xref: /sqlite-3.40.0/src/btree.c (revision 554cb87d)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
811 */
812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830     }else{
831       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
832     }
833     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834   }else{
835     pIdxKey = 0;
836     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
837   }
838   return rc;
839 }
840 
841 /*
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
847 */
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849   int rc;
850   int skipNext = 0;
851   assert( cursorOwnsBtShared(pCur) );
852   assert( pCur->eState>=CURSOR_REQUIRESEEK );
853   if( pCur->eState==CURSOR_FAULT ){
854     return pCur->skipNext;
855   }
856   pCur->eState = CURSOR_INVALID;
857   if( sqlite3FaultSim(410) ){
858     rc = SQLITE_IOERR;
859   }else{
860     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861   }
862   if( rc==SQLITE_OK ){
863     sqlite3_free(pCur->pKey);
864     pCur->pKey = 0;
865     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866     if( skipNext ) pCur->skipNext = skipNext;
867     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868       pCur->eState = CURSOR_SKIPNEXT;
869     }
870   }
871   return rc;
872 }
873 
874 #define restoreCursorPosition(p) \
875   (p->eState>=CURSOR_REQUIRESEEK ? \
876          btreeRestoreCursorPosition(p) : \
877          SQLITE_OK)
878 
879 /*
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example.  Cursor might also move if a btree
884 ** is rebalanced.
885 **
886 ** Calling this routine with a NULL cursor pointer returns false.
887 **
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
890 */
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892   assert( EIGHT_BYTE_ALIGNMENT(pCur)
893        || pCur==sqlite3BtreeFakeValidCursor() );
894   assert( offsetof(BtCursor, eState)==0 );
895   assert( sizeof(pCur->eState)==1 );
896   return CURSOR_VALID != *(u8*)pCur;
897 }
898 
899 /*
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
902 ** cursor returned must not be used with any other Btree interface.
903 */
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905   static u8 fakeCursor = CURSOR_VALID;
906   assert( offsetof(BtCursor, eState)==0 );
907   return (BtCursor*)&fakeCursor;
908 }
909 
910 /*
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
914 **
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
919 **
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
922 */
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924   int rc;
925 
926   assert( pCur!=0 );
927   assert( pCur->eState!=CURSOR_VALID );
928   rc = restoreCursorPosition(pCur);
929   if( rc ){
930     *pDifferentRow = 1;
931     return rc;
932   }
933   if( pCur->eState!=CURSOR_VALID ){
934     *pDifferentRow = 1;
935   }else{
936     *pDifferentRow = 0;
937   }
938   return SQLITE_OK;
939 }
940 
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
942 /*
943 ** Provide hints to the cursor.  The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
946 */
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948   /* Used only by system that substitute their own storage engine */
949 }
950 #endif
951 
952 /*
953 ** Provide flag hints to the cursor.
954 */
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957   pCur->hints = x;
958 }
959 
960 
961 #ifndef SQLITE_OMIT_AUTOVACUUM
962 /*
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
966 **
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1.  The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
970 */
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972   int nPagesPerMapPage;
973   Pgno iPtrMap, ret;
974   assert( sqlite3_mutex_held(pBt->mutex) );
975   if( pgno<2 ) return 0;
976   nPagesPerMapPage = (pBt->usableSize/5)+1;
977   iPtrMap = (pgno-2)/nPagesPerMapPage;
978   ret = (iPtrMap*nPagesPerMapPage) + 2;
979   if( ret==PENDING_BYTE_PAGE(pBt) ){
980     ret++;
981   }
982   return ret;
983 }
984 
985 /*
986 ** Write an entry into the pointer map.
987 **
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
990 **
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op.  If an error occurs, the appropriate error code is written
993 ** into *pRC.
994 */
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996   DbPage *pDbPage;  /* The pointer map page */
997   u8 *pPtrmap;      /* The pointer map data */
998   Pgno iPtrmap;     /* The pointer map page number */
999   int offset;       /* Offset in pointer map page */
1000   int rc;           /* Return code from subfunctions */
1001 
1002   if( *pRC ) return;
1003 
1004   assert( sqlite3_mutex_held(pBt->mutex) );
1005   /* The super-journal page number must never be used as a pointer map page */
1006   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007 
1008   assert( pBt->autoVacuum );
1009   if( key==0 ){
1010     *pRC = SQLITE_CORRUPT_BKPT;
1011     return;
1012   }
1013   iPtrmap = PTRMAP_PAGENO(pBt, key);
1014   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015   if( rc!=SQLITE_OK ){
1016     *pRC = rc;
1017     return;
1018   }
1019   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020     /* The first byte of the extra data is the MemPage.isInit byte.
1021     ** If that byte is set, it means this page is also being used
1022     ** as a btree page. */
1023     *pRC = SQLITE_CORRUPT_BKPT;
1024     goto ptrmap_exit;
1025   }
1026   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027   if( offset<0 ){
1028     *pRC = SQLITE_CORRUPT_BKPT;
1029     goto ptrmap_exit;
1030   }
1031   assert( offset <= (int)pBt->usableSize-5 );
1032   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1033 
1034   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036     *pRC= rc = sqlite3PagerWrite(pDbPage);
1037     if( rc==SQLITE_OK ){
1038       pPtrmap[offset] = eType;
1039       put4byte(&pPtrmap[offset+1], parent);
1040     }
1041   }
1042 
1043 ptrmap_exit:
1044   sqlite3PagerUnref(pDbPage);
1045 }
1046 
1047 /*
1048 ** Read an entry from the pointer map.
1049 **
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1053 */
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055   DbPage *pDbPage;   /* The pointer map page */
1056   int iPtrmap;       /* Pointer map page index */
1057   u8 *pPtrmap;       /* Pointer map page data */
1058   int offset;        /* Offset of entry in pointer map */
1059   int rc;
1060 
1061   assert( sqlite3_mutex_held(pBt->mutex) );
1062 
1063   iPtrmap = PTRMAP_PAGENO(pBt, key);
1064   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065   if( rc!=0 ){
1066     return rc;
1067   }
1068   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1069 
1070   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071   if( offset<0 ){
1072     sqlite3PagerUnref(pDbPage);
1073     return SQLITE_CORRUPT_BKPT;
1074   }
1075   assert( offset <= (int)pBt->usableSize-5 );
1076   assert( pEType!=0 );
1077   *pEType = pPtrmap[offset];
1078   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1079 
1080   sqlite3PagerUnref(pDbPage);
1081   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082   return SQLITE_OK;
1083 }
1084 
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086   #define ptrmapPut(w,x,y,z,rc)
1087   #define ptrmapGet(w,x,y,z) SQLITE_OK
1088   #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1090 
1091 /*
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1095 **
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1098 **
1099 ** This routine works only for pages that do not contain overflow cells.
1100 */
1101 #define findCell(P,I) \
1102   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 
1106 
1107 /*
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1111 ** structure.
1112 */
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114   MemPage *pPage,         /* Page containing the cell */
1115   u8 *pCell,              /* Pointer to the cell text. */
1116   CellInfo *pInfo         /* Fill in this structure */
1117 ){
1118   /* If the payload will not fit completely on the local page, we have
1119   ** to decide how much to store locally and how much to spill onto
1120   ** overflow pages.  The strategy is to minimize the amount of unused
1121   ** space on overflow pages while keeping the amount of local storage
1122   ** in between minLocal and maxLocal.
1123   **
1124   ** Warning:  changing the way overflow payload is distributed in any
1125   ** way will result in an incompatible file format.
1126   */
1127   int minLocal;  /* Minimum amount of payload held locally */
1128   int maxLocal;  /* Maximum amount of payload held locally */
1129   int surplus;   /* Overflow payload available for local storage */
1130 
1131   minLocal = pPage->minLocal;
1132   maxLocal = pPage->maxLocal;
1133   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134   testcase( surplus==maxLocal );
1135   testcase( surplus==maxLocal+1 );
1136   if( surplus <= maxLocal ){
1137     pInfo->nLocal = (u16)surplus;
1138   }else{
1139     pInfo->nLocal = (u16)minLocal;
1140   }
1141   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1142 }
1143 
1144 /*
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1147 */
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149   int maxLocal;  /* Maximum amount of payload held locally */
1150   maxLocal = pPage->maxLocal;
1151   if( nPayload<=maxLocal ){
1152     return nPayload;
1153   }else{
1154     int minLocal;  /* Minimum amount of payload held locally */
1155     int surplus;   /* Overflow payload available for local storage */
1156     minLocal = pPage->minLocal;
1157     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158     return ( surplus <= maxLocal ) ? surplus : minLocal;
1159   }
1160 }
1161 
1162 /*
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1165 **
1166 ** Parse a cell content block and fill in the CellInfo structure.
1167 **
1168 ** btreeParseCellPtr()        =>   table btree leaf nodes
1169 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1170 ** btreeParseCellPtrIndex()   =>   index btree nodes
1171 **
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1175 */
1176 static void btreeParseCellPtrNoPayload(
1177   MemPage *pPage,         /* Page containing the cell */
1178   u8 *pCell,              /* Pointer to the cell text. */
1179   CellInfo *pInfo         /* Fill in this structure */
1180 ){
1181   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182   assert( pPage->leaf==0 );
1183   assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185   UNUSED_PARAMETER(pPage);
1186 #endif
1187   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188   pInfo->nPayload = 0;
1189   pInfo->nLocal = 0;
1190   pInfo->pPayload = 0;
1191   return;
1192 }
1193 static void btreeParseCellPtr(
1194   MemPage *pPage,         /* Page containing the cell */
1195   u8 *pCell,              /* Pointer to the cell text. */
1196   CellInfo *pInfo         /* Fill in this structure */
1197 ){
1198   u8 *pIter;              /* For scanning through pCell */
1199   u32 nPayload;           /* Number of bytes of cell payload */
1200   u64 iKey;               /* Extracted Key value */
1201 
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( pPage->leaf==0 || pPage->leaf==1 );
1204   assert( pPage->intKeyLeaf );
1205   assert( pPage->childPtrSize==0 );
1206   pIter = pCell;
1207 
1208   /* The next block of code is equivalent to:
1209   **
1210   **     pIter += getVarint32(pIter, nPayload);
1211   **
1212   ** The code is inlined to avoid a function call.
1213   */
1214   nPayload = *pIter;
1215   if( nPayload>=0x80 ){
1216     u8 *pEnd = &pIter[8];
1217     nPayload &= 0x7f;
1218     do{
1219       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220     }while( (*pIter)>=0x80 && pIter<pEnd );
1221   }
1222   pIter++;
1223 
1224   /* The next block of code is equivalent to:
1225   **
1226   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227   **
1228   ** The code is inlined and the loop is unrolled for performance.
1229   ** This routine is a high-runner.
1230   */
1231   iKey = *pIter;
1232   if( iKey>=0x80 ){
1233     u8 x;
1234     iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235     if( x>=0x80 ){
1236       iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237       if( x>=0x80 ){
1238         iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239         if( x>=0x80 ){
1240           iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241           if( x>=0x80 ){
1242             iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243             if( x>=0x80 ){
1244               iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245               if( x>=0x80 ){
1246                 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247                 if( x>=0x80 ){
1248                   iKey = (iKey<<8) | (*++pIter);
1249                 }
1250               }
1251             }
1252           }
1253         }
1254       }
1255     }
1256   }
1257   pIter++;
1258 
1259   pInfo->nKey = *(i64*)&iKey;
1260   pInfo->nPayload = nPayload;
1261   pInfo->pPayload = pIter;
1262   testcase( nPayload==pPage->maxLocal );
1263   testcase( nPayload==(u32)pPage->maxLocal+1 );
1264   if( nPayload<=pPage->maxLocal ){
1265     /* This is the (easy) common case where the entire payload fits
1266     ** on the local page.  No overflow is required.
1267     */
1268     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1270     pInfo->nLocal = (u16)nPayload;
1271   }else{
1272     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1273   }
1274 }
1275 static void btreeParseCellPtrIndex(
1276   MemPage *pPage,         /* Page containing the cell */
1277   u8 *pCell,              /* Pointer to the cell text. */
1278   CellInfo *pInfo         /* Fill in this structure */
1279 ){
1280   u8 *pIter;              /* For scanning through pCell */
1281   u32 nPayload;           /* Number of bytes of cell payload */
1282 
1283   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284   assert( pPage->leaf==0 || pPage->leaf==1 );
1285   assert( pPage->intKeyLeaf==0 );
1286   pIter = pCell + pPage->childPtrSize;
1287   nPayload = *pIter;
1288   if( nPayload>=0x80 ){
1289     u8 *pEnd = &pIter[8];
1290     nPayload &= 0x7f;
1291     do{
1292       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293     }while( *(pIter)>=0x80 && pIter<pEnd );
1294   }
1295   pIter++;
1296   pInfo->nKey = nPayload;
1297   pInfo->nPayload = nPayload;
1298   pInfo->pPayload = pIter;
1299   testcase( nPayload==pPage->maxLocal );
1300   testcase( nPayload==(u32)pPage->maxLocal+1 );
1301   if( nPayload<=pPage->maxLocal ){
1302     /* This is the (easy) common case where the entire payload fits
1303     ** on the local page.  No overflow is required.
1304     */
1305     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307     pInfo->nLocal = (u16)nPayload;
1308   }else{
1309     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1310   }
1311 }
1312 static void btreeParseCell(
1313   MemPage *pPage,         /* Page containing the cell */
1314   int iCell,              /* The cell index.  First cell is 0 */
1315   CellInfo *pInfo         /* Fill in this structure */
1316 ){
1317   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1318 }
1319 
1320 /*
1321 ** The following routines are implementations of the MemPage.xCellSize
1322 ** method.
1323 **
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page.  The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1328 **
1329 ** cellSizePtrNoPayload()    =>   table internal nodes
1330 ** cellSizePtrTableLeaf()    =>   table leaf nodes
1331 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1332 */
1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1334   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335   u8 *pEnd;                                /* End mark for a varint */
1336   u32 nSize;                               /* Size value to return */
1337 
1338 #ifdef SQLITE_DEBUG
1339   /* The value returned by this function should always be the same as
1340   ** the (CellInfo.nSize) value found by doing a full parse of the
1341   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342   ** this function verifies that this invariant is not violated. */
1343   CellInfo debuginfo;
1344   pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #endif
1346 
1347   nSize = *pIter;
1348   if( nSize>=0x80 ){
1349     pEnd = &pIter[8];
1350     nSize &= 0x7f;
1351     do{
1352       nSize = (nSize<<7) | (*++pIter & 0x7f);
1353     }while( *(pIter)>=0x80 && pIter<pEnd );
1354   }
1355   pIter++;
1356   testcase( nSize==pPage->maxLocal );
1357   testcase( nSize==(u32)pPage->maxLocal+1 );
1358   if( nSize<=pPage->maxLocal ){
1359     nSize += (u32)(pIter - pCell);
1360     if( nSize<4 ) nSize = 4;
1361   }else{
1362     int minLocal = pPage->minLocal;
1363     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1364     testcase( nSize==pPage->maxLocal );
1365     testcase( nSize==(u32)pPage->maxLocal+1 );
1366     if( nSize>pPage->maxLocal ){
1367       nSize = minLocal;
1368     }
1369     nSize += 4 + (u16)(pIter - pCell);
1370   }
1371   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1372   return (u16)nSize;
1373 }
1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376   u8 *pEnd;              /* End mark for a varint */
1377 
1378 #ifdef SQLITE_DEBUG
1379   /* The value returned by this function should always be the same as
1380   ** the (CellInfo.nSize) value found by doing a full parse of the
1381   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382   ** this function verifies that this invariant is not violated. */
1383   CellInfo debuginfo;
1384   pPage->xParseCell(pPage, pCell, &debuginfo);
1385 #else
1386   UNUSED_PARAMETER(pPage);
1387 #endif
1388 
1389   assert( pPage->childPtrSize==4 );
1390   pEnd = pIter + 9;
1391   while( (*pIter++)&0x80 && pIter<pEnd );
1392   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393   return (u16)(pIter - pCell);
1394 }
1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396   u8 *pIter = pCell;   /* For looping over bytes of pCell */
1397   u8 *pEnd;            /* End mark for a varint */
1398   u32 nSize;           /* Size value to return */
1399 
1400 #ifdef SQLITE_DEBUG
1401   /* The value returned by this function should always be the same as
1402   ** the (CellInfo.nSize) value found by doing a full parse of the
1403   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404   ** this function verifies that this invariant is not violated. */
1405   CellInfo debuginfo;
1406   pPage->xParseCell(pPage, pCell, &debuginfo);
1407 #endif
1408 
1409   nSize = *pIter;
1410   if( nSize>=0x80 ){
1411     pEnd = &pIter[8];
1412     nSize &= 0x7f;
1413     do{
1414       nSize = (nSize<<7) | (*++pIter & 0x7f);
1415     }while( *(pIter)>=0x80 && pIter<pEnd );
1416   }
1417   pIter++;
1418   /* pIter now points at the 64-bit integer key value, a variable length
1419   ** integer. The following block moves pIter to point at the first byte
1420   ** past the end of the key value. */
1421   if( (*pIter++)&0x80
1422    && (*pIter++)&0x80
1423    && (*pIter++)&0x80
1424    && (*pIter++)&0x80
1425    && (*pIter++)&0x80
1426    && (*pIter++)&0x80
1427    && (*pIter++)&0x80
1428    && (*pIter++)&0x80 ){ pIter++; }
1429   testcase( nSize==pPage->maxLocal );
1430   testcase( nSize==(u32)pPage->maxLocal+1 );
1431   if( nSize<=pPage->maxLocal ){
1432     nSize += (u32)(pIter - pCell);
1433     if( nSize<4 ) nSize = 4;
1434   }else{
1435     int minLocal = pPage->minLocal;
1436     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437     testcase( nSize==pPage->maxLocal );
1438     testcase( nSize==(u32)pPage->maxLocal+1 );
1439     if( nSize>pPage->maxLocal ){
1440       nSize = minLocal;
1441     }
1442     nSize += 4 + (u16)(pIter - pCell);
1443   }
1444   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445   return (u16)nSize;
1446 }
1447 
1448 
1449 #ifdef SQLITE_DEBUG
1450 /* This variation on cellSizePtr() is used inside of assert() statements
1451 ** only. */
1452 static u16 cellSize(MemPage *pPage, int iCell){
1453   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1454 }
1455 #endif
1456 
1457 #ifndef SQLITE_OMIT_AUTOVACUUM
1458 /*
1459 ** The cell pCell is currently part of page pSrc but will ultimately be part
1460 ** of pPage.  (pSrc and pPage are often the same.)  If pCell contains a
1461 ** pointer to an overflow page, insert an entry into the pointer-map for
1462 ** the overflow page that will be valid after pCell has been moved to pPage.
1463 */
1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1465   CellInfo info;
1466   if( *pRC ) return;
1467   assert( pCell!=0 );
1468   pPage->xParseCell(pPage, pCell, &info);
1469   if( info.nLocal<info.nPayload ){
1470     Pgno ovfl;
1471     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472       testcase( pSrc!=pPage );
1473       *pRC = SQLITE_CORRUPT_BKPT;
1474       return;
1475     }
1476     ovfl = get4byte(&pCell[info.nSize-4]);
1477     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1478   }
1479 }
1480 #endif
1481 
1482 
1483 /*
1484 ** Defragment the page given. This routine reorganizes cells within the
1485 ** page so that there are no free-blocks on the free-block list.
1486 **
1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488 ** present in the page after this routine returns.
1489 **
1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491 ** b-tree page so that there are no freeblocks or fragment bytes, all
1492 ** unused bytes are contained in the unallocated space region, and all
1493 ** cells are packed tightly at the end of the page.
1494 */
1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1496   int i;                     /* Loop counter */
1497   int pc;                    /* Address of the i-th cell */
1498   int hdr;                   /* Offset to the page header */
1499   int size;                  /* Size of a cell */
1500   int usableSize;            /* Number of usable bytes on a page */
1501   int cellOffset;            /* Offset to the cell pointer array */
1502   int cbrk;                  /* Offset to the cell content area */
1503   int nCell;                 /* Number of cells on the page */
1504   unsigned char *data;       /* The page data */
1505   unsigned char *temp;       /* Temp area for cell content */
1506   unsigned char *src;        /* Source of content */
1507   int iCellFirst;            /* First allowable cell index */
1508   int iCellLast;             /* Last possible cell index */
1509   int iCellStart;            /* First cell offset in input */
1510 
1511   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1512   assert( pPage->pBt!=0 );
1513   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1514   assert( pPage->nOverflow==0 );
1515   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1516   temp = 0;
1517   src = data = pPage->aData;
1518   hdr = pPage->hdrOffset;
1519   cellOffset = pPage->cellOffset;
1520   nCell = pPage->nCell;
1521   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1522   iCellFirst = cellOffset + 2*nCell;
1523   usableSize = pPage->pBt->usableSize;
1524 
1525   /* This block handles pages with two or fewer free blocks and nMaxFrag
1526   ** or fewer fragmented bytes. In this case it is faster to move the
1527   ** two (or one) blocks of cells using memmove() and add the required
1528   ** offsets to each pointer in the cell-pointer array than it is to
1529   ** reconstruct the entire page.  */
1530   if( (int)data[hdr+7]<=nMaxFrag ){
1531     int iFree = get2byte(&data[hdr+1]);
1532     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1533     if( iFree ){
1534       int iFree2 = get2byte(&data[iFree]);
1535       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1536       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1537         u8 *pEnd = &data[cellOffset + nCell*2];
1538         u8 *pAddr;
1539         int sz2 = 0;
1540         int sz = get2byte(&data[iFree+2]);
1541         int top = get2byte(&data[hdr+5]);
1542         if( top>=iFree ){
1543           return SQLITE_CORRUPT_PAGE(pPage);
1544         }
1545         if( iFree2 ){
1546           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1547           sz2 = get2byte(&data[iFree2+2]);
1548           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1549           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1550           sz += sz2;
1551         }else if( NEVER(iFree+sz>usableSize) ){
1552           return SQLITE_CORRUPT_PAGE(pPage);
1553         }
1554 
1555         cbrk = top+sz;
1556         assert( cbrk+(iFree-top) <= usableSize );
1557         memmove(&data[cbrk], &data[top], iFree-top);
1558         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1559           pc = get2byte(pAddr);
1560           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1561           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1562         }
1563         goto defragment_out;
1564       }
1565     }
1566   }
1567 
1568   cbrk = usableSize;
1569   iCellLast = usableSize - 4;
1570   iCellStart = get2byte(&data[hdr+5]);
1571   for(i=0; i<nCell; i++){
1572     u8 *pAddr;     /* The i-th cell pointer */
1573     pAddr = &data[cellOffset + i*2];
1574     pc = get2byte(pAddr);
1575     testcase( pc==iCellFirst );
1576     testcase( pc==iCellLast );
1577     /* These conditions have already been verified in btreeInitPage()
1578     ** if PRAGMA cell_size_check=ON.
1579     */
1580     if( pc<iCellStart || pc>iCellLast ){
1581       return SQLITE_CORRUPT_PAGE(pPage);
1582     }
1583     assert( pc>=iCellStart && pc<=iCellLast );
1584     size = pPage->xCellSize(pPage, &src[pc]);
1585     cbrk -= size;
1586     if( cbrk<iCellStart || pc+size>usableSize ){
1587       return SQLITE_CORRUPT_PAGE(pPage);
1588     }
1589     assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1590     testcase( cbrk+size==usableSize );
1591     testcase( pc+size==usableSize );
1592     put2byte(pAddr, cbrk);
1593     if( temp==0 ){
1594       if( cbrk==pc ) continue;
1595       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1596       memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1597       src = temp;
1598     }
1599     memcpy(&data[cbrk], &src[pc], size);
1600   }
1601   data[hdr+7] = 0;
1602 
1603  defragment_out:
1604   assert( pPage->nFree>=0 );
1605   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1606     return SQLITE_CORRUPT_PAGE(pPage);
1607   }
1608   assert( cbrk>=iCellFirst );
1609   put2byte(&data[hdr+5], cbrk);
1610   data[hdr+1] = 0;
1611   data[hdr+2] = 0;
1612   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1613   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1614   return SQLITE_OK;
1615 }
1616 
1617 /*
1618 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1619 ** size. If one can be found, return a pointer to the space and remove it
1620 ** from the free-list.
1621 **
1622 ** If no suitable space can be found on the free-list, return NULL.
1623 **
1624 ** This function may detect corruption within pPg.  If corruption is
1625 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1626 **
1627 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1628 ** will be ignored if adding the extra space to the fragmentation count
1629 ** causes the fragmentation count to exceed 60.
1630 */
1631 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1632   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1633   u8 * const aData = pPg->aData;             /* Page data */
1634   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1635   u8 *pTmp = &aData[iAddr];                  /* Temporary ptr into aData[] */
1636   int pc = get2byte(pTmp);                   /* Address of a free slot */
1637   int x;                                     /* Excess size of the slot */
1638   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1639   int size;                                  /* Size of the free slot */
1640 
1641   assert( pc>0 );
1642   while( pc<=maxPC ){
1643     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1644     ** freeblock form a big-endian integer which is the size of the freeblock
1645     ** in bytes, including the 4-byte header. */
1646     pTmp = &aData[pc+2];
1647     size = get2byte(pTmp);
1648     if( (x = size - nByte)>=0 ){
1649       testcase( x==4 );
1650       testcase( x==3 );
1651       if( x<4 ){
1652         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1653         ** number of bytes in fragments may not exceed 60. */
1654         if( aData[hdr+7]>57 ) return 0;
1655 
1656         /* Remove the slot from the free-list. Update the number of
1657         ** fragmented bytes within the page. */
1658         memcpy(&aData[iAddr], &aData[pc], 2);
1659         aData[hdr+7] += (u8)x;
1660         testcase( pc+x>maxPC );
1661         return &aData[pc];
1662       }else if( x+pc > maxPC ){
1663         /* This slot extends off the end of the usable part of the page */
1664         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1665         return 0;
1666       }else{
1667         /* The slot remains on the free-list. Reduce its size to account
1668         ** for the portion used by the new allocation. */
1669         put2byte(&aData[pc+2], x);
1670       }
1671       return &aData[pc + x];
1672     }
1673     iAddr = pc;
1674     pTmp = &aData[pc];
1675     pc = get2byte(pTmp);
1676     if( pc<=iAddr+size ){
1677       if( pc ){
1678         /* The next slot in the chain is not past the end of the current slot */
1679         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1680       }
1681       return 0;
1682     }
1683   }
1684   if( pc>maxPC+nByte-4 ){
1685     /* The free slot chain extends off the end of the page */
1686     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1687   }
1688   return 0;
1689 }
1690 
1691 /*
1692 ** Allocate nByte bytes of space from within the B-Tree page passed
1693 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1694 ** of the first byte of allocated space. Return either SQLITE_OK or
1695 ** an error code (usually SQLITE_CORRUPT).
1696 **
1697 ** The caller guarantees that there is sufficient space to make the
1698 ** allocation.  This routine might need to defragment in order to bring
1699 ** all the space together, however.  This routine will avoid using
1700 ** the first two bytes past the cell pointer area since presumably this
1701 ** allocation is being made in order to insert a new cell, so we will
1702 ** also end up needing a new cell pointer.
1703 */
1704 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1705   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1706   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1707   int top;                             /* First byte of cell content area */
1708   int rc = SQLITE_OK;                  /* Integer return code */
1709   u8 *pTmp;                            /* Temp ptr into data[] */
1710   int gap;        /* First byte of gap between cell pointers and cell content */
1711 
1712   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1713   assert( pPage->pBt );
1714   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1715   assert( nByte>=0 );  /* Minimum cell size is 4 */
1716   assert( pPage->nFree>=nByte );
1717   assert( pPage->nOverflow==0 );
1718   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1719 
1720   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1721   gap = pPage->cellOffset + 2*pPage->nCell;
1722   assert( gap<=65536 );
1723   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1724   ** and the reserved space is zero (the usual value for reserved space)
1725   ** then the cell content offset of an empty page wants to be 65536.
1726   ** However, that integer is too large to be stored in a 2-byte unsigned
1727   ** integer, so a value of 0 is used in its place. */
1728   pTmp = &data[hdr+5];
1729   top = get2byte(pTmp);
1730   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1731   if( gap>top ){
1732     if( top==0 && pPage->pBt->usableSize==65536 ){
1733       top = 65536;
1734     }else{
1735       return SQLITE_CORRUPT_PAGE(pPage);
1736     }
1737   }
1738 
1739   /* If there is enough space between gap and top for one more cell pointer,
1740   ** and if the freelist is not empty, then search the
1741   ** freelist looking for a slot big enough to satisfy the request.
1742   */
1743   testcase( gap+2==top );
1744   testcase( gap+1==top );
1745   testcase( gap==top );
1746   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1747     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1748     if( pSpace ){
1749       int g2;
1750       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1751       *pIdx = g2 = (int)(pSpace-data);
1752       if( g2<=gap ){
1753         return SQLITE_CORRUPT_PAGE(pPage);
1754       }else{
1755         return SQLITE_OK;
1756       }
1757     }else if( rc ){
1758       return rc;
1759     }
1760   }
1761 
1762   /* The request could not be fulfilled using a freelist slot.  Check
1763   ** to see if defragmentation is necessary.
1764   */
1765   testcase( gap+2+nByte==top );
1766   if( gap+2+nByte>top ){
1767     assert( pPage->nCell>0 || CORRUPT_DB );
1768     assert( pPage->nFree>=0 );
1769     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1770     if( rc ) return rc;
1771     top = get2byteNotZero(&data[hdr+5]);
1772     assert( gap+2+nByte<=top );
1773   }
1774 
1775 
1776   /* Allocate memory from the gap in between the cell pointer array
1777   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1778   ** validated the freelist.  Given that the freelist is valid, there
1779   ** is no way that the allocation can extend off the end of the page.
1780   ** The assert() below verifies the previous sentence.
1781   */
1782   top -= nByte;
1783   put2byte(&data[hdr+5], top);
1784   assert( top+nByte <= (int)pPage->pBt->usableSize );
1785   *pIdx = top;
1786   return SQLITE_OK;
1787 }
1788 
1789 /*
1790 ** Return a section of the pPage->aData to the freelist.
1791 ** The first byte of the new free block is pPage->aData[iStart]
1792 ** and the size of the block is iSize bytes.
1793 **
1794 ** Adjacent freeblocks are coalesced.
1795 **
1796 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1797 ** that routine will not detect overlap between cells or freeblocks.  Nor
1798 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1799 ** at the end of the page.  So do additional corruption checks inside this
1800 ** routine and return SQLITE_CORRUPT if any problems are found.
1801 */
1802 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1803   u16 iPtr;                             /* Address of ptr to next freeblock */
1804   u16 iFreeBlk;                         /* Address of the next freeblock */
1805   u8 hdr;                               /* Page header size.  0 or 100 */
1806   u8 nFrag = 0;                         /* Reduction in fragmentation */
1807   u16 iOrigSize = iSize;                /* Original value of iSize */
1808   u16 x;                                /* Offset to cell content area */
1809   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1810   unsigned char *data = pPage->aData;   /* Page content */
1811   u8 *pTmp;                             /* Temporary ptr into data[] */
1812 
1813   assert( pPage->pBt!=0 );
1814   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1815   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1816   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1817   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1818   assert( iSize>=4 );   /* Minimum cell size is 4 */
1819   assert( iStart<=pPage->pBt->usableSize-4 );
1820 
1821   /* The list of freeblocks must be in ascending order.  Find the
1822   ** spot on the list where iStart should be inserted.
1823   */
1824   hdr = pPage->hdrOffset;
1825   iPtr = hdr + 1;
1826   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1827     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1828   }else{
1829     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1830       if( iFreeBlk<iPtr+4 ){
1831         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1832         return SQLITE_CORRUPT_PAGE(pPage);
1833       }
1834       iPtr = iFreeBlk;
1835     }
1836     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1837       return SQLITE_CORRUPT_PAGE(pPage);
1838     }
1839     assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
1840 
1841     /* At this point:
1842     **    iFreeBlk:   First freeblock after iStart, or zero if none
1843     **    iPtr:       The address of a pointer to iFreeBlk
1844     **
1845     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1846     */
1847     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1848       nFrag = iFreeBlk - iEnd;
1849       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1850       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1851       if( iEnd > pPage->pBt->usableSize ){
1852         return SQLITE_CORRUPT_PAGE(pPage);
1853       }
1854       iSize = iEnd - iStart;
1855       iFreeBlk = get2byte(&data[iFreeBlk]);
1856     }
1857 
1858     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1859     ** pointer in the page header) then check to see if iStart should be
1860     ** coalesced onto the end of iPtr.
1861     */
1862     if( iPtr>hdr+1 ){
1863       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1864       if( iPtrEnd+3>=iStart ){
1865         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1866         nFrag += iStart - iPtrEnd;
1867         iSize = iEnd - iPtr;
1868         iStart = iPtr;
1869       }
1870     }
1871     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1872     data[hdr+7] -= nFrag;
1873   }
1874   pTmp = &data[hdr+5];
1875   x = get2byte(pTmp);
1876   if( iStart<=x ){
1877     /* The new freeblock is at the beginning of the cell content area,
1878     ** so just extend the cell content area rather than create another
1879     ** freelist entry */
1880     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1881     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1882     put2byte(&data[hdr+1], iFreeBlk);
1883     put2byte(&data[hdr+5], iEnd);
1884   }else{
1885     /* Insert the new freeblock into the freelist */
1886     put2byte(&data[iPtr], iStart);
1887   }
1888   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1889     /* Overwrite deleted information with zeros when the secure_delete
1890     ** option is enabled */
1891     memset(&data[iStart], 0, iSize);
1892   }
1893   put2byte(&data[iStart], iFreeBlk);
1894   put2byte(&data[iStart+2], iSize);
1895   pPage->nFree += iOrigSize;
1896   return SQLITE_OK;
1897 }
1898 
1899 /*
1900 ** Decode the flags byte (the first byte of the header) for a page
1901 ** and initialize fields of the MemPage structure accordingly.
1902 **
1903 ** Only the following combinations are supported.  Anything different
1904 ** indicates a corrupt database files:
1905 **
1906 **         PTF_ZERODATA
1907 **         PTF_ZERODATA | PTF_LEAF
1908 **         PTF_LEAFDATA | PTF_INTKEY
1909 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1910 */
1911 static int decodeFlags(MemPage *pPage, int flagByte){
1912   BtShared *pBt;     /* A copy of pPage->pBt */
1913 
1914   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1915   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1916   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1917   flagByte &= ~PTF_LEAF;
1918   pPage->childPtrSize = 4-4*pPage->leaf;
1919   pBt = pPage->pBt;
1920   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1921     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1922     ** interior table b-tree page. */
1923     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1924     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1925     ** leaf table b-tree page. */
1926     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1927     pPage->intKey = 1;
1928     if( pPage->leaf ){
1929       pPage->intKeyLeaf = 1;
1930       pPage->xCellSize = cellSizePtrTableLeaf;
1931       pPage->xParseCell = btreeParseCellPtr;
1932     }else{
1933       pPage->intKeyLeaf = 0;
1934       pPage->xCellSize = cellSizePtrNoPayload;
1935       pPage->xParseCell = btreeParseCellPtrNoPayload;
1936     }
1937     pPage->maxLocal = pBt->maxLeaf;
1938     pPage->minLocal = pBt->minLeaf;
1939   }else if( flagByte==PTF_ZERODATA ){
1940     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1941     ** interior index b-tree page. */
1942     assert( (PTF_ZERODATA)==2 );
1943     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1944     ** leaf index b-tree page. */
1945     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1946     pPage->intKey = 0;
1947     pPage->intKeyLeaf = 0;
1948     pPage->xCellSize = cellSizePtr;
1949     pPage->xParseCell = btreeParseCellPtrIndex;
1950     pPage->maxLocal = pBt->maxLocal;
1951     pPage->minLocal = pBt->minLocal;
1952   }else{
1953     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1954     ** an error. */
1955     pPage->intKey = 0;
1956     pPage->intKeyLeaf = 0;
1957     pPage->xCellSize = cellSizePtr;
1958     pPage->xParseCell = btreeParseCellPtrIndex;
1959     return SQLITE_CORRUPT_PAGE(pPage);
1960   }
1961   pPage->max1bytePayload = pBt->max1bytePayload;
1962   return SQLITE_OK;
1963 }
1964 
1965 /*
1966 ** Compute the amount of freespace on the page.  In other words, fill
1967 ** in the pPage->nFree field.
1968 */
1969 static int btreeComputeFreeSpace(MemPage *pPage){
1970   int pc;            /* Address of a freeblock within pPage->aData[] */
1971   u8 hdr;            /* Offset to beginning of page header */
1972   u8 *data;          /* Equal to pPage->aData */
1973   int usableSize;    /* Amount of usable space on each page */
1974   int nFree;         /* Number of unused bytes on the page */
1975   int top;           /* First byte of the cell content area */
1976   int iCellFirst;    /* First allowable cell or freeblock offset */
1977   int iCellLast;     /* Last possible cell or freeblock offset */
1978 
1979   assert( pPage->pBt!=0 );
1980   assert( pPage->pBt->db!=0 );
1981   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1982   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1983   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1984   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1985   assert( pPage->isInit==1 );
1986   assert( pPage->nFree<0 );
1987 
1988   usableSize = pPage->pBt->usableSize;
1989   hdr = pPage->hdrOffset;
1990   data = pPage->aData;
1991   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1992   ** the start of the cell content area. A zero value for this integer is
1993   ** interpreted as 65536. */
1994   top = get2byteNotZero(&data[hdr+5]);
1995   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1996   iCellLast = usableSize - 4;
1997 
1998   /* Compute the total free space on the page
1999   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2000   ** start of the first freeblock on the page, or is zero if there are no
2001   ** freeblocks. */
2002   pc = get2byte(&data[hdr+1]);
2003   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
2004   if( pc>0 ){
2005     u32 next, size;
2006     if( pc<top ){
2007       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2008       ** always be at least one cell before the first freeblock.
2009       */
2010       return SQLITE_CORRUPT_PAGE(pPage);
2011     }
2012     while( 1 ){
2013       if( pc>iCellLast ){
2014         /* Freeblock off the end of the page */
2015         return SQLITE_CORRUPT_PAGE(pPage);
2016       }
2017       next = get2byte(&data[pc]);
2018       size = get2byte(&data[pc+2]);
2019       nFree = nFree + size;
2020       if( next<=pc+size+3 ) break;
2021       pc = next;
2022     }
2023     if( next>0 ){
2024       /* Freeblock not in ascending order */
2025       return SQLITE_CORRUPT_PAGE(pPage);
2026     }
2027     if( pc+size>(unsigned int)usableSize ){
2028       /* Last freeblock extends past page end */
2029       return SQLITE_CORRUPT_PAGE(pPage);
2030     }
2031   }
2032 
2033   /* At this point, nFree contains the sum of the offset to the start
2034   ** of the cell-content area plus the number of free bytes within
2035   ** the cell-content area. If this is greater than the usable-size
2036   ** of the page, then the page must be corrupted. This check also
2037   ** serves to verify that the offset to the start of the cell-content
2038   ** area, according to the page header, lies within the page.
2039   */
2040   if( nFree>usableSize || nFree<iCellFirst ){
2041     return SQLITE_CORRUPT_PAGE(pPage);
2042   }
2043   pPage->nFree = (u16)(nFree - iCellFirst);
2044   return SQLITE_OK;
2045 }
2046 
2047 /*
2048 ** Do additional sanity check after btreeInitPage() if
2049 ** PRAGMA cell_size_check=ON
2050 */
2051 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2052   int iCellFirst;    /* First allowable cell or freeblock offset */
2053   int iCellLast;     /* Last possible cell or freeblock offset */
2054   int i;             /* Index into the cell pointer array */
2055   int sz;            /* Size of a cell */
2056   int pc;            /* Address of a freeblock within pPage->aData[] */
2057   u8 *data;          /* Equal to pPage->aData */
2058   int usableSize;    /* Maximum usable space on the page */
2059   int cellOffset;    /* Start of cell content area */
2060 
2061   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2062   usableSize = pPage->pBt->usableSize;
2063   iCellLast = usableSize - 4;
2064   data = pPage->aData;
2065   cellOffset = pPage->cellOffset;
2066   if( !pPage->leaf ) iCellLast--;
2067   for(i=0; i<pPage->nCell; i++){
2068     pc = get2byteAligned(&data[cellOffset+i*2]);
2069     testcase( pc==iCellFirst );
2070     testcase( pc==iCellLast );
2071     if( pc<iCellFirst || pc>iCellLast ){
2072       return SQLITE_CORRUPT_PAGE(pPage);
2073     }
2074     sz = pPage->xCellSize(pPage, &data[pc]);
2075     testcase( pc+sz==usableSize );
2076     if( pc+sz>usableSize ){
2077       return SQLITE_CORRUPT_PAGE(pPage);
2078     }
2079   }
2080   return SQLITE_OK;
2081 }
2082 
2083 /*
2084 ** Initialize the auxiliary information for a disk block.
2085 **
2086 ** Return SQLITE_OK on success.  If we see that the page does
2087 ** not contain a well-formed database page, then return
2088 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2089 ** guarantee that the page is well-formed.  It only shows that
2090 ** we failed to detect any corruption.
2091 */
2092 static int btreeInitPage(MemPage *pPage){
2093   u8 *data;          /* Equal to pPage->aData */
2094   BtShared *pBt;        /* The main btree structure */
2095 
2096   assert( pPage->pBt!=0 );
2097   assert( pPage->pBt->db!=0 );
2098   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2099   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2100   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2101   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2102   assert( pPage->isInit==0 );
2103 
2104   pBt = pPage->pBt;
2105   data = pPage->aData + pPage->hdrOffset;
2106   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2107   ** the b-tree page type. */
2108   if( decodeFlags(pPage, data[0]) ){
2109     return SQLITE_CORRUPT_PAGE(pPage);
2110   }
2111   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2112   pPage->maskPage = (u16)(pBt->pageSize - 1);
2113   pPage->nOverflow = 0;
2114   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2115   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2116   pPage->aDataEnd = pPage->aData + pBt->pageSize;
2117   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2118   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2119   ** number of cells on the page. */
2120   pPage->nCell = get2byte(&data[3]);
2121   if( pPage->nCell>MX_CELL(pBt) ){
2122     /* To many cells for a single page.  The page must be corrupt */
2123     return SQLITE_CORRUPT_PAGE(pPage);
2124   }
2125   testcase( pPage->nCell==MX_CELL(pBt) );
2126   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2127   ** possible for a root page of a table that contains no rows) then the
2128   ** offset to the cell content area will equal the page size minus the
2129   ** bytes of reserved space. */
2130   assert( pPage->nCell>0
2131        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2132        || CORRUPT_DB );
2133   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2134   pPage->isInit = 1;
2135   if( pBt->db->flags & SQLITE_CellSizeCk ){
2136     return btreeCellSizeCheck(pPage);
2137   }
2138   return SQLITE_OK;
2139 }
2140 
2141 /*
2142 ** Set up a raw page so that it looks like a database page holding
2143 ** no entries.
2144 */
2145 static void zeroPage(MemPage *pPage, int flags){
2146   unsigned char *data = pPage->aData;
2147   BtShared *pBt = pPage->pBt;
2148   u8 hdr = pPage->hdrOffset;
2149   u16 first;
2150 
2151   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
2152   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2153   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2154   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2155   assert( sqlite3_mutex_held(pBt->mutex) );
2156   if( pBt->btsFlags & BTS_FAST_SECURE ){
2157     memset(&data[hdr], 0, pBt->usableSize - hdr);
2158   }
2159   data[hdr] = (char)flags;
2160   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2161   memset(&data[hdr+1], 0, 4);
2162   data[hdr+7] = 0;
2163   put2byte(&data[hdr+5], pBt->usableSize);
2164   pPage->nFree = (u16)(pBt->usableSize - first);
2165   decodeFlags(pPage, flags);
2166   pPage->cellOffset = first;
2167   pPage->aDataEnd = &data[pBt->pageSize];
2168   pPage->aCellIdx = &data[first];
2169   pPage->aDataOfst = &data[pPage->childPtrSize];
2170   pPage->nOverflow = 0;
2171   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2172   pPage->maskPage = (u16)(pBt->pageSize - 1);
2173   pPage->nCell = 0;
2174   pPage->isInit = 1;
2175 }
2176 
2177 
2178 /*
2179 ** Convert a DbPage obtained from the pager into a MemPage used by
2180 ** the btree layer.
2181 */
2182 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2183   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2184   if( pgno!=pPage->pgno ){
2185     pPage->aData = sqlite3PagerGetData(pDbPage);
2186     pPage->pDbPage = pDbPage;
2187     pPage->pBt = pBt;
2188     pPage->pgno = pgno;
2189     pPage->hdrOffset = pgno==1 ? 100 : 0;
2190   }
2191   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2192   return pPage;
2193 }
2194 
2195 /*
2196 ** Get a page from the pager.  Initialize the MemPage.pBt and
2197 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2198 **
2199 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2200 ** about the content of the page at this time.  So do not go to the disk
2201 ** to fetch the content.  Just fill in the content with zeros for now.
2202 ** If in the future we call sqlite3PagerWrite() on this page, that
2203 ** means we have started to be concerned about content and the disk
2204 ** read should occur at that point.
2205 */
2206 static int btreeGetPage(
2207   BtShared *pBt,       /* The btree */
2208   Pgno pgno,           /* Number of the page to fetch */
2209   MemPage **ppPage,    /* Return the page in this parameter */
2210   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2211 ){
2212   int rc;
2213   DbPage *pDbPage;
2214 
2215   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2216   assert( sqlite3_mutex_held(pBt->mutex) );
2217   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2218   if( rc ) return rc;
2219   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2220   return SQLITE_OK;
2221 }
2222 
2223 /*
2224 ** Retrieve a page from the pager cache. If the requested page is not
2225 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2226 ** MemPage.aData elements if needed.
2227 */
2228 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2229   DbPage *pDbPage;
2230   assert( sqlite3_mutex_held(pBt->mutex) );
2231   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2232   if( pDbPage ){
2233     return btreePageFromDbPage(pDbPage, pgno, pBt);
2234   }
2235   return 0;
2236 }
2237 
2238 /*
2239 ** Return the size of the database file in pages. If there is any kind of
2240 ** error, return ((unsigned int)-1).
2241 */
2242 static Pgno btreePagecount(BtShared *pBt){
2243   return pBt->nPage;
2244 }
2245 Pgno sqlite3BtreeLastPage(Btree *p){
2246   assert( sqlite3BtreeHoldsMutex(p) );
2247   return btreePagecount(p->pBt);
2248 }
2249 
2250 /*
2251 ** Get a page from the pager and initialize it.
2252 **
2253 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2254 ** call.  Do additional sanity checking on the page in this case.
2255 ** And if the fetch fails, this routine must decrement pCur->iPage.
2256 **
2257 ** The page is fetched as read-write unless pCur is not NULL and is
2258 ** a read-only cursor.
2259 **
2260 ** If an error occurs, then *ppPage is undefined. It
2261 ** may remain unchanged, or it may be set to an invalid value.
2262 */
2263 static int getAndInitPage(
2264   BtShared *pBt,                  /* The database file */
2265   Pgno pgno,                      /* Number of the page to get */
2266   MemPage **ppPage,               /* Write the page pointer here */
2267   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2268   int bReadOnly                   /* True for a read-only page */
2269 ){
2270   int rc;
2271   DbPage *pDbPage;
2272   assert( sqlite3_mutex_held(pBt->mutex) );
2273   assert( pCur==0 || ppPage==&pCur->pPage );
2274   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2275   assert( pCur==0 || pCur->iPage>0 );
2276 
2277   if( pgno>btreePagecount(pBt) ){
2278     rc = SQLITE_CORRUPT_BKPT;
2279     goto getAndInitPage_error1;
2280   }
2281   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2282   if( rc ){
2283     goto getAndInitPage_error1;
2284   }
2285   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2286   if( (*ppPage)->isInit==0 ){
2287     btreePageFromDbPage(pDbPage, pgno, pBt);
2288     rc = btreeInitPage(*ppPage);
2289     if( rc!=SQLITE_OK ){
2290       goto getAndInitPage_error2;
2291     }
2292   }
2293   assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
2294   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2295 
2296   /* If obtaining a child page for a cursor, we must verify that the page is
2297   ** compatible with the root page. */
2298   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2299     rc = SQLITE_CORRUPT_PGNO(pgno);
2300     goto getAndInitPage_error2;
2301   }
2302   return SQLITE_OK;
2303 
2304 getAndInitPage_error2:
2305   releasePage(*ppPage);
2306 getAndInitPage_error1:
2307   if( pCur ){
2308     pCur->iPage--;
2309     pCur->pPage = pCur->apPage[pCur->iPage];
2310   }
2311   testcase( pgno==0 );
2312   assert( pgno!=0 || rc!=SQLITE_OK );
2313   return rc;
2314 }
2315 
2316 /*
2317 ** Release a MemPage.  This should be called once for each prior
2318 ** call to btreeGetPage.
2319 **
2320 ** Page1 is a special case and must be released using releasePageOne().
2321 */
2322 static void releasePageNotNull(MemPage *pPage){
2323   assert( pPage->aData );
2324   assert( pPage->pBt );
2325   assert( pPage->pDbPage!=0 );
2326   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2327   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2328   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2329   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2330 }
2331 static void releasePage(MemPage *pPage){
2332   if( pPage ) releasePageNotNull(pPage);
2333 }
2334 static void releasePageOne(MemPage *pPage){
2335   assert( pPage!=0 );
2336   assert( pPage->aData );
2337   assert( pPage->pBt );
2338   assert( pPage->pDbPage!=0 );
2339   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2340   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2341   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2342   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2343 }
2344 
2345 /*
2346 ** Get an unused page.
2347 **
2348 ** This works just like btreeGetPage() with the addition:
2349 **
2350 **   *  If the page is already in use for some other purpose, immediately
2351 **      release it and return an SQLITE_CURRUPT error.
2352 **   *  Make sure the isInit flag is clear
2353 */
2354 static int btreeGetUnusedPage(
2355   BtShared *pBt,       /* The btree */
2356   Pgno pgno,           /* Number of the page to fetch */
2357   MemPage **ppPage,    /* Return the page in this parameter */
2358   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2359 ){
2360   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2361   if( rc==SQLITE_OK ){
2362     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2363       releasePage(*ppPage);
2364       *ppPage = 0;
2365       return SQLITE_CORRUPT_BKPT;
2366     }
2367     (*ppPage)->isInit = 0;
2368   }else{
2369     *ppPage = 0;
2370   }
2371   return rc;
2372 }
2373 
2374 
2375 /*
2376 ** During a rollback, when the pager reloads information into the cache
2377 ** so that the cache is restored to its original state at the start of
2378 ** the transaction, for each page restored this routine is called.
2379 **
2380 ** This routine needs to reset the extra data section at the end of the
2381 ** page to agree with the restored data.
2382 */
2383 static void pageReinit(DbPage *pData){
2384   MemPage *pPage;
2385   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2386   assert( sqlite3PagerPageRefcount(pData)>0 );
2387   if( pPage->isInit ){
2388     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2389     pPage->isInit = 0;
2390     if( sqlite3PagerPageRefcount(pData)>1 ){
2391       /* pPage might not be a btree page;  it might be an overflow page
2392       ** or ptrmap page or a free page.  In those cases, the following
2393       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2394       ** But no harm is done by this.  And it is very important that
2395       ** btreeInitPage() be called on every btree page so we make
2396       ** the call for every page that comes in for re-initing. */
2397       btreeInitPage(pPage);
2398     }
2399   }
2400 }
2401 
2402 /*
2403 ** Invoke the busy handler for a btree.
2404 */
2405 static int btreeInvokeBusyHandler(void *pArg){
2406   BtShared *pBt = (BtShared*)pArg;
2407   assert( pBt->db );
2408   assert( sqlite3_mutex_held(pBt->db->mutex) );
2409   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2410 }
2411 
2412 /*
2413 ** Open a database file.
2414 **
2415 ** zFilename is the name of the database file.  If zFilename is NULL
2416 ** then an ephemeral database is created.  The ephemeral database might
2417 ** be exclusively in memory, or it might use a disk-based memory cache.
2418 ** Either way, the ephemeral database will be automatically deleted
2419 ** when sqlite3BtreeClose() is called.
2420 **
2421 ** If zFilename is ":memory:" then an in-memory database is created
2422 ** that is automatically destroyed when it is closed.
2423 **
2424 ** The "flags" parameter is a bitmask that might contain bits like
2425 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2426 **
2427 ** If the database is already opened in the same database connection
2428 ** and we are in shared cache mode, then the open will fail with an
2429 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2430 ** objects in the same database connection since doing so will lead
2431 ** to problems with locking.
2432 */
2433 int sqlite3BtreeOpen(
2434   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2435   const char *zFilename,  /* Name of the file containing the BTree database */
2436   sqlite3 *db,            /* Associated database handle */
2437   Btree **ppBtree,        /* Pointer to new Btree object written here */
2438   int flags,              /* Options */
2439   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2440 ){
2441   BtShared *pBt = 0;             /* Shared part of btree structure */
2442   Btree *p;                      /* Handle to return */
2443   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2444   int rc = SQLITE_OK;            /* Result code from this function */
2445   u8 nReserve;                   /* Byte of unused space on each page */
2446   unsigned char zDbHeader[100];  /* Database header content */
2447 
2448   /* True if opening an ephemeral, temporary database */
2449   const int isTempDb = zFilename==0 || zFilename[0]==0;
2450 
2451   /* Set the variable isMemdb to true for an in-memory database, or
2452   ** false for a file-based database.
2453   */
2454 #ifdef SQLITE_OMIT_MEMORYDB
2455   const int isMemdb = 0;
2456 #else
2457   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2458                        || (isTempDb && sqlite3TempInMemory(db))
2459                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2460 #endif
2461 
2462   assert( db!=0 );
2463   assert( pVfs!=0 );
2464   assert( sqlite3_mutex_held(db->mutex) );
2465   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2466 
2467   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2468   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2469 
2470   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2471   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2472 
2473   if( isMemdb ){
2474     flags |= BTREE_MEMORY;
2475   }
2476   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2477     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2478   }
2479   p = sqlite3MallocZero(sizeof(Btree));
2480   if( !p ){
2481     return SQLITE_NOMEM_BKPT;
2482   }
2483   p->inTrans = TRANS_NONE;
2484   p->db = db;
2485 #ifndef SQLITE_OMIT_SHARED_CACHE
2486   p->lock.pBtree = p;
2487   p->lock.iTable = 1;
2488 #endif
2489 
2490 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2491   /*
2492   ** If this Btree is a candidate for shared cache, try to find an
2493   ** existing BtShared object that we can share with
2494   */
2495   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2496     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2497       int nFilename = sqlite3Strlen30(zFilename)+1;
2498       int nFullPathname = pVfs->mxPathname+1;
2499       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2500       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2501 
2502       p->sharable = 1;
2503       if( !zFullPathname ){
2504         sqlite3_free(p);
2505         return SQLITE_NOMEM_BKPT;
2506       }
2507       if( isMemdb ){
2508         memcpy(zFullPathname, zFilename, nFilename);
2509       }else{
2510         rc = sqlite3OsFullPathname(pVfs, zFilename,
2511                                    nFullPathname, zFullPathname);
2512         if( rc ){
2513           if( rc==SQLITE_OK_SYMLINK ){
2514             rc = SQLITE_OK;
2515           }else{
2516             sqlite3_free(zFullPathname);
2517             sqlite3_free(p);
2518             return rc;
2519           }
2520         }
2521       }
2522 #if SQLITE_THREADSAFE
2523       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2524       sqlite3_mutex_enter(mutexOpen);
2525       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2526       sqlite3_mutex_enter(mutexShared);
2527 #endif
2528       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2529         assert( pBt->nRef>0 );
2530         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2531                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2532           int iDb;
2533           for(iDb=db->nDb-1; iDb>=0; iDb--){
2534             Btree *pExisting = db->aDb[iDb].pBt;
2535             if( pExisting && pExisting->pBt==pBt ){
2536               sqlite3_mutex_leave(mutexShared);
2537               sqlite3_mutex_leave(mutexOpen);
2538               sqlite3_free(zFullPathname);
2539               sqlite3_free(p);
2540               return SQLITE_CONSTRAINT;
2541             }
2542           }
2543           p->pBt = pBt;
2544           pBt->nRef++;
2545           break;
2546         }
2547       }
2548       sqlite3_mutex_leave(mutexShared);
2549       sqlite3_free(zFullPathname);
2550     }
2551 #ifdef SQLITE_DEBUG
2552     else{
2553       /* In debug mode, we mark all persistent databases as sharable
2554       ** even when they are not.  This exercises the locking code and
2555       ** gives more opportunity for asserts(sqlite3_mutex_held())
2556       ** statements to find locking problems.
2557       */
2558       p->sharable = 1;
2559     }
2560 #endif
2561   }
2562 #endif
2563   if( pBt==0 ){
2564     /*
2565     ** The following asserts make sure that structures used by the btree are
2566     ** the right size.  This is to guard against size changes that result
2567     ** when compiling on a different architecture.
2568     */
2569     assert( sizeof(i64)==8 );
2570     assert( sizeof(u64)==8 );
2571     assert( sizeof(u32)==4 );
2572     assert( sizeof(u16)==2 );
2573     assert( sizeof(Pgno)==4 );
2574 
2575     pBt = sqlite3MallocZero( sizeof(*pBt) );
2576     if( pBt==0 ){
2577       rc = SQLITE_NOMEM_BKPT;
2578       goto btree_open_out;
2579     }
2580     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2581                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2582     if( rc==SQLITE_OK ){
2583       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2584       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2585     }
2586     if( rc!=SQLITE_OK ){
2587       goto btree_open_out;
2588     }
2589     pBt->openFlags = (u8)flags;
2590     pBt->db = db;
2591     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2592     p->pBt = pBt;
2593 
2594     pBt->pCursor = 0;
2595     pBt->pPage1 = 0;
2596     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2597 #if defined(SQLITE_SECURE_DELETE)
2598     pBt->btsFlags |= BTS_SECURE_DELETE;
2599 #elif defined(SQLITE_FAST_SECURE_DELETE)
2600     pBt->btsFlags |= BTS_OVERWRITE;
2601 #endif
2602     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2603     ** determined by the 2-byte integer located at an offset of 16 bytes from
2604     ** the beginning of the database file. */
2605     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2606     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2607          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2608       pBt->pageSize = 0;
2609 #ifndef SQLITE_OMIT_AUTOVACUUM
2610       /* If the magic name ":memory:" will create an in-memory database, then
2611       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2612       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2613       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2614       ** regular file-name. In this case the auto-vacuum applies as per normal.
2615       */
2616       if( zFilename && !isMemdb ){
2617         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2618         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2619       }
2620 #endif
2621       nReserve = 0;
2622     }else{
2623       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2624       ** determined by the one-byte unsigned integer found at an offset of 20
2625       ** into the database file header. */
2626       nReserve = zDbHeader[20];
2627       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2628 #ifndef SQLITE_OMIT_AUTOVACUUM
2629       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2630       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2631 #endif
2632     }
2633     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2634     if( rc ) goto btree_open_out;
2635     pBt->usableSize = pBt->pageSize - nReserve;
2636     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2637 
2638 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2639     /* Add the new BtShared object to the linked list sharable BtShareds.
2640     */
2641     pBt->nRef = 1;
2642     if( p->sharable ){
2643       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2644       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2645       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2646         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2647         if( pBt->mutex==0 ){
2648           rc = SQLITE_NOMEM_BKPT;
2649           goto btree_open_out;
2650         }
2651       }
2652       sqlite3_mutex_enter(mutexShared);
2653       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2654       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2655       sqlite3_mutex_leave(mutexShared);
2656     }
2657 #endif
2658   }
2659 
2660 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2661   /* If the new Btree uses a sharable pBtShared, then link the new
2662   ** Btree into the list of all sharable Btrees for the same connection.
2663   ** The list is kept in ascending order by pBt address.
2664   */
2665   if( p->sharable ){
2666     int i;
2667     Btree *pSib;
2668     for(i=0; i<db->nDb; i++){
2669       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2670         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2671         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2672           p->pNext = pSib;
2673           p->pPrev = 0;
2674           pSib->pPrev = p;
2675         }else{
2676           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2677             pSib = pSib->pNext;
2678           }
2679           p->pNext = pSib->pNext;
2680           p->pPrev = pSib;
2681           if( p->pNext ){
2682             p->pNext->pPrev = p;
2683           }
2684           pSib->pNext = p;
2685         }
2686         break;
2687       }
2688     }
2689   }
2690 #endif
2691   *ppBtree = p;
2692 
2693 btree_open_out:
2694   if( rc!=SQLITE_OK ){
2695     if( pBt && pBt->pPager ){
2696       sqlite3PagerClose(pBt->pPager, 0);
2697     }
2698     sqlite3_free(pBt);
2699     sqlite3_free(p);
2700     *ppBtree = 0;
2701   }else{
2702     sqlite3_file *pFile;
2703 
2704     /* If the B-Tree was successfully opened, set the pager-cache size to the
2705     ** default value. Except, when opening on an existing shared pager-cache,
2706     ** do not change the pager-cache size.
2707     */
2708     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2709       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2710     }
2711 
2712     pFile = sqlite3PagerFile(pBt->pPager);
2713     if( pFile->pMethods ){
2714       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2715     }
2716   }
2717   if( mutexOpen ){
2718     assert( sqlite3_mutex_held(mutexOpen) );
2719     sqlite3_mutex_leave(mutexOpen);
2720   }
2721   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2722   return rc;
2723 }
2724 
2725 /*
2726 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2727 ** remove the BtShared structure from the sharing list.  Return
2728 ** true if the BtShared.nRef counter reaches zero and return
2729 ** false if it is still positive.
2730 */
2731 static int removeFromSharingList(BtShared *pBt){
2732 #ifndef SQLITE_OMIT_SHARED_CACHE
2733   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2734   BtShared *pList;
2735   int removed = 0;
2736 
2737   assert( sqlite3_mutex_notheld(pBt->mutex) );
2738   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2739   sqlite3_mutex_enter(pMainMtx);
2740   pBt->nRef--;
2741   if( pBt->nRef<=0 ){
2742     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2743       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2744     }else{
2745       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2746       while( ALWAYS(pList) && pList->pNext!=pBt ){
2747         pList=pList->pNext;
2748       }
2749       if( ALWAYS(pList) ){
2750         pList->pNext = pBt->pNext;
2751       }
2752     }
2753     if( SQLITE_THREADSAFE ){
2754       sqlite3_mutex_free(pBt->mutex);
2755     }
2756     removed = 1;
2757   }
2758   sqlite3_mutex_leave(pMainMtx);
2759   return removed;
2760 #else
2761   return 1;
2762 #endif
2763 }
2764 
2765 /*
2766 ** Make sure pBt->pTmpSpace points to an allocation of
2767 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2768 ** pointer.
2769 */
2770 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2771   assert( pBt!=0 );
2772   assert( pBt->pTmpSpace==0 );
2773   /* This routine is called only by btreeCursor() when allocating the
2774   ** first write cursor for the BtShared object */
2775   assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2776   pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2777   if( pBt->pTmpSpace==0 ){
2778     BtCursor *pCur = pBt->pCursor;
2779     pBt->pCursor = pCur->pNext;  /* Unlink the cursor */
2780     memset(pCur, 0, sizeof(*pCur));
2781     return SQLITE_NOMEM_BKPT;
2782   }
2783 
2784   /* One of the uses of pBt->pTmpSpace is to format cells before
2785   ** inserting them into a leaf page (function fillInCell()). If
2786   ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2787   ** by the various routines that manipulate binary cells. Which
2788   ** can mean that fillInCell() only initializes the first 2 or 3
2789   ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2790   ** it into a database page. This is not actually a problem, but it
2791   ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2792   ** data is passed to system call write(). So to avoid this error,
2793   ** zero the first 4 bytes of temp space here.
2794   **
2795   ** Also:  Provide four bytes of initialized space before the
2796   ** beginning of pTmpSpace as an area available to prepend the
2797   ** left-child pointer to the beginning of a cell.
2798   */
2799   memset(pBt->pTmpSpace, 0, 8);
2800   pBt->pTmpSpace += 4;
2801   return SQLITE_OK;
2802 }
2803 
2804 /*
2805 ** Free the pBt->pTmpSpace allocation
2806 */
2807 static void freeTempSpace(BtShared *pBt){
2808   if( pBt->pTmpSpace ){
2809     pBt->pTmpSpace -= 4;
2810     sqlite3PageFree(pBt->pTmpSpace);
2811     pBt->pTmpSpace = 0;
2812   }
2813 }
2814 
2815 /*
2816 ** Close an open database and invalidate all cursors.
2817 */
2818 int sqlite3BtreeClose(Btree *p){
2819   BtShared *pBt = p->pBt;
2820 
2821   /* Close all cursors opened via this handle.  */
2822   assert( sqlite3_mutex_held(p->db->mutex) );
2823   sqlite3BtreeEnter(p);
2824 
2825   /* Verify that no other cursors have this Btree open */
2826 #ifdef SQLITE_DEBUG
2827   {
2828     BtCursor *pCur = pBt->pCursor;
2829     while( pCur ){
2830       BtCursor *pTmp = pCur;
2831       pCur = pCur->pNext;
2832       assert( pTmp->pBtree!=p );
2833 
2834     }
2835   }
2836 #endif
2837 
2838   /* Rollback any active transaction and free the handle structure.
2839   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2840   ** this handle.
2841   */
2842   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2843   sqlite3BtreeLeave(p);
2844 
2845   /* If there are still other outstanding references to the shared-btree
2846   ** structure, return now. The remainder of this procedure cleans
2847   ** up the shared-btree.
2848   */
2849   assert( p->wantToLock==0 && p->locked==0 );
2850   if( !p->sharable || removeFromSharingList(pBt) ){
2851     /* The pBt is no longer on the sharing list, so we can access
2852     ** it without having to hold the mutex.
2853     **
2854     ** Clean out and delete the BtShared object.
2855     */
2856     assert( !pBt->pCursor );
2857     sqlite3PagerClose(pBt->pPager, p->db);
2858     if( pBt->xFreeSchema && pBt->pSchema ){
2859       pBt->xFreeSchema(pBt->pSchema);
2860     }
2861     sqlite3DbFree(0, pBt->pSchema);
2862     freeTempSpace(pBt);
2863     sqlite3_free(pBt);
2864   }
2865 
2866 #ifndef SQLITE_OMIT_SHARED_CACHE
2867   assert( p->wantToLock==0 );
2868   assert( p->locked==0 );
2869   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2870   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2871 #endif
2872 
2873   sqlite3_free(p);
2874   return SQLITE_OK;
2875 }
2876 
2877 /*
2878 ** Change the "soft" limit on the number of pages in the cache.
2879 ** Unused and unmodified pages will be recycled when the number of
2880 ** pages in the cache exceeds this soft limit.  But the size of the
2881 ** cache is allowed to grow larger than this limit if it contains
2882 ** dirty pages or pages still in active use.
2883 */
2884 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2885   BtShared *pBt = p->pBt;
2886   assert( sqlite3_mutex_held(p->db->mutex) );
2887   sqlite3BtreeEnter(p);
2888   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2889   sqlite3BtreeLeave(p);
2890   return SQLITE_OK;
2891 }
2892 
2893 /*
2894 ** Change the "spill" limit on the number of pages in the cache.
2895 ** If the number of pages exceeds this limit during a write transaction,
2896 ** the pager might attempt to "spill" pages to the journal early in
2897 ** order to free up memory.
2898 **
2899 ** The value returned is the current spill size.  If zero is passed
2900 ** as an argument, no changes are made to the spill size setting, so
2901 ** using mxPage of 0 is a way to query the current spill size.
2902 */
2903 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2904   BtShared *pBt = p->pBt;
2905   int res;
2906   assert( sqlite3_mutex_held(p->db->mutex) );
2907   sqlite3BtreeEnter(p);
2908   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2909   sqlite3BtreeLeave(p);
2910   return res;
2911 }
2912 
2913 #if SQLITE_MAX_MMAP_SIZE>0
2914 /*
2915 ** Change the limit on the amount of the database file that may be
2916 ** memory mapped.
2917 */
2918 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2919   BtShared *pBt = p->pBt;
2920   assert( sqlite3_mutex_held(p->db->mutex) );
2921   sqlite3BtreeEnter(p);
2922   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2923   sqlite3BtreeLeave(p);
2924   return SQLITE_OK;
2925 }
2926 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2927 
2928 /*
2929 ** Change the way data is synced to disk in order to increase or decrease
2930 ** how well the database resists damage due to OS crashes and power
2931 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2932 ** there is a high probability of damage)  Level 2 is the default.  There
2933 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2934 ** probability of damage to near zero but with a write performance reduction.
2935 */
2936 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2937 int sqlite3BtreeSetPagerFlags(
2938   Btree *p,              /* The btree to set the safety level on */
2939   unsigned pgFlags       /* Various PAGER_* flags */
2940 ){
2941   BtShared *pBt = p->pBt;
2942   assert( sqlite3_mutex_held(p->db->mutex) );
2943   sqlite3BtreeEnter(p);
2944   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2945   sqlite3BtreeLeave(p);
2946   return SQLITE_OK;
2947 }
2948 #endif
2949 
2950 /*
2951 ** Change the default pages size and the number of reserved bytes per page.
2952 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2953 ** without changing anything.
2954 **
2955 ** The page size must be a power of 2 between 512 and 65536.  If the page
2956 ** size supplied does not meet this constraint then the page size is not
2957 ** changed.
2958 **
2959 ** Page sizes are constrained to be a power of two so that the region
2960 ** of the database file used for locking (beginning at PENDING_BYTE,
2961 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2962 ** at the beginning of a page.
2963 **
2964 ** If parameter nReserve is less than zero, then the number of reserved
2965 ** bytes per page is left unchanged.
2966 **
2967 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2968 ** and autovacuum mode can no longer be changed.
2969 */
2970 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2971   int rc = SQLITE_OK;
2972   int x;
2973   BtShared *pBt = p->pBt;
2974   assert( nReserve>=0 && nReserve<=255 );
2975   sqlite3BtreeEnter(p);
2976   pBt->nReserveWanted = nReserve;
2977   x = pBt->pageSize - pBt->usableSize;
2978   if( nReserve<x ) nReserve = x;
2979   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2980     sqlite3BtreeLeave(p);
2981     return SQLITE_READONLY;
2982   }
2983   assert( nReserve>=0 && nReserve<=255 );
2984   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2985         ((pageSize-1)&pageSize)==0 ){
2986     assert( (pageSize & 7)==0 );
2987     assert( !pBt->pCursor );
2988     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2989     pBt->pageSize = (u32)pageSize;
2990     freeTempSpace(pBt);
2991   }
2992   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2993   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2994   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2995   sqlite3BtreeLeave(p);
2996   return rc;
2997 }
2998 
2999 /*
3000 ** Return the currently defined page size
3001 */
3002 int sqlite3BtreeGetPageSize(Btree *p){
3003   return p->pBt->pageSize;
3004 }
3005 
3006 /*
3007 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3008 ** may only be called if it is guaranteed that the b-tree mutex is already
3009 ** held.
3010 **
3011 ** This is useful in one special case in the backup API code where it is
3012 ** known that the shared b-tree mutex is held, but the mutex on the
3013 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3014 ** were to be called, it might collide with some other operation on the
3015 ** database handle that owns *p, causing undefined behavior.
3016 */
3017 int sqlite3BtreeGetReserveNoMutex(Btree *p){
3018   int n;
3019   assert( sqlite3_mutex_held(p->pBt->mutex) );
3020   n = p->pBt->pageSize - p->pBt->usableSize;
3021   return n;
3022 }
3023 
3024 /*
3025 ** Return the number of bytes of space at the end of every page that
3026 ** are intentually left unused.  This is the "reserved" space that is
3027 ** sometimes used by extensions.
3028 **
3029 ** The value returned is the larger of the current reserve size and
3030 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3031 ** The amount of reserve can only grow - never shrink.
3032 */
3033 int sqlite3BtreeGetRequestedReserve(Btree *p){
3034   int n1, n2;
3035   sqlite3BtreeEnter(p);
3036   n1 = (int)p->pBt->nReserveWanted;
3037   n2 = sqlite3BtreeGetReserveNoMutex(p);
3038   sqlite3BtreeLeave(p);
3039   return n1>n2 ? n1 : n2;
3040 }
3041 
3042 
3043 /*
3044 ** Set the maximum page count for a database if mxPage is positive.
3045 ** No changes are made if mxPage is 0 or negative.
3046 ** Regardless of the value of mxPage, return the maximum page count.
3047 */
3048 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3049   Pgno n;
3050   sqlite3BtreeEnter(p);
3051   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3052   sqlite3BtreeLeave(p);
3053   return n;
3054 }
3055 
3056 /*
3057 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3058 **
3059 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3060 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3061 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3062 **    newFlag==(-1)    No changes
3063 **
3064 ** This routine acts as a query if newFlag is less than zero
3065 **
3066 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3067 ** freelist leaf pages are not written back to the database.  Thus in-page
3068 ** deleted content is cleared, but freelist deleted content is not.
3069 **
3070 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3071 ** that freelist leaf pages are written back into the database, increasing
3072 ** the amount of disk I/O.
3073 */
3074 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3075   int b;
3076   if( p==0 ) return 0;
3077   sqlite3BtreeEnter(p);
3078   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3079   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3080   if( newFlag>=0 ){
3081     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3082     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3083   }
3084   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3085   sqlite3BtreeLeave(p);
3086   return b;
3087 }
3088 
3089 /*
3090 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3091 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3092 ** is disabled. The default value for the auto-vacuum property is
3093 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3094 */
3095 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3096 #ifdef SQLITE_OMIT_AUTOVACUUM
3097   return SQLITE_READONLY;
3098 #else
3099   BtShared *pBt = p->pBt;
3100   int rc = SQLITE_OK;
3101   u8 av = (u8)autoVacuum;
3102 
3103   sqlite3BtreeEnter(p);
3104   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3105     rc = SQLITE_READONLY;
3106   }else{
3107     pBt->autoVacuum = av ?1:0;
3108     pBt->incrVacuum = av==2 ?1:0;
3109   }
3110   sqlite3BtreeLeave(p);
3111   return rc;
3112 #endif
3113 }
3114 
3115 /*
3116 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3117 ** enabled 1 is returned. Otherwise 0.
3118 */
3119 int sqlite3BtreeGetAutoVacuum(Btree *p){
3120 #ifdef SQLITE_OMIT_AUTOVACUUM
3121   return BTREE_AUTOVACUUM_NONE;
3122 #else
3123   int rc;
3124   sqlite3BtreeEnter(p);
3125   rc = (
3126     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3127     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3128     BTREE_AUTOVACUUM_INCR
3129   );
3130   sqlite3BtreeLeave(p);
3131   return rc;
3132 #endif
3133 }
3134 
3135 /*
3136 ** If the user has not set the safety-level for this database connection
3137 ** using "PRAGMA synchronous", and if the safety-level is not already
3138 ** set to the value passed to this function as the second parameter,
3139 ** set it so.
3140 */
3141 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3142     && !defined(SQLITE_OMIT_WAL)
3143 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3144   sqlite3 *db;
3145   Db *pDb;
3146   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3147     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3148     if( pDb->bSyncSet==0
3149      && pDb->safety_level!=safety_level
3150      && pDb!=&db->aDb[1]
3151     ){
3152       pDb->safety_level = safety_level;
3153       sqlite3PagerSetFlags(pBt->pPager,
3154           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3155     }
3156   }
3157 }
3158 #else
3159 # define setDefaultSyncFlag(pBt,safety_level)
3160 #endif
3161 
3162 /* Forward declaration */
3163 static int newDatabase(BtShared*);
3164 
3165 
3166 /*
3167 ** Get a reference to pPage1 of the database file.  This will
3168 ** also acquire a readlock on that file.
3169 **
3170 ** SQLITE_OK is returned on success.  If the file is not a
3171 ** well-formed database file, then SQLITE_CORRUPT is returned.
3172 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3173 ** is returned if we run out of memory.
3174 */
3175 static int lockBtree(BtShared *pBt){
3176   int rc;              /* Result code from subfunctions */
3177   MemPage *pPage1;     /* Page 1 of the database file */
3178   u32 nPage;           /* Number of pages in the database */
3179   u32 nPageFile = 0;   /* Number of pages in the database file */
3180 
3181   assert( sqlite3_mutex_held(pBt->mutex) );
3182   assert( pBt->pPage1==0 );
3183   rc = sqlite3PagerSharedLock(pBt->pPager);
3184   if( rc!=SQLITE_OK ) return rc;
3185   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3186   if( rc!=SQLITE_OK ) return rc;
3187 
3188   /* Do some checking to help insure the file we opened really is
3189   ** a valid database file.
3190   */
3191   nPage = get4byte(28+(u8*)pPage1->aData);
3192   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3193   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3194     nPage = nPageFile;
3195   }
3196   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3197     nPage = 0;
3198   }
3199   if( nPage>0 ){
3200     u32 pageSize;
3201     u32 usableSize;
3202     u8 *page1 = pPage1->aData;
3203     rc = SQLITE_NOTADB;
3204     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3205     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3206     ** 61 74 20 33 00. */
3207     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3208       goto page1_init_failed;
3209     }
3210 
3211 #ifdef SQLITE_OMIT_WAL
3212     if( page1[18]>1 ){
3213       pBt->btsFlags |= BTS_READ_ONLY;
3214     }
3215     if( page1[19]>1 ){
3216       goto page1_init_failed;
3217     }
3218 #else
3219     if( page1[18]>2 ){
3220       pBt->btsFlags |= BTS_READ_ONLY;
3221     }
3222     if( page1[19]>2 ){
3223       goto page1_init_failed;
3224     }
3225 
3226     /* If the read version is set to 2, this database should be accessed
3227     ** in WAL mode. If the log is not already open, open it now. Then
3228     ** return SQLITE_OK and return without populating BtShared.pPage1.
3229     ** The caller detects this and calls this function again. This is
3230     ** required as the version of page 1 currently in the page1 buffer
3231     ** may not be the latest version - there may be a newer one in the log
3232     ** file.
3233     */
3234     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3235       int isOpen = 0;
3236       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3237       if( rc!=SQLITE_OK ){
3238         goto page1_init_failed;
3239       }else{
3240         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3241         if( isOpen==0 ){
3242           releasePageOne(pPage1);
3243           return SQLITE_OK;
3244         }
3245       }
3246       rc = SQLITE_NOTADB;
3247     }else{
3248       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3249     }
3250 #endif
3251 
3252     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3253     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3254     **
3255     ** The original design allowed these amounts to vary, but as of
3256     ** version 3.6.0, we require them to be fixed.
3257     */
3258     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3259       goto page1_init_failed;
3260     }
3261     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3262     ** determined by the 2-byte integer located at an offset of 16 bytes from
3263     ** the beginning of the database file. */
3264     pageSize = (page1[16]<<8) | (page1[17]<<16);
3265     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3266     ** between 512 and 65536 inclusive. */
3267     if( ((pageSize-1)&pageSize)!=0
3268      || pageSize>SQLITE_MAX_PAGE_SIZE
3269      || pageSize<=256
3270     ){
3271       goto page1_init_failed;
3272     }
3273     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3274     assert( (pageSize & 7)==0 );
3275     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3276     ** integer at offset 20 is the number of bytes of space at the end of
3277     ** each page to reserve for extensions.
3278     **
3279     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3280     ** determined by the one-byte unsigned integer found at an offset of 20
3281     ** into the database file header. */
3282     usableSize = pageSize - page1[20];
3283     if( (u32)pageSize!=pBt->pageSize ){
3284       /* After reading the first page of the database assuming a page size
3285       ** of BtShared.pageSize, we have discovered that the page-size is
3286       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3287       ** zero and return SQLITE_OK. The caller will call this function
3288       ** again with the correct page-size.
3289       */
3290       releasePageOne(pPage1);
3291       pBt->usableSize = usableSize;
3292       pBt->pageSize = pageSize;
3293       freeTempSpace(pBt);
3294       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3295                                    pageSize-usableSize);
3296       return rc;
3297     }
3298     if( nPage>nPageFile ){
3299       if( sqlite3WritableSchema(pBt->db)==0 ){
3300         rc = SQLITE_CORRUPT_BKPT;
3301         goto page1_init_failed;
3302       }else{
3303         nPage = nPageFile;
3304       }
3305     }
3306     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3307     ** be less than 480. In other words, if the page size is 512, then the
3308     ** reserved space size cannot exceed 32. */
3309     if( usableSize<480 ){
3310       goto page1_init_failed;
3311     }
3312     pBt->pageSize = pageSize;
3313     pBt->usableSize = usableSize;
3314 #ifndef SQLITE_OMIT_AUTOVACUUM
3315     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3316     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3317 #endif
3318   }
3319 
3320   /* maxLocal is the maximum amount of payload to store locally for
3321   ** a cell.  Make sure it is small enough so that at least minFanout
3322   ** cells can will fit on one page.  We assume a 10-byte page header.
3323   ** Besides the payload, the cell must store:
3324   **     2-byte pointer to the cell
3325   **     4-byte child pointer
3326   **     9-byte nKey value
3327   **     4-byte nData value
3328   **     4-byte overflow page pointer
3329   ** So a cell consists of a 2-byte pointer, a header which is as much as
3330   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3331   ** page pointer.
3332   */
3333   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3334   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3335   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3336   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3337   if( pBt->maxLocal>127 ){
3338     pBt->max1bytePayload = 127;
3339   }else{
3340     pBt->max1bytePayload = (u8)pBt->maxLocal;
3341   }
3342   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3343   pBt->pPage1 = pPage1;
3344   pBt->nPage = nPage;
3345   return SQLITE_OK;
3346 
3347 page1_init_failed:
3348   releasePageOne(pPage1);
3349   pBt->pPage1 = 0;
3350   return rc;
3351 }
3352 
3353 #ifndef NDEBUG
3354 /*
3355 ** Return the number of cursors open on pBt. This is for use
3356 ** in assert() expressions, so it is only compiled if NDEBUG is not
3357 ** defined.
3358 **
3359 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3360 ** false then all cursors are counted.
3361 **
3362 ** For the purposes of this routine, a cursor is any cursor that
3363 ** is capable of reading or writing to the database.  Cursors that
3364 ** have been tripped into the CURSOR_FAULT state are not counted.
3365 */
3366 static int countValidCursors(BtShared *pBt, int wrOnly){
3367   BtCursor *pCur;
3368   int r = 0;
3369   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3370     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3371      && pCur->eState!=CURSOR_FAULT ) r++;
3372   }
3373   return r;
3374 }
3375 #endif
3376 
3377 /*
3378 ** If there are no outstanding cursors and we are not in the middle
3379 ** of a transaction but there is a read lock on the database, then
3380 ** this routine unrefs the first page of the database file which
3381 ** has the effect of releasing the read lock.
3382 **
3383 ** If there is a transaction in progress, this routine is a no-op.
3384 */
3385 static void unlockBtreeIfUnused(BtShared *pBt){
3386   assert( sqlite3_mutex_held(pBt->mutex) );
3387   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3388   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3389     MemPage *pPage1 = pBt->pPage1;
3390     assert( pPage1->aData );
3391     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3392     pBt->pPage1 = 0;
3393     releasePageOne(pPage1);
3394   }
3395 }
3396 
3397 /*
3398 ** If pBt points to an empty file then convert that empty file
3399 ** into a new empty database by initializing the first page of
3400 ** the database.
3401 */
3402 static int newDatabase(BtShared *pBt){
3403   MemPage *pP1;
3404   unsigned char *data;
3405   int rc;
3406 
3407   assert( sqlite3_mutex_held(pBt->mutex) );
3408   if( pBt->nPage>0 ){
3409     return SQLITE_OK;
3410   }
3411   pP1 = pBt->pPage1;
3412   assert( pP1!=0 );
3413   data = pP1->aData;
3414   rc = sqlite3PagerWrite(pP1->pDbPage);
3415   if( rc ) return rc;
3416   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3417   assert( sizeof(zMagicHeader)==16 );
3418   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3419   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3420   data[18] = 1;
3421   data[19] = 1;
3422   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3423   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3424   data[21] = 64;
3425   data[22] = 32;
3426   data[23] = 32;
3427   memset(&data[24], 0, 100-24);
3428   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3429   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3430 #ifndef SQLITE_OMIT_AUTOVACUUM
3431   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3432   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3433   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3434   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3435 #endif
3436   pBt->nPage = 1;
3437   data[31] = 1;
3438   return SQLITE_OK;
3439 }
3440 
3441 /*
3442 ** Initialize the first page of the database file (creating a database
3443 ** consisting of a single page and no schema objects). Return SQLITE_OK
3444 ** if successful, or an SQLite error code otherwise.
3445 */
3446 int sqlite3BtreeNewDb(Btree *p){
3447   int rc;
3448   sqlite3BtreeEnter(p);
3449   p->pBt->nPage = 0;
3450   rc = newDatabase(p->pBt);
3451   sqlite3BtreeLeave(p);
3452   return rc;
3453 }
3454 
3455 /*
3456 ** Attempt to start a new transaction. A write-transaction
3457 ** is started if the second argument is nonzero, otherwise a read-
3458 ** transaction.  If the second argument is 2 or more and exclusive
3459 ** transaction is started, meaning that no other process is allowed
3460 ** to access the database.  A preexisting transaction may not be
3461 ** upgraded to exclusive by calling this routine a second time - the
3462 ** exclusivity flag only works for a new transaction.
3463 **
3464 ** A write-transaction must be started before attempting any
3465 ** changes to the database.  None of the following routines
3466 ** will work unless a transaction is started first:
3467 **
3468 **      sqlite3BtreeCreateTable()
3469 **      sqlite3BtreeCreateIndex()
3470 **      sqlite3BtreeClearTable()
3471 **      sqlite3BtreeDropTable()
3472 **      sqlite3BtreeInsert()
3473 **      sqlite3BtreeDelete()
3474 **      sqlite3BtreeUpdateMeta()
3475 **
3476 ** If an initial attempt to acquire the lock fails because of lock contention
3477 ** and the database was previously unlocked, then invoke the busy handler
3478 ** if there is one.  But if there was previously a read-lock, do not
3479 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3480 ** returned when there is already a read-lock in order to avoid a deadlock.
3481 **
3482 ** Suppose there are two processes A and B.  A has a read lock and B has
3483 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3484 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3485 ** One or the other of the two processes must give way or there can be
3486 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3487 ** when A already has a read lock, we encourage A to give up and let B
3488 ** proceed.
3489 */
3490 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3491   BtShared *pBt = p->pBt;
3492   Pager *pPager = pBt->pPager;
3493   int rc = SQLITE_OK;
3494 
3495   sqlite3BtreeEnter(p);
3496   btreeIntegrity(p);
3497 
3498   /* If the btree is already in a write-transaction, or it
3499   ** is already in a read-transaction and a read-transaction
3500   ** is requested, this is a no-op.
3501   */
3502   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3503     goto trans_begun;
3504   }
3505   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3506 
3507   if( (p->db->flags & SQLITE_ResetDatabase)
3508    && sqlite3PagerIsreadonly(pPager)==0
3509   ){
3510     pBt->btsFlags &= ~BTS_READ_ONLY;
3511   }
3512 
3513   /* Write transactions are not possible on a read-only database */
3514   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3515     rc = SQLITE_READONLY;
3516     goto trans_begun;
3517   }
3518 
3519 #ifndef SQLITE_OMIT_SHARED_CACHE
3520   {
3521     sqlite3 *pBlock = 0;
3522     /* If another database handle has already opened a write transaction
3523     ** on this shared-btree structure and a second write transaction is
3524     ** requested, return SQLITE_LOCKED.
3525     */
3526     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3527      || (pBt->btsFlags & BTS_PENDING)!=0
3528     ){
3529       pBlock = pBt->pWriter->db;
3530     }else if( wrflag>1 ){
3531       BtLock *pIter;
3532       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3533         if( pIter->pBtree!=p ){
3534           pBlock = pIter->pBtree->db;
3535           break;
3536         }
3537       }
3538     }
3539     if( pBlock ){
3540       sqlite3ConnectionBlocked(p->db, pBlock);
3541       rc = SQLITE_LOCKED_SHAREDCACHE;
3542       goto trans_begun;
3543     }
3544   }
3545 #endif
3546 
3547   /* Any read-only or read-write transaction implies a read-lock on
3548   ** page 1. So if some other shared-cache client already has a write-lock
3549   ** on page 1, the transaction cannot be opened. */
3550   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3551   if( SQLITE_OK!=rc ) goto trans_begun;
3552 
3553   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3554   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3555   do {
3556     sqlite3PagerWalDb(pPager, p->db);
3557 
3558 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3559     /* If transitioning from no transaction directly to a write transaction,
3560     ** block for the WRITER lock first if possible. */
3561     if( pBt->pPage1==0 && wrflag ){
3562       assert( pBt->inTransaction==TRANS_NONE );
3563       rc = sqlite3PagerWalWriteLock(pPager, 1);
3564       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3565     }
3566 #endif
3567 
3568     /* Call lockBtree() until either pBt->pPage1 is populated or
3569     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3570     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3571     ** reading page 1 it discovers that the page-size of the database
3572     ** file is not pBt->pageSize. In this case lockBtree() will update
3573     ** pBt->pageSize to the page-size of the file on disk.
3574     */
3575     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3576 
3577     if( rc==SQLITE_OK && wrflag ){
3578       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3579         rc = SQLITE_READONLY;
3580       }else{
3581         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3582         if( rc==SQLITE_OK ){
3583           rc = newDatabase(pBt);
3584         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3585           /* if there was no transaction opened when this function was
3586           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3587           ** code to SQLITE_BUSY. */
3588           rc = SQLITE_BUSY;
3589         }
3590       }
3591     }
3592 
3593     if( rc!=SQLITE_OK ){
3594       (void)sqlite3PagerWalWriteLock(pPager, 0);
3595       unlockBtreeIfUnused(pBt);
3596     }
3597   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3598           btreeInvokeBusyHandler(pBt) );
3599   sqlite3PagerWalDb(pPager, 0);
3600 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3601   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3602 #endif
3603 
3604   if( rc==SQLITE_OK ){
3605     if( p->inTrans==TRANS_NONE ){
3606       pBt->nTransaction++;
3607 #ifndef SQLITE_OMIT_SHARED_CACHE
3608       if( p->sharable ){
3609         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3610         p->lock.eLock = READ_LOCK;
3611         p->lock.pNext = pBt->pLock;
3612         pBt->pLock = &p->lock;
3613       }
3614 #endif
3615     }
3616     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3617     if( p->inTrans>pBt->inTransaction ){
3618       pBt->inTransaction = p->inTrans;
3619     }
3620     if( wrflag ){
3621       MemPage *pPage1 = pBt->pPage1;
3622 #ifndef SQLITE_OMIT_SHARED_CACHE
3623       assert( !pBt->pWriter );
3624       pBt->pWriter = p;
3625       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3626       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3627 #endif
3628 
3629       /* If the db-size header field is incorrect (as it may be if an old
3630       ** client has been writing the database file), update it now. Doing
3631       ** this sooner rather than later means the database size can safely
3632       ** re-read the database size from page 1 if a savepoint or transaction
3633       ** rollback occurs within the transaction.
3634       */
3635       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3636         rc = sqlite3PagerWrite(pPage1->pDbPage);
3637         if( rc==SQLITE_OK ){
3638           put4byte(&pPage1->aData[28], pBt->nPage);
3639         }
3640       }
3641     }
3642   }
3643 
3644 trans_begun:
3645   if( rc==SQLITE_OK ){
3646     if( pSchemaVersion ){
3647       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3648     }
3649     if( wrflag ){
3650       /* This call makes sure that the pager has the correct number of
3651       ** open savepoints. If the second parameter is greater than 0 and
3652       ** the sub-journal is not already open, then it will be opened here.
3653       */
3654       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3655     }
3656   }
3657 
3658   btreeIntegrity(p);
3659   sqlite3BtreeLeave(p);
3660   return rc;
3661 }
3662 
3663 #ifndef SQLITE_OMIT_AUTOVACUUM
3664 
3665 /*
3666 ** Set the pointer-map entries for all children of page pPage. Also, if
3667 ** pPage contains cells that point to overflow pages, set the pointer
3668 ** map entries for the overflow pages as well.
3669 */
3670 static int setChildPtrmaps(MemPage *pPage){
3671   int i;                             /* Counter variable */
3672   int nCell;                         /* Number of cells in page pPage */
3673   int rc;                            /* Return code */
3674   BtShared *pBt = pPage->pBt;
3675   Pgno pgno = pPage->pgno;
3676 
3677   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3678   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3679   if( rc!=SQLITE_OK ) return rc;
3680   nCell = pPage->nCell;
3681 
3682   for(i=0; i<nCell; i++){
3683     u8 *pCell = findCell(pPage, i);
3684 
3685     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3686 
3687     if( !pPage->leaf ){
3688       Pgno childPgno = get4byte(pCell);
3689       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3690     }
3691   }
3692 
3693   if( !pPage->leaf ){
3694     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3695     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3696   }
3697 
3698   return rc;
3699 }
3700 
3701 /*
3702 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3703 ** that it points to iTo. Parameter eType describes the type of pointer to
3704 ** be modified, as  follows:
3705 **
3706 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3707 **                   page of pPage.
3708 **
3709 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3710 **                   page pointed to by one of the cells on pPage.
3711 **
3712 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3713 **                   overflow page in the list.
3714 */
3715 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3716   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3717   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3718   if( eType==PTRMAP_OVERFLOW2 ){
3719     /* The pointer is always the first 4 bytes of the page in this case.  */
3720     if( get4byte(pPage->aData)!=iFrom ){
3721       return SQLITE_CORRUPT_PAGE(pPage);
3722     }
3723     put4byte(pPage->aData, iTo);
3724   }else{
3725     int i;
3726     int nCell;
3727     int rc;
3728 
3729     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3730     if( rc ) return rc;
3731     nCell = pPage->nCell;
3732 
3733     for(i=0; i<nCell; i++){
3734       u8 *pCell = findCell(pPage, i);
3735       if( eType==PTRMAP_OVERFLOW1 ){
3736         CellInfo info;
3737         pPage->xParseCell(pPage, pCell, &info);
3738         if( info.nLocal<info.nPayload ){
3739           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3740             return SQLITE_CORRUPT_PAGE(pPage);
3741           }
3742           if( iFrom==get4byte(pCell+info.nSize-4) ){
3743             put4byte(pCell+info.nSize-4, iTo);
3744             break;
3745           }
3746         }
3747       }else{
3748         if( get4byte(pCell)==iFrom ){
3749           put4byte(pCell, iTo);
3750           break;
3751         }
3752       }
3753     }
3754 
3755     if( i==nCell ){
3756       if( eType!=PTRMAP_BTREE ||
3757           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3758         return SQLITE_CORRUPT_PAGE(pPage);
3759       }
3760       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3761     }
3762   }
3763   return SQLITE_OK;
3764 }
3765 
3766 
3767 /*
3768 ** Move the open database page pDbPage to location iFreePage in the
3769 ** database. The pDbPage reference remains valid.
3770 **
3771 ** The isCommit flag indicates that there is no need to remember that
3772 ** the journal needs to be sync()ed before database page pDbPage->pgno
3773 ** can be written to. The caller has already promised not to write to that
3774 ** page.
3775 */
3776 static int relocatePage(
3777   BtShared *pBt,           /* Btree */
3778   MemPage *pDbPage,        /* Open page to move */
3779   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3780   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3781   Pgno iFreePage,          /* The location to move pDbPage to */
3782   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3783 ){
3784   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3785   Pgno iDbPage = pDbPage->pgno;
3786   Pager *pPager = pBt->pPager;
3787   int rc;
3788 
3789   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3790       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3791   assert( sqlite3_mutex_held(pBt->mutex) );
3792   assert( pDbPage->pBt==pBt );
3793   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3794 
3795   /* Move page iDbPage from its current location to page number iFreePage */
3796   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3797       iDbPage, iFreePage, iPtrPage, eType));
3798   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3799   if( rc!=SQLITE_OK ){
3800     return rc;
3801   }
3802   pDbPage->pgno = iFreePage;
3803 
3804   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3805   ** that point to overflow pages. The pointer map entries for all these
3806   ** pages need to be changed.
3807   **
3808   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3809   ** pointer to a subsequent overflow page. If this is the case, then
3810   ** the pointer map needs to be updated for the subsequent overflow page.
3811   */
3812   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3813     rc = setChildPtrmaps(pDbPage);
3814     if( rc!=SQLITE_OK ){
3815       return rc;
3816     }
3817   }else{
3818     Pgno nextOvfl = get4byte(pDbPage->aData);
3819     if( nextOvfl!=0 ){
3820       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3821       if( rc!=SQLITE_OK ){
3822         return rc;
3823       }
3824     }
3825   }
3826 
3827   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3828   ** that it points at iFreePage. Also fix the pointer map entry for
3829   ** iPtrPage.
3830   */
3831   if( eType!=PTRMAP_ROOTPAGE ){
3832     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3833     if( rc!=SQLITE_OK ){
3834       return rc;
3835     }
3836     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3837     if( rc!=SQLITE_OK ){
3838       releasePage(pPtrPage);
3839       return rc;
3840     }
3841     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3842     releasePage(pPtrPage);
3843     if( rc==SQLITE_OK ){
3844       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3845     }
3846   }
3847   return rc;
3848 }
3849 
3850 /* Forward declaration required by incrVacuumStep(). */
3851 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3852 
3853 /*
3854 ** Perform a single step of an incremental-vacuum. If successful, return
3855 ** SQLITE_OK. If there is no work to do (and therefore no point in
3856 ** calling this function again), return SQLITE_DONE. Or, if an error
3857 ** occurs, return some other error code.
3858 **
3859 ** More specifically, this function attempts to re-organize the database so
3860 ** that the last page of the file currently in use is no longer in use.
3861 **
3862 ** Parameter nFin is the number of pages that this database would contain
3863 ** were this function called until it returns SQLITE_DONE.
3864 **
3865 ** If the bCommit parameter is non-zero, this function assumes that the
3866 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3867 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3868 ** operation, or false for an incremental vacuum.
3869 */
3870 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3871   Pgno nFreeList;           /* Number of pages still on the free-list */
3872   int rc;
3873 
3874   assert( sqlite3_mutex_held(pBt->mutex) );
3875   assert( iLastPg>nFin );
3876 
3877   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3878     u8 eType;
3879     Pgno iPtrPage;
3880 
3881     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3882     if( nFreeList==0 ){
3883       return SQLITE_DONE;
3884     }
3885 
3886     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3887     if( rc!=SQLITE_OK ){
3888       return rc;
3889     }
3890     if( eType==PTRMAP_ROOTPAGE ){
3891       return SQLITE_CORRUPT_BKPT;
3892     }
3893 
3894     if( eType==PTRMAP_FREEPAGE ){
3895       if( bCommit==0 ){
3896         /* Remove the page from the files free-list. This is not required
3897         ** if bCommit is non-zero. In that case, the free-list will be
3898         ** truncated to zero after this function returns, so it doesn't
3899         ** matter if it still contains some garbage entries.
3900         */
3901         Pgno iFreePg;
3902         MemPage *pFreePg;
3903         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3904         if( rc!=SQLITE_OK ){
3905           return rc;
3906         }
3907         assert( iFreePg==iLastPg );
3908         releasePage(pFreePg);
3909       }
3910     } else {
3911       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3912       MemPage *pLastPg;
3913       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3914       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3915 
3916       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3917       if( rc!=SQLITE_OK ){
3918         return rc;
3919       }
3920 
3921       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3922       ** is swapped with the first free page pulled off the free list.
3923       **
3924       ** On the other hand, if bCommit is greater than zero, then keep
3925       ** looping until a free-page located within the first nFin pages
3926       ** of the file is found.
3927       */
3928       if( bCommit==0 ){
3929         eMode = BTALLOC_LE;
3930         iNear = nFin;
3931       }
3932       do {
3933         MemPage *pFreePg;
3934         Pgno dbSize = btreePagecount(pBt);
3935         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3936         if( rc!=SQLITE_OK ){
3937           releasePage(pLastPg);
3938           return rc;
3939         }
3940         releasePage(pFreePg);
3941         if( iFreePg>dbSize ){
3942           releasePage(pLastPg);
3943           return SQLITE_CORRUPT_BKPT;
3944         }
3945       }while( bCommit && iFreePg>nFin );
3946       assert( iFreePg<iLastPg );
3947 
3948       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3949       releasePage(pLastPg);
3950       if( rc!=SQLITE_OK ){
3951         return rc;
3952       }
3953     }
3954   }
3955 
3956   if( bCommit==0 ){
3957     do {
3958       iLastPg--;
3959     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3960     pBt->bDoTruncate = 1;
3961     pBt->nPage = iLastPg;
3962   }
3963   return SQLITE_OK;
3964 }
3965 
3966 /*
3967 ** The database opened by the first argument is an auto-vacuum database
3968 ** nOrig pages in size containing nFree free pages. Return the expected
3969 ** size of the database in pages following an auto-vacuum operation.
3970 */
3971 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3972   int nEntry;                     /* Number of entries on one ptrmap page */
3973   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3974   Pgno nFin;                      /* Return value */
3975 
3976   nEntry = pBt->usableSize/5;
3977   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3978   nFin = nOrig - nFree - nPtrmap;
3979   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3980     nFin--;
3981   }
3982   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3983     nFin--;
3984   }
3985 
3986   return nFin;
3987 }
3988 
3989 /*
3990 ** A write-transaction must be opened before calling this function.
3991 ** It performs a single unit of work towards an incremental vacuum.
3992 **
3993 ** If the incremental vacuum is finished after this function has run,
3994 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3995 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3996 */
3997 int sqlite3BtreeIncrVacuum(Btree *p){
3998   int rc;
3999   BtShared *pBt = p->pBt;
4000 
4001   sqlite3BtreeEnter(p);
4002   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
4003   if( !pBt->autoVacuum ){
4004     rc = SQLITE_DONE;
4005   }else{
4006     Pgno nOrig = btreePagecount(pBt);
4007     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4008     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4009 
4010     if( nOrig<nFin || nFree>=nOrig ){
4011       rc = SQLITE_CORRUPT_BKPT;
4012     }else if( nFree>0 ){
4013       rc = saveAllCursors(pBt, 0, 0);
4014       if( rc==SQLITE_OK ){
4015         invalidateAllOverflowCache(pBt);
4016         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4017       }
4018       if( rc==SQLITE_OK ){
4019         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4020         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4021       }
4022     }else{
4023       rc = SQLITE_DONE;
4024     }
4025   }
4026   sqlite3BtreeLeave(p);
4027   return rc;
4028 }
4029 
4030 /*
4031 ** This routine is called prior to sqlite3PagerCommit when a transaction
4032 ** is committed for an auto-vacuum database.
4033 */
4034 static int autoVacuumCommit(Btree *p){
4035   int rc = SQLITE_OK;
4036   Pager *pPager;
4037   BtShared *pBt;
4038   sqlite3 *db;
4039   VVA_ONLY( int nRef );
4040 
4041   assert( p!=0 );
4042   pBt = p->pBt;
4043   pPager = pBt->pPager;
4044   VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
4045 
4046   assert( sqlite3_mutex_held(pBt->mutex) );
4047   invalidateAllOverflowCache(pBt);
4048   assert(pBt->autoVacuum);
4049   if( !pBt->incrVacuum ){
4050     Pgno nFin;         /* Number of pages in database after autovacuuming */
4051     Pgno nFree;        /* Number of pages on the freelist initially */
4052     Pgno nVac;         /* Number of pages to vacuum */
4053     Pgno iFree;        /* The next page to be freed */
4054     Pgno nOrig;        /* Database size before freeing */
4055 
4056     nOrig = btreePagecount(pBt);
4057     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4058       /* It is not possible to create a database for which the final page
4059       ** is either a pointer-map page or the pending-byte page. If one
4060       ** is encountered, this indicates corruption.
4061       */
4062       return SQLITE_CORRUPT_BKPT;
4063     }
4064 
4065     nFree = get4byte(&pBt->pPage1->aData[36]);
4066     db = p->db;
4067     if( db->xAutovacPages ){
4068       int iDb;
4069       for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4070         if( db->aDb[iDb].pBt==p ) break;
4071       }
4072       nVac = db->xAutovacPages(
4073         db->pAutovacPagesArg,
4074         db->aDb[iDb].zDbSName,
4075         nOrig,
4076         nFree,
4077         pBt->pageSize
4078       );
4079       if( nVac>nFree ){
4080         nVac = nFree;
4081       }
4082       if( nVac==0 ){
4083         return SQLITE_OK;
4084       }
4085     }else{
4086       nVac = nFree;
4087     }
4088     nFin = finalDbSize(pBt, nOrig, nVac);
4089     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4090     if( nFin<nOrig ){
4091       rc = saveAllCursors(pBt, 0, 0);
4092     }
4093     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4094       rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4095     }
4096     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4097       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4098       if( nVac==nFree ){
4099         put4byte(&pBt->pPage1->aData[32], 0);
4100         put4byte(&pBt->pPage1->aData[36], 0);
4101       }
4102       put4byte(&pBt->pPage1->aData[28], nFin);
4103       pBt->bDoTruncate = 1;
4104       pBt->nPage = nFin;
4105     }
4106     if( rc!=SQLITE_OK ){
4107       sqlite3PagerRollback(pPager);
4108     }
4109   }
4110 
4111   assert( nRef>=sqlite3PagerRefcount(pPager) );
4112   return rc;
4113 }
4114 
4115 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4116 # define setChildPtrmaps(x) SQLITE_OK
4117 #endif
4118 
4119 /*
4120 ** This routine does the first phase of a two-phase commit.  This routine
4121 ** causes a rollback journal to be created (if it does not already exist)
4122 ** and populated with enough information so that if a power loss occurs
4123 ** the database can be restored to its original state by playing back
4124 ** the journal.  Then the contents of the journal are flushed out to
4125 ** the disk.  After the journal is safely on oxide, the changes to the
4126 ** database are written into the database file and flushed to oxide.
4127 ** At the end of this call, the rollback journal still exists on the
4128 ** disk and we are still holding all locks, so the transaction has not
4129 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4130 ** commit process.
4131 **
4132 ** This call is a no-op if no write-transaction is currently active on pBt.
4133 **
4134 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4135 ** the name of a super-journal file that should be written into the
4136 ** individual journal file, or is NULL, indicating no super-journal file
4137 ** (single database transaction).
4138 **
4139 ** When this is called, the super-journal should already have been
4140 ** created, populated with this journal pointer and synced to disk.
4141 **
4142 ** Once this is routine has returned, the only thing required to commit
4143 ** the write-transaction for this database file is to delete the journal.
4144 */
4145 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4146   int rc = SQLITE_OK;
4147   if( p->inTrans==TRANS_WRITE ){
4148     BtShared *pBt = p->pBt;
4149     sqlite3BtreeEnter(p);
4150 #ifndef SQLITE_OMIT_AUTOVACUUM
4151     if( pBt->autoVacuum ){
4152       rc = autoVacuumCommit(p);
4153       if( rc!=SQLITE_OK ){
4154         sqlite3BtreeLeave(p);
4155         return rc;
4156       }
4157     }
4158     if( pBt->bDoTruncate ){
4159       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4160     }
4161 #endif
4162     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4163     sqlite3BtreeLeave(p);
4164   }
4165   return rc;
4166 }
4167 
4168 /*
4169 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4170 ** at the conclusion of a transaction.
4171 */
4172 static void btreeEndTransaction(Btree *p){
4173   BtShared *pBt = p->pBt;
4174   sqlite3 *db = p->db;
4175   assert( sqlite3BtreeHoldsMutex(p) );
4176 
4177 #ifndef SQLITE_OMIT_AUTOVACUUM
4178   pBt->bDoTruncate = 0;
4179 #endif
4180   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4181     /* If there are other active statements that belong to this database
4182     ** handle, downgrade to a read-only transaction. The other statements
4183     ** may still be reading from the database.  */
4184     downgradeAllSharedCacheTableLocks(p);
4185     p->inTrans = TRANS_READ;
4186   }else{
4187     /* If the handle had any kind of transaction open, decrement the
4188     ** transaction count of the shared btree. If the transaction count
4189     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4190     ** call below will unlock the pager.  */
4191     if( p->inTrans!=TRANS_NONE ){
4192       clearAllSharedCacheTableLocks(p);
4193       pBt->nTransaction--;
4194       if( 0==pBt->nTransaction ){
4195         pBt->inTransaction = TRANS_NONE;
4196       }
4197     }
4198 
4199     /* Set the current transaction state to TRANS_NONE and unlock the
4200     ** pager if this call closed the only read or write transaction.  */
4201     p->inTrans = TRANS_NONE;
4202     unlockBtreeIfUnused(pBt);
4203   }
4204 
4205   btreeIntegrity(p);
4206 }
4207 
4208 /*
4209 ** Commit the transaction currently in progress.
4210 **
4211 ** This routine implements the second phase of a 2-phase commit.  The
4212 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4213 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4214 ** routine did all the work of writing information out to disk and flushing the
4215 ** contents so that they are written onto the disk platter.  All this
4216 ** routine has to do is delete or truncate or zero the header in the
4217 ** the rollback journal (which causes the transaction to commit) and
4218 ** drop locks.
4219 **
4220 ** Normally, if an error occurs while the pager layer is attempting to
4221 ** finalize the underlying journal file, this function returns an error and
4222 ** the upper layer will attempt a rollback. However, if the second argument
4223 ** is non-zero then this b-tree transaction is part of a multi-file
4224 ** transaction. In this case, the transaction has already been committed
4225 ** (by deleting a super-journal file) and the caller will ignore this
4226 ** functions return code. So, even if an error occurs in the pager layer,
4227 ** reset the b-tree objects internal state to indicate that the write
4228 ** transaction has been closed. This is quite safe, as the pager will have
4229 ** transitioned to the error state.
4230 **
4231 ** This will release the write lock on the database file.  If there
4232 ** are no active cursors, it also releases the read lock.
4233 */
4234 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4235 
4236   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4237   sqlite3BtreeEnter(p);
4238   btreeIntegrity(p);
4239 
4240   /* If the handle has a write-transaction open, commit the shared-btrees
4241   ** transaction and set the shared state to TRANS_READ.
4242   */
4243   if( p->inTrans==TRANS_WRITE ){
4244     int rc;
4245     BtShared *pBt = p->pBt;
4246     assert( pBt->inTransaction==TRANS_WRITE );
4247     assert( pBt->nTransaction>0 );
4248     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4249     if( rc!=SQLITE_OK && bCleanup==0 ){
4250       sqlite3BtreeLeave(p);
4251       return rc;
4252     }
4253     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4254     pBt->inTransaction = TRANS_READ;
4255     btreeClearHasContent(pBt);
4256   }
4257 
4258   btreeEndTransaction(p);
4259   sqlite3BtreeLeave(p);
4260   return SQLITE_OK;
4261 }
4262 
4263 /*
4264 ** Do both phases of a commit.
4265 */
4266 int sqlite3BtreeCommit(Btree *p){
4267   int rc;
4268   sqlite3BtreeEnter(p);
4269   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4270   if( rc==SQLITE_OK ){
4271     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4272   }
4273   sqlite3BtreeLeave(p);
4274   return rc;
4275 }
4276 
4277 /*
4278 ** This routine sets the state to CURSOR_FAULT and the error
4279 ** code to errCode for every cursor on any BtShared that pBtree
4280 ** references.  Or if the writeOnly flag is set to 1, then only
4281 ** trip write cursors and leave read cursors unchanged.
4282 **
4283 ** Every cursor is a candidate to be tripped, including cursors
4284 ** that belong to other database connections that happen to be
4285 ** sharing the cache with pBtree.
4286 **
4287 ** This routine gets called when a rollback occurs. If the writeOnly
4288 ** flag is true, then only write-cursors need be tripped - read-only
4289 ** cursors save their current positions so that they may continue
4290 ** following the rollback. Or, if writeOnly is false, all cursors are
4291 ** tripped. In general, writeOnly is false if the transaction being
4292 ** rolled back modified the database schema. In this case b-tree root
4293 ** pages may be moved or deleted from the database altogether, making
4294 ** it unsafe for read cursors to continue.
4295 **
4296 ** If the writeOnly flag is true and an error is encountered while
4297 ** saving the current position of a read-only cursor, all cursors,
4298 ** including all read-cursors are tripped.
4299 **
4300 ** SQLITE_OK is returned if successful, or if an error occurs while
4301 ** saving a cursor position, an SQLite error code.
4302 */
4303 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4304   BtCursor *p;
4305   int rc = SQLITE_OK;
4306 
4307   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4308   if( pBtree ){
4309     sqlite3BtreeEnter(pBtree);
4310     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4311       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4312         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4313           rc = saveCursorPosition(p);
4314           if( rc!=SQLITE_OK ){
4315             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4316             break;
4317           }
4318         }
4319       }else{
4320         sqlite3BtreeClearCursor(p);
4321         p->eState = CURSOR_FAULT;
4322         p->skipNext = errCode;
4323       }
4324       btreeReleaseAllCursorPages(p);
4325     }
4326     sqlite3BtreeLeave(pBtree);
4327   }
4328   return rc;
4329 }
4330 
4331 /*
4332 ** Set the pBt->nPage field correctly, according to the current
4333 ** state of the database.  Assume pBt->pPage1 is valid.
4334 */
4335 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4336   int nPage = get4byte(&pPage1->aData[28]);
4337   testcase( nPage==0 );
4338   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4339   testcase( pBt->nPage!=(u32)nPage );
4340   pBt->nPage = nPage;
4341 }
4342 
4343 /*
4344 ** Rollback the transaction in progress.
4345 **
4346 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4347 ** Only write cursors are tripped if writeOnly is true but all cursors are
4348 ** tripped if writeOnly is false.  Any attempt to use
4349 ** a tripped cursor will result in an error.
4350 **
4351 ** This will release the write lock on the database file.  If there
4352 ** are no active cursors, it also releases the read lock.
4353 */
4354 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4355   int rc;
4356   BtShared *pBt = p->pBt;
4357   MemPage *pPage1;
4358 
4359   assert( writeOnly==1 || writeOnly==0 );
4360   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4361   sqlite3BtreeEnter(p);
4362   if( tripCode==SQLITE_OK ){
4363     rc = tripCode = saveAllCursors(pBt, 0, 0);
4364     if( rc ) writeOnly = 0;
4365   }else{
4366     rc = SQLITE_OK;
4367   }
4368   if( tripCode ){
4369     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4370     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4371     if( rc2!=SQLITE_OK ) rc = rc2;
4372   }
4373   btreeIntegrity(p);
4374 
4375   if( p->inTrans==TRANS_WRITE ){
4376     int rc2;
4377 
4378     assert( TRANS_WRITE==pBt->inTransaction );
4379     rc2 = sqlite3PagerRollback(pBt->pPager);
4380     if( rc2!=SQLITE_OK ){
4381       rc = rc2;
4382     }
4383 
4384     /* The rollback may have destroyed the pPage1->aData value.  So
4385     ** call btreeGetPage() on page 1 again to make
4386     ** sure pPage1->aData is set correctly. */
4387     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4388       btreeSetNPage(pBt, pPage1);
4389       releasePageOne(pPage1);
4390     }
4391     assert( countValidCursors(pBt, 1)==0 );
4392     pBt->inTransaction = TRANS_READ;
4393     btreeClearHasContent(pBt);
4394   }
4395 
4396   btreeEndTransaction(p);
4397   sqlite3BtreeLeave(p);
4398   return rc;
4399 }
4400 
4401 /*
4402 ** Start a statement subtransaction. The subtransaction can be rolled
4403 ** back independently of the main transaction. You must start a transaction
4404 ** before starting a subtransaction. The subtransaction is ended automatically
4405 ** if the main transaction commits or rolls back.
4406 **
4407 ** Statement subtransactions are used around individual SQL statements
4408 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4409 ** error occurs within the statement, the effect of that one statement
4410 ** can be rolled back without having to rollback the entire transaction.
4411 **
4412 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4413 ** value passed as the second parameter is the total number of savepoints,
4414 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4415 ** are no active savepoints and no other statement-transactions open,
4416 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4417 ** using the sqlite3BtreeSavepoint() function.
4418 */
4419 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4420   int rc;
4421   BtShared *pBt = p->pBt;
4422   sqlite3BtreeEnter(p);
4423   assert( p->inTrans==TRANS_WRITE );
4424   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4425   assert( iStatement>0 );
4426   assert( iStatement>p->db->nSavepoint );
4427   assert( pBt->inTransaction==TRANS_WRITE );
4428   /* At the pager level, a statement transaction is a savepoint with
4429   ** an index greater than all savepoints created explicitly using
4430   ** SQL statements. It is illegal to open, release or rollback any
4431   ** such savepoints while the statement transaction savepoint is active.
4432   */
4433   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4434   sqlite3BtreeLeave(p);
4435   return rc;
4436 }
4437 
4438 /*
4439 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4440 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4441 ** savepoint identified by parameter iSavepoint, depending on the value
4442 ** of op.
4443 **
4444 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4445 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4446 ** contents of the entire transaction are rolled back. This is different
4447 ** from a normal transaction rollback, as no locks are released and the
4448 ** transaction remains open.
4449 */
4450 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4451   int rc = SQLITE_OK;
4452   if( p && p->inTrans==TRANS_WRITE ){
4453     BtShared *pBt = p->pBt;
4454     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4455     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4456     sqlite3BtreeEnter(p);
4457     if( op==SAVEPOINT_ROLLBACK ){
4458       rc = saveAllCursors(pBt, 0, 0);
4459     }
4460     if( rc==SQLITE_OK ){
4461       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4462     }
4463     if( rc==SQLITE_OK ){
4464       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4465         pBt->nPage = 0;
4466       }
4467       rc = newDatabase(pBt);
4468       btreeSetNPage(pBt, pBt->pPage1);
4469 
4470       /* pBt->nPage might be zero if the database was corrupt when
4471       ** the transaction was started. Otherwise, it must be at least 1.  */
4472       assert( CORRUPT_DB || pBt->nPage>0 );
4473     }
4474     sqlite3BtreeLeave(p);
4475   }
4476   return rc;
4477 }
4478 
4479 /*
4480 ** Create a new cursor for the BTree whose root is on the page
4481 ** iTable. If a read-only cursor is requested, it is assumed that
4482 ** the caller already has at least a read-only transaction open
4483 ** on the database already. If a write-cursor is requested, then
4484 ** the caller is assumed to have an open write transaction.
4485 **
4486 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4487 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4488 ** can be used for reading or for writing if other conditions for writing
4489 ** are also met.  These are the conditions that must be met in order
4490 ** for writing to be allowed:
4491 **
4492 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4493 **
4494 ** 2:  Other database connections that share the same pager cache
4495 **     but which are not in the READ_UNCOMMITTED state may not have
4496 **     cursors open with wrFlag==0 on the same table.  Otherwise
4497 **     the changes made by this write cursor would be visible to
4498 **     the read cursors in the other database connection.
4499 **
4500 ** 3:  The database must be writable (not on read-only media)
4501 **
4502 ** 4:  There must be an active transaction.
4503 **
4504 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4505 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4506 ** this cursor will only be used to seek to and delete entries of an index
4507 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4508 ** this implementation.  But in a hypothetical alternative storage engine
4509 ** in which index entries are automatically deleted when corresponding table
4510 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4511 ** operations on this cursor can be no-ops and all READ operations can
4512 ** return a null row (2-bytes: 0x01 0x00).
4513 **
4514 ** No checking is done to make sure that page iTable really is the
4515 ** root page of a b-tree.  If it is not, then the cursor acquired
4516 ** will not work correctly.
4517 **
4518 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4519 ** on pCur to initialize the memory space prior to invoking this routine.
4520 */
4521 static int btreeCursor(
4522   Btree *p,                              /* The btree */
4523   Pgno iTable,                           /* Root page of table to open */
4524   int wrFlag,                            /* 1 to write. 0 read-only */
4525   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4526   BtCursor *pCur                         /* Space for new cursor */
4527 ){
4528   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4529   BtCursor *pX;                          /* Looping over other all cursors */
4530 
4531   assert( sqlite3BtreeHoldsMutex(p) );
4532   assert( wrFlag==0
4533        || wrFlag==BTREE_WRCSR
4534        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4535   );
4536 
4537   /* The following assert statements verify that if this is a sharable
4538   ** b-tree database, the connection is holding the required table locks,
4539   ** and that no other connection has any open cursor that conflicts with
4540   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4541   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4542           || iTable<1 );
4543   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4544 
4545   /* Assert that the caller has opened the required transaction. */
4546   assert( p->inTrans>TRANS_NONE );
4547   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4548   assert( pBt->pPage1 && pBt->pPage1->aData );
4549   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4550 
4551   if( iTable<=1 ){
4552     if( iTable<1 ){
4553       return SQLITE_CORRUPT_BKPT;
4554     }else if( btreePagecount(pBt)==0 ){
4555       assert( wrFlag==0 );
4556       iTable = 0;
4557     }
4558   }
4559 
4560   /* Now that no other errors can occur, finish filling in the BtCursor
4561   ** variables and link the cursor into the BtShared list.  */
4562   pCur->pgnoRoot = iTable;
4563   pCur->iPage = -1;
4564   pCur->pKeyInfo = pKeyInfo;
4565   pCur->pBtree = p;
4566   pCur->pBt = pBt;
4567   pCur->curFlags = 0;
4568   /* If there are two or more cursors on the same btree, then all such
4569   ** cursors *must* have the BTCF_Multiple flag set. */
4570   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4571     if( pX->pgnoRoot==iTable ){
4572       pX->curFlags |= BTCF_Multiple;
4573       pCur->curFlags = BTCF_Multiple;
4574     }
4575   }
4576   pCur->eState = CURSOR_INVALID;
4577   pCur->pNext = pBt->pCursor;
4578   pBt->pCursor = pCur;
4579   if( wrFlag ){
4580     pCur->curFlags |= BTCF_WriteFlag;
4581     pCur->curPagerFlags = 0;
4582     if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4583   }else{
4584     pCur->curPagerFlags = PAGER_GET_READONLY;
4585   }
4586   return SQLITE_OK;
4587 }
4588 static int btreeCursorWithLock(
4589   Btree *p,                              /* The btree */
4590   Pgno iTable,                           /* Root page of table to open */
4591   int wrFlag,                            /* 1 to write. 0 read-only */
4592   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4593   BtCursor *pCur                         /* Space for new cursor */
4594 ){
4595   int rc;
4596   sqlite3BtreeEnter(p);
4597   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4598   sqlite3BtreeLeave(p);
4599   return rc;
4600 }
4601 int sqlite3BtreeCursor(
4602   Btree *p,                                   /* The btree */
4603   Pgno iTable,                                /* Root page of table to open */
4604   int wrFlag,                                 /* 1 to write. 0 read-only */
4605   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4606   BtCursor *pCur                              /* Write new cursor here */
4607 ){
4608   if( p->sharable ){
4609     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4610   }else{
4611     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4612   }
4613 }
4614 
4615 /*
4616 ** Return the size of a BtCursor object in bytes.
4617 **
4618 ** This interfaces is needed so that users of cursors can preallocate
4619 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4620 ** to users so they cannot do the sizeof() themselves - they must call
4621 ** this routine.
4622 */
4623 int sqlite3BtreeCursorSize(void){
4624   return ROUND8(sizeof(BtCursor));
4625 }
4626 
4627 /*
4628 ** Initialize memory that will be converted into a BtCursor object.
4629 **
4630 ** The simple approach here would be to memset() the entire object
4631 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4632 ** do not need to be zeroed and they are large, so we can save a lot
4633 ** of run-time by skipping the initialization of those elements.
4634 */
4635 void sqlite3BtreeCursorZero(BtCursor *p){
4636   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4637 }
4638 
4639 /*
4640 ** Close a cursor.  The read lock on the database file is released
4641 ** when the last cursor is closed.
4642 */
4643 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4644   Btree *pBtree = pCur->pBtree;
4645   if( pBtree ){
4646     BtShared *pBt = pCur->pBt;
4647     sqlite3BtreeEnter(pBtree);
4648     assert( pBt->pCursor!=0 );
4649     if( pBt->pCursor==pCur ){
4650       pBt->pCursor = pCur->pNext;
4651     }else{
4652       BtCursor *pPrev = pBt->pCursor;
4653       do{
4654         if( pPrev->pNext==pCur ){
4655           pPrev->pNext = pCur->pNext;
4656           break;
4657         }
4658         pPrev = pPrev->pNext;
4659       }while( ALWAYS(pPrev) );
4660     }
4661     btreeReleaseAllCursorPages(pCur);
4662     unlockBtreeIfUnused(pBt);
4663     sqlite3_free(pCur->aOverflow);
4664     sqlite3_free(pCur->pKey);
4665     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4666       /* Since the BtShared is not sharable, there is no need to
4667       ** worry about the missing sqlite3BtreeLeave() call here.  */
4668       assert( pBtree->sharable==0 );
4669       sqlite3BtreeClose(pBtree);
4670     }else{
4671       sqlite3BtreeLeave(pBtree);
4672     }
4673     pCur->pBtree = 0;
4674   }
4675   return SQLITE_OK;
4676 }
4677 
4678 /*
4679 ** Make sure the BtCursor* given in the argument has a valid
4680 ** BtCursor.info structure.  If it is not already valid, call
4681 ** btreeParseCell() to fill it in.
4682 **
4683 ** BtCursor.info is a cache of the information in the current cell.
4684 ** Using this cache reduces the number of calls to btreeParseCell().
4685 */
4686 #ifndef NDEBUG
4687   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4688     if( a->nKey!=b->nKey ) return 0;
4689     if( a->pPayload!=b->pPayload ) return 0;
4690     if( a->nPayload!=b->nPayload ) return 0;
4691     if( a->nLocal!=b->nLocal ) return 0;
4692     if( a->nSize!=b->nSize ) return 0;
4693     return 1;
4694   }
4695   static void assertCellInfo(BtCursor *pCur){
4696     CellInfo info;
4697     memset(&info, 0, sizeof(info));
4698     btreeParseCell(pCur->pPage, pCur->ix, &info);
4699     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4700   }
4701 #else
4702   #define assertCellInfo(x)
4703 #endif
4704 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4705   if( pCur->info.nSize==0 ){
4706     pCur->curFlags |= BTCF_ValidNKey;
4707     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4708   }else{
4709     assertCellInfo(pCur);
4710   }
4711 }
4712 
4713 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4714 /*
4715 ** Return true if the given BtCursor is valid.  A valid cursor is one
4716 ** that is currently pointing to a row in a (non-empty) table.
4717 ** This is a verification routine is used only within assert() statements.
4718 */
4719 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4720   return pCur && pCur->eState==CURSOR_VALID;
4721 }
4722 #endif /* NDEBUG */
4723 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4724   assert( pCur!=0 );
4725   return pCur->eState==CURSOR_VALID;
4726 }
4727 
4728 /*
4729 ** Return the value of the integer key or "rowid" for a table btree.
4730 ** This routine is only valid for a cursor that is pointing into a
4731 ** ordinary table btree.  If the cursor points to an index btree or
4732 ** is invalid, the result of this routine is undefined.
4733 */
4734 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4735   assert( cursorHoldsMutex(pCur) );
4736   assert( pCur->eState==CURSOR_VALID );
4737   assert( pCur->curIntKey );
4738   getCellInfo(pCur);
4739   return pCur->info.nKey;
4740 }
4741 
4742 /*
4743 ** Pin or unpin a cursor.
4744 */
4745 void sqlite3BtreeCursorPin(BtCursor *pCur){
4746   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4747   pCur->curFlags |= BTCF_Pinned;
4748 }
4749 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4750   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4751   pCur->curFlags &= ~BTCF_Pinned;
4752 }
4753 
4754 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4755 /*
4756 ** Return the offset into the database file for the start of the
4757 ** payload to which the cursor is pointing.
4758 */
4759 i64 sqlite3BtreeOffset(BtCursor *pCur){
4760   assert( cursorHoldsMutex(pCur) );
4761   assert( pCur->eState==CURSOR_VALID );
4762   getCellInfo(pCur);
4763   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4764          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4765 }
4766 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4767 
4768 /*
4769 ** Return the number of bytes of payload for the entry that pCur is
4770 ** currently pointing to.  For table btrees, this will be the amount
4771 ** of data.  For index btrees, this will be the size of the key.
4772 **
4773 ** The caller must guarantee that the cursor is pointing to a non-NULL
4774 ** valid entry.  In other words, the calling procedure must guarantee
4775 ** that the cursor has Cursor.eState==CURSOR_VALID.
4776 */
4777 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4778   assert( cursorHoldsMutex(pCur) );
4779   assert( pCur->eState==CURSOR_VALID );
4780   getCellInfo(pCur);
4781   return pCur->info.nPayload;
4782 }
4783 
4784 /*
4785 ** Return an upper bound on the size of any record for the table
4786 ** that the cursor is pointing into.
4787 **
4788 ** This is an optimization.  Everything will still work if this
4789 ** routine always returns 2147483647 (which is the largest record
4790 ** that SQLite can handle) or more.  But returning a smaller value might
4791 ** prevent large memory allocations when trying to interpret a
4792 ** corrupt datrabase.
4793 **
4794 ** The current implementation merely returns the size of the underlying
4795 ** database file.
4796 */
4797 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4798   assert( cursorHoldsMutex(pCur) );
4799   assert( pCur->eState==CURSOR_VALID );
4800   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4801 }
4802 
4803 /*
4804 ** Given the page number of an overflow page in the database (parameter
4805 ** ovfl), this function finds the page number of the next page in the
4806 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4807 ** pointer-map data instead of reading the content of page ovfl to do so.
4808 **
4809 ** If an error occurs an SQLite error code is returned. Otherwise:
4810 **
4811 ** The page number of the next overflow page in the linked list is
4812 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4813 ** list, *pPgnoNext is set to zero.
4814 **
4815 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4816 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4817 ** reference. It is the responsibility of the caller to call releasePage()
4818 ** on *ppPage to free the reference. In no reference was obtained (because
4819 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4820 ** *ppPage is set to zero.
4821 */
4822 static int getOverflowPage(
4823   BtShared *pBt,               /* The database file */
4824   Pgno ovfl,                   /* Current overflow page number */
4825   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4826   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4827 ){
4828   Pgno next = 0;
4829   MemPage *pPage = 0;
4830   int rc = SQLITE_OK;
4831 
4832   assert( sqlite3_mutex_held(pBt->mutex) );
4833   assert(pPgnoNext);
4834 
4835 #ifndef SQLITE_OMIT_AUTOVACUUM
4836   /* Try to find the next page in the overflow list using the
4837   ** autovacuum pointer-map pages. Guess that the next page in
4838   ** the overflow list is page number (ovfl+1). If that guess turns
4839   ** out to be wrong, fall back to loading the data of page
4840   ** number ovfl to determine the next page number.
4841   */
4842   if( pBt->autoVacuum ){
4843     Pgno pgno;
4844     Pgno iGuess = ovfl+1;
4845     u8 eType;
4846 
4847     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4848       iGuess++;
4849     }
4850 
4851     if( iGuess<=btreePagecount(pBt) ){
4852       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4853       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4854         next = iGuess;
4855         rc = SQLITE_DONE;
4856       }
4857     }
4858   }
4859 #endif
4860 
4861   assert( next==0 || rc==SQLITE_DONE );
4862   if( rc==SQLITE_OK ){
4863     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4864     assert( rc==SQLITE_OK || pPage==0 );
4865     if( rc==SQLITE_OK ){
4866       next = get4byte(pPage->aData);
4867     }
4868   }
4869 
4870   *pPgnoNext = next;
4871   if( ppPage ){
4872     *ppPage = pPage;
4873   }else{
4874     releasePage(pPage);
4875   }
4876   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4877 }
4878 
4879 /*
4880 ** Copy data from a buffer to a page, or from a page to a buffer.
4881 **
4882 ** pPayload is a pointer to data stored on database page pDbPage.
4883 ** If argument eOp is false, then nByte bytes of data are copied
4884 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4885 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4886 ** of data are copied from the buffer pBuf to pPayload.
4887 **
4888 ** SQLITE_OK is returned on success, otherwise an error code.
4889 */
4890 static int copyPayload(
4891   void *pPayload,           /* Pointer to page data */
4892   void *pBuf,               /* Pointer to buffer */
4893   int nByte,                /* Number of bytes to copy */
4894   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4895   DbPage *pDbPage           /* Page containing pPayload */
4896 ){
4897   if( eOp ){
4898     /* Copy data from buffer to page (a write operation) */
4899     int rc = sqlite3PagerWrite(pDbPage);
4900     if( rc!=SQLITE_OK ){
4901       return rc;
4902     }
4903     memcpy(pPayload, pBuf, nByte);
4904   }else{
4905     /* Copy data from page to buffer (a read operation) */
4906     memcpy(pBuf, pPayload, nByte);
4907   }
4908   return SQLITE_OK;
4909 }
4910 
4911 /*
4912 ** This function is used to read or overwrite payload information
4913 ** for the entry that the pCur cursor is pointing to. The eOp
4914 ** argument is interpreted as follows:
4915 **
4916 **   0: The operation is a read. Populate the overflow cache.
4917 **   1: The operation is a write. Populate the overflow cache.
4918 **
4919 ** A total of "amt" bytes are read or written beginning at "offset".
4920 ** Data is read to or from the buffer pBuf.
4921 **
4922 ** The content being read or written might appear on the main page
4923 ** or be scattered out on multiple overflow pages.
4924 **
4925 ** If the current cursor entry uses one or more overflow pages
4926 ** this function may allocate space for and lazily populate
4927 ** the overflow page-list cache array (BtCursor.aOverflow).
4928 ** Subsequent calls use this cache to make seeking to the supplied offset
4929 ** more efficient.
4930 **
4931 ** Once an overflow page-list cache has been allocated, it must be
4932 ** invalidated if some other cursor writes to the same table, or if
4933 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4934 ** mode, the following events may invalidate an overflow page-list cache.
4935 **
4936 **   * An incremental vacuum,
4937 **   * A commit in auto_vacuum="full" mode,
4938 **   * Creating a table (may require moving an overflow page).
4939 */
4940 static int accessPayload(
4941   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4942   u32 offset,          /* Begin reading this far into payload */
4943   u32 amt,             /* Read this many bytes */
4944   unsigned char *pBuf, /* Write the bytes into this buffer */
4945   int eOp              /* zero to read. non-zero to write. */
4946 ){
4947   unsigned char *aPayload;
4948   int rc = SQLITE_OK;
4949   int iIdx = 0;
4950   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4951   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4952 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4953   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4954 #endif
4955 
4956   assert( pPage );
4957   assert( eOp==0 || eOp==1 );
4958   assert( pCur->eState==CURSOR_VALID );
4959   if( pCur->ix>=pPage->nCell ){
4960     return SQLITE_CORRUPT_PAGE(pPage);
4961   }
4962   assert( cursorHoldsMutex(pCur) );
4963 
4964   getCellInfo(pCur);
4965   aPayload = pCur->info.pPayload;
4966   assert( offset+amt <= pCur->info.nPayload );
4967 
4968   assert( aPayload > pPage->aData );
4969   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4970     /* Trying to read or write past the end of the data is an error.  The
4971     ** conditional above is really:
4972     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4973     ** but is recast into its current form to avoid integer overflow problems
4974     */
4975     return SQLITE_CORRUPT_PAGE(pPage);
4976   }
4977 
4978   /* Check if data must be read/written to/from the btree page itself. */
4979   if( offset<pCur->info.nLocal ){
4980     int a = amt;
4981     if( a+offset>pCur->info.nLocal ){
4982       a = pCur->info.nLocal - offset;
4983     }
4984     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4985     offset = 0;
4986     pBuf += a;
4987     amt -= a;
4988   }else{
4989     offset -= pCur->info.nLocal;
4990   }
4991 
4992 
4993   if( rc==SQLITE_OK && amt>0 ){
4994     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4995     Pgno nextPage;
4996 
4997     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4998 
4999     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5000     **
5001     ** The aOverflow[] array is sized at one entry for each overflow page
5002     ** in the overflow chain. The page number of the first overflow page is
5003     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5004     ** means "not yet known" (the cache is lazily populated).
5005     */
5006     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
5007       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
5008       if( pCur->aOverflow==0
5009        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
5010       ){
5011         Pgno *aNew = (Pgno*)sqlite3Realloc(
5012             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
5013         );
5014         if( aNew==0 ){
5015           return SQLITE_NOMEM_BKPT;
5016         }else{
5017           pCur->aOverflow = aNew;
5018         }
5019       }
5020       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5021       pCur->curFlags |= BTCF_ValidOvfl;
5022     }else{
5023       /* If the overflow page-list cache has been allocated and the
5024       ** entry for the first required overflow page is valid, skip
5025       ** directly to it.
5026       */
5027       if( pCur->aOverflow[offset/ovflSize] ){
5028         iIdx = (offset/ovflSize);
5029         nextPage = pCur->aOverflow[iIdx];
5030         offset = (offset%ovflSize);
5031       }
5032     }
5033 
5034     assert( rc==SQLITE_OK && amt>0 );
5035     while( nextPage ){
5036       /* If required, populate the overflow page-list cache. */
5037       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
5038       assert( pCur->aOverflow[iIdx]==0
5039               || pCur->aOverflow[iIdx]==nextPage
5040               || CORRUPT_DB );
5041       pCur->aOverflow[iIdx] = nextPage;
5042 
5043       if( offset>=ovflSize ){
5044         /* The only reason to read this page is to obtain the page
5045         ** number for the next page in the overflow chain. The page
5046         ** data is not required. So first try to lookup the overflow
5047         ** page-list cache, if any, then fall back to the getOverflowPage()
5048         ** function.
5049         */
5050         assert( pCur->curFlags & BTCF_ValidOvfl );
5051         assert( pCur->pBtree->db==pBt->db );
5052         if( pCur->aOverflow[iIdx+1] ){
5053           nextPage = pCur->aOverflow[iIdx+1];
5054         }else{
5055           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
5056         }
5057         offset -= ovflSize;
5058       }else{
5059         /* Need to read this page properly. It contains some of the
5060         ** range of data that is being read (eOp==0) or written (eOp!=0).
5061         */
5062         int a = amt;
5063         if( a + offset > ovflSize ){
5064           a = ovflSize - offset;
5065         }
5066 
5067 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5068         /* If all the following are true:
5069         **
5070         **   1) this is a read operation, and
5071         **   2) data is required from the start of this overflow page, and
5072         **   3) there are no dirty pages in the page-cache
5073         **   4) the database is file-backed, and
5074         **   5) the page is not in the WAL file
5075         **   6) at least 4 bytes have already been read into the output buffer
5076         **
5077         ** then data can be read directly from the database file into the
5078         ** output buffer, bypassing the page-cache altogether. This speeds
5079         ** up loading large records that span many overflow pages.
5080         */
5081         if( eOp==0                                             /* (1) */
5082          && offset==0                                          /* (2) */
5083          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
5084          && &pBuf[-4]>=pBufStart                               /* (6) */
5085         ){
5086           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5087           u8 aSave[4];
5088           u8 *aWrite = &pBuf[-4];
5089           assert( aWrite>=pBufStart );                         /* due to (6) */
5090           memcpy(aSave, aWrite, 4);
5091           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5092           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5093           nextPage = get4byte(aWrite);
5094           memcpy(aWrite, aSave, 4);
5095         }else
5096 #endif
5097 
5098         {
5099           DbPage *pDbPage;
5100           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5101               (eOp==0 ? PAGER_GET_READONLY : 0)
5102           );
5103           if( rc==SQLITE_OK ){
5104             aPayload = sqlite3PagerGetData(pDbPage);
5105             nextPage = get4byte(aPayload);
5106             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5107             sqlite3PagerUnref(pDbPage);
5108             offset = 0;
5109           }
5110         }
5111         amt -= a;
5112         if( amt==0 ) return rc;
5113         pBuf += a;
5114       }
5115       if( rc ) break;
5116       iIdx++;
5117     }
5118   }
5119 
5120   if( rc==SQLITE_OK && amt>0 ){
5121     /* Overflow chain ends prematurely */
5122     return SQLITE_CORRUPT_PAGE(pPage);
5123   }
5124   return rc;
5125 }
5126 
5127 /*
5128 ** Read part of the payload for the row at which that cursor pCur is currently
5129 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5130 ** begins at "offset".
5131 **
5132 ** pCur can be pointing to either a table or an index b-tree.
5133 ** If pointing to a table btree, then the content section is read.  If
5134 ** pCur is pointing to an index b-tree then the key section is read.
5135 **
5136 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5137 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5138 ** cursor might be invalid or might need to be restored before being read.
5139 **
5140 ** Return SQLITE_OK on success or an error code if anything goes
5141 ** wrong.  An error is returned if "offset+amt" is larger than
5142 ** the available payload.
5143 */
5144 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5145   assert( cursorHoldsMutex(pCur) );
5146   assert( pCur->eState==CURSOR_VALID );
5147   assert( pCur->iPage>=0 && pCur->pPage );
5148   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5149 }
5150 
5151 /*
5152 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5153 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5154 ** interface.
5155 */
5156 #ifndef SQLITE_OMIT_INCRBLOB
5157 static SQLITE_NOINLINE int accessPayloadChecked(
5158   BtCursor *pCur,
5159   u32 offset,
5160   u32 amt,
5161   void *pBuf
5162 ){
5163   int rc;
5164   if ( pCur->eState==CURSOR_INVALID ){
5165     return SQLITE_ABORT;
5166   }
5167   assert( cursorOwnsBtShared(pCur) );
5168   rc = btreeRestoreCursorPosition(pCur);
5169   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5170 }
5171 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5172   if( pCur->eState==CURSOR_VALID ){
5173     assert( cursorOwnsBtShared(pCur) );
5174     return accessPayload(pCur, offset, amt, pBuf, 0);
5175   }else{
5176     return accessPayloadChecked(pCur, offset, amt, pBuf);
5177   }
5178 }
5179 #endif /* SQLITE_OMIT_INCRBLOB */
5180 
5181 /*
5182 ** Return a pointer to payload information from the entry that the
5183 ** pCur cursor is pointing to.  The pointer is to the beginning of
5184 ** the key if index btrees (pPage->intKey==0) and is the data for
5185 ** table btrees (pPage->intKey==1). The number of bytes of available
5186 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5187 ** returned will not be a valid pointer.
5188 **
5189 ** This routine is an optimization.  It is common for the entire key
5190 ** and data to fit on the local page and for there to be no overflow
5191 ** pages.  When that is so, this routine can be used to access the
5192 ** key and data without making a copy.  If the key and/or data spills
5193 ** onto overflow pages, then accessPayload() must be used to reassemble
5194 ** the key/data and copy it into a preallocated buffer.
5195 **
5196 ** The pointer returned by this routine looks directly into the cached
5197 ** page of the database.  The data might change or move the next time
5198 ** any btree routine is called.
5199 */
5200 static const void *fetchPayload(
5201   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5202   u32 *pAmt            /* Write the number of available bytes here */
5203 ){
5204   int amt;
5205   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5206   assert( pCur->eState==CURSOR_VALID );
5207   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5208   assert( cursorOwnsBtShared(pCur) );
5209   assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5210   assert( pCur->info.nSize>0 );
5211   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5212   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5213   amt = pCur->info.nLocal;
5214   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5215     /* There is too little space on the page for the expected amount
5216     ** of local content. Database must be corrupt. */
5217     assert( CORRUPT_DB );
5218     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5219   }
5220   *pAmt = (u32)amt;
5221   return (void*)pCur->info.pPayload;
5222 }
5223 
5224 
5225 /*
5226 ** For the entry that cursor pCur is point to, return as
5227 ** many bytes of the key or data as are available on the local
5228 ** b-tree page.  Write the number of available bytes into *pAmt.
5229 **
5230 ** The pointer returned is ephemeral.  The key/data may move
5231 ** or be destroyed on the next call to any Btree routine,
5232 ** including calls from other threads against the same cache.
5233 ** Hence, a mutex on the BtShared should be held prior to calling
5234 ** this routine.
5235 **
5236 ** These routines is used to get quick access to key and data
5237 ** in the common case where no overflow pages are used.
5238 */
5239 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5240   return fetchPayload(pCur, pAmt);
5241 }
5242 
5243 
5244 /*
5245 ** Move the cursor down to a new child page.  The newPgno argument is the
5246 ** page number of the child page to move to.
5247 **
5248 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5249 ** the new child page does not match the flags field of the parent (i.e.
5250 ** if an intkey page appears to be the parent of a non-intkey page, or
5251 ** vice-versa).
5252 */
5253 static int moveToChild(BtCursor *pCur, u32 newPgno){
5254   BtShared *pBt = pCur->pBt;
5255 
5256   assert( cursorOwnsBtShared(pCur) );
5257   assert( pCur->eState==CURSOR_VALID );
5258   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5259   assert( pCur->iPage>=0 );
5260   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5261     return SQLITE_CORRUPT_BKPT;
5262   }
5263   pCur->info.nSize = 0;
5264   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5265   pCur->aiIdx[pCur->iPage] = pCur->ix;
5266   pCur->apPage[pCur->iPage] = pCur->pPage;
5267   pCur->ix = 0;
5268   pCur->iPage++;
5269   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5270 }
5271 
5272 #ifdef SQLITE_DEBUG
5273 /*
5274 ** Page pParent is an internal (non-leaf) tree page. This function
5275 ** asserts that page number iChild is the left-child if the iIdx'th
5276 ** cell in page pParent. Or, if iIdx is equal to the total number of
5277 ** cells in pParent, that page number iChild is the right-child of
5278 ** the page.
5279 */
5280 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5281   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5282                             ** in a corrupt database */
5283   assert( iIdx<=pParent->nCell );
5284   if( iIdx==pParent->nCell ){
5285     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5286   }else{
5287     assert( get4byte(findCell(pParent, iIdx))==iChild );
5288   }
5289 }
5290 #else
5291 #  define assertParentIndex(x,y,z)
5292 #endif
5293 
5294 /*
5295 ** Move the cursor up to the parent page.
5296 **
5297 ** pCur->idx is set to the cell index that contains the pointer
5298 ** to the page we are coming from.  If we are coming from the
5299 ** right-most child page then pCur->idx is set to one more than
5300 ** the largest cell index.
5301 */
5302 static void moveToParent(BtCursor *pCur){
5303   MemPage *pLeaf;
5304   assert( cursorOwnsBtShared(pCur) );
5305   assert( pCur->eState==CURSOR_VALID );
5306   assert( pCur->iPage>0 );
5307   assert( pCur->pPage );
5308   assertParentIndex(
5309     pCur->apPage[pCur->iPage-1],
5310     pCur->aiIdx[pCur->iPage-1],
5311     pCur->pPage->pgno
5312   );
5313   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5314   pCur->info.nSize = 0;
5315   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5316   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5317   pLeaf = pCur->pPage;
5318   pCur->pPage = pCur->apPage[--pCur->iPage];
5319   releasePageNotNull(pLeaf);
5320 }
5321 
5322 /*
5323 ** Move the cursor to point to the root page of its b-tree structure.
5324 **
5325 ** If the table has a virtual root page, then the cursor is moved to point
5326 ** to the virtual root page instead of the actual root page. A table has a
5327 ** virtual root page when the actual root page contains no cells and a
5328 ** single child page. This can only happen with the table rooted at page 1.
5329 **
5330 ** If the b-tree structure is empty, the cursor state is set to
5331 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5332 ** the cursor is set to point to the first cell located on the root
5333 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5334 **
5335 ** If this function returns successfully, it may be assumed that the
5336 ** page-header flags indicate that the [virtual] root-page is the expected
5337 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5338 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5339 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5340 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5341 ** b-tree).
5342 */
5343 static int moveToRoot(BtCursor *pCur){
5344   MemPage *pRoot;
5345   int rc = SQLITE_OK;
5346 
5347   assert( cursorOwnsBtShared(pCur) );
5348   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5349   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5350   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5351   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5352   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5353 
5354   if( pCur->iPage>=0 ){
5355     if( pCur->iPage ){
5356       releasePageNotNull(pCur->pPage);
5357       while( --pCur->iPage ){
5358         releasePageNotNull(pCur->apPage[pCur->iPage]);
5359       }
5360       pRoot = pCur->pPage = pCur->apPage[0];
5361       goto skip_init;
5362     }
5363   }else if( pCur->pgnoRoot==0 ){
5364     pCur->eState = CURSOR_INVALID;
5365     return SQLITE_EMPTY;
5366   }else{
5367     assert( pCur->iPage==(-1) );
5368     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5369       if( pCur->eState==CURSOR_FAULT ){
5370         assert( pCur->skipNext!=SQLITE_OK );
5371         return pCur->skipNext;
5372       }
5373       sqlite3BtreeClearCursor(pCur);
5374     }
5375     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5376                         0, pCur->curPagerFlags);
5377     if( rc!=SQLITE_OK ){
5378       pCur->eState = CURSOR_INVALID;
5379       return rc;
5380     }
5381     pCur->iPage = 0;
5382     pCur->curIntKey = pCur->pPage->intKey;
5383   }
5384   pRoot = pCur->pPage;
5385   assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
5386 
5387   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5388   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5389   ** NULL, the caller expects a table b-tree. If this is not the case,
5390   ** return an SQLITE_CORRUPT error.
5391   **
5392   ** Earlier versions of SQLite assumed that this test could not fail
5393   ** if the root page was already loaded when this function was called (i.e.
5394   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5395   ** in such a way that page pRoot is linked into a second b-tree table
5396   ** (or the freelist).  */
5397   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5398   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5399     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5400   }
5401 
5402 skip_init:
5403   pCur->ix = 0;
5404   pCur->info.nSize = 0;
5405   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5406 
5407   if( pRoot->nCell>0 ){
5408     pCur->eState = CURSOR_VALID;
5409   }else if( !pRoot->leaf ){
5410     Pgno subpage;
5411     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5412     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5413     pCur->eState = CURSOR_VALID;
5414     rc = moveToChild(pCur, subpage);
5415   }else{
5416     pCur->eState = CURSOR_INVALID;
5417     rc = SQLITE_EMPTY;
5418   }
5419   return rc;
5420 }
5421 
5422 /*
5423 ** Move the cursor down to the left-most leaf entry beneath the
5424 ** entry to which it is currently pointing.
5425 **
5426 ** The left-most leaf is the one with the smallest key - the first
5427 ** in ascending order.
5428 */
5429 static int moveToLeftmost(BtCursor *pCur){
5430   Pgno pgno;
5431   int rc = SQLITE_OK;
5432   MemPage *pPage;
5433 
5434   assert( cursorOwnsBtShared(pCur) );
5435   assert( pCur->eState==CURSOR_VALID );
5436   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5437     assert( pCur->ix<pPage->nCell );
5438     pgno = get4byte(findCell(pPage, pCur->ix));
5439     rc = moveToChild(pCur, pgno);
5440   }
5441   return rc;
5442 }
5443 
5444 /*
5445 ** Move the cursor down to the right-most leaf entry beneath the
5446 ** page to which it is currently pointing.  Notice the difference
5447 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5448 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5449 ** finds the right-most entry beneath the *page*.
5450 **
5451 ** The right-most entry is the one with the largest key - the last
5452 ** key in ascending order.
5453 */
5454 static int moveToRightmost(BtCursor *pCur){
5455   Pgno pgno;
5456   int rc = SQLITE_OK;
5457   MemPage *pPage = 0;
5458 
5459   assert( cursorOwnsBtShared(pCur) );
5460   assert( pCur->eState==CURSOR_VALID );
5461   while( !(pPage = pCur->pPage)->leaf ){
5462     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5463     pCur->ix = pPage->nCell;
5464     rc = moveToChild(pCur, pgno);
5465     if( rc ) return rc;
5466   }
5467   pCur->ix = pPage->nCell-1;
5468   assert( pCur->info.nSize==0 );
5469   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5470   return SQLITE_OK;
5471 }
5472 
5473 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5474 ** on success.  Set *pRes to 0 if the cursor actually points to something
5475 ** or set *pRes to 1 if the table is empty.
5476 */
5477 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5478   int rc;
5479 
5480   assert( cursorOwnsBtShared(pCur) );
5481   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5482   rc = moveToRoot(pCur);
5483   if( rc==SQLITE_OK ){
5484     assert( pCur->pPage->nCell>0 );
5485     *pRes = 0;
5486     rc = moveToLeftmost(pCur);
5487   }else if( rc==SQLITE_EMPTY ){
5488     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5489     *pRes = 1;
5490     rc = SQLITE_OK;
5491   }
5492   return rc;
5493 }
5494 
5495 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5496 ** on success.  Set *pRes to 0 if the cursor actually points to something
5497 ** or set *pRes to 1 if the table is empty.
5498 */
5499 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5500   int rc;
5501 
5502   assert( cursorOwnsBtShared(pCur) );
5503   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5504 
5505   /* If the cursor already points to the last entry, this is a no-op. */
5506   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5507 #ifdef SQLITE_DEBUG
5508     /* This block serves to assert() that the cursor really does point
5509     ** to the last entry in the b-tree. */
5510     int ii;
5511     for(ii=0; ii<pCur->iPage; ii++){
5512       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5513     }
5514     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5515     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5516     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5517     assert( pCur->pPage->leaf );
5518 #endif
5519     *pRes = 0;
5520     return SQLITE_OK;
5521   }
5522 
5523   rc = moveToRoot(pCur);
5524   if( rc==SQLITE_OK ){
5525     assert( pCur->eState==CURSOR_VALID );
5526     *pRes = 0;
5527     rc = moveToRightmost(pCur);
5528     if( rc==SQLITE_OK ){
5529       pCur->curFlags |= BTCF_AtLast;
5530     }else{
5531       pCur->curFlags &= ~BTCF_AtLast;
5532     }
5533   }else if( rc==SQLITE_EMPTY ){
5534     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5535     *pRes = 1;
5536     rc = SQLITE_OK;
5537   }
5538   return rc;
5539 }
5540 
5541 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5542 ** table near the key intKey.   Return a success code.
5543 **
5544 ** If an exact match is not found, then the cursor is always
5545 ** left pointing at a leaf page which would hold the entry if it
5546 ** were present.  The cursor might point to an entry that comes
5547 ** before or after the key.
5548 **
5549 ** An integer is written into *pRes which is the result of
5550 ** comparing the key with the entry to which the cursor is
5551 ** pointing.  The meaning of the integer written into
5552 ** *pRes is as follows:
5553 **
5554 **     *pRes<0      The cursor is left pointing at an entry that
5555 **                  is smaller than intKey or if the table is empty
5556 **                  and the cursor is therefore left point to nothing.
5557 **
5558 **     *pRes==0     The cursor is left pointing at an entry that
5559 **                  exactly matches intKey.
5560 **
5561 **     *pRes>0      The cursor is left pointing at an entry that
5562 **                  is larger than intKey.
5563 */
5564 int sqlite3BtreeTableMoveto(
5565   BtCursor *pCur,          /* The cursor to be moved */
5566   i64 intKey,              /* The table key */
5567   int biasRight,           /* If true, bias the search to the high end */
5568   int *pRes                /* Write search results here */
5569 ){
5570   int rc;
5571 
5572   assert( cursorOwnsBtShared(pCur) );
5573   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5574   assert( pRes );
5575   assert( pCur->pKeyInfo==0 );
5576   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5577 
5578   /* If the cursor is already positioned at the point we are trying
5579   ** to move to, then just return without doing any work */
5580   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5581     if( pCur->info.nKey==intKey ){
5582       *pRes = 0;
5583       return SQLITE_OK;
5584     }
5585     if( pCur->info.nKey<intKey ){
5586       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5587         *pRes = -1;
5588         return SQLITE_OK;
5589       }
5590       /* If the requested key is one more than the previous key, then
5591       ** try to get there using sqlite3BtreeNext() rather than a full
5592       ** binary search.  This is an optimization only.  The correct answer
5593       ** is still obtained without this case, only a little more slowely */
5594       if( pCur->info.nKey+1==intKey ){
5595         *pRes = 0;
5596         rc = sqlite3BtreeNext(pCur, 0);
5597         if( rc==SQLITE_OK ){
5598           getCellInfo(pCur);
5599           if( pCur->info.nKey==intKey ){
5600             return SQLITE_OK;
5601           }
5602         }else if( rc!=SQLITE_DONE ){
5603           return rc;
5604         }
5605       }
5606     }
5607   }
5608 
5609 #ifdef SQLITE_DEBUG
5610   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5611 #endif
5612 
5613   rc = moveToRoot(pCur);
5614   if( rc ){
5615     if( rc==SQLITE_EMPTY ){
5616       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5617       *pRes = -1;
5618       return SQLITE_OK;
5619     }
5620     return rc;
5621   }
5622   assert( pCur->pPage );
5623   assert( pCur->pPage->isInit );
5624   assert( pCur->eState==CURSOR_VALID );
5625   assert( pCur->pPage->nCell > 0 );
5626   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5627   assert( pCur->curIntKey );
5628 
5629   for(;;){
5630     int lwr, upr, idx, c;
5631     Pgno chldPg;
5632     MemPage *pPage = pCur->pPage;
5633     u8 *pCell;                          /* Pointer to current cell in pPage */
5634 
5635     /* pPage->nCell must be greater than zero. If this is the root-page
5636     ** the cursor would have been INVALID above and this for(;;) loop
5637     ** not run. If this is not the root-page, then the moveToChild() routine
5638     ** would have already detected db corruption. Similarly, pPage must
5639     ** be the right kind (index or table) of b-tree page. Otherwise
5640     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5641     assert( pPage->nCell>0 );
5642     assert( pPage->intKey );
5643     lwr = 0;
5644     upr = pPage->nCell-1;
5645     assert( biasRight==0 || biasRight==1 );
5646     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5647     for(;;){
5648       i64 nCellKey;
5649       pCell = findCellPastPtr(pPage, idx);
5650       if( pPage->intKeyLeaf ){
5651         while( 0x80 <= *(pCell++) ){
5652           if( pCell>=pPage->aDataEnd ){
5653             return SQLITE_CORRUPT_PAGE(pPage);
5654           }
5655         }
5656       }
5657       getVarint(pCell, (u64*)&nCellKey);
5658       if( nCellKey<intKey ){
5659         lwr = idx+1;
5660         if( lwr>upr ){ c = -1; break; }
5661       }else if( nCellKey>intKey ){
5662         upr = idx-1;
5663         if( lwr>upr ){ c = +1; break; }
5664       }else{
5665         assert( nCellKey==intKey );
5666         pCur->ix = (u16)idx;
5667         if( !pPage->leaf ){
5668           lwr = idx;
5669           goto moveto_table_next_layer;
5670         }else{
5671           pCur->curFlags |= BTCF_ValidNKey;
5672           pCur->info.nKey = nCellKey;
5673           pCur->info.nSize = 0;
5674           *pRes = 0;
5675           return SQLITE_OK;
5676         }
5677       }
5678       assert( lwr+upr>=0 );
5679       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5680     }
5681     assert( lwr==upr+1 || !pPage->leaf );
5682     assert( pPage->isInit );
5683     if( pPage->leaf ){
5684       assert( pCur->ix<pCur->pPage->nCell );
5685       pCur->ix = (u16)idx;
5686       *pRes = c;
5687       rc = SQLITE_OK;
5688       goto moveto_table_finish;
5689     }
5690 moveto_table_next_layer:
5691     if( lwr>=pPage->nCell ){
5692       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5693     }else{
5694       chldPg = get4byte(findCell(pPage, lwr));
5695     }
5696     pCur->ix = (u16)lwr;
5697     rc = moveToChild(pCur, chldPg);
5698     if( rc ) break;
5699   }
5700 moveto_table_finish:
5701   pCur->info.nSize = 0;
5702   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5703   return rc;
5704 }
5705 
5706 /*
5707 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5708 ** pointing to to pIdxKey using xRecordCompare.  Return negative or
5709 ** zero if the cell is less than or equal pIdxKey.  Return positive
5710 ** if unknown.
5711 **
5712 **    Return value negative:     Cell at pCur[idx] less than pIdxKey
5713 **
5714 **    Return value is zero:      Cell at pCur[idx] equals pIdxKey
5715 **
5716 **    Return value positive:     Nothing is known about the relationship
5717 **                               of the cell at pCur[idx] and pIdxKey.
5718 **
5719 ** This routine is part of an optimization.  It is always safe to return
5720 ** a positive value as that will cause the optimization to be skipped.
5721 */
5722 static int indexCellCompare(
5723   BtCursor *pCur,
5724   int idx,
5725   UnpackedRecord *pIdxKey,
5726   RecordCompare xRecordCompare
5727 ){
5728   MemPage *pPage = pCur->pPage;
5729   int c;
5730   int nCell;  /* Size of the pCell cell in bytes */
5731   u8 *pCell = findCellPastPtr(pPage, idx);
5732 
5733   nCell = pCell[0];
5734   if( nCell<=pPage->max1bytePayload ){
5735     /* This branch runs if the record-size field of the cell is a
5736     ** single byte varint and the record fits entirely on the main
5737     ** b-tree page.  */
5738     testcase( pCell+nCell+1==pPage->aDataEnd );
5739     c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5740   }else if( !(pCell[1] & 0x80)
5741     && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5742   ){
5743     /* The record-size field is a 2 byte varint and the record
5744     ** fits entirely on the main b-tree page.  */
5745     testcase( pCell+nCell+2==pPage->aDataEnd );
5746     c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5747   }else{
5748     /* If the record extends into overflow pages, do not attempt
5749     ** the optimization. */
5750     c = 99;
5751   }
5752   return c;
5753 }
5754 
5755 /*
5756 ** Return true (non-zero) if pCur is current pointing to the last
5757 ** page of a table.
5758 */
5759 static int cursorOnLastPage(BtCursor *pCur){
5760   int i;
5761   assert( pCur->eState==CURSOR_VALID );
5762   for(i=0; i<pCur->iPage; i++){
5763     MemPage *pPage = pCur->apPage[i];
5764     if( pCur->aiIdx[i]<pPage->nCell ) return 0;
5765   }
5766   return 1;
5767 }
5768 
5769 /* Move the cursor so that it points to an entry in an index table
5770 ** near the key pIdxKey.   Return a success code.
5771 **
5772 ** If an exact match is not found, then the cursor is always
5773 ** left pointing at a leaf page which would hold the entry if it
5774 ** were present.  The cursor might point to an entry that comes
5775 ** before or after the key.
5776 **
5777 ** An integer is written into *pRes which is the result of
5778 ** comparing the key with the entry to which the cursor is
5779 ** pointing.  The meaning of the integer written into
5780 ** *pRes is as follows:
5781 **
5782 **     *pRes<0      The cursor is left pointing at an entry that
5783 **                  is smaller than pIdxKey or if the table is empty
5784 **                  and the cursor is therefore left point to nothing.
5785 **
5786 **     *pRes==0     The cursor is left pointing at an entry that
5787 **                  exactly matches pIdxKey.
5788 **
5789 **     *pRes>0      The cursor is left pointing at an entry that
5790 **                  is larger than pIdxKey.
5791 **
5792 ** The pIdxKey->eqSeen field is set to 1 if there
5793 ** exists an entry in the table that exactly matches pIdxKey.
5794 */
5795 int sqlite3BtreeIndexMoveto(
5796   BtCursor *pCur,          /* The cursor to be moved */
5797   UnpackedRecord *pIdxKey, /* Unpacked index key */
5798   int *pRes                /* Write search results here */
5799 ){
5800   int rc;
5801   RecordCompare xRecordCompare;
5802 
5803   assert( cursorOwnsBtShared(pCur) );
5804   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5805   assert( pRes );
5806   assert( pCur->pKeyInfo!=0 );
5807 
5808 #ifdef SQLITE_DEBUG
5809   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5810 #endif
5811 
5812   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5813   pIdxKey->errCode = 0;
5814   assert( pIdxKey->default_rc==1
5815        || pIdxKey->default_rc==0
5816        || pIdxKey->default_rc==-1
5817   );
5818 
5819 
5820   /* Check to see if we can skip a lot of work.  Two cases:
5821   **
5822   **    (1) If the cursor is already pointing to the very last cell
5823   **        in the table and the pIdxKey search key is greater than or
5824   **        equal to that last cell, then no movement is required.
5825   **
5826   **    (2) If the cursor is on the last page of the table and the first
5827   **        cell on that last page is less than or equal to the pIdxKey
5828   **        search key, then we can start the search on the current page
5829   **        without needing to go back to root.
5830   */
5831   if( pCur->eState==CURSOR_VALID
5832    && pCur->pPage->leaf
5833    && cursorOnLastPage(pCur)
5834   ){
5835     int c;
5836     if( pCur->ix==pCur->pPage->nCell-1
5837      && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
5838      && pIdxKey->errCode==SQLITE_OK
5839     ){
5840       *pRes = c;
5841       return SQLITE_OK;  /* Cursor already pointing at the correct spot */
5842     }
5843     if( pCur->iPage>0
5844      && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
5845      && pIdxKey->errCode==SQLITE_OK
5846     ){
5847       pCur->curFlags &= ~BTCF_ValidOvfl;
5848       if( !pCur->pPage->isInit ){
5849         return SQLITE_CORRUPT_BKPT;
5850       }
5851       goto bypass_moveto_root;  /* Start search on the current page */
5852     }
5853     pIdxKey->errCode = SQLITE_OK;
5854   }
5855 
5856   rc = moveToRoot(pCur);
5857   if( rc ){
5858     if( rc==SQLITE_EMPTY ){
5859       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5860       *pRes = -1;
5861       return SQLITE_OK;
5862     }
5863     return rc;
5864   }
5865 
5866 bypass_moveto_root:
5867   assert( pCur->pPage );
5868   assert( pCur->pPage->isInit );
5869   assert( pCur->eState==CURSOR_VALID );
5870   assert( pCur->pPage->nCell > 0 );
5871   assert( pCur->curIntKey==0 );
5872   assert( pIdxKey!=0 );
5873   for(;;){
5874     int lwr, upr, idx, c;
5875     Pgno chldPg;
5876     MemPage *pPage = pCur->pPage;
5877     u8 *pCell;                          /* Pointer to current cell in pPage */
5878 
5879     /* pPage->nCell must be greater than zero. If this is the root-page
5880     ** the cursor would have been INVALID above and this for(;;) loop
5881     ** not run. If this is not the root-page, then the moveToChild() routine
5882     ** would have already detected db corruption. Similarly, pPage must
5883     ** be the right kind (index or table) of b-tree page. Otherwise
5884     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5885     assert( pPage->nCell>0 );
5886     assert( pPage->intKey==0 );
5887     lwr = 0;
5888     upr = pPage->nCell-1;
5889     idx = upr>>1; /* idx = (lwr+upr)/2; */
5890     for(;;){
5891       int nCell;  /* Size of the pCell cell in bytes */
5892       pCell = findCellPastPtr(pPage, idx);
5893 
5894       /* The maximum supported page-size is 65536 bytes. This means that
5895       ** the maximum number of record bytes stored on an index B-Tree
5896       ** page is less than 16384 bytes and may be stored as a 2-byte
5897       ** varint. This information is used to attempt to avoid parsing
5898       ** the entire cell by checking for the cases where the record is
5899       ** stored entirely within the b-tree page by inspecting the first
5900       ** 2 bytes of the cell.
5901       */
5902       nCell = pCell[0];
5903       if( nCell<=pPage->max1bytePayload ){
5904         /* This branch runs if the record-size field of the cell is a
5905         ** single byte varint and the record fits entirely on the main
5906         ** b-tree page.  */
5907         testcase( pCell+nCell+1==pPage->aDataEnd );
5908         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5909       }else if( !(pCell[1] & 0x80)
5910         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5911       ){
5912         /* The record-size field is a 2 byte varint and the record
5913         ** fits entirely on the main b-tree page.  */
5914         testcase( pCell+nCell+2==pPage->aDataEnd );
5915         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5916       }else{
5917         /* The record flows over onto one or more overflow pages. In
5918         ** this case the whole cell needs to be parsed, a buffer allocated
5919         ** and accessPayload() used to retrieve the record into the
5920         ** buffer before VdbeRecordCompare() can be called.
5921         **
5922         ** If the record is corrupt, the xRecordCompare routine may read
5923         ** up to two varints past the end of the buffer. An extra 18
5924         ** bytes of padding is allocated at the end of the buffer in
5925         ** case this happens.  */
5926         void *pCellKey;
5927         u8 * const pCellBody = pCell - pPage->childPtrSize;
5928         const int nOverrun = 18;  /* Size of the overrun padding */
5929         pPage->xParseCell(pPage, pCellBody, &pCur->info);
5930         nCell = (int)pCur->info.nKey;
5931         testcase( nCell<0 );   /* True if key size is 2^32 or more */
5932         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5933         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5934         testcase( nCell==2 );  /* Minimum legal index key size */
5935         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5936           rc = SQLITE_CORRUPT_PAGE(pPage);
5937           goto moveto_index_finish;
5938         }
5939         pCellKey = sqlite3Malloc( nCell+nOverrun );
5940         if( pCellKey==0 ){
5941           rc = SQLITE_NOMEM_BKPT;
5942           goto moveto_index_finish;
5943         }
5944         pCur->ix = (u16)idx;
5945         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5946         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5947         pCur->curFlags &= ~BTCF_ValidOvfl;
5948         if( rc ){
5949           sqlite3_free(pCellKey);
5950           goto moveto_index_finish;
5951         }
5952         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5953         sqlite3_free(pCellKey);
5954       }
5955       assert(
5956           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5957        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5958       );
5959       if( c<0 ){
5960         lwr = idx+1;
5961       }else if( c>0 ){
5962         upr = idx-1;
5963       }else{
5964         assert( c==0 );
5965         *pRes = 0;
5966         rc = SQLITE_OK;
5967         pCur->ix = (u16)idx;
5968         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5969         goto moveto_index_finish;
5970       }
5971       if( lwr>upr ) break;
5972       assert( lwr+upr>=0 );
5973       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5974     }
5975     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5976     assert( pPage->isInit );
5977     if( pPage->leaf ){
5978       assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5979       pCur->ix = (u16)idx;
5980       *pRes = c;
5981       rc = SQLITE_OK;
5982       goto moveto_index_finish;
5983     }
5984     if( lwr>=pPage->nCell ){
5985       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5986     }else{
5987       chldPg = get4byte(findCell(pPage, lwr));
5988     }
5989     pCur->ix = (u16)lwr;
5990     rc = moveToChild(pCur, chldPg);
5991     if( rc ) break;
5992   }
5993 moveto_index_finish:
5994   pCur->info.nSize = 0;
5995   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5996   return rc;
5997 }
5998 
5999 
6000 /*
6001 ** Return TRUE if the cursor is not pointing at an entry of the table.
6002 **
6003 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6004 ** past the last entry in the table or sqlite3BtreePrev() moves past
6005 ** the first entry.  TRUE is also returned if the table is empty.
6006 */
6007 int sqlite3BtreeEof(BtCursor *pCur){
6008   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6009   ** have been deleted? This API will need to change to return an error code
6010   ** as well as the boolean result value.
6011   */
6012   return (CURSOR_VALID!=pCur->eState);
6013 }
6014 
6015 /*
6016 ** Return an estimate for the number of rows in the table that pCur is
6017 ** pointing to.  Return a negative number if no estimate is currently
6018 ** available.
6019 */
6020 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6021   i64 n;
6022   u8 i;
6023 
6024   assert( cursorOwnsBtShared(pCur) );
6025   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
6026 
6027   /* Currently this interface is only called by the OP_IfSmaller
6028   ** opcode, and it that case the cursor will always be valid and
6029   ** will always point to a leaf node. */
6030   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
6031   if( NEVER(pCur->pPage->leaf==0) ) return -1;
6032 
6033   n = pCur->pPage->nCell;
6034   for(i=0; i<pCur->iPage; i++){
6035     n *= pCur->apPage[i]->nCell;
6036   }
6037   return n;
6038 }
6039 
6040 /*
6041 ** Advance the cursor to the next entry in the database.
6042 ** Return value:
6043 **
6044 **    SQLITE_OK        success
6045 **    SQLITE_DONE      cursor is already pointing at the last element
6046 **    otherwise        some kind of error occurred
6047 **
6048 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
6049 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6050 ** to the next cell on the current page.  The (slower) btreeNext() helper
6051 ** routine is called when it is necessary to move to a different page or
6052 ** to restore the cursor.
6053 **
6054 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6055 ** cursor corresponds to an SQL index and this routine could have been
6056 ** skipped if the SQL index had been a unique index.  The F argument
6057 ** is a hint to the implement.  SQLite btree implementation does not use
6058 ** this hint, but COMDB2 does.
6059 */
6060 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
6061   int rc;
6062   int idx;
6063   MemPage *pPage;
6064 
6065   assert( cursorOwnsBtShared(pCur) );
6066   if( pCur->eState!=CURSOR_VALID ){
6067     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
6068     rc = restoreCursorPosition(pCur);
6069     if( rc!=SQLITE_OK ){
6070       return rc;
6071     }
6072     if( CURSOR_INVALID==pCur->eState ){
6073       return SQLITE_DONE;
6074     }
6075     if( pCur->eState==CURSOR_SKIPNEXT ){
6076       pCur->eState = CURSOR_VALID;
6077       if( pCur->skipNext>0 ) return SQLITE_OK;
6078     }
6079   }
6080 
6081   pPage = pCur->pPage;
6082   idx = ++pCur->ix;
6083   if( !pPage->isInit || sqlite3FaultSim(412) ){
6084     /* The only known way for this to happen is for there to be a
6085     ** recursive SQL function that does a DELETE operation as part of a
6086     ** SELECT which deletes content out from under an active cursor
6087     ** in a corrupt database file where the table being DELETE-ed from
6088     ** has pages in common with the table being queried.  See TH3
6089     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
6090     ** example. */
6091     return SQLITE_CORRUPT_BKPT;
6092   }
6093 
6094   if( idx>=pPage->nCell ){
6095     if( !pPage->leaf ){
6096       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
6097       if( rc ) return rc;
6098       return moveToLeftmost(pCur);
6099     }
6100     do{
6101       if( pCur->iPage==0 ){
6102         pCur->eState = CURSOR_INVALID;
6103         return SQLITE_DONE;
6104       }
6105       moveToParent(pCur);
6106       pPage = pCur->pPage;
6107     }while( pCur->ix>=pPage->nCell );
6108     if( pPage->intKey ){
6109       return sqlite3BtreeNext(pCur, 0);
6110     }else{
6111       return SQLITE_OK;
6112     }
6113   }
6114   if( pPage->leaf ){
6115     return SQLITE_OK;
6116   }else{
6117     return moveToLeftmost(pCur);
6118   }
6119 }
6120 int sqlite3BtreeNext(BtCursor *pCur, int flags){
6121   MemPage *pPage;
6122   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6123   assert( cursorOwnsBtShared(pCur) );
6124   assert( flags==0 || flags==1 );
6125   pCur->info.nSize = 0;
6126   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
6127   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
6128   pPage = pCur->pPage;
6129   if( (++pCur->ix)>=pPage->nCell ){
6130     pCur->ix--;
6131     return btreeNext(pCur);
6132   }
6133   if( pPage->leaf ){
6134     return SQLITE_OK;
6135   }else{
6136     return moveToLeftmost(pCur);
6137   }
6138 }
6139 
6140 /*
6141 ** Step the cursor to the back to the previous entry in the database.
6142 ** Return values:
6143 **
6144 **     SQLITE_OK     success
6145 **     SQLITE_DONE   the cursor is already on the first element of the table
6146 **     otherwise     some kind of error occurred
6147 **
6148 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
6149 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6150 ** to the previous cell on the current page.  The (slower) btreePrevious()
6151 ** helper routine is called when it is necessary to move to a different page
6152 ** or to restore the cursor.
6153 **
6154 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6155 ** the cursor corresponds to an SQL index and this routine could have been
6156 ** skipped if the SQL index had been a unique index.  The F argument is a
6157 ** hint to the implement.  The native SQLite btree implementation does not
6158 ** use this hint, but COMDB2 does.
6159 */
6160 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
6161   int rc;
6162   MemPage *pPage;
6163 
6164   assert( cursorOwnsBtShared(pCur) );
6165   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6166   assert( pCur->info.nSize==0 );
6167   if( pCur->eState!=CURSOR_VALID ){
6168     rc = restoreCursorPosition(pCur);
6169     if( rc!=SQLITE_OK ){
6170       return rc;
6171     }
6172     if( CURSOR_INVALID==pCur->eState ){
6173       return SQLITE_DONE;
6174     }
6175     if( CURSOR_SKIPNEXT==pCur->eState ){
6176       pCur->eState = CURSOR_VALID;
6177       if( pCur->skipNext<0 ) return SQLITE_OK;
6178     }
6179   }
6180 
6181   pPage = pCur->pPage;
6182   assert( pPage->isInit );
6183   if( !pPage->leaf ){
6184     int idx = pCur->ix;
6185     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6186     if( rc ) return rc;
6187     rc = moveToRightmost(pCur);
6188   }else{
6189     while( pCur->ix==0 ){
6190       if( pCur->iPage==0 ){
6191         pCur->eState = CURSOR_INVALID;
6192         return SQLITE_DONE;
6193       }
6194       moveToParent(pCur);
6195     }
6196     assert( pCur->info.nSize==0 );
6197     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6198 
6199     pCur->ix--;
6200     pPage = pCur->pPage;
6201     if( pPage->intKey && !pPage->leaf ){
6202       rc = sqlite3BtreePrevious(pCur, 0);
6203     }else{
6204       rc = SQLITE_OK;
6205     }
6206   }
6207   return rc;
6208 }
6209 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6210   assert( cursorOwnsBtShared(pCur) );
6211   assert( flags==0 || flags==1 );
6212   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6213   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6214   pCur->info.nSize = 0;
6215   if( pCur->eState!=CURSOR_VALID
6216    || pCur->ix==0
6217    || pCur->pPage->leaf==0
6218   ){
6219     return btreePrevious(pCur);
6220   }
6221   pCur->ix--;
6222   return SQLITE_OK;
6223 }
6224 
6225 /*
6226 ** Allocate a new page from the database file.
6227 **
6228 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
6229 ** has already been called on the new page.)  The new page has also
6230 ** been referenced and the calling routine is responsible for calling
6231 ** sqlite3PagerUnref() on the new page when it is done.
6232 **
6233 ** SQLITE_OK is returned on success.  Any other return value indicates
6234 ** an error.  *ppPage is set to NULL in the event of an error.
6235 **
6236 ** If the "nearby" parameter is not 0, then an effort is made to
6237 ** locate a page close to the page number "nearby".  This can be used in an
6238 ** attempt to keep related pages close to each other in the database file,
6239 ** which in turn can make database access faster.
6240 **
6241 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6242 ** anywhere on the free-list, then it is guaranteed to be returned.  If
6243 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6244 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
6245 ** are no restrictions on which page is returned.
6246 */
6247 static int allocateBtreePage(
6248   BtShared *pBt,         /* The btree */
6249   MemPage **ppPage,      /* Store pointer to the allocated page here */
6250   Pgno *pPgno,           /* Store the page number here */
6251   Pgno nearby,           /* Search for a page near this one */
6252   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6253 ){
6254   MemPage *pPage1;
6255   int rc;
6256   u32 n;     /* Number of pages on the freelist */
6257   u32 k;     /* Number of leaves on the trunk of the freelist */
6258   MemPage *pTrunk = 0;
6259   MemPage *pPrevTrunk = 0;
6260   Pgno mxPage;     /* Total size of the database file */
6261 
6262   assert( sqlite3_mutex_held(pBt->mutex) );
6263   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6264   pPage1 = pBt->pPage1;
6265   mxPage = btreePagecount(pBt);
6266   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6267   ** stores stores the total number of pages on the freelist. */
6268   n = get4byte(&pPage1->aData[36]);
6269   testcase( n==mxPage-1 );
6270   if( n>=mxPage ){
6271     return SQLITE_CORRUPT_BKPT;
6272   }
6273   if( n>0 ){
6274     /* There are pages on the freelist.  Reuse one of those pages. */
6275     Pgno iTrunk;
6276     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6277     u32 nSearch = 0;   /* Count of the number of search attempts */
6278 
6279     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6280     ** shows that the page 'nearby' is somewhere on the free-list, then
6281     ** the entire-list will be searched for that page.
6282     */
6283 #ifndef SQLITE_OMIT_AUTOVACUUM
6284     if( eMode==BTALLOC_EXACT ){
6285       if( nearby<=mxPage ){
6286         u8 eType;
6287         assert( nearby>0 );
6288         assert( pBt->autoVacuum );
6289         rc = ptrmapGet(pBt, nearby, &eType, 0);
6290         if( rc ) return rc;
6291         if( eType==PTRMAP_FREEPAGE ){
6292           searchList = 1;
6293         }
6294       }
6295     }else if( eMode==BTALLOC_LE ){
6296       searchList = 1;
6297     }
6298 #endif
6299 
6300     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6301     ** first free-list trunk page. iPrevTrunk is initially 1.
6302     */
6303     rc = sqlite3PagerWrite(pPage1->pDbPage);
6304     if( rc ) return rc;
6305     put4byte(&pPage1->aData[36], n-1);
6306 
6307     /* The code within this loop is run only once if the 'searchList' variable
6308     ** is not true. Otherwise, it runs once for each trunk-page on the
6309     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6310     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6311     */
6312     do {
6313       pPrevTrunk = pTrunk;
6314       if( pPrevTrunk ){
6315         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6316         ** is the page number of the next freelist trunk page in the list or
6317         ** zero if this is the last freelist trunk page. */
6318         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6319       }else{
6320         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6321         ** stores the page number of the first page of the freelist, or zero if
6322         ** the freelist is empty. */
6323         iTrunk = get4byte(&pPage1->aData[32]);
6324       }
6325       testcase( iTrunk==mxPage );
6326       if( iTrunk>mxPage || nSearch++ > n ){
6327         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6328       }else{
6329         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6330       }
6331       if( rc ){
6332         pTrunk = 0;
6333         goto end_allocate_page;
6334       }
6335       assert( pTrunk!=0 );
6336       assert( pTrunk->aData!=0 );
6337       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6338       ** is the number of leaf page pointers to follow. */
6339       k = get4byte(&pTrunk->aData[4]);
6340       if( k==0 && !searchList ){
6341         /* The trunk has no leaves and the list is not being searched.
6342         ** So extract the trunk page itself and use it as the newly
6343         ** allocated page */
6344         assert( pPrevTrunk==0 );
6345         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6346         if( rc ){
6347           goto end_allocate_page;
6348         }
6349         *pPgno = iTrunk;
6350         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6351         *ppPage = pTrunk;
6352         pTrunk = 0;
6353         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6354       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6355         /* Value of k is out of range.  Database corruption */
6356         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6357         goto end_allocate_page;
6358 #ifndef SQLITE_OMIT_AUTOVACUUM
6359       }else if( searchList
6360             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6361       ){
6362         /* The list is being searched and this trunk page is the page
6363         ** to allocate, regardless of whether it has leaves.
6364         */
6365         *pPgno = iTrunk;
6366         *ppPage = pTrunk;
6367         searchList = 0;
6368         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6369         if( rc ){
6370           goto end_allocate_page;
6371         }
6372         if( k==0 ){
6373           if( !pPrevTrunk ){
6374             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6375           }else{
6376             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6377             if( rc!=SQLITE_OK ){
6378               goto end_allocate_page;
6379             }
6380             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6381           }
6382         }else{
6383           /* The trunk page is required by the caller but it contains
6384           ** pointers to free-list leaves. The first leaf becomes a trunk
6385           ** page in this case.
6386           */
6387           MemPage *pNewTrunk;
6388           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6389           if( iNewTrunk>mxPage ){
6390             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6391             goto end_allocate_page;
6392           }
6393           testcase( iNewTrunk==mxPage );
6394           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6395           if( rc!=SQLITE_OK ){
6396             goto end_allocate_page;
6397           }
6398           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6399           if( rc!=SQLITE_OK ){
6400             releasePage(pNewTrunk);
6401             goto end_allocate_page;
6402           }
6403           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6404           put4byte(&pNewTrunk->aData[4], k-1);
6405           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6406           releasePage(pNewTrunk);
6407           if( !pPrevTrunk ){
6408             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6409             put4byte(&pPage1->aData[32], iNewTrunk);
6410           }else{
6411             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6412             if( rc ){
6413               goto end_allocate_page;
6414             }
6415             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6416           }
6417         }
6418         pTrunk = 0;
6419         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6420 #endif
6421       }else if( k>0 ){
6422         /* Extract a leaf from the trunk */
6423         u32 closest;
6424         Pgno iPage;
6425         unsigned char *aData = pTrunk->aData;
6426         if( nearby>0 ){
6427           u32 i;
6428           closest = 0;
6429           if( eMode==BTALLOC_LE ){
6430             for(i=0; i<k; i++){
6431               iPage = get4byte(&aData[8+i*4]);
6432               if( iPage<=nearby ){
6433                 closest = i;
6434                 break;
6435               }
6436             }
6437           }else{
6438             int dist;
6439             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6440             for(i=1; i<k; i++){
6441               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6442               if( d2<dist ){
6443                 closest = i;
6444                 dist = d2;
6445               }
6446             }
6447           }
6448         }else{
6449           closest = 0;
6450         }
6451 
6452         iPage = get4byte(&aData[8+closest*4]);
6453         testcase( iPage==mxPage );
6454         if( iPage>mxPage || iPage<2 ){
6455           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6456           goto end_allocate_page;
6457         }
6458         testcase( iPage==mxPage );
6459         if( !searchList
6460          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6461         ){
6462           int noContent;
6463           *pPgno = iPage;
6464           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6465                  ": %d more free pages\n",
6466                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6467           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6468           if( rc ) goto end_allocate_page;
6469           if( closest<k-1 ){
6470             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6471           }
6472           put4byte(&aData[4], k-1);
6473           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6474           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6475           if( rc==SQLITE_OK ){
6476             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6477             if( rc!=SQLITE_OK ){
6478               releasePage(*ppPage);
6479               *ppPage = 0;
6480             }
6481           }
6482           searchList = 0;
6483         }
6484       }
6485       releasePage(pPrevTrunk);
6486       pPrevTrunk = 0;
6487     }while( searchList );
6488   }else{
6489     /* There are no pages on the freelist, so append a new page to the
6490     ** database image.
6491     **
6492     ** Normally, new pages allocated by this block can be requested from the
6493     ** pager layer with the 'no-content' flag set. This prevents the pager
6494     ** from trying to read the pages content from disk. However, if the
6495     ** current transaction has already run one or more incremental-vacuum
6496     ** steps, then the page we are about to allocate may contain content
6497     ** that is required in the event of a rollback. In this case, do
6498     ** not set the no-content flag. This causes the pager to load and journal
6499     ** the current page content before overwriting it.
6500     **
6501     ** Note that the pager will not actually attempt to load or journal
6502     ** content for any page that really does lie past the end of the database
6503     ** file on disk. So the effects of disabling the no-content optimization
6504     ** here are confined to those pages that lie between the end of the
6505     ** database image and the end of the database file.
6506     */
6507     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6508 
6509     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6510     if( rc ) return rc;
6511     pBt->nPage++;
6512     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6513 
6514 #ifndef SQLITE_OMIT_AUTOVACUUM
6515     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6516       /* If *pPgno refers to a pointer-map page, allocate two new pages
6517       ** at the end of the file instead of one. The first allocated page
6518       ** becomes a new pointer-map page, the second is used by the caller.
6519       */
6520       MemPage *pPg = 0;
6521       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6522       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6523       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6524       if( rc==SQLITE_OK ){
6525         rc = sqlite3PagerWrite(pPg->pDbPage);
6526         releasePage(pPg);
6527       }
6528       if( rc ) return rc;
6529       pBt->nPage++;
6530       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6531     }
6532 #endif
6533     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6534     *pPgno = pBt->nPage;
6535 
6536     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6537     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6538     if( rc ) return rc;
6539     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6540     if( rc!=SQLITE_OK ){
6541       releasePage(*ppPage);
6542       *ppPage = 0;
6543     }
6544     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6545   }
6546 
6547   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6548 
6549 end_allocate_page:
6550   releasePage(pTrunk);
6551   releasePage(pPrevTrunk);
6552   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6553   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6554   return rc;
6555 }
6556 
6557 /*
6558 ** This function is used to add page iPage to the database file free-list.
6559 ** It is assumed that the page is not already a part of the free-list.
6560 **
6561 ** The value passed as the second argument to this function is optional.
6562 ** If the caller happens to have a pointer to the MemPage object
6563 ** corresponding to page iPage handy, it may pass it as the second value.
6564 ** Otherwise, it may pass NULL.
6565 **
6566 ** If a pointer to a MemPage object is passed as the second argument,
6567 ** its reference count is not altered by this function.
6568 */
6569 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6570   MemPage *pTrunk = 0;                /* Free-list trunk page */
6571   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6572   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6573   MemPage *pPage;                     /* Page being freed. May be NULL. */
6574   int rc;                             /* Return Code */
6575   u32 nFree;                          /* Initial number of pages on free-list */
6576 
6577   assert( sqlite3_mutex_held(pBt->mutex) );
6578   assert( CORRUPT_DB || iPage>1 );
6579   assert( !pMemPage || pMemPage->pgno==iPage );
6580 
6581   if( iPage<2 || iPage>pBt->nPage ){
6582     return SQLITE_CORRUPT_BKPT;
6583   }
6584   if( pMemPage ){
6585     pPage = pMemPage;
6586     sqlite3PagerRef(pPage->pDbPage);
6587   }else{
6588     pPage = btreePageLookup(pBt, iPage);
6589   }
6590 
6591   /* Increment the free page count on pPage1 */
6592   rc = sqlite3PagerWrite(pPage1->pDbPage);
6593   if( rc ) goto freepage_out;
6594   nFree = get4byte(&pPage1->aData[36]);
6595   put4byte(&pPage1->aData[36], nFree+1);
6596 
6597   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6598     /* If the secure_delete option is enabled, then
6599     ** always fully overwrite deleted information with zeros.
6600     */
6601     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6602      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6603     ){
6604       goto freepage_out;
6605     }
6606     memset(pPage->aData, 0, pPage->pBt->pageSize);
6607   }
6608 
6609   /* If the database supports auto-vacuum, write an entry in the pointer-map
6610   ** to indicate that the page is free.
6611   */
6612   if( ISAUTOVACUUM ){
6613     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6614     if( rc ) goto freepage_out;
6615   }
6616 
6617   /* Now manipulate the actual database free-list structure. There are two
6618   ** possibilities. If the free-list is currently empty, or if the first
6619   ** trunk page in the free-list is full, then this page will become a
6620   ** new free-list trunk page. Otherwise, it will become a leaf of the
6621   ** first trunk page in the current free-list. This block tests if it
6622   ** is possible to add the page as a new free-list leaf.
6623   */
6624   if( nFree!=0 ){
6625     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6626 
6627     iTrunk = get4byte(&pPage1->aData[32]);
6628     if( iTrunk>btreePagecount(pBt) ){
6629       rc = SQLITE_CORRUPT_BKPT;
6630       goto freepage_out;
6631     }
6632     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6633     if( rc!=SQLITE_OK ){
6634       goto freepage_out;
6635     }
6636 
6637     nLeaf = get4byte(&pTrunk->aData[4]);
6638     assert( pBt->usableSize>32 );
6639     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6640       rc = SQLITE_CORRUPT_BKPT;
6641       goto freepage_out;
6642     }
6643     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6644       /* In this case there is room on the trunk page to insert the page
6645       ** being freed as a new leaf.
6646       **
6647       ** Note that the trunk page is not really full until it contains
6648       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6649       ** coded.  But due to a coding error in versions of SQLite prior to
6650       ** 3.6.0, databases with freelist trunk pages holding more than
6651       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6652       ** to maintain backwards compatibility with older versions of SQLite,
6653       ** we will continue to restrict the number of entries to usableSize/4 - 8
6654       ** for now.  At some point in the future (once everyone has upgraded
6655       ** to 3.6.0 or later) we should consider fixing the conditional above
6656       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6657       **
6658       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6659       ** avoid using the last six entries in the freelist trunk page array in
6660       ** order that database files created by newer versions of SQLite can be
6661       ** read by older versions of SQLite.
6662       */
6663       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6664       if( rc==SQLITE_OK ){
6665         put4byte(&pTrunk->aData[4], nLeaf+1);
6666         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6667         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6668           sqlite3PagerDontWrite(pPage->pDbPage);
6669         }
6670         rc = btreeSetHasContent(pBt, iPage);
6671       }
6672       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6673       goto freepage_out;
6674     }
6675   }
6676 
6677   /* If control flows to this point, then it was not possible to add the
6678   ** the page being freed as a leaf page of the first trunk in the free-list.
6679   ** Possibly because the free-list is empty, or possibly because the
6680   ** first trunk in the free-list is full. Either way, the page being freed
6681   ** will become the new first trunk page in the free-list.
6682   */
6683   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6684     goto freepage_out;
6685   }
6686   rc = sqlite3PagerWrite(pPage->pDbPage);
6687   if( rc!=SQLITE_OK ){
6688     goto freepage_out;
6689   }
6690   put4byte(pPage->aData, iTrunk);
6691   put4byte(&pPage->aData[4], 0);
6692   put4byte(&pPage1->aData[32], iPage);
6693   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6694 
6695 freepage_out:
6696   if( pPage ){
6697     pPage->isInit = 0;
6698   }
6699   releasePage(pPage);
6700   releasePage(pTrunk);
6701   return rc;
6702 }
6703 static void freePage(MemPage *pPage, int *pRC){
6704   if( (*pRC)==SQLITE_OK ){
6705     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6706   }
6707 }
6708 
6709 /*
6710 ** Free the overflow pages associated with the given Cell.
6711 */
6712 static SQLITE_NOINLINE int clearCellOverflow(
6713   MemPage *pPage,          /* The page that contains the Cell */
6714   unsigned char *pCell,    /* First byte of the Cell */
6715   CellInfo *pInfo          /* Size information about the cell */
6716 ){
6717   BtShared *pBt;
6718   Pgno ovflPgno;
6719   int rc;
6720   int nOvfl;
6721   u32 ovflPageSize;
6722 
6723   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6724   assert( pInfo->nLocal!=pInfo->nPayload );
6725   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6726   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6727   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6728     /* Cell extends past end of page */
6729     return SQLITE_CORRUPT_PAGE(pPage);
6730   }
6731   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6732   pBt = pPage->pBt;
6733   assert( pBt->usableSize > 4 );
6734   ovflPageSize = pBt->usableSize - 4;
6735   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6736   assert( nOvfl>0 ||
6737     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6738   );
6739   while( nOvfl-- ){
6740     Pgno iNext = 0;
6741     MemPage *pOvfl = 0;
6742     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6743       /* 0 is not a legal page number and page 1 cannot be an
6744       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6745       ** file the database must be corrupt. */
6746       return SQLITE_CORRUPT_BKPT;
6747     }
6748     if( nOvfl ){
6749       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6750       if( rc ) return rc;
6751     }
6752 
6753     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6754      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6755     ){
6756       /* There is no reason any cursor should have an outstanding reference
6757       ** to an overflow page belonging to a cell that is being deleted/updated.
6758       ** So if there exists more than one reference to this page, then it
6759       ** must not really be an overflow page and the database must be corrupt.
6760       ** It is helpful to detect this before calling freePage2(), as
6761       ** freePage2() may zero the page contents if secure-delete mode is
6762       ** enabled. If this 'overflow' page happens to be a page that the
6763       ** caller is iterating through or using in some other way, this
6764       ** can be problematic.
6765       */
6766       rc = SQLITE_CORRUPT_BKPT;
6767     }else{
6768       rc = freePage2(pBt, pOvfl, ovflPgno);
6769     }
6770 
6771     if( pOvfl ){
6772       sqlite3PagerUnref(pOvfl->pDbPage);
6773     }
6774     if( rc ) return rc;
6775     ovflPgno = iNext;
6776   }
6777   return SQLITE_OK;
6778 }
6779 
6780 /* Call xParseCell to compute the size of a cell.  If the cell contains
6781 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6782 ** STore the result code (SQLITE_OK or some error code) in rc.
6783 **
6784 ** Implemented as macro to force inlining for performance.
6785 */
6786 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6787   pPage->xParseCell(pPage, pCell, &sInfo);          \
6788   if( sInfo.nLocal!=sInfo.nPayload ){               \
6789     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6790   }else{                                            \
6791     rc = SQLITE_OK;                                 \
6792   }
6793 
6794 
6795 /*
6796 ** Create the byte sequence used to represent a cell on page pPage
6797 ** and write that byte sequence into pCell[].  Overflow pages are
6798 ** allocated and filled in as necessary.  The calling procedure
6799 ** is responsible for making sure sufficient space has been allocated
6800 ** for pCell[].
6801 **
6802 ** Note that pCell does not necessary need to point to the pPage->aData
6803 ** area.  pCell might point to some temporary storage.  The cell will
6804 ** be constructed in this temporary area then copied into pPage->aData
6805 ** later.
6806 */
6807 static int fillInCell(
6808   MemPage *pPage,                /* The page that contains the cell */
6809   unsigned char *pCell,          /* Complete text of the cell */
6810   const BtreePayload *pX,        /* Payload with which to construct the cell */
6811   int *pnSize                    /* Write cell size here */
6812 ){
6813   int nPayload;
6814   const u8 *pSrc;
6815   int nSrc, n, rc, mn;
6816   int spaceLeft;
6817   MemPage *pToRelease;
6818   unsigned char *pPrior;
6819   unsigned char *pPayload;
6820   BtShared *pBt;
6821   Pgno pgnoOvfl;
6822   int nHeader;
6823 
6824   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6825 
6826   /* pPage is not necessarily writeable since pCell might be auxiliary
6827   ** buffer space that is separate from the pPage buffer area */
6828   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6829             || sqlite3PagerIswriteable(pPage->pDbPage) );
6830 
6831   /* Fill in the header. */
6832   nHeader = pPage->childPtrSize;
6833   if( pPage->intKey ){
6834     nPayload = pX->nData + pX->nZero;
6835     pSrc = pX->pData;
6836     nSrc = pX->nData;
6837     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6838     nHeader += putVarint32(&pCell[nHeader], nPayload);
6839     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6840   }else{
6841     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6842     nSrc = nPayload = (int)pX->nKey;
6843     pSrc = pX->pKey;
6844     nHeader += putVarint32(&pCell[nHeader], nPayload);
6845   }
6846 
6847   /* Fill in the payload */
6848   pPayload = &pCell[nHeader];
6849   if( nPayload<=pPage->maxLocal ){
6850     /* This is the common case where everything fits on the btree page
6851     ** and no overflow pages are required. */
6852     n = nHeader + nPayload;
6853     testcase( n==3 );
6854     testcase( n==4 );
6855     if( n<4 ) n = 4;
6856     *pnSize = n;
6857     assert( nSrc<=nPayload );
6858     testcase( nSrc<nPayload );
6859     memcpy(pPayload, pSrc, nSrc);
6860     memset(pPayload+nSrc, 0, nPayload-nSrc);
6861     return SQLITE_OK;
6862   }
6863 
6864   /* If we reach this point, it means that some of the content will need
6865   ** to spill onto overflow pages.
6866   */
6867   mn = pPage->minLocal;
6868   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6869   testcase( n==pPage->maxLocal );
6870   testcase( n==pPage->maxLocal+1 );
6871   if( n > pPage->maxLocal ) n = mn;
6872   spaceLeft = n;
6873   *pnSize = n + nHeader + 4;
6874   pPrior = &pCell[nHeader+n];
6875   pToRelease = 0;
6876   pgnoOvfl = 0;
6877   pBt = pPage->pBt;
6878 
6879   /* At this point variables should be set as follows:
6880   **
6881   **   nPayload           Total payload size in bytes
6882   **   pPayload           Begin writing payload here
6883   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6884   **                      that means content must spill into overflow pages.
6885   **   *pnSize            Size of the local cell (not counting overflow pages)
6886   **   pPrior             Where to write the pgno of the first overflow page
6887   **
6888   ** Use a call to btreeParseCellPtr() to verify that the values above
6889   ** were computed correctly.
6890   */
6891 #ifdef SQLITE_DEBUG
6892   {
6893     CellInfo info;
6894     pPage->xParseCell(pPage, pCell, &info);
6895     assert( nHeader==(int)(info.pPayload - pCell) );
6896     assert( info.nKey==pX->nKey );
6897     assert( *pnSize == info.nSize );
6898     assert( spaceLeft == info.nLocal );
6899   }
6900 #endif
6901 
6902   /* Write the payload into the local Cell and any extra into overflow pages */
6903   while( 1 ){
6904     n = nPayload;
6905     if( n>spaceLeft ) n = spaceLeft;
6906 
6907     /* If pToRelease is not zero than pPayload points into the data area
6908     ** of pToRelease.  Make sure pToRelease is still writeable. */
6909     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6910 
6911     /* If pPayload is part of the data area of pPage, then make sure pPage
6912     ** is still writeable */
6913     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6914             || sqlite3PagerIswriteable(pPage->pDbPage) );
6915 
6916     if( nSrc>=n ){
6917       memcpy(pPayload, pSrc, n);
6918     }else if( nSrc>0 ){
6919       n = nSrc;
6920       memcpy(pPayload, pSrc, n);
6921     }else{
6922       memset(pPayload, 0, n);
6923     }
6924     nPayload -= n;
6925     if( nPayload<=0 ) break;
6926     pPayload += n;
6927     pSrc += n;
6928     nSrc -= n;
6929     spaceLeft -= n;
6930     if( spaceLeft==0 ){
6931       MemPage *pOvfl = 0;
6932 #ifndef SQLITE_OMIT_AUTOVACUUM
6933       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6934       if( pBt->autoVacuum ){
6935         do{
6936           pgnoOvfl++;
6937         } while(
6938           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6939         );
6940       }
6941 #endif
6942       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6943 #ifndef SQLITE_OMIT_AUTOVACUUM
6944       /* If the database supports auto-vacuum, and the second or subsequent
6945       ** overflow page is being allocated, add an entry to the pointer-map
6946       ** for that page now.
6947       **
6948       ** If this is the first overflow page, then write a partial entry
6949       ** to the pointer-map. If we write nothing to this pointer-map slot,
6950       ** then the optimistic overflow chain processing in clearCell()
6951       ** may misinterpret the uninitialized values and delete the
6952       ** wrong pages from the database.
6953       */
6954       if( pBt->autoVacuum && rc==SQLITE_OK ){
6955         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6956         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6957         if( rc ){
6958           releasePage(pOvfl);
6959         }
6960       }
6961 #endif
6962       if( rc ){
6963         releasePage(pToRelease);
6964         return rc;
6965       }
6966 
6967       /* If pToRelease is not zero than pPrior points into the data area
6968       ** of pToRelease.  Make sure pToRelease is still writeable. */
6969       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6970 
6971       /* If pPrior is part of the data area of pPage, then make sure pPage
6972       ** is still writeable */
6973       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6974             || sqlite3PagerIswriteable(pPage->pDbPage) );
6975 
6976       put4byte(pPrior, pgnoOvfl);
6977       releasePage(pToRelease);
6978       pToRelease = pOvfl;
6979       pPrior = pOvfl->aData;
6980       put4byte(pPrior, 0);
6981       pPayload = &pOvfl->aData[4];
6982       spaceLeft = pBt->usableSize - 4;
6983     }
6984   }
6985   releasePage(pToRelease);
6986   return SQLITE_OK;
6987 }
6988 
6989 /*
6990 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6991 ** The cell content is not freed or deallocated.  It is assumed that
6992 ** the cell content has been copied someplace else.  This routine just
6993 ** removes the reference to the cell from pPage.
6994 **
6995 ** "sz" must be the number of bytes in the cell.
6996 */
6997 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6998   u32 pc;         /* Offset to cell content of cell being deleted */
6999   u8 *data;       /* pPage->aData */
7000   u8 *ptr;        /* Used to move bytes around within data[] */
7001   int rc;         /* The return code */
7002   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
7003 
7004   if( *pRC ) return;
7005   assert( idx>=0 );
7006   assert( idx<pPage->nCell );
7007   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
7008   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7009   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7010   assert( pPage->nFree>=0 );
7011   data = pPage->aData;
7012   ptr = &pPage->aCellIdx[2*idx];
7013   assert( pPage->pBt->usableSize > (u32)(ptr-data) );
7014   pc = get2byte(ptr);
7015   hdr = pPage->hdrOffset;
7016   testcase( pc==(u32)get2byte(&data[hdr+5]) );
7017   testcase( pc+sz==pPage->pBt->usableSize );
7018   if( pc+sz > pPage->pBt->usableSize ){
7019     *pRC = SQLITE_CORRUPT_BKPT;
7020     return;
7021   }
7022   rc = freeSpace(pPage, pc, sz);
7023   if( rc ){
7024     *pRC = rc;
7025     return;
7026   }
7027   pPage->nCell--;
7028   if( pPage->nCell==0 ){
7029     memset(&data[hdr+1], 0, 4);
7030     data[hdr+7] = 0;
7031     put2byte(&data[hdr+5], pPage->pBt->usableSize);
7032     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7033                        - pPage->childPtrSize - 8;
7034   }else{
7035     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7036     put2byte(&data[hdr+3], pPage->nCell);
7037     pPage->nFree += 2;
7038   }
7039 }
7040 
7041 /*
7042 ** Insert a new cell on pPage at cell index "i".  pCell points to the
7043 ** content of the cell.
7044 **
7045 ** If the cell content will fit on the page, then put it there.  If it
7046 ** will not fit, then make a copy of the cell content into pTemp if
7047 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
7048 ** in pPage->apOvfl[] and make it point to the cell content (either
7049 ** in pTemp or the original pCell) and also record its index.
7050 ** Allocating a new entry in pPage->aCell[] implies that
7051 ** pPage->nOverflow is incremented.
7052 **
7053 ** *pRC must be SQLITE_OK when this routine is called.
7054 */
7055 static void insertCell(
7056   MemPage *pPage,   /* Page into which we are copying */
7057   int i,            /* New cell becomes the i-th cell of the page */
7058   u8 *pCell,        /* Content of the new cell */
7059   int sz,           /* Bytes of content in pCell */
7060   u8 *pTemp,        /* Temp storage space for pCell, if needed */
7061   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
7062   int *pRC          /* Read and write return code from here */
7063 ){
7064   int idx = 0;      /* Where to write new cell content in data[] */
7065   int j;            /* Loop counter */
7066   u8 *data;         /* The content of the whole page */
7067   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
7068 
7069   assert( *pRC==SQLITE_OK );
7070   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
7071   assert( MX_CELL(pPage->pBt)<=10921 );
7072   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
7073   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7074   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
7075   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7076   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
7077   assert( pPage->nFree>=0 );
7078   if( pPage->nOverflow || sz+2>pPage->nFree ){
7079     if( pTemp ){
7080       memcpy(pTemp, pCell, sz);
7081       pCell = pTemp;
7082     }
7083     if( iChild ){
7084       put4byte(pCell, iChild);
7085     }
7086     j = pPage->nOverflow++;
7087     /* Comparison against ArraySize-1 since we hold back one extra slot
7088     ** as a contingency.  In other words, never need more than 3 overflow
7089     ** slots but 4 are allocated, just to be safe. */
7090     assert( j < ArraySize(pPage->apOvfl)-1 );
7091     pPage->apOvfl[j] = pCell;
7092     pPage->aiOvfl[j] = (u16)i;
7093 
7094     /* When multiple overflows occur, they are always sequential and in
7095     ** sorted order.  This invariants arise because multiple overflows can
7096     ** only occur when inserting divider cells into the parent page during
7097     ** balancing, and the dividers are adjacent and sorted.
7098     */
7099     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7100     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
7101   }else{
7102     int rc = sqlite3PagerWrite(pPage->pDbPage);
7103     if( rc!=SQLITE_OK ){
7104       *pRC = rc;
7105       return;
7106     }
7107     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7108     data = pPage->aData;
7109     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
7110     rc = allocateSpace(pPage, sz, &idx);
7111     if( rc ){ *pRC = rc; return; }
7112     /* The allocateSpace() routine guarantees the following properties
7113     ** if it returns successfully */
7114     assert( idx >= 0 );
7115     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
7116     assert( idx+sz <= (int)pPage->pBt->usableSize );
7117     pPage->nFree -= (u16)(2 + sz);
7118     if( iChild ){
7119       /* In a corrupt database where an entry in the cell index section of
7120       ** a btree page has a value of 3 or less, the pCell value might point
7121       ** as many as 4 bytes in front of the start of the aData buffer for
7122       ** the source page.  Make sure this does not cause problems by not
7123       ** reading the first 4 bytes */
7124       memcpy(&data[idx+4], pCell+4, sz-4);
7125       put4byte(&data[idx], iChild);
7126     }else{
7127       memcpy(&data[idx], pCell, sz);
7128     }
7129     pIns = pPage->aCellIdx + i*2;
7130     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7131     put2byte(pIns, idx);
7132     pPage->nCell++;
7133     /* increment the cell count */
7134     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
7135     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
7136 #ifndef SQLITE_OMIT_AUTOVACUUM
7137     if( pPage->pBt->autoVacuum ){
7138       /* The cell may contain a pointer to an overflow page. If so, write
7139       ** the entry for the overflow page into the pointer map.
7140       */
7141       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
7142     }
7143 #endif
7144   }
7145 }
7146 
7147 /*
7148 ** The following parameters determine how many adjacent pages get involved
7149 ** in a balancing operation.  NN is the number of neighbors on either side
7150 ** of the page that participate in the balancing operation.  NB is the
7151 ** total number of pages that participate, including the target page and
7152 ** NN neighbors on either side.
7153 **
7154 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
7155 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7156 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7157 ** The value of NN appears to give the best results overall.
7158 **
7159 ** (Later:) The description above makes it seem as if these values are
7160 ** tunable - as if you could change them and recompile and it would all work.
7161 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
7162 ** we have never tested any other value.
7163 */
7164 #define NN 1             /* Number of neighbors on either side of pPage */
7165 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
7166 
7167 /*
7168 ** A CellArray object contains a cache of pointers and sizes for a
7169 ** consecutive sequence of cells that might be held on multiple pages.
7170 **
7171 ** The cells in this array are the divider cell or cells from the pParent
7172 ** page plus up to three child pages.  There are a total of nCell cells.
7173 **
7174 ** pRef is a pointer to one of the pages that contributes cells.  This is
7175 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7176 ** which should be common to all pages that contribute cells to this array.
7177 **
7178 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7179 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
7180 ** to overflow cells.  In other words, some apCel[] pointers might not point
7181 ** to content area of the pages.
7182 **
7183 ** A szCell[] of zero means the size of that cell has not yet been computed.
7184 **
7185 ** The cells come from as many as four different pages:
7186 **
7187 **             -----------
7188 **             | Parent  |
7189 **             -----------
7190 **            /     |     \
7191 **           /      |      \
7192 **  ---------   ---------   ---------
7193 **  |Child-1|   |Child-2|   |Child-3|
7194 **  ---------   ---------   ---------
7195 **
7196 ** The order of cells is in the array is for an index btree is:
7197 **
7198 **       1.  All cells from Child-1 in order
7199 **       2.  The first divider cell from Parent
7200 **       3.  All cells from Child-2 in order
7201 **       4.  The second divider cell from Parent
7202 **       5.  All cells from Child-3 in order
7203 **
7204 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7205 ** content exists only in leaves and there are no divider cells.
7206 **
7207 ** For an index btree, the apEnd[] array holds pointer to the end of page
7208 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7209 ** respectively. The ixNx[] array holds the number of cells contained in
7210 ** each of these 5 stages, and all stages to the left.  Hence:
7211 **
7212 **    ixNx[0] = Number of cells in Child-1.
7213 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7214 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7215 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7216 **    ixNx[4] = Total number of cells.
7217 **
7218 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7219 ** are used and they point to the leaf pages only, and the ixNx value are:
7220 **
7221 **    ixNx[0] = Number of cells in Child-1.
7222 **    ixNx[1] = Number of cells in Child-1 and Child-2.
7223 **    ixNx[2] = Total number of cells.
7224 **
7225 ** Sometimes when deleting, a child page can have zero cells.  In those
7226 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7227 ** entries, shift down.  The end result is that each ixNx[] entry should
7228 ** be larger than the previous
7229 */
7230 typedef struct CellArray CellArray;
7231 struct CellArray {
7232   int nCell;              /* Number of cells in apCell[] */
7233   MemPage *pRef;          /* Reference page */
7234   u8 **apCell;            /* All cells begin balanced */
7235   u16 *szCell;            /* Local size of all cells in apCell[] */
7236   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
7237   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
7238 };
7239 
7240 /*
7241 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7242 ** computed.
7243 */
7244 static void populateCellCache(CellArray *p, int idx, int N){
7245   assert( idx>=0 && idx+N<=p->nCell );
7246   while( N>0 ){
7247     assert( p->apCell[idx]!=0 );
7248     if( p->szCell[idx]==0 ){
7249       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7250     }else{
7251       assert( CORRUPT_DB ||
7252               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7253     }
7254     idx++;
7255     N--;
7256   }
7257 }
7258 
7259 /*
7260 ** Return the size of the Nth element of the cell array
7261 */
7262 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7263   assert( N>=0 && N<p->nCell );
7264   assert( p->szCell[N]==0 );
7265   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7266   return p->szCell[N];
7267 }
7268 static u16 cachedCellSize(CellArray *p, int N){
7269   assert( N>=0 && N<p->nCell );
7270   if( p->szCell[N] ) return p->szCell[N];
7271   return computeCellSize(p, N);
7272 }
7273 
7274 /*
7275 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7276 ** szCell[] array contains the size in bytes of each cell. This function
7277 ** replaces the current contents of page pPg with the contents of the cell
7278 ** array.
7279 **
7280 ** Some of the cells in apCell[] may currently be stored in pPg. This
7281 ** function works around problems caused by this by making a copy of any
7282 ** such cells before overwriting the page data.
7283 **
7284 ** The MemPage.nFree field is invalidated by this function. It is the
7285 ** responsibility of the caller to set it correctly.
7286 */
7287 static int rebuildPage(
7288   CellArray *pCArray,             /* Content to be added to page pPg */
7289   int iFirst,                     /* First cell in pCArray to use */
7290   int nCell,                      /* Final number of cells on page */
7291   MemPage *pPg                    /* The page to be reconstructed */
7292 ){
7293   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7294   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7295   const int usableSize = pPg->pBt->usableSize;
7296   u8 * const pEnd = &aData[usableSize];
7297   int i = iFirst;                 /* Which cell to copy from pCArray*/
7298   u32 j;                          /* Start of cell content area */
7299   int iEnd = i+nCell;             /* Loop terminator */
7300   u8 *pCellptr = pPg->aCellIdx;
7301   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7302   u8 *pData;
7303   int k;                          /* Current slot in pCArray->apEnd[] */
7304   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7305 
7306   assert( i<iEnd );
7307   j = get2byte(&aData[hdr+5]);
7308   if( j>(u32)usableSize ){ j = 0; }
7309   memcpy(&pTmp[j], &aData[j], usableSize - j);
7310 
7311   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7312   pSrcEnd = pCArray->apEnd[k];
7313 
7314   pData = pEnd;
7315   while( 1/*exit by break*/ ){
7316     u8 *pCell = pCArray->apCell[i];
7317     u16 sz = pCArray->szCell[i];
7318     assert( sz>0 );
7319     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7320       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7321       pCell = &pTmp[pCell - aData];
7322     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7323            && (uptr)(pCell)<(uptr)pSrcEnd
7324     ){
7325       return SQLITE_CORRUPT_BKPT;
7326     }
7327 
7328     pData -= sz;
7329     put2byte(pCellptr, (pData - aData));
7330     pCellptr += 2;
7331     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7332     memmove(pData, pCell, sz);
7333     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7334     i++;
7335     if( i>=iEnd ) break;
7336     if( pCArray->ixNx[k]<=i ){
7337       k++;
7338       pSrcEnd = pCArray->apEnd[k];
7339     }
7340   }
7341 
7342   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7343   pPg->nCell = nCell;
7344   pPg->nOverflow = 0;
7345 
7346   put2byte(&aData[hdr+1], 0);
7347   put2byte(&aData[hdr+3], pPg->nCell);
7348   put2byte(&aData[hdr+5], pData - aData);
7349   aData[hdr+7] = 0x00;
7350   return SQLITE_OK;
7351 }
7352 
7353 /*
7354 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7355 ** This function attempts to add the cells stored in the array to page pPg.
7356 ** If it cannot (because the page needs to be defragmented before the cells
7357 ** will fit), non-zero is returned. Otherwise, if the cells are added
7358 ** successfully, zero is returned.
7359 **
7360 ** Argument pCellptr points to the first entry in the cell-pointer array
7361 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7362 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7363 ** cell in the array. It is the responsibility of the caller to ensure
7364 ** that it is safe to overwrite this part of the cell-pointer array.
7365 **
7366 ** When this function is called, *ppData points to the start of the
7367 ** content area on page pPg. If the size of the content area is extended,
7368 ** *ppData is updated to point to the new start of the content area
7369 ** before returning.
7370 **
7371 ** Finally, argument pBegin points to the byte immediately following the
7372 ** end of the space required by this page for the cell-pointer area (for
7373 ** all cells - not just those inserted by the current call). If the content
7374 ** area must be extended to before this point in order to accomodate all
7375 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7376 */
7377 static int pageInsertArray(
7378   MemPage *pPg,                   /* Page to add cells to */
7379   u8 *pBegin,                     /* End of cell-pointer array */
7380   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7381   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7382   int iFirst,                     /* Index of first cell to add */
7383   int nCell,                      /* Number of cells to add to pPg */
7384   CellArray *pCArray              /* Array of cells */
7385 ){
7386   int i = iFirst;                 /* Loop counter - cell index to insert */
7387   u8 *aData = pPg->aData;         /* Complete page */
7388   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7389   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7390   int k;                          /* Current slot in pCArray->apEnd[] */
7391   u8 *pEnd;                       /* Maximum extent of cell data */
7392   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7393   if( iEnd<=iFirst ) return 0;
7394   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7395   pEnd = pCArray->apEnd[k];
7396   while( 1 /*Exit by break*/ ){
7397     int sz, rc;
7398     u8 *pSlot;
7399     assert( pCArray->szCell[i]!=0 );
7400     sz = pCArray->szCell[i];
7401     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7402       if( (pData - pBegin)<sz ) return 1;
7403       pData -= sz;
7404       pSlot = pData;
7405     }
7406     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7407     ** database.  But they might for a corrupt database.  Hence use memmove()
7408     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7409     assert( (pSlot+sz)<=pCArray->apCell[i]
7410          || pSlot>=(pCArray->apCell[i]+sz)
7411          || CORRUPT_DB );
7412     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7413      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7414     ){
7415       assert( CORRUPT_DB );
7416       (void)SQLITE_CORRUPT_BKPT;
7417       return 1;
7418     }
7419     memmove(pSlot, pCArray->apCell[i], sz);
7420     put2byte(pCellptr, (pSlot - aData));
7421     pCellptr += 2;
7422     i++;
7423     if( i>=iEnd ) break;
7424     if( pCArray->ixNx[k]<=i ){
7425       k++;
7426       pEnd = pCArray->apEnd[k];
7427     }
7428   }
7429   *ppData = pData;
7430   return 0;
7431 }
7432 
7433 /*
7434 ** The pCArray object contains pointers to b-tree cells and their sizes.
7435 **
7436 ** This function adds the space associated with each cell in the array
7437 ** that is currently stored within the body of pPg to the pPg free-list.
7438 ** The cell-pointers and other fields of the page are not updated.
7439 **
7440 ** This function returns the total number of cells added to the free-list.
7441 */
7442 static int pageFreeArray(
7443   MemPage *pPg,                   /* Page to edit */
7444   int iFirst,                     /* First cell to delete */
7445   int nCell,                      /* Cells to delete */
7446   CellArray *pCArray              /* Array of cells */
7447 ){
7448   u8 * const aData = pPg->aData;
7449   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7450   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7451   int nRet = 0;
7452   int i;
7453   int iEnd = iFirst + nCell;
7454   u8 *pFree = 0;
7455   int szFree = 0;
7456 
7457   for(i=iFirst; i<iEnd; i++){
7458     u8 *pCell = pCArray->apCell[i];
7459     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7460       int sz;
7461       /* No need to use cachedCellSize() here.  The sizes of all cells that
7462       ** are to be freed have already been computing while deciding which
7463       ** cells need freeing */
7464       sz = pCArray->szCell[i];  assert( sz>0 );
7465       if( pFree!=(pCell + sz) ){
7466         if( pFree ){
7467           assert( pFree>aData && (pFree - aData)<65536 );
7468           freeSpace(pPg, (u16)(pFree - aData), szFree);
7469         }
7470         pFree = pCell;
7471         szFree = sz;
7472         if( pFree+sz>pEnd ){
7473           return 0;
7474         }
7475       }else{
7476         pFree = pCell;
7477         szFree += sz;
7478       }
7479       nRet++;
7480     }
7481   }
7482   if( pFree ){
7483     assert( pFree>aData && (pFree - aData)<65536 );
7484     freeSpace(pPg, (u16)(pFree - aData), szFree);
7485   }
7486   return nRet;
7487 }
7488 
7489 /*
7490 ** pCArray contains pointers to and sizes of all cells in the page being
7491 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7492 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7493 ** starting at apCell[iNew].
7494 **
7495 ** This routine makes the necessary adjustments to pPg so that it contains
7496 ** the correct cells after being balanced.
7497 **
7498 ** The pPg->nFree field is invalid when this function returns. It is the
7499 ** responsibility of the caller to set it correctly.
7500 */
7501 static int editPage(
7502   MemPage *pPg,                   /* Edit this page */
7503   int iOld,                       /* Index of first cell currently on page */
7504   int iNew,                       /* Index of new first cell on page */
7505   int nNew,                       /* Final number of cells on page */
7506   CellArray *pCArray              /* Array of cells and sizes */
7507 ){
7508   u8 * const aData = pPg->aData;
7509   const int hdr = pPg->hdrOffset;
7510   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7511   int nCell = pPg->nCell;       /* Cells stored on pPg */
7512   u8 *pData;
7513   u8 *pCellptr;
7514   int i;
7515   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7516   int iNewEnd = iNew + nNew;
7517 
7518 #ifdef SQLITE_DEBUG
7519   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7520   memcpy(pTmp, aData, pPg->pBt->usableSize);
7521 #endif
7522 
7523   /* Remove cells from the start and end of the page */
7524   assert( nCell>=0 );
7525   if( iOld<iNew ){
7526     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7527     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7528     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7529     nCell -= nShift;
7530   }
7531   if( iNewEnd < iOldEnd ){
7532     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7533     assert( nCell>=nTail );
7534     nCell -= nTail;
7535   }
7536 
7537   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7538   if( pData<pBegin ) goto editpage_fail;
7539   if( pData>pPg->aDataEnd ) goto editpage_fail;
7540 
7541   /* Add cells to the start of the page */
7542   if( iNew<iOld ){
7543     int nAdd = MIN(nNew,iOld-iNew);
7544     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7545     assert( nAdd>=0 );
7546     pCellptr = pPg->aCellIdx;
7547     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7548     if( pageInsertArray(
7549           pPg, pBegin, &pData, pCellptr,
7550           iNew, nAdd, pCArray
7551     ) ) goto editpage_fail;
7552     nCell += nAdd;
7553   }
7554 
7555   /* Add any overflow cells */
7556   for(i=0; i<pPg->nOverflow; i++){
7557     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7558     if( iCell>=0 && iCell<nNew ){
7559       pCellptr = &pPg->aCellIdx[iCell * 2];
7560       if( nCell>iCell ){
7561         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7562       }
7563       nCell++;
7564       cachedCellSize(pCArray, iCell+iNew);
7565       if( pageInsertArray(
7566             pPg, pBegin, &pData, pCellptr,
7567             iCell+iNew, 1, pCArray
7568       ) ) goto editpage_fail;
7569     }
7570   }
7571 
7572   /* Append cells to the end of the page */
7573   assert( nCell>=0 );
7574   pCellptr = &pPg->aCellIdx[nCell*2];
7575   if( pageInsertArray(
7576         pPg, pBegin, &pData, pCellptr,
7577         iNew+nCell, nNew-nCell, pCArray
7578   ) ) goto editpage_fail;
7579 
7580   pPg->nCell = nNew;
7581   pPg->nOverflow = 0;
7582 
7583   put2byte(&aData[hdr+3], pPg->nCell);
7584   put2byte(&aData[hdr+5], pData - aData);
7585 
7586 #ifdef SQLITE_DEBUG
7587   for(i=0; i<nNew && !CORRUPT_DB; i++){
7588     u8 *pCell = pCArray->apCell[i+iNew];
7589     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7590     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7591       pCell = &pTmp[pCell - aData];
7592     }
7593     assert( 0==memcmp(pCell, &aData[iOff],
7594             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7595   }
7596 #endif
7597 
7598   return SQLITE_OK;
7599  editpage_fail:
7600   /* Unable to edit this page. Rebuild it from scratch instead. */
7601   populateCellCache(pCArray, iNew, nNew);
7602   return rebuildPage(pCArray, iNew, nNew, pPg);
7603 }
7604 
7605 
7606 #ifndef SQLITE_OMIT_QUICKBALANCE
7607 /*
7608 ** This version of balance() handles the common special case where
7609 ** a new entry is being inserted on the extreme right-end of the
7610 ** tree, in other words, when the new entry will become the largest
7611 ** entry in the tree.
7612 **
7613 ** Instead of trying to balance the 3 right-most leaf pages, just add
7614 ** a new page to the right-hand side and put the one new entry in
7615 ** that page.  This leaves the right side of the tree somewhat
7616 ** unbalanced.  But odds are that we will be inserting new entries
7617 ** at the end soon afterwards so the nearly empty page will quickly
7618 ** fill up.  On average.
7619 **
7620 ** pPage is the leaf page which is the right-most page in the tree.
7621 ** pParent is its parent.  pPage must have a single overflow entry
7622 ** which is also the right-most entry on the page.
7623 **
7624 ** The pSpace buffer is used to store a temporary copy of the divider
7625 ** cell that will be inserted into pParent. Such a cell consists of a 4
7626 ** byte page number followed by a variable length integer. In other
7627 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7628 ** least 13 bytes in size.
7629 */
7630 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7631   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7632   MemPage *pNew;                       /* Newly allocated page */
7633   int rc;                              /* Return Code */
7634   Pgno pgnoNew;                        /* Page number of pNew */
7635 
7636   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7637   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7638   assert( pPage->nOverflow==1 );
7639 
7640   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7641   assert( pPage->nFree>=0 );
7642   assert( pParent->nFree>=0 );
7643 
7644   /* Allocate a new page. This page will become the right-sibling of
7645   ** pPage. Make the parent page writable, so that the new divider cell
7646   ** may be inserted. If both these operations are successful, proceed.
7647   */
7648   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7649 
7650   if( rc==SQLITE_OK ){
7651 
7652     u8 *pOut = &pSpace[4];
7653     u8 *pCell = pPage->apOvfl[0];
7654     u16 szCell = pPage->xCellSize(pPage, pCell);
7655     u8 *pStop;
7656     CellArray b;
7657 
7658     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7659     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7660     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7661     b.nCell = 1;
7662     b.pRef = pPage;
7663     b.apCell = &pCell;
7664     b.szCell = &szCell;
7665     b.apEnd[0] = pPage->aDataEnd;
7666     b.ixNx[0] = 2;
7667     rc = rebuildPage(&b, 0, 1, pNew);
7668     if( NEVER(rc) ){
7669       releasePage(pNew);
7670       return rc;
7671     }
7672     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7673 
7674     /* If this is an auto-vacuum database, update the pointer map
7675     ** with entries for the new page, and any pointer from the
7676     ** cell on the page to an overflow page. If either of these
7677     ** operations fails, the return code is set, but the contents
7678     ** of the parent page are still manipulated by thh code below.
7679     ** That is Ok, at this point the parent page is guaranteed to
7680     ** be marked as dirty. Returning an error code will cause a
7681     ** rollback, undoing any changes made to the parent page.
7682     */
7683     if( ISAUTOVACUUM ){
7684       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7685       if( szCell>pNew->minLocal ){
7686         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7687       }
7688     }
7689 
7690     /* Create a divider cell to insert into pParent. The divider cell
7691     ** consists of a 4-byte page number (the page number of pPage) and
7692     ** a variable length key value (which must be the same value as the
7693     ** largest key on pPage).
7694     **
7695     ** To find the largest key value on pPage, first find the right-most
7696     ** cell on pPage. The first two fields of this cell are the
7697     ** record-length (a variable length integer at most 32-bits in size)
7698     ** and the key value (a variable length integer, may have any value).
7699     ** The first of the while(...) loops below skips over the record-length
7700     ** field. The second while(...) loop copies the key value from the
7701     ** cell on pPage into the pSpace buffer.
7702     */
7703     pCell = findCell(pPage, pPage->nCell-1);
7704     pStop = &pCell[9];
7705     while( (*(pCell++)&0x80) && pCell<pStop );
7706     pStop = &pCell[9];
7707     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7708 
7709     /* Insert the new divider cell into pParent. */
7710     if( rc==SQLITE_OK ){
7711       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7712                    0, pPage->pgno, &rc);
7713     }
7714 
7715     /* Set the right-child pointer of pParent to point to the new page. */
7716     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7717 
7718     /* Release the reference to the new page. */
7719     releasePage(pNew);
7720   }
7721 
7722   return rc;
7723 }
7724 #endif /* SQLITE_OMIT_QUICKBALANCE */
7725 
7726 #if 0
7727 /*
7728 ** This function does not contribute anything to the operation of SQLite.
7729 ** it is sometimes activated temporarily while debugging code responsible
7730 ** for setting pointer-map entries.
7731 */
7732 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7733   int i, j;
7734   for(i=0; i<nPage; i++){
7735     Pgno n;
7736     u8 e;
7737     MemPage *pPage = apPage[i];
7738     BtShared *pBt = pPage->pBt;
7739     assert( pPage->isInit );
7740 
7741     for(j=0; j<pPage->nCell; j++){
7742       CellInfo info;
7743       u8 *z;
7744 
7745       z = findCell(pPage, j);
7746       pPage->xParseCell(pPage, z, &info);
7747       if( info.nLocal<info.nPayload ){
7748         Pgno ovfl = get4byte(&z[info.nSize-4]);
7749         ptrmapGet(pBt, ovfl, &e, &n);
7750         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7751       }
7752       if( !pPage->leaf ){
7753         Pgno child = get4byte(z);
7754         ptrmapGet(pBt, child, &e, &n);
7755         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7756       }
7757     }
7758     if( !pPage->leaf ){
7759       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7760       ptrmapGet(pBt, child, &e, &n);
7761       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7762     }
7763   }
7764   return 1;
7765 }
7766 #endif
7767 
7768 /*
7769 ** This function is used to copy the contents of the b-tree node stored
7770 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7771 ** the pointer-map entries for each child page are updated so that the
7772 ** parent page stored in the pointer map is page pTo. If pFrom contained
7773 ** any cells with overflow page pointers, then the corresponding pointer
7774 ** map entries are also updated so that the parent page is page pTo.
7775 **
7776 ** If pFrom is currently carrying any overflow cells (entries in the
7777 ** MemPage.apOvfl[] array), they are not copied to pTo.
7778 **
7779 ** Before returning, page pTo is reinitialized using btreeInitPage().
7780 **
7781 ** The performance of this function is not critical. It is only used by
7782 ** the balance_shallower() and balance_deeper() procedures, neither of
7783 ** which are called often under normal circumstances.
7784 */
7785 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7786   if( (*pRC)==SQLITE_OK ){
7787     BtShared * const pBt = pFrom->pBt;
7788     u8 * const aFrom = pFrom->aData;
7789     u8 * const aTo = pTo->aData;
7790     int const iFromHdr = pFrom->hdrOffset;
7791     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7792     int rc;
7793     int iData;
7794 
7795 
7796     assert( pFrom->isInit );
7797     assert( pFrom->nFree>=iToHdr );
7798     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7799 
7800     /* Copy the b-tree node content from page pFrom to page pTo. */
7801     iData = get2byte(&aFrom[iFromHdr+5]);
7802     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7803     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7804 
7805     /* Reinitialize page pTo so that the contents of the MemPage structure
7806     ** match the new data. The initialization of pTo can actually fail under
7807     ** fairly obscure circumstances, even though it is a copy of initialized
7808     ** page pFrom.
7809     */
7810     pTo->isInit = 0;
7811     rc = btreeInitPage(pTo);
7812     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7813     if( rc!=SQLITE_OK ){
7814       *pRC = rc;
7815       return;
7816     }
7817 
7818     /* If this is an auto-vacuum database, update the pointer-map entries
7819     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7820     */
7821     if( ISAUTOVACUUM ){
7822       *pRC = setChildPtrmaps(pTo);
7823     }
7824   }
7825 }
7826 
7827 /*
7828 ** This routine redistributes cells on the iParentIdx'th child of pParent
7829 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7830 ** same amount of free space. Usually a single sibling on either side of the
7831 ** page are used in the balancing, though both siblings might come from one
7832 ** side if the page is the first or last child of its parent. If the page
7833 ** has fewer than 2 siblings (something which can only happen if the page
7834 ** is a root page or a child of a root page) then all available siblings
7835 ** participate in the balancing.
7836 **
7837 ** The number of siblings of the page might be increased or decreased by
7838 ** one or two in an effort to keep pages nearly full but not over full.
7839 **
7840 ** Note that when this routine is called, some of the cells on the page
7841 ** might not actually be stored in MemPage.aData[]. This can happen
7842 ** if the page is overfull. This routine ensures that all cells allocated
7843 ** to the page and its siblings fit into MemPage.aData[] before returning.
7844 **
7845 ** In the course of balancing the page and its siblings, cells may be
7846 ** inserted into or removed from the parent page (pParent). Doing so
7847 ** may cause the parent page to become overfull or underfull. If this
7848 ** happens, it is the responsibility of the caller to invoke the correct
7849 ** balancing routine to fix this problem (see the balance() routine).
7850 **
7851 ** If this routine fails for any reason, it might leave the database
7852 ** in a corrupted state. So if this routine fails, the database should
7853 ** be rolled back.
7854 **
7855 ** The third argument to this function, aOvflSpace, is a pointer to a
7856 ** buffer big enough to hold one page. If while inserting cells into the parent
7857 ** page (pParent) the parent page becomes overfull, this buffer is
7858 ** used to store the parent's overflow cells. Because this function inserts
7859 ** a maximum of four divider cells into the parent page, and the maximum
7860 ** size of a cell stored within an internal node is always less than 1/4
7861 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7862 ** enough for all overflow cells.
7863 **
7864 ** If aOvflSpace is set to a null pointer, this function returns
7865 ** SQLITE_NOMEM.
7866 */
7867 static int balance_nonroot(
7868   MemPage *pParent,               /* Parent page of siblings being balanced */
7869   int iParentIdx,                 /* Index of "the page" in pParent */
7870   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7871   int isRoot,                     /* True if pParent is a root-page */
7872   int bBulk                       /* True if this call is part of a bulk load */
7873 ){
7874   BtShared *pBt;               /* The whole database */
7875   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7876   int nNew = 0;                /* Number of pages in apNew[] */
7877   int nOld;                    /* Number of pages in apOld[] */
7878   int i, j, k;                 /* Loop counters */
7879   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7880   int rc = SQLITE_OK;          /* The return code */
7881   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7882   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7883   int usableSpace;             /* Bytes in pPage beyond the header */
7884   int pageFlags;               /* Value of pPage->aData[0] */
7885   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7886   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7887   int szScratch;               /* Size of scratch memory requested */
7888   MemPage *apOld[NB];          /* pPage and up to two siblings */
7889   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7890   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7891   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7892   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7893   int cntOld[NB+2];            /* Old index in b.apCell[] */
7894   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7895   u8 *aSpace1;                 /* Space for copies of dividers cells */
7896   Pgno pgno;                   /* Temp var to store a page number in */
7897   u8 abDone[NB+2];             /* True after i'th new page is populated */
7898   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7899   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7900   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7901   CellArray b;                 /* Parsed information on cells being balanced */
7902 
7903   memset(abDone, 0, sizeof(abDone));
7904   memset(&b, 0, sizeof(b));
7905   pBt = pParent->pBt;
7906   assert( sqlite3_mutex_held(pBt->mutex) );
7907   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7908 
7909   /* At this point pParent may have at most one overflow cell. And if
7910   ** this overflow cell is present, it must be the cell with
7911   ** index iParentIdx. This scenario comes about when this function
7912   ** is called (indirectly) from sqlite3BtreeDelete().
7913   */
7914   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7915   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7916 
7917   if( !aOvflSpace ){
7918     return SQLITE_NOMEM_BKPT;
7919   }
7920   assert( pParent->nFree>=0 );
7921 
7922   /* Find the sibling pages to balance. Also locate the cells in pParent
7923   ** that divide the siblings. An attempt is made to find NN siblings on
7924   ** either side of pPage. More siblings are taken from one side, however,
7925   ** if there are fewer than NN siblings on the other side. If pParent
7926   ** has NB or fewer children then all children of pParent are taken.
7927   **
7928   ** This loop also drops the divider cells from the parent page. This
7929   ** way, the remainder of the function does not have to deal with any
7930   ** overflow cells in the parent page, since if any existed they will
7931   ** have already been removed.
7932   */
7933   i = pParent->nOverflow + pParent->nCell;
7934   if( i<2 ){
7935     nxDiv = 0;
7936   }else{
7937     assert( bBulk==0 || bBulk==1 );
7938     if( iParentIdx==0 ){
7939       nxDiv = 0;
7940     }else if( iParentIdx==i ){
7941       nxDiv = i-2+bBulk;
7942     }else{
7943       nxDiv = iParentIdx-1;
7944     }
7945     i = 2-bBulk;
7946   }
7947   nOld = i+1;
7948   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7949     pRight = &pParent->aData[pParent->hdrOffset+8];
7950   }else{
7951     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7952   }
7953   pgno = get4byte(pRight);
7954   while( 1 ){
7955     if( rc==SQLITE_OK ){
7956       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7957     }
7958     if( rc ){
7959       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7960       goto balance_cleanup;
7961     }
7962     if( apOld[i]->nFree<0 ){
7963       rc = btreeComputeFreeSpace(apOld[i]);
7964       if( rc ){
7965         memset(apOld, 0, (i)*sizeof(MemPage*));
7966         goto balance_cleanup;
7967       }
7968     }
7969     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7970     if( (i--)==0 ) break;
7971 
7972     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7973       apDiv[i] = pParent->apOvfl[0];
7974       pgno = get4byte(apDiv[i]);
7975       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7976       pParent->nOverflow = 0;
7977     }else{
7978       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7979       pgno = get4byte(apDiv[i]);
7980       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7981 
7982       /* Drop the cell from the parent page. apDiv[i] still points to
7983       ** the cell within the parent, even though it has been dropped.
7984       ** This is safe because dropping a cell only overwrites the first
7985       ** four bytes of it, and this function does not need the first
7986       ** four bytes of the divider cell. So the pointer is safe to use
7987       ** later on.
7988       **
7989       ** But not if we are in secure-delete mode. In secure-delete mode,
7990       ** the dropCell() routine will overwrite the entire cell with zeroes.
7991       ** In this case, temporarily copy the cell into the aOvflSpace[]
7992       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7993       ** is allocated.  */
7994       if( pBt->btsFlags & BTS_FAST_SECURE ){
7995         int iOff;
7996 
7997         /* If the following if() condition is not true, the db is corrupted.
7998         ** The call to dropCell() below will detect this.  */
7999         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
8000         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
8001           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
8002           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
8003         }
8004       }
8005       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
8006     }
8007   }
8008 
8009   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8010   ** alignment */
8011   nMaxCells = (nMaxCells + 3)&~3;
8012 
8013   /*
8014   ** Allocate space for memory structures
8015   */
8016   szScratch =
8017        nMaxCells*sizeof(u8*)                       /* b.apCell */
8018      + nMaxCells*sizeof(u16)                       /* b.szCell */
8019      + pBt->pageSize;                              /* aSpace1 */
8020 
8021   assert( szScratch<=7*(int)pBt->pageSize );
8022   b.apCell = sqlite3StackAllocRaw(0, szScratch );
8023   if( b.apCell==0 ){
8024     rc = SQLITE_NOMEM_BKPT;
8025     goto balance_cleanup;
8026   }
8027   b.szCell = (u16*)&b.apCell[nMaxCells];
8028   aSpace1 = (u8*)&b.szCell[nMaxCells];
8029   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
8030 
8031   /*
8032   ** Load pointers to all cells on sibling pages and the divider cells
8033   ** into the local b.apCell[] array.  Make copies of the divider cells
8034   ** into space obtained from aSpace1[]. The divider cells have already
8035   ** been removed from pParent.
8036   **
8037   ** If the siblings are on leaf pages, then the child pointers of the
8038   ** divider cells are stripped from the cells before they are copied
8039   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
8040   ** child pointers.  If siblings are not leaves, then all cell in
8041   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
8042   ** are alike.
8043   **
8044   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
8045   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
8046   */
8047   b.pRef = apOld[0];
8048   leafCorrection = b.pRef->leaf*4;
8049   leafData = b.pRef->intKeyLeaf;
8050   for(i=0; i<nOld; i++){
8051     MemPage *pOld = apOld[i];
8052     int limit = pOld->nCell;
8053     u8 *aData = pOld->aData;
8054     u16 maskPage = pOld->maskPage;
8055     u8 *piCell = aData + pOld->cellOffset;
8056     u8 *piEnd;
8057     VVA_ONLY( int nCellAtStart = b.nCell; )
8058 
8059     /* Verify that all sibling pages are of the same "type" (table-leaf,
8060     ** table-interior, index-leaf, or index-interior).
8061     */
8062     if( pOld->aData[0]!=apOld[0]->aData[0] ){
8063       rc = SQLITE_CORRUPT_BKPT;
8064       goto balance_cleanup;
8065     }
8066 
8067     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
8068     ** contains overflow cells, include them in the b.apCell[] array
8069     ** in the correct spot.
8070     **
8071     ** Note that when there are multiple overflow cells, it is always the
8072     ** case that they are sequential and adjacent.  This invariant arises
8073     ** because multiple overflows can only occurs when inserting divider
8074     ** cells into a parent on a prior balance, and divider cells are always
8075     ** adjacent and are inserted in order.  There is an assert() tagged
8076     ** with "NOTE 1" in the overflow cell insertion loop to prove this
8077     ** invariant.
8078     **
8079     ** This must be done in advance.  Once the balance starts, the cell
8080     ** offset section of the btree page will be overwritten and we will no
8081     ** long be able to find the cells if a pointer to each cell is not saved
8082     ** first.
8083     */
8084     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
8085     if( pOld->nOverflow>0 ){
8086       if( NEVER(limit<pOld->aiOvfl[0]) ){
8087         rc = SQLITE_CORRUPT_BKPT;
8088         goto balance_cleanup;
8089       }
8090       limit = pOld->aiOvfl[0];
8091       for(j=0; j<limit; j++){
8092         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8093         piCell += 2;
8094         b.nCell++;
8095       }
8096       for(k=0; k<pOld->nOverflow; k++){
8097         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
8098         b.apCell[b.nCell] = pOld->apOvfl[k];
8099         b.nCell++;
8100       }
8101     }
8102     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8103     while( piCell<piEnd ){
8104       assert( b.nCell<nMaxCells );
8105       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8106       piCell += 2;
8107       b.nCell++;
8108     }
8109     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
8110 
8111     cntOld[i] = b.nCell;
8112     if( i<nOld-1 && !leafData){
8113       u16 sz = (u16)szNew[i];
8114       u8 *pTemp;
8115       assert( b.nCell<nMaxCells );
8116       b.szCell[b.nCell] = sz;
8117       pTemp = &aSpace1[iSpace1];
8118       iSpace1 += sz;
8119       assert( sz<=pBt->maxLocal+23 );
8120       assert( iSpace1 <= (int)pBt->pageSize );
8121       memcpy(pTemp, apDiv[i], sz);
8122       b.apCell[b.nCell] = pTemp+leafCorrection;
8123       assert( leafCorrection==0 || leafCorrection==4 );
8124       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
8125       if( !pOld->leaf ){
8126         assert( leafCorrection==0 );
8127         assert( pOld->hdrOffset==0 || CORRUPT_DB );
8128         /* The right pointer of the child page pOld becomes the left
8129         ** pointer of the divider cell */
8130         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
8131       }else{
8132         assert( leafCorrection==4 );
8133         while( b.szCell[b.nCell]<4 ){
8134           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8135           ** does exist, pad it with 0x00 bytes. */
8136           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8137           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
8138           aSpace1[iSpace1++] = 0x00;
8139           b.szCell[b.nCell]++;
8140         }
8141       }
8142       b.nCell++;
8143     }
8144   }
8145 
8146   /*
8147   ** Figure out the number of pages needed to hold all b.nCell cells.
8148   ** Store this number in "k".  Also compute szNew[] which is the total
8149   ** size of all cells on the i-th page and cntNew[] which is the index
8150   ** in b.apCell[] of the cell that divides page i from page i+1.
8151   ** cntNew[k] should equal b.nCell.
8152   **
8153   ** Values computed by this block:
8154   **
8155   **           k: The total number of sibling pages
8156   **    szNew[i]: Spaced used on the i-th sibling page.
8157   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8158   **              the right of the i-th sibling page.
8159   ** usableSpace: Number of bytes of space available on each sibling.
8160   **
8161   */
8162   usableSpace = pBt->usableSize - 12 + leafCorrection;
8163   for(i=k=0; i<nOld; i++, k++){
8164     MemPage *p = apOld[i];
8165     b.apEnd[k] = p->aDataEnd;
8166     b.ixNx[k] = cntOld[i];
8167     if( k && b.ixNx[k]==b.ixNx[k-1] ){
8168       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
8169     }
8170     if( !leafData ){
8171       k++;
8172       b.apEnd[k] = pParent->aDataEnd;
8173       b.ixNx[k] = cntOld[i]+1;
8174     }
8175     assert( p->nFree>=0 );
8176     szNew[i] = usableSpace - p->nFree;
8177     for(j=0; j<p->nOverflow; j++){
8178       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8179     }
8180     cntNew[i] = cntOld[i];
8181   }
8182   k = nOld;
8183   for(i=0; i<k; i++){
8184     int sz;
8185     while( szNew[i]>usableSpace ){
8186       if( i+1>=k ){
8187         k = i+2;
8188         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8189         szNew[k-1] = 0;
8190         cntNew[k-1] = b.nCell;
8191       }
8192       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8193       szNew[i] -= sz;
8194       if( !leafData ){
8195         if( cntNew[i]<b.nCell ){
8196           sz = 2 + cachedCellSize(&b, cntNew[i]);
8197         }else{
8198           sz = 0;
8199         }
8200       }
8201       szNew[i+1] += sz;
8202       cntNew[i]--;
8203     }
8204     while( cntNew[i]<b.nCell ){
8205       sz = 2 + cachedCellSize(&b, cntNew[i]);
8206       if( szNew[i]+sz>usableSpace ) break;
8207       szNew[i] += sz;
8208       cntNew[i]++;
8209       if( !leafData ){
8210         if( cntNew[i]<b.nCell ){
8211           sz = 2 + cachedCellSize(&b, cntNew[i]);
8212         }else{
8213           sz = 0;
8214         }
8215       }
8216       szNew[i+1] -= sz;
8217     }
8218     if( cntNew[i]>=b.nCell ){
8219       k = i+1;
8220     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8221       rc = SQLITE_CORRUPT_BKPT;
8222       goto balance_cleanup;
8223     }
8224   }
8225 
8226   /*
8227   ** The packing computed by the previous block is biased toward the siblings
8228   ** on the left side (siblings with smaller keys). The left siblings are
8229   ** always nearly full, while the right-most sibling might be nearly empty.
8230   ** The next block of code attempts to adjust the packing of siblings to
8231   ** get a better balance.
8232   **
8233   ** This adjustment is more than an optimization.  The packing above might
8234   ** be so out of balance as to be illegal.  For example, the right-most
8235   ** sibling might be completely empty.  This adjustment is not optional.
8236   */
8237   for(i=k-1; i>0; i--){
8238     int szRight = szNew[i];  /* Size of sibling on the right */
8239     int szLeft = szNew[i-1]; /* Size of sibling on the left */
8240     int r;              /* Index of right-most cell in left sibling */
8241     int d;              /* Index of first cell to the left of right sibling */
8242 
8243     r = cntNew[i-1] - 1;
8244     d = r + 1 - leafData;
8245     (void)cachedCellSize(&b, d);
8246     do{
8247       assert( d<nMaxCells );
8248       assert( r<nMaxCells );
8249       (void)cachedCellSize(&b, r);
8250       if( szRight!=0
8251        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8252         break;
8253       }
8254       szRight += b.szCell[d] + 2;
8255       szLeft -= b.szCell[r] + 2;
8256       cntNew[i-1] = r;
8257       r--;
8258       d--;
8259     }while( r>=0 );
8260     szNew[i] = szRight;
8261     szNew[i-1] = szLeft;
8262     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8263       rc = SQLITE_CORRUPT_BKPT;
8264       goto balance_cleanup;
8265     }
8266   }
8267 
8268   /* Sanity check:  For a non-corrupt database file one of the follwing
8269   ** must be true:
8270   **    (1) We found one or more cells (cntNew[0])>0), or
8271   **    (2) pPage is a virtual root page.  A virtual root page is when
8272   **        the real root page is page 1 and we are the only child of
8273   **        that page.
8274   */
8275   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8276   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8277     apOld[0]->pgno, apOld[0]->nCell,
8278     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8279     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8280   ));
8281 
8282   /*
8283   ** Allocate k new pages.  Reuse old pages where possible.
8284   */
8285   pageFlags = apOld[0]->aData[0];
8286   for(i=0; i<k; i++){
8287     MemPage *pNew;
8288     if( i<nOld ){
8289       pNew = apNew[i] = apOld[i];
8290       apOld[i] = 0;
8291       rc = sqlite3PagerWrite(pNew->pDbPage);
8292       nNew++;
8293       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8294        && rc==SQLITE_OK
8295       ){
8296         rc = SQLITE_CORRUPT_BKPT;
8297       }
8298       if( rc ) goto balance_cleanup;
8299     }else{
8300       assert( i>0 );
8301       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8302       if( rc ) goto balance_cleanup;
8303       zeroPage(pNew, pageFlags);
8304       apNew[i] = pNew;
8305       nNew++;
8306       cntOld[i] = b.nCell;
8307 
8308       /* Set the pointer-map entry for the new sibling page. */
8309       if( ISAUTOVACUUM ){
8310         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8311         if( rc!=SQLITE_OK ){
8312           goto balance_cleanup;
8313         }
8314       }
8315     }
8316   }
8317 
8318   /*
8319   ** Reassign page numbers so that the new pages are in ascending order.
8320   ** This helps to keep entries in the disk file in order so that a scan
8321   ** of the table is closer to a linear scan through the file. That in turn
8322   ** helps the operating system to deliver pages from the disk more rapidly.
8323   **
8324   ** An O(n^2) insertion sort algorithm is used, but since n is never more
8325   ** than (NB+2) (a small constant), that should not be a problem.
8326   **
8327   ** When NB==3, this one optimization makes the database about 25% faster
8328   ** for large insertions and deletions.
8329   */
8330   for(i=0; i<nNew; i++){
8331     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8332     aPgFlags[i] = apNew[i]->pDbPage->flags;
8333     for(j=0; j<i; j++){
8334       if( NEVER(aPgno[j]==aPgno[i]) ){
8335         /* This branch is taken if the set of sibling pages somehow contains
8336         ** duplicate entries. This can happen if the database is corrupt.
8337         ** It would be simpler to detect this as part of the loop below, but
8338         ** we do the detection here in order to avoid populating the pager
8339         ** cache with two separate objects associated with the same
8340         ** page number.  */
8341         assert( CORRUPT_DB );
8342         rc = SQLITE_CORRUPT_BKPT;
8343         goto balance_cleanup;
8344       }
8345     }
8346   }
8347   for(i=0; i<nNew; i++){
8348     int iBest = 0;                /* aPgno[] index of page number to use */
8349     for(j=1; j<nNew; j++){
8350       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8351     }
8352     pgno = aPgOrder[iBest];
8353     aPgOrder[iBest] = 0xffffffff;
8354     if( iBest!=i ){
8355       if( iBest>i ){
8356         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8357       }
8358       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8359       apNew[i]->pgno = pgno;
8360     }
8361   }
8362 
8363   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8364          "%d(%d nc=%d) %d(%d nc=%d)\n",
8365     apNew[0]->pgno, szNew[0], cntNew[0],
8366     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8367     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8368     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8369     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8370     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8371     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8372     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8373     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8374   ));
8375 
8376   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8377   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8378   assert( apNew[nNew-1]!=0 );
8379   put4byte(pRight, apNew[nNew-1]->pgno);
8380 
8381   /* If the sibling pages are not leaves, ensure that the right-child pointer
8382   ** of the right-most new sibling page is set to the value that was
8383   ** originally in the same field of the right-most old sibling page. */
8384   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8385     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8386     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8387   }
8388 
8389   /* Make any required updates to pointer map entries associated with
8390   ** cells stored on sibling pages following the balance operation. Pointer
8391   ** map entries associated with divider cells are set by the insertCell()
8392   ** routine. The associated pointer map entries are:
8393   **
8394   **   a) if the cell contains a reference to an overflow chain, the
8395   **      entry associated with the first page in the overflow chain, and
8396   **
8397   **   b) if the sibling pages are not leaves, the child page associated
8398   **      with the cell.
8399   **
8400   ** If the sibling pages are not leaves, then the pointer map entry
8401   ** associated with the right-child of each sibling may also need to be
8402   ** updated. This happens below, after the sibling pages have been
8403   ** populated, not here.
8404   */
8405   if( ISAUTOVACUUM ){
8406     MemPage *pOld;
8407     MemPage *pNew = pOld = apNew[0];
8408     int cntOldNext = pNew->nCell + pNew->nOverflow;
8409     int iNew = 0;
8410     int iOld = 0;
8411 
8412     for(i=0; i<b.nCell; i++){
8413       u8 *pCell = b.apCell[i];
8414       while( i==cntOldNext ){
8415         iOld++;
8416         assert( iOld<nNew || iOld<nOld );
8417         assert( iOld>=0 && iOld<NB );
8418         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8419         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8420       }
8421       if( i==cntNew[iNew] ){
8422         pNew = apNew[++iNew];
8423         if( !leafData ) continue;
8424       }
8425 
8426       /* Cell pCell is destined for new sibling page pNew. Originally, it
8427       ** was either part of sibling page iOld (possibly an overflow cell),
8428       ** or else the divider cell to the left of sibling page iOld. So,
8429       ** if sibling page iOld had the same page number as pNew, and if
8430       ** pCell really was a part of sibling page iOld (not a divider or
8431       ** overflow cell), we can skip updating the pointer map entries.  */
8432       if( iOld>=nNew
8433        || pNew->pgno!=aPgno[iOld]
8434        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8435       ){
8436         if( !leafCorrection ){
8437           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8438         }
8439         if( cachedCellSize(&b,i)>pNew->minLocal ){
8440           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8441         }
8442         if( rc ) goto balance_cleanup;
8443       }
8444     }
8445   }
8446 
8447   /* Insert new divider cells into pParent. */
8448   for(i=0; i<nNew-1; i++){
8449     u8 *pCell;
8450     u8 *pTemp;
8451     int sz;
8452     u8 *pSrcEnd;
8453     MemPage *pNew = apNew[i];
8454     j = cntNew[i];
8455 
8456     assert( j<nMaxCells );
8457     assert( b.apCell[j]!=0 );
8458     pCell = b.apCell[j];
8459     sz = b.szCell[j] + leafCorrection;
8460     pTemp = &aOvflSpace[iOvflSpace];
8461     if( !pNew->leaf ){
8462       memcpy(&pNew->aData[8], pCell, 4);
8463     }else if( leafData ){
8464       /* If the tree is a leaf-data tree, and the siblings are leaves,
8465       ** then there is no divider cell in b.apCell[]. Instead, the divider
8466       ** cell consists of the integer key for the right-most cell of
8467       ** the sibling-page assembled above only.
8468       */
8469       CellInfo info;
8470       j--;
8471       pNew->xParseCell(pNew, b.apCell[j], &info);
8472       pCell = pTemp;
8473       sz = 4 + putVarint(&pCell[4], info.nKey);
8474       pTemp = 0;
8475     }else{
8476       pCell -= 4;
8477       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8478       ** previously stored on a leaf node, and its reported size was 4
8479       ** bytes, then it may actually be smaller than this
8480       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8481       ** any cell). But it is important to pass the correct size to
8482       ** insertCell(), so reparse the cell now.
8483       **
8484       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8485       ** and WITHOUT ROWID tables with exactly one column which is the
8486       ** primary key.
8487       */
8488       if( b.szCell[j]==4 ){
8489         assert(leafCorrection==4);
8490         sz = pParent->xCellSize(pParent, pCell);
8491       }
8492     }
8493     iOvflSpace += sz;
8494     assert( sz<=pBt->maxLocal+23 );
8495     assert( iOvflSpace <= (int)pBt->pageSize );
8496     for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){}
8497     pSrcEnd = b.apEnd[k];
8498     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8499       rc = SQLITE_CORRUPT_BKPT;
8500       goto balance_cleanup;
8501     }
8502     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8503     if( rc!=SQLITE_OK ) goto balance_cleanup;
8504     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8505   }
8506 
8507   /* Now update the actual sibling pages. The order in which they are updated
8508   ** is important, as this code needs to avoid disrupting any page from which
8509   ** cells may still to be read. In practice, this means:
8510   **
8511   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8512   **      then it is not safe to update page apNew[iPg] until after
8513   **      the left-hand sibling apNew[iPg-1] has been updated.
8514   **
8515   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8516   **      then it is not safe to update page apNew[iPg] until after
8517   **      the right-hand sibling apNew[iPg+1] has been updated.
8518   **
8519   ** If neither of the above apply, the page is safe to update.
8520   **
8521   ** The iPg value in the following loop starts at nNew-1 goes down
8522   ** to 0, then back up to nNew-1 again, thus making two passes over
8523   ** the pages.  On the initial downward pass, only condition (1) above
8524   ** needs to be tested because (2) will always be true from the previous
8525   ** step.  On the upward pass, both conditions are always true, so the
8526   ** upwards pass simply processes pages that were missed on the downward
8527   ** pass.
8528   */
8529   for(i=1-nNew; i<nNew; i++){
8530     int iPg = i<0 ? -i : i;
8531     assert( iPg>=0 && iPg<nNew );
8532     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8533     if( i>=0                            /* On the upwards pass, or... */
8534      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8535     ){
8536       int iNew;
8537       int iOld;
8538       int nNewCell;
8539 
8540       /* Verify condition (1):  If cells are moving left, update iPg
8541       ** only after iPg-1 has already been updated. */
8542       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8543 
8544       /* Verify condition (2):  If cells are moving right, update iPg
8545       ** only after iPg+1 has already been updated. */
8546       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8547 
8548       if( iPg==0 ){
8549         iNew = iOld = 0;
8550         nNewCell = cntNew[0];
8551       }else{
8552         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8553         iNew = cntNew[iPg-1] + !leafData;
8554         nNewCell = cntNew[iPg] - iNew;
8555       }
8556 
8557       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8558       if( rc ) goto balance_cleanup;
8559       abDone[iPg]++;
8560       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8561       assert( apNew[iPg]->nOverflow==0 );
8562       assert( apNew[iPg]->nCell==nNewCell );
8563     }
8564   }
8565 
8566   /* All pages have been processed exactly once */
8567   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8568 
8569   assert( nOld>0 );
8570   assert( nNew>0 );
8571 
8572   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8573     /* The root page of the b-tree now contains no cells. The only sibling
8574     ** page is the right-child of the parent. Copy the contents of the
8575     ** child page into the parent, decreasing the overall height of the
8576     ** b-tree structure by one. This is described as the "balance-shallower"
8577     ** sub-algorithm in some documentation.
8578     **
8579     ** If this is an auto-vacuum database, the call to copyNodeContent()
8580     ** sets all pointer-map entries corresponding to database image pages
8581     ** for which the pointer is stored within the content being copied.
8582     **
8583     ** It is critical that the child page be defragmented before being
8584     ** copied into the parent, because if the parent is page 1 then it will
8585     ** by smaller than the child due to the database header, and so all the
8586     ** free space needs to be up front.
8587     */
8588     assert( nNew==1 || CORRUPT_DB );
8589     rc = defragmentPage(apNew[0], -1);
8590     testcase( rc!=SQLITE_OK );
8591     assert( apNew[0]->nFree ==
8592         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8593           - apNew[0]->nCell*2)
8594       || rc!=SQLITE_OK
8595     );
8596     copyNodeContent(apNew[0], pParent, &rc);
8597     freePage(apNew[0], &rc);
8598   }else if( ISAUTOVACUUM && !leafCorrection ){
8599     /* Fix the pointer map entries associated with the right-child of each
8600     ** sibling page. All other pointer map entries have already been taken
8601     ** care of.  */
8602     for(i=0; i<nNew; i++){
8603       u32 key = get4byte(&apNew[i]->aData[8]);
8604       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8605     }
8606   }
8607 
8608   assert( pParent->isInit );
8609   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8610           nOld, nNew, b.nCell));
8611 
8612   /* Free any old pages that were not reused as new pages.
8613   */
8614   for(i=nNew; i<nOld; i++){
8615     freePage(apOld[i], &rc);
8616   }
8617 
8618 #if 0
8619   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8620     /* The ptrmapCheckPages() contains assert() statements that verify that
8621     ** all pointer map pages are set correctly. This is helpful while
8622     ** debugging. This is usually disabled because a corrupt database may
8623     ** cause an assert() statement to fail.  */
8624     ptrmapCheckPages(apNew, nNew);
8625     ptrmapCheckPages(&pParent, 1);
8626   }
8627 #endif
8628 
8629   /*
8630   ** Cleanup before returning.
8631   */
8632 balance_cleanup:
8633   sqlite3StackFree(0, b.apCell);
8634   for(i=0; i<nOld; i++){
8635     releasePage(apOld[i]);
8636   }
8637   for(i=0; i<nNew; i++){
8638     releasePage(apNew[i]);
8639   }
8640 
8641   return rc;
8642 }
8643 
8644 
8645 /*
8646 ** This function is called when the root page of a b-tree structure is
8647 ** overfull (has one or more overflow pages).
8648 **
8649 ** A new child page is allocated and the contents of the current root
8650 ** page, including overflow cells, are copied into the child. The root
8651 ** page is then overwritten to make it an empty page with the right-child
8652 ** pointer pointing to the new page.
8653 **
8654 ** Before returning, all pointer-map entries corresponding to pages
8655 ** that the new child-page now contains pointers to are updated. The
8656 ** entry corresponding to the new right-child pointer of the root
8657 ** page is also updated.
8658 **
8659 ** If successful, *ppChild is set to contain a reference to the child
8660 ** page and SQLITE_OK is returned. In this case the caller is required
8661 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8662 ** an error code is returned and *ppChild is set to 0.
8663 */
8664 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8665   int rc;                        /* Return value from subprocedures */
8666   MemPage *pChild = 0;           /* Pointer to a new child page */
8667   Pgno pgnoChild = 0;            /* Page number of the new child page */
8668   BtShared *pBt = pRoot->pBt;    /* The BTree */
8669 
8670   assert( pRoot->nOverflow>0 );
8671   assert( sqlite3_mutex_held(pBt->mutex) );
8672 
8673   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8674   ** page that will become the new right-child of pPage. Copy the contents
8675   ** of the node stored on pRoot into the new child page.
8676   */
8677   rc = sqlite3PagerWrite(pRoot->pDbPage);
8678   if( rc==SQLITE_OK ){
8679     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8680     copyNodeContent(pRoot, pChild, &rc);
8681     if( ISAUTOVACUUM ){
8682       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8683     }
8684   }
8685   if( rc ){
8686     *ppChild = 0;
8687     releasePage(pChild);
8688     return rc;
8689   }
8690   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8691   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8692   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8693 
8694   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8695 
8696   /* Copy the overflow cells from pRoot to pChild */
8697   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8698          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8699   memcpy(pChild->apOvfl, pRoot->apOvfl,
8700          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8701   pChild->nOverflow = pRoot->nOverflow;
8702 
8703   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8704   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8705   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8706 
8707   *ppChild = pChild;
8708   return SQLITE_OK;
8709 }
8710 
8711 /*
8712 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8713 ** on the same B-tree as pCur.
8714 **
8715 ** This can occur if a database is corrupt with two or more SQL tables
8716 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8717 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8718 ** table linked to the same b-tree.  If the secondary insert causes a
8719 ** rebalance, that can change content out from under the cursor on the
8720 ** first SQL table, violating invariants on the first insert.
8721 */
8722 static int anotherValidCursor(BtCursor *pCur){
8723   BtCursor *pOther;
8724   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8725     if( pOther!=pCur
8726      && pOther->eState==CURSOR_VALID
8727      && pOther->pPage==pCur->pPage
8728     ){
8729       return SQLITE_CORRUPT_BKPT;
8730     }
8731   }
8732   return SQLITE_OK;
8733 }
8734 
8735 /*
8736 ** The page that pCur currently points to has just been modified in
8737 ** some way. This function figures out if this modification means the
8738 ** tree needs to be balanced, and if so calls the appropriate balancing
8739 ** routine. Balancing routines are:
8740 **
8741 **   balance_quick()
8742 **   balance_deeper()
8743 **   balance_nonroot()
8744 */
8745 static int balance(BtCursor *pCur){
8746   int rc = SQLITE_OK;
8747   u8 aBalanceQuickSpace[13];
8748   u8 *pFree = 0;
8749 
8750   VVA_ONLY( int balance_quick_called = 0 );
8751   VVA_ONLY( int balance_deeper_called = 0 );
8752 
8753   do {
8754     int iPage;
8755     MemPage *pPage = pCur->pPage;
8756 
8757     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8758     if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
8759       /* No rebalance required as long as:
8760       **   (1) There are no overflow cells
8761       **   (2) The amount of free space on the page is less than 2/3rds of
8762       **       the total usable space on the page. */
8763       break;
8764     }else if( (iPage = pCur->iPage)==0 ){
8765       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8766         /* The root page of the b-tree is overfull. In this case call the
8767         ** balance_deeper() function to create a new child for the root-page
8768         ** and copy the current contents of the root-page to it. The
8769         ** next iteration of the do-loop will balance the child page.
8770         */
8771         assert( balance_deeper_called==0 );
8772         VVA_ONLY( balance_deeper_called++ );
8773         rc = balance_deeper(pPage, &pCur->apPage[1]);
8774         if( rc==SQLITE_OK ){
8775           pCur->iPage = 1;
8776           pCur->ix = 0;
8777           pCur->aiIdx[0] = 0;
8778           pCur->apPage[0] = pPage;
8779           pCur->pPage = pCur->apPage[1];
8780           assert( pCur->pPage->nOverflow );
8781         }
8782       }else{
8783         break;
8784       }
8785     }else{
8786       MemPage * const pParent = pCur->apPage[iPage-1];
8787       int const iIdx = pCur->aiIdx[iPage-1];
8788 
8789       rc = sqlite3PagerWrite(pParent->pDbPage);
8790       if( rc==SQLITE_OK && pParent->nFree<0 ){
8791         rc = btreeComputeFreeSpace(pParent);
8792       }
8793       if( rc==SQLITE_OK ){
8794 #ifndef SQLITE_OMIT_QUICKBALANCE
8795         if( pPage->intKeyLeaf
8796          && pPage->nOverflow==1
8797          && pPage->aiOvfl[0]==pPage->nCell
8798          && pParent->pgno!=1
8799          && pParent->nCell==iIdx
8800         ){
8801           /* Call balance_quick() to create a new sibling of pPage on which
8802           ** to store the overflow cell. balance_quick() inserts a new cell
8803           ** into pParent, which may cause pParent overflow. If this
8804           ** happens, the next iteration of the do-loop will balance pParent
8805           ** use either balance_nonroot() or balance_deeper(). Until this
8806           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8807           ** buffer.
8808           **
8809           ** The purpose of the following assert() is to check that only a
8810           ** single call to balance_quick() is made for each call to this
8811           ** function. If this were not verified, a subtle bug involving reuse
8812           ** of the aBalanceQuickSpace[] might sneak in.
8813           */
8814           assert( balance_quick_called==0 );
8815           VVA_ONLY( balance_quick_called++ );
8816           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8817         }else
8818 #endif
8819         {
8820           /* In this case, call balance_nonroot() to redistribute cells
8821           ** between pPage and up to 2 of its sibling pages. This involves
8822           ** modifying the contents of pParent, which may cause pParent to
8823           ** become overfull or underfull. The next iteration of the do-loop
8824           ** will balance the parent page to correct this.
8825           **
8826           ** If the parent page becomes overfull, the overflow cell or cells
8827           ** are stored in the pSpace buffer allocated immediately below.
8828           ** A subsequent iteration of the do-loop will deal with this by
8829           ** calling balance_nonroot() (balance_deeper() may be called first,
8830           ** but it doesn't deal with overflow cells - just moves them to a
8831           ** different page). Once this subsequent call to balance_nonroot()
8832           ** has completed, it is safe to release the pSpace buffer used by
8833           ** the previous call, as the overflow cell data will have been
8834           ** copied either into the body of a database page or into the new
8835           ** pSpace buffer passed to the latter call to balance_nonroot().
8836           */
8837           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8838           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8839                                pCur->hints&BTREE_BULKLOAD);
8840           if( pFree ){
8841             /* If pFree is not NULL, it points to the pSpace buffer used
8842             ** by a previous call to balance_nonroot(). Its contents are
8843             ** now stored either on real database pages or within the
8844             ** new pSpace buffer, so it may be safely freed here. */
8845             sqlite3PageFree(pFree);
8846           }
8847 
8848           /* The pSpace buffer will be freed after the next call to
8849           ** balance_nonroot(), or just before this function returns, whichever
8850           ** comes first. */
8851           pFree = pSpace;
8852         }
8853       }
8854 
8855       pPage->nOverflow = 0;
8856 
8857       /* The next iteration of the do-loop balances the parent page. */
8858       releasePage(pPage);
8859       pCur->iPage--;
8860       assert( pCur->iPage>=0 );
8861       pCur->pPage = pCur->apPage[pCur->iPage];
8862     }
8863   }while( rc==SQLITE_OK );
8864 
8865   if( pFree ){
8866     sqlite3PageFree(pFree);
8867   }
8868   return rc;
8869 }
8870 
8871 /* Overwrite content from pX into pDest.  Only do the write if the
8872 ** content is different from what is already there.
8873 */
8874 static int btreeOverwriteContent(
8875   MemPage *pPage,           /* MemPage on which writing will occur */
8876   u8 *pDest,                /* Pointer to the place to start writing */
8877   const BtreePayload *pX,   /* Source of data to write */
8878   int iOffset,              /* Offset of first byte to write */
8879   int iAmt                  /* Number of bytes to be written */
8880 ){
8881   int nData = pX->nData - iOffset;
8882   if( nData<=0 ){
8883     /* Overwritting with zeros */
8884     int i;
8885     for(i=0; i<iAmt && pDest[i]==0; i++){}
8886     if( i<iAmt ){
8887       int rc = sqlite3PagerWrite(pPage->pDbPage);
8888       if( rc ) return rc;
8889       memset(pDest + i, 0, iAmt - i);
8890     }
8891   }else{
8892     if( nData<iAmt ){
8893       /* Mixed read data and zeros at the end.  Make a recursive call
8894       ** to write the zeros then fall through to write the real data */
8895       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8896                                  iAmt-nData);
8897       if( rc ) return rc;
8898       iAmt = nData;
8899     }
8900     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8901       int rc = sqlite3PagerWrite(pPage->pDbPage);
8902       if( rc ) return rc;
8903       /* In a corrupt database, it is possible for the source and destination
8904       ** buffers to overlap.  This is harmless since the database is already
8905       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8906       ** memmove(). */
8907       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8908     }
8909   }
8910   return SQLITE_OK;
8911 }
8912 
8913 /*
8914 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8915 ** contained in pX.
8916 */
8917 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8918   int iOffset;                        /* Next byte of pX->pData to write */
8919   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8920   int rc;                             /* Return code */
8921   MemPage *pPage = pCur->pPage;       /* Page being written */
8922   BtShared *pBt;                      /* Btree */
8923   Pgno ovflPgno;                      /* Next overflow page to write */
8924   u32 ovflPageSize;                   /* Size to write on overflow page */
8925 
8926   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8927    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8928   ){
8929     return SQLITE_CORRUPT_BKPT;
8930   }
8931   /* Overwrite the local portion first */
8932   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8933                              0, pCur->info.nLocal);
8934   if( rc ) return rc;
8935   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8936 
8937   /* Now overwrite the overflow pages */
8938   iOffset = pCur->info.nLocal;
8939   assert( nTotal>=0 );
8940   assert( iOffset>=0 );
8941   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8942   pBt = pPage->pBt;
8943   ovflPageSize = pBt->usableSize - 4;
8944   do{
8945     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8946     if( rc ) return rc;
8947     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8948       rc = SQLITE_CORRUPT_BKPT;
8949     }else{
8950       if( iOffset+ovflPageSize<(u32)nTotal ){
8951         ovflPgno = get4byte(pPage->aData);
8952       }else{
8953         ovflPageSize = nTotal - iOffset;
8954       }
8955       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8956                                  iOffset, ovflPageSize);
8957     }
8958     sqlite3PagerUnref(pPage->pDbPage);
8959     if( rc ) return rc;
8960     iOffset += ovflPageSize;
8961   }while( iOffset<nTotal );
8962   return SQLITE_OK;
8963 }
8964 
8965 
8966 /*
8967 ** Insert a new record into the BTree.  The content of the new record
8968 ** is described by the pX object.  The pCur cursor is used only to
8969 ** define what table the record should be inserted into, and is left
8970 ** pointing at a random location.
8971 **
8972 ** For a table btree (used for rowid tables), only the pX.nKey value of
8973 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8974 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8975 ** hold the content of the row.
8976 **
8977 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8978 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8979 ** pX.pData,nData,nZero fields must be zero.
8980 **
8981 ** If the seekResult parameter is non-zero, then a successful call to
8982 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
8983 ** been performed.  In other words, if seekResult!=0 then the cursor
8984 ** is currently pointing to a cell that will be adjacent to the cell
8985 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8986 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8987 ** that is larger than (pKey,nKey).
8988 **
8989 ** If seekResult==0, that means pCur is pointing at some unknown location.
8990 ** In that case, this routine must seek the cursor to the correct insertion
8991 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8992 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8993 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8994 ** to decode the key.
8995 */
8996 int sqlite3BtreeInsert(
8997   BtCursor *pCur,                /* Insert data into the table of this cursor */
8998   const BtreePayload *pX,        /* Content of the row to be inserted */
8999   int flags,                     /* True if this is likely an append */
9000   int seekResult                 /* Result of prior IndexMoveto() call */
9001 ){
9002   int rc;
9003   int loc = seekResult;          /* -1: before desired location  +1: after */
9004   int szNew = 0;
9005   int idx;
9006   MemPage *pPage;
9007   Btree *p = pCur->pBtree;
9008   BtShared *pBt = p->pBt;
9009   unsigned char *oldCell;
9010   unsigned char *newCell = 0;
9011 
9012   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
9013   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
9014 
9015   /* Save the positions of any other cursors open on this table.
9016   **
9017   ** In some cases, the call to btreeMoveto() below is a no-op. For
9018   ** example, when inserting data into a table with auto-generated integer
9019   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9020   ** integer key to use. It then calls this function to actually insert the
9021   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9022   ** that the cursor is already where it needs to be and returns without
9023   ** doing any work. To avoid thwarting these optimizations, it is important
9024   ** not to clear the cursor here.
9025   */
9026   if( pCur->curFlags & BTCF_Multiple ){
9027     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9028     if( rc ) return rc;
9029     if( loc && pCur->iPage<0 ){
9030       /* This can only happen if the schema is corrupt such that there is more
9031       ** than one table or index with the same root page as used by the cursor.
9032       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9033       ** the schema was loaded. This cannot be asserted though, as a user might
9034       ** set the flag, load the schema, and then unset the flag.  */
9035       return SQLITE_CORRUPT_BKPT;
9036     }
9037   }
9038 
9039   /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9040   ** points to a valid cell.
9041   */
9042   if( pCur->eState>=CURSOR_REQUIRESEEK ){
9043     testcase( pCur->eState==CURSOR_REQUIRESEEK );
9044     testcase( pCur->eState==CURSOR_FAULT );
9045     rc = moveToRoot(pCur);
9046     if( rc && rc!=SQLITE_EMPTY ) return rc;
9047   }
9048 
9049   assert( cursorOwnsBtShared(pCur) );
9050   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9051               && pBt->inTransaction==TRANS_WRITE
9052               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
9053   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9054 
9055   /* Assert that the caller has been consistent. If this cursor was opened
9056   ** expecting an index b-tree, then the caller should be inserting blob
9057   ** keys with no associated data. If the cursor was opened expecting an
9058   ** intkey table, the caller should be inserting integer keys with a
9059   ** blob of associated data.  */
9060   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
9061 
9062   if( pCur->pKeyInfo==0 ){
9063     assert( pX->pKey==0 );
9064     /* If this is an insert into a table b-tree, invalidate any incrblob
9065     ** cursors open on the row being replaced */
9066     if( p->hasIncrblobCur ){
9067       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9068     }
9069 
9070     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9071     ** to a row with the same key as the new entry being inserted.
9072     */
9073 #ifdef SQLITE_DEBUG
9074     if( flags & BTREE_SAVEPOSITION ){
9075       assert( pCur->curFlags & BTCF_ValidNKey );
9076       assert( pX->nKey==pCur->info.nKey );
9077       assert( loc==0 );
9078     }
9079 #endif
9080 
9081     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9082     ** that the cursor is not pointing to a row to be overwritten.
9083     ** So do a complete check.
9084     */
9085     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
9086       /* The cursor is pointing to the entry that is to be
9087       ** overwritten */
9088       assert( pX->nData>=0 && pX->nZero>=0 );
9089       if( pCur->info.nSize!=0
9090        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9091       ){
9092         /* New entry is the same size as the old.  Do an overwrite */
9093         return btreeOverwriteCell(pCur, pX);
9094       }
9095       assert( loc==0 );
9096     }else if( loc==0 ){
9097       /* The cursor is *not* pointing to the cell to be overwritten, nor
9098       ** to an adjacent cell.  Move the cursor so that it is pointing either
9099       ** to the cell to be overwritten or an adjacent cell.
9100       */
9101       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9102                (flags & BTREE_APPEND)!=0, &loc);
9103       if( rc ) return rc;
9104     }
9105   }else{
9106     /* This is an index or a WITHOUT ROWID table */
9107 
9108     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9109     ** to a row with the same key as the new entry being inserted.
9110     */
9111     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9112 
9113     /* If the cursor is not already pointing either to the cell to be
9114     ** overwritten, or if a new cell is being inserted, if the cursor is
9115     ** not pointing to an immediately adjacent cell, then move the cursor
9116     ** so that it does.
9117     */
9118     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9119       if( pX->nMem ){
9120         UnpackedRecord r;
9121         r.pKeyInfo = pCur->pKeyInfo;
9122         r.aMem = pX->aMem;
9123         r.nField = pX->nMem;
9124         r.default_rc = 0;
9125         r.eqSeen = 0;
9126         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
9127       }else{
9128         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9129                     (flags & BTREE_APPEND)!=0, &loc);
9130       }
9131       if( rc ) return rc;
9132     }
9133 
9134     /* If the cursor is currently pointing to an entry to be overwritten
9135     ** and the new content is the same as as the old, then use the
9136     ** overwrite optimization.
9137     */
9138     if( loc==0 ){
9139       getCellInfo(pCur);
9140       if( pCur->info.nKey==pX->nKey ){
9141         BtreePayload x2;
9142         x2.pData = pX->pKey;
9143         x2.nData = pX->nKey;
9144         x2.nZero = 0;
9145         return btreeOverwriteCell(pCur, &x2);
9146       }
9147     }
9148   }
9149   assert( pCur->eState==CURSOR_VALID
9150        || (pCur->eState==CURSOR_INVALID && loc) );
9151 
9152   pPage = pCur->pPage;
9153   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
9154   assert( pPage->leaf || !pPage->intKey );
9155   if( pPage->nFree<0 ){
9156     if( NEVER(pCur->eState>CURSOR_INVALID) ){
9157      /* ^^^^^--- due to the moveToRoot() call above */
9158       rc = SQLITE_CORRUPT_BKPT;
9159     }else{
9160       rc = btreeComputeFreeSpace(pPage);
9161     }
9162     if( rc ) return rc;
9163   }
9164 
9165   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
9166           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
9167           loc==0 ? "overwrite" : "new entry"));
9168   assert( pPage->isInit || CORRUPT_DB );
9169   newCell = pBt->pTmpSpace;
9170   assert( newCell!=0 );
9171   if( flags & BTREE_PREFORMAT ){
9172     rc = SQLITE_OK;
9173     szNew = pBt->nPreformatSize;
9174     if( szNew<4 ) szNew = 4;
9175     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9176       CellInfo info;
9177       pPage->xParseCell(pPage, newCell, &info);
9178       if( info.nPayload!=info.nLocal ){
9179         Pgno ovfl = get4byte(&newCell[szNew-4]);
9180         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9181       }
9182     }
9183   }else{
9184     rc = fillInCell(pPage, newCell, pX, &szNew);
9185   }
9186   if( rc ) goto end_insert;
9187   assert( szNew==pPage->xCellSize(pPage, newCell) );
9188   assert( szNew <= MX_CELL_SIZE(pBt) );
9189   idx = pCur->ix;
9190   if( loc==0 ){
9191     CellInfo info;
9192     assert( idx>=0 );
9193     if( idx>=pPage->nCell ){
9194       return SQLITE_CORRUPT_BKPT;
9195     }
9196     rc = sqlite3PagerWrite(pPage->pDbPage);
9197     if( rc ){
9198       goto end_insert;
9199     }
9200     oldCell = findCell(pPage, idx);
9201     if( !pPage->leaf ){
9202       memcpy(newCell, oldCell, 4);
9203     }
9204     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9205     testcase( pCur->curFlags & BTCF_ValidOvfl );
9206     invalidateOverflowCache(pCur);
9207     if( info.nSize==szNew && info.nLocal==info.nPayload
9208      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9209     ){
9210       /* Overwrite the old cell with the new if they are the same size.
9211       ** We could also try to do this if the old cell is smaller, then add
9212       ** the leftover space to the free list.  But experiments show that
9213       ** doing that is no faster then skipping this optimization and just
9214       ** calling dropCell() and insertCell().
9215       **
9216       ** This optimization cannot be used on an autovacuum database if the
9217       ** new entry uses overflow pages, as the insertCell() call below is
9218       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
9219       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9220       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9221         return SQLITE_CORRUPT_BKPT;
9222       }
9223       if( oldCell+szNew > pPage->aDataEnd ){
9224         return SQLITE_CORRUPT_BKPT;
9225       }
9226       memcpy(oldCell, newCell, szNew);
9227       return SQLITE_OK;
9228     }
9229     dropCell(pPage, idx, info.nSize, &rc);
9230     if( rc ) goto end_insert;
9231   }else if( loc<0 && pPage->nCell>0 ){
9232     assert( pPage->leaf );
9233     idx = ++pCur->ix;
9234     pCur->curFlags &= ~BTCF_ValidNKey;
9235   }else{
9236     assert( pPage->leaf );
9237   }
9238   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9239   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9240   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9241 
9242   /* If no error has occurred and pPage has an overflow cell, call balance()
9243   ** to redistribute the cells within the tree. Since balance() may move
9244   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9245   ** variables.
9246   **
9247   ** Previous versions of SQLite called moveToRoot() to move the cursor
9248   ** back to the root page as balance() used to invalidate the contents
9249   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9250   ** set the cursor state to "invalid". This makes common insert operations
9251   ** slightly faster.
9252   **
9253   ** There is a subtle but important optimization here too. When inserting
9254   ** multiple records into an intkey b-tree using a single cursor (as can
9255   ** happen while processing an "INSERT INTO ... SELECT" statement), it
9256   ** is advantageous to leave the cursor pointing to the last entry in
9257   ** the b-tree if possible. If the cursor is left pointing to the last
9258   ** entry in the table, and the next row inserted has an integer key
9259   ** larger than the largest existing key, it is possible to insert the
9260   ** row without seeking the cursor. This can be a big performance boost.
9261   */
9262   pCur->info.nSize = 0;
9263   if( pPage->nOverflow ){
9264     assert( rc==SQLITE_OK );
9265     pCur->curFlags &= ~(BTCF_ValidNKey);
9266     rc = balance(pCur);
9267 
9268     /* Must make sure nOverflow is reset to zero even if the balance()
9269     ** fails. Internal data structure corruption will result otherwise.
9270     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9271     ** from trying to save the current position of the cursor.  */
9272     pCur->pPage->nOverflow = 0;
9273     pCur->eState = CURSOR_INVALID;
9274     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9275       btreeReleaseAllCursorPages(pCur);
9276       if( pCur->pKeyInfo ){
9277         assert( pCur->pKey==0 );
9278         pCur->pKey = sqlite3Malloc( pX->nKey );
9279         if( pCur->pKey==0 ){
9280           rc = SQLITE_NOMEM;
9281         }else{
9282           memcpy(pCur->pKey, pX->pKey, pX->nKey);
9283         }
9284       }
9285       pCur->eState = CURSOR_REQUIRESEEK;
9286       pCur->nKey = pX->nKey;
9287     }
9288   }
9289   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9290 
9291 end_insert:
9292   return rc;
9293 }
9294 
9295 /*
9296 ** This function is used as part of copying the current row from cursor
9297 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9298 ** parameter iKey is used as the rowid value when the record is copied
9299 ** into pDest. Otherwise, the record is copied verbatim.
9300 **
9301 ** This function does not actually write the new value to cursor pDest.
9302 ** Instead, it creates and populates any required overflow pages and
9303 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9304 ** for the destination database. The size of the cell, in bytes, is left
9305 ** in BtShared.nPreformatSize. The caller completes the insertion by
9306 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9307 **
9308 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9309 */
9310 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9311   int rc = SQLITE_OK;
9312   BtShared *pBt = pDest->pBt;
9313   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9314   const u8 *aIn;                /* Pointer to next input buffer */
9315   u32 nIn;                      /* Size of input buffer aIn[] */
9316   u32 nRem;                     /* Bytes of data still to copy */
9317 
9318   getCellInfo(pSrc);
9319   if( pSrc->info.nPayload<0x80 ){
9320     *(aOut++) = pSrc->info.nPayload;
9321   }else{
9322     aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
9323   }
9324   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9325   nIn = pSrc->info.nLocal;
9326   aIn = pSrc->info.pPayload;
9327   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9328     return SQLITE_CORRUPT_BKPT;
9329   }
9330   nRem = pSrc->info.nPayload;
9331   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9332     memcpy(aOut, aIn, nIn);
9333     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9334   }else{
9335     Pager *pSrcPager = pSrc->pBt->pPager;
9336     u8 *pPgnoOut = 0;
9337     Pgno ovflIn = 0;
9338     DbPage *pPageIn = 0;
9339     MemPage *pPageOut = 0;
9340     u32 nOut;                     /* Size of output buffer aOut[] */
9341 
9342     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9343     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9344     if( nOut<pSrc->info.nPayload ){
9345       pPgnoOut = &aOut[nOut];
9346       pBt->nPreformatSize += 4;
9347     }
9348 
9349     if( nRem>nIn ){
9350       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9351         return SQLITE_CORRUPT_BKPT;
9352       }
9353       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9354     }
9355 
9356     do {
9357       nRem -= nOut;
9358       do{
9359         assert( nOut>0 );
9360         if( nIn>0 ){
9361           int nCopy = MIN(nOut, nIn);
9362           memcpy(aOut, aIn, nCopy);
9363           nOut -= nCopy;
9364           nIn -= nCopy;
9365           aOut += nCopy;
9366           aIn += nCopy;
9367         }
9368         if( nOut>0 ){
9369           sqlite3PagerUnref(pPageIn);
9370           pPageIn = 0;
9371           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9372           if( rc==SQLITE_OK ){
9373             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9374             ovflIn = get4byte(aIn);
9375             aIn += 4;
9376             nIn = pSrc->pBt->usableSize - 4;
9377           }
9378         }
9379       }while( rc==SQLITE_OK && nOut>0 );
9380 
9381       if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9382         Pgno pgnoNew;
9383         MemPage *pNew = 0;
9384         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9385         put4byte(pPgnoOut, pgnoNew);
9386         if( ISAUTOVACUUM && pPageOut ){
9387           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9388         }
9389         releasePage(pPageOut);
9390         pPageOut = pNew;
9391         if( pPageOut ){
9392           pPgnoOut = pPageOut->aData;
9393           put4byte(pPgnoOut, 0);
9394           aOut = &pPgnoOut[4];
9395           nOut = MIN(pBt->usableSize - 4, nRem);
9396         }
9397       }
9398     }while( nRem>0 && rc==SQLITE_OK );
9399 
9400     releasePage(pPageOut);
9401     sqlite3PagerUnref(pPageIn);
9402   }
9403 
9404   return rc;
9405 }
9406 
9407 /*
9408 ** Delete the entry that the cursor is pointing to.
9409 **
9410 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9411 ** the cursor is left pointing at an arbitrary location after the delete.
9412 ** But if that bit is set, then the cursor is left in a state such that
9413 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9414 ** as it would have been on if the call to BtreeDelete() had been omitted.
9415 **
9416 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9417 ** associated with a single table entry and its indexes.  Only one of those
9418 ** deletes is considered the "primary" delete.  The primary delete occurs
9419 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9420 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9421 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9422 ** but which might be used by alternative storage engines.
9423 */
9424 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9425   Btree *p = pCur->pBtree;
9426   BtShared *pBt = p->pBt;
9427   int rc;                    /* Return code */
9428   MemPage *pPage;            /* Page to delete cell from */
9429   unsigned char *pCell;      /* Pointer to cell to delete */
9430   int iCellIdx;              /* Index of cell to delete */
9431   int iCellDepth;            /* Depth of node containing pCell */
9432   CellInfo info;             /* Size of the cell being deleted */
9433   u8 bPreserve;              /* Keep cursor valid.  2 for CURSOR_SKIPNEXT */
9434 
9435   assert( cursorOwnsBtShared(pCur) );
9436   assert( pBt->inTransaction==TRANS_WRITE );
9437   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9438   assert( pCur->curFlags & BTCF_WriteFlag );
9439   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9440   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9441   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9442   if( pCur->eState!=CURSOR_VALID ){
9443     if( pCur->eState>=CURSOR_REQUIRESEEK ){
9444       rc = btreeRestoreCursorPosition(pCur);
9445       assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9446       if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9447     }else{
9448       return SQLITE_CORRUPT_BKPT;
9449     }
9450   }
9451   assert( pCur->eState==CURSOR_VALID );
9452 
9453   iCellDepth = pCur->iPage;
9454   iCellIdx = pCur->ix;
9455   pPage = pCur->pPage;
9456   if( pPage->nCell<=iCellIdx ){
9457     return SQLITE_CORRUPT_BKPT;
9458   }
9459   pCell = findCell(pPage, iCellIdx);
9460   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9461     return SQLITE_CORRUPT_BKPT;
9462   }
9463 
9464   /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9465   ** be preserved following this delete operation. If the current delete
9466   ** will cause a b-tree rebalance, then this is done by saving the cursor
9467   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9468   ** returning.
9469   **
9470   ** If the current delete will not cause a rebalance, then the cursor
9471   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9472   ** before or after the deleted entry.
9473   **
9474   ** The bPreserve value records which path is required:
9475   **
9476   **    bPreserve==0         Not necessary to save the cursor position
9477   **    bPreserve==1         Use CURSOR_REQUIRESEEK to save the cursor position
9478   **    bPreserve==2         Cursor won't move.  Set CURSOR_SKIPNEXT.
9479   */
9480   bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
9481   if( bPreserve ){
9482     if( !pPage->leaf
9483      || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
9484                                                    (int)(pBt->usableSize*2/3)
9485      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9486     ){
9487       /* A b-tree rebalance will be required after deleting this entry.
9488       ** Save the cursor key.  */
9489       rc = saveCursorKey(pCur);
9490       if( rc ) return rc;
9491     }else{
9492       bPreserve = 2;
9493     }
9494   }
9495 
9496   /* If the page containing the entry to delete is not a leaf page, move
9497   ** the cursor to the largest entry in the tree that is smaller than
9498   ** the entry being deleted. This cell will replace the cell being deleted
9499   ** from the internal node. The 'previous' entry is used for this instead
9500   ** of the 'next' entry, as the previous entry is always a part of the
9501   ** sub-tree headed by the child page of the cell being deleted. This makes
9502   ** balancing the tree following the delete operation easier.  */
9503   if( !pPage->leaf ){
9504     rc = sqlite3BtreePrevious(pCur, 0);
9505     assert( rc!=SQLITE_DONE );
9506     if( rc ) return rc;
9507   }
9508 
9509   /* Save the positions of any other cursors open on this table before
9510   ** making any modifications.  */
9511   if( pCur->curFlags & BTCF_Multiple ){
9512     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9513     if( rc ) return rc;
9514   }
9515 
9516   /* If this is a delete operation to remove a row from a table b-tree,
9517   ** invalidate any incrblob cursors open on the row being deleted.  */
9518   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9519     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9520   }
9521 
9522   /* Make the page containing the entry to be deleted writable. Then free any
9523   ** overflow pages associated with the entry and finally remove the cell
9524   ** itself from within the page.  */
9525   rc = sqlite3PagerWrite(pPage->pDbPage);
9526   if( rc ) return rc;
9527   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9528   dropCell(pPage, iCellIdx, info.nSize, &rc);
9529   if( rc ) return rc;
9530 
9531   /* If the cell deleted was not located on a leaf page, then the cursor
9532   ** is currently pointing to the largest entry in the sub-tree headed
9533   ** by the child-page of the cell that was just deleted from an internal
9534   ** node. The cell from the leaf node needs to be moved to the internal
9535   ** node to replace the deleted cell.  */
9536   if( !pPage->leaf ){
9537     MemPage *pLeaf = pCur->pPage;
9538     int nCell;
9539     Pgno n;
9540     unsigned char *pTmp;
9541 
9542     if( pLeaf->nFree<0 ){
9543       rc = btreeComputeFreeSpace(pLeaf);
9544       if( rc ) return rc;
9545     }
9546     if( iCellDepth<pCur->iPage-1 ){
9547       n = pCur->apPage[iCellDepth+1]->pgno;
9548     }else{
9549       n = pCur->pPage->pgno;
9550     }
9551     pCell = findCell(pLeaf, pLeaf->nCell-1);
9552     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9553     nCell = pLeaf->xCellSize(pLeaf, pCell);
9554     assert( MX_CELL_SIZE(pBt) >= nCell );
9555     pTmp = pBt->pTmpSpace;
9556     assert( pTmp!=0 );
9557     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9558     if( rc==SQLITE_OK ){
9559       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9560     }
9561     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9562     if( rc ) return rc;
9563   }
9564 
9565   /* Balance the tree. If the entry deleted was located on a leaf page,
9566   ** then the cursor still points to that page. In this case the first
9567   ** call to balance() repairs the tree, and the if(...) condition is
9568   ** never true.
9569   **
9570   ** Otherwise, if the entry deleted was on an internal node page, then
9571   ** pCur is pointing to the leaf page from which a cell was removed to
9572   ** replace the cell deleted from the internal node. This is slightly
9573   ** tricky as the leaf node may be underfull, and the internal node may
9574   ** be either under or overfull. In this case run the balancing algorithm
9575   ** on the leaf node first. If the balance proceeds far enough up the
9576   ** tree that we can be sure that any problem in the internal node has
9577   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9578   ** walk the cursor up the tree to the internal node and balance it as
9579   ** well.  */
9580   assert( pCur->pPage->nOverflow==0 );
9581   assert( pCur->pPage->nFree>=0 );
9582   if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
9583     /* Optimization: If the free space is less than 2/3rds of the page,
9584     ** then balance() will always be a no-op.  No need to invoke it. */
9585     rc = SQLITE_OK;
9586   }else{
9587     rc = balance(pCur);
9588   }
9589   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9590     releasePageNotNull(pCur->pPage);
9591     pCur->iPage--;
9592     while( pCur->iPage>iCellDepth ){
9593       releasePage(pCur->apPage[pCur->iPage--]);
9594     }
9595     pCur->pPage = pCur->apPage[pCur->iPage];
9596     rc = balance(pCur);
9597   }
9598 
9599   if( rc==SQLITE_OK ){
9600     if( bPreserve>1 ){
9601       assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
9602       assert( pPage==pCur->pPage || CORRUPT_DB );
9603       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9604       pCur->eState = CURSOR_SKIPNEXT;
9605       if( iCellIdx>=pPage->nCell ){
9606         pCur->skipNext = -1;
9607         pCur->ix = pPage->nCell-1;
9608       }else{
9609         pCur->skipNext = 1;
9610       }
9611     }else{
9612       rc = moveToRoot(pCur);
9613       if( bPreserve ){
9614         btreeReleaseAllCursorPages(pCur);
9615         pCur->eState = CURSOR_REQUIRESEEK;
9616       }
9617       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9618     }
9619   }
9620   return rc;
9621 }
9622 
9623 /*
9624 ** Create a new BTree table.  Write into *piTable the page
9625 ** number for the root page of the new table.
9626 **
9627 ** The type of type is determined by the flags parameter.  Only the
9628 ** following values of flags are currently in use.  Other values for
9629 ** flags might not work:
9630 **
9631 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9632 **     BTREE_ZERODATA                  Used for SQL indices
9633 */
9634 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9635   BtShared *pBt = p->pBt;
9636   MemPage *pRoot;
9637   Pgno pgnoRoot;
9638   int rc;
9639   int ptfFlags;          /* Page-type flage for the root page of new table */
9640 
9641   assert( sqlite3BtreeHoldsMutex(p) );
9642   assert( pBt->inTransaction==TRANS_WRITE );
9643   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9644 
9645 #ifdef SQLITE_OMIT_AUTOVACUUM
9646   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9647   if( rc ){
9648     return rc;
9649   }
9650 #else
9651   if( pBt->autoVacuum ){
9652     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9653     MemPage *pPageMove; /* The page to move to. */
9654 
9655     /* Creating a new table may probably require moving an existing database
9656     ** to make room for the new tables root page. In case this page turns
9657     ** out to be an overflow page, delete all overflow page-map caches
9658     ** held by open cursors.
9659     */
9660     invalidateAllOverflowCache(pBt);
9661 
9662     /* Read the value of meta[3] from the database to determine where the
9663     ** root page of the new table should go. meta[3] is the largest root-page
9664     ** created so far, so the new root-page is (meta[3]+1).
9665     */
9666     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9667     if( pgnoRoot>btreePagecount(pBt) ){
9668       return SQLITE_CORRUPT_BKPT;
9669     }
9670     pgnoRoot++;
9671 
9672     /* The new root-page may not be allocated on a pointer-map page, or the
9673     ** PENDING_BYTE page.
9674     */
9675     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9676         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9677       pgnoRoot++;
9678     }
9679     assert( pgnoRoot>=3 );
9680 
9681     /* Allocate a page. The page that currently resides at pgnoRoot will
9682     ** be moved to the allocated page (unless the allocated page happens
9683     ** to reside at pgnoRoot).
9684     */
9685     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9686     if( rc!=SQLITE_OK ){
9687       return rc;
9688     }
9689 
9690     if( pgnoMove!=pgnoRoot ){
9691       /* pgnoRoot is the page that will be used for the root-page of
9692       ** the new table (assuming an error did not occur). But we were
9693       ** allocated pgnoMove. If required (i.e. if it was not allocated
9694       ** by extending the file), the current page at position pgnoMove
9695       ** is already journaled.
9696       */
9697       u8 eType = 0;
9698       Pgno iPtrPage = 0;
9699 
9700       /* Save the positions of any open cursors. This is required in
9701       ** case they are holding a reference to an xFetch reference
9702       ** corresponding to page pgnoRoot.  */
9703       rc = saveAllCursors(pBt, 0, 0);
9704       releasePage(pPageMove);
9705       if( rc!=SQLITE_OK ){
9706         return rc;
9707       }
9708 
9709       /* Move the page currently at pgnoRoot to pgnoMove. */
9710       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9711       if( rc!=SQLITE_OK ){
9712         return rc;
9713       }
9714       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9715       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9716         rc = SQLITE_CORRUPT_BKPT;
9717       }
9718       if( rc!=SQLITE_OK ){
9719         releasePage(pRoot);
9720         return rc;
9721       }
9722       assert( eType!=PTRMAP_ROOTPAGE );
9723       assert( eType!=PTRMAP_FREEPAGE );
9724       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9725       releasePage(pRoot);
9726 
9727       /* Obtain the page at pgnoRoot */
9728       if( rc!=SQLITE_OK ){
9729         return rc;
9730       }
9731       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9732       if( rc!=SQLITE_OK ){
9733         return rc;
9734       }
9735       rc = sqlite3PagerWrite(pRoot->pDbPage);
9736       if( rc!=SQLITE_OK ){
9737         releasePage(pRoot);
9738         return rc;
9739       }
9740     }else{
9741       pRoot = pPageMove;
9742     }
9743 
9744     /* Update the pointer-map and meta-data with the new root-page number. */
9745     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9746     if( rc ){
9747       releasePage(pRoot);
9748       return rc;
9749     }
9750 
9751     /* When the new root page was allocated, page 1 was made writable in
9752     ** order either to increase the database filesize, or to decrement the
9753     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9754     */
9755     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9756     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9757     if( NEVER(rc) ){
9758       releasePage(pRoot);
9759       return rc;
9760     }
9761 
9762   }else{
9763     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9764     if( rc ) return rc;
9765   }
9766 #endif
9767   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9768   if( createTabFlags & BTREE_INTKEY ){
9769     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9770   }else{
9771     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9772   }
9773   zeroPage(pRoot, ptfFlags);
9774   sqlite3PagerUnref(pRoot->pDbPage);
9775   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9776   *piTable = pgnoRoot;
9777   return SQLITE_OK;
9778 }
9779 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9780   int rc;
9781   sqlite3BtreeEnter(p);
9782   rc = btreeCreateTable(p, piTable, flags);
9783   sqlite3BtreeLeave(p);
9784   return rc;
9785 }
9786 
9787 /*
9788 ** Erase the given database page and all its children.  Return
9789 ** the page to the freelist.
9790 */
9791 static int clearDatabasePage(
9792   BtShared *pBt,           /* The BTree that contains the table */
9793   Pgno pgno,               /* Page number to clear */
9794   int freePageFlag,        /* Deallocate page if true */
9795   i64 *pnChange            /* Add number of Cells freed to this counter */
9796 ){
9797   MemPage *pPage;
9798   int rc;
9799   unsigned char *pCell;
9800   int i;
9801   int hdr;
9802   CellInfo info;
9803 
9804   assert( sqlite3_mutex_held(pBt->mutex) );
9805   if( pgno>btreePagecount(pBt) ){
9806     return SQLITE_CORRUPT_BKPT;
9807   }
9808   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9809   if( rc ) return rc;
9810   if( (pBt->openFlags & BTREE_SINGLE)==0
9811    && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
9812   ){
9813     rc = SQLITE_CORRUPT_BKPT;
9814     goto cleardatabasepage_out;
9815   }
9816   hdr = pPage->hdrOffset;
9817   for(i=0; i<pPage->nCell; i++){
9818     pCell = findCell(pPage, i);
9819     if( !pPage->leaf ){
9820       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9821       if( rc ) goto cleardatabasepage_out;
9822     }
9823     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9824     if( rc ) goto cleardatabasepage_out;
9825   }
9826   if( !pPage->leaf ){
9827     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9828     if( rc ) goto cleardatabasepage_out;
9829     if( pPage->intKey ) pnChange = 0;
9830   }
9831   if( pnChange ){
9832     testcase( !pPage->intKey );
9833     *pnChange += pPage->nCell;
9834   }
9835   if( freePageFlag ){
9836     freePage(pPage, &rc);
9837   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9838     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9839   }
9840 
9841 cleardatabasepage_out:
9842   releasePage(pPage);
9843   return rc;
9844 }
9845 
9846 /*
9847 ** Delete all information from a single table in the database.  iTable is
9848 ** the page number of the root of the table.  After this routine returns,
9849 ** the root page is empty, but still exists.
9850 **
9851 ** This routine will fail with SQLITE_LOCKED if there are any open
9852 ** read cursors on the table.  Open write cursors are moved to the
9853 ** root of the table.
9854 **
9855 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9856 ** is incremented by the number of entries in the table.
9857 */
9858 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9859   int rc;
9860   BtShared *pBt = p->pBt;
9861   sqlite3BtreeEnter(p);
9862   assert( p->inTrans==TRANS_WRITE );
9863 
9864   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9865 
9866   if( SQLITE_OK==rc ){
9867     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9868     ** is the root of a table b-tree - if it is not, the following call is
9869     ** a no-op).  */
9870     if( p->hasIncrblobCur ){
9871       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9872     }
9873     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9874   }
9875   sqlite3BtreeLeave(p);
9876   return rc;
9877 }
9878 
9879 /*
9880 ** Delete all information from the single table that pCur is open on.
9881 **
9882 ** This routine only work for pCur on an ephemeral table.
9883 */
9884 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9885   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9886 }
9887 
9888 /*
9889 ** Erase all information in a table and add the root of the table to
9890 ** the freelist.  Except, the root of the principle table (the one on
9891 ** page 1) is never added to the freelist.
9892 **
9893 ** This routine will fail with SQLITE_LOCKED if there are any open
9894 ** cursors on the table.
9895 **
9896 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9897 ** root page in the database file, then the last root page
9898 ** in the database file is moved into the slot formerly occupied by
9899 ** iTable and that last slot formerly occupied by the last root page
9900 ** is added to the freelist instead of iTable.  In this say, all
9901 ** root pages are kept at the beginning of the database file, which
9902 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9903 ** page number that used to be the last root page in the file before
9904 ** the move.  If no page gets moved, *piMoved is set to 0.
9905 ** The last root page is recorded in meta[3] and the value of
9906 ** meta[3] is updated by this procedure.
9907 */
9908 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9909   int rc;
9910   MemPage *pPage = 0;
9911   BtShared *pBt = p->pBt;
9912 
9913   assert( sqlite3BtreeHoldsMutex(p) );
9914   assert( p->inTrans==TRANS_WRITE );
9915   assert( iTable>=2 );
9916   if( iTable>btreePagecount(pBt) ){
9917     return SQLITE_CORRUPT_BKPT;
9918   }
9919 
9920   rc = sqlite3BtreeClearTable(p, iTable, 0);
9921   if( rc ) return rc;
9922   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9923   if( NEVER(rc) ){
9924     releasePage(pPage);
9925     return rc;
9926   }
9927 
9928   *piMoved = 0;
9929 
9930 #ifdef SQLITE_OMIT_AUTOVACUUM
9931   freePage(pPage, &rc);
9932   releasePage(pPage);
9933 #else
9934   if( pBt->autoVacuum ){
9935     Pgno maxRootPgno;
9936     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9937 
9938     if( iTable==maxRootPgno ){
9939       /* If the table being dropped is the table with the largest root-page
9940       ** number in the database, put the root page on the free list.
9941       */
9942       freePage(pPage, &rc);
9943       releasePage(pPage);
9944       if( rc!=SQLITE_OK ){
9945         return rc;
9946       }
9947     }else{
9948       /* The table being dropped does not have the largest root-page
9949       ** number in the database. So move the page that does into the
9950       ** gap left by the deleted root-page.
9951       */
9952       MemPage *pMove;
9953       releasePage(pPage);
9954       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9955       if( rc!=SQLITE_OK ){
9956         return rc;
9957       }
9958       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9959       releasePage(pMove);
9960       if( rc!=SQLITE_OK ){
9961         return rc;
9962       }
9963       pMove = 0;
9964       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9965       freePage(pMove, &rc);
9966       releasePage(pMove);
9967       if( rc!=SQLITE_OK ){
9968         return rc;
9969       }
9970       *piMoved = maxRootPgno;
9971     }
9972 
9973     /* Set the new 'max-root-page' value in the database header. This
9974     ** is the old value less one, less one more if that happens to
9975     ** be a root-page number, less one again if that is the
9976     ** PENDING_BYTE_PAGE.
9977     */
9978     maxRootPgno--;
9979     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9980            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9981       maxRootPgno--;
9982     }
9983     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9984 
9985     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9986   }else{
9987     freePage(pPage, &rc);
9988     releasePage(pPage);
9989   }
9990 #endif
9991   return rc;
9992 }
9993 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9994   int rc;
9995   sqlite3BtreeEnter(p);
9996   rc = btreeDropTable(p, iTable, piMoved);
9997   sqlite3BtreeLeave(p);
9998   return rc;
9999 }
10000 
10001 
10002 /*
10003 ** This function may only be called if the b-tree connection already
10004 ** has a read or write transaction open on the database.
10005 **
10006 ** Read the meta-information out of a database file.  Meta[0]
10007 ** is the number of free pages currently in the database.  Meta[1]
10008 ** through meta[15] are available for use by higher layers.  Meta[0]
10009 ** is read-only, the others are read/write.
10010 **
10011 ** The schema layer numbers meta values differently.  At the schema
10012 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10013 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
10014 **
10015 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
10016 ** of reading the value out of the header, it instead loads the "DataVersion"
10017 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
10018 ** database file.  It is a number computed by the pager.  But its access
10019 ** pattern is the same as header meta values, and so it is convenient to
10020 ** read it from this routine.
10021 */
10022 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
10023   BtShared *pBt = p->pBt;
10024 
10025   sqlite3BtreeEnter(p);
10026   assert( p->inTrans>TRANS_NONE );
10027   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
10028   assert( pBt->pPage1 );
10029   assert( idx>=0 && idx<=15 );
10030 
10031   if( idx==BTREE_DATA_VERSION ){
10032     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
10033   }else{
10034     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10035   }
10036 
10037   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10038   ** database, mark the database as read-only.  */
10039 #ifdef SQLITE_OMIT_AUTOVACUUM
10040   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10041     pBt->btsFlags |= BTS_READ_ONLY;
10042   }
10043 #endif
10044 
10045   sqlite3BtreeLeave(p);
10046 }
10047 
10048 /*
10049 ** Write meta-information back into the database.  Meta[0] is
10050 ** read-only and may not be written.
10051 */
10052 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10053   BtShared *pBt = p->pBt;
10054   unsigned char *pP1;
10055   int rc;
10056   assert( idx>=1 && idx<=15 );
10057   sqlite3BtreeEnter(p);
10058   assert( p->inTrans==TRANS_WRITE );
10059   assert( pBt->pPage1!=0 );
10060   pP1 = pBt->pPage1->aData;
10061   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10062   if( rc==SQLITE_OK ){
10063     put4byte(&pP1[36 + idx*4], iMeta);
10064 #ifndef SQLITE_OMIT_AUTOVACUUM
10065     if( idx==BTREE_INCR_VACUUM ){
10066       assert( pBt->autoVacuum || iMeta==0 );
10067       assert( iMeta==0 || iMeta==1 );
10068       pBt->incrVacuum = (u8)iMeta;
10069     }
10070 #endif
10071   }
10072   sqlite3BtreeLeave(p);
10073   return rc;
10074 }
10075 
10076 /*
10077 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10078 ** number of entries in the b-tree and write the result to *pnEntry.
10079 **
10080 ** SQLITE_OK is returned if the operation is successfully executed.
10081 ** Otherwise, if an error is encountered (i.e. an IO error or database
10082 ** corruption) an SQLite error code is returned.
10083 */
10084 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
10085   i64 nEntry = 0;                      /* Value to return in *pnEntry */
10086   int rc;                              /* Return code */
10087 
10088   rc = moveToRoot(pCur);
10089   if( rc==SQLITE_EMPTY ){
10090     *pnEntry = 0;
10091     return SQLITE_OK;
10092   }
10093 
10094   /* Unless an error occurs, the following loop runs one iteration for each
10095   ** page in the B-Tree structure (not including overflow pages).
10096   */
10097   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
10098     int iIdx;                          /* Index of child node in parent */
10099     MemPage *pPage;                    /* Current page of the b-tree */
10100 
10101     /* If this is a leaf page or the tree is not an int-key tree, then
10102     ** this page contains countable entries. Increment the entry counter
10103     ** accordingly.
10104     */
10105     pPage = pCur->pPage;
10106     if( pPage->leaf || !pPage->intKey ){
10107       nEntry += pPage->nCell;
10108     }
10109 
10110     /* pPage is a leaf node. This loop navigates the cursor so that it
10111     ** points to the first interior cell that it points to the parent of
10112     ** the next page in the tree that has not yet been visited. The
10113     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10114     ** of the page, or to the number of cells in the page if the next page
10115     ** to visit is the right-child of its parent.
10116     **
10117     ** If all pages in the tree have been visited, return SQLITE_OK to the
10118     ** caller.
10119     */
10120     if( pPage->leaf ){
10121       do {
10122         if( pCur->iPage==0 ){
10123           /* All pages of the b-tree have been visited. Return successfully. */
10124           *pnEntry = nEntry;
10125           return moveToRoot(pCur);
10126         }
10127         moveToParent(pCur);
10128       }while ( pCur->ix>=pCur->pPage->nCell );
10129 
10130       pCur->ix++;
10131       pPage = pCur->pPage;
10132     }
10133 
10134     /* Descend to the child node of the cell that the cursor currently
10135     ** points at. This is the right-child if (iIdx==pPage->nCell).
10136     */
10137     iIdx = pCur->ix;
10138     if( iIdx==pPage->nCell ){
10139       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10140     }else{
10141       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10142     }
10143   }
10144 
10145   /* An error has occurred. Return an error code. */
10146   return rc;
10147 }
10148 
10149 /*
10150 ** Return the pager associated with a BTree.  This routine is used for
10151 ** testing and debugging only.
10152 */
10153 Pager *sqlite3BtreePager(Btree *p){
10154   return p->pBt->pPager;
10155 }
10156 
10157 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10158 /*
10159 ** Append a message to the error message string.
10160 */
10161 static void checkAppendMsg(
10162   IntegrityCk *pCheck,
10163   const char *zFormat,
10164   ...
10165 ){
10166   va_list ap;
10167   if( !pCheck->mxErr ) return;
10168   pCheck->mxErr--;
10169   pCheck->nErr++;
10170   va_start(ap, zFormat);
10171   if( pCheck->errMsg.nChar ){
10172     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
10173   }
10174   if( pCheck->zPfx ){
10175     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
10176   }
10177   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
10178   va_end(ap);
10179   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
10180     pCheck->bOomFault = 1;
10181   }
10182 }
10183 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10184 
10185 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10186 
10187 /*
10188 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10189 ** corresponds to page iPg is already set.
10190 */
10191 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10192   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10193   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10194 }
10195 
10196 /*
10197 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10198 */
10199 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10200   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10201   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10202 }
10203 
10204 
10205 /*
10206 ** Add 1 to the reference count for page iPage.  If this is the second
10207 ** reference to the page, add an error message to pCheck->zErrMsg.
10208 ** Return 1 if there are 2 or more references to the page and 0 if
10209 ** if this is the first reference to the page.
10210 **
10211 ** Also check that the page number is in bounds.
10212 */
10213 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
10214   if( iPage>pCheck->nPage || iPage==0 ){
10215     checkAppendMsg(pCheck, "invalid page number %d", iPage);
10216     return 1;
10217   }
10218   if( getPageReferenced(pCheck, iPage) ){
10219     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
10220     return 1;
10221   }
10222   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
10223   setPageReferenced(pCheck, iPage);
10224   return 0;
10225 }
10226 
10227 #ifndef SQLITE_OMIT_AUTOVACUUM
10228 /*
10229 ** Check that the entry in the pointer-map for page iChild maps to
10230 ** page iParent, pointer type ptrType. If not, append an error message
10231 ** to pCheck.
10232 */
10233 static void checkPtrmap(
10234   IntegrityCk *pCheck,   /* Integrity check context */
10235   Pgno iChild,           /* Child page number */
10236   u8 eType,              /* Expected pointer map type */
10237   Pgno iParent           /* Expected pointer map parent page number */
10238 ){
10239   int rc;
10240   u8 ePtrmapType;
10241   Pgno iPtrmapParent;
10242 
10243   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10244   if( rc!=SQLITE_OK ){
10245     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
10246     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10247     return;
10248   }
10249 
10250   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10251     checkAppendMsg(pCheck,
10252       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10253       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10254   }
10255 }
10256 #endif
10257 
10258 /*
10259 ** Check the integrity of the freelist or of an overflow page list.
10260 ** Verify that the number of pages on the list is N.
10261 */
10262 static void checkList(
10263   IntegrityCk *pCheck,  /* Integrity checking context */
10264   int isFreeList,       /* True for a freelist.  False for overflow page list */
10265   Pgno iPage,           /* Page number for first page in the list */
10266   u32 N                 /* Expected number of pages in the list */
10267 ){
10268   int i;
10269   u32 expected = N;
10270   int nErrAtStart = pCheck->nErr;
10271   while( iPage!=0 && pCheck->mxErr ){
10272     DbPage *pOvflPage;
10273     unsigned char *pOvflData;
10274     if( checkRef(pCheck, iPage) ) break;
10275     N--;
10276     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10277       checkAppendMsg(pCheck, "failed to get page %d", iPage);
10278       break;
10279     }
10280     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10281     if( isFreeList ){
10282       u32 n = (u32)get4byte(&pOvflData[4]);
10283 #ifndef SQLITE_OMIT_AUTOVACUUM
10284       if( pCheck->pBt->autoVacuum ){
10285         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10286       }
10287 #endif
10288       if( n>pCheck->pBt->usableSize/4-2 ){
10289         checkAppendMsg(pCheck,
10290            "freelist leaf count too big on page %d", iPage);
10291         N--;
10292       }else{
10293         for(i=0; i<(int)n; i++){
10294           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10295 #ifndef SQLITE_OMIT_AUTOVACUUM
10296           if( pCheck->pBt->autoVacuum ){
10297             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10298           }
10299 #endif
10300           checkRef(pCheck, iFreePage);
10301         }
10302         N -= n;
10303       }
10304     }
10305 #ifndef SQLITE_OMIT_AUTOVACUUM
10306     else{
10307       /* If this database supports auto-vacuum and iPage is not the last
10308       ** page in this overflow list, check that the pointer-map entry for
10309       ** the following page matches iPage.
10310       */
10311       if( pCheck->pBt->autoVacuum && N>0 ){
10312         i = get4byte(pOvflData);
10313         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10314       }
10315     }
10316 #endif
10317     iPage = get4byte(pOvflData);
10318     sqlite3PagerUnref(pOvflPage);
10319   }
10320   if( N && nErrAtStart==pCheck->nErr ){
10321     checkAppendMsg(pCheck,
10322       "%s is %d but should be %d",
10323       isFreeList ? "size" : "overflow list length",
10324       expected-N, expected);
10325   }
10326 }
10327 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10328 
10329 /*
10330 ** An implementation of a min-heap.
10331 **
10332 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10333 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10334 ** and aHeap[N*2+1].
10335 **
10336 ** The heap property is this:  Every node is less than or equal to both
10337 ** of its daughter nodes.  A consequence of the heap property is that the
10338 ** root node aHeap[1] is always the minimum value currently in the heap.
10339 **
10340 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10341 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10342 ** removes the root element from the heap (the minimum value in the heap)
10343 ** and then moves other nodes around as necessary to preserve the heap
10344 ** property.
10345 **
10346 ** This heap is used for cell overlap and coverage testing.  Each u32
10347 ** entry represents the span of a cell or freeblock on a btree page.
10348 ** The upper 16 bits are the index of the first byte of a range and the
10349 ** lower 16 bits are the index of the last byte of that range.
10350 */
10351 static void btreeHeapInsert(u32 *aHeap, u32 x){
10352   u32 j, i = ++aHeap[0];
10353   aHeap[i] = x;
10354   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10355     x = aHeap[j];
10356     aHeap[j] = aHeap[i];
10357     aHeap[i] = x;
10358     i = j;
10359   }
10360 }
10361 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10362   u32 j, i, x;
10363   if( (x = aHeap[0])==0 ) return 0;
10364   *pOut = aHeap[1];
10365   aHeap[1] = aHeap[x];
10366   aHeap[x] = 0xffffffff;
10367   aHeap[0]--;
10368   i = 1;
10369   while( (j = i*2)<=aHeap[0] ){
10370     if( aHeap[j]>aHeap[j+1] ) j++;
10371     if( aHeap[i]<aHeap[j] ) break;
10372     x = aHeap[i];
10373     aHeap[i] = aHeap[j];
10374     aHeap[j] = x;
10375     i = j;
10376   }
10377   return 1;
10378 }
10379 
10380 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10381 /*
10382 ** Do various sanity checks on a single page of a tree.  Return
10383 ** the tree depth.  Root pages return 0.  Parents of root pages
10384 ** return 1, and so forth.
10385 **
10386 ** These checks are done:
10387 **
10388 **      1.  Make sure that cells and freeblocks do not overlap
10389 **          but combine to completely cover the page.
10390 **      2.  Make sure integer cell keys are in order.
10391 **      3.  Check the integrity of overflow pages.
10392 **      4.  Recursively call checkTreePage on all children.
10393 **      5.  Verify that the depth of all children is the same.
10394 */
10395 static int checkTreePage(
10396   IntegrityCk *pCheck,  /* Context for the sanity check */
10397   Pgno iPage,           /* Page number of the page to check */
10398   i64 *piMinKey,        /* Write minimum integer primary key here */
10399   i64 maxKey            /* Error if integer primary key greater than this */
10400 ){
10401   MemPage *pPage = 0;      /* The page being analyzed */
10402   int i;                   /* Loop counter */
10403   int rc;                  /* Result code from subroutine call */
10404   int depth = -1, d2;      /* Depth of a subtree */
10405   int pgno;                /* Page number */
10406   int nFrag;               /* Number of fragmented bytes on the page */
10407   int hdr;                 /* Offset to the page header */
10408   int cellStart;           /* Offset to the start of the cell pointer array */
10409   int nCell;               /* Number of cells */
10410   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10411   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10412                            ** False if IPK must be strictly less than maxKey */
10413   u8 *data;                /* Page content */
10414   u8 *pCell;               /* Cell content */
10415   u8 *pCellIdx;            /* Next element of the cell pointer array */
10416   BtShared *pBt;           /* The BtShared object that owns pPage */
10417   u32 pc;                  /* Address of a cell */
10418   u32 usableSize;          /* Usable size of the page */
10419   u32 contentOffset;       /* Offset to the start of the cell content area */
10420   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10421   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10422   const char *saved_zPfx = pCheck->zPfx;
10423   int saved_v1 = pCheck->v1;
10424   int saved_v2 = pCheck->v2;
10425   u8 savedIsInit = 0;
10426 
10427   /* Check that the page exists
10428   */
10429   pBt = pCheck->pBt;
10430   usableSize = pBt->usableSize;
10431   if( iPage==0 ) return 0;
10432   if( checkRef(pCheck, iPage) ) return 0;
10433   pCheck->zPfx = "Page %u: ";
10434   pCheck->v1 = iPage;
10435   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10436     checkAppendMsg(pCheck,
10437        "unable to get the page. error code=%d", rc);
10438     goto end_of_check;
10439   }
10440 
10441   /* Clear MemPage.isInit to make sure the corruption detection code in
10442   ** btreeInitPage() is executed.  */
10443   savedIsInit = pPage->isInit;
10444   pPage->isInit = 0;
10445   if( (rc = btreeInitPage(pPage))!=0 ){
10446     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10447     checkAppendMsg(pCheck,
10448                    "btreeInitPage() returns error code %d", rc);
10449     goto end_of_check;
10450   }
10451   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10452     assert( rc==SQLITE_CORRUPT );
10453     checkAppendMsg(pCheck, "free space corruption", rc);
10454     goto end_of_check;
10455   }
10456   data = pPage->aData;
10457   hdr = pPage->hdrOffset;
10458 
10459   /* Set up for cell analysis */
10460   pCheck->zPfx = "On tree page %u cell %d: ";
10461   contentOffset = get2byteNotZero(&data[hdr+5]);
10462   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10463 
10464   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10465   ** number of cells on the page. */
10466   nCell = get2byte(&data[hdr+3]);
10467   assert( pPage->nCell==nCell );
10468 
10469   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10470   ** immediately follows the b-tree page header. */
10471   cellStart = hdr + 12 - 4*pPage->leaf;
10472   assert( pPage->aCellIdx==&data[cellStart] );
10473   pCellIdx = &data[cellStart + 2*(nCell-1)];
10474 
10475   if( !pPage->leaf ){
10476     /* Analyze the right-child page of internal pages */
10477     pgno = get4byte(&data[hdr+8]);
10478 #ifndef SQLITE_OMIT_AUTOVACUUM
10479     if( pBt->autoVacuum ){
10480       pCheck->zPfx = "On page %u at right child: ";
10481       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10482     }
10483 #endif
10484     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10485     keyCanBeEqual = 0;
10486   }else{
10487     /* For leaf pages, the coverage check will occur in the same loop
10488     ** as the other cell checks, so initialize the heap.  */
10489     heap = pCheck->heap;
10490     heap[0] = 0;
10491   }
10492 
10493   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10494   ** integer offsets to the cell contents. */
10495   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10496     CellInfo info;
10497 
10498     /* Check cell size */
10499     pCheck->v2 = i;
10500     assert( pCellIdx==&data[cellStart + i*2] );
10501     pc = get2byteAligned(pCellIdx);
10502     pCellIdx -= 2;
10503     if( pc<contentOffset || pc>usableSize-4 ){
10504       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10505                              pc, contentOffset, usableSize-4);
10506       doCoverageCheck = 0;
10507       continue;
10508     }
10509     pCell = &data[pc];
10510     pPage->xParseCell(pPage, pCell, &info);
10511     if( pc+info.nSize>usableSize ){
10512       checkAppendMsg(pCheck, "Extends off end of page");
10513       doCoverageCheck = 0;
10514       continue;
10515     }
10516 
10517     /* Check for integer primary key out of range */
10518     if( pPage->intKey ){
10519       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10520         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10521       }
10522       maxKey = info.nKey;
10523       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10524     }
10525 
10526     /* Check the content overflow list */
10527     if( info.nPayload>info.nLocal ){
10528       u32 nPage;       /* Number of pages on the overflow chain */
10529       Pgno pgnoOvfl;   /* First page of the overflow chain */
10530       assert( pc + info.nSize - 4 <= usableSize );
10531       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10532       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10533 #ifndef SQLITE_OMIT_AUTOVACUUM
10534       if( pBt->autoVacuum ){
10535         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10536       }
10537 #endif
10538       checkList(pCheck, 0, pgnoOvfl, nPage);
10539     }
10540 
10541     if( !pPage->leaf ){
10542       /* Check sanity of left child page for internal pages */
10543       pgno = get4byte(pCell);
10544 #ifndef SQLITE_OMIT_AUTOVACUUM
10545       if( pBt->autoVacuum ){
10546         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10547       }
10548 #endif
10549       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10550       keyCanBeEqual = 0;
10551       if( d2!=depth ){
10552         checkAppendMsg(pCheck, "Child page depth differs");
10553         depth = d2;
10554       }
10555     }else{
10556       /* Populate the coverage-checking heap for leaf pages */
10557       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10558     }
10559   }
10560   *piMinKey = maxKey;
10561 
10562   /* Check for complete coverage of the page
10563   */
10564   pCheck->zPfx = 0;
10565   if( doCoverageCheck && pCheck->mxErr>0 ){
10566     /* For leaf pages, the min-heap has already been initialized and the
10567     ** cells have already been inserted.  But for internal pages, that has
10568     ** not yet been done, so do it now */
10569     if( !pPage->leaf ){
10570       heap = pCheck->heap;
10571       heap[0] = 0;
10572       for(i=nCell-1; i>=0; i--){
10573         u32 size;
10574         pc = get2byteAligned(&data[cellStart+i*2]);
10575         size = pPage->xCellSize(pPage, &data[pc]);
10576         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10577       }
10578     }
10579     /* Add the freeblocks to the min-heap
10580     **
10581     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10582     ** is the offset of the first freeblock, or zero if there are no
10583     ** freeblocks on the page.
10584     */
10585     i = get2byte(&data[hdr+1]);
10586     while( i>0 ){
10587       int size, j;
10588       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10589       size = get2byte(&data[i+2]);
10590       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10591       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10592       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10593       ** big-endian integer which is the offset in the b-tree page of the next
10594       ** freeblock in the chain, or zero if the freeblock is the last on the
10595       ** chain. */
10596       j = get2byte(&data[i]);
10597       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10598       ** increasing offset. */
10599       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10600       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10601       i = j;
10602     }
10603     /* Analyze the min-heap looking for overlap between cells and/or
10604     ** freeblocks, and counting the number of untracked bytes in nFrag.
10605     **
10606     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10607     ** There is an implied first entry the covers the page header, the cell
10608     ** pointer index, and the gap between the cell pointer index and the start
10609     ** of cell content.
10610     **
10611     ** The loop below pulls entries from the min-heap in order and compares
10612     ** the start_address against the previous end_address.  If there is an
10613     ** overlap, that means bytes are used multiple times.  If there is a gap,
10614     ** that gap is added to the fragmentation count.
10615     */
10616     nFrag = 0;
10617     prev = contentOffset - 1;   /* Implied first min-heap entry */
10618     while( btreeHeapPull(heap,&x) ){
10619       if( (prev&0xffff)>=(x>>16) ){
10620         checkAppendMsg(pCheck,
10621           "Multiple uses for byte %u of page %u", x>>16, iPage);
10622         break;
10623       }else{
10624         nFrag += (x>>16) - (prev&0xffff) - 1;
10625         prev = x;
10626       }
10627     }
10628     nFrag += usableSize - (prev&0xffff) - 1;
10629     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10630     ** is stored in the fifth field of the b-tree page header.
10631     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10632     ** number of fragmented free bytes within the cell content area.
10633     */
10634     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10635       checkAppendMsg(pCheck,
10636           "Fragmentation of %d bytes reported as %d on page %u",
10637           nFrag, data[hdr+7], iPage);
10638     }
10639   }
10640 
10641 end_of_check:
10642   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10643   releasePage(pPage);
10644   pCheck->zPfx = saved_zPfx;
10645   pCheck->v1 = saved_v1;
10646   pCheck->v2 = saved_v2;
10647   return depth+1;
10648 }
10649 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10650 
10651 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10652 /*
10653 ** This routine does a complete check of the given BTree file.  aRoot[] is
10654 ** an array of pages numbers were each page number is the root page of
10655 ** a table.  nRoot is the number of entries in aRoot.
10656 **
10657 ** A read-only or read-write transaction must be opened before calling
10658 ** this function.
10659 **
10660 ** Write the number of error seen in *pnErr.  Except for some memory
10661 ** allocation errors,  an error message held in memory obtained from
10662 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10663 ** returned.  If a memory allocation error occurs, NULL is returned.
10664 **
10665 ** If the first entry in aRoot[] is 0, that indicates that the list of
10666 ** root pages is incomplete.  This is a "partial integrity-check".  This
10667 ** happens when performing an integrity check on a single table.  The
10668 ** zero is skipped, of course.  But in addition, the freelist checks
10669 ** and the checks to make sure every page is referenced are also skipped,
10670 ** since obviously it is not possible to know which pages are covered by
10671 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10672 ** checks are still performed.
10673 */
10674 char *sqlite3BtreeIntegrityCheck(
10675   sqlite3 *db,  /* Database connection that is running the check */
10676   Btree *p,     /* The btree to be checked */
10677   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10678   int nRoot,    /* Number of entries in aRoot[] */
10679   int mxErr,    /* Stop reporting errors after this many */
10680   int *pnErr    /* Write number of errors seen to this variable */
10681 ){
10682   Pgno i;
10683   IntegrityCk sCheck;
10684   BtShared *pBt = p->pBt;
10685   u64 savedDbFlags = pBt->db->flags;
10686   char zErr[100];
10687   int bPartial = 0;            /* True if not checking all btrees */
10688   int bCkFreelist = 1;         /* True to scan the freelist */
10689   VVA_ONLY( int nRef );
10690   assert( nRoot>0 );
10691 
10692   /* aRoot[0]==0 means this is a partial check */
10693   if( aRoot[0]==0 ){
10694     assert( nRoot>1 );
10695     bPartial = 1;
10696     if( aRoot[1]!=1 ) bCkFreelist = 0;
10697   }
10698 
10699   sqlite3BtreeEnter(p);
10700   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10701   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10702   assert( nRef>=0 );
10703   sCheck.db = db;
10704   sCheck.pBt = pBt;
10705   sCheck.pPager = pBt->pPager;
10706   sCheck.nPage = btreePagecount(sCheck.pBt);
10707   sCheck.mxErr = mxErr;
10708   sCheck.nErr = 0;
10709   sCheck.bOomFault = 0;
10710   sCheck.zPfx = 0;
10711   sCheck.v1 = 0;
10712   sCheck.v2 = 0;
10713   sCheck.aPgRef = 0;
10714   sCheck.heap = 0;
10715   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10716   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10717   if( sCheck.nPage==0 ){
10718     goto integrity_ck_cleanup;
10719   }
10720 
10721   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10722   if( !sCheck.aPgRef ){
10723     sCheck.bOomFault = 1;
10724     goto integrity_ck_cleanup;
10725   }
10726   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10727   if( sCheck.heap==0 ){
10728     sCheck.bOomFault = 1;
10729     goto integrity_ck_cleanup;
10730   }
10731 
10732   i = PENDING_BYTE_PAGE(pBt);
10733   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10734 
10735   /* Check the integrity of the freelist
10736   */
10737   if( bCkFreelist ){
10738     sCheck.zPfx = "Main freelist: ";
10739     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10740               get4byte(&pBt->pPage1->aData[36]));
10741     sCheck.zPfx = 0;
10742   }
10743 
10744   /* Check all the tables.
10745   */
10746 #ifndef SQLITE_OMIT_AUTOVACUUM
10747   if( !bPartial ){
10748     if( pBt->autoVacuum ){
10749       Pgno mx = 0;
10750       Pgno mxInHdr;
10751       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10752       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10753       if( mx!=mxInHdr ){
10754         checkAppendMsg(&sCheck,
10755           "max rootpage (%d) disagrees with header (%d)",
10756           mx, mxInHdr
10757         );
10758       }
10759     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10760       checkAppendMsg(&sCheck,
10761         "incremental_vacuum enabled with a max rootpage of zero"
10762       );
10763     }
10764   }
10765 #endif
10766   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10767   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10768   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10769     i64 notUsed;
10770     if( aRoot[i]==0 ) continue;
10771 #ifndef SQLITE_OMIT_AUTOVACUUM
10772     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10773       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10774     }
10775 #endif
10776     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10777   }
10778   pBt->db->flags = savedDbFlags;
10779 
10780   /* Make sure every page in the file is referenced
10781   */
10782   if( !bPartial ){
10783     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10784 #ifdef SQLITE_OMIT_AUTOVACUUM
10785       if( getPageReferenced(&sCheck, i)==0 ){
10786         checkAppendMsg(&sCheck, "Page %d is never used", i);
10787       }
10788 #else
10789       /* If the database supports auto-vacuum, make sure no tables contain
10790       ** references to pointer-map pages.
10791       */
10792       if( getPageReferenced(&sCheck, i)==0 &&
10793          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10794         checkAppendMsg(&sCheck, "Page %d is never used", i);
10795       }
10796       if( getPageReferenced(&sCheck, i)!=0 &&
10797          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10798         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10799       }
10800 #endif
10801     }
10802   }
10803 
10804   /* Clean  up and report errors.
10805   */
10806 integrity_ck_cleanup:
10807   sqlite3PageFree(sCheck.heap);
10808   sqlite3_free(sCheck.aPgRef);
10809   if( sCheck.bOomFault ){
10810     sqlite3_str_reset(&sCheck.errMsg);
10811     sCheck.nErr++;
10812   }
10813   *pnErr = sCheck.nErr;
10814   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10815   /* Make sure this analysis did not leave any unref() pages. */
10816   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10817   sqlite3BtreeLeave(p);
10818   return sqlite3StrAccumFinish(&sCheck.errMsg);
10819 }
10820 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10821 
10822 /*
10823 ** Return the full pathname of the underlying database file.  Return
10824 ** an empty string if the database is in-memory or a TEMP database.
10825 **
10826 ** The pager filename is invariant as long as the pager is
10827 ** open so it is safe to access without the BtShared mutex.
10828 */
10829 const char *sqlite3BtreeGetFilename(Btree *p){
10830   assert( p->pBt->pPager!=0 );
10831   return sqlite3PagerFilename(p->pBt->pPager, 1);
10832 }
10833 
10834 /*
10835 ** Return the pathname of the journal file for this database. The return
10836 ** value of this routine is the same regardless of whether the journal file
10837 ** has been created or not.
10838 **
10839 ** The pager journal filename is invariant as long as the pager is
10840 ** open so it is safe to access without the BtShared mutex.
10841 */
10842 const char *sqlite3BtreeGetJournalname(Btree *p){
10843   assert( p->pBt->pPager!=0 );
10844   return sqlite3PagerJournalname(p->pBt->pPager);
10845 }
10846 
10847 /*
10848 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10849 ** to describe the current transaction state of Btree p.
10850 */
10851 int sqlite3BtreeTxnState(Btree *p){
10852   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10853   return p ? p->inTrans : 0;
10854 }
10855 
10856 #ifndef SQLITE_OMIT_WAL
10857 /*
10858 ** Run a checkpoint on the Btree passed as the first argument.
10859 **
10860 ** Return SQLITE_LOCKED if this or any other connection has an open
10861 ** transaction on the shared-cache the argument Btree is connected to.
10862 **
10863 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10864 */
10865 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10866   int rc = SQLITE_OK;
10867   if( p ){
10868     BtShared *pBt = p->pBt;
10869     sqlite3BtreeEnter(p);
10870     if( pBt->inTransaction!=TRANS_NONE ){
10871       rc = SQLITE_LOCKED;
10872     }else{
10873       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10874     }
10875     sqlite3BtreeLeave(p);
10876   }
10877   return rc;
10878 }
10879 #endif
10880 
10881 /*
10882 ** Return true if there is currently a backup running on Btree p.
10883 */
10884 int sqlite3BtreeIsInBackup(Btree *p){
10885   assert( p );
10886   assert( sqlite3_mutex_held(p->db->mutex) );
10887   return p->nBackup!=0;
10888 }
10889 
10890 /*
10891 ** This function returns a pointer to a blob of memory associated with
10892 ** a single shared-btree. The memory is used by client code for its own
10893 ** purposes (for example, to store a high-level schema associated with
10894 ** the shared-btree). The btree layer manages reference counting issues.
10895 **
10896 ** The first time this is called on a shared-btree, nBytes bytes of memory
10897 ** are allocated, zeroed, and returned to the caller. For each subsequent
10898 ** call the nBytes parameter is ignored and a pointer to the same blob
10899 ** of memory returned.
10900 **
10901 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10902 ** allocated, a null pointer is returned. If the blob has already been
10903 ** allocated, it is returned as normal.
10904 **
10905 ** Just before the shared-btree is closed, the function passed as the
10906 ** xFree argument when the memory allocation was made is invoked on the
10907 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10908 ** on the memory, the btree layer does that.
10909 */
10910 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10911   BtShared *pBt = p->pBt;
10912   sqlite3BtreeEnter(p);
10913   if( !pBt->pSchema && nBytes ){
10914     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10915     pBt->xFreeSchema = xFree;
10916   }
10917   sqlite3BtreeLeave(p);
10918   return pBt->pSchema;
10919 }
10920 
10921 /*
10922 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10923 ** btree as the argument handle holds an exclusive lock on the
10924 ** sqlite_schema table. Otherwise SQLITE_OK.
10925 */
10926 int sqlite3BtreeSchemaLocked(Btree *p){
10927   int rc;
10928   assert( sqlite3_mutex_held(p->db->mutex) );
10929   sqlite3BtreeEnter(p);
10930   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10931   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10932   sqlite3BtreeLeave(p);
10933   return rc;
10934 }
10935 
10936 
10937 #ifndef SQLITE_OMIT_SHARED_CACHE
10938 /*
10939 ** Obtain a lock on the table whose root page is iTab.  The
10940 ** lock is a write lock if isWritelock is true or a read lock
10941 ** if it is false.
10942 */
10943 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10944   int rc = SQLITE_OK;
10945   assert( p->inTrans!=TRANS_NONE );
10946   if( p->sharable ){
10947     u8 lockType = READ_LOCK + isWriteLock;
10948     assert( READ_LOCK+1==WRITE_LOCK );
10949     assert( isWriteLock==0 || isWriteLock==1 );
10950 
10951     sqlite3BtreeEnter(p);
10952     rc = querySharedCacheTableLock(p, iTab, lockType);
10953     if( rc==SQLITE_OK ){
10954       rc = setSharedCacheTableLock(p, iTab, lockType);
10955     }
10956     sqlite3BtreeLeave(p);
10957   }
10958   return rc;
10959 }
10960 #endif
10961 
10962 #ifndef SQLITE_OMIT_INCRBLOB
10963 /*
10964 ** Argument pCsr must be a cursor opened for writing on an
10965 ** INTKEY table currently pointing at a valid table entry.
10966 ** This function modifies the data stored as part of that entry.
10967 **
10968 ** Only the data content may only be modified, it is not possible to
10969 ** change the length of the data stored. If this function is called with
10970 ** parameters that attempt to write past the end of the existing data,
10971 ** no modifications are made and SQLITE_CORRUPT is returned.
10972 */
10973 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10974   int rc;
10975   assert( cursorOwnsBtShared(pCsr) );
10976   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10977   assert( pCsr->curFlags & BTCF_Incrblob );
10978 
10979   rc = restoreCursorPosition(pCsr);
10980   if( rc!=SQLITE_OK ){
10981     return rc;
10982   }
10983   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10984   if( pCsr->eState!=CURSOR_VALID ){
10985     return SQLITE_ABORT;
10986   }
10987 
10988   /* Save the positions of all other cursors open on this table. This is
10989   ** required in case any of them are holding references to an xFetch
10990   ** version of the b-tree page modified by the accessPayload call below.
10991   **
10992   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10993   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10994   ** saveAllCursors can only return SQLITE_OK.
10995   */
10996   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10997   assert( rc==SQLITE_OK );
10998 
10999   /* Check some assumptions:
11000   **   (a) the cursor is open for writing,
11001   **   (b) there is a read/write transaction open,
11002   **   (c) the connection holds a write-lock on the table (if required),
11003   **   (d) there are no conflicting read-locks, and
11004   **   (e) the cursor points at a valid row of an intKey table.
11005   */
11006   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
11007     return SQLITE_READONLY;
11008   }
11009   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11010               && pCsr->pBt->inTransaction==TRANS_WRITE );
11011   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11012   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
11013   assert( pCsr->pPage->intKey );
11014 
11015   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
11016 }
11017 
11018 /*
11019 ** Mark this cursor as an incremental blob cursor.
11020 */
11021 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
11022   pCur->curFlags |= BTCF_Incrblob;
11023   pCur->pBtree->hasIncrblobCur = 1;
11024 }
11025 #endif
11026 
11027 /*
11028 ** Set both the "read version" (single byte at byte offset 18) and
11029 ** "write version" (single byte at byte offset 19) fields in the database
11030 ** header to iVersion.
11031 */
11032 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11033   BtShared *pBt = pBtree->pBt;
11034   int rc;                         /* Return code */
11035 
11036   assert( iVersion==1 || iVersion==2 );
11037 
11038   /* If setting the version fields to 1, do not automatically open the
11039   ** WAL connection, even if the version fields are currently set to 2.
11040   */
11041   pBt->btsFlags &= ~BTS_NO_WAL;
11042   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
11043 
11044   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
11045   if( rc==SQLITE_OK ){
11046     u8 *aData = pBt->pPage1->aData;
11047     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
11048       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
11049       if( rc==SQLITE_OK ){
11050         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11051         if( rc==SQLITE_OK ){
11052           aData[18] = (u8)iVersion;
11053           aData[19] = (u8)iVersion;
11054         }
11055       }
11056     }
11057   }
11058 
11059   pBt->btsFlags &= ~BTS_NO_WAL;
11060   return rc;
11061 }
11062 
11063 /*
11064 ** Return true if the cursor has a hint specified.  This routine is
11065 ** only used from within assert() statements
11066 */
11067 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11068   return (pCsr->hints & mask)!=0;
11069 }
11070 
11071 /*
11072 ** Return true if the given Btree is read-only.
11073 */
11074 int sqlite3BtreeIsReadonly(Btree *p){
11075   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11076 }
11077 
11078 /*
11079 ** Return the size of the header added to each page by this module.
11080 */
11081 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
11082 
11083 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11084 /*
11085 ** Return true if the Btree passed as the only argument is sharable.
11086 */
11087 int sqlite3BtreeSharable(Btree *p){
11088   return p->sharable;
11089 }
11090 
11091 /*
11092 ** Return the number of connections to the BtShared object accessed by
11093 ** the Btree handle passed as the only argument. For private caches
11094 ** this is always 1. For shared caches it may be 1 or greater.
11095 */
11096 int sqlite3BtreeConnectionCount(Btree *p){
11097   testcase( p->sharable );
11098   return p->pBt->nRef;
11099 }
11100 #endif
11101