLeave(p); 4162 } 4163 return rc; 4164 } 4165 4166 /* 4167 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4168 ** at the conclusion of a transaction. 4169 */ 4170 static void btreeEndTransaction(Btree *p){ 4171 BtShared *pBt = p->pBt; 4172 sqlite3 *db = p->db; 4173 assert( sqlite3BtreeHoldsMutex(p) ); 4174 4175 #ifndef SQLITE_OMIT_AUTOVACUUM 4176 pBt->bDoTruncate = 0; 4177 #endif 4178 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4179 /* If there are other active statements that belong to this database 4180 ** handle, downgrade to a read-only transaction. The other statements 4181 ** may still be reading from the database. */ 4182 downgradeAllSharedCacheTableLocks(p); 4183 p->inTrans = TRANS_READ; 4184 }else{ 4185 /* If the handle had any kind of transaction open, decrement the 4186 ** transaction count of the shared btree. If the transaction count 4187 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4188 ** call below will unlock the pager. */ 4189 if( p->inTrans!=TRANS_NONE ){ 4190 clearAllSharedCacheTableLocks(p); 4191 pBt->nTransaction--; 4192 if( 0==pBt->nTransaction ){ 4193 pBt->inTransaction = TRANS_NONE; 4194 } 4195 } 4196 4197 /* Set the current transaction state to TRANS_NONE and unlock the 4198 ** pager if this call closed the only read or write transaction. */ 4199 p->inTrans = TRANS_NONE; 4200 unlockBtreeIfUnused(pBt); 4201 } 4202 4203 btreeIntegrity(p); 4204 } 4205 4206 /* 4207 ** Commit the transaction currently in progress. 4208 ** 4209 ** This routine implements the second phase of a 2-phase commit. The 4210 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4211 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4212 ** routine did all the work of writing information out to disk and flushing the 4213 ** contents so that they are written onto the disk platter. All this 4214 ** routine has to do is delete or truncate or zero the header in the 4215 ** the rollback journal (which causes the transaction to commit) and 4216 ** drop locks. 4217 ** 4218 ** Normally, if an error occurs while the pager layer is attempting to 4219 ** finalize the underlying journal file, this function returns an error and 4220 ** the upper layer will attempt a rollback. However, if the second argument 4221 ** is non-zero then this b-tree transaction is part of a multi-file 4222 ** transaction. In this case, the transaction has already been committed 4223 ** (by deleting a super-journal file) and the caller will ignore this 4224 ** functions return code. So, even if an error occurs in the pager layer, 4225 ** reset the b-tree objects internal state to indicate that the write 4226 ** transaction has been closed. This is quite safe, as the pager will have 4227 ** transitioned to the error state. 4228 ** 4229 ** This will release the write lock on the database file. If there 4230 ** are no active cursors, it also releases the read lock. 4231 */ 4232 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4233 4234 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4235 sqlite3BtreeEnter(p); 4236 btreeIntegrity(p); 4237 4238 /* If the handle has a write-transaction open, commit the shared-btrees 4239 ** transaction and set the shared state to TRANS_READ. 4240 */ 4241 if( p->inTrans==TRANS_WRITE ){ 4242 int rc; 4243 BtShared *pBt = p->pBt; 4244 assert( pBt->inTransaction==TRANS_WRITE ); 4245 assert( pBt->nTransaction>0 ); 4246 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4247 if( rc!=SQLITE_OK && bCleanup==0 ){ 4248 sqlite3BtreeLeave(p); 4249 return rc; 4250 } 4251 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4252 pBt->inTransaction = TRANS_READ; 4253 btreeClearHasContent(pBt); 4254 } 4255 4256 btreeEndTransaction(p); 4257 sqlite3BtreeLeave(p); 4258 return SQLITE_OK; 4259 } 4260 4261 /* 4262 ** Do both phases of a commit. 4263 */ 4264 int sqlite3BtreeCommit(Btree *p){ 4265 int rc; 4266 sqlite3BtreeEnter(p); 4267 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4268 if( rc==SQLITE_OK ){ 4269 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4270 } 4271 sqlite3BtreeLeave(p); 4272 return rc; 4273 } 4274 4275 /* 4276 ** This routine sets the state to CURSOR_FAULT and the error 4277 ** code to errCode for every cursor on any BtShared that pBtree 4278 ** references. Or if the writeOnly flag is set to 1, then only 4279 ** trip write cursors and leave read cursors unchanged. 4280 ** 4281 ** Every cursor is a candidate to be tripped, including cursors 4282 ** that belong to other database connections that happen to be 4283 ** sharing the cache with pBtree. 4284 ** 4285 ** This routine gets called when a rollback occurs. If the writeOnly 4286 ** flag is true, then only write-cursors need be tripped - read-only 4287 ** cursors save their current positions so that they may continue 4288 ** following the rollback. Or, if writeOnly is false, all cursors are 4289 ** tripped. In general, writeOnly is false if the transaction being 4290 ** rolled back modified the database schema. In this case b-tree root 4291 ** pages may be moved or deleted from the database altogether, making 4292 ** it unsafe for read cursors to continue. 4293 ** 4294 ** If the writeOnly flag is true and an error is encountered while 4295 ** saving the current position of a read-only cursor, all cursors, 4296 ** including all read-cursors are tripped. 4297 ** 4298 ** SQLITE_OK is returned if successful, or if an error occurs while 4299 ** saving a cursor position, an SQLite error code. 4300 */ 4301 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4302 BtCursor *p; 4303 int rc = SQLITE_OK; 4304 4305 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4306 if( pBtree ){ 4307 sqlite3BtreeEnter(pBtree); 4308 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4309 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4310 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4311 rc = saveCursorPosition(p); 4312 if( rc!=SQLITE_OK ){ 4313 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4314 break; 4315 } 4316 } 4317 }else{ 4318 sqlite3BtreeClearCursor(p); 4319 p->eState = CURSOR_FAULT; 4320 p->skipNext = errCode; 4321 } 4322 btreeReleaseAllCursorPages(p); 4323 } 4324 sqlite3BtreeLeave(pBtree); 4325 } 4326 return rc; 4327 } 4328 4329 /* 4330 ** Set the pBt->nPage field correctly, according to the current 4331 ** state of the database. Assume pBt->pPage1 is valid. 4332 */ 4333 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4334 int nPage = get4byte(&pPage1->aData[28]); 4335 testcase( nPage==0 ); 4336 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4337 testcase( pBt->nPage!=(u32)nPage ); 4338 pBt->nPage = nPage; 4339 } 4340 4341 /* 4342 ** Rollback the transaction in progress. 4343 ** 4344 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4345 ** Only write cursors are tripped if writeOnly is true but all cursors are 4346 ** tripped if writeOnly is false. Any attempt to use 4347 ** a tripped cursor will result in an error. 4348 ** 4349 ** This will release the write lock on the database file. If there 4350 ** are no active cursors, it also releases the read lock. 4351 */ 4352 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4353 int rc; 4354 BtShared *pBt = p->pBt; 4355 MemPage *pPage1; 4356 4357 assert( writeOnly==1 || writeOnly==0 ); 4358 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4359 sqlite3BtreeEnter(p); 4360 if( tripCode==SQLITE_OK ){ 4361 rc = tripCode = saveAllCursors(pBt, 0, 0); 4362 if( rc ) writeOnly = 0; 4363 }else{ 4364 rc = SQLITE_OK; 4365 } 4366 if( tripCode ){ 4367 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4368 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4369 if( rc2!=SQLITE_OK ) rc = rc2; 4370 } 4371 btreeIntegrity(p); 4372 4373 if( p->inTrans==TRANS_WRITE ){ 4374 int rc2; 4375 4376 assert( TRANS_WRITE==pBt->inTransaction ); 4377 rc2 = sqlite3PagerRollback(pBt->pPager); 4378 if( rc2!=SQLITE_OK ){ 4379 rc = rc2; 4380 } 4381 4382 /* The rollback may have destroyed the pPage1->aData value. So 4383 ** call btreeGetPage() on page 1 again to make 4384 ** sure pPage1->aData is set correctly. */ 4385 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4386 btreeSetNPage(pBt, pPage1); 4387 releasePageOne(pPage1); 4388 } 4389 assert( countValidCursors(pBt, 1)==0 ); 4390 pBt->inTransaction = TRANS_READ; 4391 btreeClearHasContent(pBt); 4392 } 4393 4394 btreeEndTransaction(p); 4395 sqlite3BtreeLeave(p); 4396 return rc; 4397 } 4398 4399 /* 4400 ** Start a statement subtransaction. The subtransaction can be rolled 4401 ** back independently of the main transaction. You must start a transaction 4402 ** before starting a subtransaction. The subtransaction is ended automatically 4403 ** if the main transaction commits or rolls back. 4404 ** 4405 ** Statement subtransactions are used around individual SQL statements 4406 ** that are contained within a BEGIN...COMMIT block. If a constraint 4407 ** error occurs within the statement, the effect of that one statement 4408 ** can be rolled back without having to rollback the entire transaction. 4409 ** 4410 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4411 ** value passed as the second parameter is the total number of savepoints, 4412 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4413 ** are no active savepoints and no other statement-transactions open, 4414 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4415 ** using the sqlite3BtreeSavepoint() function. 4416 */ 4417 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4418 int rc; 4419 BtShared *pBt = p->pBt; 4420 sqlite3BtreeEnter(p); 4421 assert( p->inTrans==TRANS_WRITE ); 4422 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4423 assert( iStatement>0 ); 4424 assert( iStatement>p->db->nSavepoint ); 4425 assert( pBt->inTransaction==TRANS_WRITE ); 4426 /* At the pager level, a statement transaction is a savepoint with 4427 ** an index greater than all savepoints created explicitly using 4428 ** SQL statements. It is illegal to open, release or rollback any 4429 ** such savepoints while the statement transaction savepoint is active. 4430 */ 4431 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4432 sqlite3BtreeLeave(p); 4433 return rc; 4434 } 4435 4436 /* 4437 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4438 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4439 ** savepoint identified by parameter iSavepoint, depending on the value 4440 ** of op. 4441 ** 4442 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4443 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4444 ** contents of the entire transaction are rolled back. This is different 4445 ** from a normal transaction rollback, as no locks are released and the 4446 ** transaction remains open. 4447 */ 4448 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4449 int rc = SQLITE_OK; 4450 if( p && p->inTrans==TRANS_WRITE ){ 4451 BtShared *pBt = p->pBt; 4452 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4453 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4454 sqlite3BtreeEnter(p); 4455 if( op==SAVEPOINT_ROLLBACK ){ 4456 rc = saveAllCursors(pBt, 0, 0); 4457 } 4458 if( rc==SQLITE_OK ){ 4459 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4460 } 4461 if( rc==SQLITE_OK ){ 4462 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4463 pBt->nPage = 0; 4464 } 4465 rc = newDatabase(pBt); 4466 btreeSetNPage(pBt, pBt->pPage1); 4467 4468 /* pBt->nPage might be zero if the database was corrupt when 4469 ** the transaction was started. Otherwise, it must be at least 1. */ 4470 assert( CORRUPT_DB || pBt->nPage>0 ); 4471 } 4472 sqlite3BtreeLeave(p); 4473 } 4474 return rc; 4475 } 4476 4477 /* 4478 ** Create a new cursor for the BTree whose root is on the page 4479 ** iTable. If a read-only cursor is requested, it is assumed that 4480 ** the caller already has at least a read-only transaction open 4481 ** on the database already. If a write-cursor is requested, then 4482 ** the caller is assumed to have an open write transaction. 4483 ** 4484 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4485 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4486 ** can be used for reading or for writing if other conditions for writing 4487 ** are also met. These are the conditions that must be met in order 4488 ** for writing to be allowed: 4489 ** 4490 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4491 ** 4492 ** 2: Other database connections that share the same pager cache 4493 ** but which are not in the READ_UNCOMMITTED state may not have 4494 ** cursors open with wrFlag==0 on the same table. Otherwise 4495 ** the changes made by this write cursor would be visible to 4496 ** the read cursors in the other database connection. 4497 ** 4498 ** 3: The database must be writable (not on read-only media) 4499 ** 4500 ** 4: There must be an active transaction. 4501 ** 4502 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4503 ** is set. If FORDELETE is set, that is a hint to the implementation that 4504 ** this cursor will only be used to seek to and delete entries of an index 4505 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4506 ** this implementation. But in a hypothetical alternative storage engine 4507 ** in which index entries are automatically deleted when corresponding table 4508 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4509 ** operations on this cursor can be no-ops and all READ operations can 4510 ** return a null row (2-bytes: 0x01 0x00). 4511 ** 4512 ** No checking is done to make sure that page iTable really is the 4513 ** root page of a b-tree. If it is not, then the cursor acquired 4514 ** will not work correctly. 4515 ** 4516 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4517 ** on pCur to initialize the memory space prior to invoking this routine. 4518 */ 4519 static int btreeCursor( 4520 Btree *p, /* The btree */ 4521 Pgno iTable, /* Root page of table to open */ 4522 int wrFlag, /* 1 to write. 0 read-only */ 4523 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4524 BtCursor *pCur /* Space for new cursor */ 4525 ){ 4526 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4527 BtCursor *pX; /* Looping over other all cursors */ 4528 4529 assert( sqlite3BtreeHoldsMutex(p) ); 4530 assert( wrFlag==0 4531 || wrFlag==BTREE_WRCSR 4532 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4533 ); 4534 4535 /* The following assert statements verify that if this is a sharable 4536 ** b-tree database, the connection is holding the required table locks, 4537 ** and that no other connection has any open cursor that conflicts with 4538 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4539 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4540 || iTable<1 ); 4541 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4542 4543 /* Assert that the caller has opened the required transaction. */ 4544 assert( p->inTrans>TRANS_NONE ); 4545 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4546 assert( pBt->pPage1 && pBt->pPage1->aData ); 4547 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4548 4549 if( iTable<=1 ){ 4550 if( iTable<1 ){ 4551 return SQLITE_CORRUPT_BKPT; 4552 }else if( btreePagecount(pBt)==0 ){ 4553 assert( wrFlag==0 ); 4554 iTable = 0; 4555 } 4556 } 4557 4558 /* Now that no other errors can occur, finish filling in the BtCursor 4559 ** variables and link the cursor into the BtShared list. */ 4560 pCur->pgnoRoot = iTable; 4561 pCur->iPage = -1; 4562 pCur->pKeyInfo = pKeyInfo; 4563 pCur->pBtree = p; 4564 pCur->pBt = pBt; 4565 pCur->curFlags = 0; 4566 /* If there are two or more cursors on the same btree, then all such 4567 ** cursors *must* have the BTCF_Multiple flag set. */ 4568 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4569 if( pX->pgnoRoot==iTable ){ 4570 pX->curFlags |= BTCF_Multiple; 4571 pCur->curFlags = BTCF_Multiple; 4572 } 4573 } 4574 pCur->eState = CURSOR_INVALID; 4575 pCur->pNext = pBt->pCursor; 4576 pBt->pCursor = pCur; 4577 if( wrFlag ){ 4578 pCur->curFlags |= BTCF_WriteFlag; 4579 pCur->curPagerFlags = 0; 4580 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4581 }else{ 4582 pCur->curPagerFlags = PAGER_GET_READONLY; 4583 } 4584 return SQLITE_OK; 4585 } 4586 static int btreeCursorWithLock( 4587 Btree *p, /* The btree */ 4588 Pgno iTable, /* Root page of table to open */ 4589 int wrFlag, /* 1 to write. 0 read-only */ 4590 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4591 BtCursor *pCur /* Space for new cursor */ 4592 ){ 4593 int rc; 4594 sqlite3BtreeEnter(p); 4595 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4596 sqlite3BtreeLeave(p); 4597 return rc; 4598 } 4599 int sqlite3BtreeCursor( 4600 Btree *p, /* The btree */ 4601 Pgno iTable, /* Root page of table to open */ 4602 int wrFlag, /* 1 to write. 0 read-only */ 4603 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4604 BtCursor *pCur /* Write new cursor here */ 4605 ){ 4606 if( p->sharable ){ 4607 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4608 }else{ 4609 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4610 } 4611 } 4612 4613 /* 4614 ** Return the size of a BtCursor object in bytes. 4615 ** 4616 ** This interfaces is needed so that users of cursors can preallocate 4617 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4618 ** to users so they cannot do the sizeof() themselves - they must call 4619 ** this routine. 4620 */ 4621 int sqlite3BtreeCursorSize(void){ 4622 return ROUND8(sizeof(BtCursor)); 4623 } 4624 4625 /* 4626 ** Initialize memory that will be converted into a BtCursor object. 4627 ** 4628 ** The simple approach here would be to memset() the entire object 4629 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4630 ** do not need to be zeroed and they are large, so we can save a lot 4631 ** of run-time by skipping the initialization of those elements. 4632 */ 4633 void sqlite3BtreeCursorZero(BtCursor *p){ 4634 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4635 } 4636 4637 /* 4638 ** Close a cursor. The read lock on the database file is released 4639 ** when the last cursor is closed. 4640 */ 4641 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4642 Btree *pBtree = pCur->pBtree; 4643 if( pBtree ){ 4644 BtShared *pBt = pCur->pBt; 4645 sqlite3BtreeEnter(pBtree); 4646 assert( pBt->pCursor!=0 ); 4647 if( pBt->pCursor==pCur ){ 4648 pBt->pCursor = pCur->pNext; 4649 }else{ 4650 BtCursor *pPrev = pBt->pCursor; 4651 do{ 4652 if( pPrev->pNext==pCur ){ 4653 pPrev->pNext = pCur->pNext; 4654 break; 4655 } 4656 pPrev = pPrev->pNext; 4657 }while( ALWAYS(pPrev) ); 4658 } 4659 btreeReleaseAllCursorPages(pCur); 4660 unlockBtreeIfUnused(pBt); 4661 sqlite3_free(pCur->aOverflow); 4662 sqlite3_free(pCur->pKey); 4663 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4664 /* Since the BtShared is not sharable, there is no need to 4665 ** worry about the missing sqlite3BtreeLeave() call here. */ 4666 assert( pBtree->sharable==0 ); 4667 sqlite3BtreeClose(pBtree); 4668 }else{ 4669 sqlite3BtreeLeave(pBtree); 4670 } 4671 pCur->pBtree = 0; 4672 } 4673 return SQLITE_OK; 4674 } 4675 4676 /* 4677 ** Make sure the BtCursor* given in the argument has a valid 4678 ** BtCursor.info structure. If it is not already valid, call 4679 ** btreeParseCell() to fill it in. 4680 ** 4681 ** BtCursor.info is a cache of the information in the current cell. 4682 ** Using this cache reduces the number of calls to btreeParseCell(). 4683 */ 4684 #ifndef NDEBUG 4685 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4686 if( a->nKey!=b->nKey ) return 0; 4687 if( a->pPayload!=b->pPayload ) return 0; 4688 if( a->nPayload!=b->nPayload ) return 0; 4689 if( a->nLocal!=b->nLocal ) return 0; 4690 if( a->nSize!=b->nSize ) return 0; 4691 return 1; 4692 } 4693 static void assertCellInfo(BtCursor *pCur){ 4694 CellInfo info; 4695 memset(&info, 0, sizeof(info)); 4696 btreeParseCell(pCur->pPage, pCur->ix, &info); 4697 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4698 } 4699 #else 4700 #define assertCellInfo(x) 4701 #endif 4702 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4703 if( pCur->info.nSize==0 ){ 4704 pCur->curFlags |= BTCF_ValidNKey; 4705 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4706 }else{ 4707 assertCellInfo(pCur); 4708 } 4709 } 4710 4711 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4712 /* 4713 ** Return true if the given BtCursor is valid. A valid cursor is one 4714 ** that is currently pointing to a row in a (non-empty) table. 4715 ** This is a verification routine is used only within assert() statements. 4716 */ 4717 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4718 return pCur && pCur->eState==CURSOR_VALID; 4719 } 4720 #endif /* NDEBUG */ 4721 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4722 assert( pCur!=0 ); 4723 return pCur->eState==CURSOR_VALID; 4724 } 4725 4726 /* 4727 ** Return the value of the integer key or "rowid" for a table btree. 4728 ** This routine is only valid for a cursor that is pointing into a 4729 ** ordinary table btree. If the cursor points to an index btree or 4730 ** is invalid, the result of this routine is undefined. 4731 */ 4732 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4733 assert( cursorHoldsMutex(pCur) ); 4734 assert( pCur->eState==CURSOR_VALID ); 4735 assert( pCur->curIntKey ); 4736 getCellInfo(pCur); 4737 return pCur->info.nKey; 4738 } 4739 4740 /* 4741 ** Pin or unpin a cursor. 4742 */ 4743 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4744 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4745 pCur->curFlags |= BTCF_Pinned; 4746 } 4747 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4748 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4749 pCur->curFlags &= ~BTCF_Pinned; 4750 } 4751 4752 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4753 /* 4754 ** Return the offset into the database file for the start of the 4755 ** payload to which the cursor is pointing. 4756 */ 4757 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4758 assert( cursorHoldsMutex(pCur) ); 4759 assert( pCur->eState==CURSOR_VALID ); 4760 getCellInfo(pCur); 4761 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4762 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4763 } 4764 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4765 4766 /* 4767 ** Return the number of bytes of payload for the entry that pCur is 4768 ** currently pointing to. For table btrees, this will be the amount 4769 ** of data. For index btrees, this will be the size of the key. 4770 ** 4771 ** The caller must guarantee that the cursor is pointing to a non-NULL 4772 ** valid entry. In other words, the calling procedure must guarantee 4773 ** that the cursor has Cursor.eState==CURSOR_VALID. 4774 */ 4775 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4776 assert( cursorHoldsMutex(pCur) ); 4777 assert( pCur->eState==CURSOR_VALID ); 4778 getCellInfo(pCur); 4779 return pCur->info.nPayload; 4780 } 4781 4782 /* 4783 ** Return an upper bound on the size of any record for the table 4784 ** that the cursor is pointing into. 4785 ** 4786 ** This is an optimization. Everything will still work if this 4787 ** routine always returns 2147483647 (which is the largest record 4788 ** that SQLite can handle) or more. But returning a smaller value might 4789 ** prevent large memory allocations when trying to interpret a 4790 ** corrupt datrabase. 4791 ** 4792 ** The current implementation merely returns the size of the underlying 4793 ** database file. 4794 */ 4795 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4796 assert( cursorHoldsMutex(pCur) ); 4797 assert( pCur->eState==CURSOR_VALID ); 4798 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4799 } 4800 4801 /* 4802 ** Given the page number of an overflow page in the database (parameter 4803 ** ovfl), this function finds the page number of the next page in the 4804 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4805 ** pointer-map data instead of reading the content of page ovfl to do so. 4806 ** 4807 ** If an error occurs an SQLite error code is returned. Otherwise: 4808 ** 4809 ** The page number of the next overflow page in the linked list is 4810 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4811 ** list, *pPgnoNext is set to zero. 4812 ** 4813 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4814 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4815 ** reference. It is the responsibility of the caller to call releasePage() 4816 ** on *ppPage to free the reference. In no reference was obtained (because 4817 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4818 ** *ppPage is set to zero. 4819 */ 4820 static int getOverflowPage( 4821 BtShared *pBt, /* The database file */ 4822 Pgno ovfl, /* Current overflow page number */ 4823 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4824 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4825 ){ 4826 Pgno next = 0; 4827 MemPage *pPage = 0; 4828 int rc = SQLITE_OK; 4829 4830 assert( sqlite3_mutex_held(pBt->mutex) ); 4831 assert(pPgnoNext); 4832 4833 #ifndef SQLITE_OMIT_AUTOVACUUM 4834 /* Try to find the next page in the overflow list using the 4835 ** autovacuum pointer-map pages. Guess that the next page in 4836 ** the overflow list is page number (ovfl+1). If that guess turns 4837 ** out to be wrong, fall back to loading the data of page 4838 ** number ovfl to determine the next page number. 4839 */ 4840 if( pBt->autoVacuum ){ 4841 Pgno pgno; 4842 Pgno iGuess = ovfl+1; 4843 u8 eType; 4844 4845 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4846 iGuess++; 4847 } 4848 4849 if( iGuess<=btreePagecount(pBt) ){ 4850 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4851 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4852 next = iGuess; 4853 rc = SQLITE_DONE; 4854 } 4855 } 4856 } 4857 #endif 4858 4859 assert( next==0 || rc==SQLITE_DONE ); 4860 if( rc==SQLITE_OK ){ 4861 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4862 assert( rc==SQLITE_OK || pPage==0 ); 4863 if( rc==SQLITE_OK ){ 4864 next = get4byte(pPage->aData); 4865 } 4866 } 4867 4868 *pPgnoNext = next; 4869 if( ppPage ){ 4870 *ppPage = pPage; 4871 }else{ 4872 releasePage(pPage); 4873 } 4874 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4875 } 4876 4877 /* 4878 ** Copy data from a buffer to a page, or from a page to a buffer. 4879 ** 4880 ** pPayload is a pointer to data stored on database page pDbPage. 4881 ** If argument eOp is false, then nByte bytes of data are copied 4882 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4883 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4884 ** of data are copied from the buffer pBuf to pPayload. 4885 ** 4886 ** SQLITE_OK is returned on success, otherwise an error code. 4887 */ 4888 static int copyPayload( 4889 void *pPayload, /* Pointer to page data */ 4890 void *pBuf, /* Pointer to buffer */ 4891 int nByte, /* Number of bytes to copy */ 4892 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4893 DbPage *pDbPage /* Page containing pPayload */ 4894 ){ 4895 if( eOp ){ 4896 /* Copy data from buffer to page (a write operation) */ 4897 int rc = sqlite3PagerWrite(pDbPage); 4898 if( rc!=SQLITE_OK ){ 4899 return rc; 4900 } 4901 memcpy(pPayload, pBuf, nByte); 4902 }else{ 4903 /* Copy data from page to buffer (a read operation) */ 4904 memcpy(pBuf, pPayload, nByte); 4905 } 4906 return SQLITE_OK; 4907 } 4908 4909 /* 4910 ** This function is used to read or overwrite payload information 4911 ** for the entry that the pCur cursor is pointing to. The eOp 4912 ** argument is interpreted as follows: 4913 ** 4914 ** 0: The operation is a read. Populate the overflow cache. 4915 ** 1: The operation is a write. Populate the overflow cache. 4916 ** 4917 ** A total of "amt" bytes are read or written beginning at "offset". 4918 ** Data is read to or from the buffer pBuf. 4919 ** 4920 ** The content being read or written might appear on the main page 4921 ** or be scattered out on multiple overflow pages. 4922 ** 4923 ** If the current cursor entry uses one or more overflow pages 4924 ** this function may allocate space for and lazily populate 4925 ** the overflow page-list cache array (BtCursor.aOverflow). 4926 ** Subsequent calls use this cache to make seeking to the supplied offset 4927 ** more efficient. 4928 ** 4929 ** Once an overflow page-list cache has been allocated, it must be 4930 ** invalidated if some other cursor writes to the same table, or if 4931 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4932 ** mode, the following events may invalidate an overflow page-list cache. 4933 ** 4934 ** * An incremental vacuum, 4935 ** * A commit in auto_vacuum="full" mode, 4936 ** * Creating a table (may require moving an overflow page). 4937 */ 4938 static int accessPayload( 4939 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4940 u32 offset, /* Begin reading this far into payload */ 4941 u32 amt, /* Read this many bytes */ 4942 unsigned char *pBuf, /* Write the bytes into this buffer */ 4943 int eOp /* zero to read. non-zero to write. */ 4944 ){ 4945 unsigned char *aPayload; 4946 int rc = SQLITE_OK; 4947 int iIdx = 0; 4948 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4949 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4950 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4951 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4952 #endif 4953 4954 assert( pPage ); 4955 assert( eOp==0 || eOp==1 ); 4956 assert( pCur->eState==CURSOR_VALID ); 4957 if( pCur->ix>=pPage->nCell ){ 4958 return SQLITE_CORRUPT_PAGE(pPage); 4959 } 4960 assert( cursorHoldsMutex(pCur) ); 4961 4962 getCellInfo(pCur); 4963 aPayload = pCur->info.pPayload; 4964 assert( offset+amt <= pCur->info.nPayload ); 4965 4966 assert( aPayload > pPage->aData ); 4967 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4968 /* Trying to read or write past the end of the data is an error. The 4969 ** conditional above is really: 4970 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4971 ** but is recast into its current form to avoid integer overflow problems 4972 */ 4973 return SQLITE_CORRUPT_PAGE(pPage); 4974 } 4975 4976 /* Check if data must be read/written to/from the btree page itself. */ 4977 if( offset<pCur->info.nLocal ){ 4978 int a = amt; 4979 if( a+offset>pCur->info.nLocal ){ 4980 a = pCur->info.nLocal - offset; 4981 } 4982 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4983 offset = 0; 4984 pBuf += a; 4985 amt -= a; 4986 }else{ 4987 offset -= pCur->info.nLocal; 4988 } 4989 4990 4991 if( rc==SQLITE_OK && amt>0 ){ 4992 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4993 Pgno nextPage; 4994 4995 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4996 4997 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 4998 ** 4999 ** The aOverflow[] array is sized at one entry for each overflow page 5000 ** in the overflow chain. The page number of the first overflow page is 5001 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 5002 ** means "not yet known" (the cache is lazily populated). 5003 */ 5004 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 5005 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 5006 if( pCur->aOverflow==0 5007 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 5008 ){ 5009 Pgno *aNew = (Pgno*)sqlite3Realloc( 5010 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 5011 ); 5012 if( aNew==0 ){ 5013 return SQLITE_NOMEM_BKPT; 5014 }else{ 5015 pCur->aOverflow = aNew; 5016 } 5017 } 5018 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 5019 pCur->curFlags |= BTCF_ValidOvfl; 5020 }else{ 5021 /* If the overflow page-list cache has been allocated and the 5022 ** entry for the first required overflow page is valid, skip 5023 ** directly to it. 5024 */ 5025 if( pCur->aOverflow[offset/ovflSize] ){ 5026 iIdx = (offset/ovflSize); 5027 nextPage = pCur->aOverflow[iIdx]; 5028 offset = (offset%ovflSize); 5029 } 5030 } 5031 5032 assert( rc==SQLITE_OK && amt>0 ); 5033 while( nextPage ){ 5034 /* If required, populate the overflow page-list cache. */ 5035 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 5036 assert( pCur->aOverflow[iIdx]==0 5037 || pCur->aOverflow[iIdx]==nextPage 5038 || CORRUPT_DB ); 5039 pCur->aOverflow[iIdx] = nextPage; 5040 5041 if( offset>=ovflSize ){ 5042 /* The only reason to read this page is to obtain the page 5043 ** number for the next page in the overflow chain. The page 5044 ** data is not required. So first try to lookup the overflow 5045 ** page-list cache, if any, then fall back to the getOverflowPage() 5046 ** function. 5047 */ 5048 assert( pCur->curFlags & BTCF_ValidOvfl ); 5049 assert( pCur->pBtree->db==pBt->db ); 5050 if( pCur->aOverflow[iIdx+1] ){ 5051 nextPage = pCur->aOverflow[iIdx+1]; 5052 }else{ 5053 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 5054 } 5055 offset -= ovflSize; 5056 }else{ 5057 /* Need to read this page properly. It contains some of the 5058 ** range of data that is being read (eOp==0) or written (eOp!=0). 5059 */ 5060 int a = amt; 5061 if( a + offset > ovflSize ){ 5062 a = ovflSize - offset; 5063 } 5064 5065 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5066 /* If all the following are true: 5067 ** 5068 ** 1) this is a read operation, and 5069 ** 2) data is required from the start of this overflow page, and 5070 ** 3) there are no dirty pages in the page-cache 5071 ** 4) the database is file-backed, and 5072 ** 5) the page is not in the WAL file 5073 ** 6) at least 4 bytes have already been read into the output buffer 5074 ** 5075 ** then data can be read directly from the database file into the 5076 ** output buffer, bypassing the page-cache altogether. This speeds 5077 ** up loading large records that span many overflow pages. 5078 */ 5079 if( eOp==0 /* (1) */ 5080 && offset==0 /* (2) */ 5081 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5082 && &pBuf[-4]>=pBufStart /* (6) */ 5083 ){ 5084 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5085 u8 aSave[4]; 5086 u8 *aWrite = &pBuf[-4]; 5087 assert( aWrite>=pBufStart ); /* due to (6) */ 5088 memcpy(aSave, aWrite, 4); 5089 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5090 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5091 nextPage = get4byte(aWrite); 5092 memcpy(aWrite, aSave, 4); 5093 }else 5094 #endif 5095 5096 { 5097 DbPage *pDbPage; 5098 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5099 (eOp==0 ? PAGER_GET_READONLY : 0) 5100 ); 5101 if( rc==SQLITE_OK ){ 5102 aPayload = sqlite3PagerGetData(pDbPage); 5103 nextPage = get4byte(aPayload); 5104 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5105 sqlite3PagerUnref(pDbPage); 5106 offset = 0; 5107 } 5108 } 5109 amt -= a; 5110 if( amt==0 ) return rc; 5111 pBuf += a; 5112 } 5113 if( rc ) break; 5114 iIdx++; 5115 } 5116 } 5117 5118 if( rc==SQLITE_OK && amt>0 ){ 5119 /* Overflow chain ends prematurely */ 5120 return SQLITE_CORRUPT_PAGE(pPage); 5121 } 5122 return rc; 5123 } 5124 5125 /* 5126 ** Read part of the payload for the row at which that cursor pCur is currently 5127 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5128 ** begins at "offset". 5129 ** 5130 ** pCur can be pointing to either a table or an index b-tree. 5131 ** If pointing to a table btree, then the content section is read. If 5132 ** pCur is pointing to an index b-tree then the key section is read. 5133 ** 5134 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5135 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5136 ** cursor might be invalid or might need to be restored before being read. 5137 ** 5138 ** Return SQLITE_OK on success or an error code if anything goes 5139 ** wrong. An error is returned if "offset+amt" is larger than 5140 ** the available payload. 5141 */ 5142 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5143 assert( cursorHoldsMutex(pCur) ); 5144 assert( pCur->eState==CURSOR_VALID ); 5145 assert( pCur->iPage>=0 && pCur->pPage ); 5146 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5147 } 5148 5149 /* 5150 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5151 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5152 ** interface. 5153 */ 5154 #ifndef SQLITE_OMIT_INCRBLOB 5155 static SQLITE_NOINLINE int accessPayloadChecked( 5156 BtCursor *pCur, 5157 u32 offset, 5158 u32 amt, 5159 void *pBuf 5160 ){ 5161 int rc; 5162 if ( pCur->eState==CURSOR_INVALID ){ 5163 return SQLITE_ABORT; 5164 } 5165 assert( cursorOwnsBtShared(pCur) ); 5166 rc = btreeRestoreCursorPosition(pCur); 5167 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5168 } 5169 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5170 if( pCur->eState==CURSOR_VALID ){ 5171 assert( cursorOwnsBtShared(pCur) ); 5172 return accessPayload(pCur, offset, amt, pBuf, 0); 5173 }else{ 5174 return accessPayloadChecked(pCur, offset, amt, pBuf); 5175 } 5176 } 5177 #endif /* SQLITE_OMIT_INCRBLOB */ 5178 5179 /* 5180 ** Return a pointer to payload information from the entry that the 5181 ** pCur cursor is pointing to. The pointer is to the beginning of 5182 ** the key if index btrees (pPage->intKey==0) and is the data for 5183 ** table btrees (pPage->intKey==1). The number of bytes of available 5184 ** key/data is written into *pAmt. If *pAmt==0, then the value 5185 ** returned will not be a valid pointer. 5186 ** 5187 ** This routine is an optimization. It is common for the entire key 5188 ** and data to fit on the local page and for there to be no overflow 5189 ** pages. When that is so, this routine can be used to access the 5190 ** key and data without making a copy. If the key and/or data spills 5191 ** onto overflow pages, then accessPayload() must be used to reassemble 5192 ** the key/data and copy it into a preallocated buffer. 5193 ** 5194 ** The pointer returned by this routine looks directly into the cached 5195 ** page of the database. The data might change or move the next time 5196 ** any btree routine is called. 5197 */ 5198 static const void *fetchPayload( 5199 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5200 u32 *pAmt /* Write the number of available bytes here */ 5201 ){ 5202 int amt; 5203 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5204 assert( pCur->eState==CURSOR_VALID ); 5205 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5206 assert( cursorOwnsBtShared(pCur) ); 5207 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5208 assert( pCur->info.nSize>0 ); 5209 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5210 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5211 amt = pCur->info.nLocal; 5212 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5213 /* There is too little space on the page for the expected amount 5214 ** of local content. Database must be corrupt. */ 5215 assert( CORRUPT_DB ); 5216 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5217 } 5218 *pAmt = (u32)amt; 5219 return (void*)pCur->info.pPayload; 5220 } 5221 5222 5223 /* 5224 ** For the entry that cursor pCur is point to, return as 5225 ** many bytes of the key or data as are available on the local 5226 ** b-tree page. Write the number of available bytes into *pAmt. 5227 ** 5228 ** The pointer returned is ephemeral. The key/data may move 5229 ** or be destroyed on the next call to any Btree routine, 5230 ** including calls from other threads against the same cache. 5231 ** Hence, a mutex on the BtShared should be held prior to calling 5232 ** this routine. 5233 ** 5234 ** These routines is used to get quick access to key and data 5235 ** in the common case where no overflow pages are used. 5236 */ 5237 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5238 return fetchPayload(pCur, pAmt); 5239 } 5240 5241 5242 /* 5243 ** Move the cursor down to a new child page. The newPgno argument is the 5244 ** page number of the child page to move to. 5245 ** 5246 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5247 ** the new child page does not match the flags field of the parent (i.e. 5248 ** if an intkey page appears to be the parent of a non-intkey page, or 5249 ** vice-versa). 5250 */ 5251 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5252 assert( cursorOwnsBtShared(pCur) ); 5253 assert( pCur->eState==CURSOR_VALID ); 5254 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5255 assert( pCur->iPage>=0 ); 5256 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5257 return SQLITE_CORRUPT_BKPT; 5258 } 5259 pCur->info.nSize = 0; 5260 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5261 pCur->aiIdx[pCur->iPage] = pCur->ix; 5262 pCur->apPage[pCur->iPage] = pCur->pPage; 5263 pCur->ix = 0; 5264 pCur->iPage++; 5265 return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur, 5266 pCur->curPagerFlags); 5267 } 5268 5269 #ifdef SQLITE_DEBUG 5270 /* 5271 ** Page pParent is an internal (non-leaf) tree page. This function 5272 ** asserts that page number iChild is the left-child if the iIdx'th 5273 ** cell in page pParent. Or, if iIdx is equal to the total number of 5274 ** cells in pParent, that page number iChild is the right-child of 5275 ** the page. 5276 */ 5277 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5278 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5279 ** in a corrupt database */ 5280 assert( iIdx<=pParent->nCell ); 5281 if( iIdx==pParent->nCell ){ 5282 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5283 }else{ 5284 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5285 } 5286 } 5287 #else 5288 # define assertParentIndex(x,y,z) 5289 #endif 5290 5291 /* 5292 ** Move the cursor up to the parent page. 5293 ** 5294 ** pCur->idx is set to the cell index that contains the pointer 5295 ** to the page we are coming from. If we are coming from the 5296 ** right-most child page then pCur->idx is set to one more than 5297 ** the largest cell index. 5298 */ 5299 static void moveToParent(BtCursor *pCur){ 5300 MemPage *pLeaf; 5301 assert( cursorOwnsBtShared(pCur) ); 5302 assert( pCur->eState==CURSOR_VALID ); 5303 assert( pCur->iPage>0 ); 5304 assert( pCur->pPage ); 5305 assertParentIndex( 5306 pCur->apPage[pCur->iPage-1], 5307 pCur->aiIdx[pCur->iPage-1], 5308 pCur->pPage->pgno 5309 ); 5310 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5311 pCur->info.nSize = 0; 5312 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5313 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5314 pLeaf = pCur->pPage; 5315 pCur->pPage = pCur->apPage[--pCur->iPage]; 5316 releasePageNotNull(pLeaf); 5317 } 5318 5319 /* 5320 ** Move the cursor to point to the root page of its b-tree structure. 5321 ** 5322 ** If the table has a virtual root page, then the cursor is moved to point 5323 ** to the virtual root page instead of the actual root page. A table has a 5324 ** virtual root page when the actual root page contains no cells and a 5325 ** single child page. This can only happen with the table rooted at page 1. 5326 ** 5327 ** If the b-tree structure is empty, the cursor state is set to 5328 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5329 ** the cursor is set to point to the first cell located on the root 5330 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5331 ** 5332 ** If this function returns successfully, it may be assumed that the 5333 ** page-header flags indicate that the [virtual] root-page is the expected 5334 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5335 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5336 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5337 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5338 ** b-tree). 5339 */ 5340 static int moveToRoot(BtCursor *pCur){ 5341 MemPage *pRoot; 5342 int rc = SQLITE_OK; 5343 5344 assert( cursorOwnsBtShared(pCur) ); 5345 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5346 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5347 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5348 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5349 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5350 5351 if( pCur->iPage>=0 ){ 5352 if( pCur->iPage ){ 5353 releasePageNotNull(pCur->pPage); 5354 while( --pCur->iPage ){ 5355 releasePageNotNull(pCur->apPage[pCur->iPage]); 5356 } 5357 pRoot = pCur->pPage = pCur->apPage[0]; 5358 goto skip_init; 5359 } 5360 }else if( pCur->pgnoRoot==0 ){ 5361 pCur->eState = CURSOR_INVALID; 5362 return SQLITE_EMPTY; 5363 }else{ 5364 assert( pCur->iPage==(-1) ); 5365 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5366 if( pCur->eState==CURSOR_FAULT ){ 5367 assert( pCur->skipNext!=SQLITE_OK ); 5368 return pCur->skipNext; 5369 } 5370 sqlite3BtreeClearCursor(pCur); 5371 } 5372 rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage, 5373 0, pCur->curPagerFlags); 5374 if( rc!=SQLITE_OK ){ 5375 pCur->eState = CURSOR_INVALID; 5376 return rc; 5377 } 5378 pCur->iPage = 0; 5379 pCur->curIntKey = pCur->pPage->intKey; 5380 } 5381 pRoot = pCur->pPage; 5382 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); 5383 5384 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5385 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5386 ** NULL, the caller expects a table b-tree. If this is not the case, 5387 ** return an SQLITE_CORRUPT error. 5388 ** 5389 ** Earlier versions of SQLite assumed that this test could not fail 5390 ** if the root page was already loaded when this function was called (i.e. 5391 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5392 ** in such a way that page pRoot is linked into a second b-tree table 5393 ** (or the freelist). */ 5394 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5395 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5396 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5397 } 5398 5399 skip_init: 5400 pCur->ix = 0; 5401 pCur->info.nSize = 0; 5402 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5403 5404 if( pRoot->nCell>0 ){ 5405 pCur->eState = CURSOR_VALID; 5406 }else if( !pRoot->leaf ){ 5407 Pgno subpage; 5408 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5409 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5410 pCur->eState = CURSOR_VALID; 5411 rc = moveToChild(pCur, subpage); 5412 }else{ 5413 pCur->eState = CURSOR_INVALID; 5414 rc = SQLITE_EMPTY; 5415 } 5416 return rc; 5417 } 5418 5419 /* 5420 ** Move the cursor down to the left-most leaf entry beneath the 5421 ** entry to which it is currently pointing. 5422 ** 5423 ** The left-most leaf is the one with the smallest key - the first 5424 ** in ascending order. 5425 */ 5426 static int moveToLeftmost(BtCursor *pCur){ 5427 Pgno pgno; 5428 int rc = SQLITE_OK; 5429 MemPage *pPage; 5430 5431 assert( cursorOwnsBtShared(pCur) ); 5432 assert( pCur->eState==CURSOR_VALID ); 5433 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5434 assert( pCur->ix<pPage->nCell ); 5435 pgno = get4byte(findCell(pPage, pCur->ix)); 5436 rc = moveToChild(pCur, pgno); 5437 } 5438 return rc; 5439 } 5440 5441 /* 5442 ** Move the cursor down to the right-most leaf entry beneath the 5443 ** page to which it is currently pointing. Notice the difference 5444 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5445 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5446 ** finds the right-most entry beneath the *page*. 5447 ** 5448 ** The right-most entry is the one with the largest key - the last 5449 ** key in ascending order. 5450 */ 5451 static int moveToRightmost(BtCursor *pCur){ 5452 Pgno pgno; 5453 int rc = SQLITE_OK; 5454 MemPage *pPage = 0; 5455 5456 assert( cursorOwnsBtShared(pCur) ); 5457 assert( pCur->eState==CURSOR_VALID ); 5458 while( !(pPage = pCur->pPage)->leaf ){ 5459 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5460 pCur->ix = pPage->nCell; 5461 rc = moveToChild(pCur, pgno); 5462 if( rc ) return rc; 5463 } 5464 pCur->ix = pPage->nCell-1; 5465 assert( pCur->info.nSize==0 ); 5466 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5467 return SQLITE_OK; 5468 } 5469 5470 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5471 ** on success. Set *pRes to 0 if the cursor actually points to something 5472 ** or set *pRes to 1 if the table is empty. 5473 */ 5474 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5475 int rc; 5476 5477 assert( cursorOwnsBtShared(pCur) ); 5478 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5479 rc = moveToRoot(pCur); 5480 if( rc==SQLITE_OK ){ 5481 assert( pCur->pPage->nCell>0 ); 5482 *pRes = 0; 5483 rc = moveToLeftmost(pCur); 5484 }else if( rc==SQLITE_EMPTY ){ 5485 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5486 *pRes = 1; 5487 rc = SQLITE_OK; 5488 } 5489 return rc; 5490 } 5491 5492 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5493 ** on success. Set *pRes to 0 if the cursor actually points to something 5494 ** or set *pRes to 1 if the table is empty. 5495 */ 5496 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5497 int rc; 5498 5499 assert( cursorOwnsBtShared(pCur) ); 5500 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5501 5502 /* If the cursor already points to the last entry, this is a no-op. */ 5503 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5504 #ifdef SQLITE_DEBUG 5505 /* This block serves to assert() that the cursor really does point 5506 ** to the last entry in the b-tree. */ 5507 int ii; 5508 for(ii=0; ii<pCur->iPage; ii++){ 5509 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5510 } 5511 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5512 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5513 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5514 assert( pCur->pPage->leaf ); 5515 #endif 5516 *pRes = 0; 5517 return SQLITE_OK; 5518 } 5519 5520 rc = moveToRoot(pCur); 5521 if( rc==SQLITE_OK ){ 5522 assert( pCur->eState==CURSOR_VALID ); 5523 *pRes = 0; 5524 rc = moveToRightmost(pCur); 5525 if( rc==SQLITE_OK ){ 5526 pCur->curFlags |= BTCF_AtLast; 5527 }else{ 5528 pCur->curFlags &= ~BTCF_AtLast; 5529 } 5530 }else if( rc==SQLITE_EMPTY ){ 5531 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5532 *pRes = 1; 5533 rc = SQLITE_OK; 5534 } 5535 return rc; 5536 } 5537 5538 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5539 ** table near the key intKey. Return a success code. 5540 ** 5541 ** If an exact match is not found, then the cursor is always 5542 ** left pointing at a leaf page which would hold the entry if it 5543 ** were present. The cursor might point to an entry that comes 5544 ** before or after the key. 5545 ** 5546 ** An integer is written into *pRes which is the result of 5547 ** comparing the key with the entry to which the cursor is 5548 ** pointing. The meaning of the integer written into 5549 ** *pRes is as follows: 5550 ** 5551 ** *pRes<0 The cursor is left pointing at an entry that 5552 ** is smaller than intKey or if the table is empty 5553 ** and the cursor is therefore left point to nothing. 5554 ** 5555 ** *pRes==0 The cursor is left pointing at an entry that 5556 ** exactly matches intKey. 5557 ** 5558 ** *pRes>0 The cursor is left pointing at an entry that 5559 ** is larger than intKey. 5560 */ 5561 int sqlite3BtreeTableMoveto( 5562 BtCursor *pCur, /* The cursor to be moved */ 5563 i64 intKey, /* The table key */ 5564 int biasRight, /* If true, bias the search to the high end */ 5565 int *pRes /* Write search results here */ 5566 ){ 5567 int rc; 5568 5569 assert( cursorOwnsBtShared(pCur) ); 5570 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5571 assert( pRes ); 5572 assert( pCur->pKeyInfo==0 ); 5573 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5574 5575 /* If the cursor is already positioned at the point we are trying 5576 ** to move to, then just return without doing any work */ 5577 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5578 if( pCur->info.nKey==intKey ){ 5579 *pRes = 0; 5580 return SQLITE_OK; 5581 } 5582 if( pCur->info.nKey<intKey ){ 5583 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5584 *pRes = -1; 5585 return SQLITE_OK; 5586 } 5587 /* If the requested key is one more than the previous key, then 5588 ** try to get there using sqlite3BtreeNext() rather than a full 5589 ** binary search. This is an optimization only. The correct answer 5590 ** is still obtained without this case, only a little more slowely */ 5591 if( pCur->info.nKey+1==intKey ){ 5592 *pRes = 0; 5593 rc = sqlite3BtreeNext(pCur, 0); 5594 if( rc==SQLITE_OK ){ 5595 getCellInfo(pCur); 5596 if( pCur->info.nKey==intKey ){ 5597 return SQLITE_OK; 5598 } 5599 }else if( rc!=SQLITE_DONE ){ 5600 return rc; 5601 } 5602 } 5603 } 5604 } 5605 5606 #ifdef SQLITE_DEBUG 5607 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5608 #endif 5609 5610 rc = moveToRoot(pCur); 5611 if( rc ){ 5612 if( rc==SQLITE_EMPTY ){ 5613 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5614 *pRes = -1; 5615 return SQLITE_OK; 5616 } 5617 return rc; 5618 } 5619 assert( pCur->pPage ); 5620 assert( pCur->pPage->isInit ); 5621 assert( pCur->eState==CURSOR_VALID ); 5622 assert( pCur->pPage->nCell > 0 ); 5623 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5624 assert( pCur->curIntKey ); 5625 5626 for(;;){ 5627 int lwr, upr, idx, c; 5628 Pgno chldPg; 5629 MemPage *pPage = pCur->pPage; 5630 u8 *pCell; /* Pointer to current cell in pPage */ 5631 5632 /* pPage->nCell must be greater than zero. If this is the root-page 5633 ** the cursor would have been INVALID above and this for(;;) loop 5634 ** not run. If this is not the root-page, then the moveToChild() routine 5635 ** would have already detected db corruption. Similarly, pPage must 5636 ** be the right kind (index or table) of b-tree page. Otherwise 5637 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5638 assert( pPage->nCell>0 ); 5639 assert( pPage->intKey ); 5640 lwr = 0; 5641 upr = pPage->nCell-1; 5642 assert( biasRight==0 || biasRight==1 ); 5643 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5644 for(;;){ 5645 i64 nCellKey; 5646 pCell = findCellPastPtr(pPage, idx); 5647 if( pPage->intKeyLeaf ){ 5648 while( 0x80 <= *(pCell++) ){ 5649 if( pCell>=pPage->aDataEnd ){ 5650 return SQLITE_CORRUPT_PAGE(pPage); 5651 } 5652 } 5653 } 5654 getVarint(pCell, (u64*)&nCellKey); 5655 if( nCellKey<intKey ){ 5656 lwr = idx+1; 5657 if( lwr>upr ){ c = -1; break; } 5658 }else if( nCellKey>intKey ){ 5659 upr = idx-1; 5660 if( lwr>upr ){ c = +1; break; } 5661 }else{ 5662 assert( nCellKey==intKey ); 5663 pCur->ix = (u16)idx; 5664 if( !pPage->leaf ){ 5665 lwr = idx; 5666 goto moveto_table_next_layer; 5667 }else{ 5668 pCur->curFlags |= BTCF_ValidNKey; 5669 pCur->info.nKey = nCellKey; 5670 pCur->info.nSize = 0; 5671 *pRes = 0; 5672 return SQLITE_OK; 5673 } 5674 } 5675 assert( lwr+upr>=0 ); 5676 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5677 } 5678 assert( lwr==upr+1 || !pPage->leaf ); 5679 assert( pPage->isInit ); 5680 if( pPage->leaf ){ 5681 assert( pCur->ix<pCur->pPage->nCell ); 5682 pCur->ix = (u16)idx; 5683 *pRes = c; 5684 rc = SQLITE_OK; 5685 goto moveto_table_finish; 5686 } 5687 moveto_table_next_layer: 5688 if( lwr>=pPage->nCell ){ 5689 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5690 }else{ 5691 chldPg = get4byte(findCell(pPage, lwr)); 5692 } 5693 pCur->ix = (u16)lwr; 5694 rc = moveToChild(pCur, chldPg); 5695 if( rc ) break; 5696 } 5697 moveto_table_finish: 5698 pCur->info.nSize = 0; 5699 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5700 return rc; 5701 } 5702 5703 /* 5704 ** Compare the "idx"-th cell on the page the cursor pCur is currently 5705 ** pointing to to pIdxKey using xRecordCompare. Return negative or 5706 ** zero if the cell is less than or equal pIdxKey. Return positive 5707 ** if unknown. 5708 ** 5709 ** Return value negative: Cell at pCur[idx] less than pIdxKey 5710 ** 5711 ** Return value is zero: Cell at pCur[idx] equals pIdxKey 5712 ** 5713 ** Return value positive: Nothing is known about the relationship 5714 ** of the cell at pCur[idx] and pIdxKey. 5715 ** 5716 ** This routine is part of an optimization. It is always safe to return 5717 ** a positive value as that will cause the optimization to be skipped. 5718 */ 5719 static int indexCellCompare( 5720 BtCursor *pCur, 5721 int idx, 5722 UnpackedRecord *pIdxKey, 5723 RecordCompare xRecordCompare 5724 ){ 5725 MemPage *pPage = pCur->pPage; 5726 int c; 5727 int nCell; /* Size of the pCell cell in bytes */ 5728 u8 *pCell = findCellPastPtr(pPage, idx); 5729 5730 nCell = pCell[0]; 5731 if( nCell<=pPage->max1bytePayload ){ 5732 /* This branch runs if the record-size field of the cell is a 5733 ** single byte varint and the record fits entirely on the main 5734 ** b-tree page. */ 5735 testcase( pCell+nCell+1==pPage->aDataEnd ); 5736 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5737 }else if( !(pCell[1] & 0x80) 5738 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5739 ){ 5740 /* The record-size field is a 2 byte varint and the record 5741 ** fits entirely on the main b-tree page. */ 5742 testcase( pCell+nCell+2==pPage->aDataEnd ); 5743 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5744 }else{ 5745 /* If the record extends into overflow pages, do not attempt 5746 ** the optimization. */ 5747 c = 99; 5748 } 5749 return c; 5750 } 5751 5752 /* 5753 ** Return true (non-zero) if pCur is current pointing to the last 5754 ** page of a table. 5755 */ 5756 static int cursorOnLastPage(BtCursor *pCur){ 5757 int i; 5758 assert( pCur->eState==CURSOR_VALID ); 5759 for(i=0; i<pCur->iPage; i++){ 5760 MemPage *pPage = pCur->apPage[i]; 5761 if( pCur->aiIdx[i]<pPage->nCell ) return 0; 5762 } 5763 return 1; 5764 } 5765 5766 /* Move the cursor so that it points to an entry in an index table 5767 ** near the key pIdxKey. Return a success code. 5768 ** 5769 ** If an exact match is not found, then the cursor is always 5770 ** left pointing at a leaf page which would hold the entry if it 5771 ** were present. The cursor might point to an entry that comes 5772 ** before or after the key. 5773 ** 5774 ** An integer is written into *pRes which is the result of 5775 ** comparing the key with the entry to which the cursor is 5776 ** pointing. The meaning of the integer written into 5777 ** *pRes is as follows: 5778 ** 5779 ** *pRes<0 The cursor is left pointing at an entry that 5780 ** is smaller than pIdxKey or if the table is empty 5781 ** and the cursor is therefore left point to nothing. 5782 ** 5783 ** *pRes==0 The cursor is left pointing at an entry that 5784 ** exactly matches pIdxKey. 5785 ** 5786 ** *pRes>0 The cursor is left pointing at an entry that 5787 ** is larger than pIdxKey. 5788 ** 5789 ** The pIdxKey->eqSeen field is set to 1 if there 5790 ** exists an entry in the table that exactly matches pIdxKey. 5791 */ 5792 int sqlite3BtreeIndexMoveto( 5793 BtCursor *pCur, /* The cursor to be moved */ 5794 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5795 int *pRes /* Write search results here */ 5796 ){ 5797 int rc; 5798 RecordCompare xRecordCompare; 5799 5800 assert( cursorOwnsBtShared(pCur) ); 5801 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5802 assert( pRes ); 5803 assert( pCur->pKeyInfo!=0 ); 5804 5805 #ifdef SQLITE_DEBUG 5806 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5807 #endif 5808 5809 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5810 pIdxKey->errCode = 0; 5811 assert( pIdxKey->default_rc==1 5812 || pIdxKey->default_rc==0 5813 || pIdxKey->default_rc==-1 5814 ); 5815 5816 5817 /* Check to see if we can skip a lot of work. Two cases: 5818 ** 5819 ** (1) If the cursor is already pointing to the very last cell 5820 ** in the table and the pIdxKey search key is greater than or 5821 ** equal to that last cell, then no movement is required. 5822 ** 5823 ** (2) If the cursor is on the last page of the table and the first 5824 ** cell on that last page is less than or equal to the pIdxKey 5825 ** search key, then we can start the search on the current page 5826 ** without needing to go back to root. 5827 */ 5828 if( pCur->eState==CURSOR_VALID 5829 && pCur->pPage->leaf 5830 && cursorOnLastPage(pCur) 5831 ){ 5832 int c; 5833 if( pCur->ix==pCur->pPage->nCell-1 5834 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 5835 && pIdxKey->errCode==SQLITE_OK 5836 ){ 5837 *pRes = c; 5838 return SQLITE_OK; /* Cursor already pointing at the correct spot */ 5839 } 5840 if( pCur->iPage>0 5841 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 5842 && pIdxKey->errCode==SQLITE_OK 5843 ){ 5844 pCur->curFlags &= ~BTCF_ValidOvfl; 5845 if( !pCur->pPage->isInit ){ 5846 return SQLITE_CORRUPT_BKPT; 5847 } 5848 goto bypass_moveto_root; /* Start search on the current page */ 5849 } 5850 pIdxKey->errCode = SQLITE_OK; 5851 } 5852 5853 rc = moveToRoot(pCur); 5854 if( rc ){ 5855 if( rc==SQLITE_EMPTY ){ 5856 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5857 *pRes = -1; 5858 return SQLITE_OK; 5859 } 5860 return rc; 5861 } 5862 5863 bypass_moveto_root: 5864 assert( pCur->pPage ); 5865 assert( pCur->pPage->isInit ); 5866 assert( pCur->eState==CURSOR_VALID ); 5867 assert( pCur->pPage->nCell > 0 ); 5868 assert( pCur->curIntKey==0 ); 5869 assert( pIdxKey!=0 ); 5870 for(;;){ 5871 int lwr, upr, idx, c; 5872 Pgno chldPg; 5873 MemPage *pPage = pCur->pPage; 5874 u8 *pCell; /* Pointer to current cell in pPage */ 5875 5876 /* pPage->nCell must be greater than zero. If this is the root-page 5877 ** the cursor would have been INVALID above and this for(;;) loop 5878 ** not run. If this is not the root-page, then the moveToChild() routine 5879 ** would have already detected db corruption. Similarly, pPage must 5880 ** be the right kind (index or table) of b-tree page. Otherwise 5881 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5882 assert( pPage->nCell>0 ); 5883 assert( pPage->intKey==0 ); 5884 lwr = 0; 5885 upr = pPage->nCell-1; 5886 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5887 for(;;){ 5888 int nCell; /* Size of the pCell cell in bytes */ 5889 pCell = findCellPastPtr(pPage, idx); 5890 5891 /* The maximum supported page-size is 65536 bytes. This means that 5892 ** the maximum number of record bytes stored on an index B-Tree 5893 ** page is less than 16384 bytes and may be stored as a 2-byte 5894 ** varint. This information is used to attempt to avoid parsing 5895 ** the entire cell by checking for the cases where the record is 5896 ** stored entirely within the b-tree page by inspecting the first 5897 ** 2 bytes of the cell. 5898 */ 5899 nCell = pCell[0]; 5900 if( nCell<=pPage->max1bytePayload ){ 5901 /* This branch runs if the record-size field of the cell is a 5902 ** single byte varint and the record fits entirely on the main 5903 ** b-tree page. */ 5904 testcase( pCell+nCell+1==pPage->aDataEnd ); 5905 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5906 }else if( !(pCell[1] & 0x80) 5907 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5908 ){ 5909 /* The record-size field is a 2 byte varint and the record 5910 ** fits entirely on the main b-tree page. */ 5911 testcase( pCell+nCell+2==pPage->aDataEnd ); 5912 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5913 }else{ 5914 /* The record flows over onto one or more overflow pages. In 5915 ** this case the whole cell needs to be parsed, a buffer allocated 5916 ** and accessPayload() used to retrieve the record into the 5917 ** buffer before VdbeRecordCompare() can be called. 5918 ** 5919 ** If the record is corrupt, the xRecordCompare routine may read 5920 ** up to two varints past the end of the buffer. An extra 18 5921 ** bytes of padding is allocated at the end of the buffer in 5922 ** case this happens. */ 5923 void *pCellKey; 5924 u8 * const pCellBody = pCell - pPage->childPtrSize; 5925 const int nOverrun = 18; /* Size of the overrun padding */ 5926 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5927 nCell = (int)pCur->info.nKey; 5928 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5929 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5930 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5931 testcase( nCell==2 ); /* Minimum legal index key size */ 5932 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5933 rc = SQLITE_CORRUPT_PAGE(pPage); 5934 goto moveto_index_finish; 5935 } 5936 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5937 if( pCellKey==0 ){ 5938 rc = SQLITE_NOMEM_BKPT; 5939 goto moveto_index_finish; 5940 } 5941 pCur->ix = (u16)idx; 5942 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5943 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5944 pCur->curFlags &= ~BTCF_ValidOvfl; 5945 if( rc ){ 5946 sqlite3_free(pCellKey); 5947 goto moveto_index_finish; 5948 } 5949 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5950 sqlite3_free(pCellKey); 5951 } 5952 assert( 5953 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5954 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5955 ); 5956 if( c<0 ){ 5957 lwr = idx+1; 5958 }else if( c>0 ){ 5959 upr = idx-1; 5960 }else{ 5961 assert( c==0 ); 5962 *pRes = 0; 5963 rc = SQLITE_OK; 5964 pCur->ix = (u16)idx; 5965 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5966 goto moveto_index_finish; 5967 } 5968 if( lwr>upr ) break; 5969 assert( lwr+upr>=0 ); 5970 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5971 } 5972 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5973 assert( pPage->isInit ); 5974 if( pPage->leaf ){ 5975 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5976 pCur->ix = (u16)idx; 5977 *pRes = c; 5978 rc = SQLITE_OK; 5979 goto moveto_index_finish; 5980 } 5981 if( lwr>=pPage->nCell ){ 5982 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5983 }else{ 5984 chldPg = get4byte(findCell(pPage, lwr)); 5985 } 5986 pCur->ix = (u16)lwr; 5987 rc = moveToChild(pCur, chldPg); 5988 if( rc ) break; 5989 } 5990 moveto_index_finish: 5991 pCur->info.nSize = 0; 5992 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5993 return rc; 5994 } 5995 5996 5997 /* 5998 ** Return TRUE if the cursor is not pointing at an entry of the table. 5999 ** 6000 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 6001 ** past the last entry in the table or sqlite3BtreePrev() moves past 6002 ** the first entry. TRUE is also returned if the table is empty. 6003 */ 6004 int sqlite3BtreeEof(BtCursor *pCur){ 6005 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 6006 ** have been deleted? This API will need to change to return an error code 6007 ** as well as the boolean result value. 6008 */ 6009 return (CURSOR_VALID!=pCur->eState); 6010 } 6011 6012 /* 6013 ** Return an estimate for the number of rows in the table that pCur is 6014 ** pointing to. Return a negative number if no estimate is currently 6015 ** available. 6016 */ 6017 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 6018 i64 n; 6019 u8 i; 6020 6021 assert( cursorOwnsBtShared(pCur) ); 6022 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 6023 6024 /* Currently this interface is only called by the OP_IfSmaller 6025 ** opcode, and it that case the cursor will always be valid and 6026 ** will always point to a leaf node. */ 6027 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 6028 if( NEVER(pCur->pPage->leaf==0) ) return -1; 6029 6030 n = pCur->pPage->nCell; 6031 for(i=0; i<pCur->iPage; i++){ 6032 n *= pCur->apPage[i]->nCell; 6033 } 6034 return n; 6035 } 6036 6037 /* 6038 ** Advance the cursor to the next entry in the database. 6039 ** Return value: 6040 ** 6041 ** SQLITE_OK success 6042 ** SQLITE_DONE cursor is already pointing at the last element 6043 ** otherwise some kind of error occurred 6044 ** 6045 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 6046 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 6047 ** to the next cell on the current page. The (slower) btreeNext() helper 6048 ** routine is called when it is necessary to move to a different page or 6049 ** to restore the cursor. 6050 ** 6051 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 6052 ** cursor corresponds to an SQL index and this routine could have been 6053 ** skipped if the SQL index had been a unique index. The F argument 6054 ** is a hint to the implement. SQLite btree implementation does not use 6055 ** this hint, but COMDB2 does. 6056 */ 6057 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 6058 int rc; 6059 int idx; 6060 MemPage *pPage; 6061 6062 assert( cursorOwnsBtShared(pCur) ); 6063 if( pCur->eState!=CURSOR_VALID ){ 6064 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 6065 rc = restoreCursorPosition(pCur); 6066 if( rc!=SQLITE_OK ){ 6067 return rc; 6068 } 6069 if( CURSOR_INVALID==pCur->eState ){ 6070 return SQLITE_DONE; 6071 } 6072 if( pCur->eState==CURSOR_SKIPNEXT ){ 6073 pCur->eState = CURSOR_VALID; 6074 if( pCur->skipNext>0 ) return SQLITE_OK; 6075 } 6076 } 6077 6078 pPage = pCur->pPage; 6079 idx = ++pCur->ix; 6080 if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){ 6081 return SQLITE_CORRUPT_BKPT; 6082 } 6083 6084 if( idx>=pPage->nCell ){ 6085 if( !pPage->leaf ){ 6086 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 6087 if( rc ) return rc; 6088 return moveToLeftmost(pCur); 6089 } 6090 do{ 6091 if( pCur->iPage==0 ){ 6092 pCur->eState = CURSOR_INVALID; 6093 return SQLITE_DONE; 6094 } 6095 moveToParent(pCur); 6096 pPage = pCur->pPage; 6097 }while( pCur->ix>=pPage->nCell ); 6098 if( pPage->intKey ){ 6099 return sqlite3BtreeNext(pCur, 0); 6100 }else{ 6101 return SQLITE_OK; 6102 } 6103 } 6104 if( pPage->leaf ){ 6105 return SQLITE_OK; 6106 }else{ 6107 return moveToLeftmost(pCur); 6108 } 6109 } 6110 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 6111 MemPage *pPage; 6112 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6113 assert( cursorOwnsBtShared(pCur) ); 6114 assert( flags==0 || flags==1 ); 6115 pCur->info.nSize = 0; 6116 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 6117 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 6118 pPage = pCur->pPage; 6119 if( (++pCur->ix)>=pPage->nCell ){ 6120 pCur->ix--; 6121 return btreeNext(pCur); 6122 } 6123 if( pPage->leaf ){ 6124 return SQLITE_OK; 6125 }else{ 6126 return moveToLeftmost(pCur); 6127 } 6128 } 6129 6130 /* 6131 ** Step the cursor to the back to the previous entry in the database. 6132 ** Return values: 6133 ** 6134 ** SQLITE_OK success 6135 ** SQLITE_DONE the cursor is already on the first element of the table 6136 ** otherwise some kind of error occurred 6137 ** 6138 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 6139 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 6140 ** to the previous cell on the current page. The (slower) btreePrevious() 6141 ** helper routine is called when it is necessary to move to a different page 6142 ** or to restore the cursor. 6143 ** 6144 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 6145 ** the cursor corresponds to an SQL index and this routine could have been 6146 ** skipped if the SQL index had been a unique index. The F argument is a 6147 ** hint to the implement. The native SQLite btree implementation does not 6148 ** use this hint, but COMDB2 does. 6149 */ 6150 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 6151 int rc; 6152 MemPage *pPage; 6153 6154 assert( cursorOwnsBtShared(pCur) ); 6155 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 6156 assert( pCur->info.nSize==0 ); 6157 if( pCur->eState!=CURSOR_VALID ){ 6158 rc = restoreCursorPosition(pCur); 6159 if( rc!=SQLITE_OK ){ 6160 return rc; 6161 } 6162 if( CURSOR_INVALID==pCur->eState ){ 6163 return SQLITE_DONE; 6164 } 6165 if( CURSOR_SKIPNEXT==pCur->eState ){ 6166 pCur->eState = CURSOR_VALID; 6167 if( pCur->skipNext<0 ) return SQLITE_OK; 6168 } 6169 } 6170 6171 pPage = pCur->pPage; 6172 assert( pPage->isInit ); 6173 if( !pPage->leaf ){ 6174 int idx = pCur->ix; 6175 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6176 if( rc ) return rc; 6177 rc = moveToRightmost(pCur); 6178 }else{ 6179 while( pCur->ix==0 ){ 6180 if( pCur->iPage==0 ){ 6181 pCur->eState = CURSOR_INVALID; 6182 return SQLITE_DONE; 6183 } 6184 moveToParent(pCur); 6185 } 6186 assert( pCur->info.nSize==0 ); 6187 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6188 6189 pCur->ix--; 6190 pPage = pCur->pPage; 6191 if( pPage->intKey && !pPage->leaf ){ 6192 rc = sqlite3BtreePrevious(pCur, 0); 6193 }else{ 6194 rc = SQLITE_OK; 6195 } 6196 } 6197 return rc; 6198 } 6199 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6200 assert( cursorOwnsBtShared(pCur) ); 6201 assert( flags==0 || flags==1 ); 6202 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6203 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6204 pCur->info.nSize = 0; 6205 if( pCur->eState!=CURSOR_VALID 6206 || pCur->ix==0 6207 || pCur->pPage->leaf==0 6208 ){ 6209 return btreePrevious(pCur); 6210 } 6211 pCur->ix--; 6212 return SQLITE_OK; 6213 } 6214 6215 /* 6216 ** Allocate a new page from the database file. 6217 ** 6218 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6219 ** has already been called on the new page.) The new page has also 6220 ** been referenced and the calling routine is responsible for calling 6221 ** sqlite3PagerUnref() on the new page when it is done. 6222 ** 6223 ** SQLITE_OK is returned on success. Any other return value indicates 6224 ** an error. *ppPage is set to NULL in the event of an error. 6225 ** 6226 ** If the "nearby" parameter is not 0, then an effort is made to 6227 ** locate a page close to the page number "nearby". This can be used in an 6228 ** attempt to keep related pages close to each other in the database file, 6229 ** which in turn can make database access faster. 6230 ** 6231 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6232 ** anywhere on the free-list, then it is guaranteed to be returned. If 6233 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6234 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6235 ** are no restrictions on which page is returned. 6236 */ 6237 static int allocateBtreePage( 6238 BtShared *pBt, /* The btree */ 6239 MemPage **ppPage, /* Store pointer to the allocated page here */ 6240 Pgno *pPgno, /* Store the page number here */ 6241 Pgno nearby, /* Search for a page near this one */ 6242 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6243 ){ 6244 MemPage *pPage1; 6245 int rc; 6246 u32 n; /* Number of pages on the freelist */ 6247 u32 k; /* Number of leaves on the trunk of the freelist */ 6248 MemPage *pTrunk = 0; 6249 MemPage *pPrevTrunk = 0; 6250 Pgno mxPage; /* Total size of the database file */ 6251 6252 assert( sqlite3_mutex_held(pBt->mutex) ); 6253 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6254 pPage1 = pBt->pPage1; 6255 mxPage = btreePagecount(pBt); 6256 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6257 ** stores stores the total number of pages on the freelist. */ 6258 n = get4byte(&pPage1->aData[36]); 6259 testcase( n==mxPage-1 ); 6260 if( n>=mxPage ){ 6261 return SQLITE_CORRUPT_BKPT; 6262 } 6263 if( n>0 ){ 6264 /* There are pages on the freelist. Reuse one of those pages. */ 6265 Pgno iTrunk; 6266 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6267 u32 nSearch = 0; /* Count of the number of search attempts */ 6268 6269 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6270 ** shows that the page 'nearby' is somewhere on the free-list, then 6271 ** the entire-list will be searched for that page. 6272 */ 6273 #ifndef SQLITE_OMIT_AUTOVACUUM 6274 if( eMode==BTALLOC_EXACT ){ 6275 if( nearby<=mxPage ){ 6276 u8 eType; 6277 assert( nearby>0 ); 6278 assert( pBt->autoVacuum ); 6279 rc = ptrmapGet(pBt, nearby, &eType, 0); 6280 if( rc ) return rc; 6281 if( eType==PTRMAP_FREEPAGE ){ 6282 searchList = 1; 6283 } 6284 } 6285 }else if( eMode==BTALLOC_LE ){ 6286 searchList = 1; 6287 } 6288 #endif 6289 6290 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6291 ** first free-list trunk page. iPrevTrunk is initially 1. 6292 */ 6293 rc = sqlite3PagerWrite(pPage1->pDbPage); 6294 if( rc ) return rc; 6295 put4byte(&pPage1->aData[36], n-1); 6296 6297 /* The code within this loop is run only once if the 'searchList' variable 6298 ** is not true. Otherwise, it runs once for each trunk-page on the 6299 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6300 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6301 */ 6302 do { 6303 pPrevTrunk = pTrunk; 6304 if( pPrevTrunk ){ 6305 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6306 ** is the page number of the next freelist trunk page in the list or 6307 ** zero if this is the last freelist trunk page. */ 6308 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6309 }else{ 6310 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6311 ** stores the page number of the first page of the freelist, or zero if 6312 ** the freelist is empty. */ 6313 iTrunk = get4byte(&pPage1->aData[32]); 6314 } 6315 testcase( iTrunk==mxPage ); 6316 if( iTrunk>mxPage || nSearch++ > n ){ 6317 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6318 }else{ 6319 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6320 } 6321 if( rc ){ 6322 pTrunk = 0; 6323 goto end_allocate_page; 6324 } 6325 assert( pTrunk!=0 ); 6326 assert( pTrunk->aData!=0 ); 6327 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6328 ** is the number of leaf page pointers to follow. */ 6329 k = get4byte(&pTrunk->aData[4]); 6330 if( k==0 && !searchList ){ 6331 /* The trunk has no leaves and the list is not being searched. 6332 ** So extract the trunk page itself and use it as the newly 6333 ** allocated page */ 6334 assert( pPrevTrunk==0 ); 6335 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6336 if( rc ){ 6337 goto end_allocate_page; 6338 } 6339 *pPgno = iTrunk; 6340 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6341 *ppPage = pTrunk; 6342 pTrunk = 0; 6343 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6344 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6345 /* Value of k is out of range. Database corruption */ 6346 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6347 goto end_allocate_page; 6348 #ifndef SQLITE_OMIT_AUTOVACUUM 6349 }else if( searchList 6350 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6351 ){ 6352 /* The list is being searched and this trunk page is the page 6353 ** to allocate, regardless of whether it has leaves. 6354 */ 6355 *pPgno = iTrunk; 6356 *ppPage = pTrunk; 6357 searchList = 0; 6358 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6359 if( rc ){ 6360 goto end_allocate_page; 6361 } 6362 if( k==0 ){ 6363 if( !pPrevTrunk ){ 6364 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6365 }else{ 6366 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6367 if( rc!=SQLITE_OK ){ 6368 goto end_allocate_page; 6369 } 6370 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6371 } 6372 }else{ 6373 /* The trunk page is required by the caller but it contains 6374 ** pointers to free-list leaves. The first leaf becomes a trunk 6375 ** page in this case. 6376 */ 6377 MemPage *pNewTrunk; 6378 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6379 if( iNewTrunk>mxPage ){ 6380 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6381 goto end_allocate_page; 6382 } 6383 testcase( iNewTrunk==mxPage ); 6384 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6385 if( rc!=SQLITE_OK ){ 6386 goto end_allocate_page; 6387 } 6388 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6389 if( rc!=SQLITE_OK ){ 6390 releasePage(pNewTrunk); 6391 goto end_allocate_page; 6392 } 6393 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6394 put4byte(&pNewTrunk->aData[4], k-1); 6395 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6396 releasePage(pNewTrunk); 6397 if( !pPrevTrunk ){ 6398 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6399 put4byte(&pPage1->aData[32], iNewTrunk); 6400 }else{ 6401 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6402 if( rc ){ 6403 goto end_allocate_page; 6404 } 6405 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6406 } 6407 } 6408 pTrunk = 0; 6409 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6410 #endif 6411 }else if( k>0 ){ 6412 /* Extract a leaf from the trunk */ 6413 u32 closest; 6414 Pgno iPage; 6415 unsigned char *aData = pTrunk->aData; 6416 if( nearby>0 ){ 6417 u32 i; 6418 closest = 0; 6419 if( eMode==BTALLOC_LE ){ 6420 for(i=0; i<k; i++){ 6421 iPage = get4byte(&aData[8+i*4]); 6422 if( iPage<=nearby ){ 6423 closest = i; 6424 break; 6425 } 6426 } 6427 }else{ 6428 int dist; 6429 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6430 for(i=1; i<k; i++){ 6431 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6432 if( d2<dist ){ 6433 closest = i; 6434 dist = d2; 6435 } 6436 } 6437 } 6438 }else{ 6439 closest = 0; 6440 } 6441 6442 iPage = get4byte(&aData[8+closest*4]); 6443 testcase( iPage==mxPage ); 6444 if( iPage>mxPage || iPage<2 ){ 6445 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6446 goto end_allocate_page; 6447 } 6448 testcase( iPage==mxPage ); 6449 if( !searchList 6450 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6451 ){ 6452 int noContent; 6453 *pPgno = iPage; 6454 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6455 ": %d more free pages\n", 6456 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6457 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6458 if( rc ) goto end_allocate_page; 6459 if( closest<k-1 ){ 6460 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6461 } 6462 put4byte(&aData[4], k-1); 6463 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6464 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6465 if( rc==SQLITE_OK ){ 6466 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6467 if( rc!=SQLITE_OK ){ 6468 releasePage(*ppPage); 6469 *ppPage = 0; 6470 } 6471 } 6472 searchList = 0; 6473 } 6474 } 6475 releasePage(pPrevTrunk); 6476 pPrevTrunk = 0; 6477 }while( searchList ); 6478 }else{ 6479 /* There are no pages on the freelist, so append a new page to the 6480 ** database image. 6481 ** 6482 ** Normally, new pages allocated by this block can be requested from the 6483 ** pager layer with the 'no-content' flag set. This prevents the pager 6484 ** from trying to read the pages content from disk. However, if the 6485 ** current transaction has already run one or more incremental-vacuum 6486 ** steps, then the page we are about to allocate may contain content 6487 ** that is required in the event of a rollback. In this case, do 6488 ** not set the no-content flag. This causes the pager to load and journal 6489 ** the current page content before overwriting it. 6490 ** 6491 ** Note that the pager will not actually attempt to load or journal 6492 ** content for any page that really does lie past the end of the database 6493 ** file on disk. So the effects of disabling the no-content optimization 6494 ** here are confined to those pages that lie between the end of the 6495 ** database image and the end of the database file. 6496 */ 6497 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6498 6499 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6500 if( rc ) return rc; 6501 pBt->nPage++; 6502 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6503 6504 #ifndef SQLITE_OMIT_AUTOVACUUM 6505 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6506 /* If *pPgno refers to a pointer-map page, allocate two new pages 6507 ** at the end of the file instead of one. The first allocated page 6508 ** becomes a new pointer-map page, the second is used by the caller. 6509 */ 6510 MemPage *pPg = 0; 6511 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6512 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6513 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6514 if( rc==SQLITE_OK ){ 6515 rc = sqlite3PagerWrite(pPg->pDbPage); 6516 releasePage(pPg); 6517 } 6518 if( rc ) return rc; 6519 pBt->nPage++; 6520 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6521 } 6522 #endif 6523 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6524 *pPgno = pBt->nPage; 6525 6526 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6527 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6528 if( rc ) return rc; 6529 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6530 if( rc!=SQLITE_OK ){ 6531 releasePage(*ppPage); 6532 *ppPage = 0; 6533 } 6534 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6535 } 6536 6537 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6538 6539 end_allocate_page: 6540 releasePage(pTrunk); 6541 releasePage(pPrevTrunk); 6542 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6543 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6544 return rc; 6545 } 6546 6547 /* 6548 ** This function is used to add page iPage to the database file free-list. 6549 ** It is assumed that the page is not already a part of the free-list. 6550 ** 6551 ** The value passed as the second argument to this function is optional. 6552 ** If the caller happens to have a pointer to the MemPage object 6553 ** corresponding to page iPage handy, it may pass it as the second value. 6554 ** Otherwise, it may pass NULL. 6555 ** 6556 ** If a pointer to a MemPage object is passed as the second argument, 6557 ** its reference count is not altered by this function. 6558 */ 6559 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6560 MemPage *pTrunk = 0; /* Free-list trunk page */ 6561 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6562 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6563 MemPage *pPage; /* Page being freed. May be NULL. */ 6564 int rc; /* Return Code */ 6565 u32 nFree; /* Initial number of pages on free-list */ 6566 6567 assert( sqlite3_mutex_held(pBt->mutex) ); 6568 assert( CORRUPT_DB || iPage>1 ); 6569 assert( !pMemPage || pMemPage->pgno==iPage ); 6570 6571 if( iPage<2 || iPage>pBt->nPage ){ 6572 return SQLITE_CORRUPT_BKPT; 6573 } 6574 if( pMemPage ){ 6575 pPage = pMemPage; 6576 sqlite3PagerRef(pPage->pDbPage); 6577 }else{ 6578 pPage = btreePageLookup(pBt, iPage); 6579 } 6580 6581 /* Increment the free page count on pPage1 */ 6582 rc = sqlite3PagerWrite(pPage1->pDbPage); 6583 if( rc ) goto freepage_out; 6584 nFree = get4byte(&pPage1->aData[36]); 6585 put4byte(&pPage1->aData[36], nFree+1); 6586 6587 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6588 /* If the secure_delete option is enabled, then 6589 ** always fully overwrite deleted information with zeros. 6590 */ 6591 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6592 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6593 ){ 6594 goto freepage_out; 6595 } 6596 memset(pPage->aData, 0, pPage->pBt->pageSize); 6597 } 6598 6599 /* If the database supports auto-vacuum, write an entry in the pointer-map 6600 ** to indicate that the page is free. 6601 */ 6602 if( ISAUTOVACUUM ){ 6603 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6604 if( rc ) goto freepage_out; 6605 } 6606 6607 /* Now manipulate the actual database free-list structure. There are two 6608 ** possibilities. If the free-list is currently empty, or if the first 6609 ** trunk page in the free-list is full, then this page will become a 6610 ** new free-list trunk page. Otherwise, it will become a leaf of the 6611 ** first trunk page in the current free-list. This block tests if it 6612 ** is possible to add the page as a new free-list leaf. 6613 */ 6614 if( nFree!=0 ){ 6615 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6616 6617 iTrunk = get4byte(&pPage1->aData[32]); 6618 if( iTrunk>btreePagecount(pBt) ){ 6619 rc = SQLITE_CORRUPT_BKPT; 6620 goto freepage_out; 6621 } 6622 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6623 if( rc!=SQLITE_OK ){ 6624 goto freepage_out; 6625 } 6626 6627 nLeaf = get4byte(&pTrunk->aData[4]); 6628 assert( pBt->usableSize>32 ); 6629 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6630 rc = SQLITE_CORRUPT_BKPT; 6631 goto freepage_out; 6632 } 6633 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6634 /* In this case there is room on the trunk page to insert the page 6635 ** being freed as a new leaf. 6636 ** 6637 ** Note that the trunk page is not really full until it contains 6638 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6639 ** coded. But due to a coding error in versions of SQLite prior to 6640 ** 3.6.0, databases with freelist trunk pages holding more than 6641 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6642 ** to maintain backwards compatibility with older versions of SQLite, 6643 ** we will continue to restrict the number of entries to usableSize/4 - 8 6644 ** for now. At some point in the future (once everyone has upgraded 6645 ** to 3.6.0 or later) we should consider fixing the conditional above 6646 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6647 ** 6648 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6649 ** avoid using the last six entries in the freelist trunk page array in 6650 ** order that database files created by newer versions of SQLite can be 6651 ** read by older versions of SQLite. 6652 */ 6653 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6654 if( rc==SQLITE_OK ){ 6655 put4byte(&pTrunk->aData[4], nLeaf+1); 6656 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6657 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6658 sqlite3PagerDontWrite(pPage->pDbPage); 6659 } 6660 rc = btreeSetHasContent(pBt, iPage); 6661 } 6662 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6663 goto freepage_out; 6664 } 6665 } 6666 6667 /* If control flows to this point, then it was not possible to add the 6668 ** the page being freed as a leaf page of the first trunk in the free-list. 6669 ** Possibly because the free-list is empty, or possibly because the 6670 ** first trunk in the free-list is full. Either way, the page being freed 6671 ** will become the new first trunk page in the free-list. 6672 */ 6673 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6674 goto freepage_out; 6675 } 6676 rc = sqlite3PagerWrite(pPage->pDbPage); 6677 if( rc!=SQLITE_OK ){ 6678 goto freepage_out; 6679 } 6680 put4byte(pPage->aData, iTrunk); 6681 put4byte(&pPage->aData[4], 0); 6682 put4byte(&pPage1->aData[32], iPage); 6683 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6684 6685 freepage_out: 6686 if( pPage ){ 6687 pPage->isInit = 0; 6688 } 6689 releasePage(pPage); 6690 releasePage(pTrunk); 6691 return rc; 6692 } 6693 static void freePage(MemPage *pPage, int *pRC){ 6694 if( (*pRC)==SQLITE_OK ){ 6695 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6696 } 6697 } 6698 6699 /* 6700 ** Free the overflow pages associated with the given Cell. 6701 */ 6702 static SQLITE_NOINLINE int clearCellOverflow( 6703 MemPage *pPage, /* The page that contains the Cell */ 6704 unsigned char *pCell, /* First byte of the Cell */ 6705 CellInfo *pInfo /* Size information about the cell */ 6706 ){ 6707 BtShared *pBt; 6708 Pgno ovflPgno; 6709 int rc; 6710 int nOvfl; 6711 u32 ovflPageSize; 6712 6713 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6714 assert( pInfo->nLocal!=pInfo->nPayload ); 6715 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6716 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6717 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6718 /* Cell extends past end of page */ 6719 return SQLITE_CORRUPT_PAGE(pPage); 6720 } 6721 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6722 pBt = pPage->pBt; 6723 assert( pBt->usableSize > 4 ); 6724 ovflPageSize = pBt->usableSize - 4; 6725 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6726 assert( nOvfl>0 || 6727 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6728 ); 6729 while( nOvfl-- ){ 6730 Pgno iNext = 0; 6731 MemPage *pOvfl = 0; 6732 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6733 /* 0 is not a legal page number and page 1 cannot be an 6734 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6735 ** file the database must be corrupt. */ 6736 return SQLITE_CORRUPT_BKPT; 6737 } 6738 if( nOvfl ){ 6739 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6740 if( rc ) return rc; 6741 } 6742 6743 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6744 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6745 ){ 6746 /* There is no reason any cursor should have an outstanding reference 6747 ** to an overflow page belonging to a cell that is being deleted/updated. 6748 ** So if there exists more than one reference to this page, then it 6749 ** must not really be an overflow page and the database must be corrupt. 6750 ** It is helpful to detect this before calling freePage2(), as 6751 ** freePage2() may zero the page contents if secure-delete mode is 6752 ** enabled. If this 'overflow' page happens to be a page that the 6753 ** caller is iterating through or using in some other way, this 6754 ** can be problematic. 6755 */ 6756 rc = SQLITE_CORRUPT_BKPT; 6757 }else{ 6758 rc = freePage2(pBt, pOvfl, ovflPgno); 6759 } 6760 6761 if( pOvfl ){ 6762 sqlite3PagerUnref(pOvfl->pDbPage); 6763 } 6764 if( rc ) return rc; 6765 ovflPgno = iNext; 6766 } 6767 return SQLITE_OK; 6768 } 6769 6770 /* Call xParseCell to compute the size of a cell. If the cell contains 6771 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6772 ** STore the result code (SQLITE_OK or some error code) in rc. 6773 ** 6774 ** Implemented as macro to force inlining for performance. 6775 */ 6776 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6777 pPage->xParseCell(pPage, pCell, &sInfo); \ 6778 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6779 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6780 }else{ \ 6781 rc = SQLITE_OK; \ 6782 } 6783 6784 6785 /* 6786 ** Create the byte sequence used to represent a cell on page pPage 6787 ** and write that byte sequence into pCell[]. Overflow pages are 6788 ** allocated and filled in as necessary. The calling procedure 6789 ** is responsible for making sure sufficient space has been allocated 6790 ** for pCell[]. 6791 ** 6792 ** Note that pCell does not necessary need to point to the pPage->aData 6793 ** area. pCell might point to some temporary storage. The cell will 6794 ** be constructed in this temporary area then copied into pPage->aData 6795 ** later. 6796 */ 6797 static int fillInCell( 6798 MemPage *pPage, /* The page that contains the cell */ 6799 unsigned char *pCell, /* Complete text of the cell */ 6800 const BtreePayload *pX, /* Payload with which to construct the cell */ 6801 int *pnSize /* Write cell size here */ 6802 ){ 6803 int nPayload; 6804 const u8 *pSrc; 6805 int nSrc, n, rc, mn; 6806 int spaceLeft; 6807 MemPage *pToRelease; 6808 unsigned char *pPrior; 6809 unsigned char *pPayload; 6810 BtShared *pBt; 6811 Pgno pgnoOvfl; 6812 int nHeader; 6813 6814 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6815 6816 /* pPage is not necessarily writeable since pCell might be auxiliary 6817 ** buffer space that is separate from the pPage buffer area */ 6818 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6819 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6820 6821 /* Fill in the header. */ 6822 nHeader = pPage->childPtrSize; 6823 if( pPage->intKey ){ 6824 nPayload = pX->nData + pX->nZero; 6825 pSrc = pX->pData; 6826 nSrc = pX->nData; 6827 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6828 nHeader += putVarint32(&pCell[nHeader], nPayload); 6829 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6830 }else{ 6831 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6832 nSrc = nPayload = (int)pX->nKey; 6833 pSrc = pX->pKey; 6834 nHeader += putVarint32(&pCell[nHeader], nPayload); 6835 } 6836 6837 /* Fill in the payload */ 6838 pPayload = &pCell[nHeader]; 6839 if( nPayload<=pPage->maxLocal ){ 6840 /* This is the common case where everything fits on the btree page 6841 ** and no overflow pages are required. */ 6842 n = nHeader + nPayload; 6843 testcase( n==3 ); 6844 testcase( n==4 ); 6845 if( n<4 ) n = 4; 6846 *pnSize = n; 6847 assert( nSrc<=nPayload ); 6848 testcase( nSrc<nPayload ); 6849 memcpy(pPayload, pSrc, nSrc); 6850 memset(pPayload+nSrc, 0, nPayload-nSrc); 6851 return SQLITE_OK; 6852 } 6853 6854 /* If we reach this point, it means that some of the content will need 6855 ** to spill onto overflow pages. 6856 */ 6857 mn = pPage->minLocal; 6858 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6859 testcase( n==pPage->maxLocal ); 6860 testcase( n==pPage->maxLocal+1 ); 6861 if( n > pPage->maxLocal ) n = mn; 6862 spaceLeft = n; 6863 *pnSize = n + nHeader + 4; 6864 pPrior = &pCell[nHeader+n]; 6865 pToRelease = 0; 6866 pgnoOvfl = 0; 6867 pBt = pPage->pBt; 6868 6869 /* At this point variables should be set as follows: 6870 ** 6871 ** nPayload Total payload size in bytes 6872 ** pPayload Begin writing payload here 6873 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6874 ** that means content must spill into overflow pages. 6875 ** *pnSize Size of the local cell (not counting overflow pages) 6876 ** pPrior Where to write the pgno of the first overflow page 6877 ** 6878 ** Use a call to btreeParseCellPtr() to verify that the values above 6879 ** were computed correctly. 6880 */ 6881 #ifdef SQLITE_DEBUG 6882 { 6883 CellInfo info; 6884 pPage->xParseCell(pPage, pCell, &info); 6885 assert( nHeader==(int)(info.pPayload - pCell) ); 6886 assert( info.nKey==pX->nKey ); 6887 assert( *pnSize == info.nSize ); 6888 assert( spaceLeft == info.nLocal ); 6889 } 6890 #endif 6891 6892 /* Write the payload into the local Cell and any extra into overflow pages */ 6893 while( 1 ){ 6894 n = nPayload; 6895 if( n>spaceLeft ) n = spaceLeft; 6896 6897 /* If pToRelease is not zero than pPayload points into the data area 6898 ** of pToRelease. Make sure pToRelease is still writeable. */ 6899 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6900 6901 /* If pPayload is part of the data area of pPage, then make sure pPage 6902 ** is still writeable */ 6903 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6904 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6905 6906 if( nSrc>=n ){ 6907 memcpy(pPayload, pSrc, n); 6908 }else if( nSrc>0 ){ 6909 n = nSrc; 6910 memcpy(pPayload, pSrc, n); 6911 }else{ 6912 memset(pPayload, 0, n); 6913 } 6914 nPayload -= n; 6915 if( nPayload<=0 ) break; 6916 pPayload += n; 6917 pSrc += n; 6918 nSrc -= n; 6919 spaceLeft -= n; 6920 if( spaceLeft==0 ){ 6921 MemPage *pOvfl = 0; 6922 #ifndef SQLITE_OMIT_AUTOVACUUM 6923 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6924 if( pBt->autoVacuum ){ 6925 do{ 6926 pgnoOvfl++; 6927 } while( 6928 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6929 ); 6930 } 6931 #endif 6932 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6933 #ifndef SQLITE_OMIT_AUTOVACUUM 6934 /* If the database supports auto-vacuum, and the second or subsequent 6935 ** overflow page is being allocated, add an entry to the pointer-map 6936 ** for that page now. 6937 ** 6938 ** If this is the first overflow page, then write a partial entry 6939 ** to the pointer-map. If we write nothing to this pointer-map slot, 6940 ** then the optimistic overflow chain processing in clearCell() 6941 ** may misinterpret the uninitialized values and delete the 6942 ** wrong pages from the database. 6943 */ 6944 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6945 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6946 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6947 if( rc ){ 6948 releasePage(pOvfl); 6949 } 6950 } 6951 #endif 6952 if( rc ){ 6953 releasePage(pToRelease); 6954 return rc; 6955 } 6956 6957 /* If pToRelease is not zero than pPrior points into the data area 6958 ** of pToRelease. Make sure pToRelease is still writeable. */ 6959 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6960 6961 /* If pPrior is part of the data area of pPage, then make sure pPage 6962 ** is still writeable */ 6963 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6964 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6965 6966 put4byte(pPrior, pgnoOvfl); 6967 releasePage(pToRelease); 6968 pToRelease = pOvfl; 6969 pPrior = pOvfl->aData; 6970 put4byte(pPrior, 0); 6971 pPayload = &pOvfl->aData[4]; 6972 spaceLeft = pBt->usableSize - 4; 6973 } 6974 } 6975 releasePage(pToRelease); 6976 return SQLITE_OK; 6977 } 6978 6979 /* 6980 ** Remove the i-th cell from pPage. This routine effects pPage only. 6981 ** The cell content is not freed or deallocated. It is assumed that 6982 ** the cell content has been copied someplace else. This routine just 6983 ** removes the reference to the cell from pPage. 6984 ** 6985 ** "sz" must be the number of bytes in the cell. 6986 */ 6987 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6988 u32 pc; /* Offset to cell content of cell being deleted */ 6989 u8 *data; /* pPage->aData */ 6990 u8 *ptr; /* Used to move bytes around within data[] */ 6991 int rc; /* The return code */ 6992 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 6993 6994 if( *pRC ) return; 6995 assert( idx>=0 ); 6996 assert( idx<pPage->nCell ); 6997 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 6998 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 6999 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7000 assert( pPage->nFree>=0 ); 7001 data = pPage->aData; 7002 ptr = &pPage->aCellIdx[2*idx]; 7003 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 7004 pc = get2byte(ptr); 7005 hdr = pPage->hdrOffset; 7006 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 7007 testcase( pc+sz==pPage->pBt->usableSize ); 7008 if( pc+sz > pPage->pBt->usableSize ){ 7009 *pRC = SQLITE_CORRUPT_BKPT; 7010 return; 7011 } 7012 rc = freeSpace(pPage, pc, sz); 7013 if( rc ){ 7014 *pRC = rc; 7015 return; 7016 } 7017 pPage->nCell--; 7018 if( pPage->nCell==0 ){ 7019 memset(&data[hdr+1], 0, 4); 7020 data[hdr+7] = 0; 7021 put2byte(&data[hdr+5], pPage->pBt->usableSize); 7022 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 7023 - pPage->childPtrSize - 8; 7024 }else{ 7025 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 7026 put2byte(&data[hdr+3], pPage->nCell); 7027 pPage->nFree += 2; 7028 } 7029 } 7030 7031 /* 7032 ** Insert a new cell on pPage at cell index "i". pCell points to the 7033 ** content of the cell. 7034 ** 7035 ** If the cell content will fit on the page, then put it there. If it 7036 ** will not fit, then make a copy of the cell content into pTemp if 7037 ** pTemp is not null. Regardless of pTemp, allocate a new entry 7038 ** in pPage->apOvfl[] and make it point to the cell content (either 7039 ** in pTemp or the original pCell) and also record its index. 7040 ** Allocating a new entry in pPage->aCell[] implies that 7041 ** pPage->nOverflow is incremented. 7042 ** 7043 ** *pRC must be SQLITE_OK when this routine is called. 7044 */ 7045 static void insertCell( 7046 MemPage *pPage, /* Page into which we are copying */ 7047 int i, /* New cell becomes the i-th cell of the page */ 7048 u8 *pCell, /* Content of the new cell */ 7049 int sz, /* Bytes of content in pCell */ 7050 u8 *pTemp, /* Temp storage space for pCell, if needed */ 7051 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 7052 int *pRC /* Read and write return code from here */ 7053 ){ 7054 int idx = 0; /* Where to write new cell content in data[] */ 7055 int j; /* Loop counter */ 7056 u8 *data; /* The content of the whole page */ 7057 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 7058 7059 assert( *pRC==SQLITE_OK ); 7060 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 7061 assert( MX_CELL(pPage->pBt)<=10921 ); 7062 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 7063 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 7064 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 7065 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7066 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 7067 assert( pPage->nFree>=0 ); 7068 if( pPage->nOverflow || sz+2>pPage->nFree ){ 7069 if( pTemp ){ 7070 memcpy(pTemp, pCell, sz); 7071 pCell = pTemp; 7072 } 7073 if( iChild ){ 7074 put4byte(pCell, iChild); 7075 } 7076 j = pPage->nOverflow++; 7077 /* Comparison against ArraySize-1 since we hold back one extra slot 7078 ** as a contingency. In other words, never need more than 3 overflow 7079 ** slots but 4 are allocated, just to be safe. */ 7080 assert( j < ArraySize(pPage->apOvfl)-1 ); 7081 pPage->apOvfl[j] = pCell; 7082 pPage->aiOvfl[j] = (u16)i; 7083 7084 /* When multiple overflows occur, they are always sequential and in 7085 ** sorted order. This invariants arise because multiple overflows can 7086 ** only occur when inserting divider cells into the parent page during 7087 ** balancing, and the dividers are adjacent and sorted. 7088 */ 7089 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 7090 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 7091 }else{ 7092 int rc = sqlite3PagerWrite(pPage->pDbPage); 7093 if( rc!=SQLITE_OK ){ 7094 *pRC = rc; 7095 return; 7096 } 7097 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7098 data = pPage->aData; 7099 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 7100 rc = allocateSpace(pPage, sz, &idx); 7101 if( rc ){ *pRC = rc; return; } 7102 /* The allocateSpace() routine guarantees the following properties 7103 ** if it returns successfully */ 7104 assert( idx >= 0 ); 7105 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 7106 assert( idx+sz <= (int)pPage->pBt->usableSize ); 7107 pPage->nFree -= (u16)(2 + sz); 7108 if( iChild ){ 7109 /* In a corrupt database where an entry in the cell index section of 7110 ** a btree page has a value of 3 or less, the pCell value might point 7111 ** as many as 4 bytes in front of the start of the aData buffer for 7112 ** the source page. Make sure this does not cause problems by not 7113 ** reading the first 4 bytes */ 7114 memcpy(&data[idx+4], pCell+4, sz-4); 7115 put4byte(&data[idx], iChild); 7116 }else{ 7117 memcpy(&data[idx], pCell, sz); 7118 } 7119 pIns = pPage->aCellIdx + i*2; 7120 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 7121 put2byte(pIns, idx); 7122 pPage->nCell++; 7123 /* increment the cell count */ 7124 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 7125 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 7126 #ifndef SQLITE_OMIT_AUTOVACUUM 7127 if( pPage->pBt->autoVacuum ){ 7128 /* The cell may contain a pointer to an overflow page. If so, write 7129 ** the entry for the overflow page into the pointer map. 7130 */ 7131 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 7132 } 7133 #endif 7134 } 7135 } 7136 7137 /* 7138 ** The following parameters determine how many adjacent pages get involved 7139 ** in a balancing operation. NN is the number of neighbors on either side 7140 ** of the page that participate in the balancing operation. NB is the 7141 ** total number of pages that participate, including the target page and 7142 ** NN neighbors on either side. 7143 ** 7144 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7145 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7146 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7147 ** The value of NN appears to give the best results overall. 7148 ** 7149 ** (Later:) The description above makes it seem as if these values are 7150 ** tunable - as if you could change them and recompile and it would all work. 7151 ** But that is unlikely. NB has been 3 since the inception of SQLite and 7152 ** we have never tested any other value. 7153 */ 7154 #define NN 1 /* Number of neighbors on either side of pPage */ 7155 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 7156 7157 /* 7158 ** A CellArray object contains a cache of pointers and sizes for a 7159 ** consecutive sequence of cells that might be held on multiple pages. 7160 ** 7161 ** The cells in this array are the divider cell or cells from the pParent 7162 ** page plus up to three child pages. There are a total of nCell cells. 7163 ** 7164 ** pRef is a pointer to one of the pages that contributes cells. This is 7165 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7166 ** which should be common to all pages that contribute cells to this array. 7167 ** 7168 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7169 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7170 ** to overflow cells. In other words, some apCel[] pointers might not point 7171 ** to content area of the pages. 7172 ** 7173 ** A szCell[] of zero means the size of that cell has not yet been computed. 7174 ** 7175 ** The cells come from as many as four different pages: 7176 ** 7177 ** ----------- 7178 ** | Parent | 7179 ** ----------- 7180 ** / | \ 7181 ** / | \ 7182 ** --------- --------- --------- 7183 ** |Child-1| |Child-2| |Child-3| 7184 ** --------- --------- --------- 7185 ** 7186 ** The order of cells is in the array is for an index btree is: 7187 ** 7188 ** 1. All cells from Child-1 in order 7189 ** 2. The first divider cell from Parent 7190 ** 3. All cells from Child-2 in order 7191 ** 4. The second divider cell from Parent 7192 ** 5. All cells from Child-3 in order 7193 ** 7194 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7195 ** content exists only in leaves and there are no divider cells. 7196 ** 7197 ** For an index btree, the apEnd[] array holds pointer to the end of page 7198 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7199 ** respectively. The ixNx[] array holds the number of cells contained in 7200 ** each of these 5 stages, and all stages to the left. Hence: 7201 ** 7202 ** ixNx[0] = Number of cells in Child-1. 7203 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7204 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7205 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7206 ** ixNx[4] = Total number of cells. 7207 ** 7208 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7209 ** are used and they point to the leaf pages only, and the ixNx value are: 7210 ** 7211 ** ixNx[0] = Number of cells in Child-1. 7212 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7213 ** ixNx[2] = Total number of cells. 7214 ** 7215 ** Sometimes when deleting, a child page can have zero cells. In those 7216 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7217 ** entries, shift down. The end result is that each ixNx[] entry should 7218 ** be larger than the previous 7219 */ 7220 typedef struct CellArray CellArray; 7221 struct CellArray { 7222 int nCell; /* Number of cells in apCell[] */ 7223 MemPage *pRef; /* Reference page */ 7224 u8 **apCell; /* All cells begin balanced */ 7225 u16 *szCell; /* Local size of all cells in apCell[] */ 7226 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7227 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7228 }; 7229 7230 /* 7231 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7232 ** computed. 7233 */ 7234 static void populateCellCache(CellArray *p, int idx, int N){ 7235 assert( idx>=0 && idx+N<=p->nCell ); 7236 while( N>0 ){ 7237 assert( p->apCell[idx]!=0 ); 7238 if( p->szCell[idx]==0 ){ 7239 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7240 }else{ 7241 assert( CORRUPT_DB || 7242 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7243 } 7244 idx++; 7245 N--; 7246 } 7247 } 7248 7249 /* 7250 ** Return the size of the Nth element of the cell array 7251 */ 7252 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7253 assert( N>=0 && N<p->nCell ); 7254 assert( p->szCell[N]==0 ); 7255 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7256 return p->szCell[N]; 7257 } 7258 static u16 cachedCellSize(CellArray *p, int N){ 7259 assert( N>=0 && N<p->nCell ); 7260 if( p->szCell[N] ) return p->szCell[N]; 7261 return computeCellSize(p, N); 7262 } 7263 7264 /* 7265 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7266 ** szCell[] array contains the size in bytes of each cell. This function 7267 ** replaces the current contents of page pPg with the contents of the cell 7268 ** array. 7269 ** 7270 ** Some of the cells in apCell[] may currently be stored in pPg. This 7271 ** function works around problems caused by this by making a copy of any 7272 ** such cells before overwriting the page data. 7273 ** 7274 ** The MemPage.nFree field is invalidated by this function. It is the 7275 ** responsibility of the caller to set it correctly. 7276 */ 7277 static int rebuildPage( 7278 CellArray *pCArray, /* Content to be added to page pPg */ 7279 int iFirst, /* First cell in pCArray to use */ 7280 int nCell, /* Final number of cells on page */ 7281 MemPage *pPg /* The page to be reconstructed */ 7282 ){ 7283 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7284 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7285 const int usableSize = pPg->pBt->usableSize; 7286 u8 * const pEnd = &aData[usableSize]; 7287 int i = iFirst; /* Which cell to copy from pCArray*/ 7288 u32 j; /* Start of cell content area */ 7289 int iEnd = i+nCell; /* Loop terminator */ 7290 u8 *pCellptr = pPg->aCellIdx; 7291 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7292 u8 *pData; 7293 int k; /* Current slot in pCArray->apEnd[] */ 7294 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7295 7296 assert( i<iEnd ); 7297 j = get2byte(&aData[hdr+5]); 7298 if( j>(u32)usableSize ){ j = 0; } 7299 memcpy(&pTmp[j], &aData[j], usableSize - j); 7300 7301 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7302 pSrcEnd = pCArray->apEnd[k]; 7303 7304 pData = pEnd; 7305 while( 1/*exit by break*/ ){ 7306 u8 *pCell = pCArray->apCell[i]; 7307 u16 sz = pCArray->szCell[i]; 7308 assert( sz>0 ); 7309 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7310 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7311 pCell = &pTmp[pCell - aData]; 7312 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7313 && (uptr)(pCell)<(uptr)pSrcEnd 7314 ){ 7315 return SQLITE_CORRUPT_BKPT; 7316 } 7317 7318 pData -= sz; 7319 put2byte(pCellptr, (pData - aData)); 7320 pCellptr += 2; 7321 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7322 memmove(pData, pCell, sz); 7323 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7324 i++; 7325 if( i>=iEnd ) break; 7326 if( pCArray->ixNx[k]<=i ){ 7327 k++; 7328 pSrcEnd = pCArray->apEnd[k]; 7329 } 7330 } 7331 7332 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7333 pPg->nCell = nCell; 7334 pPg->nOverflow = 0; 7335 7336 put2byte(&aData[hdr+1], 0); 7337 put2byte(&aData[hdr+3], pPg->nCell); 7338 put2byte(&aData[hdr+5], pData - aData); 7339 aData[hdr+7] = 0x00; 7340 return SQLITE_OK; 7341 } 7342 7343 /* 7344 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7345 ** This function attempts to add the cells stored in the array to page pPg. 7346 ** If it cannot (because the page needs to be defragmented before the cells 7347 ** will fit), non-zero is returned. Otherwise, if the cells are added 7348 ** successfully, zero is returned. 7349 ** 7350 ** Argument pCellptr points to the first entry in the cell-pointer array 7351 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7352 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7353 ** cell in the array. It is the responsibility of the caller to ensure 7354 ** that it is safe to overwrite this part of the cell-pointer array. 7355 ** 7356 ** When this function is called, *ppData points to the start of the 7357 ** content area on page pPg. If the size of the content area is extended, 7358 ** *ppData is updated to point to the new start of the content area 7359 ** before returning. 7360 ** 7361 ** Finally, argument pBegin points to the byte immediately following the 7362 ** end of the space required by this page for the cell-pointer area (for 7363 ** all cells - not just those inserted by the current call). If the content 7364 ** area must be extended to before this point in order to accomodate all 7365 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7366 */ 7367 static int pageInsertArray( 7368 MemPage *pPg, /* Page to add cells to */ 7369 u8 *pBegin, /* End of cell-pointer array */ 7370 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7371 u8 *pCellptr, /* Pointer to cell-pointer area */ 7372 int iFirst, /* Index of first cell to add */ 7373 int nCell, /* Number of cells to add to pPg */ 7374 CellArray *pCArray /* Array of cells */ 7375 ){ 7376 int i = iFirst; /* Loop counter - cell index to insert */ 7377 u8 *aData = pPg->aData; /* Complete page */ 7378 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7379 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7380 int k; /* Current slot in pCArray->apEnd[] */ 7381 u8 *pEnd; /* Maximum extent of cell data */ 7382 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7383 if( iEnd<=iFirst ) return 0; 7384 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7385 pEnd = pCArray->apEnd[k]; 7386 while( 1 /*Exit by break*/ ){ 7387 int sz, rc; 7388 u8 *pSlot; 7389 assert( pCArray->szCell[i]!=0 ); 7390 sz = pCArray->szCell[i]; 7391 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7392 if( (pData - pBegin)<sz ) return 1; 7393 pData -= sz; 7394 pSlot = pData; 7395 } 7396 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7397 ** database. But they might for a corrupt database. Hence use memmove() 7398 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7399 assert( (pSlot+sz)<=pCArray->apCell[i] 7400 || pSlot>=(pCArray->apCell[i]+sz) 7401 || CORRUPT_DB ); 7402 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7403 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7404 ){ 7405 assert( CORRUPT_DB ); 7406 (void)SQLITE_CORRUPT_BKPT; 7407 return 1; 7408 } 7409 memmove(pSlot, pCArray->apCell[i], sz); 7410 put2byte(pCellptr, (pSlot - aData)); 7411 pCellptr += 2; 7412 i++; 7413 if( i>=iEnd ) break; 7414 if( pCArray->ixNx[k]<=i ){ 7415 k++; 7416 pEnd = pCArray->apEnd[k]; 7417 } 7418 } 7419 *ppData = pData; 7420 return 0; 7421 } 7422 7423 /* 7424 ** The pCArray object contains pointers to b-tree cells and their sizes. 7425 ** 7426 ** This function adds the space associated with each cell in the array 7427 ** that is currently stored within the body of pPg to the pPg free-list. 7428 ** The cell-pointers and other fields of the page are not updated. 7429 ** 7430 ** This function returns the total number of cells added to the free-list. 7431 */ 7432 static int pageFreeArray( 7433 MemPage *pPg, /* Page to edit */ 7434 int iFirst, /* First cell to delete */ 7435 int nCell, /* Cells to delete */ 7436 CellArray *pCArray /* Array of cells */ 7437 ){ 7438 u8 * const aData = pPg->aData; 7439 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7440 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7441 int nRet = 0; 7442 int i; 7443 int iEnd = iFirst + nCell; 7444 u8 *pFree = 0; 7445 int szFree = 0; 7446 7447 for(i=iFirst; i<iEnd; i++){ 7448 u8 *pCell = pCArray->apCell[i]; 7449 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7450 int sz; 7451 /* No need to use cachedCellSize() here. The sizes of all cells that 7452 ** are to be freed have already been computing while deciding which 7453 ** cells need freeing */ 7454 sz = pCArray->szCell[i]; assert( sz>0 ); 7455 if( pFree!=(pCell + sz) ){ 7456 if( pFree ){ 7457 assert( pFree>aData && (pFree - aData)<65536 ); 7458 freeSpace(pPg, (u16)(pFree - aData), szFree); 7459 } 7460 pFree = pCell; 7461 szFree = sz; 7462 if( pFree+sz>pEnd ){ 7463 return 0; 7464 } 7465 }else{ 7466 pFree = pCell; 7467 szFree += sz; 7468 } 7469 nRet++; 7470 } 7471 } 7472 if( pFree ){ 7473 assert( pFree>aData && (pFree - aData)<65536 ); 7474 freeSpace(pPg, (u16)(pFree - aData), szFree); 7475 } 7476 return nRet; 7477 } 7478 7479 /* 7480 ** pCArray contains pointers to and sizes of all cells in the page being 7481 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7482 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7483 ** starting at apCell[iNew]. 7484 ** 7485 ** This routine makes the necessary adjustments to pPg so that it contains 7486 ** the correct cells after being balanced. 7487 ** 7488 ** The pPg->nFree field is invalid when this function returns. It is the 7489 ** responsibility of the caller to set it correctly. 7490 */ 7491 static int editPage( 7492 MemPage *pPg, /* Edit this page */ 7493 int iOld, /* Index of first cell currently on page */ 7494 int iNew, /* Index of new first cell on page */ 7495 int nNew, /* Final number of cells on page */ 7496 CellArray *pCArray /* Array of cells and sizes */ 7497 ){ 7498 u8 * const aData = pPg->aData; 7499 const int hdr = pPg->hdrOffset; 7500 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7501 int nCell = pPg->nCell; /* Cells stored on pPg */ 7502 u8 *pData; 7503 u8 *pCellptr; 7504 int i; 7505 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7506 int iNewEnd = iNew + nNew; 7507 7508 #ifdef SQLITE_DEBUG 7509 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7510 memcpy(pTmp, aData, pPg->pBt->usableSize); 7511 #endif 7512 7513 /* Remove cells from the start and end of the page */ 7514 assert( nCell>=0 ); 7515 if( iOld<iNew ){ 7516 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7517 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7518 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7519 nCell -= nShift; 7520 } 7521 if( iNewEnd < iOldEnd ){ 7522 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7523 assert( nCell>=nTail ); 7524 nCell -= nTail; 7525 } 7526 7527 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7528 if( pData<pBegin ) goto editpage_fail; 7529 if( pData>pPg->aDataEnd ) goto editpage_fail; 7530 7531 /* Add cells to the start of the page */ 7532 if( iNew<iOld ){ 7533 int nAdd = MIN(nNew,iOld-iNew); 7534 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7535 assert( nAdd>=0 ); 7536 pCellptr = pPg->aCellIdx; 7537 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7538 if( pageInsertArray( 7539 pPg, pBegin, &pData, pCellptr, 7540 iNew, nAdd, pCArray 7541 ) ) goto editpage_fail; 7542 nCell += nAdd; 7543 } 7544 7545 /* Add any overflow cells */ 7546 for(i=0; i<pPg->nOverflow; i++){ 7547 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7548 if( iCell>=0 && iCell<nNew ){ 7549 pCellptr = &pPg->aCellIdx[iCell * 2]; 7550 if( nCell>iCell ){ 7551 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7552 } 7553 nCell++; 7554 cachedCellSize(pCArray, iCell+iNew); 7555 if( pageInsertArray( 7556 pPg, pBegin, &pData, pCellptr, 7557 iCell+iNew, 1, pCArray 7558 ) ) goto editpage_fail; 7559 } 7560 } 7561 7562 /* Append cells to the end of the page */ 7563 assert( nCell>=0 ); 7564 pCellptr = &pPg->aCellIdx[nCell*2]; 7565 if( pageInsertArray( 7566 pPg, pBegin, &pData, pCellptr, 7567 iNew+nCell, nNew-nCell, pCArray 7568 ) ) goto editpage_fail; 7569 7570 pPg->nCell = nNew; 7571 pPg->nOverflow = 0; 7572 7573 put2byte(&aData[hdr+3], pPg->nCell); 7574 put2byte(&aData[hdr+5], pData - aData); 7575 7576 #ifdef SQLITE_DEBUG 7577 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7578 u8 *pCell = pCArray->apCell[i+iNew]; 7579 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7580 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7581 pCell = &pTmp[pCell - aData]; 7582 } 7583 assert( 0==memcmp(pCell, &aData[iOff], 7584 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7585 } 7586 #endif 7587 7588 return SQLITE_OK; 7589 editpage_fail: 7590 /* Unable to edit this page. Rebuild it from scratch instead. */ 7591 populateCellCache(pCArray, iNew, nNew); 7592 return rebuildPage(pCArray, iNew, nNew, pPg); 7593 } 7594 7595 7596 #ifndef SQLITE_OMIT_QUICKBALANCE 7597 /* 7598 ** This version of balance() handles the common special case where 7599 ** a new entry is being inserted on the extreme right-end of the 7600 ** tree, in other words, when the new entry will become the largest 7601 ** entry in the tree. 7602 ** 7603 ** Instead of trying to balance the 3 right-most leaf pages, just add 7604 ** a new page to the right-hand side and put the one new entry in 7605 ** that page. This leaves the right side of the tree somewhat 7606 ** unbalanced. But odds are that we will be inserting new entries 7607 ** at the end soon afterwards so the nearly empty page will quickly 7608 ** fill up. On average. 7609 ** 7610 ** pPage is the leaf page which is the right-most page in the tree. 7611 ** pParent is its parent. pPage must have a single overflow entry 7612 ** which is also the right-most entry on the page. 7613 ** 7614 ** The pSpace buffer is used to store a temporary copy of the divider 7615 ** cell that will be inserted into pParent. Such a cell consists of a 4 7616 ** byte page number followed by a variable length integer. In other 7617 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7618 ** least 13 bytes in size. 7619 */ 7620 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7621 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7622 MemPage *pNew; /* Newly allocated page */ 7623 int rc; /* Return Code */ 7624 Pgno pgnoNew; /* Page number of pNew */ 7625 7626 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7627 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7628 assert( pPage->nOverflow==1 ); 7629 7630 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7631 assert( pPage->nFree>=0 ); 7632 assert( pParent->nFree>=0 ); 7633 7634 /* Allocate a new page. This page will become the right-sibling of 7635 ** pPage. Make the parent page writable, so that the new divider cell 7636 ** may be inserted. If both these operations are successful, proceed. 7637 */ 7638 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7639 7640 if( rc==SQLITE_OK ){ 7641 7642 u8 *pOut = &pSpace[4]; 7643 u8 *pCell = pPage->apOvfl[0]; 7644 u16 szCell = pPage->xCellSize(pPage, pCell); 7645 u8 *pStop; 7646 CellArray b; 7647 7648 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7649 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7650 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7651 b.nCell = 1; 7652 b.pRef = pPage; 7653 b.apCell = &pCell; 7654 b.szCell = &szCell; 7655 b.apEnd[0] = pPage->aDataEnd; 7656 b.ixNx[0] = 2; 7657 rc = rebuildPage(&b, 0, 1, pNew); 7658 if( NEVER(rc) ){ 7659 releasePage(pNew); 7660 return rc; 7661 } 7662 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7663 7664 /* If this is an auto-vacuum database, update the pointer map 7665 ** with entries for the new page, and any pointer from the 7666 ** cell on the page to an overflow page. If either of these 7667 ** operations fails, the return code is set, but the contents 7668 ** of the parent page are still manipulated by thh code below. 7669 ** That is Ok, at this point the parent page is guaranteed to 7670 ** be marked as dirty. Returning an error code will cause a 7671 ** rollback, undoing any changes made to the parent page. 7672 */ 7673 if( ISAUTOVACUUM ){ 7674 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7675 if( szCell>pNew->minLocal ){ 7676 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7677 } 7678 } 7679 7680 /* Create a divider cell to insert into pParent. The divider cell 7681 ** consists of a 4-byte page number (the page number of pPage) and 7682 ** a variable length key value (which must be the same value as the 7683 ** largest key on pPage). 7684 ** 7685 ** To find the largest key value on pPage, first find the right-most 7686 ** cell on pPage. The first two fields of this cell are the 7687 ** record-length (a variable length integer at most 32-bits in size) 7688 ** and the key value (a variable length integer, may have any value). 7689 ** The first of the while(...) loops below skips over the record-length 7690 ** field. The second while(...) loop copies the key value from the 7691 ** cell on pPage into the pSpace buffer. 7692 */ 7693 pCell = findCell(pPage, pPage->nCell-1); 7694 pStop = &pCell[9]; 7695 while( (*(pCell++)&0x80) && pCell<pStop ); 7696 pStop = &pCell[9]; 7697 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7698 7699 /* Insert the new divider cell into pParent. */ 7700 if( rc==SQLITE_OK ){ 7701 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7702 0, pPage->pgno, &rc); 7703 } 7704 7705 /* Set the right-child pointer of pParent to point to the new page. */ 7706 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7707 7708 /* Release the reference to the new page. */ 7709 releasePage(pNew); 7710 } 7711 7712 return rc; 7713 } 7714 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7715 7716 #if 0 7717 /* 7718 ** This function does not contribute anything to the operation of SQLite. 7719 ** it is sometimes activated temporarily while debugging code responsible 7720 ** for setting pointer-map entries. 7721 */ 7722 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7723 int i, j; 7724 for(i=0; i<nPage; i++){ 7725 Pgno n; 7726 u8 e; 7727 MemPage *pPage = apPage[i]; 7728 BtShared *pBt = pPage->pBt; 7729 assert( pPage->isInit ); 7730 7731 for(j=0; j<pPage->nCell; j++){ 7732 CellInfo info; 7733 u8 *z; 7734 7735 z = findCell(pPage, j); 7736 pPage->xParseCell(pPage, z, &info); 7737 if( info.nLocal<info.nPayload ){ 7738 Pgno ovfl = get4byte(&z[info.nSize-4]); 7739 ptrmapGet(pBt, ovfl, &e, &n); 7740 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7741 } 7742 if( !pPage->leaf ){ 7743 Pgno child = get4byte(z); 7744 ptrmapGet(pBt, child, &e, &n); 7745 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7746 } 7747 } 7748 if( !pPage->leaf ){ 7749 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7750 ptrmapGet(pBt, child, &e, &n); 7751 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7752 } 7753 } 7754 return 1; 7755 } 7756 #endif 7757 7758 /* 7759 ** This function is used to copy the contents of the b-tree node stored 7760 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7761 ** the pointer-map entries for each child page are updated so that the 7762 ** parent page stored in the pointer map is page pTo. If pFrom contained 7763 ** any cells with overflow page pointers, then the corresponding pointer 7764 ** map entries are also updated so that the parent page is page pTo. 7765 ** 7766 ** If pFrom is currently carrying any overflow cells (entries in the 7767 ** MemPage.apOvfl[] array), they are not copied to pTo. 7768 ** 7769 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7770 ** 7771 ** The performance of this function is not critical. It is only used by 7772 ** the balance_shallower() and balance_deeper() procedures, neither of 7773 ** which are called often under normal circumstances. 7774 */ 7775 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7776 if( (*pRC)==SQLITE_OK ){ 7777 BtShared * const pBt = pFrom->pBt; 7778 u8 * const aFrom = pFrom->aData; 7779 u8 * const aTo = pTo->aData; 7780 int const iFromHdr = pFrom->hdrOffset; 7781 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7782 int rc; 7783 int iData; 7784 7785 7786 assert( pFrom->isInit ); 7787 assert( pFrom->nFree>=iToHdr ); 7788 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7789 7790 /* Copy the b-tree node content from page pFrom to page pTo. */ 7791 iData = get2byte(&aFrom[iFromHdr+5]); 7792 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7793 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7794 7795 /* Reinitialize page pTo so that the contents of the MemPage structure 7796 ** match the new data. The initialization of pTo can actually fail under 7797 ** fairly obscure circumstances, even though it is a copy of initialized 7798 ** page pFrom. 7799 */ 7800 pTo->isInit = 0; 7801 rc = btreeInitPage(pTo); 7802 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7803 if( rc!=SQLITE_OK ){ 7804 *pRC = rc; 7805 return; 7806 } 7807 7808 /* If this is an auto-vacuum database, update the pointer-map entries 7809 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7810 */ 7811 if( ISAUTOVACUUM ){ 7812 *pRC = setChildPtrmaps(pTo); 7813 } 7814 } 7815 } 7816 7817 /* 7818 ** This routine redistributes cells on the iParentIdx'th child of pParent 7819 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7820 ** same amount of free space. Usually a single sibling on either side of the 7821 ** page are used in the balancing, though both siblings might come from one 7822 ** side if the page is the first or last child of its parent. If the page 7823 ** has fewer than 2 siblings (something which can only happen if the page 7824 ** is a root page or a child of a root page) then all available siblings 7825 ** participate in the balancing. 7826 ** 7827 ** The number of siblings of the page might be increased or decreased by 7828 ** one or two in an effort to keep pages nearly full but not over full. 7829 ** 7830 ** Note that when this routine is called, some of the cells on the page 7831 ** might not actually be stored in MemPage.aData[]. This can happen 7832 ** if the page is overfull. This routine ensures that all cells allocated 7833 ** to the page and its siblings fit into MemPage.aData[] before returning. 7834 ** 7835 ** In the course of balancing the page and its siblings, cells may be 7836 ** inserted into or removed from the parent page (pParent). Doing so 7837 ** may cause the parent page to become overfull or underfull. If this 7838 ** happens, it is the responsibility of the caller to invoke the correct 7839 ** balancing routine to fix this problem (see the balance() routine). 7840 ** 7841 ** If this routine fails for any reason, it might leave the database 7842 ** in a corrupted state. So if this routine fails, the database should 7843 ** be rolled back. 7844 ** 7845 ** The third argument to this function, aOvflSpace, is a pointer to a 7846 ** buffer big enough to hold one page. If while inserting cells into the parent 7847 ** page (pParent) the parent page becomes overfull, this buffer is 7848 ** used to store the parent's overflow cells. Because this function inserts 7849 ** a maximum of four divider cells into the parent page, and the maximum 7850 ** size of a cell stored within an internal node is always less than 1/4 7851 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7852 ** enough for all overflow cells. 7853 ** 7854 ** If aOvflSpace is set to a null pointer, this function returns 7855 ** SQLITE_NOMEM. 7856 */ 7857 static int balance_nonroot( 7858 MemPage *pParent, /* Parent page of siblings being balanced */ 7859 int iParentIdx, /* Index of "the page" in pParent */ 7860 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7861 int isRoot, /* True if pParent is a root-page */ 7862 int bBulk /* True if this call is part of a bulk load */ 7863 ){ 7864 BtShared *pBt; /* The whole database */ 7865 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7866 int nNew = 0; /* Number of pages in apNew[] */ 7867 int nOld; /* Number of pages in apOld[] */ 7868 int i, j, k; /* Loop counters */ 7869 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7870 int rc = SQLITE_OK; /* The return code */ 7871 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7872 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7873 int usableSpace; /* Bytes in pPage beyond the header */ 7874 int pageFlags; /* Value of pPage->aData[0] */ 7875 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7876 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7877 int szScratch; /* Size of scratch memory requested */ 7878 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7879 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7880 u8 *pRight; /* Location in parent of right-sibling pointer */ 7881 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7882 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7883 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7884 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7885 u8 *aSpace1; /* Space for copies of dividers cells */ 7886 Pgno pgno; /* Temp var to store a page number in */ 7887 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7888 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7889 CellArray b; /* Parsed information on cells being balanced */ 7890 7891 memset(abDone, 0, sizeof(abDone)); 7892 memset(&b, 0, sizeof(b)); 7893 pBt = pParent->pBt; 7894 assert( sqlite3_mutex_held(pBt->mutex) ); 7895 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7896 7897 /* At this point pParent may have at most one overflow cell. And if 7898 ** this overflow cell is present, it must be the cell with 7899 ** index iParentIdx. This scenario comes about when this function 7900 ** is called (indirectly) from sqlite3BtreeDelete(). 7901 */ 7902 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7903 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7904 7905 if( !aOvflSpace ){ 7906 return SQLITE_NOMEM_BKPT; 7907 } 7908 assert( pParent->nFree>=0 ); 7909 7910 /* Find the sibling pages to balance. Also locate the cells in pParent 7911 ** that divide the siblings. An attempt is made to find NN siblings on 7912 ** either side of pPage. More siblings are taken from one side, however, 7913 ** if there are fewer than NN siblings on the other side. If pParent 7914 ** has NB or fewer children then all children of pParent are taken. 7915 ** 7916 ** This loop also drops the divider cells from the parent page. This 7917 ** way, the remainder of the function does not have to deal with any 7918 ** overflow cells in the parent page, since if any existed they will 7919 ** have already been removed. 7920 */ 7921 i = pParent->nOverflow + pParent->nCell; 7922 if( i<2 ){ 7923 nxDiv = 0; 7924 }else{ 7925 assert( bBulk==0 || bBulk==1 ); 7926 if( iParentIdx==0 ){ 7927 nxDiv = 0; 7928 }else if( iParentIdx==i ){ 7929 nxDiv = i-2+bBulk; 7930 }else{ 7931 nxDiv = iParentIdx-1; 7932 } 7933 i = 2-bBulk; 7934 } 7935 nOld = i+1; 7936 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7937 pRight = &pParent->aData[pParent->hdrOffset+8]; 7938 }else{ 7939 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7940 } 7941 pgno = get4byte(pRight); 7942 while( 1 ){ 7943 if( rc==SQLITE_OK ){ 7944 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7945 } 7946 if( rc ){ 7947 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7948 goto balance_cleanup; 7949 } 7950 if( apOld[i]->nFree<0 ){ 7951 rc = btreeComputeFreeSpace(apOld[i]); 7952 if( rc ){ 7953 memset(apOld, 0, (i)*sizeof(MemPage*)); 7954 goto balance_cleanup; 7955 } 7956 } 7957 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7958 if( (i--)==0 ) break; 7959 7960 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7961 apDiv[i] = pParent->apOvfl[0]; 7962 pgno = get4byte(apDiv[i]); 7963 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7964 pParent->nOverflow = 0; 7965 }else{ 7966 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7967 pgno = get4byte(apDiv[i]); 7968 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7969 7970 /* Drop the cell from the parent page. apDiv[i] still points to 7971 ** the cell within the parent, even though it has been dropped. 7972 ** This is safe because dropping a cell only overwrites the first 7973 ** four bytes of it, and this function does not need the first 7974 ** four bytes of the divider cell. So the pointer is safe to use 7975 ** later on. 7976 ** 7977 ** But not if we are in secure-delete mode. In secure-delete mode, 7978 ** the dropCell() routine will overwrite the entire cell with zeroes. 7979 ** In this case, temporarily copy the cell into the aOvflSpace[] 7980 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7981 ** is allocated. */ 7982 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7983 int iOff; 7984 7985 /* If the following if() condition is not true, the db is corrupted. 7986 ** The call to dropCell() below will detect this. */ 7987 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 7988 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 7989 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 7990 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 7991 } 7992 } 7993 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 7994 } 7995 } 7996 7997 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 7998 ** alignment */ 7999 nMaxCells = (nMaxCells + 3)&~3; 8000 8001 /* 8002 ** Allocate space for memory structures 8003 */ 8004 szScratch = 8005 nMaxCells*sizeof(u8*) /* b.apCell */ 8006 + nMaxCells*sizeof(u16) /* b.szCell */ 8007 + pBt->pageSize; /* aSpace1 */ 8008 8009 assert( szScratch<=7*(int)pBt->pageSize ); 8010 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 8011 if( b.apCell==0 ){ 8012 rc = SQLITE_NOMEM_BKPT; 8013 goto balance_cleanup; 8014 } 8015 b.szCell = (u16*)&b.apCell[nMaxCells]; 8016 aSpace1 = (u8*)&b.szCell[nMaxCells]; 8017 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 8018 8019 /* 8020 ** Load pointers to all cells on sibling pages and the divider cells 8021 ** into the local b.apCell[] array. Make copies of the divider cells 8022 ** into space obtained from aSpace1[]. The divider cells have already 8023 ** been removed from pParent. 8024 ** 8025 ** If the siblings are on leaf pages, then the child pointers of the 8026 ** divider cells are stripped from the cells before they are copied 8027 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 8028 ** child pointers. If siblings are not leaves, then all cell in 8029 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 8030 ** are alike. 8031 ** 8032 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 8033 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 8034 */ 8035 b.pRef = apOld[0]; 8036 leafCorrection = b.pRef->leaf*4; 8037 leafData = b.pRef->intKeyLeaf; 8038 for(i=0; i<nOld; i++){ 8039 MemPage *pOld = apOld[i]; 8040 int limit = pOld->nCell; 8041 u8 *aData = pOld->aData; 8042 u16 maskPage = pOld->maskPage; 8043 u8 *piCell = aData + pOld->cellOffset; 8044 u8 *piEnd; 8045 VVA_ONLY( int nCellAtStart = b.nCell; ) 8046 8047 /* Verify that all sibling pages are of the same "type" (table-leaf, 8048 ** table-interior, index-leaf, or index-interior). 8049 */ 8050 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 8051 rc = SQLITE_CORRUPT_BKPT; 8052 goto balance_cleanup; 8053 } 8054 8055 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 8056 ** contains overflow cells, include them in the b.apCell[] array 8057 ** in the correct spot. 8058 ** 8059 ** Note that when there are multiple overflow cells, it is always the 8060 ** case that they are sequential and adjacent. This invariant arises 8061 ** because multiple overflows can only occurs when inserting divider 8062 ** cells into a parent on a prior balance, and divider cells are always 8063 ** adjacent and are inserted in order. There is an assert() tagged 8064 ** with "NOTE 1" in the overflow cell insertion loop to prove this 8065 ** invariant. 8066 ** 8067 ** This must be done in advance. Once the balance starts, the cell 8068 ** offset section of the btree page will be overwritten and we will no 8069 ** long be able to find the cells if a pointer to each cell is not saved 8070 ** first. 8071 */ 8072 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 8073 if( pOld->nOverflow>0 ){ 8074 if( NEVER(limit<pOld->aiOvfl[0]) ){ 8075 rc = SQLITE_CORRUPT_BKPT; 8076 goto balance_cleanup; 8077 } 8078 limit = pOld->aiOvfl[0]; 8079 for(j=0; j<limit; j++){ 8080 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8081 piCell += 2; 8082 b.nCell++; 8083 } 8084 for(k=0; k<pOld->nOverflow; k++){ 8085 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 8086 b.apCell[b.nCell] = pOld->apOvfl[k]; 8087 b.nCell++; 8088 } 8089 } 8090 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 8091 while( piCell<piEnd ){ 8092 assert( b.nCell<nMaxCells ); 8093 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8094 piCell += 2; 8095 b.nCell++; 8096 } 8097 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 8098 8099 cntOld[i] = b.nCell; 8100 if( i<nOld-1 && !leafData){ 8101 u16 sz = (u16)szNew[i]; 8102 u8 *pTemp; 8103 assert( b.nCell<nMaxCells ); 8104 b.szCell[b.nCell] = sz; 8105 pTemp = &aSpace1[iSpace1]; 8106 iSpace1 += sz; 8107 assert( sz<=pBt->maxLocal+23 ); 8108 assert( iSpace1 <= (int)pBt->pageSize ); 8109 memcpy(pTemp, apDiv[i], sz); 8110 b.apCell[b.nCell] = pTemp+leafCorrection; 8111 assert( leafCorrection==0 || leafCorrection==4 ); 8112 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 8113 if( !pOld->leaf ){ 8114 assert( leafCorrection==0 ); 8115 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 8116 /* The right pointer of the child page pOld becomes the left 8117 ** pointer of the divider cell */ 8118 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 8119 }else{ 8120 assert( leafCorrection==4 ); 8121 while( b.szCell[b.nCell]<4 ){ 8122 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 8123 ** does exist, pad it with 0x00 bytes. */ 8124 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 8125 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 8126 aSpace1[iSpace1++] = 0x00; 8127 b.szCell[b.nCell]++; 8128 } 8129 } 8130 b.nCell++; 8131 } 8132 } 8133 8134 /* 8135 ** Figure out the number of pages needed to hold all b.nCell cells. 8136 ** Store this number in "k". Also compute szNew[] which is the total 8137 ** size of all cells on the i-th page and cntNew[] which is the index 8138 ** in b.apCell[] of the cell that divides page i from page i+1. 8139 ** cntNew[k] should equal b.nCell. 8140 ** 8141 ** Values computed by this block: 8142 ** 8143 ** k: The total number of sibling pages 8144 ** szNew[i]: Spaced used on the i-th sibling page. 8145 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 8146 ** the right of the i-th sibling page. 8147 ** usableSpace: Number of bytes of space available on each sibling. 8148 ** 8149 */ 8150 usableSpace = pBt->usableSize - 12 + leafCorrection; 8151 for(i=k=0; i<nOld; i++, k++){ 8152 MemPage *p = apOld[i]; 8153 b.apEnd[k] = p->aDataEnd; 8154 b.ixNx[k] = cntOld[i]; 8155 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8156 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8157 } 8158 if( !leafData ){ 8159 k++; 8160 b.apEnd[k] = pParent->aDataEnd; 8161 b.ixNx[k] = cntOld[i]+1; 8162 } 8163 assert( p->nFree>=0 ); 8164 szNew[i] = usableSpace - p->nFree; 8165 for(j=0; j<p->nOverflow; j++){ 8166 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8167 } 8168 cntNew[i] = cntOld[i]; 8169 } 8170 k = nOld; 8171 for(i=0; i<k; i++){ 8172 int sz; 8173 while( szNew[i]>usableSpace ){ 8174 if( i+1>=k ){ 8175 k = i+2; 8176 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8177 szNew[k-1] = 0; 8178 cntNew[k-1] = b.nCell; 8179 } 8180 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8181 szNew[i] -= sz; 8182 if( !leafData ){ 8183 if( cntNew[i]<b.nCell ){ 8184 sz = 2 + cachedCellSize(&b, cntNew[i]); 8185 }else{ 8186 sz = 0; 8187 } 8188 } 8189 szNew[i+1] += sz; 8190 cntNew[i]--; 8191 } 8192 while( cntNew[i]<b.nCell ){ 8193 sz = 2 + cachedCellSize(&b, cntNew[i]); 8194 if( szNew[i]+sz>usableSpace ) break; 8195 szNew[i] += sz; 8196 cntNew[i]++; 8197 if( !leafData ){ 8198 if( cntNew[i]<b.nCell ){ 8199 sz = 2 + cachedCellSize(&b, cntNew[i]); 8200 }else{ 8201 sz = 0; 8202 } 8203 } 8204 szNew[i+1] -= sz; 8205 } 8206 if( cntNew[i]>=b.nCell ){ 8207 k = i+1; 8208 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8209 rc = SQLITE_CORRUPT_BKPT; 8210 goto balance_cleanup; 8211 } 8212 } 8213 8214 /* 8215 ** The packing computed by the previous block is biased toward the siblings 8216 ** on the left side (siblings with smaller keys). The left siblings are 8217 ** always nearly full, while the right-most sibling might be nearly empty. 8218 ** The next block of code attempts to adjust the packing of siblings to 8219 ** get a better balance. 8220 ** 8221 ** This adjustment is more than an optimization. The packing above might 8222 ** be so out of balance as to be illegal. For example, the right-most 8223 ** sibling might be completely empty. This adjustment is not optional. 8224 */ 8225 for(i=k-1; i>0; i--){ 8226 int szRight = szNew[i]; /* Size of sibling on the right */ 8227 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8228 int r; /* Index of right-most cell in left sibling */ 8229 int d; /* Index of first cell to the left of right sibling */ 8230 8231 r = cntNew[i-1] - 1; 8232 d = r + 1 - leafData; 8233 (void)cachedCellSize(&b, d); 8234 do{ 8235 assert( d<nMaxCells ); 8236 assert( r<nMaxCells ); 8237 (void)cachedCellSize(&b, r); 8238 if( szRight!=0 8239 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8240 break; 8241 } 8242 szRight += b.szCell[d] + 2; 8243 szLeft -= b.szCell[r] + 2; 8244 cntNew[i-1] = r; 8245 r--; 8246 d--; 8247 }while( r>=0 ); 8248 szNew[i] = szRight; 8249 szNew[i-1] = szLeft; 8250 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8251 rc = SQLITE_CORRUPT_BKPT; 8252 goto balance_cleanup; 8253 } 8254 } 8255 8256 /* Sanity check: For a non-corrupt database file one of the follwing 8257 ** must be true: 8258 ** (1) We found one or more cells (cntNew[0])>0), or 8259 ** (2) pPage is a virtual root page. A virtual root page is when 8260 ** the real root page is page 1 and we are the only child of 8261 ** that page. 8262 */ 8263 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8264 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8265 apOld[0]->pgno, apOld[0]->nCell, 8266 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8267 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8268 )); 8269 8270 /* 8271 ** Allocate k new pages. Reuse old pages where possible. 8272 */ 8273 pageFlags = apOld[0]->aData[0]; 8274 for(i=0; i<k; i++){ 8275 MemPage *pNew; 8276 if( i<nOld ){ 8277 pNew = apNew[i] = apOld[i]; 8278 apOld[i] = 0; 8279 rc = sqlite3PagerWrite(pNew->pDbPage); 8280 nNew++; 8281 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8282 && rc==SQLITE_OK 8283 ){ 8284 rc = SQLITE_CORRUPT_BKPT; 8285 } 8286 if( rc ) goto balance_cleanup; 8287 }else{ 8288 assert( i>0 ); 8289 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8290 if( rc ) goto balance_cleanup; 8291 zeroPage(pNew, pageFlags); 8292 apNew[i] = pNew; 8293 nNew++; 8294 cntOld[i] = b.nCell; 8295 8296 /* Set the pointer-map entry for the new sibling page. */ 8297 if( ISAUTOVACUUM ){ 8298 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8299 if( rc!=SQLITE_OK ){ 8300 goto balance_cleanup; 8301 } 8302 } 8303 } 8304 } 8305 8306 /* 8307 ** Reassign page numbers so that the new pages are in ascending order. 8308 ** This helps to keep entries in the disk file in order so that a scan 8309 ** of the table is closer to a linear scan through the file. That in turn 8310 ** helps the operating system to deliver pages from the disk more rapidly. 8311 ** 8312 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2 8313 ** (5), that is not a performance concern. 8314 ** 8315 ** When NB==3, this one optimization makes the database about 25% faster 8316 ** for large insertions and deletions. 8317 */ 8318 for(i=0; i<nNew; i++){ 8319 aPgno[i] = apNew[i]->pgno; 8320 assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE ); 8321 assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY ); 8322 } 8323 for(i=0; i<nNew-1; i++){ 8324 int iB = i; 8325 for(j=i+1; j<nNew; j++){ 8326 if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j; 8327 } 8328 8329 /* If apNew[i] has a page number that is bigger than any of the 8330 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent 8331 ** entry that has the smallest page number (which we know to be 8332 ** entry apNew[iB]). 8333 */ 8334 if( iB!=i ){ 8335 Pgno pgnoA = apNew[i]->pgno; 8336 Pgno pgnoB = apNew[iB]->pgno; 8337 Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1; 8338 u16 fgA = apNew[i]->pDbPage->flags; 8339 u16 fgB = apNew[iB]->pDbPage->flags; 8340 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB); 8341 sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA); 8342 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB); 8343 apNew[i]->pgno = pgnoB; 8344 apNew[iB]->pgno = pgnoA; 8345 } 8346 } 8347 8348 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8349 "%d(%d nc=%d) %d(%d nc=%d)\n", 8350 apNew[0]->pgno, szNew[0], cntNew[0], 8351 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8352 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8353 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8354 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8355 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8356 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8357 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8358 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8359 )); 8360 8361 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8362 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8363 assert( apNew[nNew-1]!=0 ); 8364 put4byte(pRight, apNew[nNew-1]->pgno); 8365 8366 /* If the sibling pages are not leaves, ensure that the right-child pointer 8367 ** of the right-most new sibling page is set to the value that was 8368 ** originally in the same field of the right-most old sibling page. */ 8369 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8370 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8371 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8372 } 8373 8374 /* Make any required updates to pointer map entries associated with 8375 ** cells stored on sibling pages following the balance operation. Pointer 8376 ** map entries associated with divider cells are set by the insertCell() 8377 ** routine. The associated pointer map entries are: 8378 ** 8379 ** a) if the cell contains a reference to an overflow chain, the 8380 ** entry associated with the first page in the overflow chain, and 8381 ** 8382 ** b) if the sibling pages are not leaves, the child page associated 8383 ** with the cell. 8384 ** 8385 ** If the sibling pages are not leaves, then the pointer map entry 8386 ** associated with the right-child of each sibling may also need to be 8387 ** updated. This happens below, after the sibling pages have been 8388 ** populated, not here. 8389 */ 8390 if( ISAUTOVACUUM ){ 8391 MemPage *pOld; 8392 MemPage *pNew = pOld = apNew[0]; 8393 int cntOldNext = pNew->nCell + pNew->nOverflow; 8394 int iNew = 0; 8395 int iOld = 0; 8396 8397 for(i=0; i<b.nCell; i++){ 8398 u8 *pCell = b.apCell[i]; 8399 while( i==cntOldNext ){ 8400 iOld++; 8401 assert( iOld<nNew || iOld<nOld ); 8402 assert( iOld>=0 && iOld<NB ); 8403 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8404 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8405 } 8406 if( i==cntNew[iNew] ){ 8407 pNew = apNew[++iNew]; 8408 if( !leafData ) continue; 8409 } 8410 8411 /* Cell pCell is destined for new sibling page pNew. Originally, it 8412 ** was either part of sibling page iOld (possibly an overflow cell), 8413 ** or else the divider cell to the left of sibling page iOld. So, 8414 ** if sibling page iOld had the same page number as pNew, and if 8415 ** pCell really was a part of sibling page iOld (not a divider or 8416 ** overflow cell), we can skip updating the pointer map entries. */ 8417 if( iOld>=nNew 8418 || pNew->pgno!=aPgno[iOld] 8419 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8420 ){ 8421 if( !leafCorrection ){ 8422 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8423 } 8424 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8425 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8426 } 8427 if( rc ) goto balance_cleanup; 8428 } 8429 } 8430 } 8431 8432 /* Insert new divider cells into pParent. */ 8433 for(i=0; i<nNew-1; i++){ 8434 u8 *pCell; 8435 u8 *pTemp; 8436 int sz; 8437 u8 *pSrcEnd; 8438 MemPage *pNew = apNew[i]; 8439 j = cntNew[i]; 8440 8441 assert( j<nMaxCells ); 8442 assert( b.apCell[j]!=0 ); 8443 pCell = b.apCell[j]; 8444 sz = b.szCell[j] + leafCorrection; 8445 pTemp = &aOvflSpace[iOvflSpace]; 8446 if( !pNew->leaf ){ 8447 memcpy(&pNew->aData[8], pCell, 4); 8448 }else if( leafData ){ 8449 /* If the tree is a leaf-data tree, and the siblings are leaves, 8450 ** then there is no divider cell in b.apCell[]. Instead, the divider 8451 ** cell consists of the integer key for the right-most cell of 8452 ** the sibling-page assembled above only. 8453 */ 8454 CellInfo info; 8455 j--; 8456 pNew->xParseCell(pNew, b.apCell[j], &info); 8457 pCell = pTemp; 8458 sz = 4 + putVarint(&pCell[4], info.nKey); 8459 pTemp = 0; 8460 }else{ 8461 pCell -= 4; 8462 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8463 ** previously stored on a leaf node, and its reported size was 4 8464 ** bytes, then it may actually be smaller than this 8465 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8466 ** any cell). But it is important to pass the correct size to 8467 ** insertCell(), so reparse the cell now. 8468 ** 8469 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8470 ** and WITHOUT ROWID tables with exactly one column which is the 8471 ** primary key. 8472 */ 8473 if( b.szCell[j]==4 ){ 8474 assert(leafCorrection==4); 8475 sz = pParent->xCellSize(pParent, pCell); 8476 } 8477 } 8478 iOvflSpace += sz; 8479 assert( sz<=pBt->maxLocal+23 ); 8480 assert( iOvflSpace <= (int)pBt->pageSize ); 8481 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} 8482 pSrcEnd = b.apEnd[k]; 8483 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8484 rc = SQLITE_CORRUPT_BKPT; 8485 goto balance_cleanup; 8486 } 8487 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8488 if( rc!=SQLITE_OK ) goto balance_cleanup; 8489 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8490 } 8491 8492 /* Now update the actual sibling pages. The order in which they are updated 8493 ** is important, as this code needs to avoid disrupting any page from which 8494 ** cells may still to be read. In practice, this means: 8495 ** 8496 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8497 ** then it is not safe to update page apNew[iPg] until after 8498 ** the left-hand sibling apNew[iPg-1] has been updated. 8499 ** 8500 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8501 ** then it is not safe to update page apNew[iPg] until after 8502 ** the right-hand sibling apNew[iPg+1] has been updated. 8503 ** 8504 ** If neither of the above apply, the page is safe to update. 8505 ** 8506 ** The iPg value in the following loop starts at nNew-1 goes down 8507 ** to 0, then back up to nNew-1 again, thus making two passes over 8508 ** the pages. On the initial downward pass, only condition (1) above 8509 ** needs to be tested because (2) will always be true from the previous 8510 ** step. On the upward pass, both conditions are always true, so the 8511 ** upwards pass simply processes pages that were missed on the downward 8512 ** pass. 8513 */ 8514 for(i=1-nNew; i<nNew; i++){ 8515 int iPg = i<0 ? -i : i; 8516 assert( iPg>=0 && iPg<nNew ); 8517 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8518 if( i>=0 /* On the upwards pass, or... */ 8519 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8520 ){ 8521 int iNew; 8522 int iOld; 8523 int nNewCell; 8524 8525 /* Verify condition (1): If cells are moving left, update iPg 8526 ** only after iPg-1 has already been updated. */ 8527 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8528 8529 /* Verify condition (2): If cells are moving right, update iPg 8530 ** only after iPg+1 has already been updated. */ 8531 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8532 8533 if( iPg==0 ){ 8534 iNew = iOld = 0; 8535 nNewCell = cntNew[0]; 8536 }else{ 8537 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8538 iNew = cntNew[iPg-1] + !leafData; 8539 nNewCell = cntNew[iPg] - iNew; 8540 } 8541 8542 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8543 if( rc ) goto balance_cleanup; 8544 abDone[iPg]++; 8545 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8546 assert( apNew[iPg]->nOverflow==0 ); 8547 assert( apNew[iPg]->nCell==nNewCell ); 8548 } 8549 } 8550 8551 /* All pages have been processed exactly once */ 8552 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8553 8554 assert( nOld>0 ); 8555 assert( nNew>0 ); 8556 8557 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8558 /* The root page of the b-tree now contains no cells. The only sibling 8559 ** page is the right-child of the parent. Copy the contents of the 8560 ** child page into the parent, decreasing the overall height of the 8561 ** b-tree structure by one. This is described as the "balance-shallower" 8562 ** sub-algorithm in some documentation. 8563 ** 8564 ** If this is an auto-vacuum database, the call to copyNodeContent() 8565 ** sets all pointer-map entries corresponding to database image pages 8566 ** for which the pointer is stored within the content being copied. 8567 ** 8568 ** It is critical that the child page be defragmented before being 8569 ** copied into the parent, because if the parent is page 1 then it will 8570 ** by smaller than the child due to the database header, and so all the 8571 ** free space needs to be up front. 8572 */ 8573 assert( nNew==1 || CORRUPT_DB ); 8574 rc = defragmentPage(apNew[0], -1); 8575 testcase( rc!=SQLITE_OK ); 8576 assert( apNew[0]->nFree == 8577 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8578 - apNew[0]->nCell*2) 8579 || rc!=SQLITE_OK 8580 ); 8581 copyNodeContent(apNew[0], pParent, &rc); 8582 freePage(apNew[0], &rc); 8583 }else if( ISAUTOVACUUM && !leafCorrection ){ 8584 /* Fix the pointer map entries associated with the right-child of each 8585 ** sibling page. All other pointer map entries have already been taken 8586 ** care of. */ 8587 for(i=0; i<nNew; i++){ 8588 u32 key = get4byte(&apNew[i]->aData[8]); 8589 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8590 } 8591 } 8592 8593 assert( pParent->isInit ); 8594 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8595 nOld, nNew, b.nCell)); 8596 8597 /* Free any old pages that were not reused as new pages. 8598 */ 8599 for(i=nNew; i<nOld; i++){ 8600 freePage(apOld[i], &rc); 8601 } 8602 8603 #if 0 8604 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8605 /* The ptrmapCheckPages() contains assert() statements that verify that 8606 ** all pointer map pages are set correctly. This is helpful while 8607 ** debugging. This is usually disabled because a corrupt database may 8608 ** cause an assert() statement to fail. */ 8609 ptrmapCheckPages(apNew, nNew); 8610 ptrmapCheckPages(&pParent, 1); 8611 } 8612 #endif 8613 8614 /* 8615 ** Cleanup before returning. 8616 */ 8617 balance_cleanup: 8618 sqlite3StackFree(0, b.apCell); 8619 for(i=0; i<nOld; i++){ 8620 releasePage(apOld[i]); 8621 } 8622 for(i=0; i<nNew; i++){ 8623 releasePage(apNew[i]); 8624 } 8625 8626 return rc; 8627 } 8628 8629 8630 /* 8631 ** This function is called when the root page of a b-tree structure is 8632 ** overfull (has one or more overflow pages). 8633 ** 8634 ** A new child page is allocated and the contents of the current root 8635 ** page, including overflow cells, are copied into the child. The root 8636 ** page is then overwritten to make it an empty page with the right-child 8637 ** pointer pointing to the new page. 8638 ** 8639 ** Before returning, all pointer-map entries corresponding to pages 8640 ** that the new child-page now contains pointers to are updated. The 8641 ** entry corresponding to the new right-child pointer of the root 8642 ** page is also updated. 8643 ** 8644 ** If successful, *ppChild is set to contain a reference to the child 8645 ** page and SQLITE_OK is returned. In this case the caller is required 8646 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8647 ** an error code is returned and *ppChild is set to 0. 8648 */ 8649 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8650 int rc; /* Return value from subprocedures */ 8651 MemPage *pChild = 0; /* Pointer to a new child page */ 8652 Pgno pgnoChild = 0; /* Page number of the new child page */ 8653 BtShared *pBt = pRoot->pBt; /* The BTree */ 8654 8655 assert( pRoot->nOverflow>0 ); 8656 assert( sqlite3_mutex_held(pBt->mutex) ); 8657 8658 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8659 ** page that will become the new right-child of pPage. Copy the contents 8660 ** of the node stored on pRoot into the new child page. 8661 */ 8662 rc = sqlite3PagerWrite(pRoot->pDbPage); 8663 if( rc==SQLITE_OK ){ 8664 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8665 copyNodeContent(pRoot, pChild, &rc); 8666 if( ISAUTOVACUUM ){ 8667 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8668 } 8669 } 8670 if( rc ){ 8671 *ppChild = 0; 8672 releasePage(pChild); 8673 return rc; 8674 } 8675 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8676 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8677 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8678 8679 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8680 8681 /* Copy the overflow cells from pRoot to pChild */ 8682 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8683 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8684 memcpy(pChild->apOvfl, pRoot->apOvfl, 8685 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8686 pChild->nOverflow = pRoot->nOverflow; 8687 8688 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8689 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8690 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8691 8692 *ppChild = pChild; 8693 return SQLITE_OK; 8694 } 8695 8696 /* 8697 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8698 ** on the same B-tree as pCur. 8699 ** 8700 ** This can occur if a database is corrupt with two or more SQL tables 8701 ** pointing to the same b-tree. If an insert occurs on one SQL table 8702 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8703 ** table linked to the same b-tree. If the secondary insert causes a 8704 ** rebalance, that can change content out from under the cursor on the 8705 ** first SQL table, violating invariants on the first insert. 8706 */ 8707 static int anotherValidCursor(BtCursor *pCur){ 8708 BtCursor *pOther; 8709 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8710 if( pOther!=pCur 8711 && pOther->eState==CURSOR_VALID 8712 && pOther->pPage==pCur->pPage 8713 ){ 8714 return SQLITE_CORRUPT_BKPT; 8715 } 8716 } 8717 return SQLITE_OK; 8718 } 8719 8720 /* 8721 ** The page that pCur currently points to has just been modified in 8722 ** some way. This function figures out if this modification means the 8723 ** tree needs to be balanced, and if so calls the appropriate balancing 8724 ** routine. Balancing routines are: 8725 ** 8726 ** balance_quick() 8727 ** balance_deeper() 8728 ** balance_nonroot() 8729 */ 8730 static int balance(BtCursor *pCur){ 8731 int rc = SQLITE_OK; 8732 u8 aBalanceQuickSpace[13]; 8733 u8 *pFree = 0; 8734 8735 VVA_ONLY( int balance_quick_called = 0 ); 8736 VVA_ONLY( int balance_deeper_called = 0 ); 8737 8738 do { 8739 int iPage; 8740 MemPage *pPage = pCur->pPage; 8741 8742 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8743 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 8744 /* No rebalance required as long as: 8745 ** (1) There are no overflow cells 8746 ** (2) The amount of free space on the page is less than 2/3rds of 8747 ** the total usable space on the page. */ 8748 break; 8749 }else if( (iPage = pCur->iPage)==0 ){ 8750 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8751 /* The root page of the b-tree is overfull. In this case call the 8752 ** balance_deeper() function to create a new child for the root-page 8753 ** and copy the current contents of the root-page to it. The 8754 ** next iteration of the do-loop will balance the child page. 8755 */ 8756 assert( balance_deeper_called==0 ); 8757 VVA_ONLY( balance_deeper_called++ ); 8758 rc = balance_deeper(pPage, &pCur->apPage[1]); 8759 if( rc==SQLITE_OK ){ 8760 pCur->iPage = 1; 8761 pCur->ix = 0; 8762 pCur->aiIdx[0] = 0; 8763 pCur->apPage[0] = pPage; 8764 pCur->pPage = pCur->apPage[1]; 8765 assert( pCur->pPage->nOverflow ); 8766 } 8767 }else{ 8768 break; 8769 } 8770 }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){ 8771 /* The page being written is not a root page, and there is currently 8772 ** more than one reference to it. This only happens if the page is one 8773 ** of its own ancestor pages. Corruption. */ 8774 rc = SQLITE_CORRUPT_BKPT; 8775 }else{ 8776 MemPage * const pParent = pCur->apPage[iPage-1]; 8777 int const iIdx = pCur->aiIdx[iPage-1]; 8778 8779 rc = sqlite3PagerWrite(pParent->pDbPage); 8780 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8781 rc = btreeComputeFreeSpace(pParent); 8782 } 8783 if( rc==SQLITE_OK ){ 8784 #ifndef SQLITE_OMIT_QUICKBALANCE 8785 if( pPage->intKeyLeaf 8786 && pPage->nOverflow==1 8787 && pPage->aiOvfl[0]==pPage->nCell 8788 && pParent->pgno!=1 8789 && pParent->nCell==iIdx 8790 ){ 8791 /* Call balance_quick() to create a new sibling of pPage on which 8792 ** to store the overflow cell. balance_quick() inserts a new cell 8793 ** into pParent, which may cause pParent overflow. If this 8794 ** happens, the next iteration of the do-loop will balance pParent 8795 ** use either balance_nonroot() or balance_deeper(). Until this 8796 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8797 ** buffer. 8798 ** 8799 ** The purpose of the following assert() is to check that only a 8800 ** single call to balance_quick() is made for each call to this 8801 ** function. If this were not verified, a subtle bug involving reuse 8802 ** of the aBalanceQuickSpace[] might sneak in. 8803 */ 8804 assert( balance_quick_called==0 ); 8805 VVA_ONLY( balance_quick_called++ ); 8806 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8807 }else 8808 #endif 8809 { 8810 /* In this case, call balance_nonroot() to redistribute cells 8811 ** between pPage and up to 2 of its sibling pages. This involves 8812 ** modifying the contents of pParent, which may cause pParent to 8813 ** become overfull or underfull. The next iteration of the do-loop 8814 ** will balance the parent page to correct this. 8815 ** 8816 ** If the parent page becomes overfull, the overflow cell or cells 8817 ** are stored in the pSpace buffer allocated immediately below. 8818 ** A subsequent iteration of the do-loop will deal with this by 8819 ** calling balance_nonroot() (balance_deeper() may be called first, 8820 ** but it doesn't deal with overflow cells - just moves them to a 8821 ** different page). Once this subsequent call to balance_nonroot() 8822 ** has completed, it is safe to release the pSpace buffer used by 8823 ** the previous call, as the overflow cell data will have been 8824 ** copied either into the body of a database page or into the new 8825 ** pSpace buffer passed to the latter call to balance_nonroot(). 8826 */ 8827 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8828 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8829 pCur->hints&BTREE_BULKLOAD); 8830 if( pFree ){ 8831 /* If pFree is not NULL, it points to the pSpace buffer used 8832 ** by a previous call to balance_nonroot(). Its contents are 8833 ** now stored either on real database pages or within the 8834 ** new pSpace buffer, so it may be safely freed here. */ 8835 sqlite3PageFree(pFree); 8836 } 8837 8838 /* The pSpace buffer will be freed after the next call to 8839 ** balance_nonroot(), or just before this function returns, whichever 8840 ** comes first. */ 8841 pFree = pSpace; 8842 } 8843 } 8844 8845 pPage->nOverflow = 0; 8846 8847 /* The next iteration of the do-loop balances the parent page. */ 8848 releasePage(pPage); 8849 pCur->iPage--; 8850 assert( pCur->iPage>=0 ); 8851 pCur->pPage = pCur->apPage[pCur->iPage]; 8852 } 8853 }while( rc==SQLITE_OK ); 8854 8855 if( pFree ){ 8856 sqlite3PageFree(pFree); 8857 } 8858 return rc; 8859 } 8860 8861 /* Overwrite content from pX into pDest. Only do the write if the 8862 ** content is different from what is already there. 8863 */ 8864 static int btreeOverwriteContent( 8865 MemPage *pPage, /* MemPage on which writing will occur */ 8866 u8 *pDest, /* Pointer to the place to start writing */ 8867 const BtreePayload *pX, /* Source of data to write */ 8868 int iOffset, /* Offset of first byte to write */ 8869 int iAmt /* Number of bytes to be written */ 8870 ){ 8871 int nData = pX->nData - iOffset; 8872 if( nData<=0 ){ 8873 /* Overwritting with zeros */ 8874 int i; 8875 for(i=0; i<iAmt && pDest[i]==0; i++){} 8876 if( i<iAmt ){ 8877 int rc = sqlite3PagerWrite(pPage->pDbPage); 8878 if( rc ) return rc; 8879 memset(pDest + i, 0, iAmt - i); 8880 } 8881 }else{ 8882 if( nData<iAmt ){ 8883 /* Mixed read data and zeros at the end. Make a recursive call 8884 ** to write the zeros then fall through to write the real data */ 8885 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8886 iAmt-nData); 8887 if( rc ) return rc; 8888 iAmt = nData; 8889 } 8890 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8891 int rc = sqlite3PagerWrite(pPage->pDbPage); 8892 if( rc ) return rc; 8893 /* In a corrupt database, it is possible for the source and destination 8894 ** buffers to overlap. This is harmless since the database is already 8895 ** corrupt but it does cause valgrind and ASAN warnings. So use 8896 ** memmove(). */ 8897 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8898 } 8899 } 8900 return SQLITE_OK; 8901 } 8902 8903 /* 8904 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8905 ** contained in pX. 8906 */ 8907 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8908 int iOffset; /* Next byte of pX->pData to write */ 8909 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8910 int rc; /* Return code */ 8911 MemPage *pPage = pCur->pPage; /* Page being written */ 8912 BtShared *pBt; /* Btree */ 8913 Pgno ovflPgno; /* Next overflow page to write */ 8914 u32 ovflPageSize; /* Size to write on overflow page */ 8915 8916 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8917 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8918 ){ 8919 return SQLITE_CORRUPT_BKPT; 8920 } 8921 /* Overwrite the local portion first */ 8922 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8923 0, pCur->info.nLocal); 8924 if( rc ) return rc; 8925 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8926 8927 /* Now overwrite the overflow pages */ 8928 iOffset = pCur->info.nLocal; 8929 assert( nTotal>=0 ); 8930 assert( iOffset>=0 ); 8931 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8932 pBt = pPage->pBt; 8933 ovflPageSize = pBt->usableSize - 4; 8934 do{ 8935 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8936 if( rc ) return rc; 8937 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8938 rc = SQLITE_CORRUPT_BKPT; 8939 }else{ 8940 if( iOffset+ovflPageSize<(u32)nTotal ){ 8941 ovflPgno = get4byte(pPage->aData); 8942 }else{ 8943 ovflPageSize = nTotal - iOffset; 8944 } 8945 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8946 iOffset, ovflPageSize); 8947 } 8948 sqlite3PagerUnref(pPage->pDbPage); 8949 if( rc ) return rc; 8950 iOffset += ovflPageSize; 8951 }while( iOffset<nTotal ); 8952 return SQLITE_OK; 8953 } 8954 8955 8956 /* 8957 ** Insert a new record into the BTree. The content of the new record 8958 ** is described by the pX object. The pCur cursor is used only to 8959 ** define what table the record should be inserted into, and is left 8960 ** pointing at a random location. 8961 ** 8962 ** For a table btree (used for rowid tables), only the pX.nKey value of 8963 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8964 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8965 ** hold the content of the row. 8966 ** 8967 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8968 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8969 ** pX.pData,nData,nZero fields must be zero. 8970 ** 8971 ** If the seekResult parameter is non-zero, then a successful call to 8972 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already 8973 ** been performed. In other words, if seekResult!=0 then the cursor 8974 ** is currently pointing to a cell that will be adjacent to the cell 8975 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8976 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8977 ** that is larger than (pKey,nKey). 8978 ** 8979 ** If seekResult==0, that means pCur is pointing at some unknown location. 8980 ** In that case, this routine must seek the cursor to the correct insertion 8981 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8982 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8983 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8984 ** to decode the key. 8985 */ 8986 int sqlite3BtreeInsert( 8987 BtCursor *pCur, /* Insert data into the table of this cursor */ 8988 const BtreePayload *pX, /* Content of the row to be inserted */ 8989 int flags, /* True if this is likely an append */ 8990 int seekResult /* Result of prior IndexMoveto() call */ 8991 ){ 8992 int rc; 8993 int loc = seekResult; /* -1: before desired location +1: after */ 8994 int szNew = 0; 8995 int idx; 8996 MemPage *pPage; 8997 Btree *p = pCur->pBtree; 8998 BtShared *pBt = p->pBt; 8999 unsigned char *oldCell; 9000 unsigned char *newCell = 0; 9001 9002 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 9003 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 9004 9005 /* Save the positions of any other cursors open on this table. 9006 ** 9007 ** In some cases, the call to btreeMoveto() below is a no-op. For 9008 ** example, when inserting data into a table with auto-generated integer 9009 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 9010 ** integer key to use. It then calls this function to actually insert the 9011 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 9012 ** that the cursor is already where it needs to be and returns without 9013 ** doing any work. To avoid thwarting these optimizations, it is important 9014 ** not to clear the cursor here. 9015 */ 9016 if( pCur->curFlags & BTCF_Multiple ){ 9017 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9018 if( rc ) return rc; 9019 if( loc && pCur->iPage<0 ){ 9020 /* This can only happen if the schema is corrupt such that there is more 9021 ** than one table or index with the same root page as used by the cursor. 9022 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 9023 ** the schema was loaded. This cannot be asserted though, as a user might 9024 ** set the flag, load the schema, and then unset the flag. */ 9025 return SQLITE_CORRUPT_BKPT; 9026 } 9027 } 9028 9029 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it 9030 ** points to a valid cell. 9031 */ 9032 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9033 testcase( pCur->eState==CURSOR_REQUIRESEEK ); 9034 testcase( pCur->eState==CURSOR_FAULT ); 9035 rc = moveToRoot(pCur); 9036 if( rc && rc!=SQLITE_EMPTY ) return rc; 9037 } 9038 9039 assert( cursorOwnsBtShared(pCur) ); 9040 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 9041 && pBt->inTransaction==TRANS_WRITE 9042 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9043 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9044 9045 /* Assert that the caller has been consistent. If this cursor was opened 9046 ** expecting an index b-tree, then the caller should be inserting blob 9047 ** keys with no associated data. If the cursor was opened expecting an 9048 ** intkey table, the caller should be inserting integer keys with a 9049 ** blob of associated data. */ 9050 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 9051 9052 if( pCur->pKeyInfo==0 ){ 9053 assert( pX->pKey==0 ); 9054 /* If this is an insert into a table b-tree, invalidate any incrblob 9055 ** cursors open on the row being replaced */ 9056 if( p->hasIncrblobCur ){ 9057 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 9058 } 9059 9060 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9061 ** to a row with the same key as the new entry being inserted. 9062 */ 9063 #ifdef SQLITE_DEBUG 9064 if( flags & BTREE_SAVEPOSITION ){ 9065 assert( pCur->curFlags & BTCF_ValidNKey ); 9066 assert( pX->nKey==pCur->info.nKey ); 9067 assert( loc==0 ); 9068 } 9069 #endif 9070 9071 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 9072 ** that the cursor is not pointing to a row to be overwritten. 9073 ** So do a complete check. 9074 */ 9075 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 9076 /* The cursor is pointing to the entry that is to be 9077 ** overwritten */ 9078 assert( pX->nData>=0 && pX->nZero>=0 ); 9079 if( pCur->info.nSize!=0 9080 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 9081 ){ 9082 /* New entry is the same size as the old. Do an overwrite */ 9083 return btreeOverwriteCell(pCur, pX); 9084 } 9085 assert( loc==0 ); 9086 }else if( loc==0 ){ 9087 /* The cursor is *not* pointing to the cell to be overwritten, nor 9088 ** to an adjacent cell. Move the cursor so that it is pointing either 9089 ** to the cell to be overwritten or an adjacent cell. 9090 */ 9091 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 9092 (flags & BTREE_APPEND)!=0, &loc); 9093 if( rc ) return rc; 9094 } 9095 }else{ 9096 /* This is an index or a WITHOUT ROWID table */ 9097 9098 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9099 ** to a row with the same key as the new entry being inserted. 9100 */ 9101 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 9102 9103 /* If the cursor is not already pointing either to the cell to be 9104 ** overwritten, or if a new cell is being inserted, if the cursor is 9105 ** not pointing to an immediately adjacent cell, then move the cursor 9106 ** so that it does. 9107 */ 9108 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 9109 if( pX->nMem ){ 9110 UnpackedRecord r; 9111 r.pKeyInfo = pCur->pKeyInfo; 9112 r.aMem = pX->aMem; 9113 r.nField = pX->nMem; 9114 r.default_rc = 0; 9115 r.eqSeen = 0; 9116 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 9117 }else{ 9118 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 9119 (flags & BTREE_APPEND)!=0, &loc); 9120 } 9121 if( rc ) return rc; 9122 } 9123 9124 /* If the cursor is currently pointing to an entry to be overwritten 9125 ** and the new content is the same as as the old, then use the 9126 ** overwrite optimization. 9127 */ 9128 if( loc==0 ){ 9129 getCellInfo(pCur); 9130 if( pCur->info.nKey==pX->nKey ){ 9131 BtreePayload x2; 9132 x2.pData = pX->pKey; 9133 x2.nData = pX->nKey; 9134 x2.nZero = 0; 9135 return btreeOverwriteCell(pCur, &x2); 9136 } 9137 } 9138 } 9139 assert( pCur->eState==CURSOR_VALID 9140 || (pCur->eState==CURSOR_INVALID && loc) ); 9141 9142 pPage = pCur->pPage; 9143 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 9144 assert( pPage->leaf || !pPage->intKey ); 9145 if( pPage->nFree<0 ){ 9146 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 9147 /* ^^^^^--- due to the moveToRoot() call above */ 9148 rc = SQLITE_CORRUPT_BKPT; 9149 }else{ 9150 rc = btreeComputeFreeSpace(pPage); 9151 } 9152 if( rc ) return rc; 9153 } 9154 9155 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 9156 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 9157 loc==0 ? "overwrite" : "new entry")); 9158 assert( pPage->isInit || CORRUPT_DB ); 9159 newCell = pBt->pTmpSpace; 9160 assert( newCell!=0 ); 9161 if( flags & BTREE_PREFORMAT ){ 9162 rc = SQLITE_OK; 9163 szNew = pBt->nPreformatSize; 9164 if( szNew<4 ) szNew = 4; 9165 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9166 CellInfo info; 9167 pPage->xParseCell(pPage, newCell, &info); 9168 if( info.nPayload!=info.nLocal ){ 9169 Pgno ovfl = get4byte(&newCell[szNew-4]); 9170 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9171 } 9172 } 9173 }else{ 9174 rc = fillInCell(pPage, newCell, pX, &szNew); 9175 } 9176 if( rc ) goto end_insert; 9177 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9178 assert( szNew <= MX_CELL_SIZE(pBt) ); 9179 idx = pCur->ix; 9180 if( loc==0 ){ 9181 CellInfo info; 9182 assert( idx>=0 ); 9183 if( idx>=pPage->nCell ){ 9184 return SQLITE_CORRUPT_BKPT; 9185 } 9186 rc = sqlite3PagerWrite(pPage->pDbPage); 9187 if( rc ){ 9188 goto end_insert; 9189 } 9190 oldCell = findCell(pPage, idx); 9191 if( !pPage->leaf ){ 9192 memcpy(newCell, oldCell, 4); 9193 } 9194 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9195 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9196 invalidateOverflowCache(pCur); 9197 if( info.nSize==szNew && info.nLocal==info.nPayload 9198 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9199 ){ 9200 /* Overwrite the old cell with the new if they are the same size. 9201 ** We could also try to do this if the old cell is smaller, then add 9202 ** the leftover space to the free list. But experiments show that 9203 ** doing that is no faster then skipping this optimization and just 9204 ** calling dropCell() and insertCell(). 9205 ** 9206 ** This optimization cannot be used on an autovacuum database if the 9207 ** new entry uses overflow pages, as the insertCell() call below is 9208 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9209 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9210 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9211 return SQLITE_CORRUPT_BKPT; 9212 } 9213 if( oldCell+szNew > pPage->aDataEnd ){ 9214 return SQLITE_CORRUPT_BKPT; 9215 } 9216 memcpy(oldCell, newCell, szNew); 9217 return SQLITE_OK; 9218 } 9219 dropCell(pPage, idx, info.nSize, &rc); 9220 if( rc ) goto end_insert; 9221 }else if( loc<0 && pPage->nCell>0 ){ 9222 assert( pPage->leaf ); 9223 idx = ++pCur->ix; 9224 pCur->curFlags &= ~BTCF_ValidNKey; 9225 }else{ 9226 assert( pPage->leaf ); 9227 } 9228 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9229 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9230 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9231 9232 /* If no error has occurred and pPage has an overflow cell, call balance() 9233 ** to redistribute the cells within the tree. Since balance() may move 9234 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9235 ** variables. 9236 ** 9237 ** Previous versions of SQLite called moveToRoot() to move the cursor 9238 ** back to the root page as balance() used to invalidate the contents 9239 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9240 ** set the cursor state to "invalid". This makes common insert operations 9241 ** slightly faster. 9242 ** 9243 ** There is a subtle but important optimization here too. When inserting 9244 ** multiple records into an intkey b-tree using a single cursor (as can 9245 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9246 ** is advantageous to leave the cursor pointing to the last entry in 9247 ** the b-tree if possible. If the cursor is left pointing to the last 9248 ** entry in the table, and the next row inserted has an integer key 9249 ** larger than the largest existing key, it is possible to insert the 9250 ** row without seeking the cursor. This can be a big performance boost. 9251 */ 9252 pCur->info.nSize = 0; 9253 if( pPage->nOverflow ){ 9254 assert( rc==SQLITE_OK ); 9255 pCur->curFlags &= ~(BTCF_ValidNKey); 9256 rc = balance(pCur); 9257 9258 /* Must make sure nOverflow is reset to zero even if the balance() 9259 ** fails. Internal data structure corruption will result otherwise. 9260 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9261 ** from trying to save the current position of the cursor. */ 9262 pCur->pPage->nOverflow = 0; 9263 pCur->eState = CURSOR_INVALID; 9264 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9265 btreeReleaseAllCursorPages(pCur); 9266 if( pCur->pKeyInfo ){ 9267 assert( pCur->pKey==0 ); 9268 pCur->pKey = sqlite3Malloc( pX->nKey ); 9269 if( pCur->pKey==0 ){ 9270 rc = SQLITE_NOMEM; 9271 }else{ 9272 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9273 } 9274 } 9275 pCur->eState = CURSOR_REQUIRESEEK; 9276 pCur->nKey = pX->nKey; 9277 } 9278 } 9279 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9280 9281 end_insert: 9282 return rc; 9283 } 9284 9285 /* 9286 ** This function is used as part of copying the current row from cursor 9287 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9288 ** parameter iKey is used as the rowid value when the record is copied 9289 ** into pDest. Otherwise, the record is copied verbatim. 9290 ** 9291 ** This function does not actually write the new value to cursor pDest. 9292 ** Instead, it creates and populates any required overflow pages and 9293 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9294 ** for the destination database. The size of the cell, in bytes, is left 9295 ** in BtShared.nPreformatSize. The caller completes the insertion by 9296 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9297 ** 9298 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9299 */ 9300 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9301 int rc = SQLITE_OK; 9302 BtShared *pBt = pDest->pBt; 9303 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9304 const u8 *aIn; /* Pointer to next input buffer */ 9305 u32 nIn; /* Size of input buffer aIn[] */ 9306 u32 nRem; /* Bytes of data still to copy */ 9307 9308 getCellInfo(pSrc); 9309 if( pSrc->info.nPayload<0x80 ){ 9310 *(aOut++) = pSrc->info.nPayload; 9311 }else{ 9312 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); 9313 } 9314 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9315 nIn = pSrc->info.nLocal; 9316 aIn = pSrc->info.pPayload; 9317 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9318 return SQLITE_CORRUPT_BKPT; 9319 } 9320 nRem = pSrc->info.nPayload; 9321 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9322 memcpy(aOut, aIn, nIn); 9323 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9324 }else{ 9325 Pager *pSrcPager = pSrc->pBt->pPager; 9326 u8 *pPgnoOut = 0; 9327 Pgno ovflIn = 0; 9328 DbPage *pPageIn = 0; 9329 MemPage *pPageOut = 0; 9330 u32 nOut; /* Size of output buffer aOut[] */ 9331 9332 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9333 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9334 if( nOut<pSrc->info.nPayload ){ 9335 pPgnoOut = &aOut[nOut]; 9336 pBt->nPreformatSize += 4; 9337 } 9338 9339 if( nRem>nIn ){ 9340 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9341 return SQLITE_CORRUPT_BKPT; 9342 } 9343 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9344 } 9345 9346 do { 9347 nRem -= nOut; 9348 do{ 9349 assert( nOut>0 ); 9350 if( nIn>0 ){ 9351 int nCopy = MIN(nOut, nIn); 9352 memcpy(aOut, aIn, nCopy); 9353 nOut -= nCopy; 9354 nIn -= nCopy; 9355 aOut += nCopy; 9356 aIn += nCopy; 9357 } 9358 if( nOut>0 ){ 9359 sqlite3PagerUnref(pPageIn); 9360 pPageIn = 0; 9361 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9362 if( rc==SQLITE_OK ){ 9363 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9364 ovflIn = get4byte(aIn); 9365 aIn += 4; 9366 nIn = pSrc->pBt->usableSize - 4; 9367 } 9368 } 9369 }while( rc==SQLITE_OK && nOut>0 ); 9370 9371 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9372 Pgno pgnoNew; 9373 MemPage *pNew = 0; 9374 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9375 put4byte(pPgnoOut, pgnoNew); 9376 if( ISAUTOVACUUM && pPageOut ){ 9377 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9378 } 9379 releasePage(pPageOut); 9380 pPageOut = pNew; 9381 if( pPageOut ){ 9382 pPgnoOut = pPageOut->aData; 9383 put4byte(pPgnoOut, 0); 9384 aOut = &pPgnoOut[4]; 9385 nOut = MIN(pBt->usableSize - 4, nRem); 9386 } 9387 } 9388 }while( nRem>0 && rc==SQLITE_OK ); 9389 9390 releasePage(pPageOut); 9391 sqlite3PagerUnref(pPageIn); 9392 } 9393 9394 return rc; 9395 } 9396 9397 /* 9398 ** Delete the entry that the cursor is pointing to. 9399 ** 9400 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9401 ** the cursor is left pointing at an arbitrary location after the delete. 9402 ** But if that bit is set, then the cursor is left in a state such that 9403 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9404 ** as it would have been on if the call to BtreeDelete() had been omitted. 9405 ** 9406 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9407 ** associated with a single table entry and its indexes. Only one of those 9408 ** deletes is considered the "primary" delete. The primary delete occurs 9409 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9410 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9411 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9412 ** but which might be used by alternative storage engines. 9413 */ 9414 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9415 Btree *p = pCur->pBtree; 9416 BtShared *pBt = p->pBt; 9417 int rc; /* Return code */ 9418 MemPage *pPage; /* Page to delete cell from */ 9419 unsigned char *pCell; /* Pointer to cell to delete */ 9420 int iCellIdx; /* Index of cell to delete */ 9421 int iCellDepth; /* Depth of node containing pCell */ 9422 CellInfo info; /* Size of the cell being deleted */ 9423 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9424 9425 assert( cursorOwnsBtShared(pCur) ); 9426 assert( pBt->inTransaction==TRANS_WRITE ); 9427 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9428 assert( pCur->curFlags & BTCF_WriteFlag ); 9429 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9430 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9431 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9432 if( pCur->eState!=CURSOR_VALID ){ 9433 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9434 rc = btreeRestoreCursorPosition(pCur); 9435 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9436 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9437 }else{ 9438 return SQLITE_CORRUPT_BKPT; 9439 } 9440 } 9441 assert( pCur->eState==CURSOR_VALID ); 9442 9443 iCellDepth = pCur->iPage; 9444 iCellIdx = pCur->ix; 9445 pPage = pCur->pPage; 9446 if( pPage->nCell<=iCellIdx ){ 9447 return SQLITE_CORRUPT_BKPT; 9448 } 9449 pCell = findCell(pPage, iCellIdx); 9450 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9451 return SQLITE_CORRUPT_BKPT; 9452 } 9453 9454 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9455 ** be preserved following this delete operation. If the current delete 9456 ** will cause a b-tree rebalance, then this is done by saving the cursor 9457 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9458 ** returning. 9459 ** 9460 ** If the current delete will not cause a rebalance, then the cursor 9461 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9462 ** before or after the deleted entry. 9463 ** 9464 ** The bPreserve value records which path is required: 9465 ** 9466 ** bPreserve==0 Not necessary to save the cursor position 9467 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9468 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9469 */ 9470 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9471 if( bPreserve ){ 9472 if( !pPage->leaf 9473 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > 9474 (int)(pBt->usableSize*2/3) 9475 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9476 ){ 9477 /* A b-tree rebalance will be required after deleting this entry. 9478 ** Save the cursor key. */ 9479 rc = saveCursorKey(pCur); 9480 if( rc ) return rc; 9481 }else{ 9482 bPreserve = 2; 9483 } 9484 } 9485 9486 /* If the page containing the entry to delete is not a leaf page, move 9487 ** the cursor to the largest entry in the tree that is smaller than 9488 ** the entry being deleted. This cell will replace the cell being deleted 9489 ** from the internal node. The 'previous' entry is used for this instead 9490 ** of the 'next' entry, as the previous entry is always a part of the 9491 ** sub-tree headed by the child page of the cell being deleted. This makes 9492 ** balancing the tree following the delete operation easier. */ 9493 if( !pPage->leaf ){ 9494 rc = sqlite3BtreePrevious(pCur, 0); 9495 assert( rc!=SQLITE_DONE ); 9496 if( rc ) return rc; 9497 } 9498 9499 /* Save the positions of any other cursors open on this table before 9500 ** making any modifications. */ 9501 if( pCur->curFlags & BTCF_Multiple ){ 9502 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9503 if( rc ) return rc; 9504 } 9505 9506 /* If this is a delete operation to remove a row from a table b-tree, 9507 ** invalidate any incrblob cursors open on the row being deleted. */ 9508 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9509 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9510 } 9511 9512 /* Make the page containing the entry to be deleted writable. Then free any 9513 ** overflow pages associated with the entry and finally remove the cell 9514 ** itself from within the page. */ 9515 rc = sqlite3PagerWrite(pPage->pDbPage); 9516 if( rc ) return rc; 9517 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9518 dropCell(pPage, iCellIdx, info.nSize, &rc); 9519 if( rc ) return rc; 9520 9521 /* If the cell deleted was not located on a leaf page, then the cursor 9522 ** is currently pointing to the largest entry in the sub-tree headed 9523 ** by the child-page of the cell that was just deleted from an internal 9524 ** node. The cell from the leaf node needs to be moved to the internal 9525 ** node to replace the deleted cell. */ 9526 if( !pPage->leaf ){ 9527 MemPage *pLeaf = pCur->pPage; 9528 int nCell; 9529 Pgno n; 9530 unsigned char *pTmp; 9531 9532 if( pLeaf->nFree<0 ){ 9533 rc = btreeComputeFreeSpace(pLeaf); 9534 if( rc ) return rc; 9535 } 9536 if( iCellDepth<pCur->iPage-1 ){ 9537 n = pCur->apPage[iCellDepth+1]->pgno; 9538 }else{ 9539 n = pCur->pPage->pgno; 9540 } 9541 pCell = findCell(pLeaf, pLeaf->nCell-1); 9542 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9543 nCell = pLeaf->xCellSize(pLeaf, pCell); 9544 assert( MX_CELL_SIZE(pBt) >= nCell ); 9545 pTmp = pBt->pTmpSpace; 9546 assert( pTmp!=0 ); 9547 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9548 if( rc==SQLITE_OK ){ 9549 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9550 } 9551 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9552 if( rc ) return rc; 9553 } 9554 9555 /* Balance the tree. If the entry deleted was located on a leaf page, 9556 ** then the cursor still points to that page. In this case the first 9557 ** call to balance() repairs the tree, and the if(...) condition is 9558 ** never true. 9559 ** 9560 ** Otherwise, if the entry deleted was on an internal node page, then 9561 ** pCur is pointing to the leaf page from which a cell was removed to 9562 ** replace the cell deleted from the internal node. This is slightly 9563 ** tricky as the leaf node may be underfull, and the internal node may 9564 ** be either under or overfull. In this case run the balancing algorithm 9565 ** on the leaf node first. If the balance proceeds far enough up the 9566 ** tree that we can be sure that any problem in the internal node has 9567 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9568 ** walk the cursor up the tree to the internal node and balance it as 9569 ** well. */ 9570 assert( pCur->pPage->nOverflow==0 ); 9571 assert( pCur->pPage->nFree>=0 ); 9572 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 9573 /* Optimization: If the free space is less than 2/3rds of the page, 9574 ** then balance() will always be a no-op. No need to invoke it. */ 9575 rc = SQLITE_OK; 9576 }else{ 9577 rc = balance(pCur); 9578 } 9579 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9580 releasePageNotNull(pCur->pPage); 9581 pCur->iPage--; 9582 while( pCur->iPage>iCellDepth ){ 9583 releasePage(pCur->apPage[pCur->iPage--]); 9584 } 9585 pCur->pPage = pCur->apPage[pCur->iPage]; 9586 rc = balance(pCur); 9587 } 9588 9589 if( rc==SQLITE_OK ){ 9590 if( bPreserve>1 ){ 9591 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9592 assert( pPage==pCur->pPage || CORRUPT_DB ); 9593 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9594 pCur->eState = CURSOR_SKIPNEXT; 9595 if( iCellIdx>=pPage->nCell ){ 9596 pCur->skipNext = -1; 9597 pCur->ix = pPage->nCell-1; 9598 }else{ 9599 pCur->skipNext = 1; 9600 } 9601 }else{ 9602 rc = moveToRoot(pCur); 9603 if( bPreserve ){ 9604 btreeReleaseAllCursorPages(pCur); 9605 pCur->eState = CURSOR_REQUIRESEEK; 9606 } 9607 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9608 } 9609 } 9610 return rc; 9611 } 9612 9613 /* 9614 ** Create a new BTree table. Write into *piTable the page 9615 ** number for the root page of the new table. 9616 ** 9617 ** The type of type is determined by the flags parameter. Only the 9618 ** following values of flags are currently in use. Other values for 9619 ** flags might not work: 9620 ** 9621 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9622 ** BTREE_ZERODATA Used for SQL indices 9623 */ 9624 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9625 BtShared *pBt = p->pBt; 9626 MemPage *pRoot; 9627 Pgno pgnoRoot; 9628 int rc; 9629 int ptfFlags; /* Page-type flage for the root page of new table */ 9630 9631 assert( sqlite3BtreeHoldsMutex(p) ); 9632 assert( pBt->inTransaction==TRANS_WRITE ); 9633 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9634 9635 #ifdef SQLITE_OMIT_AUTOVACUUM 9636 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9637 if( rc ){ 9638 return rc; 9639 } 9640 #else 9641 if( pBt->autoVacuum ){ 9642 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9643 MemPage *pPageMove; /* The page to move to. */ 9644 9645 /* Creating a new table may probably require moving an existing database 9646 ** to make room for the new tables root page. In case this page turns 9647 ** out to be an overflow page, delete all overflow page-map caches 9648 ** held by open cursors. 9649 */ 9650 invalidateAllOverflowCache(pBt); 9651 9652 /* Read the value of meta[3] from the database to determine where the 9653 ** root page of the new table should go. meta[3] is the largest root-page 9654 ** created so far, so the new root-page is (meta[3]+1). 9655 */ 9656 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9657 if( pgnoRoot>btreePagecount(pBt) ){ 9658 return SQLITE_CORRUPT_BKPT; 9659 } 9660 pgnoRoot++; 9661 9662 /* The new root-page may not be allocated on a pointer-map page, or the 9663 ** PENDING_BYTE page. 9664 */ 9665 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9666 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9667 pgnoRoot++; 9668 } 9669 assert( pgnoRoot>=3 ); 9670 9671 /* Allocate a page. The page that currently resides at pgnoRoot will 9672 ** be moved to the allocated page (unless the allocated page happens 9673 ** to reside at pgnoRoot). 9674 */ 9675 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9676 if( rc!=SQLITE_OK ){ 9677 return rc; 9678 } 9679 9680 if( pgnoMove!=pgnoRoot ){ 9681 /* pgnoRoot is the page that will be used for the root-page of 9682 ** the new table (assuming an error did not occur). But we were 9683 ** allocated pgnoMove. If required (i.e. if it was not allocated 9684 ** by extending the file), the current page at position pgnoMove 9685 ** is already journaled. 9686 */ 9687 u8 eType = 0; 9688 Pgno iPtrPage = 0; 9689 9690 /* Save the positions of any open cursors. This is required in 9691 ** case they are holding a reference to an xFetch reference 9692 ** corresponding to page pgnoRoot. */ 9693 rc = saveAllCursors(pBt, 0, 0); 9694 releasePage(pPageMove); 9695 if( rc!=SQLITE_OK ){ 9696 return rc; 9697 } 9698 9699 /* Move the page currently at pgnoRoot to pgnoMove. */ 9700 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9701 if( rc!=SQLITE_OK ){ 9702 return rc; 9703 } 9704 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9705 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9706 rc = SQLITE_CORRUPT_BKPT; 9707 } 9708 if( rc!=SQLITE_OK ){ 9709 releasePage(pRoot); 9710 return rc; 9711 } 9712 assert( eType!=PTRMAP_ROOTPAGE ); 9713 assert( eType!=PTRMAP_FREEPAGE ); 9714 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9715 releasePage(pRoot); 9716 9717 /* Obtain the page at pgnoRoot */ 9718 if( rc!=SQLITE_OK ){ 9719 return rc; 9720 } 9721 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9722 if( rc!=SQLITE_OK ){ 9723 return rc; 9724 } 9725 rc = sqlite3PagerWrite(pRoot->pDbPage); 9726 if( rc!=SQLITE_OK ){ 9727 releasePage(pRoot); 9728 return rc; 9729 } 9730 }else{ 9731 pRoot = pPageMove; 9732 } 9733 9734 /* Update the pointer-map and meta-data with the new root-page number. */ 9735 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9736 if( rc ){ 9737 releasePage(pRoot); 9738 return rc; 9739 } 9740 9741 /* When the new root page was allocated, page 1 was made writable in 9742 ** order either to increase the database filesize, or to decrement the 9743 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9744 */ 9745 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9746 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9747 if( NEVER(rc) ){ 9748 releasePage(pRoot); 9749 return rc; 9750 } 9751 9752 }else{ 9753 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9754 if( rc ) return rc; 9755 } 9756 #endif 9757 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9758 if( createTabFlags & BTREE_INTKEY ){ 9759 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9760 }else{ 9761 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9762 } 9763 zeroPage(pRoot, ptfFlags); 9764 sqlite3PagerUnref(pRoot->pDbPage); 9765 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9766 *piTable = pgnoRoot; 9767 return SQLITE_OK; 9768 } 9769 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9770 int rc; 9771 sqlite3BtreeEnter(p); 9772 rc = btreeCreateTable(p, piTable, flags); 9773 sqlite3BtreeLeave(p); 9774 return rc; 9775 } 9776 9777 /* 9778 ** Erase the given database page and all its children. Return 9779 ** the page to the freelist. 9780 */ 9781 static int clearDatabasePage( 9782 BtShared *pBt, /* The BTree that contains the table */ 9783 Pgno pgno, /* Page number to clear */ 9784 int freePageFlag, /* Deallocate page if true */ 9785 i64 *pnChange /* Add number of Cells freed to this counter */ 9786 ){ 9787 MemPage *pPage; 9788 int rc; 9789 unsigned char *pCell; 9790 int i; 9791 int hdr; 9792 CellInfo info; 9793 9794 assert( sqlite3_mutex_held(pBt->mutex) ); 9795 if( pgno>btreePagecount(pBt) ){ 9796 return SQLITE_CORRUPT_BKPT; 9797 } 9798 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9799 if( rc ) return rc; 9800 if( (pBt->openFlags & BTREE_SINGLE)==0 9801 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) 9802 ){ 9803 rc = SQLITE_CORRUPT_BKPT; 9804 goto cleardatabasepage_out; 9805 } 9806 hdr = pPage->hdrOffset; 9807 for(i=0; i<pPage->nCell; i++){ 9808 pCell = findCell(pPage, i); 9809 if( !pPage->leaf ){ 9810 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9811 if( rc ) goto cleardatabasepage_out; 9812 } 9813 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9814 if( rc ) goto cleardatabasepage_out; 9815 } 9816 if( !pPage->leaf ){ 9817 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9818 if( rc ) goto cleardatabasepage_out; 9819 if( pPage->intKey ) pnChange = 0; 9820 } 9821 if( pnChange ){ 9822 testcase( !pPage->intKey ); 9823 *pnChange += pPage->nCell; 9824 } 9825 if( freePageFlag ){ 9826 freePage(pPage, &rc); 9827 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9828 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9829 } 9830 9831 cleardatabasepage_out: 9832 releasePage(pPage); 9833 return rc; 9834 } 9835 9836 /* 9837 ** Delete all information from a single table in the database. iTable is 9838 ** the page number of the root of the table. After this routine returns, 9839 ** the root page is empty, but still exists. 9840 ** 9841 ** This routine will fail with SQLITE_LOCKED if there are any open 9842 ** read cursors on the table. Open write cursors are moved to the 9843 ** root of the table. 9844 ** 9845 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9846 ** is incremented by the number of entries in the table. 9847 */ 9848 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9849 int rc; 9850 BtShared *pBt = p->pBt; 9851 sqlite3BtreeEnter(p); 9852 assert( p->inTrans==TRANS_WRITE ); 9853 9854 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9855 9856 if( SQLITE_OK==rc ){ 9857 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9858 ** is the root of a table b-tree - if it is not, the following call is 9859 ** a no-op). */ 9860 if( p->hasIncrblobCur ){ 9861 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9862 } 9863 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9864 } 9865 sqlite3BtreeLeave(p); 9866 return rc; 9867 } 9868 9869 /* 9870 ** Delete all information from the single table that pCur is open on. 9871 ** 9872 ** This routine only work for pCur on an ephemeral table. 9873 */ 9874 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9875 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9876 } 9877 9878 /* 9879 ** Erase all information in a table and add the root of the table to 9880 ** the freelist. Except, the root of the principle table (the one on 9881 ** page 1) is never added to the freelist. 9882 ** 9883 ** This routine will fail with SQLITE_LOCKED if there are any open 9884 ** cursors on the table. 9885 ** 9886 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9887 ** root page in the database file, then the last root page 9888 ** in the database file is moved into the slot formerly occupied by 9889 ** iTable and that last slot formerly occupied by the last root page 9890 ** is added to the freelist instead of iTable. In this say, all 9891 ** root pages are kept at the beginning of the database file, which 9892 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9893 ** page number that used to be the last root page in the file before 9894 ** the move. If no page gets moved, *piMoved is set to 0. 9895 ** The last root page is recorded in meta[3] and the value of 9896 ** meta[3] is updated by this procedure. 9897 */ 9898 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9899 int rc; 9900 MemPage *pPage = 0; 9901 BtShared *pBt = p->pBt; 9902 9903 assert( sqlite3BtreeHoldsMutex(p) ); 9904 assert( p->inTrans==TRANS_WRITE ); 9905 assert( iTable>=2 ); 9906 if( iTable>btreePagecount(pBt) ){ 9907 return SQLITE_CORRUPT_BKPT; 9908 } 9909 9910 rc = sqlite3BtreeClearTable(p, iTable, 0); 9911 if( rc ) return rc; 9912 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9913 if( NEVER(rc) ){ 9914 releasePage(pPage); 9915 return rc; 9916 } 9917 9918 *piMoved = 0; 9919 9920 #ifdef SQLITE_OMIT_AUTOVACUUM 9921 freePage(pPage, &rc); 9922 releasePage(pPage); 9923 #else 9924 if( pBt->autoVacuum ){ 9925 Pgno maxRootPgno; 9926 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9927 9928 if( iTable==maxRootPgno ){ 9929 /* If the table being dropped is the table with the largest root-page 9930 ** number in the database, put the root page on the free list. 9931 */ 9932 freePage(pPage, &rc); 9933 releasePage(pPage); 9934 if( rc!=SQLITE_OK ){ 9935 return rc; 9936 } 9937 }else{ 9938 /* The table being dropped does not have the largest root-page 9939 ** number in the database. So move the page that does into the 9940 ** gap left by the deleted root-page. 9941 */ 9942 MemPage *pMove; 9943 releasePage(pPage); 9944 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9945 if( rc!=SQLITE_OK ){ 9946 return rc; 9947 } 9948 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9949 releasePage(pMove); 9950 if( rc!=SQLITE_OK ){ 9951 return rc; 9952 } 9953 pMove = 0; 9954 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9955 freePage(pMove, &rc); 9956 releasePage(pMove); 9957 if( rc!=SQLITE_OK ){ 9958 return rc; 9959 } 9960 *piMoved = maxRootPgno; 9961 } 9962 9963 /* Set the new 'max-root-page' value in the database header. This 9964 ** is the old value less one, less one more if that happens to 9965 ** be a root-page number, less one again if that is the 9966 ** PENDING_BYTE_PAGE. 9967 */ 9968 maxRootPgno--; 9969 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9970 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9971 maxRootPgno--; 9972 } 9973 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9974 9975 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9976 }else{ 9977 freePage(pPage, &rc); 9978 releasePage(pPage); 9979 } 9980 #endif 9981 return rc; 9982 } 9983 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9984 int rc; 9985 sqlite3BtreeEnter(p); 9986 rc = btreeDropTable(p, iTable, piMoved); 9987 sqlite3BtreeLeave(p); 9988 return rc; 9989 } 9990 9991 9992 /* 9993 ** This function may only be called if the b-tree connection already 9994 ** has a read or write transaction open on the database. 9995 ** 9996 ** Read the meta-information out of a database file. Meta[0] 9997 ** is the number of free pages currently in the database. Meta[1] 9998 ** through meta[15] are available for use by higher layers. Meta[0] 9999 ** is read-only, the others are read/write. 10000 ** 10001 ** The schema layer numbers meta values differently. At the schema 10002 ** layer (and the SetCookie and ReadCookie opcodes) the number of 10003 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 10004 ** 10005 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 10006 ** of reading the value out of the header, it instead loads the "DataVersion" 10007 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 10008 ** database file. It is a number computed by the pager. But its access 10009 ** pattern is the same as header meta values, and so it is convenient to 10010 ** read it from this routine. 10011 */ 10012 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 10013 BtShared *pBt = p->pBt; 10014 10015 sqlite3BtreeEnter(p); 10016 assert( p->inTrans>TRANS_NONE ); 10017 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 10018 assert( pBt->pPage1 ); 10019 assert( idx>=0 && idx<=15 ); 10020 10021 if( idx==BTREE_DATA_VERSION ){ 10022 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 10023 }else{ 10024 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 10025 } 10026 10027 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 10028 ** database, mark the database as read-only. */ 10029 #ifdef SQLITE_OMIT_AUTOVACUUM 10030 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 10031 pBt->btsFlags |= BTS_READ_ONLY; 10032 } 10033 #endif 10034 10035 sqlite3BtreeLeave(p); 10036 } 10037 10038 /* 10039 ** Write meta-information back into the database. Meta[0] is 10040 ** read-only and may not be written. 10041 */ 10042 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 10043 BtShared *pBt = p->pBt; 10044 unsigned char *pP1; 10045 int rc; 10046 assert( idx>=1 && idx<=15 ); 10047 sqlite3BtreeEnter(p); 10048 assert( p->inTrans==TRANS_WRITE ); 10049 assert( pBt->pPage1!=0 ); 10050 pP1 = pBt->pPage1->aData; 10051 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10052 if( rc==SQLITE_OK ){ 10053 put4byte(&pP1[36 + idx*4], iMeta); 10054 #ifndef SQLITE_OMIT_AUTOVACUUM 10055 if( idx==BTREE_INCR_VACUUM ){ 10056 assert( pBt->autoVacuum || iMeta==0 ); 10057 assert( iMeta==0 || iMeta==1 ); 10058 pBt->incrVacuum = (u8)iMeta; 10059 } 10060 #endif 10061 } 10062 sqlite3BtreeLeave(p); 10063 return rc; 10064 } 10065 10066 /* 10067 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 10068 ** number of entries in the b-tree and write the result to *pnEntry. 10069 ** 10070 ** SQLITE_OK is returned if the operation is successfully executed. 10071 ** Otherwise, if an error is encountered (i.e. an IO error or database 10072 ** corruption) an SQLite error code is returned. 10073 */ 10074 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 10075 i64 nEntry = 0; /* Value to return in *pnEntry */ 10076 int rc; /* Return code */ 10077 10078 rc = moveToRoot(pCur); 10079 if( rc==SQLITE_EMPTY ){ 10080 *pnEntry = 0; 10081 return SQLITE_OK; 10082 } 10083 10084 /* Unless an error occurs, the following loop runs one iteration for each 10085 ** page in the B-Tree structure (not including overflow pages). 10086 */ 10087 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 10088 int iIdx; /* Index of child node in parent */ 10089 MemPage *pPage; /* Current page of the b-tree */ 10090 10091 /* If this is a leaf page or the tree is not an int-key tree, then 10092 ** this page contains countable entries. Increment the entry counter 10093 ** accordingly. 10094 */ 10095 pPage = pCur->pPage; 10096 if( pPage->leaf || !pPage->intKey ){ 10097 nEntry += pPage->nCell; 10098 } 10099 10100 /* pPage is a leaf node. This loop navigates the cursor so that it 10101 ** points to the first interior cell that it points to the parent of 10102 ** the next page in the tree that has not yet been visited. The 10103 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 10104 ** of the page, or to the number of cells in the page if the next page 10105 ** to visit is the right-child of its parent. 10106 ** 10107 ** If all pages in the tree have been visited, return SQLITE_OK to the 10108 ** caller. 10109 */ 10110 if( pPage->leaf ){ 10111 do { 10112 if( pCur->iPage==0 ){ 10113 /* All pages of the b-tree have been visited. Return successfully. */ 10114 *pnEntry = nEntry; 10115 return moveToRoot(pCur); 10116 } 10117 moveToParent(pCur); 10118 }while ( pCur->ix>=pCur->pPage->nCell ); 10119 10120 pCur->ix++; 10121 pPage = pCur->pPage; 10122 } 10123 10124 /* Descend to the child node of the cell that the cursor currently 10125 ** points at. This is the right-child if (iIdx==pPage->nCell). 10126 */ 10127 iIdx = pCur->ix; 10128 if( iIdx==pPage->nCell ){ 10129 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 10130 }else{ 10131 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 10132 } 10133 } 10134 10135 /* An error has occurred. Return an error code. */ 10136 return rc; 10137 } 10138 10139 /* 10140 ** Return the pager associated with a BTree. This routine is used for 10141 ** testing and debugging only. 10142 */ 10143 Pager *sqlite3BtreePager(Btree *p){ 10144 return p->pBt->pPager; 10145 } 10146 10147 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10148 /* 10149 ** Append a message to the error message string. 10150 */ 10151 static void checkAppendMsg( 10152 IntegrityCk *pCheck, 10153 const char *zFormat, 10154 ... 10155 ){ 10156 va_list ap; 10157 if( !pCheck->mxErr ) return; 10158 pCheck->mxErr--; 10159 pCheck->nErr++; 10160 va_start(ap, zFormat); 10161 if( pCheck->errMsg.nChar ){ 10162 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 10163 } 10164 if( pCheck->zPfx ){ 10165 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 10166 } 10167 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 10168 va_end(ap); 10169 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 10170 pCheck->bOomFault = 1; 10171 } 10172 } 10173 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10174 10175 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10176 10177 /* 10178 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 10179 ** corresponds to page iPg is already set. 10180 */ 10181 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10182 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10183 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10184 } 10185 10186 /* 10187 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10188 */ 10189 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10190 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10191 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10192 } 10193 10194 10195 /* 10196 ** Add 1 to the reference count for page iPage. If this is the second 10197 ** reference to the page, add an error message to pCheck->zErrMsg. 10198 ** Return 1 if there are 2 or more references to the page and 0 if 10199 ** if this is the first reference to the page. 10200 ** 10201 ** Also check that the page number is in bounds. 10202 */ 10203 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10204 if( iPage>pCheck->nPage || iPage==0 ){ 10205 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10206 return 1; 10207 } 10208 if( getPageReferenced(pCheck, iPage) ){ 10209 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10210 return 1; 10211 } 10212 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10213 setPageReferenced(pCheck, iPage); 10214 return 0; 10215 } 10216 10217 #ifndef SQLITE_OMIT_AUTOVACUUM 10218 /* 10219 ** Check that the entry in the pointer-map for page iChild maps to 10220 ** page iParent, pointer type ptrType. If not, append an error message 10221 ** to pCheck. 10222 */ 10223 static void checkPtrmap( 10224 IntegrityCk *pCheck, /* Integrity check context */ 10225 Pgno iChild, /* Child page number */ 10226 u8 eType, /* Expected pointer map type */ 10227 Pgno iParent /* Expected pointer map parent page number */ 10228 ){ 10229 int rc; 10230 u8 ePtrmapType; 10231 Pgno iPtrmapParent; 10232 10233 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10234 if( rc!=SQLITE_OK ){ 10235 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10236 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10237 return; 10238 } 10239 10240 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10241 checkAppendMsg(pCheck, 10242 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10243 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10244 } 10245 } 10246 #endif 10247 10248 /* 10249 ** Check the integrity of the freelist or of an overflow page list. 10250 ** Verify that the number of pages on the list is N. 10251 */ 10252 static void checkList( 10253 IntegrityCk *pCheck, /* Integrity checking context */ 10254 int isFreeList, /* True for a freelist. False for overflow page list */ 10255 Pgno iPage, /* Page number for first page in the list */ 10256 u32 N /* Expected number of pages in the list */ 10257 ){ 10258 int i; 10259 u32 expected = N; 10260 int nErrAtStart = pCheck->nErr; 10261 while( iPage!=0 && pCheck->mxErr ){ 10262 DbPage *pOvflPage; 10263 unsigned char *pOvflData; 10264 if( checkRef(pCheck, iPage) ) break; 10265 N--; 10266 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10267 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10268 break; 10269 } 10270 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10271 if( isFreeList ){ 10272 u32 n = (u32)get4byte(&pOvflData[4]); 10273 #ifndef SQLITE_OMIT_AUTOVACUUM 10274 if( pCheck->pBt->autoVacuum ){ 10275 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10276 } 10277 #endif 10278 if( n>pCheck->pBt->usableSize/4-2 ){ 10279 checkAppendMsg(pCheck, 10280 "freelist leaf count too big on page %d", iPage); 10281 N--; 10282 }else{ 10283 for(i=0; i<(int)n; i++){ 10284 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10285 #ifndef SQLITE_OMIT_AUTOVACUUM 10286 if( pCheck->pBt->autoVacuum ){ 10287 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10288 } 10289 #endif 10290 checkRef(pCheck, iFreePage); 10291 } 10292 N -= n; 10293 } 10294 } 10295 #ifndef SQLITE_OMIT_AUTOVACUUM 10296 else{ 10297 /* If this database supports auto-vacuum and iPage is not the last 10298 ** page in this overflow list, check that the pointer-map entry for 10299 ** the following page matches iPage. 10300 */ 10301 if( pCheck->pBt->autoVacuum && N>0 ){ 10302 i = get4byte(pOvflData); 10303 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10304 } 10305 } 10306 #endif 10307 iPage = get4byte(pOvflData); 10308 sqlite3PagerUnref(pOvflPage); 10309 } 10310 if( N && nErrAtStart==pCheck->nErr ){ 10311 checkAppendMsg(pCheck, 10312 "%s is %d but should be %d", 10313 isFreeList ? "size" : "overflow list length", 10314 expected-N, expected); 10315 } 10316 } 10317 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10318 10319 /* 10320 ** An implementation of a min-heap. 10321 ** 10322 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10323 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10324 ** and aHeap[N*2+1]. 10325 ** 10326 ** The heap property is this: Every node is less than or equal to both 10327 ** of its daughter nodes. A consequence of the heap property is that the 10328 ** root node aHeap[1] is always the minimum value currently in the heap. 10329 ** 10330 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10331 ** the heap, preserving the heap property. The btreeHeapPull() routine 10332 ** removes the root element from the heap (the minimum value in the heap) 10333 ** and then moves other nodes around as necessary to preserve the heap 10334 ** property. 10335 ** 10336 ** This heap is used for cell overlap and coverage testing. Each u32 10337 ** entry represents the span of a cell or freeblock on a btree page. 10338 ** The upper 16 bits are the index of the first byte of a range and the 10339 ** lower 16 bits are the index of the last byte of that range. 10340 */ 10341 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10342 u32 j, i = ++aHeap[0]; 10343 aHeap[i] = x; 10344 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10345 x = aHeap[j]; 10346 aHeap[j] = aHeap[i]; 10347 aHeap[i] = x; 10348 i = j; 10349 } 10350 } 10351 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10352 u32 j, i, x; 10353 if( (x = aHeap[0])==0 ) return 0; 10354 *pOut = aHeap[1]; 10355 aHeap[1] = aHeap[x]; 10356 aHeap[x] = 0xffffffff; 10357 aHeap[0]--; 10358 i = 1; 10359 while( (j = i*2)<=aHeap[0] ){ 10360 if( aHeap[j]>aHeap[j+1] ) j++; 10361 if( aHeap[i]<aHeap[j] ) break; 10362 x = aHeap[i]; 10363 aHeap[i] = aHeap[j]; 10364 aHeap[j] = x; 10365 i = j; 10366 } 10367 return 1; 10368 } 10369 10370 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10371 /* 10372 ** Do various sanity checks on a single page of a tree. Return 10373 ** the tree depth. Root pages return 0. Parents of root pages 10374 ** return 1, and so forth. 10375 ** 10376 ** These checks are done: 10377 ** 10378 ** 1. Make sure that cells and freeblocks do not overlap 10379 ** but combine to completely cover the page. 10380 ** 2. Make sure integer cell keys are in order. 10381 ** 3. Check the integrity of overflow pages. 10382 ** 4. Recursively call checkTreePage on all children. 10383 ** 5. Verify that the depth of all children is the same. 10384 */ 10385 static int checkTreePage( 10386 IntegrityCk *pCheck, /* Context for the sanity check */ 10387 Pgno iPage, /* Page number of the page to check */ 10388 i64 *piMinKey, /* Write minimum integer primary key here */ 10389 i64 maxKey /* Error if integer primary key greater than this */ 10390 ){ 10391 MemPage *pPage = 0; /* The page being analyzed */ 10392 int i; /* Loop counter */ 10393 int rc; /* Result code from subroutine call */ 10394 int depth = -1, d2; /* Depth of a subtree */ 10395 int pgno; /* Page number */ 10396 int nFrag; /* Number of fragmented bytes on the page */ 10397 int hdr; /* Offset to the page header */ 10398 int cellStart; /* Offset to the start of the cell pointer array */ 10399 int nCell; /* Number of cells */ 10400 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10401 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10402 ** False if IPK must be strictly less than maxKey */ 10403 u8 *data; /* Page content */ 10404 u8 *pCell; /* Cell content */ 10405 u8 *pCellIdx; /* Next element of the cell pointer array */ 10406 BtShared *pBt; /* The BtShared object that owns pPage */ 10407 u32 pc; /* Address of a cell */ 10408 u32 usableSize; /* Usable size of the page */ 10409 u32 contentOffset; /* Offset to the start of the cell content area */ 10410 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10411 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10412 const char *saved_zPfx = pCheck->zPfx; 10413 int saved_v1 = pCheck->v1; 10414 int saved_v2 = pCheck->v2; 10415 u8 savedIsInit = 0; 10416 10417 /* Check that the page exists 10418 */ 10419 pBt = pCheck->pBt; 10420 usableSize = pBt->usableSize; 10421 if( iPage==0 ) return 0; 10422 if( checkRef(pCheck, iPage) ) return 0; 10423 pCheck->zPfx = "Page %u: "; 10424 pCheck->v1 = iPage; 10425 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10426 checkAppendMsg(pCheck, 10427 "unable to get the page. error code=%d", rc); 10428 goto end_of_check; 10429 } 10430 10431 /* Clear MemPage.isInit to make sure the corruption detection code in 10432 ** btreeInitPage() is executed. */ 10433 savedIsInit = pPage->isInit; 10434 pPage->isInit = 0; 10435 if( (rc = btreeInitPage(pPage))!=0 ){ 10436 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10437 checkAppendMsg(pCheck, 10438 "btreeInitPage() returns error code %d", rc); 10439 goto end_of_check; 10440 } 10441 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10442 assert( rc==SQLITE_CORRUPT ); 10443 checkAppendMsg(pCheck, "free space corruption", rc); 10444 goto end_of_check; 10445 } 10446 data = pPage->aData; 10447 hdr = pPage->hdrOffset; 10448 10449 /* Set up for cell analysis */ 10450 pCheck->zPfx = "On tree page %u cell %d: "; 10451 contentOffset = get2byteNotZero(&data[hdr+5]); 10452 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10453 10454 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10455 ** number of cells on the page. */ 10456 nCell = get2byte(&data[hdr+3]); 10457 assert( pPage->nCell==nCell ); 10458 10459 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10460 ** immediately follows the b-tree page header. */ 10461 cellStart = hdr + 12 - 4*pPage->leaf; 10462 assert( pPage->aCellIdx==&data[cellStart] ); 10463 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10464 10465 if( !pPage->leaf ){ 10466 /* Analyze the right-child page of internal pages */ 10467 pgno = get4byte(&data[hdr+8]); 10468 #ifndef SQLITE_OMIT_AUTOVACUUM 10469 if( pBt->autoVacuum ){ 10470 pCheck->zPfx = "On page %u at right child: "; 10471 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10472 } 10473 #endif 10474 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10475 keyCanBeEqual = 0; 10476 }else{ 10477 /* For leaf pages, the coverage check will occur in the same loop 10478 ** as the other cell checks, so initialize the heap. */ 10479 heap = pCheck->heap; 10480 heap[0] = 0; 10481 } 10482 10483 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10484 ** integer offsets to the cell contents. */ 10485 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10486 CellInfo info; 10487 10488 /* Check cell size */ 10489 pCheck->v2 = i; 10490 assert( pCellIdx==&data[cellStart + i*2] ); 10491 pc = get2byteAligned(pCellIdx); 10492 pCellIdx -= 2; 10493 if( pc<contentOffset || pc>usableSize-4 ){ 10494 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10495 pc, contentOffset, usableSize-4); 10496 doCoverageCheck = 0; 10497 continue; 10498 } 10499 pCell = &data[pc]; 10500 pPage->xParseCell(pPage, pCell, &info); 10501 if( pc+info.nSize>usableSize ){ 10502 checkAppendMsg(pCheck, "Extends off end of page"); 10503 doCoverageCheck = 0; 10504 continue; 10505 } 10506 10507 /* Check for integer primary key out of range */ 10508 if( pPage->intKey ){ 10509 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10510 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10511 } 10512 maxKey = info.nKey; 10513 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10514 } 10515 10516 /* Check the content overflow list */ 10517 if( info.nPayload>info.nLocal ){ 10518 u32 nPage; /* Number of pages on the overflow chain */ 10519 Pgno pgnoOvfl; /* First page of the overflow chain */ 10520 assert( pc + info.nSize - 4 <= usableSize ); 10521 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10522 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10523 #ifndef SQLITE_OMIT_AUTOVACUUM 10524 if( pBt->autoVacuum ){ 10525 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10526 } 10527 #endif 10528 checkList(pCheck, 0, pgnoOvfl, nPage); 10529 } 10530 10531 if( !pPage->leaf ){ 10532 /* Check sanity of left child page for internal pages */ 10533 pgno = get4byte(pCell); 10534 #ifndef SQLITE_OMIT_AUTOVACUUM 10535 if( pBt->autoVacuum ){ 10536 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10537 } 10538 #endif 10539 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10540 keyCanBeEqual = 0; 10541 if( d2!=depth ){ 10542 checkAppendMsg(pCheck, "Child page depth differs"); 10543 depth = d2; 10544 } 10545 }else{ 10546 /* Populate the coverage-checking heap for leaf pages */ 10547 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10548 } 10549 } 10550 *piMinKey = maxKey; 10551 10552 /* Check for complete coverage of the page 10553 */ 10554 pCheck->zPfx = 0; 10555 if( doCoverageCheck && pCheck->mxErr>0 ){ 10556 /* For leaf pages, the min-heap has already been initialized and the 10557 ** cells have already been inserted. But for internal pages, that has 10558 ** not yet been done, so do it now */ 10559 if( !pPage->leaf ){ 10560 heap = pCheck->heap; 10561 heap[0] = 0; 10562 for(i=nCell-1; i>=0; i--){ 10563 u32 size; 10564 pc = get2byteAligned(&data[cellStart+i*2]); 10565 size = pPage->xCellSize(pPage, &data[pc]); 10566 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10567 } 10568 } 10569 /* Add the freeblocks to the min-heap 10570 ** 10571 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10572 ** is the offset of the first freeblock, or zero if there are no 10573 ** freeblocks on the page. 10574 */ 10575 i = get2byte(&data[hdr+1]); 10576 while( i>0 ){ 10577 int size, j; 10578 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10579 size = get2byte(&data[i+2]); 10580 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10581 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10582 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10583 ** big-endian integer which is the offset in the b-tree page of the next 10584 ** freeblock in the chain, or zero if the freeblock is the last on the 10585 ** chain. */ 10586 j = get2byte(&data[i]); 10587 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10588 ** increasing offset. */ 10589 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10590 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10591 i = j; 10592 } 10593 /* Analyze the min-heap looking for overlap between cells and/or 10594 ** freeblocks, and counting the number of untracked bytes in nFrag. 10595 ** 10596 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10597 ** There is an implied first entry the covers the page header, the cell 10598 ** pointer index, and the gap between the cell pointer index and the start 10599 ** of cell content. 10600 ** 10601 ** The loop below pulls entries from the min-heap in order and compares 10602 ** the start_address against the previous end_address. If there is an 10603 ** overlap, that means bytes are used multiple times. If there is a gap, 10604 ** that gap is added to the fragmentation count. 10605 */ 10606 nFrag = 0; 10607 prev = contentOffset - 1; /* Implied first min-heap entry */ 10608 while( btreeHeapPull(heap,&x) ){ 10609 if( (prev&0xffff)>=(x>>16) ){ 10610 checkAppendMsg(pCheck, 10611 "Multiple uses for byte %u of page %u", x>>16, iPage); 10612 break; 10613 }else{ 10614 nFrag += (x>>16) - (prev&0xffff) - 1; 10615 prev = x; 10616 } 10617 } 10618 nFrag += usableSize - (prev&0xffff) - 1; 10619 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10620 ** is stored in the fifth field of the b-tree page header. 10621 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10622 ** number of fragmented free bytes within the cell content area. 10623 */ 10624 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10625 checkAppendMsg(pCheck, 10626 "Fragmentation of %d bytes reported as %d on page %u", 10627 nFrag, data[hdr+7], iPage); 10628 } 10629 } 10630 10631 end_of_check: 10632 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10633 releasePage(pPage); 10634 pCheck->zPfx = saved_zPfx; 10635 pCheck->v1 = saved_v1; 10636 pCheck->v2 = saved_v2; 10637 return depth+1; 10638 } 10639 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10640 10641 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10642 /* 10643 ** This routine does a complete check of the given BTree file. aRoot[] is 10644 ** an array of pages numbers were each page number is the root page of 10645 ** a table. nRoot is the number of entries in aRoot. 10646 ** 10647 ** A read-only or read-write transaction must be opened before calling 10648 ** this function. 10649 ** 10650 ** Write the number of error seen in *pnErr. Except for some memory 10651 ** allocation errors, an error message held in memory obtained from 10652 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10653 ** returned. If a memory allocation error occurs, NULL is returned. 10654 ** 10655 ** If the first entry in aRoot[] is 0, that indicates that the list of 10656 ** root pages is incomplete. This is a "partial integrity-check". This 10657 ** happens when performing an integrity check on a single table. The 10658 ** zero is skipped, of course. But in addition, the freelist checks 10659 ** and the checks to make sure every page is referenced are also skipped, 10660 ** since obviously it is not possible to know which pages are covered by 10661 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10662 ** checks are still performed. 10663 */ 10664 char *sqlite3BtreeIntegrityCheck( 10665 sqlite3 *db, /* Database connection that is running the check */ 10666 Btree *p, /* The btree to be checked */ 10667 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10668 int nRoot, /* Number of entries in aRoot[] */ 10669 int mxErr, /* Stop reporting errors after this many */ 10670 int *pnErr /* Write number of errors seen to this variable */ 10671 ){ 10672 Pgno i; 10673 IntegrityCk sCheck; 10674 BtShared *pBt = p->pBt; 10675 u64 savedDbFlags = pBt->db->flags; 10676 char zErr[100]; 10677 int bPartial = 0; /* True if not checking all btrees */ 10678 int bCkFreelist = 1; /* True to scan the freelist */ 10679 VVA_ONLY( int nRef ); 10680 assert( nRoot>0 ); 10681 10682 /* aRoot[0]==0 means this is a partial check */ 10683 if( aRoot[0]==0 ){ 10684 assert( nRoot>1 ); 10685 bPartial = 1; 10686 if( aRoot[1]!=1 ) bCkFreelist = 0; 10687 } 10688 10689 sqlite3BtreeEnter(p); 10690 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10691 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10692 assert( nRef>=0 ); 10693 sCheck.db = db; 10694 sCheck.pBt = pBt; 10695 sCheck.pPager = pBt->pPager; 10696 sCheck.nPage = btreePagecount(sCheck.pBt); 10697 sCheck.mxErr = mxErr; 10698 sCheck.nErr = 0; 10699 sCheck.bOomFault = 0; 10700 sCheck.zPfx = 0; 10701 sCheck.v1 = 0; 10702 sCheck.v2 = 0; 10703 sCheck.aPgRef = 0; 10704 sCheck.heap = 0; 10705 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10706 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10707 if( sCheck.nPage==0 ){ 10708 goto integrity_ck_cleanup; 10709 } 10710 10711 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10712 if( !sCheck.aPgRef ){ 10713 sCheck.bOomFault = 1; 10714 goto integrity_ck_cleanup; 10715 } 10716 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10717 if( sCheck.heap==0 ){ 10718 sCheck.bOomFault = 1; 10719 goto integrity_ck_cleanup; 10720 } 10721 10722 i = PENDING_BYTE_PAGE(pBt); 10723 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10724 10725 /* Check the integrity of the freelist 10726 */ 10727 if( bCkFreelist ){ 10728 sCheck.zPfx = "Main freelist: "; 10729 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10730 get4byte(&pBt->pPage1->aData[36])); 10731 sCheck.zPfx = 0; 10732 } 10733 10734 /* Check all the tables. 10735 */ 10736 #ifndef SQLITE_OMIT_AUTOVACUUM 10737 if( !bPartial ){ 10738 if( pBt->autoVacuum ){ 10739 Pgno mx = 0; 10740 Pgno mxInHdr; 10741 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10742 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10743 if( mx!=mxInHdr ){ 10744 checkAppendMsg(&sCheck, 10745 "max rootpage (%d) disagrees with header (%d)", 10746 mx, mxInHdr 10747 ); 10748 } 10749 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10750 checkAppendMsg(&sCheck, 10751 "incremental_vacuum enabled with a max rootpage of zero" 10752 ); 10753 } 10754 } 10755 #endif 10756 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10757 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10758 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10759 i64 notUsed; 10760 if( aRoot[i]==0 ) continue; 10761 #ifndef SQLITE_OMIT_AUTOVACUUM 10762 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10763 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10764 } 10765 #endif 10766 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10767 } 10768 pBt->db->flags = savedDbFlags; 10769 10770 /* Make sure every page in the file is referenced 10771 */ 10772 if( !bPartial ){ 10773 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10774 #ifdef SQLITE_OMIT_AUTOVACUUM 10775 if( getPageReferenced(&sCheck, i)==0 ){ 10776 checkAppendMsg(&sCheck, "Page %d is never used", i); 10777 } 10778 #else 10779 /* If the database supports auto-vacuum, make sure no tables contain 10780 ** references to pointer-map pages. 10781 */ 10782 if( getPageReferenced(&sCheck, i)==0 && 10783 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10784 checkAppendMsg(&sCheck, "Page %d is never used", i); 10785 } 10786 if( getPageReferenced(&sCheck, i)!=0 && 10787 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10788 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10789 } 10790 #endif 10791 } 10792 } 10793 10794 /* Clean up and report errors. 10795 */ 10796 integrity_ck_cleanup: 10797 sqlite3PageFree(sCheck.heap); 10798 sqlite3_free(sCheck.aPgRef); 10799 if( sCheck.bOomFault ){ 10800 sqlite3_str_reset(&sCheck.errMsg); 10801 sCheck.nErr++; 10802 } 10803 *pnErr = sCheck.nErr; 10804 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10805 /* Make sure this analysis did not leave any unref() pages. */ 10806 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10807 sqlite3BtreeLeave(p); 10808 return sqlite3StrAccumFinish(&sCheck.errMsg); 10809 } 10810 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10811 10812 /* 10813 ** Return the full pathname of the underlying database file. Return 10814 ** an empty string if the database is in-memory or a TEMP database. 10815 ** 10816 ** The pager filename is invariant as long as the pager is 10817 ** open so it is safe to access without the BtShared mutex. 10818 */ 10819 const char *sqlite3BtreeGetFilename(Btree *p){ 10820 assert( p->pBt->pPager!=0 ); 10821 return sqlite3PagerFilename(p->pBt->pPager, 1); 10822 } 10823 10824 /* 10825 ** Return the pathname of the journal file for this database. The return 10826 ** value of this routine is the same regardless of whether the journal file 10827 ** has been created or not. 10828 ** 10829 ** The pager journal filename is invariant as long as the pager is 10830 ** open so it is safe to access without the BtShared mutex. 10831 */ 10832 const char *sqlite3BtreeGetJournalname(Btree *p){ 10833 assert( p->pBt->pPager!=0 ); 10834 return sqlite3PagerJournalname(p->pBt->pPager); 10835 } 10836 10837 /* 10838 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10839 ** to describe the current transaction state of Btree p. 10840 */ 10841 int sqlite3BtreeTxnState(Btree *p){ 10842 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10843 return p ? p->inTrans : 0; 10844 } 10845 10846 #ifndef SQLITE_OMIT_WAL 10847 /* 10848 ** Run a checkpoint on the Btree passed as the first argument. 10849 ** 10850 ** Return SQLITE_LOCKED if this or any other connection has an open 10851 ** transaction on the shared-cache the argument Btree is connected to. 10852 ** 10853 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10854 */ 10855 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10856 int rc = SQLITE_OK; 10857 if( p ){ 10858 BtShared *pBt = p->pBt; 10859 sqlite3BtreeEnter(p); 10860 if( pBt->inTransaction!=TRANS_NONE ){ 10861 rc = SQLITE_LOCKED; 10862 }else{ 10863 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10864 } 10865 sqlite3BtreeLeave(p); 10866 } 10867 return rc; 10868 } 10869 #endif 10870 10871 /* 10872 ** Return true if there is currently a backup running on Btree p. 10873 */ 10874 int sqlite3BtreeIsInBackup(Btree *p){ 10875 assert( p ); 10876 assert( sqlite3_mutex_held(p->db->mutex) ); 10877 return p->nBackup!=0; 10878 } 10879 10880 /* 10881 ** This function returns a pointer to a blob of memory associated with 10882 ** a single shared-btree. The memory is used by client code for its own 10883 ** purposes (for example, to store a high-level schema associated with 10884 ** the shared-btree). The btree layer manages reference counting issues. 10885 ** 10886 ** The first time this is called on a shared-btree, nBytes bytes of memory 10887 ** are allocated, zeroed, and returned to the caller. For each subsequent 10888 ** call the nBytes parameter is ignored and a pointer to the same blob 10889 ** of memory returned. 10890 ** 10891 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10892 ** allocated, a null pointer is returned. If the blob has already been 10893 ** allocated, it is returned as normal. 10894 ** 10895 ** Just before the shared-btree is closed, the function passed as the 10896 ** xFree argument when the memory allocation was made is invoked on the 10897 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10898 ** on the memory, the btree layer does that. 10899 */ 10900 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10901 BtShared *pBt = p->pBt; 10902 sqlite3BtreeEnter(p); 10903 if( !pBt->pSchema && nBytes ){ 10904 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10905 pBt->xFreeSchema = xFree; 10906 } 10907 sqlite3BtreeLeave(p); 10908 return pBt->pSchema; 10909 } 10910 10911 /* 10912 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10913 ** btree as the argument handle holds an exclusive lock on the 10914 ** sqlite_schema table. Otherwise SQLITE_OK. 10915 */ 10916 int sqlite3BtreeSchemaLocked(Btree *p){ 10917 int rc; 10918 assert( sqlite3_mutex_held(p->db->mutex) ); 10919 sqlite3BtreeEnter(p); 10920 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10921 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10922 sqlite3BtreeLeave(p); 10923 return rc; 10924 } 10925 10926 10927 #ifndef SQLITE_OMIT_SHARED_CACHE 10928 /* 10929 ** Obtain a lock on the table whose root page is iTab. The 10930 ** lock is a write lock if isWritelock is true or a read lock 10931 ** if it is false. 10932 */ 10933 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10934 int rc = SQLITE_OK; 10935 assert( p->inTrans!=TRANS_NONE ); 10936 if( p->sharable ){ 10937 u8 lockType = READ_LOCK + isWriteLock; 10938 assert( READ_LOCK+1==WRITE_LOCK ); 10939 assert( isWriteLock==0 || isWriteLock==1 ); 10940 10941 sqlite3BtreeEnter(p); 10942 rc = querySharedCacheTableLock(p, iTab, lockType); 10943 if( rc==SQLITE_OK ){ 10944 rc = setSharedCacheTableLock(p, iTab, lockType); 10945 } 10946 sqlite3BtreeLeave(p); 10947 } 10948 return rc; 10949 } 10950 #endif 10951 10952 #ifndef SQLITE_OMIT_INCRBLOB 10953 /* 10954 ** Argument pCsr must be a cursor opened for writing on an 10955 ** INTKEY table currently pointing at a valid table entry. 10956 ** This function modifies the data stored as part of that entry. 10957 ** 10958 ** Only the data content may only be modified, it is not possible to 10959 ** change the length of the data stored. If this function is called with 10960 ** parameters that attempt to write past the end of the existing data, 10961 ** no modifications are made and SQLITE_CORRUPT is returned. 10962 */ 10963 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10964 int rc; 10965 assert( cursorOwnsBtShared(pCsr) ); 10966 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10967 assert( pCsr->curFlags & BTCF_Incrblob ); 10968 10969 rc = restoreCursorPosition(pCsr); 10970 if( rc!=SQLITE_OK ){ 10971 return rc; 10972 } 10973 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10974 if( pCsr->eState!=CURSOR_VALID ){ 10975 return SQLITE_ABORT; 10976 } 10977 10978 /* Save the positions of all other cursors open on this table. This is 10979 ** required in case any of them are holding references to an xFetch 10980 ** version of the b-tree page modified by the accessPayload call below. 10981 ** 10982 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10983 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10984 ** saveAllCursors can only return SQLITE_OK. 10985 */ 10986 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10987 assert( rc==SQLITE_OK ); 10988 10989 /* Check some assumptions: 10990 ** (a) the cursor is open for writing, 10991 ** (b) there is a read/write transaction open, 10992 ** (c) the connection holds a write-lock on the table (if required), 10993 ** (d) there are no conflicting read-locks, and 10994 ** (e) the cursor points at a valid row of an intKey table. 10995 */ 10996 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 10997 return SQLITE_READONLY; 10998 } 10999 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 11000 && pCsr->pBt->inTransaction==TRANS_WRITE ); 11001 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 11002 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 11003 assert( pCsr->pPage->intKey ); 11004 11005 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 11006 } 11007 11008 /* 11009 ** Mark this cursor as an incremental blob cursor. 11010 */ 11011 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 11012 pCur->curFlags |= BTCF_Incrblob; 11013 pCur->pBtree->hasIncrblobCur = 1; 11014 } 11015 #endif 11016 11017 /* 11018 ** Set both the "read version" (single byte at byte offset 18) and 11019 ** "write version" (single byte at byte offset 19) fields in the database 11020 ** header to iVersion. 11021 */ 11022 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 11023 BtShared *pBt = pBtree->pBt; 11024 int rc; /* Return code */ 11025 11026 assert( iVersion==1 || iVersion==2 ); 11027 11028 /* If setting the version fields to 1, do not automatically open the 11029 ** WAL connection, even if the version fields are currently set to 2. 11030 */ 11031 pBt->btsFlags &= ~BTS_NO_WAL; 11032 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 11033 11034 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 11035 if( rc==SQLITE_OK ){ 11036 u8 *aData = pBt->pPage1->aData; 11037 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 11038 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 11039 if( rc==SQLITE_OK ){ 11040 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 11041 if( rc==SQLITE_OK ){ 11042 aData[18] = (u8)iVersion; 11043 aData[19] = (u8)iVersion; 11044 } 11045 } 11046 } 11047 } 11048 11049 pBt->btsFlags &= ~BTS_NO_WAL; 11050 return rc; 11051 } 11052 11053 /* 11054 ** Return true if the cursor has a hint specified. This routine is 11055 ** only used from within assert() statements 11056 */ 11057 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 11058 return (pCsr->hints & mask)!=0; 11059 } 11060 11061 /* 11062 ** Return true if the given Btree is read-only. 11063 */ 11064 int sqlite3BtreeIsReadonly(Btree *p){ 11065 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 11066 } 11067 11068 /* 11069 ** Return the size of the header added to each page by this module. 11070 */ 11071 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 11072 11073 #if !defined(SQLITE_OMIT_SHARED_CACHE) 11074 /* 11075 ** Return true if the Btree passed as the only argument is sharable. 11076 */ 11077 int sqlite3BtreeSharable(Btree *p){ 11078 return p->sharable; 11079 } 11080 11081 /* 11082 ** Return the number of connections to the BtShared object accessed by 11083 ** the Btree handle passed as the only argument. For private caches 11084 ** this is always 1. For shared caches it may be 1 or greater. 11085 */ 11086 int sqlite3BtreeConnectionCount(Btree *p){ 11087 testcase( p->sharable ); 11088 return p->pBt->nRef; 11089 } 11090 #endif 11091