xref: /sqlite-3.40.0/src/btree.c (revision 2c1023df)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         if( iTab ){
179           /* Two or more indexes share the same root page.  There must
180           ** be imposter tables.  So just return true.  The assert is not
181           ** useful in that case. */
182           return 1;
183         }
184         iTab = pIdx->pTable->tnum;
185       }
186     }
187   }else{
188     iTab = iRoot;
189   }
190 
191   /* Search for the required lock. Either a write-lock on root-page iTab, a
192   ** write-lock on the schema table, or (if the client is reading) a
193   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
194   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195     if( pLock->pBtree==pBtree
196      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197      && pLock->eLock>=eLockType
198     ){
199       return 1;
200     }
201   }
202 
203   /* Failed to find the required lock. */
204   return 0;
205 }
206 #endif /* SQLITE_DEBUG */
207 
208 #ifdef SQLITE_DEBUG
209 /*
210 **** This function may be used as part of assert() statements only. ****
211 **
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
215 **
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table.  Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
221 **
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
224 **
225 **    assert( !hasReadConflicts(pBtree, iRoot) );
226 */
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228   BtCursor *p;
229   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230     if( p->pgnoRoot==iRoot
231      && p->pBtree!=pBtree
232      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233     ){
234       return 1;
235     }
236   }
237   return 0;
238 }
239 #endif    /* #ifdef SQLITE_DEBUG */
240 
241 /*
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
246 */
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248   BtShared *pBt = p->pBt;
249   BtLock *pIter;
250 
251   assert( sqlite3BtreeHoldsMutex(p) );
252   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253   assert( p->db!=0 );
254   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
255 
256   /* If requesting a write-lock, then the Btree must have an open write
257   ** transaction on this file. And, obviously, for this to be so there
258   ** must be an open write transaction on the file itself.
259   */
260   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262 
263   /* This routine is a no-op if the shared-cache is not enabled */
264   if( !p->sharable ){
265     return SQLITE_OK;
266   }
267 
268   /* If some other connection is holding an exclusive lock, the
269   ** requested lock may not be obtained.
270   */
271   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273     return SQLITE_LOCKED_SHAREDCACHE;
274   }
275 
276   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277     /* The condition (pIter->eLock!=eLock) in the following if(...)
278     ** statement is a simplification of:
279     **
280     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281     **
282     ** since we know that if eLock==WRITE_LOCK, then no other connection
283     ** may hold a WRITE_LOCK on any table in this file (since there can
284     ** only be a single writer).
285     */
286     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290       if( eLock==WRITE_LOCK ){
291         assert( p==pBt->pWriter );
292         pBt->btsFlags |= BTS_PENDING;
293       }
294       return SQLITE_LOCKED_SHAREDCACHE;
295     }
296   }
297   return SQLITE_OK;
298 }
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
300 
301 #ifndef SQLITE_OMIT_SHARED_CACHE
302 /*
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
306 **
307 ** This function assumes the following:
308 **
309 **   (a) The specified Btree object p is connected to a sharable
310 **       database (one with the BtShared.sharable flag set), and
311 **
312 **   (b) No other Btree objects hold a lock that conflicts
313 **       with the requested lock (i.e. querySharedCacheTableLock() has
314 **       already been called and returned SQLITE_OK).
315 **
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
318 */
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320   BtShared *pBt = p->pBt;
321   BtLock *pLock = 0;
322   BtLock *pIter;
323 
324   assert( sqlite3BtreeHoldsMutex(p) );
325   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326   assert( p->db!=0 );
327 
328   /* A connection with the read-uncommitted flag set will never try to
329   ** obtain a read-lock using this function. The only read-lock obtained
330   ** by a connection in read-uncommitted mode is on the sqlite_master
331   ** table, and that lock is obtained in BtreeBeginTrans().  */
332   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333 
334   /* This function should only be called on a sharable b-tree after it
335   ** has been determined that no other b-tree holds a conflicting lock.  */
336   assert( p->sharable );
337   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
338 
339   /* First search the list for an existing lock on this table. */
340   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341     if( pIter->iTable==iTable && pIter->pBtree==p ){
342       pLock = pIter;
343       break;
344     }
345   }
346 
347   /* If the above search did not find a BtLock struct associating Btree p
348   ** with table iTable, allocate one and link it into the list.
349   */
350   if( !pLock ){
351     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352     if( !pLock ){
353       return SQLITE_NOMEM;
354     }
355     pLock->iTable = iTable;
356     pLock->pBtree = p;
357     pLock->pNext = pBt->pLock;
358     pBt->pLock = pLock;
359   }
360 
361   /* Set the BtLock.eLock variable to the maximum of the current lock
362   ** and the requested lock. This means if a write-lock was already held
363   ** and a read-lock requested, we don't incorrectly downgrade the lock.
364   */
365   assert( WRITE_LOCK>READ_LOCK );
366   if( eLock>pLock->eLock ){
367     pLock->eLock = eLock;
368   }
369 
370   return SQLITE_OK;
371 }
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
373 
374 #ifndef SQLITE_OMIT_SHARED_CACHE
375 /*
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
378 **
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
382 */
383 static void clearAllSharedCacheTableLocks(Btree *p){
384   BtShared *pBt = p->pBt;
385   BtLock **ppIter = &pBt->pLock;
386 
387   assert( sqlite3BtreeHoldsMutex(p) );
388   assert( p->sharable || 0==*ppIter );
389   assert( p->inTrans>0 );
390 
391   while( *ppIter ){
392     BtLock *pLock = *ppIter;
393     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394     assert( pLock->pBtree->inTrans>=pLock->eLock );
395     if( pLock->pBtree==p ){
396       *ppIter = pLock->pNext;
397       assert( pLock->iTable!=1 || pLock==&p->lock );
398       if( pLock->iTable!=1 ){
399         sqlite3_free(pLock);
400       }
401     }else{
402       ppIter = &pLock->pNext;
403     }
404   }
405 
406   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407   if( pBt->pWriter==p ){
408     pBt->pWriter = 0;
409     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410   }else if( pBt->nTransaction==2 ){
411     /* This function is called when Btree p is concluding its
412     ** transaction. If there currently exists a writer, and p is not
413     ** that writer, then the number of locks held by connections other
414     ** than the writer must be about to drop to zero. In this case
415     ** set the BTS_PENDING flag to 0.
416     **
417     ** If there is not currently a writer, then BTS_PENDING must
418     ** be zero already. So this next line is harmless in that case.
419     */
420     pBt->btsFlags &= ~BTS_PENDING;
421   }
422 }
423 
424 /*
425 ** This function changes all write-locks held by Btree p into read-locks.
426 */
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428   BtShared *pBt = p->pBt;
429   if( pBt->pWriter==p ){
430     BtLock *pLock;
431     pBt->pWriter = 0;
432     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435       pLock->eLock = READ_LOCK;
436     }
437   }
438 }
439 
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
441 
442 static void releasePage(MemPage *pPage);  /* Forward reference */
443 
444 /*
445 ***** This routine is used inside of assert() only ****
446 **
447 ** Verify that the cursor holds the mutex on its BtShared
448 */
449 #ifdef SQLITE_DEBUG
450 static int cursorHoldsMutex(BtCursor *p){
451   return sqlite3_mutex_held(p->pBt->mutex);
452 }
453 #endif
454 
455 /*
456 ** Invalidate the overflow cache of the cursor passed as the first argument.
457 ** on the shared btree structure pBt.
458 */
459 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
460 
461 /*
462 ** Invalidate the overflow page-list cache for all cursors opened
463 ** on the shared btree structure pBt.
464 */
465 static void invalidateAllOverflowCache(BtShared *pBt){
466   BtCursor *p;
467   assert( sqlite3_mutex_held(pBt->mutex) );
468   for(p=pBt->pCursor; p; p=p->pNext){
469     invalidateOverflowCache(p);
470   }
471 }
472 
473 #ifndef SQLITE_OMIT_INCRBLOB
474 /*
475 ** This function is called before modifying the contents of a table
476 ** to invalidate any incrblob cursors that are open on the
477 ** row or one of the rows being modified.
478 **
479 ** If argument isClearTable is true, then the entire contents of the
480 ** table is about to be deleted. In this case invalidate all incrblob
481 ** cursors open on any row within the table with root-page pgnoRoot.
482 **
483 ** Otherwise, if argument isClearTable is false, then the row with
484 ** rowid iRow is being replaced or deleted. In this case invalidate
485 ** only those incrblob cursors open on that specific row.
486 */
487 static void invalidateIncrblobCursors(
488   Btree *pBtree,          /* The database file to check */
489   i64 iRow,               /* The rowid that might be changing */
490   int isClearTable        /* True if all rows are being deleted */
491 ){
492   BtCursor *p;
493   if( pBtree->hasIncrblobCur==0 ) return;
494   assert( sqlite3BtreeHoldsMutex(pBtree) );
495   pBtree->hasIncrblobCur = 0;
496   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497     if( (p->curFlags & BTCF_Incrblob)!=0 ){
498       pBtree->hasIncrblobCur = 1;
499       if( isClearTable || p->info.nKey==iRow ){
500         p->eState = CURSOR_INVALID;
501       }
502     }
503   }
504 }
505 
506 #else
507   /* Stub function when INCRBLOB is omitted */
508   #define invalidateIncrblobCursors(x,y,z)
509 #endif /* SQLITE_OMIT_INCRBLOB */
510 
511 /*
512 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513 ** when a page that previously contained data becomes a free-list leaf
514 ** page.
515 **
516 ** The BtShared.pHasContent bitvec exists to work around an obscure
517 ** bug caused by the interaction of two useful IO optimizations surrounding
518 ** free-list leaf pages:
519 **
520 **   1) When all data is deleted from a page and the page becomes
521 **      a free-list leaf page, the page is not written to the database
522 **      (as free-list leaf pages contain no meaningful data). Sometimes
523 **      such a page is not even journalled (as it will not be modified,
524 **      why bother journalling it?).
525 **
526 **   2) When a free-list leaf page is reused, its content is not read
527 **      from the database or written to the journal file (why should it
528 **      be, if it is not at all meaningful?).
529 **
530 ** By themselves, these optimizations work fine and provide a handy
531 ** performance boost to bulk delete or insert operations. However, if
532 ** a page is moved to the free-list and then reused within the same
533 ** transaction, a problem comes up. If the page is not journalled when
534 ** it is moved to the free-list and it is also not journalled when it
535 ** is extracted from the free-list and reused, then the original data
536 ** may be lost. In the event of a rollback, it may not be possible
537 ** to restore the database to its original configuration.
538 **
539 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540 ** moved to become a free-list leaf page, the corresponding bit is
541 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
542 ** optimization 2 above is omitted if the corresponding bit is already
543 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
544 ** at the end of every transaction.
545 */
546 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547   int rc = SQLITE_OK;
548   if( !pBt->pHasContent ){
549     assert( pgno<=pBt->nPage );
550     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
551     if( !pBt->pHasContent ){
552       rc = SQLITE_NOMEM;
553     }
554   }
555   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557   }
558   return rc;
559 }
560 
561 /*
562 ** Query the BtShared.pHasContent vector.
563 **
564 ** This function is called when a free-list leaf page is removed from the
565 ** free-list for reuse. It returns false if it is safe to retrieve the
566 ** page from the pager layer with the 'no-content' flag set. True otherwise.
567 */
568 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569   Bitvec *p = pBt->pHasContent;
570   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571 }
572 
573 /*
574 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575 ** invoked at the conclusion of each write-transaction.
576 */
577 static void btreeClearHasContent(BtShared *pBt){
578   sqlite3BitvecDestroy(pBt->pHasContent);
579   pBt->pHasContent = 0;
580 }
581 
582 /*
583 ** Release all of the apPage[] pages for a cursor.
584 */
585 static void btreeReleaseAllCursorPages(BtCursor *pCur){
586   int i;
587   for(i=0; i<=pCur->iPage; i++){
588     releasePage(pCur->apPage[i]);
589     pCur->apPage[i] = 0;
590   }
591   pCur->iPage = -1;
592 }
593 
594 /*
595 ** The cursor passed as the only argument must point to a valid entry
596 ** when this function is called (i.e. have eState==CURSOR_VALID). This
597 ** function saves the current cursor key in variables pCur->nKey and
598 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
599 ** code otherwise.
600 **
601 ** If the cursor is open on an intkey table, then the integer key
602 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
603 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
604 ** set to point to a malloced buffer pCur->nKey bytes in size containing
605 ** the key.
606 */
607 static int saveCursorKey(BtCursor *pCur){
608   int rc;
609   assert( CURSOR_VALID==pCur->eState );
610   assert( 0==pCur->pKey );
611   assert( cursorHoldsMutex(pCur) );
612 
613   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
614   assert( rc==SQLITE_OK );  /* KeySize() cannot fail */
615 
616   /* If this is an intKey table, then the above call to BtreeKeySize()
617   ** stores the integer key in pCur->nKey. In this case this value is
618   ** all that is required. Otherwise, if pCur is not open on an intKey
619   ** table, then malloc space for and store the pCur->nKey bytes of key
620   ** data.  */
621   if( 0==pCur->curIntKey ){
622     void *pKey = sqlite3Malloc( pCur->nKey );
623     if( pKey ){
624       rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
625       if( rc==SQLITE_OK ){
626         pCur->pKey = pKey;
627       }else{
628         sqlite3_free(pKey);
629       }
630     }else{
631       rc = SQLITE_NOMEM;
632     }
633   }
634   assert( !pCur->curIntKey || !pCur->pKey );
635   return rc;
636 }
637 
638 /*
639 ** Save the current cursor position in the variables BtCursor.nKey
640 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
641 **
642 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
643 ** prior to calling this routine.
644 */
645 static int saveCursorPosition(BtCursor *pCur){
646   int rc;
647 
648   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
649   assert( 0==pCur->pKey );
650   assert( cursorHoldsMutex(pCur) );
651 
652   if( pCur->eState==CURSOR_SKIPNEXT ){
653     pCur->eState = CURSOR_VALID;
654   }else{
655     pCur->skipNext = 0;
656   }
657 
658   rc = saveCursorKey(pCur);
659   if( rc==SQLITE_OK ){
660     btreeReleaseAllCursorPages(pCur);
661     pCur->eState = CURSOR_REQUIRESEEK;
662   }
663 
664   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
665   return rc;
666 }
667 
668 /* Forward reference */
669 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
670 
671 /*
672 ** Save the positions of all cursors (except pExcept) that are open on
673 ** the table with root-page iRoot.  "Saving the cursor position" means that
674 ** the location in the btree is remembered in such a way that it can be
675 ** moved back to the same spot after the btree has been modified.  This
676 ** routine is called just before cursor pExcept is used to modify the
677 ** table, for example in BtreeDelete() or BtreeInsert().
678 **
679 ** If there are two or more cursors on the same btree, then all such
680 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
681 ** routine enforces that rule.  This routine only needs to be called in
682 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
683 **
684 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
685 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
686 ** pointless call to this routine.
687 **
688 ** Implementation note:  This routine merely checks to see if any cursors
689 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
690 ** event that cursors are in need to being saved.
691 */
692 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
693   BtCursor *p;
694   assert( sqlite3_mutex_held(pBt->mutex) );
695   assert( pExcept==0 || pExcept->pBt==pBt );
696   for(p=pBt->pCursor; p; p=p->pNext){
697     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
698   }
699   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
700   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
701   return SQLITE_OK;
702 }
703 
704 /* This helper routine to saveAllCursors does the actual work of saving
705 ** the cursors if and when a cursor is found that actually requires saving.
706 ** The common case is that no cursors need to be saved, so this routine is
707 ** broken out from its caller to avoid unnecessary stack pointer movement.
708 */
709 static int SQLITE_NOINLINE saveCursorsOnList(
710   BtCursor *p,         /* The first cursor that needs saving */
711   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
712   BtCursor *pExcept    /* Do not save this cursor */
713 ){
714   do{
715     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
716       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
717         int rc = saveCursorPosition(p);
718         if( SQLITE_OK!=rc ){
719           return rc;
720         }
721       }else{
722         testcase( p->iPage>0 );
723         btreeReleaseAllCursorPages(p);
724       }
725     }
726     p = p->pNext;
727   }while( p );
728   return SQLITE_OK;
729 }
730 
731 /*
732 ** Clear the current cursor position.
733 */
734 void sqlite3BtreeClearCursor(BtCursor *pCur){
735   assert( cursorHoldsMutex(pCur) );
736   sqlite3_free(pCur->pKey);
737   pCur->pKey = 0;
738   pCur->eState = CURSOR_INVALID;
739 }
740 
741 /*
742 ** In this version of BtreeMoveto, pKey is a packed index record
743 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
744 ** record and then call BtreeMovetoUnpacked() to do the work.
745 */
746 static int btreeMoveto(
747   BtCursor *pCur,     /* Cursor open on the btree to be searched */
748   const void *pKey,   /* Packed key if the btree is an index */
749   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
750   int bias,           /* Bias search to the high end */
751   int *pRes           /* Write search results here */
752 ){
753   int rc;                    /* Status code */
754   UnpackedRecord *pIdxKey;   /* Unpacked index key */
755   char aSpace[200];          /* Temp space for pIdxKey - to avoid a malloc */
756   char *pFree = 0;
757 
758   if( pKey ){
759     assert( nKey==(i64)(int)nKey );
760     pIdxKey = sqlite3VdbeAllocUnpackedRecord(
761         pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
762     );
763     if( pIdxKey==0 ) return SQLITE_NOMEM;
764     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
765     if( pIdxKey->nField==0 ){
766       sqlite3DbFree(pCur->pKeyInfo->db, pFree);
767       return SQLITE_CORRUPT_BKPT;
768     }
769   }else{
770     pIdxKey = 0;
771   }
772   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
773   if( pFree ){
774     sqlite3DbFree(pCur->pKeyInfo->db, pFree);
775   }
776   return rc;
777 }
778 
779 /*
780 ** Restore the cursor to the position it was in (or as close to as possible)
781 ** when saveCursorPosition() was called. Note that this call deletes the
782 ** saved position info stored by saveCursorPosition(), so there can be
783 ** at most one effective restoreCursorPosition() call after each
784 ** saveCursorPosition().
785 */
786 static int btreeRestoreCursorPosition(BtCursor *pCur){
787   int rc;
788   int skipNext;
789   assert( cursorHoldsMutex(pCur) );
790   assert( pCur->eState>=CURSOR_REQUIRESEEK );
791   if( pCur->eState==CURSOR_FAULT ){
792     return pCur->skipNext;
793   }
794   pCur->eState = CURSOR_INVALID;
795   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
796   if( rc==SQLITE_OK ){
797     sqlite3_free(pCur->pKey);
798     pCur->pKey = 0;
799     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
800     pCur->skipNext |= skipNext;
801     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
802       pCur->eState = CURSOR_SKIPNEXT;
803     }
804   }
805   return rc;
806 }
807 
808 #define restoreCursorPosition(p) \
809   (p->eState>=CURSOR_REQUIRESEEK ? \
810          btreeRestoreCursorPosition(p) : \
811          SQLITE_OK)
812 
813 /*
814 ** Determine whether or not a cursor has moved from the position where
815 ** it was last placed, or has been invalidated for any other reason.
816 ** Cursors can move when the row they are pointing at is deleted out
817 ** from under them, for example.  Cursor might also move if a btree
818 ** is rebalanced.
819 **
820 ** Calling this routine with a NULL cursor pointer returns false.
821 **
822 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
823 ** back to where it ought to be if this routine returns true.
824 */
825 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
826   return pCur->eState!=CURSOR_VALID;
827 }
828 
829 /*
830 ** This routine restores a cursor back to its original position after it
831 ** has been moved by some outside activity (such as a btree rebalance or
832 ** a row having been deleted out from under the cursor).
833 **
834 ** On success, the *pDifferentRow parameter is false if the cursor is left
835 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
836 ** was pointing to has been deleted, forcing the cursor to point to some
837 ** nearby row.
838 **
839 ** This routine should only be called for a cursor that just returned
840 ** TRUE from sqlite3BtreeCursorHasMoved().
841 */
842 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
843   int rc;
844 
845   assert( pCur!=0 );
846   assert( pCur->eState!=CURSOR_VALID );
847   rc = restoreCursorPosition(pCur);
848   if( rc ){
849     *pDifferentRow = 1;
850     return rc;
851   }
852   if( pCur->eState!=CURSOR_VALID ){
853     *pDifferentRow = 1;
854   }else{
855     assert( pCur->skipNext==0 );
856     *pDifferentRow = 0;
857   }
858   return SQLITE_OK;
859 }
860 
861 #ifndef SQLITE_OMIT_AUTOVACUUM
862 /*
863 ** Given a page number of a regular database page, return the page
864 ** number for the pointer-map page that contains the entry for the
865 ** input page number.
866 **
867 ** Return 0 (not a valid page) for pgno==1 since there is
868 ** no pointer map associated with page 1.  The integrity_check logic
869 ** requires that ptrmapPageno(*,1)!=1.
870 */
871 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
872   int nPagesPerMapPage;
873   Pgno iPtrMap, ret;
874   assert( sqlite3_mutex_held(pBt->mutex) );
875   if( pgno<2 ) return 0;
876   nPagesPerMapPage = (pBt->usableSize/5)+1;
877   iPtrMap = (pgno-2)/nPagesPerMapPage;
878   ret = (iPtrMap*nPagesPerMapPage) + 2;
879   if( ret==PENDING_BYTE_PAGE(pBt) ){
880     ret++;
881   }
882   return ret;
883 }
884 
885 /*
886 ** Write an entry into the pointer map.
887 **
888 ** This routine updates the pointer map entry for page number 'key'
889 ** so that it maps to type 'eType' and parent page number 'pgno'.
890 **
891 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
892 ** a no-op.  If an error occurs, the appropriate error code is written
893 ** into *pRC.
894 */
895 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
896   DbPage *pDbPage;  /* The pointer map page */
897   u8 *pPtrmap;      /* The pointer map data */
898   Pgno iPtrmap;     /* The pointer map page number */
899   int offset;       /* Offset in pointer map page */
900   int rc;           /* Return code from subfunctions */
901 
902   if( *pRC ) return;
903 
904   assert( sqlite3_mutex_held(pBt->mutex) );
905   /* The master-journal page number must never be used as a pointer map page */
906   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
907 
908   assert( pBt->autoVacuum );
909   if( key==0 ){
910     *pRC = SQLITE_CORRUPT_BKPT;
911     return;
912   }
913   iPtrmap = PTRMAP_PAGENO(pBt, key);
914   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
915   if( rc!=SQLITE_OK ){
916     *pRC = rc;
917     return;
918   }
919   offset = PTRMAP_PTROFFSET(iPtrmap, key);
920   if( offset<0 ){
921     *pRC = SQLITE_CORRUPT_BKPT;
922     goto ptrmap_exit;
923   }
924   assert( offset <= (int)pBt->usableSize-5 );
925   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
926 
927   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
928     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
929     *pRC= rc = sqlite3PagerWrite(pDbPage);
930     if( rc==SQLITE_OK ){
931       pPtrmap[offset] = eType;
932       put4byte(&pPtrmap[offset+1], parent);
933     }
934   }
935 
936 ptrmap_exit:
937   sqlite3PagerUnref(pDbPage);
938 }
939 
940 /*
941 ** Read an entry from the pointer map.
942 **
943 ** This routine retrieves the pointer map entry for page 'key', writing
944 ** the type and parent page number to *pEType and *pPgno respectively.
945 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
946 */
947 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
948   DbPage *pDbPage;   /* The pointer map page */
949   int iPtrmap;       /* Pointer map page index */
950   u8 *pPtrmap;       /* Pointer map page data */
951   int offset;        /* Offset of entry in pointer map */
952   int rc;
953 
954   assert( sqlite3_mutex_held(pBt->mutex) );
955 
956   iPtrmap = PTRMAP_PAGENO(pBt, key);
957   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
958   if( rc!=0 ){
959     return rc;
960   }
961   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
962 
963   offset = PTRMAP_PTROFFSET(iPtrmap, key);
964   if( offset<0 ){
965     sqlite3PagerUnref(pDbPage);
966     return SQLITE_CORRUPT_BKPT;
967   }
968   assert( offset <= (int)pBt->usableSize-5 );
969   assert( pEType!=0 );
970   *pEType = pPtrmap[offset];
971   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
972 
973   sqlite3PagerUnref(pDbPage);
974   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
975   return SQLITE_OK;
976 }
977 
978 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
979   #define ptrmapPut(w,x,y,z,rc)
980   #define ptrmapGet(w,x,y,z) SQLITE_OK
981   #define ptrmapPutOvflPtr(x, y, rc)
982 #endif
983 
984 /*
985 ** Given a btree page and a cell index (0 means the first cell on
986 ** the page, 1 means the second cell, and so forth) return a pointer
987 ** to the cell content.
988 **
989 ** findCellPastPtr() does the same except it skips past the initial
990 ** 4-byte child pointer found on interior pages, if there is one.
991 **
992 ** This routine works only for pages that do not contain overflow cells.
993 */
994 #define findCell(P,I) \
995   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
996 #define findCellPastPtr(P,I) \
997   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
998 
999 
1000 /*
1001 ** This is common tail processing for btreeParseCellPtr() and
1002 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1003 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1004 ** structure.
1005 */
1006 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1007   MemPage *pPage,         /* Page containing the cell */
1008   u8 *pCell,              /* Pointer to the cell text. */
1009   CellInfo *pInfo         /* Fill in this structure */
1010 ){
1011   /* If the payload will not fit completely on the local page, we have
1012   ** to decide how much to store locally and how much to spill onto
1013   ** overflow pages.  The strategy is to minimize the amount of unused
1014   ** space on overflow pages while keeping the amount of local storage
1015   ** in between minLocal and maxLocal.
1016   **
1017   ** Warning:  changing the way overflow payload is distributed in any
1018   ** way will result in an incompatible file format.
1019   */
1020   int minLocal;  /* Minimum amount of payload held locally */
1021   int maxLocal;  /* Maximum amount of payload held locally */
1022   int surplus;   /* Overflow payload available for local storage */
1023 
1024   minLocal = pPage->minLocal;
1025   maxLocal = pPage->maxLocal;
1026   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1027   testcase( surplus==maxLocal );
1028   testcase( surplus==maxLocal+1 );
1029   if( surplus <= maxLocal ){
1030     pInfo->nLocal = (u16)surplus;
1031   }else{
1032     pInfo->nLocal = (u16)minLocal;
1033   }
1034   pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1035   pInfo->nSize = pInfo->iOverflow + 4;
1036 }
1037 
1038 /*
1039 ** The following routines are implementations of the MemPage.xParseCell()
1040 ** method.
1041 **
1042 ** Parse a cell content block and fill in the CellInfo structure.
1043 **
1044 ** btreeParseCellPtr()        =>   table btree leaf nodes
1045 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1046 ** btreeParseCellPtrIndex()   =>   index btree nodes
1047 **
1048 ** There is also a wrapper function btreeParseCell() that works for
1049 ** all MemPage types and that references the cell by index rather than
1050 ** by pointer.
1051 */
1052 static void btreeParseCellPtrNoPayload(
1053   MemPage *pPage,         /* Page containing the cell */
1054   u8 *pCell,              /* Pointer to the cell text. */
1055   CellInfo *pInfo         /* Fill in this structure */
1056 ){
1057   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1058   assert( pPage->leaf==0 );
1059   assert( pPage->noPayload );
1060   assert( pPage->childPtrSize==4 );
1061 #ifndef SQLITE_DEBUG
1062   UNUSED_PARAMETER(pPage);
1063 #endif
1064   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1065   pInfo->nPayload = 0;
1066   pInfo->nLocal = 0;
1067   pInfo->iOverflow = 0;
1068   pInfo->pPayload = 0;
1069   return;
1070 }
1071 static void btreeParseCellPtr(
1072   MemPage *pPage,         /* Page containing the cell */
1073   u8 *pCell,              /* Pointer to the cell text. */
1074   CellInfo *pInfo         /* Fill in this structure */
1075 ){
1076   u8 *pIter;              /* For scanning through pCell */
1077   u32 nPayload;           /* Number of bytes of cell payload */
1078   u64 iKey;               /* Extracted Key value */
1079 
1080   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1081   assert( pPage->leaf==0 || pPage->leaf==1 );
1082   assert( pPage->intKeyLeaf || pPage->noPayload );
1083   assert( pPage->noPayload==0 );
1084   assert( pPage->intKeyLeaf );
1085   assert( pPage->childPtrSize==0 );
1086   pIter = pCell;
1087 
1088   /* The next block of code is equivalent to:
1089   **
1090   **     pIter += getVarint32(pIter, nPayload);
1091   **
1092   ** The code is inlined to avoid a function call.
1093   */
1094   nPayload = *pIter;
1095   if( nPayload>=0x80 ){
1096     u8 *pEnd = &pIter[8];
1097     nPayload &= 0x7f;
1098     do{
1099       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1100     }while( (*pIter)>=0x80 && pIter<pEnd );
1101   }
1102   pIter++;
1103 
1104   /* The next block of code is equivalent to:
1105   **
1106   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1107   **
1108   ** The code is inlined to avoid a function call.
1109   */
1110   iKey = *pIter;
1111   if( iKey>=0x80 ){
1112     u8 *pEnd = &pIter[7];
1113     iKey &= 0x7f;
1114     while(1){
1115       iKey = (iKey<<7) | (*++pIter & 0x7f);
1116       if( (*pIter)<0x80 ) break;
1117       if( pIter>=pEnd ){
1118         iKey = (iKey<<8) | *++pIter;
1119         break;
1120       }
1121     }
1122   }
1123   pIter++;
1124 
1125   pInfo->nKey = *(i64*)&iKey;
1126   pInfo->nPayload = nPayload;
1127   pInfo->pPayload = pIter;
1128   testcase( nPayload==pPage->maxLocal );
1129   testcase( nPayload==pPage->maxLocal+1 );
1130   if( nPayload<=pPage->maxLocal ){
1131     /* This is the (easy) common case where the entire payload fits
1132     ** on the local page.  No overflow is required.
1133     */
1134     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1135     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1136     pInfo->nLocal = (u16)nPayload;
1137     pInfo->iOverflow = 0;
1138   }else{
1139     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1140   }
1141 }
1142 static void btreeParseCellPtrIndex(
1143   MemPage *pPage,         /* Page containing the cell */
1144   u8 *pCell,              /* Pointer to the cell text. */
1145   CellInfo *pInfo         /* Fill in this structure */
1146 ){
1147   u8 *pIter;              /* For scanning through pCell */
1148   u32 nPayload;           /* Number of bytes of cell payload */
1149 
1150   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1151   assert( pPage->leaf==0 || pPage->leaf==1 );
1152   assert( pPage->intKeyLeaf==0 );
1153   assert( pPage->noPayload==0 );
1154   pIter = pCell + pPage->childPtrSize;
1155   nPayload = *pIter;
1156   if( nPayload>=0x80 ){
1157     u8 *pEnd = &pIter[8];
1158     nPayload &= 0x7f;
1159     do{
1160       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1161     }while( *(pIter)>=0x80 && pIter<pEnd );
1162   }
1163   pIter++;
1164   pInfo->nKey = nPayload;
1165   pInfo->nPayload = nPayload;
1166   pInfo->pPayload = pIter;
1167   testcase( nPayload==pPage->maxLocal );
1168   testcase( nPayload==pPage->maxLocal+1 );
1169   if( nPayload<=pPage->maxLocal ){
1170     /* This is the (easy) common case where the entire payload fits
1171     ** on the local page.  No overflow is required.
1172     */
1173     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1174     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1175     pInfo->nLocal = (u16)nPayload;
1176     pInfo->iOverflow = 0;
1177   }else{
1178     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1179   }
1180 }
1181 static void btreeParseCell(
1182   MemPage *pPage,         /* Page containing the cell */
1183   int iCell,              /* The cell index.  First cell is 0 */
1184   CellInfo *pInfo         /* Fill in this structure */
1185 ){
1186   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1187 }
1188 
1189 /*
1190 ** The following routines are implementations of the MemPage.xCellSize
1191 ** method.
1192 **
1193 ** Compute the total number of bytes that a Cell needs in the cell
1194 ** data area of the btree-page.  The return number includes the cell
1195 ** data header and the local payload, but not any overflow page or
1196 ** the space used by the cell pointer.
1197 **
1198 ** cellSizePtrNoPayload()    =>   table internal nodes
1199 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1200 */
1201 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1202   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1203   u8 *pEnd;                                /* End mark for a varint */
1204   u32 nSize;                               /* Size value to return */
1205 
1206 #ifdef SQLITE_DEBUG
1207   /* The value returned by this function should always be the same as
1208   ** the (CellInfo.nSize) value found by doing a full parse of the
1209   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1210   ** this function verifies that this invariant is not violated. */
1211   CellInfo debuginfo;
1212   pPage->xParseCell(pPage, pCell, &debuginfo);
1213 #endif
1214 
1215   assert( pPage->noPayload==0 );
1216   nSize = *pIter;
1217   if( nSize>=0x80 ){
1218     pEnd = &pIter[8];
1219     nSize &= 0x7f;
1220     do{
1221       nSize = (nSize<<7) | (*++pIter & 0x7f);
1222     }while( *(pIter)>=0x80 && pIter<pEnd );
1223   }
1224   pIter++;
1225   if( pPage->intKey ){
1226     /* pIter now points at the 64-bit integer key value, a variable length
1227     ** integer. The following block moves pIter to point at the first byte
1228     ** past the end of the key value. */
1229     pEnd = &pIter[9];
1230     while( (*pIter++)&0x80 && pIter<pEnd );
1231   }
1232   testcase( nSize==pPage->maxLocal );
1233   testcase( nSize==pPage->maxLocal+1 );
1234   if( nSize<=pPage->maxLocal ){
1235     nSize += (u32)(pIter - pCell);
1236     if( nSize<4 ) nSize = 4;
1237   }else{
1238     int minLocal = pPage->minLocal;
1239     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1240     testcase( nSize==pPage->maxLocal );
1241     testcase( nSize==pPage->maxLocal+1 );
1242     if( nSize>pPage->maxLocal ){
1243       nSize = minLocal;
1244     }
1245     nSize += 4 + (u16)(pIter - pCell);
1246   }
1247   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1248   return (u16)nSize;
1249 }
1250 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1251   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1252   u8 *pEnd;              /* End mark for a varint */
1253 
1254 #ifdef SQLITE_DEBUG
1255   /* The value returned by this function should always be the same as
1256   ** the (CellInfo.nSize) value found by doing a full parse of the
1257   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1258   ** this function verifies that this invariant is not violated. */
1259   CellInfo debuginfo;
1260   pPage->xParseCell(pPage, pCell, &debuginfo);
1261 #else
1262   UNUSED_PARAMETER(pPage);
1263 #endif
1264 
1265   assert( pPage->childPtrSize==4 );
1266   pEnd = pIter + 9;
1267   while( (*pIter++)&0x80 && pIter<pEnd );
1268   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1269   return (u16)(pIter - pCell);
1270 }
1271 
1272 
1273 #ifdef SQLITE_DEBUG
1274 /* This variation on cellSizePtr() is used inside of assert() statements
1275 ** only. */
1276 static u16 cellSize(MemPage *pPage, int iCell){
1277   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1278 }
1279 #endif
1280 
1281 #ifndef SQLITE_OMIT_AUTOVACUUM
1282 /*
1283 ** If the cell pCell, part of page pPage contains a pointer
1284 ** to an overflow page, insert an entry into the pointer-map
1285 ** for the overflow page.
1286 */
1287 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1288   CellInfo info;
1289   if( *pRC ) return;
1290   assert( pCell!=0 );
1291   pPage->xParseCell(pPage, pCell, &info);
1292   if( info.iOverflow ){
1293     Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1294     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1295   }
1296 }
1297 #endif
1298 
1299 
1300 /*
1301 ** Defragment the page given.  All Cells are moved to the
1302 ** end of the page and all free space is collected into one
1303 ** big FreeBlk that occurs in between the header and cell
1304 ** pointer array and the cell content area.
1305 **
1306 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1307 ** b-tree page so that there are no freeblocks or fragment bytes, all
1308 ** unused bytes are contained in the unallocated space region, and all
1309 ** cells are packed tightly at the end of the page.
1310 */
1311 static int defragmentPage(MemPage *pPage){
1312   int i;                     /* Loop counter */
1313   int pc;                    /* Address of the i-th cell */
1314   int hdr;                   /* Offset to the page header */
1315   int size;                  /* Size of a cell */
1316   int usableSize;            /* Number of usable bytes on a page */
1317   int cellOffset;            /* Offset to the cell pointer array */
1318   int cbrk;                  /* Offset to the cell content area */
1319   int nCell;                 /* Number of cells on the page */
1320   unsigned char *data;       /* The page data */
1321   unsigned char *temp;       /* Temp area for cell content */
1322   unsigned char *src;        /* Source of content */
1323   int iCellFirst;            /* First allowable cell index */
1324   int iCellLast;             /* Last possible cell index */
1325 
1326 
1327   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1328   assert( pPage->pBt!=0 );
1329   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1330   assert( pPage->nOverflow==0 );
1331   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1332   temp = 0;
1333   src = data = pPage->aData;
1334   hdr = pPage->hdrOffset;
1335   cellOffset = pPage->cellOffset;
1336   nCell = pPage->nCell;
1337   assert( nCell==get2byte(&data[hdr+3]) );
1338   usableSize = pPage->pBt->usableSize;
1339   cbrk = usableSize;
1340   iCellFirst = cellOffset + 2*nCell;
1341   iCellLast = usableSize - 4;
1342   for(i=0; i<nCell; i++){
1343     u8 *pAddr;     /* The i-th cell pointer */
1344     pAddr = &data[cellOffset + i*2];
1345     pc = get2byte(pAddr);
1346     testcase( pc==iCellFirst );
1347     testcase( pc==iCellLast );
1348     /* These conditions have already been verified in btreeInitPage()
1349     ** if PRAGMA cell_size_check=ON.
1350     */
1351     if( pc<iCellFirst || pc>iCellLast ){
1352       return SQLITE_CORRUPT_BKPT;
1353     }
1354     assert( pc>=iCellFirst && pc<=iCellLast );
1355     size = pPage->xCellSize(pPage, &src[pc]);
1356     cbrk -= size;
1357     if( cbrk<iCellFirst || pc+size>usableSize ){
1358       return SQLITE_CORRUPT_BKPT;
1359     }
1360     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1361     testcase( cbrk+size==usableSize );
1362     testcase( pc+size==usableSize );
1363     put2byte(pAddr, cbrk);
1364     if( temp==0 ){
1365       int x;
1366       if( cbrk==pc ) continue;
1367       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1368       x = get2byte(&data[hdr+5]);
1369       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1370       src = temp;
1371     }
1372     memcpy(&data[cbrk], &src[pc], size);
1373   }
1374   assert( cbrk>=iCellFirst );
1375   put2byte(&data[hdr+5], cbrk);
1376   data[hdr+1] = 0;
1377   data[hdr+2] = 0;
1378   data[hdr+7] = 0;
1379   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1380   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1381   if( cbrk-iCellFirst!=pPage->nFree ){
1382     return SQLITE_CORRUPT_BKPT;
1383   }
1384   return SQLITE_OK;
1385 }
1386 
1387 /*
1388 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1389 ** size. If one can be found, return a pointer to the space and remove it
1390 ** from the free-list.
1391 **
1392 ** If no suitable space can be found on the free-list, return NULL.
1393 **
1394 ** This function may detect corruption within pPg.  If corruption is
1395 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1396 **
1397 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1398 ** will be ignored if adding the extra space to the fragmentation count
1399 ** causes the fragmentation count to exceed 60.
1400 */
1401 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1402   const int hdr = pPg->hdrOffset;
1403   u8 * const aData = pPg->aData;
1404   int iAddr = hdr + 1;
1405   int pc = get2byte(&aData[iAddr]);
1406   int x;
1407   int usableSize = pPg->pBt->usableSize;
1408 
1409   assert( pc>0 );
1410   do{
1411     int size;            /* Size of the free slot */
1412     /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1413     ** increasing offset. */
1414     if( pc>usableSize-4 || pc<iAddr+4 ){
1415       *pRc = SQLITE_CORRUPT_BKPT;
1416       return 0;
1417     }
1418     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1419     ** freeblock form a big-endian integer which is the size of the freeblock
1420     ** in bytes, including the 4-byte header. */
1421     size = get2byte(&aData[pc+2]);
1422     if( (x = size - nByte)>=0 ){
1423       testcase( x==4 );
1424       testcase( x==3 );
1425       if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1426         *pRc = SQLITE_CORRUPT_BKPT;
1427         return 0;
1428       }else if( x<4 ){
1429         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1430         ** number of bytes in fragments may not exceed 60. */
1431         if( aData[hdr+7]>57 ) return 0;
1432 
1433         /* Remove the slot from the free-list. Update the number of
1434         ** fragmented bytes within the page. */
1435         memcpy(&aData[iAddr], &aData[pc], 2);
1436         aData[hdr+7] += (u8)x;
1437       }else{
1438         /* The slot remains on the free-list. Reduce its size to account
1439          ** for the portion used by the new allocation. */
1440         put2byte(&aData[pc+2], x);
1441       }
1442       return &aData[pc + x];
1443     }
1444     iAddr = pc;
1445     pc = get2byte(&aData[pc]);
1446   }while( pc );
1447 
1448   return 0;
1449 }
1450 
1451 /*
1452 ** Allocate nByte bytes of space from within the B-Tree page passed
1453 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1454 ** of the first byte of allocated space. Return either SQLITE_OK or
1455 ** an error code (usually SQLITE_CORRUPT).
1456 **
1457 ** The caller guarantees that there is sufficient space to make the
1458 ** allocation.  This routine might need to defragment in order to bring
1459 ** all the space together, however.  This routine will avoid using
1460 ** the first two bytes past the cell pointer area since presumably this
1461 ** allocation is being made in order to insert a new cell, so we will
1462 ** also end up needing a new cell pointer.
1463 */
1464 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1465   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1466   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1467   int top;                             /* First byte of cell content area */
1468   int rc = SQLITE_OK;                  /* Integer return code */
1469   int gap;        /* First byte of gap between cell pointers and cell content */
1470 
1471   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1472   assert( pPage->pBt );
1473   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1474   assert( nByte>=0 );  /* Minimum cell size is 4 */
1475   assert( pPage->nFree>=nByte );
1476   assert( pPage->nOverflow==0 );
1477   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1478 
1479   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1480   gap = pPage->cellOffset + 2*pPage->nCell;
1481   assert( gap<=65536 );
1482   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1483   ** and the reserved space is zero (the usual value for reserved space)
1484   ** then the cell content offset of an empty page wants to be 65536.
1485   ** However, that integer is too large to be stored in a 2-byte unsigned
1486   ** integer, so a value of 0 is used in its place. */
1487   top = get2byte(&data[hdr+5]);
1488   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1489   if( gap>top ){
1490     if( top==0 && pPage->pBt->usableSize==65536 ){
1491       top = 65536;
1492     }else{
1493       return SQLITE_CORRUPT_BKPT;
1494     }
1495   }
1496 
1497   /* If there is enough space between gap and top for one more cell pointer
1498   ** array entry offset, and if the freelist is not empty, then search the
1499   ** freelist looking for a free slot big enough to satisfy the request.
1500   */
1501   testcase( gap+2==top );
1502   testcase( gap+1==top );
1503   testcase( gap==top );
1504   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1505     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1506     if( pSpace ){
1507       assert( pSpace>=data && (pSpace - data)<65536 );
1508       *pIdx = (int)(pSpace - data);
1509       return SQLITE_OK;
1510     }else if( rc ){
1511       return rc;
1512     }
1513   }
1514 
1515   /* The request could not be fulfilled using a freelist slot.  Check
1516   ** to see if defragmentation is necessary.
1517   */
1518   testcase( gap+2+nByte==top );
1519   if( gap+2+nByte>top ){
1520     assert( pPage->nCell>0 || CORRUPT_DB );
1521     rc = defragmentPage(pPage);
1522     if( rc ) return rc;
1523     top = get2byteNotZero(&data[hdr+5]);
1524     assert( gap+nByte<=top );
1525   }
1526 
1527 
1528   /* Allocate memory from the gap in between the cell pointer array
1529   ** and the cell content area.  The btreeInitPage() call has already
1530   ** validated the freelist.  Given that the freelist is valid, there
1531   ** is no way that the allocation can extend off the end of the page.
1532   ** The assert() below verifies the previous sentence.
1533   */
1534   top -= nByte;
1535   put2byte(&data[hdr+5], top);
1536   assert( top+nByte <= (int)pPage->pBt->usableSize );
1537   *pIdx = top;
1538   return SQLITE_OK;
1539 }
1540 
1541 /*
1542 ** Return a section of the pPage->aData to the freelist.
1543 ** The first byte of the new free block is pPage->aData[iStart]
1544 ** and the size of the block is iSize bytes.
1545 **
1546 ** Adjacent freeblocks are coalesced.
1547 **
1548 ** Note that even though the freeblock list was checked by btreeInitPage(),
1549 ** that routine will not detect overlap between cells or freeblocks.  Nor
1550 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1551 ** at the end of the page.  So do additional corruption checks inside this
1552 ** routine and return SQLITE_CORRUPT if any problems are found.
1553 */
1554 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1555   u16 iPtr;                             /* Address of ptr to next freeblock */
1556   u16 iFreeBlk;                         /* Address of the next freeblock */
1557   u8 hdr;                               /* Page header size.  0 or 100 */
1558   u8 nFrag = 0;                         /* Reduction in fragmentation */
1559   u16 iOrigSize = iSize;                /* Original value of iSize */
1560   u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1561   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1562   unsigned char *data = pPage->aData;   /* Page content */
1563 
1564   assert( pPage->pBt!=0 );
1565   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1566   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1567   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1568   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1569   assert( iSize>=4 );   /* Minimum cell size is 4 */
1570   assert( iStart<=iLast );
1571 
1572   /* Overwrite deleted information with zeros when the secure_delete
1573   ** option is enabled */
1574   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1575     memset(&data[iStart], 0, iSize);
1576   }
1577 
1578   /* The list of freeblocks must be in ascending order.  Find the
1579   ** spot on the list where iStart should be inserted.
1580   */
1581   hdr = pPage->hdrOffset;
1582   iPtr = hdr + 1;
1583   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1584     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1585   }else{
1586     while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1587       if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1588       iPtr = iFreeBlk;
1589     }
1590     if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1591     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1592 
1593     /* At this point:
1594     **    iFreeBlk:   First freeblock after iStart, or zero if none
1595     **    iPtr:       The address of a pointer to iFreeBlk
1596     **
1597     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1598     */
1599     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1600       nFrag = iFreeBlk - iEnd;
1601       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1602       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1603       if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
1604       iSize = iEnd - iStart;
1605       iFreeBlk = get2byte(&data[iFreeBlk]);
1606     }
1607 
1608     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1609     ** pointer in the page header) then check to see if iStart should be
1610     ** coalesced onto the end of iPtr.
1611     */
1612     if( iPtr>hdr+1 ){
1613       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1614       if( iPtrEnd+3>=iStart ){
1615         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1616         nFrag += iStart - iPtrEnd;
1617         iSize = iEnd - iPtr;
1618         iStart = iPtr;
1619       }
1620     }
1621     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1622     data[hdr+7] -= nFrag;
1623   }
1624   if( iStart==get2byte(&data[hdr+5]) ){
1625     /* The new freeblock is at the beginning of the cell content area,
1626     ** so just extend the cell content area rather than create another
1627     ** freelist entry */
1628     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1629     put2byte(&data[hdr+1], iFreeBlk);
1630     put2byte(&data[hdr+5], iEnd);
1631   }else{
1632     /* Insert the new freeblock into the freelist */
1633     put2byte(&data[iPtr], iStart);
1634     put2byte(&data[iStart], iFreeBlk);
1635     put2byte(&data[iStart+2], iSize);
1636   }
1637   pPage->nFree += iOrigSize;
1638   return SQLITE_OK;
1639 }
1640 
1641 /*
1642 ** Decode the flags byte (the first byte of the header) for a page
1643 ** and initialize fields of the MemPage structure accordingly.
1644 **
1645 ** Only the following combinations are supported.  Anything different
1646 ** indicates a corrupt database files:
1647 **
1648 **         PTF_ZERODATA
1649 **         PTF_ZERODATA | PTF_LEAF
1650 **         PTF_LEAFDATA | PTF_INTKEY
1651 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1652 */
1653 static int decodeFlags(MemPage *pPage, int flagByte){
1654   BtShared *pBt;     /* A copy of pPage->pBt */
1655 
1656   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1657   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1658   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1659   flagByte &= ~PTF_LEAF;
1660   pPage->childPtrSize = 4-4*pPage->leaf;
1661   pPage->xCellSize = cellSizePtr;
1662   pBt = pPage->pBt;
1663   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1664     /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1665     ** table b-tree page. */
1666     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1667     /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1668     ** table b-tree page. */
1669     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1670     pPage->intKey = 1;
1671     if( pPage->leaf ){
1672       pPage->intKeyLeaf = 1;
1673       pPage->noPayload = 0;
1674       pPage->xParseCell = btreeParseCellPtr;
1675     }else{
1676       pPage->intKeyLeaf = 0;
1677       pPage->noPayload = 1;
1678       pPage->xCellSize = cellSizePtrNoPayload;
1679       pPage->xParseCell = btreeParseCellPtrNoPayload;
1680     }
1681     pPage->maxLocal = pBt->maxLeaf;
1682     pPage->minLocal = pBt->minLeaf;
1683   }else if( flagByte==PTF_ZERODATA ){
1684     /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1685     ** index b-tree page. */
1686     assert( (PTF_ZERODATA)==2 );
1687     /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1688     ** index b-tree page. */
1689     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1690     pPage->intKey = 0;
1691     pPage->intKeyLeaf = 0;
1692     pPage->noPayload = 0;
1693     pPage->xParseCell = btreeParseCellPtrIndex;
1694     pPage->maxLocal = pBt->maxLocal;
1695     pPage->minLocal = pBt->minLocal;
1696   }else{
1697     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1698     ** an error. */
1699     return SQLITE_CORRUPT_BKPT;
1700   }
1701   pPage->max1bytePayload = pBt->max1bytePayload;
1702   return SQLITE_OK;
1703 }
1704 
1705 /*
1706 ** Initialize the auxiliary information for a disk block.
1707 **
1708 ** Return SQLITE_OK on success.  If we see that the page does
1709 ** not contain a well-formed database page, then return
1710 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1711 ** guarantee that the page is well-formed.  It only shows that
1712 ** we failed to detect any corruption.
1713 */
1714 static int btreeInitPage(MemPage *pPage){
1715 
1716   assert( pPage->pBt!=0 );
1717   assert( pPage->pBt->db!=0 );
1718   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1719   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1720   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1721   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1722 
1723   if( !pPage->isInit ){
1724     u16 pc;            /* Address of a freeblock within pPage->aData[] */
1725     u8 hdr;            /* Offset to beginning of page header */
1726     u8 *data;          /* Equal to pPage->aData */
1727     BtShared *pBt;        /* The main btree structure */
1728     int usableSize;    /* Amount of usable space on each page */
1729     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1730     int nFree;         /* Number of unused bytes on the page */
1731     int top;           /* First byte of the cell content area */
1732     int iCellFirst;    /* First allowable cell or freeblock offset */
1733     int iCellLast;     /* Last possible cell or freeblock offset */
1734 
1735     pBt = pPage->pBt;
1736 
1737     hdr = pPage->hdrOffset;
1738     data = pPage->aData;
1739     /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1740     ** the b-tree page type. */
1741     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1742     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1743     pPage->maskPage = (u16)(pBt->pageSize - 1);
1744     pPage->nOverflow = 0;
1745     usableSize = pBt->usableSize;
1746     pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1747     pPage->aDataEnd = &data[usableSize];
1748     pPage->aCellIdx = &data[cellOffset];
1749     pPage->aDataOfst = &data[pPage->childPtrSize];
1750     /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1751     ** the start of the cell content area. A zero value for this integer is
1752     ** interpreted as 65536. */
1753     top = get2byteNotZero(&data[hdr+5]);
1754     /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1755     ** number of cells on the page. */
1756     pPage->nCell = get2byte(&data[hdr+3]);
1757     if( pPage->nCell>MX_CELL(pBt) ){
1758       /* To many cells for a single page.  The page must be corrupt */
1759       return SQLITE_CORRUPT_BKPT;
1760     }
1761     testcase( pPage->nCell==MX_CELL(pBt) );
1762     /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1763     ** possible for a root page of a table that contains no rows) then the
1764     ** offset to the cell content area will equal the page size minus the
1765     ** bytes of reserved space. */
1766     assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1767 
1768     /* A malformed database page might cause us to read past the end
1769     ** of page when parsing a cell.
1770     **
1771     ** The following block of code checks early to see if a cell extends
1772     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1773     ** returned if it does.
1774     */
1775     iCellFirst = cellOffset + 2*pPage->nCell;
1776     iCellLast = usableSize - 4;
1777     if( pBt->db->flags & SQLITE_CellSizeCk ){
1778       int i;            /* Index into the cell pointer array */
1779       int sz;           /* Size of a cell */
1780 
1781       if( !pPage->leaf ) iCellLast--;
1782       for(i=0; i<pPage->nCell; i++){
1783         pc = get2byteAligned(&data[cellOffset+i*2]);
1784         testcase( pc==iCellFirst );
1785         testcase( pc==iCellLast );
1786         if( pc<iCellFirst || pc>iCellLast ){
1787           return SQLITE_CORRUPT_BKPT;
1788         }
1789         sz = pPage->xCellSize(pPage, &data[pc]);
1790         testcase( pc+sz==usableSize );
1791         if( pc+sz>usableSize ){
1792           return SQLITE_CORRUPT_BKPT;
1793         }
1794       }
1795       if( !pPage->leaf ) iCellLast++;
1796     }
1797 
1798     /* Compute the total free space on the page
1799     ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1800     ** start of the first freeblock on the page, or is zero if there are no
1801     ** freeblocks. */
1802     pc = get2byte(&data[hdr+1]);
1803     nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1804     while( pc>0 ){
1805       u16 next, size;
1806       if( pc<iCellFirst || pc>iCellLast ){
1807         /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1808         ** always be at least one cell before the first freeblock.
1809         **
1810         ** Or, the freeblock is off the end of the page
1811         */
1812         return SQLITE_CORRUPT_BKPT;
1813       }
1814       next = get2byte(&data[pc]);
1815       size = get2byte(&data[pc+2]);
1816       if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1817         /* Free blocks must be in ascending order. And the last byte of
1818         ** the free-block must lie on the database page.  */
1819         return SQLITE_CORRUPT_BKPT;
1820       }
1821       nFree = nFree + size;
1822       pc = next;
1823     }
1824 
1825     /* At this point, nFree contains the sum of the offset to the start
1826     ** of the cell-content area plus the number of free bytes within
1827     ** the cell-content area. If this is greater than the usable-size
1828     ** of the page, then the page must be corrupted. This check also
1829     ** serves to verify that the offset to the start of the cell-content
1830     ** area, according to the page header, lies within the page.
1831     */
1832     if( nFree>usableSize ){
1833       return SQLITE_CORRUPT_BKPT;
1834     }
1835     pPage->nFree = (u16)(nFree - iCellFirst);
1836     pPage->isInit = 1;
1837   }
1838   return SQLITE_OK;
1839 }
1840 
1841 /*
1842 ** Set up a raw page so that it looks like a database page holding
1843 ** no entries.
1844 */
1845 static void zeroPage(MemPage *pPage, int flags){
1846   unsigned char *data = pPage->aData;
1847   BtShared *pBt = pPage->pBt;
1848   u8 hdr = pPage->hdrOffset;
1849   u16 first;
1850 
1851   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1852   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1853   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1854   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1855   assert( sqlite3_mutex_held(pBt->mutex) );
1856   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1857     memset(&data[hdr], 0, pBt->usableSize - hdr);
1858   }
1859   data[hdr] = (char)flags;
1860   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1861   memset(&data[hdr+1], 0, 4);
1862   data[hdr+7] = 0;
1863   put2byte(&data[hdr+5], pBt->usableSize);
1864   pPage->nFree = (u16)(pBt->usableSize - first);
1865   decodeFlags(pPage, flags);
1866   pPage->cellOffset = first;
1867   pPage->aDataEnd = &data[pBt->usableSize];
1868   pPage->aCellIdx = &data[first];
1869   pPage->aDataOfst = &data[pPage->childPtrSize];
1870   pPage->nOverflow = 0;
1871   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1872   pPage->maskPage = (u16)(pBt->pageSize - 1);
1873   pPage->nCell = 0;
1874   pPage->isInit = 1;
1875 }
1876 
1877 
1878 /*
1879 ** Convert a DbPage obtained from the pager into a MemPage used by
1880 ** the btree layer.
1881 */
1882 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1883   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1884   pPage->aData = sqlite3PagerGetData(pDbPage);
1885   pPage->pDbPage = pDbPage;
1886   pPage->pBt = pBt;
1887   pPage->pgno = pgno;
1888   pPage->hdrOffset = pgno==1 ? 100 : 0;
1889   return pPage;
1890 }
1891 
1892 /*
1893 ** Get a page from the pager.  Initialize the MemPage.pBt and
1894 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
1895 **
1896 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1897 ** about the content of the page at this time.  So do not go to the disk
1898 ** to fetch the content.  Just fill in the content with zeros for now.
1899 ** If in the future we call sqlite3PagerWrite() on this page, that
1900 ** means we have started to be concerned about content and the disk
1901 ** read should occur at that point.
1902 */
1903 static int btreeGetPage(
1904   BtShared *pBt,       /* The btree */
1905   Pgno pgno,           /* Number of the page to fetch */
1906   MemPage **ppPage,    /* Return the page in this parameter */
1907   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1908 ){
1909   int rc;
1910   DbPage *pDbPage;
1911 
1912   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1913   assert( sqlite3_mutex_held(pBt->mutex) );
1914   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1915   if( rc ) return rc;
1916   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1917   return SQLITE_OK;
1918 }
1919 
1920 /*
1921 ** Retrieve a page from the pager cache. If the requested page is not
1922 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1923 ** MemPage.aData elements if needed.
1924 */
1925 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1926   DbPage *pDbPage;
1927   assert( sqlite3_mutex_held(pBt->mutex) );
1928   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1929   if( pDbPage ){
1930     return btreePageFromDbPage(pDbPage, pgno, pBt);
1931   }
1932   return 0;
1933 }
1934 
1935 /*
1936 ** Return the size of the database file in pages. If there is any kind of
1937 ** error, return ((unsigned int)-1).
1938 */
1939 static Pgno btreePagecount(BtShared *pBt){
1940   return pBt->nPage;
1941 }
1942 u32 sqlite3BtreeLastPage(Btree *p){
1943   assert( sqlite3BtreeHoldsMutex(p) );
1944   assert( ((p->pBt->nPage)&0x8000000)==0 );
1945   return btreePagecount(p->pBt);
1946 }
1947 
1948 /*
1949 ** Get a page from the pager and initialize it.
1950 **
1951 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
1952 ** call.  Do additional sanity checking on the page in this case.
1953 ** And if the fetch fails, this routine must decrement pCur->iPage.
1954 **
1955 ** The page is fetched as read-write unless pCur is not NULL and is
1956 ** a read-only cursor.
1957 **
1958 ** If an error occurs, then *ppPage is undefined. It
1959 ** may remain unchanged, or it may be set to an invalid value.
1960 */
1961 static int getAndInitPage(
1962   BtShared *pBt,                  /* The database file */
1963   Pgno pgno,                      /* Number of the page to get */
1964   MemPage **ppPage,               /* Write the page pointer here */
1965   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
1966   int bReadOnly                   /* True for a read-only page */
1967 ){
1968   int rc;
1969   DbPage *pDbPage;
1970   assert( sqlite3_mutex_held(pBt->mutex) );
1971   assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1972   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
1973   assert( pCur==0 || pCur->iPage>0 );
1974 
1975   if( pgno>btreePagecount(pBt) ){
1976     rc = SQLITE_CORRUPT_BKPT;
1977     goto getAndInitPage_error;
1978   }
1979   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
1980   if( rc ){
1981     goto getAndInitPage_error;
1982   }
1983   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1984   if( (*ppPage)->isInit==0 ){
1985     rc = btreeInitPage(*ppPage);
1986     if( rc!=SQLITE_OK ){
1987       releasePage(*ppPage);
1988       goto getAndInitPage_error;
1989     }
1990   }
1991 
1992   /* If obtaining a child page for a cursor, we must verify that the page is
1993   ** compatible with the root page. */
1994   if( pCur
1995    && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
1996   ){
1997     rc = SQLITE_CORRUPT_BKPT;
1998     releasePage(*ppPage);
1999     goto getAndInitPage_error;
2000   }
2001   return SQLITE_OK;
2002 
2003 getAndInitPage_error:
2004   if( pCur ) pCur->iPage--;
2005   testcase( pgno==0 );
2006   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2007   return rc;
2008 }
2009 
2010 /*
2011 ** Release a MemPage.  This should be called once for each prior
2012 ** call to btreeGetPage.
2013 */
2014 static void releasePageNotNull(MemPage *pPage){
2015   assert( pPage->aData );
2016   assert( pPage->pBt );
2017   assert( pPage->pDbPage!=0 );
2018   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2019   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2020   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2021   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2022 }
2023 static void releasePage(MemPage *pPage){
2024   if( pPage ) releasePageNotNull(pPage);
2025 }
2026 
2027 /*
2028 ** Get an unused page.
2029 **
2030 ** This works just like btreeGetPage() with the addition:
2031 **
2032 **   *  If the page is already in use for some other purpose, immediately
2033 **      release it and return an SQLITE_CURRUPT error.
2034 **   *  Make sure the isInit flag is clear
2035 */
2036 static int btreeGetUnusedPage(
2037   BtShared *pBt,       /* The btree */
2038   Pgno pgno,           /* Number of the page to fetch */
2039   MemPage **ppPage,    /* Return the page in this parameter */
2040   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2041 ){
2042   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2043   if( rc==SQLITE_OK ){
2044     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2045       releasePage(*ppPage);
2046       *ppPage = 0;
2047       return SQLITE_CORRUPT_BKPT;
2048     }
2049     (*ppPage)->isInit = 0;
2050   }else{
2051     *ppPage = 0;
2052   }
2053   return rc;
2054 }
2055 
2056 
2057 /*
2058 ** During a rollback, when the pager reloads information into the cache
2059 ** so that the cache is restored to its original state at the start of
2060 ** the transaction, for each page restored this routine is called.
2061 **
2062 ** This routine needs to reset the extra data section at the end of the
2063 ** page to agree with the restored data.
2064 */
2065 static void pageReinit(DbPage *pData){
2066   MemPage *pPage;
2067   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2068   assert( sqlite3PagerPageRefcount(pData)>0 );
2069   if( pPage->isInit ){
2070     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2071     pPage->isInit = 0;
2072     if( sqlite3PagerPageRefcount(pData)>1 ){
2073       /* pPage might not be a btree page;  it might be an overflow page
2074       ** or ptrmap page or a free page.  In those cases, the following
2075       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2076       ** But no harm is done by this.  And it is very important that
2077       ** btreeInitPage() be called on every btree page so we make
2078       ** the call for every page that comes in for re-initing. */
2079       btreeInitPage(pPage);
2080     }
2081   }
2082 }
2083 
2084 /*
2085 ** Invoke the busy handler for a btree.
2086 */
2087 static int btreeInvokeBusyHandler(void *pArg){
2088   BtShared *pBt = (BtShared*)pArg;
2089   assert( pBt->db );
2090   assert( sqlite3_mutex_held(pBt->db->mutex) );
2091   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2092 }
2093 
2094 /*
2095 ** Open a database file.
2096 **
2097 ** zFilename is the name of the database file.  If zFilename is NULL
2098 ** then an ephemeral database is created.  The ephemeral database might
2099 ** be exclusively in memory, or it might use a disk-based memory cache.
2100 ** Either way, the ephemeral database will be automatically deleted
2101 ** when sqlite3BtreeClose() is called.
2102 **
2103 ** If zFilename is ":memory:" then an in-memory database is created
2104 ** that is automatically destroyed when it is closed.
2105 **
2106 ** The "flags" parameter is a bitmask that might contain bits like
2107 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2108 **
2109 ** If the database is already opened in the same database connection
2110 ** and we are in shared cache mode, then the open will fail with an
2111 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2112 ** objects in the same database connection since doing so will lead
2113 ** to problems with locking.
2114 */
2115 int sqlite3BtreeOpen(
2116   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2117   const char *zFilename,  /* Name of the file containing the BTree database */
2118   sqlite3 *db,            /* Associated database handle */
2119   Btree **ppBtree,        /* Pointer to new Btree object written here */
2120   int flags,              /* Options */
2121   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2122 ){
2123   BtShared *pBt = 0;             /* Shared part of btree structure */
2124   Btree *p;                      /* Handle to return */
2125   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2126   int rc = SQLITE_OK;            /* Result code from this function */
2127   u8 nReserve;                   /* Byte of unused space on each page */
2128   unsigned char zDbHeader[100];  /* Database header content */
2129 
2130   /* True if opening an ephemeral, temporary database */
2131   const int isTempDb = zFilename==0 || zFilename[0]==0;
2132 
2133   /* Set the variable isMemdb to true for an in-memory database, or
2134   ** false for a file-based database.
2135   */
2136 #ifdef SQLITE_OMIT_MEMORYDB
2137   const int isMemdb = 0;
2138 #else
2139   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2140                        || (isTempDb && sqlite3TempInMemory(db))
2141                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2142 #endif
2143 
2144   assert( db!=0 );
2145   assert( pVfs!=0 );
2146   assert( sqlite3_mutex_held(db->mutex) );
2147   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2148 
2149   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2150   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2151 
2152   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2153   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2154 
2155   if( isMemdb ){
2156     flags |= BTREE_MEMORY;
2157   }
2158   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2159     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2160   }
2161   p = sqlite3MallocZero(sizeof(Btree));
2162   if( !p ){
2163     return SQLITE_NOMEM;
2164   }
2165   p->inTrans = TRANS_NONE;
2166   p->db = db;
2167 #ifndef SQLITE_OMIT_SHARED_CACHE
2168   p->lock.pBtree = p;
2169   p->lock.iTable = 1;
2170 #endif
2171 
2172 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2173   /*
2174   ** If this Btree is a candidate for shared cache, try to find an
2175   ** existing BtShared object that we can share with
2176   */
2177   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2178     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2179       int nFilename = sqlite3Strlen30(zFilename)+1;
2180       int nFullPathname = pVfs->mxPathname+1;
2181       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2182       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2183 
2184       p->sharable = 1;
2185       if( !zFullPathname ){
2186         sqlite3_free(p);
2187         return SQLITE_NOMEM;
2188       }
2189       if( isMemdb ){
2190         memcpy(zFullPathname, zFilename, nFilename);
2191       }else{
2192         rc = sqlite3OsFullPathname(pVfs, zFilename,
2193                                    nFullPathname, zFullPathname);
2194         if( rc ){
2195           sqlite3_free(zFullPathname);
2196           sqlite3_free(p);
2197           return rc;
2198         }
2199       }
2200 #if SQLITE_THREADSAFE
2201       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2202       sqlite3_mutex_enter(mutexOpen);
2203       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2204       sqlite3_mutex_enter(mutexShared);
2205 #endif
2206       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2207         assert( pBt->nRef>0 );
2208         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2209                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2210           int iDb;
2211           for(iDb=db->nDb-1; iDb>=0; iDb--){
2212             Btree *pExisting = db->aDb[iDb].pBt;
2213             if( pExisting && pExisting->pBt==pBt ){
2214               sqlite3_mutex_leave(mutexShared);
2215               sqlite3_mutex_leave(mutexOpen);
2216               sqlite3_free(zFullPathname);
2217               sqlite3_free(p);
2218               return SQLITE_CONSTRAINT;
2219             }
2220           }
2221           p->pBt = pBt;
2222           pBt->nRef++;
2223           break;
2224         }
2225       }
2226       sqlite3_mutex_leave(mutexShared);
2227       sqlite3_free(zFullPathname);
2228     }
2229 #ifdef SQLITE_DEBUG
2230     else{
2231       /* In debug mode, we mark all persistent databases as sharable
2232       ** even when they are not.  This exercises the locking code and
2233       ** gives more opportunity for asserts(sqlite3_mutex_held())
2234       ** statements to find locking problems.
2235       */
2236       p->sharable = 1;
2237     }
2238 #endif
2239   }
2240 #endif
2241   if( pBt==0 ){
2242     /*
2243     ** The following asserts make sure that structures used by the btree are
2244     ** the right size.  This is to guard against size changes that result
2245     ** when compiling on a different architecture.
2246     */
2247     assert( sizeof(i64)==8 );
2248     assert( sizeof(u64)==8 );
2249     assert( sizeof(u32)==4 );
2250     assert( sizeof(u16)==2 );
2251     assert( sizeof(Pgno)==4 );
2252 
2253     pBt = sqlite3MallocZero( sizeof(*pBt) );
2254     if( pBt==0 ){
2255       rc = SQLITE_NOMEM;
2256       goto btree_open_out;
2257     }
2258     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2259                           EXTRA_SIZE, flags, vfsFlags, pageReinit);
2260     if( rc==SQLITE_OK ){
2261       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2262       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2263     }
2264     if( rc!=SQLITE_OK ){
2265       goto btree_open_out;
2266     }
2267     pBt->openFlags = (u8)flags;
2268     pBt->db = db;
2269     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2270     p->pBt = pBt;
2271 
2272     pBt->pCursor = 0;
2273     pBt->pPage1 = 0;
2274     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2275 #ifdef SQLITE_SECURE_DELETE
2276     pBt->btsFlags |= BTS_SECURE_DELETE;
2277 #endif
2278     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2279     ** determined by the 2-byte integer located at an offset of 16 bytes from
2280     ** the beginning of the database file. */
2281     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2282     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2283          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2284       pBt->pageSize = 0;
2285 #ifndef SQLITE_OMIT_AUTOVACUUM
2286       /* If the magic name ":memory:" will create an in-memory database, then
2287       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2288       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2289       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2290       ** regular file-name. In this case the auto-vacuum applies as per normal.
2291       */
2292       if( zFilename && !isMemdb ){
2293         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2294         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2295       }
2296 #endif
2297       nReserve = 0;
2298     }else{
2299       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2300       ** determined by the one-byte unsigned integer found at an offset of 20
2301       ** into the database file header. */
2302       nReserve = zDbHeader[20];
2303       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2304 #ifndef SQLITE_OMIT_AUTOVACUUM
2305       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2306       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2307 #endif
2308     }
2309     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2310     if( rc ) goto btree_open_out;
2311     pBt->usableSize = pBt->pageSize - nReserve;
2312     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2313 
2314 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2315     /* Add the new BtShared object to the linked list sharable BtShareds.
2316     */
2317     if( p->sharable ){
2318       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2319       pBt->nRef = 1;
2320       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2321       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2322         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2323         if( pBt->mutex==0 ){
2324           rc = SQLITE_NOMEM;
2325           db->mallocFailed = 0;
2326           goto btree_open_out;
2327         }
2328       }
2329       sqlite3_mutex_enter(mutexShared);
2330       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2331       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2332       sqlite3_mutex_leave(mutexShared);
2333     }
2334 #endif
2335   }
2336 
2337 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2338   /* If the new Btree uses a sharable pBtShared, then link the new
2339   ** Btree into the list of all sharable Btrees for the same connection.
2340   ** The list is kept in ascending order by pBt address.
2341   */
2342   if( p->sharable ){
2343     int i;
2344     Btree *pSib;
2345     for(i=0; i<db->nDb; i++){
2346       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2347         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2348         if( p->pBt<pSib->pBt ){
2349           p->pNext = pSib;
2350           p->pPrev = 0;
2351           pSib->pPrev = p;
2352         }else{
2353           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
2354             pSib = pSib->pNext;
2355           }
2356           p->pNext = pSib->pNext;
2357           p->pPrev = pSib;
2358           if( p->pNext ){
2359             p->pNext->pPrev = p;
2360           }
2361           pSib->pNext = p;
2362         }
2363         break;
2364       }
2365     }
2366   }
2367 #endif
2368   *ppBtree = p;
2369 
2370 btree_open_out:
2371   if( rc!=SQLITE_OK ){
2372     if( pBt && pBt->pPager ){
2373       sqlite3PagerClose(pBt->pPager);
2374     }
2375     sqlite3_free(pBt);
2376     sqlite3_free(p);
2377     *ppBtree = 0;
2378   }else{
2379     /* If the B-Tree was successfully opened, set the pager-cache size to the
2380     ** default value. Except, when opening on an existing shared pager-cache,
2381     ** do not change the pager-cache size.
2382     */
2383     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2384       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2385     }
2386   }
2387   if( mutexOpen ){
2388     assert( sqlite3_mutex_held(mutexOpen) );
2389     sqlite3_mutex_leave(mutexOpen);
2390   }
2391   return rc;
2392 }
2393 
2394 /*
2395 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2396 ** remove the BtShared structure from the sharing list.  Return
2397 ** true if the BtShared.nRef counter reaches zero and return
2398 ** false if it is still positive.
2399 */
2400 static int removeFromSharingList(BtShared *pBt){
2401 #ifndef SQLITE_OMIT_SHARED_CACHE
2402   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2403   BtShared *pList;
2404   int removed = 0;
2405 
2406   assert( sqlite3_mutex_notheld(pBt->mutex) );
2407   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2408   sqlite3_mutex_enter(pMaster);
2409   pBt->nRef--;
2410   if( pBt->nRef<=0 ){
2411     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2412       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2413     }else{
2414       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2415       while( ALWAYS(pList) && pList->pNext!=pBt ){
2416         pList=pList->pNext;
2417       }
2418       if( ALWAYS(pList) ){
2419         pList->pNext = pBt->pNext;
2420       }
2421     }
2422     if( SQLITE_THREADSAFE ){
2423       sqlite3_mutex_free(pBt->mutex);
2424     }
2425     removed = 1;
2426   }
2427   sqlite3_mutex_leave(pMaster);
2428   return removed;
2429 #else
2430   return 1;
2431 #endif
2432 }
2433 
2434 /*
2435 ** Make sure pBt->pTmpSpace points to an allocation of
2436 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2437 ** pointer.
2438 */
2439 static void allocateTempSpace(BtShared *pBt){
2440   if( !pBt->pTmpSpace ){
2441     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2442 
2443     /* One of the uses of pBt->pTmpSpace is to format cells before
2444     ** inserting them into a leaf page (function fillInCell()). If
2445     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2446     ** by the various routines that manipulate binary cells. Which
2447     ** can mean that fillInCell() only initializes the first 2 or 3
2448     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2449     ** it into a database page. This is not actually a problem, but it
2450     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2451     ** data is passed to system call write(). So to avoid this error,
2452     ** zero the first 4 bytes of temp space here.
2453     **
2454     ** Also:  Provide four bytes of initialized space before the
2455     ** beginning of pTmpSpace as an area available to prepend the
2456     ** left-child pointer to the beginning of a cell.
2457     */
2458     if( pBt->pTmpSpace ){
2459       memset(pBt->pTmpSpace, 0, 8);
2460       pBt->pTmpSpace += 4;
2461     }
2462   }
2463 }
2464 
2465 /*
2466 ** Free the pBt->pTmpSpace allocation
2467 */
2468 static void freeTempSpace(BtShared *pBt){
2469   if( pBt->pTmpSpace ){
2470     pBt->pTmpSpace -= 4;
2471     sqlite3PageFree(pBt->pTmpSpace);
2472     pBt->pTmpSpace = 0;
2473   }
2474 }
2475 
2476 /*
2477 ** Close an open database and invalidate all cursors.
2478 */
2479 int sqlite3BtreeClose(Btree *p){
2480   BtShared *pBt = p->pBt;
2481   BtCursor *pCur;
2482 
2483   /* Close all cursors opened via this handle.  */
2484   assert( sqlite3_mutex_held(p->db->mutex) );
2485   sqlite3BtreeEnter(p);
2486   pCur = pBt->pCursor;
2487   while( pCur ){
2488     BtCursor *pTmp = pCur;
2489     pCur = pCur->pNext;
2490     if( pTmp->pBtree==p ){
2491       sqlite3BtreeCloseCursor(pTmp);
2492     }
2493   }
2494 
2495   /* Rollback any active transaction and free the handle structure.
2496   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2497   ** this handle.
2498   */
2499   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2500   sqlite3BtreeLeave(p);
2501 
2502   /* If there are still other outstanding references to the shared-btree
2503   ** structure, return now. The remainder of this procedure cleans
2504   ** up the shared-btree.
2505   */
2506   assert( p->wantToLock==0 && p->locked==0 );
2507   if( !p->sharable || removeFromSharingList(pBt) ){
2508     /* The pBt is no longer on the sharing list, so we can access
2509     ** it without having to hold the mutex.
2510     **
2511     ** Clean out and delete the BtShared object.
2512     */
2513     assert( !pBt->pCursor );
2514     sqlite3PagerClose(pBt->pPager);
2515     if( pBt->xFreeSchema && pBt->pSchema ){
2516       pBt->xFreeSchema(pBt->pSchema);
2517     }
2518     sqlite3DbFree(0, pBt->pSchema);
2519     freeTempSpace(pBt);
2520     sqlite3_free(pBt);
2521   }
2522 
2523 #ifndef SQLITE_OMIT_SHARED_CACHE
2524   assert( p->wantToLock==0 );
2525   assert( p->locked==0 );
2526   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2527   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2528 #endif
2529 
2530   sqlite3_free(p);
2531   return SQLITE_OK;
2532 }
2533 
2534 /*
2535 ** Change the limit on the number of pages allowed in the cache.
2536 **
2537 ** The maximum number of cache pages is set to the absolute
2538 ** value of mxPage.  If mxPage is negative, the pager will
2539 ** operate asynchronously - it will not stop to do fsync()s
2540 ** to insure data is written to the disk surface before
2541 ** continuing.  Transactions still work if synchronous is off,
2542 ** and the database cannot be corrupted if this program
2543 ** crashes.  But if the operating system crashes or there is
2544 ** an abrupt power failure when synchronous is off, the database
2545 ** could be left in an inconsistent and unrecoverable state.
2546 ** Synchronous is on by default so database corruption is not
2547 ** normally a worry.
2548 */
2549 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2550   BtShared *pBt = p->pBt;
2551   assert( sqlite3_mutex_held(p->db->mutex) );
2552   sqlite3BtreeEnter(p);
2553   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2554   sqlite3BtreeLeave(p);
2555   return SQLITE_OK;
2556 }
2557 
2558 #if SQLITE_MAX_MMAP_SIZE>0
2559 /*
2560 ** Change the limit on the amount of the database file that may be
2561 ** memory mapped.
2562 */
2563 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2564   BtShared *pBt = p->pBt;
2565   assert( sqlite3_mutex_held(p->db->mutex) );
2566   sqlite3BtreeEnter(p);
2567   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2568   sqlite3BtreeLeave(p);
2569   return SQLITE_OK;
2570 }
2571 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2572 
2573 /*
2574 ** Change the way data is synced to disk in order to increase or decrease
2575 ** how well the database resists damage due to OS crashes and power
2576 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2577 ** there is a high probability of damage)  Level 2 is the default.  There
2578 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2579 ** probability of damage to near zero but with a write performance reduction.
2580 */
2581 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2582 int sqlite3BtreeSetPagerFlags(
2583   Btree *p,              /* The btree to set the safety level on */
2584   unsigned pgFlags       /* Various PAGER_* flags */
2585 ){
2586   BtShared *pBt = p->pBt;
2587   assert( sqlite3_mutex_held(p->db->mutex) );
2588   sqlite3BtreeEnter(p);
2589   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2590   sqlite3BtreeLeave(p);
2591   return SQLITE_OK;
2592 }
2593 #endif
2594 
2595 /*
2596 ** Return TRUE if the given btree is set to safety level 1.  In other
2597 ** words, return TRUE if no sync() occurs on the disk files.
2598 */
2599 int sqlite3BtreeSyncDisabled(Btree *p){
2600   BtShared *pBt = p->pBt;
2601   int rc;
2602   assert( sqlite3_mutex_held(p->db->mutex) );
2603   sqlite3BtreeEnter(p);
2604   assert( pBt && pBt->pPager );
2605   rc = sqlite3PagerNosync(pBt->pPager);
2606   sqlite3BtreeLeave(p);
2607   return rc;
2608 }
2609 
2610 /*
2611 ** Change the default pages size and the number of reserved bytes per page.
2612 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2613 ** without changing anything.
2614 **
2615 ** The page size must be a power of 2 between 512 and 65536.  If the page
2616 ** size supplied does not meet this constraint then the page size is not
2617 ** changed.
2618 **
2619 ** Page sizes are constrained to be a power of two so that the region
2620 ** of the database file used for locking (beginning at PENDING_BYTE,
2621 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2622 ** at the beginning of a page.
2623 **
2624 ** If parameter nReserve is less than zero, then the number of reserved
2625 ** bytes per page is left unchanged.
2626 **
2627 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2628 ** and autovacuum mode can no longer be changed.
2629 */
2630 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2631   int rc = SQLITE_OK;
2632   BtShared *pBt = p->pBt;
2633   assert( nReserve>=-1 && nReserve<=255 );
2634   sqlite3BtreeEnter(p);
2635 #if SQLITE_HAS_CODEC
2636   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2637 #endif
2638   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2639     sqlite3BtreeLeave(p);
2640     return SQLITE_READONLY;
2641   }
2642   if( nReserve<0 ){
2643     nReserve = pBt->pageSize - pBt->usableSize;
2644   }
2645   assert( nReserve>=0 && nReserve<=255 );
2646   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2647         ((pageSize-1)&pageSize)==0 ){
2648     assert( (pageSize & 7)==0 );
2649     assert( !pBt->pCursor );
2650     pBt->pageSize = (u32)pageSize;
2651     freeTempSpace(pBt);
2652   }
2653   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2654   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2655   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2656   sqlite3BtreeLeave(p);
2657   return rc;
2658 }
2659 
2660 /*
2661 ** Return the currently defined page size
2662 */
2663 int sqlite3BtreeGetPageSize(Btree *p){
2664   return p->pBt->pageSize;
2665 }
2666 
2667 /*
2668 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2669 ** may only be called if it is guaranteed that the b-tree mutex is already
2670 ** held.
2671 **
2672 ** This is useful in one special case in the backup API code where it is
2673 ** known that the shared b-tree mutex is held, but the mutex on the
2674 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2675 ** were to be called, it might collide with some other operation on the
2676 ** database handle that owns *p, causing undefined behavior.
2677 */
2678 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2679   int n;
2680   assert( sqlite3_mutex_held(p->pBt->mutex) );
2681   n = p->pBt->pageSize - p->pBt->usableSize;
2682   return n;
2683 }
2684 
2685 /*
2686 ** Return the number of bytes of space at the end of every page that
2687 ** are intentually left unused.  This is the "reserved" space that is
2688 ** sometimes used by extensions.
2689 **
2690 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2691 ** greater of the current reserved space and the maximum requested
2692 ** reserve space.
2693 */
2694 int sqlite3BtreeGetOptimalReserve(Btree *p){
2695   int n;
2696   sqlite3BtreeEnter(p);
2697   n = sqlite3BtreeGetReserveNoMutex(p);
2698 #ifdef SQLITE_HAS_CODEC
2699   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2700 #endif
2701   sqlite3BtreeLeave(p);
2702   return n;
2703 }
2704 
2705 
2706 /*
2707 ** Set the maximum page count for a database if mxPage is positive.
2708 ** No changes are made if mxPage is 0 or negative.
2709 ** Regardless of the value of mxPage, return the maximum page count.
2710 */
2711 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2712   int n;
2713   sqlite3BtreeEnter(p);
2714   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2715   sqlite3BtreeLeave(p);
2716   return n;
2717 }
2718 
2719 /*
2720 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2721 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2722 ** setting after the change.
2723 */
2724 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2725   int b;
2726   if( p==0 ) return 0;
2727   sqlite3BtreeEnter(p);
2728   if( newFlag>=0 ){
2729     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2730     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2731   }
2732   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2733   sqlite3BtreeLeave(p);
2734   return b;
2735 }
2736 
2737 /*
2738 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2739 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2740 ** is disabled. The default value for the auto-vacuum property is
2741 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2742 */
2743 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2744 #ifdef SQLITE_OMIT_AUTOVACUUM
2745   return SQLITE_READONLY;
2746 #else
2747   BtShared *pBt = p->pBt;
2748   int rc = SQLITE_OK;
2749   u8 av = (u8)autoVacuum;
2750 
2751   sqlite3BtreeEnter(p);
2752   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2753     rc = SQLITE_READONLY;
2754   }else{
2755     pBt->autoVacuum = av ?1:0;
2756     pBt->incrVacuum = av==2 ?1:0;
2757   }
2758   sqlite3BtreeLeave(p);
2759   return rc;
2760 #endif
2761 }
2762 
2763 /*
2764 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2765 ** enabled 1 is returned. Otherwise 0.
2766 */
2767 int sqlite3BtreeGetAutoVacuum(Btree *p){
2768 #ifdef SQLITE_OMIT_AUTOVACUUM
2769   return BTREE_AUTOVACUUM_NONE;
2770 #else
2771   int rc;
2772   sqlite3BtreeEnter(p);
2773   rc = (
2774     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2775     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2776     BTREE_AUTOVACUUM_INCR
2777   );
2778   sqlite3BtreeLeave(p);
2779   return rc;
2780 #endif
2781 }
2782 
2783 
2784 /*
2785 ** Get a reference to pPage1 of the database file.  This will
2786 ** also acquire a readlock on that file.
2787 **
2788 ** SQLITE_OK is returned on success.  If the file is not a
2789 ** well-formed database file, then SQLITE_CORRUPT is returned.
2790 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2791 ** is returned if we run out of memory.
2792 */
2793 static int lockBtree(BtShared *pBt){
2794   int rc;              /* Result code from subfunctions */
2795   MemPage *pPage1;     /* Page 1 of the database file */
2796   int nPage;           /* Number of pages in the database */
2797   int nPageFile = 0;   /* Number of pages in the database file */
2798   int nPageHeader;     /* Number of pages in the database according to hdr */
2799 
2800   assert( sqlite3_mutex_held(pBt->mutex) );
2801   assert( pBt->pPage1==0 );
2802   rc = sqlite3PagerSharedLock(pBt->pPager);
2803   if( rc!=SQLITE_OK ) return rc;
2804   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2805   if( rc!=SQLITE_OK ) return rc;
2806 
2807   /* Do some checking to help insure the file we opened really is
2808   ** a valid database file.
2809   */
2810   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2811   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2812   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2813     nPage = nPageFile;
2814   }
2815   if( nPage>0 ){
2816     u32 pageSize;
2817     u32 usableSize;
2818     u8 *page1 = pPage1->aData;
2819     rc = SQLITE_NOTADB;
2820     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2821     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2822     ** 61 74 20 33 00. */
2823     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2824       goto page1_init_failed;
2825     }
2826 
2827 #ifdef SQLITE_OMIT_WAL
2828     if( page1[18]>1 ){
2829       pBt->btsFlags |= BTS_READ_ONLY;
2830     }
2831     if( page1[19]>1 ){
2832       goto page1_init_failed;
2833     }
2834 #else
2835     if( page1[18]>2 ){
2836       pBt->btsFlags |= BTS_READ_ONLY;
2837     }
2838     if( page1[19]>2 ){
2839       goto page1_init_failed;
2840     }
2841 
2842     /* If the write version is set to 2, this database should be accessed
2843     ** in WAL mode. If the log is not already open, open it now. Then
2844     ** return SQLITE_OK and return without populating BtShared.pPage1.
2845     ** The caller detects this and calls this function again. This is
2846     ** required as the version of page 1 currently in the page1 buffer
2847     ** may not be the latest version - there may be a newer one in the log
2848     ** file.
2849     */
2850     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2851       int isOpen = 0;
2852       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2853       if( rc!=SQLITE_OK ){
2854         goto page1_init_failed;
2855       }else if( isOpen==0 ){
2856         releasePage(pPage1);
2857         return SQLITE_OK;
2858       }
2859       rc = SQLITE_NOTADB;
2860     }
2861 #endif
2862 
2863     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2864     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2865     **
2866     ** The original design allowed these amounts to vary, but as of
2867     ** version 3.6.0, we require them to be fixed.
2868     */
2869     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2870       goto page1_init_failed;
2871     }
2872     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2873     ** determined by the 2-byte integer located at an offset of 16 bytes from
2874     ** the beginning of the database file. */
2875     pageSize = (page1[16]<<8) | (page1[17]<<16);
2876     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2877     ** between 512 and 65536 inclusive. */
2878     if( ((pageSize-1)&pageSize)!=0
2879      || pageSize>SQLITE_MAX_PAGE_SIZE
2880      || pageSize<=256
2881     ){
2882       goto page1_init_failed;
2883     }
2884     assert( (pageSize & 7)==0 );
2885     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2886     ** integer at offset 20 is the number of bytes of space at the end of
2887     ** each page to reserve for extensions.
2888     **
2889     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2890     ** determined by the one-byte unsigned integer found at an offset of 20
2891     ** into the database file header. */
2892     usableSize = pageSize - page1[20];
2893     if( (u32)pageSize!=pBt->pageSize ){
2894       /* After reading the first page of the database assuming a page size
2895       ** of BtShared.pageSize, we have discovered that the page-size is
2896       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2897       ** zero and return SQLITE_OK. The caller will call this function
2898       ** again with the correct page-size.
2899       */
2900       releasePage(pPage1);
2901       pBt->usableSize = usableSize;
2902       pBt->pageSize = pageSize;
2903       freeTempSpace(pBt);
2904       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2905                                    pageSize-usableSize);
2906       return rc;
2907     }
2908     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2909       rc = SQLITE_CORRUPT_BKPT;
2910       goto page1_init_failed;
2911     }
2912     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2913     ** be less than 480. In other words, if the page size is 512, then the
2914     ** reserved space size cannot exceed 32. */
2915     if( usableSize<480 ){
2916       goto page1_init_failed;
2917     }
2918     pBt->pageSize = pageSize;
2919     pBt->usableSize = usableSize;
2920 #ifndef SQLITE_OMIT_AUTOVACUUM
2921     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2922     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2923 #endif
2924   }
2925 
2926   /* maxLocal is the maximum amount of payload to store locally for
2927   ** a cell.  Make sure it is small enough so that at least minFanout
2928   ** cells can will fit on one page.  We assume a 10-byte page header.
2929   ** Besides the payload, the cell must store:
2930   **     2-byte pointer to the cell
2931   **     4-byte child pointer
2932   **     9-byte nKey value
2933   **     4-byte nData value
2934   **     4-byte overflow page pointer
2935   ** So a cell consists of a 2-byte pointer, a header which is as much as
2936   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2937   ** page pointer.
2938   */
2939   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2940   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2941   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2942   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2943   if( pBt->maxLocal>127 ){
2944     pBt->max1bytePayload = 127;
2945   }else{
2946     pBt->max1bytePayload = (u8)pBt->maxLocal;
2947   }
2948   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2949   pBt->pPage1 = pPage1;
2950   pBt->nPage = nPage;
2951   return SQLITE_OK;
2952 
2953 page1_init_failed:
2954   releasePage(pPage1);
2955   pBt->pPage1 = 0;
2956   return rc;
2957 }
2958 
2959 #ifndef NDEBUG
2960 /*
2961 ** Return the number of cursors open on pBt. This is for use
2962 ** in assert() expressions, so it is only compiled if NDEBUG is not
2963 ** defined.
2964 **
2965 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
2966 ** false then all cursors are counted.
2967 **
2968 ** For the purposes of this routine, a cursor is any cursor that
2969 ** is capable of reading or writing to the database.  Cursors that
2970 ** have been tripped into the CURSOR_FAULT state are not counted.
2971 */
2972 static int countValidCursors(BtShared *pBt, int wrOnly){
2973   BtCursor *pCur;
2974   int r = 0;
2975   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2976     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2977      && pCur->eState!=CURSOR_FAULT ) r++;
2978   }
2979   return r;
2980 }
2981 #endif
2982 
2983 /*
2984 ** If there are no outstanding cursors and we are not in the middle
2985 ** of a transaction but there is a read lock on the database, then
2986 ** this routine unrefs the first page of the database file which
2987 ** has the effect of releasing the read lock.
2988 **
2989 ** If there is a transaction in progress, this routine is a no-op.
2990 */
2991 static void unlockBtreeIfUnused(BtShared *pBt){
2992   assert( sqlite3_mutex_held(pBt->mutex) );
2993   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
2994   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
2995     MemPage *pPage1 = pBt->pPage1;
2996     assert( pPage1->aData );
2997     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2998     pBt->pPage1 = 0;
2999     releasePageNotNull(pPage1);
3000   }
3001 }
3002 
3003 /*
3004 ** If pBt points to an empty file then convert that empty file
3005 ** into a new empty database by initializing the first page of
3006 ** the database.
3007 */
3008 static int newDatabase(BtShared *pBt){
3009   MemPage *pP1;
3010   unsigned char *data;
3011   int rc;
3012 
3013   assert( sqlite3_mutex_held(pBt->mutex) );
3014   if( pBt->nPage>0 ){
3015     return SQLITE_OK;
3016   }
3017   pP1 = pBt->pPage1;
3018   assert( pP1!=0 );
3019   data = pP1->aData;
3020   rc = sqlite3PagerWrite(pP1->pDbPage);
3021   if( rc ) return rc;
3022   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3023   assert( sizeof(zMagicHeader)==16 );
3024   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3025   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3026   data[18] = 1;
3027   data[19] = 1;
3028   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3029   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3030   data[21] = 64;
3031   data[22] = 32;
3032   data[23] = 32;
3033   memset(&data[24], 0, 100-24);
3034   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3035   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3036 #ifndef SQLITE_OMIT_AUTOVACUUM
3037   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3038   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3039   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3040   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3041 #endif
3042   pBt->nPage = 1;
3043   data[31] = 1;
3044   return SQLITE_OK;
3045 }
3046 
3047 /*
3048 ** Initialize the first page of the database file (creating a database
3049 ** consisting of a single page and no schema objects). Return SQLITE_OK
3050 ** if successful, or an SQLite error code otherwise.
3051 */
3052 int sqlite3BtreeNewDb(Btree *p){
3053   int rc;
3054   sqlite3BtreeEnter(p);
3055   p->pBt->nPage = 0;
3056   rc = newDatabase(p->pBt);
3057   sqlite3BtreeLeave(p);
3058   return rc;
3059 }
3060 
3061 /*
3062 ** Attempt to start a new transaction. A write-transaction
3063 ** is started if the second argument is nonzero, otherwise a read-
3064 ** transaction.  If the second argument is 2 or more and exclusive
3065 ** transaction is started, meaning that no other process is allowed
3066 ** to access the database.  A preexisting transaction may not be
3067 ** upgraded to exclusive by calling this routine a second time - the
3068 ** exclusivity flag only works for a new transaction.
3069 **
3070 ** A write-transaction must be started before attempting any
3071 ** changes to the database.  None of the following routines
3072 ** will work unless a transaction is started first:
3073 **
3074 **      sqlite3BtreeCreateTable()
3075 **      sqlite3BtreeCreateIndex()
3076 **      sqlite3BtreeClearTable()
3077 **      sqlite3BtreeDropTable()
3078 **      sqlite3BtreeInsert()
3079 **      sqlite3BtreeDelete()
3080 **      sqlite3BtreeUpdateMeta()
3081 **
3082 ** If an initial attempt to acquire the lock fails because of lock contention
3083 ** and the database was previously unlocked, then invoke the busy handler
3084 ** if there is one.  But if there was previously a read-lock, do not
3085 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3086 ** returned when there is already a read-lock in order to avoid a deadlock.
3087 **
3088 ** Suppose there are two processes A and B.  A has a read lock and B has
3089 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3090 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3091 ** One or the other of the two processes must give way or there can be
3092 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3093 ** when A already has a read lock, we encourage A to give up and let B
3094 ** proceed.
3095 */
3096 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3097   sqlite3 *pBlock = 0;
3098   BtShared *pBt = p->pBt;
3099   int rc = SQLITE_OK;
3100 
3101   sqlite3BtreeEnter(p);
3102   btreeIntegrity(p);
3103 
3104   /* If the btree is already in a write-transaction, or it
3105   ** is already in a read-transaction and a read-transaction
3106   ** is requested, this is a no-op.
3107   */
3108   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3109     goto trans_begun;
3110   }
3111   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3112 
3113   /* Write transactions are not possible on a read-only database */
3114   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3115     rc = SQLITE_READONLY;
3116     goto trans_begun;
3117   }
3118 
3119 #ifndef SQLITE_OMIT_SHARED_CACHE
3120   /* If another database handle has already opened a write transaction
3121   ** on this shared-btree structure and a second write transaction is
3122   ** requested, return SQLITE_LOCKED.
3123   */
3124   if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3125    || (pBt->btsFlags & BTS_PENDING)!=0
3126   ){
3127     pBlock = pBt->pWriter->db;
3128   }else if( wrflag>1 ){
3129     BtLock *pIter;
3130     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3131       if( pIter->pBtree!=p ){
3132         pBlock = pIter->pBtree->db;
3133         break;
3134       }
3135     }
3136   }
3137   if( pBlock ){
3138     sqlite3ConnectionBlocked(p->db, pBlock);
3139     rc = SQLITE_LOCKED_SHAREDCACHE;
3140     goto trans_begun;
3141   }
3142 #endif
3143 
3144   /* Any read-only or read-write transaction implies a read-lock on
3145   ** page 1. So if some other shared-cache client already has a write-lock
3146   ** on page 1, the transaction cannot be opened. */
3147   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3148   if( SQLITE_OK!=rc ) goto trans_begun;
3149 
3150   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3151   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3152   do {
3153     /* Call lockBtree() until either pBt->pPage1 is populated or
3154     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3155     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3156     ** reading page 1 it discovers that the page-size of the database
3157     ** file is not pBt->pageSize. In this case lockBtree() will update
3158     ** pBt->pageSize to the page-size of the file on disk.
3159     */
3160     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3161 
3162     if( rc==SQLITE_OK && wrflag ){
3163       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3164         rc = SQLITE_READONLY;
3165       }else{
3166         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3167         if( rc==SQLITE_OK ){
3168           rc = newDatabase(pBt);
3169         }
3170       }
3171     }
3172 
3173     if( rc!=SQLITE_OK ){
3174       unlockBtreeIfUnused(pBt);
3175     }
3176   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3177           btreeInvokeBusyHandler(pBt) );
3178 
3179   if( rc==SQLITE_OK ){
3180     if( p->inTrans==TRANS_NONE ){
3181       pBt->nTransaction++;
3182 #ifndef SQLITE_OMIT_SHARED_CACHE
3183       if( p->sharable ){
3184         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3185         p->lock.eLock = READ_LOCK;
3186         p->lock.pNext = pBt->pLock;
3187         pBt->pLock = &p->lock;
3188       }
3189 #endif
3190     }
3191     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3192     if( p->inTrans>pBt->inTransaction ){
3193       pBt->inTransaction = p->inTrans;
3194     }
3195     if( wrflag ){
3196       MemPage *pPage1 = pBt->pPage1;
3197 #ifndef SQLITE_OMIT_SHARED_CACHE
3198       assert( !pBt->pWriter );
3199       pBt->pWriter = p;
3200       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3201       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3202 #endif
3203 
3204       /* If the db-size header field is incorrect (as it may be if an old
3205       ** client has been writing the database file), update it now. Doing
3206       ** this sooner rather than later means the database size can safely
3207       ** re-read the database size from page 1 if a savepoint or transaction
3208       ** rollback occurs within the transaction.
3209       */
3210       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3211         rc = sqlite3PagerWrite(pPage1->pDbPage);
3212         if( rc==SQLITE_OK ){
3213           put4byte(&pPage1->aData[28], pBt->nPage);
3214         }
3215       }
3216     }
3217   }
3218 
3219 
3220 trans_begun:
3221   if( rc==SQLITE_OK && wrflag ){
3222     /* This call makes sure that the pager has the correct number of
3223     ** open savepoints. If the second parameter is greater than 0 and
3224     ** the sub-journal is not already open, then it will be opened here.
3225     */
3226     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3227   }
3228 
3229   btreeIntegrity(p);
3230   sqlite3BtreeLeave(p);
3231   return rc;
3232 }
3233 
3234 #ifndef SQLITE_OMIT_AUTOVACUUM
3235 
3236 /*
3237 ** Set the pointer-map entries for all children of page pPage. Also, if
3238 ** pPage contains cells that point to overflow pages, set the pointer
3239 ** map entries for the overflow pages as well.
3240 */
3241 static int setChildPtrmaps(MemPage *pPage){
3242   int i;                             /* Counter variable */
3243   int nCell;                         /* Number of cells in page pPage */
3244   int rc;                            /* Return code */
3245   BtShared *pBt = pPage->pBt;
3246   u8 isInitOrig = pPage->isInit;
3247   Pgno pgno = pPage->pgno;
3248 
3249   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3250   rc = btreeInitPage(pPage);
3251   if( rc!=SQLITE_OK ){
3252     goto set_child_ptrmaps_out;
3253   }
3254   nCell = pPage->nCell;
3255 
3256   for(i=0; i<nCell; i++){
3257     u8 *pCell = findCell(pPage, i);
3258 
3259     ptrmapPutOvflPtr(pPage, pCell, &rc);
3260 
3261     if( !pPage->leaf ){
3262       Pgno childPgno = get4byte(pCell);
3263       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3264     }
3265   }
3266 
3267   if( !pPage->leaf ){
3268     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3269     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3270   }
3271 
3272 set_child_ptrmaps_out:
3273   pPage->isInit = isInitOrig;
3274   return rc;
3275 }
3276 
3277 /*
3278 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3279 ** that it points to iTo. Parameter eType describes the type of pointer to
3280 ** be modified, as  follows:
3281 **
3282 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3283 **                   page of pPage.
3284 **
3285 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3286 **                   page pointed to by one of the cells on pPage.
3287 **
3288 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3289 **                   overflow page in the list.
3290 */
3291 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3292   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3293   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3294   if( eType==PTRMAP_OVERFLOW2 ){
3295     /* The pointer is always the first 4 bytes of the page in this case.  */
3296     if( get4byte(pPage->aData)!=iFrom ){
3297       return SQLITE_CORRUPT_BKPT;
3298     }
3299     put4byte(pPage->aData, iTo);
3300   }else{
3301     u8 isInitOrig = pPage->isInit;
3302     int i;
3303     int nCell;
3304     int rc;
3305 
3306     rc = btreeInitPage(pPage);
3307     if( rc ) return rc;
3308     nCell = pPage->nCell;
3309 
3310     for(i=0; i<nCell; i++){
3311       u8 *pCell = findCell(pPage, i);
3312       if( eType==PTRMAP_OVERFLOW1 ){
3313         CellInfo info;
3314         pPage->xParseCell(pPage, pCell, &info);
3315         if( info.iOverflow
3316          && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3317          && iFrom==get4byte(&pCell[info.iOverflow])
3318         ){
3319           put4byte(&pCell[info.iOverflow], iTo);
3320           break;
3321         }
3322       }else{
3323         if( get4byte(pCell)==iFrom ){
3324           put4byte(pCell, iTo);
3325           break;
3326         }
3327       }
3328     }
3329 
3330     if( i==nCell ){
3331       if( eType!=PTRMAP_BTREE ||
3332           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3333         return SQLITE_CORRUPT_BKPT;
3334       }
3335       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3336     }
3337 
3338     pPage->isInit = isInitOrig;
3339   }
3340   return SQLITE_OK;
3341 }
3342 
3343 
3344 /*
3345 ** Move the open database page pDbPage to location iFreePage in the
3346 ** database. The pDbPage reference remains valid.
3347 **
3348 ** The isCommit flag indicates that there is no need to remember that
3349 ** the journal needs to be sync()ed before database page pDbPage->pgno
3350 ** can be written to. The caller has already promised not to write to that
3351 ** page.
3352 */
3353 static int relocatePage(
3354   BtShared *pBt,           /* Btree */
3355   MemPage *pDbPage,        /* Open page to move */
3356   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3357   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3358   Pgno iFreePage,          /* The location to move pDbPage to */
3359   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3360 ){
3361   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3362   Pgno iDbPage = pDbPage->pgno;
3363   Pager *pPager = pBt->pPager;
3364   int rc;
3365 
3366   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3367       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3368   assert( sqlite3_mutex_held(pBt->mutex) );
3369   assert( pDbPage->pBt==pBt );
3370 
3371   /* Move page iDbPage from its current location to page number iFreePage */
3372   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3373       iDbPage, iFreePage, iPtrPage, eType));
3374   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3375   if( rc!=SQLITE_OK ){
3376     return rc;
3377   }
3378   pDbPage->pgno = iFreePage;
3379 
3380   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3381   ** that point to overflow pages. The pointer map entries for all these
3382   ** pages need to be changed.
3383   **
3384   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3385   ** pointer to a subsequent overflow page. If this is the case, then
3386   ** the pointer map needs to be updated for the subsequent overflow page.
3387   */
3388   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3389     rc = setChildPtrmaps(pDbPage);
3390     if( rc!=SQLITE_OK ){
3391       return rc;
3392     }
3393   }else{
3394     Pgno nextOvfl = get4byte(pDbPage->aData);
3395     if( nextOvfl!=0 ){
3396       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3397       if( rc!=SQLITE_OK ){
3398         return rc;
3399       }
3400     }
3401   }
3402 
3403   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3404   ** that it points at iFreePage. Also fix the pointer map entry for
3405   ** iPtrPage.
3406   */
3407   if( eType!=PTRMAP_ROOTPAGE ){
3408     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3409     if( rc!=SQLITE_OK ){
3410       return rc;
3411     }
3412     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3413     if( rc!=SQLITE_OK ){
3414       releasePage(pPtrPage);
3415       return rc;
3416     }
3417     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3418     releasePage(pPtrPage);
3419     if( rc==SQLITE_OK ){
3420       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3421     }
3422   }
3423   return rc;
3424 }
3425 
3426 /* Forward declaration required by incrVacuumStep(). */
3427 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3428 
3429 /*
3430 ** Perform a single step of an incremental-vacuum. If successful, return
3431 ** SQLITE_OK. If there is no work to do (and therefore no point in
3432 ** calling this function again), return SQLITE_DONE. Or, if an error
3433 ** occurs, return some other error code.
3434 **
3435 ** More specifically, this function attempts to re-organize the database so
3436 ** that the last page of the file currently in use is no longer in use.
3437 **
3438 ** Parameter nFin is the number of pages that this database would contain
3439 ** were this function called until it returns SQLITE_DONE.
3440 **
3441 ** If the bCommit parameter is non-zero, this function assumes that the
3442 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3443 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3444 ** operation, or false for an incremental vacuum.
3445 */
3446 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3447   Pgno nFreeList;           /* Number of pages still on the free-list */
3448   int rc;
3449 
3450   assert( sqlite3_mutex_held(pBt->mutex) );
3451   assert( iLastPg>nFin );
3452 
3453   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3454     u8 eType;
3455     Pgno iPtrPage;
3456 
3457     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3458     if( nFreeList==0 ){
3459       return SQLITE_DONE;
3460     }
3461 
3462     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3463     if( rc!=SQLITE_OK ){
3464       return rc;
3465     }
3466     if( eType==PTRMAP_ROOTPAGE ){
3467       return SQLITE_CORRUPT_BKPT;
3468     }
3469 
3470     if( eType==PTRMAP_FREEPAGE ){
3471       if( bCommit==0 ){
3472         /* Remove the page from the files free-list. This is not required
3473         ** if bCommit is non-zero. In that case, the free-list will be
3474         ** truncated to zero after this function returns, so it doesn't
3475         ** matter if it still contains some garbage entries.
3476         */
3477         Pgno iFreePg;
3478         MemPage *pFreePg;
3479         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3480         if( rc!=SQLITE_OK ){
3481           return rc;
3482         }
3483         assert( iFreePg==iLastPg );
3484         releasePage(pFreePg);
3485       }
3486     } else {
3487       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3488       MemPage *pLastPg;
3489       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3490       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3491 
3492       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3493       if( rc!=SQLITE_OK ){
3494         return rc;
3495       }
3496 
3497       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3498       ** is swapped with the first free page pulled off the free list.
3499       **
3500       ** On the other hand, if bCommit is greater than zero, then keep
3501       ** looping until a free-page located within the first nFin pages
3502       ** of the file is found.
3503       */
3504       if( bCommit==0 ){
3505         eMode = BTALLOC_LE;
3506         iNear = nFin;
3507       }
3508       do {
3509         MemPage *pFreePg;
3510         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3511         if( rc!=SQLITE_OK ){
3512           releasePage(pLastPg);
3513           return rc;
3514         }
3515         releasePage(pFreePg);
3516       }while( bCommit && iFreePg>nFin );
3517       assert( iFreePg<iLastPg );
3518 
3519       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3520       releasePage(pLastPg);
3521       if( rc!=SQLITE_OK ){
3522         return rc;
3523       }
3524     }
3525   }
3526 
3527   if( bCommit==0 ){
3528     do {
3529       iLastPg--;
3530     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3531     pBt->bDoTruncate = 1;
3532     pBt->nPage = iLastPg;
3533   }
3534   return SQLITE_OK;
3535 }
3536 
3537 /*
3538 ** The database opened by the first argument is an auto-vacuum database
3539 ** nOrig pages in size containing nFree free pages. Return the expected
3540 ** size of the database in pages following an auto-vacuum operation.
3541 */
3542 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3543   int nEntry;                     /* Number of entries on one ptrmap page */
3544   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3545   Pgno nFin;                      /* Return value */
3546 
3547   nEntry = pBt->usableSize/5;
3548   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3549   nFin = nOrig - nFree - nPtrmap;
3550   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3551     nFin--;
3552   }
3553   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3554     nFin--;
3555   }
3556 
3557   return nFin;
3558 }
3559 
3560 /*
3561 ** A write-transaction must be opened before calling this function.
3562 ** It performs a single unit of work towards an incremental vacuum.
3563 **
3564 ** If the incremental vacuum is finished after this function has run,
3565 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3566 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3567 */
3568 int sqlite3BtreeIncrVacuum(Btree *p){
3569   int rc;
3570   BtShared *pBt = p->pBt;
3571 
3572   sqlite3BtreeEnter(p);
3573   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3574   if( !pBt->autoVacuum ){
3575     rc = SQLITE_DONE;
3576   }else{
3577     Pgno nOrig = btreePagecount(pBt);
3578     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3579     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3580 
3581     if( nOrig<nFin ){
3582       rc = SQLITE_CORRUPT_BKPT;
3583     }else if( nFree>0 ){
3584       rc = saveAllCursors(pBt, 0, 0);
3585       if( rc==SQLITE_OK ){
3586         invalidateAllOverflowCache(pBt);
3587         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3588       }
3589       if( rc==SQLITE_OK ){
3590         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3591         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3592       }
3593     }else{
3594       rc = SQLITE_DONE;
3595     }
3596   }
3597   sqlite3BtreeLeave(p);
3598   return rc;
3599 }
3600 
3601 /*
3602 ** This routine is called prior to sqlite3PagerCommit when a transaction
3603 ** is committed for an auto-vacuum database.
3604 **
3605 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3606 ** the database file should be truncated to during the commit process.
3607 ** i.e. the database has been reorganized so that only the first *pnTrunc
3608 ** pages are in use.
3609 */
3610 static int autoVacuumCommit(BtShared *pBt){
3611   int rc = SQLITE_OK;
3612   Pager *pPager = pBt->pPager;
3613   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3614 
3615   assert( sqlite3_mutex_held(pBt->mutex) );
3616   invalidateAllOverflowCache(pBt);
3617   assert(pBt->autoVacuum);
3618   if( !pBt->incrVacuum ){
3619     Pgno nFin;         /* Number of pages in database after autovacuuming */
3620     Pgno nFree;        /* Number of pages on the freelist initially */
3621     Pgno iFree;        /* The next page to be freed */
3622     Pgno nOrig;        /* Database size before freeing */
3623 
3624     nOrig = btreePagecount(pBt);
3625     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3626       /* It is not possible to create a database for which the final page
3627       ** is either a pointer-map page or the pending-byte page. If one
3628       ** is encountered, this indicates corruption.
3629       */
3630       return SQLITE_CORRUPT_BKPT;
3631     }
3632 
3633     nFree = get4byte(&pBt->pPage1->aData[36]);
3634     nFin = finalDbSize(pBt, nOrig, nFree);
3635     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3636     if( nFin<nOrig ){
3637       rc = saveAllCursors(pBt, 0, 0);
3638     }
3639     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3640       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3641     }
3642     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3643       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3644       put4byte(&pBt->pPage1->aData[32], 0);
3645       put4byte(&pBt->pPage1->aData[36], 0);
3646       put4byte(&pBt->pPage1->aData[28], nFin);
3647       pBt->bDoTruncate = 1;
3648       pBt->nPage = nFin;
3649     }
3650     if( rc!=SQLITE_OK ){
3651       sqlite3PagerRollback(pPager);
3652     }
3653   }
3654 
3655   assert( nRef>=sqlite3PagerRefcount(pPager) );
3656   return rc;
3657 }
3658 
3659 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3660 # define setChildPtrmaps(x) SQLITE_OK
3661 #endif
3662 
3663 /*
3664 ** This routine does the first phase of a two-phase commit.  This routine
3665 ** causes a rollback journal to be created (if it does not already exist)
3666 ** and populated with enough information so that if a power loss occurs
3667 ** the database can be restored to its original state by playing back
3668 ** the journal.  Then the contents of the journal are flushed out to
3669 ** the disk.  After the journal is safely on oxide, the changes to the
3670 ** database are written into the database file and flushed to oxide.
3671 ** At the end of this call, the rollback journal still exists on the
3672 ** disk and we are still holding all locks, so the transaction has not
3673 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3674 ** commit process.
3675 **
3676 ** This call is a no-op if no write-transaction is currently active on pBt.
3677 **
3678 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3679 ** the name of a master journal file that should be written into the
3680 ** individual journal file, or is NULL, indicating no master journal file
3681 ** (single database transaction).
3682 **
3683 ** When this is called, the master journal should already have been
3684 ** created, populated with this journal pointer and synced to disk.
3685 **
3686 ** Once this is routine has returned, the only thing required to commit
3687 ** the write-transaction for this database file is to delete the journal.
3688 */
3689 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3690   int rc = SQLITE_OK;
3691   if( p->inTrans==TRANS_WRITE ){
3692     BtShared *pBt = p->pBt;
3693     sqlite3BtreeEnter(p);
3694 #ifndef SQLITE_OMIT_AUTOVACUUM
3695     if( pBt->autoVacuum ){
3696       rc = autoVacuumCommit(pBt);
3697       if( rc!=SQLITE_OK ){
3698         sqlite3BtreeLeave(p);
3699         return rc;
3700       }
3701     }
3702     if( pBt->bDoTruncate ){
3703       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3704     }
3705 #endif
3706     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3707     sqlite3BtreeLeave(p);
3708   }
3709   return rc;
3710 }
3711 
3712 /*
3713 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3714 ** at the conclusion of a transaction.
3715 */
3716 static void btreeEndTransaction(Btree *p){
3717   BtShared *pBt = p->pBt;
3718   sqlite3 *db = p->db;
3719   assert( sqlite3BtreeHoldsMutex(p) );
3720 
3721 #ifndef SQLITE_OMIT_AUTOVACUUM
3722   pBt->bDoTruncate = 0;
3723 #endif
3724   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3725     /* If there are other active statements that belong to this database
3726     ** handle, downgrade to a read-only transaction. The other statements
3727     ** may still be reading from the database.  */
3728     downgradeAllSharedCacheTableLocks(p);
3729     p->inTrans = TRANS_READ;
3730   }else{
3731     /* If the handle had any kind of transaction open, decrement the
3732     ** transaction count of the shared btree. If the transaction count
3733     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3734     ** call below will unlock the pager.  */
3735     if( p->inTrans!=TRANS_NONE ){
3736       clearAllSharedCacheTableLocks(p);
3737       pBt->nTransaction--;
3738       if( 0==pBt->nTransaction ){
3739         pBt->inTransaction = TRANS_NONE;
3740       }
3741     }
3742 
3743     /* Set the current transaction state to TRANS_NONE and unlock the
3744     ** pager if this call closed the only read or write transaction.  */
3745     p->inTrans = TRANS_NONE;
3746     unlockBtreeIfUnused(pBt);
3747   }
3748 
3749   btreeIntegrity(p);
3750 }
3751 
3752 /*
3753 ** Commit the transaction currently in progress.
3754 **
3755 ** This routine implements the second phase of a 2-phase commit.  The
3756 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3757 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3758 ** routine did all the work of writing information out to disk and flushing the
3759 ** contents so that they are written onto the disk platter.  All this
3760 ** routine has to do is delete or truncate or zero the header in the
3761 ** the rollback journal (which causes the transaction to commit) and
3762 ** drop locks.
3763 **
3764 ** Normally, if an error occurs while the pager layer is attempting to
3765 ** finalize the underlying journal file, this function returns an error and
3766 ** the upper layer will attempt a rollback. However, if the second argument
3767 ** is non-zero then this b-tree transaction is part of a multi-file
3768 ** transaction. In this case, the transaction has already been committed
3769 ** (by deleting a master journal file) and the caller will ignore this
3770 ** functions return code. So, even if an error occurs in the pager layer,
3771 ** reset the b-tree objects internal state to indicate that the write
3772 ** transaction has been closed. This is quite safe, as the pager will have
3773 ** transitioned to the error state.
3774 **
3775 ** This will release the write lock on the database file.  If there
3776 ** are no active cursors, it also releases the read lock.
3777 */
3778 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3779 
3780   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3781   sqlite3BtreeEnter(p);
3782   btreeIntegrity(p);
3783 
3784   /* If the handle has a write-transaction open, commit the shared-btrees
3785   ** transaction and set the shared state to TRANS_READ.
3786   */
3787   if( p->inTrans==TRANS_WRITE ){
3788     int rc;
3789     BtShared *pBt = p->pBt;
3790     assert( pBt->inTransaction==TRANS_WRITE );
3791     assert( pBt->nTransaction>0 );
3792     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3793     if( rc!=SQLITE_OK && bCleanup==0 ){
3794       sqlite3BtreeLeave(p);
3795       return rc;
3796     }
3797     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3798     pBt->inTransaction = TRANS_READ;
3799     btreeClearHasContent(pBt);
3800   }
3801 
3802   btreeEndTransaction(p);
3803   sqlite3BtreeLeave(p);
3804   return SQLITE_OK;
3805 }
3806 
3807 /*
3808 ** Do both phases of a commit.
3809 */
3810 int sqlite3BtreeCommit(Btree *p){
3811   int rc;
3812   sqlite3BtreeEnter(p);
3813   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3814   if( rc==SQLITE_OK ){
3815     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3816   }
3817   sqlite3BtreeLeave(p);
3818   return rc;
3819 }
3820 
3821 /*
3822 ** This routine sets the state to CURSOR_FAULT and the error
3823 ** code to errCode for every cursor on any BtShared that pBtree
3824 ** references.  Or if the writeOnly flag is set to 1, then only
3825 ** trip write cursors and leave read cursors unchanged.
3826 **
3827 ** Every cursor is a candidate to be tripped, including cursors
3828 ** that belong to other database connections that happen to be
3829 ** sharing the cache with pBtree.
3830 **
3831 ** This routine gets called when a rollback occurs. If the writeOnly
3832 ** flag is true, then only write-cursors need be tripped - read-only
3833 ** cursors save their current positions so that they may continue
3834 ** following the rollback. Or, if writeOnly is false, all cursors are
3835 ** tripped. In general, writeOnly is false if the transaction being
3836 ** rolled back modified the database schema. In this case b-tree root
3837 ** pages may be moved or deleted from the database altogether, making
3838 ** it unsafe for read cursors to continue.
3839 **
3840 ** If the writeOnly flag is true and an error is encountered while
3841 ** saving the current position of a read-only cursor, all cursors,
3842 ** including all read-cursors are tripped.
3843 **
3844 ** SQLITE_OK is returned if successful, or if an error occurs while
3845 ** saving a cursor position, an SQLite error code.
3846 */
3847 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3848   BtCursor *p;
3849   int rc = SQLITE_OK;
3850 
3851   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3852   if( pBtree ){
3853     sqlite3BtreeEnter(pBtree);
3854     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3855       int i;
3856       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3857         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
3858           rc = saveCursorPosition(p);
3859           if( rc!=SQLITE_OK ){
3860             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3861             break;
3862           }
3863         }
3864       }else{
3865         sqlite3BtreeClearCursor(p);
3866         p->eState = CURSOR_FAULT;
3867         p->skipNext = errCode;
3868       }
3869       for(i=0; i<=p->iPage; i++){
3870         releasePage(p->apPage[i]);
3871         p->apPage[i] = 0;
3872       }
3873     }
3874     sqlite3BtreeLeave(pBtree);
3875   }
3876   return rc;
3877 }
3878 
3879 /*
3880 ** Rollback the transaction in progress.
3881 **
3882 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3883 ** Only write cursors are tripped if writeOnly is true but all cursors are
3884 ** tripped if writeOnly is false.  Any attempt to use
3885 ** a tripped cursor will result in an error.
3886 **
3887 ** This will release the write lock on the database file.  If there
3888 ** are no active cursors, it also releases the read lock.
3889 */
3890 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3891   int rc;
3892   BtShared *pBt = p->pBt;
3893   MemPage *pPage1;
3894 
3895   assert( writeOnly==1 || writeOnly==0 );
3896   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3897   sqlite3BtreeEnter(p);
3898   if( tripCode==SQLITE_OK ){
3899     rc = tripCode = saveAllCursors(pBt, 0, 0);
3900     if( rc ) writeOnly = 0;
3901   }else{
3902     rc = SQLITE_OK;
3903   }
3904   if( tripCode ){
3905     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3906     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3907     if( rc2!=SQLITE_OK ) rc = rc2;
3908   }
3909   btreeIntegrity(p);
3910 
3911   if( p->inTrans==TRANS_WRITE ){
3912     int rc2;
3913 
3914     assert( TRANS_WRITE==pBt->inTransaction );
3915     rc2 = sqlite3PagerRollback(pBt->pPager);
3916     if( rc2!=SQLITE_OK ){
3917       rc = rc2;
3918     }
3919 
3920     /* The rollback may have destroyed the pPage1->aData value.  So
3921     ** call btreeGetPage() on page 1 again to make
3922     ** sure pPage1->aData is set correctly. */
3923     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3924       int nPage = get4byte(28+(u8*)pPage1->aData);
3925       testcase( nPage==0 );
3926       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3927       testcase( pBt->nPage!=nPage );
3928       pBt->nPage = nPage;
3929       releasePage(pPage1);
3930     }
3931     assert( countValidCursors(pBt, 1)==0 );
3932     pBt->inTransaction = TRANS_READ;
3933     btreeClearHasContent(pBt);
3934   }
3935 
3936   btreeEndTransaction(p);
3937   sqlite3BtreeLeave(p);
3938   return rc;
3939 }
3940 
3941 /*
3942 ** Start a statement subtransaction. The subtransaction can be rolled
3943 ** back independently of the main transaction. You must start a transaction
3944 ** before starting a subtransaction. The subtransaction is ended automatically
3945 ** if the main transaction commits or rolls back.
3946 **
3947 ** Statement subtransactions are used around individual SQL statements
3948 ** that are contained within a BEGIN...COMMIT block.  If a constraint
3949 ** error occurs within the statement, the effect of that one statement
3950 ** can be rolled back without having to rollback the entire transaction.
3951 **
3952 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3953 ** value passed as the second parameter is the total number of savepoints,
3954 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3955 ** are no active savepoints and no other statement-transactions open,
3956 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3957 ** using the sqlite3BtreeSavepoint() function.
3958 */
3959 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3960   int rc;
3961   BtShared *pBt = p->pBt;
3962   sqlite3BtreeEnter(p);
3963   assert( p->inTrans==TRANS_WRITE );
3964   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3965   assert( iStatement>0 );
3966   assert( iStatement>p->db->nSavepoint );
3967   assert( pBt->inTransaction==TRANS_WRITE );
3968   /* At the pager level, a statement transaction is a savepoint with
3969   ** an index greater than all savepoints created explicitly using
3970   ** SQL statements. It is illegal to open, release or rollback any
3971   ** such savepoints while the statement transaction savepoint is active.
3972   */
3973   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
3974   sqlite3BtreeLeave(p);
3975   return rc;
3976 }
3977 
3978 /*
3979 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3980 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3981 ** savepoint identified by parameter iSavepoint, depending on the value
3982 ** of op.
3983 **
3984 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3985 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3986 ** contents of the entire transaction are rolled back. This is different
3987 ** from a normal transaction rollback, as no locks are released and the
3988 ** transaction remains open.
3989 */
3990 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3991   int rc = SQLITE_OK;
3992   if( p && p->inTrans==TRANS_WRITE ){
3993     BtShared *pBt = p->pBt;
3994     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3995     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3996     sqlite3BtreeEnter(p);
3997     rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
3998     if( rc==SQLITE_OK ){
3999       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4000         pBt->nPage = 0;
4001       }
4002       rc = newDatabase(pBt);
4003       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4004 
4005       /* The database size was written into the offset 28 of the header
4006       ** when the transaction started, so we know that the value at offset
4007       ** 28 is nonzero. */
4008       assert( pBt->nPage>0 );
4009     }
4010     sqlite3BtreeLeave(p);
4011   }
4012   return rc;
4013 }
4014 
4015 /*
4016 ** Create a new cursor for the BTree whose root is on the page
4017 ** iTable. If a read-only cursor is requested, it is assumed that
4018 ** the caller already has at least a read-only transaction open
4019 ** on the database already. If a write-cursor is requested, then
4020 ** the caller is assumed to have an open write transaction.
4021 **
4022 ** If wrFlag==0, then the cursor can only be used for reading.
4023 ** If wrFlag==1, then the cursor can be used for reading or for
4024 ** writing if other conditions for writing are also met.  These
4025 ** are the conditions that must be met in order for writing to
4026 ** be allowed:
4027 **
4028 ** 1:  The cursor must have been opened with wrFlag==1
4029 **
4030 ** 2:  Other database connections that share the same pager cache
4031 **     but which are not in the READ_UNCOMMITTED state may not have
4032 **     cursors open with wrFlag==0 on the same table.  Otherwise
4033 **     the changes made by this write cursor would be visible to
4034 **     the read cursors in the other database connection.
4035 **
4036 ** 3:  The database must be writable (not on read-only media)
4037 **
4038 ** 4:  There must be an active transaction.
4039 **
4040 ** No checking is done to make sure that page iTable really is the
4041 ** root page of a b-tree.  If it is not, then the cursor acquired
4042 ** will not work correctly.
4043 **
4044 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4045 ** on pCur to initialize the memory space prior to invoking this routine.
4046 */
4047 static int btreeCursor(
4048   Btree *p,                              /* The btree */
4049   int iTable,                            /* Root page of table to open */
4050   int wrFlag,                            /* 1 to write. 0 read-only */
4051   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4052   BtCursor *pCur                         /* Space for new cursor */
4053 ){
4054   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4055   BtCursor *pX;                          /* Looping over other all cursors */
4056 
4057   assert( sqlite3BtreeHoldsMutex(p) );
4058   assert( wrFlag==0 || wrFlag==1 );
4059 
4060   /* The following assert statements verify that if this is a sharable
4061   ** b-tree database, the connection is holding the required table locks,
4062   ** and that no other connection has any open cursor that conflicts with
4063   ** this lock.  */
4064   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
4065   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4066 
4067   /* Assert that the caller has opened the required transaction. */
4068   assert( p->inTrans>TRANS_NONE );
4069   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4070   assert( pBt->pPage1 && pBt->pPage1->aData );
4071   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4072 
4073   if( wrFlag ){
4074     allocateTempSpace(pBt);
4075     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4076   }
4077   if( iTable==1 && btreePagecount(pBt)==0 ){
4078     assert( wrFlag==0 );
4079     iTable = 0;
4080   }
4081 
4082   /* Now that no other errors can occur, finish filling in the BtCursor
4083   ** variables and link the cursor into the BtShared list.  */
4084   pCur->pgnoRoot = (Pgno)iTable;
4085   pCur->iPage = -1;
4086   pCur->pKeyInfo = pKeyInfo;
4087   pCur->pBtree = p;
4088   pCur->pBt = pBt;
4089   assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4090   pCur->curFlags = wrFlag;
4091   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4092   /* If there are two or more cursors on the same btree, then all such
4093   ** cursors *must* have the BTCF_Multiple flag set. */
4094   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4095     if( pX->pgnoRoot==(Pgno)iTable ){
4096       pX->curFlags |= BTCF_Multiple;
4097       pCur->curFlags |= BTCF_Multiple;
4098     }
4099   }
4100   pCur->pNext = pBt->pCursor;
4101   pBt->pCursor = pCur;
4102   pCur->eState = CURSOR_INVALID;
4103   return SQLITE_OK;
4104 }
4105 int sqlite3BtreeCursor(
4106   Btree *p,                                   /* The btree */
4107   int iTable,                                 /* Root page of table to open */
4108   int wrFlag,                                 /* 1 to write. 0 read-only */
4109   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4110   BtCursor *pCur                              /* Write new cursor here */
4111 ){
4112   int rc;
4113   if( iTable<1 ){
4114     rc = SQLITE_CORRUPT_BKPT;
4115   }else{
4116     sqlite3BtreeEnter(p);
4117     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4118     sqlite3BtreeLeave(p);
4119   }
4120   return rc;
4121 }
4122 
4123 /*
4124 ** Return the size of a BtCursor object in bytes.
4125 **
4126 ** This interfaces is needed so that users of cursors can preallocate
4127 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4128 ** to users so they cannot do the sizeof() themselves - they must call
4129 ** this routine.
4130 */
4131 int sqlite3BtreeCursorSize(void){
4132   return ROUND8(sizeof(BtCursor));
4133 }
4134 
4135 /*
4136 ** Initialize memory that will be converted into a BtCursor object.
4137 **
4138 ** The simple approach here would be to memset() the entire object
4139 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4140 ** do not need to be zeroed and they are large, so we can save a lot
4141 ** of run-time by skipping the initialization of those elements.
4142 */
4143 void sqlite3BtreeCursorZero(BtCursor *p){
4144   memset(p, 0, offsetof(BtCursor, iPage));
4145 }
4146 
4147 /*
4148 ** Close a cursor.  The read lock on the database file is released
4149 ** when the last cursor is closed.
4150 */
4151 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4152   Btree *pBtree = pCur->pBtree;
4153   if( pBtree ){
4154     int i;
4155     BtShared *pBt = pCur->pBt;
4156     sqlite3BtreeEnter(pBtree);
4157     sqlite3BtreeClearCursor(pCur);
4158     assert( pBt->pCursor!=0 );
4159     if( pBt->pCursor==pCur ){
4160       pBt->pCursor = pCur->pNext;
4161     }else{
4162       BtCursor *pPrev = pBt->pCursor;
4163       do{
4164         if( pPrev->pNext==pCur ){
4165           pPrev->pNext = pCur->pNext;
4166           break;
4167         }
4168         pPrev = pPrev->pNext;
4169       }while( ALWAYS(pPrev) );
4170     }
4171     for(i=0; i<=pCur->iPage; i++){
4172       releasePage(pCur->apPage[i]);
4173     }
4174     unlockBtreeIfUnused(pBt);
4175     sqlite3_free(pCur->aOverflow);
4176     /* sqlite3_free(pCur); */
4177     sqlite3BtreeLeave(pBtree);
4178   }
4179   return SQLITE_OK;
4180 }
4181 
4182 /*
4183 ** Make sure the BtCursor* given in the argument has a valid
4184 ** BtCursor.info structure.  If it is not already valid, call
4185 ** btreeParseCell() to fill it in.
4186 **
4187 ** BtCursor.info is a cache of the information in the current cell.
4188 ** Using this cache reduces the number of calls to btreeParseCell().
4189 */
4190 #ifndef NDEBUG
4191   static void assertCellInfo(BtCursor *pCur){
4192     CellInfo info;
4193     int iPage = pCur->iPage;
4194     memset(&info, 0, sizeof(info));
4195     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
4196     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4197   }
4198 #else
4199   #define assertCellInfo(x)
4200 #endif
4201 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4202   if( pCur->info.nSize==0 ){
4203     int iPage = pCur->iPage;
4204     pCur->curFlags |= BTCF_ValidNKey;
4205     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4206   }else{
4207     assertCellInfo(pCur);
4208   }
4209 }
4210 
4211 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4212 /*
4213 ** Return true if the given BtCursor is valid.  A valid cursor is one
4214 ** that is currently pointing to a row in a (non-empty) table.
4215 ** This is a verification routine is used only within assert() statements.
4216 */
4217 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4218   return pCur && pCur->eState==CURSOR_VALID;
4219 }
4220 #endif /* NDEBUG */
4221 
4222 /*
4223 ** Set *pSize to the size of the buffer needed to hold the value of
4224 ** the key for the current entry.  If the cursor is not pointing
4225 ** to a valid entry, *pSize is set to 0.
4226 **
4227 ** For a table with the INTKEY flag set, this routine returns the key
4228 ** itself, not the number of bytes in the key.
4229 **
4230 ** The caller must position the cursor prior to invoking this routine.
4231 **
4232 ** This routine cannot fail.  It always returns SQLITE_OK.
4233 */
4234 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
4235   assert( cursorHoldsMutex(pCur) );
4236   assert( pCur->eState==CURSOR_VALID );
4237   getCellInfo(pCur);
4238   *pSize = pCur->info.nKey;
4239   return SQLITE_OK;
4240 }
4241 
4242 /*
4243 ** Set *pSize to the number of bytes of data in the entry the
4244 ** cursor currently points to.
4245 **
4246 ** The caller must guarantee that the cursor is pointing to a non-NULL
4247 ** valid entry.  In other words, the calling procedure must guarantee
4248 ** that the cursor has Cursor.eState==CURSOR_VALID.
4249 **
4250 ** Failure is not possible.  This function always returns SQLITE_OK.
4251 ** It might just as well be a procedure (returning void) but we continue
4252 ** to return an integer result code for historical reasons.
4253 */
4254 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
4255   assert( cursorHoldsMutex(pCur) );
4256   assert( pCur->eState==CURSOR_VALID );
4257   assert( pCur->iPage>=0 );
4258   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4259   assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
4260   getCellInfo(pCur);
4261   *pSize = pCur->info.nPayload;
4262   return SQLITE_OK;
4263 }
4264 
4265 /*
4266 ** Given the page number of an overflow page in the database (parameter
4267 ** ovfl), this function finds the page number of the next page in the
4268 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4269 ** pointer-map data instead of reading the content of page ovfl to do so.
4270 **
4271 ** If an error occurs an SQLite error code is returned. Otherwise:
4272 **
4273 ** The page number of the next overflow page in the linked list is
4274 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4275 ** list, *pPgnoNext is set to zero.
4276 **
4277 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4278 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4279 ** reference. It is the responsibility of the caller to call releasePage()
4280 ** on *ppPage to free the reference. In no reference was obtained (because
4281 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4282 ** *ppPage is set to zero.
4283 */
4284 static int getOverflowPage(
4285   BtShared *pBt,               /* The database file */
4286   Pgno ovfl,                   /* Current overflow page number */
4287   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4288   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4289 ){
4290   Pgno next = 0;
4291   MemPage *pPage = 0;
4292   int rc = SQLITE_OK;
4293 
4294   assert( sqlite3_mutex_held(pBt->mutex) );
4295   assert(pPgnoNext);
4296 
4297 #ifndef SQLITE_OMIT_AUTOVACUUM
4298   /* Try to find the next page in the overflow list using the
4299   ** autovacuum pointer-map pages. Guess that the next page in
4300   ** the overflow list is page number (ovfl+1). If that guess turns
4301   ** out to be wrong, fall back to loading the data of page
4302   ** number ovfl to determine the next page number.
4303   */
4304   if( pBt->autoVacuum ){
4305     Pgno pgno;
4306     Pgno iGuess = ovfl+1;
4307     u8 eType;
4308 
4309     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4310       iGuess++;
4311     }
4312 
4313     if( iGuess<=btreePagecount(pBt) ){
4314       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4315       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4316         next = iGuess;
4317         rc = SQLITE_DONE;
4318       }
4319     }
4320   }
4321 #endif
4322 
4323   assert( next==0 || rc==SQLITE_DONE );
4324   if( rc==SQLITE_OK ){
4325     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4326     assert( rc==SQLITE_OK || pPage==0 );
4327     if( rc==SQLITE_OK ){
4328       next = get4byte(pPage->aData);
4329     }
4330   }
4331 
4332   *pPgnoNext = next;
4333   if( ppPage ){
4334     *ppPage = pPage;
4335   }else{
4336     releasePage(pPage);
4337   }
4338   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4339 }
4340 
4341 /*
4342 ** Copy data from a buffer to a page, or from a page to a buffer.
4343 **
4344 ** pPayload is a pointer to data stored on database page pDbPage.
4345 ** If argument eOp is false, then nByte bytes of data are copied
4346 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4347 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4348 ** of data are copied from the buffer pBuf to pPayload.
4349 **
4350 ** SQLITE_OK is returned on success, otherwise an error code.
4351 */
4352 static int copyPayload(
4353   void *pPayload,           /* Pointer to page data */
4354   void *pBuf,               /* Pointer to buffer */
4355   int nByte,                /* Number of bytes to copy */
4356   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4357   DbPage *pDbPage           /* Page containing pPayload */
4358 ){
4359   if( eOp ){
4360     /* Copy data from buffer to page (a write operation) */
4361     int rc = sqlite3PagerWrite(pDbPage);
4362     if( rc!=SQLITE_OK ){
4363       return rc;
4364     }
4365     memcpy(pPayload, pBuf, nByte);
4366   }else{
4367     /* Copy data from page to buffer (a read operation) */
4368     memcpy(pBuf, pPayload, nByte);
4369   }
4370   return SQLITE_OK;
4371 }
4372 
4373 /*
4374 ** This function is used to read or overwrite payload information
4375 ** for the entry that the pCur cursor is pointing to. The eOp
4376 ** argument is interpreted as follows:
4377 **
4378 **   0: The operation is a read. Populate the overflow cache.
4379 **   1: The operation is a write. Populate the overflow cache.
4380 **   2: The operation is a read. Do not populate the overflow cache.
4381 **
4382 ** A total of "amt" bytes are read or written beginning at "offset".
4383 ** Data is read to or from the buffer pBuf.
4384 **
4385 ** The content being read or written might appear on the main page
4386 ** or be scattered out on multiple overflow pages.
4387 **
4388 ** If the current cursor entry uses one or more overflow pages and the
4389 ** eOp argument is not 2, this function may allocate space for and lazily
4390 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4391 ** Subsequent calls use this cache to make seeking to the supplied offset
4392 ** more efficient.
4393 **
4394 ** Once an overflow page-list cache has been allocated, it may be
4395 ** invalidated if some other cursor writes to the same table, or if
4396 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4397 ** mode, the following events may invalidate an overflow page-list cache.
4398 **
4399 **   * An incremental vacuum,
4400 **   * A commit in auto_vacuum="full" mode,
4401 **   * Creating a table (may require moving an overflow page).
4402 */
4403 static int accessPayload(
4404   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4405   u32 offset,          /* Begin reading this far into payload */
4406   u32 amt,             /* Read this many bytes */
4407   unsigned char *pBuf, /* Write the bytes into this buffer */
4408   int eOp              /* zero to read. non-zero to write. */
4409 ){
4410   unsigned char *aPayload;
4411   int rc = SQLITE_OK;
4412   int iIdx = 0;
4413   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4414   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4415 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4416   unsigned char * const pBufStart = pBuf;
4417   int bEnd;                                 /* True if reading to end of data */
4418 #endif
4419 
4420   assert( pPage );
4421   assert( pCur->eState==CURSOR_VALID );
4422   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4423   assert( cursorHoldsMutex(pCur) );
4424   assert( eOp!=2 || offset==0 );    /* Always start from beginning for eOp==2 */
4425 
4426   getCellInfo(pCur);
4427   aPayload = pCur->info.pPayload;
4428 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4429   bEnd = offset+amt==pCur->info.nPayload;
4430 #endif
4431   assert( offset+amt <= pCur->info.nPayload );
4432 
4433   if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
4434     /* Trying to read or write past the end of the data is an error */
4435     return SQLITE_CORRUPT_BKPT;
4436   }
4437 
4438   /* Check if data must be read/written to/from the btree page itself. */
4439   if( offset<pCur->info.nLocal ){
4440     int a = amt;
4441     if( a+offset>pCur->info.nLocal ){
4442       a = pCur->info.nLocal - offset;
4443     }
4444     rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
4445     offset = 0;
4446     pBuf += a;
4447     amt -= a;
4448   }else{
4449     offset -= pCur->info.nLocal;
4450   }
4451 
4452 
4453   if( rc==SQLITE_OK && amt>0 ){
4454     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4455     Pgno nextPage;
4456 
4457     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4458 
4459     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4460     ** Except, do not allocate aOverflow[] for eOp==2.
4461     **
4462     ** The aOverflow[] array is sized at one entry for each overflow page
4463     ** in the overflow chain. The page number of the first overflow page is
4464     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4465     ** means "not yet known" (the cache is lazily populated).
4466     */
4467     if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4468       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4469       if( nOvfl>pCur->nOvflAlloc ){
4470         Pgno *aNew = (Pgno*)sqlite3Realloc(
4471             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4472         );
4473         if( aNew==0 ){
4474           rc = SQLITE_NOMEM;
4475         }else{
4476           pCur->nOvflAlloc = nOvfl*2;
4477           pCur->aOverflow = aNew;
4478         }
4479       }
4480       if( rc==SQLITE_OK ){
4481         memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4482         pCur->curFlags |= BTCF_ValidOvfl;
4483       }
4484     }
4485 
4486     /* If the overflow page-list cache has been allocated and the
4487     ** entry for the first required overflow page is valid, skip
4488     ** directly to it.
4489     */
4490     if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4491      && pCur->aOverflow[offset/ovflSize]
4492     ){
4493       iIdx = (offset/ovflSize);
4494       nextPage = pCur->aOverflow[iIdx];
4495       offset = (offset%ovflSize);
4496     }
4497 
4498     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4499 
4500       /* If required, populate the overflow page-list cache. */
4501       if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
4502         assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4503         pCur->aOverflow[iIdx] = nextPage;
4504       }
4505 
4506       if( offset>=ovflSize ){
4507         /* The only reason to read this page is to obtain the page
4508         ** number for the next page in the overflow chain. The page
4509         ** data is not required. So first try to lookup the overflow
4510         ** page-list cache, if any, then fall back to the getOverflowPage()
4511         ** function.
4512         **
4513         ** Note that the aOverflow[] array must be allocated because eOp!=2
4514         ** here.  If eOp==2, then offset==0 and this branch is never taken.
4515         */
4516         assert( eOp!=2 );
4517         assert( pCur->curFlags & BTCF_ValidOvfl );
4518         assert( pCur->pBtree->db==pBt->db );
4519         if( pCur->aOverflow[iIdx+1] ){
4520           nextPage = pCur->aOverflow[iIdx+1];
4521         }else{
4522           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4523         }
4524         offset -= ovflSize;
4525       }else{
4526         /* Need to read this page properly. It contains some of the
4527         ** range of data that is being read (eOp==0) or written (eOp!=0).
4528         */
4529 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4530         sqlite3_file *fd;
4531 #endif
4532         int a = amt;
4533         if( a + offset > ovflSize ){
4534           a = ovflSize - offset;
4535         }
4536 
4537 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4538         /* If all the following are true:
4539         **
4540         **   1) this is a read operation, and
4541         **   2) data is required from the start of this overflow page, and
4542         **   3) the database is file-backed, and
4543         **   4) there is no open write-transaction, and
4544         **   5) the database is not a WAL database,
4545         **   6) all data from the page is being read.
4546         **   7) at least 4 bytes have already been read into the output buffer
4547         **
4548         ** then data can be read directly from the database file into the
4549         ** output buffer, bypassing the page-cache altogether. This speeds
4550         ** up loading large records that span many overflow pages.
4551         */
4552         if( (eOp&0x01)==0                                      /* (1) */
4553          && offset==0                                          /* (2) */
4554          && (bEnd || a==ovflSize)                              /* (6) */
4555          && pBt->inTransaction==TRANS_READ                     /* (4) */
4556          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (3) */
4557          && pBt->pPage1->aData[19]==0x01                       /* (5) */
4558          && &pBuf[-4]>=pBufStart                               /* (7) */
4559         ){
4560           u8 aSave[4];
4561           u8 *aWrite = &pBuf[-4];
4562           assert( aWrite>=pBufStart );                         /* hence (7) */
4563           memcpy(aSave, aWrite, 4);
4564           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4565           nextPage = get4byte(aWrite);
4566           memcpy(aWrite, aSave, 4);
4567         }else
4568 #endif
4569 
4570         {
4571           DbPage *pDbPage;
4572           rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
4573               ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4574           );
4575           if( rc==SQLITE_OK ){
4576             aPayload = sqlite3PagerGetData(pDbPage);
4577             nextPage = get4byte(aPayload);
4578             rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4579             sqlite3PagerUnref(pDbPage);
4580             offset = 0;
4581           }
4582         }
4583         amt -= a;
4584         pBuf += a;
4585       }
4586     }
4587   }
4588 
4589   if( rc==SQLITE_OK && amt>0 ){
4590     return SQLITE_CORRUPT_BKPT;
4591   }
4592   return rc;
4593 }
4594 
4595 /*
4596 ** Read part of the key associated with cursor pCur.  Exactly
4597 ** "amt" bytes will be transferred into pBuf[].  The transfer
4598 ** begins at "offset".
4599 **
4600 ** The caller must ensure that pCur is pointing to a valid row
4601 ** in the table.
4602 **
4603 ** Return SQLITE_OK on success or an error code if anything goes
4604 ** wrong.  An error is returned if "offset+amt" is larger than
4605 ** the available payload.
4606 */
4607 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4608   assert( cursorHoldsMutex(pCur) );
4609   assert( pCur->eState==CURSOR_VALID );
4610   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4611   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4612   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4613 }
4614 
4615 /*
4616 ** Read part of the data associated with cursor pCur.  Exactly
4617 ** "amt" bytes will be transfered into pBuf[].  The transfer
4618 ** begins at "offset".
4619 **
4620 ** Return SQLITE_OK on success or an error code if anything goes
4621 ** wrong.  An error is returned if "offset+amt" is larger than
4622 ** the available payload.
4623 */
4624 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4625   int rc;
4626 
4627 #ifndef SQLITE_OMIT_INCRBLOB
4628   if ( pCur->eState==CURSOR_INVALID ){
4629     return SQLITE_ABORT;
4630   }
4631 #endif
4632 
4633   assert( cursorHoldsMutex(pCur) );
4634   rc = restoreCursorPosition(pCur);
4635   if( rc==SQLITE_OK ){
4636     assert( pCur->eState==CURSOR_VALID );
4637     assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4638     assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4639     rc = accessPayload(pCur, offset, amt, pBuf, 0);
4640   }
4641   return rc;
4642 }
4643 
4644 /*
4645 ** Return a pointer to payload information from the entry that the
4646 ** pCur cursor is pointing to.  The pointer is to the beginning of
4647 ** the key if index btrees (pPage->intKey==0) and is the data for
4648 ** table btrees (pPage->intKey==1). The number of bytes of available
4649 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4650 ** returned will not be a valid pointer.
4651 **
4652 ** This routine is an optimization.  It is common for the entire key
4653 ** and data to fit on the local page and for there to be no overflow
4654 ** pages.  When that is so, this routine can be used to access the
4655 ** key and data without making a copy.  If the key and/or data spills
4656 ** onto overflow pages, then accessPayload() must be used to reassemble
4657 ** the key/data and copy it into a preallocated buffer.
4658 **
4659 ** The pointer returned by this routine looks directly into the cached
4660 ** page of the database.  The data might change or move the next time
4661 ** any btree routine is called.
4662 */
4663 static const void *fetchPayload(
4664   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4665   u32 *pAmt            /* Write the number of available bytes here */
4666 ){
4667   u32 amt;
4668   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4669   assert( pCur->eState==CURSOR_VALID );
4670   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4671   assert( cursorHoldsMutex(pCur) );
4672   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4673   assert( pCur->info.nSize>0 );
4674   assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4675   assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4676   amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4677   if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4678   *pAmt = amt;
4679   return (void*)pCur->info.pPayload;
4680 }
4681 
4682 
4683 /*
4684 ** For the entry that cursor pCur is point to, return as
4685 ** many bytes of the key or data as are available on the local
4686 ** b-tree page.  Write the number of available bytes into *pAmt.
4687 **
4688 ** The pointer returned is ephemeral.  The key/data may move
4689 ** or be destroyed on the next call to any Btree routine,
4690 ** including calls from other threads against the same cache.
4691 ** Hence, a mutex on the BtShared should be held prior to calling
4692 ** this routine.
4693 **
4694 ** These routines is used to get quick access to key and data
4695 ** in the common case where no overflow pages are used.
4696 */
4697 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4698   return fetchPayload(pCur, pAmt);
4699 }
4700 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4701   return fetchPayload(pCur, pAmt);
4702 }
4703 
4704 
4705 /*
4706 ** Move the cursor down to a new child page.  The newPgno argument is the
4707 ** page number of the child page to move to.
4708 **
4709 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4710 ** the new child page does not match the flags field of the parent (i.e.
4711 ** if an intkey page appears to be the parent of a non-intkey page, or
4712 ** vice-versa).
4713 */
4714 static int moveToChild(BtCursor *pCur, u32 newPgno){
4715   BtShared *pBt = pCur->pBt;
4716 
4717   assert( cursorHoldsMutex(pCur) );
4718   assert( pCur->eState==CURSOR_VALID );
4719   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4720   assert( pCur->iPage>=0 );
4721   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4722     return SQLITE_CORRUPT_BKPT;
4723   }
4724   pCur->info.nSize = 0;
4725   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4726   pCur->iPage++;
4727   pCur->aiIdx[pCur->iPage] = 0;
4728   return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4729                         pCur, pCur->curPagerFlags);
4730 }
4731 
4732 #if SQLITE_DEBUG
4733 /*
4734 ** Page pParent is an internal (non-leaf) tree page. This function
4735 ** asserts that page number iChild is the left-child if the iIdx'th
4736 ** cell in page pParent. Or, if iIdx is equal to the total number of
4737 ** cells in pParent, that page number iChild is the right-child of
4738 ** the page.
4739 */
4740 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4741   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4742                             ** in a corrupt database */
4743   assert( iIdx<=pParent->nCell );
4744   if( iIdx==pParent->nCell ){
4745     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4746   }else{
4747     assert( get4byte(findCell(pParent, iIdx))==iChild );
4748   }
4749 }
4750 #else
4751 #  define assertParentIndex(x,y,z)
4752 #endif
4753 
4754 /*
4755 ** Move the cursor up to the parent page.
4756 **
4757 ** pCur->idx is set to the cell index that contains the pointer
4758 ** to the page we are coming from.  If we are coming from the
4759 ** right-most child page then pCur->idx is set to one more than
4760 ** the largest cell index.
4761 */
4762 static void moveToParent(BtCursor *pCur){
4763   assert( cursorHoldsMutex(pCur) );
4764   assert( pCur->eState==CURSOR_VALID );
4765   assert( pCur->iPage>0 );
4766   assert( pCur->apPage[pCur->iPage] );
4767   assertParentIndex(
4768     pCur->apPage[pCur->iPage-1],
4769     pCur->aiIdx[pCur->iPage-1],
4770     pCur->apPage[pCur->iPage]->pgno
4771   );
4772   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4773   pCur->info.nSize = 0;
4774   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4775   releasePageNotNull(pCur->apPage[pCur->iPage--]);
4776 }
4777 
4778 /*
4779 ** Move the cursor to point to the root page of its b-tree structure.
4780 **
4781 ** If the table has a virtual root page, then the cursor is moved to point
4782 ** to the virtual root page instead of the actual root page. A table has a
4783 ** virtual root page when the actual root page contains no cells and a
4784 ** single child page. This can only happen with the table rooted at page 1.
4785 **
4786 ** If the b-tree structure is empty, the cursor state is set to
4787 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4788 ** cell located on the root (or virtual root) page and the cursor state
4789 ** is set to CURSOR_VALID.
4790 **
4791 ** If this function returns successfully, it may be assumed that the
4792 ** page-header flags indicate that the [virtual] root-page is the expected
4793 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4794 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4795 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4796 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4797 ** b-tree).
4798 */
4799 static int moveToRoot(BtCursor *pCur){
4800   MemPage *pRoot;
4801   int rc = SQLITE_OK;
4802 
4803   assert( cursorHoldsMutex(pCur) );
4804   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4805   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4806   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4807   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4808     if( pCur->eState==CURSOR_FAULT ){
4809       assert( pCur->skipNext!=SQLITE_OK );
4810       return pCur->skipNext;
4811     }
4812     sqlite3BtreeClearCursor(pCur);
4813   }
4814 
4815   if( pCur->iPage>=0 ){
4816     while( pCur->iPage ){
4817       assert( pCur->apPage[pCur->iPage]!=0 );
4818       releasePageNotNull(pCur->apPage[pCur->iPage--]);
4819     }
4820   }else if( pCur->pgnoRoot==0 ){
4821     pCur->eState = CURSOR_INVALID;
4822     return SQLITE_OK;
4823   }else{
4824     assert( pCur->iPage==(-1) );
4825     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4826                         0, pCur->curPagerFlags);
4827     if( rc!=SQLITE_OK ){
4828       pCur->eState = CURSOR_INVALID;
4829       return rc;
4830     }
4831     pCur->iPage = 0;
4832     pCur->curIntKey = pCur->apPage[0]->intKey;
4833   }
4834   pRoot = pCur->apPage[0];
4835   assert( pRoot->pgno==pCur->pgnoRoot );
4836 
4837   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4838   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4839   ** NULL, the caller expects a table b-tree. If this is not the case,
4840   ** return an SQLITE_CORRUPT error.
4841   **
4842   ** Earlier versions of SQLite assumed that this test could not fail
4843   ** if the root page was already loaded when this function was called (i.e.
4844   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4845   ** in such a way that page pRoot is linked into a second b-tree table
4846   ** (or the freelist).  */
4847   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4848   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4849     return SQLITE_CORRUPT_BKPT;
4850   }
4851 
4852   pCur->aiIdx[0] = 0;
4853   pCur->info.nSize = 0;
4854   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4855 
4856   if( pRoot->nCell>0 ){
4857     pCur->eState = CURSOR_VALID;
4858   }else if( !pRoot->leaf ){
4859     Pgno subpage;
4860     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4861     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4862     pCur->eState = CURSOR_VALID;
4863     rc = moveToChild(pCur, subpage);
4864   }else{
4865     pCur->eState = CURSOR_INVALID;
4866   }
4867   return rc;
4868 }
4869 
4870 /*
4871 ** Move the cursor down to the left-most leaf entry beneath the
4872 ** entry to which it is currently pointing.
4873 **
4874 ** The left-most leaf is the one with the smallest key - the first
4875 ** in ascending order.
4876 */
4877 static int moveToLeftmost(BtCursor *pCur){
4878   Pgno pgno;
4879   int rc = SQLITE_OK;
4880   MemPage *pPage;
4881 
4882   assert( cursorHoldsMutex(pCur) );
4883   assert( pCur->eState==CURSOR_VALID );
4884   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4885     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4886     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4887     rc = moveToChild(pCur, pgno);
4888   }
4889   return rc;
4890 }
4891 
4892 /*
4893 ** Move the cursor down to the right-most leaf entry beneath the
4894 ** page to which it is currently pointing.  Notice the difference
4895 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
4896 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4897 ** finds the right-most entry beneath the *page*.
4898 **
4899 ** The right-most entry is the one with the largest key - the last
4900 ** key in ascending order.
4901 */
4902 static int moveToRightmost(BtCursor *pCur){
4903   Pgno pgno;
4904   int rc = SQLITE_OK;
4905   MemPage *pPage = 0;
4906 
4907   assert( cursorHoldsMutex(pCur) );
4908   assert( pCur->eState==CURSOR_VALID );
4909   while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4910     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4911     pCur->aiIdx[pCur->iPage] = pPage->nCell;
4912     rc = moveToChild(pCur, pgno);
4913     if( rc ) return rc;
4914   }
4915   pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4916   assert( pCur->info.nSize==0 );
4917   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4918   return SQLITE_OK;
4919 }
4920 
4921 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
4922 ** on success.  Set *pRes to 0 if the cursor actually points to something
4923 ** or set *pRes to 1 if the table is empty.
4924 */
4925 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4926   int rc;
4927 
4928   assert( cursorHoldsMutex(pCur) );
4929   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4930   rc = moveToRoot(pCur);
4931   if( rc==SQLITE_OK ){
4932     if( pCur->eState==CURSOR_INVALID ){
4933       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4934       *pRes = 1;
4935     }else{
4936       assert( pCur->apPage[pCur->iPage]->nCell>0 );
4937       *pRes = 0;
4938       rc = moveToLeftmost(pCur);
4939     }
4940   }
4941   return rc;
4942 }
4943 
4944 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
4945 ** on success.  Set *pRes to 0 if the cursor actually points to something
4946 ** or set *pRes to 1 if the table is empty.
4947 */
4948 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4949   int rc;
4950 
4951   assert( cursorHoldsMutex(pCur) );
4952   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4953 
4954   /* If the cursor already points to the last entry, this is a no-op. */
4955   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
4956 #ifdef SQLITE_DEBUG
4957     /* This block serves to assert() that the cursor really does point
4958     ** to the last entry in the b-tree. */
4959     int ii;
4960     for(ii=0; ii<pCur->iPage; ii++){
4961       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4962     }
4963     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4964     assert( pCur->apPage[pCur->iPage]->leaf );
4965 #endif
4966     return SQLITE_OK;
4967   }
4968 
4969   rc = moveToRoot(pCur);
4970   if( rc==SQLITE_OK ){
4971     if( CURSOR_INVALID==pCur->eState ){
4972       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4973       *pRes = 1;
4974     }else{
4975       assert( pCur->eState==CURSOR_VALID );
4976       *pRes = 0;
4977       rc = moveToRightmost(pCur);
4978       if( rc==SQLITE_OK ){
4979         pCur->curFlags |= BTCF_AtLast;
4980       }else{
4981         pCur->curFlags &= ~BTCF_AtLast;
4982       }
4983 
4984     }
4985   }
4986   return rc;
4987 }
4988 
4989 /* Move the cursor so that it points to an entry near the key
4990 ** specified by pIdxKey or intKey.   Return a success code.
4991 **
4992 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
4993 ** must be NULL.  For index tables, pIdxKey is used and intKey
4994 ** is ignored.
4995 **
4996 ** If an exact match is not found, then the cursor is always
4997 ** left pointing at a leaf page which would hold the entry if it
4998 ** were present.  The cursor might point to an entry that comes
4999 ** before or after the key.
5000 **
5001 ** An integer is written into *pRes which is the result of
5002 ** comparing the key with the entry to which the cursor is
5003 ** pointing.  The meaning of the integer written into
5004 ** *pRes is as follows:
5005 **
5006 **     *pRes<0      The cursor is left pointing at an entry that
5007 **                  is smaller than intKey/pIdxKey or if the table is empty
5008 **                  and the cursor is therefore left point to nothing.
5009 **
5010 **     *pRes==0     The cursor is left pointing at an entry that
5011 **                  exactly matches intKey/pIdxKey.
5012 **
5013 **     *pRes>0      The cursor is left pointing at an entry that
5014 **                  is larger than intKey/pIdxKey.
5015 **
5016 */
5017 int sqlite3BtreeMovetoUnpacked(
5018   BtCursor *pCur,          /* The cursor to be moved */
5019   UnpackedRecord *pIdxKey, /* Unpacked index key */
5020   i64 intKey,              /* The table key */
5021   int biasRight,           /* If true, bias the search to the high end */
5022   int *pRes                /* Write search results here */
5023 ){
5024   int rc;
5025   RecordCompare xRecordCompare;
5026 
5027   assert( cursorHoldsMutex(pCur) );
5028   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5029   assert( pRes );
5030   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5031 
5032   /* If the cursor is already positioned at the point we are trying
5033   ** to move to, then just return without doing any work */
5034   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5035    && pCur->curIntKey
5036   ){
5037     if( pCur->info.nKey==intKey ){
5038       *pRes = 0;
5039       return SQLITE_OK;
5040     }
5041     if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
5042       *pRes = -1;
5043       return SQLITE_OK;
5044     }
5045   }
5046 
5047   if( pIdxKey ){
5048     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5049     pIdxKey->errCode = 0;
5050     assert( pIdxKey->default_rc==1
5051          || pIdxKey->default_rc==0
5052          || pIdxKey->default_rc==-1
5053     );
5054   }else{
5055     xRecordCompare = 0; /* All keys are integers */
5056   }
5057 
5058   rc = moveToRoot(pCur);
5059   if( rc ){
5060     return rc;
5061   }
5062   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5063   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5064   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
5065   if( pCur->eState==CURSOR_INVALID ){
5066     *pRes = -1;
5067     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5068     return SQLITE_OK;
5069   }
5070   assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5071   assert( pCur->curIntKey || pIdxKey );
5072   for(;;){
5073     int lwr, upr, idx, c;
5074     Pgno chldPg;
5075     MemPage *pPage = pCur->apPage[pCur->iPage];
5076     u8 *pCell;                          /* Pointer to current cell in pPage */
5077 
5078     /* pPage->nCell must be greater than zero. If this is the root-page
5079     ** the cursor would have been INVALID above and this for(;;) loop
5080     ** not run. If this is not the root-page, then the moveToChild() routine
5081     ** would have already detected db corruption. Similarly, pPage must
5082     ** be the right kind (index or table) of b-tree page. Otherwise
5083     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5084     assert( pPage->nCell>0 );
5085     assert( pPage->intKey==(pIdxKey==0) );
5086     lwr = 0;
5087     upr = pPage->nCell-1;
5088     assert( biasRight==0 || biasRight==1 );
5089     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5090     pCur->aiIdx[pCur->iPage] = (u16)idx;
5091     if( xRecordCompare==0 ){
5092       for(;;){
5093         i64 nCellKey;
5094         pCell = findCellPastPtr(pPage, idx);
5095         if( pPage->intKeyLeaf ){
5096           while( 0x80 <= *(pCell++) ){
5097             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5098           }
5099         }
5100         getVarint(pCell, (u64*)&nCellKey);
5101         if( nCellKey<intKey ){
5102           lwr = idx+1;
5103           if( lwr>upr ){ c = -1; break; }
5104         }else if( nCellKey>intKey ){
5105           upr = idx-1;
5106           if( lwr>upr ){ c = +1; break; }
5107         }else{
5108           assert( nCellKey==intKey );
5109           pCur->curFlags |= BTCF_ValidNKey;
5110           pCur->info.nKey = nCellKey;
5111           pCur->aiIdx[pCur->iPage] = (u16)idx;
5112           if( !pPage->leaf ){
5113             lwr = idx;
5114             goto moveto_next_layer;
5115           }else{
5116             *pRes = 0;
5117             rc = SQLITE_OK;
5118             goto moveto_finish;
5119           }
5120         }
5121         assert( lwr+upr>=0 );
5122         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5123       }
5124     }else{
5125       for(;;){
5126         int nCell;  /* Size of the pCell cell in bytes */
5127         pCell = findCellPastPtr(pPage, idx);
5128 
5129         /* The maximum supported page-size is 65536 bytes. This means that
5130         ** the maximum number of record bytes stored on an index B-Tree
5131         ** page is less than 16384 bytes and may be stored as a 2-byte
5132         ** varint. This information is used to attempt to avoid parsing
5133         ** the entire cell by checking for the cases where the record is
5134         ** stored entirely within the b-tree page by inspecting the first
5135         ** 2 bytes of the cell.
5136         */
5137         nCell = pCell[0];
5138         if( nCell<=pPage->max1bytePayload ){
5139           /* This branch runs if the record-size field of the cell is a
5140           ** single byte varint and the record fits entirely on the main
5141           ** b-tree page.  */
5142           testcase( pCell+nCell+1==pPage->aDataEnd );
5143           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5144         }else if( !(pCell[1] & 0x80)
5145           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5146         ){
5147           /* The record-size field is a 2 byte varint and the record
5148           ** fits entirely on the main b-tree page.  */
5149           testcase( pCell+nCell+2==pPage->aDataEnd );
5150           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5151         }else{
5152           /* The record flows over onto one or more overflow pages. In
5153           ** this case the whole cell needs to be parsed, a buffer allocated
5154           ** and accessPayload() used to retrieve the record into the
5155           ** buffer before VdbeRecordCompare() can be called.
5156           **
5157           ** If the record is corrupt, the xRecordCompare routine may read
5158           ** up to two varints past the end of the buffer. An extra 18
5159           ** bytes of padding is allocated at the end of the buffer in
5160           ** case this happens.  */
5161           void *pCellKey;
5162           u8 * const pCellBody = pCell - pPage->childPtrSize;
5163           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5164           nCell = (int)pCur->info.nKey;
5165           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5166           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5167           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5168           testcase( nCell==2 );  /* Minimum legal index key size */
5169           if( nCell<2 ){
5170             rc = SQLITE_CORRUPT_BKPT;
5171             goto moveto_finish;
5172           }
5173           pCellKey = sqlite3Malloc( nCell+18 );
5174           if( pCellKey==0 ){
5175             rc = SQLITE_NOMEM;
5176             goto moveto_finish;
5177           }
5178           pCur->aiIdx[pCur->iPage] = (u16)idx;
5179           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
5180           if( rc ){
5181             sqlite3_free(pCellKey);
5182             goto moveto_finish;
5183           }
5184           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5185           sqlite3_free(pCellKey);
5186         }
5187         assert(
5188             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5189          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5190         );
5191         if( c<0 ){
5192           lwr = idx+1;
5193         }else if( c>0 ){
5194           upr = idx-1;
5195         }else{
5196           assert( c==0 );
5197           *pRes = 0;
5198           rc = SQLITE_OK;
5199           pCur->aiIdx[pCur->iPage] = (u16)idx;
5200           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
5201           goto moveto_finish;
5202         }
5203         if( lwr>upr ) break;
5204         assert( lwr+upr>=0 );
5205         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5206       }
5207     }
5208     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5209     assert( pPage->isInit );
5210     if( pPage->leaf ){
5211       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
5212       pCur->aiIdx[pCur->iPage] = (u16)idx;
5213       *pRes = c;
5214       rc = SQLITE_OK;
5215       goto moveto_finish;
5216     }
5217 moveto_next_layer:
5218     if( lwr>=pPage->nCell ){
5219       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5220     }else{
5221       chldPg = get4byte(findCell(pPage, lwr));
5222     }
5223     pCur->aiIdx[pCur->iPage] = (u16)lwr;
5224     rc = moveToChild(pCur, chldPg);
5225     if( rc ) break;
5226   }
5227 moveto_finish:
5228   pCur->info.nSize = 0;
5229   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5230   return rc;
5231 }
5232 
5233 
5234 /*
5235 ** Return TRUE if the cursor is not pointing at an entry of the table.
5236 **
5237 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5238 ** past the last entry in the table or sqlite3BtreePrev() moves past
5239 ** the first entry.  TRUE is also returned if the table is empty.
5240 */
5241 int sqlite3BtreeEof(BtCursor *pCur){
5242   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5243   ** have been deleted? This API will need to change to return an error code
5244   ** as well as the boolean result value.
5245   */
5246   return (CURSOR_VALID!=pCur->eState);
5247 }
5248 
5249 /*
5250 ** Advance the cursor to the next entry in the database.  If
5251 ** successful then set *pRes=0.  If the cursor
5252 ** was already pointing to the last entry in the database before
5253 ** this routine was called, then set *pRes=1.
5254 **
5255 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5256 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5257 ** to the next cell on the current page.  The (slower) btreeNext() helper
5258 ** routine is called when it is necessary to move to a different page or
5259 ** to restore the cursor.
5260 **
5261 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5262 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5263 ** if this routine could have been skipped if that SQL index had been
5264 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5265 ** Zero is the common case. The btree implementation is free to use the
5266 ** initial *pRes value as a hint to improve performance, but the current
5267 ** SQLite btree implementation does not. (Note that the comdb2 btree
5268 ** implementation does use this hint, however.)
5269 */
5270 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
5271   int rc;
5272   int idx;
5273   MemPage *pPage;
5274 
5275   assert( cursorHoldsMutex(pCur) );
5276   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5277   assert( *pRes==0 );
5278   if( pCur->eState!=CURSOR_VALID ){
5279     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5280     rc = restoreCursorPosition(pCur);
5281     if( rc!=SQLITE_OK ){
5282       return rc;
5283     }
5284     if( CURSOR_INVALID==pCur->eState ){
5285       *pRes = 1;
5286       return SQLITE_OK;
5287     }
5288     if( pCur->skipNext ){
5289       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5290       pCur->eState = CURSOR_VALID;
5291       if( pCur->skipNext>0 ){
5292         pCur->skipNext = 0;
5293         return SQLITE_OK;
5294       }
5295       pCur->skipNext = 0;
5296     }
5297   }
5298 
5299   pPage = pCur->apPage[pCur->iPage];
5300   idx = ++pCur->aiIdx[pCur->iPage];
5301   assert( pPage->isInit );
5302 
5303   /* If the database file is corrupt, it is possible for the value of idx
5304   ** to be invalid here. This can only occur if a second cursor modifies
5305   ** the page while cursor pCur is holding a reference to it. Which can
5306   ** only happen if the database is corrupt in such a way as to link the
5307   ** page into more than one b-tree structure. */
5308   testcase( idx>pPage->nCell );
5309 
5310   if( idx>=pPage->nCell ){
5311     if( !pPage->leaf ){
5312       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5313       if( rc ) return rc;
5314       return moveToLeftmost(pCur);
5315     }
5316     do{
5317       if( pCur->iPage==0 ){
5318         *pRes = 1;
5319         pCur->eState = CURSOR_INVALID;
5320         return SQLITE_OK;
5321       }
5322       moveToParent(pCur);
5323       pPage = pCur->apPage[pCur->iPage];
5324     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
5325     if( pPage->intKey ){
5326       return sqlite3BtreeNext(pCur, pRes);
5327     }else{
5328       return SQLITE_OK;
5329     }
5330   }
5331   if( pPage->leaf ){
5332     return SQLITE_OK;
5333   }else{
5334     return moveToLeftmost(pCur);
5335   }
5336 }
5337 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5338   MemPage *pPage;
5339   assert( cursorHoldsMutex(pCur) );
5340   assert( pRes!=0 );
5341   assert( *pRes==0 || *pRes==1 );
5342   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5343   pCur->info.nSize = 0;
5344   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5345   *pRes = 0;
5346   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5347   pPage = pCur->apPage[pCur->iPage];
5348   if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5349     pCur->aiIdx[pCur->iPage]--;
5350     return btreeNext(pCur, pRes);
5351   }
5352   if( pPage->leaf ){
5353     return SQLITE_OK;
5354   }else{
5355     return moveToLeftmost(pCur);
5356   }
5357 }
5358 
5359 /*
5360 ** Step the cursor to the back to the previous entry in the database.  If
5361 ** successful then set *pRes=0.  If the cursor
5362 ** was already pointing to the first entry in the database before
5363 ** this routine was called, then set *pRes=1.
5364 **
5365 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5366 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5367 ** to the previous cell on the current page.  The (slower) btreePrevious()
5368 ** helper routine is called when it is necessary to move to a different page
5369 ** or to restore the cursor.
5370 **
5371 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5372 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5373 ** if this routine could have been skipped if that SQL index had been
5374 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5375 ** Zero is the common case. The btree implementation is free to use the
5376 ** initial *pRes value as a hint to improve performance, but the current
5377 ** SQLite btree implementation does not. (Note that the comdb2 btree
5378 ** implementation does use this hint, however.)
5379 */
5380 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5381   int rc;
5382   MemPage *pPage;
5383 
5384   assert( cursorHoldsMutex(pCur) );
5385   assert( pRes!=0 );
5386   assert( *pRes==0 );
5387   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5388   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5389   assert( pCur->info.nSize==0 );
5390   if( pCur->eState!=CURSOR_VALID ){
5391     rc = restoreCursorPosition(pCur);
5392     if( rc!=SQLITE_OK ){
5393       return rc;
5394     }
5395     if( CURSOR_INVALID==pCur->eState ){
5396       *pRes = 1;
5397       return SQLITE_OK;
5398     }
5399     if( pCur->skipNext ){
5400       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5401       pCur->eState = CURSOR_VALID;
5402       if( pCur->skipNext<0 ){
5403         pCur->skipNext = 0;
5404         return SQLITE_OK;
5405       }
5406       pCur->skipNext = 0;
5407     }
5408   }
5409 
5410   pPage = pCur->apPage[pCur->iPage];
5411   assert( pPage->isInit );
5412   if( !pPage->leaf ){
5413     int idx = pCur->aiIdx[pCur->iPage];
5414     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5415     if( rc ) return rc;
5416     rc = moveToRightmost(pCur);
5417   }else{
5418     while( pCur->aiIdx[pCur->iPage]==0 ){
5419       if( pCur->iPage==0 ){
5420         pCur->eState = CURSOR_INVALID;
5421         *pRes = 1;
5422         return SQLITE_OK;
5423       }
5424       moveToParent(pCur);
5425     }
5426     assert( pCur->info.nSize==0 );
5427     assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
5428 
5429     pCur->aiIdx[pCur->iPage]--;
5430     pPage = pCur->apPage[pCur->iPage];
5431     if( pPage->intKey && !pPage->leaf ){
5432       rc = sqlite3BtreePrevious(pCur, pRes);
5433     }else{
5434       rc = SQLITE_OK;
5435     }
5436   }
5437   return rc;
5438 }
5439 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5440   assert( cursorHoldsMutex(pCur) );
5441   assert( pRes!=0 );
5442   assert( *pRes==0 || *pRes==1 );
5443   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5444   *pRes = 0;
5445   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5446   pCur->info.nSize = 0;
5447   if( pCur->eState!=CURSOR_VALID
5448    || pCur->aiIdx[pCur->iPage]==0
5449    || pCur->apPage[pCur->iPage]->leaf==0
5450   ){
5451     return btreePrevious(pCur, pRes);
5452   }
5453   pCur->aiIdx[pCur->iPage]--;
5454   return SQLITE_OK;
5455 }
5456 
5457 /*
5458 ** Allocate a new page from the database file.
5459 **
5460 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5461 ** has already been called on the new page.)  The new page has also
5462 ** been referenced and the calling routine is responsible for calling
5463 ** sqlite3PagerUnref() on the new page when it is done.
5464 **
5465 ** SQLITE_OK is returned on success.  Any other return value indicates
5466 ** an error.  *ppPage is set to NULL in the event of an error.
5467 **
5468 ** If the "nearby" parameter is not 0, then an effort is made to
5469 ** locate a page close to the page number "nearby".  This can be used in an
5470 ** attempt to keep related pages close to each other in the database file,
5471 ** which in turn can make database access faster.
5472 **
5473 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5474 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5475 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5476 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5477 ** are no restrictions on which page is returned.
5478 */
5479 static int allocateBtreePage(
5480   BtShared *pBt,         /* The btree */
5481   MemPage **ppPage,      /* Store pointer to the allocated page here */
5482   Pgno *pPgno,           /* Store the page number here */
5483   Pgno nearby,           /* Search for a page near this one */
5484   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5485 ){
5486   MemPage *pPage1;
5487   int rc;
5488   u32 n;     /* Number of pages on the freelist */
5489   u32 k;     /* Number of leaves on the trunk of the freelist */
5490   MemPage *pTrunk = 0;
5491   MemPage *pPrevTrunk = 0;
5492   Pgno mxPage;     /* Total size of the database file */
5493 
5494   assert( sqlite3_mutex_held(pBt->mutex) );
5495   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5496   pPage1 = pBt->pPage1;
5497   mxPage = btreePagecount(pBt);
5498   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5499   ** stores stores the total number of pages on the freelist. */
5500   n = get4byte(&pPage1->aData[36]);
5501   testcase( n==mxPage-1 );
5502   if( n>=mxPage ){
5503     return SQLITE_CORRUPT_BKPT;
5504   }
5505   if( n>0 ){
5506     /* There are pages on the freelist.  Reuse one of those pages. */
5507     Pgno iTrunk;
5508     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5509     u32 nSearch = 0;   /* Count of the number of search attempts */
5510 
5511     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5512     ** shows that the page 'nearby' is somewhere on the free-list, then
5513     ** the entire-list will be searched for that page.
5514     */
5515 #ifndef SQLITE_OMIT_AUTOVACUUM
5516     if( eMode==BTALLOC_EXACT ){
5517       if( nearby<=mxPage ){
5518         u8 eType;
5519         assert( nearby>0 );
5520         assert( pBt->autoVacuum );
5521         rc = ptrmapGet(pBt, nearby, &eType, 0);
5522         if( rc ) return rc;
5523         if( eType==PTRMAP_FREEPAGE ){
5524           searchList = 1;
5525         }
5526       }
5527     }else if( eMode==BTALLOC_LE ){
5528       searchList = 1;
5529     }
5530 #endif
5531 
5532     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5533     ** first free-list trunk page. iPrevTrunk is initially 1.
5534     */
5535     rc = sqlite3PagerWrite(pPage1->pDbPage);
5536     if( rc ) return rc;
5537     put4byte(&pPage1->aData[36], n-1);
5538 
5539     /* The code within this loop is run only once if the 'searchList' variable
5540     ** is not true. Otherwise, it runs once for each trunk-page on the
5541     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5542     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5543     */
5544     do {
5545       pPrevTrunk = pTrunk;
5546       if( pPrevTrunk ){
5547         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5548         ** is the page number of the next freelist trunk page in the list or
5549         ** zero if this is the last freelist trunk page. */
5550         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5551       }else{
5552         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5553         ** stores the page number of the first page of the freelist, or zero if
5554         ** the freelist is empty. */
5555         iTrunk = get4byte(&pPage1->aData[32]);
5556       }
5557       testcase( iTrunk==mxPage );
5558       if( iTrunk>mxPage || nSearch++ > n ){
5559         rc = SQLITE_CORRUPT_BKPT;
5560       }else{
5561         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5562       }
5563       if( rc ){
5564         pTrunk = 0;
5565         goto end_allocate_page;
5566       }
5567       assert( pTrunk!=0 );
5568       assert( pTrunk->aData!=0 );
5569       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5570       ** is the number of leaf page pointers to follow. */
5571       k = get4byte(&pTrunk->aData[4]);
5572       if( k==0 && !searchList ){
5573         /* The trunk has no leaves and the list is not being searched.
5574         ** So extract the trunk page itself and use it as the newly
5575         ** allocated page */
5576         assert( pPrevTrunk==0 );
5577         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5578         if( rc ){
5579           goto end_allocate_page;
5580         }
5581         *pPgno = iTrunk;
5582         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5583         *ppPage = pTrunk;
5584         pTrunk = 0;
5585         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5586       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5587         /* Value of k is out of range.  Database corruption */
5588         rc = SQLITE_CORRUPT_BKPT;
5589         goto end_allocate_page;
5590 #ifndef SQLITE_OMIT_AUTOVACUUM
5591       }else if( searchList
5592             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5593       ){
5594         /* The list is being searched and this trunk page is the page
5595         ** to allocate, regardless of whether it has leaves.
5596         */
5597         *pPgno = iTrunk;
5598         *ppPage = pTrunk;
5599         searchList = 0;
5600         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5601         if( rc ){
5602           goto end_allocate_page;
5603         }
5604         if( k==0 ){
5605           if( !pPrevTrunk ){
5606             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5607           }else{
5608             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5609             if( rc!=SQLITE_OK ){
5610               goto end_allocate_page;
5611             }
5612             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5613           }
5614         }else{
5615           /* The trunk page is required by the caller but it contains
5616           ** pointers to free-list leaves. The first leaf becomes a trunk
5617           ** page in this case.
5618           */
5619           MemPage *pNewTrunk;
5620           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5621           if( iNewTrunk>mxPage ){
5622             rc = SQLITE_CORRUPT_BKPT;
5623             goto end_allocate_page;
5624           }
5625           testcase( iNewTrunk==mxPage );
5626           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5627           if( rc!=SQLITE_OK ){
5628             goto end_allocate_page;
5629           }
5630           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5631           if( rc!=SQLITE_OK ){
5632             releasePage(pNewTrunk);
5633             goto end_allocate_page;
5634           }
5635           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5636           put4byte(&pNewTrunk->aData[4], k-1);
5637           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5638           releasePage(pNewTrunk);
5639           if( !pPrevTrunk ){
5640             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5641             put4byte(&pPage1->aData[32], iNewTrunk);
5642           }else{
5643             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5644             if( rc ){
5645               goto end_allocate_page;
5646             }
5647             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5648           }
5649         }
5650         pTrunk = 0;
5651         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5652 #endif
5653       }else if( k>0 ){
5654         /* Extract a leaf from the trunk */
5655         u32 closest;
5656         Pgno iPage;
5657         unsigned char *aData = pTrunk->aData;
5658         if( nearby>0 ){
5659           u32 i;
5660           closest = 0;
5661           if( eMode==BTALLOC_LE ){
5662             for(i=0; i<k; i++){
5663               iPage = get4byte(&aData[8+i*4]);
5664               if( iPage<=nearby ){
5665                 closest = i;
5666                 break;
5667               }
5668             }
5669           }else{
5670             int dist;
5671             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5672             for(i=1; i<k; i++){
5673               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5674               if( d2<dist ){
5675                 closest = i;
5676                 dist = d2;
5677               }
5678             }
5679           }
5680         }else{
5681           closest = 0;
5682         }
5683 
5684         iPage = get4byte(&aData[8+closest*4]);
5685         testcase( iPage==mxPage );
5686         if( iPage>mxPage ){
5687           rc = SQLITE_CORRUPT_BKPT;
5688           goto end_allocate_page;
5689         }
5690         testcase( iPage==mxPage );
5691         if( !searchList
5692          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5693         ){
5694           int noContent;
5695           *pPgno = iPage;
5696           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5697                  ": %d more free pages\n",
5698                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5699           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5700           if( rc ) goto end_allocate_page;
5701           if( closest<k-1 ){
5702             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5703           }
5704           put4byte(&aData[4], k-1);
5705           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5706           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5707           if( rc==SQLITE_OK ){
5708             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5709             if( rc!=SQLITE_OK ){
5710               releasePage(*ppPage);
5711               *ppPage = 0;
5712             }
5713           }
5714           searchList = 0;
5715         }
5716       }
5717       releasePage(pPrevTrunk);
5718       pPrevTrunk = 0;
5719     }while( searchList );
5720   }else{
5721     /* There are no pages on the freelist, so append a new page to the
5722     ** database image.
5723     **
5724     ** Normally, new pages allocated by this block can be requested from the
5725     ** pager layer with the 'no-content' flag set. This prevents the pager
5726     ** from trying to read the pages content from disk. However, if the
5727     ** current transaction has already run one or more incremental-vacuum
5728     ** steps, then the page we are about to allocate may contain content
5729     ** that is required in the event of a rollback. In this case, do
5730     ** not set the no-content flag. This causes the pager to load and journal
5731     ** the current page content before overwriting it.
5732     **
5733     ** Note that the pager will not actually attempt to load or journal
5734     ** content for any page that really does lie past the end of the database
5735     ** file on disk. So the effects of disabling the no-content optimization
5736     ** here are confined to those pages that lie between the end of the
5737     ** database image and the end of the database file.
5738     */
5739     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5740 
5741     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5742     if( rc ) return rc;
5743     pBt->nPage++;
5744     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5745 
5746 #ifndef SQLITE_OMIT_AUTOVACUUM
5747     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5748       /* If *pPgno refers to a pointer-map page, allocate two new pages
5749       ** at the end of the file instead of one. The first allocated page
5750       ** becomes a new pointer-map page, the second is used by the caller.
5751       */
5752       MemPage *pPg = 0;
5753       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5754       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5755       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5756       if( rc==SQLITE_OK ){
5757         rc = sqlite3PagerWrite(pPg->pDbPage);
5758         releasePage(pPg);
5759       }
5760       if( rc ) return rc;
5761       pBt->nPage++;
5762       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5763     }
5764 #endif
5765     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5766     *pPgno = pBt->nPage;
5767 
5768     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5769     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5770     if( rc ) return rc;
5771     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5772     if( rc!=SQLITE_OK ){
5773       releasePage(*ppPage);
5774       *ppPage = 0;
5775     }
5776     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5777   }
5778 
5779   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5780 
5781 end_allocate_page:
5782   releasePage(pTrunk);
5783   releasePage(pPrevTrunk);
5784   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5785   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5786   return rc;
5787 }
5788 
5789 /*
5790 ** This function is used to add page iPage to the database file free-list.
5791 ** It is assumed that the page is not already a part of the free-list.
5792 **
5793 ** The value passed as the second argument to this function is optional.
5794 ** If the caller happens to have a pointer to the MemPage object
5795 ** corresponding to page iPage handy, it may pass it as the second value.
5796 ** Otherwise, it may pass NULL.
5797 **
5798 ** If a pointer to a MemPage object is passed as the second argument,
5799 ** its reference count is not altered by this function.
5800 */
5801 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5802   MemPage *pTrunk = 0;                /* Free-list trunk page */
5803   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5804   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5805   MemPage *pPage;                     /* Page being freed. May be NULL. */
5806   int rc;                             /* Return Code */
5807   int nFree;                          /* Initial number of pages on free-list */
5808 
5809   assert( sqlite3_mutex_held(pBt->mutex) );
5810   assert( CORRUPT_DB || iPage>1 );
5811   assert( !pMemPage || pMemPage->pgno==iPage );
5812 
5813   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
5814   if( pMemPage ){
5815     pPage = pMemPage;
5816     sqlite3PagerRef(pPage->pDbPage);
5817   }else{
5818     pPage = btreePageLookup(pBt, iPage);
5819   }
5820 
5821   /* Increment the free page count on pPage1 */
5822   rc = sqlite3PagerWrite(pPage1->pDbPage);
5823   if( rc ) goto freepage_out;
5824   nFree = get4byte(&pPage1->aData[36]);
5825   put4byte(&pPage1->aData[36], nFree+1);
5826 
5827   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5828     /* If the secure_delete option is enabled, then
5829     ** always fully overwrite deleted information with zeros.
5830     */
5831     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5832      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5833     ){
5834       goto freepage_out;
5835     }
5836     memset(pPage->aData, 0, pPage->pBt->pageSize);
5837   }
5838 
5839   /* If the database supports auto-vacuum, write an entry in the pointer-map
5840   ** to indicate that the page is free.
5841   */
5842   if( ISAUTOVACUUM ){
5843     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5844     if( rc ) goto freepage_out;
5845   }
5846 
5847   /* Now manipulate the actual database free-list structure. There are two
5848   ** possibilities. If the free-list is currently empty, or if the first
5849   ** trunk page in the free-list is full, then this page will become a
5850   ** new free-list trunk page. Otherwise, it will become a leaf of the
5851   ** first trunk page in the current free-list. This block tests if it
5852   ** is possible to add the page as a new free-list leaf.
5853   */
5854   if( nFree!=0 ){
5855     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
5856 
5857     iTrunk = get4byte(&pPage1->aData[32]);
5858     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5859     if( rc!=SQLITE_OK ){
5860       goto freepage_out;
5861     }
5862 
5863     nLeaf = get4byte(&pTrunk->aData[4]);
5864     assert( pBt->usableSize>32 );
5865     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5866       rc = SQLITE_CORRUPT_BKPT;
5867       goto freepage_out;
5868     }
5869     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5870       /* In this case there is room on the trunk page to insert the page
5871       ** being freed as a new leaf.
5872       **
5873       ** Note that the trunk page is not really full until it contains
5874       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5875       ** coded.  But due to a coding error in versions of SQLite prior to
5876       ** 3.6.0, databases with freelist trunk pages holding more than
5877       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
5878       ** to maintain backwards compatibility with older versions of SQLite,
5879       ** we will continue to restrict the number of entries to usableSize/4 - 8
5880       ** for now.  At some point in the future (once everyone has upgraded
5881       ** to 3.6.0 or later) we should consider fixing the conditional above
5882       ** to read "usableSize/4-2" instead of "usableSize/4-8".
5883       **
5884       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5885       ** avoid using the last six entries in the freelist trunk page array in
5886       ** order that database files created by newer versions of SQLite can be
5887       ** read by older versions of SQLite.
5888       */
5889       rc = sqlite3PagerWrite(pTrunk->pDbPage);
5890       if( rc==SQLITE_OK ){
5891         put4byte(&pTrunk->aData[4], nLeaf+1);
5892         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5893         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5894           sqlite3PagerDontWrite(pPage->pDbPage);
5895         }
5896         rc = btreeSetHasContent(pBt, iPage);
5897       }
5898       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5899       goto freepage_out;
5900     }
5901   }
5902 
5903   /* If control flows to this point, then it was not possible to add the
5904   ** the page being freed as a leaf page of the first trunk in the free-list.
5905   ** Possibly because the free-list is empty, or possibly because the
5906   ** first trunk in the free-list is full. Either way, the page being freed
5907   ** will become the new first trunk page in the free-list.
5908   */
5909   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5910     goto freepage_out;
5911   }
5912   rc = sqlite3PagerWrite(pPage->pDbPage);
5913   if( rc!=SQLITE_OK ){
5914     goto freepage_out;
5915   }
5916   put4byte(pPage->aData, iTrunk);
5917   put4byte(&pPage->aData[4], 0);
5918   put4byte(&pPage1->aData[32], iPage);
5919   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5920 
5921 freepage_out:
5922   if( pPage ){
5923     pPage->isInit = 0;
5924   }
5925   releasePage(pPage);
5926   releasePage(pTrunk);
5927   return rc;
5928 }
5929 static void freePage(MemPage *pPage, int *pRC){
5930   if( (*pRC)==SQLITE_OK ){
5931     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5932   }
5933 }
5934 
5935 /*
5936 ** Free any overflow pages associated with the given Cell.  Write the
5937 ** local Cell size (the number of bytes on the original page, omitting
5938 ** overflow) into *pnSize.
5939 */
5940 static int clearCell(
5941   MemPage *pPage,          /* The page that contains the Cell */
5942   unsigned char *pCell,    /* First byte of the Cell */
5943   u16 *pnSize              /* Write the size of the Cell here */
5944 ){
5945   BtShared *pBt = pPage->pBt;
5946   CellInfo info;
5947   Pgno ovflPgno;
5948   int rc;
5949   int nOvfl;
5950   u32 ovflPageSize;
5951 
5952   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5953   pPage->xParseCell(pPage, pCell, &info);
5954   *pnSize = info.nSize;
5955   if( info.iOverflow==0 ){
5956     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
5957   }
5958   if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5959     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
5960   }
5961   ovflPgno = get4byte(&pCell[info.iOverflow]);
5962   assert( pBt->usableSize > 4 );
5963   ovflPageSize = pBt->usableSize - 4;
5964   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5965   assert( nOvfl>0 ||
5966     (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5967   );
5968   while( nOvfl-- ){
5969     Pgno iNext = 0;
5970     MemPage *pOvfl = 0;
5971     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
5972       /* 0 is not a legal page number and page 1 cannot be an
5973       ** overflow page. Therefore if ovflPgno<2 or past the end of the
5974       ** file the database must be corrupt. */
5975       return SQLITE_CORRUPT_BKPT;
5976     }
5977     if( nOvfl ){
5978       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5979       if( rc ) return rc;
5980     }
5981 
5982     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
5983      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5984     ){
5985       /* There is no reason any cursor should have an outstanding reference
5986       ** to an overflow page belonging to a cell that is being deleted/updated.
5987       ** So if there exists more than one reference to this page, then it
5988       ** must not really be an overflow page and the database must be corrupt.
5989       ** It is helpful to detect this before calling freePage2(), as
5990       ** freePage2() may zero the page contents if secure-delete mode is
5991       ** enabled. If this 'overflow' page happens to be a page that the
5992       ** caller is iterating through or using in some other way, this
5993       ** can be problematic.
5994       */
5995       rc = SQLITE_CORRUPT_BKPT;
5996     }else{
5997       rc = freePage2(pBt, pOvfl, ovflPgno);
5998     }
5999 
6000     if( pOvfl ){
6001       sqlite3PagerUnref(pOvfl->pDbPage);
6002     }
6003     if( rc ) return rc;
6004     ovflPgno = iNext;
6005   }
6006   return SQLITE_OK;
6007 }
6008 
6009 /*
6010 ** Create the byte sequence used to represent a cell on page pPage
6011 ** and write that byte sequence into pCell[].  Overflow pages are
6012 ** allocated and filled in as necessary.  The calling procedure
6013 ** is responsible for making sure sufficient space has been allocated
6014 ** for pCell[].
6015 **
6016 ** Note that pCell does not necessary need to point to the pPage->aData
6017 ** area.  pCell might point to some temporary storage.  The cell will
6018 ** be constructed in this temporary area then copied into pPage->aData
6019 ** later.
6020 */
6021 static int fillInCell(
6022   MemPage *pPage,                /* The page that contains the cell */
6023   unsigned char *pCell,          /* Complete text of the cell */
6024   const void *pKey, i64 nKey,    /* The key */
6025   const void *pData,int nData,   /* The data */
6026   int nZero,                     /* Extra zero bytes to append to pData */
6027   int *pnSize                    /* Write cell size here */
6028 ){
6029   int nPayload;
6030   const u8 *pSrc;
6031   int nSrc, n, rc;
6032   int spaceLeft;
6033   MemPage *pOvfl = 0;
6034   MemPage *pToRelease = 0;
6035   unsigned char *pPrior;
6036   unsigned char *pPayload;
6037   BtShared *pBt = pPage->pBt;
6038   Pgno pgnoOvfl = 0;
6039   int nHeader;
6040 
6041   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6042 
6043   /* pPage is not necessarily writeable since pCell might be auxiliary
6044   ** buffer space that is separate from the pPage buffer area */
6045   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6046             || sqlite3PagerIswriteable(pPage->pDbPage) );
6047 
6048   /* Fill in the header. */
6049   nHeader = pPage->childPtrSize;
6050   nPayload = nData + nZero;
6051   if( pPage->intKeyLeaf ){
6052     nHeader += putVarint32(&pCell[nHeader], nPayload);
6053   }else{
6054     assert( nData==0 );
6055     assert( nZero==0 );
6056   }
6057   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
6058 
6059   /* Fill in the payload size */
6060   if( pPage->intKey ){
6061     pSrc = pData;
6062     nSrc = nData;
6063     nData = 0;
6064   }else{
6065     assert( nKey<=0x7fffffff && pKey!=0 );
6066     nPayload = (int)nKey;
6067     pSrc = pKey;
6068     nSrc = (int)nKey;
6069   }
6070   if( nPayload<=pPage->maxLocal ){
6071     n = nHeader + nPayload;
6072     testcase( n==3 );
6073     testcase( n==4 );
6074     if( n<4 ) n = 4;
6075     *pnSize = n;
6076     spaceLeft = nPayload;
6077     pPrior = pCell;
6078   }else{
6079     int mn = pPage->minLocal;
6080     n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6081     testcase( n==pPage->maxLocal );
6082     testcase( n==pPage->maxLocal+1 );
6083     if( n > pPage->maxLocal ) n = mn;
6084     spaceLeft = n;
6085     *pnSize = n + nHeader + 4;
6086     pPrior = &pCell[nHeader+n];
6087   }
6088   pPayload = &pCell[nHeader];
6089 
6090   /* At this point variables should be set as follows:
6091   **
6092   **   nPayload           Total payload size in bytes
6093   **   pPayload           Begin writing payload here
6094   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6095   **                      that means content must spill into overflow pages.
6096   **   *pnSize            Size of the local cell (not counting overflow pages)
6097   **   pPrior             Where to write the pgno of the first overflow page
6098   **
6099   ** Use a call to btreeParseCellPtr() to verify that the values above
6100   ** were computed correctly.
6101   */
6102 #if SQLITE_DEBUG
6103   {
6104     CellInfo info;
6105     pPage->xParseCell(pPage, pCell, &info);
6106     assert( nHeader=(int)(info.pPayload - pCell) );
6107     assert( info.nKey==nKey );
6108     assert( *pnSize == info.nSize );
6109     assert( spaceLeft == info.nLocal );
6110     assert( pPrior == &pCell[info.iOverflow] );
6111   }
6112 #endif
6113 
6114   /* Write the payload into the local Cell and any extra into overflow pages */
6115   while( nPayload>0 ){
6116     if( spaceLeft==0 ){
6117 #ifndef SQLITE_OMIT_AUTOVACUUM
6118       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6119       if( pBt->autoVacuum ){
6120         do{
6121           pgnoOvfl++;
6122         } while(
6123           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6124         );
6125       }
6126 #endif
6127       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6128 #ifndef SQLITE_OMIT_AUTOVACUUM
6129       /* If the database supports auto-vacuum, and the second or subsequent
6130       ** overflow page is being allocated, add an entry to the pointer-map
6131       ** for that page now.
6132       **
6133       ** If this is the first overflow page, then write a partial entry
6134       ** to the pointer-map. If we write nothing to this pointer-map slot,
6135       ** then the optimistic overflow chain processing in clearCell()
6136       ** may misinterpret the uninitialized values and delete the
6137       ** wrong pages from the database.
6138       */
6139       if( pBt->autoVacuum && rc==SQLITE_OK ){
6140         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6141         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6142         if( rc ){
6143           releasePage(pOvfl);
6144         }
6145       }
6146 #endif
6147       if( rc ){
6148         releasePage(pToRelease);
6149         return rc;
6150       }
6151 
6152       /* If pToRelease is not zero than pPrior points into the data area
6153       ** of pToRelease.  Make sure pToRelease is still writeable. */
6154       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6155 
6156       /* If pPrior is part of the data area of pPage, then make sure pPage
6157       ** is still writeable */
6158       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6159             || sqlite3PagerIswriteable(pPage->pDbPage) );
6160 
6161       put4byte(pPrior, pgnoOvfl);
6162       releasePage(pToRelease);
6163       pToRelease = pOvfl;
6164       pPrior = pOvfl->aData;
6165       put4byte(pPrior, 0);
6166       pPayload = &pOvfl->aData[4];
6167       spaceLeft = pBt->usableSize - 4;
6168     }
6169     n = nPayload;
6170     if( n>spaceLeft ) n = spaceLeft;
6171 
6172     /* If pToRelease is not zero than pPayload points into the data area
6173     ** of pToRelease.  Make sure pToRelease is still writeable. */
6174     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6175 
6176     /* If pPayload is part of the data area of pPage, then make sure pPage
6177     ** is still writeable */
6178     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6179             || sqlite3PagerIswriteable(pPage->pDbPage) );
6180 
6181     if( nSrc>0 ){
6182       if( n>nSrc ) n = nSrc;
6183       assert( pSrc );
6184       memcpy(pPayload, pSrc, n);
6185     }else{
6186       memset(pPayload, 0, n);
6187     }
6188     nPayload -= n;
6189     pPayload += n;
6190     pSrc += n;
6191     nSrc -= n;
6192     spaceLeft -= n;
6193     if( nSrc==0 ){
6194       nSrc = nData;
6195       pSrc = pData;
6196     }
6197   }
6198   releasePage(pToRelease);
6199   return SQLITE_OK;
6200 }
6201 
6202 /*
6203 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6204 ** The cell content is not freed or deallocated.  It is assumed that
6205 ** the cell content has been copied someplace else.  This routine just
6206 ** removes the reference to the cell from pPage.
6207 **
6208 ** "sz" must be the number of bytes in the cell.
6209 */
6210 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6211   u32 pc;         /* Offset to cell content of cell being deleted */
6212   u8 *data;       /* pPage->aData */
6213   u8 *ptr;        /* Used to move bytes around within data[] */
6214   int rc;         /* The return code */
6215   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6216 
6217   if( *pRC ) return;
6218 
6219   assert( idx>=0 && idx<pPage->nCell );
6220   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6221   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6222   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6223   data = pPage->aData;
6224   ptr = &pPage->aCellIdx[2*idx];
6225   pc = get2byte(ptr);
6226   hdr = pPage->hdrOffset;
6227   testcase( pc==get2byte(&data[hdr+5]) );
6228   testcase( pc+sz==pPage->pBt->usableSize );
6229   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
6230     *pRC = SQLITE_CORRUPT_BKPT;
6231     return;
6232   }
6233   rc = freeSpace(pPage, pc, sz);
6234   if( rc ){
6235     *pRC = rc;
6236     return;
6237   }
6238   pPage->nCell--;
6239   if( pPage->nCell==0 ){
6240     memset(&data[hdr+1], 0, 4);
6241     data[hdr+7] = 0;
6242     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6243     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6244                        - pPage->childPtrSize - 8;
6245   }else{
6246     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6247     put2byte(&data[hdr+3], pPage->nCell);
6248     pPage->nFree += 2;
6249   }
6250 }
6251 
6252 /*
6253 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6254 ** content of the cell.
6255 **
6256 ** If the cell content will fit on the page, then put it there.  If it
6257 ** will not fit, then make a copy of the cell content into pTemp if
6258 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6259 ** in pPage->apOvfl[] and make it point to the cell content (either
6260 ** in pTemp or the original pCell) and also record its index.
6261 ** Allocating a new entry in pPage->aCell[] implies that
6262 ** pPage->nOverflow is incremented.
6263 */
6264 static void insertCell(
6265   MemPage *pPage,   /* Page into which we are copying */
6266   int i,            /* New cell becomes the i-th cell of the page */
6267   u8 *pCell,        /* Content of the new cell */
6268   int sz,           /* Bytes of content in pCell */
6269   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6270   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6271   int *pRC          /* Read and write return code from here */
6272 ){
6273   int idx = 0;      /* Where to write new cell content in data[] */
6274   int j;            /* Loop counter */
6275   u8 *data;         /* The content of the whole page */
6276   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6277 
6278   if( *pRC ) return;
6279 
6280   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6281   assert( MX_CELL(pPage->pBt)<=10921 );
6282   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6283   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6284   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6285   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6286   /* The cell should normally be sized correctly.  However, when moving a
6287   ** malformed cell from a leaf page to an interior page, if the cell size
6288   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6289   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6290   ** the term after the || in the following assert(). */
6291   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6292   if( pPage->nOverflow || sz+2>pPage->nFree ){
6293     if( pTemp ){
6294       memcpy(pTemp, pCell, sz);
6295       pCell = pTemp;
6296     }
6297     if( iChild ){
6298       put4byte(pCell, iChild);
6299     }
6300     j = pPage->nOverflow++;
6301     assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6302     pPage->apOvfl[j] = pCell;
6303     pPage->aiOvfl[j] = (u16)i;
6304 
6305     /* When multiple overflows occur, they are always sequential and in
6306     ** sorted order.  This invariants arise because multiple overflows can
6307     ** only occur when inserting divider cells into the parent page during
6308     ** balancing, and the dividers are adjacent and sorted.
6309     */
6310     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6311     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6312   }else{
6313     int rc = sqlite3PagerWrite(pPage->pDbPage);
6314     if( rc!=SQLITE_OK ){
6315       *pRC = rc;
6316       return;
6317     }
6318     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6319     data = pPage->aData;
6320     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6321     rc = allocateSpace(pPage, sz, &idx);
6322     if( rc ){ *pRC = rc; return; }
6323     /* The allocateSpace() routine guarantees the following properties
6324     ** if it returns successfully */
6325     assert( idx >= 0 );
6326     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6327     assert( idx+sz <= (int)pPage->pBt->usableSize );
6328     pPage->nFree -= (u16)(2 + sz);
6329     memcpy(&data[idx], pCell, sz);
6330     if( iChild ){
6331       put4byte(&data[idx], iChild);
6332     }
6333     pIns = pPage->aCellIdx + i*2;
6334     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6335     put2byte(pIns, idx);
6336     pPage->nCell++;
6337     /* increment the cell count */
6338     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6339     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6340 #ifndef SQLITE_OMIT_AUTOVACUUM
6341     if( pPage->pBt->autoVacuum ){
6342       /* The cell may contain a pointer to an overflow page. If so, write
6343       ** the entry for the overflow page into the pointer map.
6344       */
6345       ptrmapPutOvflPtr(pPage, pCell, pRC);
6346     }
6347 #endif
6348   }
6349 }
6350 
6351 /*
6352 ** A CellArray object contains a cache of pointers and sizes for a
6353 ** consecutive sequence of cells that might be held multiple pages.
6354 */
6355 typedef struct CellArray CellArray;
6356 struct CellArray {
6357   int nCell;              /* Number of cells in apCell[] */
6358   MemPage *pRef;          /* Reference page */
6359   u8 **apCell;            /* All cells begin balanced */
6360   u16 *szCell;            /* Local size of all cells in apCell[] */
6361 };
6362 
6363 /*
6364 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6365 ** computed.
6366 */
6367 static void populateCellCache(CellArray *p, int idx, int N){
6368   assert( idx>=0 && idx+N<=p->nCell );
6369   while( N>0 ){
6370     assert( p->apCell[idx]!=0 );
6371     if( p->szCell[idx]==0 ){
6372       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6373     }else{
6374       assert( CORRUPT_DB ||
6375               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6376     }
6377     idx++;
6378     N--;
6379   }
6380 }
6381 
6382 /*
6383 ** Return the size of the Nth element of the cell array
6384 */
6385 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6386   assert( N>=0 && N<p->nCell );
6387   assert( p->szCell[N]==0 );
6388   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6389   return p->szCell[N];
6390 }
6391 static u16 cachedCellSize(CellArray *p, int N){
6392   assert( N>=0 && N<p->nCell );
6393   if( p->szCell[N] ) return p->szCell[N];
6394   return computeCellSize(p, N);
6395 }
6396 
6397 /*
6398 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6399 ** szCell[] array contains the size in bytes of each cell. This function
6400 ** replaces the current contents of page pPg with the contents of the cell
6401 ** array.
6402 **
6403 ** Some of the cells in apCell[] may currently be stored in pPg. This
6404 ** function works around problems caused by this by making a copy of any
6405 ** such cells before overwriting the page data.
6406 **
6407 ** The MemPage.nFree field is invalidated by this function. It is the
6408 ** responsibility of the caller to set it correctly.
6409 */
6410 static int rebuildPage(
6411   MemPage *pPg,                   /* Edit this page */
6412   int nCell,                      /* Final number of cells on page */
6413   u8 **apCell,                    /* Array of cells */
6414   u16 *szCell                     /* Array of cell sizes */
6415 ){
6416   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6417   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6418   const int usableSize = pPg->pBt->usableSize;
6419   u8 * const pEnd = &aData[usableSize];
6420   int i;
6421   u8 *pCellptr = pPg->aCellIdx;
6422   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6423   u8 *pData;
6424 
6425   i = get2byte(&aData[hdr+5]);
6426   memcpy(&pTmp[i], &aData[i], usableSize - i);
6427 
6428   pData = pEnd;
6429   for(i=0; i<nCell; i++){
6430     u8 *pCell = apCell[i];
6431     if( pCell>aData && pCell<pEnd ){
6432       pCell = &pTmp[pCell - aData];
6433     }
6434     pData -= szCell[i];
6435     put2byte(pCellptr, (pData - aData));
6436     pCellptr += 2;
6437     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6438     memcpy(pData, pCell, szCell[i]);
6439     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6440     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6441   }
6442 
6443   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6444   pPg->nCell = nCell;
6445   pPg->nOverflow = 0;
6446 
6447   put2byte(&aData[hdr+1], 0);
6448   put2byte(&aData[hdr+3], pPg->nCell);
6449   put2byte(&aData[hdr+5], pData - aData);
6450   aData[hdr+7] = 0x00;
6451   return SQLITE_OK;
6452 }
6453 
6454 /*
6455 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6456 ** contains the size in bytes of each such cell. This function attempts to
6457 ** add the cells stored in the array to page pPg. If it cannot (because
6458 ** the page needs to be defragmented before the cells will fit), non-zero
6459 ** is returned. Otherwise, if the cells are added successfully, zero is
6460 ** returned.
6461 **
6462 ** Argument pCellptr points to the first entry in the cell-pointer array
6463 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6464 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6465 ** cell in the array. It is the responsibility of the caller to ensure
6466 ** that it is safe to overwrite this part of the cell-pointer array.
6467 **
6468 ** When this function is called, *ppData points to the start of the
6469 ** content area on page pPg. If the size of the content area is extended,
6470 ** *ppData is updated to point to the new start of the content area
6471 ** before returning.
6472 **
6473 ** Finally, argument pBegin points to the byte immediately following the
6474 ** end of the space required by this page for the cell-pointer area (for
6475 ** all cells - not just those inserted by the current call). If the content
6476 ** area must be extended to before this point in order to accomodate all
6477 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6478 */
6479 static int pageInsertArray(
6480   MemPage *pPg,                   /* Page to add cells to */
6481   u8 *pBegin,                     /* End of cell-pointer array */
6482   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6483   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6484   int iFirst,                     /* Index of first cell to add */
6485   int nCell,                      /* Number of cells to add to pPg */
6486   CellArray *pCArray              /* Array of cells */
6487 ){
6488   int i;
6489   u8 *aData = pPg->aData;
6490   u8 *pData = *ppData;
6491   int iEnd = iFirst + nCell;
6492   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6493   for(i=iFirst; i<iEnd; i++){
6494     int sz, rc;
6495     u8 *pSlot;
6496     sz = cachedCellSize(pCArray, i);
6497     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6498       pData -= sz;
6499       if( pData<pBegin ) return 1;
6500       pSlot = pData;
6501     }
6502     memcpy(pSlot, pCArray->apCell[i], sz);
6503     put2byte(pCellptr, (pSlot - aData));
6504     pCellptr += 2;
6505   }
6506   *ppData = pData;
6507   return 0;
6508 }
6509 
6510 /*
6511 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6512 ** contains the size in bytes of each such cell. This function adds the
6513 ** space associated with each cell in the array that is currently stored
6514 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6515 ** fields of the page are not updated.
6516 **
6517 ** This function returns the total number of cells added to the free-list.
6518 */
6519 static int pageFreeArray(
6520   MemPage *pPg,                   /* Page to edit */
6521   int iFirst,                     /* First cell to delete */
6522   int nCell,                      /* Cells to delete */
6523   CellArray *pCArray              /* Array of cells */
6524 ){
6525   u8 * const aData = pPg->aData;
6526   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6527   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6528   int nRet = 0;
6529   int i;
6530   int iEnd = iFirst + nCell;
6531   u8 *pFree = 0;
6532   int szFree = 0;
6533 
6534   for(i=iFirst; i<iEnd; i++){
6535     u8 *pCell = pCArray->apCell[i];
6536     if( pCell>=pStart && pCell<pEnd ){
6537       int sz;
6538       /* No need to use cachedCellSize() here.  The sizes of all cells that
6539       ** are to be freed have already been computing while deciding which
6540       ** cells need freeing */
6541       sz = pCArray->szCell[i];  assert( sz>0 );
6542       if( pFree!=(pCell + sz) ){
6543         if( pFree ){
6544           assert( pFree>aData && (pFree - aData)<65536 );
6545           freeSpace(pPg, (u16)(pFree - aData), szFree);
6546         }
6547         pFree = pCell;
6548         szFree = sz;
6549         if( pFree+sz>pEnd ) return 0;
6550       }else{
6551         pFree = pCell;
6552         szFree += sz;
6553       }
6554       nRet++;
6555     }
6556   }
6557   if( pFree ){
6558     assert( pFree>aData && (pFree - aData)<65536 );
6559     freeSpace(pPg, (u16)(pFree - aData), szFree);
6560   }
6561   return nRet;
6562 }
6563 
6564 /*
6565 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6566 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6567 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6568 ** starting at apCell[iNew].
6569 **
6570 ** This routine makes the necessary adjustments to pPg so that it contains
6571 ** the correct cells after being balanced.
6572 **
6573 ** The pPg->nFree field is invalid when this function returns. It is the
6574 ** responsibility of the caller to set it correctly.
6575 */
6576 static int editPage(
6577   MemPage *pPg,                   /* Edit this page */
6578   int iOld,                       /* Index of first cell currently on page */
6579   int iNew,                       /* Index of new first cell on page */
6580   int nNew,                       /* Final number of cells on page */
6581   CellArray *pCArray              /* Array of cells and sizes */
6582 ){
6583   u8 * const aData = pPg->aData;
6584   const int hdr = pPg->hdrOffset;
6585   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6586   int nCell = pPg->nCell;       /* Cells stored on pPg */
6587   u8 *pData;
6588   u8 *pCellptr;
6589   int i;
6590   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6591   int iNewEnd = iNew + nNew;
6592 
6593 #ifdef SQLITE_DEBUG
6594   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6595   memcpy(pTmp, aData, pPg->pBt->usableSize);
6596 #endif
6597 
6598   /* Remove cells from the start and end of the page */
6599   if( iOld<iNew ){
6600     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6601     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6602     nCell -= nShift;
6603   }
6604   if( iNewEnd < iOldEnd ){
6605     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6606   }
6607 
6608   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6609   if( pData<pBegin ) goto editpage_fail;
6610 
6611   /* Add cells to the start of the page */
6612   if( iNew<iOld ){
6613     int nAdd = MIN(nNew,iOld-iNew);
6614     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6615     pCellptr = pPg->aCellIdx;
6616     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6617     if( pageInsertArray(
6618           pPg, pBegin, &pData, pCellptr,
6619           iNew, nAdd, pCArray
6620     ) ) goto editpage_fail;
6621     nCell += nAdd;
6622   }
6623 
6624   /* Add any overflow cells */
6625   for(i=0; i<pPg->nOverflow; i++){
6626     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6627     if( iCell>=0 && iCell<nNew ){
6628       pCellptr = &pPg->aCellIdx[iCell * 2];
6629       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6630       nCell++;
6631       if( pageInsertArray(
6632             pPg, pBegin, &pData, pCellptr,
6633             iCell+iNew, 1, pCArray
6634       ) ) goto editpage_fail;
6635     }
6636   }
6637 
6638   /* Append cells to the end of the page */
6639   pCellptr = &pPg->aCellIdx[nCell*2];
6640   if( pageInsertArray(
6641         pPg, pBegin, &pData, pCellptr,
6642         iNew+nCell, nNew-nCell, pCArray
6643   ) ) goto editpage_fail;
6644 
6645   pPg->nCell = nNew;
6646   pPg->nOverflow = 0;
6647 
6648   put2byte(&aData[hdr+3], pPg->nCell);
6649   put2byte(&aData[hdr+5], pData - aData);
6650 
6651 #ifdef SQLITE_DEBUG
6652   for(i=0; i<nNew && !CORRUPT_DB; i++){
6653     u8 *pCell = pCArray->apCell[i+iNew];
6654     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6655     if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6656       pCell = &pTmp[pCell - aData];
6657     }
6658     assert( 0==memcmp(pCell, &aData[iOff],
6659             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6660   }
6661 #endif
6662 
6663   return SQLITE_OK;
6664  editpage_fail:
6665   /* Unable to edit this page. Rebuild it from scratch instead. */
6666   populateCellCache(pCArray, iNew, nNew);
6667   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6668 }
6669 
6670 /*
6671 ** The following parameters determine how many adjacent pages get involved
6672 ** in a balancing operation.  NN is the number of neighbors on either side
6673 ** of the page that participate in the balancing operation.  NB is the
6674 ** total number of pages that participate, including the target page and
6675 ** NN neighbors on either side.
6676 **
6677 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6678 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6679 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6680 ** The value of NN appears to give the best results overall.
6681 */
6682 #define NN 1             /* Number of neighbors on either side of pPage */
6683 #define NB (NN*2+1)      /* Total pages involved in the balance */
6684 
6685 
6686 #ifndef SQLITE_OMIT_QUICKBALANCE
6687 /*
6688 ** This version of balance() handles the common special case where
6689 ** a new entry is being inserted on the extreme right-end of the
6690 ** tree, in other words, when the new entry will become the largest
6691 ** entry in the tree.
6692 **
6693 ** Instead of trying to balance the 3 right-most leaf pages, just add
6694 ** a new page to the right-hand side and put the one new entry in
6695 ** that page.  This leaves the right side of the tree somewhat
6696 ** unbalanced.  But odds are that we will be inserting new entries
6697 ** at the end soon afterwards so the nearly empty page will quickly
6698 ** fill up.  On average.
6699 **
6700 ** pPage is the leaf page which is the right-most page in the tree.
6701 ** pParent is its parent.  pPage must have a single overflow entry
6702 ** which is also the right-most entry on the page.
6703 **
6704 ** The pSpace buffer is used to store a temporary copy of the divider
6705 ** cell that will be inserted into pParent. Such a cell consists of a 4
6706 ** byte page number followed by a variable length integer. In other
6707 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6708 ** least 13 bytes in size.
6709 */
6710 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6711   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6712   MemPage *pNew;                       /* Newly allocated page */
6713   int rc;                              /* Return Code */
6714   Pgno pgnoNew;                        /* Page number of pNew */
6715 
6716   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6717   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6718   assert( pPage->nOverflow==1 );
6719 
6720   /* This error condition is now caught prior to reaching this function */
6721   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6722 
6723   /* Allocate a new page. This page will become the right-sibling of
6724   ** pPage. Make the parent page writable, so that the new divider cell
6725   ** may be inserted. If both these operations are successful, proceed.
6726   */
6727   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6728 
6729   if( rc==SQLITE_OK ){
6730 
6731     u8 *pOut = &pSpace[4];
6732     u8 *pCell = pPage->apOvfl[0];
6733     u16 szCell = pPage->xCellSize(pPage, pCell);
6734     u8 *pStop;
6735 
6736     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6737     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6738     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6739     rc = rebuildPage(pNew, 1, &pCell, &szCell);
6740     if( NEVER(rc) ) return rc;
6741     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6742 
6743     /* If this is an auto-vacuum database, update the pointer map
6744     ** with entries for the new page, and any pointer from the
6745     ** cell on the page to an overflow page. If either of these
6746     ** operations fails, the return code is set, but the contents
6747     ** of the parent page are still manipulated by thh code below.
6748     ** That is Ok, at this point the parent page is guaranteed to
6749     ** be marked as dirty. Returning an error code will cause a
6750     ** rollback, undoing any changes made to the parent page.
6751     */
6752     if( ISAUTOVACUUM ){
6753       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6754       if( szCell>pNew->minLocal ){
6755         ptrmapPutOvflPtr(pNew, pCell, &rc);
6756       }
6757     }
6758 
6759     /* Create a divider cell to insert into pParent. The divider cell
6760     ** consists of a 4-byte page number (the page number of pPage) and
6761     ** a variable length key value (which must be the same value as the
6762     ** largest key on pPage).
6763     **
6764     ** To find the largest key value on pPage, first find the right-most
6765     ** cell on pPage. The first two fields of this cell are the
6766     ** record-length (a variable length integer at most 32-bits in size)
6767     ** and the key value (a variable length integer, may have any value).
6768     ** The first of the while(...) loops below skips over the record-length
6769     ** field. The second while(...) loop copies the key value from the
6770     ** cell on pPage into the pSpace buffer.
6771     */
6772     pCell = findCell(pPage, pPage->nCell-1);
6773     pStop = &pCell[9];
6774     while( (*(pCell++)&0x80) && pCell<pStop );
6775     pStop = &pCell[9];
6776     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6777 
6778     /* Insert the new divider cell into pParent. */
6779     insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6780                0, pPage->pgno, &rc);
6781 
6782     /* Set the right-child pointer of pParent to point to the new page. */
6783     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6784 
6785     /* Release the reference to the new page. */
6786     releasePage(pNew);
6787   }
6788 
6789   return rc;
6790 }
6791 #endif /* SQLITE_OMIT_QUICKBALANCE */
6792 
6793 #if 0
6794 /*
6795 ** This function does not contribute anything to the operation of SQLite.
6796 ** it is sometimes activated temporarily while debugging code responsible
6797 ** for setting pointer-map entries.
6798 */
6799 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6800   int i, j;
6801   for(i=0; i<nPage; i++){
6802     Pgno n;
6803     u8 e;
6804     MemPage *pPage = apPage[i];
6805     BtShared *pBt = pPage->pBt;
6806     assert( pPage->isInit );
6807 
6808     for(j=0; j<pPage->nCell; j++){
6809       CellInfo info;
6810       u8 *z;
6811 
6812       z = findCell(pPage, j);
6813       pPage->xParseCell(pPage, z, &info);
6814       if( info.iOverflow ){
6815         Pgno ovfl = get4byte(&z[info.iOverflow]);
6816         ptrmapGet(pBt, ovfl, &e, &n);
6817         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6818       }
6819       if( !pPage->leaf ){
6820         Pgno child = get4byte(z);
6821         ptrmapGet(pBt, child, &e, &n);
6822         assert( n==pPage->pgno && e==PTRMAP_BTREE );
6823       }
6824     }
6825     if( !pPage->leaf ){
6826       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6827       ptrmapGet(pBt, child, &e, &n);
6828       assert( n==pPage->pgno && e==PTRMAP_BTREE );
6829     }
6830   }
6831   return 1;
6832 }
6833 #endif
6834 
6835 /*
6836 ** This function is used to copy the contents of the b-tree node stored
6837 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6838 ** the pointer-map entries for each child page are updated so that the
6839 ** parent page stored in the pointer map is page pTo. If pFrom contained
6840 ** any cells with overflow page pointers, then the corresponding pointer
6841 ** map entries are also updated so that the parent page is page pTo.
6842 **
6843 ** If pFrom is currently carrying any overflow cells (entries in the
6844 ** MemPage.apOvfl[] array), they are not copied to pTo.
6845 **
6846 ** Before returning, page pTo is reinitialized using btreeInitPage().
6847 **
6848 ** The performance of this function is not critical. It is only used by
6849 ** the balance_shallower() and balance_deeper() procedures, neither of
6850 ** which are called often under normal circumstances.
6851 */
6852 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6853   if( (*pRC)==SQLITE_OK ){
6854     BtShared * const pBt = pFrom->pBt;
6855     u8 * const aFrom = pFrom->aData;
6856     u8 * const aTo = pTo->aData;
6857     int const iFromHdr = pFrom->hdrOffset;
6858     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
6859     int rc;
6860     int iData;
6861 
6862 
6863     assert( pFrom->isInit );
6864     assert( pFrom->nFree>=iToHdr );
6865     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6866 
6867     /* Copy the b-tree node content from page pFrom to page pTo. */
6868     iData = get2byte(&aFrom[iFromHdr+5]);
6869     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6870     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6871 
6872     /* Reinitialize page pTo so that the contents of the MemPage structure
6873     ** match the new data. The initialization of pTo can actually fail under
6874     ** fairly obscure circumstances, even though it is a copy of initialized
6875     ** page pFrom.
6876     */
6877     pTo->isInit = 0;
6878     rc = btreeInitPage(pTo);
6879     if( rc!=SQLITE_OK ){
6880       *pRC = rc;
6881       return;
6882     }
6883 
6884     /* If this is an auto-vacuum database, update the pointer-map entries
6885     ** for any b-tree or overflow pages that pTo now contains the pointers to.
6886     */
6887     if( ISAUTOVACUUM ){
6888       *pRC = setChildPtrmaps(pTo);
6889     }
6890   }
6891 }
6892 
6893 /*
6894 ** This routine redistributes cells on the iParentIdx'th child of pParent
6895 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6896 ** same amount of free space. Usually a single sibling on either side of the
6897 ** page are used in the balancing, though both siblings might come from one
6898 ** side if the page is the first or last child of its parent. If the page
6899 ** has fewer than 2 siblings (something which can only happen if the page
6900 ** is a root page or a child of a root page) then all available siblings
6901 ** participate in the balancing.
6902 **
6903 ** The number of siblings of the page might be increased or decreased by
6904 ** one or two in an effort to keep pages nearly full but not over full.
6905 **
6906 ** Note that when this routine is called, some of the cells on the page
6907 ** might not actually be stored in MemPage.aData[]. This can happen
6908 ** if the page is overfull. This routine ensures that all cells allocated
6909 ** to the page and its siblings fit into MemPage.aData[] before returning.
6910 **
6911 ** In the course of balancing the page and its siblings, cells may be
6912 ** inserted into or removed from the parent page (pParent). Doing so
6913 ** may cause the parent page to become overfull or underfull. If this
6914 ** happens, it is the responsibility of the caller to invoke the correct
6915 ** balancing routine to fix this problem (see the balance() routine).
6916 **
6917 ** If this routine fails for any reason, it might leave the database
6918 ** in a corrupted state. So if this routine fails, the database should
6919 ** be rolled back.
6920 **
6921 ** The third argument to this function, aOvflSpace, is a pointer to a
6922 ** buffer big enough to hold one page. If while inserting cells into the parent
6923 ** page (pParent) the parent page becomes overfull, this buffer is
6924 ** used to store the parent's overflow cells. Because this function inserts
6925 ** a maximum of four divider cells into the parent page, and the maximum
6926 ** size of a cell stored within an internal node is always less than 1/4
6927 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6928 ** enough for all overflow cells.
6929 **
6930 ** If aOvflSpace is set to a null pointer, this function returns
6931 ** SQLITE_NOMEM.
6932 */
6933 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6934 #pragma optimize("", off)
6935 #endif
6936 static int balance_nonroot(
6937   MemPage *pParent,               /* Parent page of siblings being balanced */
6938   int iParentIdx,                 /* Index of "the page" in pParent */
6939   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
6940   int isRoot,                     /* True if pParent is a root-page */
6941   int bBulk                       /* True if this call is part of a bulk load */
6942 ){
6943   BtShared *pBt;               /* The whole database */
6944   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
6945   int nNew = 0;                /* Number of pages in apNew[] */
6946   int nOld;                    /* Number of pages in apOld[] */
6947   int i, j, k;                 /* Loop counters */
6948   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
6949   int rc = SQLITE_OK;          /* The return code */
6950   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
6951   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
6952   int usableSpace;             /* Bytes in pPage beyond the header */
6953   int pageFlags;               /* Value of pPage->aData[0] */
6954   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
6955   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
6956   int szScratch;               /* Size of scratch memory requested */
6957   MemPage *apOld[NB];          /* pPage and up to two siblings */
6958   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
6959   u8 *pRight;                  /* Location in parent of right-sibling pointer */
6960   u8 *apDiv[NB-1];             /* Divider cells in pParent */
6961   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
6962   int cntOld[NB+2];            /* Old index in b.apCell[] */
6963   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
6964   u8 *aSpace1;                 /* Space for copies of dividers cells */
6965   Pgno pgno;                   /* Temp var to store a page number in */
6966   u8 abDone[NB+2];             /* True after i'th new page is populated */
6967   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
6968   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
6969   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
6970   CellArray b;                  /* Parsed information on cells being balanced */
6971 
6972   memset(abDone, 0, sizeof(abDone));
6973   b.nCell = 0;
6974   b.apCell = 0;
6975   pBt = pParent->pBt;
6976   assert( sqlite3_mutex_held(pBt->mutex) );
6977   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6978 
6979 #if 0
6980   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
6981 #endif
6982 
6983   /* At this point pParent may have at most one overflow cell. And if
6984   ** this overflow cell is present, it must be the cell with
6985   ** index iParentIdx. This scenario comes about when this function
6986   ** is called (indirectly) from sqlite3BtreeDelete().
6987   */
6988   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
6989   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
6990 
6991   if( !aOvflSpace ){
6992     return SQLITE_NOMEM;
6993   }
6994 
6995   /* Find the sibling pages to balance. Also locate the cells in pParent
6996   ** that divide the siblings. An attempt is made to find NN siblings on
6997   ** either side of pPage. More siblings are taken from one side, however,
6998   ** if there are fewer than NN siblings on the other side. If pParent
6999   ** has NB or fewer children then all children of pParent are taken.
7000   **
7001   ** This loop also drops the divider cells from the parent page. This
7002   ** way, the remainder of the function does not have to deal with any
7003   ** overflow cells in the parent page, since if any existed they will
7004   ** have already been removed.
7005   */
7006   i = pParent->nOverflow + pParent->nCell;
7007   if( i<2 ){
7008     nxDiv = 0;
7009   }else{
7010     assert( bBulk==0 || bBulk==1 );
7011     if( iParentIdx==0 ){
7012       nxDiv = 0;
7013     }else if( iParentIdx==i ){
7014       nxDiv = i-2+bBulk;
7015     }else{
7016       nxDiv = iParentIdx-1;
7017     }
7018     i = 2-bBulk;
7019   }
7020   nOld = i+1;
7021   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7022     pRight = &pParent->aData[pParent->hdrOffset+8];
7023   }else{
7024     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7025   }
7026   pgno = get4byte(pRight);
7027   while( 1 ){
7028     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7029     if( rc ){
7030       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7031       goto balance_cleanup;
7032     }
7033     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7034     if( (i--)==0 ) break;
7035 
7036     if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7037       apDiv[i] = pParent->apOvfl[0];
7038       pgno = get4byte(apDiv[i]);
7039       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7040       pParent->nOverflow = 0;
7041     }else{
7042       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7043       pgno = get4byte(apDiv[i]);
7044       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7045 
7046       /* Drop the cell from the parent page. apDiv[i] still points to
7047       ** the cell within the parent, even though it has been dropped.
7048       ** This is safe because dropping a cell only overwrites the first
7049       ** four bytes of it, and this function does not need the first
7050       ** four bytes of the divider cell. So the pointer is safe to use
7051       ** later on.
7052       **
7053       ** But not if we are in secure-delete mode. In secure-delete mode,
7054       ** the dropCell() routine will overwrite the entire cell with zeroes.
7055       ** In this case, temporarily copy the cell into the aOvflSpace[]
7056       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7057       ** is allocated.  */
7058       if( pBt->btsFlags & BTS_SECURE_DELETE ){
7059         int iOff;
7060 
7061         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7062         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7063           rc = SQLITE_CORRUPT_BKPT;
7064           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7065           goto balance_cleanup;
7066         }else{
7067           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7068           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7069         }
7070       }
7071       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7072     }
7073   }
7074 
7075   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7076   ** alignment */
7077   nMaxCells = (nMaxCells + 3)&~3;
7078 
7079   /*
7080   ** Allocate space for memory structures
7081   */
7082   szScratch =
7083        nMaxCells*sizeof(u8*)                       /* b.apCell */
7084      + nMaxCells*sizeof(u16)                       /* b.szCell */
7085      + pBt->pageSize;                              /* aSpace1 */
7086 
7087   /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7088   ** that is more than 6 times the database page size. */
7089   assert( szScratch<=6*(int)pBt->pageSize );
7090   b.apCell = sqlite3ScratchMalloc( szScratch );
7091   if( b.apCell==0 ){
7092     rc = SQLITE_NOMEM;
7093     goto balance_cleanup;
7094   }
7095   b.szCell = (u16*)&b.apCell[nMaxCells];
7096   aSpace1 = (u8*)&b.szCell[nMaxCells];
7097   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7098 
7099   /*
7100   ** Load pointers to all cells on sibling pages and the divider cells
7101   ** into the local b.apCell[] array.  Make copies of the divider cells
7102   ** into space obtained from aSpace1[]. The divider cells have already
7103   ** been removed from pParent.
7104   **
7105   ** If the siblings are on leaf pages, then the child pointers of the
7106   ** divider cells are stripped from the cells before they are copied
7107   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7108   ** child pointers.  If siblings are not leaves, then all cell in
7109   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7110   ** are alike.
7111   **
7112   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7113   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7114   */
7115   b.pRef = apOld[0];
7116   leafCorrection = b.pRef->leaf*4;
7117   leafData = b.pRef->intKeyLeaf;
7118   for(i=0; i<nOld; i++){
7119     MemPage *pOld = apOld[i];
7120     int limit = pOld->nCell;
7121     u8 *aData = pOld->aData;
7122     u16 maskPage = pOld->maskPage;
7123     u8 *piCell = aData + pOld->cellOffset;
7124     u8 *piEnd;
7125 
7126     /* Verify that all sibling pages are of the same "type" (table-leaf,
7127     ** table-interior, index-leaf, or index-interior).
7128     */
7129     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7130       rc = SQLITE_CORRUPT_BKPT;
7131       goto balance_cleanup;
7132     }
7133 
7134     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7135     ** constains overflow cells, include them in the b.apCell[] array
7136     ** in the correct spot.
7137     **
7138     ** Note that when there are multiple overflow cells, it is always the
7139     ** case that they are sequential and adjacent.  This invariant arises
7140     ** because multiple overflows can only occurs when inserting divider
7141     ** cells into a parent on a prior balance, and divider cells are always
7142     ** adjacent and are inserted in order.  There is an assert() tagged
7143     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7144     ** invariant.
7145     **
7146     ** This must be done in advance.  Once the balance starts, the cell
7147     ** offset section of the btree page will be overwritten and we will no
7148     ** long be able to find the cells if a pointer to each cell is not saved
7149     ** first.
7150     */
7151     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
7152     if( pOld->nOverflow>0 ){
7153       memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
7154       limit = pOld->aiOvfl[0];
7155       for(j=0; j<limit; j++){
7156         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7157         piCell += 2;
7158         b.nCell++;
7159       }
7160       for(k=0; k<pOld->nOverflow; k++){
7161         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7162         b.apCell[b.nCell] = pOld->apOvfl[k];
7163         b.nCell++;
7164       }
7165     }
7166     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7167     while( piCell<piEnd ){
7168       assert( b.nCell<nMaxCells );
7169       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7170       piCell += 2;
7171       b.nCell++;
7172     }
7173 
7174     cntOld[i] = b.nCell;
7175     if( i<nOld-1 && !leafData){
7176       u16 sz = (u16)szNew[i];
7177       u8 *pTemp;
7178       assert( b.nCell<nMaxCells );
7179       b.szCell[b.nCell] = sz;
7180       pTemp = &aSpace1[iSpace1];
7181       iSpace1 += sz;
7182       assert( sz<=pBt->maxLocal+23 );
7183       assert( iSpace1 <= (int)pBt->pageSize );
7184       memcpy(pTemp, apDiv[i], sz);
7185       b.apCell[b.nCell] = pTemp+leafCorrection;
7186       assert( leafCorrection==0 || leafCorrection==4 );
7187       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7188       if( !pOld->leaf ){
7189         assert( leafCorrection==0 );
7190         assert( pOld->hdrOffset==0 );
7191         /* The right pointer of the child page pOld becomes the left
7192         ** pointer of the divider cell */
7193         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7194       }else{
7195         assert( leafCorrection==4 );
7196         while( b.szCell[b.nCell]<4 ){
7197           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7198           ** does exist, pad it with 0x00 bytes. */
7199           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7200           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7201           aSpace1[iSpace1++] = 0x00;
7202           b.szCell[b.nCell]++;
7203         }
7204       }
7205       b.nCell++;
7206     }
7207   }
7208 
7209   /*
7210   ** Figure out the number of pages needed to hold all b.nCell cells.
7211   ** Store this number in "k".  Also compute szNew[] which is the total
7212   ** size of all cells on the i-th page and cntNew[] which is the index
7213   ** in b.apCell[] of the cell that divides page i from page i+1.
7214   ** cntNew[k] should equal b.nCell.
7215   **
7216   ** Values computed by this block:
7217   **
7218   **           k: The total number of sibling pages
7219   **    szNew[i]: Spaced used on the i-th sibling page.
7220   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7221   **              the right of the i-th sibling page.
7222   ** usableSpace: Number of bytes of space available on each sibling.
7223   **
7224   */
7225   usableSpace = pBt->usableSize - 12 + leafCorrection;
7226   for(i=0; i<nOld; i++){
7227     MemPage *p = apOld[i];
7228     szNew[i] = usableSpace - p->nFree;
7229     if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7230     for(j=0; j<p->nOverflow; j++){
7231       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7232     }
7233     cntNew[i] = cntOld[i];
7234   }
7235   k = nOld;
7236   for(i=0; i<k; i++){
7237     int sz;
7238     while( szNew[i]>usableSpace ){
7239       if( i+1>=k ){
7240         k = i+2;
7241         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7242         szNew[k-1] = 0;
7243         cntNew[k-1] = b.nCell;
7244       }
7245       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7246       szNew[i] -= sz;
7247       if( !leafData ){
7248         if( cntNew[i]<b.nCell ){
7249           sz = 2 + cachedCellSize(&b, cntNew[i]);
7250         }else{
7251           sz = 0;
7252         }
7253       }
7254       szNew[i+1] += sz;
7255       cntNew[i]--;
7256     }
7257     while( cntNew[i]<b.nCell ){
7258       sz = 2 + cachedCellSize(&b, cntNew[i]);
7259       if( szNew[i]+sz>usableSpace ) break;
7260       szNew[i] += sz;
7261       cntNew[i]++;
7262       if( !leafData ){
7263         if( cntNew[i]<b.nCell ){
7264           sz = 2 + cachedCellSize(&b, cntNew[i]);
7265         }else{
7266           sz = 0;
7267         }
7268       }
7269       szNew[i+1] -= sz;
7270     }
7271     if( cntNew[i]>=b.nCell ){
7272       k = i+1;
7273     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7274       rc = SQLITE_CORRUPT_BKPT;
7275       goto balance_cleanup;
7276     }
7277   }
7278 
7279   /*
7280   ** The packing computed by the previous block is biased toward the siblings
7281   ** on the left side (siblings with smaller keys). The left siblings are
7282   ** always nearly full, while the right-most sibling might be nearly empty.
7283   ** The next block of code attempts to adjust the packing of siblings to
7284   ** get a better balance.
7285   **
7286   ** This adjustment is more than an optimization.  The packing above might
7287   ** be so out of balance as to be illegal.  For example, the right-most
7288   ** sibling might be completely empty.  This adjustment is not optional.
7289   */
7290   for(i=k-1; i>0; i--){
7291     int szRight = szNew[i];  /* Size of sibling on the right */
7292     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7293     int r;              /* Index of right-most cell in left sibling */
7294     int d;              /* Index of first cell to the left of right sibling */
7295 
7296     r = cntNew[i-1] - 1;
7297     d = r + 1 - leafData;
7298     (void)cachedCellSize(&b, d);
7299     do{
7300       assert( d<nMaxCells );
7301       assert( r<nMaxCells );
7302       (void)cachedCellSize(&b, r);
7303       if( szRight!=0
7304        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7305         break;
7306       }
7307       szRight += b.szCell[d] + 2;
7308       szLeft -= b.szCell[r] + 2;
7309       cntNew[i-1] = r;
7310       r--;
7311       d--;
7312     }while( r>=0 );
7313     szNew[i] = szRight;
7314     szNew[i-1] = szLeft;
7315     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7316       rc = SQLITE_CORRUPT_BKPT;
7317       goto balance_cleanup;
7318     }
7319   }
7320 
7321   /* Sanity check:  For a non-corrupt database file one of the follwing
7322   ** must be true:
7323   **    (1) We found one or more cells (cntNew[0])>0), or
7324   **    (2) pPage is a virtual root page.  A virtual root page is when
7325   **        the real root page is page 1 and we are the only child of
7326   **        that page.
7327   */
7328   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7329   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7330     apOld[0]->pgno, apOld[0]->nCell,
7331     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7332     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7333   ));
7334 
7335   /*
7336   ** Allocate k new pages.  Reuse old pages where possible.
7337   */
7338   pageFlags = apOld[0]->aData[0];
7339   for(i=0; i<k; i++){
7340     MemPage *pNew;
7341     if( i<nOld ){
7342       pNew = apNew[i] = apOld[i];
7343       apOld[i] = 0;
7344       rc = sqlite3PagerWrite(pNew->pDbPage);
7345       nNew++;
7346       if( rc ) goto balance_cleanup;
7347     }else{
7348       assert( i>0 );
7349       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7350       if( rc ) goto balance_cleanup;
7351       zeroPage(pNew, pageFlags);
7352       apNew[i] = pNew;
7353       nNew++;
7354       cntOld[i] = b.nCell;
7355 
7356       /* Set the pointer-map entry for the new sibling page. */
7357       if( ISAUTOVACUUM ){
7358         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7359         if( rc!=SQLITE_OK ){
7360           goto balance_cleanup;
7361         }
7362       }
7363     }
7364   }
7365 
7366   /*
7367   ** Reassign page numbers so that the new pages are in ascending order.
7368   ** This helps to keep entries in the disk file in order so that a scan
7369   ** of the table is closer to a linear scan through the file. That in turn
7370   ** helps the operating system to deliver pages from the disk more rapidly.
7371   **
7372   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7373   ** than (NB+2) (a small constant), that should not be a problem.
7374   **
7375   ** When NB==3, this one optimization makes the database about 25% faster
7376   ** for large insertions and deletions.
7377   */
7378   for(i=0; i<nNew; i++){
7379     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7380     aPgFlags[i] = apNew[i]->pDbPage->flags;
7381     for(j=0; j<i; j++){
7382       if( aPgno[j]==aPgno[i] ){
7383         /* This branch is taken if the set of sibling pages somehow contains
7384         ** duplicate entries. This can happen if the database is corrupt.
7385         ** It would be simpler to detect this as part of the loop below, but
7386         ** we do the detection here in order to avoid populating the pager
7387         ** cache with two separate objects associated with the same
7388         ** page number.  */
7389         assert( CORRUPT_DB );
7390         rc = SQLITE_CORRUPT_BKPT;
7391         goto balance_cleanup;
7392       }
7393     }
7394   }
7395   for(i=0; i<nNew; i++){
7396     int iBest = 0;                /* aPgno[] index of page number to use */
7397     for(j=1; j<nNew; j++){
7398       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7399     }
7400     pgno = aPgOrder[iBest];
7401     aPgOrder[iBest] = 0xffffffff;
7402     if( iBest!=i ){
7403       if( iBest>i ){
7404         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7405       }
7406       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7407       apNew[i]->pgno = pgno;
7408     }
7409   }
7410 
7411   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7412          "%d(%d nc=%d) %d(%d nc=%d)\n",
7413     apNew[0]->pgno, szNew[0], cntNew[0],
7414     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7415     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7416     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7417     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7418     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7419     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7420     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7421     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7422   ));
7423 
7424   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7425   put4byte(pRight, apNew[nNew-1]->pgno);
7426 
7427   /* If the sibling pages are not leaves, ensure that the right-child pointer
7428   ** of the right-most new sibling page is set to the value that was
7429   ** originally in the same field of the right-most old sibling page. */
7430   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7431     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7432     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7433   }
7434 
7435   /* Make any required updates to pointer map entries associated with
7436   ** cells stored on sibling pages following the balance operation. Pointer
7437   ** map entries associated with divider cells are set by the insertCell()
7438   ** routine. The associated pointer map entries are:
7439   **
7440   **   a) if the cell contains a reference to an overflow chain, the
7441   **      entry associated with the first page in the overflow chain, and
7442   **
7443   **   b) if the sibling pages are not leaves, the child page associated
7444   **      with the cell.
7445   **
7446   ** If the sibling pages are not leaves, then the pointer map entry
7447   ** associated with the right-child of each sibling may also need to be
7448   ** updated. This happens below, after the sibling pages have been
7449   ** populated, not here.
7450   */
7451   if( ISAUTOVACUUM ){
7452     MemPage *pNew = apNew[0];
7453     u8 *aOld = pNew->aData;
7454     int cntOldNext = pNew->nCell + pNew->nOverflow;
7455     int usableSize = pBt->usableSize;
7456     int iNew = 0;
7457     int iOld = 0;
7458 
7459     for(i=0; i<b.nCell; i++){
7460       u8 *pCell = b.apCell[i];
7461       if( i==cntOldNext ){
7462         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7463         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7464         aOld = pOld->aData;
7465       }
7466       if( i==cntNew[iNew] ){
7467         pNew = apNew[++iNew];
7468         if( !leafData ) continue;
7469       }
7470 
7471       /* Cell pCell is destined for new sibling page pNew. Originally, it
7472       ** was either part of sibling page iOld (possibly an overflow cell),
7473       ** or else the divider cell to the left of sibling page iOld. So,
7474       ** if sibling page iOld had the same page number as pNew, and if
7475       ** pCell really was a part of sibling page iOld (not a divider or
7476       ** overflow cell), we can skip updating the pointer map entries.  */
7477       if( iOld>=nNew
7478        || pNew->pgno!=aPgno[iOld]
7479        || pCell<aOld
7480        || pCell>=&aOld[usableSize]
7481       ){
7482         if( !leafCorrection ){
7483           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7484         }
7485         if( cachedCellSize(&b,i)>pNew->minLocal ){
7486           ptrmapPutOvflPtr(pNew, pCell, &rc);
7487         }
7488         if( rc ) goto balance_cleanup;
7489       }
7490     }
7491   }
7492 
7493   /* Insert new divider cells into pParent. */
7494   for(i=0; i<nNew-1; i++){
7495     u8 *pCell;
7496     u8 *pTemp;
7497     int sz;
7498     MemPage *pNew = apNew[i];
7499     j = cntNew[i];
7500 
7501     assert( j<nMaxCells );
7502     assert( b.apCell[j]!=0 );
7503     pCell = b.apCell[j];
7504     sz = b.szCell[j] + leafCorrection;
7505     pTemp = &aOvflSpace[iOvflSpace];
7506     if( !pNew->leaf ){
7507       memcpy(&pNew->aData[8], pCell, 4);
7508     }else if( leafData ){
7509       /* If the tree is a leaf-data tree, and the siblings are leaves,
7510       ** then there is no divider cell in b.apCell[]. Instead, the divider
7511       ** cell consists of the integer key for the right-most cell of
7512       ** the sibling-page assembled above only.
7513       */
7514       CellInfo info;
7515       j--;
7516       pNew->xParseCell(pNew, b.apCell[j], &info);
7517       pCell = pTemp;
7518       sz = 4 + putVarint(&pCell[4], info.nKey);
7519       pTemp = 0;
7520     }else{
7521       pCell -= 4;
7522       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7523       ** previously stored on a leaf node, and its reported size was 4
7524       ** bytes, then it may actually be smaller than this
7525       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7526       ** any cell). But it is important to pass the correct size to
7527       ** insertCell(), so reparse the cell now.
7528       **
7529       ** Note that this can never happen in an SQLite data file, as all
7530       ** cells are at least 4 bytes. It only happens in b-trees used
7531       ** to evaluate "IN (SELECT ...)" and similar clauses.
7532       */
7533       if( b.szCell[j]==4 ){
7534         assert(leafCorrection==4);
7535         sz = pParent->xCellSize(pParent, pCell);
7536       }
7537     }
7538     iOvflSpace += sz;
7539     assert( sz<=pBt->maxLocal+23 );
7540     assert( iOvflSpace <= (int)pBt->pageSize );
7541     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7542     if( rc!=SQLITE_OK ) goto balance_cleanup;
7543     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7544   }
7545 
7546   /* Now update the actual sibling pages. The order in which they are updated
7547   ** is important, as this code needs to avoid disrupting any page from which
7548   ** cells may still to be read. In practice, this means:
7549   **
7550   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7551   **      then it is not safe to update page apNew[iPg] until after
7552   **      the left-hand sibling apNew[iPg-1] has been updated.
7553   **
7554   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7555   **      then it is not safe to update page apNew[iPg] until after
7556   **      the right-hand sibling apNew[iPg+1] has been updated.
7557   **
7558   ** If neither of the above apply, the page is safe to update.
7559   **
7560   ** The iPg value in the following loop starts at nNew-1 goes down
7561   ** to 0, then back up to nNew-1 again, thus making two passes over
7562   ** the pages.  On the initial downward pass, only condition (1) above
7563   ** needs to be tested because (2) will always be true from the previous
7564   ** step.  On the upward pass, both conditions are always true, so the
7565   ** upwards pass simply processes pages that were missed on the downward
7566   ** pass.
7567   */
7568   for(i=1-nNew; i<nNew; i++){
7569     int iPg = i<0 ? -i : i;
7570     assert( iPg>=0 && iPg<nNew );
7571     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7572     if( i>=0                            /* On the upwards pass, or... */
7573      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7574     ){
7575       int iNew;
7576       int iOld;
7577       int nNewCell;
7578 
7579       /* Verify condition (1):  If cells are moving left, update iPg
7580       ** only after iPg-1 has already been updated. */
7581       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7582 
7583       /* Verify condition (2):  If cells are moving right, update iPg
7584       ** only after iPg+1 has already been updated. */
7585       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7586 
7587       if( iPg==0 ){
7588         iNew = iOld = 0;
7589         nNewCell = cntNew[0];
7590       }else{
7591         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7592         iNew = cntNew[iPg-1] + !leafData;
7593         nNewCell = cntNew[iPg] - iNew;
7594       }
7595 
7596       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7597       if( rc ) goto balance_cleanup;
7598       abDone[iPg]++;
7599       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7600       assert( apNew[iPg]->nOverflow==0 );
7601       assert( apNew[iPg]->nCell==nNewCell );
7602     }
7603   }
7604 
7605   /* All pages have been processed exactly once */
7606   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7607 
7608   assert( nOld>0 );
7609   assert( nNew>0 );
7610 
7611   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7612     /* The root page of the b-tree now contains no cells. The only sibling
7613     ** page is the right-child of the parent. Copy the contents of the
7614     ** child page into the parent, decreasing the overall height of the
7615     ** b-tree structure by one. This is described as the "balance-shallower"
7616     ** sub-algorithm in some documentation.
7617     **
7618     ** If this is an auto-vacuum database, the call to copyNodeContent()
7619     ** sets all pointer-map entries corresponding to database image pages
7620     ** for which the pointer is stored within the content being copied.
7621     **
7622     ** It is critical that the child page be defragmented before being
7623     ** copied into the parent, because if the parent is page 1 then it will
7624     ** by smaller than the child due to the database header, and so all the
7625     ** free space needs to be up front.
7626     */
7627     assert( nNew==1 || CORRUPT_DB );
7628     rc = defragmentPage(apNew[0]);
7629     testcase( rc!=SQLITE_OK );
7630     assert( apNew[0]->nFree ==
7631         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7632       || rc!=SQLITE_OK
7633     );
7634     copyNodeContent(apNew[0], pParent, &rc);
7635     freePage(apNew[0], &rc);
7636   }else if( ISAUTOVACUUM && !leafCorrection ){
7637     /* Fix the pointer map entries associated with the right-child of each
7638     ** sibling page. All other pointer map entries have already been taken
7639     ** care of.  */
7640     for(i=0; i<nNew; i++){
7641       u32 key = get4byte(&apNew[i]->aData[8]);
7642       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7643     }
7644   }
7645 
7646   assert( pParent->isInit );
7647   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7648           nOld, nNew, b.nCell));
7649 
7650   /* Free any old pages that were not reused as new pages.
7651   */
7652   for(i=nNew; i<nOld; i++){
7653     freePage(apOld[i], &rc);
7654   }
7655 
7656 #if 0
7657   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7658     /* The ptrmapCheckPages() contains assert() statements that verify that
7659     ** all pointer map pages are set correctly. This is helpful while
7660     ** debugging. This is usually disabled because a corrupt database may
7661     ** cause an assert() statement to fail.  */
7662     ptrmapCheckPages(apNew, nNew);
7663     ptrmapCheckPages(&pParent, 1);
7664   }
7665 #endif
7666 
7667   /*
7668   ** Cleanup before returning.
7669   */
7670 balance_cleanup:
7671   sqlite3ScratchFree(b.apCell);
7672   for(i=0; i<nOld; i++){
7673     releasePage(apOld[i]);
7674   }
7675   for(i=0; i<nNew; i++){
7676     releasePage(apNew[i]);
7677   }
7678 
7679   return rc;
7680 }
7681 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7682 #pragma optimize("", on)
7683 #endif
7684 
7685 
7686 /*
7687 ** This function is called when the root page of a b-tree structure is
7688 ** overfull (has one or more overflow pages).
7689 **
7690 ** A new child page is allocated and the contents of the current root
7691 ** page, including overflow cells, are copied into the child. The root
7692 ** page is then overwritten to make it an empty page with the right-child
7693 ** pointer pointing to the new page.
7694 **
7695 ** Before returning, all pointer-map entries corresponding to pages
7696 ** that the new child-page now contains pointers to are updated. The
7697 ** entry corresponding to the new right-child pointer of the root
7698 ** page is also updated.
7699 **
7700 ** If successful, *ppChild is set to contain a reference to the child
7701 ** page and SQLITE_OK is returned. In this case the caller is required
7702 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7703 ** an error code is returned and *ppChild is set to 0.
7704 */
7705 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7706   int rc;                        /* Return value from subprocedures */
7707   MemPage *pChild = 0;           /* Pointer to a new child page */
7708   Pgno pgnoChild = 0;            /* Page number of the new child page */
7709   BtShared *pBt = pRoot->pBt;    /* The BTree */
7710 
7711   assert( pRoot->nOverflow>0 );
7712   assert( sqlite3_mutex_held(pBt->mutex) );
7713 
7714   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7715   ** page that will become the new right-child of pPage. Copy the contents
7716   ** of the node stored on pRoot into the new child page.
7717   */
7718   rc = sqlite3PagerWrite(pRoot->pDbPage);
7719   if( rc==SQLITE_OK ){
7720     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7721     copyNodeContent(pRoot, pChild, &rc);
7722     if( ISAUTOVACUUM ){
7723       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7724     }
7725   }
7726   if( rc ){
7727     *ppChild = 0;
7728     releasePage(pChild);
7729     return rc;
7730   }
7731   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7732   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7733   assert( pChild->nCell==pRoot->nCell );
7734 
7735   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7736 
7737   /* Copy the overflow cells from pRoot to pChild */
7738   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7739          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7740   memcpy(pChild->apOvfl, pRoot->apOvfl,
7741          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7742   pChild->nOverflow = pRoot->nOverflow;
7743 
7744   /* Zero the contents of pRoot. Then install pChild as the right-child. */
7745   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7746   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7747 
7748   *ppChild = pChild;
7749   return SQLITE_OK;
7750 }
7751 
7752 /*
7753 ** The page that pCur currently points to has just been modified in
7754 ** some way. This function figures out if this modification means the
7755 ** tree needs to be balanced, and if so calls the appropriate balancing
7756 ** routine. Balancing routines are:
7757 **
7758 **   balance_quick()
7759 **   balance_deeper()
7760 **   balance_nonroot()
7761 */
7762 static int balance(BtCursor *pCur){
7763   int rc = SQLITE_OK;
7764   const int nMin = pCur->pBt->usableSize * 2 / 3;
7765   u8 aBalanceQuickSpace[13];
7766   u8 *pFree = 0;
7767 
7768   TESTONLY( int balance_quick_called = 0 );
7769   TESTONLY( int balance_deeper_called = 0 );
7770 
7771   do {
7772     int iPage = pCur->iPage;
7773     MemPage *pPage = pCur->apPage[iPage];
7774 
7775     if( iPage==0 ){
7776       if( pPage->nOverflow ){
7777         /* The root page of the b-tree is overfull. In this case call the
7778         ** balance_deeper() function to create a new child for the root-page
7779         ** and copy the current contents of the root-page to it. The
7780         ** next iteration of the do-loop will balance the child page.
7781         */
7782         assert( (balance_deeper_called++)==0 );
7783         rc = balance_deeper(pPage, &pCur->apPage[1]);
7784         if( rc==SQLITE_OK ){
7785           pCur->iPage = 1;
7786           pCur->aiIdx[0] = 0;
7787           pCur->aiIdx[1] = 0;
7788           assert( pCur->apPage[1]->nOverflow );
7789         }
7790       }else{
7791         break;
7792       }
7793     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7794       break;
7795     }else{
7796       MemPage * const pParent = pCur->apPage[iPage-1];
7797       int const iIdx = pCur->aiIdx[iPage-1];
7798 
7799       rc = sqlite3PagerWrite(pParent->pDbPage);
7800       if( rc==SQLITE_OK ){
7801 #ifndef SQLITE_OMIT_QUICKBALANCE
7802         if( pPage->intKeyLeaf
7803          && pPage->nOverflow==1
7804          && pPage->aiOvfl[0]==pPage->nCell
7805          && pParent->pgno!=1
7806          && pParent->nCell==iIdx
7807         ){
7808           /* Call balance_quick() to create a new sibling of pPage on which
7809           ** to store the overflow cell. balance_quick() inserts a new cell
7810           ** into pParent, which may cause pParent overflow. If this
7811           ** happens, the next iteration of the do-loop will balance pParent
7812           ** use either balance_nonroot() or balance_deeper(). Until this
7813           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7814           ** buffer.
7815           **
7816           ** The purpose of the following assert() is to check that only a
7817           ** single call to balance_quick() is made for each call to this
7818           ** function. If this were not verified, a subtle bug involving reuse
7819           ** of the aBalanceQuickSpace[] might sneak in.
7820           */
7821           assert( (balance_quick_called++)==0 );
7822           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7823         }else
7824 #endif
7825         {
7826           /* In this case, call balance_nonroot() to redistribute cells
7827           ** between pPage and up to 2 of its sibling pages. This involves
7828           ** modifying the contents of pParent, which may cause pParent to
7829           ** become overfull or underfull. The next iteration of the do-loop
7830           ** will balance the parent page to correct this.
7831           **
7832           ** If the parent page becomes overfull, the overflow cell or cells
7833           ** are stored in the pSpace buffer allocated immediately below.
7834           ** A subsequent iteration of the do-loop will deal with this by
7835           ** calling balance_nonroot() (balance_deeper() may be called first,
7836           ** but it doesn't deal with overflow cells - just moves them to a
7837           ** different page). Once this subsequent call to balance_nonroot()
7838           ** has completed, it is safe to release the pSpace buffer used by
7839           ** the previous call, as the overflow cell data will have been
7840           ** copied either into the body of a database page or into the new
7841           ** pSpace buffer passed to the latter call to balance_nonroot().
7842           */
7843           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7844           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7845                                pCur->hints&BTREE_BULKLOAD);
7846           if( pFree ){
7847             /* If pFree is not NULL, it points to the pSpace buffer used
7848             ** by a previous call to balance_nonroot(). Its contents are
7849             ** now stored either on real database pages or within the
7850             ** new pSpace buffer, so it may be safely freed here. */
7851             sqlite3PageFree(pFree);
7852           }
7853 
7854           /* The pSpace buffer will be freed after the next call to
7855           ** balance_nonroot(), or just before this function returns, whichever
7856           ** comes first. */
7857           pFree = pSpace;
7858         }
7859       }
7860 
7861       pPage->nOverflow = 0;
7862 
7863       /* The next iteration of the do-loop balances the parent page. */
7864       releasePage(pPage);
7865       pCur->iPage--;
7866       assert( pCur->iPage>=0 );
7867     }
7868   }while( rc==SQLITE_OK );
7869 
7870   if( pFree ){
7871     sqlite3PageFree(pFree);
7872   }
7873   return rc;
7874 }
7875 
7876 
7877 /*
7878 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
7879 ** and the data is given by (pData,nData).  The cursor is used only to
7880 ** define what table the record should be inserted into.  The cursor
7881 ** is left pointing at a random location.
7882 **
7883 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
7884 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
7885 **
7886 ** If the seekResult parameter is non-zero, then a successful call to
7887 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7888 ** been performed. seekResult is the search result returned (a negative
7889 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7890 ** a positive value if pCur points at an entry that is larger than
7891 ** (pKey, nKey)).
7892 **
7893 ** If the seekResult parameter is non-zero, then the caller guarantees that
7894 ** cursor pCur is pointing at the existing copy of a row that is to be
7895 ** overwritten.  If the seekResult parameter is 0, then cursor pCur may
7896 ** point to any entry or to no entry at all and so this function has to seek
7897 ** the cursor before the new key can be inserted.
7898 */
7899 int sqlite3BtreeInsert(
7900   BtCursor *pCur,                /* Insert data into the table of this cursor */
7901   const void *pKey, i64 nKey,    /* The key of the new record */
7902   const void *pData, int nData,  /* The data of the new record */
7903   int nZero,                     /* Number of extra 0 bytes to append to data */
7904   int appendBias,                /* True if this is likely an append */
7905   int seekResult                 /* Result of prior MovetoUnpacked() call */
7906 ){
7907   int rc;
7908   int loc = seekResult;          /* -1: before desired location  +1: after */
7909   int szNew = 0;
7910   int idx;
7911   MemPage *pPage;
7912   Btree *p = pCur->pBtree;
7913   BtShared *pBt = p->pBt;
7914   unsigned char *oldCell;
7915   unsigned char *newCell = 0;
7916 
7917   if( pCur->eState==CURSOR_FAULT ){
7918     assert( pCur->skipNext!=SQLITE_OK );
7919     return pCur->skipNext;
7920   }
7921 
7922   assert( cursorHoldsMutex(pCur) );
7923   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7924               && pBt->inTransaction==TRANS_WRITE
7925               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
7926   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7927 
7928   /* Assert that the caller has been consistent. If this cursor was opened
7929   ** expecting an index b-tree, then the caller should be inserting blob
7930   ** keys with no associated data. If the cursor was opened expecting an
7931   ** intkey table, the caller should be inserting integer keys with a
7932   ** blob of associated data.  */
7933   assert( (pKey==0)==(pCur->pKeyInfo==0) );
7934 
7935   /* Save the positions of any other cursors open on this table.
7936   **
7937   ** In some cases, the call to btreeMoveto() below is a no-op. For
7938   ** example, when inserting data into a table with auto-generated integer
7939   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7940   ** integer key to use. It then calls this function to actually insert the
7941   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7942   ** that the cursor is already where it needs to be and returns without
7943   ** doing any work. To avoid thwarting these optimizations, it is important
7944   ** not to clear the cursor here.
7945   */
7946   if( pCur->curFlags & BTCF_Multiple ){
7947     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7948     if( rc ) return rc;
7949   }
7950 
7951   if( pCur->pKeyInfo==0 ){
7952     assert( pKey==0 );
7953     /* If this is an insert into a table b-tree, invalidate any incrblob
7954     ** cursors open on the row being replaced */
7955     invalidateIncrblobCursors(p, nKey, 0);
7956 
7957     /* If the cursor is currently on the last row and we are appending a
7958     ** new row onto the end, set the "loc" to avoid an unnecessary
7959     ** btreeMoveto() call */
7960     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7961       && pCur->info.nKey==nKey-1 ){
7962        loc = -1;
7963     }else if( loc==0 ){
7964       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7965       if( rc ) return rc;
7966     }
7967   }else if( loc==0 ){
7968     rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7969     if( rc ) return rc;
7970   }
7971   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
7972 
7973   pPage = pCur->apPage[pCur->iPage];
7974   assert( pPage->intKey || nKey>=0 );
7975   assert( pPage->leaf || !pPage->intKey );
7976 
7977   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7978           pCur->pgnoRoot, nKey, nData, pPage->pgno,
7979           loc==0 ? "overwrite" : "new entry"));
7980   assert( pPage->isInit );
7981   newCell = pBt->pTmpSpace;
7982   assert( newCell!=0 );
7983   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
7984   if( rc ) goto end_insert;
7985   assert( szNew==pPage->xCellSize(pPage, newCell) );
7986   assert( szNew <= MX_CELL_SIZE(pBt) );
7987   idx = pCur->aiIdx[pCur->iPage];
7988   if( loc==0 ){
7989     u16 szOld;
7990     assert( idx<pPage->nCell );
7991     rc = sqlite3PagerWrite(pPage->pDbPage);
7992     if( rc ){
7993       goto end_insert;
7994     }
7995     oldCell = findCell(pPage, idx);
7996     if( !pPage->leaf ){
7997       memcpy(newCell, oldCell, 4);
7998     }
7999     rc = clearCell(pPage, oldCell, &szOld);
8000     dropCell(pPage, idx, szOld, &rc);
8001     if( rc ) goto end_insert;
8002   }else if( loc<0 && pPage->nCell>0 ){
8003     assert( pPage->leaf );
8004     idx = ++pCur->aiIdx[pCur->iPage];
8005   }else{
8006     assert( pPage->leaf );
8007   }
8008   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8009   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8010 
8011   /* If no error has occurred and pPage has an overflow cell, call balance()
8012   ** to redistribute the cells within the tree. Since balance() may move
8013   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8014   ** variables.
8015   **
8016   ** Previous versions of SQLite called moveToRoot() to move the cursor
8017   ** back to the root page as balance() used to invalidate the contents
8018   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8019   ** set the cursor state to "invalid". This makes common insert operations
8020   ** slightly faster.
8021   **
8022   ** There is a subtle but important optimization here too. When inserting
8023   ** multiple records into an intkey b-tree using a single cursor (as can
8024   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8025   ** is advantageous to leave the cursor pointing to the last entry in
8026   ** the b-tree if possible. If the cursor is left pointing to the last
8027   ** entry in the table, and the next row inserted has an integer key
8028   ** larger than the largest existing key, it is possible to insert the
8029   ** row without seeking the cursor. This can be a big performance boost.
8030   */
8031   pCur->info.nSize = 0;
8032   if( rc==SQLITE_OK && pPage->nOverflow ){
8033     pCur->curFlags &= ~(BTCF_ValidNKey);
8034     rc = balance(pCur);
8035 
8036     /* Must make sure nOverflow is reset to zero even if the balance()
8037     ** fails. Internal data structure corruption will result otherwise.
8038     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8039     ** from trying to save the current position of the cursor.  */
8040     pCur->apPage[pCur->iPage]->nOverflow = 0;
8041     pCur->eState = CURSOR_INVALID;
8042   }
8043   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
8044 
8045 end_insert:
8046   return rc;
8047 }
8048 
8049 /*
8050 ** Delete the entry that the cursor is pointing to.
8051 **
8052 ** If the second parameter is zero, then the cursor is left pointing at an
8053 ** arbitrary location after the delete. If it is non-zero, then the cursor
8054 ** is left in a state such that the next call to BtreeNext() or BtreePrev()
8055 ** moves it to the same row as it would if the call to BtreeDelete() had
8056 ** been omitted.
8057 */
8058 int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
8059   Btree *p = pCur->pBtree;
8060   BtShared *pBt = p->pBt;
8061   int rc;                              /* Return code */
8062   MemPage *pPage;                      /* Page to delete cell from */
8063   unsigned char *pCell;                /* Pointer to cell to delete */
8064   int iCellIdx;                        /* Index of cell to delete */
8065   int iCellDepth;                      /* Depth of node containing pCell */
8066   u16 szCell;                          /* Size of the cell being deleted */
8067   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8068 
8069   assert( cursorHoldsMutex(pCur) );
8070   assert( pBt->inTransaction==TRANS_WRITE );
8071   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8072   assert( pCur->curFlags & BTCF_WriteFlag );
8073   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8074   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8075   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8076   assert( pCur->eState==CURSOR_VALID );
8077 
8078   iCellDepth = pCur->iPage;
8079   iCellIdx = pCur->aiIdx[iCellDepth];
8080   pPage = pCur->apPage[iCellDepth];
8081   pCell = findCell(pPage, iCellIdx);
8082 
8083   /* If the page containing the entry to delete is not a leaf page, move
8084   ** the cursor to the largest entry in the tree that is smaller than
8085   ** the entry being deleted. This cell will replace the cell being deleted
8086   ** from the internal node. The 'previous' entry is used for this instead
8087   ** of the 'next' entry, as the previous entry is always a part of the
8088   ** sub-tree headed by the child page of the cell being deleted. This makes
8089   ** balancing the tree following the delete operation easier.  */
8090   if( !pPage->leaf ){
8091     int notUsed = 0;
8092     rc = sqlite3BtreePrevious(pCur, &notUsed);
8093     if( rc ) return rc;
8094   }
8095 
8096   /* Save the positions of any other cursors open on this table before
8097   ** making any modifications.  */
8098   if( pCur->curFlags & BTCF_Multiple ){
8099     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8100     if( rc ) return rc;
8101   }
8102 
8103   /* If this is a delete operation to remove a row from a table b-tree,
8104   ** invalidate any incrblob cursors open on the row being deleted.  */
8105   if( pCur->pKeyInfo==0 ){
8106     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8107   }
8108 
8109   /* If the bPreserve flag is set to true, then the cursor position must
8110   ** be preserved following this delete operation. If the current delete
8111   ** will cause a b-tree rebalance, then this is done by saving the cursor
8112   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8113   ** returning.
8114   **
8115   ** Or, if the current delete will not cause a rebalance, then the cursor
8116   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8117   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8118   if( bPreserve ){
8119     if( !pPage->leaf
8120      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8121     ){
8122       /* A b-tree rebalance will be required after deleting this entry.
8123       ** Save the cursor key.  */
8124       rc = saveCursorKey(pCur);
8125       if( rc ) return rc;
8126     }else{
8127       bSkipnext = 1;
8128     }
8129   }
8130 
8131   /* Make the page containing the entry to be deleted writable. Then free any
8132   ** overflow pages associated with the entry and finally remove the cell
8133   ** itself from within the page.  */
8134   rc = sqlite3PagerWrite(pPage->pDbPage);
8135   if( rc ) return rc;
8136   rc = clearCell(pPage, pCell, &szCell);
8137   dropCell(pPage, iCellIdx, szCell, &rc);
8138   if( rc ) return rc;
8139 
8140   /* If the cell deleted was not located on a leaf page, then the cursor
8141   ** is currently pointing to the largest entry in the sub-tree headed
8142   ** by the child-page of the cell that was just deleted from an internal
8143   ** node. The cell from the leaf node needs to be moved to the internal
8144   ** node to replace the deleted cell.  */
8145   if( !pPage->leaf ){
8146     MemPage *pLeaf = pCur->apPage[pCur->iPage];
8147     int nCell;
8148     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8149     unsigned char *pTmp;
8150 
8151     pCell = findCell(pLeaf, pLeaf->nCell-1);
8152     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8153     nCell = pLeaf->xCellSize(pLeaf, pCell);
8154     assert( MX_CELL_SIZE(pBt) >= nCell );
8155     pTmp = pBt->pTmpSpace;
8156     assert( pTmp!=0 );
8157     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8158     insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8159     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8160     if( rc ) return rc;
8161   }
8162 
8163   /* Balance the tree. If the entry deleted was located on a leaf page,
8164   ** then the cursor still points to that page. In this case the first
8165   ** call to balance() repairs the tree, and the if(...) condition is
8166   ** never true.
8167   **
8168   ** Otherwise, if the entry deleted was on an internal node page, then
8169   ** pCur is pointing to the leaf page from which a cell was removed to
8170   ** replace the cell deleted from the internal node. This is slightly
8171   ** tricky as the leaf node may be underfull, and the internal node may
8172   ** be either under or overfull. In this case run the balancing algorithm
8173   ** on the leaf node first. If the balance proceeds far enough up the
8174   ** tree that we can be sure that any problem in the internal node has
8175   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8176   ** walk the cursor up the tree to the internal node and balance it as
8177   ** well.  */
8178   rc = balance(pCur);
8179   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8180     while( pCur->iPage>iCellDepth ){
8181       releasePage(pCur->apPage[pCur->iPage--]);
8182     }
8183     rc = balance(pCur);
8184   }
8185 
8186   if( rc==SQLITE_OK ){
8187     if( bSkipnext ){
8188       assert( bPreserve && pCur->iPage==iCellDepth );
8189       assert( pPage==pCur->apPage[pCur->iPage] );
8190       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8191       pCur->eState = CURSOR_SKIPNEXT;
8192       if( iCellIdx>=pPage->nCell ){
8193         pCur->skipNext = -1;
8194         pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8195       }else{
8196         pCur->skipNext = 1;
8197       }
8198     }else{
8199       rc = moveToRoot(pCur);
8200       if( bPreserve ){
8201         pCur->eState = CURSOR_REQUIRESEEK;
8202       }
8203     }
8204   }
8205   return rc;
8206 }
8207 
8208 /*
8209 ** Create a new BTree table.  Write into *piTable the page
8210 ** number for the root page of the new table.
8211 **
8212 ** The type of type is determined by the flags parameter.  Only the
8213 ** following values of flags are currently in use.  Other values for
8214 ** flags might not work:
8215 **
8216 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8217 **     BTREE_ZERODATA                  Used for SQL indices
8218 */
8219 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8220   BtShared *pBt = p->pBt;
8221   MemPage *pRoot;
8222   Pgno pgnoRoot;
8223   int rc;
8224   int ptfFlags;          /* Page-type flage for the root page of new table */
8225 
8226   assert( sqlite3BtreeHoldsMutex(p) );
8227   assert( pBt->inTransaction==TRANS_WRITE );
8228   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8229 
8230 #ifdef SQLITE_OMIT_AUTOVACUUM
8231   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8232   if( rc ){
8233     return rc;
8234   }
8235 #else
8236   if( pBt->autoVacuum ){
8237     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8238     MemPage *pPageMove; /* The page to move to. */
8239 
8240     /* Creating a new table may probably require moving an existing database
8241     ** to make room for the new tables root page. In case this page turns
8242     ** out to be an overflow page, delete all overflow page-map caches
8243     ** held by open cursors.
8244     */
8245     invalidateAllOverflowCache(pBt);
8246 
8247     /* Read the value of meta[3] from the database to determine where the
8248     ** root page of the new table should go. meta[3] is the largest root-page
8249     ** created so far, so the new root-page is (meta[3]+1).
8250     */
8251     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8252     pgnoRoot++;
8253 
8254     /* The new root-page may not be allocated on a pointer-map page, or the
8255     ** PENDING_BYTE page.
8256     */
8257     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8258         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8259       pgnoRoot++;
8260     }
8261     assert( pgnoRoot>=3 || CORRUPT_DB );
8262     testcase( pgnoRoot<3 );
8263 
8264     /* Allocate a page. The page that currently resides at pgnoRoot will
8265     ** be moved to the allocated page (unless the allocated page happens
8266     ** to reside at pgnoRoot).
8267     */
8268     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8269     if( rc!=SQLITE_OK ){
8270       return rc;
8271     }
8272 
8273     if( pgnoMove!=pgnoRoot ){
8274       /* pgnoRoot is the page that will be used for the root-page of
8275       ** the new table (assuming an error did not occur). But we were
8276       ** allocated pgnoMove. If required (i.e. if it was not allocated
8277       ** by extending the file), the current page at position pgnoMove
8278       ** is already journaled.
8279       */
8280       u8 eType = 0;
8281       Pgno iPtrPage = 0;
8282 
8283       /* Save the positions of any open cursors. This is required in
8284       ** case they are holding a reference to an xFetch reference
8285       ** corresponding to page pgnoRoot.  */
8286       rc = saveAllCursors(pBt, 0, 0);
8287       releasePage(pPageMove);
8288       if( rc!=SQLITE_OK ){
8289         return rc;
8290       }
8291 
8292       /* Move the page currently at pgnoRoot to pgnoMove. */
8293       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8294       if( rc!=SQLITE_OK ){
8295         return rc;
8296       }
8297       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8298       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8299         rc = SQLITE_CORRUPT_BKPT;
8300       }
8301       if( rc!=SQLITE_OK ){
8302         releasePage(pRoot);
8303         return rc;
8304       }
8305       assert( eType!=PTRMAP_ROOTPAGE );
8306       assert( eType!=PTRMAP_FREEPAGE );
8307       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8308       releasePage(pRoot);
8309 
8310       /* Obtain the page at pgnoRoot */
8311       if( rc!=SQLITE_OK ){
8312         return rc;
8313       }
8314       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8315       if( rc!=SQLITE_OK ){
8316         return rc;
8317       }
8318       rc = sqlite3PagerWrite(pRoot->pDbPage);
8319       if( rc!=SQLITE_OK ){
8320         releasePage(pRoot);
8321         return rc;
8322       }
8323     }else{
8324       pRoot = pPageMove;
8325     }
8326 
8327     /* Update the pointer-map and meta-data with the new root-page number. */
8328     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8329     if( rc ){
8330       releasePage(pRoot);
8331       return rc;
8332     }
8333 
8334     /* When the new root page was allocated, page 1 was made writable in
8335     ** order either to increase the database filesize, or to decrement the
8336     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8337     */
8338     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8339     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8340     if( NEVER(rc) ){
8341       releasePage(pRoot);
8342       return rc;
8343     }
8344 
8345   }else{
8346     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8347     if( rc ) return rc;
8348   }
8349 #endif
8350   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8351   if( createTabFlags & BTREE_INTKEY ){
8352     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8353   }else{
8354     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8355   }
8356   zeroPage(pRoot, ptfFlags);
8357   sqlite3PagerUnref(pRoot->pDbPage);
8358   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8359   *piTable = (int)pgnoRoot;
8360   return SQLITE_OK;
8361 }
8362 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8363   int rc;
8364   sqlite3BtreeEnter(p);
8365   rc = btreeCreateTable(p, piTable, flags);
8366   sqlite3BtreeLeave(p);
8367   return rc;
8368 }
8369 
8370 /*
8371 ** Erase the given database page and all its children.  Return
8372 ** the page to the freelist.
8373 */
8374 static int clearDatabasePage(
8375   BtShared *pBt,           /* The BTree that contains the table */
8376   Pgno pgno,               /* Page number to clear */
8377   int freePageFlag,        /* Deallocate page if true */
8378   int *pnChange            /* Add number of Cells freed to this counter */
8379 ){
8380   MemPage *pPage;
8381   int rc;
8382   unsigned char *pCell;
8383   int i;
8384   int hdr;
8385   u16 szCell;
8386 
8387   assert( sqlite3_mutex_held(pBt->mutex) );
8388   if( pgno>btreePagecount(pBt) ){
8389     return SQLITE_CORRUPT_BKPT;
8390   }
8391   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8392   if( rc ) return rc;
8393   if( pPage->bBusy ){
8394     rc = SQLITE_CORRUPT_BKPT;
8395     goto cleardatabasepage_out;
8396   }
8397   pPage->bBusy = 1;
8398   hdr = pPage->hdrOffset;
8399   for(i=0; i<pPage->nCell; i++){
8400     pCell = findCell(pPage, i);
8401     if( !pPage->leaf ){
8402       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8403       if( rc ) goto cleardatabasepage_out;
8404     }
8405     rc = clearCell(pPage, pCell, &szCell);
8406     if( rc ) goto cleardatabasepage_out;
8407   }
8408   if( !pPage->leaf ){
8409     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8410     if( rc ) goto cleardatabasepage_out;
8411   }else if( pnChange ){
8412     assert( pPage->intKey || CORRUPT_DB );
8413     testcase( !pPage->intKey );
8414     *pnChange += pPage->nCell;
8415   }
8416   if( freePageFlag ){
8417     freePage(pPage, &rc);
8418   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8419     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8420   }
8421 
8422 cleardatabasepage_out:
8423   pPage->bBusy = 0;
8424   releasePage(pPage);
8425   return rc;
8426 }
8427 
8428 /*
8429 ** Delete all information from a single table in the database.  iTable is
8430 ** the page number of the root of the table.  After this routine returns,
8431 ** the root page is empty, but still exists.
8432 **
8433 ** This routine will fail with SQLITE_LOCKED if there are any open
8434 ** read cursors on the table.  Open write cursors are moved to the
8435 ** root of the table.
8436 **
8437 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8438 ** integer value pointed to by pnChange is incremented by the number of
8439 ** entries in the table.
8440 */
8441 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8442   int rc;
8443   BtShared *pBt = p->pBt;
8444   sqlite3BtreeEnter(p);
8445   assert( p->inTrans==TRANS_WRITE );
8446 
8447   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8448 
8449   if( SQLITE_OK==rc ){
8450     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8451     ** is the root of a table b-tree - if it is not, the following call is
8452     ** a no-op).  */
8453     invalidateIncrblobCursors(p, 0, 1);
8454     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8455   }
8456   sqlite3BtreeLeave(p);
8457   return rc;
8458 }
8459 
8460 /*
8461 ** Delete all information from the single table that pCur is open on.
8462 **
8463 ** This routine only work for pCur on an ephemeral table.
8464 */
8465 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8466   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8467 }
8468 
8469 /*
8470 ** Erase all information in a table and add the root of the table to
8471 ** the freelist.  Except, the root of the principle table (the one on
8472 ** page 1) is never added to the freelist.
8473 **
8474 ** This routine will fail with SQLITE_LOCKED if there are any open
8475 ** cursors on the table.
8476 **
8477 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8478 ** root page in the database file, then the last root page
8479 ** in the database file is moved into the slot formerly occupied by
8480 ** iTable and that last slot formerly occupied by the last root page
8481 ** is added to the freelist instead of iTable.  In this say, all
8482 ** root pages are kept at the beginning of the database file, which
8483 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8484 ** page number that used to be the last root page in the file before
8485 ** the move.  If no page gets moved, *piMoved is set to 0.
8486 ** The last root page is recorded in meta[3] and the value of
8487 ** meta[3] is updated by this procedure.
8488 */
8489 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8490   int rc;
8491   MemPage *pPage = 0;
8492   BtShared *pBt = p->pBt;
8493 
8494   assert( sqlite3BtreeHoldsMutex(p) );
8495   assert( p->inTrans==TRANS_WRITE );
8496 
8497   /* It is illegal to drop a table if any cursors are open on the
8498   ** database. This is because in auto-vacuum mode the backend may
8499   ** need to move another root-page to fill a gap left by the deleted
8500   ** root page. If an open cursor was using this page a problem would
8501   ** occur.
8502   **
8503   ** This error is caught long before control reaches this point.
8504   */
8505   if( NEVER(pBt->pCursor) ){
8506     sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8507     return SQLITE_LOCKED_SHAREDCACHE;
8508   }
8509 
8510   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8511   if( rc ) return rc;
8512   rc = sqlite3BtreeClearTable(p, iTable, 0);
8513   if( rc ){
8514     releasePage(pPage);
8515     return rc;
8516   }
8517 
8518   *piMoved = 0;
8519 
8520   if( iTable>1 ){
8521 #ifdef SQLITE_OMIT_AUTOVACUUM
8522     freePage(pPage, &rc);
8523     releasePage(pPage);
8524 #else
8525     if( pBt->autoVacuum ){
8526       Pgno maxRootPgno;
8527       sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8528 
8529       if( iTable==maxRootPgno ){
8530         /* If the table being dropped is the table with the largest root-page
8531         ** number in the database, put the root page on the free list.
8532         */
8533         freePage(pPage, &rc);
8534         releasePage(pPage);
8535         if( rc!=SQLITE_OK ){
8536           return rc;
8537         }
8538       }else{
8539         /* The table being dropped does not have the largest root-page
8540         ** number in the database. So move the page that does into the
8541         ** gap left by the deleted root-page.
8542         */
8543         MemPage *pMove;
8544         releasePage(pPage);
8545         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8546         if( rc!=SQLITE_OK ){
8547           return rc;
8548         }
8549         rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8550         releasePage(pMove);
8551         if( rc!=SQLITE_OK ){
8552           return rc;
8553         }
8554         pMove = 0;
8555         rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8556         freePage(pMove, &rc);
8557         releasePage(pMove);
8558         if( rc!=SQLITE_OK ){
8559           return rc;
8560         }
8561         *piMoved = maxRootPgno;
8562       }
8563 
8564       /* Set the new 'max-root-page' value in the database header. This
8565       ** is the old value less one, less one more if that happens to
8566       ** be a root-page number, less one again if that is the
8567       ** PENDING_BYTE_PAGE.
8568       */
8569       maxRootPgno--;
8570       while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8571              || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8572         maxRootPgno--;
8573       }
8574       assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8575 
8576       rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8577     }else{
8578       freePage(pPage, &rc);
8579       releasePage(pPage);
8580     }
8581 #endif
8582   }else{
8583     /* If sqlite3BtreeDropTable was called on page 1.
8584     ** This really never should happen except in a corrupt
8585     ** database.
8586     */
8587     zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
8588     releasePage(pPage);
8589   }
8590   return rc;
8591 }
8592 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8593   int rc;
8594   sqlite3BtreeEnter(p);
8595   rc = btreeDropTable(p, iTable, piMoved);
8596   sqlite3BtreeLeave(p);
8597   return rc;
8598 }
8599 
8600 
8601 /*
8602 ** This function may only be called if the b-tree connection already
8603 ** has a read or write transaction open on the database.
8604 **
8605 ** Read the meta-information out of a database file.  Meta[0]
8606 ** is the number of free pages currently in the database.  Meta[1]
8607 ** through meta[15] are available for use by higher layers.  Meta[0]
8608 ** is read-only, the others are read/write.
8609 **
8610 ** The schema layer numbers meta values differently.  At the schema
8611 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8612 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8613 **
8614 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8615 ** of reading the value out of the header, it instead loads the "DataVersion"
8616 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8617 ** database file.  It is a number computed by the pager.  But its access
8618 ** pattern is the same as header meta values, and so it is convenient to
8619 ** read it from this routine.
8620 */
8621 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8622   BtShared *pBt = p->pBt;
8623 
8624   sqlite3BtreeEnter(p);
8625   assert( p->inTrans>TRANS_NONE );
8626   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8627   assert( pBt->pPage1 );
8628   assert( idx>=0 && idx<=15 );
8629 
8630   if( idx==BTREE_DATA_VERSION ){
8631     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8632   }else{
8633     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8634   }
8635 
8636   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8637   ** database, mark the database as read-only.  */
8638 #ifdef SQLITE_OMIT_AUTOVACUUM
8639   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8640     pBt->btsFlags |= BTS_READ_ONLY;
8641   }
8642 #endif
8643 
8644   sqlite3BtreeLeave(p);
8645 }
8646 
8647 /*
8648 ** Write meta-information back into the database.  Meta[0] is
8649 ** read-only and may not be written.
8650 */
8651 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8652   BtShared *pBt = p->pBt;
8653   unsigned char *pP1;
8654   int rc;
8655   assert( idx>=1 && idx<=15 );
8656   sqlite3BtreeEnter(p);
8657   assert( p->inTrans==TRANS_WRITE );
8658   assert( pBt->pPage1!=0 );
8659   pP1 = pBt->pPage1->aData;
8660   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8661   if( rc==SQLITE_OK ){
8662     put4byte(&pP1[36 + idx*4], iMeta);
8663 #ifndef SQLITE_OMIT_AUTOVACUUM
8664     if( idx==BTREE_INCR_VACUUM ){
8665       assert( pBt->autoVacuum || iMeta==0 );
8666       assert( iMeta==0 || iMeta==1 );
8667       pBt->incrVacuum = (u8)iMeta;
8668     }
8669 #endif
8670   }
8671   sqlite3BtreeLeave(p);
8672   return rc;
8673 }
8674 
8675 #ifndef SQLITE_OMIT_BTREECOUNT
8676 /*
8677 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8678 ** number of entries in the b-tree and write the result to *pnEntry.
8679 **
8680 ** SQLITE_OK is returned if the operation is successfully executed.
8681 ** Otherwise, if an error is encountered (i.e. an IO error or database
8682 ** corruption) an SQLite error code is returned.
8683 */
8684 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8685   i64 nEntry = 0;                      /* Value to return in *pnEntry */
8686   int rc;                              /* Return code */
8687 
8688   if( pCur->pgnoRoot==0 ){
8689     *pnEntry = 0;
8690     return SQLITE_OK;
8691   }
8692   rc = moveToRoot(pCur);
8693 
8694   /* Unless an error occurs, the following loop runs one iteration for each
8695   ** page in the B-Tree structure (not including overflow pages).
8696   */
8697   while( rc==SQLITE_OK ){
8698     int iIdx;                          /* Index of child node in parent */
8699     MemPage *pPage;                    /* Current page of the b-tree */
8700 
8701     /* If this is a leaf page or the tree is not an int-key tree, then
8702     ** this page contains countable entries. Increment the entry counter
8703     ** accordingly.
8704     */
8705     pPage = pCur->apPage[pCur->iPage];
8706     if( pPage->leaf || !pPage->intKey ){
8707       nEntry += pPage->nCell;
8708     }
8709 
8710     /* pPage is a leaf node. This loop navigates the cursor so that it
8711     ** points to the first interior cell that it points to the parent of
8712     ** the next page in the tree that has not yet been visited. The
8713     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8714     ** of the page, or to the number of cells in the page if the next page
8715     ** to visit is the right-child of its parent.
8716     **
8717     ** If all pages in the tree have been visited, return SQLITE_OK to the
8718     ** caller.
8719     */
8720     if( pPage->leaf ){
8721       do {
8722         if( pCur->iPage==0 ){
8723           /* All pages of the b-tree have been visited. Return successfully. */
8724           *pnEntry = nEntry;
8725           return moveToRoot(pCur);
8726         }
8727         moveToParent(pCur);
8728       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8729 
8730       pCur->aiIdx[pCur->iPage]++;
8731       pPage = pCur->apPage[pCur->iPage];
8732     }
8733 
8734     /* Descend to the child node of the cell that the cursor currently
8735     ** points at. This is the right-child if (iIdx==pPage->nCell).
8736     */
8737     iIdx = pCur->aiIdx[pCur->iPage];
8738     if( iIdx==pPage->nCell ){
8739       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8740     }else{
8741       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8742     }
8743   }
8744 
8745   /* An error has occurred. Return an error code. */
8746   return rc;
8747 }
8748 #endif
8749 
8750 /*
8751 ** Return the pager associated with a BTree.  This routine is used for
8752 ** testing and debugging only.
8753 */
8754 Pager *sqlite3BtreePager(Btree *p){
8755   return p->pBt->pPager;
8756 }
8757 
8758 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8759 /*
8760 ** Append a message to the error message string.
8761 */
8762 static void checkAppendMsg(
8763   IntegrityCk *pCheck,
8764   const char *zFormat,
8765   ...
8766 ){
8767   va_list ap;
8768   if( !pCheck->mxErr ) return;
8769   pCheck->mxErr--;
8770   pCheck->nErr++;
8771   va_start(ap, zFormat);
8772   if( pCheck->errMsg.nChar ){
8773     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
8774   }
8775   if( pCheck->zPfx ){
8776     sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
8777   }
8778   sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8779   va_end(ap);
8780   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
8781     pCheck->mallocFailed = 1;
8782   }
8783 }
8784 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8785 
8786 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8787 
8788 /*
8789 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8790 ** corresponds to page iPg is already set.
8791 */
8792 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8793   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8794   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8795 }
8796 
8797 /*
8798 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8799 */
8800 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8801   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8802   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8803 }
8804 
8805 
8806 /*
8807 ** Add 1 to the reference count for page iPage.  If this is the second
8808 ** reference to the page, add an error message to pCheck->zErrMsg.
8809 ** Return 1 if there are 2 or more references to the page and 0 if
8810 ** if this is the first reference to the page.
8811 **
8812 ** Also check that the page number is in bounds.
8813 */
8814 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
8815   if( iPage==0 ) return 1;
8816   if( iPage>pCheck->nPage ){
8817     checkAppendMsg(pCheck, "invalid page number %d", iPage);
8818     return 1;
8819   }
8820   if( getPageReferenced(pCheck, iPage) ){
8821     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
8822     return 1;
8823   }
8824   setPageReferenced(pCheck, iPage);
8825   return 0;
8826 }
8827 
8828 #ifndef SQLITE_OMIT_AUTOVACUUM
8829 /*
8830 ** Check that the entry in the pointer-map for page iChild maps to
8831 ** page iParent, pointer type ptrType. If not, append an error message
8832 ** to pCheck.
8833 */
8834 static void checkPtrmap(
8835   IntegrityCk *pCheck,   /* Integrity check context */
8836   Pgno iChild,           /* Child page number */
8837   u8 eType,              /* Expected pointer map type */
8838   Pgno iParent           /* Expected pointer map parent page number */
8839 ){
8840   int rc;
8841   u8 ePtrmapType;
8842   Pgno iPtrmapParent;
8843 
8844   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8845   if( rc!=SQLITE_OK ){
8846     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
8847     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
8848     return;
8849   }
8850 
8851   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
8852     checkAppendMsg(pCheck,
8853       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8854       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8855   }
8856 }
8857 #endif
8858 
8859 /*
8860 ** Check the integrity of the freelist or of an overflow page list.
8861 ** Verify that the number of pages on the list is N.
8862 */
8863 static void checkList(
8864   IntegrityCk *pCheck,  /* Integrity checking context */
8865   int isFreeList,       /* True for a freelist.  False for overflow page list */
8866   int iPage,            /* Page number for first page in the list */
8867   int N                 /* Expected number of pages in the list */
8868 ){
8869   int i;
8870   int expected = N;
8871   int iFirst = iPage;
8872   while( N-- > 0 && pCheck->mxErr ){
8873     DbPage *pOvflPage;
8874     unsigned char *pOvflData;
8875     if( iPage<1 ){
8876       checkAppendMsg(pCheck,
8877          "%d of %d pages missing from overflow list starting at %d",
8878           N+1, expected, iFirst);
8879       break;
8880     }
8881     if( checkRef(pCheck, iPage) ) break;
8882     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
8883       checkAppendMsg(pCheck, "failed to get page %d", iPage);
8884       break;
8885     }
8886     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
8887     if( isFreeList ){
8888       int n = get4byte(&pOvflData[4]);
8889 #ifndef SQLITE_OMIT_AUTOVACUUM
8890       if( pCheck->pBt->autoVacuum ){
8891         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
8892       }
8893 #endif
8894       if( n>(int)pCheck->pBt->usableSize/4-2 ){
8895         checkAppendMsg(pCheck,
8896            "freelist leaf count too big on page %d", iPage);
8897         N--;
8898       }else{
8899         for(i=0; i<n; i++){
8900           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
8901 #ifndef SQLITE_OMIT_AUTOVACUUM
8902           if( pCheck->pBt->autoVacuum ){
8903             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
8904           }
8905 #endif
8906           checkRef(pCheck, iFreePage);
8907         }
8908         N -= n;
8909       }
8910     }
8911 #ifndef SQLITE_OMIT_AUTOVACUUM
8912     else{
8913       /* If this database supports auto-vacuum and iPage is not the last
8914       ** page in this overflow list, check that the pointer-map entry for
8915       ** the following page matches iPage.
8916       */
8917       if( pCheck->pBt->autoVacuum && N>0 ){
8918         i = get4byte(pOvflData);
8919         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
8920       }
8921     }
8922 #endif
8923     iPage = get4byte(pOvflData);
8924     sqlite3PagerUnref(pOvflPage);
8925 
8926     if( isFreeList && N<(iPage!=0) ){
8927       checkAppendMsg(pCheck, "free-page count in header is too small");
8928     }
8929   }
8930 }
8931 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8932 
8933 /*
8934 ** An implementation of a min-heap.
8935 **
8936 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
8937 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
8938 ** and aHeap[N*2+1].
8939 **
8940 ** The heap property is this:  Every node is less than or equal to both
8941 ** of its daughter nodes.  A consequence of the heap property is that the
8942 ** root node aHeap[1] is always the minimum value currently in the heap.
8943 **
8944 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8945 ** the heap, preserving the heap property.  The btreeHeapPull() routine
8946 ** removes the root element from the heap (the minimum value in the heap)
8947 ** and then moves other nodes around as necessary to preserve the heap
8948 ** property.
8949 **
8950 ** This heap is used for cell overlap and coverage testing.  Each u32
8951 ** entry represents the span of a cell or freeblock on a btree page.
8952 ** The upper 16 bits are the index of the first byte of a range and the
8953 ** lower 16 bits are the index of the last byte of that range.
8954 */
8955 static void btreeHeapInsert(u32 *aHeap, u32 x){
8956   u32 j, i = ++aHeap[0];
8957   aHeap[i] = x;
8958   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
8959     x = aHeap[j];
8960     aHeap[j] = aHeap[i];
8961     aHeap[i] = x;
8962     i = j;
8963   }
8964 }
8965 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8966   u32 j, i, x;
8967   if( (x = aHeap[0])==0 ) return 0;
8968   *pOut = aHeap[1];
8969   aHeap[1] = aHeap[x];
8970   aHeap[x] = 0xffffffff;
8971   aHeap[0]--;
8972   i = 1;
8973   while( (j = i*2)<=aHeap[0] ){
8974     if( aHeap[j]>aHeap[j+1] ) j++;
8975     if( aHeap[i]<aHeap[j] ) break;
8976     x = aHeap[i];
8977     aHeap[i] = aHeap[j];
8978     aHeap[j] = x;
8979     i = j;
8980   }
8981   return 1;
8982 }
8983 
8984 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8985 /*
8986 ** Do various sanity checks on a single page of a tree.  Return
8987 ** the tree depth.  Root pages return 0.  Parents of root pages
8988 ** return 1, and so forth.
8989 **
8990 ** These checks are done:
8991 **
8992 **      1.  Make sure that cells and freeblocks do not overlap
8993 **          but combine to completely cover the page.
8994 **      2.  Make sure integer cell keys are in order.
8995 **      3.  Check the integrity of overflow pages.
8996 **      4.  Recursively call checkTreePage on all children.
8997 **      5.  Verify that the depth of all children is the same.
8998 */
8999 static int checkTreePage(
9000   IntegrityCk *pCheck,  /* Context for the sanity check */
9001   int iPage,            /* Page number of the page to check */
9002   i64 *piMinKey,        /* Write minimum integer primary key here */
9003   i64 maxKey            /* Error if integer primary key greater than this */
9004 ){
9005   MemPage *pPage = 0;      /* The page being analyzed */
9006   int i;                   /* Loop counter */
9007   int rc;                  /* Result code from subroutine call */
9008   int depth = -1, d2;      /* Depth of a subtree */
9009   int pgno;                /* Page number */
9010   int nFrag;               /* Number of fragmented bytes on the page */
9011   int hdr;                 /* Offset to the page header */
9012   int cellStart;           /* Offset to the start of the cell pointer array */
9013   int nCell;               /* Number of cells */
9014   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9015   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9016                            ** False if IPK must be strictly less than maxKey */
9017   u8 *data;                /* Page content */
9018   u8 *pCell;               /* Cell content */
9019   u8 *pCellIdx;            /* Next element of the cell pointer array */
9020   BtShared *pBt;           /* The BtShared object that owns pPage */
9021   u32 pc;                  /* Address of a cell */
9022   u32 usableSize;          /* Usable size of the page */
9023   u32 contentOffset;       /* Offset to the start of the cell content area */
9024   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9025   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9026   const char *saved_zPfx = pCheck->zPfx;
9027   int saved_v1 = pCheck->v1;
9028   int saved_v2 = pCheck->v2;
9029   u8 savedIsInit = 0;
9030 
9031   /* Check that the page exists
9032   */
9033   pBt = pCheck->pBt;
9034   usableSize = pBt->usableSize;
9035   if( iPage==0 ) return 0;
9036   if( checkRef(pCheck, iPage) ) return 0;
9037   pCheck->zPfx = "Page %d: ";
9038   pCheck->v1 = iPage;
9039   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9040     checkAppendMsg(pCheck,
9041        "unable to get the page. error code=%d", rc);
9042     goto end_of_check;
9043   }
9044 
9045   /* Clear MemPage.isInit to make sure the corruption detection code in
9046   ** btreeInitPage() is executed.  */
9047   savedIsInit = pPage->isInit;
9048   pPage->isInit = 0;
9049   if( (rc = btreeInitPage(pPage))!=0 ){
9050     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9051     checkAppendMsg(pCheck,
9052                    "btreeInitPage() returns error code %d", rc);
9053     goto end_of_check;
9054   }
9055   data = pPage->aData;
9056   hdr = pPage->hdrOffset;
9057 
9058   /* Set up for cell analysis */
9059   pCheck->zPfx = "On tree page %d cell %d: ";
9060   contentOffset = get2byteNotZero(&data[hdr+5]);
9061   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9062 
9063   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9064   ** number of cells on the page. */
9065   nCell = get2byte(&data[hdr+3]);
9066   assert( pPage->nCell==nCell );
9067 
9068   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9069   ** immediately follows the b-tree page header. */
9070   cellStart = hdr + 12 - 4*pPage->leaf;
9071   assert( pPage->aCellIdx==&data[cellStart] );
9072   pCellIdx = &data[cellStart + 2*(nCell-1)];
9073 
9074   if( !pPage->leaf ){
9075     /* Analyze the right-child page of internal pages */
9076     pgno = get4byte(&data[hdr+8]);
9077 #ifndef SQLITE_OMIT_AUTOVACUUM
9078     if( pBt->autoVacuum ){
9079       pCheck->zPfx = "On page %d at right child: ";
9080       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9081     }
9082 #endif
9083     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9084     keyCanBeEqual = 0;
9085   }else{
9086     /* For leaf pages, the coverage check will occur in the same loop
9087     ** as the other cell checks, so initialize the heap.  */
9088     heap = pCheck->heap;
9089     heap[0] = 0;
9090   }
9091 
9092   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9093   ** integer offsets to the cell contents. */
9094   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9095     CellInfo info;
9096 
9097     /* Check cell size */
9098     pCheck->v2 = i;
9099     assert( pCellIdx==&data[cellStart + i*2] );
9100     pc = get2byteAligned(pCellIdx);
9101     pCellIdx -= 2;
9102     if( pc<contentOffset || pc>usableSize-4 ){
9103       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9104                              pc, contentOffset, usableSize-4);
9105       doCoverageCheck = 0;
9106       continue;
9107     }
9108     pCell = &data[pc];
9109     pPage->xParseCell(pPage, pCell, &info);
9110     if( pc+info.nSize>usableSize ){
9111       checkAppendMsg(pCheck, "Extends off end of page");
9112       doCoverageCheck = 0;
9113       continue;
9114     }
9115 
9116     /* Check for integer primary key out of range */
9117     if( pPage->intKey ){
9118       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9119         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9120       }
9121       maxKey = info.nKey;
9122     }
9123 
9124     /* Check the content overflow list */
9125     if( info.nPayload>info.nLocal ){
9126       int nPage;       /* Number of pages on the overflow chain */
9127       Pgno pgnoOvfl;   /* First page of the overflow chain */
9128       assert( pc + info.iOverflow <= usableSize );
9129       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9130       pgnoOvfl = get4byte(&pCell[info.iOverflow]);
9131 #ifndef SQLITE_OMIT_AUTOVACUUM
9132       if( pBt->autoVacuum ){
9133         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9134       }
9135 #endif
9136       checkList(pCheck, 0, pgnoOvfl, nPage);
9137     }
9138 
9139     if( !pPage->leaf ){
9140       /* Check sanity of left child page for internal pages */
9141       pgno = get4byte(pCell);
9142 #ifndef SQLITE_OMIT_AUTOVACUUM
9143       if( pBt->autoVacuum ){
9144         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9145       }
9146 #endif
9147       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9148       keyCanBeEqual = 0;
9149       if( d2!=depth ){
9150         checkAppendMsg(pCheck, "Child page depth differs");
9151         depth = d2;
9152       }
9153     }else{
9154       /* Populate the coverage-checking heap for leaf pages */
9155       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9156     }
9157   }
9158   *piMinKey = maxKey;
9159 
9160   /* Check for complete coverage of the page
9161   */
9162   pCheck->zPfx = 0;
9163   if( doCoverageCheck && pCheck->mxErr>0 ){
9164     /* For leaf pages, the min-heap has already been initialized and the
9165     ** cells have already been inserted.  But for internal pages, that has
9166     ** not yet been done, so do it now */
9167     if( !pPage->leaf ){
9168       heap = pCheck->heap;
9169       heap[0] = 0;
9170       for(i=nCell-1; i>=0; i--){
9171         u32 size;
9172         pc = get2byteAligned(&data[cellStart+i*2]);
9173         size = pPage->xCellSize(pPage, &data[pc]);
9174         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9175       }
9176     }
9177     /* Add the freeblocks to the min-heap
9178     **
9179     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9180     ** is the offset of the first freeblock, or zero if there are no
9181     ** freeblocks on the page.
9182     */
9183     i = get2byte(&data[hdr+1]);
9184     while( i>0 ){
9185       int size, j;
9186       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9187       size = get2byte(&data[i+2]);
9188       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9189       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9190       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9191       ** big-endian integer which is the offset in the b-tree page of the next
9192       ** freeblock in the chain, or zero if the freeblock is the last on the
9193       ** chain. */
9194       j = get2byte(&data[i]);
9195       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9196       ** increasing offset. */
9197       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9198       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9199       i = j;
9200     }
9201     /* Analyze the min-heap looking for overlap between cells and/or
9202     ** freeblocks, and counting the number of untracked bytes in nFrag.
9203     **
9204     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9205     ** There is an implied first entry the covers the page header, the cell
9206     ** pointer index, and the gap between the cell pointer index and the start
9207     ** of cell content.
9208     **
9209     ** The loop below pulls entries from the min-heap in order and compares
9210     ** the start_address against the previous end_address.  If there is an
9211     ** overlap, that means bytes are used multiple times.  If there is a gap,
9212     ** that gap is added to the fragmentation count.
9213     */
9214     nFrag = 0;
9215     prev = contentOffset - 1;   /* Implied first min-heap entry */
9216     while( btreeHeapPull(heap,&x) ){
9217       if( (prev&0xffff)>=(x>>16) ){
9218         checkAppendMsg(pCheck,
9219           "Multiple uses for byte %u of page %d", x>>16, iPage);
9220         break;
9221       }else{
9222         nFrag += (x>>16) - (prev&0xffff) - 1;
9223         prev = x;
9224       }
9225     }
9226     nFrag += usableSize - (prev&0xffff) - 1;
9227     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9228     ** is stored in the fifth field of the b-tree page header.
9229     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9230     ** number of fragmented free bytes within the cell content area.
9231     */
9232     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9233       checkAppendMsg(pCheck,
9234           "Fragmentation of %d bytes reported as %d on page %d",
9235           nFrag, data[hdr+7], iPage);
9236     }
9237   }
9238 
9239 end_of_check:
9240   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9241   releasePage(pPage);
9242   pCheck->zPfx = saved_zPfx;
9243   pCheck->v1 = saved_v1;
9244   pCheck->v2 = saved_v2;
9245   return depth+1;
9246 }
9247 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9248 
9249 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9250 /*
9251 ** This routine does a complete check of the given BTree file.  aRoot[] is
9252 ** an array of pages numbers were each page number is the root page of
9253 ** a table.  nRoot is the number of entries in aRoot.
9254 **
9255 ** A read-only or read-write transaction must be opened before calling
9256 ** this function.
9257 **
9258 ** Write the number of error seen in *pnErr.  Except for some memory
9259 ** allocation errors,  an error message held in memory obtained from
9260 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9261 ** returned.  If a memory allocation error occurs, NULL is returned.
9262 */
9263 char *sqlite3BtreeIntegrityCheck(
9264   Btree *p,     /* The btree to be checked */
9265   int *aRoot,   /* An array of root pages numbers for individual trees */
9266   int nRoot,    /* Number of entries in aRoot[] */
9267   int mxErr,    /* Stop reporting errors after this many */
9268   int *pnErr    /* Write number of errors seen to this variable */
9269 ){
9270   Pgno i;
9271   IntegrityCk sCheck;
9272   BtShared *pBt = p->pBt;
9273   int savedDbFlags = pBt->db->flags;
9274   char zErr[100];
9275   VVA_ONLY( int nRef );
9276 
9277   sqlite3BtreeEnter(p);
9278   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9279   assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
9280   sCheck.pBt = pBt;
9281   sCheck.pPager = pBt->pPager;
9282   sCheck.nPage = btreePagecount(sCheck.pBt);
9283   sCheck.mxErr = mxErr;
9284   sCheck.nErr = 0;
9285   sCheck.mallocFailed = 0;
9286   sCheck.zPfx = 0;
9287   sCheck.v1 = 0;
9288   sCheck.v2 = 0;
9289   sCheck.aPgRef = 0;
9290   sCheck.heap = 0;
9291   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9292   if( sCheck.nPage==0 ){
9293     goto integrity_ck_cleanup;
9294   }
9295 
9296   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9297   if( !sCheck.aPgRef ){
9298     sCheck.mallocFailed = 1;
9299     goto integrity_ck_cleanup;
9300   }
9301   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9302   if( sCheck.heap==0 ){
9303     sCheck.mallocFailed = 1;
9304     goto integrity_ck_cleanup;
9305   }
9306 
9307   i = PENDING_BYTE_PAGE(pBt);
9308   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9309 
9310   /* Check the integrity of the freelist
9311   */
9312   sCheck.zPfx = "Main freelist: ";
9313   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9314             get4byte(&pBt->pPage1->aData[36]));
9315   sCheck.zPfx = 0;
9316 
9317   /* Check all the tables.
9318   */
9319   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9320   pBt->db->flags &= ~SQLITE_CellSizeCk;
9321   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9322     i64 notUsed;
9323     if( aRoot[i]==0 ) continue;
9324 #ifndef SQLITE_OMIT_AUTOVACUUM
9325     if( pBt->autoVacuum && aRoot[i]>1 ){
9326       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9327     }
9328 #endif
9329     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9330   }
9331   pBt->db->flags = savedDbFlags;
9332 
9333   /* Make sure every page in the file is referenced
9334   */
9335   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9336 #ifdef SQLITE_OMIT_AUTOVACUUM
9337     if( getPageReferenced(&sCheck, i)==0 ){
9338       checkAppendMsg(&sCheck, "Page %d is never used", i);
9339     }
9340 #else
9341     /* If the database supports auto-vacuum, make sure no tables contain
9342     ** references to pointer-map pages.
9343     */
9344     if( getPageReferenced(&sCheck, i)==0 &&
9345        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9346       checkAppendMsg(&sCheck, "Page %d is never used", i);
9347     }
9348     if( getPageReferenced(&sCheck, i)!=0 &&
9349        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9350       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9351     }
9352 #endif
9353   }
9354 
9355   /* Clean  up and report errors.
9356   */
9357 integrity_ck_cleanup:
9358   sqlite3PageFree(sCheck.heap);
9359   sqlite3_free(sCheck.aPgRef);
9360   if( sCheck.mallocFailed ){
9361     sqlite3StrAccumReset(&sCheck.errMsg);
9362     sCheck.nErr++;
9363   }
9364   *pnErr = sCheck.nErr;
9365   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9366   /* Make sure this analysis did not leave any unref() pages. */
9367   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9368   sqlite3BtreeLeave(p);
9369   return sqlite3StrAccumFinish(&sCheck.errMsg);
9370 }
9371 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9372 
9373 /*
9374 ** Return the full pathname of the underlying database file.  Return
9375 ** an empty string if the database is in-memory or a TEMP database.
9376 **
9377 ** The pager filename is invariant as long as the pager is
9378 ** open so it is safe to access without the BtShared mutex.
9379 */
9380 const char *sqlite3BtreeGetFilename(Btree *p){
9381   assert( p->pBt->pPager!=0 );
9382   return sqlite3PagerFilename(p->pBt->pPager, 1);
9383 }
9384 
9385 /*
9386 ** Return the pathname of the journal file for this database. The return
9387 ** value of this routine is the same regardless of whether the journal file
9388 ** has been created or not.
9389 **
9390 ** The pager journal filename is invariant as long as the pager is
9391 ** open so it is safe to access without the BtShared mutex.
9392 */
9393 const char *sqlite3BtreeGetJournalname(Btree *p){
9394   assert( p->pBt->pPager!=0 );
9395   return sqlite3PagerJournalname(p->pBt->pPager);
9396 }
9397 
9398 /*
9399 ** Return non-zero if a transaction is active.
9400 */
9401 int sqlite3BtreeIsInTrans(Btree *p){
9402   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9403   return (p && (p->inTrans==TRANS_WRITE));
9404 }
9405 
9406 #ifndef SQLITE_OMIT_WAL
9407 /*
9408 ** Run a checkpoint on the Btree passed as the first argument.
9409 **
9410 ** Return SQLITE_LOCKED if this or any other connection has an open
9411 ** transaction on the shared-cache the argument Btree is connected to.
9412 **
9413 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9414 */
9415 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9416   int rc = SQLITE_OK;
9417   if( p ){
9418     BtShared *pBt = p->pBt;
9419     sqlite3BtreeEnter(p);
9420     if( pBt->inTransaction!=TRANS_NONE ){
9421       rc = SQLITE_LOCKED;
9422     }else{
9423       rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
9424     }
9425     sqlite3BtreeLeave(p);
9426   }
9427   return rc;
9428 }
9429 #endif
9430 
9431 /*
9432 ** Return non-zero if a read (or write) transaction is active.
9433 */
9434 int sqlite3BtreeIsInReadTrans(Btree *p){
9435   assert( p );
9436   assert( sqlite3_mutex_held(p->db->mutex) );
9437   return p->inTrans!=TRANS_NONE;
9438 }
9439 
9440 int sqlite3BtreeIsInBackup(Btree *p){
9441   assert( p );
9442   assert( sqlite3_mutex_held(p->db->mutex) );
9443   return p->nBackup!=0;
9444 }
9445 
9446 /*
9447 ** This function returns a pointer to a blob of memory associated with
9448 ** a single shared-btree. The memory is used by client code for its own
9449 ** purposes (for example, to store a high-level schema associated with
9450 ** the shared-btree). The btree layer manages reference counting issues.
9451 **
9452 ** The first time this is called on a shared-btree, nBytes bytes of memory
9453 ** are allocated, zeroed, and returned to the caller. For each subsequent
9454 ** call the nBytes parameter is ignored and a pointer to the same blob
9455 ** of memory returned.
9456 **
9457 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9458 ** allocated, a null pointer is returned. If the blob has already been
9459 ** allocated, it is returned as normal.
9460 **
9461 ** Just before the shared-btree is closed, the function passed as the
9462 ** xFree argument when the memory allocation was made is invoked on the
9463 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9464 ** on the memory, the btree layer does that.
9465 */
9466 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9467   BtShared *pBt = p->pBt;
9468   sqlite3BtreeEnter(p);
9469   if( !pBt->pSchema && nBytes ){
9470     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9471     pBt->xFreeSchema = xFree;
9472   }
9473   sqlite3BtreeLeave(p);
9474   return pBt->pSchema;
9475 }
9476 
9477 /*
9478 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9479 ** btree as the argument handle holds an exclusive lock on the
9480 ** sqlite_master table. Otherwise SQLITE_OK.
9481 */
9482 int sqlite3BtreeSchemaLocked(Btree *p){
9483   int rc;
9484   assert( sqlite3_mutex_held(p->db->mutex) );
9485   sqlite3BtreeEnter(p);
9486   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9487   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9488   sqlite3BtreeLeave(p);
9489   return rc;
9490 }
9491 
9492 
9493 #ifndef SQLITE_OMIT_SHARED_CACHE
9494 /*
9495 ** Obtain a lock on the table whose root page is iTab.  The
9496 ** lock is a write lock if isWritelock is true or a read lock
9497 ** if it is false.
9498 */
9499 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9500   int rc = SQLITE_OK;
9501   assert( p->inTrans!=TRANS_NONE );
9502   if( p->sharable ){
9503     u8 lockType = READ_LOCK + isWriteLock;
9504     assert( READ_LOCK+1==WRITE_LOCK );
9505     assert( isWriteLock==0 || isWriteLock==1 );
9506 
9507     sqlite3BtreeEnter(p);
9508     rc = querySharedCacheTableLock(p, iTab, lockType);
9509     if( rc==SQLITE_OK ){
9510       rc = setSharedCacheTableLock(p, iTab, lockType);
9511     }
9512     sqlite3BtreeLeave(p);
9513   }
9514   return rc;
9515 }
9516 #endif
9517 
9518 #ifndef SQLITE_OMIT_INCRBLOB
9519 /*
9520 ** Argument pCsr must be a cursor opened for writing on an
9521 ** INTKEY table currently pointing at a valid table entry.
9522 ** This function modifies the data stored as part of that entry.
9523 **
9524 ** Only the data content may only be modified, it is not possible to
9525 ** change the length of the data stored. If this function is called with
9526 ** parameters that attempt to write past the end of the existing data,
9527 ** no modifications are made and SQLITE_CORRUPT is returned.
9528 */
9529 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9530   int rc;
9531   assert( cursorHoldsMutex(pCsr) );
9532   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9533   assert( pCsr->curFlags & BTCF_Incrblob );
9534 
9535   rc = restoreCursorPosition(pCsr);
9536   if( rc!=SQLITE_OK ){
9537     return rc;
9538   }
9539   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9540   if( pCsr->eState!=CURSOR_VALID ){
9541     return SQLITE_ABORT;
9542   }
9543 
9544   /* Save the positions of all other cursors open on this table. This is
9545   ** required in case any of them are holding references to an xFetch
9546   ** version of the b-tree page modified by the accessPayload call below.
9547   **
9548   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9549   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9550   ** saveAllCursors can only return SQLITE_OK.
9551   */
9552   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9553   assert( rc==SQLITE_OK );
9554 
9555   /* Check some assumptions:
9556   **   (a) the cursor is open for writing,
9557   **   (b) there is a read/write transaction open,
9558   **   (c) the connection holds a write-lock on the table (if required),
9559   **   (d) there are no conflicting read-locks, and
9560   **   (e) the cursor points at a valid row of an intKey table.
9561   */
9562   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9563     return SQLITE_READONLY;
9564   }
9565   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9566               && pCsr->pBt->inTransaction==TRANS_WRITE );
9567   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9568   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9569   assert( pCsr->apPage[pCsr->iPage]->intKey );
9570 
9571   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9572 }
9573 
9574 /*
9575 ** Mark this cursor as an incremental blob cursor.
9576 */
9577 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9578   pCur->curFlags |= BTCF_Incrblob;
9579   pCur->pBtree->hasIncrblobCur = 1;
9580 }
9581 #endif
9582 
9583 /*
9584 ** Set both the "read version" (single byte at byte offset 18) and
9585 ** "write version" (single byte at byte offset 19) fields in the database
9586 ** header to iVersion.
9587 */
9588 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9589   BtShared *pBt = pBtree->pBt;
9590   int rc;                         /* Return code */
9591 
9592   assert( iVersion==1 || iVersion==2 );
9593 
9594   /* If setting the version fields to 1, do not automatically open the
9595   ** WAL connection, even if the version fields are currently set to 2.
9596   */
9597   pBt->btsFlags &= ~BTS_NO_WAL;
9598   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9599 
9600   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9601   if( rc==SQLITE_OK ){
9602     u8 *aData = pBt->pPage1->aData;
9603     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9604       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9605       if( rc==SQLITE_OK ){
9606         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9607         if( rc==SQLITE_OK ){
9608           aData[18] = (u8)iVersion;
9609           aData[19] = (u8)iVersion;
9610         }
9611       }
9612     }
9613   }
9614 
9615   pBt->btsFlags &= ~BTS_NO_WAL;
9616   return rc;
9617 }
9618 
9619 /*
9620 ** set the mask of hint flags for cursor pCsr.
9621 */
9622 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
9623   assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
9624   pCsr->hints = mask;
9625 }
9626 
9627 #ifdef SQLITE_DEBUG
9628 /*
9629 ** Return true if the cursor has a hint specified.  This routine is
9630 ** only used from within assert() statements
9631 */
9632 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9633   return (pCsr->hints & mask)!=0;
9634 }
9635 #endif
9636 
9637 /*
9638 ** Return true if the given Btree is read-only.
9639 */
9640 int sqlite3BtreeIsReadonly(Btree *p){
9641   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9642 }
9643 
9644 /*
9645 ** Return the size of the header added to each page by this module.
9646 */
9647 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9648