1 /* 2 ** 2004 April 6 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an external (disk-based) database using BTrees. 13 ** See the header comment on "btreeInt.h" for additional information. 14 ** Including a description of file format and an overview of operation. 15 */ 16 #include "btreeInt.h" 17 18 /* 19 ** The header string that appears at the beginning of every 20 ** SQLite database. 21 */ 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; 23 24 /* 25 ** Set this global variable to 1 to enable tracing using the TRACE 26 ** macro. 27 */ 28 #if 0 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} 31 #else 32 # define TRACE(X) 33 #endif 34 35 /* 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. 37 ** But if the value is zero, make it 65536. 38 ** 39 ** This routine is used to extract the "offset to cell content area" value 40 ** from the header of a btree page. If the page size is 65536 and the page 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. 42 ** This routine makes the necessary adjustment to 65536. 43 */ 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) 45 46 /* 47 ** Values passed as the 5th argument to allocateBtreePage() 48 */ 49 #define BTALLOC_ANY 0 /* Allocate any page */ 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ 52 53 /* 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 55 ** defined, or 0 if it is. For example: 56 ** 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); 58 */ 59 #ifndef SQLITE_OMIT_AUTOVACUUM 60 #define IfNotOmitAV(expr) (expr) 61 #else 62 #define IfNotOmitAV(expr) 0 63 #endif 64 65 #ifndef SQLITE_OMIT_SHARED_CACHE 66 /* 67 ** A list of BtShared objects that are eligible for participation 68 ** in shared cache. This variable has file scope during normal builds, 69 ** but the test harness needs to access it so we make it global for 70 ** test builds. 71 ** 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN. 73 */ 74 #ifdef SQLITE_TEST 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 76 #else 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; 78 #endif 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ 80 81 #ifndef SQLITE_OMIT_SHARED_CACHE 82 /* 83 ** Enable or disable the shared pager and schema features. 84 ** 85 ** This routine has no effect on existing database connections. 86 ** The shared cache setting effects only future calls to 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). 88 */ 89 int sqlite3_enable_shared_cache(int enable){ 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; 91 return SQLITE_OK; 92 } 93 #endif 94 95 96 97 #ifdef SQLITE_OMIT_SHARED_CACHE 98 /* 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), 100 ** and clearAllSharedCacheTableLocks() 101 ** manipulate entries in the BtShared.pLock linked list used to store 102 ** shared-cache table level locks. If the library is compiled with the 103 ** shared-cache feature disabled, then there is only ever one user 104 ** of each BtShared structure and so this locking is not necessary. 105 ** So define the lock related functions as no-ops. 106 */ 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK 109 #define clearAllSharedCacheTableLocks(a) 110 #define downgradeAllSharedCacheTableLocks(a) 111 #define hasSharedCacheTableLock(a,b,c,d) 1 112 #define hasReadConflicts(a, b) 0 113 #endif 114 115 #ifdef SQLITE_DEBUG 116 /* 117 ** Return and reset the seek counter for a Btree object. 118 */ 119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){ 120 u64 n = pBt->nSeek; 121 pBt->nSeek = 0; 122 return n; 123 } 124 #endif 125 126 /* 127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single 128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL. 129 ** 130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to 131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message 132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented 133 ** with the page number and filename associated with the (MemPage*). 134 */ 135 #ifdef SQLITE_DEBUG 136 int corruptPageError(int lineno, MemPage *p){ 137 char *zMsg; 138 sqlite3BeginBenignMalloc(); 139 zMsg = sqlite3_mprintf("database corruption page %d of %s", 140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) 141 ); 142 sqlite3EndBenignMalloc(); 143 if( zMsg ){ 144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 145 } 146 sqlite3_free(zMsg); 147 return SQLITE_CORRUPT_BKPT; 148 } 149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) 150 #else 151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) 152 #endif 153 154 #ifndef SQLITE_OMIT_SHARED_CACHE 155 156 #ifdef SQLITE_DEBUG 157 /* 158 **** This function is only used as part of an assert() statement. *** 159 ** 160 ** Check to see if pBtree holds the required locks to read or write to the 161 ** table with root page iRoot. Return 1 if it does and 0 if not. 162 ** 163 ** For example, when writing to a table with root-page iRoot via 164 ** Btree connection pBtree: 165 ** 166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); 167 ** 168 ** When writing to an index that resides in a sharable database, the 169 ** caller should have first obtained a lock specifying the root page of 170 ** the corresponding table. This makes things a bit more complicated, 171 ** as this module treats each table as a separate structure. To determine 172 ** the table corresponding to the index being written, this 173 ** function has to search through the database schema. 174 ** 175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may 176 ** hold a write-lock on the schema table (root page 1). This is also 177 ** acceptable. 178 */ 179 static int hasSharedCacheTableLock( 180 Btree *pBtree, /* Handle that must hold lock */ 181 Pgno iRoot, /* Root page of b-tree */ 182 int isIndex, /* True if iRoot is the root of an index b-tree */ 183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ 184 ){ 185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; 186 Pgno iTab = 0; 187 BtLock *pLock; 188 189 /* If this database is not shareable, or if the client is reading 190 ** and has the read-uncommitted flag set, then no lock is required. 191 ** Return true immediately. 192 */ 193 if( (pBtree->sharable==0) 194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit)) 195 ){ 196 return 1; 197 } 198 199 /* If the client is reading or writing an index and the schema is 200 ** not loaded, then it is too difficult to actually check to see if 201 ** the correct locks are held. So do not bother - just return true. 202 ** This case does not come up very often anyhow. 203 */ 204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ 205 return 1; 206 } 207 208 /* Figure out the root-page that the lock should be held on. For table 209 ** b-trees, this is just the root page of the b-tree being read or 210 ** written. For index b-trees, it is the root page of the associated 211 ** table. */ 212 if( isIndex ){ 213 HashElem *p; 214 int bSeen = 0; 215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ 216 Index *pIdx = (Index *)sqliteHashData(p); 217 if( pIdx->tnum==iRoot ){ 218 if( bSeen ){ 219 /* Two or more indexes share the same root page. There must 220 ** be imposter tables. So just return true. The assert is not 221 ** useful in that case. */ 222 return 1; 223 } 224 iTab = pIdx->pTable->tnum; 225 bSeen = 1; 226 } 227 } 228 }else{ 229 iTab = iRoot; 230 } 231 232 /* Search for the required lock. Either a write-lock on root-page iTab, a 233 ** write-lock on the schema table, or (if the client is reading) a 234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ 235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ 236 if( pLock->pBtree==pBtree 237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) 238 && pLock->eLock>=eLockType 239 ){ 240 return 1; 241 } 242 } 243 244 /* Failed to find the required lock. */ 245 return 0; 246 } 247 #endif /* SQLITE_DEBUG */ 248 249 #ifdef SQLITE_DEBUG 250 /* 251 **** This function may be used as part of assert() statements only. **** 252 ** 253 ** Return true if it would be illegal for pBtree to write into the 254 ** table or index rooted at iRoot because other shared connections are 255 ** simultaneously reading that same table or index. 256 ** 257 ** It is illegal for pBtree to write if some other Btree object that 258 ** shares the same BtShared object is currently reading or writing 259 ** the iRoot table. Except, if the other Btree object has the 260 ** read-uncommitted flag set, then it is OK for the other object to 261 ** have a read cursor. 262 ** 263 ** For example, before writing to any part of the table or index 264 ** rooted at page iRoot, one should call: 265 ** 266 ** assert( !hasReadConflicts(pBtree, iRoot) ); 267 */ 268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ 269 BtCursor *p; 270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 271 if( p->pgnoRoot==iRoot 272 && p->pBtree!=pBtree 273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit) 274 ){ 275 return 1; 276 } 277 } 278 return 0; 279 } 280 #endif /* #ifdef SQLITE_DEBUG */ 281 282 /* 283 ** Query to see if Btree handle p may obtain a lock of type eLock 284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return 285 ** SQLITE_OK if the lock may be obtained (by calling 286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. 287 */ 288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ 289 BtShared *pBt = p->pBt; 290 BtLock *pIter; 291 292 assert( sqlite3BtreeHoldsMutex(p) ); 293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 294 assert( p->db!=0 ); 295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 ); 296 297 /* If requesting a write-lock, then the Btree must have an open write 298 ** transaction on this file. And, obviously, for this to be so there 299 ** must be an open write transaction on the file itself. 300 */ 301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); 302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); 303 304 /* This routine is a no-op if the shared-cache is not enabled */ 305 if( !p->sharable ){ 306 return SQLITE_OK; 307 } 308 309 /* If some other connection is holding an exclusive lock, the 310 ** requested lock may not be obtained. 311 */ 312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ 313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); 314 return SQLITE_LOCKED_SHAREDCACHE; 315 } 316 317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 318 /* The condition (pIter->eLock!=eLock) in the following if(...) 319 ** statement is a simplification of: 320 ** 321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) 322 ** 323 ** since we know that if eLock==WRITE_LOCK, then no other connection 324 ** may hold a WRITE_LOCK on any table in this file (since there can 325 ** only be a single writer). 326 */ 327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); 328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); 329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ 330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); 331 if( eLock==WRITE_LOCK ){ 332 assert( p==pBt->pWriter ); 333 pBt->btsFlags |= BTS_PENDING; 334 } 335 return SQLITE_LOCKED_SHAREDCACHE; 336 } 337 } 338 return SQLITE_OK; 339 } 340 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 341 342 #ifndef SQLITE_OMIT_SHARED_CACHE 343 /* 344 ** Add a lock on the table with root-page iTable to the shared-btree used 345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 346 ** WRITE_LOCK. 347 ** 348 ** This function assumes the following: 349 ** 350 ** (a) The specified Btree object p is connected to a sharable 351 ** database (one with the BtShared.sharable flag set), and 352 ** 353 ** (b) No other Btree objects hold a lock that conflicts 354 ** with the requested lock (i.e. querySharedCacheTableLock() has 355 ** already been called and returned SQLITE_OK). 356 ** 357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 358 ** is returned if a malloc attempt fails. 359 */ 360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ 361 BtShared *pBt = p->pBt; 362 BtLock *pLock = 0; 363 BtLock *pIter; 364 365 assert( sqlite3BtreeHoldsMutex(p) ); 366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); 367 assert( p->db!=0 ); 368 369 /* A connection with the read-uncommitted flag set will never try to 370 ** obtain a read-lock using this function. The only read-lock obtained 371 ** by a connection in read-uncommitted mode is on the sqlite_schema 372 ** table, and that lock is obtained in BtreeBeginTrans(). */ 373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK ); 374 375 /* This function should only be called on a sharable b-tree after it 376 ** has been determined that no other b-tree holds a conflicting lock. */ 377 assert( p->sharable ); 378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); 379 380 /* First search the list for an existing lock on this table. */ 381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 382 if( pIter->iTable==iTable && pIter->pBtree==p ){ 383 pLock = pIter; 384 break; 385 } 386 } 387 388 /* If the above search did not find a BtLock struct associating Btree p 389 ** with table iTable, allocate one and link it into the list. 390 */ 391 if( !pLock ){ 392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); 393 if( !pLock ){ 394 return SQLITE_NOMEM_BKPT; 395 } 396 pLock->iTable = iTable; 397 pLock->pBtree = p; 398 pLock->pNext = pBt->pLock; 399 pBt->pLock = pLock; 400 } 401 402 /* Set the BtLock.eLock variable to the maximum of the current lock 403 ** and the requested lock. This means if a write-lock was already held 404 ** and a read-lock requested, we don't incorrectly downgrade the lock. 405 */ 406 assert( WRITE_LOCK>READ_LOCK ); 407 if( eLock>pLock->eLock ){ 408 pLock->eLock = eLock; 409 } 410 411 return SQLITE_OK; 412 } 413 #endif /* !SQLITE_OMIT_SHARED_CACHE */ 414 415 #ifndef SQLITE_OMIT_SHARED_CACHE 416 /* 417 ** Release all the table locks (locks obtained via calls to 418 ** the setSharedCacheTableLock() procedure) held by Btree object p. 419 ** 420 ** This function assumes that Btree p has an open read or write 421 ** transaction. If it does not, then the BTS_PENDING flag 422 ** may be incorrectly cleared. 423 */ 424 static void clearAllSharedCacheTableLocks(Btree *p){ 425 BtShared *pBt = p->pBt; 426 BtLock **ppIter = &pBt->pLock; 427 428 assert( sqlite3BtreeHoldsMutex(p) ); 429 assert( p->sharable || 0==*ppIter ); 430 assert( p->inTrans>0 ); 431 432 while( *ppIter ){ 433 BtLock *pLock = *ppIter; 434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); 435 assert( pLock->pBtree->inTrans>=pLock->eLock ); 436 if( pLock->pBtree==p ){ 437 *ppIter = pLock->pNext; 438 assert( pLock->iTable!=1 || pLock==&p->lock ); 439 if( pLock->iTable!=1 ){ 440 sqlite3_free(pLock); 441 } 442 }else{ 443 ppIter = &pLock->pNext; 444 } 445 } 446 447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); 448 if( pBt->pWriter==p ){ 449 pBt->pWriter = 0; 450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 451 }else if( pBt->nTransaction==2 ){ 452 /* This function is called when Btree p is concluding its 453 ** transaction. If there currently exists a writer, and p is not 454 ** that writer, then the number of locks held by connections other 455 ** than the writer must be about to drop to zero. In this case 456 ** set the BTS_PENDING flag to 0. 457 ** 458 ** If there is not currently a writer, then BTS_PENDING must 459 ** be zero already. So this next line is harmless in that case. 460 */ 461 pBt->btsFlags &= ~BTS_PENDING; 462 } 463 } 464 465 /* 466 ** This function changes all write-locks held by Btree p into read-locks. 467 */ 468 static void downgradeAllSharedCacheTableLocks(Btree *p){ 469 BtShared *pBt = p->pBt; 470 if( pBt->pWriter==p ){ 471 BtLock *pLock; 472 pBt->pWriter = 0; 473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); 474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ 475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); 476 pLock->eLock = READ_LOCK; 477 } 478 } 479 } 480 481 #endif /* SQLITE_OMIT_SHARED_CACHE */ 482 483 static void releasePage(MemPage *pPage); /* Forward reference */ 484 static void releasePageOne(MemPage *pPage); /* Forward reference */ 485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */ 486 487 /* 488 ***** This routine is used inside of assert() only **** 489 ** 490 ** Verify that the cursor holds the mutex on its BtShared 491 */ 492 #ifdef SQLITE_DEBUG 493 static int cursorHoldsMutex(BtCursor *p){ 494 return sqlite3_mutex_held(p->pBt->mutex); 495 } 496 497 /* Verify that the cursor and the BtShared agree about what is the current 498 ** database connetion. This is important in shared-cache mode. If the database 499 ** connection pointers get out-of-sync, it is possible for routines like 500 ** btreeInitPage() to reference an stale connection pointer that references a 501 ** a connection that has already closed. This routine is used inside assert() 502 ** statements only and for the purpose of double-checking that the btree code 503 ** does keep the database connection pointers up-to-date. 504 */ 505 static int cursorOwnsBtShared(BtCursor *p){ 506 assert( cursorHoldsMutex(p) ); 507 return (p->pBtree->db==p->pBt->db); 508 } 509 #endif 510 511 /* 512 ** Invalidate the overflow cache of the cursor passed as the first argument. 513 ** on the shared btree structure pBt. 514 */ 515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) 516 517 /* 518 ** Invalidate the overflow page-list cache for all cursors opened 519 ** on the shared btree structure pBt. 520 */ 521 static void invalidateAllOverflowCache(BtShared *pBt){ 522 BtCursor *p; 523 assert( sqlite3_mutex_held(pBt->mutex) ); 524 for(p=pBt->pCursor; p; p=p->pNext){ 525 invalidateOverflowCache(p); 526 } 527 } 528 529 #ifndef SQLITE_OMIT_INCRBLOB 530 /* 531 ** This function is called before modifying the contents of a table 532 ** to invalidate any incrblob cursors that are open on the 533 ** row or one of the rows being modified. 534 ** 535 ** If argument isClearTable is true, then the entire contents of the 536 ** table is about to be deleted. In this case invalidate all incrblob 537 ** cursors open on any row within the table with root-page pgnoRoot. 538 ** 539 ** Otherwise, if argument isClearTable is false, then the row with 540 ** rowid iRow is being replaced or deleted. In this case invalidate 541 ** only those incrblob cursors open on that specific row. 542 */ 543 static void invalidateIncrblobCursors( 544 Btree *pBtree, /* The database file to check */ 545 Pgno pgnoRoot, /* The table that might be changing */ 546 i64 iRow, /* The rowid that might be changing */ 547 int isClearTable /* True if all rows are being deleted */ 548 ){ 549 BtCursor *p; 550 assert( pBtree->hasIncrblobCur ); 551 assert( sqlite3BtreeHoldsMutex(pBtree) ); 552 pBtree->hasIncrblobCur = 0; 553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 554 if( (p->curFlags & BTCF_Incrblob)!=0 ){ 555 pBtree->hasIncrblobCur = 1; 556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){ 557 p->eState = CURSOR_INVALID; 558 } 559 } 560 } 561 } 562 563 #else 564 /* Stub function when INCRBLOB is omitted */ 565 #define invalidateIncrblobCursors(w,x,y,z) 566 #endif /* SQLITE_OMIT_INCRBLOB */ 567 568 /* 569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called 570 ** when a page that previously contained data becomes a free-list leaf 571 ** page. 572 ** 573 ** The BtShared.pHasContent bitvec exists to work around an obscure 574 ** bug caused by the interaction of two useful IO optimizations surrounding 575 ** free-list leaf pages: 576 ** 577 ** 1) When all data is deleted from a page and the page becomes 578 ** a free-list leaf page, the page is not written to the database 579 ** (as free-list leaf pages contain no meaningful data). Sometimes 580 ** such a page is not even journalled (as it will not be modified, 581 ** why bother journalling it?). 582 ** 583 ** 2) When a free-list leaf page is reused, its content is not read 584 ** from the database or written to the journal file (why should it 585 ** be, if it is not at all meaningful?). 586 ** 587 ** By themselves, these optimizations work fine and provide a handy 588 ** performance boost to bulk delete or insert operations. However, if 589 ** a page is moved to the free-list and then reused within the same 590 ** transaction, a problem comes up. If the page is not journalled when 591 ** it is moved to the free-list and it is also not journalled when it 592 ** is extracted from the free-list and reused, then the original data 593 ** may be lost. In the event of a rollback, it may not be possible 594 ** to restore the database to its original configuration. 595 ** 596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is 597 ** moved to become a free-list leaf page, the corresponding bit is 598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, 599 ** optimization 2 above is omitted if the corresponding bit is already 600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared 601 ** at the end of every transaction. 602 */ 603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ 604 int rc = SQLITE_OK; 605 if( !pBt->pHasContent ){ 606 assert( pgno<=pBt->nPage ); 607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); 608 if( !pBt->pHasContent ){ 609 rc = SQLITE_NOMEM_BKPT; 610 } 611 } 612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ 613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); 614 } 615 return rc; 616 } 617 618 /* 619 ** Query the BtShared.pHasContent vector. 620 ** 621 ** This function is called when a free-list leaf page is removed from the 622 ** free-list for reuse. It returns false if it is safe to retrieve the 623 ** page from the pager layer with the 'no-content' flag set. True otherwise. 624 */ 625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ 626 Bitvec *p = pBt->pHasContent; 627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno)); 628 } 629 630 /* 631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be 632 ** invoked at the conclusion of each write-transaction. 633 */ 634 static void btreeClearHasContent(BtShared *pBt){ 635 sqlite3BitvecDestroy(pBt->pHasContent); 636 pBt->pHasContent = 0; 637 } 638 639 /* 640 ** Release all of the apPage[] pages for a cursor. 641 */ 642 static void btreeReleaseAllCursorPages(BtCursor *pCur){ 643 int i; 644 if( pCur->iPage>=0 ){ 645 for(i=0; i<pCur->iPage; i++){ 646 releasePageNotNull(pCur->apPage[i]); 647 } 648 releasePageNotNull(pCur->pPage); 649 pCur->iPage = -1; 650 } 651 } 652 653 /* 654 ** The cursor passed as the only argument must point to a valid entry 655 ** when this function is called (i.e. have eState==CURSOR_VALID). This 656 ** function saves the current cursor key in variables pCur->nKey and 657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 658 ** code otherwise. 659 ** 660 ** If the cursor is open on an intkey table, then the integer key 661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to 662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 663 ** set to point to a malloced buffer pCur->nKey bytes in size containing 664 ** the key. 665 */ 666 static int saveCursorKey(BtCursor *pCur){ 667 int rc = SQLITE_OK; 668 assert( CURSOR_VALID==pCur->eState ); 669 assert( 0==pCur->pKey ); 670 assert( cursorHoldsMutex(pCur) ); 671 672 if( pCur->curIntKey ){ 673 /* Only the rowid is required for a table btree */ 674 pCur->nKey = sqlite3BtreeIntegerKey(pCur); 675 }else{ 676 /* For an index btree, save the complete key content. It is possible 677 ** that the current key is corrupt. In that case, it is possible that 678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by 679 ** up to the size of 1 varint plus 1 8-byte value when the cursor 680 ** position is restored. Hence the 17 bytes of padding allocated 681 ** below. */ 682 void *pKey; 683 pCur->nKey = sqlite3BtreePayloadSize(pCur); 684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 ); 685 if( pKey ){ 686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); 687 if( rc==SQLITE_OK ){ 688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8); 689 pCur->pKey = pKey; 690 }else{ 691 sqlite3_free(pKey); 692 } 693 }else{ 694 rc = SQLITE_NOMEM_BKPT; 695 } 696 } 697 assert( !pCur->curIntKey || !pCur->pKey ); 698 return rc; 699 } 700 701 /* 702 ** Save the current cursor position in the variables BtCursor.nKey 703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. 704 ** 705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) 706 ** prior to calling this routine. 707 */ 708 static int saveCursorPosition(BtCursor *pCur){ 709 int rc; 710 711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); 712 assert( 0==pCur->pKey ); 713 assert( cursorHoldsMutex(pCur) ); 714 715 if( pCur->curFlags & BTCF_Pinned ){ 716 return SQLITE_CONSTRAINT_PINNED; 717 } 718 if( pCur->eState==CURSOR_SKIPNEXT ){ 719 pCur->eState = CURSOR_VALID; 720 }else{ 721 pCur->skipNext = 0; 722 } 723 724 rc = saveCursorKey(pCur); 725 if( rc==SQLITE_OK ){ 726 btreeReleaseAllCursorPages(pCur); 727 pCur->eState = CURSOR_REQUIRESEEK; 728 } 729 730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); 731 return rc; 732 } 733 734 /* Forward reference */ 735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); 736 737 /* 738 ** Save the positions of all cursors (except pExcept) that are open on 739 ** the table with root-page iRoot. "Saving the cursor position" means that 740 ** the location in the btree is remembered in such a way that it can be 741 ** moved back to the same spot after the btree has been modified. This 742 ** routine is called just before cursor pExcept is used to modify the 743 ** table, for example in BtreeDelete() or BtreeInsert(). 744 ** 745 ** If there are two or more cursors on the same btree, then all such 746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() 747 ** routine enforces that rule. This routine only needs to be called in 748 ** the uncommon case when pExpect has the BTCF_Multiple flag set. 749 ** 750 ** If pExpect!=NULL and if no other cursors are found on the same root-page, 751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another 752 ** pointless call to this routine. 753 ** 754 ** Implementation note: This routine merely checks to see if any cursors 755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) 756 ** event that cursors are in need to being saved. 757 */ 758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ 759 BtCursor *p; 760 assert( sqlite3_mutex_held(pBt->mutex) ); 761 assert( pExcept==0 || pExcept->pBt==pBt ); 762 for(p=pBt->pCursor; p; p=p->pNext){ 763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; 764 } 765 if( p ) return saveCursorsOnList(p, iRoot, pExcept); 766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; 767 return SQLITE_OK; 768 } 769 770 /* This helper routine to saveAllCursors does the actual work of saving 771 ** the cursors if and when a cursor is found that actually requires saving. 772 ** The common case is that no cursors need to be saved, so this routine is 773 ** broken out from its caller to avoid unnecessary stack pointer movement. 774 */ 775 static int SQLITE_NOINLINE saveCursorsOnList( 776 BtCursor *p, /* The first cursor that needs saving */ 777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ 778 BtCursor *pExcept /* Do not save this cursor */ 779 ){ 780 do{ 781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ 782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 783 int rc = saveCursorPosition(p); 784 if( SQLITE_OK!=rc ){ 785 return rc; 786 } 787 }else{ 788 testcase( p->iPage>=0 ); 789 btreeReleaseAllCursorPages(p); 790 } 791 } 792 p = p->pNext; 793 }while( p ); 794 return SQLITE_OK; 795 } 796 797 /* 798 ** Clear the current cursor position. 799 */ 800 void sqlite3BtreeClearCursor(BtCursor *pCur){ 801 assert( cursorHoldsMutex(pCur) ); 802 sqlite3_free(pCur->pKey); 803 pCur->pKey = 0; 804 pCur->eState = CURSOR_INVALID; 805 } 806 807 /* 808 ** In this version of BtreeMoveto, pKey is a packed index record 809 ** such as is generated by the OP_MakeRecord opcode. Unpack the 810 ** record and then call sqlite3BtreeIndexMoveto() to do the work. 811 */ 812 static int btreeMoveto( 813 BtCursor *pCur, /* Cursor open on the btree to be searched */ 814 const void *pKey, /* Packed key if the btree is an index */ 815 i64 nKey, /* Integer key for tables. Size of pKey for indices */ 816 int bias, /* Bias search to the high end */ 817 int *pRes /* Write search results here */ 818 ){ 819 int rc; /* Status code */ 820 UnpackedRecord *pIdxKey; /* Unpacked index key */ 821 822 if( pKey ){ 823 KeyInfo *pKeyInfo = pCur->pKeyInfo; 824 assert( nKey==(i64)(int)nKey ); 825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); 826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; 827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey); 828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){ 829 rc = SQLITE_CORRUPT_BKPT; 830 }else{ 831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes); 832 } 833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); 834 }else{ 835 pIdxKey = 0; 836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes); 837 } 838 return rc; 839 } 840 841 /* 842 ** Restore the cursor to the position it was in (or as close to as possible) 843 ** when saveCursorPosition() was called. Note that this call deletes the 844 ** saved position info stored by saveCursorPosition(), so there can be 845 ** at most one effective restoreCursorPosition() call after each 846 ** saveCursorPosition(). 847 */ 848 static int btreeRestoreCursorPosition(BtCursor *pCur){ 849 int rc; 850 int skipNext = 0; 851 assert( cursorOwnsBtShared(pCur) ); 852 assert( pCur->eState>=CURSOR_REQUIRESEEK ); 853 if( pCur->eState==CURSOR_FAULT ){ 854 return pCur->skipNext; 855 } 856 pCur->eState = CURSOR_INVALID; 857 if( sqlite3FaultSim(410) ){ 858 rc = SQLITE_IOERR; 859 }else{ 860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); 861 } 862 if( rc==SQLITE_OK ){ 863 sqlite3_free(pCur->pKey); 864 pCur->pKey = 0; 865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); 866 if( skipNext ) pCur->skipNext = skipNext; 867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ 868 pCur->eState = CURSOR_SKIPNEXT; 869 } 870 } 871 return rc; 872 } 873 874 #define restoreCursorPosition(p) \ 875 (p->eState>=CURSOR_REQUIRESEEK ? \ 876 btreeRestoreCursorPosition(p) : \ 877 SQLITE_OK) 878 879 /* 880 ** Determine whether or not a cursor has moved from the position where 881 ** it was last placed, or has been invalidated for any other reason. 882 ** Cursors can move when the row they are pointing at is deleted out 883 ** from under them, for example. Cursor might also move if a btree 884 ** is rebalanced. 885 ** 886 ** Calling this routine with a NULL cursor pointer returns false. 887 ** 888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor 889 ** back to where it ought to be if this routine returns true. 890 */ 891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ 892 assert( EIGHT_BYTE_ALIGNMENT(pCur) 893 || pCur==sqlite3BtreeFakeValidCursor() ); 894 assert( offsetof(BtCursor, eState)==0 ); 895 assert( sizeof(pCur->eState)==1 ); 896 return CURSOR_VALID != *(u8*)pCur; 897 } 898 899 /* 900 ** Return a pointer to a fake BtCursor object that will always answer 901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake 902 ** cursor returned must not be used with any other Btree interface. 903 */ 904 BtCursor *sqlite3BtreeFakeValidCursor(void){ 905 static u8 fakeCursor = CURSOR_VALID; 906 assert( offsetof(BtCursor, eState)==0 ); 907 return (BtCursor*)&fakeCursor; 908 } 909 910 /* 911 ** This routine restores a cursor back to its original position after it 912 ** has been moved by some outside activity (such as a btree rebalance or 913 ** a row having been deleted out from under the cursor). 914 ** 915 ** On success, the *pDifferentRow parameter is false if the cursor is left 916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor 917 ** was pointing to has been deleted, forcing the cursor to point to some 918 ** nearby row. 919 ** 920 ** This routine should only be called for a cursor that just returned 921 ** TRUE from sqlite3BtreeCursorHasMoved(). 922 */ 923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ 924 int rc; 925 926 assert( pCur!=0 ); 927 assert( pCur->eState!=CURSOR_VALID ); 928 rc = restoreCursorPosition(pCur); 929 if( rc ){ 930 *pDifferentRow = 1; 931 return rc; 932 } 933 if( pCur->eState!=CURSOR_VALID ){ 934 *pDifferentRow = 1; 935 }else{ 936 *pDifferentRow = 0; 937 } 938 return SQLITE_OK; 939 } 940 941 #ifdef SQLITE_ENABLE_CURSOR_HINTS 942 /* 943 ** Provide hints to the cursor. The particular hint given (and the type 944 ** and number of the varargs parameters) is determined by the eHintType 945 ** parameter. See the definitions of the BTREE_HINT_* macros for details. 946 */ 947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ 948 /* Used only by system that substitute their own storage engine */ 949 } 950 #endif 951 952 /* 953 ** Provide flag hints to the cursor. 954 */ 955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ 956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); 957 pCur->hints = x; 958 } 959 960 961 #ifndef SQLITE_OMIT_AUTOVACUUM 962 /* 963 ** Given a page number of a regular database page, return the page 964 ** number for the pointer-map page that contains the entry for the 965 ** input page number. 966 ** 967 ** Return 0 (not a valid page) for pgno==1 since there is 968 ** no pointer map associated with page 1. The integrity_check logic 969 ** requires that ptrmapPageno(*,1)!=1. 970 */ 971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ 972 int nPagesPerMapPage; 973 Pgno iPtrMap, ret; 974 assert( sqlite3_mutex_held(pBt->mutex) ); 975 if( pgno<2 ) return 0; 976 nPagesPerMapPage = (pBt->usableSize/5)+1; 977 iPtrMap = (pgno-2)/nPagesPerMapPage; 978 ret = (iPtrMap*nPagesPerMapPage) + 2; 979 if( ret==PENDING_BYTE_PAGE(pBt) ){ 980 ret++; 981 } 982 return ret; 983 } 984 985 /* 986 ** Write an entry into the pointer map. 987 ** 988 ** This routine updates the pointer map entry for page number 'key' 989 ** so that it maps to type 'eType' and parent page number 'pgno'. 990 ** 991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is 992 ** a no-op. If an error occurs, the appropriate error code is written 993 ** into *pRC. 994 */ 995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ 996 DbPage *pDbPage; /* The pointer map page */ 997 u8 *pPtrmap; /* The pointer map data */ 998 Pgno iPtrmap; /* The pointer map page number */ 999 int offset; /* Offset in pointer map page */ 1000 int rc; /* Return code from subfunctions */ 1001 1002 if( *pRC ) return; 1003 1004 assert( sqlite3_mutex_held(pBt->mutex) ); 1005 /* The super-journal page number must never be used as a pointer map page */ 1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); 1007 1008 assert( pBt->autoVacuum ); 1009 if( key==0 ){ 1010 *pRC = SQLITE_CORRUPT_BKPT; 1011 return; 1012 } 1013 iPtrmap = PTRMAP_PAGENO(pBt, key); 1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1015 if( rc!=SQLITE_OK ){ 1016 *pRC = rc; 1017 return; 1018 } 1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){ 1020 /* The first byte of the extra data is the MemPage.isInit byte. 1021 ** If that byte is set, it means this page is also being used 1022 ** as a btree page. */ 1023 *pRC = SQLITE_CORRUPT_BKPT; 1024 goto ptrmap_exit; 1025 } 1026 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1027 if( offset<0 ){ 1028 *pRC = SQLITE_CORRUPT_BKPT; 1029 goto ptrmap_exit; 1030 } 1031 assert( offset <= (int)pBt->usableSize-5 ); 1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1033 1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ 1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); 1036 *pRC= rc = sqlite3PagerWrite(pDbPage); 1037 if( rc==SQLITE_OK ){ 1038 pPtrmap[offset] = eType; 1039 put4byte(&pPtrmap[offset+1], parent); 1040 } 1041 } 1042 1043 ptrmap_exit: 1044 sqlite3PagerUnref(pDbPage); 1045 } 1046 1047 /* 1048 ** Read an entry from the pointer map. 1049 ** 1050 ** This routine retrieves the pointer map entry for page 'key', writing 1051 ** the type and parent page number to *pEType and *pPgno respectively. 1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. 1053 */ 1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ 1055 DbPage *pDbPage; /* The pointer map page */ 1056 int iPtrmap; /* Pointer map page index */ 1057 u8 *pPtrmap; /* Pointer map page data */ 1058 int offset; /* Offset of entry in pointer map */ 1059 int rc; 1060 1061 assert( sqlite3_mutex_held(pBt->mutex) ); 1062 1063 iPtrmap = PTRMAP_PAGENO(pBt, key); 1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); 1065 if( rc!=0 ){ 1066 return rc; 1067 } 1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); 1069 1070 offset = PTRMAP_PTROFFSET(iPtrmap, key); 1071 if( offset<0 ){ 1072 sqlite3PagerUnref(pDbPage); 1073 return SQLITE_CORRUPT_BKPT; 1074 } 1075 assert( offset <= (int)pBt->usableSize-5 ); 1076 assert( pEType!=0 ); 1077 *pEType = pPtrmap[offset]; 1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); 1079 1080 sqlite3PagerUnref(pDbPage); 1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap); 1082 return SQLITE_OK; 1083 } 1084 1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ 1086 #define ptrmapPut(w,x,y,z,rc) 1087 #define ptrmapGet(w,x,y,z) SQLITE_OK 1088 #define ptrmapPutOvflPtr(x, y, z, rc) 1089 #endif 1090 1091 /* 1092 ** Given a btree page and a cell index (0 means the first cell on 1093 ** the page, 1 means the second cell, and so forth) return a pointer 1094 ** to the cell content. 1095 ** 1096 ** findCellPastPtr() does the same except it skips past the initial 1097 ** 4-byte child pointer found on interior pages, if there is one. 1098 ** 1099 ** This routine works only for pages that do not contain overflow cells. 1100 */ 1101 #define findCell(P,I) \ 1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1103 #define findCellPastPtr(P,I) \ 1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) 1105 1106 1107 /* 1108 ** This is common tail processing for btreeParseCellPtr() and 1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely 1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo 1111 ** structure. 1112 */ 1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( 1114 MemPage *pPage, /* Page containing the cell */ 1115 u8 *pCell, /* Pointer to the cell text. */ 1116 CellInfo *pInfo /* Fill in this structure */ 1117 ){ 1118 /* If the payload will not fit completely on the local page, we have 1119 ** to decide how much to store locally and how much to spill onto 1120 ** overflow pages. The strategy is to minimize the amount of unused 1121 ** space on overflow pages while keeping the amount of local storage 1122 ** in between minLocal and maxLocal. 1123 ** 1124 ** Warning: changing the way overflow payload is distributed in any 1125 ** way will result in an incompatible file format. 1126 */ 1127 int minLocal; /* Minimum amount of payload held locally */ 1128 int maxLocal; /* Maximum amount of payload held locally */ 1129 int surplus; /* Overflow payload available for local storage */ 1130 1131 minLocal = pPage->minLocal; 1132 maxLocal = pPage->maxLocal; 1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); 1134 testcase( surplus==maxLocal ); 1135 testcase( surplus==maxLocal+1 ); 1136 if( surplus <= maxLocal ){ 1137 pInfo->nLocal = (u16)surplus; 1138 }else{ 1139 pInfo->nLocal = (u16)minLocal; 1140 } 1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; 1142 } 1143 1144 /* 1145 ** Given a record with nPayload bytes of payload stored within btree 1146 ** page pPage, return the number of bytes of payload stored locally. 1147 */ 1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){ 1149 int maxLocal; /* Maximum amount of payload held locally */ 1150 maxLocal = pPage->maxLocal; 1151 if( nPayload<=maxLocal ){ 1152 return nPayload; 1153 }else{ 1154 int minLocal; /* Minimum amount of payload held locally */ 1155 int surplus; /* Overflow payload available for local storage */ 1156 minLocal = pPage->minLocal; 1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4); 1158 return ( surplus <= maxLocal ) ? surplus : minLocal; 1159 } 1160 } 1161 1162 /* 1163 ** The following routines are implementations of the MemPage.xParseCell() 1164 ** method. 1165 ** 1166 ** Parse a cell content block and fill in the CellInfo structure. 1167 ** 1168 ** btreeParseCellPtr() => table btree leaf nodes 1169 ** btreeParseCellNoPayload() => table btree internal nodes 1170 ** btreeParseCellPtrIndex() => index btree nodes 1171 ** 1172 ** There is also a wrapper function btreeParseCell() that works for 1173 ** all MemPage types and that references the cell by index rather than 1174 ** by pointer. 1175 */ 1176 static void btreeParseCellPtrNoPayload( 1177 MemPage *pPage, /* Page containing the cell */ 1178 u8 *pCell, /* Pointer to the cell text. */ 1179 CellInfo *pInfo /* Fill in this structure */ 1180 ){ 1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1182 assert( pPage->leaf==0 ); 1183 assert( pPage->childPtrSize==4 ); 1184 #ifndef SQLITE_DEBUG 1185 UNUSED_PARAMETER(pPage); 1186 #endif 1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); 1188 pInfo->nPayload = 0; 1189 pInfo->nLocal = 0; 1190 pInfo->pPayload = 0; 1191 return; 1192 } 1193 static void btreeParseCellPtr( 1194 MemPage *pPage, /* Page containing the cell */ 1195 u8 *pCell, /* Pointer to the cell text. */ 1196 CellInfo *pInfo /* Fill in this structure */ 1197 ){ 1198 u8 *pIter; /* For scanning through pCell */ 1199 u32 nPayload; /* Number of bytes of cell payload */ 1200 u64 iKey; /* Extracted Key value */ 1201 1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1203 assert( pPage->leaf==0 || pPage->leaf==1 ); 1204 assert( pPage->intKeyLeaf ); 1205 assert( pPage->childPtrSize==0 ); 1206 pIter = pCell; 1207 1208 /* The next block of code is equivalent to: 1209 ** 1210 ** pIter += getVarint32(pIter, nPayload); 1211 ** 1212 ** The code is inlined to avoid a function call. 1213 */ 1214 nPayload = *pIter; 1215 if( nPayload>=0x80 ){ 1216 u8 *pEnd = &pIter[8]; 1217 nPayload &= 0x7f; 1218 do{ 1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1220 }while( (*pIter)>=0x80 && pIter<pEnd ); 1221 } 1222 pIter++; 1223 1224 /* The next block of code is equivalent to: 1225 ** 1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); 1227 ** 1228 ** The code is inlined and the loop is unrolled for performance. 1229 ** This routine is a high-runner. 1230 */ 1231 iKey = *pIter; 1232 if( iKey>=0x80 ){ 1233 u8 x; 1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f); 1235 if( x>=0x80 ){ 1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f); 1237 if( x>=0x80 ){ 1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1239 if( x>=0x80 ){ 1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1241 if( x>=0x80 ){ 1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1243 if( x>=0x80 ){ 1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1245 if( x>=0x80 ){ 1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f); 1247 if( x>=0x80 ){ 1248 iKey = (iKey<<8) | (*++pIter); 1249 } 1250 } 1251 } 1252 } 1253 } 1254 } 1255 } 1256 } 1257 pIter++; 1258 1259 pInfo->nKey = *(i64*)&iKey; 1260 pInfo->nPayload = nPayload; 1261 pInfo->pPayload = pIter; 1262 testcase( nPayload==pPage->maxLocal ); 1263 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1264 if( nPayload<=pPage->maxLocal ){ 1265 /* This is the (easy) common case where the entire payload fits 1266 ** on the local page. No overflow is required. 1267 */ 1268 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1269 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1270 pInfo->nLocal = (u16)nPayload; 1271 }else{ 1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1273 } 1274 } 1275 static void btreeParseCellPtrIndex( 1276 MemPage *pPage, /* Page containing the cell */ 1277 u8 *pCell, /* Pointer to the cell text. */ 1278 CellInfo *pInfo /* Fill in this structure */ 1279 ){ 1280 u8 *pIter; /* For scanning through pCell */ 1281 u32 nPayload; /* Number of bytes of cell payload */ 1282 1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1284 assert( pPage->leaf==0 || pPage->leaf==1 ); 1285 assert( pPage->intKeyLeaf==0 ); 1286 pIter = pCell + pPage->childPtrSize; 1287 nPayload = *pIter; 1288 if( nPayload>=0x80 ){ 1289 u8 *pEnd = &pIter[8]; 1290 nPayload &= 0x7f; 1291 do{ 1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f); 1293 }while( *(pIter)>=0x80 && pIter<pEnd ); 1294 } 1295 pIter++; 1296 pInfo->nKey = nPayload; 1297 pInfo->nPayload = nPayload; 1298 pInfo->pPayload = pIter; 1299 testcase( nPayload==pPage->maxLocal ); 1300 testcase( nPayload==(u32)pPage->maxLocal+1 ); 1301 if( nPayload<=pPage->maxLocal ){ 1302 /* This is the (easy) common case where the entire payload fits 1303 ** on the local page. No overflow is required. 1304 */ 1305 pInfo->nSize = nPayload + (u16)(pIter - pCell); 1306 if( pInfo->nSize<4 ) pInfo->nSize = 4; 1307 pInfo->nLocal = (u16)nPayload; 1308 }else{ 1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); 1310 } 1311 } 1312 static void btreeParseCell( 1313 MemPage *pPage, /* Page containing the cell */ 1314 int iCell, /* The cell index. First cell is 0 */ 1315 CellInfo *pInfo /* Fill in this structure */ 1316 ){ 1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); 1318 } 1319 1320 /* 1321 ** The following routines are implementations of the MemPage.xCellSize 1322 ** method. 1323 ** 1324 ** Compute the total number of bytes that a Cell needs in the cell 1325 ** data area of the btree-page. The return number includes the cell 1326 ** data header and the local payload, but not any overflow page or 1327 ** the space used by the cell pointer. 1328 ** 1329 ** cellSizePtrNoPayload() => table internal nodes 1330 ** cellSizePtrTableLeaf() => table leaf nodes 1331 ** cellSizePtr() => all index nodes & table leaf nodes 1332 */ 1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ 1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ 1335 u8 *pEnd; /* End mark for a varint */ 1336 u32 nSize; /* Size value to return */ 1337 1338 #ifdef SQLITE_DEBUG 1339 /* The value returned by this function should always be the same as 1340 ** the (CellInfo.nSize) value found by doing a full parse of the 1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1342 ** this function verifies that this invariant is not violated. */ 1343 CellInfo debuginfo; 1344 pPage->xParseCell(pPage, pCell, &debuginfo); 1345 #endif 1346 1347 nSize = *pIter; 1348 if( nSize>=0x80 ){ 1349 pEnd = &pIter[8]; 1350 nSize &= 0x7f; 1351 do{ 1352 nSize = (nSize<<7) | (*++pIter & 0x7f); 1353 }while( *(pIter)>=0x80 && pIter<pEnd ); 1354 } 1355 pIter++; 1356 testcase( nSize==pPage->maxLocal ); 1357 testcase( nSize==(u32)pPage->maxLocal+1 ); 1358 if( nSize<=pPage->maxLocal ){ 1359 nSize += (u32)(pIter - pCell); 1360 if( nSize<4 ) nSize = 4; 1361 }else{ 1362 int minLocal = pPage->minLocal; 1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1364 testcase( nSize==pPage->maxLocal ); 1365 testcase( nSize==(u32)pPage->maxLocal+1 ); 1366 if( nSize>pPage->maxLocal ){ 1367 nSize = minLocal; 1368 } 1369 nSize += 4 + (u16)(pIter - pCell); 1370 } 1371 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1372 return (u16)nSize; 1373 } 1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ 1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ 1376 u8 *pEnd; /* End mark for a varint */ 1377 1378 #ifdef SQLITE_DEBUG 1379 /* The value returned by this function should always be the same as 1380 ** the (CellInfo.nSize) value found by doing a full parse of the 1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1382 ** this function verifies that this invariant is not violated. */ 1383 CellInfo debuginfo; 1384 pPage->xParseCell(pPage, pCell, &debuginfo); 1385 #else 1386 UNUSED_PARAMETER(pPage); 1387 #endif 1388 1389 assert( pPage->childPtrSize==4 ); 1390 pEnd = pIter + 9; 1391 while( (*pIter++)&0x80 && pIter<pEnd ); 1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); 1393 return (u16)(pIter - pCell); 1394 } 1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){ 1396 u8 *pIter = pCell; /* For looping over bytes of pCell */ 1397 u8 *pEnd; /* End mark for a varint */ 1398 u32 nSize; /* Size value to return */ 1399 1400 #ifdef SQLITE_DEBUG 1401 /* The value returned by this function should always be the same as 1402 ** the (CellInfo.nSize) value found by doing a full parse of the 1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of 1404 ** this function verifies that this invariant is not violated. */ 1405 CellInfo debuginfo; 1406 pPage->xParseCell(pPage, pCell, &debuginfo); 1407 #endif 1408 1409 nSize = *pIter; 1410 if( nSize>=0x80 ){ 1411 pEnd = &pIter[8]; 1412 nSize &= 0x7f; 1413 do{ 1414 nSize = (nSize<<7) | (*++pIter & 0x7f); 1415 }while( *(pIter)>=0x80 && pIter<pEnd ); 1416 } 1417 pIter++; 1418 /* pIter now points at the 64-bit integer key value, a variable length 1419 ** integer. The following block moves pIter to point at the first byte 1420 ** past the end of the key value. */ 1421 if( (*pIter++)&0x80 1422 && (*pIter++)&0x80 1423 && (*pIter++)&0x80 1424 && (*pIter++)&0x80 1425 && (*pIter++)&0x80 1426 && (*pIter++)&0x80 1427 && (*pIter++)&0x80 1428 && (*pIter++)&0x80 ){ pIter++; } 1429 testcase( nSize==pPage->maxLocal ); 1430 testcase( nSize==(u32)pPage->maxLocal+1 ); 1431 if( nSize<=pPage->maxLocal ){ 1432 nSize += (u32)(pIter - pCell); 1433 if( nSize<4 ) nSize = 4; 1434 }else{ 1435 int minLocal = pPage->minLocal; 1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); 1437 testcase( nSize==pPage->maxLocal ); 1438 testcase( nSize==(u32)pPage->maxLocal+1 ); 1439 if( nSize>pPage->maxLocal ){ 1440 nSize = minLocal; 1441 } 1442 nSize += 4 + (u16)(pIter - pCell); 1443 } 1444 assert( nSize==debuginfo.nSize || CORRUPT_DB ); 1445 return (u16)nSize; 1446 } 1447 1448 1449 #ifdef SQLITE_DEBUG 1450 /* This variation on cellSizePtr() is used inside of assert() statements 1451 ** only. */ 1452 static u16 cellSize(MemPage *pPage, int iCell){ 1453 return pPage->xCellSize(pPage, findCell(pPage, iCell)); 1454 } 1455 #endif 1456 1457 #ifndef SQLITE_OMIT_AUTOVACUUM 1458 /* 1459 ** The cell pCell is currently part of page pSrc but will ultimately be part 1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a 1461 ** pointer to an overflow page, insert an entry into the pointer-map for 1462 ** the overflow page that will be valid after pCell has been moved to pPage. 1463 */ 1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){ 1465 CellInfo info; 1466 if( *pRC ) return; 1467 assert( pCell!=0 ); 1468 pPage->xParseCell(pPage, pCell, &info); 1469 if( info.nLocal<info.nPayload ){ 1470 Pgno ovfl; 1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){ 1472 testcase( pSrc!=pPage ); 1473 *pRC = SQLITE_CORRUPT_BKPT; 1474 return; 1475 } 1476 ovfl = get4byte(&pCell[info.nSize-4]); 1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); 1478 } 1479 } 1480 #endif 1481 1482 1483 /* 1484 ** Defragment the page given. This routine reorganizes cells within the 1485 ** page so that there are no free-blocks on the free-block list. 1486 ** 1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be 1488 ** present in the page after this routine returns. 1489 ** 1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a 1491 ** b-tree page so that there are no freeblocks or fragment bytes, all 1492 ** unused bytes are contained in the unallocated space region, and all 1493 ** cells are packed tightly at the end of the page. 1494 */ 1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){ 1496 int i; /* Loop counter */ 1497 int pc; /* Address of the i-th cell */ 1498 int hdr; /* Offset to the page header */ 1499 int size; /* Size of a cell */ 1500 int usableSize; /* Number of usable bytes on a page */ 1501 int cellOffset; /* Offset to the cell pointer array */ 1502 int cbrk; /* Offset to the cell content area */ 1503 int nCell; /* Number of cells on the page */ 1504 unsigned char *data; /* The page data */ 1505 unsigned char *temp; /* Temp area for cell content */ 1506 unsigned char *src; /* Source of content */ 1507 int iCellFirst; /* First allowable cell index */ 1508 int iCellLast; /* Last possible cell index */ 1509 int iCellStart; /* First cell offset in input */ 1510 1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1512 assert( pPage->pBt!=0 ); 1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); 1514 assert( pPage->nOverflow==0 ); 1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1516 temp = 0; 1517 src = data = pPage->aData; 1518 hdr = pPage->hdrOffset; 1519 cellOffset = pPage->cellOffset; 1520 nCell = pPage->nCell; 1521 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB ); 1522 iCellFirst = cellOffset + 2*nCell; 1523 usableSize = pPage->pBt->usableSize; 1524 1525 /* This block handles pages with two or fewer free blocks and nMaxFrag 1526 ** or fewer fragmented bytes. In this case it is faster to move the 1527 ** two (or one) blocks of cells using memmove() and add the required 1528 ** offsets to each pointer in the cell-pointer array than it is to 1529 ** reconstruct the entire page. */ 1530 if( (int)data[hdr+7]<=nMaxFrag ){ 1531 int iFree = get2byte(&data[hdr+1]); 1532 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1533 if( iFree ){ 1534 int iFree2 = get2byte(&data[iFree]); 1535 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage); 1536 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ 1537 u8 *pEnd = &data[cellOffset + nCell*2]; 1538 u8 *pAddr; 1539 int sz2 = 0; 1540 int sz = get2byte(&data[iFree+2]); 1541 int top = get2byte(&data[hdr+5]); 1542 if( top>=iFree ){ 1543 return SQLITE_CORRUPT_PAGE(pPage); 1544 } 1545 if( iFree2 ){ 1546 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage); 1547 sz2 = get2byte(&data[iFree2+2]); 1548 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage); 1549 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); 1550 sz += sz2; 1551 }else if( NEVER(iFree+sz>usableSize) ){ 1552 return SQLITE_CORRUPT_PAGE(pPage); 1553 } 1554 1555 cbrk = top+sz; 1556 assert( cbrk+(iFree-top) <= usableSize ); 1557 memmove(&data[cbrk], &data[top], iFree-top); 1558 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){ 1559 pc = get2byte(pAddr); 1560 if( pc<iFree ){ put2byte(pAddr, pc+sz); } 1561 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); } 1562 } 1563 goto defragment_out; 1564 } 1565 } 1566 } 1567 1568 cbrk = usableSize; 1569 iCellLast = usableSize - 4; 1570 iCellStart = get2byte(&data[hdr+5]); 1571 for(i=0; i<nCell; i++){ 1572 u8 *pAddr; /* The i-th cell pointer */ 1573 pAddr = &data[cellOffset + i*2]; 1574 pc = get2byte(pAddr); 1575 testcase( pc==iCellFirst ); 1576 testcase( pc==iCellLast ); 1577 /* These conditions have already been verified in btreeInitPage() 1578 ** if PRAGMA cell_size_check=ON. 1579 */ 1580 if( pc<iCellStart || pc>iCellLast ){ 1581 return SQLITE_CORRUPT_PAGE(pPage); 1582 } 1583 assert( pc>=iCellStart && pc<=iCellLast ); 1584 size = pPage->xCellSize(pPage, &src[pc]); 1585 cbrk -= size; 1586 if( cbrk<iCellStart || pc+size>usableSize ){ 1587 return SQLITE_CORRUPT_PAGE(pPage); 1588 } 1589 assert( cbrk+size<=usableSize && cbrk>=iCellStart ); 1590 testcase( cbrk+size==usableSize ); 1591 testcase( pc+size==usableSize ); 1592 put2byte(pAddr, cbrk); 1593 if( temp==0 ){ 1594 if( cbrk==pc ) continue; 1595 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); 1596 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart); 1597 src = temp; 1598 } 1599 memcpy(&data[cbrk], &src[pc], size); 1600 } 1601 data[hdr+7] = 0; 1602 1603 defragment_out: 1604 assert( pPage->nFree>=0 ); 1605 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ 1606 return SQLITE_CORRUPT_PAGE(pPage); 1607 } 1608 assert( cbrk>=iCellFirst ); 1609 put2byte(&data[hdr+5], cbrk); 1610 data[hdr+1] = 0; 1611 data[hdr+2] = 0; 1612 memset(&data[iCellFirst], 0, cbrk-iCellFirst); 1613 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1614 return SQLITE_OK; 1615 } 1616 1617 /* 1618 ** Search the free-list on page pPg for space to store a cell nByte bytes in 1619 ** size. If one can be found, return a pointer to the space and remove it 1620 ** from the free-list. 1621 ** 1622 ** If no suitable space can be found on the free-list, return NULL. 1623 ** 1624 ** This function may detect corruption within pPg. If corruption is 1625 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. 1626 ** 1627 ** Slots on the free list that are between 1 and 3 bytes larger than nByte 1628 ** will be ignored if adding the extra space to the fragmentation count 1629 ** causes the fragmentation count to exceed 60. 1630 */ 1631 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ 1632 const int hdr = pPg->hdrOffset; /* Offset to page header */ 1633 u8 * const aData = pPg->aData; /* Page data */ 1634 int iAddr = hdr + 1; /* Address of ptr to pc */ 1635 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */ 1636 int pc = get2byte(pTmp); /* Address of a free slot */ 1637 int x; /* Excess size of the slot */ 1638 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */ 1639 int size; /* Size of the free slot */ 1640 1641 assert( pc>0 ); 1642 while( pc<=maxPC ){ 1643 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each 1644 ** freeblock form a big-endian integer which is the size of the freeblock 1645 ** in bytes, including the 4-byte header. */ 1646 pTmp = &aData[pc+2]; 1647 size = get2byte(pTmp); 1648 if( (x = size - nByte)>=0 ){ 1649 testcase( x==4 ); 1650 testcase( x==3 ); 1651 if( x<4 ){ 1652 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total 1653 ** number of bytes in fragments may not exceed 60. */ 1654 if( aData[hdr+7]>57 ) return 0; 1655 1656 /* Remove the slot from the free-list. Update the number of 1657 ** fragmented bytes within the page. */ 1658 memcpy(&aData[iAddr], &aData[pc], 2); 1659 aData[hdr+7] += (u8)x; 1660 testcase( pc+x>maxPC ); 1661 return &aData[pc]; 1662 }else if( x+pc > maxPC ){ 1663 /* This slot extends off the end of the usable part of the page */ 1664 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1665 return 0; 1666 }else{ 1667 /* The slot remains on the free-list. Reduce its size to account 1668 ** for the portion used by the new allocation. */ 1669 put2byte(&aData[pc+2], x); 1670 } 1671 return &aData[pc + x]; 1672 } 1673 iAddr = pc; 1674 pTmp = &aData[pc]; 1675 pc = get2byte(pTmp); 1676 if( pc<=iAddr+size ){ 1677 if( pc ){ 1678 /* The next slot in the chain is not past the end of the current slot */ 1679 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1680 } 1681 return 0; 1682 } 1683 } 1684 if( pc>maxPC+nByte-4 ){ 1685 /* The free slot chain extends off the end of the page */ 1686 *pRc = SQLITE_CORRUPT_PAGE(pPg); 1687 } 1688 return 0; 1689 } 1690 1691 /* 1692 ** Allocate nByte bytes of space from within the B-Tree page passed 1693 ** as the first argument. Write into *pIdx the index into pPage->aData[] 1694 ** of the first byte of allocated space. Return either SQLITE_OK or 1695 ** an error code (usually SQLITE_CORRUPT). 1696 ** 1697 ** The caller guarantees that there is sufficient space to make the 1698 ** allocation. This routine might need to defragment in order to bring 1699 ** all the space together, however. This routine will avoid using 1700 ** the first two bytes past the cell pointer area since presumably this 1701 ** allocation is being made in order to insert a new cell, so we will 1702 ** also end up needing a new cell pointer. 1703 */ 1704 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ 1705 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ 1706 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ 1707 int top; /* First byte of cell content area */ 1708 int rc = SQLITE_OK; /* Integer return code */ 1709 u8 *pTmp; /* Temp ptr into data[] */ 1710 int gap; /* First byte of gap between cell pointers and cell content */ 1711 1712 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1713 assert( pPage->pBt ); 1714 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1715 assert( nByte>=0 ); /* Minimum cell size is 4 */ 1716 assert( pPage->nFree>=nByte ); 1717 assert( pPage->nOverflow==0 ); 1718 assert( nByte < (int)(pPage->pBt->usableSize-8) ); 1719 1720 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); 1721 gap = pPage->cellOffset + 2*pPage->nCell; 1722 assert( gap<=65536 ); 1723 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size 1724 ** and the reserved space is zero (the usual value for reserved space) 1725 ** then the cell content offset of an empty page wants to be 65536. 1726 ** However, that integer is too large to be stored in a 2-byte unsigned 1727 ** integer, so a value of 0 is used in its place. */ 1728 pTmp = &data[hdr+5]; 1729 top = get2byte(pTmp); 1730 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */ 1731 if( gap>top ){ 1732 if( top==0 && pPage->pBt->usableSize==65536 ){ 1733 top = 65536; 1734 }else{ 1735 return SQLITE_CORRUPT_PAGE(pPage); 1736 } 1737 } 1738 1739 /* If there is enough space between gap and top for one more cell pointer, 1740 ** and if the freelist is not empty, then search the 1741 ** freelist looking for a slot big enough to satisfy the request. 1742 */ 1743 testcase( gap+2==top ); 1744 testcase( gap+1==top ); 1745 testcase( gap==top ); 1746 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ 1747 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); 1748 if( pSpace ){ 1749 int g2; 1750 assert( pSpace+nByte<=data+pPage->pBt->usableSize ); 1751 *pIdx = g2 = (int)(pSpace-data); 1752 if( g2<=gap ){ 1753 return SQLITE_CORRUPT_PAGE(pPage); 1754 }else{ 1755 return SQLITE_OK; 1756 } 1757 }else if( rc ){ 1758 return rc; 1759 } 1760 } 1761 1762 /* The request could not be fulfilled using a freelist slot. Check 1763 ** to see if defragmentation is necessary. 1764 */ 1765 testcase( gap+2+nByte==top ); 1766 if( gap+2+nByte>top ){ 1767 assert( pPage->nCell>0 || CORRUPT_DB ); 1768 assert( pPage->nFree>=0 ); 1769 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte))); 1770 if( rc ) return rc; 1771 top = get2byteNotZero(&data[hdr+5]); 1772 assert( gap+2+nByte<=top ); 1773 } 1774 1775 1776 /* Allocate memory from the gap in between the cell pointer array 1777 ** and the cell content area. The btreeComputeFreeSpace() call has already 1778 ** validated the freelist. Given that the freelist is valid, there 1779 ** is no way that the allocation can extend off the end of the page. 1780 ** The assert() below verifies the previous sentence. 1781 */ 1782 top -= nByte; 1783 put2byte(&data[hdr+5], top); 1784 assert( top+nByte <= (int)pPage->pBt->usableSize ); 1785 *pIdx = top; 1786 return SQLITE_OK; 1787 } 1788 1789 /* 1790 ** Return a section of the pPage->aData to the freelist. 1791 ** The first byte of the new free block is pPage->aData[iStart] 1792 ** and the size of the block is iSize bytes. 1793 ** 1794 ** Adjacent freeblocks are coalesced. 1795 ** 1796 ** Even though the freeblock list was checked by btreeComputeFreeSpace(), 1797 ** that routine will not detect overlap between cells or freeblocks. Nor 1798 ** does it detect cells or freeblocks that encrouch into the reserved bytes 1799 ** at the end of the page. So do additional corruption checks inside this 1800 ** routine and return SQLITE_CORRUPT if any problems are found. 1801 */ 1802 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ 1803 u16 iPtr; /* Address of ptr to next freeblock */ 1804 u16 iFreeBlk; /* Address of the next freeblock */ 1805 u8 hdr; /* Page header size. 0 or 100 */ 1806 u8 nFrag = 0; /* Reduction in fragmentation */ 1807 u16 iOrigSize = iSize; /* Original value of iSize */ 1808 u16 x; /* Offset to cell content area */ 1809 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ 1810 unsigned char *data = pPage->aData; /* Page content */ 1811 u8 *pTmp; /* Temporary ptr into data[] */ 1812 1813 assert( pPage->pBt!=0 ); 1814 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 1815 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); 1816 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); 1817 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1818 assert( iSize>=4 ); /* Minimum cell size is 4 */ 1819 assert( iStart<=pPage->pBt->usableSize-4 ); 1820 1821 /* The list of freeblocks must be in ascending order. Find the 1822 ** spot on the list where iStart should be inserted. 1823 */ 1824 hdr = pPage->hdrOffset; 1825 iPtr = hdr + 1; 1826 if( data[iPtr+1]==0 && data[iPtr]==0 ){ 1827 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ 1828 }else{ 1829 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ 1830 if( iFreeBlk<iPtr+4 ){ 1831 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */ 1832 return SQLITE_CORRUPT_PAGE(pPage); 1833 } 1834 iPtr = iFreeBlk; 1835 } 1836 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */ 1837 return SQLITE_CORRUPT_PAGE(pPage); 1838 } 1839 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB ); 1840 1841 /* At this point: 1842 ** iFreeBlk: First freeblock after iStart, or zero if none 1843 ** iPtr: The address of a pointer to iFreeBlk 1844 ** 1845 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. 1846 */ 1847 if( iFreeBlk && iEnd+3>=iFreeBlk ){ 1848 nFrag = iFreeBlk - iEnd; 1849 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); 1850 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); 1851 if( iEnd > pPage->pBt->usableSize ){ 1852 return SQLITE_CORRUPT_PAGE(pPage); 1853 } 1854 iSize = iEnd - iStart; 1855 iFreeBlk = get2byte(&data[iFreeBlk]); 1856 } 1857 1858 /* If iPtr is another freeblock (that is, if iPtr is not the freelist 1859 ** pointer in the page header) then check to see if iStart should be 1860 ** coalesced onto the end of iPtr. 1861 */ 1862 if( iPtr>hdr+1 ){ 1863 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); 1864 if( iPtrEnd+3>=iStart ){ 1865 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); 1866 nFrag += iStart - iPtrEnd; 1867 iSize = iEnd - iPtr; 1868 iStart = iPtr; 1869 } 1870 } 1871 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); 1872 data[hdr+7] -= nFrag; 1873 } 1874 pTmp = &data[hdr+5]; 1875 x = get2byte(pTmp); 1876 if( iStart<=x ){ 1877 /* The new freeblock is at the beginning of the cell content area, 1878 ** so just extend the cell content area rather than create another 1879 ** freelist entry */ 1880 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage); 1881 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); 1882 put2byte(&data[hdr+1], iFreeBlk); 1883 put2byte(&data[hdr+5], iEnd); 1884 }else{ 1885 /* Insert the new freeblock into the freelist */ 1886 put2byte(&data[iPtr], iStart); 1887 } 1888 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ 1889 /* Overwrite deleted information with zeros when the secure_delete 1890 ** option is enabled */ 1891 memset(&data[iStart], 0, iSize); 1892 } 1893 put2byte(&data[iStart], iFreeBlk); 1894 put2byte(&data[iStart+2], iSize); 1895 pPage->nFree += iOrigSize; 1896 return SQLITE_OK; 1897 } 1898 1899 /* 1900 ** Decode the flags byte (the first byte of the header) for a page 1901 ** and initialize fields of the MemPage structure accordingly. 1902 ** 1903 ** Only the following combinations are supported. Anything different 1904 ** indicates a corrupt database files: 1905 ** 1906 ** PTF_ZERODATA 1907 ** PTF_ZERODATA | PTF_LEAF 1908 ** PTF_LEAFDATA | PTF_INTKEY 1909 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF 1910 */ 1911 static int decodeFlags(MemPage *pPage, int flagByte){ 1912 BtShared *pBt; /* A copy of pPage->pBt */ 1913 1914 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); 1915 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1916 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); 1917 flagByte &= ~PTF_LEAF; 1918 pPage->childPtrSize = 4-4*pPage->leaf; 1919 pBt = pPage->pBt; 1920 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ 1921 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an 1922 ** interior table b-tree page. */ 1923 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); 1924 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a 1925 ** leaf table b-tree page. */ 1926 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); 1927 pPage->intKey = 1; 1928 if( pPage->leaf ){ 1929 pPage->intKeyLeaf = 1; 1930 pPage->xCellSize = cellSizePtrTableLeaf; 1931 pPage->xParseCell = btreeParseCellPtr; 1932 }else{ 1933 pPage->intKeyLeaf = 0; 1934 pPage->xCellSize = cellSizePtrNoPayload; 1935 pPage->xParseCell = btreeParseCellPtrNoPayload; 1936 } 1937 pPage->maxLocal = pBt->maxLeaf; 1938 pPage->minLocal = pBt->minLeaf; 1939 }else if( flagByte==PTF_ZERODATA ){ 1940 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an 1941 ** interior index b-tree page. */ 1942 assert( (PTF_ZERODATA)==2 ); 1943 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a 1944 ** leaf index b-tree page. */ 1945 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); 1946 pPage->intKey = 0; 1947 pPage->intKeyLeaf = 0; 1948 pPage->xCellSize = cellSizePtr; 1949 pPage->xParseCell = btreeParseCellPtrIndex; 1950 pPage->maxLocal = pBt->maxLocal; 1951 pPage->minLocal = pBt->minLocal; 1952 }else{ 1953 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is 1954 ** an error. */ 1955 pPage->intKey = 0; 1956 pPage->intKeyLeaf = 0; 1957 pPage->xCellSize = cellSizePtr; 1958 pPage->xParseCell = btreeParseCellPtrIndex; 1959 return SQLITE_CORRUPT_PAGE(pPage); 1960 } 1961 pPage->max1bytePayload = pBt->max1bytePayload; 1962 return SQLITE_OK; 1963 } 1964 1965 /* 1966 ** Compute the amount of freespace on the page. In other words, fill 1967 ** in the pPage->nFree field. 1968 */ 1969 static int btreeComputeFreeSpace(MemPage *pPage){ 1970 int pc; /* Address of a freeblock within pPage->aData[] */ 1971 u8 hdr; /* Offset to beginning of page header */ 1972 u8 *data; /* Equal to pPage->aData */ 1973 int usableSize; /* Amount of usable space on each page */ 1974 int nFree; /* Number of unused bytes on the page */ 1975 int top; /* First byte of the cell content area */ 1976 int iCellFirst; /* First allowable cell or freeblock offset */ 1977 int iCellLast; /* Last possible cell or freeblock offset */ 1978 1979 assert( pPage->pBt!=0 ); 1980 assert( pPage->pBt->db!=0 ); 1981 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 1982 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 1983 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 1984 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 1985 assert( pPage->isInit==1 ); 1986 assert( pPage->nFree<0 ); 1987 1988 usableSize = pPage->pBt->usableSize; 1989 hdr = pPage->hdrOffset; 1990 data = pPage->aData; 1991 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates 1992 ** the start of the cell content area. A zero value for this integer is 1993 ** interpreted as 65536. */ 1994 top = get2byteNotZero(&data[hdr+5]); 1995 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell; 1996 iCellLast = usableSize - 4; 1997 1998 /* Compute the total free space on the page 1999 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the 2000 ** start of the first freeblock on the page, or is zero if there are no 2001 ** freeblocks. */ 2002 pc = get2byte(&data[hdr+1]); 2003 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ 2004 if( pc>0 ){ 2005 u32 next, size; 2006 if( pc<top ){ 2007 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will 2008 ** always be at least one cell before the first freeblock. 2009 */ 2010 return SQLITE_CORRUPT_PAGE(pPage); 2011 } 2012 while( 1 ){ 2013 if( pc>iCellLast ){ 2014 /* Freeblock off the end of the page */ 2015 return SQLITE_CORRUPT_PAGE(pPage); 2016 } 2017 next = get2byte(&data[pc]); 2018 size = get2byte(&data[pc+2]); 2019 nFree = nFree + size; 2020 if( next<=pc+size+3 ) break; 2021 pc = next; 2022 } 2023 if( next>0 ){ 2024 /* Freeblock not in ascending order */ 2025 return SQLITE_CORRUPT_PAGE(pPage); 2026 } 2027 if( pc+size>(unsigned int)usableSize ){ 2028 /* Last freeblock extends past page end */ 2029 return SQLITE_CORRUPT_PAGE(pPage); 2030 } 2031 } 2032 2033 /* At this point, nFree contains the sum of the offset to the start 2034 ** of the cell-content area plus the number of free bytes within 2035 ** the cell-content area. If this is greater than the usable-size 2036 ** of the page, then the page must be corrupted. This check also 2037 ** serves to verify that the offset to the start of the cell-content 2038 ** area, according to the page header, lies within the page. 2039 */ 2040 if( nFree>usableSize || nFree<iCellFirst ){ 2041 return SQLITE_CORRUPT_PAGE(pPage); 2042 } 2043 pPage->nFree = (u16)(nFree - iCellFirst); 2044 return SQLITE_OK; 2045 } 2046 2047 /* 2048 ** Do additional sanity check after btreeInitPage() if 2049 ** PRAGMA cell_size_check=ON 2050 */ 2051 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){ 2052 int iCellFirst; /* First allowable cell or freeblock offset */ 2053 int iCellLast; /* Last possible cell or freeblock offset */ 2054 int i; /* Index into the cell pointer array */ 2055 int sz; /* Size of a cell */ 2056 int pc; /* Address of a freeblock within pPage->aData[] */ 2057 u8 *data; /* Equal to pPage->aData */ 2058 int usableSize; /* Maximum usable space on the page */ 2059 int cellOffset; /* Start of cell content area */ 2060 2061 iCellFirst = pPage->cellOffset + 2*pPage->nCell; 2062 usableSize = pPage->pBt->usableSize; 2063 iCellLast = usableSize - 4; 2064 data = pPage->aData; 2065 cellOffset = pPage->cellOffset; 2066 if( !pPage->leaf ) iCellLast--; 2067 for(i=0; i<pPage->nCell; i++){ 2068 pc = get2byteAligned(&data[cellOffset+i*2]); 2069 testcase( pc==iCellFirst ); 2070 testcase( pc==iCellLast ); 2071 if( pc<iCellFirst || pc>iCellLast ){ 2072 return SQLITE_CORRUPT_PAGE(pPage); 2073 } 2074 sz = pPage->xCellSize(pPage, &data[pc]); 2075 testcase( pc+sz==usableSize ); 2076 if( pc+sz>usableSize ){ 2077 return SQLITE_CORRUPT_PAGE(pPage); 2078 } 2079 } 2080 return SQLITE_OK; 2081 } 2082 2083 /* 2084 ** Initialize the auxiliary information for a disk block. 2085 ** 2086 ** Return SQLITE_OK on success. If we see that the page does 2087 ** not contain a well-formed database page, then return 2088 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not 2089 ** guarantee that the page is well-formed. It only shows that 2090 ** we failed to detect any corruption. 2091 */ 2092 static int btreeInitPage(MemPage *pPage){ 2093 u8 *data; /* Equal to pPage->aData */ 2094 BtShared *pBt; /* The main btree structure */ 2095 2096 assert( pPage->pBt!=0 ); 2097 assert( pPage->pBt->db!=0 ); 2098 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2099 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); 2100 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); 2101 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); 2102 assert( pPage->isInit==0 ); 2103 2104 pBt = pPage->pBt; 2105 data = pPage->aData + pPage->hdrOffset; 2106 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating 2107 ** the b-tree page type. */ 2108 if( decodeFlags(pPage, data[0]) ){ 2109 return SQLITE_CORRUPT_PAGE(pPage); 2110 } 2111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2112 pPage->maskPage = (u16)(pBt->pageSize - 1); 2113 pPage->nOverflow = 0; 2114 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize; 2115 pPage->aCellIdx = data + pPage->childPtrSize + 8; 2116 pPage->aDataEnd = pPage->aData + pBt->pageSize; 2117 pPage->aDataOfst = pPage->aData + pPage->childPtrSize; 2118 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 2119 ** number of cells on the page. */ 2120 pPage->nCell = get2byte(&data[3]); 2121 if( pPage->nCell>MX_CELL(pBt) ){ 2122 /* To many cells for a single page. The page must be corrupt */ 2123 return SQLITE_CORRUPT_PAGE(pPage); 2124 } 2125 testcase( pPage->nCell==MX_CELL(pBt) ); 2126 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only 2127 ** possible for a root page of a table that contains no rows) then the 2128 ** offset to the cell content area will equal the page size minus the 2129 ** bytes of reserved space. */ 2130 assert( pPage->nCell>0 2131 || get2byteNotZero(&data[5])==(int)pBt->usableSize 2132 || CORRUPT_DB ); 2133 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */ 2134 pPage->isInit = 1; 2135 if( pBt->db->flags & SQLITE_CellSizeCk ){ 2136 return btreeCellSizeCheck(pPage); 2137 } 2138 return SQLITE_OK; 2139 } 2140 2141 /* 2142 ** Set up a raw page so that it looks like a database page holding 2143 ** no entries. 2144 */ 2145 static void zeroPage(MemPage *pPage, int flags){ 2146 unsigned char *data = pPage->aData; 2147 BtShared *pBt = pPage->pBt; 2148 u8 hdr = pPage->hdrOffset; 2149 u16 first; 2150 2151 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB ); 2152 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2153 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); 2154 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 2155 assert( sqlite3_mutex_held(pBt->mutex) ); 2156 if( pBt->btsFlags & BTS_FAST_SECURE ){ 2157 memset(&data[hdr], 0, pBt->usableSize - hdr); 2158 } 2159 data[hdr] = (char)flags; 2160 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); 2161 memset(&data[hdr+1], 0, 4); 2162 data[hdr+7] = 0; 2163 put2byte(&data[hdr+5], pBt->usableSize); 2164 pPage->nFree = (u16)(pBt->usableSize - first); 2165 decodeFlags(pPage, flags); 2166 pPage->cellOffset = first; 2167 pPage->aDataEnd = &data[pBt->pageSize]; 2168 pPage->aCellIdx = &data[first]; 2169 pPage->aDataOfst = &data[pPage->childPtrSize]; 2170 pPage->nOverflow = 0; 2171 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); 2172 pPage->maskPage = (u16)(pBt->pageSize - 1); 2173 pPage->nCell = 0; 2174 pPage->isInit = 1; 2175 } 2176 2177 2178 /* 2179 ** Convert a DbPage obtained from the pager into a MemPage used by 2180 ** the btree layer. 2181 */ 2182 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ 2183 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2184 if( pgno!=pPage->pgno ){ 2185 pPage->aData = sqlite3PagerGetData(pDbPage); 2186 pPage->pDbPage = pDbPage; 2187 pPage->pBt = pBt; 2188 pPage->pgno = pgno; 2189 pPage->hdrOffset = pgno==1 ? 100 : 0; 2190 } 2191 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); 2192 return pPage; 2193 } 2194 2195 /* 2196 ** Get a page from the pager. Initialize the MemPage.pBt and 2197 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). 2198 ** 2199 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care 2200 ** about the content of the page at this time. So do not go to the disk 2201 ** to fetch the content. Just fill in the content with zeros for now. 2202 ** If in the future we call sqlite3PagerWrite() on this page, that 2203 ** means we have started to be concerned about content and the disk 2204 ** read should occur at that point. 2205 */ 2206 static int btreeGetPage( 2207 BtShared *pBt, /* The btree */ 2208 Pgno pgno, /* Number of the page to fetch */ 2209 MemPage **ppPage, /* Return the page in this parameter */ 2210 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2211 ){ 2212 int rc; 2213 DbPage *pDbPage; 2214 2215 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); 2216 assert( sqlite3_mutex_held(pBt->mutex) ); 2217 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); 2218 if( rc ) return rc; 2219 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); 2220 return SQLITE_OK; 2221 } 2222 2223 /* 2224 ** Retrieve a page from the pager cache. If the requested page is not 2225 ** already in the pager cache return NULL. Initialize the MemPage.pBt and 2226 ** MemPage.aData elements if needed. 2227 */ 2228 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ 2229 DbPage *pDbPage; 2230 assert( sqlite3_mutex_held(pBt->mutex) ); 2231 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); 2232 if( pDbPage ){ 2233 return btreePageFromDbPage(pDbPage, pgno, pBt); 2234 } 2235 return 0; 2236 } 2237 2238 /* 2239 ** Return the size of the database file in pages. If there is any kind of 2240 ** error, return ((unsigned int)-1). 2241 */ 2242 static Pgno btreePagecount(BtShared *pBt){ 2243 return pBt->nPage; 2244 } 2245 Pgno sqlite3BtreeLastPage(Btree *p){ 2246 assert( sqlite3BtreeHoldsMutex(p) ); 2247 return btreePagecount(p->pBt); 2248 } 2249 2250 /* 2251 ** Get a page from the pager and initialize it. 2252 ** 2253 ** If pCur!=0 then the page is being fetched as part of a moveToChild() 2254 ** call. Do additional sanity checking on the page in this case. 2255 ** And if the fetch fails, this routine must decrement pCur->iPage. 2256 ** 2257 ** The page is fetched as read-write unless pCur is not NULL and is 2258 ** a read-only cursor. 2259 ** 2260 ** If an error occurs, then *ppPage is undefined. It 2261 ** may remain unchanged, or it may be set to an invalid value. 2262 */ 2263 static int getAndInitPage( 2264 BtShared *pBt, /* The database file */ 2265 Pgno pgno, /* Number of the page to get */ 2266 MemPage **ppPage, /* Write the page pointer here */ 2267 BtCursor *pCur, /* Cursor to receive the page, or NULL */ 2268 int bReadOnly /* True for a read-only page */ 2269 ){ 2270 int rc; 2271 DbPage *pDbPage; 2272 assert( sqlite3_mutex_held(pBt->mutex) ); 2273 assert( pCur==0 || ppPage==&pCur->pPage ); 2274 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); 2275 assert( pCur==0 || pCur->iPage>0 ); 2276 2277 if( pgno>btreePagecount(pBt) ){ 2278 rc = SQLITE_CORRUPT_BKPT; 2279 goto getAndInitPage_error1; 2280 } 2281 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); 2282 if( rc ){ 2283 goto getAndInitPage_error1; 2284 } 2285 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); 2286 if( (*ppPage)->isInit==0 ){ 2287 btreePageFromDbPage(pDbPage, pgno, pBt); 2288 rc = btreeInitPage(*ppPage); 2289 if( rc!=SQLITE_OK ){ 2290 goto getAndInitPage_error2; 2291 } 2292 } 2293 assert( (*ppPage)->pgno==pgno || CORRUPT_DB ); 2294 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); 2295 2296 /* If obtaining a child page for a cursor, we must verify that the page is 2297 ** compatible with the root page. */ 2298 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ 2299 rc = SQLITE_CORRUPT_PGNO(pgno); 2300 goto getAndInitPage_error2; 2301 } 2302 return SQLITE_OK; 2303 2304 getAndInitPage_error2: 2305 releasePage(*ppPage); 2306 getAndInitPage_error1: 2307 if( pCur ){ 2308 pCur->iPage--; 2309 pCur->pPage = pCur->apPage[pCur->iPage]; 2310 } 2311 testcase( pgno==0 ); 2312 assert( pgno!=0 || rc!=SQLITE_OK ); 2313 return rc; 2314 } 2315 2316 /* 2317 ** Release a MemPage. This should be called once for each prior 2318 ** call to btreeGetPage. 2319 ** 2320 ** Page1 is a special case and must be released using releasePageOne(). 2321 */ 2322 static void releasePageNotNull(MemPage *pPage){ 2323 assert( pPage->aData ); 2324 assert( pPage->pBt ); 2325 assert( pPage->pDbPage!=0 ); 2326 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2327 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2329 sqlite3PagerUnrefNotNull(pPage->pDbPage); 2330 } 2331 static void releasePage(MemPage *pPage){ 2332 if( pPage ) releasePageNotNull(pPage); 2333 } 2334 static void releasePageOne(MemPage *pPage){ 2335 assert( pPage!=0 ); 2336 assert( pPage->aData ); 2337 assert( pPage->pBt ); 2338 assert( pPage->pDbPage!=0 ); 2339 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); 2340 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); 2341 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2342 sqlite3PagerUnrefPageOne(pPage->pDbPage); 2343 } 2344 2345 /* 2346 ** Get an unused page. 2347 ** 2348 ** This works just like btreeGetPage() with the addition: 2349 ** 2350 ** * If the page is already in use for some other purpose, immediately 2351 ** release it and return an SQLITE_CURRUPT error. 2352 ** * Make sure the isInit flag is clear 2353 */ 2354 static int btreeGetUnusedPage( 2355 BtShared *pBt, /* The btree */ 2356 Pgno pgno, /* Number of the page to fetch */ 2357 MemPage **ppPage, /* Return the page in this parameter */ 2358 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ 2359 ){ 2360 int rc = btreeGetPage(pBt, pgno, ppPage, flags); 2361 if( rc==SQLITE_OK ){ 2362 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ 2363 releasePage(*ppPage); 2364 *ppPage = 0; 2365 return SQLITE_CORRUPT_BKPT; 2366 } 2367 (*ppPage)->isInit = 0; 2368 }else{ 2369 *ppPage = 0; 2370 } 2371 return rc; 2372 } 2373 2374 2375 /* 2376 ** During a rollback, when the pager reloads information into the cache 2377 ** so that the cache is restored to its original state at the start of 2378 ** the transaction, for each page restored this routine is called. 2379 ** 2380 ** This routine needs to reset the extra data section at the end of the 2381 ** page to agree with the restored data. 2382 */ 2383 static void pageReinit(DbPage *pData){ 2384 MemPage *pPage; 2385 pPage = (MemPage *)sqlite3PagerGetExtra(pData); 2386 assert( sqlite3PagerPageRefcount(pData)>0 ); 2387 if( pPage->isInit ){ 2388 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 2389 pPage->isInit = 0; 2390 if( sqlite3PagerPageRefcount(pData)>1 ){ 2391 /* pPage might not be a btree page; it might be an overflow page 2392 ** or ptrmap page or a free page. In those cases, the following 2393 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. 2394 ** But no harm is done by this. And it is very important that 2395 ** btreeInitPage() be called on every btree page so we make 2396 ** the call for every page that comes in for re-initing. */ 2397 btreeInitPage(pPage); 2398 } 2399 } 2400 } 2401 2402 /* 2403 ** Invoke the busy handler for a btree. 2404 */ 2405 static int btreeInvokeBusyHandler(void *pArg){ 2406 BtShared *pBt = (BtShared*)pArg; 2407 assert( pBt->db ); 2408 assert( sqlite3_mutex_held(pBt->db->mutex) ); 2409 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); 2410 } 2411 2412 /* 2413 ** Open a database file. 2414 ** 2415 ** zFilename is the name of the database file. If zFilename is NULL 2416 ** then an ephemeral database is created. The ephemeral database might 2417 ** be exclusively in memory, or it might use a disk-based memory cache. 2418 ** Either way, the ephemeral database will be automatically deleted 2419 ** when sqlite3BtreeClose() is called. 2420 ** 2421 ** If zFilename is ":memory:" then an in-memory database is created 2422 ** that is automatically destroyed when it is closed. 2423 ** 2424 ** The "flags" parameter is a bitmask that might contain bits like 2425 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. 2426 ** 2427 ** If the database is already opened in the same database connection 2428 ** and we are in shared cache mode, then the open will fail with an 2429 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared 2430 ** objects in the same database connection since doing so will lead 2431 ** to problems with locking. 2432 */ 2433 int sqlite3BtreeOpen( 2434 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ 2435 const char *zFilename, /* Name of the file containing the BTree database */ 2436 sqlite3 *db, /* Associated database handle */ 2437 Btree **ppBtree, /* Pointer to new Btree object written here */ 2438 int flags, /* Options */ 2439 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ 2440 ){ 2441 BtShared *pBt = 0; /* Shared part of btree structure */ 2442 Btree *p; /* Handle to return */ 2443 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ 2444 int rc = SQLITE_OK; /* Result code from this function */ 2445 u8 nReserve; /* Byte of unused space on each page */ 2446 unsigned char zDbHeader[100]; /* Database header content */ 2447 2448 /* True if opening an ephemeral, temporary database */ 2449 const int isTempDb = zFilename==0 || zFilename[0]==0; 2450 2451 /* Set the variable isMemdb to true for an in-memory database, or 2452 ** false for a file-based database. 2453 */ 2454 #ifdef SQLITE_OMIT_MEMORYDB 2455 const int isMemdb = 0; 2456 #else 2457 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) 2458 || (isTempDb && sqlite3TempInMemory(db)) 2459 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; 2460 #endif 2461 2462 assert( db!=0 ); 2463 assert( pVfs!=0 ); 2464 assert( sqlite3_mutex_held(db->mutex) ); 2465 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ 2466 2467 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ 2468 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); 2469 2470 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ 2471 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); 2472 2473 if( isMemdb ){ 2474 flags |= BTREE_MEMORY; 2475 } 2476 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ 2477 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; 2478 } 2479 p = sqlite3MallocZero(sizeof(Btree)); 2480 if( !p ){ 2481 return SQLITE_NOMEM_BKPT; 2482 } 2483 p->inTrans = TRANS_NONE; 2484 p->db = db; 2485 #ifndef SQLITE_OMIT_SHARED_CACHE 2486 p->lock.pBtree = p; 2487 p->lock.iTable = 1; 2488 #endif 2489 2490 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2491 /* 2492 ** If this Btree is a candidate for shared cache, try to find an 2493 ** existing BtShared object that we can share with 2494 */ 2495 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ 2496 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ 2497 int nFilename = sqlite3Strlen30(zFilename)+1; 2498 int nFullPathname = pVfs->mxPathname+1; 2499 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); 2500 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2501 2502 p->sharable = 1; 2503 if( !zFullPathname ){ 2504 sqlite3_free(p); 2505 return SQLITE_NOMEM_BKPT; 2506 } 2507 if( isMemdb ){ 2508 memcpy(zFullPathname, zFilename, nFilename); 2509 }else{ 2510 rc = sqlite3OsFullPathname(pVfs, zFilename, 2511 nFullPathname, zFullPathname); 2512 if( rc ){ 2513 if( rc==SQLITE_OK_SYMLINK ){ 2514 rc = SQLITE_OK; 2515 }else{ 2516 sqlite3_free(zFullPathname); 2517 sqlite3_free(p); 2518 return rc; 2519 } 2520 } 2521 } 2522 #if SQLITE_THREADSAFE 2523 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); 2524 sqlite3_mutex_enter(mutexOpen); 2525 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); 2526 sqlite3_mutex_enter(mutexShared); 2527 #endif 2528 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ 2529 assert( pBt->nRef>0 ); 2530 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) 2531 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ 2532 int iDb; 2533 for(iDb=db->nDb-1; iDb>=0; iDb--){ 2534 Btree *pExisting = db->aDb[iDb].pBt; 2535 if( pExisting && pExisting->pBt==pBt ){ 2536 sqlite3_mutex_leave(mutexShared); 2537 sqlite3_mutex_leave(mutexOpen); 2538 sqlite3_free(zFullPathname); 2539 sqlite3_free(p); 2540 return SQLITE_CONSTRAINT; 2541 } 2542 } 2543 p->pBt = pBt; 2544 pBt->nRef++; 2545 break; 2546 } 2547 } 2548 sqlite3_mutex_leave(mutexShared); 2549 sqlite3_free(zFullPathname); 2550 } 2551 #ifdef SQLITE_DEBUG 2552 else{ 2553 /* In debug mode, we mark all persistent databases as sharable 2554 ** even when they are not. This exercises the locking code and 2555 ** gives more opportunity for asserts(sqlite3_mutex_held()) 2556 ** statements to find locking problems. 2557 */ 2558 p->sharable = 1; 2559 } 2560 #endif 2561 } 2562 #endif 2563 if( pBt==0 ){ 2564 /* 2565 ** The following asserts make sure that structures used by the btree are 2566 ** the right size. This is to guard against size changes that result 2567 ** when compiling on a different architecture. 2568 */ 2569 assert( sizeof(i64)==8 ); 2570 assert( sizeof(u64)==8 ); 2571 assert( sizeof(u32)==4 ); 2572 assert( sizeof(u16)==2 ); 2573 assert( sizeof(Pgno)==4 ); 2574 2575 pBt = sqlite3MallocZero( sizeof(*pBt) ); 2576 if( pBt==0 ){ 2577 rc = SQLITE_NOMEM_BKPT; 2578 goto btree_open_out; 2579 } 2580 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, 2581 sizeof(MemPage), flags, vfsFlags, pageReinit); 2582 if( rc==SQLITE_OK ){ 2583 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); 2584 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); 2585 } 2586 if( rc!=SQLITE_OK ){ 2587 goto btree_open_out; 2588 } 2589 pBt->openFlags = (u8)flags; 2590 pBt->db = db; 2591 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt); 2592 p->pBt = pBt; 2593 2594 pBt->pCursor = 0; 2595 pBt->pPage1 = 0; 2596 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; 2597 #if defined(SQLITE_SECURE_DELETE) 2598 pBt->btsFlags |= BTS_SECURE_DELETE; 2599 #elif defined(SQLITE_FAST_SECURE_DELETE) 2600 pBt->btsFlags |= BTS_OVERWRITE; 2601 #endif 2602 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 2603 ** determined by the 2-byte integer located at an offset of 16 bytes from 2604 ** the beginning of the database file. */ 2605 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); 2606 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE 2607 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ 2608 pBt->pageSize = 0; 2609 #ifndef SQLITE_OMIT_AUTOVACUUM 2610 /* If the magic name ":memory:" will create an in-memory database, then 2611 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if 2612 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if 2613 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a 2614 ** regular file-name. In this case the auto-vacuum applies as per normal. 2615 */ 2616 if( zFilename && !isMemdb ){ 2617 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); 2618 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); 2619 } 2620 #endif 2621 nReserve = 0; 2622 }else{ 2623 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is 2624 ** determined by the one-byte unsigned integer found at an offset of 20 2625 ** into the database file header. */ 2626 nReserve = zDbHeader[20]; 2627 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2628 #ifndef SQLITE_OMIT_AUTOVACUUM 2629 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); 2630 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); 2631 #endif 2632 } 2633 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2634 if( rc ) goto btree_open_out; 2635 pBt->usableSize = pBt->pageSize - nReserve; 2636 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ 2637 2638 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2639 /* Add the new BtShared object to the linked list sharable BtShareds. 2640 */ 2641 pBt->nRef = 1; 2642 if( p->sharable ){ 2643 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) 2644 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);) 2645 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ 2646 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); 2647 if( pBt->mutex==0 ){ 2648 rc = SQLITE_NOMEM_BKPT; 2649 goto btree_open_out; 2650 } 2651 } 2652 sqlite3_mutex_enter(mutexShared); 2653 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); 2654 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; 2655 sqlite3_mutex_leave(mutexShared); 2656 } 2657 #endif 2658 } 2659 2660 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) 2661 /* If the new Btree uses a sharable pBtShared, then link the new 2662 ** Btree into the list of all sharable Btrees for the same connection. 2663 ** The list is kept in ascending order by pBt address. 2664 */ 2665 if( p->sharable ){ 2666 int i; 2667 Btree *pSib; 2668 for(i=0; i<db->nDb; i++){ 2669 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ 2670 while( pSib->pPrev ){ pSib = pSib->pPrev; } 2671 if( (uptr)p->pBt<(uptr)pSib->pBt ){ 2672 p->pNext = pSib; 2673 p->pPrev = 0; 2674 pSib->pPrev = p; 2675 }else{ 2676 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ 2677 pSib = pSib->pNext; 2678 } 2679 p->pNext = pSib->pNext; 2680 p->pPrev = pSib; 2681 if( p->pNext ){ 2682 p->pNext->pPrev = p; 2683 } 2684 pSib->pNext = p; 2685 } 2686 break; 2687 } 2688 } 2689 } 2690 #endif 2691 *ppBtree = p; 2692 2693 btree_open_out: 2694 if( rc!=SQLITE_OK ){ 2695 if( pBt && pBt->pPager ){ 2696 sqlite3PagerClose(pBt->pPager, 0); 2697 } 2698 sqlite3_free(pBt); 2699 sqlite3_free(p); 2700 *ppBtree = 0; 2701 }else{ 2702 sqlite3_file *pFile; 2703 2704 /* If the B-Tree was successfully opened, set the pager-cache size to the 2705 ** default value. Except, when opening on an existing shared pager-cache, 2706 ** do not change the pager-cache size. 2707 */ 2708 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ 2709 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE); 2710 } 2711 2712 pFile = sqlite3PagerFile(pBt->pPager); 2713 if( pFile->pMethods ){ 2714 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); 2715 } 2716 } 2717 if( mutexOpen ){ 2718 assert( sqlite3_mutex_held(mutexOpen) ); 2719 sqlite3_mutex_leave(mutexOpen); 2720 } 2721 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); 2722 return rc; 2723 } 2724 2725 /* 2726 ** Decrement the BtShared.nRef counter. When it reaches zero, 2727 ** remove the BtShared structure from the sharing list. Return 2728 ** true if the BtShared.nRef counter reaches zero and return 2729 ** false if it is still positive. 2730 */ 2731 static int removeFromSharingList(BtShared *pBt){ 2732 #ifndef SQLITE_OMIT_SHARED_CACHE 2733 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) 2734 BtShared *pList; 2735 int removed = 0; 2736 2737 assert( sqlite3_mutex_notheld(pBt->mutex) ); 2738 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 2739 sqlite3_mutex_enter(pMainMtx); 2740 pBt->nRef--; 2741 if( pBt->nRef<=0 ){ 2742 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ 2743 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; 2744 }else{ 2745 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); 2746 while( ALWAYS(pList) && pList->pNext!=pBt ){ 2747 pList=pList->pNext; 2748 } 2749 if( ALWAYS(pList) ){ 2750 pList->pNext = pBt->pNext; 2751 } 2752 } 2753 if( SQLITE_THREADSAFE ){ 2754 sqlite3_mutex_free(pBt->mutex); 2755 } 2756 removed = 1; 2757 } 2758 sqlite3_mutex_leave(pMainMtx); 2759 return removed; 2760 #else 2761 return 1; 2762 #endif 2763 } 2764 2765 /* 2766 ** Make sure pBt->pTmpSpace points to an allocation of 2767 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child 2768 ** pointer. 2769 */ 2770 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){ 2771 assert( pBt!=0 ); 2772 assert( pBt->pTmpSpace==0 ); 2773 /* This routine is called only by btreeCursor() when allocating the 2774 ** first write cursor for the BtShared object */ 2775 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 ); 2776 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); 2777 if( pBt->pTmpSpace==0 ){ 2778 BtCursor *pCur = pBt->pCursor; 2779 pBt->pCursor = pCur->pNext; /* Unlink the cursor */ 2780 memset(pCur, 0, sizeof(*pCur)); 2781 return SQLITE_NOMEM_BKPT; 2782 } 2783 2784 /* One of the uses of pBt->pTmpSpace is to format cells before 2785 ** inserting them into a leaf page (function fillInCell()). If 2786 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes 2787 ** by the various routines that manipulate binary cells. Which 2788 ** can mean that fillInCell() only initializes the first 2 or 3 2789 ** bytes of pTmpSpace, but that the first 4 bytes are copied from 2790 ** it into a database page. This is not actually a problem, but it 2791 ** does cause a valgrind error when the 1 or 2 bytes of unitialized 2792 ** data is passed to system call write(). So to avoid this error, 2793 ** zero the first 4 bytes of temp space here. 2794 ** 2795 ** Also: Provide four bytes of initialized space before the 2796 ** beginning of pTmpSpace as an area available to prepend the 2797 ** left-child pointer to the beginning of a cell. 2798 */ 2799 memset(pBt->pTmpSpace, 0, 8); 2800 pBt->pTmpSpace += 4; 2801 return SQLITE_OK; 2802 } 2803 2804 /* 2805 ** Free the pBt->pTmpSpace allocation 2806 */ 2807 static void freeTempSpace(BtShared *pBt){ 2808 if( pBt->pTmpSpace ){ 2809 pBt->pTmpSpace -= 4; 2810 sqlite3PageFree(pBt->pTmpSpace); 2811 pBt->pTmpSpace = 0; 2812 } 2813 } 2814 2815 /* 2816 ** Close an open database and invalidate all cursors. 2817 */ 2818 int sqlite3BtreeClose(Btree *p){ 2819 BtShared *pBt = p->pBt; 2820 2821 /* Close all cursors opened via this handle. */ 2822 assert( sqlite3_mutex_held(p->db->mutex) ); 2823 sqlite3BtreeEnter(p); 2824 2825 /* Verify that no other cursors have this Btree open */ 2826 #ifdef SQLITE_DEBUG 2827 { 2828 BtCursor *pCur = pBt->pCursor; 2829 while( pCur ){ 2830 BtCursor *pTmp = pCur; 2831 pCur = pCur->pNext; 2832 assert( pTmp->pBtree!=p ); 2833 2834 } 2835 } 2836 #endif 2837 2838 /* Rollback any active transaction and free the handle structure. 2839 ** The call to sqlite3BtreeRollback() drops any table-locks held by 2840 ** this handle. 2841 */ 2842 sqlite3BtreeRollback(p, SQLITE_OK, 0); 2843 sqlite3BtreeLeave(p); 2844 2845 /* If there are still other outstanding references to the shared-btree 2846 ** structure, return now. The remainder of this procedure cleans 2847 ** up the shared-btree. 2848 */ 2849 assert( p->wantToLock==0 && p->locked==0 ); 2850 if( !p->sharable || removeFromSharingList(pBt) ){ 2851 /* The pBt is no longer on the sharing list, so we can access 2852 ** it without having to hold the mutex. 2853 ** 2854 ** Clean out and delete the BtShared object. 2855 */ 2856 assert( !pBt->pCursor ); 2857 sqlite3PagerClose(pBt->pPager, p->db); 2858 if( pBt->xFreeSchema && pBt->pSchema ){ 2859 pBt->xFreeSchema(pBt->pSchema); 2860 } 2861 sqlite3DbFree(0, pBt->pSchema); 2862 freeTempSpace(pBt); 2863 sqlite3_free(pBt); 2864 } 2865 2866 #ifndef SQLITE_OMIT_SHARED_CACHE 2867 assert( p->wantToLock==0 ); 2868 assert( p->locked==0 ); 2869 if( p->pPrev ) p->pPrev->pNext = p->pNext; 2870 if( p->pNext ) p->pNext->pPrev = p->pPrev; 2871 #endif 2872 2873 sqlite3_free(p); 2874 return SQLITE_OK; 2875 } 2876 2877 /* 2878 ** Change the "soft" limit on the number of pages in the cache. 2879 ** Unused and unmodified pages will be recycled when the number of 2880 ** pages in the cache exceeds this soft limit. But the size of the 2881 ** cache is allowed to grow larger than this limit if it contains 2882 ** dirty pages or pages still in active use. 2883 */ 2884 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ 2885 BtShared *pBt = p->pBt; 2886 assert( sqlite3_mutex_held(p->db->mutex) ); 2887 sqlite3BtreeEnter(p); 2888 sqlite3PagerSetCachesize(pBt->pPager, mxPage); 2889 sqlite3BtreeLeave(p); 2890 return SQLITE_OK; 2891 } 2892 2893 /* 2894 ** Change the "spill" limit on the number of pages in the cache. 2895 ** If the number of pages exceeds this limit during a write transaction, 2896 ** the pager might attempt to "spill" pages to the journal early in 2897 ** order to free up memory. 2898 ** 2899 ** The value returned is the current spill size. If zero is passed 2900 ** as an argument, no changes are made to the spill size setting, so 2901 ** using mxPage of 0 is a way to query the current spill size. 2902 */ 2903 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ 2904 BtShared *pBt = p->pBt; 2905 int res; 2906 assert( sqlite3_mutex_held(p->db->mutex) ); 2907 sqlite3BtreeEnter(p); 2908 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); 2909 sqlite3BtreeLeave(p); 2910 return res; 2911 } 2912 2913 #if SQLITE_MAX_MMAP_SIZE>0 2914 /* 2915 ** Change the limit on the amount of the database file that may be 2916 ** memory mapped. 2917 */ 2918 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ 2919 BtShared *pBt = p->pBt; 2920 assert( sqlite3_mutex_held(p->db->mutex) ); 2921 sqlite3BtreeEnter(p); 2922 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); 2923 sqlite3BtreeLeave(p); 2924 return SQLITE_OK; 2925 } 2926 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 2927 2928 /* 2929 ** Change the way data is synced to disk in order to increase or decrease 2930 ** how well the database resists damage due to OS crashes and power 2931 ** failures. Level 1 is the same as asynchronous (no syncs() occur and 2932 ** there is a high probability of damage) Level 2 is the default. There 2933 ** is a very low but non-zero probability of damage. Level 3 reduces the 2934 ** probability of damage to near zero but with a write performance reduction. 2935 */ 2936 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2937 int sqlite3BtreeSetPagerFlags( 2938 Btree *p, /* The btree to set the safety level on */ 2939 unsigned pgFlags /* Various PAGER_* flags */ 2940 ){ 2941 BtShared *pBt = p->pBt; 2942 assert( sqlite3_mutex_held(p->db->mutex) ); 2943 sqlite3BtreeEnter(p); 2944 sqlite3PagerSetFlags(pBt->pPager, pgFlags); 2945 sqlite3BtreeLeave(p); 2946 return SQLITE_OK; 2947 } 2948 #endif 2949 2950 /* 2951 ** Change the default pages size and the number of reserved bytes per page. 2952 ** Or, if the page size has already been fixed, return SQLITE_READONLY 2953 ** without changing anything. 2954 ** 2955 ** The page size must be a power of 2 between 512 and 65536. If the page 2956 ** size supplied does not meet this constraint then the page size is not 2957 ** changed. 2958 ** 2959 ** Page sizes are constrained to be a power of two so that the region 2960 ** of the database file used for locking (beginning at PENDING_BYTE, 2961 ** the first byte past the 1GB boundary, 0x40000000) needs to occur 2962 ** at the beginning of a page. 2963 ** 2964 ** If parameter nReserve is less than zero, then the number of reserved 2965 ** bytes per page is left unchanged. 2966 ** 2967 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size 2968 ** and autovacuum mode can no longer be changed. 2969 */ 2970 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ 2971 int rc = SQLITE_OK; 2972 int x; 2973 BtShared *pBt = p->pBt; 2974 assert( nReserve>=0 && nReserve<=255 ); 2975 sqlite3BtreeEnter(p); 2976 pBt->nReserveWanted = nReserve; 2977 x = pBt->pageSize - pBt->usableSize; 2978 if( nReserve<x ) nReserve = x; 2979 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ 2980 sqlite3BtreeLeave(p); 2981 return SQLITE_READONLY; 2982 } 2983 assert( nReserve>=0 && nReserve<=255 ); 2984 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && 2985 ((pageSize-1)&pageSize)==0 ){ 2986 assert( (pageSize & 7)==0 ); 2987 assert( !pBt->pCursor ); 2988 if( nReserve>32 && pageSize==512 ) pageSize = 1024; 2989 pBt->pageSize = (u32)pageSize; 2990 freeTempSpace(pBt); 2991 } 2992 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); 2993 pBt->usableSize = pBt->pageSize - (u16)nReserve; 2994 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; 2995 sqlite3BtreeLeave(p); 2996 return rc; 2997 } 2998 2999 /* 3000 ** Return the currently defined page size 3001 */ 3002 int sqlite3BtreeGetPageSize(Btree *p){ 3003 return p->pBt->pageSize; 3004 } 3005 3006 /* 3007 ** This function is similar to sqlite3BtreeGetReserve(), except that it 3008 ** may only be called if it is guaranteed that the b-tree mutex is already 3009 ** held. 3010 ** 3011 ** This is useful in one special case in the backup API code where it is 3012 ** known that the shared b-tree mutex is held, but the mutex on the 3013 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() 3014 ** were to be called, it might collide with some other operation on the 3015 ** database handle that owns *p, causing undefined behavior. 3016 */ 3017 int sqlite3BtreeGetReserveNoMutex(Btree *p){ 3018 int n; 3019 assert( sqlite3_mutex_held(p->pBt->mutex) ); 3020 n = p->pBt->pageSize - p->pBt->usableSize; 3021 return n; 3022 } 3023 3024 /* 3025 ** Return the number of bytes of space at the end of every page that 3026 ** are intentually left unused. This is the "reserved" space that is 3027 ** sometimes used by extensions. 3028 ** 3029 ** The value returned is the larger of the current reserve size and 3030 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES. 3031 ** The amount of reserve can only grow - never shrink. 3032 */ 3033 int sqlite3BtreeGetRequestedReserve(Btree *p){ 3034 int n1, n2; 3035 sqlite3BtreeEnter(p); 3036 n1 = (int)p->pBt->nReserveWanted; 3037 n2 = sqlite3BtreeGetReserveNoMutex(p); 3038 sqlite3BtreeLeave(p); 3039 return n1>n2 ? n1 : n2; 3040 } 3041 3042 3043 /* 3044 ** Set the maximum page count for a database if mxPage is positive. 3045 ** No changes are made if mxPage is 0 or negative. 3046 ** Regardless of the value of mxPage, return the maximum page count. 3047 */ 3048 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){ 3049 Pgno n; 3050 sqlite3BtreeEnter(p); 3051 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); 3052 sqlite3BtreeLeave(p); 3053 return n; 3054 } 3055 3056 /* 3057 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags: 3058 ** 3059 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared 3060 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared 3061 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set 3062 ** newFlag==(-1) No changes 3063 ** 3064 ** This routine acts as a query if newFlag is less than zero 3065 ** 3066 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but 3067 ** freelist leaf pages are not written back to the database. Thus in-page 3068 ** deleted content is cleared, but freelist deleted content is not. 3069 ** 3070 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition 3071 ** that freelist leaf pages are written back into the database, increasing 3072 ** the amount of disk I/O. 3073 */ 3074 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ 3075 int b; 3076 if( p==0 ) return 0; 3077 sqlite3BtreeEnter(p); 3078 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 ); 3079 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) ); 3080 if( newFlag>=0 ){ 3081 p->pBt->btsFlags &= ~BTS_FAST_SECURE; 3082 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag; 3083 } 3084 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE; 3085 sqlite3BtreeLeave(p); 3086 return b; 3087 } 3088 3089 /* 3090 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' 3091 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it 3092 ** is disabled. The default value for the auto-vacuum property is 3093 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. 3094 */ 3095 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ 3096 #ifdef SQLITE_OMIT_AUTOVACUUM 3097 return SQLITE_READONLY; 3098 #else 3099 BtShared *pBt = p->pBt; 3100 int rc = SQLITE_OK; 3101 u8 av = (u8)autoVacuum; 3102 3103 sqlite3BtreeEnter(p); 3104 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ 3105 rc = SQLITE_READONLY; 3106 }else{ 3107 pBt->autoVacuum = av ?1:0; 3108 pBt->incrVacuum = av==2 ?1:0; 3109 } 3110 sqlite3BtreeLeave(p); 3111 return rc; 3112 #endif 3113 } 3114 3115 /* 3116 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 3117 ** enabled 1 is returned. Otherwise 0. 3118 */ 3119 int sqlite3BtreeGetAutoVacuum(Btree *p){ 3120 #ifdef SQLITE_OMIT_AUTOVACUUM 3121 return BTREE_AUTOVACUUM_NONE; 3122 #else 3123 int rc; 3124 sqlite3BtreeEnter(p); 3125 rc = ( 3126 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: 3127 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: 3128 BTREE_AUTOVACUUM_INCR 3129 ); 3130 sqlite3BtreeLeave(p); 3131 return rc; 3132 #endif 3133 } 3134 3135 /* 3136 ** If the user has not set the safety-level for this database connection 3137 ** using "PRAGMA synchronous", and if the safety-level is not already 3138 ** set to the value passed to this function as the second parameter, 3139 ** set it so. 3140 */ 3141 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \ 3142 && !defined(SQLITE_OMIT_WAL) 3143 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){ 3144 sqlite3 *db; 3145 Db *pDb; 3146 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ 3147 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } 3148 if( pDb->bSyncSet==0 3149 && pDb->safety_level!=safety_level 3150 && pDb!=&db->aDb[1] 3151 ){ 3152 pDb->safety_level = safety_level; 3153 sqlite3PagerSetFlags(pBt->pPager, 3154 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); 3155 } 3156 } 3157 } 3158 #else 3159 # define setDefaultSyncFlag(pBt,safety_level) 3160 #endif 3161 3162 /* Forward declaration */ 3163 static int newDatabase(BtShared*); 3164 3165 3166 /* 3167 ** Get a reference to pPage1 of the database file. This will 3168 ** also acquire a readlock on that file. 3169 ** 3170 ** SQLITE_OK is returned on success. If the file is not a 3171 ** well-formed database file, then SQLITE_CORRUPT is returned. 3172 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM 3173 ** is returned if we run out of memory. 3174 */ 3175 static int lockBtree(BtShared *pBt){ 3176 int rc; /* Result code from subfunctions */ 3177 MemPage *pPage1; /* Page 1 of the database file */ 3178 u32 nPage; /* Number of pages in the database */ 3179 u32 nPageFile = 0; /* Number of pages in the database file */ 3180 3181 assert( sqlite3_mutex_held(pBt->mutex) ); 3182 assert( pBt->pPage1==0 ); 3183 rc = sqlite3PagerSharedLock(pBt->pPager); 3184 if( rc!=SQLITE_OK ) return rc; 3185 rc = btreeGetPage(pBt, 1, &pPage1, 0); 3186 if( rc!=SQLITE_OK ) return rc; 3187 3188 /* Do some checking to help insure the file we opened really is 3189 ** a valid database file. 3190 */ 3191 nPage = get4byte(28+(u8*)pPage1->aData); 3192 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile); 3193 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ 3194 nPage = nPageFile; 3195 } 3196 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){ 3197 nPage = 0; 3198 } 3199 if( nPage>0 ){ 3200 u32 pageSize; 3201 u32 usableSize; 3202 u8 *page1 = pPage1->aData; 3203 rc = SQLITE_NOTADB; 3204 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins 3205 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d 3206 ** 61 74 20 33 00. */ 3207 if( memcmp(page1, zMagicHeader, 16)!=0 ){ 3208 goto page1_init_failed; 3209 } 3210 3211 #ifdef SQLITE_OMIT_WAL 3212 if( page1[18]>1 ){ 3213 pBt->btsFlags |= BTS_READ_ONLY; 3214 } 3215 if( page1[19]>1 ){ 3216 goto page1_init_failed; 3217 } 3218 #else 3219 if( page1[18]>2 ){ 3220 pBt->btsFlags |= BTS_READ_ONLY; 3221 } 3222 if( page1[19]>2 ){ 3223 goto page1_init_failed; 3224 } 3225 3226 /* If the read version is set to 2, this database should be accessed 3227 ** in WAL mode. If the log is not already open, open it now. Then 3228 ** return SQLITE_OK and return without populating BtShared.pPage1. 3229 ** The caller detects this and calls this function again. This is 3230 ** required as the version of page 1 currently in the page1 buffer 3231 ** may not be the latest version - there may be a newer one in the log 3232 ** file. 3233 */ 3234 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ 3235 int isOpen = 0; 3236 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); 3237 if( rc!=SQLITE_OK ){ 3238 goto page1_init_failed; 3239 }else{ 3240 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); 3241 if( isOpen==0 ){ 3242 releasePageOne(pPage1); 3243 return SQLITE_OK; 3244 } 3245 } 3246 rc = SQLITE_NOTADB; 3247 }else{ 3248 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1); 3249 } 3250 #endif 3251 3252 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload 3253 ** fractions and the leaf payload fraction values must be 64, 32, and 32. 3254 ** 3255 ** The original design allowed these amounts to vary, but as of 3256 ** version 3.6.0, we require them to be fixed. 3257 */ 3258 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ 3259 goto page1_init_failed; 3260 } 3261 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is 3262 ** determined by the 2-byte integer located at an offset of 16 bytes from 3263 ** the beginning of the database file. */ 3264 pageSize = (page1[16]<<8) | (page1[17]<<16); 3265 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two 3266 ** between 512 and 65536 inclusive. */ 3267 if( ((pageSize-1)&pageSize)!=0 3268 || pageSize>SQLITE_MAX_PAGE_SIZE 3269 || pageSize<=256 3270 ){ 3271 goto page1_init_failed; 3272 } 3273 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3274 assert( (pageSize & 7)==0 ); 3275 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte 3276 ** integer at offset 20 is the number of bytes of space at the end of 3277 ** each page to reserve for extensions. 3278 ** 3279 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is 3280 ** determined by the one-byte unsigned integer found at an offset of 20 3281 ** into the database file header. */ 3282 usableSize = pageSize - page1[20]; 3283 if( (u32)pageSize!=pBt->pageSize ){ 3284 /* After reading the first page of the database assuming a page size 3285 ** of BtShared.pageSize, we have discovered that the page-size is 3286 ** actually pageSize. Unlock the database, leave pBt->pPage1 at 3287 ** zero and return SQLITE_OK. The caller will call this function 3288 ** again with the correct page-size. 3289 */ 3290 releasePageOne(pPage1); 3291 pBt->usableSize = usableSize; 3292 pBt->pageSize = pageSize; 3293 freeTempSpace(pBt); 3294 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, 3295 pageSize-usableSize); 3296 return rc; 3297 } 3298 if( nPage>nPageFile ){ 3299 if( sqlite3WritableSchema(pBt->db)==0 ){ 3300 rc = SQLITE_CORRUPT_BKPT; 3301 goto page1_init_failed; 3302 }else{ 3303 nPage = nPageFile; 3304 } 3305 } 3306 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to 3307 ** be less than 480. In other words, if the page size is 512, then the 3308 ** reserved space size cannot exceed 32. */ 3309 if( usableSize<480 ){ 3310 goto page1_init_failed; 3311 } 3312 pBt->pageSize = pageSize; 3313 pBt->usableSize = usableSize; 3314 #ifndef SQLITE_OMIT_AUTOVACUUM 3315 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); 3316 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); 3317 #endif 3318 } 3319 3320 /* maxLocal is the maximum amount of payload to store locally for 3321 ** a cell. Make sure it is small enough so that at least minFanout 3322 ** cells can will fit on one page. We assume a 10-byte page header. 3323 ** Besides the payload, the cell must store: 3324 ** 2-byte pointer to the cell 3325 ** 4-byte child pointer 3326 ** 9-byte nKey value 3327 ** 4-byte nData value 3328 ** 4-byte overflow page pointer 3329 ** So a cell consists of a 2-byte pointer, a header which is as much as 3330 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow 3331 ** page pointer. 3332 */ 3333 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); 3334 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); 3335 pBt->maxLeaf = (u16)(pBt->usableSize - 35); 3336 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); 3337 if( pBt->maxLocal>127 ){ 3338 pBt->max1bytePayload = 127; 3339 }else{ 3340 pBt->max1bytePayload = (u8)pBt->maxLocal; 3341 } 3342 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); 3343 pBt->pPage1 = pPage1; 3344 pBt->nPage = nPage; 3345 return SQLITE_OK; 3346 3347 page1_init_failed: 3348 releasePageOne(pPage1); 3349 pBt->pPage1 = 0; 3350 return rc; 3351 } 3352 3353 #ifndef NDEBUG 3354 /* 3355 ** Return the number of cursors open on pBt. This is for use 3356 ** in assert() expressions, so it is only compiled if NDEBUG is not 3357 ** defined. 3358 ** 3359 ** Only write cursors are counted if wrOnly is true. If wrOnly is 3360 ** false then all cursors are counted. 3361 ** 3362 ** For the purposes of this routine, a cursor is any cursor that 3363 ** is capable of reading or writing to the database. Cursors that 3364 ** have been tripped into the CURSOR_FAULT state are not counted. 3365 */ 3366 static int countValidCursors(BtShared *pBt, int wrOnly){ 3367 BtCursor *pCur; 3368 int r = 0; 3369 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ 3370 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) 3371 && pCur->eState!=CURSOR_FAULT ) r++; 3372 } 3373 return r; 3374 } 3375 #endif 3376 3377 /* 3378 ** If there are no outstanding cursors and we are not in the middle 3379 ** of a transaction but there is a read lock on the database, then 3380 ** this routine unrefs the first page of the database file which 3381 ** has the effect of releasing the read lock. 3382 ** 3383 ** If there is a transaction in progress, this routine is a no-op. 3384 */ 3385 static void unlockBtreeIfUnused(BtShared *pBt){ 3386 assert( sqlite3_mutex_held(pBt->mutex) ); 3387 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); 3388 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ 3389 MemPage *pPage1 = pBt->pPage1; 3390 assert( pPage1->aData ); 3391 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); 3392 pBt->pPage1 = 0; 3393 releasePageOne(pPage1); 3394 } 3395 } 3396 3397 /* 3398 ** If pBt points to an empty file then convert that empty file 3399 ** into a new empty database by initializing the first page of 3400 ** the database. 3401 */ 3402 static int newDatabase(BtShared *pBt){ 3403 MemPage *pP1; 3404 unsigned char *data; 3405 int rc; 3406 3407 assert( sqlite3_mutex_held(pBt->mutex) ); 3408 if( pBt->nPage>0 ){ 3409 return SQLITE_OK; 3410 } 3411 pP1 = pBt->pPage1; 3412 assert( pP1!=0 ); 3413 data = pP1->aData; 3414 rc = sqlite3PagerWrite(pP1->pDbPage); 3415 if( rc ) return rc; 3416 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); 3417 assert( sizeof(zMagicHeader)==16 ); 3418 data[16] = (u8)((pBt->pageSize>>8)&0xff); 3419 data[17] = (u8)((pBt->pageSize>>16)&0xff); 3420 data[18] = 1; 3421 data[19] = 1; 3422 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); 3423 data[20] = (u8)(pBt->pageSize - pBt->usableSize); 3424 data[21] = 64; 3425 data[22] = 32; 3426 data[23] = 32; 3427 memset(&data[24], 0, 100-24); 3428 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); 3429 pBt->btsFlags |= BTS_PAGESIZE_FIXED; 3430 #ifndef SQLITE_OMIT_AUTOVACUUM 3431 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); 3432 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); 3433 put4byte(&data[36 + 4*4], pBt->autoVacuum); 3434 put4byte(&data[36 + 7*4], pBt->incrVacuum); 3435 #endif 3436 pBt->nPage = 1; 3437 data[31] = 1; 3438 return SQLITE_OK; 3439 } 3440 3441 /* 3442 ** Initialize the first page of the database file (creating a database 3443 ** consisting of a single page and no schema objects). Return SQLITE_OK 3444 ** if successful, or an SQLite error code otherwise. 3445 */ 3446 int sqlite3BtreeNewDb(Btree *p){ 3447 int rc; 3448 sqlite3BtreeEnter(p); 3449 p->pBt->nPage = 0; 3450 rc = newDatabase(p->pBt); 3451 sqlite3BtreeLeave(p); 3452 return rc; 3453 } 3454 3455 /* 3456 ** Attempt to start a new transaction. A write-transaction 3457 ** is started if the second argument is nonzero, otherwise a read- 3458 ** transaction. If the second argument is 2 or more and exclusive 3459 ** transaction is started, meaning that no other process is allowed 3460 ** to access the database. A preexisting transaction may not be 3461 ** upgraded to exclusive by calling this routine a second time - the 3462 ** exclusivity flag only works for a new transaction. 3463 ** 3464 ** A write-transaction must be started before attempting any 3465 ** changes to the database. None of the following routines 3466 ** will work unless a transaction is started first: 3467 ** 3468 ** sqlite3BtreeCreateTable() 3469 ** sqlite3BtreeCreateIndex() 3470 ** sqlite3BtreeClearTable() 3471 ** sqlite3BtreeDropTable() 3472 ** sqlite3BtreeInsert() 3473 ** sqlite3BtreeDelete() 3474 ** sqlite3BtreeUpdateMeta() 3475 ** 3476 ** If an initial attempt to acquire the lock fails because of lock contention 3477 ** and the database was previously unlocked, then invoke the busy handler 3478 ** if there is one. But if there was previously a read-lock, do not 3479 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is 3480 ** returned when there is already a read-lock in order to avoid a deadlock. 3481 ** 3482 ** Suppose there are two processes A and B. A has a read lock and B has 3483 ** a reserved lock. B tries to promote to exclusive but is blocked because 3484 ** of A's read lock. A tries to promote to reserved but is blocked by B. 3485 ** One or the other of the two processes must give way or there can be 3486 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback 3487 ** when A already has a read lock, we encourage A to give up and let B 3488 ** proceed. 3489 */ 3490 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){ 3491 BtShared *pBt = p->pBt; 3492 Pager *pPager = pBt->pPager; 3493 int rc = SQLITE_OK; 3494 3495 sqlite3BtreeEnter(p); 3496 btreeIntegrity(p); 3497 3498 /* If the btree is already in a write-transaction, or it 3499 ** is already in a read-transaction and a read-transaction 3500 ** is requested, this is a no-op. 3501 */ 3502 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ 3503 goto trans_begun; 3504 } 3505 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); 3506 3507 if( (p->db->flags & SQLITE_ResetDatabase) 3508 && sqlite3PagerIsreadonly(pPager)==0 3509 ){ 3510 pBt->btsFlags &= ~BTS_READ_ONLY; 3511 } 3512 3513 /* Write transactions are not possible on a read-only database */ 3514 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ 3515 rc = SQLITE_READONLY; 3516 goto trans_begun; 3517 } 3518 3519 #ifndef SQLITE_OMIT_SHARED_CACHE 3520 { 3521 sqlite3 *pBlock = 0; 3522 /* If another database handle has already opened a write transaction 3523 ** on this shared-btree structure and a second write transaction is 3524 ** requested, return SQLITE_LOCKED. 3525 */ 3526 if( (wrflag && pBt->inTransaction==TRANS_WRITE) 3527 || (pBt->btsFlags & BTS_PENDING)!=0 3528 ){ 3529 pBlock = pBt->pWriter->db; 3530 }else if( wrflag>1 ){ 3531 BtLock *pIter; 3532 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ 3533 if( pIter->pBtree!=p ){ 3534 pBlock = pIter->pBtree->db; 3535 break; 3536 } 3537 } 3538 } 3539 if( pBlock ){ 3540 sqlite3ConnectionBlocked(p->db, pBlock); 3541 rc = SQLITE_LOCKED_SHAREDCACHE; 3542 goto trans_begun; 3543 } 3544 } 3545 #endif 3546 3547 /* Any read-only or read-write transaction implies a read-lock on 3548 ** page 1. So if some other shared-cache client already has a write-lock 3549 ** on page 1, the transaction cannot be opened. */ 3550 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 3551 if( SQLITE_OK!=rc ) goto trans_begun; 3552 3553 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; 3554 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; 3555 do { 3556 sqlite3PagerWalDb(pPager, p->db); 3557 3558 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3559 /* If transitioning from no transaction directly to a write transaction, 3560 ** block for the WRITER lock first if possible. */ 3561 if( pBt->pPage1==0 && wrflag ){ 3562 assert( pBt->inTransaction==TRANS_NONE ); 3563 rc = sqlite3PagerWalWriteLock(pPager, 1); 3564 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break; 3565 } 3566 #endif 3567 3568 /* Call lockBtree() until either pBt->pPage1 is populated or 3569 ** lockBtree() returns something other than SQLITE_OK. lockBtree() 3570 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after 3571 ** reading page 1 it discovers that the page-size of the database 3572 ** file is not pBt->pageSize. In this case lockBtree() will update 3573 ** pBt->pageSize to the page-size of the file on disk. 3574 */ 3575 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); 3576 3577 if( rc==SQLITE_OK && wrflag ){ 3578 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ 3579 rc = SQLITE_READONLY; 3580 }else{ 3581 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db)); 3582 if( rc==SQLITE_OK ){ 3583 rc = newDatabase(pBt); 3584 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){ 3585 /* if there was no transaction opened when this function was 3586 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error 3587 ** code to SQLITE_BUSY. */ 3588 rc = SQLITE_BUSY; 3589 } 3590 } 3591 } 3592 3593 if( rc!=SQLITE_OK ){ 3594 (void)sqlite3PagerWalWriteLock(pPager, 0); 3595 unlockBtreeIfUnused(pBt); 3596 } 3597 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && 3598 btreeInvokeBusyHandler(pBt) ); 3599 sqlite3PagerWalDb(pPager, 0); 3600 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 3601 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 3602 #endif 3603 3604 if( rc==SQLITE_OK ){ 3605 if( p->inTrans==TRANS_NONE ){ 3606 pBt->nTransaction++; 3607 #ifndef SQLITE_OMIT_SHARED_CACHE 3608 if( p->sharable ){ 3609 assert( p->lock.pBtree==p && p->lock.iTable==1 ); 3610 p->lock.eLock = READ_LOCK; 3611 p->lock.pNext = pBt->pLock; 3612 pBt->pLock = &p->lock; 3613 } 3614 #endif 3615 } 3616 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); 3617 if( p->inTrans>pBt->inTransaction ){ 3618 pBt->inTransaction = p->inTrans; 3619 } 3620 if( wrflag ){ 3621 MemPage *pPage1 = pBt->pPage1; 3622 #ifndef SQLITE_OMIT_SHARED_CACHE 3623 assert( !pBt->pWriter ); 3624 pBt->pWriter = p; 3625 pBt->btsFlags &= ~BTS_EXCLUSIVE; 3626 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; 3627 #endif 3628 3629 /* If the db-size header field is incorrect (as it may be if an old 3630 ** client has been writing the database file), update it now. Doing 3631 ** this sooner rather than later means the database size can safely 3632 ** re-read the database size from page 1 if a savepoint or transaction 3633 ** rollback occurs within the transaction. 3634 */ 3635 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ 3636 rc = sqlite3PagerWrite(pPage1->pDbPage); 3637 if( rc==SQLITE_OK ){ 3638 put4byte(&pPage1->aData[28], pBt->nPage); 3639 } 3640 } 3641 } 3642 } 3643 3644 trans_begun: 3645 if( rc==SQLITE_OK ){ 3646 if( pSchemaVersion ){ 3647 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]); 3648 } 3649 if( wrflag ){ 3650 /* This call makes sure that the pager has the correct number of 3651 ** open savepoints. If the second parameter is greater than 0 and 3652 ** the sub-journal is not already open, then it will be opened here. 3653 */ 3654 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint); 3655 } 3656 } 3657 3658 btreeIntegrity(p); 3659 sqlite3BtreeLeave(p); 3660 return rc; 3661 } 3662 3663 #ifndef SQLITE_OMIT_AUTOVACUUM 3664 3665 /* 3666 ** Set the pointer-map entries for all children of page pPage. Also, if 3667 ** pPage contains cells that point to overflow pages, set the pointer 3668 ** map entries for the overflow pages as well. 3669 */ 3670 static int setChildPtrmaps(MemPage *pPage){ 3671 int i; /* Counter variable */ 3672 int nCell; /* Number of cells in page pPage */ 3673 int rc; /* Return code */ 3674 BtShared *pBt = pPage->pBt; 3675 Pgno pgno = pPage->pgno; 3676 3677 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3678 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3679 if( rc!=SQLITE_OK ) return rc; 3680 nCell = pPage->nCell; 3681 3682 for(i=0; i<nCell; i++){ 3683 u8 *pCell = findCell(pPage, i); 3684 3685 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc); 3686 3687 if( !pPage->leaf ){ 3688 Pgno childPgno = get4byte(pCell); 3689 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3690 } 3691 } 3692 3693 if( !pPage->leaf ){ 3694 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 3695 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); 3696 } 3697 3698 return rc; 3699 } 3700 3701 /* 3702 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so 3703 ** that it points to iTo. Parameter eType describes the type of pointer to 3704 ** be modified, as follows: 3705 ** 3706 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child 3707 ** page of pPage. 3708 ** 3709 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow 3710 ** page pointed to by one of the cells on pPage. 3711 ** 3712 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next 3713 ** overflow page in the list. 3714 */ 3715 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ 3716 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 3717 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 3718 if( eType==PTRMAP_OVERFLOW2 ){ 3719 /* The pointer is always the first 4 bytes of the page in this case. */ 3720 if( get4byte(pPage->aData)!=iFrom ){ 3721 return SQLITE_CORRUPT_PAGE(pPage); 3722 } 3723 put4byte(pPage->aData, iTo); 3724 }else{ 3725 int i; 3726 int nCell; 3727 int rc; 3728 3729 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); 3730 if( rc ) return rc; 3731 nCell = pPage->nCell; 3732 3733 for(i=0; i<nCell; i++){ 3734 u8 *pCell = findCell(pPage, i); 3735 if( eType==PTRMAP_OVERFLOW1 ){ 3736 CellInfo info; 3737 pPage->xParseCell(pPage, pCell, &info); 3738 if( info.nLocal<info.nPayload ){ 3739 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ 3740 return SQLITE_CORRUPT_PAGE(pPage); 3741 } 3742 if( iFrom==get4byte(pCell+info.nSize-4) ){ 3743 put4byte(pCell+info.nSize-4, iTo); 3744 break; 3745 } 3746 } 3747 }else{ 3748 if( get4byte(pCell)==iFrom ){ 3749 put4byte(pCell, iTo); 3750 break; 3751 } 3752 } 3753 } 3754 3755 if( i==nCell ){ 3756 if( eType!=PTRMAP_BTREE || 3757 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ 3758 return SQLITE_CORRUPT_PAGE(pPage); 3759 } 3760 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); 3761 } 3762 } 3763 return SQLITE_OK; 3764 } 3765 3766 3767 /* 3768 ** Move the open database page pDbPage to location iFreePage in the 3769 ** database. The pDbPage reference remains valid. 3770 ** 3771 ** The isCommit flag indicates that there is no need to remember that 3772 ** the journal needs to be sync()ed before database page pDbPage->pgno 3773 ** can be written to. The caller has already promised not to write to that 3774 ** page. 3775 */ 3776 static int relocatePage( 3777 BtShared *pBt, /* Btree */ 3778 MemPage *pDbPage, /* Open page to move */ 3779 u8 eType, /* Pointer map 'type' entry for pDbPage */ 3780 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ 3781 Pgno iFreePage, /* The location to move pDbPage to */ 3782 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ 3783 ){ 3784 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ 3785 Pgno iDbPage = pDbPage->pgno; 3786 Pager *pPager = pBt->pPager; 3787 int rc; 3788 3789 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 3790 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); 3791 assert( sqlite3_mutex_held(pBt->mutex) ); 3792 assert( pDbPage->pBt==pBt ); 3793 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; 3794 3795 /* Move page iDbPage from its current location to page number iFreePage */ 3796 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 3797 iDbPage, iFreePage, iPtrPage, eType)); 3798 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); 3799 if( rc!=SQLITE_OK ){ 3800 return rc; 3801 } 3802 pDbPage->pgno = iFreePage; 3803 3804 /* If pDbPage was a btree-page, then it may have child pages and/or cells 3805 ** that point to overflow pages. The pointer map entries for all these 3806 ** pages need to be changed. 3807 ** 3808 ** If pDbPage is an overflow page, then the first 4 bytes may store a 3809 ** pointer to a subsequent overflow page. If this is the case, then 3810 ** the pointer map needs to be updated for the subsequent overflow page. 3811 */ 3812 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ 3813 rc = setChildPtrmaps(pDbPage); 3814 if( rc!=SQLITE_OK ){ 3815 return rc; 3816 } 3817 }else{ 3818 Pgno nextOvfl = get4byte(pDbPage->aData); 3819 if( nextOvfl!=0 ){ 3820 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); 3821 if( rc!=SQLITE_OK ){ 3822 return rc; 3823 } 3824 } 3825 } 3826 3827 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so 3828 ** that it points at iFreePage. Also fix the pointer map entry for 3829 ** iPtrPage. 3830 */ 3831 if( eType!=PTRMAP_ROOTPAGE ){ 3832 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); 3833 if( rc!=SQLITE_OK ){ 3834 return rc; 3835 } 3836 rc = sqlite3PagerWrite(pPtrPage->pDbPage); 3837 if( rc!=SQLITE_OK ){ 3838 releasePage(pPtrPage); 3839 return rc; 3840 } 3841 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); 3842 releasePage(pPtrPage); 3843 if( rc==SQLITE_OK ){ 3844 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); 3845 } 3846 } 3847 return rc; 3848 } 3849 3850 /* Forward declaration required by incrVacuumStep(). */ 3851 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); 3852 3853 /* 3854 ** Perform a single step of an incremental-vacuum. If successful, return 3855 ** SQLITE_OK. If there is no work to do (and therefore no point in 3856 ** calling this function again), return SQLITE_DONE. Or, if an error 3857 ** occurs, return some other error code. 3858 ** 3859 ** More specifically, this function attempts to re-organize the database so 3860 ** that the last page of the file currently in use is no longer in use. 3861 ** 3862 ** Parameter nFin is the number of pages that this database would contain 3863 ** were this function called until it returns SQLITE_DONE. 3864 ** 3865 ** If the bCommit parameter is non-zero, this function assumes that the 3866 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 3867 ** or an error. bCommit is passed true for an auto-vacuum-on-commit 3868 ** operation, or false for an incremental vacuum. 3869 */ 3870 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ 3871 Pgno nFreeList; /* Number of pages still on the free-list */ 3872 int rc; 3873 3874 assert( sqlite3_mutex_held(pBt->mutex) ); 3875 assert( iLastPg>nFin ); 3876 3877 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ 3878 u8 eType; 3879 Pgno iPtrPage; 3880 3881 nFreeList = get4byte(&pBt->pPage1->aData[36]); 3882 if( nFreeList==0 ){ 3883 return SQLITE_DONE; 3884 } 3885 3886 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); 3887 if( rc!=SQLITE_OK ){ 3888 return rc; 3889 } 3890 if( eType==PTRMAP_ROOTPAGE ){ 3891 return SQLITE_CORRUPT_BKPT; 3892 } 3893 3894 if( eType==PTRMAP_FREEPAGE ){ 3895 if( bCommit==0 ){ 3896 /* Remove the page from the files free-list. This is not required 3897 ** if bCommit is non-zero. In that case, the free-list will be 3898 ** truncated to zero after this function returns, so it doesn't 3899 ** matter if it still contains some garbage entries. 3900 */ 3901 Pgno iFreePg; 3902 MemPage *pFreePg; 3903 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); 3904 if( rc!=SQLITE_OK ){ 3905 return rc; 3906 } 3907 assert( iFreePg==iLastPg ); 3908 releasePage(pFreePg); 3909 } 3910 } else { 3911 Pgno iFreePg; /* Index of free page to move pLastPg to */ 3912 MemPage *pLastPg; 3913 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ 3914 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ 3915 3916 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); 3917 if( rc!=SQLITE_OK ){ 3918 return rc; 3919 } 3920 3921 /* If bCommit is zero, this loop runs exactly once and page pLastPg 3922 ** is swapped with the first free page pulled off the free list. 3923 ** 3924 ** On the other hand, if bCommit is greater than zero, then keep 3925 ** looping until a free-page located within the first nFin pages 3926 ** of the file is found. 3927 */ 3928 if( bCommit==0 ){ 3929 eMode = BTALLOC_LE; 3930 iNear = nFin; 3931 } 3932 do { 3933 MemPage *pFreePg; 3934 Pgno dbSize = btreePagecount(pBt); 3935 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); 3936 if( rc!=SQLITE_OK ){ 3937 releasePage(pLastPg); 3938 return rc; 3939 } 3940 releasePage(pFreePg); 3941 if( iFreePg>dbSize ){ 3942 releasePage(pLastPg); 3943 return SQLITE_CORRUPT_BKPT; 3944 } 3945 }while( bCommit && iFreePg>nFin ); 3946 assert( iFreePg<iLastPg ); 3947 3948 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); 3949 releasePage(pLastPg); 3950 if( rc!=SQLITE_OK ){ 3951 return rc; 3952 } 3953 } 3954 } 3955 3956 if( bCommit==0 ){ 3957 do { 3958 iLastPg--; 3959 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); 3960 pBt->bDoTruncate = 1; 3961 pBt->nPage = iLastPg; 3962 } 3963 return SQLITE_OK; 3964 } 3965 3966 /* 3967 ** The database opened by the first argument is an auto-vacuum database 3968 ** nOrig pages in size containing nFree free pages. Return the expected 3969 ** size of the database in pages following an auto-vacuum operation. 3970 */ 3971 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ 3972 int nEntry; /* Number of entries on one ptrmap page */ 3973 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ 3974 Pgno nFin; /* Return value */ 3975 3976 nEntry = pBt->usableSize/5; 3977 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; 3978 nFin = nOrig - nFree - nPtrmap; 3979 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ 3980 nFin--; 3981 } 3982 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ 3983 nFin--; 3984 } 3985 3986 return nFin; 3987 } 3988 3989 /* 3990 ** A write-transaction must be opened before calling this function. 3991 ** It performs a single unit of work towards an incremental vacuum. 3992 ** 3993 ** If the incremental vacuum is finished after this function has run, 3994 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, 3995 ** SQLITE_OK is returned. Otherwise an SQLite error code. 3996 */ 3997 int sqlite3BtreeIncrVacuum(Btree *p){ 3998 int rc; 3999 BtShared *pBt = p->pBt; 4000 4001 sqlite3BtreeEnter(p); 4002 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); 4003 if( !pBt->autoVacuum ){ 4004 rc = SQLITE_DONE; 4005 }else{ 4006 Pgno nOrig = btreePagecount(pBt); 4007 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); 4008 Pgno nFin = finalDbSize(pBt, nOrig, nFree); 4009 4010 if( nOrig<nFin || nFree>=nOrig ){ 4011 rc = SQLITE_CORRUPT_BKPT; 4012 }else if( nFree>0 ){ 4013 rc = saveAllCursors(pBt, 0, 0); 4014 if( rc==SQLITE_OK ){ 4015 invalidateAllOverflowCache(pBt); 4016 rc = incrVacuumStep(pBt, nFin, nOrig, 0); 4017 } 4018 if( rc==SQLITE_OK ){ 4019 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4020 put4byte(&pBt->pPage1->aData[28], pBt->nPage); 4021 } 4022 }else{ 4023 rc = SQLITE_DONE; 4024 } 4025 } 4026 sqlite3BtreeLeave(p); 4027 return rc; 4028 } 4029 4030 /* 4031 ** This routine is called prior to sqlite3PagerCommit when a transaction 4032 ** is committed for an auto-vacuum database. 4033 */ 4034 static int autoVacuumCommit(Btree *p){ 4035 int rc = SQLITE_OK; 4036 Pager *pPager; 4037 BtShared *pBt; 4038 sqlite3 *db; 4039 VVA_ONLY( int nRef ); 4040 4041 assert( p!=0 ); 4042 pBt = p->pBt; 4043 pPager = pBt->pPager; 4044 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); ) 4045 4046 assert( sqlite3_mutex_held(pBt->mutex) ); 4047 invalidateAllOverflowCache(pBt); 4048 assert(pBt->autoVacuum); 4049 if( !pBt->incrVacuum ){ 4050 Pgno nFin; /* Number of pages in database after autovacuuming */ 4051 Pgno nFree; /* Number of pages on the freelist initially */ 4052 Pgno nVac; /* Number of pages to vacuum */ 4053 Pgno iFree; /* The next page to be freed */ 4054 Pgno nOrig; /* Database size before freeing */ 4055 4056 nOrig = btreePagecount(pBt); 4057 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ 4058 /* It is not possible to create a database for which the final page 4059 ** is either a pointer-map page or the pending-byte page. If one 4060 ** is encountered, this indicates corruption. 4061 */ 4062 return SQLITE_CORRUPT_BKPT; 4063 } 4064 4065 nFree = get4byte(&pBt->pPage1->aData[36]); 4066 db = p->db; 4067 if( db->xAutovacPages ){ 4068 int iDb; 4069 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){ 4070 if( db->aDb[iDb].pBt==p ) break; 4071 } 4072 nVac = db->xAutovacPages( 4073 db->pAutovacPagesArg, 4074 db->aDb[iDb].zDbSName, 4075 nOrig, 4076 nFree, 4077 pBt->pageSize 4078 ); 4079 if( nVac>nFree ){ 4080 nVac = nFree; 4081 } 4082 if( nVac==0 ){ 4083 return SQLITE_OK; 4084 } 4085 }else{ 4086 nVac = nFree; 4087 } 4088 nFin = finalDbSize(pBt, nOrig, nVac); 4089 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; 4090 if( nFin<nOrig ){ 4091 rc = saveAllCursors(pBt, 0, 0); 4092 } 4093 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ 4094 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree); 4095 } 4096 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ 4097 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 4098 if( nVac==nFree ){ 4099 put4byte(&pBt->pPage1->aData[32], 0); 4100 put4byte(&pBt->pPage1->aData[36], 0); 4101 } 4102 put4byte(&pBt->pPage1->aData[28], nFin); 4103 pBt->bDoTruncate = 1; 4104 pBt->nPage = nFin; 4105 } 4106 if( rc!=SQLITE_OK ){ 4107 sqlite3PagerRollback(pPager); 4108 } 4109 } 4110 4111 assert( nRef>=sqlite3PagerRefcount(pPager) ); 4112 return rc; 4113 } 4114 4115 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ 4116 # define setChildPtrmaps(x) SQLITE_OK 4117 #endif 4118 4119 /* 4120 ** This routine does the first phase of a two-phase commit. This routine 4121 ** causes a rollback journal to be created (if it does not already exist) 4122 ** and populated with enough information so that if a power loss occurs 4123 ** the database can be restored to its original state by playing back 4124 ** the journal. Then the contents of the journal are flushed out to 4125 ** the disk. After the journal is safely on oxide, the changes to the 4126 ** database are written into the database file and flushed to oxide. 4127 ** At the end of this call, the rollback journal still exists on the 4128 ** disk and we are still holding all locks, so the transaction has not 4129 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the 4130 ** commit process. 4131 ** 4132 ** This call is a no-op if no write-transaction is currently active on pBt. 4133 ** 4134 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to 4135 ** the name of a super-journal file that should be written into the 4136 ** individual journal file, or is NULL, indicating no super-journal file 4137 ** (single database transaction). 4138 ** 4139 ** When this is called, the super-journal should already have been 4140 ** created, populated with this journal pointer and synced to disk. 4141 ** 4142 ** Once this is routine has returned, the only thing required to commit 4143 ** the write-transaction for this database file is to delete the journal. 4144 */ 4145 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){ 4146 int rc = SQLITE_OK; 4147 if( p->inTrans==TRANS_WRITE ){ 4148 BtShared *pBt = p->pBt; 4149 sqlite3BtreeEnter(p); 4150 #ifndef SQLITE_OMIT_AUTOVACUUM 4151 if( pBt->autoVacuum ){ 4152 rc = autoVacuumCommit(p); 4153 if( rc!=SQLITE_OK ){ 4154 sqlite3BtreeLeave(p); 4155 return rc; 4156 } 4157 } 4158 if( pBt->bDoTruncate ){ 4159 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); 4160 } 4161 #endif 4162 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0); 4163 sqlite3BtreeLeave(p); 4164 } 4165 return rc; 4166 } 4167 4168 /* 4169 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() 4170 ** at the conclusion of a transaction. 4171 */ 4172 static void btreeEndTransaction(Btree *p){ 4173 BtShared *pBt = p->pBt; 4174 sqlite3 *db = p->db; 4175 assert( sqlite3BtreeHoldsMutex(p) ); 4176 4177 #ifndef SQLITE_OMIT_AUTOVACUUM 4178 pBt->bDoTruncate = 0; 4179 #endif 4180 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ 4181 /* If there are other active statements that belong to this database 4182 ** handle, downgrade to a read-only transaction. The other statements 4183 ** may still be reading from the database. */ 4184 downgradeAllSharedCacheTableLocks(p); 4185 p->inTrans = TRANS_READ; 4186 }else{ 4187 /* If the handle had any kind of transaction open, decrement the 4188 ** transaction count of the shared btree. If the transaction count 4189 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() 4190 ** call below will unlock the pager. */ 4191 if( p->inTrans!=TRANS_NONE ){ 4192 clearAllSharedCacheTableLocks(p); 4193 pBt->nTransaction--; 4194 if( 0==pBt->nTransaction ){ 4195 pBt->inTransaction = TRANS_NONE; 4196 } 4197 } 4198 4199 /* Set the current transaction state to TRANS_NONE and unlock the 4200 ** pager if this call closed the only read or write transaction. */ 4201 p->inTrans = TRANS_NONE; 4202 unlockBtreeIfUnused(pBt); 4203 } 4204 4205 btreeIntegrity(p); 4206 } 4207 4208 /* 4209 ** Commit the transaction currently in progress. 4210 ** 4211 ** This routine implements the second phase of a 2-phase commit. The 4212 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should 4213 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() 4214 ** routine did all the work of writing information out to disk and flushing the 4215 ** contents so that they are written onto the disk platter. All this 4216 ** routine has to do is delete or truncate or zero the header in the 4217 ** the rollback journal (which causes the transaction to commit) and 4218 ** drop locks. 4219 ** 4220 ** Normally, if an error occurs while the pager layer is attempting to 4221 ** finalize the underlying journal file, this function returns an error and 4222 ** the upper layer will attempt a rollback. However, if the second argument 4223 ** is non-zero then this b-tree transaction is part of a multi-file 4224 ** transaction. In this case, the transaction has already been committed 4225 ** (by deleting a super-journal file) and the caller will ignore this 4226 ** functions return code. So, even if an error occurs in the pager layer, 4227 ** reset the b-tree objects internal state to indicate that the write 4228 ** transaction has been closed. This is quite safe, as the pager will have 4229 ** transitioned to the error state. 4230 ** 4231 ** This will release the write lock on the database file. If there 4232 ** are no active cursors, it also releases the read lock. 4233 */ 4234 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ 4235 4236 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; 4237 sqlite3BtreeEnter(p); 4238 btreeIntegrity(p); 4239 4240 /* If the handle has a write-transaction open, commit the shared-btrees 4241 ** transaction and set the shared state to TRANS_READ. 4242 */ 4243 if( p->inTrans==TRANS_WRITE ){ 4244 int rc; 4245 BtShared *pBt = p->pBt; 4246 assert( pBt->inTransaction==TRANS_WRITE ); 4247 assert( pBt->nTransaction>0 ); 4248 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); 4249 if( rc!=SQLITE_OK && bCleanup==0 ){ 4250 sqlite3BtreeLeave(p); 4251 return rc; 4252 } 4253 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */ 4254 pBt->inTransaction = TRANS_READ; 4255 btreeClearHasContent(pBt); 4256 } 4257 4258 btreeEndTransaction(p); 4259 sqlite3BtreeLeave(p); 4260 return SQLITE_OK; 4261 } 4262 4263 /* 4264 ** Do both phases of a commit. 4265 */ 4266 int sqlite3BtreeCommit(Btree *p){ 4267 int rc; 4268 sqlite3BtreeEnter(p); 4269 rc = sqlite3BtreeCommitPhaseOne(p, 0); 4270 if( rc==SQLITE_OK ){ 4271 rc = sqlite3BtreeCommitPhaseTwo(p, 0); 4272 } 4273 sqlite3BtreeLeave(p); 4274 return rc; 4275 } 4276 4277 /* 4278 ** This routine sets the state to CURSOR_FAULT and the error 4279 ** code to errCode for every cursor on any BtShared that pBtree 4280 ** references. Or if the writeOnly flag is set to 1, then only 4281 ** trip write cursors and leave read cursors unchanged. 4282 ** 4283 ** Every cursor is a candidate to be tripped, including cursors 4284 ** that belong to other database connections that happen to be 4285 ** sharing the cache with pBtree. 4286 ** 4287 ** This routine gets called when a rollback occurs. If the writeOnly 4288 ** flag is true, then only write-cursors need be tripped - read-only 4289 ** cursors save their current positions so that they may continue 4290 ** following the rollback. Or, if writeOnly is false, all cursors are 4291 ** tripped. In general, writeOnly is false if the transaction being 4292 ** rolled back modified the database schema. In this case b-tree root 4293 ** pages may be moved or deleted from the database altogether, making 4294 ** it unsafe for read cursors to continue. 4295 ** 4296 ** If the writeOnly flag is true and an error is encountered while 4297 ** saving the current position of a read-only cursor, all cursors, 4298 ** including all read-cursors are tripped. 4299 ** 4300 ** SQLITE_OK is returned if successful, or if an error occurs while 4301 ** saving a cursor position, an SQLite error code. 4302 */ 4303 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ 4304 BtCursor *p; 4305 int rc = SQLITE_OK; 4306 4307 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); 4308 if( pBtree ){ 4309 sqlite3BtreeEnter(pBtree); 4310 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ 4311 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ 4312 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ 4313 rc = saveCursorPosition(p); 4314 if( rc!=SQLITE_OK ){ 4315 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); 4316 break; 4317 } 4318 } 4319 }else{ 4320 sqlite3BtreeClearCursor(p); 4321 p->eState = CURSOR_FAULT; 4322 p->skipNext = errCode; 4323 } 4324 btreeReleaseAllCursorPages(p); 4325 } 4326 sqlite3BtreeLeave(pBtree); 4327 } 4328 return rc; 4329 } 4330 4331 /* 4332 ** Set the pBt->nPage field correctly, according to the current 4333 ** state of the database. Assume pBt->pPage1 is valid. 4334 */ 4335 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){ 4336 int nPage = get4byte(&pPage1->aData[28]); 4337 testcase( nPage==0 ); 4338 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); 4339 testcase( pBt->nPage!=(u32)nPage ); 4340 pBt->nPage = nPage; 4341 } 4342 4343 /* 4344 ** Rollback the transaction in progress. 4345 ** 4346 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). 4347 ** Only write cursors are tripped if writeOnly is true but all cursors are 4348 ** tripped if writeOnly is false. Any attempt to use 4349 ** a tripped cursor will result in an error. 4350 ** 4351 ** This will release the write lock on the database file. If there 4352 ** are no active cursors, it also releases the read lock. 4353 */ 4354 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ 4355 int rc; 4356 BtShared *pBt = p->pBt; 4357 MemPage *pPage1; 4358 4359 assert( writeOnly==1 || writeOnly==0 ); 4360 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); 4361 sqlite3BtreeEnter(p); 4362 if( tripCode==SQLITE_OK ){ 4363 rc = tripCode = saveAllCursors(pBt, 0, 0); 4364 if( rc ) writeOnly = 0; 4365 }else{ 4366 rc = SQLITE_OK; 4367 } 4368 if( tripCode ){ 4369 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); 4370 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); 4371 if( rc2!=SQLITE_OK ) rc = rc2; 4372 } 4373 btreeIntegrity(p); 4374 4375 if( p->inTrans==TRANS_WRITE ){ 4376 int rc2; 4377 4378 assert( TRANS_WRITE==pBt->inTransaction ); 4379 rc2 = sqlite3PagerRollback(pBt->pPager); 4380 if( rc2!=SQLITE_OK ){ 4381 rc = rc2; 4382 } 4383 4384 /* The rollback may have destroyed the pPage1->aData value. So 4385 ** call btreeGetPage() on page 1 again to make 4386 ** sure pPage1->aData is set correctly. */ 4387 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ 4388 btreeSetNPage(pBt, pPage1); 4389 releasePageOne(pPage1); 4390 } 4391 assert( countValidCursors(pBt, 1)==0 ); 4392 pBt->inTransaction = TRANS_READ; 4393 btreeClearHasContent(pBt); 4394 } 4395 4396 btreeEndTransaction(p); 4397 sqlite3BtreeLeave(p); 4398 return rc; 4399 } 4400 4401 /* 4402 ** Start a statement subtransaction. The subtransaction can be rolled 4403 ** back independently of the main transaction. You must start a transaction 4404 ** before starting a subtransaction. The subtransaction is ended automatically 4405 ** if the main transaction commits or rolls back. 4406 ** 4407 ** Statement subtransactions are used around individual SQL statements 4408 ** that are contained within a BEGIN...COMMIT block. If a constraint 4409 ** error occurs within the statement, the effect of that one statement 4410 ** can be rolled back without having to rollback the entire transaction. 4411 ** 4412 ** A statement sub-transaction is implemented as an anonymous savepoint. The 4413 ** value passed as the second parameter is the total number of savepoints, 4414 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there 4415 ** are no active savepoints and no other statement-transactions open, 4416 ** iStatement is 1. This anonymous savepoint can be released or rolled back 4417 ** using the sqlite3BtreeSavepoint() function. 4418 */ 4419 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ 4420 int rc; 4421 BtShared *pBt = p->pBt; 4422 sqlite3BtreeEnter(p); 4423 assert( p->inTrans==TRANS_WRITE ); 4424 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4425 assert( iStatement>0 ); 4426 assert( iStatement>p->db->nSavepoint ); 4427 assert( pBt->inTransaction==TRANS_WRITE ); 4428 /* At the pager level, a statement transaction is a savepoint with 4429 ** an index greater than all savepoints created explicitly using 4430 ** SQL statements. It is illegal to open, release or rollback any 4431 ** such savepoints while the statement transaction savepoint is active. 4432 */ 4433 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); 4434 sqlite3BtreeLeave(p); 4435 return rc; 4436 } 4437 4438 /* 4439 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK 4440 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the 4441 ** savepoint identified by parameter iSavepoint, depending on the value 4442 ** of op. 4443 ** 4444 ** Normally, iSavepoint is greater than or equal to zero. However, if op is 4445 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 4446 ** contents of the entire transaction are rolled back. This is different 4447 ** from a normal transaction rollback, as no locks are released and the 4448 ** transaction remains open. 4449 */ 4450 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ 4451 int rc = SQLITE_OK; 4452 if( p && p->inTrans==TRANS_WRITE ){ 4453 BtShared *pBt = p->pBt; 4454 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 4455 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); 4456 sqlite3BtreeEnter(p); 4457 if( op==SAVEPOINT_ROLLBACK ){ 4458 rc = saveAllCursors(pBt, 0, 0); 4459 } 4460 if( rc==SQLITE_OK ){ 4461 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); 4462 } 4463 if( rc==SQLITE_OK ){ 4464 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ 4465 pBt->nPage = 0; 4466 } 4467 rc = newDatabase(pBt); 4468 btreeSetNPage(pBt, pBt->pPage1); 4469 4470 /* pBt->nPage might be zero if the database was corrupt when 4471 ** the transaction was started. Otherwise, it must be at least 1. */ 4472 assert( CORRUPT_DB || pBt->nPage>0 ); 4473 } 4474 sqlite3BtreeLeave(p); 4475 } 4476 return rc; 4477 } 4478 4479 /* 4480 ** Create a new cursor for the BTree whose root is on the page 4481 ** iTable. If a read-only cursor is requested, it is assumed that 4482 ** the caller already has at least a read-only transaction open 4483 ** on the database already. If a write-cursor is requested, then 4484 ** the caller is assumed to have an open write transaction. 4485 ** 4486 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only 4487 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor 4488 ** can be used for reading or for writing if other conditions for writing 4489 ** are also met. These are the conditions that must be met in order 4490 ** for writing to be allowed: 4491 ** 4492 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR 4493 ** 4494 ** 2: Other database connections that share the same pager cache 4495 ** but which are not in the READ_UNCOMMITTED state may not have 4496 ** cursors open with wrFlag==0 on the same table. Otherwise 4497 ** the changes made by this write cursor would be visible to 4498 ** the read cursors in the other database connection. 4499 ** 4500 ** 3: The database must be writable (not on read-only media) 4501 ** 4502 ** 4: There must be an active transaction. 4503 ** 4504 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR 4505 ** is set. If FORDELETE is set, that is a hint to the implementation that 4506 ** this cursor will only be used to seek to and delete entries of an index 4507 ** as part of a larger DELETE statement. The FORDELETE hint is not used by 4508 ** this implementation. But in a hypothetical alternative storage engine 4509 ** in which index entries are automatically deleted when corresponding table 4510 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE 4511 ** operations on this cursor can be no-ops and all READ operations can 4512 ** return a null row (2-bytes: 0x01 0x00). 4513 ** 4514 ** No checking is done to make sure that page iTable really is the 4515 ** root page of a b-tree. If it is not, then the cursor acquired 4516 ** will not work correctly. 4517 ** 4518 ** It is assumed that the sqlite3BtreeCursorZero() has been called 4519 ** on pCur to initialize the memory space prior to invoking this routine. 4520 */ 4521 static int btreeCursor( 4522 Btree *p, /* The btree */ 4523 Pgno iTable, /* Root page of table to open */ 4524 int wrFlag, /* 1 to write. 0 read-only */ 4525 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4526 BtCursor *pCur /* Space for new cursor */ 4527 ){ 4528 BtShared *pBt = p->pBt; /* Shared b-tree handle */ 4529 BtCursor *pX; /* Looping over other all cursors */ 4530 4531 assert( sqlite3BtreeHoldsMutex(p) ); 4532 assert( wrFlag==0 4533 || wrFlag==BTREE_WRCSR 4534 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 4535 ); 4536 4537 /* The following assert statements verify that if this is a sharable 4538 ** b-tree database, the connection is holding the required table locks, 4539 ** and that no other connection has any open cursor that conflicts with 4540 ** this lock. The iTable<1 term disables the check for corrupt schemas. */ 4541 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) 4542 || iTable<1 ); 4543 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); 4544 4545 /* Assert that the caller has opened the required transaction. */ 4546 assert( p->inTrans>TRANS_NONE ); 4547 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); 4548 assert( pBt->pPage1 && pBt->pPage1->aData ); 4549 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); 4550 4551 if( iTable<=1 ){ 4552 if( iTable<1 ){ 4553 return SQLITE_CORRUPT_BKPT; 4554 }else if( btreePagecount(pBt)==0 ){ 4555 assert( wrFlag==0 ); 4556 iTable = 0; 4557 } 4558 } 4559 4560 /* Now that no other errors can occur, finish filling in the BtCursor 4561 ** variables and link the cursor into the BtShared list. */ 4562 pCur->pgnoRoot = iTable; 4563 pCur->iPage = -1; 4564 pCur->pKeyInfo = pKeyInfo; 4565 pCur->pBtree = p; 4566 pCur->pBt = pBt; 4567 pCur->curFlags = 0; 4568 /* If there are two or more cursors on the same btree, then all such 4569 ** cursors *must* have the BTCF_Multiple flag set. */ 4570 for(pX=pBt->pCursor; pX; pX=pX->pNext){ 4571 if( pX->pgnoRoot==iTable ){ 4572 pX->curFlags |= BTCF_Multiple; 4573 pCur->curFlags = BTCF_Multiple; 4574 } 4575 } 4576 pCur->eState = CURSOR_INVALID; 4577 pCur->pNext = pBt->pCursor; 4578 pBt->pCursor = pCur; 4579 if( wrFlag ){ 4580 pCur->curFlags |= BTCF_WriteFlag; 4581 pCur->curPagerFlags = 0; 4582 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt); 4583 }else{ 4584 pCur->curPagerFlags = PAGER_GET_READONLY; 4585 } 4586 return SQLITE_OK; 4587 } 4588 static int btreeCursorWithLock( 4589 Btree *p, /* The btree */ 4590 Pgno iTable, /* Root page of table to open */ 4591 int wrFlag, /* 1 to write. 0 read-only */ 4592 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ 4593 BtCursor *pCur /* Space for new cursor */ 4594 ){ 4595 int rc; 4596 sqlite3BtreeEnter(p); 4597 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4598 sqlite3BtreeLeave(p); 4599 return rc; 4600 } 4601 int sqlite3BtreeCursor( 4602 Btree *p, /* The btree */ 4603 Pgno iTable, /* Root page of table to open */ 4604 int wrFlag, /* 1 to write. 0 read-only */ 4605 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ 4606 BtCursor *pCur /* Write new cursor here */ 4607 ){ 4608 if( p->sharable ){ 4609 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur); 4610 }else{ 4611 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); 4612 } 4613 } 4614 4615 /* 4616 ** Return the size of a BtCursor object in bytes. 4617 ** 4618 ** This interfaces is needed so that users of cursors can preallocate 4619 ** sufficient storage to hold a cursor. The BtCursor object is opaque 4620 ** to users so they cannot do the sizeof() themselves - they must call 4621 ** this routine. 4622 */ 4623 int sqlite3BtreeCursorSize(void){ 4624 return ROUND8(sizeof(BtCursor)); 4625 } 4626 4627 /* 4628 ** Initialize memory that will be converted into a BtCursor object. 4629 ** 4630 ** The simple approach here would be to memset() the entire object 4631 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays 4632 ** do not need to be zeroed and they are large, so we can save a lot 4633 ** of run-time by skipping the initialization of those elements. 4634 */ 4635 void sqlite3BtreeCursorZero(BtCursor *p){ 4636 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT)); 4637 } 4638 4639 /* 4640 ** Close a cursor. The read lock on the database file is released 4641 ** when the last cursor is closed. 4642 */ 4643 int sqlite3BtreeCloseCursor(BtCursor *pCur){ 4644 Btree *pBtree = pCur->pBtree; 4645 if( pBtree ){ 4646 BtShared *pBt = pCur->pBt; 4647 sqlite3BtreeEnter(pBtree); 4648 assert( pBt->pCursor!=0 ); 4649 if( pBt->pCursor==pCur ){ 4650 pBt->pCursor = pCur->pNext; 4651 }else{ 4652 BtCursor *pPrev = pBt->pCursor; 4653 do{ 4654 if( pPrev->pNext==pCur ){ 4655 pPrev->pNext = pCur->pNext; 4656 break; 4657 } 4658 pPrev = pPrev->pNext; 4659 }while( ALWAYS(pPrev) ); 4660 } 4661 btreeReleaseAllCursorPages(pCur); 4662 unlockBtreeIfUnused(pBt); 4663 sqlite3_free(pCur->aOverflow); 4664 sqlite3_free(pCur->pKey); 4665 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){ 4666 /* Since the BtShared is not sharable, there is no need to 4667 ** worry about the missing sqlite3BtreeLeave() call here. */ 4668 assert( pBtree->sharable==0 ); 4669 sqlite3BtreeClose(pBtree); 4670 }else{ 4671 sqlite3BtreeLeave(pBtree); 4672 } 4673 pCur->pBtree = 0; 4674 } 4675 return SQLITE_OK; 4676 } 4677 4678 /* 4679 ** Make sure the BtCursor* given in the argument has a valid 4680 ** BtCursor.info structure. If it is not already valid, call 4681 ** btreeParseCell() to fill it in. 4682 ** 4683 ** BtCursor.info is a cache of the information in the current cell. 4684 ** Using this cache reduces the number of calls to btreeParseCell(). 4685 */ 4686 #ifndef NDEBUG 4687 static int cellInfoEqual(CellInfo *a, CellInfo *b){ 4688 if( a->nKey!=b->nKey ) return 0; 4689 if( a->pPayload!=b->pPayload ) return 0; 4690 if( a->nPayload!=b->nPayload ) return 0; 4691 if( a->nLocal!=b->nLocal ) return 0; 4692 if( a->nSize!=b->nSize ) return 0; 4693 return 1; 4694 } 4695 static void assertCellInfo(BtCursor *pCur){ 4696 CellInfo info; 4697 memset(&info, 0, sizeof(info)); 4698 btreeParseCell(pCur->pPage, pCur->ix, &info); 4699 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) ); 4700 } 4701 #else 4702 #define assertCellInfo(x) 4703 #endif 4704 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ 4705 if( pCur->info.nSize==0 ){ 4706 pCur->curFlags |= BTCF_ValidNKey; 4707 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info); 4708 }else{ 4709 assertCellInfo(pCur); 4710 } 4711 } 4712 4713 #ifndef NDEBUG /* The next routine used only within assert() statements */ 4714 /* 4715 ** Return true if the given BtCursor is valid. A valid cursor is one 4716 ** that is currently pointing to a row in a (non-empty) table. 4717 ** This is a verification routine is used only within assert() statements. 4718 */ 4719 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ 4720 return pCur && pCur->eState==CURSOR_VALID; 4721 } 4722 #endif /* NDEBUG */ 4723 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ 4724 assert( pCur!=0 ); 4725 return pCur->eState==CURSOR_VALID; 4726 } 4727 4728 /* 4729 ** Return the value of the integer key or "rowid" for a table btree. 4730 ** This routine is only valid for a cursor that is pointing into a 4731 ** ordinary table btree. If the cursor points to an index btree or 4732 ** is invalid, the result of this routine is undefined. 4733 */ 4734 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ 4735 assert( cursorHoldsMutex(pCur) ); 4736 assert( pCur->eState==CURSOR_VALID ); 4737 assert( pCur->curIntKey ); 4738 getCellInfo(pCur); 4739 return pCur->info.nKey; 4740 } 4741 4742 /* 4743 ** Pin or unpin a cursor. 4744 */ 4745 void sqlite3BtreeCursorPin(BtCursor *pCur){ 4746 assert( (pCur->curFlags & BTCF_Pinned)==0 ); 4747 pCur->curFlags |= BTCF_Pinned; 4748 } 4749 void sqlite3BtreeCursorUnpin(BtCursor *pCur){ 4750 assert( (pCur->curFlags & BTCF_Pinned)!=0 ); 4751 pCur->curFlags &= ~BTCF_Pinned; 4752 } 4753 4754 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 4755 /* 4756 ** Return the offset into the database file for the start of the 4757 ** payload to which the cursor is pointing. 4758 */ 4759 i64 sqlite3BtreeOffset(BtCursor *pCur){ 4760 assert( cursorHoldsMutex(pCur) ); 4761 assert( pCur->eState==CURSOR_VALID ); 4762 getCellInfo(pCur); 4763 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) + 4764 (i64)(pCur->info.pPayload - pCur->pPage->aData); 4765 } 4766 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 4767 4768 /* 4769 ** Return the number of bytes of payload for the entry that pCur is 4770 ** currently pointing to. For table btrees, this will be the amount 4771 ** of data. For index btrees, this will be the size of the key. 4772 ** 4773 ** The caller must guarantee that the cursor is pointing to a non-NULL 4774 ** valid entry. In other words, the calling procedure must guarantee 4775 ** that the cursor has Cursor.eState==CURSOR_VALID. 4776 */ 4777 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ 4778 assert( cursorHoldsMutex(pCur) ); 4779 assert( pCur->eState==CURSOR_VALID ); 4780 getCellInfo(pCur); 4781 return pCur->info.nPayload; 4782 } 4783 4784 /* 4785 ** Return an upper bound on the size of any record for the table 4786 ** that the cursor is pointing into. 4787 ** 4788 ** This is an optimization. Everything will still work if this 4789 ** routine always returns 2147483647 (which is the largest record 4790 ** that SQLite can handle) or more. But returning a smaller value might 4791 ** prevent large memory allocations when trying to interpret a 4792 ** corrupt datrabase. 4793 ** 4794 ** The current implementation merely returns the size of the underlying 4795 ** database file. 4796 */ 4797 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){ 4798 assert( cursorHoldsMutex(pCur) ); 4799 assert( pCur->eState==CURSOR_VALID ); 4800 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage; 4801 } 4802 4803 /* 4804 ** Given the page number of an overflow page in the database (parameter 4805 ** ovfl), this function finds the page number of the next page in the 4806 ** linked list of overflow pages. If possible, it uses the auto-vacuum 4807 ** pointer-map data instead of reading the content of page ovfl to do so. 4808 ** 4809 ** If an error occurs an SQLite error code is returned. Otherwise: 4810 ** 4811 ** The page number of the next overflow page in the linked list is 4812 ** written to *pPgnoNext. If page ovfl is the last page in its linked 4813 ** list, *pPgnoNext is set to zero. 4814 ** 4815 ** If ppPage is not NULL, and a reference to the MemPage object corresponding 4816 ** to page number pOvfl was obtained, then *ppPage is set to point to that 4817 ** reference. It is the responsibility of the caller to call releasePage() 4818 ** on *ppPage to free the reference. In no reference was obtained (because 4819 ** the pointer-map was used to obtain the value for *pPgnoNext), then 4820 ** *ppPage is set to zero. 4821 */ 4822 static int getOverflowPage( 4823 BtShared *pBt, /* The database file */ 4824 Pgno ovfl, /* Current overflow page number */ 4825 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ 4826 Pgno *pPgnoNext /* OUT: Next overflow page number */ 4827 ){ 4828 Pgno next = 0; 4829 MemPage *pPage = 0; 4830 int rc = SQLITE_OK; 4831 4832 assert( sqlite3_mutex_held(pBt->mutex) ); 4833 assert(pPgnoNext); 4834 4835 #ifndef SQLITE_OMIT_AUTOVACUUM 4836 /* Try to find the next page in the overflow list using the 4837 ** autovacuum pointer-map pages. Guess that the next page in 4838 ** the overflow list is page number (ovfl+1). If that guess turns 4839 ** out to be wrong, fall back to loading the data of page 4840 ** number ovfl to determine the next page number. 4841 */ 4842 if( pBt->autoVacuum ){ 4843 Pgno pgno; 4844 Pgno iGuess = ovfl+1; 4845 u8 eType; 4846 4847 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ 4848 iGuess++; 4849 } 4850 4851 if( iGuess<=btreePagecount(pBt) ){ 4852 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); 4853 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ 4854 next = iGuess; 4855 rc = SQLITE_DONE; 4856 } 4857 } 4858 } 4859 #endif 4860 4861 assert( next==0 || rc==SQLITE_DONE ); 4862 if( rc==SQLITE_OK ){ 4863 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); 4864 assert( rc==SQLITE_OK || pPage==0 ); 4865 if( rc==SQLITE_OK ){ 4866 next = get4byte(pPage->aData); 4867 } 4868 } 4869 4870 *pPgnoNext = next; 4871 if( ppPage ){ 4872 *ppPage = pPage; 4873 }else{ 4874 releasePage(pPage); 4875 } 4876 return (rc==SQLITE_DONE ? SQLITE_OK : rc); 4877 } 4878 4879 /* 4880 ** Copy data from a buffer to a page, or from a page to a buffer. 4881 ** 4882 ** pPayload is a pointer to data stored on database page pDbPage. 4883 ** If argument eOp is false, then nByte bytes of data are copied 4884 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, 4885 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes 4886 ** of data are copied from the buffer pBuf to pPayload. 4887 ** 4888 ** SQLITE_OK is returned on success, otherwise an error code. 4889 */ 4890 static int copyPayload( 4891 void *pPayload, /* Pointer to page data */ 4892 void *pBuf, /* Pointer to buffer */ 4893 int nByte, /* Number of bytes to copy */ 4894 int eOp, /* 0 -> copy from page, 1 -> copy to page */ 4895 DbPage *pDbPage /* Page containing pPayload */ 4896 ){ 4897 if( eOp ){ 4898 /* Copy data from buffer to page (a write operation) */ 4899 int rc = sqlite3PagerWrite(pDbPage); 4900 if( rc!=SQLITE_OK ){ 4901 return rc; 4902 } 4903 memcpy(pPayload, pBuf, nByte); 4904 }else{ 4905 /* Copy data from page to buffer (a read operation) */ 4906 memcpy(pBuf, pPayload, nByte); 4907 } 4908 return SQLITE_OK; 4909 } 4910 4911 /* 4912 ** This function is used to read or overwrite payload information 4913 ** for the entry that the pCur cursor is pointing to. The eOp 4914 ** argument is interpreted as follows: 4915 ** 4916 ** 0: The operation is a read. Populate the overflow cache. 4917 ** 1: The operation is a write. Populate the overflow cache. 4918 ** 4919 ** A total of "amt" bytes are read or written beginning at "offset". 4920 ** Data is read to or from the buffer pBuf. 4921 ** 4922 ** The content being read or written might appear on the main page 4923 ** or be scattered out on multiple overflow pages. 4924 ** 4925 ** If the current cursor entry uses one or more overflow pages 4926 ** this function may allocate space for and lazily populate 4927 ** the overflow page-list cache array (BtCursor.aOverflow). 4928 ** Subsequent calls use this cache to make seeking to the supplied offset 4929 ** more efficient. 4930 ** 4931 ** Once an overflow page-list cache has been allocated, it must be 4932 ** invalidated if some other cursor writes to the same table, or if 4933 ** the cursor is moved to a different row. Additionally, in auto-vacuum 4934 ** mode, the following events may invalidate an overflow page-list cache. 4935 ** 4936 ** * An incremental vacuum, 4937 ** * A commit in auto_vacuum="full" mode, 4938 ** * Creating a table (may require moving an overflow page). 4939 */ 4940 static int accessPayload( 4941 BtCursor *pCur, /* Cursor pointing to entry to read from */ 4942 u32 offset, /* Begin reading this far into payload */ 4943 u32 amt, /* Read this many bytes */ 4944 unsigned char *pBuf, /* Write the bytes into this buffer */ 4945 int eOp /* zero to read. non-zero to write. */ 4946 ){ 4947 unsigned char *aPayload; 4948 int rc = SQLITE_OK; 4949 int iIdx = 0; 4950 MemPage *pPage = pCur->pPage; /* Btree page of current entry */ 4951 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ 4952 #ifdef SQLITE_DIRECT_OVERFLOW_READ 4953 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ 4954 #endif 4955 4956 assert( pPage ); 4957 assert( eOp==0 || eOp==1 ); 4958 assert( pCur->eState==CURSOR_VALID ); 4959 if( pCur->ix>=pPage->nCell ){ 4960 return SQLITE_CORRUPT_PAGE(pPage); 4961 } 4962 assert( cursorHoldsMutex(pCur) ); 4963 4964 getCellInfo(pCur); 4965 aPayload = pCur->info.pPayload; 4966 assert( offset+amt <= pCur->info.nPayload ); 4967 4968 assert( aPayload > pPage->aData ); 4969 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ 4970 /* Trying to read or write past the end of the data is an error. The 4971 ** conditional above is really: 4972 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] 4973 ** but is recast into its current form to avoid integer overflow problems 4974 */ 4975 return SQLITE_CORRUPT_PAGE(pPage); 4976 } 4977 4978 /* Check if data must be read/written to/from the btree page itself. */ 4979 if( offset<pCur->info.nLocal ){ 4980 int a = amt; 4981 if( a+offset>pCur->info.nLocal ){ 4982 a = pCur->info.nLocal - offset; 4983 } 4984 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); 4985 offset = 0; 4986 pBuf += a; 4987 amt -= a; 4988 }else{ 4989 offset -= pCur->info.nLocal; 4990 } 4991 4992 4993 if( rc==SQLITE_OK && amt>0 ){ 4994 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ 4995 Pgno nextPage; 4996 4997 nextPage = get4byte(&aPayload[pCur->info.nLocal]); 4998 4999 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. 5000 ** 5001 ** The aOverflow[] array is sized at one entry for each overflow page 5002 ** in the overflow chain. The page number of the first overflow page is 5003 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array 5004 ** means "not yet known" (the cache is lazily populated). 5005 */ 5006 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ 5007 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; 5008 if( pCur->aOverflow==0 5009 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow) 5010 ){ 5011 Pgno *aNew = (Pgno*)sqlite3Realloc( 5012 pCur->aOverflow, nOvfl*2*sizeof(Pgno) 5013 ); 5014 if( aNew==0 ){ 5015 return SQLITE_NOMEM_BKPT; 5016 }else{ 5017 pCur->aOverflow = aNew; 5018 } 5019 } 5020 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); 5021 pCur->curFlags |= BTCF_ValidOvfl; 5022 }else{ 5023 /* If the overflow page-list cache has been allocated and the 5024 ** entry for the first required overflow page is valid, skip 5025 ** directly to it. 5026 */ 5027 if( pCur->aOverflow[offset/ovflSize] ){ 5028 iIdx = (offset/ovflSize); 5029 nextPage = pCur->aOverflow[iIdx]; 5030 offset = (offset%ovflSize); 5031 } 5032 } 5033 5034 assert( rc==SQLITE_OK && amt>0 ); 5035 while( nextPage ){ 5036 /* If required, populate the overflow page-list cache. */ 5037 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT; 5038 assert( pCur->aOverflow[iIdx]==0 5039 || pCur->aOverflow[iIdx]==nextPage 5040 || CORRUPT_DB ); 5041 pCur->aOverflow[iIdx] = nextPage; 5042 5043 if( offset>=ovflSize ){ 5044 /* The only reason to read this page is to obtain the page 5045 ** number for the next page in the overflow chain. The page 5046 ** data is not required. So first try to lookup the overflow 5047 ** page-list cache, if any, then fall back to the getOverflowPage() 5048 ** function. 5049 */ 5050 assert( pCur->curFlags & BTCF_ValidOvfl ); 5051 assert( pCur->pBtree->db==pBt->db ); 5052 if( pCur->aOverflow[iIdx+1] ){ 5053 nextPage = pCur->aOverflow[iIdx+1]; 5054 }else{ 5055 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); 5056 } 5057 offset -= ovflSize; 5058 }else{ 5059 /* Need to read this page properly. It contains some of the 5060 ** range of data that is being read (eOp==0) or written (eOp!=0). 5061 */ 5062 int a = amt; 5063 if( a + offset > ovflSize ){ 5064 a = ovflSize - offset; 5065 } 5066 5067 #ifdef SQLITE_DIRECT_OVERFLOW_READ 5068 /* If all the following are true: 5069 ** 5070 ** 1) this is a read operation, and 5071 ** 2) data is required from the start of this overflow page, and 5072 ** 3) there are no dirty pages in the page-cache 5073 ** 4) the database is file-backed, and 5074 ** 5) the page is not in the WAL file 5075 ** 6) at least 4 bytes have already been read into the output buffer 5076 ** 5077 ** then data can be read directly from the database file into the 5078 ** output buffer, bypassing the page-cache altogether. This speeds 5079 ** up loading large records that span many overflow pages. 5080 */ 5081 if( eOp==0 /* (1) */ 5082 && offset==0 /* (2) */ 5083 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ 5084 && &pBuf[-4]>=pBufStart /* (6) */ 5085 ){ 5086 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); 5087 u8 aSave[4]; 5088 u8 *aWrite = &pBuf[-4]; 5089 assert( aWrite>=pBufStart ); /* due to (6) */ 5090 memcpy(aSave, aWrite, 4); 5091 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); 5092 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT; 5093 nextPage = get4byte(aWrite); 5094 memcpy(aWrite, aSave, 4); 5095 }else 5096 #endif 5097 5098 { 5099 DbPage *pDbPage; 5100 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, 5101 (eOp==0 ? PAGER_GET_READONLY : 0) 5102 ); 5103 if( rc==SQLITE_OK ){ 5104 aPayload = sqlite3PagerGetData(pDbPage); 5105 nextPage = get4byte(aPayload); 5106 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); 5107 sqlite3PagerUnref(pDbPage); 5108 offset = 0; 5109 } 5110 } 5111 amt -= a; 5112 if( amt==0 ) return rc; 5113 pBuf += a; 5114 } 5115 if( rc ) break; 5116 iIdx++; 5117 } 5118 } 5119 5120 if( rc==SQLITE_OK && amt>0 ){ 5121 /* Overflow chain ends prematurely */ 5122 return SQLITE_CORRUPT_PAGE(pPage); 5123 } 5124 return rc; 5125 } 5126 5127 /* 5128 ** Read part of the payload for the row at which that cursor pCur is currently 5129 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer 5130 ** begins at "offset". 5131 ** 5132 ** pCur can be pointing to either a table or an index b-tree. 5133 ** If pointing to a table btree, then the content section is read. If 5134 ** pCur is pointing to an index b-tree then the key section is read. 5135 ** 5136 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing 5137 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the 5138 ** cursor might be invalid or might need to be restored before being read. 5139 ** 5140 ** Return SQLITE_OK on success or an error code if anything goes 5141 ** wrong. An error is returned if "offset+amt" is larger than 5142 ** the available payload. 5143 */ 5144 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5145 assert( cursorHoldsMutex(pCur) ); 5146 assert( pCur->eState==CURSOR_VALID ); 5147 assert( pCur->iPage>=0 && pCur->pPage ); 5148 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); 5149 } 5150 5151 /* 5152 ** This variant of sqlite3BtreePayload() works even if the cursor has not 5153 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() 5154 ** interface. 5155 */ 5156 #ifndef SQLITE_OMIT_INCRBLOB 5157 static SQLITE_NOINLINE int accessPayloadChecked( 5158 BtCursor *pCur, 5159 u32 offset, 5160 u32 amt, 5161 void *pBuf 5162 ){ 5163 int rc; 5164 if ( pCur->eState==CURSOR_INVALID ){ 5165 return SQLITE_ABORT; 5166 } 5167 assert( cursorOwnsBtShared(pCur) ); 5168 rc = btreeRestoreCursorPosition(pCur); 5169 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); 5170 } 5171 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ 5172 if( pCur->eState==CURSOR_VALID ){ 5173 assert( cursorOwnsBtShared(pCur) ); 5174 return accessPayload(pCur, offset, amt, pBuf, 0); 5175 }else{ 5176 return accessPayloadChecked(pCur, offset, amt, pBuf); 5177 } 5178 } 5179 #endif /* SQLITE_OMIT_INCRBLOB */ 5180 5181 /* 5182 ** Return a pointer to payload information from the entry that the 5183 ** pCur cursor is pointing to. The pointer is to the beginning of 5184 ** the key if index btrees (pPage->intKey==0) and is the data for 5185 ** table btrees (pPage->intKey==1). The number of bytes of available 5186 ** key/data is written into *pAmt. If *pAmt==0, then the value 5187 ** returned will not be a valid pointer. 5188 ** 5189 ** This routine is an optimization. It is common for the entire key 5190 ** and data to fit on the local page and for there to be no overflow 5191 ** pages. When that is so, this routine can be used to access the 5192 ** key and data without making a copy. If the key and/or data spills 5193 ** onto overflow pages, then accessPayload() must be used to reassemble 5194 ** the key/data and copy it into a preallocated buffer. 5195 ** 5196 ** The pointer returned by this routine looks directly into the cached 5197 ** page of the database. The data might change or move the next time 5198 ** any btree routine is called. 5199 */ 5200 static const void *fetchPayload( 5201 BtCursor *pCur, /* Cursor pointing to entry to read from */ 5202 u32 *pAmt /* Write the number of available bytes here */ 5203 ){ 5204 int amt; 5205 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage); 5206 assert( pCur->eState==CURSOR_VALID ); 5207 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5208 assert( cursorOwnsBtShared(pCur) ); 5209 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5210 assert( pCur->info.nSize>0 ); 5211 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB ); 5212 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB); 5213 amt = pCur->info.nLocal; 5214 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){ 5215 /* There is too little space on the page for the expected amount 5216 ** of local content. Database must be corrupt. */ 5217 assert( CORRUPT_DB ); 5218 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload)); 5219 } 5220 *pAmt = (u32)amt; 5221 return (void*)pCur->info.pPayload; 5222 } 5223 5224 5225 /* 5226 ** For the entry that cursor pCur is point to, return as 5227 ** many bytes of the key or data as are available on the local 5228 ** b-tree page. Write the number of available bytes into *pAmt. 5229 ** 5230 ** The pointer returned is ephemeral. The key/data may move 5231 ** or be destroyed on the next call to any Btree routine, 5232 ** including calls from other threads against the same cache. 5233 ** Hence, a mutex on the BtShared should be held prior to calling 5234 ** this routine. 5235 ** 5236 ** These routines is used to get quick access to key and data 5237 ** in the common case where no overflow pages are used. 5238 */ 5239 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ 5240 return fetchPayload(pCur, pAmt); 5241 } 5242 5243 5244 /* 5245 ** Move the cursor down to a new child page. The newPgno argument is the 5246 ** page number of the child page to move to. 5247 ** 5248 ** This function returns SQLITE_CORRUPT if the page-header flags field of 5249 ** the new child page does not match the flags field of the parent (i.e. 5250 ** if an intkey page appears to be the parent of a non-intkey page, or 5251 ** vice-versa). 5252 */ 5253 static int moveToChild(BtCursor *pCur, u32 newPgno){ 5254 BtShared *pBt = pCur->pBt; 5255 5256 assert( cursorOwnsBtShared(pCur) ); 5257 assert( pCur->eState==CURSOR_VALID ); 5258 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); 5259 assert( pCur->iPage>=0 ); 5260 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ 5261 return SQLITE_CORRUPT_BKPT; 5262 } 5263 pCur->info.nSize = 0; 5264 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5265 pCur->aiIdx[pCur->iPage] = pCur->ix; 5266 pCur->apPage[pCur->iPage] = pCur->pPage; 5267 pCur->ix = 0; 5268 pCur->iPage++; 5269 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags); 5270 } 5271 5272 #ifdef SQLITE_DEBUG 5273 /* 5274 ** Page pParent is an internal (non-leaf) tree page. This function 5275 ** asserts that page number iChild is the left-child if the iIdx'th 5276 ** cell in page pParent. Or, if iIdx is equal to the total number of 5277 ** cells in pParent, that page number iChild is the right-child of 5278 ** the page. 5279 */ 5280 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ 5281 if( CORRUPT_DB ) return; /* The conditions tested below might not be true 5282 ** in a corrupt database */ 5283 assert( iIdx<=pParent->nCell ); 5284 if( iIdx==pParent->nCell ){ 5285 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); 5286 }else{ 5287 assert( get4byte(findCell(pParent, iIdx))==iChild ); 5288 } 5289 } 5290 #else 5291 # define assertParentIndex(x,y,z) 5292 #endif 5293 5294 /* 5295 ** Move the cursor up to the parent page. 5296 ** 5297 ** pCur->idx is set to the cell index that contains the pointer 5298 ** to the page we are coming from. If we are coming from the 5299 ** right-most child page then pCur->idx is set to one more than 5300 ** the largest cell index. 5301 */ 5302 static void moveToParent(BtCursor *pCur){ 5303 MemPage *pLeaf; 5304 assert( cursorOwnsBtShared(pCur) ); 5305 assert( pCur->eState==CURSOR_VALID ); 5306 assert( pCur->iPage>0 ); 5307 assert( pCur->pPage ); 5308 assertParentIndex( 5309 pCur->apPage[pCur->iPage-1], 5310 pCur->aiIdx[pCur->iPage-1], 5311 pCur->pPage->pgno 5312 ); 5313 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); 5314 pCur->info.nSize = 0; 5315 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 5316 pCur->ix = pCur->aiIdx[pCur->iPage-1]; 5317 pLeaf = pCur->pPage; 5318 pCur->pPage = pCur->apPage[--pCur->iPage]; 5319 releasePageNotNull(pLeaf); 5320 } 5321 5322 /* 5323 ** Move the cursor to point to the root page of its b-tree structure. 5324 ** 5325 ** If the table has a virtual root page, then the cursor is moved to point 5326 ** to the virtual root page instead of the actual root page. A table has a 5327 ** virtual root page when the actual root page contains no cells and a 5328 ** single child page. This can only happen with the table rooted at page 1. 5329 ** 5330 ** If the b-tree structure is empty, the cursor state is set to 5331 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise, 5332 ** the cursor is set to point to the first cell located on the root 5333 ** (or virtual root) page and the cursor state is set to CURSOR_VALID. 5334 ** 5335 ** If this function returns successfully, it may be assumed that the 5336 ** page-header flags indicate that the [virtual] root-page is the expected 5337 ** kind of b-tree page (i.e. if when opening the cursor the caller did not 5338 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, 5339 ** indicating a table b-tree, or if the caller did specify a KeyInfo 5340 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index 5341 ** b-tree). 5342 */ 5343 static int moveToRoot(BtCursor *pCur){ 5344 MemPage *pRoot; 5345 int rc = SQLITE_OK; 5346 5347 assert( cursorOwnsBtShared(pCur) ); 5348 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); 5349 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); 5350 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); 5351 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 ); 5352 assert( pCur->pgnoRoot>0 || pCur->iPage<0 ); 5353 5354 if( pCur->iPage>=0 ){ 5355 if( pCur->iPage ){ 5356 releasePageNotNull(pCur->pPage); 5357 while( --pCur->iPage ){ 5358 releasePageNotNull(pCur->apPage[pCur->iPage]); 5359 } 5360 pRoot = pCur->pPage = pCur->apPage[0]; 5361 goto skip_init; 5362 } 5363 }else if( pCur->pgnoRoot==0 ){ 5364 pCur->eState = CURSOR_INVALID; 5365 return SQLITE_EMPTY; 5366 }else{ 5367 assert( pCur->iPage==(-1) ); 5368 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 5369 if( pCur->eState==CURSOR_FAULT ){ 5370 assert( pCur->skipNext!=SQLITE_OK ); 5371 return pCur->skipNext; 5372 } 5373 sqlite3BtreeClearCursor(pCur); 5374 } 5375 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage, 5376 0, pCur->curPagerFlags); 5377 if( rc!=SQLITE_OK ){ 5378 pCur->eState = CURSOR_INVALID; 5379 return rc; 5380 } 5381 pCur->iPage = 0; 5382 pCur->curIntKey = pCur->pPage->intKey; 5383 } 5384 pRoot = pCur->pPage; 5385 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB ); 5386 5387 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor 5388 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is 5389 ** NULL, the caller expects a table b-tree. If this is not the case, 5390 ** return an SQLITE_CORRUPT error. 5391 ** 5392 ** Earlier versions of SQLite assumed that this test could not fail 5393 ** if the root page was already loaded when this function was called (i.e. 5394 ** if pCur->iPage>=0). But this is not so if the database is corrupted 5395 ** in such a way that page pRoot is linked into a second b-tree table 5396 ** (or the freelist). */ 5397 assert( pRoot->intKey==1 || pRoot->intKey==0 ); 5398 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ 5399 return SQLITE_CORRUPT_PAGE(pCur->pPage); 5400 } 5401 5402 skip_init: 5403 pCur->ix = 0; 5404 pCur->info.nSize = 0; 5405 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); 5406 5407 if( pRoot->nCell>0 ){ 5408 pCur->eState = CURSOR_VALID; 5409 }else if( !pRoot->leaf ){ 5410 Pgno subpage; 5411 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; 5412 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); 5413 pCur->eState = CURSOR_VALID; 5414 rc = moveToChild(pCur, subpage); 5415 }else{ 5416 pCur->eState = CURSOR_INVALID; 5417 rc = SQLITE_EMPTY; 5418 } 5419 return rc; 5420 } 5421 5422 /* 5423 ** Move the cursor down to the left-most leaf entry beneath the 5424 ** entry to which it is currently pointing. 5425 ** 5426 ** The left-most leaf is the one with the smallest key - the first 5427 ** in ascending order. 5428 */ 5429 static int moveToLeftmost(BtCursor *pCur){ 5430 Pgno pgno; 5431 int rc = SQLITE_OK; 5432 MemPage *pPage; 5433 5434 assert( cursorOwnsBtShared(pCur) ); 5435 assert( pCur->eState==CURSOR_VALID ); 5436 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ 5437 assert( pCur->ix<pPage->nCell ); 5438 pgno = get4byte(findCell(pPage, pCur->ix)); 5439 rc = moveToChild(pCur, pgno); 5440 } 5441 return rc; 5442 } 5443 5444 /* 5445 ** Move the cursor down to the right-most leaf entry beneath the 5446 ** page to which it is currently pointing. Notice the difference 5447 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() 5448 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() 5449 ** finds the right-most entry beneath the *page*. 5450 ** 5451 ** The right-most entry is the one with the largest key - the last 5452 ** key in ascending order. 5453 */ 5454 static int moveToRightmost(BtCursor *pCur){ 5455 Pgno pgno; 5456 int rc = SQLITE_OK; 5457 MemPage *pPage = 0; 5458 5459 assert( cursorOwnsBtShared(pCur) ); 5460 assert( pCur->eState==CURSOR_VALID ); 5461 while( !(pPage = pCur->pPage)->leaf ){ 5462 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5463 pCur->ix = pPage->nCell; 5464 rc = moveToChild(pCur, pgno); 5465 if( rc ) return rc; 5466 } 5467 pCur->ix = pPage->nCell-1; 5468 assert( pCur->info.nSize==0 ); 5469 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); 5470 return SQLITE_OK; 5471 } 5472 5473 /* Move the cursor to the first entry in the table. Return SQLITE_OK 5474 ** on success. Set *pRes to 0 if the cursor actually points to something 5475 ** or set *pRes to 1 if the table is empty. 5476 */ 5477 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ 5478 int rc; 5479 5480 assert( cursorOwnsBtShared(pCur) ); 5481 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5482 rc = moveToRoot(pCur); 5483 if( rc==SQLITE_OK ){ 5484 assert( pCur->pPage->nCell>0 ); 5485 *pRes = 0; 5486 rc = moveToLeftmost(pCur); 5487 }else if( rc==SQLITE_EMPTY ){ 5488 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5489 *pRes = 1; 5490 rc = SQLITE_OK; 5491 } 5492 return rc; 5493 } 5494 5495 /* Move the cursor to the last entry in the table. Return SQLITE_OK 5496 ** on success. Set *pRes to 0 if the cursor actually points to something 5497 ** or set *pRes to 1 if the table is empty. 5498 */ 5499 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ 5500 int rc; 5501 5502 assert( cursorOwnsBtShared(pCur) ); 5503 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5504 5505 /* If the cursor already points to the last entry, this is a no-op. */ 5506 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ 5507 #ifdef SQLITE_DEBUG 5508 /* This block serves to assert() that the cursor really does point 5509 ** to the last entry in the b-tree. */ 5510 int ii; 5511 for(ii=0; ii<pCur->iPage; ii++){ 5512 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); 5513 } 5514 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB ); 5515 testcase( pCur->ix!=pCur->pPage->nCell-1 ); 5516 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */ 5517 assert( pCur->pPage->leaf ); 5518 #endif 5519 *pRes = 0; 5520 return SQLITE_OK; 5521 } 5522 5523 rc = moveToRoot(pCur); 5524 if( rc==SQLITE_OK ){ 5525 assert( pCur->eState==CURSOR_VALID ); 5526 *pRes = 0; 5527 rc = moveToRightmost(pCur); 5528 if( rc==SQLITE_OK ){ 5529 pCur->curFlags |= BTCF_AtLast; 5530 }else{ 5531 pCur->curFlags &= ~BTCF_AtLast; 5532 } 5533 }else if( rc==SQLITE_EMPTY ){ 5534 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5535 *pRes = 1; 5536 rc = SQLITE_OK; 5537 } 5538 return rc; 5539 } 5540 5541 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY) 5542 ** table near the key intKey. Return a success code. 5543 ** 5544 ** If an exact match is not found, then the cursor is always 5545 ** left pointing at a leaf page which would hold the entry if it 5546 ** were present. The cursor might point to an entry that comes 5547 ** before or after the key. 5548 ** 5549 ** An integer is written into *pRes which is the result of 5550 ** comparing the key with the entry to which the cursor is 5551 ** pointing. The meaning of the integer written into 5552 ** *pRes is as follows: 5553 ** 5554 ** *pRes<0 The cursor is left pointing at an entry that 5555 ** is smaller than intKey or if the table is empty 5556 ** and the cursor is therefore left point to nothing. 5557 ** 5558 ** *pRes==0 The cursor is left pointing at an entry that 5559 ** exactly matches intKey. 5560 ** 5561 ** *pRes>0 The cursor is left pointing at an entry that 5562 ** is larger than intKey. 5563 */ 5564 int sqlite3BtreeTableMoveto( 5565 BtCursor *pCur, /* The cursor to be moved */ 5566 i64 intKey, /* The table key */ 5567 int biasRight, /* If true, bias the search to the high end */ 5568 int *pRes /* Write search results here */ 5569 ){ 5570 int rc; 5571 5572 assert( cursorOwnsBtShared(pCur) ); 5573 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5574 assert( pRes ); 5575 assert( pCur->pKeyInfo==0 ); 5576 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 ); 5577 5578 /* If the cursor is already positioned at the point we are trying 5579 ** to move to, then just return without doing any work */ 5580 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){ 5581 if( pCur->info.nKey==intKey ){ 5582 *pRes = 0; 5583 return SQLITE_OK; 5584 } 5585 if( pCur->info.nKey<intKey ){ 5586 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ 5587 *pRes = -1; 5588 return SQLITE_OK; 5589 } 5590 /* If the requested key is one more than the previous key, then 5591 ** try to get there using sqlite3BtreeNext() rather than a full 5592 ** binary search. This is an optimization only. The correct answer 5593 ** is still obtained without this case, only a little more slowely */ 5594 if( pCur->info.nKey+1==intKey ){ 5595 *pRes = 0; 5596 rc = sqlite3BtreeNext(pCur, 0); 5597 if( rc==SQLITE_OK ){ 5598 getCellInfo(pCur); 5599 if( pCur->info.nKey==intKey ){ 5600 return SQLITE_OK; 5601 } 5602 }else if( rc!=SQLITE_DONE ){ 5603 return rc; 5604 } 5605 } 5606 } 5607 } 5608 5609 #ifdef SQLITE_DEBUG 5610 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5611 #endif 5612 5613 rc = moveToRoot(pCur); 5614 if( rc ){ 5615 if( rc==SQLITE_EMPTY ){ 5616 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5617 *pRes = -1; 5618 return SQLITE_OK; 5619 } 5620 return rc; 5621 } 5622 assert( pCur->pPage ); 5623 assert( pCur->pPage->isInit ); 5624 assert( pCur->eState==CURSOR_VALID ); 5625 assert( pCur->pPage->nCell > 0 ); 5626 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey ); 5627 assert( pCur->curIntKey ); 5628 5629 for(;;){ 5630 int lwr, upr, idx, c; 5631 Pgno chldPg; 5632 MemPage *pPage = pCur->pPage; 5633 u8 *pCell; /* Pointer to current cell in pPage */ 5634 5635 /* pPage->nCell must be greater than zero. If this is the root-page 5636 ** the cursor would have been INVALID above and this for(;;) loop 5637 ** not run. If this is not the root-page, then the moveToChild() routine 5638 ** would have already detected db corruption. Similarly, pPage must 5639 ** be the right kind (index or table) of b-tree page. Otherwise 5640 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5641 assert( pPage->nCell>0 ); 5642 assert( pPage->intKey ); 5643 lwr = 0; 5644 upr = pPage->nCell-1; 5645 assert( biasRight==0 || biasRight==1 ); 5646 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ 5647 for(;;){ 5648 i64 nCellKey; 5649 pCell = findCellPastPtr(pPage, idx); 5650 if( pPage->intKeyLeaf ){ 5651 while( 0x80 <= *(pCell++) ){ 5652 if( pCell>=pPage->aDataEnd ){ 5653 return SQLITE_CORRUPT_PAGE(pPage); 5654 } 5655 } 5656 } 5657 getVarint(pCell, (u64*)&nCellKey); 5658 if( nCellKey<intKey ){ 5659 lwr = idx+1; 5660 if( lwr>upr ){ c = -1; break; } 5661 }else if( nCellKey>intKey ){ 5662 upr = idx-1; 5663 if( lwr>upr ){ c = +1; break; } 5664 }else{ 5665 assert( nCellKey==intKey ); 5666 pCur->ix = (u16)idx; 5667 if( !pPage->leaf ){ 5668 lwr = idx; 5669 goto moveto_table_next_layer; 5670 }else{ 5671 pCur->curFlags |= BTCF_ValidNKey; 5672 pCur->info.nKey = nCellKey; 5673 pCur->info.nSize = 0; 5674 *pRes = 0; 5675 return SQLITE_OK; 5676 } 5677 } 5678 assert( lwr+upr>=0 ); 5679 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ 5680 } 5681 assert( lwr==upr+1 || !pPage->leaf ); 5682 assert( pPage->isInit ); 5683 if( pPage->leaf ){ 5684 assert( pCur->ix<pCur->pPage->nCell ); 5685 pCur->ix = (u16)idx; 5686 *pRes = c; 5687 rc = SQLITE_OK; 5688 goto moveto_table_finish; 5689 } 5690 moveto_table_next_layer: 5691 if( lwr>=pPage->nCell ){ 5692 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5693 }else{ 5694 chldPg = get4byte(findCell(pPage, lwr)); 5695 } 5696 pCur->ix = (u16)lwr; 5697 rc = moveToChild(pCur, chldPg); 5698 if( rc ) break; 5699 } 5700 moveto_table_finish: 5701 pCur->info.nSize = 0; 5702 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5703 return rc; 5704 } 5705 5706 /* 5707 ** Compare the "idx"-th cell on the page the cursor pCur is currently 5708 ** pointing to to pIdxKey using xRecordCompare. Return negative or 5709 ** zero if the cell is less than or equal pIdxKey. Return positive 5710 ** if unknown. 5711 ** 5712 ** Return value negative: Cell at pCur[idx] less than pIdxKey 5713 ** 5714 ** Return value is zero: Cell at pCur[idx] equals pIdxKey 5715 ** 5716 ** Return value positive: Nothing is known about the relationship 5717 ** of the cell at pCur[idx] and pIdxKey. 5718 ** 5719 ** This routine is part of an optimization. It is always safe to return 5720 ** a positive value as that will cause the optimization to be skipped. 5721 */ 5722 static int indexCellCompare( 5723 BtCursor *pCur, 5724 int idx, 5725 UnpackedRecord *pIdxKey, 5726 RecordCompare xRecordCompare 5727 ){ 5728 MemPage *pPage = pCur->pPage; 5729 int c; 5730 int nCell; /* Size of the pCell cell in bytes */ 5731 u8 *pCell = findCellPastPtr(pPage, idx); 5732 5733 nCell = pCell[0]; 5734 if( nCell<=pPage->max1bytePayload ){ 5735 /* This branch runs if the record-size field of the cell is a 5736 ** single byte varint and the record fits entirely on the main 5737 ** b-tree page. */ 5738 testcase( pCell+nCell+1==pPage->aDataEnd ); 5739 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5740 }else if( !(pCell[1] & 0x80) 5741 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5742 ){ 5743 /* The record-size field is a 2 byte varint and the record 5744 ** fits entirely on the main b-tree page. */ 5745 testcase( pCell+nCell+2==pPage->aDataEnd ); 5746 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5747 }else{ 5748 /* If the record extends into overflow pages, do not attempt 5749 ** the optimization. */ 5750 c = 99; 5751 } 5752 return c; 5753 } 5754 5755 /* 5756 ** Return true (non-zero) if pCur is current pointing to the last 5757 ** page of a table. 5758 */ 5759 static int cursorOnLastPage(BtCursor *pCur){ 5760 int i; 5761 assert( pCur->eState==CURSOR_VALID ); 5762 for(i=0; i<pCur->iPage; i++){ 5763 MemPage *pPage = pCur->apPage[i]; 5764 if( pCur->aiIdx[i]<pPage->nCell ) return 0; 5765 } 5766 return 1; 5767 } 5768 5769 /* Move the cursor so that it points to an entry in an index table 5770 ** near the key pIdxKey. Return a success code. 5771 ** 5772 ** If an exact match is not found, then the cursor is always 5773 ** left pointing at a leaf page which would hold the entry if it 5774 ** were present. The cursor might point to an entry that comes 5775 ** before or after the key. 5776 ** 5777 ** An integer is written into *pRes which is the result of 5778 ** comparing the key with the entry to which the cursor is 5779 ** pointing. The meaning of the integer written into 5780 ** *pRes is as follows: 5781 ** 5782 ** *pRes<0 The cursor is left pointing at an entry that 5783 ** is smaller than pIdxKey or if the table is empty 5784 ** and the cursor is therefore left point to nothing. 5785 ** 5786 ** *pRes==0 The cursor is left pointing at an entry that 5787 ** exactly matches pIdxKey. 5788 ** 5789 ** *pRes>0 The cursor is left pointing at an entry that 5790 ** is larger than pIdxKey. 5791 ** 5792 ** The pIdxKey->eqSeen field is set to 1 if there 5793 ** exists an entry in the table that exactly matches pIdxKey. 5794 */ 5795 int sqlite3BtreeIndexMoveto( 5796 BtCursor *pCur, /* The cursor to be moved */ 5797 UnpackedRecord *pIdxKey, /* Unpacked index key */ 5798 int *pRes /* Write search results here */ 5799 ){ 5800 int rc; 5801 RecordCompare xRecordCompare; 5802 5803 assert( cursorOwnsBtShared(pCur) ); 5804 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 5805 assert( pRes ); 5806 assert( pCur->pKeyInfo!=0 ); 5807 5808 #ifdef SQLITE_DEBUG 5809 pCur->pBtree->nSeek++; /* Performance measurement during testing */ 5810 #endif 5811 5812 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); 5813 pIdxKey->errCode = 0; 5814 assert( pIdxKey->default_rc==1 5815 || pIdxKey->default_rc==0 5816 || pIdxKey->default_rc==-1 5817 ); 5818 5819 5820 /* Check to see if we can skip a lot of work. Two cases: 5821 ** 5822 ** (1) If the cursor is already pointing to the very last cell 5823 ** in the table and the pIdxKey search key is greater than or 5824 ** equal to that last cell, then no movement is required. 5825 ** 5826 ** (2) If the cursor is on the last page of the table and the first 5827 ** cell on that last page is less than or equal to the pIdxKey 5828 ** search key, then we can start the search on the current page 5829 ** without needing to go back to root. 5830 */ 5831 if( pCur->eState==CURSOR_VALID 5832 && pCur->pPage->leaf 5833 && cursorOnLastPage(pCur) 5834 ){ 5835 int c; 5836 if( pCur->ix==pCur->pPage->nCell-1 5837 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0 5838 && pIdxKey->errCode==SQLITE_OK 5839 ){ 5840 *pRes = c; 5841 return SQLITE_OK; /* Cursor already pointing at the correct spot */ 5842 } 5843 if( pCur->iPage>0 5844 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0 5845 && pIdxKey->errCode==SQLITE_OK 5846 ){ 5847 pCur->curFlags &= ~BTCF_ValidOvfl; 5848 if( !pCur->pPage->isInit ){ 5849 return SQLITE_CORRUPT_BKPT; 5850 } 5851 goto bypass_moveto_root; /* Start search on the current page */ 5852 } 5853 pIdxKey->errCode = SQLITE_OK; 5854 } 5855 5856 rc = moveToRoot(pCur); 5857 if( rc ){ 5858 if( rc==SQLITE_EMPTY ){ 5859 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 ); 5860 *pRes = -1; 5861 return SQLITE_OK; 5862 } 5863 return rc; 5864 } 5865 5866 bypass_moveto_root: 5867 assert( pCur->pPage ); 5868 assert( pCur->pPage->isInit ); 5869 assert( pCur->eState==CURSOR_VALID ); 5870 assert( pCur->pPage->nCell > 0 ); 5871 assert( pCur->curIntKey==0 ); 5872 assert( pIdxKey!=0 ); 5873 for(;;){ 5874 int lwr, upr, idx, c; 5875 Pgno chldPg; 5876 MemPage *pPage = pCur->pPage; 5877 u8 *pCell; /* Pointer to current cell in pPage */ 5878 5879 /* pPage->nCell must be greater than zero. If this is the root-page 5880 ** the cursor would have been INVALID above and this for(;;) loop 5881 ** not run. If this is not the root-page, then the moveToChild() routine 5882 ** would have already detected db corruption. Similarly, pPage must 5883 ** be the right kind (index or table) of b-tree page. Otherwise 5884 ** a moveToChild() or moveToRoot() call would have detected corruption. */ 5885 assert( pPage->nCell>0 ); 5886 assert( pPage->intKey==0 ); 5887 lwr = 0; 5888 upr = pPage->nCell-1; 5889 idx = upr>>1; /* idx = (lwr+upr)/2; */ 5890 for(;;){ 5891 int nCell; /* Size of the pCell cell in bytes */ 5892 pCell = findCellPastPtr(pPage, idx); 5893 5894 /* The maximum supported page-size is 65536 bytes. This means that 5895 ** the maximum number of record bytes stored on an index B-Tree 5896 ** page is less than 16384 bytes and may be stored as a 2-byte 5897 ** varint. This information is used to attempt to avoid parsing 5898 ** the entire cell by checking for the cases where the record is 5899 ** stored entirely within the b-tree page by inspecting the first 5900 ** 2 bytes of the cell. 5901 */ 5902 nCell = pCell[0]; 5903 if( nCell<=pPage->max1bytePayload ){ 5904 /* This branch runs if the record-size field of the cell is a 5905 ** single byte varint and the record fits entirely on the main 5906 ** b-tree page. */ 5907 testcase( pCell+nCell+1==pPage->aDataEnd ); 5908 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); 5909 }else if( !(pCell[1] & 0x80) 5910 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal 5911 ){ 5912 /* The record-size field is a 2 byte varint and the record 5913 ** fits entirely on the main b-tree page. */ 5914 testcase( pCell+nCell+2==pPage->aDataEnd ); 5915 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); 5916 }else{ 5917 /* The record flows over onto one or more overflow pages. In 5918 ** this case the whole cell needs to be parsed, a buffer allocated 5919 ** and accessPayload() used to retrieve the record into the 5920 ** buffer before VdbeRecordCompare() can be called. 5921 ** 5922 ** If the record is corrupt, the xRecordCompare routine may read 5923 ** up to two varints past the end of the buffer. An extra 18 5924 ** bytes of padding is allocated at the end of the buffer in 5925 ** case this happens. */ 5926 void *pCellKey; 5927 u8 * const pCellBody = pCell - pPage->childPtrSize; 5928 const int nOverrun = 18; /* Size of the overrun padding */ 5929 pPage->xParseCell(pPage, pCellBody, &pCur->info); 5930 nCell = (int)pCur->info.nKey; 5931 testcase( nCell<0 ); /* True if key size is 2^32 or more */ 5932 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ 5933 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ 5934 testcase( nCell==2 ); /* Minimum legal index key size */ 5935 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){ 5936 rc = SQLITE_CORRUPT_PAGE(pPage); 5937 goto moveto_index_finish; 5938 } 5939 pCellKey = sqlite3Malloc( nCell+nOverrun ); 5940 if( pCellKey==0 ){ 5941 rc = SQLITE_NOMEM_BKPT; 5942 goto moveto_index_finish; 5943 } 5944 pCur->ix = (u16)idx; 5945 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); 5946 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */ 5947 pCur->curFlags &= ~BTCF_ValidOvfl; 5948 if( rc ){ 5949 sqlite3_free(pCellKey); 5950 goto moveto_index_finish; 5951 } 5952 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey); 5953 sqlite3_free(pCellKey); 5954 } 5955 assert( 5956 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) 5957 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) 5958 ); 5959 if( c<0 ){ 5960 lwr = idx+1; 5961 }else if( c>0 ){ 5962 upr = idx-1; 5963 }else{ 5964 assert( c==0 ); 5965 *pRes = 0; 5966 rc = SQLITE_OK; 5967 pCur->ix = (u16)idx; 5968 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT; 5969 goto moveto_index_finish; 5970 } 5971 if( lwr>upr ) break; 5972 assert( lwr+upr>=0 ); 5973 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ 5974 } 5975 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); 5976 assert( pPage->isInit ); 5977 if( pPage->leaf ){ 5978 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB ); 5979 pCur->ix = (u16)idx; 5980 *pRes = c; 5981 rc = SQLITE_OK; 5982 goto moveto_index_finish; 5983 } 5984 if( lwr>=pPage->nCell ){ 5985 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); 5986 }else{ 5987 chldPg = get4byte(findCell(pPage, lwr)); 5988 } 5989 pCur->ix = (u16)lwr; 5990 rc = moveToChild(pCur, chldPg); 5991 if( rc ) break; 5992 } 5993 moveto_index_finish: 5994 pCur->info.nSize = 0; 5995 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 5996 return rc; 5997 } 5998 5999 6000 /* 6001 ** Return TRUE if the cursor is not pointing at an entry of the table. 6002 ** 6003 ** TRUE will be returned after a call to sqlite3BtreeNext() moves 6004 ** past the last entry in the table or sqlite3BtreePrev() moves past 6005 ** the first entry. TRUE is also returned if the table is empty. 6006 */ 6007 int sqlite3BtreeEof(BtCursor *pCur){ 6008 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries 6009 ** have been deleted? This API will need to change to return an error code 6010 ** as well as the boolean result value. 6011 */ 6012 return (CURSOR_VALID!=pCur->eState); 6013 } 6014 6015 /* 6016 ** Return an estimate for the number of rows in the table that pCur is 6017 ** pointing to. Return a negative number if no estimate is currently 6018 ** available. 6019 */ 6020 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){ 6021 i64 n; 6022 u8 i; 6023 6024 assert( cursorOwnsBtShared(pCur) ); 6025 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); 6026 6027 /* Currently this interface is only called by the OP_IfSmaller 6028 ** opcode, and it that case the cursor will always be valid and 6029 ** will always point to a leaf node. */ 6030 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1; 6031 if( NEVER(pCur->pPage->leaf==0) ) return -1; 6032 6033 n = pCur->pPage->nCell; 6034 for(i=0; i<pCur->iPage; i++){ 6035 n *= pCur->apPage[i]->nCell; 6036 } 6037 return n; 6038 } 6039 6040 /* 6041 ** Advance the cursor to the next entry in the database. 6042 ** Return value: 6043 ** 6044 ** SQLITE_OK success 6045 ** SQLITE_DONE cursor is already pointing at the last element 6046 ** otherwise some kind of error occurred 6047 ** 6048 ** The main entry point is sqlite3BtreeNext(). That routine is optimized 6049 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx 6050 ** to the next cell on the current page. The (slower) btreeNext() helper 6051 ** routine is called when it is necessary to move to a different page or 6052 ** to restore the cursor. 6053 ** 6054 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the 6055 ** cursor corresponds to an SQL index and this routine could have been 6056 ** skipped if the SQL index had been a unique index. The F argument 6057 ** is a hint to the implement. SQLite btree implementation does not use 6058 ** this hint, but COMDB2 does. 6059 */ 6060 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){ 6061 int rc; 6062 int idx; 6063 MemPage *pPage; 6064 6065 assert( cursorOwnsBtShared(pCur) ); 6066 if( pCur->eState!=CURSOR_VALID ){ 6067 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); 6068 rc = restoreCursorPosition(pCur); 6069 if( rc!=SQLITE_OK ){ 6070 return rc; 6071 } 6072 if( CURSOR_INVALID==pCur->eState ){ 6073 return SQLITE_DONE; 6074 } 6075 if( pCur->eState==CURSOR_SKIPNEXT ){ 6076 pCur->eState = CURSOR_VALID; 6077 if( pCur->skipNext>0 ) return SQLITE_OK; 6078 } 6079 } 6080 6081 pPage = pCur->pPage; 6082 idx = ++pCur->ix; 6083 if( !pPage->isInit || sqlite3FaultSim(412) ){ 6084 /* The only known way for this to happen is for there to be a 6085 ** recursive SQL function that does a DELETE operation as part of a 6086 ** SELECT which deletes content out from under an active cursor 6087 ** in a corrupt database file where the table being DELETE-ed from 6088 ** has pages in common with the table being queried. See TH3 6089 ** module cov1/btree78.test testcase 220 (2018-06-08) for an 6090 ** example. */ 6091 return SQLITE_CORRUPT_BKPT; 6092 } 6093 6094 if( idx>=pPage->nCell ){ 6095 if( !pPage->leaf ){ 6096 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 6097 if( rc ) return rc; 6098 return moveToLeftmost(pCur); 6099 } 6100 do{ 6101 if( pCur->iPage==0 ){ 6102 pCur->eState = CURSOR_INVALID; 6103 return SQLITE_DONE; 6104 } 6105 moveToParent(pCur); 6106 pPage = pCur->pPage; 6107 }while( pCur->ix>=pPage->nCell ); 6108 if( pPage->intKey ){ 6109 return sqlite3BtreeNext(pCur, 0); 6110 }else{ 6111 return SQLITE_OK; 6112 } 6113 } 6114 if( pPage->leaf ){ 6115 return SQLITE_OK; 6116 }else{ 6117 return moveToLeftmost(pCur); 6118 } 6119 } 6120 int sqlite3BtreeNext(BtCursor *pCur, int flags){ 6121 MemPage *pPage; 6122 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6123 assert( cursorOwnsBtShared(pCur) ); 6124 assert( flags==0 || flags==1 ); 6125 pCur->info.nSize = 0; 6126 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); 6127 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur); 6128 pPage = pCur->pPage; 6129 if( (++pCur->ix)>=pPage->nCell ){ 6130 pCur->ix--; 6131 return btreeNext(pCur); 6132 } 6133 if( pPage->leaf ){ 6134 return SQLITE_OK; 6135 }else{ 6136 return moveToLeftmost(pCur); 6137 } 6138 } 6139 6140 /* 6141 ** Step the cursor to the back to the previous entry in the database. 6142 ** Return values: 6143 ** 6144 ** SQLITE_OK success 6145 ** SQLITE_DONE the cursor is already on the first element of the table 6146 ** otherwise some kind of error occurred 6147 ** 6148 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized 6149 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx 6150 ** to the previous cell on the current page. The (slower) btreePrevious() 6151 ** helper routine is called when it is necessary to move to a different page 6152 ** or to restore the cursor. 6153 ** 6154 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then 6155 ** the cursor corresponds to an SQL index and this routine could have been 6156 ** skipped if the SQL index had been a unique index. The F argument is a 6157 ** hint to the implement. The native SQLite btree implementation does not 6158 ** use this hint, but COMDB2 does. 6159 */ 6160 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){ 6161 int rc; 6162 MemPage *pPage; 6163 6164 assert( cursorOwnsBtShared(pCur) ); 6165 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); 6166 assert( pCur->info.nSize==0 ); 6167 if( pCur->eState!=CURSOR_VALID ){ 6168 rc = restoreCursorPosition(pCur); 6169 if( rc!=SQLITE_OK ){ 6170 return rc; 6171 } 6172 if( CURSOR_INVALID==pCur->eState ){ 6173 return SQLITE_DONE; 6174 } 6175 if( CURSOR_SKIPNEXT==pCur->eState ){ 6176 pCur->eState = CURSOR_VALID; 6177 if( pCur->skipNext<0 ) return SQLITE_OK; 6178 } 6179 } 6180 6181 pPage = pCur->pPage; 6182 assert( pPage->isInit ); 6183 if( !pPage->leaf ){ 6184 int idx = pCur->ix; 6185 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); 6186 if( rc ) return rc; 6187 rc = moveToRightmost(pCur); 6188 }else{ 6189 while( pCur->ix==0 ){ 6190 if( pCur->iPage==0 ){ 6191 pCur->eState = CURSOR_INVALID; 6192 return SQLITE_DONE; 6193 } 6194 moveToParent(pCur); 6195 } 6196 assert( pCur->info.nSize==0 ); 6197 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); 6198 6199 pCur->ix--; 6200 pPage = pCur->pPage; 6201 if( pPage->intKey && !pPage->leaf ){ 6202 rc = sqlite3BtreePrevious(pCur, 0); 6203 }else{ 6204 rc = SQLITE_OK; 6205 } 6206 } 6207 return rc; 6208 } 6209 int sqlite3BtreePrevious(BtCursor *pCur, int flags){ 6210 assert( cursorOwnsBtShared(pCur) ); 6211 assert( flags==0 || flags==1 ); 6212 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */ 6213 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); 6214 pCur->info.nSize = 0; 6215 if( pCur->eState!=CURSOR_VALID 6216 || pCur->ix==0 6217 || pCur->pPage->leaf==0 6218 ){ 6219 return btreePrevious(pCur); 6220 } 6221 pCur->ix--; 6222 return SQLITE_OK; 6223 } 6224 6225 /* 6226 ** Allocate a new page from the database file. 6227 ** 6228 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() 6229 ** has already been called on the new page.) The new page has also 6230 ** been referenced and the calling routine is responsible for calling 6231 ** sqlite3PagerUnref() on the new page when it is done. 6232 ** 6233 ** SQLITE_OK is returned on success. Any other return value indicates 6234 ** an error. *ppPage is set to NULL in the event of an error. 6235 ** 6236 ** If the "nearby" parameter is not 0, then an effort is made to 6237 ** locate a page close to the page number "nearby". This can be used in an 6238 ** attempt to keep related pages close to each other in the database file, 6239 ** which in turn can make database access faster. 6240 ** 6241 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists 6242 ** anywhere on the free-list, then it is guaranteed to be returned. If 6243 ** eMode is BTALLOC_LT then the page returned will be less than or equal 6244 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there 6245 ** are no restrictions on which page is returned. 6246 */ 6247 static int allocateBtreePage( 6248 BtShared *pBt, /* The btree */ 6249 MemPage **ppPage, /* Store pointer to the allocated page here */ 6250 Pgno *pPgno, /* Store the page number here */ 6251 Pgno nearby, /* Search for a page near this one */ 6252 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ 6253 ){ 6254 MemPage *pPage1; 6255 int rc; 6256 u32 n; /* Number of pages on the freelist */ 6257 u32 k; /* Number of leaves on the trunk of the freelist */ 6258 MemPage *pTrunk = 0; 6259 MemPage *pPrevTrunk = 0; 6260 Pgno mxPage; /* Total size of the database file */ 6261 6262 assert( sqlite3_mutex_held(pBt->mutex) ); 6263 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); 6264 pPage1 = pBt->pPage1; 6265 mxPage = btreePagecount(pBt); 6266 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 6267 ** stores stores the total number of pages on the freelist. */ 6268 n = get4byte(&pPage1->aData[36]); 6269 testcase( n==mxPage-1 ); 6270 if( n>=mxPage ){ 6271 return SQLITE_CORRUPT_BKPT; 6272 } 6273 if( n>0 ){ 6274 /* There are pages on the freelist. Reuse one of those pages. */ 6275 Pgno iTrunk; 6276 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ 6277 u32 nSearch = 0; /* Count of the number of search attempts */ 6278 6279 /* If eMode==BTALLOC_EXACT and a query of the pointer-map 6280 ** shows that the page 'nearby' is somewhere on the free-list, then 6281 ** the entire-list will be searched for that page. 6282 */ 6283 #ifndef SQLITE_OMIT_AUTOVACUUM 6284 if( eMode==BTALLOC_EXACT ){ 6285 if( nearby<=mxPage ){ 6286 u8 eType; 6287 assert( nearby>0 ); 6288 assert( pBt->autoVacuum ); 6289 rc = ptrmapGet(pBt, nearby, &eType, 0); 6290 if( rc ) return rc; 6291 if( eType==PTRMAP_FREEPAGE ){ 6292 searchList = 1; 6293 } 6294 } 6295 }else if( eMode==BTALLOC_LE ){ 6296 searchList = 1; 6297 } 6298 #endif 6299 6300 /* Decrement the free-list count by 1. Set iTrunk to the index of the 6301 ** first free-list trunk page. iPrevTrunk is initially 1. 6302 */ 6303 rc = sqlite3PagerWrite(pPage1->pDbPage); 6304 if( rc ) return rc; 6305 put4byte(&pPage1->aData[36], n-1); 6306 6307 /* The code within this loop is run only once if the 'searchList' variable 6308 ** is not true. Otherwise, it runs once for each trunk-page on the 6309 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) 6310 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) 6311 */ 6312 do { 6313 pPrevTrunk = pTrunk; 6314 if( pPrevTrunk ){ 6315 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page 6316 ** is the page number of the next freelist trunk page in the list or 6317 ** zero if this is the last freelist trunk page. */ 6318 iTrunk = get4byte(&pPrevTrunk->aData[0]); 6319 }else{ 6320 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 6321 ** stores the page number of the first page of the freelist, or zero if 6322 ** the freelist is empty. */ 6323 iTrunk = get4byte(&pPage1->aData[32]); 6324 } 6325 testcase( iTrunk==mxPage ); 6326 if( iTrunk>mxPage || nSearch++ > n ){ 6327 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1); 6328 }else{ 6329 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); 6330 } 6331 if( rc ){ 6332 pTrunk = 0; 6333 goto end_allocate_page; 6334 } 6335 assert( pTrunk!=0 ); 6336 assert( pTrunk->aData!=0 ); 6337 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page 6338 ** is the number of leaf page pointers to follow. */ 6339 k = get4byte(&pTrunk->aData[4]); 6340 if( k==0 && !searchList ){ 6341 /* The trunk has no leaves and the list is not being searched. 6342 ** So extract the trunk page itself and use it as the newly 6343 ** allocated page */ 6344 assert( pPrevTrunk==0 ); 6345 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6346 if( rc ){ 6347 goto end_allocate_page; 6348 } 6349 *pPgno = iTrunk; 6350 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6351 *ppPage = pTrunk; 6352 pTrunk = 0; 6353 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6354 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ 6355 /* Value of k is out of range. Database corruption */ 6356 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6357 goto end_allocate_page; 6358 #ifndef SQLITE_OMIT_AUTOVACUUM 6359 }else if( searchList 6360 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 6361 ){ 6362 /* The list is being searched and this trunk page is the page 6363 ** to allocate, regardless of whether it has leaves. 6364 */ 6365 *pPgno = iTrunk; 6366 *ppPage = pTrunk; 6367 searchList = 0; 6368 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6369 if( rc ){ 6370 goto end_allocate_page; 6371 } 6372 if( k==0 ){ 6373 if( !pPrevTrunk ){ 6374 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); 6375 }else{ 6376 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6377 if( rc!=SQLITE_OK ){ 6378 goto end_allocate_page; 6379 } 6380 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); 6381 } 6382 }else{ 6383 /* The trunk page is required by the caller but it contains 6384 ** pointers to free-list leaves. The first leaf becomes a trunk 6385 ** page in this case. 6386 */ 6387 MemPage *pNewTrunk; 6388 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); 6389 if( iNewTrunk>mxPage ){ 6390 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6391 goto end_allocate_page; 6392 } 6393 testcase( iNewTrunk==mxPage ); 6394 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); 6395 if( rc!=SQLITE_OK ){ 6396 goto end_allocate_page; 6397 } 6398 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); 6399 if( rc!=SQLITE_OK ){ 6400 releasePage(pNewTrunk); 6401 goto end_allocate_page; 6402 } 6403 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); 6404 put4byte(&pNewTrunk->aData[4], k-1); 6405 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); 6406 releasePage(pNewTrunk); 6407 if( !pPrevTrunk ){ 6408 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); 6409 put4byte(&pPage1->aData[32], iNewTrunk); 6410 }else{ 6411 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); 6412 if( rc ){ 6413 goto end_allocate_page; 6414 } 6415 put4byte(&pPrevTrunk->aData[0], iNewTrunk); 6416 } 6417 } 6418 pTrunk = 0; 6419 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); 6420 #endif 6421 }else if( k>0 ){ 6422 /* Extract a leaf from the trunk */ 6423 u32 closest; 6424 Pgno iPage; 6425 unsigned char *aData = pTrunk->aData; 6426 if( nearby>0 ){ 6427 u32 i; 6428 closest = 0; 6429 if( eMode==BTALLOC_LE ){ 6430 for(i=0; i<k; i++){ 6431 iPage = get4byte(&aData[8+i*4]); 6432 if( iPage<=nearby ){ 6433 closest = i; 6434 break; 6435 } 6436 } 6437 }else{ 6438 int dist; 6439 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); 6440 for(i=1; i<k; i++){ 6441 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); 6442 if( d2<dist ){ 6443 closest = i; 6444 dist = d2; 6445 } 6446 } 6447 } 6448 }else{ 6449 closest = 0; 6450 } 6451 6452 iPage = get4byte(&aData[8+closest*4]); 6453 testcase( iPage==mxPage ); 6454 if( iPage>mxPage || iPage<2 ){ 6455 rc = SQLITE_CORRUPT_PGNO(iTrunk); 6456 goto end_allocate_page; 6457 } 6458 testcase( iPage==mxPage ); 6459 if( !searchList 6460 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 6461 ){ 6462 int noContent; 6463 *pPgno = iPage; 6464 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" 6465 ": %d more free pages\n", 6466 *pPgno, closest+1, k, pTrunk->pgno, n-1)); 6467 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6468 if( rc ) goto end_allocate_page; 6469 if( closest<k-1 ){ 6470 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); 6471 } 6472 put4byte(&aData[4], k-1); 6473 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; 6474 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); 6475 if( rc==SQLITE_OK ){ 6476 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6477 if( rc!=SQLITE_OK ){ 6478 releasePage(*ppPage); 6479 *ppPage = 0; 6480 } 6481 } 6482 searchList = 0; 6483 } 6484 } 6485 releasePage(pPrevTrunk); 6486 pPrevTrunk = 0; 6487 }while( searchList ); 6488 }else{ 6489 /* There are no pages on the freelist, so append a new page to the 6490 ** database image. 6491 ** 6492 ** Normally, new pages allocated by this block can be requested from the 6493 ** pager layer with the 'no-content' flag set. This prevents the pager 6494 ** from trying to read the pages content from disk. However, if the 6495 ** current transaction has already run one or more incremental-vacuum 6496 ** steps, then the page we are about to allocate may contain content 6497 ** that is required in the event of a rollback. In this case, do 6498 ** not set the no-content flag. This causes the pager to load and journal 6499 ** the current page content before overwriting it. 6500 ** 6501 ** Note that the pager will not actually attempt to load or journal 6502 ** content for any page that really does lie past the end of the database 6503 ** file on disk. So the effects of disabling the no-content optimization 6504 ** here are confined to those pages that lie between the end of the 6505 ** database image and the end of the database file. 6506 */ 6507 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; 6508 6509 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 6510 if( rc ) return rc; 6511 pBt->nPage++; 6512 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; 6513 6514 #ifndef SQLITE_OMIT_AUTOVACUUM 6515 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ 6516 /* If *pPgno refers to a pointer-map page, allocate two new pages 6517 ** at the end of the file instead of one. The first allocated page 6518 ** becomes a new pointer-map page, the second is used by the caller. 6519 */ 6520 MemPage *pPg = 0; 6521 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); 6522 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); 6523 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); 6524 if( rc==SQLITE_OK ){ 6525 rc = sqlite3PagerWrite(pPg->pDbPage); 6526 releasePage(pPg); 6527 } 6528 if( rc ) return rc; 6529 pBt->nPage++; 6530 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } 6531 } 6532 #endif 6533 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); 6534 *pPgno = pBt->nPage; 6535 6536 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6537 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); 6538 if( rc ) return rc; 6539 rc = sqlite3PagerWrite((*ppPage)->pDbPage); 6540 if( rc!=SQLITE_OK ){ 6541 releasePage(*ppPage); 6542 *ppPage = 0; 6543 } 6544 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); 6545 } 6546 6547 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) ); 6548 6549 end_allocate_page: 6550 releasePage(pTrunk); 6551 releasePage(pPrevTrunk); 6552 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); 6553 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); 6554 return rc; 6555 } 6556 6557 /* 6558 ** This function is used to add page iPage to the database file free-list. 6559 ** It is assumed that the page is not already a part of the free-list. 6560 ** 6561 ** The value passed as the second argument to this function is optional. 6562 ** If the caller happens to have a pointer to the MemPage object 6563 ** corresponding to page iPage handy, it may pass it as the second value. 6564 ** Otherwise, it may pass NULL. 6565 ** 6566 ** If a pointer to a MemPage object is passed as the second argument, 6567 ** its reference count is not altered by this function. 6568 */ 6569 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ 6570 MemPage *pTrunk = 0; /* Free-list trunk page */ 6571 Pgno iTrunk = 0; /* Page number of free-list trunk page */ 6572 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ 6573 MemPage *pPage; /* Page being freed. May be NULL. */ 6574 int rc; /* Return Code */ 6575 u32 nFree; /* Initial number of pages on free-list */ 6576 6577 assert( sqlite3_mutex_held(pBt->mutex) ); 6578 assert( CORRUPT_DB || iPage>1 ); 6579 assert( !pMemPage || pMemPage->pgno==iPage ); 6580 6581 if( iPage<2 || iPage>pBt->nPage ){ 6582 return SQLITE_CORRUPT_BKPT; 6583 } 6584 if( pMemPage ){ 6585 pPage = pMemPage; 6586 sqlite3PagerRef(pPage->pDbPage); 6587 }else{ 6588 pPage = btreePageLookup(pBt, iPage); 6589 } 6590 6591 /* Increment the free page count on pPage1 */ 6592 rc = sqlite3PagerWrite(pPage1->pDbPage); 6593 if( rc ) goto freepage_out; 6594 nFree = get4byte(&pPage1->aData[36]); 6595 put4byte(&pPage1->aData[36], nFree+1); 6596 6597 if( pBt->btsFlags & BTS_SECURE_DELETE ){ 6598 /* If the secure_delete option is enabled, then 6599 ** always fully overwrite deleted information with zeros. 6600 */ 6601 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) 6602 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) 6603 ){ 6604 goto freepage_out; 6605 } 6606 memset(pPage->aData, 0, pPage->pBt->pageSize); 6607 } 6608 6609 /* If the database supports auto-vacuum, write an entry in the pointer-map 6610 ** to indicate that the page is free. 6611 */ 6612 if( ISAUTOVACUUM ){ 6613 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); 6614 if( rc ) goto freepage_out; 6615 } 6616 6617 /* Now manipulate the actual database free-list structure. There are two 6618 ** possibilities. If the free-list is currently empty, or if the first 6619 ** trunk page in the free-list is full, then this page will become a 6620 ** new free-list trunk page. Otherwise, it will become a leaf of the 6621 ** first trunk page in the current free-list. This block tests if it 6622 ** is possible to add the page as a new free-list leaf. 6623 */ 6624 if( nFree!=0 ){ 6625 u32 nLeaf; /* Initial number of leaf cells on trunk page */ 6626 6627 iTrunk = get4byte(&pPage1->aData[32]); 6628 if( iTrunk>btreePagecount(pBt) ){ 6629 rc = SQLITE_CORRUPT_BKPT; 6630 goto freepage_out; 6631 } 6632 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); 6633 if( rc!=SQLITE_OK ){ 6634 goto freepage_out; 6635 } 6636 6637 nLeaf = get4byte(&pTrunk->aData[4]); 6638 assert( pBt->usableSize>32 ); 6639 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ 6640 rc = SQLITE_CORRUPT_BKPT; 6641 goto freepage_out; 6642 } 6643 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ 6644 /* In this case there is room on the trunk page to insert the page 6645 ** being freed as a new leaf. 6646 ** 6647 ** Note that the trunk page is not really full until it contains 6648 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have 6649 ** coded. But due to a coding error in versions of SQLite prior to 6650 ** 3.6.0, databases with freelist trunk pages holding more than 6651 ** usableSize/4 - 8 entries will be reported as corrupt. In order 6652 ** to maintain backwards compatibility with older versions of SQLite, 6653 ** we will continue to restrict the number of entries to usableSize/4 - 8 6654 ** for now. At some point in the future (once everyone has upgraded 6655 ** to 3.6.0 or later) we should consider fixing the conditional above 6656 ** to read "usableSize/4-2" instead of "usableSize/4-8". 6657 ** 6658 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still 6659 ** avoid using the last six entries in the freelist trunk page array in 6660 ** order that database files created by newer versions of SQLite can be 6661 ** read by older versions of SQLite. 6662 */ 6663 rc = sqlite3PagerWrite(pTrunk->pDbPage); 6664 if( rc==SQLITE_OK ){ 6665 put4byte(&pTrunk->aData[4], nLeaf+1); 6666 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); 6667 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ 6668 sqlite3PagerDontWrite(pPage->pDbPage); 6669 } 6670 rc = btreeSetHasContent(pBt, iPage); 6671 } 6672 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); 6673 goto freepage_out; 6674 } 6675 } 6676 6677 /* If control flows to this point, then it was not possible to add the 6678 ** the page being freed as a leaf page of the first trunk in the free-list. 6679 ** Possibly because the free-list is empty, or possibly because the 6680 ** first trunk in the free-list is full. Either way, the page being freed 6681 ** will become the new first trunk page in the free-list. 6682 */ 6683 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ 6684 goto freepage_out; 6685 } 6686 rc = sqlite3PagerWrite(pPage->pDbPage); 6687 if( rc!=SQLITE_OK ){ 6688 goto freepage_out; 6689 } 6690 put4byte(pPage->aData, iTrunk); 6691 put4byte(&pPage->aData[4], 0); 6692 put4byte(&pPage1->aData[32], iPage); 6693 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); 6694 6695 freepage_out: 6696 if( pPage ){ 6697 pPage->isInit = 0; 6698 } 6699 releasePage(pPage); 6700 releasePage(pTrunk); 6701 return rc; 6702 } 6703 static void freePage(MemPage *pPage, int *pRC){ 6704 if( (*pRC)==SQLITE_OK ){ 6705 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); 6706 } 6707 } 6708 6709 /* 6710 ** Free the overflow pages associated with the given Cell. 6711 */ 6712 static SQLITE_NOINLINE int clearCellOverflow( 6713 MemPage *pPage, /* The page that contains the Cell */ 6714 unsigned char *pCell, /* First byte of the Cell */ 6715 CellInfo *pInfo /* Size information about the cell */ 6716 ){ 6717 BtShared *pBt; 6718 Pgno ovflPgno; 6719 int rc; 6720 int nOvfl; 6721 u32 ovflPageSize; 6722 6723 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6724 assert( pInfo->nLocal!=pInfo->nPayload ); 6725 testcase( pCell + pInfo->nSize == pPage->aDataEnd ); 6726 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd ); 6727 if( pCell + pInfo->nSize > pPage->aDataEnd ){ 6728 /* Cell extends past end of page */ 6729 return SQLITE_CORRUPT_PAGE(pPage); 6730 } 6731 ovflPgno = get4byte(pCell + pInfo->nSize - 4); 6732 pBt = pPage->pBt; 6733 assert( pBt->usableSize > 4 ); 6734 ovflPageSize = pBt->usableSize - 4; 6735 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; 6736 assert( nOvfl>0 || 6737 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) 6738 ); 6739 while( nOvfl-- ){ 6740 Pgno iNext = 0; 6741 MemPage *pOvfl = 0; 6742 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ 6743 /* 0 is not a legal page number and page 1 cannot be an 6744 ** overflow page. Therefore if ovflPgno<2 or past the end of the 6745 ** file the database must be corrupt. */ 6746 return SQLITE_CORRUPT_BKPT; 6747 } 6748 if( nOvfl ){ 6749 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); 6750 if( rc ) return rc; 6751 } 6752 6753 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) 6754 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 6755 ){ 6756 /* There is no reason any cursor should have an outstanding reference 6757 ** to an overflow page belonging to a cell that is being deleted/updated. 6758 ** So if there exists more than one reference to this page, then it 6759 ** must not really be an overflow page and the database must be corrupt. 6760 ** It is helpful to detect this before calling freePage2(), as 6761 ** freePage2() may zero the page contents if secure-delete mode is 6762 ** enabled. If this 'overflow' page happens to be a page that the 6763 ** caller is iterating through or using in some other way, this 6764 ** can be problematic. 6765 */ 6766 rc = SQLITE_CORRUPT_BKPT; 6767 }else{ 6768 rc = freePage2(pBt, pOvfl, ovflPgno); 6769 } 6770 6771 if( pOvfl ){ 6772 sqlite3PagerUnref(pOvfl->pDbPage); 6773 } 6774 if( rc ) return rc; 6775 ovflPgno = iNext; 6776 } 6777 return SQLITE_OK; 6778 } 6779 6780 /* Call xParseCell to compute the size of a cell. If the cell contains 6781 ** overflow, then invoke cellClearOverflow to clear out that overflow. 6782 ** STore the result code (SQLITE_OK or some error code) in rc. 6783 ** 6784 ** Implemented as macro to force inlining for performance. 6785 */ 6786 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \ 6787 pPage->xParseCell(pPage, pCell, &sInfo); \ 6788 if( sInfo.nLocal!=sInfo.nPayload ){ \ 6789 rc = clearCellOverflow(pPage, pCell, &sInfo); \ 6790 }else{ \ 6791 rc = SQLITE_OK; \ 6792 } 6793 6794 6795 /* 6796 ** Create the byte sequence used to represent a cell on page pPage 6797 ** and write that byte sequence into pCell[]. Overflow pages are 6798 ** allocated and filled in as necessary. The calling procedure 6799 ** is responsible for making sure sufficient space has been allocated 6800 ** for pCell[]. 6801 ** 6802 ** Note that pCell does not necessary need to point to the pPage->aData 6803 ** area. pCell might point to some temporary storage. The cell will 6804 ** be constructed in this temporary area then copied into pPage->aData 6805 ** later. 6806 */ 6807 static int fillInCell( 6808 MemPage *pPage, /* The page that contains the cell */ 6809 unsigned char *pCell, /* Complete text of the cell */ 6810 const BtreePayload *pX, /* Payload with which to construct the cell */ 6811 int *pnSize /* Write cell size here */ 6812 ){ 6813 int nPayload; 6814 const u8 *pSrc; 6815 int nSrc, n, rc, mn; 6816 int spaceLeft; 6817 MemPage *pToRelease; 6818 unsigned char *pPrior; 6819 unsigned char *pPayload; 6820 BtShared *pBt; 6821 Pgno pgnoOvfl; 6822 int nHeader; 6823 6824 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 6825 6826 /* pPage is not necessarily writeable since pCell might be auxiliary 6827 ** buffer space that is separate from the pPage buffer area */ 6828 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize] 6829 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6830 6831 /* Fill in the header. */ 6832 nHeader = pPage->childPtrSize; 6833 if( pPage->intKey ){ 6834 nPayload = pX->nData + pX->nZero; 6835 pSrc = pX->pData; 6836 nSrc = pX->nData; 6837 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ 6838 nHeader += putVarint32(&pCell[nHeader], nPayload); 6839 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); 6840 }else{ 6841 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); 6842 nSrc = nPayload = (int)pX->nKey; 6843 pSrc = pX->pKey; 6844 nHeader += putVarint32(&pCell[nHeader], nPayload); 6845 } 6846 6847 /* Fill in the payload */ 6848 pPayload = &pCell[nHeader]; 6849 if( nPayload<=pPage->maxLocal ){ 6850 /* This is the common case where everything fits on the btree page 6851 ** and no overflow pages are required. */ 6852 n = nHeader + nPayload; 6853 testcase( n==3 ); 6854 testcase( n==4 ); 6855 if( n<4 ) n = 4; 6856 *pnSize = n; 6857 assert( nSrc<=nPayload ); 6858 testcase( nSrc<nPayload ); 6859 memcpy(pPayload, pSrc, nSrc); 6860 memset(pPayload+nSrc, 0, nPayload-nSrc); 6861 return SQLITE_OK; 6862 } 6863 6864 /* If we reach this point, it means that some of the content will need 6865 ** to spill onto overflow pages. 6866 */ 6867 mn = pPage->minLocal; 6868 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); 6869 testcase( n==pPage->maxLocal ); 6870 testcase( n==pPage->maxLocal+1 ); 6871 if( n > pPage->maxLocal ) n = mn; 6872 spaceLeft = n; 6873 *pnSize = n + nHeader + 4; 6874 pPrior = &pCell[nHeader+n]; 6875 pToRelease = 0; 6876 pgnoOvfl = 0; 6877 pBt = pPage->pBt; 6878 6879 /* At this point variables should be set as follows: 6880 ** 6881 ** nPayload Total payload size in bytes 6882 ** pPayload Begin writing payload here 6883 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, 6884 ** that means content must spill into overflow pages. 6885 ** *pnSize Size of the local cell (not counting overflow pages) 6886 ** pPrior Where to write the pgno of the first overflow page 6887 ** 6888 ** Use a call to btreeParseCellPtr() to verify that the values above 6889 ** were computed correctly. 6890 */ 6891 #ifdef SQLITE_DEBUG 6892 { 6893 CellInfo info; 6894 pPage->xParseCell(pPage, pCell, &info); 6895 assert( nHeader==(int)(info.pPayload - pCell) ); 6896 assert( info.nKey==pX->nKey ); 6897 assert( *pnSize == info.nSize ); 6898 assert( spaceLeft == info.nLocal ); 6899 } 6900 #endif 6901 6902 /* Write the payload into the local Cell and any extra into overflow pages */ 6903 while( 1 ){ 6904 n = nPayload; 6905 if( n>spaceLeft ) n = spaceLeft; 6906 6907 /* If pToRelease is not zero than pPayload points into the data area 6908 ** of pToRelease. Make sure pToRelease is still writeable. */ 6909 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6910 6911 /* If pPayload is part of the data area of pPage, then make sure pPage 6912 ** is still writeable */ 6913 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] 6914 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6915 6916 if( nSrc>=n ){ 6917 memcpy(pPayload, pSrc, n); 6918 }else if( nSrc>0 ){ 6919 n = nSrc; 6920 memcpy(pPayload, pSrc, n); 6921 }else{ 6922 memset(pPayload, 0, n); 6923 } 6924 nPayload -= n; 6925 if( nPayload<=0 ) break; 6926 pPayload += n; 6927 pSrc += n; 6928 nSrc -= n; 6929 spaceLeft -= n; 6930 if( spaceLeft==0 ){ 6931 MemPage *pOvfl = 0; 6932 #ifndef SQLITE_OMIT_AUTOVACUUM 6933 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ 6934 if( pBt->autoVacuum ){ 6935 do{ 6936 pgnoOvfl++; 6937 } while( 6938 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 6939 ); 6940 } 6941 #endif 6942 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); 6943 #ifndef SQLITE_OMIT_AUTOVACUUM 6944 /* If the database supports auto-vacuum, and the second or subsequent 6945 ** overflow page is being allocated, add an entry to the pointer-map 6946 ** for that page now. 6947 ** 6948 ** If this is the first overflow page, then write a partial entry 6949 ** to the pointer-map. If we write nothing to this pointer-map slot, 6950 ** then the optimistic overflow chain processing in clearCell() 6951 ** may misinterpret the uninitialized values and delete the 6952 ** wrong pages from the database. 6953 */ 6954 if( pBt->autoVacuum && rc==SQLITE_OK ){ 6955 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); 6956 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); 6957 if( rc ){ 6958 releasePage(pOvfl); 6959 } 6960 } 6961 #endif 6962 if( rc ){ 6963 releasePage(pToRelease); 6964 return rc; 6965 } 6966 6967 /* If pToRelease is not zero than pPrior points into the data area 6968 ** of pToRelease. Make sure pToRelease is still writeable. */ 6969 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); 6970 6971 /* If pPrior is part of the data area of pPage, then make sure pPage 6972 ** is still writeable */ 6973 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] 6974 || sqlite3PagerIswriteable(pPage->pDbPage) ); 6975 6976 put4byte(pPrior, pgnoOvfl); 6977 releasePage(pToRelease); 6978 pToRelease = pOvfl; 6979 pPrior = pOvfl->aData; 6980 put4byte(pPrior, 0); 6981 pPayload = &pOvfl->aData[4]; 6982 spaceLeft = pBt->usableSize - 4; 6983 } 6984 } 6985 releasePage(pToRelease); 6986 return SQLITE_OK; 6987 } 6988 6989 /* 6990 ** Remove the i-th cell from pPage. This routine effects pPage only. 6991 ** The cell content is not freed or deallocated. It is assumed that 6992 ** the cell content has been copied someplace else. This routine just 6993 ** removes the reference to the cell from pPage. 6994 ** 6995 ** "sz" must be the number of bytes in the cell. 6996 */ 6997 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ 6998 u32 pc; /* Offset to cell content of cell being deleted */ 6999 u8 *data; /* pPage->aData */ 7000 u8 *ptr; /* Used to move bytes around within data[] */ 7001 int rc; /* The return code */ 7002 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ 7003 7004 if( *pRC ) return; 7005 assert( idx>=0 ); 7006 assert( idx<pPage->nCell ); 7007 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); 7008 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7009 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7010 assert( pPage->nFree>=0 ); 7011 data = pPage->aData; 7012 ptr = &pPage->aCellIdx[2*idx]; 7013 assert( pPage->pBt->usableSize > (u32)(ptr-data) ); 7014 pc = get2byte(ptr); 7015 hdr = pPage->hdrOffset; 7016 testcase( pc==(u32)get2byte(&data[hdr+5]) ); 7017 testcase( pc+sz==pPage->pBt->usableSize ); 7018 if( pc+sz > pPage->pBt->usableSize ){ 7019 *pRC = SQLITE_CORRUPT_BKPT; 7020 return; 7021 } 7022 rc = freeSpace(pPage, pc, sz); 7023 if( rc ){ 7024 *pRC = rc; 7025 return; 7026 } 7027 pPage->nCell--; 7028 if( pPage->nCell==0 ){ 7029 memset(&data[hdr+1], 0, 4); 7030 data[hdr+7] = 0; 7031 put2byte(&data[hdr+5], pPage->pBt->usableSize); 7032 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset 7033 - pPage->childPtrSize - 8; 7034 }else{ 7035 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); 7036 put2byte(&data[hdr+3], pPage->nCell); 7037 pPage->nFree += 2; 7038 } 7039 } 7040 7041 /* 7042 ** Insert a new cell on pPage at cell index "i". pCell points to the 7043 ** content of the cell. 7044 ** 7045 ** If the cell content will fit on the page, then put it there. If it 7046 ** will not fit, then make a copy of the cell content into pTemp if 7047 ** pTemp is not null. Regardless of pTemp, allocate a new entry 7048 ** in pPage->apOvfl[] and make it point to the cell content (either 7049 ** in pTemp or the original pCell) and also record its index. 7050 ** Allocating a new entry in pPage->aCell[] implies that 7051 ** pPage->nOverflow is incremented. 7052 ** 7053 ** *pRC must be SQLITE_OK when this routine is called. 7054 */ 7055 static void insertCell( 7056 MemPage *pPage, /* Page into which we are copying */ 7057 int i, /* New cell becomes the i-th cell of the page */ 7058 u8 *pCell, /* Content of the new cell */ 7059 int sz, /* Bytes of content in pCell */ 7060 u8 *pTemp, /* Temp storage space for pCell, if needed */ 7061 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ 7062 int *pRC /* Read and write return code from here */ 7063 ){ 7064 int idx = 0; /* Where to write new cell content in data[] */ 7065 int j; /* Loop counter */ 7066 u8 *data; /* The content of the whole page */ 7067 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ 7068 7069 assert( *pRC==SQLITE_OK ); 7070 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); 7071 assert( MX_CELL(pPage->pBt)<=10921 ); 7072 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); 7073 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); 7074 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); 7075 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7076 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB ); 7077 assert( pPage->nFree>=0 ); 7078 if( pPage->nOverflow || sz+2>pPage->nFree ){ 7079 if( pTemp ){ 7080 memcpy(pTemp, pCell, sz); 7081 pCell = pTemp; 7082 } 7083 if( iChild ){ 7084 put4byte(pCell, iChild); 7085 } 7086 j = pPage->nOverflow++; 7087 /* Comparison against ArraySize-1 since we hold back one extra slot 7088 ** as a contingency. In other words, never need more than 3 overflow 7089 ** slots but 4 are allocated, just to be safe. */ 7090 assert( j < ArraySize(pPage->apOvfl)-1 ); 7091 pPage->apOvfl[j] = pCell; 7092 pPage->aiOvfl[j] = (u16)i; 7093 7094 /* When multiple overflows occur, they are always sequential and in 7095 ** sorted order. This invariants arise because multiple overflows can 7096 ** only occur when inserting divider cells into the parent page during 7097 ** balancing, and the dividers are adjacent and sorted. 7098 */ 7099 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ 7100 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ 7101 }else{ 7102 int rc = sqlite3PagerWrite(pPage->pDbPage); 7103 if( rc!=SQLITE_OK ){ 7104 *pRC = rc; 7105 return; 7106 } 7107 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); 7108 data = pPage->aData; 7109 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); 7110 rc = allocateSpace(pPage, sz, &idx); 7111 if( rc ){ *pRC = rc; return; } 7112 /* The allocateSpace() routine guarantees the following properties 7113 ** if it returns successfully */ 7114 assert( idx >= 0 ); 7115 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); 7116 assert( idx+sz <= (int)pPage->pBt->usableSize ); 7117 pPage->nFree -= (u16)(2 + sz); 7118 if( iChild ){ 7119 /* In a corrupt database where an entry in the cell index section of 7120 ** a btree page has a value of 3 or less, the pCell value might point 7121 ** as many as 4 bytes in front of the start of the aData buffer for 7122 ** the source page. Make sure this does not cause problems by not 7123 ** reading the first 4 bytes */ 7124 memcpy(&data[idx+4], pCell+4, sz-4); 7125 put4byte(&data[idx], iChild); 7126 }else{ 7127 memcpy(&data[idx], pCell, sz); 7128 } 7129 pIns = pPage->aCellIdx + i*2; 7130 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); 7131 put2byte(pIns, idx); 7132 pPage->nCell++; 7133 /* increment the cell count */ 7134 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; 7135 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB ); 7136 #ifndef SQLITE_OMIT_AUTOVACUUM 7137 if( pPage->pBt->autoVacuum ){ 7138 /* The cell may contain a pointer to an overflow page. If so, write 7139 ** the entry for the overflow page into the pointer map. 7140 */ 7141 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC); 7142 } 7143 #endif 7144 } 7145 } 7146 7147 /* 7148 ** The following parameters determine how many adjacent pages get involved 7149 ** in a balancing operation. NN is the number of neighbors on either side 7150 ** of the page that participate in the balancing operation. NB is the 7151 ** total number of pages that participate, including the target page and 7152 ** NN neighbors on either side. 7153 ** 7154 ** The minimum value of NN is 1 (of course). Increasing NN above 1 7155 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance 7156 ** in exchange for a larger degradation in INSERT and UPDATE performance. 7157 ** The value of NN appears to give the best results overall. 7158 ** 7159 ** (Later:) The description above makes it seem as if these values are 7160 ** tunable - as if you could change them and recompile and it would all work. 7161 ** But that is unlikely. NB has been 3 since the inception of SQLite and 7162 ** we have never tested any other value. 7163 */ 7164 #define NN 1 /* Number of neighbors on either side of pPage */ 7165 #define NB 3 /* (NN*2+1): Total pages involved in the balance */ 7166 7167 /* 7168 ** A CellArray object contains a cache of pointers and sizes for a 7169 ** consecutive sequence of cells that might be held on multiple pages. 7170 ** 7171 ** The cells in this array are the divider cell or cells from the pParent 7172 ** page plus up to three child pages. There are a total of nCell cells. 7173 ** 7174 ** pRef is a pointer to one of the pages that contributes cells. This is 7175 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize 7176 ** which should be common to all pages that contribute cells to this array. 7177 ** 7178 ** apCell[] and szCell[] hold, respectively, pointers to the start of each 7179 ** cell and the size of each cell. Some of the apCell[] pointers might refer 7180 ** to overflow cells. In other words, some apCel[] pointers might not point 7181 ** to content area of the pages. 7182 ** 7183 ** A szCell[] of zero means the size of that cell has not yet been computed. 7184 ** 7185 ** The cells come from as many as four different pages: 7186 ** 7187 ** ----------- 7188 ** | Parent | 7189 ** ----------- 7190 ** / | \ 7191 ** / | \ 7192 ** --------- --------- --------- 7193 ** |Child-1| |Child-2| |Child-3| 7194 ** --------- --------- --------- 7195 ** 7196 ** The order of cells is in the array is for an index btree is: 7197 ** 7198 ** 1. All cells from Child-1 in order 7199 ** 2. The first divider cell from Parent 7200 ** 3. All cells from Child-2 in order 7201 ** 4. The second divider cell from Parent 7202 ** 5. All cells from Child-3 in order 7203 ** 7204 ** For a table-btree (with rowids) the items 2 and 4 are empty because 7205 ** content exists only in leaves and there are no divider cells. 7206 ** 7207 ** For an index btree, the apEnd[] array holds pointer to the end of page 7208 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3, 7209 ** respectively. The ixNx[] array holds the number of cells contained in 7210 ** each of these 5 stages, and all stages to the left. Hence: 7211 ** 7212 ** ixNx[0] = Number of cells in Child-1. 7213 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider. 7214 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider. 7215 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells 7216 ** ixNx[4] = Total number of cells. 7217 ** 7218 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2] 7219 ** are used and they point to the leaf pages only, and the ixNx value are: 7220 ** 7221 ** ixNx[0] = Number of cells in Child-1. 7222 ** ixNx[1] = Number of cells in Child-1 and Child-2. 7223 ** ixNx[2] = Total number of cells. 7224 ** 7225 ** Sometimes when deleting, a child page can have zero cells. In those 7226 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[] 7227 ** entries, shift down. The end result is that each ixNx[] entry should 7228 ** be larger than the previous 7229 */ 7230 typedef struct CellArray CellArray; 7231 struct CellArray { 7232 int nCell; /* Number of cells in apCell[] */ 7233 MemPage *pRef; /* Reference page */ 7234 u8 **apCell; /* All cells begin balanced */ 7235 u16 *szCell; /* Local size of all cells in apCell[] */ 7236 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */ 7237 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */ 7238 }; 7239 7240 /* 7241 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been 7242 ** computed. 7243 */ 7244 static void populateCellCache(CellArray *p, int idx, int N){ 7245 assert( idx>=0 && idx+N<=p->nCell ); 7246 while( N>0 ){ 7247 assert( p->apCell[idx]!=0 ); 7248 if( p->szCell[idx]==0 ){ 7249 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); 7250 }else{ 7251 assert( CORRUPT_DB || 7252 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); 7253 } 7254 idx++; 7255 N--; 7256 } 7257 } 7258 7259 /* 7260 ** Return the size of the Nth element of the cell array 7261 */ 7262 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ 7263 assert( N>=0 && N<p->nCell ); 7264 assert( p->szCell[N]==0 ); 7265 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); 7266 return p->szCell[N]; 7267 } 7268 static u16 cachedCellSize(CellArray *p, int N){ 7269 assert( N>=0 && N<p->nCell ); 7270 if( p->szCell[N] ) return p->szCell[N]; 7271 return computeCellSize(p, N); 7272 } 7273 7274 /* 7275 ** Array apCell[] contains pointers to nCell b-tree page cells. The 7276 ** szCell[] array contains the size in bytes of each cell. This function 7277 ** replaces the current contents of page pPg with the contents of the cell 7278 ** array. 7279 ** 7280 ** Some of the cells in apCell[] may currently be stored in pPg. This 7281 ** function works around problems caused by this by making a copy of any 7282 ** such cells before overwriting the page data. 7283 ** 7284 ** The MemPage.nFree field is invalidated by this function. It is the 7285 ** responsibility of the caller to set it correctly. 7286 */ 7287 static int rebuildPage( 7288 CellArray *pCArray, /* Content to be added to page pPg */ 7289 int iFirst, /* First cell in pCArray to use */ 7290 int nCell, /* Final number of cells on page */ 7291 MemPage *pPg /* The page to be reconstructed */ 7292 ){ 7293 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ 7294 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ 7295 const int usableSize = pPg->pBt->usableSize; 7296 u8 * const pEnd = &aData[usableSize]; 7297 int i = iFirst; /* Which cell to copy from pCArray*/ 7298 u32 j; /* Start of cell content area */ 7299 int iEnd = i+nCell; /* Loop terminator */ 7300 u8 *pCellptr = pPg->aCellIdx; 7301 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7302 u8 *pData; 7303 int k; /* Current slot in pCArray->apEnd[] */ 7304 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */ 7305 7306 assert( i<iEnd ); 7307 j = get2byte(&aData[hdr+5]); 7308 if( j>(u32)usableSize ){ j = 0; } 7309 memcpy(&pTmp[j], &aData[j], usableSize - j); 7310 7311 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7312 pSrcEnd = pCArray->apEnd[k]; 7313 7314 pData = pEnd; 7315 while( 1/*exit by break*/ ){ 7316 u8 *pCell = pCArray->apCell[i]; 7317 u16 sz = pCArray->szCell[i]; 7318 assert( sz>0 ); 7319 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){ 7320 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT; 7321 pCell = &pTmp[pCell - aData]; 7322 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd 7323 && (uptr)(pCell)<(uptr)pSrcEnd 7324 ){ 7325 return SQLITE_CORRUPT_BKPT; 7326 } 7327 7328 pData -= sz; 7329 put2byte(pCellptr, (pData - aData)); 7330 pCellptr += 2; 7331 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; 7332 memmove(pData, pCell, sz); 7333 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); 7334 i++; 7335 if( i>=iEnd ) break; 7336 if( pCArray->ixNx[k]<=i ){ 7337 k++; 7338 pSrcEnd = pCArray->apEnd[k]; 7339 } 7340 } 7341 7342 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ 7343 pPg->nCell = nCell; 7344 pPg->nOverflow = 0; 7345 7346 put2byte(&aData[hdr+1], 0); 7347 put2byte(&aData[hdr+3], pPg->nCell); 7348 put2byte(&aData[hdr+5], pData - aData); 7349 aData[hdr+7] = 0x00; 7350 return SQLITE_OK; 7351 } 7352 7353 /* 7354 ** The pCArray objects contains pointers to b-tree cells and the cell sizes. 7355 ** This function attempts to add the cells stored in the array to page pPg. 7356 ** If it cannot (because the page needs to be defragmented before the cells 7357 ** will fit), non-zero is returned. Otherwise, if the cells are added 7358 ** successfully, zero is returned. 7359 ** 7360 ** Argument pCellptr points to the first entry in the cell-pointer array 7361 ** (part of page pPg) to populate. After cell apCell[0] is written to the 7362 ** page body, a 16-bit offset is written to pCellptr. And so on, for each 7363 ** cell in the array. It is the responsibility of the caller to ensure 7364 ** that it is safe to overwrite this part of the cell-pointer array. 7365 ** 7366 ** When this function is called, *ppData points to the start of the 7367 ** content area on page pPg. If the size of the content area is extended, 7368 ** *ppData is updated to point to the new start of the content area 7369 ** before returning. 7370 ** 7371 ** Finally, argument pBegin points to the byte immediately following the 7372 ** end of the space required by this page for the cell-pointer area (for 7373 ** all cells - not just those inserted by the current call). If the content 7374 ** area must be extended to before this point in order to accomodate all 7375 ** cells in apCell[], then the cells do not fit and non-zero is returned. 7376 */ 7377 static int pageInsertArray( 7378 MemPage *pPg, /* Page to add cells to */ 7379 u8 *pBegin, /* End of cell-pointer array */ 7380 u8 **ppData, /* IN/OUT: Page content-area pointer */ 7381 u8 *pCellptr, /* Pointer to cell-pointer area */ 7382 int iFirst, /* Index of first cell to add */ 7383 int nCell, /* Number of cells to add to pPg */ 7384 CellArray *pCArray /* Array of cells */ 7385 ){ 7386 int i = iFirst; /* Loop counter - cell index to insert */ 7387 u8 *aData = pPg->aData; /* Complete page */ 7388 u8 *pData = *ppData; /* Content area. A subset of aData[] */ 7389 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */ 7390 int k; /* Current slot in pCArray->apEnd[] */ 7391 u8 *pEnd; /* Maximum extent of cell data */ 7392 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ 7393 if( iEnd<=iFirst ) return 0; 7394 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){} 7395 pEnd = pCArray->apEnd[k]; 7396 while( 1 /*Exit by break*/ ){ 7397 int sz, rc; 7398 u8 *pSlot; 7399 assert( pCArray->szCell[i]!=0 ); 7400 sz = pCArray->szCell[i]; 7401 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ 7402 if( (pData - pBegin)<sz ) return 1; 7403 pData -= sz; 7404 pSlot = pData; 7405 } 7406 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed 7407 ** database. But they might for a corrupt database. Hence use memmove() 7408 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ 7409 assert( (pSlot+sz)<=pCArray->apCell[i] 7410 || pSlot>=(pCArray->apCell[i]+sz) 7411 || CORRUPT_DB ); 7412 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd 7413 && (uptr)(pCArray->apCell[i])<(uptr)pEnd 7414 ){ 7415 assert( CORRUPT_DB ); 7416 (void)SQLITE_CORRUPT_BKPT; 7417 return 1; 7418 } 7419 memmove(pSlot, pCArray->apCell[i], sz); 7420 put2byte(pCellptr, (pSlot - aData)); 7421 pCellptr += 2; 7422 i++; 7423 if( i>=iEnd ) break; 7424 if( pCArray->ixNx[k]<=i ){ 7425 k++; 7426 pEnd = pCArray->apEnd[k]; 7427 } 7428 } 7429 *ppData = pData; 7430 return 0; 7431 } 7432 7433 /* 7434 ** The pCArray object contains pointers to b-tree cells and their sizes. 7435 ** 7436 ** This function adds the space associated with each cell in the array 7437 ** that is currently stored within the body of pPg to the pPg free-list. 7438 ** The cell-pointers and other fields of the page are not updated. 7439 ** 7440 ** This function returns the total number of cells added to the free-list. 7441 */ 7442 static int pageFreeArray( 7443 MemPage *pPg, /* Page to edit */ 7444 int iFirst, /* First cell to delete */ 7445 int nCell, /* Cells to delete */ 7446 CellArray *pCArray /* Array of cells */ 7447 ){ 7448 u8 * const aData = pPg->aData; 7449 u8 * const pEnd = &aData[pPg->pBt->usableSize]; 7450 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; 7451 int nRet = 0; 7452 int i; 7453 int iEnd = iFirst + nCell; 7454 u8 *pFree = 0; 7455 int szFree = 0; 7456 7457 for(i=iFirst; i<iEnd; i++){ 7458 u8 *pCell = pCArray->apCell[i]; 7459 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ 7460 int sz; 7461 /* No need to use cachedCellSize() here. The sizes of all cells that 7462 ** are to be freed have already been computing while deciding which 7463 ** cells need freeing */ 7464 sz = pCArray->szCell[i]; assert( sz>0 ); 7465 if( pFree!=(pCell + sz) ){ 7466 if( pFree ){ 7467 assert( pFree>aData && (pFree - aData)<65536 ); 7468 freeSpace(pPg, (u16)(pFree - aData), szFree); 7469 } 7470 pFree = pCell; 7471 szFree = sz; 7472 if( pFree+sz>pEnd ){ 7473 return 0; 7474 } 7475 }else{ 7476 pFree = pCell; 7477 szFree += sz; 7478 } 7479 nRet++; 7480 } 7481 } 7482 if( pFree ){ 7483 assert( pFree>aData && (pFree - aData)<65536 ); 7484 freeSpace(pPg, (u16)(pFree - aData), szFree); 7485 } 7486 return nRet; 7487 } 7488 7489 /* 7490 ** pCArray contains pointers to and sizes of all cells in the page being 7491 ** balanced. The current page, pPg, has pPg->nCell cells starting with 7492 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells 7493 ** starting at apCell[iNew]. 7494 ** 7495 ** This routine makes the necessary adjustments to pPg so that it contains 7496 ** the correct cells after being balanced. 7497 ** 7498 ** The pPg->nFree field is invalid when this function returns. It is the 7499 ** responsibility of the caller to set it correctly. 7500 */ 7501 static int editPage( 7502 MemPage *pPg, /* Edit this page */ 7503 int iOld, /* Index of first cell currently on page */ 7504 int iNew, /* Index of new first cell on page */ 7505 int nNew, /* Final number of cells on page */ 7506 CellArray *pCArray /* Array of cells and sizes */ 7507 ){ 7508 u8 * const aData = pPg->aData; 7509 const int hdr = pPg->hdrOffset; 7510 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; 7511 int nCell = pPg->nCell; /* Cells stored on pPg */ 7512 u8 *pData; 7513 u8 *pCellptr; 7514 int i; 7515 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; 7516 int iNewEnd = iNew + nNew; 7517 7518 #ifdef SQLITE_DEBUG 7519 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); 7520 memcpy(pTmp, aData, pPg->pBt->usableSize); 7521 #endif 7522 7523 /* Remove cells from the start and end of the page */ 7524 assert( nCell>=0 ); 7525 if( iOld<iNew ){ 7526 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); 7527 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT; 7528 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); 7529 nCell -= nShift; 7530 } 7531 if( iNewEnd < iOldEnd ){ 7532 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); 7533 assert( nCell>=nTail ); 7534 nCell -= nTail; 7535 } 7536 7537 pData = &aData[get2byteNotZero(&aData[hdr+5])]; 7538 if( pData<pBegin ) goto editpage_fail; 7539 if( pData>pPg->aDataEnd ) goto editpage_fail; 7540 7541 /* Add cells to the start of the page */ 7542 if( iNew<iOld ){ 7543 int nAdd = MIN(nNew,iOld-iNew); 7544 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); 7545 assert( nAdd>=0 ); 7546 pCellptr = pPg->aCellIdx; 7547 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); 7548 if( pageInsertArray( 7549 pPg, pBegin, &pData, pCellptr, 7550 iNew, nAdd, pCArray 7551 ) ) goto editpage_fail; 7552 nCell += nAdd; 7553 } 7554 7555 /* Add any overflow cells */ 7556 for(i=0; i<pPg->nOverflow; i++){ 7557 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; 7558 if( iCell>=0 && iCell<nNew ){ 7559 pCellptr = &pPg->aCellIdx[iCell * 2]; 7560 if( nCell>iCell ){ 7561 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); 7562 } 7563 nCell++; 7564 cachedCellSize(pCArray, iCell+iNew); 7565 if( pageInsertArray( 7566 pPg, pBegin, &pData, pCellptr, 7567 iCell+iNew, 1, pCArray 7568 ) ) goto editpage_fail; 7569 } 7570 } 7571 7572 /* Append cells to the end of the page */ 7573 assert( nCell>=0 ); 7574 pCellptr = &pPg->aCellIdx[nCell*2]; 7575 if( pageInsertArray( 7576 pPg, pBegin, &pData, pCellptr, 7577 iNew+nCell, nNew-nCell, pCArray 7578 ) ) goto editpage_fail; 7579 7580 pPg->nCell = nNew; 7581 pPg->nOverflow = 0; 7582 7583 put2byte(&aData[hdr+3], pPg->nCell); 7584 put2byte(&aData[hdr+5], pData - aData); 7585 7586 #ifdef SQLITE_DEBUG 7587 for(i=0; i<nNew && !CORRUPT_DB; i++){ 7588 u8 *pCell = pCArray->apCell[i+iNew]; 7589 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); 7590 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ 7591 pCell = &pTmp[pCell - aData]; 7592 } 7593 assert( 0==memcmp(pCell, &aData[iOff], 7594 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); 7595 } 7596 #endif 7597 7598 return SQLITE_OK; 7599 editpage_fail: 7600 /* Unable to edit this page. Rebuild it from scratch instead. */ 7601 populateCellCache(pCArray, iNew, nNew); 7602 return rebuildPage(pCArray, iNew, nNew, pPg); 7603 } 7604 7605 7606 #ifndef SQLITE_OMIT_QUICKBALANCE 7607 /* 7608 ** This version of balance() handles the common special case where 7609 ** a new entry is being inserted on the extreme right-end of the 7610 ** tree, in other words, when the new entry will become the largest 7611 ** entry in the tree. 7612 ** 7613 ** Instead of trying to balance the 3 right-most leaf pages, just add 7614 ** a new page to the right-hand side and put the one new entry in 7615 ** that page. This leaves the right side of the tree somewhat 7616 ** unbalanced. But odds are that we will be inserting new entries 7617 ** at the end soon afterwards so the nearly empty page will quickly 7618 ** fill up. On average. 7619 ** 7620 ** pPage is the leaf page which is the right-most page in the tree. 7621 ** pParent is its parent. pPage must have a single overflow entry 7622 ** which is also the right-most entry on the page. 7623 ** 7624 ** The pSpace buffer is used to store a temporary copy of the divider 7625 ** cell that will be inserted into pParent. Such a cell consists of a 4 7626 ** byte page number followed by a variable length integer. In other 7627 ** words, at most 13 bytes. Hence the pSpace buffer must be at 7628 ** least 13 bytes in size. 7629 */ 7630 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ 7631 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ 7632 MemPage *pNew; /* Newly allocated page */ 7633 int rc; /* Return Code */ 7634 Pgno pgnoNew; /* Page number of pNew */ 7635 7636 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); 7637 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7638 assert( pPage->nOverflow==1 ); 7639 7640 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */ 7641 assert( pPage->nFree>=0 ); 7642 assert( pParent->nFree>=0 ); 7643 7644 /* Allocate a new page. This page will become the right-sibling of 7645 ** pPage. Make the parent page writable, so that the new divider cell 7646 ** may be inserted. If both these operations are successful, proceed. 7647 */ 7648 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 7649 7650 if( rc==SQLITE_OK ){ 7651 7652 u8 *pOut = &pSpace[4]; 7653 u8 *pCell = pPage->apOvfl[0]; 7654 u16 szCell = pPage->xCellSize(pPage, pCell); 7655 u8 *pStop; 7656 CellArray b; 7657 7658 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); 7659 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); 7660 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); 7661 b.nCell = 1; 7662 b.pRef = pPage; 7663 b.apCell = &pCell; 7664 b.szCell = &szCell; 7665 b.apEnd[0] = pPage->aDataEnd; 7666 b.ixNx[0] = 2; 7667 rc = rebuildPage(&b, 0, 1, pNew); 7668 if( NEVER(rc) ){ 7669 releasePage(pNew); 7670 return rc; 7671 } 7672 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; 7673 7674 /* If this is an auto-vacuum database, update the pointer map 7675 ** with entries for the new page, and any pointer from the 7676 ** cell on the page to an overflow page. If either of these 7677 ** operations fails, the return code is set, but the contents 7678 ** of the parent page are still manipulated by thh code below. 7679 ** That is Ok, at this point the parent page is guaranteed to 7680 ** be marked as dirty. Returning an error code will cause a 7681 ** rollback, undoing any changes made to the parent page. 7682 */ 7683 if( ISAUTOVACUUM ){ 7684 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); 7685 if( szCell>pNew->minLocal ){ 7686 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc); 7687 } 7688 } 7689 7690 /* Create a divider cell to insert into pParent. The divider cell 7691 ** consists of a 4-byte page number (the page number of pPage) and 7692 ** a variable length key value (which must be the same value as the 7693 ** largest key on pPage). 7694 ** 7695 ** To find the largest key value on pPage, first find the right-most 7696 ** cell on pPage. The first two fields of this cell are the 7697 ** record-length (a variable length integer at most 32-bits in size) 7698 ** and the key value (a variable length integer, may have any value). 7699 ** The first of the while(...) loops below skips over the record-length 7700 ** field. The second while(...) loop copies the key value from the 7701 ** cell on pPage into the pSpace buffer. 7702 */ 7703 pCell = findCell(pPage, pPage->nCell-1); 7704 pStop = &pCell[9]; 7705 while( (*(pCell++)&0x80) && pCell<pStop ); 7706 pStop = &pCell[9]; 7707 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); 7708 7709 /* Insert the new divider cell into pParent. */ 7710 if( rc==SQLITE_OK ){ 7711 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 7712 0, pPage->pgno, &rc); 7713 } 7714 7715 /* Set the right-child pointer of pParent to point to the new page. */ 7716 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); 7717 7718 /* Release the reference to the new page. */ 7719 releasePage(pNew); 7720 } 7721 7722 return rc; 7723 } 7724 #endif /* SQLITE_OMIT_QUICKBALANCE */ 7725 7726 #if 0 7727 /* 7728 ** This function does not contribute anything to the operation of SQLite. 7729 ** it is sometimes activated temporarily while debugging code responsible 7730 ** for setting pointer-map entries. 7731 */ 7732 static int ptrmapCheckPages(MemPage **apPage, int nPage){ 7733 int i, j; 7734 for(i=0; i<nPage; i++){ 7735 Pgno n; 7736 u8 e; 7737 MemPage *pPage = apPage[i]; 7738 BtShared *pBt = pPage->pBt; 7739 assert( pPage->isInit ); 7740 7741 for(j=0; j<pPage->nCell; j++){ 7742 CellInfo info; 7743 u8 *z; 7744 7745 z = findCell(pPage, j); 7746 pPage->xParseCell(pPage, z, &info); 7747 if( info.nLocal<info.nPayload ){ 7748 Pgno ovfl = get4byte(&z[info.nSize-4]); 7749 ptrmapGet(pBt, ovfl, &e, &n); 7750 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); 7751 } 7752 if( !pPage->leaf ){ 7753 Pgno child = get4byte(z); 7754 ptrmapGet(pBt, child, &e, &n); 7755 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7756 } 7757 } 7758 if( !pPage->leaf ){ 7759 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); 7760 ptrmapGet(pBt, child, &e, &n); 7761 assert( n==pPage->pgno && e==PTRMAP_BTREE ); 7762 } 7763 } 7764 return 1; 7765 } 7766 #endif 7767 7768 /* 7769 ** This function is used to copy the contents of the b-tree node stored 7770 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then 7771 ** the pointer-map entries for each child page are updated so that the 7772 ** parent page stored in the pointer map is page pTo. If pFrom contained 7773 ** any cells with overflow page pointers, then the corresponding pointer 7774 ** map entries are also updated so that the parent page is page pTo. 7775 ** 7776 ** If pFrom is currently carrying any overflow cells (entries in the 7777 ** MemPage.apOvfl[] array), they are not copied to pTo. 7778 ** 7779 ** Before returning, page pTo is reinitialized using btreeInitPage(). 7780 ** 7781 ** The performance of this function is not critical. It is only used by 7782 ** the balance_shallower() and balance_deeper() procedures, neither of 7783 ** which are called often under normal circumstances. 7784 */ 7785 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ 7786 if( (*pRC)==SQLITE_OK ){ 7787 BtShared * const pBt = pFrom->pBt; 7788 u8 * const aFrom = pFrom->aData; 7789 u8 * const aTo = pTo->aData; 7790 int const iFromHdr = pFrom->hdrOffset; 7791 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); 7792 int rc; 7793 int iData; 7794 7795 7796 assert( pFrom->isInit ); 7797 assert( pFrom->nFree>=iToHdr ); 7798 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); 7799 7800 /* Copy the b-tree node content from page pFrom to page pTo. */ 7801 iData = get2byte(&aFrom[iFromHdr+5]); 7802 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); 7803 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); 7804 7805 /* Reinitialize page pTo so that the contents of the MemPage structure 7806 ** match the new data. The initialization of pTo can actually fail under 7807 ** fairly obscure circumstances, even though it is a copy of initialized 7808 ** page pFrom. 7809 */ 7810 pTo->isInit = 0; 7811 rc = btreeInitPage(pTo); 7812 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo); 7813 if( rc!=SQLITE_OK ){ 7814 *pRC = rc; 7815 return; 7816 } 7817 7818 /* If this is an auto-vacuum database, update the pointer-map entries 7819 ** for any b-tree or overflow pages that pTo now contains the pointers to. 7820 */ 7821 if( ISAUTOVACUUM ){ 7822 *pRC = setChildPtrmaps(pTo); 7823 } 7824 } 7825 } 7826 7827 /* 7828 ** This routine redistributes cells on the iParentIdx'th child of pParent 7829 ** (hereafter "the page") and up to 2 siblings so that all pages have about the 7830 ** same amount of free space. Usually a single sibling on either side of the 7831 ** page are used in the balancing, though both siblings might come from one 7832 ** side if the page is the first or last child of its parent. If the page 7833 ** has fewer than 2 siblings (something which can only happen if the page 7834 ** is a root page or a child of a root page) then all available siblings 7835 ** participate in the balancing. 7836 ** 7837 ** The number of siblings of the page might be increased or decreased by 7838 ** one or two in an effort to keep pages nearly full but not over full. 7839 ** 7840 ** Note that when this routine is called, some of the cells on the page 7841 ** might not actually be stored in MemPage.aData[]. This can happen 7842 ** if the page is overfull. This routine ensures that all cells allocated 7843 ** to the page and its siblings fit into MemPage.aData[] before returning. 7844 ** 7845 ** In the course of balancing the page and its siblings, cells may be 7846 ** inserted into or removed from the parent page (pParent). Doing so 7847 ** may cause the parent page to become overfull or underfull. If this 7848 ** happens, it is the responsibility of the caller to invoke the correct 7849 ** balancing routine to fix this problem (see the balance() routine). 7850 ** 7851 ** If this routine fails for any reason, it might leave the database 7852 ** in a corrupted state. So if this routine fails, the database should 7853 ** be rolled back. 7854 ** 7855 ** The third argument to this function, aOvflSpace, is a pointer to a 7856 ** buffer big enough to hold one page. If while inserting cells into the parent 7857 ** page (pParent) the parent page becomes overfull, this buffer is 7858 ** used to store the parent's overflow cells. Because this function inserts 7859 ** a maximum of four divider cells into the parent page, and the maximum 7860 ** size of a cell stored within an internal node is always less than 1/4 7861 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large 7862 ** enough for all overflow cells. 7863 ** 7864 ** If aOvflSpace is set to a null pointer, this function returns 7865 ** SQLITE_NOMEM. 7866 */ 7867 static int balance_nonroot( 7868 MemPage *pParent, /* Parent page of siblings being balanced */ 7869 int iParentIdx, /* Index of "the page" in pParent */ 7870 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ 7871 int isRoot, /* True if pParent is a root-page */ 7872 int bBulk /* True if this call is part of a bulk load */ 7873 ){ 7874 BtShared *pBt; /* The whole database */ 7875 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ 7876 int nNew = 0; /* Number of pages in apNew[] */ 7877 int nOld; /* Number of pages in apOld[] */ 7878 int i, j, k; /* Loop counters */ 7879 int nxDiv; /* Next divider slot in pParent->aCell[] */ 7880 int rc = SQLITE_OK; /* The return code */ 7881 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ 7882 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ 7883 int usableSpace; /* Bytes in pPage beyond the header */ 7884 int pageFlags; /* Value of pPage->aData[0] */ 7885 int iSpace1 = 0; /* First unused byte of aSpace1[] */ 7886 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ 7887 int szScratch; /* Size of scratch memory requested */ 7888 MemPage *apOld[NB]; /* pPage and up to two siblings */ 7889 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ 7890 u8 *pRight; /* Location in parent of right-sibling pointer */ 7891 u8 *apDiv[NB-1]; /* Divider cells in pParent */ 7892 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ 7893 int cntOld[NB+2]; /* Old index in b.apCell[] */ 7894 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ 7895 u8 *aSpace1; /* Space for copies of dividers cells */ 7896 Pgno pgno; /* Temp var to store a page number in */ 7897 u8 abDone[NB+2]; /* True after i'th new page is populated */ 7898 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ 7899 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ 7900 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ 7901 CellArray b; /* Parsed information on cells being balanced */ 7902 7903 memset(abDone, 0, sizeof(abDone)); 7904 memset(&b, 0, sizeof(b)); 7905 pBt = pParent->pBt; 7906 assert( sqlite3_mutex_held(pBt->mutex) ); 7907 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 7908 7909 /* At this point pParent may have at most one overflow cell. And if 7910 ** this overflow cell is present, it must be the cell with 7911 ** index iParentIdx. This scenario comes about when this function 7912 ** is called (indirectly) from sqlite3BtreeDelete(). 7913 */ 7914 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); 7915 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); 7916 7917 if( !aOvflSpace ){ 7918 return SQLITE_NOMEM_BKPT; 7919 } 7920 assert( pParent->nFree>=0 ); 7921 7922 /* Find the sibling pages to balance. Also locate the cells in pParent 7923 ** that divide the siblings. An attempt is made to find NN siblings on 7924 ** either side of pPage. More siblings are taken from one side, however, 7925 ** if there are fewer than NN siblings on the other side. If pParent 7926 ** has NB or fewer children then all children of pParent are taken. 7927 ** 7928 ** This loop also drops the divider cells from the parent page. This 7929 ** way, the remainder of the function does not have to deal with any 7930 ** overflow cells in the parent page, since if any existed they will 7931 ** have already been removed. 7932 */ 7933 i = pParent->nOverflow + pParent->nCell; 7934 if( i<2 ){ 7935 nxDiv = 0; 7936 }else{ 7937 assert( bBulk==0 || bBulk==1 ); 7938 if( iParentIdx==0 ){ 7939 nxDiv = 0; 7940 }else if( iParentIdx==i ){ 7941 nxDiv = i-2+bBulk; 7942 }else{ 7943 nxDiv = iParentIdx-1; 7944 } 7945 i = 2-bBulk; 7946 } 7947 nOld = i+1; 7948 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ 7949 pRight = &pParent->aData[pParent->hdrOffset+8]; 7950 }else{ 7951 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); 7952 } 7953 pgno = get4byte(pRight); 7954 while( 1 ){ 7955 if( rc==SQLITE_OK ){ 7956 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); 7957 } 7958 if( rc ){ 7959 memset(apOld, 0, (i+1)*sizeof(MemPage*)); 7960 goto balance_cleanup; 7961 } 7962 if( apOld[i]->nFree<0 ){ 7963 rc = btreeComputeFreeSpace(apOld[i]); 7964 if( rc ){ 7965 memset(apOld, 0, (i)*sizeof(MemPage*)); 7966 goto balance_cleanup; 7967 } 7968 } 7969 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl); 7970 if( (i--)==0 ) break; 7971 7972 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ 7973 apDiv[i] = pParent->apOvfl[0]; 7974 pgno = get4byte(apDiv[i]); 7975 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7976 pParent->nOverflow = 0; 7977 }else{ 7978 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); 7979 pgno = get4byte(apDiv[i]); 7980 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); 7981 7982 /* Drop the cell from the parent page. apDiv[i] still points to 7983 ** the cell within the parent, even though it has been dropped. 7984 ** This is safe because dropping a cell only overwrites the first 7985 ** four bytes of it, and this function does not need the first 7986 ** four bytes of the divider cell. So the pointer is safe to use 7987 ** later on. 7988 ** 7989 ** But not if we are in secure-delete mode. In secure-delete mode, 7990 ** the dropCell() routine will overwrite the entire cell with zeroes. 7991 ** In this case, temporarily copy the cell into the aOvflSpace[] 7992 ** buffer. It will be copied out again as soon as the aSpace[] buffer 7993 ** is allocated. */ 7994 if( pBt->btsFlags & BTS_FAST_SECURE ){ 7995 int iOff; 7996 7997 /* If the following if() condition is not true, the db is corrupted. 7998 ** The call to dropCell() below will detect this. */ 7999 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); 8000 if( (iOff+szNew[i])<=(int)pBt->usableSize ){ 8001 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); 8002 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; 8003 } 8004 } 8005 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); 8006 } 8007 } 8008 8009 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte 8010 ** alignment */ 8011 nMaxCells = (nMaxCells + 3)&~3; 8012 8013 /* 8014 ** Allocate space for memory structures 8015 */ 8016 szScratch = 8017 nMaxCells*sizeof(u8*) /* b.apCell */ 8018 + nMaxCells*sizeof(u16) /* b.szCell */ 8019 + pBt->pageSize; /* aSpace1 */ 8020 8021 assert( szScratch<=7*(int)pBt->pageSize ); 8022 b.apCell = sqlite3StackAllocRaw(0, szScratch ); 8023 if( b.apCell==0 ){ 8024 rc = SQLITE_NOMEM_BKPT; 8025 goto balance_cleanup; 8026 } 8027 b.szCell = (u16*)&b.apCell[nMaxCells]; 8028 aSpace1 = (u8*)&b.szCell[nMaxCells]; 8029 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); 8030 8031 /* 8032 ** Load pointers to all cells on sibling pages and the divider cells 8033 ** into the local b.apCell[] array. Make copies of the divider cells 8034 ** into space obtained from aSpace1[]. The divider cells have already 8035 ** been removed from pParent. 8036 ** 8037 ** If the siblings are on leaf pages, then the child pointers of the 8038 ** divider cells are stripped from the cells before they are copied 8039 ** into aSpace1[]. In this way, all cells in b.apCell[] are without 8040 ** child pointers. If siblings are not leaves, then all cell in 8041 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] 8042 ** are alike. 8043 ** 8044 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. 8045 ** leafData: 1 if pPage holds key+data and pParent holds only keys. 8046 */ 8047 b.pRef = apOld[0]; 8048 leafCorrection = b.pRef->leaf*4; 8049 leafData = b.pRef->intKeyLeaf; 8050 for(i=0; i<nOld; i++){ 8051 MemPage *pOld = apOld[i]; 8052 int limit = pOld->nCell; 8053 u8 *aData = pOld->aData; 8054 u16 maskPage = pOld->maskPage; 8055 u8 *piCell = aData + pOld->cellOffset; 8056 u8 *piEnd; 8057 VVA_ONLY( int nCellAtStart = b.nCell; ) 8058 8059 /* Verify that all sibling pages are of the same "type" (table-leaf, 8060 ** table-interior, index-leaf, or index-interior). 8061 */ 8062 if( pOld->aData[0]!=apOld[0]->aData[0] ){ 8063 rc = SQLITE_CORRUPT_BKPT; 8064 goto balance_cleanup; 8065 } 8066 8067 /* Load b.apCell[] with pointers to all cells in pOld. If pOld 8068 ** contains overflow cells, include them in the b.apCell[] array 8069 ** in the correct spot. 8070 ** 8071 ** Note that when there are multiple overflow cells, it is always the 8072 ** case that they are sequential and adjacent. This invariant arises 8073 ** because multiple overflows can only occurs when inserting divider 8074 ** cells into a parent on a prior balance, and divider cells are always 8075 ** adjacent and are inserted in order. There is an assert() tagged 8076 ** with "NOTE 1" in the overflow cell insertion loop to prove this 8077 ** invariant. 8078 ** 8079 ** This must be done in advance. Once the balance starts, the cell 8080 ** offset section of the btree page will be overwritten and we will no 8081 ** long be able to find the cells if a pointer to each cell is not saved 8082 ** first. 8083 */ 8084 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); 8085 if( pOld->nOverflow>0 ){ 8086 if( NEVER(limit<pOld->aiOvfl[0]) ){ 8087 rc = SQLITE_CORRUPT_BKPT; 8088 goto balance_cleanup; 8089 } 8090 limit = pOld->aiOvfl[0]; 8091 for(j=0; j<limit; j++){ 8092 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8093 piCell += 2; 8094 b.nCell++; 8095 } 8096 for(k=0; k<pOld->nOverflow; k++){ 8097 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ 8098 b.apCell[b.nCell] = pOld->apOvfl[k]; 8099 b.nCell++; 8100 } 8101 } 8102 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; 8103 while( piCell<piEnd ){ 8104 assert( b.nCell<nMaxCells ); 8105 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); 8106 piCell += 2; 8107 b.nCell++; 8108 } 8109 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) ); 8110 8111 cntOld[i] = b.nCell; 8112 if( i<nOld-1 && !leafData){ 8113 u16 sz = (u16)szNew[i]; 8114 u8 *pTemp; 8115 assert( b.nCell<nMaxCells ); 8116 b.szCell[b.nCell] = sz; 8117 pTemp = &aSpace1[iSpace1]; 8118 iSpace1 += sz; 8119 assert( sz<=pBt->maxLocal+23 ); 8120 assert( iSpace1 <= (int)pBt->pageSize ); 8121 memcpy(pTemp, apDiv[i], sz); 8122 b.apCell[b.nCell] = pTemp+leafCorrection; 8123 assert( leafCorrection==0 || leafCorrection==4 ); 8124 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; 8125 if( !pOld->leaf ){ 8126 assert( leafCorrection==0 ); 8127 assert( pOld->hdrOffset==0 || CORRUPT_DB ); 8128 /* The right pointer of the child page pOld becomes the left 8129 ** pointer of the divider cell */ 8130 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); 8131 }else{ 8132 assert( leafCorrection==4 ); 8133 while( b.szCell[b.nCell]<4 ){ 8134 /* Do not allow any cells smaller than 4 bytes. If a smaller cell 8135 ** does exist, pad it with 0x00 bytes. */ 8136 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); 8137 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); 8138 aSpace1[iSpace1++] = 0x00; 8139 b.szCell[b.nCell]++; 8140 } 8141 } 8142 b.nCell++; 8143 } 8144 } 8145 8146 /* 8147 ** Figure out the number of pages needed to hold all b.nCell cells. 8148 ** Store this number in "k". Also compute szNew[] which is the total 8149 ** size of all cells on the i-th page and cntNew[] which is the index 8150 ** in b.apCell[] of the cell that divides page i from page i+1. 8151 ** cntNew[k] should equal b.nCell. 8152 ** 8153 ** Values computed by this block: 8154 ** 8155 ** k: The total number of sibling pages 8156 ** szNew[i]: Spaced used on the i-th sibling page. 8157 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to 8158 ** the right of the i-th sibling page. 8159 ** usableSpace: Number of bytes of space available on each sibling. 8160 ** 8161 */ 8162 usableSpace = pBt->usableSize - 12 + leafCorrection; 8163 for(i=k=0; i<nOld; i++, k++){ 8164 MemPage *p = apOld[i]; 8165 b.apEnd[k] = p->aDataEnd; 8166 b.ixNx[k] = cntOld[i]; 8167 if( k && b.ixNx[k]==b.ixNx[k-1] ){ 8168 k--; /* Omit b.ixNx[] entry for child pages with no cells */ 8169 } 8170 if( !leafData ){ 8171 k++; 8172 b.apEnd[k] = pParent->aDataEnd; 8173 b.ixNx[k] = cntOld[i]+1; 8174 } 8175 assert( p->nFree>=0 ); 8176 szNew[i] = usableSpace - p->nFree; 8177 for(j=0; j<p->nOverflow; j++){ 8178 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); 8179 } 8180 cntNew[i] = cntOld[i]; 8181 } 8182 k = nOld; 8183 for(i=0; i<k; i++){ 8184 int sz; 8185 while( szNew[i]>usableSpace ){ 8186 if( i+1>=k ){ 8187 k = i+2; 8188 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } 8189 szNew[k-1] = 0; 8190 cntNew[k-1] = b.nCell; 8191 } 8192 sz = 2 + cachedCellSize(&b, cntNew[i]-1); 8193 szNew[i] -= sz; 8194 if( !leafData ){ 8195 if( cntNew[i]<b.nCell ){ 8196 sz = 2 + cachedCellSize(&b, cntNew[i]); 8197 }else{ 8198 sz = 0; 8199 } 8200 } 8201 szNew[i+1] += sz; 8202 cntNew[i]--; 8203 } 8204 while( cntNew[i]<b.nCell ){ 8205 sz = 2 + cachedCellSize(&b, cntNew[i]); 8206 if( szNew[i]+sz>usableSpace ) break; 8207 szNew[i] += sz; 8208 cntNew[i]++; 8209 if( !leafData ){ 8210 if( cntNew[i]<b.nCell ){ 8211 sz = 2 + cachedCellSize(&b, cntNew[i]); 8212 }else{ 8213 sz = 0; 8214 } 8215 } 8216 szNew[i+1] -= sz; 8217 } 8218 if( cntNew[i]>=b.nCell ){ 8219 k = i+1; 8220 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ 8221 rc = SQLITE_CORRUPT_BKPT; 8222 goto balance_cleanup; 8223 } 8224 } 8225 8226 /* 8227 ** The packing computed by the previous block is biased toward the siblings 8228 ** on the left side (siblings with smaller keys). The left siblings are 8229 ** always nearly full, while the right-most sibling might be nearly empty. 8230 ** The next block of code attempts to adjust the packing of siblings to 8231 ** get a better balance. 8232 ** 8233 ** This adjustment is more than an optimization. The packing above might 8234 ** be so out of balance as to be illegal. For example, the right-most 8235 ** sibling might be completely empty. This adjustment is not optional. 8236 */ 8237 for(i=k-1; i>0; i--){ 8238 int szRight = szNew[i]; /* Size of sibling on the right */ 8239 int szLeft = szNew[i-1]; /* Size of sibling on the left */ 8240 int r; /* Index of right-most cell in left sibling */ 8241 int d; /* Index of first cell to the left of right sibling */ 8242 8243 r = cntNew[i-1] - 1; 8244 d = r + 1 - leafData; 8245 (void)cachedCellSize(&b, d); 8246 do{ 8247 assert( d<nMaxCells ); 8248 assert( r<nMaxCells ); 8249 (void)cachedCellSize(&b, r); 8250 if( szRight!=0 8251 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ 8252 break; 8253 } 8254 szRight += b.szCell[d] + 2; 8255 szLeft -= b.szCell[r] + 2; 8256 cntNew[i-1] = r; 8257 r--; 8258 d--; 8259 }while( r>=0 ); 8260 szNew[i] = szRight; 8261 szNew[i-1] = szLeft; 8262 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ 8263 rc = SQLITE_CORRUPT_BKPT; 8264 goto balance_cleanup; 8265 } 8266 } 8267 8268 /* Sanity check: For a non-corrupt database file one of the follwing 8269 ** must be true: 8270 ** (1) We found one or more cells (cntNew[0])>0), or 8271 ** (2) pPage is a virtual root page. A virtual root page is when 8272 ** the real root page is page 1 and we are the only child of 8273 ** that page. 8274 */ 8275 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); 8276 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", 8277 apOld[0]->pgno, apOld[0]->nCell, 8278 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, 8279 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 8280 )); 8281 8282 /* 8283 ** Allocate k new pages. Reuse old pages where possible. 8284 */ 8285 pageFlags = apOld[0]->aData[0]; 8286 for(i=0; i<k; i++){ 8287 MemPage *pNew; 8288 if( i<nOld ){ 8289 pNew = apNew[i] = apOld[i]; 8290 apOld[i] = 0; 8291 rc = sqlite3PagerWrite(pNew->pDbPage); 8292 nNew++; 8293 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv)) 8294 && rc==SQLITE_OK 8295 ){ 8296 rc = SQLITE_CORRUPT_BKPT; 8297 } 8298 if( rc ) goto balance_cleanup; 8299 }else{ 8300 assert( i>0 ); 8301 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); 8302 if( rc ) goto balance_cleanup; 8303 zeroPage(pNew, pageFlags); 8304 apNew[i] = pNew; 8305 nNew++; 8306 cntOld[i] = b.nCell; 8307 8308 /* Set the pointer-map entry for the new sibling page. */ 8309 if( ISAUTOVACUUM ){ 8310 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); 8311 if( rc!=SQLITE_OK ){ 8312 goto balance_cleanup; 8313 } 8314 } 8315 } 8316 } 8317 8318 /* 8319 ** Reassign page numbers so that the new pages are in ascending order. 8320 ** This helps to keep entries in the disk file in order so that a scan 8321 ** of the table is closer to a linear scan through the file. That in turn 8322 ** helps the operating system to deliver pages from the disk more rapidly. 8323 ** 8324 ** An O(n^2) insertion sort algorithm is used, but since n is never more 8325 ** than (NB+2) (a small constant), that should not be a problem. 8326 ** 8327 ** When NB==3, this one optimization makes the database about 25% faster 8328 ** for large insertions and deletions. 8329 */ 8330 for(i=0; i<nNew; i++){ 8331 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; 8332 aPgFlags[i] = apNew[i]->pDbPage->flags; 8333 for(j=0; j<i; j++){ 8334 if( NEVER(aPgno[j]==aPgno[i]) ){ 8335 /* This branch is taken if the set of sibling pages somehow contains 8336 ** duplicate entries. This can happen if the database is corrupt. 8337 ** It would be simpler to detect this as part of the loop below, but 8338 ** we do the detection here in order to avoid populating the pager 8339 ** cache with two separate objects associated with the same 8340 ** page number. */ 8341 assert( CORRUPT_DB ); 8342 rc = SQLITE_CORRUPT_BKPT; 8343 goto balance_cleanup; 8344 } 8345 } 8346 } 8347 for(i=0; i<nNew; i++){ 8348 int iBest = 0; /* aPgno[] index of page number to use */ 8349 for(j=1; j<nNew; j++){ 8350 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; 8351 } 8352 pgno = aPgOrder[iBest]; 8353 aPgOrder[iBest] = 0xffffffff; 8354 if( iBest!=i ){ 8355 if( iBest>i ){ 8356 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); 8357 } 8358 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); 8359 apNew[i]->pgno = pgno; 8360 } 8361 } 8362 8363 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " 8364 "%d(%d nc=%d) %d(%d nc=%d)\n", 8365 apNew[0]->pgno, szNew[0], cntNew[0], 8366 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, 8367 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, 8368 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, 8369 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, 8370 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, 8371 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, 8372 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, 8373 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 8374 )); 8375 8376 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8377 assert( nNew>=1 && nNew<=ArraySize(apNew) ); 8378 assert( apNew[nNew-1]!=0 ); 8379 put4byte(pRight, apNew[nNew-1]->pgno); 8380 8381 /* If the sibling pages are not leaves, ensure that the right-child pointer 8382 ** of the right-most new sibling page is set to the value that was 8383 ** originally in the same field of the right-most old sibling page. */ 8384 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ 8385 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; 8386 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); 8387 } 8388 8389 /* Make any required updates to pointer map entries associated with 8390 ** cells stored on sibling pages following the balance operation. Pointer 8391 ** map entries associated with divider cells are set by the insertCell() 8392 ** routine. The associated pointer map entries are: 8393 ** 8394 ** a) if the cell contains a reference to an overflow chain, the 8395 ** entry associated with the first page in the overflow chain, and 8396 ** 8397 ** b) if the sibling pages are not leaves, the child page associated 8398 ** with the cell. 8399 ** 8400 ** If the sibling pages are not leaves, then the pointer map entry 8401 ** associated with the right-child of each sibling may also need to be 8402 ** updated. This happens below, after the sibling pages have been 8403 ** populated, not here. 8404 */ 8405 if( ISAUTOVACUUM ){ 8406 MemPage *pOld; 8407 MemPage *pNew = pOld = apNew[0]; 8408 int cntOldNext = pNew->nCell + pNew->nOverflow; 8409 int iNew = 0; 8410 int iOld = 0; 8411 8412 for(i=0; i<b.nCell; i++){ 8413 u8 *pCell = b.apCell[i]; 8414 while( i==cntOldNext ){ 8415 iOld++; 8416 assert( iOld<nNew || iOld<nOld ); 8417 assert( iOld>=0 && iOld<NB ); 8418 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld]; 8419 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; 8420 } 8421 if( i==cntNew[iNew] ){ 8422 pNew = apNew[++iNew]; 8423 if( !leafData ) continue; 8424 } 8425 8426 /* Cell pCell is destined for new sibling page pNew. Originally, it 8427 ** was either part of sibling page iOld (possibly an overflow cell), 8428 ** or else the divider cell to the left of sibling page iOld. So, 8429 ** if sibling page iOld had the same page number as pNew, and if 8430 ** pCell really was a part of sibling page iOld (not a divider or 8431 ** overflow cell), we can skip updating the pointer map entries. */ 8432 if( iOld>=nNew 8433 || pNew->pgno!=aPgno[iOld] 8434 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd) 8435 ){ 8436 if( !leafCorrection ){ 8437 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); 8438 } 8439 if( cachedCellSize(&b,i)>pNew->minLocal ){ 8440 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc); 8441 } 8442 if( rc ) goto balance_cleanup; 8443 } 8444 } 8445 } 8446 8447 /* Insert new divider cells into pParent. */ 8448 for(i=0; i<nNew-1; i++){ 8449 u8 *pCell; 8450 u8 *pTemp; 8451 int sz; 8452 u8 *pSrcEnd; 8453 MemPage *pNew = apNew[i]; 8454 j = cntNew[i]; 8455 8456 assert( j<nMaxCells ); 8457 assert( b.apCell[j]!=0 ); 8458 pCell = b.apCell[j]; 8459 sz = b.szCell[j] + leafCorrection; 8460 pTemp = &aOvflSpace[iOvflSpace]; 8461 if( !pNew->leaf ){ 8462 memcpy(&pNew->aData[8], pCell, 4); 8463 }else if( leafData ){ 8464 /* If the tree is a leaf-data tree, and the siblings are leaves, 8465 ** then there is no divider cell in b.apCell[]. Instead, the divider 8466 ** cell consists of the integer key for the right-most cell of 8467 ** the sibling-page assembled above only. 8468 */ 8469 CellInfo info; 8470 j--; 8471 pNew->xParseCell(pNew, b.apCell[j], &info); 8472 pCell = pTemp; 8473 sz = 4 + putVarint(&pCell[4], info.nKey); 8474 pTemp = 0; 8475 }else{ 8476 pCell -= 4; 8477 /* Obscure case for non-leaf-data trees: If the cell at pCell was 8478 ** previously stored on a leaf node, and its reported size was 4 8479 ** bytes, then it may actually be smaller than this 8480 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of 8481 ** any cell). But it is important to pass the correct size to 8482 ** insertCell(), so reparse the cell now. 8483 ** 8484 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" 8485 ** and WITHOUT ROWID tables with exactly one column which is the 8486 ** primary key. 8487 */ 8488 if( b.szCell[j]==4 ){ 8489 assert(leafCorrection==4); 8490 sz = pParent->xCellSize(pParent, pCell); 8491 } 8492 } 8493 iOvflSpace += sz; 8494 assert( sz<=pBt->maxLocal+23 ); 8495 assert( iOvflSpace <= (int)pBt->pageSize ); 8496 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){} 8497 pSrcEnd = b.apEnd[k]; 8498 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){ 8499 rc = SQLITE_CORRUPT_BKPT; 8500 goto balance_cleanup; 8501 } 8502 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); 8503 if( rc!=SQLITE_OK ) goto balance_cleanup; 8504 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); 8505 } 8506 8507 /* Now update the actual sibling pages. The order in which they are updated 8508 ** is important, as this code needs to avoid disrupting any page from which 8509 ** cells may still to be read. In practice, this means: 8510 ** 8511 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) 8512 ** then it is not safe to update page apNew[iPg] until after 8513 ** the left-hand sibling apNew[iPg-1] has been updated. 8514 ** 8515 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) 8516 ** then it is not safe to update page apNew[iPg] until after 8517 ** the right-hand sibling apNew[iPg+1] has been updated. 8518 ** 8519 ** If neither of the above apply, the page is safe to update. 8520 ** 8521 ** The iPg value in the following loop starts at nNew-1 goes down 8522 ** to 0, then back up to nNew-1 again, thus making two passes over 8523 ** the pages. On the initial downward pass, only condition (1) above 8524 ** needs to be tested because (2) will always be true from the previous 8525 ** step. On the upward pass, both conditions are always true, so the 8526 ** upwards pass simply processes pages that were missed on the downward 8527 ** pass. 8528 */ 8529 for(i=1-nNew; i<nNew; i++){ 8530 int iPg = i<0 ? -i : i; 8531 assert( iPg>=0 && iPg<nNew ); 8532 if( abDone[iPg] ) continue; /* Skip pages already processed */ 8533 if( i>=0 /* On the upwards pass, or... */ 8534 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ 8535 ){ 8536 int iNew; 8537 int iOld; 8538 int nNewCell; 8539 8540 /* Verify condition (1): If cells are moving left, update iPg 8541 ** only after iPg-1 has already been updated. */ 8542 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); 8543 8544 /* Verify condition (2): If cells are moving right, update iPg 8545 ** only after iPg+1 has already been updated. */ 8546 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); 8547 8548 if( iPg==0 ){ 8549 iNew = iOld = 0; 8550 nNewCell = cntNew[0]; 8551 }else{ 8552 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; 8553 iNew = cntNew[iPg-1] + !leafData; 8554 nNewCell = cntNew[iPg] - iNew; 8555 } 8556 8557 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); 8558 if( rc ) goto balance_cleanup; 8559 abDone[iPg]++; 8560 apNew[iPg]->nFree = usableSpace-szNew[iPg]; 8561 assert( apNew[iPg]->nOverflow==0 ); 8562 assert( apNew[iPg]->nCell==nNewCell ); 8563 } 8564 } 8565 8566 /* All pages have been processed exactly once */ 8567 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); 8568 8569 assert( nOld>0 ); 8570 assert( nNew>0 ); 8571 8572 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ 8573 /* The root page of the b-tree now contains no cells. The only sibling 8574 ** page is the right-child of the parent. Copy the contents of the 8575 ** child page into the parent, decreasing the overall height of the 8576 ** b-tree structure by one. This is described as the "balance-shallower" 8577 ** sub-algorithm in some documentation. 8578 ** 8579 ** If this is an auto-vacuum database, the call to copyNodeContent() 8580 ** sets all pointer-map entries corresponding to database image pages 8581 ** for which the pointer is stored within the content being copied. 8582 ** 8583 ** It is critical that the child page be defragmented before being 8584 ** copied into the parent, because if the parent is page 1 then it will 8585 ** by smaller than the child due to the database header, and so all the 8586 ** free space needs to be up front. 8587 */ 8588 assert( nNew==1 || CORRUPT_DB ); 8589 rc = defragmentPage(apNew[0], -1); 8590 testcase( rc!=SQLITE_OK ); 8591 assert( apNew[0]->nFree == 8592 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset 8593 - apNew[0]->nCell*2) 8594 || rc!=SQLITE_OK 8595 ); 8596 copyNodeContent(apNew[0], pParent, &rc); 8597 freePage(apNew[0], &rc); 8598 }else if( ISAUTOVACUUM && !leafCorrection ){ 8599 /* Fix the pointer map entries associated with the right-child of each 8600 ** sibling page. All other pointer map entries have already been taken 8601 ** care of. */ 8602 for(i=0; i<nNew; i++){ 8603 u32 key = get4byte(&apNew[i]->aData[8]); 8604 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); 8605 } 8606 } 8607 8608 assert( pParent->isInit ); 8609 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", 8610 nOld, nNew, b.nCell)); 8611 8612 /* Free any old pages that were not reused as new pages. 8613 */ 8614 for(i=nNew; i<nOld; i++){ 8615 freePage(apOld[i], &rc); 8616 } 8617 8618 #if 0 8619 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ 8620 /* The ptrmapCheckPages() contains assert() statements that verify that 8621 ** all pointer map pages are set correctly. This is helpful while 8622 ** debugging. This is usually disabled because a corrupt database may 8623 ** cause an assert() statement to fail. */ 8624 ptrmapCheckPages(apNew, nNew); 8625 ptrmapCheckPages(&pParent, 1); 8626 } 8627 #endif 8628 8629 /* 8630 ** Cleanup before returning. 8631 */ 8632 balance_cleanup: 8633 sqlite3StackFree(0, b.apCell); 8634 for(i=0; i<nOld; i++){ 8635 releasePage(apOld[i]); 8636 } 8637 for(i=0; i<nNew; i++){ 8638 releasePage(apNew[i]); 8639 } 8640 8641 return rc; 8642 } 8643 8644 8645 /* 8646 ** This function is called when the root page of a b-tree structure is 8647 ** overfull (has one or more overflow pages). 8648 ** 8649 ** A new child page is allocated and the contents of the current root 8650 ** page, including overflow cells, are copied into the child. The root 8651 ** page is then overwritten to make it an empty page with the right-child 8652 ** pointer pointing to the new page. 8653 ** 8654 ** Before returning, all pointer-map entries corresponding to pages 8655 ** that the new child-page now contains pointers to are updated. The 8656 ** entry corresponding to the new right-child pointer of the root 8657 ** page is also updated. 8658 ** 8659 ** If successful, *ppChild is set to contain a reference to the child 8660 ** page and SQLITE_OK is returned. In this case the caller is required 8661 ** to call releasePage() on *ppChild exactly once. If an error occurs, 8662 ** an error code is returned and *ppChild is set to 0. 8663 */ 8664 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ 8665 int rc; /* Return value from subprocedures */ 8666 MemPage *pChild = 0; /* Pointer to a new child page */ 8667 Pgno pgnoChild = 0; /* Page number of the new child page */ 8668 BtShared *pBt = pRoot->pBt; /* The BTree */ 8669 8670 assert( pRoot->nOverflow>0 ); 8671 assert( sqlite3_mutex_held(pBt->mutex) ); 8672 8673 /* Make pRoot, the root page of the b-tree, writable. Allocate a new 8674 ** page that will become the new right-child of pPage. Copy the contents 8675 ** of the node stored on pRoot into the new child page. 8676 */ 8677 rc = sqlite3PagerWrite(pRoot->pDbPage); 8678 if( rc==SQLITE_OK ){ 8679 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); 8680 copyNodeContent(pRoot, pChild, &rc); 8681 if( ISAUTOVACUUM ){ 8682 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); 8683 } 8684 } 8685 if( rc ){ 8686 *ppChild = 0; 8687 releasePage(pChild); 8688 return rc; 8689 } 8690 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); 8691 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 8692 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB ); 8693 8694 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); 8695 8696 /* Copy the overflow cells from pRoot to pChild */ 8697 memcpy(pChild->aiOvfl, pRoot->aiOvfl, 8698 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); 8699 memcpy(pChild->apOvfl, pRoot->apOvfl, 8700 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); 8701 pChild->nOverflow = pRoot->nOverflow; 8702 8703 /* Zero the contents of pRoot. Then install pChild as the right-child. */ 8704 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); 8705 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); 8706 8707 *ppChild = pChild; 8708 return SQLITE_OK; 8709 } 8710 8711 /* 8712 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid 8713 ** on the same B-tree as pCur. 8714 ** 8715 ** This can occur if a database is corrupt with two or more SQL tables 8716 ** pointing to the same b-tree. If an insert occurs on one SQL table 8717 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL 8718 ** table linked to the same b-tree. If the secondary insert causes a 8719 ** rebalance, that can change content out from under the cursor on the 8720 ** first SQL table, violating invariants on the first insert. 8721 */ 8722 static int anotherValidCursor(BtCursor *pCur){ 8723 BtCursor *pOther; 8724 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){ 8725 if( pOther!=pCur 8726 && pOther->eState==CURSOR_VALID 8727 && pOther->pPage==pCur->pPage 8728 ){ 8729 return SQLITE_CORRUPT_BKPT; 8730 } 8731 } 8732 return SQLITE_OK; 8733 } 8734 8735 /* 8736 ** The page that pCur currently points to has just been modified in 8737 ** some way. This function figures out if this modification means the 8738 ** tree needs to be balanced, and if so calls the appropriate balancing 8739 ** routine. Balancing routines are: 8740 ** 8741 ** balance_quick() 8742 ** balance_deeper() 8743 ** balance_nonroot() 8744 */ 8745 static int balance(BtCursor *pCur){ 8746 int rc = SQLITE_OK; 8747 u8 aBalanceQuickSpace[13]; 8748 u8 *pFree = 0; 8749 8750 VVA_ONLY( int balance_quick_called = 0 ); 8751 VVA_ONLY( int balance_deeper_called = 0 ); 8752 8753 do { 8754 int iPage; 8755 MemPage *pPage = pCur->pPage; 8756 8757 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break; 8758 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 8759 /* No rebalance required as long as: 8760 ** (1) There are no overflow cells 8761 ** (2) The amount of free space on the page is less than 2/3rds of 8762 ** the total usable space on the page. */ 8763 break; 8764 }else if( (iPage = pCur->iPage)==0 ){ 8765 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){ 8766 /* The root page of the b-tree is overfull. In this case call the 8767 ** balance_deeper() function to create a new child for the root-page 8768 ** and copy the current contents of the root-page to it. The 8769 ** next iteration of the do-loop will balance the child page. 8770 */ 8771 assert( balance_deeper_called==0 ); 8772 VVA_ONLY( balance_deeper_called++ ); 8773 rc = balance_deeper(pPage, &pCur->apPage[1]); 8774 if( rc==SQLITE_OK ){ 8775 pCur->iPage = 1; 8776 pCur->ix = 0; 8777 pCur->aiIdx[0] = 0; 8778 pCur->apPage[0] = pPage; 8779 pCur->pPage = pCur->apPage[1]; 8780 assert( pCur->pPage->nOverflow ); 8781 } 8782 }else{ 8783 break; 8784 } 8785 }else{ 8786 MemPage * const pParent = pCur->apPage[iPage-1]; 8787 int const iIdx = pCur->aiIdx[iPage-1]; 8788 8789 rc = sqlite3PagerWrite(pParent->pDbPage); 8790 if( rc==SQLITE_OK && pParent->nFree<0 ){ 8791 rc = btreeComputeFreeSpace(pParent); 8792 } 8793 if( rc==SQLITE_OK ){ 8794 #ifndef SQLITE_OMIT_QUICKBALANCE 8795 if( pPage->intKeyLeaf 8796 && pPage->nOverflow==1 8797 && pPage->aiOvfl[0]==pPage->nCell 8798 && pParent->pgno!=1 8799 && pParent->nCell==iIdx 8800 ){ 8801 /* Call balance_quick() to create a new sibling of pPage on which 8802 ** to store the overflow cell. balance_quick() inserts a new cell 8803 ** into pParent, which may cause pParent overflow. If this 8804 ** happens, the next iteration of the do-loop will balance pParent 8805 ** use either balance_nonroot() or balance_deeper(). Until this 8806 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] 8807 ** buffer. 8808 ** 8809 ** The purpose of the following assert() is to check that only a 8810 ** single call to balance_quick() is made for each call to this 8811 ** function. If this were not verified, a subtle bug involving reuse 8812 ** of the aBalanceQuickSpace[] might sneak in. 8813 */ 8814 assert( balance_quick_called==0 ); 8815 VVA_ONLY( balance_quick_called++ ); 8816 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); 8817 }else 8818 #endif 8819 { 8820 /* In this case, call balance_nonroot() to redistribute cells 8821 ** between pPage and up to 2 of its sibling pages. This involves 8822 ** modifying the contents of pParent, which may cause pParent to 8823 ** become overfull or underfull. The next iteration of the do-loop 8824 ** will balance the parent page to correct this. 8825 ** 8826 ** If the parent page becomes overfull, the overflow cell or cells 8827 ** are stored in the pSpace buffer allocated immediately below. 8828 ** A subsequent iteration of the do-loop will deal with this by 8829 ** calling balance_nonroot() (balance_deeper() may be called first, 8830 ** but it doesn't deal with overflow cells - just moves them to a 8831 ** different page). Once this subsequent call to balance_nonroot() 8832 ** has completed, it is safe to release the pSpace buffer used by 8833 ** the previous call, as the overflow cell data will have been 8834 ** copied either into the body of a database page or into the new 8835 ** pSpace buffer passed to the latter call to balance_nonroot(). 8836 */ 8837 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); 8838 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, 8839 pCur->hints&BTREE_BULKLOAD); 8840 if( pFree ){ 8841 /* If pFree is not NULL, it points to the pSpace buffer used 8842 ** by a previous call to balance_nonroot(). Its contents are 8843 ** now stored either on real database pages or within the 8844 ** new pSpace buffer, so it may be safely freed here. */ 8845 sqlite3PageFree(pFree); 8846 } 8847 8848 /* The pSpace buffer will be freed after the next call to 8849 ** balance_nonroot(), or just before this function returns, whichever 8850 ** comes first. */ 8851 pFree = pSpace; 8852 } 8853 } 8854 8855 pPage->nOverflow = 0; 8856 8857 /* The next iteration of the do-loop balances the parent page. */ 8858 releasePage(pPage); 8859 pCur->iPage--; 8860 assert( pCur->iPage>=0 ); 8861 pCur->pPage = pCur->apPage[pCur->iPage]; 8862 } 8863 }while( rc==SQLITE_OK ); 8864 8865 if( pFree ){ 8866 sqlite3PageFree(pFree); 8867 } 8868 return rc; 8869 } 8870 8871 /* Overwrite content from pX into pDest. Only do the write if the 8872 ** content is different from what is already there. 8873 */ 8874 static int btreeOverwriteContent( 8875 MemPage *pPage, /* MemPage on which writing will occur */ 8876 u8 *pDest, /* Pointer to the place to start writing */ 8877 const BtreePayload *pX, /* Source of data to write */ 8878 int iOffset, /* Offset of first byte to write */ 8879 int iAmt /* Number of bytes to be written */ 8880 ){ 8881 int nData = pX->nData - iOffset; 8882 if( nData<=0 ){ 8883 /* Overwritting with zeros */ 8884 int i; 8885 for(i=0; i<iAmt && pDest[i]==0; i++){} 8886 if( i<iAmt ){ 8887 int rc = sqlite3PagerWrite(pPage->pDbPage); 8888 if( rc ) return rc; 8889 memset(pDest + i, 0, iAmt - i); 8890 } 8891 }else{ 8892 if( nData<iAmt ){ 8893 /* Mixed read data and zeros at the end. Make a recursive call 8894 ** to write the zeros then fall through to write the real data */ 8895 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData, 8896 iAmt-nData); 8897 if( rc ) return rc; 8898 iAmt = nData; 8899 } 8900 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){ 8901 int rc = sqlite3PagerWrite(pPage->pDbPage); 8902 if( rc ) return rc; 8903 /* In a corrupt database, it is possible for the source and destination 8904 ** buffers to overlap. This is harmless since the database is already 8905 ** corrupt but it does cause valgrind and ASAN warnings. So use 8906 ** memmove(). */ 8907 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt); 8908 } 8909 } 8910 return SQLITE_OK; 8911 } 8912 8913 /* 8914 ** Overwrite the cell that cursor pCur is pointing to with fresh content 8915 ** contained in pX. 8916 */ 8917 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){ 8918 int iOffset; /* Next byte of pX->pData to write */ 8919 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */ 8920 int rc; /* Return code */ 8921 MemPage *pPage = pCur->pPage; /* Page being written */ 8922 BtShared *pBt; /* Btree */ 8923 Pgno ovflPgno; /* Next overflow page to write */ 8924 u32 ovflPageSize; /* Size to write on overflow page */ 8925 8926 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd 8927 || pCur->info.pPayload < pPage->aData + pPage->cellOffset 8928 ){ 8929 return SQLITE_CORRUPT_BKPT; 8930 } 8931 /* Overwrite the local portion first */ 8932 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX, 8933 0, pCur->info.nLocal); 8934 if( rc ) return rc; 8935 if( pCur->info.nLocal==nTotal ) return SQLITE_OK; 8936 8937 /* Now overwrite the overflow pages */ 8938 iOffset = pCur->info.nLocal; 8939 assert( nTotal>=0 ); 8940 assert( iOffset>=0 ); 8941 ovflPgno = get4byte(pCur->info.pPayload + iOffset); 8942 pBt = pPage->pBt; 8943 ovflPageSize = pBt->usableSize - 4; 8944 do{ 8945 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0); 8946 if( rc ) return rc; 8947 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){ 8948 rc = SQLITE_CORRUPT_BKPT; 8949 }else{ 8950 if( iOffset+ovflPageSize<(u32)nTotal ){ 8951 ovflPgno = get4byte(pPage->aData); 8952 }else{ 8953 ovflPageSize = nTotal - iOffset; 8954 } 8955 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX, 8956 iOffset, ovflPageSize); 8957 } 8958 sqlite3PagerUnref(pPage->pDbPage); 8959 if( rc ) return rc; 8960 iOffset += ovflPageSize; 8961 }while( iOffset<nTotal ); 8962 return SQLITE_OK; 8963 } 8964 8965 8966 /* 8967 ** Insert a new record into the BTree. The content of the new record 8968 ** is described by the pX object. The pCur cursor is used only to 8969 ** define what table the record should be inserted into, and is left 8970 ** pointing at a random location. 8971 ** 8972 ** For a table btree (used for rowid tables), only the pX.nKey value of 8973 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the 8974 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields 8975 ** hold the content of the row. 8976 ** 8977 ** For an index btree (used for indexes and WITHOUT ROWID tables), the 8978 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The 8979 ** pX.pData,nData,nZero fields must be zero. 8980 ** 8981 ** If the seekResult parameter is non-zero, then a successful call to 8982 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already 8983 ** been performed. In other words, if seekResult!=0 then the cursor 8984 ** is currently pointing to a cell that will be adjacent to the cell 8985 ** to be inserted. If seekResult<0 then pCur points to a cell that is 8986 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell 8987 ** that is larger than (pKey,nKey). 8988 ** 8989 ** If seekResult==0, that means pCur is pointing at some unknown location. 8990 ** In that case, this routine must seek the cursor to the correct insertion 8991 ** point for (pKey,nKey) before doing the insertion. For index btrees, 8992 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked 8993 ** key values and pX->aMem can be used instead of pX->pKey to avoid having 8994 ** to decode the key. 8995 */ 8996 int sqlite3BtreeInsert( 8997 BtCursor *pCur, /* Insert data into the table of this cursor */ 8998 const BtreePayload *pX, /* Content of the row to be inserted */ 8999 int flags, /* True if this is likely an append */ 9000 int seekResult /* Result of prior IndexMoveto() call */ 9001 ){ 9002 int rc; 9003 int loc = seekResult; /* -1: before desired location +1: after */ 9004 int szNew = 0; 9005 int idx; 9006 MemPage *pPage; 9007 Btree *p = pCur->pBtree; 9008 BtShared *pBt = p->pBt; 9009 unsigned char *oldCell; 9010 unsigned char *newCell = 0; 9011 9012 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags ); 9013 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 ); 9014 9015 /* Save the positions of any other cursors open on this table. 9016 ** 9017 ** In some cases, the call to btreeMoveto() below is a no-op. For 9018 ** example, when inserting data into a table with auto-generated integer 9019 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 9020 ** integer key to use. It then calls this function to actually insert the 9021 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes 9022 ** that the cursor is already where it needs to be and returns without 9023 ** doing any work. To avoid thwarting these optimizations, it is important 9024 ** not to clear the cursor here. 9025 */ 9026 if( pCur->curFlags & BTCF_Multiple ){ 9027 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9028 if( rc ) return rc; 9029 if( loc && pCur->iPage<0 ){ 9030 /* This can only happen if the schema is corrupt such that there is more 9031 ** than one table or index with the same root page as used by the cursor. 9032 ** Which can only happen if the SQLITE_NoSchemaError flag was set when 9033 ** the schema was loaded. This cannot be asserted though, as a user might 9034 ** set the flag, load the schema, and then unset the flag. */ 9035 return SQLITE_CORRUPT_BKPT; 9036 } 9037 } 9038 9039 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it 9040 ** points to a valid cell. 9041 */ 9042 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9043 testcase( pCur->eState==CURSOR_REQUIRESEEK ); 9044 testcase( pCur->eState==CURSOR_FAULT ); 9045 rc = moveToRoot(pCur); 9046 if( rc && rc!=SQLITE_EMPTY ) return rc; 9047 } 9048 9049 assert( cursorOwnsBtShared(pCur) ); 9050 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 9051 && pBt->inTransaction==TRANS_WRITE 9052 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9053 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9054 9055 /* Assert that the caller has been consistent. If this cursor was opened 9056 ** expecting an index b-tree, then the caller should be inserting blob 9057 ** keys with no associated data. If the cursor was opened expecting an 9058 ** intkey table, the caller should be inserting integer keys with a 9059 ** blob of associated data. */ 9060 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) ); 9061 9062 if( pCur->pKeyInfo==0 ){ 9063 assert( pX->pKey==0 ); 9064 /* If this is an insert into a table b-tree, invalidate any incrblob 9065 ** cursors open on the row being replaced */ 9066 if( p->hasIncrblobCur ){ 9067 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0); 9068 } 9069 9070 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9071 ** to a row with the same key as the new entry being inserted. 9072 */ 9073 #ifdef SQLITE_DEBUG 9074 if( flags & BTREE_SAVEPOSITION ){ 9075 assert( pCur->curFlags & BTCF_ValidNKey ); 9076 assert( pX->nKey==pCur->info.nKey ); 9077 assert( loc==0 ); 9078 } 9079 #endif 9080 9081 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply 9082 ** that the cursor is not pointing to a row to be overwritten. 9083 ** So do a complete check. 9084 */ 9085 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ 9086 /* The cursor is pointing to the entry that is to be 9087 ** overwritten */ 9088 assert( pX->nData>=0 && pX->nZero>=0 ); 9089 if( pCur->info.nSize!=0 9090 && pCur->info.nPayload==(u32)pX->nData+pX->nZero 9091 ){ 9092 /* New entry is the same size as the old. Do an overwrite */ 9093 return btreeOverwriteCell(pCur, pX); 9094 } 9095 assert( loc==0 ); 9096 }else if( loc==0 ){ 9097 /* The cursor is *not* pointing to the cell to be overwritten, nor 9098 ** to an adjacent cell. Move the cursor so that it is pointing either 9099 ** to the cell to be overwritten or an adjacent cell. 9100 */ 9101 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey, 9102 (flags & BTREE_APPEND)!=0, &loc); 9103 if( rc ) return rc; 9104 } 9105 }else{ 9106 /* This is an index or a WITHOUT ROWID table */ 9107 9108 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 9109 ** to a row with the same key as the new entry being inserted. 9110 */ 9111 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 ); 9112 9113 /* If the cursor is not already pointing either to the cell to be 9114 ** overwritten, or if a new cell is being inserted, if the cursor is 9115 ** not pointing to an immediately adjacent cell, then move the cursor 9116 ** so that it does. 9117 */ 9118 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ 9119 if( pX->nMem ){ 9120 UnpackedRecord r; 9121 r.pKeyInfo = pCur->pKeyInfo; 9122 r.aMem = pX->aMem; 9123 r.nField = pX->nMem; 9124 r.default_rc = 0; 9125 r.eqSeen = 0; 9126 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc); 9127 }else{ 9128 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, 9129 (flags & BTREE_APPEND)!=0, &loc); 9130 } 9131 if( rc ) return rc; 9132 } 9133 9134 /* If the cursor is currently pointing to an entry to be overwritten 9135 ** and the new content is the same as as the old, then use the 9136 ** overwrite optimization. 9137 */ 9138 if( loc==0 ){ 9139 getCellInfo(pCur); 9140 if( pCur->info.nKey==pX->nKey ){ 9141 BtreePayload x2; 9142 x2.pData = pX->pKey; 9143 x2.nData = pX->nKey; 9144 x2.nZero = 0; 9145 return btreeOverwriteCell(pCur, &x2); 9146 } 9147 } 9148 } 9149 assert( pCur->eState==CURSOR_VALID 9150 || (pCur->eState==CURSOR_INVALID && loc) ); 9151 9152 pPage = pCur->pPage; 9153 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) ); 9154 assert( pPage->leaf || !pPage->intKey ); 9155 if( pPage->nFree<0 ){ 9156 if( NEVER(pCur->eState>CURSOR_INVALID) ){ 9157 /* ^^^^^--- due to the moveToRoot() call above */ 9158 rc = SQLITE_CORRUPT_BKPT; 9159 }else{ 9160 rc = btreeComputeFreeSpace(pPage); 9161 } 9162 if( rc ) return rc; 9163 } 9164 9165 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", 9166 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, 9167 loc==0 ? "overwrite" : "new entry")); 9168 assert( pPage->isInit || CORRUPT_DB ); 9169 newCell = pBt->pTmpSpace; 9170 assert( newCell!=0 ); 9171 if( flags & BTREE_PREFORMAT ){ 9172 rc = SQLITE_OK; 9173 szNew = pBt->nPreformatSize; 9174 if( szNew<4 ) szNew = 4; 9175 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){ 9176 CellInfo info; 9177 pPage->xParseCell(pPage, newCell, &info); 9178 if( info.nPayload!=info.nLocal ){ 9179 Pgno ovfl = get4byte(&newCell[szNew-4]); 9180 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc); 9181 } 9182 } 9183 }else{ 9184 rc = fillInCell(pPage, newCell, pX, &szNew); 9185 } 9186 if( rc ) goto end_insert; 9187 assert( szNew==pPage->xCellSize(pPage, newCell) ); 9188 assert( szNew <= MX_CELL_SIZE(pBt) ); 9189 idx = pCur->ix; 9190 if( loc==0 ){ 9191 CellInfo info; 9192 assert( idx>=0 ); 9193 if( idx>=pPage->nCell ){ 9194 return SQLITE_CORRUPT_BKPT; 9195 } 9196 rc = sqlite3PagerWrite(pPage->pDbPage); 9197 if( rc ){ 9198 goto end_insert; 9199 } 9200 oldCell = findCell(pPage, idx); 9201 if( !pPage->leaf ){ 9202 memcpy(newCell, oldCell, 4); 9203 } 9204 BTREE_CLEAR_CELL(rc, pPage, oldCell, info); 9205 testcase( pCur->curFlags & BTCF_ValidOvfl ); 9206 invalidateOverflowCache(pCur); 9207 if( info.nSize==szNew && info.nLocal==info.nPayload 9208 && (!ISAUTOVACUUM || szNew<pPage->minLocal) 9209 ){ 9210 /* Overwrite the old cell with the new if they are the same size. 9211 ** We could also try to do this if the old cell is smaller, then add 9212 ** the leftover space to the free list. But experiments show that 9213 ** doing that is no faster then skipping this optimization and just 9214 ** calling dropCell() and insertCell(). 9215 ** 9216 ** This optimization cannot be used on an autovacuum database if the 9217 ** new entry uses overflow pages, as the insertCell() call below is 9218 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */ 9219 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ 9220 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){ 9221 return SQLITE_CORRUPT_BKPT; 9222 } 9223 if( oldCell+szNew > pPage->aDataEnd ){ 9224 return SQLITE_CORRUPT_BKPT; 9225 } 9226 memcpy(oldCell, newCell, szNew); 9227 return SQLITE_OK; 9228 } 9229 dropCell(pPage, idx, info.nSize, &rc); 9230 if( rc ) goto end_insert; 9231 }else if( loc<0 && pPage->nCell>0 ){ 9232 assert( pPage->leaf ); 9233 idx = ++pCur->ix; 9234 pCur->curFlags &= ~BTCF_ValidNKey; 9235 }else{ 9236 assert( pPage->leaf ); 9237 } 9238 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); 9239 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); 9240 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); 9241 9242 /* If no error has occurred and pPage has an overflow cell, call balance() 9243 ** to redistribute the cells within the tree. Since balance() may move 9244 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey 9245 ** variables. 9246 ** 9247 ** Previous versions of SQLite called moveToRoot() to move the cursor 9248 ** back to the root page as balance() used to invalidate the contents 9249 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, 9250 ** set the cursor state to "invalid". This makes common insert operations 9251 ** slightly faster. 9252 ** 9253 ** There is a subtle but important optimization here too. When inserting 9254 ** multiple records into an intkey b-tree using a single cursor (as can 9255 ** happen while processing an "INSERT INTO ... SELECT" statement), it 9256 ** is advantageous to leave the cursor pointing to the last entry in 9257 ** the b-tree if possible. If the cursor is left pointing to the last 9258 ** entry in the table, and the next row inserted has an integer key 9259 ** larger than the largest existing key, it is possible to insert the 9260 ** row without seeking the cursor. This can be a big performance boost. 9261 */ 9262 pCur->info.nSize = 0; 9263 if( pPage->nOverflow ){ 9264 assert( rc==SQLITE_OK ); 9265 pCur->curFlags &= ~(BTCF_ValidNKey); 9266 rc = balance(pCur); 9267 9268 /* Must make sure nOverflow is reset to zero even if the balance() 9269 ** fails. Internal data structure corruption will result otherwise. 9270 ** Also, set the cursor state to invalid. This stops saveCursorPosition() 9271 ** from trying to save the current position of the cursor. */ 9272 pCur->pPage->nOverflow = 0; 9273 pCur->eState = CURSOR_INVALID; 9274 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ 9275 btreeReleaseAllCursorPages(pCur); 9276 if( pCur->pKeyInfo ){ 9277 assert( pCur->pKey==0 ); 9278 pCur->pKey = sqlite3Malloc( pX->nKey ); 9279 if( pCur->pKey==0 ){ 9280 rc = SQLITE_NOMEM; 9281 }else{ 9282 memcpy(pCur->pKey, pX->pKey, pX->nKey); 9283 } 9284 } 9285 pCur->eState = CURSOR_REQUIRESEEK; 9286 pCur->nKey = pX->nKey; 9287 } 9288 } 9289 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 ); 9290 9291 end_insert: 9292 return rc; 9293 } 9294 9295 /* 9296 ** This function is used as part of copying the current row from cursor 9297 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then 9298 ** parameter iKey is used as the rowid value when the record is copied 9299 ** into pDest. Otherwise, the record is copied verbatim. 9300 ** 9301 ** This function does not actually write the new value to cursor pDest. 9302 ** Instead, it creates and populates any required overflow pages and 9303 ** writes the data for the new cell into the BtShared.pTmpSpace buffer 9304 ** for the destination database. The size of the cell, in bytes, is left 9305 ** in BtShared.nPreformatSize. The caller completes the insertion by 9306 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified. 9307 ** 9308 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 9309 */ 9310 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){ 9311 int rc = SQLITE_OK; 9312 BtShared *pBt = pDest->pBt; 9313 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */ 9314 const u8 *aIn; /* Pointer to next input buffer */ 9315 u32 nIn; /* Size of input buffer aIn[] */ 9316 u32 nRem; /* Bytes of data still to copy */ 9317 9318 getCellInfo(pSrc); 9319 if( pSrc->info.nPayload<0x80 ){ 9320 *(aOut++) = pSrc->info.nPayload; 9321 }else{ 9322 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload); 9323 } 9324 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey); 9325 nIn = pSrc->info.nLocal; 9326 aIn = pSrc->info.pPayload; 9327 if( aIn+nIn>pSrc->pPage->aDataEnd ){ 9328 return SQLITE_CORRUPT_BKPT; 9329 } 9330 nRem = pSrc->info.nPayload; 9331 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){ 9332 memcpy(aOut, aIn, nIn); 9333 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace); 9334 }else{ 9335 Pager *pSrcPager = pSrc->pBt->pPager; 9336 u8 *pPgnoOut = 0; 9337 Pgno ovflIn = 0; 9338 DbPage *pPageIn = 0; 9339 MemPage *pPageOut = 0; 9340 u32 nOut; /* Size of output buffer aOut[] */ 9341 9342 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload); 9343 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace); 9344 if( nOut<pSrc->info.nPayload ){ 9345 pPgnoOut = &aOut[nOut]; 9346 pBt->nPreformatSize += 4; 9347 } 9348 9349 if( nRem>nIn ){ 9350 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){ 9351 return SQLITE_CORRUPT_BKPT; 9352 } 9353 ovflIn = get4byte(&pSrc->info.pPayload[nIn]); 9354 } 9355 9356 do { 9357 nRem -= nOut; 9358 do{ 9359 assert( nOut>0 ); 9360 if( nIn>0 ){ 9361 int nCopy = MIN(nOut, nIn); 9362 memcpy(aOut, aIn, nCopy); 9363 nOut -= nCopy; 9364 nIn -= nCopy; 9365 aOut += nCopy; 9366 aIn += nCopy; 9367 } 9368 if( nOut>0 ){ 9369 sqlite3PagerUnref(pPageIn); 9370 pPageIn = 0; 9371 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY); 9372 if( rc==SQLITE_OK ){ 9373 aIn = (const u8*)sqlite3PagerGetData(pPageIn); 9374 ovflIn = get4byte(aIn); 9375 aIn += 4; 9376 nIn = pSrc->pBt->usableSize - 4; 9377 } 9378 } 9379 }while( rc==SQLITE_OK && nOut>0 ); 9380 9381 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){ 9382 Pgno pgnoNew; 9383 MemPage *pNew = 0; 9384 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); 9385 put4byte(pPgnoOut, pgnoNew); 9386 if( ISAUTOVACUUM && pPageOut ){ 9387 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc); 9388 } 9389 releasePage(pPageOut); 9390 pPageOut = pNew; 9391 if( pPageOut ){ 9392 pPgnoOut = pPageOut->aData; 9393 put4byte(pPgnoOut, 0); 9394 aOut = &pPgnoOut[4]; 9395 nOut = MIN(pBt->usableSize - 4, nRem); 9396 } 9397 } 9398 }while( nRem>0 && rc==SQLITE_OK ); 9399 9400 releasePage(pPageOut); 9401 sqlite3PagerUnref(pPageIn); 9402 } 9403 9404 return rc; 9405 } 9406 9407 /* 9408 ** Delete the entry that the cursor is pointing to. 9409 ** 9410 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then 9411 ** the cursor is left pointing at an arbitrary location after the delete. 9412 ** But if that bit is set, then the cursor is left in a state such that 9413 ** the next call to BtreeNext() or BtreePrev() moves it to the same row 9414 ** as it would have been on if the call to BtreeDelete() had been omitted. 9415 ** 9416 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes 9417 ** associated with a single table entry and its indexes. Only one of those 9418 ** deletes is considered the "primary" delete. The primary delete occurs 9419 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete 9420 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. 9421 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, 9422 ** but which might be used by alternative storage engines. 9423 */ 9424 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ 9425 Btree *p = pCur->pBtree; 9426 BtShared *pBt = p->pBt; 9427 int rc; /* Return code */ 9428 MemPage *pPage; /* Page to delete cell from */ 9429 unsigned char *pCell; /* Pointer to cell to delete */ 9430 int iCellIdx; /* Index of cell to delete */ 9431 int iCellDepth; /* Depth of node containing pCell */ 9432 CellInfo info; /* Size of the cell being deleted */ 9433 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */ 9434 9435 assert( cursorOwnsBtShared(pCur) ); 9436 assert( pBt->inTransaction==TRANS_WRITE ); 9437 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9438 assert( pCur->curFlags & BTCF_WriteFlag ); 9439 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); 9440 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); 9441 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); 9442 if( pCur->eState!=CURSOR_VALID ){ 9443 if( pCur->eState>=CURSOR_REQUIRESEEK ){ 9444 rc = btreeRestoreCursorPosition(pCur); 9445 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID ); 9446 if( rc || pCur->eState!=CURSOR_VALID ) return rc; 9447 }else{ 9448 return SQLITE_CORRUPT_BKPT; 9449 } 9450 } 9451 assert( pCur->eState==CURSOR_VALID ); 9452 9453 iCellDepth = pCur->iPage; 9454 iCellIdx = pCur->ix; 9455 pPage = pCur->pPage; 9456 if( pPage->nCell<=iCellIdx ){ 9457 return SQLITE_CORRUPT_BKPT; 9458 } 9459 pCell = findCell(pPage, iCellIdx); 9460 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){ 9461 return SQLITE_CORRUPT_BKPT; 9462 } 9463 9464 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must 9465 ** be preserved following this delete operation. If the current delete 9466 ** will cause a b-tree rebalance, then this is done by saving the cursor 9467 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 9468 ** returning. 9469 ** 9470 ** If the current delete will not cause a rebalance, then the cursor 9471 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately 9472 ** before or after the deleted entry. 9473 ** 9474 ** The bPreserve value records which path is required: 9475 ** 9476 ** bPreserve==0 Not necessary to save the cursor position 9477 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position 9478 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT. 9479 */ 9480 bPreserve = (flags & BTREE_SAVEPOSITION)!=0; 9481 if( bPreserve ){ 9482 if( !pPage->leaf 9483 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) > 9484 (int)(pBt->usableSize*2/3) 9485 || pPage->nCell==1 /* See dbfuzz001.test for a test case */ 9486 ){ 9487 /* A b-tree rebalance will be required after deleting this entry. 9488 ** Save the cursor key. */ 9489 rc = saveCursorKey(pCur); 9490 if( rc ) return rc; 9491 }else{ 9492 bPreserve = 2; 9493 } 9494 } 9495 9496 /* If the page containing the entry to delete is not a leaf page, move 9497 ** the cursor to the largest entry in the tree that is smaller than 9498 ** the entry being deleted. This cell will replace the cell being deleted 9499 ** from the internal node. The 'previous' entry is used for this instead 9500 ** of the 'next' entry, as the previous entry is always a part of the 9501 ** sub-tree headed by the child page of the cell being deleted. This makes 9502 ** balancing the tree following the delete operation easier. */ 9503 if( !pPage->leaf ){ 9504 rc = sqlite3BtreePrevious(pCur, 0); 9505 assert( rc!=SQLITE_DONE ); 9506 if( rc ) return rc; 9507 } 9508 9509 /* Save the positions of any other cursors open on this table before 9510 ** making any modifications. */ 9511 if( pCur->curFlags & BTCF_Multiple ){ 9512 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); 9513 if( rc ) return rc; 9514 } 9515 9516 /* If this is a delete operation to remove a row from a table b-tree, 9517 ** invalidate any incrblob cursors open on the row being deleted. */ 9518 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){ 9519 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0); 9520 } 9521 9522 /* Make the page containing the entry to be deleted writable. Then free any 9523 ** overflow pages associated with the entry and finally remove the cell 9524 ** itself from within the page. */ 9525 rc = sqlite3PagerWrite(pPage->pDbPage); 9526 if( rc ) return rc; 9527 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9528 dropCell(pPage, iCellIdx, info.nSize, &rc); 9529 if( rc ) return rc; 9530 9531 /* If the cell deleted was not located on a leaf page, then the cursor 9532 ** is currently pointing to the largest entry in the sub-tree headed 9533 ** by the child-page of the cell that was just deleted from an internal 9534 ** node. The cell from the leaf node needs to be moved to the internal 9535 ** node to replace the deleted cell. */ 9536 if( !pPage->leaf ){ 9537 MemPage *pLeaf = pCur->pPage; 9538 int nCell; 9539 Pgno n; 9540 unsigned char *pTmp; 9541 9542 if( pLeaf->nFree<0 ){ 9543 rc = btreeComputeFreeSpace(pLeaf); 9544 if( rc ) return rc; 9545 } 9546 if( iCellDepth<pCur->iPage-1 ){ 9547 n = pCur->apPage[iCellDepth+1]->pgno; 9548 }else{ 9549 n = pCur->pPage->pgno; 9550 } 9551 pCell = findCell(pLeaf, pLeaf->nCell-1); 9552 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; 9553 nCell = pLeaf->xCellSize(pLeaf, pCell); 9554 assert( MX_CELL_SIZE(pBt) >= nCell ); 9555 pTmp = pBt->pTmpSpace; 9556 assert( pTmp!=0 ); 9557 rc = sqlite3PagerWrite(pLeaf->pDbPage); 9558 if( rc==SQLITE_OK ){ 9559 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); 9560 } 9561 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); 9562 if( rc ) return rc; 9563 } 9564 9565 /* Balance the tree. If the entry deleted was located on a leaf page, 9566 ** then the cursor still points to that page. In this case the first 9567 ** call to balance() repairs the tree, and the if(...) condition is 9568 ** never true. 9569 ** 9570 ** Otherwise, if the entry deleted was on an internal node page, then 9571 ** pCur is pointing to the leaf page from which a cell was removed to 9572 ** replace the cell deleted from the internal node. This is slightly 9573 ** tricky as the leaf node may be underfull, and the internal node may 9574 ** be either under or overfull. In this case run the balancing algorithm 9575 ** on the leaf node first. If the balance proceeds far enough up the 9576 ** tree that we can be sure that any problem in the internal node has 9577 ** been corrected, so be it. Otherwise, after balancing the leaf node, 9578 ** walk the cursor up the tree to the internal node and balance it as 9579 ** well. */ 9580 assert( pCur->pPage->nOverflow==0 ); 9581 assert( pCur->pPage->nFree>=0 ); 9582 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){ 9583 /* Optimization: If the free space is less than 2/3rds of the page, 9584 ** then balance() will always be a no-op. No need to invoke it. */ 9585 rc = SQLITE_OK; 9586 }else{ 9587 rc = balance(pCur); 9588 } 9589 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ 9590 releasePageNotNull(pCur->pPage); 9591 pCur->iPage--; 9592 while( pCur->iPage>iCellDepth ){ 9593 releasePage(pCur->apPage[pCur->iPage--]); 9594 } 9595 pCur->pPage = pCur->apPage[pCur->iPage]; 9596 rc = balance(pCur); 9597 } 9598 9599 if( rc==SQLITE_OK ){ 9600 if( bPreserve>1 ){ 9601 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) ); 9602 assert( pPage==pCur->pPage || CORRUPT_DB ); 9603 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); 9604 pCur->eState = CURSOR_SKIPNEXT; 9605 if( iCellIdx>=pPage->nCell ){ 9606 pCur->skipNext = -1; 9607 pCur->ix = pPage->nCell-1; 9608 }else{ 9609 pCur->skipNext = 1; 9610 } 9611 }else{ 9612 rc = moveToRoot(pCur); 9613 if( bPreserve ){ 9614 btreeReleaseAllCursorPages(pCur); 9615 pCur->eState = CURSOR_REQUIRESEEK; 9616 } 9617 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK; 9618 } 9619 } 9620 return rc; 9621 } 9622 9623 /* 9624 ** Create a new BTree table. Write into *piTable the page 9625 ** number for the root page of the new table. 9626 ** 9627 ** The type of type is determined by the flags parameter. Only the 9628 ** following values of flags are currently in use. Other values for 9629 ** flags might not work: 9630 ** 9631 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys 9632 ** BTREE_ZERODATA Used for SQL indices 9633 */ 9634 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){ 9635 BtShared *pBt = p->pBt; 9636 MemPage *pRoot; 9637 Pgno pgnoRoot; 9638 int rc; 9639 int ptfFlags; /* Page-type flage for the root page of new table */ 9640 9641 assert( sqlite3BtreeHoldsMutex(p) ); 9642 assert( pBt->inTransaction==TRANS_WRITE ); 9643 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); 9644 9645 #ifdef SQLITE_OMIT_AUTOVACUUM 9646 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9647 if( rc ){ 9648 return rc; 9649 } 9650 #else 9651 if( pBt->autoVacuum ){ 9652 Pgno pgnoMove; /* Move a page here to make room for the root-page */ 9653 MemPage *pPageMove; /* The page to move to. */ 9654 9655 /* Creating a new table may probably require moving an existing database 9656 ** to make room for the new tables root page. In case this page turns 9657 ** out to be an overflow page, delete all overflow page-map caches 9658 ** held by open cursors. 9659 */ 9660 invalidateAllOverflowCache(pBt); 9661 9662 /* Read the value of meta[3] from the database to determine where the 9663 ** root page of the new table should go. meta[3] is the largest root-page 9664 ** created so far, so the new root-page is (meta[3]+1). 9665 */ 9666 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); 9667 if( pgnoRoot>btreePagecount(pBt) ){ 9668 return SQLITE_CORRUPT_BKPT; 9669 } 9670 pgnoRoot++; 9671 9672 /* The new root-page may not be allocated on a pointer-map page, or the 9673 ** PENDING_BYTE page. 9674 */ 9675 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || 9676 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ 9677 pgnoRoot++; 9678 } 9679 assert( pgnoRoot>=3 ); 9680 9681 /* Allocate a page. The page that currently resides at pgnoRoot will 9682 ** be moved to the allocated page (unless the allocated page happens 9683 ** to reside at pgnoRoot). 9684 */ 9685 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); 9686 if( rc!=SQLITE_OK ){ 9687 return rc; 9688 } 9689 9690 if( pgnoMove!=pgnoRoot ){ 9691 /* pgnoRoot is the page that will be used for the root-page of 9692 ** the new table (assuming an error did not occur). But we were 9693 ** allocated pgnoMove. If required (i.e. if it was not allocated 9694 ** by extending the file), the current page at position pgnoMove 9695 ** is already journaled. 9696 */ 9697 u8 eType = 0; 9698 Pgno iPtrPage = 0; 9699 9700 /* Save the positions of any open cursors. This is required in 9701 ** case they are holding a reference to an xFetch reference 9702 ** corresponding to page pgnoRoot. */ 9703 rc = saveAllCursors(pBt, 0, 0); 9704 releasePage(pPageMove); 9705 if( rc!=SQLITE_OK ){ 9706 return rc; 9707 } 9708 9709 /* Move the page currently at pgnoRoot to pgnoMove. */ 9710 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9711 if( rc!=SQLITE_OK ){ 9712 return rc; 9713 } 9714 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); 9715 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ 9716 rc = SQLITE_CORRUPT_BKPT; 9717 } 9718 if( rc!=SQLITE_OK ){ 9719 releasePage(pRoot); 9720 return rc; 9721 } 9722 assert( eType!=PTRMAP_ROOTPAGE ); 9723 assert( eType!=PTRMAP_FREEPAGE ); 9724 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); 9725 releasePage(pRoot); 9726 9727 /* Obtain the page at pgnoRoot */ 9728 if( rc!=SQLITE_OK ){ 9729 return rc; 9730 } 9731 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); 9732 if( rc!=SQLITE_OK ){ 9733 return rc; 9734 } 9735 rc = sqlite3PagerWrite(pRoot->pDbPage); 9736 if( rc!=SQLITE_OK ){ 9737 releasePage(pRoot); 9738 return rc; 9739 } 9740 }else{ 9741 pRoot = pPageMove; 9742 } 9743 9744 /* Update the pointer-map and meta-data with the new root-page number. */ 9745 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); 9746 if( rc ){ 9747 releasePage(pRoot); 9748 return rc; 9749 } 9750 9751 /* When the new root page was allocated, page 1 was made writable in 9752 ** order either to increase the database filesize, or to decrement the 9753 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. 9754 */ 9755 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); 9756 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); 9757 if( NEVER(rc) ){ 9758 releasePage(pRoot); 9759 return rc; 9760 } 9761 9762 }else{ 9763 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); 9764 if( rc ) return rc; 9765 } 9766 #endif 9767 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); 9768 if( createTabFlags & BTREE_INTKEY ){ 9769 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; 9770 }else{ 9771 ptfFlags = PTF_ZERODATA | PTF_LEAF; 9772 } 9773 zeroPage(pRoot, ptfFlags); 9774 sqlite3PagerUnref(pRoot->pDbPage); 9775 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); 9776 *piTable = pgnoRoot; 9777 return SQLITE_OK; 9778 } 9779 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){ 9780 int rc; 9781 sqlite3BtreeEnter(p); 9782 rc = btreeCreateTable(p, piTable, flags); 9783 sqlite3BtreeLeave(p); 9784 return rc; 9785 } 9786 9787 /* 9788 ** Erase the given database page and all its children. Return 9789 ** the page to the freelist. 9790 */ 9791 static int clearDatabasePage( 9792 BtShared *pBt, /* The BTree that contains the table */ 9793 Pgno pgno, /* Page number to clear */ 9794 int freePageFlag, /* Deallocate page if true */ 9795 i64 *pnChange /* Add number of Cells freed to this counter */ 9796 ){ 9797 MemPage *pPage; 9798 int rc; 9799 unsigned char *pCell; 9800 int i; 9801 int hdr; 9802 CellInfo info; 9803 9804 assert( sqlite3_mutex_held(pBt->mutex) ); 9805 if( pgno>btreePagecount(pBt) ){ 9806 return SQLITE_CORRUPT_BKPT; 9807 } 9808 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); 9809 if( rc ) return rc; 9810 if( (pBt->openFlags & BTREE_SINGLE)==0 9811 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1)) 9812 ){ 9813 rc = SQLITE_CORRUPT_BKPT; 9814 goto cleardatabasepage_out; 9815 } 9816 hdr = pPage->hdrOffset; 9817 for(i=0; i<pPage->nCell; i++){ 9818 pCell = findCell(pPage, i); 9819 if( !pPage->leaf ){ 9820 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); 9821 if( rc ) goto cleardatabasepage_out; 9822 } 9823 BTREE_CLEAR_CELL(rc, pPage, pCell, info); 9824 if( rc ) goto cleardatabasepage_out; 9825 } 9826 if( !pPage->leaf ){ 9827 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); 9828 if( rc ) goto cleardatabasepage_out; 9829 if( pPage->intKey ) pnChange = 0; 9830 } 9831 if( pnChange ){ 9832 testcase( !pPage->intKey ); 9833 *pnChange += pPage->nCell; 9834 } 9835 if( freePageFlag ){ 9836 freePage(pPage, &rc); 9837 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ 9838 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); 9839 } 9840 9841 cleardatabasepage_out: 9842 releasePage(pPage); 9843 return rc; 9844 } 9845 9846 /* 9847 ** Delete all information from a single table in the database. iTable is 9848 ** the page number of the root of the table. After this routine returns, 9849 ** the root page is empty, but still exists. 9850 ** 9851 ** This routine will fail with SQLITE_LOCKED if there are any open 9852 ** read cursors on the table. Open write cursors are moved to the 9853 ** root of the table. 9854 ** 9855 ** If pnChange is not NULL, then the integer value pointed to by pnChange 9856 ** is incremented by the number of entries in the table. 9857 */ 9858 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){ 9859 int rc; 9860 BtShared *pBt = p->pBt; 9861 sqlite3BtreeEnter(p); 9862 assert( p->inTrans==TRANS_WRITE ); 9863 9864 rc = saveAllCursors(pBt, (Pgno)iTable, 0); 9865 9866 if( SQLITE_OK==rc ){ 9867 /* Invalidate all incrblob cursors open on table iTable (assuming iTable 9868 ** is the root of a table b-tree - if it is not, the following call is 9869 ** a no-op). */ 9870 if( p->hasIncrblobCur ){ 9871 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1); 9872 } 9873 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); 9874 } 9875 sqlite3BtreeLeave(p); 9876 return rc; 9877 } 9878 9879 /* 9880 ** Delete all information from the single table that pCur is open on. 9881 ** 9882 ** This routine only work for pCur on an ephemeral table. 9883 */ 9884 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ 9885 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); 9886 } 9887 9888 /* 9889 ** Erase all information in a table and add the root of the table to 9890 ** the freelist. Except, the root of the principle table (the one on 9891 ** page 1) is never added to the freelist. 9892 ** 9893 ** This routine will fail with SQLITE_LOCKED if there are any open 9894 ** cursors on the table. 9895 ** 9896 ** If AUTOVACUUM is enabled and the page at iTable is not the last 9897 ** root page in the database file, then the last root page 9898 ** in the database file is moved into the slot formerly occupied by 9899 ** iTable and that last slot formerly occupied by the last root page 9900 ** is added to the freelist instead of iTable. In this say, all 9901 ** root pages are kept at the beginning of the database file, which 9902 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the 9903 ** page number that used to be the last root page in the file before 9904 ** the move. If no page gets moved, *piMoved is set to 0. 9905 ** The last root page is recorded in meta[3] and the value of 9906 ** meta[3] is updated by this procedure. 9907 */ 9908 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ 9909 int rc; 9910 MemPage *pPage = 0; 9911 BtShared *pBt = p->pBt; 9912 9913 assert( sqlite3BtreeHoldsMutex(p) ); 9914 assert( p->inTrans==TRANS_WRITE ); 9915 assert( iTable>=2 ); 9916 if( iTable>btreePagecount(pBt) ){ 9917 return SQLITE_CORRUPT_BKPT; 9918 } 9919 9920 rc = sqlite3BtreeClearTable(p, iTable, 0); 9921 if( rc ) return rc; 9922 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); 9923 if( NEVER(rc) ){ 9924 releasePage(pPage); 9925 return rc; 9926 } 9927 9928 *piMoved = 0; 9929 9930 #ifdef SQLITE_OMIT_AUTOVACUUM 9931 freePage(pPage, &rc); 9932 releasePage(pPage); 9933 #else 9934 if( pBt->autoVacuum ){ 9935 Pgno maxRootPgno; 9936 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); 9937 9938 if( iTable==maxRootPgno ){ 9939 /* If the table being dropped is the table with the largest root-page 9940 ** number in the database, put the root page on the free list. 9941 */ 9942 freePage(pPage, &rc); 9943 releasePage(pPage); 9944 if( rc!=SQLITE_OK ){ 9945 return rc; 9946 } 9947 }else{ 9948 /* The table being dropped does not have the largest root-page 9949 ** number in the database. So move the page that does into the 9950 ** gap left by the deleted root-page. 9951 */ 9952 MemPage *pMove; 9953 releasePage(pPage); 9954 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9955 if( rc!=SQLITE_OK ){ 9956 return rc; 9957 } 9958 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); 9959 releasePage(pMove); 9960 if( rc!=SQLITE_OK ){ 9961 return rc; 9962 } 9963 pMove = 0; 9964 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); 9965 freePage(pMove, &rc); 9966 releasePage(pMove); 9967 if( rc!=SQLITE_OK ){ 9968 return rc; 9969 } 9970 *piMoved = maxRootPgno; 9971 } 9972 9973 /* Set the new 'max-root-page' value in the database header. This 9974 ** is the old value less one, less one more if that happens to 9975 ** be a root-page number, less one again if that is the 9976 ** PENDING_BYTE_PAGE. 9977 */ 9978 maxRootPgno--; 9979 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) 9980 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ 9981 maxRootPgno--; 9982 } 9983 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); 9984 9985 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); 9986 }else{ 9987 freePage(pPage, &rc); 9988 releasePage(pPage); 9989 } 9990 #endif 9991 return rc; 9992 } 9993 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ 9994 int rc; 9995 sqlite3BtreeEnter(p); 9996 rc = btreeDropTable(p, iTable, piMoved); 9997 sqlite3BtreeLeave(p); 9998 return rc; 9999 } 10000 10001 10002 /* 10003 ** This function may only be called if the b-tree connection already 10004 ** has a read or write transaction open on the database. 10005 ** 10006 ** Read the meta-information out of a database file. Meta[0] 10007 ** is the number of free pages currently in the database. Meta[1] 10008 ** through meta[15] are available for use by higher layers. Meta[0] 10009 ** is read-only, the others are read/write. 10010 ** 10011 ** The schema layer numbers meta values differently. At the schema 10012 ** layer (and the SetCookie and ReadCookie opcodes) the number of 10013 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. 10014 ** 10015 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead 10016 ** of reading the value out of the header, it instead loads the "DataVersion" 10017 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the 10018 ** database file. It is a number computed by the pager. But its access 10019 ** pattern is the same as header meta values, and so it is convenient to 10020 ** read it from this routine. 10021 */ 10022 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ 10023 BtShared *pBt = p->pBt; 10024 10025 sqlite3BtreeEnter(p); 10026 assert( p->inTrans>TRANS_NONE ); 10027 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) ); 10028 assert( pBt->pPage1 ); 10029 assert( idx>=0 && idx<=15 ); 10030 10031 if( idx==BTREE_DATA_VERSION ){ 10032 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion; 10033 }else{ 10034 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); 10035 } 10036 10037 /* If auto-vacuum is disabled in this build and this is an auto-vacuum 10038 ** database, mark the database as read-only. */ 10039 #ifdef SQLITE_OMIT_AUTOVACUUM 10040 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ 10041 pBt->btsFlags |= BTS_READ_ONLY; 10042 } 10043 #endif 10044 10045 sqlite3BtreeLeave(p); 10046 } 10047 10048 /* 10049 ** Write meta-information back into the database. Meta[0] is 10050 ** read-only and may not be written. 10051 */ 10052 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ 10053 BtShared *pBt = p->pBt; 10054 unsigned char *pP1; 10055 int rc; 10056 assert( idx>=1 && idx<=15 ); 10057 sqlite3BtreeEnter(p); 10058 assert( p->inTrans==TRANS_WRITE ); 10059 assert( pBt->pPage1!=0 ); 10060 pP1 = pBt->pPage1->aData; 10061 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 10062 if( rc==SQLITE_OK ){ 10063 put4byte(&pP1[36 + idx*4], iMeta); 10064 #ifndef SQLITE_OMIT_AUTOVACUUM 10065 if( idx==BTREE_INCR_VACUUM ){ 10066 assert( pBt->autoVacuum || iMeta==0 ); 10067 assert( iMeta==0 || iMeta==1 ); 10068 pBt->incrVacuum = (u8)iMeta; 10069 } 10070 #endif 10071 } 10072 sqlite3BtreeLeave(p); 10073 return rc; 10074 } 10075 10076 /* 10077 ** The first argument, pCur, is a cursor opened on some b-tree. Count the 10078 ** number of entries in the b-tree and write the result to *pnEntry. 10079 ** 10080 ** SQLITE_OK is returned if the operation is successfully executed. 10081 ** Otherwise, if an error is encountered (i.e. an IO error or database 10082 ** corruption) an SQLite error code is returned. 10083 */ 10084 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){ 10085 i64 nEntry = 0; /* Value to return in *pnEntry */ 10086 int rc; /* Return code */ 10087 10088 rc = moveToRoot(pCur); 10089 if( rc==SQLITE_EMPTY ){ 10090 *pnEntry = 0; 10091 return SQLITE_OK; 10092 } 10093 10094 /* Unless an error occurs, the following loop runs one iteration for each 10095 ** page in the B-Tree structure (not including overflow pages). 10096 */ 10097 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){ 10098 int iIdx; /* Index of child node in parent */ 10099 MemPage *pPage; /* Current page of the b-tree */ 10100 10101 /* If this is a leaf page or the tree is not an int-key tree, then 10102 ** this page contains countable entries. Increment the entry counter 10103 ** accordingly. 10104 */ 10105 pPage = pCur->pPage; 10106 if( pPage->leaf || !pPage->intKey ){ 10107 nEntry += pPage->nCell; 10108 } 10109 10110 /* pPage is a leaf node. This loop navigates the cursor so that it 10111 ** points to the first interior cell that it points to the parent of 10112 ** the next page in the tree that has not yet been visited. The 10113 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell 10114 ** of the page, or to the number of cells in the page if the next page 10115 ** to visit is the right-child of its parent. 10116 ** 10117 ** If all pages in the tree have been visited, return SQLITE_OK to the 10118 ** caller. 10119 */ 10120 if( pPage->leaf ){ 10121 do { 10122 if( pCur->iPage==0 ){ 10123 /* All pages of the b-tree have been visited. Return successfully. */ 10124 *pnEntry = nEntry; 10125 return moveToRoot(pCur); 10126 } 10127 moveToParent(pCur); 10128 }while ( pCur->ix>=pCur->pPage->nCell ); 10129 10130 pCur->ix++; 10131 pPage = pCur->pPage; 10132 } 10133 10134 /* Descend to the child node of the cell that the cursor currently 10135 ** points at. This is the right-child if (iIdx==pPage->nCell). 10136 */ 10137 iIdx = pCur->ix; 10138 if( iIdx==pPage->nCell ){ 10139 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); 10140 }else{ 10141 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); 10142 } 10143 } 10144 10145 /* An error has occurred. Return an error code. */ 10146 return rc; 10147 } 10148 10149 /* 10150 ** Return the pager associated with a BTree. This routine is used for 10151 ** testing and debugging only. 10152 */ 10153 Pager *sqlite3BtreePager(Btree *p){ 10154 return p->pBt->pPager; 10155 } 10156 10157 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10158 /* 10159 ** Append a message to the error message string. 10160 */ 10161 static void checkAppendMsg( 10162 IntegrityCk *pCheck, 10163 const char *zFormat, 10164 ... 10165 ){ 10166 va_list ap; 10167 if( !pCheck->mxErr ) return; 10168 pCheck->mxErr--; 10169 pCheck->nErr++; 10170 va_start(ap, zFormat); 10171 if( pCheck->errMsg.nChar ){ 10172 sqlite3_str_append(&pCheck->errMsg, "\n", 1); 10173 } 10174 if( pCheck->zPfx ){ 10175 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); 10176 } 10177 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap); 10178 va_end(ap); 10179 if( pCheck->errMsg.accError==SQLITE_NOMEM ){ 10180 pCheck->bOomFault = 1; 10181 } 10182 } 10183 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10184 10185 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10186 10187 /* 10188 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that 10189 ** corresponds to page iPg is already set. 10190 */ 10191 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10192 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10193 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); 10194 } 10195 10196 /* 10197 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. 10198 */ 10199 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ 10200 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); 10201 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); 10202 } 10203 10204 10205 /* 10206 ** Add 1 to the reference count for page iPage. If this is the second 10207 ** reference to the page, add an error message to pCheck->zErrMsg. 10208 ** Return 1 if there are 2 or more references to the page and 0 if 10209 ** if this is the first reference to the page. 10210 ** 10211 ** Also check that the page number is in bounds. 10212 */ 10213 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ 10214 if( iPage>pCheck->nPage || iPage==0 ){ 10215 checkAppendMsg(pCheck, "invalid page number %d", iPage); 10216 return 1; 10217 } 10218 if( getPageReferenced(pCheck, iPage) ){ 10219 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); 10220 return 1; 10221 } 10222 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1; 10223 setPageReferenced(pCheck, iPage); 10224 return 0; 10225 } 10226 10227 #ifndef SQLITE_OMIT_AUTOVACUUM 10228 /* 10229 ** Check that the entry in the pointer-map for page iChild maps to 10230 ** page iParent, pointer type ptrType. If not, append an error message 10231 ** to pCheck. 10232 */ 10233 static void checkPtrmap( 10234 IntegrityCk *pCheck, /* Integrity check context */ 10235 Pgno iChild, /* Child page number */ 10236 u8 eType, /* Expected pointer map type */ 10237 Pgno iParent /* Expected pointer map parent page number */ 10238 ){ 10239 int rc; 10240 u8 ePtrmapType; 10241 Pgno iPtrmapParent; 10242 10243 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); 10244 if( rc!=SQLITE_OK ){ 10245 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1; 10246 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); 10247 return; 10248 } 10249 10250 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ 10251 checkAppendMsg(pCheck, 10252 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 10253 iChild, eType, iParent, ePtrmapType, iPtrmapParent); 10254 } 10255 } 10256 #endif 10257 10258 /* 10259 ** Check the integrity of the freelist or of an overflow page list. 10260 ** Verify that the number of pages on the list is N. 10261 */ 10262 static void checkList( 10263 IntegrityCk *pCheck, /* Integrity checking context */ 10264 int isFreeList, /* True for a freelist. False for overflow page list */ 10265 Pgno iPage, /* Page number for first page in the list */ 10266 u32 N /* Expected number of pages in the list */ 10267 ){ 10268 int i; 10269 u32 expected = N; 10270 int nErrAtStart = pCheck->nErr; 10271 while( iPage!=0 && pCheck->mxErr ){ 10272 DbPage *pOvflPage; 10273 unsigned char *pOvflData; 10274 if( checkRef(pCheck, iPage) ) break; 10275 N--; 10276 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ 10277 checkAppendMsg(pCheck, "failed to get page %d", iPage); 10278 break; 10279 } 10280 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); 10281 if( isFreeList ){ 10282 u32 n = (u32)get4byte(&pOvflData[4]); 10283 #ifndef SQLITE_OMIT_AUTOVACUUM 10284 if( pCheck->pBt->autoVacuum ){ 10285 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); 10286 } 10287 #endif 10288 if( n>pCheck->pBt->usableSize/4-2 ){ 10289 checkAppendMsg(pCheck, 10290 "freelist leaf count too big on page %d", iPage); 10291 N--; 10292 }else{ 10293 for(i=0; i<(int)n; i++){ 10294 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); 10295 #ifndef SQLITE_OMIT_AUTOVACUUM 10296 if( pCheck->pBt->autoVacuum ){ 10297 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); 10298 } 10299 #endif 10300 checkRef(pCheck, iFreePage); 10301 } 10302 N -= n; 10303 } 10304 } 10305 #ifndef SQLITE_OMIT_AUTOVACUUM 10306 else{ 10307 /* If this database supports auto-vacuum and iPage is not the last 10308 ** page in this overflow list, check that the pointer-map entry for 10309 ** the following page matches iPage. 10310 */ 10311 if( pCheck->pBt->autoVacuum && N>0 ){ 10312 i = get4byte(pOvflData); 10313 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); 10314 } 10315 } 10316 #endif 10317 iPage = get4byte(pOvflData); 10318 sqlite3PagerUnref(pOvflPage); 10319 } 10320 if( N && nErrAtStart==pCheck->nErr ){ 10321 checkAppendMsg(pCheck, 10322 "%s is %d but should be %d", 10323 isFreeList ? "size" : "overflow list length", 10324 expected-N, expected); 10325 } 10326 } 10327 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10328 10329 /* 10330 ** An implementation of a min-heap. 10331 ** 10332 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the 10333 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] 10334 ** and aHeap[N*2+1]. 10335 ** 10336 ** The heap property is this: Every node is less than or equal to both 10337 ** of its daughter nodes. A consequence of the heap property is that the 10338 ** root node aHeap[1] is always the minimum value currently in the heap. 10339 ** 10340 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto 10341 ** the heap, preserving the heap property. The btreeHeapPull() routine 10342 ** removes the root element from the heap (the minimum value in the heap) 10343 ** and then moves other nodes around as necessary to preserve the heap 10344 ** property. 10345 ** 10346 ** This heap is used for cell overlap and coverage testing. Each u32 10347 ** entry represents the span of a cell or freeblock on a btree page. 10348 ** The upper 16 bits are the index of the first byte of a range and the 10349 ** lower 16 bits are the index of the last byte of that range. 10350 */ 10351 static void btreeHeapInsert(u32 *aHeap, u32 x){ 10352 u32 j, i = ++aHeap[0]; 10353 aHeap[i] = x; 10354 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ 10355 x = aHeap[j]; 10356 aHeap[j] = aHeap[i]; 10357 aHeap[i] = x; 10358 i = j; 10359 } 10360 } 10361 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ 10362 u32 j, i, x; 10363 if( (x = aHeap[0])==0 ) return 0; 10364 *pOut = aHeap[1]; 10365 aHeap[1] = aHeap[x]; 10366 aHeap[x] = 0xffffffff; 10367 aHeap[0]--; 10368 i = 1; 10369 while( (j = i*2)<=aHeap[0] ){ 10370 if( aHeap[j]>aHeap[j+1] ) j++; 10371 if( aHeap[i]<aHeap[j] ) break; 10372 x = aHeap[i]; 10373 aHeap[i] = aHeap[j]; 10374 aHeap[j] = x; 10375 i = j; 10376 } 10377 return 1; 10378 } 10379 10380 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10381 /* 10382 ** Do various sanity checks on a single page of a tree. Return 10383 ** the tree depth. Root pages return 0. Parents of root pages 10384 ** return 1, and so forth. 10385 ** 10386 ** These checks are done: 10387 ** 10388 ** 1. Make sure that cells and freeblocks do not overlap 10389 ** but combine to completely cover the page. 10390 ** 2. Make sure integer cell keys are in order. 10391 ** 3. Check the integrity of overflow pages. 10392 ** 4. Recursively call checkTreePage on all children. 10393 ** 5. Verify that the depth of all children is the same. 10394 */ 10395 static int checkTreePage( 10396 IntegrityCk *pCheck, /* Context for the sanity check */ 10397 Pgno iPage, /* Page number of the page to check */ 10398 i64 *piMinKey, /* Write minimum integer primary key here */ 10399 i64 maxKey /* Error if integer primary key greater than this */ 10400 ){ 10401 MemPage *pPage = 0; /* The page being analyzed */ 10402 int i; /* Loop counter */ 10403 int rc; /* Result code from subroutine call */ 10404 int depth = -1, d2; /* Depth of a subtree */ 10405 int pgno; /* Page number */ 10406 int nFrag; /* Number of fragmented bytes on the page */ 10407 int hdr; /* Offset to the page header */ 10408 int cellStart; /* Offset to the start of the cell pointer array */ 10409 int nCell; /* Number of cells */ 10410 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ 10411 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey 10412 ** False if IPK must be strictly less than maxKey */ 10413 u8 *data; /* Page content */ 10414 u8 *pCell; /* Cell content */ 10415 u8 *pCellIdx; /* Next element of the cell pointer array */ 10416 BtShared *pBt; /* The BtShared object that owns pPage */ 10417 u32 pc; /* Address of a cell */ 10418 u32 usableSize; /* Usable size of the page */ 10419 u32 contentOffset; /* Offset to the start of the cell content area */ 10420 u32 *heap = 0; /* Min-heap used for checking cell coverage */ 10421 u32 x, prev = 0; /* Next and previous entry on the min-heap */ 10422 const char *saved_zPfx = pCheck->zPfx; 10423 int saved_v1 = pCheck->v1; 10424 int saved_v2 = pCheck->v2; 10425 u8 savedIsInit = 0; 10426 10427 /* Check that the page exists 10428 */ 10429 pBt = pCheck->pBt; 10430 usableSize = pBt->usableSize; 10431 if( iPage==0 ) return 0; 10432 if( checkRef(pCheck, iPage) ) return 0; 10433 pCheck->zPfx = "Page %u: "; 10434 pCheck->v1 = iPage; 10435 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){ 10436 checkAppendMsg(pCheck, 10437 "unable to get the page. error code=%d", rc); 10438 goto end_of_check; 10439 } 10440 10441 /* Clear MemPage.isInit to make sure the corruption detection code in 10442 ** btreeInitPage() is executed. */ 10443 savedIsInit = pPage->isInit; 10444 pPage->isInit = 0; 10445 if( (rc = btreeInitPage(pPage))!=0 ){ 10446 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ 10447 checkAppendMsg(pCheck, 10448 "btreeInitPage() returns error code %d", rc); 10449 goto end_of_check; 10450 } 10451 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){ 10452 assert( rc==SQLITE_CORRUPT ); 10453 checkAppendMsg(pCheck, "free space corruption", rc); 10454 goto end_of_check; 10455 } 10456 data = pPage->aData; 10457 hdr = pPage->hdrOffset; 10458 10459 /* Set up for cell analysis */ 10460 pCheck->zPfx = "On tree page %u cell %d: "; 10461 contentOffset = get2byteNotZero(&data[hdr+5]); 10462 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ 10463 10464 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the 10465 ** number of cells on the page. */ 10466 nCell = get2byte(&data[hdr+3]); 10467 assert( pPage->nCell==nCell ); 10468 10469 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page 10470 ** immediately follows the b-tree page header. */ 10471 cellStart = hdr + 12 - 4*pPage->leaf; 10472 assert( pPage->aCellIdx==&data[cellStart] ); 10473 pCellIdx = &data[cellStart + 2*(nCell-1)]; 10474 10475 if( !pPage->leaf ){ 10476 /* Analyze the right-child page of internal pages */ 10477 pgno = get4byte(&data[hdr+8]); 10478 #ifndef SQLITE_OMIT_AUTOVACUUM 10479 if( pBt->autoVacuum ){ 10480 pCheck->zPfx = "On page %u at right child: "; 10481 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10482 } 10483 #endif 10484 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10485 keyCanBeEqual = 0; 10486 }else{ 10487 /* For leaf pages, the coverage check will occur in the same loop 10488 ** as the other cell checks, so initialize the heap. */ 10489 heap = pCheck->heap; 10490 heap[0] = 0; 10491 } 10492 10493 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte 10494 ** integer offsets to the cell contents. */ 10495 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ 10496 CellInfo info; 10497 10498 /* Check cell size */ 10499 pCheck->v2 = i; 10500 assert( pCellIdx==&data[cellStart + i*2] ); 10501 pc = get2byteAligned(pCellIdx); 10502 pCellIdx -= 2; 10503 if( pc<contentOffset || pc>usableSize-4 ){ 10504 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", 10505 pc, contentOffset, usableSize-4); 10506 doCoverageCheck = 0; 10507 continue; 10508 } 10509 pCell = &data[pc]; 10510 pPage->xParseCell(pPage, pCell, &info); 10511 if( pc+info.nSize>usableSize ){ 10512 checkAppendMsg(pCheck, "Extends off end of page"); 10513 doCoverageCheck = 0; 10514 continue; 10515 } 10516 10517 /* Check for integer primary key out of range */ 10518 if( pPage->intKey ){ 10519 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ 10520 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); 10521 } 10522 maxKey = info.nKey; 10523 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */ 10524 } 10525 10526 /* Check the content overflow list */ 10527 if( info.nPayload>info.nLocal ){ 10528 u32 nPage; /* Number of pages on the overflow chain */ 10529 Pgno pgnoOvfl; /* First page of the overflow chain */ 10530 assert( pc + info.nSize - 4 <= usableSize ); 10531 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); 10532 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); 10533 #ifndef SQLITE_OMIT_AUTOVACUUM 10534 if( pBt->autoVacuum ){ 10535 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); 10536 } 10537 #endif 10538 checkList(pCheck, 0, pgnoOvfl, nPage); 10539 } 10540 10541 if( !pPage->leaf ){ 10542 /* Check sanity of left child page for internal pages */ 10543 pgno = get4byte(pCell); 10544 #ifndef SQLITE_OMIT_AUTOVACUUM 10545 if( pBt->autoVacuum ){ 10546 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); 10547 } 10548 #endif 10549 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); 10550 keyCanBeEqual = 0; 10551 if( d2!=depth ){ 10552 checkAppendMsg(pCheck, "Child page depth differs"); 10553 depth = d2; 10554 } 10555 }else{ 10556 /* Populate the coverage-checking heap for leaf pages */ 10557 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); 10558 } 10559 } 10560 *piMinKey = maxKey; 10561 10562 /* Check for complete coverage of the page 10563 */ 10564 pCheck->zPfx = 0; 10565 if( doCoverageCheck && pCheck->mxErr>0 ){ 10566 /* For leaf pages, the min-heap has already been initialized and the 10567 ** cells have already been inserted. But for internal pages, that has 10568 ** not yet been done, so do it now */ 10569 if( !pPage->leaf ){ 10570 heap = pCheck->heap; 10571 heap[0] = 0; 10572 for(i=nCell-1; i>=0; i--){ 10573 u32 size; 10574 pc = get2byteAligned(&data[cellStart+i*2]); 10575 size = pPage->xCellSize(pPage, &data[pc]); 10576 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); 10577 } 10578 } 10579 /* Add the freeblocks to the min-heap 10580 ** 10581 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header 10582 ** is the offset of the first freeblock, or zero if there are no 10583 ** freeblocks on the page. 10584 */ 10585 i = get2byte(&data[hdr+1]); 10586 while( i>0 ){ 10587 int size, j; 10588 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10589 size = get2byte(&data[i+2]); 10590 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */ 10591 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); 10592 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a 10593 ** big-endian integer which is the offset in the b-tree page of the next 10594 ** freeblock in the chain, or zero if the freeblock is the last on the 10595 ** chain. */ 10596 j = get2byte(&data[i]); 10597 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of 10598 ** increasing offset. */ 10599 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */ 10600 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */ 10601 i = j; 10602 } 10603 /* Analyze the min-heap looking for overlap between cells and/or 10604 ** freeblocks, and counting the number of untracked bytes in nFrag. 10605 ** 10606 ** Each min-heap entry is of the form: (start_address<<16)|end_address. 10607 ** There is an implied first entry the covers the page header, the cell 10608 ** pointer index, and the gap between the cell pointer index and the start 10609 ** of cell content. 10610 ** 10611 ** The loop below pulls entries from the min-heap in order and compares 10612 ** the start_address against the previous end_address. If there is an 10613 ** overlap, that means bytes are used multiple times. If there is a gap, 10614 ** that gap is added to the fragmentation count. 10615 */ 10616 nFrag = 0; 10617 prev = contentOffset - 1; /* Implied first min-heap entry */ 10618 while( btreeHeapPull(heap,&x) ){ 10619 if( (prev&0xffff)>=(x>>16) ){ 10620 checkAppendMsg(pCheck, 10621 "Multiple uses for byte %u of page %u", x>>16, iPage); 10622 break; 10623 }else{ 10624 nFrag += (x>>16) - (prev&0xffff) - 1; 10625 prev = x; 10626 } 10627 } 10628 nFrag += usableSize - (prev&0xffff) - 1; 10629 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments 10630 ** is stored in the fifth field of the b-tree page header. 10631 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the 10632 ** number of fragmented free bytes within the cell content area. 10633 */ 10634 if( heap[0]==0 && nFrag!=data[hdr+7] ){ 10635 checkAppendMsg(pCheck, 10636 "Fragmentation of %d bytes reported as %d on page %u", 10637 nFrag, data[hdr+7], iPage); 10638 } 10639 } 10640 10641 end_of_check: 10642 if( !doCoverageCheck ) pPage->isInit = savedIsInit; 10643 releasePage(pPage); 10644 pCheck->zPfx = saved_zPfx; 10645 pCheck->v1 = saved_v1; 10646 pCheck->v2 = saved_v2; 10647 return depth+1; 10648 } 10649 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10650 10651 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 10652 /* 10653 ** This routine does a complete check of the given BTree file. aRoot[] is 10654 ** an array of pages numbers were each page number is the root page of 10655 ** a table. nRoot is the number of entries in aRoot. 10656 ** 10657 ** A read-only or read-write transaction must be opened before calling 10658 ** this function. 10659 ** 10660 ** Write the number of error seen in *pnErr. Except for some memory 10661 ** allocation errors, an error message held in memory obtained from 10662 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is 10663 ** returned. If a memory allocation error occurs, NULL is returned. 10664 ** 10665 ** If the first entry in aRoot[] is 0, that indicates that the list of 10666 ** root pages is incomplete. This is a "partial integrity-check". This 10667 ** happens when performing an integrity check on a single table. The 10668 ** zero is skipped, of course. But in addition, the freelist checks 10669 ** and the checks to make sure every page is referenced are also skipped, 10670 ** since obviously it is not possible to know which pages are covered by 10671 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist 10672 ** checks are still performed. 10673 */ 10674 char *sqlite3BtreeIntegrityCheck( 10675 sqlite3 *db, /* Database connection that is running the check */ 10676 Btree *p, /* The btree to be checked */ 10677 Pgno *aRoot, /* An array of root pages numbers for individual trees */ 10678 int nRoot, /* Number of entries in aRoot[] */ 10679 int mxErr, /* Stop reporting errors after this many */ 10680 int *pnErr /* Write number of errors seen to this variable */ 10681 ){ 10682 Pgno i; 10683 IntegrityCk sCheck; 10684 BtShared *pBt = p->pBt; 10685 u64 savedDbFlags = pBt->db->flags; 10686 char zErr[100]; 10687 int bPartial = 0; /* True if not checking all btrees */ 10688 int bCkFreelist = 1; /* True to scan the freelist */ 10689 VVA_ONLY( int nRef ); 10690 assert( nRoot>0 ); 10691 10692 /* aRoot[0]==0 means this is a partial check */ 10693 if( aRoot[0]==0 ){ 10694 assert( nRoot>1 ); 10695 bPartial = 1; 10696 if( aRoot[1]!=1 ) bCkFreelist = 0; 10697 } 10698 10699 sqlite3BtreeEnter(p); 10700 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); 10701 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); 10702 assert( nRef>=0 ); 10703 sCheck.db = db; 10704 sCheck.pBt = pBt; 10705 sCheck.pPager = pBt->pPager; 10706 sCheck.nPage = btreePagecount(sCheck.pBt); 10707 sCheck.mxErr = mxErr; 10708 sCheck.nErr = 0; 10709 sCheck.bOomFault = 0; 10710 sCheck.zPfx = 0; 10711 sCheck.v1 = 0; 10712 sCheck.v2 = 0; 10713 sCheck.aPgRef = 0; 10714 sCheck.heap = 0; 10715 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); 10716 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; 10717 if( sCheck.nPage==0 ){ 10718 goto integrity_ck_cleanup; 10719 } 10720 10721 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); 10722 if( !sCheck.aPgRef ){ 10723 sCheck.bOomFault = 1; 10724 goto integrity_ck_cleanup; 10725 } 10726 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); 10727 if( sCheck.heap==0 ){ 10728 sCheck.bOomFault = 1; 10729 goto integrity_ck_cleanup; 10730 } 10731 10732 i = PENDING_BYTE_PAGE(pBt); 10733 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); 10734 10735 /* Check the integrity of the freelist 10736 */ 10737 if( bCkFreelist ){ 10738 sCheck.zPfx = "Main freelist: "; 10739 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), 10740 get4byte(&pBt->pPage1->aData[36])); 10741 sCheck.zPfx = 0; 10742 } 10743 10744 /* Check all the tables. 10745 */ 10746 #ifndef SQLITE_OMIT_AUTOVACUUM 10747 if( !bPartial ){ 10748 if( pBt->autoVacuum ){ 10749 Pgno mx = 0; 10750 Pgno mxInHdr; 10751 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i]; 10752 mxInHdr = get4byte(&pBt->pPage1->aData[52]); 10753 if( mx!=mxInHdr ){ 10754 checkAppendMsg(&sCheck, 10755 "max rootpage (%d) disagrees with header (%d)", 10756 mx, mxInHdr 10757 ); 10758 } 10759 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){ 10760 checkAppendMsg(&sCheck, 10761 "incremental_vacuum enabled with a max rootpage of zero" 10762 ); 10763 } 10764 } 10765 #endif 10766 testcase( pBt->db->flags & SQLITE_CellSizeCk ); 10767 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk; 10768 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ 10769 i64 notUsed; 10770 if( aRoot[i]==0 ) continue; 10771 #ifndef SQLITE_OMIT_AUTOVACUUM 10772 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){ 10773 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); 10774 } 10775 #endif 10776 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); 10777 } 10778 pBt->db->flags = savedDbFlags; 10779 10780 /* Make sure every page in the file is referenced 10781 */ 10782 if( !bPartial ){ 10783 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ 10784 #ifdef SQLITE_OMIT_AUTOVACUUM 10785 if( getPageReferenced(&sCheck, i)==0 ){ 10786 checkAppendMsg(&sCheck, "Page %d is never used", i); 10787 } 10788 #else 10789 /* If the database supports auto-vacuum, make sure no tables contain 10790 ** references to pointer-map pages. 10791 */ 10792 if( getPageReferenced(&sCheck, i)==0 && 10793 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ 10794 checkAppendMsg(&sCheck, "Page %d is never used", i); 10795 } 10796 if( getPageReferenced(&sCheck, i)!=0 && 10797 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ 10798 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); 10799 } 10800 #endif 10801 } 10802 } 10803 10804 /* Clean up and report errors. 10805 */ 10806 integrity_ck_cleanup: 10807 sqlite3PageFree(sCheck.heap); 10808 sqlite3_free(sCheck.aPgRef); 10809 if( sCheck.bOomFault ){ 10810 sqlite3_str_reset(&sCheck.errMsg); 10811 sCheck.nErr++; 10812 } 10813 *pnErr = sCheck.nErr; 10814 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg); 10815 /* Make sure this analysis did not leave any unref() pages. */ 10816 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); 10817 sqlite3BtreeLeave(p); 10818 return sqlite3StrAccumFinish(&sCheck.errMsg); 10819 } 10820 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 10821 10822 /* 10823 ** Return the full pathname of the underlying database file. Return 10824 ** an empty string if the database is in-memory or a TEMP database. 10825 ** 10826 ** The pager filename is invariant as long as the pager is 10827 ** open so it is safe to access without the BtShared mutex. 10828 */ 10829 const char *sqlite3BtreeGetFilename(Btree *p){ 10830 assert( p->pBt->pPager!=0 ); 10831 return sqlite3PagerFilename(p->pBt->pPager, 1); 10832 } 10833 10834 /* 10835 ** Return the pathname of the journal file for this database. The return 10836 ** value of this routine is the same regardless of whether the journal file 10837 ** has been created or not. 10838 ** 10839 ** The pager journal filename is invariant as long as the pager is 10840 ** open so it is safe to access without the BtShared mutex. 10841 */ 10842 const char *sqlite3BtreeGetJournalname(Btree *p){ 10843 assert( p->pBt->pPager!=0 ); 10844 return sqlite3PagerJournalname(p->pBt->pPager); 10845 } 10846 10847 /* 10848 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE 10849 ** to describe the current transaction state of Btree p. 10850 */ 10851 int sqlite3BtreeTxnState(Btree *p){ 10852 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); 10853 return p ? p->inTrans : 0; 10854 } 10855 10856 #ifndef SQLITE_OMIT_WAL 10857 /* 10858 ** Run a checkpoint on the Btree passed as the first argument. 10859 ** 10860 ** Return SQLITE_LOCKED if this or any other connection has an open 10861 ** transaction on the shared-cache the argument Btree is connected to. 10862 ** 10863 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 10864 */ 10865 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ 10866 int rc = SQLITE_OK; 10867 if( p ){ 10868 BtShared *pBt = p->pBt; 10869 sqlite3BtreeEnter(p); 10870 if( pBt->inTransaction!=TRANS_NONE ){ 10871 rc = SQLITE_LOCKED; 10872 }else{ 10873 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); 10874 } 10875 sqlite3BtreeLeave(p); 10876 } 10877 return rc; 10878 } 10879 #endif 10880 10881 /* 10882 ** Return true if there is currently a backup running on Btree p. 10883 */ 10884 int sqlite3BtreeIsInBackup(Btree *p){ 10885 assert( p ); 10886 assert( sqlite3_mutex_held(p->db->mutex) ); 10887 return p->nBackup!=0; 10888 } 10889 10890 /* 10891 ** This function returns a pointer to a blob of memory associated with 10892 ** a single shared-btree. The memory is used by client code for its own 10893 ** purposes (for example, to store a high-level schema associated with 10894 ** the shared-btree). The btree layer manages reference counting issues. 10895 ** 10896 ** The first time this is called on a shared-btree, nBytes bytes of memory 10897 ** are allocated, zeroed, and returned to the caller. For each subsequent 10898 ** call the nBytes parameter is ignored and a pointer to the same blob 10899 ** of memory returned. 10900 ** 10901 ** If the nBytes parameter is 0 and the blob of memory has not yet been 10902 ** allocated, a null pointer is returned. If the blob has already been 10903 ** allocated, it is returned as normal. 10904 ** 10905 ** Just before the shared-btree is closed, the function passed as the 10906 ** xFree argument when the memory allocation was made is invoked on the 10907 ** blob of allocated memory. The xFree function should not call sqlite3_free() 10908 ** on the memory, the btree layer does that. 10909 */ 10910 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ 10911 BtShared *pBt = p->pBt; 10912 sqlite3BtreeEnter(p); 10913 if( !pBt->pSchema && nBytes ){ 10914 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); 10915 pBt->xFreeSchema = xFree; 10916 } 10917 sqlite3BtreeLeave(p); 10918 return pBt->pSchema; 10919 } 10920 10921 /* 10922 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 10923 ** btree as the argument handle holds an exclusive lock on the 10924 ** sqlite_schema table. Otherwise SQLITE_OK. 10925 */ 10926 int sqlite3BtreeSchemaLocked(Btree *p){ 10927 int rc; 10928 assert( sqlite3_mutex_held(p->db->mutex) ); 10929 sqlite3BtreeEnter(p); 10930 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK); 10931 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); 10932 sqlite3BtreeLeave(p); 10933 return rc; 10934 } 10935 10936 10937 #ifndef SQLITE_OMIT_SHARED_CACHE 10938 /* 10939 ** Obtain a lock on the table whose root page is iTab. The 10940 ** lock is a write lock if isWritelock is true or a read lock 10941 ** if it is false. 10942 */ 10943 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ 10944 int rc = SQLITE_OK; 10945 assert( p->inTrans!=TRANS_NONE ); 10946 if( p->sharable ){ 10947 u8 lockType = READ_LOCK + isWriteLock; 10948 assert( READ_LOCK+1==WRITE_LOCK ); 10949 assert( isWriteLock==0 || isWriteLock==1 ); 10950 10951 sqlite3BtreeEnter(p); 10952 rc = querySharedCacheTableLock(p, iTab, lockType); 10953 if( rc==SQLITE_OK ){ 10954 rc = setSharedCacheTableLock(p, iTab, lockType); 10955 } 10956 sqlite3BtreeLeave(p); 10957 } 10958 return rc; 10959 } 10960 #endif 10961 10962 #ifndef SQLITE_OMIT_INCRBLOB 10963 /* 10964 ** Argument pCsr must be a cursor opened for writing on an 10965 ** INTKEY table currently pointing at a valid table entry. 10966 ** This function modifies the data stored as part of that entry. 10967 ** 10968 ** Only the data content may only be modified, it is not possible to 10969 ** change the length of the data stored. If this function is called with 10970 ** parameters that attempt to write past the end of the existing data, 10971 ** no modifications are made and SQLITE_CORRUPT is returned. 10972 */ 10973 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ 10974 int rc; 10975 assert( cursorOwnsBtShared(pCsr) ); 10976 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); 10977 assert( pCsr->curFlags & BTCF_Incrblob ); 10978 10979 rc = restoreCursorPosition(pCsr); 10980 if( rc!=SQLITE_OK ){ 10981 return rc; 10982 } 10983 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); 10984 if( pCsr->eState!=CURSOR_VALID ){ 10985 return SQLITE_ABORT; 10986 } 10987 10988 /* Save the positions of all other cursors open on this table. This is 10989 ** required in case any of them are holding references to an xFetch 10990 ** version of the b-tree page modified by the accessPayload call below. 10991 ** 10992 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() 10993 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence 10994 ** saveAllCursors can only return SQLITE_OK. 10995 */ 10996 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); 10997 assert( rc==SQLITE_OK ); 10998 10999 /* Check some assumptions: 11000 ** (a) the cursor is open for writing, 11001 ** (b) there is a read/write transaction open, 11002 ** (c) the connection holds a write-lock on the table (if required), 11003 ** (d) there are no conflicting read-locks, and 11004 ** (e) the cursor points at a valid row of an intKey table. 11005 */ 11006 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ 11007 return SQLITE_READONLY; 11008 } 11009 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 11010 && pCsr->pBt->inTransaction==TRANS_WRITE ); 11011 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); 11012 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); 11013 assert( pCsr->pPage->intKey ); 11014 11015 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); 11016 } 11017 11018 /* 11019 ** Mark this cursor as an incremental blob cursor. 11020 */ 11021 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ 11022 pCur->curFlags |= BTCF_Incrblob; 11023 pCur->pBtree->hasIncrblobCur = 1; 11024 } 11025 #endif 11026 11027 /* 11028 ** Set both the "read version" (single byte at byte offset 18) and 11029 ** "write version" (single byte at byte offset 19) fields in the database 11030 ** header to iVersion. 11031 */ 11032 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ 11033 BtShared *pBt = pBtree->pBt; 11034 int rc; /* Return code */ 11035 11036 assert( iVersion==1 || iVersion==2 ); 11037 11038 /* If setting the version fields to 1, do not automatically open the 11039 ** WAL connection, even if the version fields are currently set to 2. 11040 */ 11041 pBt->btsFlags &= ~BTS_NO_WAL; 11042 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; 11043 11044 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0); 11045 if( rc==SQLITE_OK ){ 11046 u8 *aData = pBt->pPage1->aData; 11047 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ 11048 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0); 11049 if( rc==SQLITE_OK ){ 11050 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); 11051 if( rc==SQLITE_OK ){ 11052 aData[18] = (u8)iVersion; 11053 aData[19] = (u8)iVersion; 11054 } 11055 } 11056 } 11057 } 11058 11059 pBt->btsFlags &= ~BTS_NO_WAL; 11060 return rc; 11061 } 11062 11063 /* 11064 ** Return true if the cursor has a hint specified. This routine is 11065 ** only used from within assert() statements 11066 */ 11067 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ 11068 return (pCsr->hints & mask)!=0; 11069 } 11070 11071 /* 11072 ** Return true if the given Btree is read-only. 11073 */ 11074 int sqlite3BtreeIsReadonly(Btree *p){ 11075 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; 11076 } 11077 11078 /* 11079 ** Return the size of the header added to each page by this module. 11080 */ 11081 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } 11082 11083 #if !defined(SQLITE_OMIT_SHARED_CACHE) 11084 /* 11085 ** Return true if the Btree passed as the only argument is sharable. 11086 */ 11087 int sqlite3BtreeSharable(Btree *p){ 11088 return p->sharable; 11089 } 11090 11091 /* 11092 ** Return the number of connections to the BtShared object accessed by 11093 ** the Btree handle passed as the only argument. For private caches 11094 ** this is always 1. For shared caches it may be 1 or greater. 11095 */ 11096 int sqlite3BtreeConnectionCount(Btree *p){ 11097 testcase( p->sharable ); 11098 return p->pBt->nRef; 11099 } 11100 #endif 11101