xref: /sqlite-3.40.0/src/btree.c (revision 2b5fbb28)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifdef SQLITE_DEBUG
116 /*
117 ** Return and reset the seek counter for a Btree object.
118 */
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120   u64 n =  pBt->nSeek;
121   pBt->nSeek = 0;
122   return n;
123 }
124 #endif
125 
126 /*
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129 **
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
134 */
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137   char *zMsg;
138   sqlite3BeginBenignMalloc();
139   zMsg = sqlite3_mprintf("database corruption page %d of %s",
140       (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141   );
142   sqlite3EndBenignMalloc();
143   if( zMsg ){
144     sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145   }
146   sqlite3_free(zMsg);
147   return SQLITE_CORRUPT_BKPT;
148 }
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
153 
154 #ifndef SQLITE_OMIT_SHARED_CACHE
155 
156 #ifdef SQLITE_DEBUG
157 /*
158 **** This function is only used as part of an assert() statement. ***
159 **
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot.   Return 1 if it does and 0 if not.
162 **
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
165 **
166 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167 **
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
174 **
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
178 */
179 static int hasSharedCacheTableLock(
180   Btree *pBtree,         /* Handle that must hold lock */
181   Pgno iRoot,            /* Root page of b-tree */
182   int isIndex,           /* True if iRoot is the root of an index b-tree */
183   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
184 ){
185   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186   Pgno iTab = 0;
187   BtLock *pLock;
188 
189   /* If this database is not shareable, or if the client is reading
190   ** and has the read-uncommitted flag set, then no lock is required.
191   ** Return true immediately.
192   */
193   if( (pBtree->sharable==0)
194    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
195   ){
196     return 1;
197   }
198 
199   /* If the client is reading  or writing an index and the schema is
200   ** not loaded, then it is too difficult to actually check to see if
201   ** the correct locks are held.  So do not bother - just return true.
202   ** This case does not come up very often anyhow.
203   */
204   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205     return 1;
206   }
207 
208   /* Figure out the root-page that the lock should be held on. For table
209   ** b-trees, this is just the root page of the b-tree being read or
210   ** written. For index b-trees, it is the root page of the associated
211   ** table.  */
212   if( isIndex ){
213     HashElem *p;
214     int bSeen = 0;
215     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216       Index *pIdx = (Index *)sqliteHashData(p);
217       if( pIdx->tnum==(int)iRoot ){
218         if( bSeen ){
219           /* Two or more indexes share the same root page.  There must
220           ** be imposter tables.  So just return true.  The assert is not
221           ** useful in that case. */
222           return 1;
223         }
224         iTab = pIdx->pTable->tnum;
225         bSeen = 1;
226       }
227     }
228   }else{
229     iTab = iRoot;
230   }
231 
232   /* Search for the required lock. Either a write-lock on root-page iTab, a
233   ** write-lock on the schema table, or (if the client is reading) a
234   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
235   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236     if( pLock->pBtree==pBtree
237      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238      && pLock->eLock>=eLockType
239     ){
240       return 1;
241     }
242   }
243 
244   /* Failed to find the required lock. */
245   return 0;
246 }
247 #endif /* SQLITE_DEBUG */
248 
249 #ifdef SQLITE_DEBUG
250 /*
251 **** This function may be used as part of assert() statements only. ****
252 **
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
256 **
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table.  Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
262 **
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
265 **
266 **    assert( !hasReadConflicts(pBtree, iRoot) );
267 */
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269   BtCursor *p;
270   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271     if( p->pgnoRoot==iRoot
272      && p->pBtree!=pBtree
273      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
274     ){
275       return 1;
276     }
277   }
278   return 0;
279 }
280 #endif    /* #ifdef SQLITE_DEBUG */
281 
282 /*
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
287 */
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289   BtShared *pBt = p->pBt;
290   BtLock *pIter;
291 
292   assert( sqlite3BtreeHoldsMutex(p) );
293   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294   assert( p->db!=0 );
295   assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
296 
297   /* If requesting a write-lock, then the Btree must have an open write
298   ** transaction on this file. And, obviously, for this to be so there
299   ** must be an open write transaction on the file itself.
300   */
301   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303 
304   /* This routine is a no-op if the shared-cache is not enabled */
305   if( !p->sharable ){
306     return SQLITE_OK;
307   }
308 
309   /* If some other connection is holding an exclusive lock, the
310   ** requested lock may not be obtained.
311   */
312   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314     return SQLITE_LOCKED_SHAREDCACHE;
315   }
316 
317   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318     /* The condition (pIter->eLock!=eLock) in the following if(...)
319     ** statement is a simplification of:
320     **
321     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322     **
323     ** since we know that if eLock==WRITE_LOCK, then no other connection
324     ** may hold a WRITE_LOCK on any table in this file (since there can
325     ** only be a single writer).
326     */
327     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331       if( eLock==WRITE_LOCK ){
332         assert( p==pBt->pWriter );
333         pBt->btsFlags |= BTS_PENDING;
334       }
335       return SQLITE_LOCKED_SHAREDCACHE;
336     }
337   }
338   return SQLITE_OK;
339 }
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
341 
342 #ifndef SQLITE_OMIT_SHARED_CACHE
343 /*
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
347 **
348 ** This function assumes the following:
349 **
350 **   (a) The specified Btree object p is connected to a sharable
351 **       database (one with the BtShared.sharable flag set), and
352 **
353 **   (b) No other Btree objects hold a lock that conflicts
354 **       with the requested lock (i.e. querySharedCacheTableLock() has
355 **       already been called and returned SQLITE_OK).
356 **
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
359 */
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361   BtShared *pBt = p->pBt;
362   BtLock *pLock = 0;
363   BtLock *pIter;
364 
365   assert( sqlite3BtreeHoldsMutex(p) );
366   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367   assert( p->db!=0 );
368 
369   /* A connection with the read-uncommitted flag set will never try to
370   ** obtain a read-lock using this function. The only read-lock obtained
371   ** by a connection in read-uncommitted mode is on the sqlite_schema
372   ** table, and that lock is obtained in BtreeBeginTrans().  */
373   assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
374 
375   /* This function should only be called on a sharable b-tree after it
376   ** has been determined that no other b-tree holds a conflicting lock.  */
377   assert( p->sharable );
378   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
379 
380   /* First search the list for an existing lock on this table. */
381   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382     if( pIter->iTable==iTable && pIter->pBtree==p ){
383       pLock = pIter;
384       break;
385     }
386   }
387 
388   /* If the above search did not find a BtLock struct associating Btree p
389   ** with table iTable, allocate one and link it into the list.
390   */
391   if( !pLock ){
392     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393     if( !pLock ){
394       return SQLITE_NOMEM_BKPT;
395     }
396     pLock->iTable = iTable;
397     pLock->pBtree = p;
398     pLock->pNext = pBt->pLock;
399     pBt->pLock = pLock;
400   }
401 
402   /* Set the BtLock.eLock variable to the maximum of the current lock
403   ** and the requested lock. This means if a write-lock was already held
404   ** and a read-lock requested, we don't incorrectly downgrade the lock.
405   */
406   assert( WRITE_LOCK>READ_LOCK );
407   if( eLock>pLock->eLock ){
408     pLock->eLock = eLock;
409   }
410 
411   return SQLITE_OK;
412 }
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
414 
415 #ifndef SQLITE_OMIT_SHARED_CACHE
416 /*
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
419 **
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
423 */
424 static void clearAllSharedCacheTableLocks(Btree *p){
425   BtShared *pBt = p->pBt;
426   BtLock **ppIter = &pBt->pLock;
427 
428   assert( sqlite3BtreeHoldsMutex(p) );
429   assert( p->sharable || 0==*ppIter );
430   assert( p->inTrans>0 );
431 
432   while( *ppIter ){
433     BtLock *pLock = *ppIter;
434     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435     assert( pLock->pBtree->inTrans>=pLock->eLock );
436     if( pLock->pBtree==p ){
437       *ppIter = pLock->pNext;
438       assert( pLock->iTable!=1 || pLock==&p->lock );
439       if( pLock->iTable!=1 ){
440         sqlite3_free(pLock);
441       }
442     }else{
443       ppIter = &pLock->pNext;
444     }
445   }
446 
447   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448   if( pBt->pWriter==p ){
449     pBt->pWriter = 0;
450     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451   }else if( pBt->nTransaction==2 ){
452     /* This function is called when Btree p is concluding its
453     ** transaction. If there currently exists a writer, and p is not
454     ** that writer, then the number of locks held by connections other
455     ** than the writer must be about to drop to zero. In this case
456     ** set the BTS_PENDING flag to 0.
457     **
458     ** If there is not currently a writer, then BTS_PENDING must
459     ** be zero already. So this next line is harmless in that case.
460     */
461     pBt->btsFlags &= ~BTS_PENDING;
462   }
463 }
464 
465 /*
466 ** This function changes all write-locks held by Btree p into read-locks.
467 */
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469   BtShared *pBt = p->pBt;
470   if( pBt->pWriter==p ){
471     BtLock *pLock;
472     pBt->pWriter = 0;
473     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476       pLock->eLock = READ_LOCK;
477     }
478   }
479 }
480 
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
482 
483 static void releasePage(MemPage *pPage);         /* Forward reference */
484 static void releasePageOne(MemPage *pPage);      /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage);  /* Forward reference */
486 
487 /*
488 ***** This routine is used inside of assert() only ****
489 **
490 ** Verify that the cursor holds the mutex on its BtShared
491 */
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494   return sqlite3_mutex_held(p->pBt->mutex);
495 }
496 
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed.  This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
504 */
505 static int cursorOwnsBtShared(BtCursor *p){
506   assert( cursorHoldsMutex(p) );
507   return (p->pBtree->db==p->pBt->db);
508 }
509 #endif
510 
511 /*
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
514 */
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
516 
517 /*
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
520 */
521 static void invalidateAllOverflowCache(BtShared *pBt){
522   BtCursor *p;
523   assert( sqlite3_mutex_held(pBt->mutex) );
524   for(p=pBt->pCursor; p; p=p->pNext){
525     invalidateOverflowCache(p);
526   }
527 }
528 
529 #ifndef SQLITE_OMIT_INCRBLOB
530 /*
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
534 **
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
538 **
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
542 */
543 static void invalidateIncrblobCursors(
544   Btree *pBtree,          /* The database file to check */
545   Pgno pgnoRoot,          /* The table that might be changing */
546   i64 iRow,               /* The rowid that might be changing */
547   int isClearTable        /* True if all rows are being deleted */
548 ){
549   BtCursor *p;
550   assert( pBtree->hasIncrblobCur );
551   assert( sqlite3BtreeHoldsMutex(pBtree) );
552   pBtree->hasIncrblobCur = 0;
553   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554     if( (p->curFlags & BTCF_Incrblob)!=0 ){
555       pBtree->hasIncrblobCur = 1;
556       if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557         p->eState = CURSOR_INVALID;
558       }
559     }
560   }
561 }
562 
563 #else
564   /* Stub function when INCRBLOB is omitted */
565   #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
567 
568 /*
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
572 **
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
576 **
577 **   1) When all data is deleted from a page and the page becomes
578 **      a free-list leaf page, the page is not written to the database
579 **      (as free-list leaf pages contain no meaningful data). Sometimes
580 **      such a page is not even journalled (as it will not be modified,
581 **      why bother journalling it?).
582 **
583 **   2) When a free-list leaf page is reused, its content is not read
584 **      from the database or written to the journal file (why should it
585 **      be, if it is not at all meaningful?).
586 **
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
595 **
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
602 */
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604   int rc = SQLITE_OK;
605   if( !pBt->pHasContent ){
606     assert( pgno<=pBt->nPage );
607     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608     if( !pBt->pHasContent ){
609       rc = SQLITE_NOMEM_BKPT;
610     }
611   }
612   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
614   }
615   return rc;
616 }
617 
618 /*
619 ** Query the BtShared.pHasContent vector.
620 **
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
624 */
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626   Bitvec *p = pBt->pHasContent;
627   return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
628 }
629 
630 /*
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
633 */
634 static void btreeClearHasContent(BtShared *pBt){
635   sqlite3BitvecDestroy(pBt->pHasContent);
636   pBt->pHasContent = 0;
637 }
638 
639 /*
640 ** Release all of the apPage[] pages for a cursor.
641 */
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643   int i;
644   if( pCur->iPage>=0 ){
645     for(i=0; i<pCur->iPage; i++){
646       releasePageNotNull(pCur->apPage[i]);
647     }
648     releasePageNotNull(pCur->pPage);
649     pCur->iPage = -1;
650   }
651 }
652 
653 /*
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
659 **
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
665 */
666 static int saveCursorKey(BtCursor *pCur){
667   int rc = SQLITE_OK;
668   assert( CURSOR_VALID==pCur->eState );
669   assert( 0==pCur->pKey );
670   assert( cursorHoldsMutex(pCur) );
671 
672   if( pCur->curIntKey ){
673     /* Only the rowid is required for a table btree */
674     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675   }else{
676     /* For an index btree, save the complete key content. It is possible
677     ** that the current key is corrupt. In that case, it is possible that
678     ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679     ** up to the size of 1 varint plus 1 8-byte value when the cursor
680     ** position is restored. Hence the 17 bytes of padding allocated
681     ** below. */
682     void *pKey;
683     pCur->nKey = sqlite3BtreePayloadSize(pCur);
684     pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685     if( pKey ){
686       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687       if( rc==SQLITE_OK ){
688         memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689         pCur->pKey = pKey;
690       }else{
691         sqlite3_free(pKey);
692       }
693     }else{
694       rc = SQLITE_NOMEM_BKPT;
695     }
696   }
697   assert( !pCur->curIntKey || !pCur->pKey );
698   return rc;
699 }
700 
701 /*
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
704 **
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
707 */
708 static int saveCursorPosition(BtCursor *pCur){
709   int rc;
710 
711   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712   assert( 0==pCur->pKey );
713   assert( cursorHoldsMutex(pCur) );
714 
715   if( pCur->curFlags & BTCF_Pinned ){
716     return SQLITE_CONSTRAINT_PINNED;
717   }
718   if( pCur->eState==CURSOR_SKIPNEXT ){
719     pCur->eState = CURSOR_VALID;
720   }else{
721     pCur->skipNext = 0;
722   }
723 
724   rc = saveCursorKey(pCur);
725   if( rc==SQLITE_OK ){
726     btreeReleaseAllCursorPages(pCur);
727     pCur->eState = CURSOR_REQUIRESEEK;
728   }
729 
730   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731   return rc;
732 }
733 
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
736 
737 /*
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot.  "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified.  This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
744 **
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
747 ** routine enforces that rule.  This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
749 **
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
753 **
754 ** Implementation note:  This routine merely checks to see if any cursors
755 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
757 */
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759   BtCursor *p;
760   assert( sqlite3_mutex_held(pBt->mutex) );
761   assert( pExcept==0 || pExcept->pBt==pBt );
762   for(p=pBt->pCursor; p; p=p->pNext){
763     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
764   }
765   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767   return SQLITE_OK;
768 }
769 
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
774 */
775 static int SQLITE_NOINLINE saveCursorsOnList(
776   BtCursor *p,         /* The first cursor that needs saving */
777   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
778   BtCursor *pExcept    /* Do not save this cursor */
779 ){
780   do{
781     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783         int rc = saveCursorPosition(p);
784         if( SQLITE_OK!=rc ){
785           return rc;
786         }
787       }else{
788         testcase( p->iPage>=0 );
789         btreeReleaseAllCursorPages(p);
790       }
791     }
792     p = p->pNext;
793   }while( p );
794   return SQLITE_OK;
795 }
796 
797 /*
798 ** Clear the current cursor position.
799 */
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801   assert( cursorHoldsMutex(pCur) );
802   sqlite3_free(pCur->pKey);
803   pCur->pKey = 0;
804   pCur->eState = CURSOR_INVALID;
805 }
806 
807 /*
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
811 */
812 static int btreeMoveto(
813   BtCursor *pCur,     /* Cursor open on the btree to be searched */
814   const void *pKey,   /* Packed key if the btree is an index */
815   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
816   int bias,           /* Bias search to the high end */
817   int *pRes           /* Write search results here */
818 ){
819   int rc;                    /* Status code */
820   UnpackedRecord *pIdxKey;   /* Unpacked index key */
821 
822   if( pKey ){
823     KeyInfo *pKeyInfo = pCur->pKeyInfo;
824     assert( nKey==(i64)(int)nKey );
825     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827     sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828     if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829       rc = SQLITE_CORRUPT_BKPT;
830     }else{
831       rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
832     }
833     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834   }else{
835     pIdxKey = 0;
836     rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
837   }
838   return rc;
839 }
840 
841 /*
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
847 */
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849   int rc;
850   int skipNext = 0;
851   assert( cursorOwnsBtShared(pCur) );
852   assert( pCur->eState>=CURSOR_REQUIRESEEK );
853   if( pCur->eState==CURSOR_FAULT ){
854     return pCur->skipNext;
855   }
856   pCur->eState = CURSOR_INVALID;
857   if( sqlite3FaultSim(410) ){
858     rc = SQLITE_IOERR;
859   }else{
860     rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
861   }
862   if( rc==SQLITE_OK ){
863     sqlite3_free(pCur->pKey);
864     pCur->pKey = 0;
865     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866     if( skipNext ) pCur->skipNext = skipNext;
867     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868       pCur->eState = CURSOR_SKIPNEXT;
869     }
870   }
871   return rc;
872 }
873 
874 #define restoreCursorPosition(p) \
875   (p->eState>=CURSOR_REQUIRESEEK ? \
876          btreeRestoreCursorPosition(p) : \
877          SQLITE_OK)
878 
879 /*
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example.  Cursor might also move if a btree
884 ** is rebalanced.
885 **
886 ** Calling this routine with a NULL cursor pointer returns false.
887 **
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
890 */
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892   assert( EIGHT_BYTE_ALIGNMENT(pCur)
893        || pCur==sqlite3BtreeFakeValidCursor() );
894   assert( offsetof(BtCursor, eState)==0 );
895   assert( sizeof(pCur->eState)==1 );
896   return CURSOR_VALID != *(u8*)pCur;
897 }
898 
899 /*
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
902 ** cursor returned must not be used with any other Btree interface.
903 */
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905   static u8 fakeCursor = CURSOR_VALID;
906   assert( offsetof(BtCursor, eState)==0 );
907   return (BtCursor*)&fakeCursor;
908 }
909 
910 /*
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
914 **
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
919 **
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
922 */
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924   int rc;
925 
926   assert( pCur!=0 );
927   assert( pCur->eState!=CURSOR_VALID );
928   rc = restoreCursorPosition(pCur);
929   if( rc ){
930     *pDifferentRow = 1;
931     return rc;
932   }
933   if( pCur->eState!=CURSOR_VALID ){
934     *pDifferentRow = 1;
935   }else{
936     *pDifferentRow = 0;
937   }
938   return SQLITE_OK;
939 }
940 
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
942 /*
943 ** Provide hints to the cursor.  The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
946 */
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948   /* Used only by system that substitute their own storage engine */
949 }
950 #endif
951 
952 /*
953 ** Provide flag hints to the cursor.
954 */
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957   pCur->hints = x;
958 }
959 
960 
961 #ifndef SQLITE_OMIT_AUTOVACUUM
962 /*
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
966 **
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1.  The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
970 */
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972   int nPagesPerMapPage;
973   Pgno iPtrMap, ret;
974   assert( sqlite3_mutex_held(pBt->mutex) );
975   if( pgno<2 ) return 0;
976   nPagesPerMapPage = (pBt->usableSize/5)+1;
977   iPtrMap = (pgno-2)/nPagesPerMapPage;
978   ret = (iPtrMap*nPagesPerMapPage) + 2;
979   if( ret==PENDING_BYTE_PAGE(pBt) ){
980     ret++;
981   }
982   return ret;
983 }
984 
985 /*
986 ** Write an entry into the pointer map.
987 **
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
990 **
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op.  If an error occurs, the appropriate error code is written
993 ** into *pRC.
994 */
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996   DbPage *pDbPage;  /* The pointer map page */
997   u8 *pPtrmap;      /* The pointer map data */
998   Pgno iPtrmap;     /* The pointer map page number */
999   int offset;       /* Offset in pointer map page */
1000   int rc;           /* Return code from subfunctions */
1001 
1002   if( *pRC ) return;
1003 
1004   assert( sqlite3_mutex_held(pBt->mutex) );
1005   /* The super-journal page number must never be used as a pointer map page */
1006   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1007 
1008   assert( pBt->autoVacuum );
1009   if( key==0 ){
1010     *pRC = SQLITE_CORRUPT_BKPT;
1011     return;
1012   }
1013   iPtrmap = PTRMAP_PAGENO(pBt, key);
1014   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015   if( rc!=SQLITE_OK ){
1016     *pRC = rc;
1017     return;
1018   }
1019   if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020     /* The first byte of the extra data is the MemPage.isInit byte.
1021     ** If that byte is set, it means this page is also being used
1022     ** as a btree page. */
1023     *pRC = SQLITE_CORRUPT_BKPT;
1024     goto ptrmap_exit;
1025   }
1026   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027   if( offset<0 ){
1028     *pRC = SQLITE_CORRUPT_BKPT;
1029     goto ptrmap_exit;
1030   }
1031   assert( offset <= (int)pBt->usableSize-5 );
1032   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1033 
1034   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036     *pRC= rc = sqlite3PagerWrite(pDbPage);
1037     if( rc==SQLITE_OK ){
1038       pPtrmap[offset] = eType;
1039       put4byte(&pPtrmap[offset+1], parent);
1040     }
1041   }
1042 
1043 ptrmap_exit:
1044   sqlite3PagerUnref(pDbPage);
1045 }
1046 
1047 /*
1048 ** Read an entry from the pointer map.
1049 **
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1053 */
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055   DbPage *pDbPage;   /* The pointer map page */
1056   int iPtrmap;       /* Pointer map page index */
1057   u8 *pPtrmap;       /* Pointer map page data */
1058   int offset;        /* Offset of entry in pointer map */
1059   int rc;
1060 
1061   assert( sqlite3_mutex_held(pBt->mutex) );
1062 
1063   iPtrmap = PTRMAP_PAGENO(pBt, key);
1064   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065   if( rc!=0 ){
1066     return rc;
1067   }
1068   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1069 
1070   offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071   if( offset<0 ){
1072     sqlite3PagerUnref(pDbPage);
1073     return SQLITE_CORRUPT_BKPT;
1074   }
1075   assert( offset <= (int)pBt->usableSize-5 );
1076   assert( pEType!=0 );
1077   *pEType = pPtrmap[offset];
1078   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1079 
1080   sqlite3PagerUnref(pDbPage);
1081   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082   return SQLITE_OK;
1083 }
1084 
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086   #define ptrmapPut(w,x,y,z,rc)
1087   #define ptrmapGet(w,x,y,z) SQLITE_OK
1088   #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1090 
1091 /*
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1095 **
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1098 **
1099 ** This routine works only for pages that do not contain overflow cells.
1100 */
1101 #define findCell(P,I) \
1102   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 
1106 
1107 /*
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1111 ** structure.
1112 */
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114   MemPage *pPage,         /* Page containing the cell */
1115   u8 *pCell,              /* Pointer to the cell text. */
1116   CellInfo *pInfo         /* Fill in this structure */
1117 ){
1118   /* If the payload will not fit completely on the local page, we have
1119   ** to decide how much to store locally and how much to spill onto
1120   ** overflow pages.  The strategy is to minimize the amount of unused
1121   ** space on overflow pages while keeping the amount of local storage
1122   ** in between minLocal and maxLocal.
1123   **
1124   ** Warning:  changing the way overflow payload is distributed in any
1125   ** way will result in an incompatible file format.
1126   */
1127   int minLocal;  /* Minimum amount of payload held locally */
1128   int maxLocal;  /* Maximum amount of payload held locally */
1129   int surplus;   /* Overflow payload available for local storage */
1130 
1131   minLocal = pPage->minLocal;
1132   maxLocal = pPage->maxLocal;
1133   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134   testcase( surplus==maxLocal );
1135   testcase( surplus==maxLocal+1 );
1136   if( surplus <= maxLocal ){
1137     pInfo->nLocal = (u16)surplus;
1138   }else{
1139     pInfo->nLocal = (u16)minLocal;
1140   }
1141   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1142 }
1143 
1144 /*
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1147 */
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149   int maxLocal;  /* Maximum amount of payload held locally */
1150   maxLocal = pPage->maxLocal;
1151   if( nPayload<=maxLocal ){
1152     return nPayload;
1153   }else{
1154     int minLocal;  /* Minimum amount of payload held locally */
1155     int surplus;   /* Overflow payload available for local storage */
1156     minLocal = pPage->minLocal;
1157     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158     return ( surplus <= maxLocal ) ? surplus : minLocal;
1159   }
1160 }
1161 
1162 /*
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1165 **
1166 ** Parse a cell content block and fill in the CellInfo structure.
1167 **
1168 ** btreeParseCellPtr()        =>   table btree leaf nodes
1169 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1170 ** btreeParseCellPtrIndex()   =>   index btree nodes
1171 **
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1175 */
1176 static void btreeParseCellPtrNoPayload(
1177   MemPage *pPage,         /* Page containing the cell */
1178   u8 *pCell,              /* Pointer to the cell text. */
1179   CellInfo *pInfo         /* Fill in this structure */
1180 ){
1181   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182   assert( pPage->leaf==0 );
1183   assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185   UNUSED_PARAMETER(pPage);
1186 #endif
1187   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188   pInfo->nPayload = 0;
1189   pInfo->nLocal = 0;
1190   pInfo->pPayload = 0;
1191   return;
1192 }
1193 static void btreeParseCellPtr(
1194   MemPage *pPage,         /* Page containing the cell */
1195   u8 *pCell,              /* Pointer to the cell text. */
1196   CellInfo *pInfo         /* Fill in this structure */
1197 ){
1198   u8 *pIter;              /* For scanning through pCell */
1199   u32 nPayload;           /* Number of bytes of cell payload */
1200   u64 iKey;               /* Extracted Key value */
1201 
1202   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203   assert( pPage->leaf==0 || pPage->leaf==1 );
1204   assert( pPage->intKeyLeaf );
1205   assert( pPage->childPtrSize==0 );
1206   pIter = pCell;
1207 
1208   /* The next block of code is equivalent to:
1209   **
1210   **     pIter += getVarint32(pIter, nPayload);
1211   **
1212   ** The code is inlined to avoid a function call.
1213   */
1214   nPayload = *pIter;
1215   if( nPayload>=0x80 ){
1216     u8 *pEnd = &pIter[8];
1217     nPayload &= 0x7f;
1218     do{
1219       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220     }while( (*pIter)>=0x80 && pIter<pEnd );
1221   }
1222   pIter++;
1223 
1224   /* The next block of code is equivalent to:
1225   **
1226   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1227   **
1228   ** The code is inlined to avoid a function call.
1229   */
1230   iKey = *pIter;
1231   if( iKey>=0x80 ){
1232     u8 *pEnd = &pIter[7];
1233     iKey &= 0x7f;
1234     while(1){
1235       iKey = (iKey<<7) | (*++pIter & 0x7f);
1236       if( (*pIter)<0x80 ) break;
1237       if( pIter>=pEnd ){
1238         iKey = (iKey<<8) | *++pIter;
1239         break;
1240       }
1241     }
1242   }
1243   pIter++;
1244 
1245   pInfo->nKey = *(i64*)&iKey;
1246   pInfo->nPayload = nPayload;
1247   pInfo->pPayload = pIter;
1248   testcase( nPayload==pPage->maxLocal );
1249   testcase( nPayload==(u32)pPage->maxLocal+1 );
1250   if( nPayload<=pPage->maxLocal ){
1251     /* This is the (easy) common case where the entire payload fits
1252     ** on the local page.  No overflow is required.
1253     */
1254     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1255     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1256     pInfo->nLocal = (u16)nPayload;
1257   }else{
1258     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1259   }
1260 }
1261 static void btreeParseCellPtrIndex(
1262   MemPage *pPage,         /* Page containing the cell */
1263   u8 *pCell,              /* Pointer to the cell text. */
1264   CellInfo *pInfo         /* Fill in this structure */
1265 ){
1266   u8 *pIter;              /* For scanning through pCell */
1267   u32 nPayload;           /* Number of bytes of cell payload */
1268 
1269   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1270   assert( pPage->leaf==0 || pPage->leaf==1 );
1271   assert( pPage->intKeyLeaf==0 );
1272   pIter = pCell + pPage->childPtrSize;
1273   nPayload = *pIter;
1274   if( nPayload>=0x80 ){
1275     u8 *pEnd = &pIter[8];
1276     nPayload &= 0x7f;
1277     do{
1278       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1279     }while( *(pIter)>=0x80 && pIter<pEnd );
1280   }
1281   pIter++;
1282   pInfo->nKey = nPayload;
1283   pInfo->nPayload = nPayload;
1284   pInfo->pPayload = pIter;
1285   testcase( nPayload==pPage->maxLocal );
1286   testcase( nPayload==(u32)pPage->maxLocal+1 );
1287   if( nPayload<=pPage->maxLocal ){
1288     /* This is the (easy) common case where the entire payload fits
1289     ** on the local page.  No overflow is required.
1290     */
1291     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1292     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1293     pInfo->nLocal = (u16)nPayload;
1294   }else{
1295     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1296   }
1297 }
1298 static void btreeParseCell(
1299   MemPage *pPage,         /* Page containing the cell */
1300   int iCell,              /* The cell index.  First cell is 0 */
1301   CellInfo *pInfo         /* Fill in this structure */
1302 ){
1303   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1304 }
1305 
1306 /*
1307 ** The following routines are implementations of the MemPage.xCellSize
1308 ** method.
1309 **
1310 ** Compute the total number of bytes that a Cell needs in the cell
1311 ** data area of the btree-page.  The return number includes the cell
1312 ** data header and the local payload, but not any overflow page or
1313 ** the space used by the cell pointer.
1314 **
1315 ** cellSizePtrNoPayload()    =>   table internal nodes
1316 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1317 */
1318 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1319   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1320   u8 *pEnd;                                /* End mark for a varint */
1321   u32 nSize;                               /* Size value to return */
1322 
1323 #ifdef SQLITE_DEBUG
1324   /* The value returned by this function should always be the same as
1325   ** the (CellInfo.nSize) value found by doing a full parse of the
1326   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1327   ** this function verifies that this invariant is not violated. */
1328   CellInfo debuginfo;
1329   pPage->xParseCell(pPage, pCell, &debuginfo);
1330 #endif
1331 
1332   nSize = *pIter;
1333   if( nSize>=0x80 ){
1334     pEnd = &pIter[8];
1335     nSize &= 0x7f;
1336     do{
1337       nSize = (nSize<<7) | (*++pIter & 0x7f);
1338     }while( *(pIter)>=0x80 && pIter<pEnd );
1339   }
1340   pIter++;
1341   if( pPage->intKey ){
1342     /* pIter now points at the 64-bit integer key value, a variable length
1343     ** integer. The following block moves pIter to point at the first byte
1344     ** past the end of the key value. */
1345     pEnd = &pIter[9];
1346     while( (*pIter++)&0x80 && pIter<pEnd );
1347   }
1348   testcase( nSize==pPage->maxLocal );
1349   testcase( nSize==(u32)pPage->maxLocal+1 );
1350   if( nSize<=pPage->maxLocal ){
1351     nSize += (u32)(pIter - pCell);
1352     if( nSize<4 ) nSize = 4;
1353   }else{
1354     int minLocal = pPage->minLocal;
1355     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1356     testcase( nSize==pPage->maxLocal );
1357     testcase( nSize==(u32)pPage->maxLocal+1 );
1358     if( nSize>pPage->maxLocal ){
1359       nSize = minLocal;
1360     }
1361     nSize += 4 + (u16)(pIter - pCell);
1362   }
1363   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1364   return (u16)nSize;
1365 }
1366 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1367   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1368   u8 *pEnd;              /* End mark for a varint */
1369 
1370 #ifdef SQLITE_DEBUG
1371   /* The value returned by this function should always be the same as
1372   ** the (CellInfo.nSize) value found by doing a full parse of the
1373   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1374   ** this function verifies that this invariant is not violated. */
1375   CellInfo debuginfo;
1376   pPage->xParseCell(pPage, pCell, &debuginfo);
1377 #else
1378   UNUSED_PARAMETER(pPage);
1379 #endif
1380 
1381   assert( pPage->childPtrSize==4 );
1382   pEnd = pIter + 9;
1383   while( (*pIter++)&0x80 && pIter<pEnd );
1384   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1385   return (u16)(pIter - pCell);
1386 }
1387 
1388 
1389 #ifdef SQLITE_DEBUG
1390 /* This variation on cellSizePtr() is used inside of assert() statements
1391 ** only. */
1392 static u16 cellSize(MemPage *pPage, int iCell){
1393   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1394 }
1395 #endif
1396 
1397 #ifndef SQLITE_OMIT_AUTOVACUUM
1398 /*
1399 ** The cell pCell is currently part of page pSrc but will ultimately be part
1400 ** of pPage.  (pSrc and pPager are often the same.)  If pCell contains a
1401 ** pointer to an overflow page, insert an entry into the pointer-map for
1402 ** the overflow page that will be valid after pCell has been moved to pPage.
1403 */
1404 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1405   CellInfo info;
1406   if( *pRC ) return;
1407   assert( pCell!=0 );
1408   pPage->xParseCell(pPage, pCell, &info);
1409   if( info.nLocal<info.nPayload ){
1410     Pgno ovfl;
1411     if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1412       testcase( pSrc!=pPage );
1413       *pRC = SQLITE_CORRUPT_BKPT;
1414       return;
1415     }
1416     ovfl = get4byte(&pCell[info.nSize-4]);
1417     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1418   }
1419 }
1420 #endif
1421 
1422 
1423 /*
1424 ** Defragment the page given. This routine reorganizes cells within the
1425 ** page so that there are no free-blocks on the free-block list.
1426 **
1427 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1428 ** present in the page after this routine returns.
1429 **
1430 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1431 ** b-tree page so that there are no freeblocks or fragment bytes, all
1432 ** unused bytes are contained in the unallocated space region, and all
1433 ** cells are packed tightly at the end of the page.
1434 */
1435 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1436   int i;                     /* Loop counter */
1437   int pc;                    /* Address of the i-th cell */
1438   int hdr;                   /* Offset to the page header */
1439   int size;                  /* Size of a cell */
1440   int usableSize;            /* Number of usable bytes on a page */
1441   int cellOffset;            /* Offset to the cell pointer array */
1442   int cbrk;                  /* Offset to the cell content area */
1443   int nCell;                 /* Number of cells on the page */
1444   unsigned char *data;       /* The page data */
1445   unsigned char *temp;       /* Temp area for cell content */
1446   unsigned char *src;        /* Source of content */
1447   int iCellFirst;            /* First allowable cell index */
1448   int iCellLast;             /* Last possible cell index */
1449   int iCellStart;            /* First cell offset in input */
1450 
1451   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1452   assert( pPage->pBt!=0 );
1453   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1454   assert( pPage->nOverflow==0 );
1455   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1456   temp = 0;
1457   src = data = pPage->aData;
1458   hdr = pPage->hdrOffset;
1459   cellOffset = pPage->cellOffset;
1460   nCell = pPage->nCell;
1461   assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1462   iCellFirst = cellOffset + 2*nCell;
1463   usableSize = pPage->pBt->usableSize;
1464 
1465   /* This block handles pages with two or fewer free blocks and nMaxFrag
1466   ** or fewer fragmented bytes. In this case it is faster to move the
1467   ** two (or one) blocks of cells using memmove() and add the required
1468   ** offsets to each pointer in the cell-pointer array than it is to
1469   ** reconstruct the entire page.  */
1470   if( (int)data[hdr+7]<=nMaxFrag ){
1471     int iFree = get2byte(&data[hdr+1]);
1472     if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1473     if( iFree ){
1474       int iFree2 = get2byte(&data[iFree]);
1475       if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1476       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1477         u8 *pEnd = &data[cellOffset + nCell*2];
1478         u8 *pAddr;
1479         int sz2 = 0;
1480         int sz = get2byte(&data[iFree+2]);
1481         int top = get2byte(&data[hdr+5]);
1482         if( top>=iFree ){
1483           return SQLITE_CORRUPT_PAGE(pPage);
1484         }
1485         if( iFree2 ){
1486           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1487           sz2 = get2byte(&data[iFree2+2]);
1488           if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1489           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1490           sz += sz2;
1491         }else if( NEVER(iFree+sz>usableSize) ){
1492           return SQLITE_CORRUPT_PAGE(pPage);
1493         }
1494 
1495         cbrk = top+sz;
1496         assert( cbrk+(iFree-top) <= usableSize );
1497         memmove(&data[cbrk], &data[top], iFree-top);
1498         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1499           pc = get2byte(pAddr);
1500           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1501           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1502         }
1503         goto defragment_out;
1504       }
1505     }
1506   }
1507 
1508   cbrk = usableSize;
1509   iCellLast = usableSize - 4;
1510   iCellStart = get2byte(&data[hdr+5]);
1511   for(i=0; i<nCell; i++){
1512     u8 *pAddr;     /* The i-th cell pointer */
1513     pAddr = &data[cellOffset + i*2];
1514     pc = get2byte(pAddr);
1515     testcase( pc==iCellFirst );
1516     testcase( pc==iCellLast );
1517     /* These conditions have already been verified in btreeInitPage()
1518     ** if PRAGMA cell_size_check=ON.
1519     */
1520     if( pc<iCellStart || pc>iCellLast ){
1521       return SQLITE_CORRUPT_PAGE(pPage);
1522     }
1523     assert( pc>=iCellStart && pc<=iCellLast );
1524     size = pPage->xCellSize(pPage, &src[pc]);
1525     cbrk -= size;
1526     if( cbrk<iCellStart || pc+size>usableSize ){
1527       return SQLITE_CORRUPT_PAGE(pPage);
1528     }
1529     assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1530     testcase( cbrk+size==usableSize );
1531     testcase( pc+size==usableSize );
1532     put2byte(pAddr, cbrk);
1533     if( temp==0 ){
1534       if( cbrk==pc ) continue;
1535       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1536       memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1537       src = temp;
1538     }
1539     memcpy(&data[cbrk], &src[pc], size);
1540   }
1541   data[hdr+7] = 0;
1542 
1543  defragment_out:
1544   assert( pPage->nFree>=0 );
1545   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1546     return SQLITE_CORRUPT_PAGE(pPage);
1547   }
1548   assert( cbrk>=iCellFirst );
1549   put2byte(&data[hdr+5], cbrk);
1550   data[hdr+1] = 0;
1551   data[hdr+2] = 0;
1552   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1553   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1554   return SQLITE_OK;
1555 }
1556 
1557 /*
1558 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1559 ** size. If one can be found, return a pointer to the space and remove it
1560 ** from the free-list.
1561 **
1562 ** If no suitable space can be found on the free-list, return NULL.
1563 **
1564 ** This function may detect corruption within pPg.  If corruption is
1565 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1566 **
1567 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1568 ** will be ignored if adding the extra space to the fragmentation count
1569 ** causes the fragmentation count to exceed 60.
1570 */
1571 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1572   const int hdr = pPg->hdrOffset;            /* Offset to page header */
1573   u8 * const aData = pPg->aData;             /* Page data */
1574   int iAddr = hdr + 1;                       /* Address of ptr to pc */
1575   int pc = get2byte(&aData[iAddr]);          /* Address of a free slot */
1576   int x;                                     /* Excess size of the slot */
1577   int maxPC = pPg->pBt->usableSize - nByte;  /* Max address for a usable slot */
1578   int size;                                  /* Size of the free slot */
1579 
1580   assert( pc>0 );
1581   while( pc<=maxPC ){
1582     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1583     ** freeblock form a big-endian integer which is the size of the freeblock
1584     ** in bytes, including the 4-byte header. */
1585     size = get2byte(&aData[pc+2]);
1586     if( (x = size - nByte)>=0 ){
1587       testcase( x==4 );
1588       testcase( x==3 );
1589       if( x<4 ){
1590         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1591         ** number of bytes in fragments may not exceed 60. */
1592         if( aData[hdr+7]>57 ) return 0;
1593 
1594         /* Remove the slot from the free-list. Update the number of
1595         ** fragmented bytes within the page. */
1596         memcpy(&aData[iAddr], &aData[pc], 2);
1597         aData[hdr+7] += (u8)x;
1598       }else if( x+pc > maxPC ){
1599         /* This slot extends off the end of the usable part of the page */
1600         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1601         return 0;
1602       }else{
1603         /* The slot remains on the free-list. Reduce its size to account
1604         ** for the portion used by the new allocation. */
1605         put2byte(&aData[pc+2], x);
1606       }
1607       return &aData[pc + x];
1608     }
1609     iAddr = pc;
1610     pc = get2byte(&aData[pc]);
1611     if( pc<=iAddr+size ){
1612       if( pc ){
1613         /* The next slot in the chain is not past the end of the current slot */
1614         *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615       }
1616       return 0;
1617     }
1618   }
1619   if( pc>maxPC+nByte-4 ){
1620     /* The free slot chain extends off the end of the page */
1621     *pRc = SQLITE_CORRUPT_PAGE(pPg);
1622   }
1623   return 0;
1624 }
1625 
1626 /*
1627 ** Allocate nByte bytes of space from within the B-Tree page passed
1628 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1629 ** of the first byte of allocated space. Return either SQLITE_OK or
1630 ** an error code (usually SQLITE_CORRUPT).
1631 **
1632 ** The caller guarantees that there is sufficient space to make the
1633 ** allocation.  This routine might need to defragment in order to bring
1634 ** all the space together, however.  This routine will avoid using
1635 ** the first two bytes past the cell pointer area since presumably this
1636 ** allocation is being made in order to insert a new cell, so we will
1637 ** also end up needing a new cell pointer.
1638 */
1639 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1640   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1641   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1642   int top;                             /* First byte of cell content area */
1643   int rc = SQLITE_OK;                  /* Integer return code */
1644   int gap;        /* First byte of gap between cell pointers and cell content */
1645 
1646   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1647   assert( pPage->pBt );
1648   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1649   assert( nByte>=0 );  /* Minimum cell size is 4 */
1650   assert( pPage->nFree>=nByte );
1651   assert( pPage->nOverflow==0 );
1652   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1653 
1654   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1655   gap = pPage->cellOffset + 2*pPage->nCell;
1656   assert( gap<=65536 );
1657   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1658   ** and the reserved space is zero (the usual value for reserved space)
1659   ** then the cell content offset of an empty page wants to be 65536.
1660   ** However, that integer is too large to be stored in a 2-byte unsigned
1661   ** integer, so a value of 0 is used in its place. */
1662   top = get2byte(&data[hdr+5]);
1663   assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1664   if( gap>top ){
1665     if( top==0 && pPage->pBt->usableSize==65536 ){
1666       top = 65536;
1667     }else{
1668       return SQLITE_CORRUPT_PAGE(pPage);
1669     }
1670   }
1671 
1672   /* If there is enough space between gap and top for one more cell pointer,
1673   ** and if the freelist is not empty, then search the
1674   ** freelist looking for a slot big enough to satisfy the request.
1675   */
1676   testcase( gap+2==top );
1677   testcase( gap+1==top );
1678   testcase( gap==top );
1679   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1680     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1681     if( pSpace ){
1682       int g2;
1683       assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1684       *pIdx = g2 = (int)(pSpace-data);
1685       if( g2<=gap ){
1686         return SQLITE_CORRUPT_PAGE(pPage);
1687       }else{
1688         return SQLITE_OK;
1689       }
1690     }else if( rc ){
1691       return rc;
1692     }
1693   }
1694 
1695   /* The request could not be fulfilled using a freelist slot.  Check
1696   ** to see if defragmentation is necessary.
1697   */
1698   testcase( gap+2+nByte==top );
1699   if( gap+2+nByte>top ){
1700     assert( pPage->nCell>0 || CORRUPT_DB );
1701     assert( pPage->nFree>=0 );
1702     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1703     if( rc ) return rc;
1704     top = get2byteNotZero(&data[hdr+5]);
1705     assert( gap+2+nByte<=top );
1706   }
1707 
1708 
1709   /* Allocate memory from the gap in between the cell pointer array
1710   ** and the cell content area.  The btreeComputeFreeSpace() call has already
1711   ** validated the freelist.  Given that the freelist is valid, there
1712   ** is no way that the allocation can extend off the end of the page.
1713   ** The assert() below verifies the previous sentence.
1714   */
1715   top -= nByte;
1716   put2byte(&data[hdr+5], top);
1717   assert( top+nByte <= (int)pPage->pBt->usableSize );
1718   *pIdx = top;
1719   return SQLITE_OK;
1720 }
1721 
1722 /*
1723 ** Return a section of the pPage->aData to the freelist.
1724 ** The first byte of the new free block is pPage->aData[iStart]
1725 ** and the size of the block is iSize bytes.
1726 **
1727 ** Adjacent freeblocks are coalesced.
1728 **
1729 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1730 ** that routine will not detect overlap between cells or freeblocks.  Nor
1731 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1732 ** at the end of the page.  So do additional corruption checks inside this
1733 ** routine and return SQLITE_CORRUPT if any problems are found.
1734 */
1735 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1736   u16 iPtr;                             /* Address of ptr to next freeblock */
1737   u16 iFreeBlk;                         /* Address of the next freeblock */
1738   u8 hdr;                               /* Page header size.  0 or 100 */
1739   u8 nFrag = 0;                         /* Reduction in fragmentation */
1740   u16 iOrigSize = iSize;                /* Original value of iSize */
1741   u16 x;                                /* Offset to cell content area */
1742   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1743   unsigned char *data = pPage->aData;   /* Page content */
1744 
1745   assert( pPage->pBt!=0 );
1746   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1747   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1748   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1749   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1750   assert( iSize>=4 );   /* Minimum cell size is 4 */
1751   assert( iStart<=pPage->pBt->usableSize-4 );
1752 
1753   /* The list of freeblocks must be in ascending order.  Find the
1754   ** spot on the list where iStart should be inserted.
1755   */
1756   hdr = pPage->hdrOffset;
1757   iPtr = hdr + 1;
1758   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1759     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1760   }else{
1761     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1762       if( iFreeBlk<iPtr+4 ){
1763         if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1764         return SQLITE_CORRUPT_PAGE(pPage);
1765       }
1766       iPtr = iFreeBlk;
1767     }
1768     if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1769       return SQLITE_CORRUPT_PAGE(pPage);
1770     }
1771     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1772 
1773     /* At this point:
1774     **    iFreeBlk:   First freeblock after iStart, or zero if none
1775     **    iPtr:       The address of a pointer to iFreeBlk
1776     **
1777     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1778     */
1779     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1780       nFrag = iFreeBlk - iEnd;
1781       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1782       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1783       if( iEnd > pPage->pBt->usableSize ){
1784         return SQLITE_CORRUPT_PAGE(pPage);
1785       }
1786       iSize = iEnd - iStart;
1787       iFreeBlk = get2byte(&data[iFreeBlk]);
1788     }
1789 
1790     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1791     ** pointer in the page header) then check to see if iStart should be
1792     ** coalesced onto the end of iPtr.
1793     */
1794     if( iPtr>hdr+1 ){
1795       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1796       if( iPtrEnd+3>=iStart ){
1797         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1798         nFrag += iStart - iPtrEnd;
1799         iSize = iEnd - iPtr;
1800         iStart = iPtr;
1801       }
1802     }
1803     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1804     data[hdr+7] -= nFrag;
1805   }
1806   x = get2byte(&data[hdr+5]);
1807   if( iStart<=x ){
1808     /* The new freeblock is at the beginning of the cell content area,
1809     ** so just extend the cell content area rather than create another
1810     ** freelist entry */
1811     if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1812     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1813     put2byte(&data[hdr+1], iFreeBlk);
1814     put2byte(&data[hdr+5], iEnd);
1815   }else{
1816     /* Insert the new freeblock into the freelist */
1817     put2byte(&data[iPtr], iStart);
1818   }
1819   if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1820     /* Overwrite deleted information with zeros when the secure_delete
1821     ** option is enabled */
1822     memset(&data[iStart], 0, iSize);
1823   }
1824   put2byte(&data[iStart], iFreeBlk);
1825   put2byte(&data[iStart+2], iSize);
1826   pPage->nFree += iOrigSize;
1827   return SQLITE_OK;
1828 }
1829 
1830 /*
1831 ** Decode the flags byte (the first byte of the header) for a page
1832 ** and initialize fields of the MemPage structure accordingly.
1833 **
1834 ** Only the following combinations are supported.  Anything different
1835 ** indicates a corrupt database files:
1836 **
1837 **         PTF_ZERODATA
1838 **         PTF_ZERODATA | PTF_LEAF
1839 **         PTF_LEAFDATA | PTF_INTKEY
1840 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1841 */
1842 static int decodeFlags(MemPage *pPage, int flagByte){
1843   BtShared *pBt;     /* A copy of pPage->pBt */
1844 
1845   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1846   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1847   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1848   flagByte &= ~PTF_LEAF;
1849   pPage->childPtrSize = 4-4*pPage->leaf;
1850   pPage->xCellSize = cellSizePtr;
1851   pBt = pPage->pBt;
1852   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1853     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1854     ** interior table b-tree page. */
1855     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1856     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1857     ** leaf table b-tree page. */
1858     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1859     pPage->intKey = 1;
1860     if( pPage->leaf ){
1861       pPage->intKeyLeaf = 1;
1862       pPage->xParseCell = btreeParseCellPtr;
1863     }else{
1864       pPage->intKeyLeaf = 0;
1865       pPage->xCellSize = cellSizePtrNoPayload;
1866       pPage->xParseCell = btreeParseCellPtrNoPayload;
1867     }
1868     pPage->maxLocal = pBt->maxLeaf;
1869     pPage->minLocal = pBt->minLeaf;
1870   }else if( flagByte==PTF_ZERODATA ){
1871     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1872     ** interior index b-tree page. */
1873     assert( (PTF_ZERODATA)==2 );
1874     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1875     ** leaf index b-tree page. */
1876     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1877     pPage->intKey = 0;
1878     pPage->intKeyLeaf = 0;
1879     pPage->xParseCell = btreeParseCellPtrIndex;
1880     pPage->maxLocal = pBt->maxLocal;
1881     pPage->minLocal = pBt->minLocal;
1882   }else{
1883     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1884     ** an error. */
1885     return SQLITE_CORRUPT_PAGE(pPage);
1886   }
1887   pPage->max1bytePayload = pBt->max1bytePayload;
1888   return SQLITE_OK;
1889 }
1890 
1891 /*
1892 ** Compute the amount of freespace on the page.  In other words, fill
1893 ** in the pPage->nFree field.
1894 */
1895 static int btreeComputeFreeSpace(MemPage *pPage){
1896   int pc;            /* Address of a freeblock within pPage->aData[] */
1897   u8 hdr;            /* Offset to beginning of page header */
1898   u8 *data;          /* Equal to pPage->aData */
1899   int usableSize;    /* Amount of usable space on each page */
1900   int nFree;         /* Number of unused bytes on the page */
1901   int top;           /* First byte of the cell content area */
1902   int iCellFirst;    /* First allowable cell or freeblock offset */
1903   int iCellLast;     /* Last possible cell or freeblock offset */
1904 
1905   assert( pPage->pBt!=0 );
1906   assert( pPage->pBt->db!=0 );
1907   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1908   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1909   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1910   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1911   assert( pPage->isInit==1 );
1912   assert( pPage->nFree<0 );
1913 
1914   usableSize = pPage->pBt->usableSize;
1915   hdr = pPage->hdrOffset;
1916   data = pPage->aData;
1917   /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1918   ** the start of the cell content area. A zero value for this integer is
1919   ** interpreted as 65536. */
1920   top = get2byteNotZero(&data[hdr+5]);
1921   iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1922   iCellLast = usableSize - 4;
1923 
1924   /* Compute the total free space on the page
1925   ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1926   ** start of the first freeblock on the page, or is zero if there are no
1927   ** freeblocks. */
1928   pc = get2byte(&data[hdr+1]);
1929   nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1930   if( pc>0 ){
1931     u32 next, size;
1932     if( pc<top ){
1933       /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1934       ** always be at least one cell before the first freeblock.
1935       */
1936       return SQLITE_CORRUPT_PAGE(pPage);
1937     }
1938     while( 1 ){
1939       if( pc>iCellLast ){
1940         /* Freeblock off the end of the page */
1941         return SQLITE_CORRUPT_PAGE(pPage);
1942       }
1943       next = get2byte(&data[pc]);
1944       size = get2byte(&data[pc+2]);
1945       nFree = nFree + size;
1946       if( next<=pc+size+3 ) break;
1947       pc = next;
1948     }
1949     if( next>0 ){
1950       /* Freeblock not in ascending order */
1951       return SQLITE_CORRUPT_PAGE(pPage);
1952     }
1953     if( pc+size>(unsigned int)usableSize ){
1954       /* Last freeblock extends past page end */
1955       return SQLITE_CORRUPT_PAGE(pPage);
1956     }
1957   }
1958 
1959   /* At this point, nFree contains the sum of the offset to the start
1960   ** of the cell-content area plus the number of free bytes within
1961   ** the cell-content area. If this is greater than the usable-size
1962   ** of the page, then the page must be corrupted. This check also
1963   ** serves to verify that the offset to the start of the cell-content
1964   ** area, according to the page header, lies within the page.
1965   */
1966   if( nFree>usableSize || nFree<iCellFirst ){
1967     return SQLITE_CORRUPT_PAGE(pPage);
1968   }
1969   pPage->nFree = (u16)(nFree - iCellFirst);
1970   return SQLITE_OK;
1971 }
1972 
1973 /*
1974 ** Do additional sanity check after btreeInitPage() if
1975 ** PRAGMA cell_size_check=ON
1976 */
1977 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1978   int iCellFirst;    /* First allowable cell or freeblock offset */
1979   int iCellLast;     /* Last possible cell or freeblock offset */
1980   int i;             /* Index into the cell pointer array */
1981   int sz;            /* Size of a cell */
1982   int pc;            /* Address of a freeblock within pPage->aData[] */
1983   u8 *data;          /* Equal to pPage->aData */
1984   int usableSize;    /* Maximum usable space on the page */
1985   int cellOffset;    /* Start of cell content area */
1986 
1987   iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1988   usableSize = pPage->pBt->usableSize;
1989   iCellLast = usableSize - 4;
1990   data = pPage->aData;
1991   cellOffset = pPage->cellOffset;
1992   if( !pPage->leaf ) iCellLast--;
1993   for(i=0; i<pPage->nCell; i++){
1994     pc = get2byteAligned(&data[cellOffset+i*2]);
1995     testcase( pc==iCellFirst );
1996     testcase( pc==iCellLast );
1997     if( pc<iCellFirst || pc>iCellLast ){
1998       return SQLITE_CORRUPT_PAGE(pPage);
1999     }
2000     sz = pPage->xCellSize(pPage, &data[pc]);
2001     testcase( pc+sz==usableSize );
2002     if( pc+sz>usableSize ){
2003       return SQLITE_CORRUPT_PAGE(pPage);
2004     }
2005   }
2006   return SQLITE_OK;
2007 }
2008 
2009 /*
2010 ** Initialize the auxiliary information for a disk block.
2011 **
2012 ** Return SQLITE_OK on success.  If we see that the page does
2013 ** not contain a well-formed database page, then return
2014 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
2015 ** guarantee that the page is well-formed.  It only shows that
2016 ** we failed to detect any corruption.
2017 */
2018 static int btreeInitPage(MemPage *pPage){
2019   u8 *data;          /* Equal to pPage->aData */
2020   BtShared *pBt;        /* The main btree structure */
2021 
2022   assert( pPage->pBt!=0 );
2023   assert( pPage->pBt->db!=0 );
2024   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2025   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2026   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2027   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2028   assert( pPage->isInit==0 );
2029 
2030   pBt = pPage->pBt;
2031   data = pPage->aData + pPage->hdrOffset;
2032   /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2033   ** the b-tree page type. */
2034   if( decodeFlags(pPage, data[0]) ){
2035     return SQLITE_CORRUPT_PAGE(pPage);
2036   }
2037   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2038   pPage->maskPage = (u16)(pBt->pageSize - 1);
2039   pPage->nOverflow = 0;
2040   pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2041   pPage->aCellIdx = data + pPage->childPtrSize + 8;
2042   pPage->aDataEnd = pPage->aData + pBt->usableSize;
2043   pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2044   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2045   ** number of cells on the page. */
2046   pPage->nCell = get2byte(&data[3]);
2047   if( pPage->nCell>MX_CELL(pBt) ){
2048     /* To many cells for a single page.  The page must be corrupt */
2049     return SQLITE_CORRUPT_PAGE(pPage);
2050   }
2051   testcase( pPage->nCell==MX_CELL(pBt) );
2052   /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2053   ** possible for a root page of a table that contains no rows) then the
2054   ** offset to the cell content area will equal the page size minus the
2055   ** bytes of reserved space. */
2056   assert( pPage->nCell>0
2057        || get2byteNotZero(&data[5])==(int)pBt->usableSize
2058        || CORRUPT_DB );
2059   pPage->nFree = -1;  /* Indicate that this value is yet uncomputed */
2060   pPage->isInit = 1;
2061   if( pBt->db->flags & SQLITE_CellSizeCk ){
2062     return btreeCellSizeCheck(pPage);
2063   }
2064   return SQLITE_OK;
2065 }
2066 
2067 /*
2068 ** Set up a raw page so that it looks like a database page holding
2069 ** no entries.
2070 */
2071 static void zeroPage(MemPage *pPage, int flags){
2072   unsigned char *data = pPage->aData;
2073   BtShared *pBt = pPage->pBt;
2074   u8 hdr = pPage->hdrOffset;
2075   u16 first;
2076 
2077   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
2078   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2079   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2080   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2081   assert( sqlite3_mutex_held(pBt->mutex) );
2082   if( pBt->btsFlags & BTS_FAST_SECURE ){
2083     memset(&data[hdr], 0, pBt->usableSize - hdr);
2084   }
2085   data[hdr] = (char)flags;
2086   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2087   memset(&data[hdr+1], 0, 4);
2088   data[hdr+7] = 0;
2089   put2byte(&data[hdr+5], pBt->usableSize);
2090   pPage->nFree = (u16)(pBt->usableSize - first);
2091   decodeFlags(pPage, flags);
2092   pPage->cellOffset = first;
2093   pPage->aDataEnd = &data[pBt->usableSize];
2094   pPage->aCellIdx = &data[first];
2095   pPage->aDataOfst = &data[pPage->childPtrSize];
2096   pPage->nOverflow = 0;
2097   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2098   pPage->maskPage = (u16)(pBt->pageSize - 1);
2099   pPage->nCell = 0;
2100   pPage->isInit = 1;
2101 }
2102 
2103 
2104 /*
2105 ** Convert a DbPage obtained from the pager into a MemPage used by
2106 ** the btree layer.
2107 */
2108 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2109   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2110   if( pgno!=pPage->pgno ){
2111     pPage->aData = sqlite3PagerGetData(pDbPage);
2112     pPage->pDbPage = pDbPage;
2113     pPage->pBt = pBt;
2114     pPage->pgno = pgno;
2115     pPage->hdrOffset = pgno==1 ? 100 : 0;
2116   }
2117   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2118   return pPage;
2119 }
2120 
2121 /*
2122 ** Get a page from the pager.  Initialize the MemPage.pBt and
2123 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
2124 **
2125 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2126 ** about the content of the page at this time.  So do not go to the disk
2127 ** to fetch the content.  Just fill in the content with zeros for now.
2128 ** If in the future we call sqlite3PagerWrite() on this page, that
2129 ** means we have started to be concerned about content and the disk
2130 ** read should occur at that point.
2131 */
2132 static int btreeGetPage(
2133   BtShared *pBt,       /* The btree */
2134   Pgno pgno,           /* Number of the page to fetch */
2135   MemPage **ppPage,    /* Return the page in this parameter */
2136   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2137 ){
2138   int rc;
2139   DbPage *pDbPage;
2140 
2141   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2142   assert( sqlite3_mutex_held(pBt->mutex) );
2143   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2144   if( rc ) return rc;
2145   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2146   return SQLITE_OK;
2147 }
2148 
2149 /*
2150 ** Retrieve a page from the pager cache. If the requested page is not
2151 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2152 ** MemPage.aData elements if needed.
2153 */
2154 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2155   DbPage *pDbPage;
2156   assert( sqlite3_mutex_held(pBt->mutex) );
2157   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2158   if( pDbPage ){
2159     return btreePageFromDbPage(pDbPage, pgno, pBt);
2160   }
2161   return 0;
2162 }
2163 
2164 /*
2165 ** Return the size of the database file in pages. If there is any kind of
2166 ** error, return ((unsigned int)-1).
2167 */
2168 static Pgno btreePagecount(BtShared *pBt){
2169   return pBt->nPage;
2170 }
2171 Pgno sqlite3BtreeLastPage(Btree *p){
2172   assert( sqlite3BtreeHoldsMutex(p) );
2173   return btreePagecount(p->pBt);
2174 }
2175 
2176 /*
2177 ** Get a page from the pager and initialize it.
2178 **
2179 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2180 ** call.  Do additional sanity checking on the page in this case.
2181 ** And if the fetch fails, this routine must decrement pCur->iPage.
2182 **
2183 ** The page is fetched as read-write unless pCur is not NULL and is
2184 ** a read-only cursor.
2185 **
2186 ** If an error occurs, then *ppPage is undefined. It
2187 ** may remain unchanged, or it may be set to an invalid value.
2188 */
2189 static int getAndInitPage(
2190   BtShared *pBt,                  /* The database file */
2191   Pgno pgno,                      /* Number of the page to get */
2192   MemPage **ppPage,               /* Write the page pointer here */
2193   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2194   int bReadOnly                   /* True for a read-only page */
2195 ){
2196   int rc;
2197   DbPage *pDbPage;
2198   assert( sqlite3_mutex_held(pBt->mutex) );
2199   assert( pCur==0 || ppPage==&pCur->pPage );
2200   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2201   assert( pCur==0 || pCur->iPage>0 );
2202 
2203   if( pgno>btreePagecount(pBt) ){
2204     rc = SQLITE_CORRUPT_BKPT;
2205     goto getAndInitPage_error1;
2206   }
2207   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2208   if( rc ){
2209     goto getAndInitPage_error1;
2210   }
2211   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2212   if( (*ppPage)->isInit==0 ){
2213     btreePageFromDbPage(pDbPage, pgno, pBt);
2214     rc = btreeInitPage(*ppPage);
2215     if( rc!=SQLITE_OK ){
2216       goto getAndInitPage_error2;
2217     }
2218   }
2219   assert( (*ppPage)->pgno==pgno );
2220   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2221 
2222   /* If obtaining a child page for a cursor, we must verify that the page is
2223   ** compatible with the root page. */
2224   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2225     rc = SQLITE_CORRUPT_PGNO(pgno);
2226     goto getAndInitPage_error2;
2227   }
2228   return SQLITE_OK;
2229 
2230 getAndInitPage_error2:
2231   releasePage(*ppPage);
2232 getAndInitPage_error1:
2233   if( pCur ){
2234     pCur->iPage--;
2235     pCur->pPage = pCur->apPage[pCur->iPage];
2236   }
2237   testcase( pgno==0 );
2238   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2239   return rc;
2240 }
2241 
2242 /*
2243 ** Release a MemPage.  This should be called once for each prior
2244 ** call to btreeGetPage.
2245 **
2246 ** Page1 is a special case and must be released using releasePageOne().
2247 */
2248 static void releasePageNotNull(MemPage *pPage){
2249   assert( pPage->aData );
2250   assert( pPage->pBt );
2251   assert( pPage->pDbPage!=0 );
2252   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2253   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2254   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2255   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2256 }
2257 static void releasePage(MemPage *pPage){
2258   if( pPage ) releasePageNotNull(pPage);
2259 }
2260 static void releasePageOne(MemPage *pPage){
2261   assert( pPage!=0 );
2262   assert( pPage->aData );
2263   assert( pPage->pBt );
2264   assert( pPage->pDbPage!=0 );
2265   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2266   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2267   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2268   sqlite3PagerUnrefPageOne(pPage->pDbPage);
2269 }
2270 
2271 /*
2272 ** Get an unused page.
2273 **
2274 ** This works just like btreeGetPage() with the addition:
2275 **
2276 **   *  If the page is already in use for some other purpose, immediately
2277 **      release it and return an SQLITE_CURRUPT error.
2278 **   *  Make sure the isInit flag is clear
2279 */
2280 static int btreeGetUnusedPage(
2281   BtShared *pBt,       /* The btree */
2282   Pgno pgno,           /* Number of the page to fetch */
2283   MemPage **ppPage,    /* Return the page in this parameter */
2284   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2285 ){
2286   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2287   if( rc==SQLITE_OK ){
2288     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2289       releasePage(*ppPage);
2290       *ppPage = 0;
2291       return SQLITE_CORRUPT_BKPT;
2292     }
2293     (*ppPage)->isInit = 0;
2294   }else{
2295     *ppPage = 0;
2296   }
2297   return rc;
2298 }
2299 
2300 
2301 /*
2302 ** During a rollback, when the pager reloads information into the cache
2303 ** so that the cache is restored to its original state at the start of
2304 ** the transaction, for each page restored this routine is called.
2305 **
2306 ** This routine needs to reset the extra data section at the end of the
2307 ** page to agree with the restored data.
2308 */
2309 static void pageReinit(DbPage *pData){
2310   MemPage *pPage;
2311   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2312   assert( sqlite3PagerPageRefcount(pData)>0 );
2313   if( pPage->isInit ){
2314     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2315     pPage->isInit = 0;
2316     if( sqlite3PagerPageRefcount(pData)>1 ){
2317       /* pPage might not be a btree page;  it might be an overflow page
2318       ** or ptrmap page or a free page.  In those cases, the following
2319       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2320       ** But no harm is done by this.  And it is very important that
2321       ** btreeInitPage() be called on every btree page so we make
2322       ** the call for every page that comes in for re-initing. */
2323       btreeInitPage(pPage);
2324     }
2325   }
2326 }
2327 
2328 /*
2329 ** Invoke the busy handler for a btree.
2330 */
2331 static int btreeInvokeBusyHandler(void *pArg){
2332   BtShared *pBt = (BtShared*)pArg;
2333   assert( pBt->db );
2334   assert( sqlite3_mutex_held(pBt->db->mutex) );
2335   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2336 }
2337 
2338 /*
2339 ** Open a database file.
2340 **
2341 ** zFilename is the name of the database file.  If zFilename is NULL
2342 ** then an ephemeral database is created.  The ephemeral database might
2343 ** be exclusively in memory, or it might use a disk-based memory cache.
2344 ** Either way, the ephemeral database will be automatically deleted
2345 ** when sqlite3BtreeClose() is called.
2346 **
2347 ** If zFilename is ":memory:" then an in-memory database is created
2348 ** that is automatically destroyed when it is closed.
2349 **
2350 ** The "flags" parameter is a bitmask that might contain bits like
2351 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2352 **
2353 ** If the database is already opened in the same database connection
2354 ** and we are in shared cache mode, then the open will fail with an
2355 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2356 ** objects in the same database connection since doing so will lead
2357 ** to problems with locking.
2358 */
2359 int sqlite3BtreeOpen(
2360   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2361   const char *zFilename,  /* Name of the file containing the BTree database */
2362   sqlite3 *db,            /* Associated database handle */
2363   Btree **ppBtree,        /* Pointer to new Btree object written here */
2364   int flags,              /* Options */
2365   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2366 ){
2367   BtShared *pBt = 0;             /* Shared part of btree structure */
2368   Btree *p;                      /* Handle to return */
2369   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2370   int rc = SQLITE_OK;            /* Result code from this function */
2371   u8 nReserve;                   /* Byte of unused space on each page */
2372   unsigned char zDbHeader[100];  /* Database header content */
2373 
2374   /* True if opening an ephemeral, temporary database */
2375   const int isTempDb = zFilename==0 || zFilename[0]==0;
2376 
2377   /* Set the variable isMemdb to true for an in-memory database, or
2378   ** false for a file-based database.
2379   */
2380 #ifdef SQLITE_OMIT_MEMORYDB
2381   const int isMemdb = 0;
2382 #else
2383   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2384                        || (isTempDb && sqlite3TempInMemory(db))
2385                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2386 #endif
2387 
2388   assert( db!=0 );
2389   assert( pVfs!=0 );
2390   assert( sqlite3_mutex_held(db->mutex) );
2391   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2392 
2393   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2394   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2395 
2396   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2397   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2398 
2399   if( isMemdb ){
2400     flags |= BTREE_MEMORY;
2401   }
2402   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2403     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2404   }
2405   p = sqlite3MallocZero(sizeof(Btree));
2406   if( !p ){
2407     return SQLITE_NOMEM_BKPT;
2408   }
2409   p->inTrans = TRANS_NONE;
2410   p->db = db;
2411 #ifndef SQLITE_OMIT_SHARED_CACHE
2412   p->lock.pBtree = p;
2413   p->lock.iTable = 1;
2414 #endif
2415 
2416 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2417   /*
2418   ** If this Btree is a candidate for shared cache, try to find an
2419   ** existing BtShared object that we can share with
2420   */
2421   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2422     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2423       int nFilename = sqlite3Strlen30(zFilename)+1;
2424       int nFullPathname = pVfs->mxPathname+1;
2425       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2426       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2427 
2428       p->sharable = 1;
2429       if( !zFullPathname ){
2430         sqlite3_free(p);
2431         return SQLITE_NOMEM_BKPT;
2432       }
2433       if( isMemdb ){
2434         memcpy(zFullPathname, zFilename, nFilename);
2435       }else{
2436         rc = sqlite3OsFullPathname(pVfs, zFilename,
2437                                    nFullPathname, zFullPathname);
2438         if( rc ){
2439           if( rc==SQLITE_OK_SYMLINK ){
2440             rc = SQLITE_OK;
2441           }else{
2442             sqlite3_free(zFullPathname);
2443             sqlite3_free(p);
2444             return rc;
2445           }
2446         }
2447       }
2448 #if SQLITE_THREADSAFE
2449       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2450       sqlite3_mutex_enter(mutexOpen);
2451       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2452       sqlite3_mutex_enter(mutexShared);
2453 #endif
2454       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2455         assert( pBt->nRef>0 );
2456         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2457                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2458           int iDb;
2459           for(iDb=db->nDb-1; iDb>=0; iDb--){
2460             Btree *pExisting = db->aDb[iDb].pBt;
2461             if( pExisting && pExisting->pBt==pBt ){
2462               sqlite3_mutex_leave(mutexShared);
2463               sqlite3_mutex_leave(mutexOpen);
2464               sqlite3_free(zFullPathname);
2465               sqlite3_free(p);
2466               return SQLITE_CONSTRAINT;
2467             }
2468           }
2469           p->pBt = pBt;
2470           pBt->nRef++;
2471           break;
2472         }
2473       }
2474       sqlite3_mutex_leave(mutexShared);
2475       sqlite3_free(zFullPathname);
2476     }
2477 #ifdef SQLITE_DEBUG
2478     else{
2479       /* In debug mode, we mark all persistent databases as sharable
2480       ** even when they are not.  This exercises the locking code and
2481       ** gives more opportunity for asserts(sqlite3_mutex_held())
2482       ** statements to find locking problems.
2483       */
2484       p->sharable = 1;
2485     }
2486 #endif
2487   }
2488 #endif
2489   if( pBt==0 ){
2490     /*
2491     ** The following asserts make sure that structures used by the btree are
2492     ** the right size.  This is to guard against size changes that result
2493     ** when compiling on a different architecture.
2494     */
2495     assert( sizeof(i64)==8 );
2496     assert( sizeof(u64)==8 );
2497     assert( sizeof(u32)==4 );
2498     assert( sizeof(u16)==2 );
2499     assert( sizeof(Pgno)==4 );
2500 
2501     pBt = sqlite3MallocZero( sizeof(*pBt) );
2502     if( pBt==0 ){
2503       rc = SQLITE_NOMEM_BKPT;
2504       goto btree_open_out;
2505     }
2506     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2507                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2508     if( rc==SQLITE_OK ){
2509       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2510       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2511     }
2512     if( rc!=SQLITE_OK ){
2513       goto btree_open_out;
2514     }
2515     pBt->openFlags = (u8)flags;
2516     pBt->db = db;
2517     sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2518     p->pBt = pBt;
2519 
2520     pBt->pCursor = 0;
2521     pBt->pPage1 = 0;
2522     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2523 #if defined(SQLITE_SECURE_DELETE)
2524     pBt->btsFlags |= BTS_SECURE_DELETE;
2525 #elif defined(SQLITE_FAST_SECURE_DELETE)
2526     pBt->btsFlags |= BTS_OVERWRITE;
2527 #endif
2528     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2529     ** determined by the 2-byte integer located at an offset of 16 bytes from
2530     ** the beginning of the database file. */
2531     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2532     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2533          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2534       pBt->pageSize = 0;
2535 #ifndef SQLITE_OMIT_AUTOVACUUM
2536       /* If the magic name ":memory:" will create an in-memory database, then
2537       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2538       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2539       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2540       ** regular file-name. In this case the auto-vacuum applies as per normal.
2541       */
2542       if( zFilename && !isMemdb ){
2543         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2544         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2545       }
2546 #endif
2547       nReserve = 0;
2548     }else{
2549       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2550       ** determined by the one-byte unsigned integer found at an offset of 20
2551       ** into the database file header. */
2552       nReserve = zDbHeader[20];
2553       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2554 #ifndef SQLITE_OMIT_AUTOVACUUM
2555       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2556       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2557 #endif
2558     }
2559     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2560     if( rc ) goto btree_open_out;
2561     pBt->usableSize = pBt->pageSize - nReserve;
2562     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2563 
2564 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2565     /* Add the new BtShared object to the linked list sharable BtShareds.
2566     */
2567     pBt->nRef = 1;
2568     if( p->sharable ){
2569       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2570       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2571       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2572         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2573         if( pBt->mutex==0 ){
2574           rc = SQLITE_NOMEM_BKPT;
2575           goto btree_open_out;
2576         }
2577       }
2578       sqlite3_mutex_enter(mutexShared);
2579       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2580       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2581       sqlite3_mutex_leave(mutexShared);
2582     }
2583 #endif
2584   }
2585 
2586 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2587   /* If the new Btree uses a sharable pBtShared, then link the new
2588   ** Btree into the list of all sharable Btrees for the same connection.
2589   ** The list is kept in ascending order by pBt address.
2590   */
2591   if( p->sharable ){
2592     int i;
2593     Btree *pSib;
2594     for(i=0; i<db->nDb; i++){
2595       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2596         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2597         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2598           p->pNext = pSib;
2599           p->pPrev = 0;
2600           pSib->pPrev = p;
2601         }else{
2602           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2603             pSib = pSib->pNext;
2604           }
2605           p->pNext = pSib->pNext;
2606           p->pPrev = pSib;
2607           if( p->pNext ){
2608             p->pNext->pPrev = p;
2609           }
2610           pSib->pNext = p;
2611         }
2612         break;
2613       }
2614     }
2615   }
2616 #endif
2617   *ppBtree = p;
2618 
2619 btree_open_out:
2620   if( rc!=SQLITE_OK ){
2621     if( pBt && pBt->pPager ){
2622       sqlite3PagerClose(pBt->pPager, 0);
2623     }
2624     sqlite3_free(pBt);
2625     sqlite3_free(p);
2626     *ppBtree = 0;
2627   }else{
2628     sqlite3_file *pFile;
2629 
2630     /* If the B-Tree was successfully opened, set the pager-cache size to the
2631     ** default value. Except, when opening on an existing shared pager-cache,
2632     ** do not change the pager-cache size.
2633     */
2634     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2635       sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2636     }
2637 
2638     pFile = sqlite3PagerFile(pBt->pPager);
2639     if( pFile->pMethods ){
2640       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2641     }
2642   }
2643   if( mutexOpen ){
2644     assert( sqlite3_mutex_held(mutexOpen) );
2645     sqlite3_mutex_leave(mutexOpen);
2646   }
2647   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2648   return rc;
2649 }
2650 
2651 /*
2652 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2653 ** remove the BtShared structure from the sharing list.  Return
2654 ** true if the BtShared.nRef counter reaches zero and return
2655 ** false if it is still positive.
2656 */
2657 static int removeFromSharingList(BtShared *pBt){
2658 #ifndef SQLITE_OMIT_SHARED_CACHE
2659   MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2660   BtShared *pList;
2661   int removed = 0;
2662 
2663   assert( sqlite3_mutex_notheld(pBt->mutex) );
2664   MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2665   sqlite3_mutex_enter(pMainMtx);
2666   pBt->nRef--;
2667   if( pBt->nRef<=0 ){
2668     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2669       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2670     }else{
2671       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2672       while( ALWAYS(pList) && pList->pNext!=pBt ){
2673         pList=pList->pNext;
2674       }
2675       if( ALWAYS(pList) ){
2676         pList->pNext = pBt->pNext;
2677       }
2678     }
2679     if( SQLITE_THREADSAFE ){
2680       sqlite3_mutex_free(pBt->mutex);
2681     }
2682     removed = 1;
2683   }
2684   sqlite3_mutex_leave(pMainMtx);
2685   return removed;
2686 #else
2687   return 1;
2688 #endif
2689 }
2690 
2691 /*
2692 ** Make sure pBt->pTmpSpace points to an allocation of
2693 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2694 ** pointer.
2695 */
2696 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2697   assert( pBt!=0 );
2698   assert( pBt->pTmpSpace==0 );
2699   /* This routine is called only by btreeCursor() when allocating the
2700   ** first write cursor for the BtShared object */
2701   assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2702   pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2703   if( pBt->pTmpSpace==0 ){
2704     BtCursor *pCur = pBt->pCursor;
2705     pBt->pCursor = pCur->pNext;  /* Unlink the cursor */
2706     memset(pCur, 0, sizeof(*pCur));
2707     return SQLITE_NOMEM_BKPT;
2708   }
2709 
2710   /* One of the uses of pBt->pTmpSpace is to format cells before
2711   ** inserting them into a leaf page (function fillInCell()). If
2712   ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2713   ** by the various routines that manipulate binary cells. Which
2714   ** can mean that fillInCell() only initializes the first 2 or 3
2715   ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2716   ** it into a database page. This is not actually a problem, but it
2717   ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2718   ** data is passed to system call write(). So to avoid this error,
2719   ** zero the first 4 bytes of temp space here.
2720   **
2721   ** Also:  Provide four bytes of initialized space before the
2722   ** beginning of pTmpSpace as an area available to prepend the
2723   ** left-child pointer to the beginning of a cell.
2724   */
2725   memset(pBt->pTmpSpace, 0, 8);
2726   pBt->pTmpSpace += 4;
2727   return SQLITE_OK;
2728 }
2729 
2730 /*
2731 ** Free the pBt->pTmpSpace allocation
2732 */
2733 static void freeTempSpace(BtShared *pBt){
2734   if( pBt->pTmpSpace ){
2735     pBt->pTmpSpace -= 4;
2736     sqlite3PageFree(pBt->pTmpSpace);
2737     pBt->pTmpSpace = 0;
2738   }
2739 }
2740 
2741 /*
2742 ** Close an open database and invalidate all cursors.
2743 */
2744 int sqlite3BtreeClose(Btree *p){
2745   BtShared *pBt = p->pBt;
2746 
2747   /* Close all cursors opened via this handle.  */
2748   assert( sqlite3_mutex_held(p->db->mutex) );
2749   sqlite3BtreeEnter(p);
2750 
2751   /* Verify that no other cursors have this Btree open */
2752 #ifdef SQLITE_DEBUG
2753   {
2754     BtCursor *pCur = pBt->pCursor;
2755     while( pCur ){
2756       BtCursor *pTmp = pCur;
2757       pCur = pCur->pNext;
2758       assert( pTmp->pBtree!=p );
2759 
2760     }
2761   }
2762 #endif
2763 
2764   /* Rollback any active transaction and free the handle structure.
2765   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2766   ** this handle.
2767   */
2768   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2769   sqlite3BtreeLeave(p);
2770 
2771   /* If there are still other outstanding references to the shared-btree
2772   ** structure, return now. The remainder of this procedure cleans
2773   ** up the shared-btree.
2774   */
2775   assert( p->wantToLock==0 && p->locked==0 );
2776   if( !p->sharable || removeFromSharingList(pBt) ){
2777     /* The pBt is no longer on the sharing list, so we can access
2778     ** it without having to hold the mutex.
2779     **
2780     ** Clean out and delete the BtShared object.
2781     */
2782     assert( !pBt->pCursor );
2783     sqlite3PagerClose(pBt->pPager, p->db);
2784     if( pBt->xFreeSchema && pBt->pSchema ){
2785       pBt->xFreeSchema(pBt->pSchema);
2786     }
2787     sqlite3DbFree(0, pBt->pSchema);
2788     freeTempSpace(pBt);
2789     sqlite3_free(pBt);
2790   }
2791 
2792 #ifndef SQLITE_OMIT_SHARED_CACHE
2793   assert( p->wantToLock==0 );
2794   assert( p->locked==0 );
2795   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2796   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2797 #endif
2798 
2799   sqlite3_free(p);
2800   return SQLITE_OK;
2801 }
2802 
2803 /*
2804 ** Change the "soft" limit on the number of pages in the cache.
2805 ** Unused and unmodified pages will be recycled when the number of
2806 ** pages in the cache exceeds this soft limit.  But the size of the
2807 ** cache is allowed to grow larger than this limit if it contains
2808 ** dirty pages or pages still in active use.
2809 */
2810 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2811   BtShared *pBt = p->pBt;
2812   assert( sqlite3_mutex_held(p->db->mutex) );
2813   sqlite3BtreeEnter(p);
2814   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2815   sqlite3BtreeLeave(p);
2816   return SQLITE_OK;
2817 }
2818 
2819 /*
2820 ** Change the "spill" limit on the number of pages in the cache.
2821 ** If the number of pages exceeds this limit during a write transaction,
2822 ** the pager might attempt to "spill" pages to the journal early in
2823 ** order to free up memory.
2824 **
2825 ** The value returned is the current spill size.  If zero is passed
2826 ** as an argument, no changes are made to the spill size setting, so
2827 ** using mxPage of 0 is a way to query the current spill size.
2828 */
2829 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2830   BtShared *pBt = p->pBt;
2831   int res;
2832   assert( sqlite3_mutex_held(p->db->mutex) );
2833   sqlite3BtreeEnter(p);
2834   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2835   sqlite3BtreeLeave(p);
2836   return res;
2837 }
2838 
2839 #if SQLITE_MAX_MMAP_SIZE>0
2840 /*
2841 ** Change the limit on the amount of the database file that may be
2842 ** memory mapped.
2843 */
2844 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2845   BtShared *pBt = p->pBt;
2846   assert( sqlite3_mutex_held(p->db->mutex) );
2847   sqlite3BtreeEnter(p);
2848   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2849   sqlite3BtreeLeave(p);
2850   return SQLITE_OK;
2851 }
2852 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2853 
2854 /*
2855 ** Change the way data is synced to disk in order to increase or decrease
2856 ** how well the database resists damage due to OS crashes and power
2857 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2858 ** there is a high probability of damage)  Level 2 is the default.  There
2859 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2860 ** probability of damage to near zero but with a write performance reduction.
2861 */
2862 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2863 int sqlite3BtreeSetPagerFlags(
2864   Btree *p,              /* The btree to set the safety level on */
2865   unsigned pgFlags       /* Various PAGER_* flags */
2866 ){
2867   BtShared *pBt = p->pBt;
2868   assert( sqlite3_mutex_held(p->db->mutex) );
2869   sqlite3BtreeEnter(p);
2870   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2871   sqlite3BtreeLeave(p);
2872   return SQLITE_OK;
2873 }
2874 #endif
2875 
2876 /*
2877 ** Change the default pages size and the number of reserved bytes per page.
2878 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2879 ** without changing anything.
2880 **
2881 ** The page size must be a power of 2 between 512 and 65536.  If the page
2882 ** size supplied does not meet this constraint then the page size is not
2883 ** changed.
2884 **
2885 ** Page sizes are constrained to be a power of two so that the region
2886 ** of the database file used for locking (beginning at PENDING_BYTE,
2887 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2888 ** at the beginning of a page.
2889 **
2890 ** If parameter nReserve is less than zero, then the number of reserved
2891 ** bytes per page is left unchanged.
2892 **
2893 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2894 ** and autovacuum mode can no longer be changed.
2895 */
2896 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2897   int rc = SQLITE_OK;
2898   int x;
2899   BtShared *pBt = p->pBt;
2900   assert( nReserve>=0 && nReserve<=255 );
2901   sqlite3BtreeEnter(p);
2902   pBt->nReserveWanted = nReserve;
2903   x = pBt->pageSize - pBt->usableSize;
2904   if( nReserve<x ) nReserve = x;
2905   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2906     sqlite3BtreeLeave(p);
2907     return SQLITE_READONLY;
2908   }
2909   assert( nReserve>=0 && nReserve<=255 );
2910   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2911         ((pageSize-1)&pageSize)==0 ){
2912     assert( (pageSize & 7)==0 );
2913     assert( !pBt->pCursor );
2914     if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2915     pBt->pageSize = (u32)pageSize;
2916     freeTempSpace(pBt);
2917   }
2918   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2919   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2920   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2921   sqlite3BtreeLeave(p);
2922   return rc;
2923 }
2924 
2925 /*
2926 ** Return the currently defined page size
2927 */
2928 int sqlite3BtreeGetPageSize(Btree *p){
2929   return p->pBt->pageSize;
2930 }
2931 
2932 /*
2933 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2934 ** may only be called if it is guaranteed that the b-tree mutex is already
2935 ** held.
2936 **
2937 ** This is useful in one special case in the backup API code where it is
2938 ** known that the shared b-tree mutex is held, but the mutex on the
2939 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2940 ** were to be called, it might collide with some other operation on the
2941 ** database handle that owns *p, causing undefined behavior.
2942 */
2943 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2944   int n;
2945   assert( sqlite3_mutex_held(p->pBt->mutex) );
2946   n = p->pBt->pageSize - p->pBt->usableSize;
2947   return n;
2948 }
2949 
2950 /*
2951 ** Return the number of bytes of space at the end of every page that
2952 ** are intentually left unused.  This is the "reserved" space that is
2953 ** sometimes used by extensions.
2954 **
2955 ** The value returned is the larger of the current reserve size and
2956 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2957 ** The amount of reserve can only grow - never shrink.
2958 */
2959 int sqlite3BtreeGetRequestedReserve(Btree *p){
2960   int n1, n2;
2961   sqlite3BtreeEnter(p);
2962   n1 = (int)p->pBt->nReserveWanted;
2963   n2 = sqlite3BtreeGetReserveNoMutex(p);
2964   sqlite3BtreeLeave(p);
2965   return n1>n2 ? n1 : n2;
2966 }
2967 
2968 
2969 /*
2970 ** Set the maximum page count for a database if mxPage is positive.
2971 ** No changes are made if mxPage is 0 or negative.
2972 ** Regardless of the value of mxPage, return the maximum page count.
2973 */
2974 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2975   Pgno n;
2976   sqlite3BtreeEnter(p);
2977   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2978   sqlite3BtreeLeave(p);
2979   return n;
2980 }
2981 
2982 /*
2983 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2984 **
2985 **    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2986 **    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2987 **    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2988 **    newFlag==(-1)    No changes
2989 **
2990 ** This routine acts as a query if newFlag is less than zero
2991 **
2992 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2993 ** freelist leaf pages are not written back to the database.  Thus in-page
2994 ** deleted content is cleared, but freelist deleted content is not.
2995 **
2996 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2997 ** that freelist leaf pages are written back into the database, increasing
2998 ** the amount of disk I/O.
2999 */
3000 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3001   int b;
3002   if( p==0 ) return 0;
3003   sqlite3BtreeEnter(p);
3004   assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3005   assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3006   if( newFlag>=0 ){
3007     p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3008     p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3009   }
3010   b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3011   sqlite3BtreeLeave(p);
3012   return b;
3013 }
3014 
3015 /*
3016 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3017 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3018 ** is disabled. The default value for the auto-vacuum property is
3019 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3020 */
3021 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3022 #ifdef SQLITE_OMIT_AUTOVACUUM
3023   return SQLITE_READONLY;
3024 #else
3025   BtShared *pBt = p->pBt;
3026   int rc = SQLITE_OK;
3027   u8 av = (u8)autoVacuum;
3028 
3029   sqlite3BtreeEnter(p);
3030   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3031     rc = SQLITE_READONLY;
3032   }else{
3033     pBt->autoVacuum = av ?1:0;
3034     pBt->incrVacuum = av==2 ?1:0;
3035   }
3036   sqlite3BtreeLeave(p);
3037   return rc;
3038 #endif
3039 }
3040 
3041 /*
3042 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3043 ** enabled 1 is returned. Otherwise 0.
3044 */
3045 int sqlite3BtreeGetAutoVacuum(Btree *p){
3046 #ifdef SQLITE_OMIT_AUTOVACUUM
3047   return BTREE_AUTOVACUUM_NONE;
3048 #else
3049   int rc;
3050   sqlite3BtreeEnter(p);
3051   rc = (
3052     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3053     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3054     BTREE_AUTOVACUUM_INCR
3055   );
3056   sqlite3BtreeLeave(p);
3057   return rc;
3058 #endif
3059 }
3060 
3061 /*
3062 ** If the user has not set the safety-level for this database connection
3063 ** using "PRAGMA synchronous", and if the safety-level is not already
3064 ** set to the value passed to this function as the second parameter,
3065 ** set it so.
3066 */
3067 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3068     && !defined(SQLITE_OMIT_WAL)
3069 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3070   sqlite3 *db;
3071   Db *pDb;
3072   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3073     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3074     if( pDb->bSyncSet==0
3075      && pDb->safety_level!=safety_level
3076      && pDb!=&db->aDb[1]
3077     ){
3078       pDb->safety_level = safety_level;
3079       sqlite3PagerSetFlags(pBt->pPager,
3080           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3081     }
3082   }
3083 }
3084 #else
3085 # define setDefaultSyncFlag(pBt,safety_level)
3086 #endif
3087 
3088 /* Forward declaration */
3089 static int newDatabase(BtShared*);
3090 
3091 
3092 /*
3093 ** Get a reference to pPage1 of the database file.  This will
3094 ** also acquire a readlock on that file.
3095 **
3096 ** SQLITE_OK is returned on success.  If the file is not a
3097 ** well-formed database file, then SQLITE_CORRUPT is returned.
3098 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
3099 ** is returned if we run out of memory.
3100 */
3101 static int lockBtree(BtShared *pBt){
3102   int rc;              /* Result code from subfunctions */
3103   MemPage *pPage1;     /* Page 1 of the database file */
3104   u32 nPage;           /* Number of pages in the database */
3105   u32 nPageFile = 0;   /* Number of pages in the database file */
3106 
3107   assert( sqlite3_mutex_held(pBt->mutex) );
3108   assert( pBt->pPage1==0 );
3109   rc = sqlite3PagerSharedLock(pBt->pPager);
3110   if( rc!=SQLITE_OK ) return rc;
3111   rc = btreeGetPage(pBt, 1, &pPage1, 0);
3112   if( rc!=SQLITE_OK ) return rc;
3113 
3114   /* Do some checking to help insure the file we opened really is
3115   ** a valid database file.
3116   */
3117   nPage = get4byte(28+(u8*)pPage1->aData);
3118   sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3119   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3120     nPage = nPageFile;
3121   }
3122   if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3123     nPage = 0;
3124   }
3125   if( nPage>0 ){
3126     u32 pageSize;
3127     u32 usableSize;
3128     u8 *page1 = pPage1->aData;
3129     rc = SQLITE_NOTADB;
3130     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3131     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3132     ** 61 74 20 33 00. */
3133     if( memcmp(page1, zMagicHeader, 16)!=0 ){
3134       goto page1_init_failed;
3135     }
3136 
3137 #ifdef SQLITE_OMIT_WAL
3138     if( page1[18]>1 ){
3139       pBt->btsFlags |= BTS_READ_ONLY;
3140     }
3141     if( page1[19]>1 ){
3142       goto page1_init_failed;
3143     }
3144 #else
3145     if( page1[18]>2 ){
3146       pBt->btsFlags |= BTS_READ_ONLY;
3147     }
3148     if( page1[19]>2 ){
3149       goto page1_init_failed;
3150     }
3151 
3152     /* If the read version is set to 2, this database should be accessed
3153     ** in WAL mode. If the log is not already open, open it now. Then
3154     ** return SQLITE_OK and return without populating BtShared.pPage1.
3155     ** The caller detects this and calls this function again. This is
3156     ** required as the version of page 1 currently in the page1 buffer
3157     ** may not be the latest version - there may be a newer one in the log
3158     ** file.
3159     */
3160     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3161       int isOpen = 0;
3162       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3163       if( rc!=SQLITE_OK ){
3164         goto page1_init_failed;
3165       }else{
3166         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3167         if( isOpen==0 ){
3168           releasePageOne(pPage1);
3169           return SQLITE_OK;
3170         }
3171       }
3172       rc = SQLITE_NOTADB;
3173     }else{
3174       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3175     }
3176 #endif
3177 
3178     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3179     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3180     **
3181     ** The original design allowed these amounts to vary, but as of
3182     ** version 3.6.0, we require them to be fixed.
3183     */
3184     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3185       goto page1_init_failed;
3186     }
3187     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3188     ** determined by the 2-byte integer located at an offset of 16 bytes from
3189     ** the beginning of the database file. */
3190     pageSize = (page1[16]<<8) | (page1[17]<<16);
3191     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3192     ** between 512 and 65536 inclusive. */
3193     if( ((pageSize-1)&pageSize)!=0
3194      || pageSize>SQLITE_MAX_PAGE_SIZE
3195      || pageSize<=256
3196     ){
3197       goto page1_init_failed;
3198     }
3199     pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3200     assert( (pageSize & 7)==0 );
3201     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3202     ** integer at offset 20 is the number of bytes of space at the end of
3203     ** each page to reserve for extensions.
3204     **
3205     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3206     ** determined by the one-byte unsigned integer found at an offset of 20
3207     ** into the database file header. */
3208     usableSize = pageSize - page1[20];
3209     if( (u32)pageSize!=pBt->pageSize ){
3210       /* After reading the first page of the database assuming a page size
3211       ** of BtShared.pageSize, we have discovered that the page-size is
3212       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3213       ** zero and return SQLITE_OK. The caller will call this function
3214       ** again with the correct page-size.
3215       */
3216       releasePageOne(pPage1);
3217       pBt->usableSize = usableSize;
3218       pBt->pageSize = pageSize;
3219       freeTempSpace(pBt);
3220       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3221                                    pageSize-usableSize);
3222       return rc;
3223     }
3224     if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
3225       rc = SQLITE_CORRUPT_BKPT;
3226       goto page1_init_failed;
3227     }
3228     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3229     ** be less than 480. In other words, if the page size is 512, then the
3230     ** reserved space size cannot exceed 32. */
3231     if( usableSize<480 ){
3232       goto page1_init_failed;
3233     }
3234     pBt->pageSize = pageSize;
3235     pBt->usableSize = usableSize;
3236 #ifndef SQLITE_OMIT_AUTOVACUUM
3237     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3238     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3239 #endif
3240   }
3241 
3242   /* maxLocal is the maximum amount of payload to store locally for
3243   ** a cell.  Make sure it is small enough so that at least minFanout
3244   ** cells can will fit on one page.  We assume a 10-byte page header.
3245   ** Besides the payload, the cell must store:
3246   **     2-byte pointer to the cell
3247   **     4-byte child pointer
3248   **     9-byte nKey value
3249   **     4-byte nData value
3250   **     4-byte overflow page pointer
3251   ** So a cell consists of a 2-byte pointer, a header which is as much as
3252   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3253   ** page pointer.
3254   */
3255   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3256   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3257   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3258   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3259   if( pBt->maxLocal>127 ){
3260     pBt->max1bytePayload = 127;
3261   }else{
3262     pBt->max1bytePayload = (u8)pBt->maxLocal;
3263   }
3264   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3265   pBt->pPage1 = pPage1;
3266   pBt->nPage = nPage;
3267   return SQLITE_OK;
3268 
3269 page1_init_failed:
3270   releasePageOne(pPage1);
3271   pBt->pPage1 = 0;
3272   return rc;
3273 }
3274 
3275 #ifndef NDEBUG
3276 /*
3277 ** Return the number of cursors open on pBt. This is for use
3278 ** in assert() expressions, so it is only compiled if NDEBUG is not
3279 ** defined.
3280 **
3281 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3282 ** false then all cursors are counted.
3283 **
3284 ** For the purposes of this routine, a cursor is any cursor that
3285 ** is capable of reading or writing to the database.  Cursors that
3286 ** have been tripped into the CURSOR_FAULT state are not counted.
3287 */
3288 static int countValidCursors(BtShared *pBt, int wrOnly){
3289   BtCursor *pCur;
3290   int r = 0;
3291   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3292     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3293      && pCur->eState!=CURSOR_FAULT ) r++;
3294   }
3295   return r;
3296 }
3297 #endif
3298 
3299 /*
3300 ** If there are no outstanding cursors and we are not in the middle
3301 ** of a transaction but there is a read lock on the database, then
3302 ** this routine unrefs the first page of the database file which
3303 ** has the effect of releasing the read lock.
3304 **
3305 ** If there is a transaction in progress, this routine is a no-op.
3306 */
3307 static void unlockBtreeIfUnused(BtShared *pBt){
3308   assert( sqlite3_mutex_held(pBt->mutex) );
3309   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3310   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3311     MemPage *pPage1 = pBt->pPage1;
3312     assert( pPage1->aData );
3313     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3314     pBt->pPage1 = 0;
3315     releasePageOne(pPage1);
3316   }
3317 }
3318 
3319 /*
3320 ** If pBt points to an empty file then convert that empty file
3321 ** into a new empty database by initializing the first page of
3322 ** the database.
3323 */
3324 static int newDatabase(BtShared *pBt){
3325   MemPage *pP1;
3326   unsigned char *data;
3327   int rc;
3328 
3329   assert( sqlite3_mutex_held(pBt->mutex) );
3330   if( pBt->nPage>0 ){
3331     return SQLITE_OK;
3332   }
3333   pP1 = pBt->pPage1;
3334   assert( pP1!=0 );
3335   data = pP1->aData;
3336   rc = sqlite3PagerWrite(pP1->pDbPage);
3337   if( rc ) return rc;
3338   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3339   assert( sizeof(zMagicHeader)==16 );
3340   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3341   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3342   data[18] = 1;
3343   data[19] = 1;
3344   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3345   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3346   data[21] = 64;
3347   data[22] = 32;
3348   data[23] = 32;
3349   memset(&data[24], 0, 100-24);
3350   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3351   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3352 #ifndef SQLITE_OMIT_AUTOVACUUM
3353   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3354   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3355   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3356   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3357 #endif
3358   pBt->nPage = 1;
3359   data[31] = 1;
3360   return SQLITE_OK;
3361 }
3362 
3363 /*
3364 ** Initialize the first page of the database file (creating a database
3365 ** consisting of a single page and no schema objects). Return SQLITE_OK
3366 ** if successful, or an SQLite error code otherwise.
3367 */
3368 int sqlite3BtreeNewDb(Btree *p){
3369   int rc;
3370   sqlite3BtreeEnter(p);
3371   p->pBt->nPage = 0;
3372   rc = newDatabase(p->pBt);
3373   sqlite3BtreeLeave(p);
3374   return rc;
3375 }
3376 
3377 /*
3378 ** Attempt to start a new transaction. A write-transaction
3379 ** is started if the second argument is nonzero, otherwise a read-
3380 ** transaction.  If the second argument is 2 or more and exclusive
3381 ** transaction is started, meaning that no other process is allowed
3382 ** to access the database.  A preexisting transaction may not be
3383 ** upgraded to exclusive by calling this routine a second time - the
3384 ** exclusivity flag only works for a new transaction.
3385 **
3386 ** A write-transaction must be started before attempting any
3387 ** changes to the database.  None of the following routines
3388 ** will work unless a transaction is started first:
3389 **
3390 **      sqlite3BtreeCreateTable()
3391 **      sqlite3BtreeCreateIndex()
3392 **      sqlite3BtreeClearTable()
3393 **      sqlite3BtreeDropTable()
3394 **      sqlite3BtreeInsert()
3395 **      sqlite3BtreeDelete()
3396 **      sqlite3BtreeUpdateMeta()
3397 **
3398 ** If an initial attempt to acquire the lock fails because of lock contention
3399 ** and the database was previously unlocked, then invoke the busy handler
3400 ** if there is one.  But if there was previously a read-lock, do not
3401 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3402 ** returned when there is already a read-lock in order to avoid a deadlock.
3403 **
3404 ** Suppose there are two processes A and B.  A has a read lock and B has
3405 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3406 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3407 ** One or the other of the two processes must give way or there can be
3408 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3409 ** when A already has a read lock, we encourage A to give up and let B
3410 ** proceed.
3411 */
3412 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3413   BtShared *pBt = p->pBt;
3414   Pager *pPager = pBt->pPager;
3415   int rc = SQLITE_OK;
3416 
3417   sqlite3BtreeEnter(p);
3418   btreeIntegrity(p);
3419 
3420   /* If the btree is already in a write-transaction, or it
3421   ** is already in a read-transaction and a read-transaction
3422   ** is requested, this is a no-op.
3423   */
3424   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3425     goto trans_begun;
3426   }
3427   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3428 
3429   if( (p->db->flags & SQLITE_ResetDatabase)
3430    && sqlite3PagerIsreadonly(pPager)==0
3431   ){
3432     pBt->btsFlags &= ~BTS_READ_ONLY;
3433   }
3434 
3435   /* Write transactions are not possible on a read-only database */
3436   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3437     rc = SQLITE_READONLY;
3438     goto trans_begun;
3439   }
3440 
3441 #ifndef SQLITE_OMIT_SHARED_CACHE
3442   {
3443     sqlite3 *pBlock = 0;
3444     /* If another database handle has already opened a write transaction
3445     ** on this shared-btree structure and a second write transaction is
3446     ** requested, return SQLITE_LOCKED.
3447     */
3448     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3449      || (pBt->btsFlags & BTS_PENDING)!=0
3450     ){
3451       pBlock = pBt->pWriter->db;
3452     }else if( wrflag>1 ){
3453       BtLock *pIter;
3454       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3455         if( pIter->pBtree!=p ){
3456           pBlock = pIter->pBtree->db;
3457           break;
3458         }
3459       }
3460     }
3461     if( pBlock ){
3462       sqlite3ConnectionBlocked(p->db, pBlock);
3463       rc = SQLITE_LOCKED_SHAREDCACHE;
3464       goto trans_begun;
3465     }
3466   }
3467 #endif
3468 
3469   /* Any read-only or read-write transaction implies a read-lock on
3470   ** page 1. So if some other shared-cache client already has a write-lock
3471   ** on page 1, the transaction cannot be opened. */
3472   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3473   if( SQLITE_OK!=rc ) goto trans_begun;
3474 
3475   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3476   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3477   do {
3478     sqlite3PagerWalDb(pPager, p->db);
3479 
3480 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3481     /* If transitioning from no transaction directly to a write transaction,
3482     ** block for the WRITER lock first if possible. */
3483     if( pBt->pPage1==0 && wrflag ){
3484       assert( pBt->inTransaction==TRANS_NONE );
3485       rc = sqlite3PagerWalWriteLock(pPager, 1);
3486       if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3487     }
3488 #endif
3489 
3490     /* Call lockBtree() until either pBt->pPage1 is populated or
3491     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3492     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3493     ** reading page 1 it discovers that the page-size of the database
3494     ** file is not pBt->pageSize. In this case lockBtree() will update
3495     ** pBt->pageSize to the page-size of the file on disk.
3496     */
3497     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3498 
3499     if( rc==SQLITE_OK && wrflag ){
3500       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3501         rc = SQLITE_READONLY;
3502       }else{
3503         rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3504         if( rc==SQLITE_OK ){
3505           rc = newDatabase(pBt);
3506         }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3507           /* if there was no transaction opened when this function was
3508           ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3509           ** code to SQLITE_BUSY. */
3510           rc = SQLITE_BUSY;
3511         }
3512       }
3513     }
3514 
3515     if( rc!=SQLITE_OK ){
3516       (void)sqlite3PagerWalWriteLock(pPager, 0);
3517       unlockBtreeIfUnused(pBt);
3518     }
3519   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3520           btreeInvokeBusyHandler(pBt) );
3521   sqlite3PagerWalDb(pPager, 0);
3522 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3523   if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3524 #endif
3525 
3526   if( rc==SQLITE_OK ){
3527     if( p->inTrans==TRANS_NONE ){
3528       pBt->nTransaction++;
3529 #ifndef SQLITE_OMIT_SHARED_CACHE
3530       if( p->sharable ){
3531         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3532         p->lock.eLock = READ_LOCK;
3533         p->lock.pNext = pBt->pLock;
3534         pBt->pLock = &p->lock;
3535       }
3536 #endif
3537     }
3538     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3539     if( p->inTrans>pBt->inTransaction ){
3540       pBt->inTransaction = p->inTrans;
3541     }
3542     if( wrflag ){
3543       MemPage *pPage1 = pBt->pPage1;
3544 #ifndef SQLITE_OMIT_SHARED_CACHE
3545       assert( !pBt->pWriter );
3546       pBt->pWriter = p;
3547       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3548       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3549 #endif
3550 
3551       /* If the db-size header field is incorrect (as it may be if an old
3552       ** client has been writing the database file), update it now. Doing
3553       ** this sooner rather than later means the database size can safely
3554       ** re-read the database size from page 1 if a savepoint or transaction
3555       ** rollback occurs within the transaction.
3556       */
3557       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3558         rc = sqlite3PagerWrite(pPage1->pDbPage);
3559         if( rc==SQLITE_OK ){
3560           put4byte(&pPage1->aData[28], pBt->nPage);
3561         }
3562       }
3563     }
3564   }
3565 
3566 trans_begun:
3567   if( rc==SQLITE_OK ){
3568     if( pSchemaVersion ){
3569       *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3570     }
3571     if( wrflag ){
3572       /* This call makes sure that the pager has the correct number of
3573       ** open savepoints. If the second parameter is greater than 0 and
3574       ** the sub-journal is not already open, then it will be opened here.
3575       */
3576       rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3577     }
3578   }
3579 
3580   btreeIntegrity(p);
3581   sqlite3BtreeLeave(p);
3582   return rc;
3583 }
3584 
3585 #ifndef SQLITE_OMIT_AUTOVACUUM
3586 
3587 /*
3588 ** Set the pointer-map entries for all children of page pPage. Also, if
3589 ** pPage contains cells that point to overflow pages, set the pointer
3590 ** map entries for the overflow pages as well.
3591 */
3592 static int setChildPtrmaps(MemPage *pPage){
3593   int i;                             /* Counter variable */
3594   int nCell;                         /* Number of cells in page pPage */
3595   int rc;                            /* Return code */
3596   BtShared *pBt = pPage->pBt;
3597   Pgno pgno = pPage->pgno;
3598 
3599   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3600   rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3601   if( rc!=SQLITE_OK ) return rc;
3602   nCell = pPage->nCell;
3603 
3604   for(i=0; i<nCell; i++){
3605     u8 *pCell = findCell(pPage, i);
3606 
3607     ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3608 
3609     if( !pPage->leaf ){
3610       Pgno childPgno = get4byte(pCell);
3611       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3612     }
3613   }
3614 
3615   if( !pPage->leaf ){
3616     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3617     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3618   }
3619 
3620   return rc;
3621 }
3622 
3623 /*
3624 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3625 ** that it points to iTo. Parameter eType describes the type of pointer to
3626 ** be modified, as  follows:
3627 **
3628 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3629 **                   page of pPage.
3630 **
3631 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3632 **                   page pointed to by one of the cells on pPage.
3633 **
3634 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3635 **                   overflow page in the list.
3636 */
3637 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3638   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3639   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3640   if( eType==PTRMAP_OVERFLOW2 ){
3641     /* The pointer is always the first 4 bytes of the page in this case.  */
3642     if( get4byte(pPage->aData)!=iFrom ){
3643       return SQLITE_CORRUPT_PAGE(pPage);
3644     }
3645     put4byte(pPage->aData, iTo);
3646   }else{
3647     int i;
3648     int nCell;
3649     int rc;
3650 
3651     rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3652     if( rc ) return rc;
3653     nCell = pPage->nCell;
3654 
3655     for(i=0; i<nCell; i++){
3656       u8 *pCell = findCell(pPage, i);
3657       if( eType==PTRMAP_OVERFLOW1 ){
3658         CellInfo info;
3659         pPage->xParseCell(pPage, pCell, &info);
3660         if( info.nLocal<info.nPayload ){
3661           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3662             return SQLITE_CORRUPT_PAGE(pPage);
3663           }
3664           if( iFrom==get4byte(pCell+info.nSize-4) ){
3665             put4byte(pCell+info.nSize-4, iTo);
3666             break;
3667           }
3668         }
3669       }else{
3670         if( get4byte(pCell)==iFrom ){
3671           put4byte(pCell, iTo);
3672           break;
3673         }
3674       }
3675     }
3676 
3677     if( i==nCell ){
3678       if( eType!=PTRMAP_BTREE ||
3679           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3680         return SQLITE_CORRUPT_PAGE(pPage);
3681       }
3682       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3683     }
3684   }
3685   return SQLITE_OK;
3686 }
3687 
3688 
3689 /*
3690 ** Move the open database page pDbPage to location iFreePage in the
3691 ** database. The pDbPage reference remains valid.
3692 **
3693 ** The isCommit flag indicates that there is no need to remember that
3694 ** the journal needs to be sync()ed before database page pDbPage->pgno
3695 ** can be written to. The caller has already promised not to write to that
3696 ** page.
3697 */
3698 static int relocatePage(
3699   BtShared *pBt,           /* Btree */
3700   MemPage *pDbPage,        /* Open page to move */
3701   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3702   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3703   Pgno iFreePage,          /* The location to move pDbPage to */
3704   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3705 ){
3706   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3707   Pgno iDbPage = pDbPage->pgno;
3708   Pager *pPager = pBt->pPager;
3709   int rc;
3710 
3711   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3712       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3713   assert( sqlite3_mutex_held(pBt->mutex) );
3714   assert( pDbPage->pBt==pBt );
3715   if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3716 
3717   /* Move page iDbPage from its current location to page number iFreePage */
3718   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3719       iDbPage, iFreePage, iPtrPage, eType));
3720   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3721   if( rc!=SQLITE_OK ){
3722     return rc;
3723   }
3724   pDbPage->pgno = iFreePage;
3725 
3726   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3727   ** that point to overflow pages. The pointer map entries for all these
3728   ** pages need to be changed.
3729   **
3730   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3731   ** pointer to a subsequent overflow page. If this is the case, then
3732   ** the pointer map needs to be updated for the subsequent overflow page.
3733   */
3734   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3735     rc = setChildPtrmaps(pDbPage);
3736     if( rc!=SQLITE_OK ){
3737       return rc;
3738     }
3739   }else{
3740     Pgno nextOvfl = get4byte(pDbPage->aData);
3741     if( nextOvfl!=0 ){
3742       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3743       if( rc!=SQLITE_OK ){
3744         return rc;
3745       }
3746     }
3747   }
3748 
3749   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3750   ** that it points at iFreePage. Also fix the pointer map entry for
3751   ** iPtrPage.
3752   */
3753   if( eType!=PTRMAP_ROOTPAGE ){
3754     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3755     if( rc!=SQLITE_OK ){
3756       return rc;
3757     }
3758     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3759     if( rc!=SQLITE_OK ){
3760       releasePage(pPtrPage);
3761       return rc;
3762     }
3763     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3764     releasePage(pPtrPage);
3765     if( rc==SQLITE_OK ){
3766       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3767     }
3768   }
3769   return rc;
3770 }
3771 
3772 /* Forward declaration required by incrVacuumStep(). */
3773 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3774 
3775 /*
3776 ** Perform a single step of an incremental-vacuum. If successful, return
3777 ** SQLITE_OK. If there is no work to do (and therefore no point in
3778 ** calling this function again), return SQLITE_DONE. Or, if an error
3779 ** occurs, return some other error code.
3780 **
3781 ** More specifically, this function attempts to re-organize the database so
3782 ** that the last page of the file currently in use is no longer in use.
3783 **
3784 ** Parameter nFin is the number of pages that this database would contain
3785 ** were this function called until it returns SQLITE_DONE.
3786 **
3787 ** If the bCommit parameter is non-zero, this function assumes that the
3788 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3789 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3790 ** operation, or false for an incremental vacuum.
3791 */
3792 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3793   Pgno nFreeList;           /* Number of pages still on the free-list */
3794   int rc;
3795 
3796   assert( sqlite3_mutex_held(pBt->mutex) );
3797   assert( iLastPg>nFin );
3798 
3799   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3800     u8 eType;
3801     Pgno iPtrPage;
3802 
3803     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3804     if( nFreeList==0 ){
3805       return SQLITE_DONE;
3806     }
3807 
3808     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3809     if( rc!=SQLITE_OK ){
3810       return rc;
3811     }
3812     if( eType==PTRMAP_ROOTPAGE ){
3813       return SQLITE_CORRUPT_BKPT;
3814     }
3815 
3816     if( eType==PTRMAP_FREEPAGE ){
3817       if( bCommit==0 ){
3818         /* Remove the page from the files free-list. This is not required
3819         ** if bCommit is non-zero. In that case, the free-list will be
3820         ** truncated to zero after this function returns, so it doesn't
3821         ** matter if it still contains some garbage entries.
3822         */
3823         Pgno iFreePg;
3824         MemPage *pFreePg;
3825         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3826         if( rc!=SQLITE_OK ){
3827           return rc;
3828         }
3829         assert( iFreePg==iLastPg );
3830         releasePage(pFreePg);
3831       }
3832     } else {
3833       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3834       MemPage *pLastPg;
3835       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3836       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3837 
3838       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3839       if( rc!=SQLITE_OK ){
3840         return rc;
3841       }
3842 
3843       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3844       ** is swapped with the first free page pulled off the free list.
3845       **
3846       ** On the other hand, if bCommit is greater than zero, then keep
3847       ** looping until a free-page located within the first nFin pages
3848       ** of the file is found.
3849       */
3850       if( bCommit==0 ){
3851         eMode = BTALLOC_LE;
3852         iNear = nFin;
3853       }
3854       do {
3855         MemPage *pFreePg;
3856         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3857         if( rc!=SQLITE_OK ){
3858           releasePage(pLastPg);
3859           return rc;
3860         }
3861         releasePage(pFreePg);
3862       }while( bCommit && iFreePg>nFin );
3863       assert( iFreePg<iLastPg );
3864 
3865       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3866       releasePage(pLastPg);
3867       if( rc!=SQLITE_OK ){
3868         return rc;
3869       }
3870     }
3871   }
3872 
3873   if( bCommit==0 ){
3874     do {
3875       iLastPg--;
3876     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3877     pBt->bDoTruncate = 1;
3878     pBt->nPage = iLastPg;
3879   }
3880   return SQLITE_OK;
3881 }
3882 
3883 /*
3884 ** The database opened by the first argument is an auto-vacuum database
3885 ** nOrig pages in size containing nFree free pages. Return the expected
3886 ** size of the database in pages following an auto-vacuum operation.
3887 */
3888 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3889   int nEntry;                     /* Number of entries on one ptrmap page */
3890   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3891   Pgno nFin;                      /* Return value */
3892 
3893   nEntry = pBt->usableSize/5;
3894   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3895   nFin = nOrig - nFree - nPtrmap;
3896   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3897     nFin--;
3898   }
3899   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3900     nFin--;
3901   }
3902 
3903   return nFin;
3904 }
3905 
3906 /*
3907 ** A write-transaction must be opened before calling this function.
3908 ** It performs a single unit of work towards an incremental vacuum.
3909 **
3910 ** If the incremental vacuum is finished after this function has run,
3911 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3912 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3913 */
3914 int sqlite3BtreeIncrVacuum(Btree *p){
3915   int rc;
3916   BtShared *pBt = p->pBt;
3917 
3918   sqlite3BtreeEnter(p);
3919   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3920   if( !pBt->autoVacuum ){
3921     rc = SQLITE_DONE;
3922   }else{
3923     Pgno nOrig = btreePagecount(pBt);
3924     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3925     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3926 
3927     if( nOrig<nFin || nFree>=nOrig ){
3928       rc = SQLITE_CORRUPT_BKPT;
3929     }else if( nFree>0 ){
3930       rc = saveAllCursors(pBt, 0, 0);
3931       if( rc==SQLITE_OK ){
3932         invalidateAllOverflowCache(pBt);
3933         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3934       }
3935       if( rc==SQLITE_OK ){
3936         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3937         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3938       }
3939     }else{
3940       rc = SQLITE_DONE;
3941     }
3942   }
3943   sqlite3BtreeLeave(p);
3944   return rc;
3945 }
3946 
3947 /*
3948 ** This routine is called prior to sqlite3PagerCommit when a transaction
3949 ** is committed for an auto-vacuum database.
3950 */
3951 static int autoVacuumCommit(Btree *p){
3952   int rc = SQLITE_OK;
3953   Pager *pPager;
3954   BtShared *pBt;
3955   sqlite3 *db;
3956   VVA_ONLY( int nRef );
3957 
3958   assert( p!=0 );
3959   pBt = p->pBt;
3960   pPager = pBt->pPager;
3961   VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
3962 
3963   assert( sqlite3_mutex_held(pBt->mutex) );
3964   invalidateAllOverflowCache(pBt);
3965   assert(pBt->autoVacuum);
3966   if( !pBt->incrVacuum ){
3967     Pgno nFin;         /* Number of pages in database after autovacuuming */
3968     Pgno nFree;        /* Number of pages on the freelist initially */
3969     Pgno nVac;         /* Number of pages to vacuum */
3970     Pgno iFree;        /* The next page to be freed */
3971     Pgno nOrig;        /* Database size before freeing */
3972 
3973     nOrig = btreePagecount(pBt);
3974     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3975       /* It is not possible to create a database for which the final page
3976       ** is either a pointer-map page or the pending-byte page. If one
3977       ** is encountered, this indicates corruption.
3978       */
3979       return SQLITE_CORRUPT_BKPT;
3980     }
3981 
3982     nFree = get4byte(&pBt->pPage1->aData[36]);
3983     db = p->db;
3984     if( db->xAutovacPages ){
3985       int iDb;
3986       for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
3987         if( db->aDb[iDb].pBt==p ) break;
3988       }
3989       nVac = db->xAutovacPages(
3990         db->pAutovacPagesArg,
3991         db->aDb[iDb].zDbSName,
3992         nOrig,
3993         nFree,
3994         pBt->pageSize
3995       );
3996       if( nVac>nFree ){
3997         nVac = nFree;
3998       }
3999       if( nVac==0 ){
4000         return SQLITE_OK;
4001       }
4002     }else{
4003       nVac = nFree;
4004     }
4005     nFin = finalDbSize(pBt, nOrig, nVac);
4006     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4007     if( nFin<nOrig ){
4008       rc = saveAllCursors(pBt, 0, 0);
4009     }
4010     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4011       rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4012     }
4013     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4014       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4015       if( nVac==nFree ){
4016         put4byte(&pBt->pPage1->aData[32], 0);
4017         put4byte(&pBt->pPage1->aData[36], 0);
4018       }
4019       put4byte(&pBt->pPage1->aData[28], nFin);
4020       pBt->bDoTruncate = 1;
4021       pBt->nPage = nFin;
4022     }
4023     if( rc!=SQLITE_OK ){
4024       sqlite3PagerRollback(pPager);
4025     }
4026   }
4027 
4028   assert( nRef>=sqlite3PagerRefcount(pPager) );
4029   return rc;
4030 }
4031 
4032 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4033 # define setChildPtrmaps(x) SQLITE_OK
4034 #endif
4035 
4036 /*
4037 ** This routine does the first phase of a two-phase commit.  This routine
4038 ** causes a rollback journal to be created (if it does not already exist)
4039 ** and populated with enough information so that if a power loss occurs
4040 ** the database can be restored to its original state by playing back
4041 ** the journal.  Then the contents of the journal are flushed out to
4042 ** the disk.  After the journal is safely on oxide, the changes to the
4043 ** database are written into the database file and flushed to oxide.
4044 ** At the end of this call, the rollback journal still exists on the
4045 ** disk and we are still holding all locks, so the transaction has not
4046 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4047 ** commit process.
4048 **
4049 ** This call is a no-op if no write-transaction is currently active on pBt.
4050 **
4051 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4052 ** the name of a super-journal file that should be written into the
4053 ** individual journal file, or is NULL, indicating no super-journal file
4054 ** (single database transaction).
4055 **
4056 ** When this is called, the super-journal should already have been
4057 ** created, populated with this journal pointer and synced to disk.
4058 **
4059 ** Once this is routine has returned, the only thing required to commit
4060 ** the write-transaction for this database file is to delete the journal.
4061 */
4062 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4063   int rc = SQLITE_OK;
4064   if( p->inTrans==TRANS_WRITE ){
4065     BtShared *pBt = p->pBt;
4066     sqlite3BtreeEnter(p);
4067 #ifndef SQLITE_OMIT_AUTOVACUUM
4068     if( pBt->autoVacuum ){
4069       rc = autoVacuumCommit(p);
4070       if( rc!=SQLITE_OK ){
4071         sqlite3BtreeLeave(p);
4072         return rc;
4073       }
4074     }
4075     if( pBt->bDoTruncate ){
4076       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4077     }
4078 #endif
4079     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4080     sqlite3BtreeLeave(p);
4081   }
4082   return rc;
4083 }
4084 
4085 /*
4086 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4087 ** at the conclusion of a transaction.
4088 */
4089 static void btreeEndTransaction(Btree *p){
4090   BtShared *pBt = p->pBt;
4091   sqlite3 *db = p->db;
4092   assert( sqlite3BtreeHoldsMutex(p) );
4093 
4094 #ifndef SQLITE_OMIT_AUTOVACUUM
4095   pBt->bDoTruncate = 0;
4096 #endif
4097   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4098     /* If there are other active statements that belong to this database
4099     ** handle, downgrade to a read-only transaction. The other statements
4100     ** may still be reading from the database.  */
4101     downgradeAllSharedCacheTableLocks(p);
4102     p->inTrans = TRANS_READ;
4103   }else{
4104     /* If the handle had any kind of transaction open, decrement the
4105     ** transaction count of the shared btree. If the transaction count
4106     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4107     ** call below will unlock the pager.  */
4108     if( p->inTrans!=TRANS_NONE ){
4109       clearAllSharedCacheTableLocks(p);
4110       pBt->nTransaction--;
4111       if( 0==pBt->nTransaction ){
4112         pBt->inTransaction = TRANS_NONE;
4113       }
4114     }
4115 
4116     /* Set the current transaction state to TRANS_NONE and unlock the
4117     ** pager if this call closed the only read or write transaction.  */
4118     p->inTrans = TRANS_NONE;
4119     unlockBtreeIfUnused(pBt);
4120   }
4121 
4122   btreeIntegrity(p);
4123 }
4124 
4125 /*
4126 ** Commit the transaction currently in progress.
4127 **
4128 ** This routine implements the second phase of a 2-phase commit.  The
4129 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4130 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
4131 ** routine did all the work of writing information out to disk and flushing the
4132 ** contents so that they are written onto the disk platter.  All this
4133 ** routine has to do is delete or truncate or zero the header in the
4134 ** the rollback journal (which causes the transaction to commit) and
4135 ** drop locks.
4136 **
4137 ** Normally, if an error occurs while the pager layer is attempting to
4138 ** finalize the underlying journal file, this function returns an error and
4139 ** the upper layer will attempt a rollback. However, if the second argument
4140 ** is non-zero then this b-tree transaction is part of a multi-file
4141 ** transaction. In this case, the transaction has already been committed
4142 ** (by deleting a super-journal file) and the caller will ignore this
4143 ** functions return code. So, even if an error occurs in the pager layer,
4144 ** reset the b-tree objects internal state to indicate that the write
4145 ** transaction has been closed. This is quite safe, as the pager will have
4146 ** transitioned to the error state.
4147 **
4148 ** This will release the write lock on the database file.  If there
4149 ** are no active cursors, it also releases the read lock.
4150 */
4151 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4152 
4153   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4154   sqlite3BtreeEnter(p);
4155   btreeIntegrity(p);
4156 
4157   /* If the handle has a write-transaction open, commit the shared-btrees
4158   ** transaction and set the shared state to TRANS_READ.
4159   */
4160   if( p->inTrans==TRANS_WRITE ){
4161     int rc;
4162     BtShared *pBt = p->pBt;
4163     assert( pBt->inTransaction==TRANS_WRITE );
4164     assert( pBt->nTransaction>0 );
4165     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4166     if( rc!=SQLITE_OK && bCleanup==0 ){
4167       sqlite3BtreeLeave(p);
4168       return rc;
4169     }
4170     p->iBDataVersion--;  /* Compensate for pPager->iDataVersion++; */
4171     pBt->inTransaction = TRANS_READ;
4172     btreeClearHasContent(pBt);
4173   }
4174 
4175   btreeEndTransaction(p);
4176   sqlite3BtreeLeave(p);
4177   return SQLITE_OK;
4178 }
4179 
4180 /*
4181 ** Do both phases of a commit.
4182 */
4183 int sqlite3BtreeCommit(Btree *p){
4184   int rc;
4185   sqlite3BtreeEnter(p);
4186   rc = sqlite3BtreeCommitPhaseOne(p, 0);
4187   if( rc==SQLITE_OK ){
4188     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4189   }
4190   sqlite3BtreeLeave(p);
4191   return rc;
4192 }
4193 
4194 /*
4195 ** This routine sets the state to CURSOR_FAULT and the error
4196 ** code to errCode for every cursor on any BtShared that pBtree
4197 ** references.  Or if the writeOnly flag is set to 1, then only
4198 ** trip write cursors and leave read cursors unchanged.
4199 **
4200 ** Every cursor is a candidate to be tripped, including cursors
4201 ** that belong to other database connections that happen to be
4202 ** sharing the cache with pBtree.
4203 **
4204 ** This routine gets called when a rollback occurs. If the writeOnly
4205 ** flag is true, then only write-cursors need be tripped - read-only
4206 ** cursors save their current positions so that they may continue
4207 ** following the rollback. Or, if writeOnly is false, all cursors are
4208 ** tripped. In general, writeOnly is false if the transaction being
4209 ** rolled back modified the database schema. In this case b-tree root
4210 ** pages may be moved or deleted from the database altogether, making
4211 ** it unsafe for read cursors to continue.
4212 **
4213 ** If the writeOnly flag is true and an error is encountered while
4214 ** saving the current position of a read-only cursor, all cursors,
4215 ** including all read-cursors are tripped.
4216 **
4217 ** SQLITE_OK is returned if successful, or if an error occurs while
4218 ** saving a cursor position, an SQLite error code.
4219 */
4220 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4221   BtCursor *p;
4222   int rc = SQLITE_OK;
4223 
4224   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4225   if( pBtree ){
4226     sqlite3BtreeEnter(pBtree);
4227     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4228       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4229         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4230           rc = saveCursorPosition(p);
4231           if( rc!=SQLITE_OK ){
4232             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4233             break;
4234           }
4235         }
4236       }else{
4237         sqlite3BtreeClearCursor(p);
4238         p->eState = CURSOR_FAULT;
4239         p->skipNext = errCode;
4240       }
4241       btreeReleaseAllCursorPages(p);
4242     }
4243     sqlite3BtreeLeave(pBtree);
4244   }
4245   return rc;
4246 }
4247 
4248 /*
4249 ** Set the pBt->nPage field correctly, according to the current
4250 ** state of the database.  Assume pBt->pPage1 is valid.
4251 */
4252 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4253   int nPage = get4byte(&pPage1->aData[28]);
4254   testcase( nPage==0 );
4255   if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4256   testcase( pBt->nPage!=(u32)nPage );
4257   pBt->nPage = nPage;
4258 }
4259 
4260 /*
4261 ** Rollback the transaction in progress.
4262 **
4263 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4264 ** Only write cursors are tripped if writeOnly is true but all cursors are
4265 ** tripped if writeOnly is false.  Any attempt to use
4266 ** a tripped cursor will result in an error.
4267 **
4268 ** This will release the write lock on the database file.  If there
4269 ** are no active cursors, it also releases the read lock.
4270 */
4271 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4272   int rc;
4273   BtShared *pBt = p->pBt;
4274   MemPage *pPage1;
4275 
4276   assert( writeOnly==1 || writeOnly==0 );
4277   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4278   sqlite3BtreeEnter(p);
4279   if( tripCode==SQLITE_OK ){
4280     rc = tripCode = saveAllCursors(pBt, 0, 0);
4281     if( rc ) writeOnly = 0;
4282   }else{
4283     rc = SQLITE_OK;
4284   }
4285   if( tripCode ){
4286     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4287     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4288     if( rc2!=SQLITE_OK ) rc = rc2;
4289   }
4290   btreeIntegrity(p);
4291 
4292   if( p->inTrans==TRANS_WRITE ){
4293     int rc2;
4294 
4295     assert( TRANS_WRITE==pBt->inTransaction );
4296     rc2 = sqlite3PagerRollback(pBt->pPager);
4297     if( rc2!=SQLITE_OK ){
4298       rc = rc2;
4299     }
4300 
4301     /* The rollback may have destroyed the pPage1->aData value.  So
4302     ** call btreeGetPage() on page 1 again to make
4303     ** sure pPage1->aData is set correctly. */
4304     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4305       btreeSetNPage(pBt, pPage1);
4306       releasePageOne(pPage1);
4307     }
4308     assert( countValidCursors(pBt, 1)==0 );
4309     pBt->inTransaction = TRANS_READ;
4310     btreeClearHasContent(pBt);
4311   }
4312 
4313   btreeEndTransaction(p);
4314   sqlite3BtreeLeave(p);
4315   return rc;
4316 }
4317 
4318 /*
4319 ** Start a statement subtransaction. The subtransaction can be rolled
4320 ** back independently of the main transaction. You must start a transaction
4321 ** before starting a subtransaction. The subtransaction is ended automatically
4322 ** if the main transaction commits or rolls back.
4323 **
4324 ** Statement subtransactions are used around individual SQL statements
4325 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4326 ** error occurs within the statement, the effect of that one statement
4327 ** can be rolled back without having to rollback the entire transaction.
4328 **
4329 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4330 ** value passed as the second parameter is the total number of savepoints,
4331 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4332 ** are no active savepoints and no other statement-transactions open,
4333 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4334 ** using the sqlite3BtreeSavepoint() function.
4335 */
4336 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4337   int rc;
4338   BtShared *pBt = p->pBt;
4339   sqlite3BtreeEnter(p);
4340   assert( p->inTrans==TRANS_WRITE );
4341   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4342   assert( iStatement>0 );
4343   assert( iStatement>p->db->nSavepoint );
4344   assert( pBt->inTransaction==TRANS_WRITE );
4345   /* At the pager level, a statement transaction is a savepoint with
4346   ** an index greater than all savepoints created explicitly using
4347   ** SQL statements. It is illegal to open, release or rollback any
4348   ** such savepoints while the statement transaction savepoint is active.
4349   */
4350   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4351   sqlite3BtreeLeave(p);
4352   return rc;
4353 }
4354 
4355 /*
4356 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4357 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4358 ** savepoint identified by parameter iSavepoint, depending on the value
4359 ** of op.
4360 **
4361 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4362 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4363 ** contents of the entire transaction are rolled back. This is different
4364 ** from a normal transaction rollback, as no locks are released and the
4365 ** transaction remains open.
4366 */
4367 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4368   int rc = SQLITE_OK;
4369   if( p && p->inTrans==TRANS_WRITE ){
4370     BtShared *pBt = p->pBt;
4371     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4372     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4373     sqlite3BtreeEnter(p);
4374     if( op==SAVEPOINT_ROLLBACK ){
4375       rc = saveAllCursors(pBt, 0, 0);
4376     }
4377     if( rc==SQLITE_OK ){
4378       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4379     }
4380     if( rc==SQLITE_OK ){
4381       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4382         pBt->nPage = 0;
4383       }
4384       rc = newDatabase(pBt);
4385       btreeSetNPage(pBt, pBt->pPage1);
4386 
4387       /* pBt->nPage might be zero if the database was corrupt when
4388       ** the transaction was started. Otherwise, it must be at least 1.  */
4389       assert( CORRUPT_DB || pBt->nPage>0 );
4390     }
4391     sqlite3BtreeLeave(p);
4392   }
4393   return rc;
4394 }
4395 
4396 /*
4397 ** Create a new cursor for the BTree whose root is on the page
4398 ** iTable. If a read-only cursor is requested, it is assumed that
4399 ** the caller already has at least a read-only transaction open
4400 ** on the database already. If a write-cursor is requested, then
4401 ** the caller is assumed to have an open write transaction.
4402 **
4403 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4404 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4405 ** can be used for reading or for writing if other conditions for writing
4406 ** are also met.  These are the conditions that must be met in order
4407 ** for writing to be allowed:
4408 **
4409 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4410 **
4411 ** 2:  Other database connections that share the same pager cache
4412 **     but which are not in the READ_UNCOMMITTED state may not have
4413 **     cursors open with wrFlag==0 on the same table.  Otherwise
4414 **     the changes made by this write cursor would be visible to
4415 **     the read cursors in the other database connection.
4416 **
4417 ** 3:  The database must be writable (not on read-only media)
4418 **
4419 ** 4:  There must be an active transaction.
4420 **
4421 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4422 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4423 ** this cursor will only be used to seek to and delete entries of an index
4424 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4425 ** this implementation.  But in a hypothetical alternative storage engine
4426 ** in which index entries are automatically deleted when corresponding table
4427 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4428 ** operations on this cursor can be no-ops and all READ operations can
4429 ** return a null row (2-bytes: 0x01 0x00).
4430 **
4431 ** No checking is done to make sure that page iTable really is the
4432 ** root page of a b-tree.  If it is not, then the cursor acquired
4433 ** will not work correctly.
4434 **
4435 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4436 ** on pCur to initialize the memory space prior to invoking this routine.
4437 */
4438 static int btreeCursor(
4439   Btree *p,                              /* The btree */
4440   Pgno iTable,                           /* Root page of table to open */
4441   int wrFlag,                            /* 1 to write. 0 read-only */
4442   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4443   BtCursor *pCur                         /* Space for new cursor */
4444 ){
4445   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4446   BtCursor *pX;                          /* Looping over other all cursors */
4447 
4448   assert( sqlite3BtreeHoldsMutex(p) );
4449   assert( wrFlag==0
4450        || wrFlag==BTREE_WRCSR
4451        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4452   );
4453 
4454   /* The following assert statements verify that if this is a sharable
4455   ** b-tree database, the connection is holding the required table locks,
4456   ** and that no other connection has any open cursor that conflicts with
4457   ** this lock.  The iTable<1 term disables the check for corrupt schemas. */
4458   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4459           || iTable<1 );
4460   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4461 
4462   /* Assert that the caller has opened the required transaction. */
4463   assert( p->inTrans>TRANS_NONE );
4464   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4465   assert( pBt->pPage1 && pBt->pPage1->aData );
4466   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4467 
4468   if( iTable<=1 ){
4469     if( iTable<1 ){
4470       return SQLITE_CORRUPT_BKPT;
4471     }else if( btreePagecount(pBt)==0 ){
4472       assert( wrFlag==0 );
4473       iTable = 0;
4474     }
4475   }
4476 
4477   /* Now that no other errors can occur, finish filling in the BtCursor
4478   ** variables and link the cursor into the BtShared list.  */
4479   pCur->pgnoRoot = iTable;
4480   pCur->iPage = -1;
4481   pCur->pKeyInfo = pKeyInfo;
4482   pCur->pBtree = p;
4483   pCur->pBt = pBt;
4484   pCur->curFlags = 0;
4485   /* If there are two or more cursors on the same btree, then all such
4486   ** cursors *must* have the BTCF_Multiple flag set. */
4487   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4488     if( pX->pgnoRoot==iTable ){
4489       pX->curFlags |= BTCF_Multiple;
4490       pCur->curFlags = BTCF_Multiple;
4491     }
4492   }
4493   pCur->eState = CURSOR_INVALID;
4494   pCur->pNext = pBt->pCursor;
4495   pBt->pCursor = pCur;
4496   if( wrFlag ){
4497     pCur->curFlags |= BTCF_WriteFlag;
4498     pCur->curPagerFlags = 0;
4499     if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4500   }else{
4501     pCur->curPagerFlags = PAGER_GET_READONLY;
4502   }
4503   return SQLITE_OK;
4504 }
4505 static int btreeCursorWithLock(
4506   Btree *p,                              /* The btree */
4507   Pgno iTable,                           /* Root page of table to open */
4508   int wrFlag,                            /* 1 to write. 0 read-only */
4509   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4510   BtCursor *pCur                         /* Space for new cursor */
4511 ){
4512   int rc;
4513   sqlite3BtreeEnter(p);
4514   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4515   sqlite3BtreeLeave(p);
4516   return rc;
4517 }
4518 int sqlite3BtreeCursor(
4519   Btree *p,                                   /* The btree */
4520   Pgno iTable,                                /* Root page of table to open */
4521   int wrFlag,                                 /* 1 to write. 0 read-only */
4522   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4523   BtCursor *pCur                              /* Write new cursor here */
4524 ){
4525   if( p->sharable ){
4526     return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4527   }else{
4528     return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4529   }
4530 }
4531 
4532 /*
4533 ** Return the size of a BtCursor object in bytes.
4534 **
4535 ** This interfaces is needed so that users of cursors can preallocate
4536 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4537 ** to users so they cannot do the sizeof() themselves - they must call
4538 ** this routine.
4539 */
4540 int sqlite3BtreeCursorSize(void){
4541   return ROUND8(sizeof(BtCursor));
4542 }
4543 
4544 /*
4545 ** Initialize memory that will be converted into a BtCursor object.
4546 **
4547 ** The simple approach here would be to memset() the entire object
4548 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4549 ** do not need to be zeroed and they are large, so we can save a lot
4550 ** of run-time by skipping the initialization of those elements.
4551 */
4552 void sqlite3BtreeCursorZero(BtCursor *p){
4553   memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4554 }
4555 
4556 /*
4557 ** Close a cursor.  The read lock on the database file is released
4558 ** when the last cursor is closed.
4559 */
4560 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4561   Btree *pBtree = pCur->pBtree;
4562   if( pBtree ){
4563     BtShared *pBt = pCur->pBt;
4564     sqlite3BtreeEnter(pBtree);
4565     assert( pBt->pCursor!=0 );
4566     if( pBt->pCursor==pCur ){
4567       pBt->pCursor = pCur->pNext;
4568     }else{
4569       BtCursor *pPrev = pBt->pCursor;
4570       do{
4571         if( pPrev->pNext==pCur ){
4572           pPrev->pNext = pCur->pNext;
4573           break;
4574         }
4575         pPrev = pPrev->pNext;
4576       }while( ALWAYS(pPrev) );
4577     }
4578     btreeReleaseAllCursorPages(pCur);
4579     unlockBtreeIfUnused(pBt);
4580     sqlite3_free(pCur->aOverflow);
4581     sqlite3_free(pCur->pKey);
4582     if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4583       /* Since the BtShared is not sharable, there is no need to
4584       ** worry about the missing sqlite3BtreeLeave() call here.  */
4585       assert( pBtree->sharable==0 );
4586       sqlite3BtreeClose(pBtree);
4587     }else{
4588       sqlite3BtreeLeave(pBtree);
4589     }
4590     pCur->pBtree = 0;
4591   }
4592   return SQLITE_OK;
4593 }
4594 
4595 /*
4596 ** Make sure the BtCursor* given in the argument has a valid
4597 ** BtCursor.info structure.  If it is not already valid, call
4598 ** btreeParseCell() to fill it in.
4599 **
4600 ** BtCursor.info is a cache of the information in the current cell.
4601 ** Using this cache reduces the number of calls to btreeParseCell().
4602 */
4603 #ifndef NDEBUG
4604   static int cellInfoEqual(CellInfo *a, CellInfo *b){
4605     if( a->nKey!=b->nKey ) return 0;
4606     if( a->pPayload!=b->pPayload ) return 0;
4607     if( a->nPayload!=b->nPayload ) return 0;
4608     if( a->nLocal!=b->nLocal ) return 0;
4609     if( a->nSize!=b->nSize ) return 0;
4610     return 1;
4611   }
4612   static void assertCellInfo(BtCursor *pCur){
4613     CellInfo info;
4614     memset(&info, 0, sizeof(info));
4615     btreeParseCell(pCur->pPage, pCur->ix, &info);
4616     assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4617   }
4618 #else
4619   #define assertCellInfo(x)
4620 #endif
4621 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4622   if( pCur->info.nSize==0 ){
4623     pCur->curFlags |= BTCF_ValidNKey;
4624     btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4625   }else{
4626     assertCellInfo(pCur);
4627   }
4628 }
4629 
4630 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4631 /*
4632 ** Return true if the given BtCursor is valid.  A valid cursor is one
4633 ** that is currently pointing to a row in a (non-empty) table.
4634 ** This is a verification routine is used only within assert() statements.
4635 */
4636 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4637   return pCur && pCur->eState==CURSOR_VALID;
4638 }
4639 #endif /* NDEBUG */
4640 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4641   assert( pCur!=0 );
4642   return pCur->eState==CURSOR_VALID;
4643 }
4644 
4645 /*
4646 ** Return the value of the integer key or "rowid" for a table btree.
4647 ** This routine is only valid for a cursor that is pointing into a
4648 ** ordinary table btree.  If the cursor points to an index btree or
4649 ** is invalid, the result of this routine is undefined.
4650 */
4651 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4652   assert( cursorHoldsMutex(pCur) );
4653   assert( pCur->eState==CURSOR_VALID );
4654   assert( pCur->curIntKey );
4655   getCellInfo(pCur);
4656   return pCur->info.nKey;
4657 }
4658 
4659 /*
4660 ** Pin or unpin a cursor.
4661 */
4662 void sqlite3BtreeCursorPin(BtCursor *pCur){
4663   assert( (pCur->curFlags & BTCF_Pinned)==0 );
4664   pCur->curFlags |= BTCF_Pinned;
4665 }
4666 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4667   assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4668   pCur->curFlags &= ~BTCF_Pinned;
4669 }
4670 
4671 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4672 /*
4673 ** Return the offset into the database file for the start of the
4674 ** payload to which the cursor is pointing.
4675 */
4676 i64 sqlite3BtreeOffset(BtCursor *pCur){
4677   assert( cursorHoldsMutex(pCur) );
4678   assert( pCur->eState==CURSOR_VALID );
4679   getCellInfo(pCur);
4680   return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4681          (i64)(pCur->info.pPayload - pCur->pPage->aData);
4682 }
4683 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4684 
4685 /*
4686 ** Return the number of bytes of payload for the entry that pCur is
4687 ** currently pointing to.  For table btrees, this will be the amount
4688 ** of data.  For index btrees, this will be the size of the key.
4689 **
4690 ** The caller must guarantee that the cursor is pointing to a non-NULL
4691 ** valid entry.  In other words, the calling procedure must guarantee
4692 ** that the cursor has Cursor.eState==CURSOR_VALID.
4693 */
4694 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4695   assert( cursorHoldsMutex(pCur) );
4696   assert( pCur->eState==CURSOR_VALID );
4697   getCellInfo(pCur);
4698   return pCur->info.nPayload;
4699 }
4700 
4701 /*
4702 ** Return an upper bound on the size of any record for the table
4703 ** that the cursor is pointing into.
4704 **
4705 ** This is an optimization.  Everything will still work if this
4706 ** routine always returns 2147483647 (which is the largest record
4707 ** that SQLite can handle) or more.  But returning a smaller value might
4708 ** prevent large memory allocations when trying to interpret a
4709 ** corrupt datrabase.
4710 **
4711 ** The current implementation merely returns the size of the underlying
4712 ** database file.
4713 */
4714 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4715   assert( cursorHoldsMutex(pCur) );
4716   assert( pCur->eState==CURSOR_VALID );
4717   return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4718 }
4719 
4720 /*
4721 ** Given the page number of an overflow page in the database (parameter
4722 ** ovfl), this function finds the page number of the next page in the
4723 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4724 ** pointer-map data instead of reading the content of page ovfl to do so.
4725 **
4726 ** If an error occurs an SQLite error code is returned. Otherwise:
4727 **
4728 ** The page number of the next overflow page in the linked list is
4729 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4730 ** list, *pPgnoNext is set to zero.
4731 **
4732 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4733 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4734 ** reference. It is the responsibility of the caller to call releasePage()
4735 ** on *ppPage to free the reference. In no reference was obtained (because
4736 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4737 ** *ppPage is set to zero.
4738 */
4739 static int getOverflowPage(
4740   BtShared *pBt,               /* The database file */
4741   Pgno ovfl,                   /* Current overflow page number */
4742   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4743   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4744 ){
4745   Pgno next = 0;
4746   MemPage *pPage = 0;
4747   int rc = SQLITE_OK;
4748 
4749   assert( sqlite3_mutex_held(pBt->mutex) );
4750   assert(pPgnoNext);
4751 
4752 #ifndef SQLITE_OMIT_AUTOVACUUM
4753   /* Try to find the next page in the overflow list using the
4754   ** autovacuum pointer-map pages. Guess that the next page in
4755   ** the overflow list is page number (ovfl+1). If that guess turns
4756   ** out to be wrong, fall back to loading the data of page
4757   ** number ovfl to determine the next page number.
4758   */
4759   if( pBt->autoVacuum ){
4760     Pgno pgno;
4761     Pgno iGuess = ovfl+1;
4762     u8 eType;
4763 
4764     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4765       iGuess++;
4766     }
4767 
4768     if( iGuess<=btreePagecount(pBt) ){
4769       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4770       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4771         next = iGuess;
4772         rc = SQLITE_DONE;
4773       }
4774     }
4775   }
4776 #endif
4777 
4778   assert( next==0 || rc==SQLITE_DONE );
4779   if( rc==SQLITE_OK ){
4780     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4781     assert( rc==SQLITE_OK || pPage==0 );
4782     if( rc==SQLITE_OK ){
4783       next = get4byte(pPage->aData);
4784     }
4785   }
4786 
4787   *pPgnoNext = next;
4788   if( ppPage ){
4789     *ppPage = pPage;
4790   }else{
4791     releasePage(pPage);
4792   }
4793   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4794 }
4795 
4796 /*
4797 ** Copy data from a buffer to a page, or from a page to a buffer.
4798 **
4799 ** pPayload is a pointer to data stored on database page pDbPage.
4800 ** If argument eOp is false, then nByte bytes of data are copied
4801 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4802 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4803 ** of data are copied from the buffer pBuf to pPayload.
4804 **
4805 ** SQLITE_OK is returned on success, otherwise an error code.
4806 */
4807 static int copyPayload(
4808   void *pPayload,           /* Pointer to page data */
4809   void *pBuf,               /* Pointer to buffer */
4810   int nByte,                /* Number of bytes to copy */
4811   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4812   DbPage *pDbPage           /* Page containing pPayload */
4813 ){
4814   if( eOp ){
4815     /* Copy data from buffer to page (a write operation) */
4816     int rc = sqlite3PagerWrite(pDbPage);
4817     if( rc!=SQLITE_OK ){
4818       return rc;
4819     }
4820     memcpy(pPayload, pBuf, nByte);
4821   }else{
4822     /* Copy data from page to buffer (a read operation) */
4823     memcpy(pBuf, pPayload, nByte);
4824   }
4825   return SQLITE_OK;
4826 }
4827 
4828 /*
4829 ** This function is used to read or overwrite payload information
4830 ** for the entry that the pCur cursor is pointing to. The eOp
4831 ** argument is interpreted as follows:
4832 **
4833 **   0: The operation is a read. Populate the overflow cache.
4834 **   1: The operation is a write. Populate the overflow cache.
4835 **
4836 ** A total of "amt" bytes are read or written beginning at "offset".
4837 ** Data is read to or from the buffer pBuf.
4838 **
4839 ** The content being read or written might appear on the main page
4840 ** or be scattered out on multiple overflow pages.
4841 **
4842 ** If the current cursor entry uses one or more overflow pages
4843 ** this function may allocate space for and lazily populate
4844 ** the overflow page-list cache array (BtCursor.aOverflow).
4845 ** Subsequent calls use this cache to make seeking to the supplied offset
4846 ** more efficient.
4847 **
4848 ** Once an overflow page-list cache has been allocated, it must be
4849 ** invalidated if some other cursor writes to the same table, or if
4850 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4851 ** mode, the following events may invalidate an overflow page-list cache.
4852 **
4853 **   * An incremental vacuum,
4854 **   * A commit in auto_vacuum="full" mode,
4855 **   * Creating a table (may require moving an overflow page).
4856 */
4857 static int accessPayload(
4858   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4859   u32 offset,          /* Begin reading this far into payload */
4860   u32 amt,             /* Read this many bytes */
4861   unsigned char *pBuf, /* Write the bytes into this buffer */
4862   int eOp              /* zero to read. non-zero to write. */
4863 ){
4864   unsigned char *aPayload;
4865   int rc = SQLITE_OK;
4866   int iIdx = 0;
4867   MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
4868   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4869 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4870   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4871 #endif
4872 
4873   assert( pPage );
4874   assert( eOp==0 || eOp==1 );
4875   assert( pCur->eState==CURSOR_VALID );
4876   if( pCur->ix>=pPage->nCell ){
4877     return SQLITE_CORRUPT_PAGE(pPage);
4878   }
4879   assert( cursorHoldsMutex(pCur) );
4880 
4881   getCellInfo(pCur);
4882   aPayload = pCur->info.pPayload;
4883   assert( offset+amt <= pCur->info.nPayload );
4884 
4885   assert( aPayload > pPage->aData );
4886   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4887     /* Trying to read or write past the end of the data is an error.  The
4888     ** conditional above is really:
4889     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4890     ** but is recast into its current form to avoid integer overflow problems
4891     */
4892     return SQLITE_CORRUPT_PAGE(pPage);
4893   }
4894 
4895   /* Check if data must be read/written to/from the btree page itself. */
4896   if( offset<pCur->info.nLocal ){
4897     int a = amt;
4898     if( a+offset>pCur->info.nLocal ){
4899       a = pCur->info.nLocal - offset;
4900     }
4901     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4902     offset = 0;
4903     pBuf += a;
4904     amt -= a;
4905   }else{
4906     offset -= pCur->info.nLocal;
4907   }
4908 
4909 
4910   if( rc==SQLITE_OK && amt>0 ){
4911     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4912     Pgno nextPage;
4913 
4914     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4915 
4916     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4917     **
4918     ** The aOverflow[] array is sized at one entry for each overflow page
4919     ** in the overflow chain. The page number of the first overflow page is
4920     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4921     ** means "not yet known" (the cache is lazily populated).
4922     */
4923     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4924       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4925       if( pCur->aOverflow==0
4926        || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4927       ){
4928         Pgno *aNew = (Pgno*)sqlite3Realloc(
4929             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4930         );
4931         if( aNew==0 ){
4932           return SQLITE_NOMEM_BKPT;
4933         }else{
4934           pCur->aOverflow = aNew;
4935         }
4936       }
4937       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4938       pCur->curFlags |= BTCF_ValidOvfl;
4939     }else{
4940       /* If the overflow page-list cache has been allocated and the
4941       ** entry for the first required overflow page is valid, skip
4942       ** directly to it.
4943       */
4944       if( pCur->aOverflow[offset/ovflSize] ){
4945         iIdx = (offset/ovflSize);
4946         nextPage = pCur->aOverflow[iIdx];
4947         offset = (offset%ovflSize);
4948       }
4949     }
4950 
4951     assert( rc==SQLITE_OK && amt>0 );
4952     while( nextPage ){
4953       /* If required, populate the overflow page-list cache. */
4954       if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
4955       assert( pCur->aOverflow[iIdx]==0
4956               || pCur->aOverflow[iIdx]==nextPage
4957               || CORRUPT_DB );
4958       pCur->aOverflow[iIdx] = nextPage;
4959 
4960       if( offset>=ovflSize ){
4961         /* The only reason to read this page is to obtain the page
4962         ** number for the next page in the overflow chain. The page
4963         ** data is not required. So first try to lookup the overflow
4964         ** page-list cache, if any, then fall back to the getOverflowPage()
4965         ** function.
4966         */
4967         assert( pCur->curFlags & BTCF_ValidOvfl );
4968         assert( pCur->pBtree->db==pBt->db );
4969         if( pCur->aOverflow[iIdx+1] ){
4970           nextPage = pCur->aOverflow[iIdx+1];
4971         }else{
4972           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4973         }
4974         offset -= ovflSize;
4975       }else{
4976         /* Need to read this page properly. It contains some of the
4977         ** range of data that is being read (eOp==0) or written (eOp!=0).
4978         */
4979         int a = amt;
4980         if( a + offset > ovflSize ){
4981           a = ovflSize - offset;
4982         }
4983 
4984 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4985         /* If all the following are true:
4986         **
4987         **   1) this is a read operation, and
4988         **   2) data is required from the start of this overflow page, and
4989         **   3) there are no dirty pages in the page-cache
4990         **   4) the database is file-backed, and
4991         **   5) the page is not in the WAL file
4992         **   6) at least 4 bytes have already been read into the output buffer
4993         **
4994         ** then data can be read directly from the database file into the
4995         ** output buffer, bypassing the page-cache altogether. This speeds
4996         ** up loading large records that span many overflow pages.
4997         */
4998         if( eOp==0                                             /* (1) */
4999          && offset==0                                          /* (2) */
5000          && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
5001          && &pBuf[-4]>=pBufStart                               /* (6) */
5002         ){
5003           sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5004           u8 aSave[4];
5005           u8 *aWrite = &pBuf[-4];
5006           assert( aWrite>=pBufStart );                         /* due to (6) */
5007           memcpy(aSave, aWrite, 4);
5008           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5009           if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5010           nextPage = get4byte(aWrite);
5011           memcpy(aWrite, aSave, 4);
5012         }else
5013 #endif
5014 
5015         {
5016           DbPage *pDbPage;
5017           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5018               (eOp==0 ? PAGER_GET_READONLY : 0)
5019           );
5020           if( rc==SQLITE_OK ){
5021             aPayload = sqlite3PagerGetData(pDbPage);
5022             nextPage = get4byte(aPayload);
5023             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5024             sqlite3PagerUnref(pDbPage);
5025             offset = 0;
5026           }
5027         }
5028         amt -= a;
5029         if( amt==0 ) return rc;
5030         pBuf += a;
5031       }
5032       if( rc ) break;
5033       iIdx++;
5034     }
5035   }
5036 
5037   if( rc==SQLITE_OK && amt>0 ){
5038     /* Overflow chain ends prematurely */
5039     return SQLITE_CORRUPT_PAGE(pPage);
5040   }
5041   return rc;
5042 }
5043 
5044 /*
5045 ** Read part of the payload for the row at which that cursor pCur is currently
5046 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5047 ** begins at "offset".
5048 **
5049 ** pCur can be pointing to either a table or an index b-tree.
5050 ** If pointing to a table btree, then the content section is read.  If
5051 ** pCur is pointing to an index b-tree then the key section is read.
5052 **
5053 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5054 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
5055 ** cursor might be invalid or might need to be restored before being read.
5056 **
5057 ** Return SQLITE_OK on success or an error code if anything goes
5058 ** wrong.  An error is returned if "offset+amt" is larger than
5059 ** the available payload.
5060 */
5061 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5062   assert( cursorHoldsMutex(pCur) );
5063   assert( pCur->eState==CURSOR_VALID );
5064   assert( pCur->iPage>=0 && pCur->pPage );
5065   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5066 }
5067 
5068 /*
5069 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5070 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
5071 ** interface.
5072 */
5073 #ifndef SQLITE_OMIT_INCRBLOB
5074 static SQLITE_NOINLINE int accessPayloadChecked(
5075   BtCursor *pCur,
5076   u32 offset,
5077   u32 amt,
5078   void *pBuf
5079 ){
5080   int rc;
5081   if ( pCur->eState==CURSOR_INVALID ){
5082     return SQLITE_ABORT;
5083   }
5084   assert( cursorOwnsBtShared(pCur) );
5085   rc = btreeRestoreCursorPosition(pCur);
5086   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5087 }
5088 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5089   if( pCur->eState==CURSOR_VALID ){
5090     assert( cursorOwnsBtShared(pCur) );
5091     return accessPayload(pCur, offset, amt, pBuf, 0);
5092   }else{
5093     return accessPayloadChecked(pCur, offset, amt, pBuf);
5094   }
5095 }
5096 #endif /* SQLITE_OMIT_INCRBLOB */
5097 
5098 /*
5099 ** Return a pointer to payload information from the entry that the
5100 ** pCur cursor is pointing to.  The pointer is to the beginning of
5101 ** the key if index btrees (pPage->intKey==0) and is the data for
5102 ** table btrees (pPage->intKey==1). The number of bytes of available
5103 ** key/data is written into *pAmt.  If *pAmt==0, then the value
5104 ** returned will not be a valid pointer.
5105 **
5106 ** This routine is an optimization.  It is common for the entire key
5107 ** and data to fit on the local page and for there to be no overflow
5108 ** pages.  When that is so, this routine can be used to access the
5109 ** key and data without making a copy.  If the key and/or data spills
5110 ** onto overflow pages, then accessPayload() must be used to reassemble
5111 ** the key/data and copy it into a preallocated buffer.
5112 **
5113 ** The pointer returned by this routine looks directly into the cached
5114 ** page of the database.  The data might change or move the next time
5115 ** any btree routine is called.
5116 */
5117 static const void *fetchPayload(
5118   BtCursor *pCur,      /* Cursor pointing to entry to read from */
5119   u32 *pAmt            /* Write the number of available bytes here */
5120 ){
5121   int amt;
5122   assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5123   assert( pCur->eState==CURSOR_VALID );
5124   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5125   assert( cursorOwnsBtShared(pCur) );
5126   assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5127   assert( pCur->info.nSize>0 );
5128   assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5129   assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5130   amt = pCur->info.nLocal;
5131   if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5132     /* There is too little space on the page for the expected amount
5133     ** of local content. Database must be corrupt. */
5134     assert( CORRUPT_DB );
5135     amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5136   }
5137   *pAmt = (u32)amt;
5138   return (void*)pCur->info.pPayload;
5139 }
5140 
5141 
5142 /*
5143 ** For the entry that cursor pCur is point to, return as
5144 ** many bytes of the key or data as are available on the local
5145 ** b-tree page.  Write the number of available bytes into *pAmt.
5146 **
5147 ** The pointer returned is ephemeral.  The key/data may move
5148 ** or be destroyed on the next call to any Btree routine,
5149 ** including calls from other threads against the same cache.
5150 ** Hence, a mutex on the BtShared should be held prior to calling
5151 ** this routine.
5152 **
5153 ** These routines is used to get quick access to key and data
5154 ** in the common case where no overflow pages are used.
5155 */
5156 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5157   return fetchPayload(pCur, pAmt);
5158 }
5159 
5160 
5161 /*
5162 ** Move the cursor down to a new child page.  The newPgno argument is the
5163 ** page number of the child page to move to.
5164 **
5165 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5166 ** the new child page does not match the flags field of the parent (i.e.
5167 ** if an intkey page appears to be the parent of a non-intkey page, or
5168 ** vice-versa).
5169 */
5170 static int moveToChild(BtCursor *pCur, u32 newPgno){
5171   BtShared *pBt = pCur->pBt;
5172 
5173   assert( cursorOwnsBtShared(pCur) );
5174   assert( pCur->eState==CURSOR_VALID );
5175   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5176   assert( pCur->iPage>=0 );
5177   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5178     return SQLITE_CORRUPT_BKPT;
5179   }
5180   pCur->info.nSize = 0;
5181   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5182   pCur->aiIdx[pCur->iPage] = pCur->ix;
5183   pCur->apPage[pCur->iPage] = pCur->pPage;
5184   pCur->ix = 0;
5185   pCur->iPage++;
5186   return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5187 }
5188 
5189 #ifdef SQLITE_DEBUG
5190 /*
5191 ** Page pParent is an internal (non-leaf) tree page. This function
5192 ** asserts that page number iChild is the left-child if the iIdx'th
5193 ** cell in page pParent. Or, if iIdx is equal to the total number of
5194 ** cells in pParent, that page number iChild is the right-child of
5195 ** the page.
5196 */
5197 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5198   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
5199                             ** in a corrupt database */
5200   assert( iIdx<=pParent->nCell );
5201   if( iIdx==pParent->nCell ){
5202     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5203   }else{
5204     assert( get4byte(findCell(pParent, iIdx))==iChild );
5205   }
5206 }
5207 #else
5208 #  define assertParentIndex(x,y,z)
5209 #endif
5210 
5211 /*
5212 ** Move the cursor up to the parent page.
5213 **
5214 ** pCur->idx is set to the cell index that contains the pointer
5215 ** to the page we are coming from.  If we are coming from the
5216 ** right-most child page then pCur->idx is set to one more than
5217 ** the largest cell index.
5218 */
5219 static void moveToParent(BtCursor *pCur){
5220   MemPage *pLeaf;
5221   assert( cursorOwnsBtShared(pCur) );
5222   assert( pCur->eState==CURSOR_VALID );
5223   assert( pCur->iPage>0 );
5224   assert( pCur->pPage );
5225   assertParentIndex(
5226     pCur->apPage[pCur->iPage-1],
5227     pCur->aiIdx[pCur->iPage-1],
5228     pCur->pPage->pgno
5229   );
5230   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5231   pCur->info.nSize = 0;
5232   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5233   pCur->ix = pCur->aiIdx[pCur->iPage-1];
5234   pLeaf = pCur->pPage;
5235   pCur->pPage = pCur->apPage[--pCur->iPage];
5236   releasePageNotNull(pLeaf);
5237 }
5238 
5239 /*
5240 ** Move the cursor to point to the root page of its b-tree structure.
5241 **
5242 ** If the table has a virtual root page, then the cursor is moved to point
5243 ** to the virtual root page instead of the actual root page. A table has a
5244 ** virtual root page when the actual root page contains no cells and a
5245 ** single child page. This can only happen with the table rooted at page 1.
5246 **
5247 ** If the b-tree structure is empty, the cursor state is set to
5248 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5249 ** the cursor is set to point to the first cell located on the root
5250 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5251 **
5252 ** If this function returns successfully, it may be assumed that the
5253 ** page-header flags indicate that the [virtual] root-page is the expected
5254 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5255 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5256 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5257 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5258 ** b-tree).
5259 */
5260 static int moveToRoot(BtCursor *pCur){
5261   MemPage *pRoot;
5262   int rc = SQLITE_OK;
5263 
5264   assert( cursorOwnsBtShared(pCur) );
5265   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5266   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
5267   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
5268   assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5269   assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5270 
5271   if( pCur->iPage>=0 ){
5272     if( pCur->iPage ){
5273       releasePageNotNull(pCur->pPage);
5274       while( --pCur->iPage ){
5275         releasePageNotNull(pCur->apPage[pCur->iPage]);
5276       }
5277       pRoot = pCur->pPage = pCur->apPage[0];
5278       goto skip_init;
5279     }
5280   }else if( pCur->pgnoRoot==0 ){
5281     pCur->eState = CURSOR_INVALID;
5282     return SQLITE_EMPTY;
5283   }else{
5284     assert( pCur->iPage==(-1) );
5285     if( pCur->eState>=CURSOR_REQUIRESEEK ){
5286       if( pCur->eState==CURSOR_FAULT ){
5287         assert( pCur->skipNext!=SQLITE_OK );
5288         return pCur->skipNext;
5289       }
5290       sqlite3BtreeClearCursor(pCur);
5291     }
5292     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5293                         0, pCur->curPagerFlags);
5294     if( rc!=SQLITE_OK ){
5295       pCur->eState = CURSOR_INVALID;
5296       return rc;
5297     }
5298     pCur->iPage = 0;
5299     pCur->curIntKey = pCur->pPage->intKey;
5300   }
5301   pRoot = pCur->pPage;
5302   assert( pRoot->pgno==pCur->pgnoRoot );
5303 
5304   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5305   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5306   ** NULL, the caller expects a table b-tree. If this is not the case,
5307   ** return an SQLITE_CORRUPT error.
5308   **
5309   ** Earlier versions of SQLite assumed that this test could not fail
5310   ** if the root page was already loaded when this function was called (i.e.
5311   ** if pCur->iPage>=0). But this is not so if the database is corrupted
5312   ** in such a way that page pRoot is linked into a second b-tree table
5313   ** (or the freelist).  */
5314   assert( pRoot->intKey==1 || pRoot->intKey==0 );
5315   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5316     return SQLITE_CORRUPT_PAGE(pCur->pPage);
5317   }
5318 
5319 skip_init:
5320   pCur->ix = 0;
5321   pCur->info.nSize = 0;
5322   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5323 
5324   if( pRoot->nCell>0 ){
5325     pCur->eState = CURSOR_VALID;
5326   }else if( !pRoot->leaf ){
5327     Pgno subpage;
5328     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5329     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5330     pCur->eState = CURSOR_VALID;
5331     rc = moveToChild(pCur, subpage);
5332   }else{
5333     pCur->eState = CURSOR_INVALID;
5334     rc = SQLITE_EMPTY;
5335   }
5336   return rc;
5337 }
5338 
5339 /*
5340 ** Move the cursor down to the left-most leaf entry beneath the
5341 ** entry to which it is currently pointing.
5342 **
5343 ** The left-most leaf is the one with the smallest key - the first
5344 ** in ascending order.
5345 */
5346 static int moveToLeftmost(BtCursor *pCur){
5347   Pgno pgno;
5348   int rc = SQLITE_OK;
5349   MemPage *pPage;
5350 
5351   assert( cursorOwnsBtShared(pCur) );
5352   assert( pCur->eState==CURSOR_VALID );
5353   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5354     assert( pCur->ix<pPage->nCell );
5355     pgno = get4byte(findCell(pPage, pCur->ix));
5356     rc = moveToChild(pCur, pgno);
5357   }
5358   return rc;
5359 }
5360 
5361 /*
5362 ** Move the cursor down to the right-most leaf entry beneath the
5363 ** page to which it is currently pointing.  Notice the difference
5364 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5365 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5366 ** finds the right-most entry beneath the *page*.
5367 **
5368 ** The right-most entry is the one with the largest key - the last
5369 ** key in ascending order.
5370 */
5371 static int moveToRightmost(BtCursor *pCur){
5372   Pgno pgno;
5373   int rc = SQLITE_OK;
5374   MemPage *pPage = 0;
5375 
5376   assert( cursorOwnsBtShared(pCur) );
5377   assert( pCur->eState==CURSOR_VALID );
5378   while( !(pPage = pCur->pPage)->leaf ){
5379     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5380     pCur->ix = pPage->nCell;
5381     rc = moveToChild(pCur, pgno);
5382     if( rc ) return rc;
5383   }
5384   pCur->ix = pPage->nCell-1;
5385   assert( pCur->info.nSize==0 );
5386   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5387   return SQLITE_OK;
5388 }
5389 
5390 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5391 ** on success.  Set *pRes to 0 if the cursor actually points to something
5392 ** or set *pRes to 1 if the table is empty.
5393 */
5394 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5395   int rc;
5396 
5397   assert( cursorOwnsBtShared(pCur) );
5398   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5399   rc = moveToRoot(pCur);
5400   if( rc==SQLITE_OK ){
5401     assert( pCur->pPage->nCell>0 );
5402     *pRes = 0;
5403     rc = moveToLeftmost(pCur);
5404   }else if( rc==SQLITE_EMPTY ){
5405     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5406     *pRes = 1;
5407     rc = SQLITE_OK;
5408   }
5409   return rc;
5410 }
5411 
5412 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5413 ** on success.  Set *pRes to 0 if the cursor actually points to something
5414 ** or set *pRes to 1 if the table is empty.
5415 */
5416 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5417   int rc;
5418 
5419   assert( cursorOwnsBtShared(pCur) );
5420   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5421 
5422   /* If the cursor already points to the last entry, this is a no-op. */
5423   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5424 #ifdef SQLITE_DEBUG
5425     /* This block serves to assert() that the cursor really does point
5426     ** to the last entry in the b-tree. */
5427     int ii;
5428     for(ii=0; ii<pCur->iPage; ii++){
5429       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5430     }
5431     assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5432     testcase( pCur->ix!=pCur->pPage->nCell-1 );
5433     /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5434     assert( pCur->pPage->leaf );
5435 #endif
5436     *pRes = 0;
5437     return SQLITE_OK;
5438   }
5439 
5440   rc = moveToRoot(pCur);
5441   if( rc==SQLITE_OK ){
5442     assert( pCur->eState==CURSOR_VALID );
5443     *pRes = 0;
5444     rc = moveToRightmost(pCur);
5445     if( rc==SQLITE_OK ){
5446       pCur->curFlags |= BTCF_AtLast;
5447     }else{
5448       pCur->curFlags &= ~BTCF_AtLast;
5449     }
5450   }else if( rc==SQLITE_EMPTY ){
5451     assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5452     *pRes = 1;
5453     rc = SQLITE_OK;
5454   }
5455   return rc;
5456 }
5457 
5458 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5459 ** table near the key intKey.   Return a success code.
5460 **
5461 ** If an exact match is not found, then the cursor is always
5462 ** left pointing at a leaf page which would hold the entry if it
5463 ** were present.  The cursor might point to an entry that comes
5464 ** before or after the key.
5465 **
5466 ** An integer is written into *pRes which is the result of
5467 ** comparing the key with the entry to which the cursor is
5468 ** pointing.  The meaning of the integer written into
5469 ** *pRes is as follows:
5470 **
5471 **     *pRes<0      The cursor is left pointing at an entry that
5472 **                  is smaller than intKey or if the table is empty
5473 **                  and the cursor is therefore left point to nothing.
5474 **
5475 **     *pRes==0     The cursor is left pointing at an entry that
5476 **                  exactly matches intKey.
5477 **
5478 **     *pRes>0      The cursor is left pointing at an entry that
5479 **                  is larger than intKey.
5480 */
5481 int sqlite3BtreeTableMoveto(
5482   BtCursor *pCur,          /* The cursor to be moved */
5483   i64 intKey,              /* The table key */
5484   int biasRight,           /* If true, bias the search to the high end */
5485   int *pRes                /* Write search results here */
5486 ){
5487   int rc;
5488 
5489   assert( cursorOwnsBtShared(pCur) );
5490   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5491   assert( pRes );
5492   assert( pCur->pKeyInfo==0 );
5493   assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5494 
5495   /* If the cursor is already positioned at the point we are trying
5496   ** to move to, then just return without doing any work */
5497   if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5498     if( pCur->info.nKey==intKey ){
5499       *pRes = 0;
5500       return SQLITE_OK;
5501     }
5502     if( pCur->info.nKey<intKey ){
5503       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5504         *pRes = -1;
5505         return SQLITE_OK;
5506       }
5507       /* If the requested key is one more than the previous key, then
5508       ** try to get there using sqlite3BtreeNext() rather than a full
5509       ** binary search.  This is an optimization only.  The correct answer
5510       ** is still obtained without this case, only a little more slowely */
5511       if( pCur->info.nKey+1==intKey ){
5512         *pRes = 0;
5513         rc = sqlite3BtreeNext(pCur, 0);
5514         if( rc==SQLITE_OK ){
5515           getCellInfo(pCur);
5516           if( pCur->info.nKey==intKey ){
5517             return SQLITE_OK;
5518           }
5519         }else if( rc!=SQLITE_DONE ){
5520           return rc;
5521         }
5522       }
5523     }
5524   }
5525 
5526 #ifdef SQLITE_DEBUG
5527   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5528 #endif
5529 
5530   rc = moveToRoot(pCur);
5531   if( rc ){
5532     if( rc==SQLITE_EMPTY ){
5533       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5534       *pRes = -1;
5535       return SQLITE_OK;
5536     }
5537     return rc;
5538   }
5539   assert( pCur->pPage );
5540   assert( pCur->pPage->isInit );
5541   assert( pCur->eState==CURSOR_VALID );
5542   assert( pCur->pPage->nCell > 0 );
5543   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5544   assert( pCur->curIntKey );
5545 
5546   for(;;){
5547     int lwr, upr, idx, c;
5548     Pgno chldPg;
5549     MemPage *pPage = pCur->pPage;
5550     u8 *pCell;                          /* Pointer to current cell in pPage */
5551 
5552     /* pPage->nCell must be greater than zero. If this is the root-page
5553     ** the cursor would have been INVALID above and this for(;;) loop
5554     ** not run. If this is not the root-page, then the moveToChild() routine
5555     ** would have already detected db corruption. Similarly, pPage must
5556     ** be the right kind (index or table) of b-tree page. Otherwise
5557     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5558     assert( pPage->nCell>0 );
5559     assert( pPage->intKey );
5560     lwr = 0;
5561     upr = pPage->nCell-1;
5562     assert( biasRight==0 || biasRight==1 );
5563     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5564     pCur->ix = (u16)idx;
5565     for(;;){
5566       i64 nCellKey;
5567       pCell = findCellPastPtr(pPage, idx);
5568       if( pPage->intKeyLeaf ){
5569         while( 0x80 <= *(pCell++) ){
5570           if( pCell>=pPage->aDataEnd ){
5571             return SQLITE_CORRUPT_PAGE(pPage);
5572           }
5573         }
5574       }
5575       getVarint(pCell, (u64*)&nCellKey);
5576       if( nCellKey<intKey ){
5577         lwr = idx+1;
5578         if( lwr>upr ){ c = -1; break; }
5579       }else if( nCellKey>intKey ){
5580         upr = idx-1;
5581         if( lwr>upr ){ c = +1; break; }
5582       }else{
5583         assert( nCellKey==intKey );
5584         pCur->ix = (u16)idx;
5585         if( !pPage->leaf ){
5586           lwr = idx;
5587           goto moveto_table_next_layer;
5588         }else{
5589           pCur->curFlags |= BTCF_ValidNKey;
5590           pCur->info.nKey = nCellKey;
5591           pCur->info.nSize = 0;
5592           *pRes = 0;
5593           return SQLITE_OK;
5594         }
5595       }
5596       assert( lwr+upr>=0 );
5597       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5598     }
5599     assert( lwr==upr+1 || !pPage->leaf );
5600     assert( pPage->isInit );
5601     if( pPage->leaf ){
5602       assert( pCur->ix<pCur->pPage->nCell );
5603       pCur->ix = (u16)idx;
5604       *pRes = c;
5605       rc = SQLITE_OK;
5606       goto moveto_table_finish;
5607     }
5608 moveto_table_next_layer:
5609     if( lwr>=pPage->nCell ){
5610       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5611     }else{
5612       chldPg = get4byte(findCell(pPage, lwr));
5613     }
5614     pCur->ix = (u16)lwr;
5615     rc = moveToChild(pCur, chldPg);
5616     if( rc ) break;
5617   }
5618 moveto_table_finish:
5619   pCur->info.nSize = 0;
5620   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5621   return rc;
5622 }
5623 
5624 /* Move the cursor so that it points to an entry in an index table
5625 ** near the key pIdxKey.   Return a success code.
5626 **
5627 ** If an exact match is not found, then the cursor is always
5628 ** left pointing at a leaf page which would hold the entry if it
5629 ** were present.  The cursor might point to an entry that comes
5630 ** before or after the key.
5631 **
5632 ** An integer is written into *pRes which is the result of
5633 ** comparing the key with the entry to which the cursor is
5634 ** pointing.  The meaning of the integer written into
5635 ** *pRes is as follows:
5636 **
5637 **     *pRes<0      The cursor is left pointing at an entry that
5638 **                  is smaller than pIdxKey or if the table is empty
5639 **                  and the cursor is therefore left point to nothing.
5640 **
5641 **     *pRes==0     The cursor is left pointing at an entry that
5642 **                  exactly matches pIdxKey.
5643 **
5644 **     *pRes>0      The cursor is left pointing at an entry that
5645 **                  is larger than pIdxKey.
5646 **
5647 ** The pIdxKey->eqSeen field is set to 1 if there
5648 ** exists an entry in the table that exactly matches pIdxKey.
5649 */
5650 int sqlite3BtreeIndexMoveto(
5651   BtCursor *pCur,          /* The cursor to be moved */
5652   UnpackedRecord *pIdxKey, /* Unpacked index key */
5653   int *pRes                /* Write search results here */
5654 ){
5655   int rc;
5656   RecordCompare xRecordCompare;
5657 
5658   assert( cursorOwnsBtShared(pCur) );
5659   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5660   assert( pRes );
5661   assert( pCur->pKeyInfo!=0 );
5662 
5663 #ifdef SQLITE_DEBUG
5664   pCur->pBtree->nSeek++;   /* Performance measurement during testing */
5665 #endif
5666 
5667   xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5668   pIdxKey->errCode = 0;
5669   assert( pIdxKey->default_rc==1
5670        || pIdxKey->default_rc==0
5671        || pIdxKey->default_rc==-1
5672   );
5673 
5674   rc = moveToRoot(pCur);
5675   if( rc ){
5676     if( rc==SQLITE_EMPTY ){
5677       assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5678       *pRes = -1;
5679       return SQLITE_OK;
5680     }
5681     return rc;
5682   }
5683   assert( pCur->pPage );
5684   assert( pCur->pPage->isInit );
5685   assert( pCur->eState==CURSOR_VALID );
5686   assert( pCur->pPage->nCell > 0 );
5687   assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5688   assert( pCur->curIntKey || pIdxKey );
5689   for(;;){
5690     int lwr, upr, idx, c;
5691     Pgno chldPg;
5692     MemPage *pPage = pCur->pPage;
5693     u8 *pCell;                          /* Pointer to current cell in pPage */
5694 
5695     /* pPage->nCell must be greater than zero. If this is the root-page
5696     ** the cursor would have been INVALID above and this for(;;) loop
5697     ** not run. If this is not the root-page, then the moveToChild() routine
5698     ** would have already detected db corruption. Similarly, pPage must
5699     ** be the right kind (index or table) of b-tree page. Otherwise
5700     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5701     assert( pPage->nCell>0 );
5702     assert( pPage->intKey==(pIdxKey==0) );
5703     lwr = 0;
5704     upr = pPage->nCell-1;
5705     idx = upr>>1; /* idx = (lwr+upr)/2; */
5706     pCur->ix = (u16)idx;
5707     for(;;){
5708       int nCell;  /* Size of the pCell cell in bytes */
5709       pCell = findCellPastPtr(pPage, idx);
5710 
5711       /* The maximum supported page-size is 65536 bytes. This means that
5712       ** the maximum number of record bytes stored on an index B-Tree
5713       ** page is less than 16384 bytes and may be stored as a 2-byte
5714       ** varint. This information is used to attempt to avoid parsing
5715       ** the entire cell by checking for the cases where the record is
5716       ** stored entirely within the b-tree page by inspecting the first
5717       ** 2 bytes of the cell.
5718       */
5719       nCell = pCell[0];
5720       if( nCell<=pPage->max1bytePayload ){
5721         /* This branch runs if the record-size field of the cell is a
5722         ** single byte varint and the record fits entirely on the main
5723         ** b-tree page.  */
5724         testcase( pCell+nCell+1==pPage->aDataEnd );
5725         c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5726       }else if( !(pCell[1] & 0x80)
5727         && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5728       ){
5729         /* The record-size field is a 2 byte varint and the record
5730         ** fits entirely on the main b-tree page.  */
5731         testcase( pCell+nCell+2==pPage->aDataEnd );
5732         c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5733       }else{
5734         /* The record flows over onto one or more overflow pages. In
5735         ** this case the whole cell needs to be parsed, a buffer allocated
5736         ** and accessPayload() used to retrieve the record into the
5737         ** buffer before VdbeRecordCompare() can be called.
5738         **
5739         ** If the record is corrupt, the xRecordCompare routine may read
5740         ** up to two varints past the end of the buffer. An extra 18
5741         ** bytes of padding is allocated at the end of the buffer in
5742         ** case this happens.  */
5743         void *pCellKey;
5744         u8 * const pCellBody = pCell - pPage->childPtrSize;
5745         const int nOverrun = 18;  /* Size of the overrun padding */
5746         pPage->xParseCell(pPage, pCellBody, &pCur->info);
5747         nCell = (int)pCur->info.nKey;
5748         testcase( nCell<0 );   /* True if key size is 2^32 or more */
5749         testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5750         testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5751         testcase( nCell==2 );  /* Minimum legal index key size */
5752         if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5753           rc = SQLITE_CORRUPT_PAGE(pPage);
5754           goto moveto_index_finish;
5755         }
5756         pCellKey = sqlite3Malloc( nCell+nOverrun );
5757         if( pCellKey==0 ){
5758           rc = SQLITE_NOMEM_BKPT;
5759           goto moveto_index_finish;
5760         }
5761         pCur->ix = (u16)idx;
5762         rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5763         memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5764         pCur->curFlags &= ~BTCF_ValidOvfl;
5765         if( rc ){
5766           sqlite3_free(pCellKey);
5767           goto moveto_index_finish;
5768         }
5769         c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5770         sqlite3_free(pCellKey);
5771       }
5772       assert(
5773           (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5774        && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5775       );
5776       if( c<0 ){
5777         lwr = idx+1;
5778       }else if( c>0 ){
5779         upr = idx-1;
5780       }else{
5781         assert( c==0 );
5782         *pRes = 0;
5783         rc = SQLITE_OK;
5784         pCur->ix = (u16)idx;
5785         if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5786         goto moveto_index_finish;
5787       }
5788       if( lwr>upr ) break;
5789       assert( lwr+upr>=0 );
5790       idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5791     }
5792     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5793     assert( pPage->isInit );
5794     if( pPage->leaf ){
5795       assert( pCur->ix<pCur->pPage->nCell );
5796       pCur->ix = (u16)idx;
5797       *pRes = c;
5798       rc = SQLITE_OK;
5799       goto moveto_index_finish;
5800     }
5801     if( lwr>=pPage->nCell ){
5802       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5803     }else{
5804       chldPg = get4byte(findCell(pPage, lwr));
5805     }
5806     pCur->ix = (u16)lwr;
5807     rc = moveToChild(pCur, chldPg);
5808     if( rc ) break;
5809   }
5810 moveto_index_finish:
5811   pCur->info.nSize = 0;
5812   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5813   return rc;
5814 }
5815 
5816 
5817 /*
5818 ** Return TRUE if the cursor is not pointing at an entry of the table.
5819 **
5820 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5821 ** past the last entry in the table or sqlite3BtreePrev() moves past
5822 ** the first entry.  TRUE is also returned if the table is empty.
5823 */
5824 int sqlite3BtreeEof(BtCursor *pCur){
5825   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5826   ** have been deleted? This API will need to change to return an error code
5827   ** as well as the boolean result value.
5828   */
5829   return (CURSOR_VALID!=pCur->eState);
5830 }
5831 
5832 /*
5833 ** Return an estimate for the number of rows in the table that pCur is
5834 ** pointing to.  Return a negative number if no estimate is currently
5835 ** available.
5836 */
5837 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5838   i64 n;
5839   u8 i;
5840 
5841   assert( cursorOwnsBtShared(pCur) );
5842   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5843 
5844   /* Currently this interface is only called by the OP_IfSmaller
5845   ** opcode, and it that case the cursor will always be valid and
5846   ** will always point to a leaf node. */
5847   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5848   if( NEVER(pCur->pPage->leaf==0) ) return -1;
5849 
5850   n = pCur->pPage->nCell;
5851   for(i=0; i<pCur->iPage; i++){
5852     n *= pCur->apPage[i]->nCell;
5853   }
5854   return n;
5855 }
5856 
5857 /*
5858 ** Advance the cursor to the next entry in the database.
5859 ** Return value:
5860 **
5861 **    SQLITE_OK        success
5862 **    SQLITE_DONE      cursor is already pointing at the last element
5863 **    otherwise        some kind of error occurred
5864 **
5865 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5866 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5867 ** to the next cell on the current page.  The (slower) btreeNext() helper
5868 ** routine is called when it is necessary to move to a different page or
5869 ** to restore the cursor.
5870 **
5871 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5872 ** cursor corresponds to an SQL index and this routine could have been
5873 ** skipped if the SQL index had been a unique index.  The F argument
5874 ** is a hint to the implement.  SQLite btree implementation does not use
5875 ** this hint, but COMDB2 does.
5876 */
5877 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5878   int rc;
5879   int idx;
5880   MemPage *pPage;
5881 
5882   assert( cursorOwnsBtShared(pCur) );
5883   if( pCur->eState!=CURSOR_VALID ){
5884     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5885     rc = restoreCursorPosition(pCur);
5886     if( rc!=SQLITE_OK ){
5887       return rc;
5888     }
5889     if( CURSOR_INVALID==pCur->eState ){
5890       return SQLITE_DONE;
5891     }
5892     if( pCur->eState==CURSOR_SKIPNEXT ){
5893       pCur->eState = CURSOR_VALID;
5894       if( pCur->skipNext>0 ) return SQLITE_OK;
5895     }
5896   }
5897 
5898   pPage = pCur->pPage;
5899   idx = ++pCur->ix;
5900   if( !pPage->isInit || sqlite3FaultSim(412) ){
5901     /* The only known way for this to happen is for there to be a
5902     ** recursive SQL function that does a DELETE operation as part of a
5903     ** SELECT which deletes content out from under an active cursor
5904     ** in a corrupt database file where the table being DELETE-ed from
5905     ** has pages in common with the table being queried.  See TH3
5906     ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5907     ** example. */
5908     return SQLITE_CORRUPT_BKPT;
5909   }
5910 
5911   if( idx>=pPage->nCell ){
5912     if( !pPage->leaf ){
5913       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5914       if( rc ) return rc;
5915       return moveToLeftmost(pCur);
5916     }
5917     do{
5918       if( pCur->iPage==0 ){
5919         pCur->eState = CURSOR_INVALID;
5920         return SQLITE_DONE;
5921       }
5922       moveToParent(pCur);
5923       pPage = pCur->pPage;
5924     }while( pCur->ix>=pPage->nCell );
5925     if( pPage->intKey ){
5926       return sqlite3BtreeNext(pCur, 0);
5927     }else{
5928       return SQLITE_OK;
5929     }
5930   }
5931   if( pPage->leaf ){
5932     return SQLITE_OK;
5933   }else{
5934     return moveToLeftmost(pCur);
5935   }
5936 }
5937 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5938   MemPage *pPage;
5939   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
5940   assert( cursorOwnsBtShared(pCur) );
5941   assert( flags==0 || flags==1 );
5942   pCur->info.nSize = 0;
5943   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5944   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5945   pPage = pCur->pPage;
5946   if( (++pCur->ix)>=pPage->nCell ){
5947     pCur->ix--;
5948     return btreeNext(pCur);
5949   }
5950   if( pPage->leaf ){
5951     return SQLITE_OK;
5952   }else{
5953     return moveToLeftmost(pCur);
5954   }
5955 }
5956 
5957 /*
5958 ** Step the cursor to the back to the previous entry in the database.
5959 ** Return values:
5960 **
5961 **     SQLITE_OK     success
5962 **     SQLITE_DONE   the cursor is already on the first element of the table
5963 **     otherwise     some kind of error occurred
5964 **
5965 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5966 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5967 ** to the previous cell on the current page.  The (slower) btreePrevious()
5968 ** helper routine is called when it is necessary to move to a different page
5969 ** or to restore the cursor.
5970 **
5971 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5972 ** the cursor corresponds to an SQL index and this routine could have been
5973 ** skipped if the SQL index had been a unique index.  The F argument is a
5974 ** hint to the implement.  The native SQLite btree implementation does not
5975 ** use this hint, but COMDB2 does.
5976 */
5977 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5978   int rc;
5979   MemPage *pPage;
5980 
5981   assert( cursorOwnsBtShared(pCur) );
5982   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5983   assert( pCur->info.nSize==0 );
5984   if( pCur->eState!=CURSOR_VALID ){
5985     rc = restoreCursorPosition(pCur);
5986     if( rc!=SQLITE_OK ){
5987       return rc;
5988     }
5989     if( CURSOR_INVALID==pCur->eState ){
5990       return SQLITE_DONE;
5991     }
5992     if( CURSOR_SKIPNEXT==pCur->eState ){
5993       pCur->eState = CURSOR_VALID;
5994       if( pCur->skipNext<0 ) return SQLITE_OK;
5995     }
5996   }
5997 
5998   pPage = pCur->pPage;
5999   assert( pPage->isInit );
6000   if( !pPage->leaf ){
6001     int idx = pCur->ix;
6002     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6003     if( rc ) return rc;
6004     rc = moveToRightmost(pCur);
6005   }else{
6006     while( pCur->ix==0 ){
6007       if( pCur->iPage==0 ){
6008         pCur->eState = CURSOR_INVALID;
6009         return SQLITE_DONE;
6010       }
6011       moveToParent(pCur);
6012     }
6013     assert( pCur->info.nSize==0 );
6014     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6015 
6016     pCur->ix--;
6017     pPage = pCur->pPage;
6018     if( pPage->intKey && !pPage->leaf ){
6019       rc = sqlite3BtreePrevious(pCur, 0);
6020     }else{
6021       rc = SQLITE_OK;
6022     }
6023   }
6024   return rc;
6025 }
6026 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6027   assert( cursorOwnsBtShared(pCur) );
6028   assert( flags==0 || flags==1 );
6029   UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
6030   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6031   pCur->info.nSize = 0;
6032   if( pCur->eState!=CURSOR_VALID
6033    || pCur->ix==0
6034    || pCur->pPage->leaf==0
6035   ){
6036     return btreePrevious(pCur);
6037   }
6038   pCur->ix--;
6039   return SQLITE_OK;
6040 }
6041 
6042 /*
6043 ** Allocate a new page from the database file.
6044 **
6045 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
6046 ** has already been called on the new page.)  The new page has also
6047 ** been referenced and the calling routine is responsible for calling
6048 ** sqlite3PagerUnref() on the new page when it is done.
6049 **
6050 ** SQLITE_OK is returned on success.  Any other return value indicates
6051 ** an error.  *ppPage is set to NULL in the event of an error.
6052 **
6053 ** If the "nearby" parameter is not 0, then an effort is made to
6054 ** locate a page close to the page number "nearby".  This can be used in an
6055 ** attempt to keep related pages close to each other in the database file,
6056 ** which in turn can make database access faster.
6057 **
6058 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6059 ** anywhere on the free-list, then it is guaranteed to be returned.  If
6060 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6061 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
6062 ** are no restrictions on which page is returned.
6063 */
6064 static int allocateBtreePage(
6065   BtShared *pBt,         /* The btree */
6066   MemPage **ppPage,      /* Store pointer to the allocated page here */
6067   Pgno *pPgno,           /* Store the page number here */
6068   Pgno nearby,           /* Search for a page near this one */
6069   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6070 ){
6071   MemPage *pPage1;
6072   int rc;
6073   u32 n;     /* Number of pages on the freelist */
6074   u32 k;     /* Number of leaves on the trunk of the freelist */
6075   MemPage *pTrunk = 0;
6076   MemPage *pPrevTrunk = 0;
6077   Pgno mxPage;     /* Total size of the database file */
6078 
6079   assert( sqlite3_mutex_held(pBt->mutex) );
6080   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6081   pPage1 = pBt->pPage1;
6082   mxPage = btreePagecount(pBt);
6083   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6084   ** stores stores the total number of pages on the freelist. */
6085   n = get4byte(&pPage1->aData[36]);
6086   testcase( n==mxPage-1 );
6087   if( n>=mxPage ){
6088     return SQLITE_CORRUPT_BKPT;
6089   }
6090   if( n>0 ){
6091     /* There are pages on the freelist.  Reuse one of those pages. */
6092     Pgno iTrunk;
6093     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6094     u32 nSearch = 0;   /* Count of the number of search attempts */
6095 
6096     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6097     ** shows that the page 'nearby' is somewhere on the free-list, then
6098     ** the entire-list will be searched for that page.
6099     */
6100 #ifndef SQLITE_OMIT_AUTOVACUUM
6101     if( eMode==BTALLOC_EXACT ){
6102       if( nearby<=mxPage ){
6103         u8 eType;
6104         assert( nearby>0 );
6105         assert( pBt->autoVacuum );
6106         rc = ptrmapGet(pBt, nearby, &eType, 0);
6107         if( rc ) return rc;
6108         if( eType==PTRMAP_FREEPAGE ){
6109           searchList = 1;
6110         }
6111       }
6112     }else if( eMode==BTALLOC_LE ){
6113       searchList = 1;
6114     }
6115 #endif
6116 
6117     /* Decrement the free-list count by 1. Set iTrunk to the index of the
6118     ** first free-list trunk page. iPrevTrunk is initially 1.
6119     */
6120     rc = sqlite3PagerWrite(pPage1->pDbPage);
6121     if( rc ) return rc;
6122     put4byte(&pPage1->aData[36], n-1);
6123 
6124     /* The code within this loop is run only once if the 'searchList' variable
6125     ** is not true. Otherwise, it runs once for each trunk-page on the
6126     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6127     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6128     */
6129     do {
6130       pPrevTrunk = pTrunk;
6131       if( pPrevTrunk ){
6132         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6133         ** is the page number of the next freelist trunk page in the list or
6134         ** zero if this is the last freelist trunk page. */
6135         iTrunk = get4byte(&pPrevTrunk->aData[0]);
6136       }else{
6137         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6138         ** stores the page number of the first page of the freelist, or zero if
6139         ** the freelist is empty. */
6140         iTrunk = get4byte(&pPage1->aData[32]);
6141       }
6142       testcase( iTrunk==mxPage );
6143       if( iTrunk>mxPage || nSearch++ > n ){
6144         rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6145       }else{
6146         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6147       }
6148       if( rc ){
6149         pTrunk = 0;
6150         goto end_allocate_page;
6151       }
6152       assert( pTrunk!=0 );
6153       assert( pTrunk->aData!=0 );
6154       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6155       ** is the number of leaf page pointers to follow. */
6156       k = get4byte(&pTrunk->aData[4]);
6157       if( k==0 && !searchList ){
6158         /* The trunk has no leaves and the list is not being searched.
6159         ** So extract the trunk page itself and use it as the newly
6160         ** allocated page */
6161         assert( pPrevTrunk==0 );
6162         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6163         if( rc ){
6164           goto end_allocate_page;
6165         }
6166         *pPgno = iTrunk;
6167         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6168         *ppPage = pTrunk;
6169         pTrunk = 0;
6170         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6171       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6172         /* Value of k is out of range.  Database corruption */
6173         rc = SQLITE_CORRUPT_PGNO(iTrunk);
6174         goto end_allocate_page;
6175 #ifndef SQLITE_OMIT_AUTOVACUUM
6176       }else if( searchList
6177             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6178       ){
6179         /* The list is being searched and this trunk page is the page
6180         ** to allocate, regardless of whether it has leaves.
6181         */
6182         *pPgno = iTrunk;
6183         *ppPage = pTrunk;
6184         searchList = 0;
6185         rc = sqlite3PagerWrite(pTrunk->pDbPage);
6186         if( rc ){
6187           goto end_allocate_page;
6188         }
6189         if( k==0 ){
6190           if( !pPrevTrunk ){
6191             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6192           }else{
6193             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6194             if( rc!=SQLITE_OK ){
6195               goto end_allocate_page;
6196             }
6197             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6198           }
6199         }else{
6200           /* The trunk page is required by the caller but it contains
6201           ** pointers to free-list leaves. The first leaf becomes a trunk
6202           ** page in this case.
6203           */
6204           MemPage *pNewTrunk;
6205           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6206           if( iNewTrunk>mxPage ){
6207             rc = SQLITE_CORRUPT_PGNO(iTrunk);
6208             goto end_allocate_page;
6209           }
6210           testcase( iNewTrunk==mxPage );
6211           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6212           if( rc!=SQLITE_OK ){
6213             goto end_allocate_page;
6214           }
6215           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6216           if( rc!=SQLITE_OK ){
6217             releasePage(pNewTrunk);
6218             goto end_allocate_page;
6219           }
6220           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6221           put4byte(&pNewTrunk->aData[4], k-1);
6222           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6223           releasePage(pNewTrunk);
6224           if( !pPrevTrunk ){
6225             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6226             put4byte(&pPage1->aData[32], iNewTrunk);
6227           }else{
6228             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6229             if( rc ){
6230               goto end_allocate_page;
6231             }
6232             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6233           }
6234         }
6235         pTrunk = 0;
6236         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6237 #endif
6238       }else if( k>0 ){
6239         /* Extract a leaf from the trunk */
6240         u32 closest;
6241         Pgno iPage;
6242         unsigned char *aData = pTrunk->aData;
6243         if( nearby>0 ){
6244           u32 i;
6245           closest = 0;
6246           if( eMode==BTALLOC_LE ){
6247             for(i=0; i<k; i++){
6248               iPage = get4byte(&aData[8+i*4]);
6249               if( iPage<=nearby ){
6250                 closest = i;
6251                 break;
6252               }
6253             }
6254           }else{
6255             int dist;
6256             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6257             for(i=1; i<k; i++){
6258               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6259               if( d2<dist ){
6260                 closest = i;
6261                 dist = d2;
6262               }
6263             }
6264           }
6265         }else{
6266           closest = 0;
6267         }
6268 
6269         iPage = get4byte(&aData[8+closest*4]);
6270         testcase( iPage==mxPage );
6271         if( iPage>mxPage || iPage<2 ){
6272           rc = SQLITE_CORRUPT_PGNO(iTrunk);
6273           goto end_allocate_page;
6274         }
6275         testcase( iPage==mxPage );
6276         if( !searchList
6277          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6278         ){
6279           int noContent;
6280           *pPgno = iPage;
6281           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6282                  ": %d more free pages\n",
6283                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
6284           rc = sqlite3PagerWrite(pTrunk->pDbPage);
6285           if( rc ) goto end_allocate_page;
6286           if( closest<k-1 ){
6287             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6288           }
6289           put4byte(&aData[4], k-1);
6290           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6291           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6292           if( rc==SQLITE_OK ){
6293             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6294             if( rc!=SQLITE_OK ){
6295               releasePage(*ppPage);
6296               *ppPage = 0;
6297             }
6298           }
6299           searchList = 0;
6300         }
6301       }
6302       releasePage(pPrevTrunk);
6303       pPrevTrunk = 0;
6304     }while( searchList );
6305   }else{
6306     /* There are no pages on the freelist, so append a new page to the
6307     ** database image.
6308     **
6309     ** Normally, new pages allocated by this block can be requested from the
6310     ** pager layer with the 'no-content' flag set. This prevents the pager
6311     ** from trying to read the pages content from disk. However, if the
6312     ** current transaction has already run one or more incremental-vacuum
6313     ** steps, then the page we are about to allocate may contain content
6314     ** that is required in the event of a rollback. In this case, do
6315     ** not set the no-content flag. This causes the pager to load and journal
6316     ** the current page content before overwriting it.
6317     **
6318     ** Note that the pager will not actually attempt to load or journal
6319     ** content for any page that really does lie past the end of the database
6320     ** file on disk. So the effects of disabling the no-content optimization
6321     ** here are confined to those pages that lie between the end of the
6322     ** database image and the end of the database file.
6323     */
6324     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6325 
6326     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6327     if( rc ) return rc;
6328     pBt->nPage++;
6329     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6330 
6331 #ifndef SQLITE_OMIT_AUTOVACUUM
6332     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6333       /* If *pPgno refers to a pointer-map page, allocate two new pages
6334       ** at the end of the file instead of one. The first allocated page
6335       ** becomes a new pointer-map page, the second is used by the caller.
6336       */
6337       MemPage *pPg = 0;
6338       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6339       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6340       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6341       if( rc==SQLITE_OK ){
6342         rc = sqlite3PagerWrite(pPg->pDbPage);
6343         releasePage(pPg);
6344       }
6345       if( rc ) return rc;
6346       pBt->nPage++;
6347       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6348     }
6349 #endif
6350     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6351     *pPgno = pBt->nPage;
6352 
6353     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6354     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6355     if( rc ) return rc;
6356     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6357     if( rc!=SQLITE_OK ){
6358       releasePage(*ppPage);
6359       *ppPage = 0;
6360     }
6361     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6362   }
6363 
6364   assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6365 
6366 end_allocate_page:
6367   releasePage(pTrunk);
6368   releasePage(pPrevTrunk);
6369   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6370   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6371   return rc;
6372 }
6373 
6374 /*
6375 ** This function is used to add page iPage to the database file free-list.
6376 ** It is assumed that the page is not already a part of the free-list.
6377 **
6378 ** The value passed as the second argument to this function is optional.
6379 ** If the caller happens to have a pointer to the MemPage object
6380 ** corresponding to page iPage handy, it may pass it as the second value.
6381 ** Otherwise, it may pass NULL.
6382 **
6383 ** If a pointer to a MemPage object is passed as the second argument,
6384 ** its reference count is not altered by this function.
6385 */
6386 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6387   MemPage *pTrunk = 0;                /* Free-list trunk page */
6388   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
6389   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
6390   MemPage *pPage;                     /* Page being freed. May be NULL. */
6391   int rc;                             /* Return Code */
6392   u32 nFree;                          /* Initial number of pages on free-list */
6393 
6394   assert( sqlite3_mutex_held(pBt->mutex) );
6395   assert( CORRUPT_DB || iPage>1 );
6396   assert( !pMemPage || pMemPage->pgno==iPage );
6397 
6398   if( NEVER(iPage<2) || iPage>pBt->nPage ){
6399     return SQLITE_CORRUPT_BKPT;
6400   }
6401   if( pMemPage ){
6402     pPage = pMemPage;
6403     sqlite3PagerRef(pPage->pDbPage);
6404   }else{
6405     pPage = btreePageLookup(pBt, iPage);
6406   }
6407 
6408   /* Increment the free page count on pPage1 */
6409   rc = sqlite3PagerWrite(pPage1->pDbPage);
6410   if( rc ) goto freepage_out;
6411   nFree = get4byte(&pPage1->aData[36]);
6412   put4byte(&pPage1->aData[36], nFree+1);
6413 
6414   if( pBt->btsFlags & BTS_SECURE_DELETE ){
6415     /* If the secure_delete option is enabled, then
6416     ** always fully overwrite deleted information with zeros.
6417     */
6418     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6419      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6420     ){
6421       goto freepage_out;
6422     }
6423     memset(pPage->aData, 0, pPage->pBt->pageSize);
6424   }
6425 
6426   /* If the database supports auto-vacuum, write an entry in the pointer-map
6427   ** to indicate that the page is free.
6428   */
6429   if( ISAUTOVACUUM ){
6430     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6431     if( rc ) goto freepage_out;
6432   }
6433 
6434   /* Now manipulate the actual database free-list structure. There are two
6435   ** possibilities. If the free-list is currently empty, or if the first
6436   ** trunk page in the free-list is full, then this page will become a
6437   ** new free-list trunk page. Otherwise, it will become a leaf of the
6438   ** first trunk page in the current free-list. This block tests if it
6439   ** is possible to add the page as a new free-list leaf.
6440   */
6441   if( nFree!=0 ){
6442     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6443 
6444     iTrunk = get4byte(&pPage1->aData[32]);
6445     if( iTrunk>btreePagecount(pBt) ){
6446       rc = SQLITE_CORRUPT_BKPT;
6447       goto freepage_out;
6448     }
6449     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6450     if( rc!=SQLITE_OK ){
6451       goto freepage_out;
6452     }
6453 
6454     nLeaf = get4byte(&pTrunk->aData[4]);
6455     assert( pBt->usableSize>32 );
6456     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6457       rc = SQLITE_CORRUPT_BKPT;
6458       goto freepage_out;
6459     }
6460     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6461       /* In this case there is room on the trunk page to insert the page
6462       ** being freed as a new leaf.
6463       **
6464       ** Note that the trunk page is not really full until it contains
6465       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6466       ** coded.  But due to a coding error in versions of SQLite prior to
6467       ** 3.6.0, databases with freelist trunk pages holding more than
6468       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6469       ** to maintain backwards compatibility with older versions of SQLite,
6470       ** we will continue to restrict the number of entries to usableSize/4 - 8
6471       ** for now.  At some point in the future (once everyone has upgraded
6472       ** to 3.6.0 or later) we should consider fixing the conditional above
6473       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6474       **
6475       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6476       ** avoid using the last six entries in the freelist trunk page array in
6477       ** order that database files created by newer versions of SQLite can be
6478       ** read by older versions of SQLite.
6479       */
6480       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6481       if( rc==SQLITE_OK ){
6482         put4byte(&pTrunk->aData[4], nLeaf+1);
6483         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6484         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6485           sqlite3PagerDontWrite(pPage->pDbPage);
6486         }
6487         rc = btreeSetHasContent(pBt, iPage);
6488       }
6489       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6490       goto freepage_out;
6491     }
6492   }
6493 
6494   /* If control flows to this point, then it was not possible to add the
6495   ** the page being freed as a leaf page of the first trunk in the free-list.
6496   ** Possibly because the free-list is empty, or possibly because the
6497   ** first trunk in the free-list is full. Either way, the page being freed
6498   ** will become the new first trunk page in the free-list.
6499   */
6500   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6501     goto freepage_out;
6502   }
6503   rc = sqlite3PagerWrite(pPage->pDbPage);
6504   if( rc!=SQLITE_OK ){
6505     goto freepage_out;
6506   }
6507   put4byte(pPage->aData, iTrunk);
6508   put4byte(&pPage->aData[4], 0);
6509   put4byte(&pPage1->aData[32], iPage);
6510   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6511 
6512 freepage_out:
6513   if( pPage ){
6514     pPage->isInit = 0;
6515   }
6516   releasePage(pPage);
6517   releasePage(pTrunk);
6518   return rc;
6519 }
6520 static void freePage(MemPage *pPage, int *pRC){
6521   if( (*pRC)==SQLITE_OK ){
6522     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6523   }
6524 }
6525 
6526 /*
6527 ** Free the overflow pages associated with the given Cell.
6528 */
6529 static SQLITE_NOINLINE int clearCellOverflow(
6530   MemPage *pPage,          /* The page that contains the Cell */
6531   unsigned char *pCell,    /* First byte of the Cell */
6532   CellInfo *pInfo          /* Size information about the cell */
6533 ){
6534   BtShared *pBt;
6535   Pgno ovflPgno;
6536   int rc;
6537   int nOvfl;
6538   u32 ovflPageSize;
6539 
6540   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6541   assert( pInfo->nLocal!=pInfo->nPayload );
6542   testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6543   testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6544   if( pCell + pInfo->nSize > pPage->aDataEnd ){
6545     /* Cell extends past end of page */
6546     return SQLITE_CORRUPT_PAGE(pPage);
6547   }
6548   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6549   pBt = pPage->pBt;
6550   assert( pBt->usableSize > 4 );
6551   ovflPageSize = pBt->usableSize - 4;
6552   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6553   assert( nOvfl>0 ||
6554     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6555   );
6556   while( nOvfl-- ){
6557     Pgno iNext = 0;
6558     MemPage *pOvfl = 0;
6559     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6560       /* 0 is not a legal page number and page 1 cannot be an
6561       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6562       ** file the database must be corrupt. */
6563       return SQLITE_CORRUPT_BKPT;
6564     }
6565     if( nOvfl ){
6566       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6567       if( rc ) return rc;
6568     }
6569 
6570     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6571      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6572     ){
6573       /* There is no reason any cursor should have an outstanding reference
6574       ** to an overflow page belonging to a cell that is being deleted/updated.
6575       ** So if there exists more than one reference to this page, then it
6576       ** must not really be an overflow page and the database must be corrupt.
6577       ** It is helpful to detect this before calling freePage2(), as
6578       ** freePage2() may zero the page contents if secure-delete mode is
6579       ** enabled. If this 'overflow' page happens to be a page that the
6580       ** caller is iterating through or using in some other way, this
6581       ** can be problematic.
6582       */
6583       rc = SQLITE_CORRUPT_BKPT;
6584     }else{
6585       rc = freePage2(pBt, pOvfl, ovflPgno);
6586     }
6587 
6588     if( pOvfl ){
6589       sqlite3PagerUnref(pOvfl->pDbPage);
6590     }
6591     if( rc ) return rc;
6592     ovflPgno = iNext;
6593   }
6594   return SQLITE_OK;
6595 }
6596 
6597 /* Call xParseCell to compute the size of a cell.  If the cell contains
6598 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6599 ** STore the result code (SQLITE_OK or some error code) in rc.
6600 **
6601 ** Implemented as macro to force inlining for performance.
6602 */
6603 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo)   \
6604   pPage->xParseCell(pPage, pCell, &sInfo);          \
6605   if( sInfo.nLocal!=sInfo.nPayload ){               \
6606     rc = clearCellOverflow(pPage, pCell, &sInfo);   \
6607   }else{                                            \
6608     rc = SQLITE_OK;                                 \
6609   }
6610 
6611 
6612 /*
6613 ** Create the byte sequence used to represent a cell on page pPage
6614 ** and write that byte sequence into pCell[].  Overflow pages are
6615 ** allocated and filled in as necessary.  The calling procedure
6616 ** is responsible for making sure sufficient space has been allocated
6617 ** for pCell[].
6618 **
6619 ** Note that pCell does not necessary need to point to the pPage->aData
6620 ** area.  pCell might point to some temporary storage.  The cell will
6621 ** be constructed in this temporary area then copied into pPage->aData
6622 ** later.
6623 */
6624 static int fillInCell(
6625   MemPage *pPage,                /* The page that contains the cell */
6626   unsigned char *pCell,          /* Complete text of the cell */
6627   const BtreePayload *pX,        /* Payload with which to construct the cell */
6628   int *pnSize                    /* Write cell size here */
6629 ){
6630   int nPayload;
6631   const u8 *pSrc;
6632   int nSrc, n, rc, mn;
6633   int spaceLeft;
6634   MemPage *pToRelease;
6635   unsigned char *pPrior;
6636   unsigned char *pPayload;
6637   BtShared *pBt;
6638   Pgno pgnoOvfl;
6639   int nHeader;
6640 
6641   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6642 
6643   /* pPage is not necessarily writeable since pCell might be auxiliary
6644   ** buffer space that is separate from the pPage buffer area */
6645   assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6646             || sqlite3PagerIswriteable(pPage->pDbPage) );
6647 
6648   /* Fill in the header. */
6649   nHeader = pPage->childPtrSize;
6650   if( pPage->intKey ){
6651     nPayload = pX->nData + pX->nZero;
6652     pSrc = pX->pData;
6653     nSrc = pX->nData;
6654     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6655     nHeader += putVarint32(&pCell[nHeader], nPayload);
6656     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6657   }else{
6658     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6659     nSrc = nPayload = (int)pX->nKey;
6660     pSrc = pX->pKey;
6661     nHeader += putVarint32(&pCell[nHeader], nPayload);
6662   }
6663 
6664   /* Fill in the payload */
6665   pPayload = &pCell[nHeader];
6666   if( nPayload<=pPage->maxLocal ){
6667     /* This is the common case where everything fits on the btree page
6668     ** and no overflow pages are required. */
6669     n = nHeader + nPayload;
6670     testcase( n==3 );
6671     testcase( n==4 );
6672     if( n<4 ) n = 4;
6673     *pnSize = n;
6674     assert( nSrc<=nPayload );
6675     testcase( nSrc<nPayload );
6676     memcpy(pPayload, pSrc, nSrc);
6677     memset(pPayload+nSrc, 0, nPayload-nSrc);
6678     return SQLITE_OK;
6679   }
6680 
6681   /* If we reach this point, it means that some of the content will need
6682   ** to spill onto overflow pages.
6683   */
6684   mn = pPage->minLocal;
6685   n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6686   testcase( n==pPage->maxLocal );
6687   testcase( n==pPage->maxLocal+1 );
6688   if( n > pPage->maxLocal ) n = mn;
6689   spaceLeft = n;
6690   *pnSize = n + nHeader + 4;
6691   pPrior = &pCell[nHeader+n];
6692   pToRelease = 0;
6693   pgnoOvfl = 0;
6694   pBt = pPage->pBt;
6695 
6696   /* At this point variables should be set as follows:
6697   **
6698   **   nPayload           Total payload size in bytes
6699   **   pPayload           Begin writing payload here
6700   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6701   **                      that means content must spill into overflow pages.
6702   **   *pnSize            Size of the local cell (not counting overflow pages)
6703   **   pPrior             Where to write the pgno of the first overflow page
6704   **
6705   ** Use a call to btreeParseCellPtr() to verify that the values above
6706   ** were computed correctly.
6707   */
6708 #ifdef SQLITE_DEBUG
6709   {
6710     CellInfo info;
6711     pPage->xParseCell(pPage, pCell, &info);
6712     assert( nHeader==(int)(info.pPayload - pCell) );
6713     assert( info.nKey==pX->nKey );
6714     assert( *pnSize == info.nSize );
6715     assert( spaceLeft == info.nLocal );
6716   }
6717 #endif
6718 
6719   /* Write the payload into the local Cell and any extra into overflow pages */
6720   while( 1 ){
6721     n = nPayload;
6722     if( n>spaceLeft ) n = spaceLeft;
6723 
6724     /* If pToRelease is not zero than pPayload points into the data area
6725     ** of pToRelease.  Make sure pToRelease is still writeable. */
6726     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6727 
6728     /* If pPayload is part of the data area of pPage, then make sure pPage
6729     ** is still writeable */
6730     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6731             || sqlite3PagerIswriteable(pPage->pDbPage) );
6732 
6733     if( nSrc>=n ){
6734       memcpy(pPayload, pSrc, n);
6735     }else if( nSrc>0 ){
6736       n = nSrc;
6737       memcpy(pPayload, pSrc, n);
6738     }else{
6739       memset(pPayload, 0, n);
6740     }
6741     nPayload -= n;
6742     if( nPayload<=0 ) break;
6743     pPayload += n;
6744     pSrc += n;
6745     nSrc -= n;
6746     spaceLeft -= n;
6747     if( spaceLeft==0 ){
6748       MemPage *pOvfl = 0;
6749 #ifndef SQLITE_OMIT_AUTOVACUUM
6750       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6751       if( pBt->autoVacuum ){
6752         do{
6753           pgnoOvfl++;
6754         } while(
6755           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6756         );
6757       }
6758 #endif
6759       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6760 #ifndef SQLITE_OMIT_AUTOVACUUM
6761       /* If the database supports auto-vacuum, and the second or subsequent
6762       ** overflow page is being allocated, add an entry to the pointer-map
6763       ** for that page now.
6764       **
6765       ** If this is the first overflow page, then write a partial entry
6766       ** to the pointer-map. If we write nothing to this pointer-map slot,
6767       ** then the optimistic overflow chain processing in clearCell()
6768       ** may misinterpret the uninitialized values and delete the
6769       ** wrong pages from the database.
6770       */
6771       if( pBt->autoVacuum && rc==SQLITE_OK ){
6772         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6773         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6774         if( rc ){
6775           releasePage(pOvfl);
6776         }
6777       }
6778 #endif
6779       if( rc ){
6780         releasePage(pToRelease);
6781         return rc;
6782       }
6783 
6784       /* If pToRelease is not zero than pPrior points into the data area
6785       ** of pToRelease.  Make sure pToRelease is still writeable. */
6786       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6787 
6788       /* If pPrior is part of the data area of pPage, then make sure pPage
6789       ** is still writeable */
6790       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6791             || sqlite3PagerIswriteable(pPage->pDbPage) );
6792 
6793       put4byte(pPrior, pgnoOvfl);
6794       releasePage(pToRelease);
6795       pToRelease = pOvfl;
6796       pPrior = pOvfl->aData;
6797       put4byte(pPrior, 0);
6798       pPayload = &pOvfl->aData[4];
6799       spaceLeft = pBt->usableSize - 4;
6800     }
6801   }
6802   releasePage(pToRelease);
6803   return SQLITE_OK;
6804 }
6805 
6806 /*
6807 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6808 ** The cell content is not freed or deallocated.  It is assumed that
6809 ** the cell content has been copied someplace else.  This routine just
6810 ** removes the reference to the cell from pPage.
6811 **
6812 ** "sz" must be the number of bytes in the cell.
6813 */
6814 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6815   u32 pc;         /* Offset to cell content of cell being deleted */
6816   u8 *data;       /* pPage->aData */
6817   u8 *ptr;        /* Used to move bytes around within data[] */
6818   int rc;         /* The return code */
6819   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6820 
6821   if( *pRC ) return;
6822   assert( idx>=0 && idx<pPage->nCell );
6823   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6824   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6825   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6826   assert( pPage->nFree>=0 );
6827   data = pPage->aData;
6828   ptr = &pPage->aCellIdx[2*idx];
6829   pc = get2byte(ptr);
6830   hdr = pPage->hdrOffset;
6831   testcase( pc==(u32)get2byte(&data[hdr+5]) );
6832   testcase( pc+sz==pPage->pBt->usableSize );
6833   if( pc+sz > pPage->pBt->usableSize ){
6834     *pRC = SQLITE_CORRUPT_BKPT;
6835     return;
6836   }
6837   rc = freeSpace(pPage, pc, sz);
6838   if( rc ){
6839     *pRC = rc;
6840     return;
6841   }
6842   pPage->nCell--;
6843   if( pPage->nCell==0 ){
6844     memset(&data[hdr+1], 0, 4);
6845     data[hdr+7] = 0;
6846     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6847     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6848                        - pPage->childPtrSize - 8;
6849   }else{
6850     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6851     put2byte(&data[hdr+3], pPage->nCell);
6852     pPage->nFree += 2;
6853   }
6854 }
6855 
6856 /*
6857 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6858 ** content of the cell.
6859 **
6860 ** If the cell content will fit on the page, then put it there.  If it
6861 ** will not fit, then make a copy of the cell content into pTemp if
6862 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6863 ** in pPage->apOvfl[] and make it point to the cell content (either
6864 ** in pTemp or the original pCell) and also record its index.
6865 ** Allocating a new entry in pPage->aCell[] implies that
6866 ** pPage->nOverflow is incremented.
6867 **
6868 ** *pRC must be SQLITE_OK when this routine is called.
6869 */
6870 static void insertCell(
6871   MemPage *pPage,   /* Page into which we are copying */
6872   int i,            /* New cell becomes the i-th cell of the page */
6873   u8 *pCell,        /* Content of the new cell */
6874   int sz,           /* Bytes of content in pCell */
6875   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6876   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6877   int *pRC          /* Read and write return code from here */
6878 ){
6879   int idx = 0;      /* Where to write new cell content in data[] */
6880   int j;            /* Loop counter */
6881   u8 *data;         /* The content of the whole page */
6882   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6883 
6884   assert( *pRC==SQLITE_OK );
6885   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6886   assert( MX_CELL(pPage->pBt)<=10921 );
6887   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6888   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6889   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6890   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6891   assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6892   assert( pPage->nFree>=0 );
6893   if( pPage->nOverflow || sz+2>pPage->nFree ){
6894     if( pTemp ){
6895       memcpy(pTemp, pCell, sz);
6896       pCell = pTemp;
6897     }
6898     if( iChild ){
6899       put4byte(pCell, iChild);
6900     }
6901     j = pPage->nOverflow++;
6902     /* Comparison against ArraySize-1 since we hold back one extra slot
6903     ** as a contingency.  In other words, never need more than 3 overflow
6904     ** slots but 4 are allocated, just to be safe. */
6905     assert( j < ArraySize(pPage->apOvfl)-1 );
6906     pPage->apOvfl[j] = pCell;
6907     pPage->aiOvfl[j] = (u16)i;
6908 
6909     /* When multiple overflows occur, they are always sequential and in
6910     ** sorted order.  This invariants arise because multiple overflows can
6911     ** only occur when inserting divider cells into the parent page during
6912     ** balancing, and the dividers are adjacent and sorted.
6913     */
6914     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6915     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6916   }else{
6917     int rc = sqlite3PagerWrite(pPage->pDbPage);
6918     if( rc!=SQLITE_OK ){
6919       *pRC = rc;
6920       return;
6921     }
6922     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6923     data = pPage->aData;
6924     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6925     rc = allocateSpace(pPage, sz, &idx);
6926     if( rc ){ *pRC = rc; return; }
6927     /* The allocateSpace() routine guarantees the following properties
6928     ** if it returns successfully */
6929     assert( idx >= 0 );
6930     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6931     assert( idx+sz <= (int)pPage->pBt->usableSize );
6932     pPage->nFree -= (u16)(2 + sz);
6933     if( iChild ){
6934       /* In a corrupt database where an entry in the cell index section of
6935       ** a btree page has a value of 3 or less, the pCell value might point
6936       ** as many as 4 bytes in front of the start of the aData buffer for
6937       ** the source page.  Make sure this does not cause problems by not
6938       ** reading the first 4 bytes */
6939       memcpy(&data[idx+4], pCell+4, sz-4);
6940       put4byte(&data[idx], iChild);
6941     }else{
6942       memcpy(&data[idx], pCell, sz);
6943     }
6944     pIns = pPage->aCellIdx + i*2;
6945     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6946     put2byte(pIns, idx);
6947     pPage->nCell++;
6948     /* increment the cell count */
6949     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6950     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6951 #ifndef SQLITE_OMIT_AUTOVACUUM
6952     if( pPage->pBt->autoVacuum ){
6953       /* The cell may contain a pointer to an overflow page. If so, write
6954       ** the entry for the overflow page into the pointer map.
6955       */
6956       ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6957     }
6958 #endif
6959   }
6960 }
6961 
6962 /*
6963 ** The following parameters determine how many adjacent pages get involved
6964 ** in a balancing operation.  NN is the number of neighbors on either side
6965 ** of the page that participate in the balancing operation.  NB is the
6966 ** total number of pages that participate, including the target page and
6967 ** NN neighbors on either side.
6968 **
6969 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6970 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6971 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6972 ** The value of NN appears to give the best results overall.
6973 **
6974 ** (Later:) The description above makes it seem as if these values are
6975 ** tunable - as if you could change them and recompile and it would all work.
6976 ** But that is unlikely.  NB has been 3 since the inception of SQLite and
6977 ** we have never tested any other value.
6978 */
6979 #define NN 1             /* Number of neighbors on either side of pPage */
6980 #define NB 3             /* (NN*2+1): Total pages involved in the balance */
6981 
6982 /*
6983 ** A CellArray object contains a cache of pointers and sizes for a
6984 ** consecutive sequence of cells that might be held on multiple pages.
6985 **
6986 ** The cells in this array are the divider cell or cells from the pParent
6987 ** page plus up to three child pages.  There are a total of nCell cells.
6988 **
6989 ** pRef is a pointer to one of the pages that contributes cells.  This is
6990 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6991 ** which should be common to all pages that contribute cells to this array.
6992 **
6993 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6994 ** cell and the size of each cell.  Some of the apCell[] pointers might refer
6995 ** to overflow cells.  In other words, some apCel[] pointers might not point
6996 ** to content area of the pages.
6997 **
6998 ** A szCell[] of zero means the size of that cell has not yet been computed.
6999 **
7000 ** The cells come from as many as four different pages:
7001 **
7002 **             -----------
7003 **             | Parent  |
7004 **             -----------
7005 **            /     |     \
7006 **           /      |      \
7007 **  ---------   ---------   ---------
7008 **  |Child-1|   |Child-2|   |Child-3|
7009 **  ---------   ---------   ---------
7010 **
7011 ** The order of cells is in the array is for an index btree is:
7012 **
7013 **       1.  All cells from Child-1 in order
7014 **       2.  The first divider cell from Parent
7015 **       3.  All cells from Child-2 in order
7016 **       4.  The second divider cell from Parent
7017 **       5.  All cells from Child-3 in order
7018 **
7019 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7020 ** content exists only in leaves and there are no divider cells.
7021 **
7022 ** For an index btree, the apEnd[] array holds pointer to the end of page
7023 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7024 ** respectively. The ixNx[] array holds the number of cells contained in
7025 ** each of these 5 stages, and all stages to the left.  Hence:
7026 **
7027 **    ixNx[0] = Number of cells in Child-1.
7028 **    ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7029 **    ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7030 **    ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7031 **    ixNx[4] = Total number of cells.
7032 **
7033 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7034 ** are used and they point to the leaf pages only, and the ixNx value are:
7035 **
7036 **    ixNx[0] = Number of cells in Child-1.
7037 **    ixNx[1] = Number of cells in Child-1 and Child-2.
7038 **    ixNx[2] = Total number of cells.
7039 **
7040 ** Sometimes when deleting, a child page can have zero cells.  In those
7041 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7042 ** entries, shift down.  The end result is that each ixNx[] entry should
7043 ** be larger than the previous
7044 */
7045 typedef struct CellArray CellArray;
7046 struct CellArray {
7047   int nCell;              /* Number of cells in apCell[] */
7048   MemPage *pRef;          /* Reference page */
7049   u8 **apCell;            /* All cells begin balanced */
7050   u16 *szCell;            /* Local size of all cells in apCell[] */
7051   u8 *apEnd[NB*2];        /* MemPage.aDataEnd values */
7052   int ixNx[NB*2];         /* Index of at which we move to the next apEnd[] */
7053 };
7054 
7055 /*
7056 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7057 ** computed.
7058 */
7059 static void populateCellCache(CellArray *p, int idx, int N){
7060   assert( idx>=0 && idx+N<=p->nCell );
7061   while( N>0 ){
7062     assert( p->apCell[idx]!=0 );
7063     if( p->szCell[idx]==0 ){
7064       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7065     }else{
7066       assert( CORRUPT_DB ||
7067               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7068     }
7069     idx++;
7070     N--;
7071   }
7072 }
7073 
7074 /*
7075 ** Return the size of the Nth element of the cell array
7076 */
7077 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7078   assert( N>=0 && N<p->nCell );
7079   assert( p->szCell[N]==0 );
7080   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7081   return p->szCell[N];
7082 }
7083 static u16 cachedCellSize(CellArray *p, int N){
7084   assert( N>=0 && N<p->nCell );
7085   if( p->szCell[N] ) return p->szCell[N];
7086   return computeCellSize(p, N);
7087 }
7088 
7089 /*
7090 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7091 ** szCell[] array contains the size in bytes of each cell. This function
7092 ** replaces the current contents of page pPg with the contents of the cell
7093 ** array.
7094 **
7095 ** Some of the cells in apCell[] may currently be stored in pPg. This
7096 ** function works around problems caused by this by making a copy of any
7097 ** such cells before overwriting the page data.
7098 **
7099 ** The MemPage.nFree field is invalidated by this function. It is the
7100 ** responsibility of the caller to set it correctly.
7101 */
7102 static int rebuildPage(
7103   CellArray *pCArray,             /* Content to be added to page pPg */
7104   int iFirst,                     /* First cell in pCArray to use */
7105   int nCell,                      /* Final number of cells on page */
7106   MemPage *pPg                    /* The page to be reconstructed */
7107 ){
7108   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
7109   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
7110   const int usableSize = pPg->pBt->usableSize;
7111   u8 * const pEnd = &aData[usableSize];
7112   int i = iFirst;                 /* Which cell to copy from pCArray*/
7113   u32 j;                          /* Start of cell content area */
7114   int iEnd = i+nCell;             /* Loop terminator */
7115   u8 *pCellptr = pPg->aCellIdx;
7116   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7117   u8 *pData;
7118   int k;                          /* Current slot in pCArray->apEnd[] */
7119   u8 *pSrcEnd;                    /* Current pCArray->apEnd[k] value */
7120 
7121   assert( i<iEnd );
7122   j = get2byte(&aData[hdr+5]);
7123   if( NEVER(j>(u32)usableSize) ){ j = 0; }
7124   memcpy(&pTmp[j], &aData[j], usableSize - j);
7125 
7126   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7127   pSrcEnd = pCArray->apEnd[k];
7128 
7129   pData = pEnd;
7130   while( 1/*exit by break*/ ){
7131     u8 *pCell = pCArray->apCell[i];
7132     u16 sz = pCArray->szCell[i];
7133     assert( sz>0 );
7134     if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7135       if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7136       pCell = &pTmp[pCell - aData];
7137     }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7138            && (uptr)(pCell)<(uptr)pSrcEnd
7139     ){
7140       return SQLITE_CORRUPT_BKPT;
7141     }
7142 
7143     pData -= sz;
7144     put2byte(pCellptr, (pData - aData));
7145     pCellptr += 2;
7146     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7147     memmove(pData, pCell, sz);
7148     assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7149     i++;
7150     if( i>=iEnd ) break;
7151     if( pCArray->ixNx[k]<=i ){
7152       k++;
7153       pSrcEnd = pCArray->apEnd[k];
7154     }
7155   }
7156 
7157   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7158   pPg->nCell = nCell;
7159   pPg->nOverflow = 0;
7160 
7161   put2byte(&aData[hdr+1], 0);
7162   put2byte(&aData[hdr+3], pPg->nCell);
7163   put2byte(&aData[hdr+5], pData - aData);
7164   aData[hdr+7] = 0x00;
7165   return SQLITE_OK;
7166 }
7167 
7168 /*
7169 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7170 ** This function attempts to add the cells stored in the array to page pPg.
7171 ** If it cannot (because the page needs to be defragmented before the cells
7172 ** will fit), non-zero is returned. Otherwise, if the cells are added
7173 ** successfully, zero is returned.
7174 **
7175 ** Argument pCellptr points to the first entry in the cell-pointer array
7176 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7177 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7178 ** cell in the array. It is the responsibility of the caller to ensure
7179 ** that it is safe to overwrite this part of the cell-pointer array.
7180 **
7181 ** When this function is called, *ppData points to the start of the
7182 ** content area on page pPg. If the size of the content area is extended,
7183 ** *ppData is updated to point to the new start of the content area
7184 ** before returning.
7185 **
7186 ** Finally, argument pBegin points to the byte immediately following the
7187 ** end of the space required by this page for the cell-pointer area (for
7188 ** all cells - not just those inserted by the current call). If the content
7189 ** area must be extended to before this point in order to accomodate all
7190 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7191 */
7192 static int pageInsertArray(
7193   MemPage *pPg,                   /* Page to add cells to */
7194   u8 *pBegin,                     /* End of cell-pointer array */
7195   u8 **ppData,                    /* IN/OUT: Page content-area pointer */
7196   u8 *pCellptr,                   /* Pointer to cell-pointer area */
7197   int iFirst,                     /* Index of first cell to add */
7198   int nCell,                      /* Number of cells to add to pPg */
7199   CellArray *pCArray              /* Array of cells */
7200 ){
7201   int i = iFirst;                 /* Loop counter - cell index to insert */
7202   u8 *aData = pPg->aData;         /* Complete page */
7203   u8 *pData = *ppData;            /* Content area.  A subset of aData[] */
7204   int iEnd = iFirst + nCell;      /* End of loop. One past last cell to ins */
7205   int k;                          /* Current slot in pCArray->apEnd[] */
7206   u8 *pEnd;                       /* Maximum extent of cell data */
7207   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
7208   if( iEnd<=iFirst ) return 0;
7209   for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7210   pEnd = pCArray->apEnd[k];
7211   while( 1 /*Exit by break*/ ){
7212     int sz, rc;
7213     u8 *pSlot;
7214     assert( pCArray->szCell[i]!=0 );
7215     sz = pCArray->szCell[i];
7216     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7217       if( (pData - pBegin)<sz ) return 1;
7218       pData -= sz;
7219       pSlot = pData;
7220     }
7221     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7222     ** database.  But they might for a corrupt database.  Hence use memmove()
7223     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7224     assert( (pSlot+sz)<=pCArray->apCell[i]
7225          || pSlot>=(pCArray->apCell[i]+sz)
7226          || CORRUPT_DB );
7227     if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7228      && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7229     ){
7230       assert( CORRUPT_DB );
7231       (void)SQLITE_CORRUPT_BKPT;
7232       return 1;
7233     }
7234     memmove(pSlot, pCArray->apCell[i], sz);
7235     put2byte(pCellptr, (pSlot - aData));
7236     pCellptr += 2;
7237     i++;
7238     if( i>=iEnd ) break;
7239     if( pCArray->ixNx[k]<=i ){
7240       k++;
7241       pEnd = pCArray->apEnd[k];
7242     }
7243   }
7244   *ppData = pData;
7245   return 0;
7246 }
7247 
7248 /*
7249 ** The pCArray object contains pointers to b-tree cells and their sizes.
7250 **
7251 ** This function adds the space associated with each cell in the array
7252 ** that is currently stored within the body of pPg to the pPg free-list.
7253 ** The cell-pointers and other fields of the page are not updated.
7254 **
7255 ** This function returns the total number of cells added to the free-list.
7256 */
7257 static int pageFreeArray(
7258   MemPage *pPg,                   /* Page to edit */
7259   int iFirst,                     /* First cell to delete */
7260   int nCell,                      /* Cells to delete */
7261   CellArray *pCArray              /* Array of cells */
7262 ){
7263   u8 * const aData = pPg->aData;
7264   u8 * const pEnd = &aData[pPg->pBt->usableSize];
7265   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7266   int nRet = 0;
7267   int i;
7268   int iEnd = iFirst + nCell;
7269   u8 *pFree = 0;
7270   int szFree = 0;
7271 
7272   for(i=iFirst; i<iEnd; i++){
7273     u8 *pCell = pCArray->apCell[i];
7274     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7275       int sz;
7276       /* No need to use cachedCellSize() here.  The sizes of all cells that
7277       ** are to be freed have already been computing while deciding which
7278       ** cells need freeing */
7279       sz = pCArray->szCell[i];  assert( sz>0 );
7280       if( pFree!=(pCell + sz) ){
7281         if( pFree ){
7282           assert( pFree>aData && (pFree - aData)<65536 );
7283           freeSpace(pPg, (u16)(pFree - aData), szFree);
7284         }
7285         pFree = pCell;
7286         szFree = sz;
7287         if( pFree+sz>pEnd ){
7288           return 0;
7289         }
7290       }else{
7291         pFree = pCell;
7292         szFree += sz;
7293       }
7294       nRet++;
7295     }
7296   }
7297   if( pFree ){
7298     assert( pFree>aData && (pFree - aData)<65536 );
7299     freeSpace(pPg, (u16)(pFree - aData), szFree);
7300   }
7301   return nRet;
7302 }
7303 
7304 /*
7305 ** pCArray contains pointers to and sizes of all cells in the page being
7306 ** balanced.  The current page, pPg, has pPg->nCell cells starting with
7307 ** pCArray->apCell[iOld].  After balancing, this page should hold nNew cells
7308 ** starting at apCell[iNew].
7309 **
7310 ** This routine makes the necessary adjustments to pPg so that it contains
7311 ** the correct cells after being balanced.
7312 **
7313 ** The pPg->nFree field is invalid when this function returns. It is the
7314 ** responsibility of the caller to set it correctly.
7315 */
7316 static int editPage(
7317   MemPage *pPg,                   /* Edit this page */
7318   int iOld,                       /* Index of first cell currently on page */
7319   int iNew,                       /* Index of new first cell on page */
7320   int nNew,                       /* Final number of cells on page */
7321   CellArray *pCArray              /* Array of cells and sizes */
7322 ){
7323   u8 * const aData = pPg->aData;
7324   const int hdr = pPg->hdrOffset;
7325   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7326   int nCell = pPg->nCell;       /* Cells stored on pPg */
7327   u8 *pData;
7328   u8 *pCellptr;
7329   int i;
7330   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7331   int iNewEnd = iNew + nNew;
7332 
7333 #ifdef SQLITE_DEBUG
7334   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7335   memcpy(pTmp, aData, pPg->pBt->usableSize);
7336 #endif
7337 
7338   /* Remove cells from the start and end of the page */
7339   assert( nCell>=0 );
7340   if( iOld<iNew ){
7341     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7342     if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7343     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7344     nCell -= nShift;
7345   }
7346   if( iNewEnd < iOldEnd ){
7347     int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7348     assert( nCell>=nTail );
7349     nCell -= nTail;
7350   }
7351 
7352   pData = &aData[get2byteNotZero(&aData[hdr+5])];
7353   if( pData<pBegin ) goto editpage_fail;
7354   if( NEVER(pData>pPg->aDataEnd) ) goto editpage_fail;
7355 
7356   /* Add cells to the start of the page */
7357   if( iNew<iOld ){
7358     int nAdd = MIN(nNew,iOld-iNew);
7359     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7360     assert( nAdd>=0 );
7361     pCellptr = pPg->aCellIdx;
7362     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7363     if( pageInsertArray(
7364           pPg, pBegin, &pData, pCellptr,
7365           iNew, nAdd, pCArray
7366     ) ) goto editpage_fail;
7367     nCell += nAdd;
7368   }
7369 
7370   /* Add any overflow cells */
7371   for(i=0; i<pPg->nOverflow; i++){
7372     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7373     if( iCell>=0 && iCell<nNew ){
7374       pCellptr = &pPg->aCellIdx[iCell * 2];
7375       if( nCell>iCell ){
7376         memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7377       }
7378       nCell++;
7379       cachedCellSize(pCArray, iCell+iNew);
7380       if( pageInsertArray(
7381             pPg, pBegin, &pData, pCellptr,
7382             iCell+iNew, 1, pCArray
7383       ) ) goto editpage_fail;
7384     }
7385   }
7386 
7387   /* Append cells to the end of the page */
7388   assert( nCell>=0 );
7389   pCellptr = &pPg->aCellIdx[nCell*2];
7390   if( pageInsertArray(
7391         pPg, pBegin, &pData, pCellptr,
7392         iNew+nCell, nNew-nCell, pCArray
7393   ) ) goto editpage_fail;
7394 
7395   pPg->nCell = nNew;
7396   pPg->nOverflow = 0;
7397 
7398   put2byte(&aData[hdr+3], pPg->nCell);
7399   put2byte(&aData[hdr+5], pData - aData);
7400 
7401 #ifdef SQLITE_DEBUG
7402   for(i=0; i<nNew && !CORRUPT_DB; i++){
7403     u8 *pCell = pCArray->apCell[i+iNew];
7404     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7405     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7406       pCell = &pTmp[pCell - aData];
7407     }
7408     assert( 0==memcmp(pCell, &aData[iOff],
7409             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7410   }
7411 #endif
7412 
7413   return SQLITE_OK;
7414  editpage_fail:
7415   /* Unable to edit this page. Rebuild it from scratch instead. */
7416   populateCellCache(pCArray, iNew, nNew);
7417   return rebuildPage(pCArray, iNew, nNew, pPg);
7418 }
7419 
7420 
7421 #ifndef SQLITE_OMIT_QUICKBALANCE
7422 /*
7423 ** This version of balance() handles the common special case where
7424 ** a new entry is being inserted on the extreme right-end of the
7425 ** tree, in other words, when the new entry will become the largest
7426 ** entry in the tree.
7427 **
7428 ** Instead of trying to balance the 3 right-most leaf pages, just add
7429 ** a new page to the right-hand side and put the one new entry in
7430 ** that page.  This leaves the right side of the tree somewhat
7431 ** unbalanced.  But odds are that we will be inserting new entries
7432 ** at the end soon afterwards so the nearly empty page will quickly
7433 ** fill up.  On average.
7434 **
7435 ** pPage is the leaf page which is the right-most page in the tree.
7436 ** pParent is its parent.  pPage must have a single overflow entry
7437 ** which is also the right-most entry on the page.
7438 **
7439 ** The pSpace buffer is used to store a temporary copy of the divider
7440 ** cell that will be inserted into pParent. Such a cell consists of a 4
7441 ** byte page number followed by a variable length integer. In other
7442 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7443 ** least 13 bytes in size.
7444 */
7445 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7446   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
7447   MemPage *pNew;                       /* Newly allocated page */
7448   int rc;                              /* Return Code */
7449   Pgno pgnoNew;                        /* Page number of pNew */
7450 
7451   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7452   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7453   assert( pPage->nOverflow==1 );
7454 
7455   if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;  /* dbfuzz001.test */
7456   assert( pPage->nFree>=0 );
7457   assert( pParent->nFree>=0 );
7458 
7459   /* Allocate a new page. This page will become the right-sibling of
7460   ** pPage. Make the parent page writable, so that the new divider cell
7461   ** may be inserted. If both these operations are successful, proceed.
7462   */
7463   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7464 
7465   if( rc==SQLITE_OK ){
7466 
7467     u8 *pOut = &pSpace[4];
7468     u8 *pCell = pPage->apOvfl[0];
7469     u16 szCell = pPage->xCellSize(pPage, pCell);
7470     u8 *pStop;
7471     CellArray b;
7472 
7473     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7474     assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7475     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7476     b.nCell = 1;
7477     b.pRef = pPage;
7478     b.apCell = &pCell;
7479     b.szCell = &szCell;
7480     b.apEnd[0] = pPage->aDataEnd;
7481     b.ixNx[0] = 2;
7482     rc = rebuildPage(&b, 0, 1, pNew);
7483     if( NEVER(rc) ){
7484       releasePage(pNew);
7485       return rc;
7486     }
7487     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7488 
7489     /* If this is an auto-vacuum database, update the pointer map
7490     ** with entries for the new page, and any pointer from the
7491     ** cell on the page to an overflow page. If either of these
7492     ** operations fails, the return code is set, but the contents
7493     ** of the parent page are still manipulated by thh code below.
7494     ** That is Ok, at this point the parent page is guaranteed to
7495     ** be marked as dirty. Returning an error code will cause a
7496     ** rollback, undoing any changes made to the parent page.
7497     */
7498     if( ISAUTOVACUUM ){
7499       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7500       if( szCell>pNew->minLocal ){
7501         ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7502       }
7503     }
7504 
7505     /* Create a divider cell to insert into pParent. The divider cell
7506     ** consists of a 4-byte page number (the page number of pPage) and
7507     ** a variable length key value (which must be the same value as the
7508     ** largest key on pPage).
7509     **
7510     ** To find the largest key value on pPage, first find the right-most
7511     ** cell on pPage. The first two fields of this cell are the
7512     ** record-length (a variable length integer at most 32-bits in size)
7513     ** and the key value (a variable length integer, may have any value).
7514     ** The first of the while(...) loops below skips over the record-length
7515     ** field. The second while(...) loop copies the key value from the
7516     ** cell on pPage into the pSpace buffer.
7517     */
7518     pCell = findCell(pPage, pPage->nCell-1);
7519     pStop = &pCell[9];
7520     while( (*(pCell++)&0x80) && pCell<pStop );
7521     pStop = &pCell[9];
7522     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7523 
7524     /* Insert the new divider cell into pParent. */
7525     if( rc==SQLITE_OK ){
7526       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7527                    0, pPage->pgno, &rc);
7528     }
7529 
7530     /* Set the right-child pointer of pParent to point to the new page. */
7531     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7532 
7533     /* Release the reference to the new page. */
7534     releasePage(pNew);
7535   }
7536 
7537   return rc;
7538 }
7539 #endif /* SQLITE_OMIT_QUICKBALANCE */
7540 
7541 #if 0
7542 /*
7543 ** This function does not contribute anything to the operation of SQLite.
7544 ** it is sometimes activated temporarily while debugging code responsible
7545 ** for setting pointer-map entries.
7546 */
7547 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7548   int i, j;
7549   for(i=0; i<nPage; i++){
7550     Pgno n;
7551     u8 e;
7552     MemPage *pPage = apPage[i];
7553     BtShared *pBt = pPage->pBt;
7554     assert( pPage->isInit );
7555 
7556     for(j=0; j<pPage->nCell; j++){
7557       CellInfo info;
7558       u8 *z;
7559 
7560       z = findCell(pPage, j);
7561       pPage->xParseCell(pPage, z, &info);
7562       if( info.nLocal<info.nPayload ){
7563         Pgno ovfl = get4byte(&z[info.nSize-4]);
7564         ptrmapGet(pBt, ovfl, &e, &n);
7565         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7566       }
7567       if( !pPage->leaf ){
7568         Pgno child = get4byte(z);
7569         ptrmapGet(pBt, child, &e, &n);
7570         assert( n==pPage->pgno && e==PTRMAP_BTREE );
7571       }
7572     }
7573     if( !pPage->leaf ){
7574       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7575       ptrmapGet(pBt, child, &e, &n);
7576       assert( n==pPage->pgno && e==PTRMAP_BTREE );
7577     }
7578   }
7579   return 1;
7580 }
7581 #endif
7582 
7583 /*
7584 ** This function is used to copy the contents of the b-tree node stored
7585 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7586 ** the pointer-map entries for each child page are updated so that the
7587 ** parent page stored in the pointer map is page pTo. If pFrom contained
7588 ** any cells with overflow page pointers, then the corresponding pointer
7589 ** map entries are also updated so that the parent page is page pTo.
7590 **
7591 ** If pFrom is currently carrying any overflow cells (entries in the
7592 ** MemPage.apOvfl[] array), they are not copied to pTo.
7593 **
7594 ** Before returning, page pTo is reinitialized using btreeInitPage().
7595 **
7596 ** The performance of this function is not critical. It is only used by
7597 ** the balance_shallower() and balance_deeper() procedures, neither of
7598 ** which are called often under normal circumstances.
7599 */
7600 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7601   if( (*pRC)==SQLITE_OK ){
7602     BtShared * const pBt = pFrom->pBt;
7603     u8 * const aFrom = pFrom->aData;
7604     u8 * const aTo = pTo->aData;
7605     int const iFromHdr = pFrom->hdrOffset;
7606     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7607     int rc;
7608     int iData;
7609 
7610 
7611     assert( pFrom->isInit );
7612     assert( pFrom->nFree>=iToHdr );
7613     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7614 
7615     /* Copy the b-tree node content from page pFrom to page pTo. */
7616     iData = get2byte(&aFrom[iFromHdr+5]);
7617     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7618     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7619 
7620     /* Reinitialize page pTo so that the contents of the MemPage structure
7621     ** match the new data. The initialization of pTo can actually fail under
7622     ** fairly obscure circumstances, even though it is a copy of initialized
7623     ** page pFrom.
7624     */
7625     pTo->isInit = 0;
7626     rc = btreeInitPage(pTo);
7627     if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7628     if( rc!=SQLITE_OK ){
7629       *pRC = rc;
7630       return;
7631     }
7632 
7633     /* If this is an auto-vacuum database, update the pointer-map entries
7634     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7635     */
7636     if( ISAUTOVACUUM ){
7637       *pRC = setChildPtrmaps(pTo);
7638     }
7639   }
7640 }
7641 
7642 /*
7643 ** This routine redistributes cells on the iParentIdx'th child of pParent
7644 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7645 ** same amount of free space. Usually a single sibling on either side of the
7646 ** page are used in the balancing, though both siblings might come from one
7647 ** side if the page is the first or last child of its parent. If the page
7648 ** has fewer than 2 siblings (something which can only happen if the page
7649 ** is a root page or a child of a root page) then all available siblings
7650 ** participate in the balancing.
7651 **
7652 ** The number of siblings of the page might be increased or decreased by
7653 ** one or two in an effort to keep pages nearly full but not over full.
7654 **
7655 ** Note that when this routine is called, some of the cells on the page
7656 ** might not actually be stored in MemPage.aData[]. This can happen
7657 ** if the page is overfull. This routine ensures that all cells allocated
7658 ** to the page and its siblings fit into MemPage.aData[] before returning.
7659 **
7660 ** In the course of balancing the page and its siblings, cells may be
7661 ** inserted into or removed from the parent page (pParent). Doing so
7662 ** may cause the parent page to become overfull or underfull. If this
7663 ** happens, it is the responsibility of the caller to invoke the correct
7664 ** balancing routine to fix this problem (see the balance() routine).
7665 **
7666 ** If this routine fails for any reason, it might leave the database
7667 ** in a corrupted state. So if this routine fails, the database should
7668 ** be rolled back.
7669 **
7670 ** The third argument to this function, aOvflSpace, is a pointer to a
7671 ** buffer big enough to hold one page. If while inserting cells into the parent
7672 ** page (pParent) the parent page becomes overfull, this buffer is
7673 ** used to store the parent's overflow cells. Because this function inserts
7674 ** a maximum of four divider cells into the parent page, and the maximum
7675 ** size of a cell stored within an internal node is always less than 1/4
7676 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7677 ** enough for all overflow cells.
7678 **
7679 ** If aOvflSpace is set to a null pointer, this function returns
7680 ** SQLITE_NOMEM.
7681 */
7682 static int balance_nonroot(
7683   MemPage *pParent,               /* Parent page of siblings being balanced */
7684   int iParentIdx,                 /* Index of "the page" in pParent */
7685   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7686   int isRoot,                     /* True if pParent is a root-page */
7687   int bBulk                       /* True if this call is part of a bulk load */
7688 ){
7689   BtShared *pBt;               /* The whole database */
7690   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7691   int nNew = 0;                /* Number of pages in apNew[] */
7692   int nOld;                    /* Number of pages in apOld[] */
7693   int i, j, k;                 /* Loop counters */
7694   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7695   int rc = SQLITE_OK;          /* The return code */
7696   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7697   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7698   int usableSpace;             /* Bytes in pPage beyond the header */
7699   int pageFlags;               /* Value of pPage->aData[0] */
7700   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7701   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7702   int szScratch;               /* Size of scratch memory requested */
7703   MemPage *apOld[NB];          /* pPage and up to two siblings */
7704   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7705   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7706   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7707   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7708   int cntOld[NB+2];            /* Old index in b.apCell[] */
7709   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7710   u8 *aSpace1;                 /* Space for copies of dividers cells */
7711   Pgno pgno;                   /* Temp var to store a page number in */
7712   u8 abDone[NB+2];             /* True after i'th new page is populated */
7713   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7714   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7715   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7716   CellArray b;                 /* Parsed information on cells being balanced */
7717 
7718   memset(abDone, 0, sizeof(abDone));
7719   memset(&b, 0, sizeof(b));
7720   pBt = pParent->pBt;
7721   assert( sqlite3_mutex_held(pBt->mutex) );
7722   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7723 
7724   /* At this point pParent may have at most one overflow cell. And if
7725   ** this overflow cell is present, it must be the cell with
7726   ** index iParentIdx. This scenario comes about when this function
7727   ** is called (indirectly) from sqlite3BtreeDelete().
7728   */
7729   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7730   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7731 
7732   if( !aOvflSpace ){
7733     return SQLITE_NOMEM_BKPT;
7734   }
7735   assert( pParent->nFree>=0 );
7736 
7737   /* Find the sibling pages to balance. Also locate the cells in pParent
7738   ** that divide the siblings. An attempt is made to find NN siblings on
7739   ** either side of pPage. More siblings are taken from one side, however,
7740   ** if there are fewer than NN siblings on the other side. If pParent
7741   ** has NB or fewer children then all children of pParent are taken.
7742   **
7743   ** This loop also drops the divider cells from the parent page. This
7744   ** way, the remainder of the function does not have to deal with any
7745   ** overflow cells in the parent page, since if any existed they will
7746   ** have already been removed.
7747   */
7748   i = pParent->nOverflow + pParent->nCell;
7749   if( i<2 ){
7750     nxDiv = 0;
7751   }else{
7752     assert( bBulk==0 || bBulk==1 );
7753     if( iParentIdx==0 ){
7754       nxDiv = 0;
7755     }else if( iParentIdx==i ){
7756       nxDiv = i-2+bBulk;
7757     }else{
7758       nxDiv = iParentIdx-1;
7759     }
7760     i = 2-bBulk;
7761   }
7762   nOld = i+1;
7763   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7764     pRight = &pParent->aData[pParent->hdrOffset+8];
7765   }else{
7766     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7767   }
7768   pgno = get4byte(pRight);
7769   while( 1 ){
7770     if( rc==SQLITE_OK ){
7771       rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7772     }
7773     if( rc ){
7774       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7775       goto balance_cleanup;
7776     }
7777     if( apOld[i]->nFree<0 ){
7778       rc = btreeComputeFreeSpace(apOld[i]);
7779       if( rc ){
7780         memset(apOld, 0, (i)*sizeof(MemPage*));
7781         goto balance_cleanup;
7782       }
7783     }
7784     nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7785     if( (i--)==0 ) break;
7786 
7787     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7788       apDiv[i] = pParent->apOvfl[0];
7789       pgno = get4byte(apDiv[i]);
7790       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7791       pParent->nOverflow = 0;
7792     }else{
7793       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7794       pgno = get4byte(apDiv[i]);
7795       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7796 
7797       /* Drop the cell from the parent page. apDiv[i] still points to
7798       ** the cell within the parent, even though it has been dropped.
7799       ** This is safe because dropping a cell only overwrites the first
7800       ** four bytes of it, and this function does not need the first
7801       ** four bytes of the divider cell. So the pointer is safe to use
7802       ** later on.
7803       **
7804       ** But not if we are in secure-delete mode. In secure-delete mode,
7805       ** the dropCell() routine will overwrite the entire cell with zeroes.
7806       ** In this case, temporarily copy the cell into the aOvflSpace[]
7807       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7808       ** is allocated.  */
7809       if( pBt->btsFlags & BTS_FAST_SECURE ){
7810         int iOff;
7811 
7812         /* If the following if() condition is not true, the db is corrupted.
7813         ** The call to dropCell() below will detect this.  */
7814         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7815         if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7816           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7817           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7818         }
7819       }
7820       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7821     }
7822   }
7823 
7824   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7825   ** alignment */
7826   nMaxCells = (nMaxCells + 3)&~3;
7827 
7828   /*
7829   ** Allocate space for memory structures
7830   */
7831   szScratch =
7832        nMaxCells*sizeof(u8*)                       /* b.apCell */
7833      + nMaxCells*sizeof(u16)                       /* b.szCell */
7834      + pBt->pageSize;                              /* aSpace1 */
7835 
7836   assert( szScratch<=7*(int)pBt->pageSize );
7837   b.apCell = sqlite3StackAllocRaw(0, szScratch );
7838   if( b.apCell==0 ){
7839     rc = SQLITE_NOMEM_BKPT;
7840     goto balance_cleanup;
7841   }
7842   b.szCell = (u16*)&b.apCell[nMaxCells];
7843   aSpace1 = (u8*)&b.szCell[nMaxCells];
7844   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7845 
7846   /*
7847   ** Load pointers to all cells on sibling pages and the divider cells
7848   ** into the local b.apCell[] array.  Make copies of the divider cells
7849   ** into space obtained from aSpace1[]. The divider cells have already
7850   ** been removed from pParent.
7851   **
7852   ** If the siblings are on leaf pages, then the child pointers of the
7853   ** divider cells are stripped from the cells before they are copied
7854   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7855   ** child pointers.  If siblings are not leaves, then all cell in
7856   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7857   ** are alike.
7858   **
7859   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7860   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7861   */
7862   b.pRef = apOld[0];
7863   leafCorrection = b.pRef->leaf*4;
7864   leafData = b.pRef->intKeyLeaf;
7865   for(i=0; i<nOld; i++){
7866     MemPage *pOld = apOld[i];
7867     int limit = pOld->nCell;
7868     u8 *aData = pOld->aData;
7869     u16 maskPage = pOld->maskPage;
7870     u8 *piCell = aData + pOld->cellOffset;
7871     u8 *piEnd;
7872     VVA_ONLY( int nCellAtStart = b.nCell; )
7873 
7874     /* Verify that all sibling pages are of the same "type" (table-leaf,
7875     ** table-interior, index-leaf, or index-interior).
7876     */
7877     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7878       rc = SQLITE_CORRUPT_BKPT;
7879       goto balance_cleanup;
7880     }
7881 
7882     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7883     ** contains overflow cells, include them in the b.apCell[] array
7884     ** in the correct spot.
7885     **
7886     ** Note that when there are multiple overflow cells, it is always the
7887     ** case that they are sequential and adjacent.  This invariant arises
7888     ** because multiple overflows can only occurs when inserting divider
7889     ** cells into a parent on a prior balance, and divider cells are always
7890     ** adjacent and are inserted in order.  There is an assert() tagged
7891     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7892     ** invariant.
7893     **
7894     ** This must be done in advance.  Once the balance starts, the cell
7895     ** offset section of the btree page will be overwritten and we will no
7896     ** long be able to find the cells if a pointer to each cell is not saved
7897     ** first.
7898     */
7899     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7900     if( pOld->nOverflow>0 ){
7901       if( NEVER(limit<pOld->aiOvfl[0]) ){
7902         rc = SQLITE_CORRUPT_BKPT;
7903         goto balance_cleanup;
7904       }
7905       limit = pOld->aiOvfl[0];
7906       for(j=0; j<limit; j++){
7907         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7908         piCell += 2;
7909         b.nCell++;
7910       }
7911       for(k=0; k<pOld->nOverflow; k++){
7912         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7913         b.apCell[b.nCell] = pOld->apOvfl[k];
7914         b.nCell++;
7915       }
7916     }
7917     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7918     while( piCell<piEnd ){
7919       assert( b.nCell<nMaxCells );
7920       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7921       piCell += 2;
7922       b.nCell++;
7923     }
7924     assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7925 
7926     cntOld[i] = b.nCell;
7927     if( i<nOld-1 && !leafData){
7928       u16 sz = (u16)szNew[i];
7929       u8 *pTemp;
7930       assert( b.nCell<nMaxCells );
7931       b.szCell[b.nCell] = sz;
7932       pTemp = &aSpace1[iSpace1];
7933       iSpace1 += sz;
7934       assert( sz<=pBt->maxLocal+23 );
7935       assert( iSpace1 <= (int)pBt->pageSize );
7936       memcpy(pTemp, apDiv[i], sz);
7937       b.apCell[b.nCell] = pTemp+leafCorrection;
7938       assert( leafCorrection==0 || leafCorrection==4 );
7939       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7940       if( !pOld->leaf ){
7941         assert( leafCorrection==0 );
7942         assert( pOld->hdrOffset==0 || CORRUPT_DB );
7943         /* The right pointer of the child page pOld becomes the left
7944         ** pointer of the divider cell */
7945         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7946       }else{
7947         assert( leafCorrection==4 );
7948         while( b.szCell[b.nCell]<4 ){
7949           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7950           ** does exist, pad it with 0x00 bytes. */
7951           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7952           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7953           aSpace1[iSpace1++] = 0x00;
7954           b.szCell[b.nCell]++;
7955         }
7956       }
7957       b.nCell++;
7958     }
7959   }
7960 
7961   /*
7962   ** Figure out the number of pages needed to hold all b.nCell cells.
7963   ** Store this number in "k".  Also compute szNew[] which is the total
7964   ** size of all cells on the i-th page and cntNew[] which is the index
7965   ** in b.apCell[] of the cell that divides page i from page i+1.
7966   ** cntNew[k] should equal b.nCell.
7967   **
7968   ** Values computed by this block:
7969   **
7970   **           k: The total number of sibling pages
7971   **    szNew[i]: Spaced used on the i-th sibling page.
7972   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7973   **              the right of the i-th sibling page.
7974   ** usableSpace: Number of bytes of space available on each sibling.
7975   **
7976   */
7977   usableSpace = pBt->usableSize - 12 + leafCorrection;
7978   for(i=k=0; i<nOld; i++, k++){
7979     MemPage *p = apOld[i];
7980     b.apEnd[k] = p->aDataEnd;
7981     b.ixNx[k] = cntOld[i];
7982     if( k && b.ixNx[k]==b.ixNx[k-1] ){
7983       k--;  /* Omit b.ixNx[] entry for child pages with no cells */
7984     }
7985     if( !leafData ){
7986       k++;
7987       b.apEnd[k] = pParent->aDataEnd;
7988       b.ixNx[k] = cntOld[i]+1;
7989     }
7990     assert( p->nFree>=0 );
7991     szNew[i] = usableSpace - p->nFree;
7992     for(j=0; j<p->nOverflow; j++){
7993       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7994     }
7995     cntNew[i] = cntOld[i];
7996   }
7997   k = nOld;
7998   for(i=0; i<k; i++){
7999     int sz;
8000     while( szNew[i]>usableSpace ){
8001       if( i+1>=k ){
8002         k = i+2;
8003         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8004         szNew[k-1] = 0;
8005         cntNew[k-1] = b.nCell;
8006       }
8007       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8008       szNew[i] -= sz;
8009       if( !leafData ){
8010         if( cntNew[i]<b.nCell ){
8011           sz = 2 + cachedCellSize(&b, cntNew[i]);
8012         }else{
8013           sz = 0;
8014         }
8015       }
8016       szNew[i+1] += sz;
8017       cntNew[i]--;
8018     }
8019     while( cntNew[i]<b.nCell ){
8020       sz = 2 + cachedCellSize(&b, cntNew[i]);
8021       if( szNew[i]+sz>usableSpace ) break;
8022       szNew[i] += sz;
8023       cntNew[i]++;
8024       if( !leafData ){
8025         if( cntNew[i]<b.nCell ){
8026           sz = 2 + cachedCellSize(&b, cntNew[i]);
8027         }else{
8028           sz = 0;
8029         }
8030       }
8031       szNew[i+1] -= sz;
8032     }
8033     if( cntNew[i]>=b.nCell ){
8034       k = i+1;
8035     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8036       rc = SQLITE_CORRUPT_BKPT;
8037       goto balance_cleanup;
8038     }
8039   }
8040 
8041   /*
8042   ** The packing computed by the previous block is biased toward the siblings
8043   ** on the left side (siblings with smaller keys). The left siblings are
8044   ** always nearly full, while the right-most sibling might be nearly empty.
8045   ** The next block of code attempts to adjust the packing of siblings to
8046   ** get a better balance.
8047   **
8048   ** This adjustment is more than an optimization.  The packing above might
8049   ** be so out of balance as to be illegal.  For example, the right-most
8050   ** sibling might be completely empty.  This adjustment is not optional.
8051   */
8052   for(i=k-1; i>0; i--){
8053     int szRight = szNew[i];  /* Size of sibling on the right */
8054     int szLeft = szNew[i-1]; /* Size of sibling on the left */
8055     int r;              /* Index of right-most cell in left sibling */
8056     int d;              /* Index of first cell to the left of right sibling */
8057 
8058     r = cntNew[i-1] - 1;
8059     d = r + 1 - leafData;
8060     (void)cachedCellSize(&b, d);
8061     do{
8062       assert( d<nMaxCells );
8063       assert( r<nMaxCells );
8064       (void)cachedCellSize(&b, r);
8065       if( szRight!=0
8066        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8067         break;
8068       }
8069       szRight += b.szCell[d] + 2;
8070       szLeft -= b.szCell[r] + 2;
8071       cntNew[i-1] = r;
8072       r--;
8073       d--;
8074     }while( r>=0 );
8075     szNew[i] = szRight;
8076     szNew[i-1] = szLeft;
8077     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8078       rc = SQLITE_CORRUPT_BKPT;
8079       goto balance_cleanup;
8080     }
8081   }
8082 
8083   /* Sanity check:  For a non-corrupt database file one of the follwing
8084   ** must be true:
8085   **    (1) We found one or more cells (cntNew[0])>0), or
8086   **    (2) pPage is a virtual root page.  A virtual root page is when
8087   **        the real root page is page 1 and we are the only child of
8088   **        that page.
8089   */
8090   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8091   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8092     apOld[0]->pgno, apOld[0]->nCell,
8093     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8094     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8095   ));
8096 
8097   /*
8098   ** Allocate k new pages.  Reuse old pages where possible.
8099   */
8100   pageFlags = apOld[0]->aData[0];
8101   for(i=0; i<k; i++){
8102     MemPage *pNew;
8103     if( i<nOld ){
8104       pNew = apNew[i] = apOld[i];
8105       apOld[i] = 0;
8106       rc = sqlite3PagerWrite(pNew->pDbPage);
8107       nNew++;
8108       if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8109        && rc==SQLITE_OK
8110       ){
8111         rc = SQLITE_CORRUPT_BKPT;
8112       }
8113       if( rc ) goto balance_cleanup;
8114     }else{
8115       assert( i>0 );
8116       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8117       if( rc ) goto balance_cleanup;
8118       zeroPage(pNew, pageFlags);
8119       apNew[i] = pNew;
8120       nNew++;
8121       cntOld[i] = b.nCell;
8122 
8123       /* Set the pointer-map entry for the new sibling page. */
8124       if( ISAUTOVACUUM ){
8125         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8126         if( rc!=SQLITE_OK ){
8127           goto balance_cleanup;
8128         }
8129       }
8130     }
8131   }
8132 
8133   /*
8134   ** Reassign page numbers so that the new pages are in ascending order.
8135   ** This helps to keep entries in the disk file in order so that a scan
8136   ** of the table is closer to a linear scan through the file. That in turn
8137   ** helps the operating system to deliver pages from the disk more rapidly.
8138   **
8139   ** An O(n^2) insertion sort algorithm is used, but since n is never more
8140   ** than (NB+2) (a small constant), that should not be a problem.
8141   **
8142   ** When NB==3, this one optimization makes the database about 25% faster
8143   ** for large insertions and deletions.
8144   */
8145   for(i=0; i<nNew; i++){
8146     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8147     aPgFlags[i] = apNew[i]->pDbPage->flags;
8148     for(j=0; j<i; j++){
8149       if( NEVER(aPgno[j]==aPgno[i]) ){
8150         /* This branch is taken if the set of sibling pages somehow contains
8151         ** duplicate entries. This can happen if the database is corrupt.
8152         ** It would be simpler to detect this as part of the loop below, but
8153         ** we do the detection here in order to avoid populating the pager
8154         ** cache with two separate objects associated with the same
8155         ** page number.  */
8156         assert( CORRUPT_DB );
8157         rc = SQLITE_CORRUPT_BKPT;
8158         goto balance_cleanup;
8159       }
8160     }
8161   }
8162   for(i=0; i<nNew; i++){
8163     int iBest = 0;                /* aPgno[] index of page number to use */
8164     for(j=1; j<nNew; j++){
8165       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8166     }
8167     pgno = aPgOrder[iBest];
8168     aPgOrder[iBest] = 0xffffffff;
8169     if( iBest!=i ){
8170       if( iBest>i ){
8171         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8172       }
8173       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8174       apNew[i]->pgno = pgno;
8175     }
8176   }
8177 
8178   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8179          "%d(%d nc=%d) %d(%d nc=%d)\n",
8180     apNew[0]->pgno, szNew[0], cntNew[0],
8181     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8182     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8183     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8184     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8185     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8186     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8187     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8188     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8189   ));
8190 
8191   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8192   assert( nNew>=1 && nNew<=ArraySize(apNew) );
8193   assert( apNew[nNew-1]!=0 );
8194   put4byte(pRight, apNew[nNew-1]->pgno);
8195 
8196   /* If the sibling pages are not leaves, ensure that the right-child pointer
8197   ** of the right-most new sibling page is set to the value that was
8198   ** originally in the same field of the right-most old sibling page. */
8199   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8200     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8201     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8202   }
8203 
8204   /* Make any required updates to pointer map entries associated with
8205   ** cells stored on sibling pages following the balance operation. Pointer
8206   ** map entries associated with divider cells are set by the insertCell()
8207   ** routine. The associated pointer map entries are:
8208   **
8209   **   a) if the cell contains a reference to an overflow chain, the
8210   **      entry associated with the first page in the overflow chain, and
8211   **
8212   **   b) if the sibling pages are not leaves, the child page associated
8213   **      with the cell.
8214   **
8215   ** If the sibling pages are not leaves, then the pointer map entry
8216   ** associated with the right-child of each sibling may also need to be
8217   ** updated. This happens below, after the sibling pages have been
8218   ** populated, not here.
8219   */
8220   if( ISAUTOVACUUM ){
8221     MemPage *pOld;
8222     MemPage *pNew = pOld = apNew[0];
8223     int cntOldNext = pNew->nCell + pNew->nOverflow;
8224     int iNew = 0;
8225     int iOld = 0;
8226 
8227     for(i=0; i<b.nCell; i++){
8228       u8 *pCell = b.apCell[i];
8229       while( i==cntOldNext ){
8230         iOld++;
8231         assert( iOld<nNew || iOld<nOld );
8232         assert( iOld>=0 && iOld<NB );
8233         pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8234         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8235       }
8236       if( i==cntNew[iNew] ){
8237         pNew = apNew[++iNew];
8238         if( !leafData ) continue;
8239       }
8240 
8241       /* Cell pCell is destined for new sibling page pNew. Originally, it
8242       ** was either part of sibling page iOld (possibly an overflow cell),
8243       ** or else the divider cell to the left of sibling page iOld. So,
8244       ** if sibling page iOld had the same page number as pNew, and if
8245       ** pCell really was a part of sibling page iOld (not a divider or
8246       ** overflow cell), we can skip updating the pointer map entries.  */
8247       if( iOld>=nNew
8248        || pNew->pgno!=aPgno[iOld]
8249        || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8250       ){
8251         if( !leafCorrection ){
8252           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8253         }
8254         if( cachedCellSize(&b,i)>pNew->minLocal ){
8255           ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8256         }
8257         if( rc ) goto balance_cleanup;
8258       }
8259     }
8260   }
8261 
8262   /* Insert new divider cells into pParent. */
8263   for(i=0; i<nNew-1; i++){
8264     u8 *pCell;
8265     u8 *pTemp;
8266     int sz;
8267     u8 *pSrcEnd;
8268     MemPage *pNew = apNew[i];
8269     j = cntNew[i];
8270 
8271     assert( j<nMaxCells );
8272     assert( b.apCell[j]!=0 );
8273     pCell = b.apCell[j];
8274     sz = b.szCell[j] + leafCorrection;
8275     pTemp = &aOvflSpace[iOvflSpace];
8276     if( !pNew->leaf ){
8277       memcpy(&pNew->aData[8], pCell, 4);
8278     }else if( leafData ){
8279       /* If the tree is a leaf-data tree, and the siblings are leaves,
8280       ** then there is no divider cell in b.apCell[]. Instead, the divider
8281       ** cell consists of the integer key for the right-most cell of
8282       ** the sibling-page assembled above only.
8283       */
8284       CellInfo info;
8285       j--;
8286       pNew->xParseCell(pNew, b.apCell[j], &info);
8287       pCell = pTemp;
8288       sz = 4 + putVarint(&pCell[4], info.nKey);
8289       pTemp = 0;
8290     }else{
8291       pCell -= 4;
8292       /* Obscure case for non-leaf-data trees: If the cell at pCell was
8293       ** previously stored on a leaf node, and its reported size was 4
8294       ** bytes, then it may actually be smaller than this
8295       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8296       ** any cell). But it is important to pass the correct size to
8297       ** insertCell(), so reparse the cell now.
8298       **
8299       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8300       ** and WITHOUT ROWID tables with exactly one column which is the
8301       ** primary key.
8302       */
8303       if( b.szCell[j]==4 ){
8304         assert(leafCorrection==4);
8305         sz = pParent->xCellSize(pParent, pCell);
8306       }
8307     }
8308     iOvflSpace += sz;
8309     assert( sz<=pBt->maxLocal+23 );
8310     assert( iOvflSpace <= (int)pBt->pageSize );
8311     for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8312     pSrcEnd = b.apEnd[k];
8313     if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8314       rc = SQLITE_CORRUPT_BKPT;
8315       goto balance_cleanup;
8316     }
8317     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8318     if( rc!=SQLITE_OK ) goto balance_cleanup;
8319     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8320   }
8321 
8322   /* Now update the actual sibling pages. The order in which they are updated
8323   ** is important, as this code needs to avoid disrupting any page from which
8324   ** cells may still to be read. In practice, this means:
8325   **
8326   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8327   **      then it is not safe to update page apNew[iPg] until after
8328   **      the left-hand sibling apNew[iPg-1] has been updated.
8329   **
8330   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8331   **      then it is not safe to update page apNew[iPg] until after
8332   **      the right-hand sibling apNew[iPg+1] has been updated.
8333   **
8334   ** If neither of the above apply, the page is safe to update.
8335   **
8336   ** The iPg value in the following loop starts at nNew-1 goes down
8337   ** to 0, then back up to nNew-1 again, thus making two passes over
8338   ** the pages.  On the initial downward pass, only condition (1) above
8339   ** needs to be tested because (2) will always be true from the previous
8340   ** step.  On the upward pass, both conditions are always true, so the
8341   ** upwards pass simply processes pages that were missed on the downward
8342   ** pass.
8343   */
8344   for(i=1-nNew; i<nNew; i++){
8345     int iPg = i<0 ? -i : i;
8346     assert( iPg>=0 && iPg<nNew );
8347     if( abDone[iPg] ) continue;         /* Skip pages already processed */
8348     if( i>=0                            /* On the upwards pass, or... */
8349      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
8350     ){
8351       int iNew;
8352       int iOld;
8353       int nNewCell;
8354 
8355       /* Verify condition (1):  If cells are moving left, update iPg
8356       ** only after iPg-1 has already been updated. */
8357       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8358 
8359       /* Verify condition (2):  If cells are moving right, update iPg
8360       ** only after iPg+1 has already been updated. */
8361       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8362 
8363       if( iPg==0 ){
8364         iNew = iOld = 0;
8365         nNewCell = cntNew[0];
8366       }else{
8367         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8368         iNew = cntNew[iPg-1] + !leafData;
8369         nNewCell = cntNew[iPg] - iNew;
8370       }
8371 
8372       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8373       if( rc ) goto balance_cleanup;
8374       abDone[iPg]++;
8375       apNew[iPg]->nFree = usableSpace-szNew[iPg];
8376       assert( apNew[iPg]->nOverflow==0 );
8377       assert( apNew[iPg]->nCell==nNewCell );
8378     }
8379   }
8380 
8381   /* All pages have been processed exactly once */
8382   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8383 
8384   assert( nOld>0 );
8385   assert( nNew>0 );
8386 
8387   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8388     /* The root page of the b-tree now contains no cells. The only sibling
8389     ** page is the right-child of the parent. Copy the contents of the
8390     ** child page into the parent, decreasing the overall height of the
8391     ** b-tree structure by one. This is described as the "balance-shallower"
8392     ** sub-algorithm in some documentation.
8393     **
8394     ** If this is an auto-vacuum database, the call to copyNodeContent()
8395     ** sets all pointer-map entries corresponding to database image pages
8396     ** for which the pointer is stored within the content being copied.
8397     **
8398     ** It is critical that the child page be defragmented before being
8399     ** copied into the parent, because if the parent is page 1 then it will
8400     ** by smaller than the child due to the database header, and so all the
8401     ** free space needs to be up front.
8402     */
8403     assert( nNew==1 || CORRUPT_DB );
8404     rc = defragmentPage(apNew[0], -1);
8405     testcase( rc!=SQLITE_OK );
8406     assert( apNew[0]->nFree ==
8407         (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8408           - apNew[0]->nCell*2)
8409       || rc!=SQLITE_OK
8410     );
8411     copyNodeContent(apNew[0], pParent, &rc);
8412     freePage(apNew[0], &rc);
8413   }else if( ISAUTOVACUUM && !leafCorrection ){
8414     /* Fix the pointer map entries associated with the right-child of each
8415     ** sibling page. All other pointer map entries have already been taken
8416     ** care of.  */
8417     for(i=0; i<nNew; i++){
8418       u32 key = get4byte(&apNew[i]->aData[8]);
8419       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8420     }
8421   }
8422 
8423   assert( pParent->isInit );
8424   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8425           nOld, nNew, b.nCell));
8426 
8427   /* Free any old pages that were not reused as new pages.
8428   */
8429   for(i=nNew; i<nOld; i++){
8430     freePage(apOld[i], &rc);
8431   }
8432 
8433 #if 0
8434   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8435     /* The ptrmapCheckPages() contains assert() statements that verify that
8436     ** all pointer map pages are set correctly. This is helpful while
8437     ** debugging. This is usually disabled because a corrupt database may
8438     ** cause an assert() statement to fail.  */
8439     ptrmapCheckPages(apNew, nNew);
8440     ptrmapCheckPages(&pParent, 1);
8441   }
8442 #endif
8443 
8444   /*
8445   ** Cleanup before returning.
8446   */
8447 balance_cleanup:
8448   sqlite3StackFree(0, b.apCell);
8449   for(i=0; i<nOld; i++){
8450     releasePage(apOld[i]);
8451   }
8452   for(i=0; i<nNew; i++){
8453     releasePage(apNew[i]);
8454   }
8455 
8456   return rc;
8457 }
8458 
8459 
8460 /*
8461 ** This function is called when the root page of a b-tree structure is
8462 ** overfull (has one or more overflow pages).
8463 **
8464 ** A new child page is allocated and the contents of the current root
8465 ** page, including overflow cells, are copied into the child. The root
8466 ** page is then overwritten to make it an empty page with the right-child
8467 ** pointer pointing to the new page.
8468 **
8469 ** Before returning, all pointer-map entries corresponding to pages
8470 ** that the new child-page now contains pointers to are updated. The
8471 ** entry corresponding to the new right-child pointer of the root
8472 ** page is also updated.
8473 **
8474 ** If successful, *ppChild is set to contain a reference to the child
8475 ** page and SQLITE_OK is returned. In this case the caller is required
8476 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8477 ** an error code is returned and *ppChild is set to 0.
8478 */
8479 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8480   int rc;                        /* Return value from subprocedures */
8481   MemPage *pChild = 0;           /* Pointer to a new child page */
8482   Pgno pgnoChild = 0;            /* Page number of the new child page */
8483   BtShared *pBt = pRoot->pBt;    /* The BTree */
8484 
8485   assert( pRoot->nOverflow>0 );
8486   assert( sqlite3_mutex_held(pBt->mutex) );
8487 
8488   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8489   ** page that will become the new right-child of pPage. Copy the contents
8490   ** of the node stored on pRoot into the new child page.
8491   */
8492   rc = sqlite3PagerWrite(pRoot->pDbPage);
8493   if( rc==SQLITE_OK ){
8494     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8495     copyNodeContent(pRoot, pChild, &rc);
8496     if( ISAUTOVACUUM ){
8497       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8498     }
8499   }
8500   if( rc ){
8501     *ppChild = 0;
8502     releasePage(pChild);
8503     return rc;
8504   }
8505   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8506   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8507   assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8508 
8509   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8510 
8511   /* Copy the overflow cells from pRoot to pChild */
8512   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8513          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8514   memcpy(pChild->apOvfl, pRoot->apOvfl,
8515          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8516   pChild->nOverflow = pRoot->nOverflow;
8517 
8518   /* Zero the contents of pRoot. Then install pChild as the right-child. */
8519   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8520   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8521 
8522   *ppChild = pChild;
8523   return SQLITE_OK;
8524 }
8525 
8526 /*
8527 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8528 ** on the same B-tree as pCur.
8529 **
8530 ** This can occur if a database is corrupt with two or more SQL tables
8531 ** pointing to the same b-tree.  If an insert occurs on one SQL table
8532 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8533 ** table linked to the same b-tree.  If the secondary insert causes a
8534 ** rebalance, that can change content out from under the cursor on the
8535 ** first SQL table, violating invariants on the first insert.
8536 */
8537 static int anotherValidCursor(BtCursor *pCur){
8538   BtCursor *pOther;
8539   for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8540     if( pOther!=pCur
8541      && pOther->eState==CURSOR_VALID
8542      && pOther->pPage==pCur->pPage
8543     ){
8544       return SQLITE_CORRUPT_BKPT;
8545     }
8546   }
8547   return SQLITE_OK;
8548 }
8549 
8550 /*
8551 ** The page that pCur currently points to has just been modified in
8552 ** some way. This function figures out if this modification means the
8553 ** tree needs to be balanced, and if so calls the appropriate balancing
8554 ** routine. Balancing routines are:
8555 **
8556 **   balance_quick()
8557 **   balance_deeper()
8558 **   balance_nonroot()
8559 */
8560 static int balance(BtCursor *pCur){
8561   int rc = SQLITE_OK;
8562   const int nMin = pCur->pBt->usableSize * 2 / 3;
8563   u8 aBalanceQuickSpace[13];
8564   u8 *pFree = 0;
8565 
8566   VVA_ONLY( int balance_quick_called = 0 );
8567   VVA_ONLY( int balance_deeper_called = 0 );
8568 
8569   do {
8570     int iPage;
8571     MemPage *pPage = pCur->pPage;
8572 
8573     if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8574     if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8575       break;
8576     }else if( (iPage = pCur->iPage)==0 ){
8577       if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8578         /* The root page of the b-tree is overfull. In this case call the
8579         ** balance_deeper() function to create a new child for the root-page
8580         ** and copy the current contents of the root-page to it. The
8581         ** next iteration of the do-loop will balance the child page.
8582         */
8583         assert( balance_deeper_called==0 );
8584         VVA_ONLY( balance_deeper_called++ );
8585         rc = balance_deeper(pPage, &pCur->apPage[1]);
8586         if( rc==SQLITE_OK ){
8587           pCur->iPage = 1;
8588           pCur->ix = 0;
8589           pCur->aiIdx[0] = 0;
8590           pCur->apPage[0] = pPage;
8591           pCur->pPage = pCur->apPage[1];
8592           assert( pCur->pPage->nOverflow );
8593         }
8594       }else{
8595         break;
8596       }
8597     }else{
8598       MemPage * const pParent = pCur->apPage[iPage-1];
8599       int const iIdx = pCur->aiIdx[iPage-1];
8600 
8601       rc = sqlite3PagerWrite(pParent->pDbPage);
8602       if( rc==SQLITE_OK && pParent->nFree<0 ){
8603         rc = btreeComputeFreeSpace(pParent);
8604       }
8605       if( rc==SQLITE_OK ){
8606 #ifndef SQLITE_OMIT_QUICKBALANCE
8607         if( pPage->intKeyLeaf
8608          && pPage->nOverflow==1
8609          && pPage->aiOvfl[0]==pPage->nCell
8610          && pParent->pgno!=1
8611          && pParent->nCell==iIdx
8612         ){
8613           /* Call balance_quick() to create a new sibling of pPage on which
8614           ** to store the overflow cell. balance_quick() inserts a new cell
8615           ** into pParent, which may cause pParent overflow. If this
8616           ** happens, the next iteration of the do-loop will balance pParent
8617           ** use either balance_nonroot() or balance_deeper(). Until this
8618           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8619           ** buffer.
8620           **
8621           ** The purpose of the following assert() is to check that only a
8622           ** single call to balance_quick() is made for each call to this
8623           ** function. If this were not verified, a subtle bug involving reuse
8624           ** of the aBalanceQuickSpace[] might sneak in.
8625           */
8626           assert( balance_quick_called==0 );
8627           VVA_ONLY( balance_quick_called++ );
8628           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8629         }else
8630 #endif
8631         {
8632           /* In this case, call balance_nonroot() to redistribute cells
8633           ** between pPage and up to 2 of its sibling pages. This involves
8634           ** modifying the contents of pParent, which may cause pParent to
8635           ** become overfull or underfull. The next iteration of the do-loop
8636           ** will balance the parent page to correct this.
8637           **
8638           ** If the parent page becomes overfull, the overflow cell or cells
8639           ** are stored in the pSpace buffer allocated immediately below.
8640           ** A subsequent iteration of the do-loop will deal with this by
8641           ** calling balance_nonroot() (balance_deeper() may be called first,
8642           ** but it doesn't deal with overflow cells - just moves them to a
8643           ** different page). Once this subsequent call to balance_nonroot()
8644           ** has completed, it is safe to release the pSpace buffer used by
8645           ** the previous call, as the overflow cell data will have been
8646           ** copied either into the body of a database page or into the new
8647           ** pSpace buffer passed to the latter call to balance_nonroot().
8648           */
8649           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8650           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8651                                pCur->hints&BTREE_BULKLOAD);
8652           if( pFree ){
8653             /* If pFree is not NULL, it points to the pSpace buffer used
8654             ** by a previous call to balance_nonroot(). Its contents are
8655             ** now stored either on real database pages or within the
8656             ** new pSpace buffer, so it may be safely freed here. */
8657             sqlite3PageFree(pFree);
8658           }
8659 
8660           /* The pSpace buffer will be freed after the next call to
8661           ** balance_nonroot(), or just before this function returns, whichever
8662           ** comes first. */
8663           pFree = pSpace;
8664         }
8665       }
8666 
8667       pPage->nOverflow = 0;
8668 
8669       /* The next iteration of the do-loop balances the parent page. */
8670       releasePage(pPage);
8671       pCur->iPage--;
8672       assert( pCur->iPage>=0 );
8673       pCur->pPage = pCur->apPage[pCur->iPage];
8674     }
8675   }while( rc==SQLITE_OK );
8676 
8677   if( pFree ){
8678     sqlite3PageFree(pFree);
8679   }
8680   return rc;
8681 }
8682 
8683 /* Overwrite content from pX into pDest.  Only do the write if the
8684 ** content is different from what is already there.
8685 */
8686 static int btreeOverwriteContent(
8687   MemPage *pPage,           /* MemPage on which writing will occur */
8688   u8 *pDest,                /* Pointer to the place to start writing */
8689   const BtreePayload *pX,   /* Source of data to write */
8690   int iOffset,              /* Offset of first byte to write */
8691   int iAmt                  /* Number of bytes to be written */
8692 ){
8693   int nData = pX->nData - iOffset;
8694   if( nData<=0 ){
8695     /* Overwritting with zeros */
8696     int i;
8697     for(i=0; i<iAmt && pDest[i]==0; i++){}
8698     if( i<iAmt ){
8699       int rc = sqlite3PagerWrite(pPage->pDbPage);
8700       if( rc ) return rc;
8701       memset(pDest + i, 0, iAmt - i);
8702     }
8703   }else{
8704     if( nData<iAmt ){
8705       /* Mixed read data and zeros at the end.  Make a recursive call
8706       ** to write the zeros then fall through to write the real data */
8707       int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8708                                  iAmt-nData);
8709       if( rc ) return rc;
8710       iAmt = nData;
8711     }
8712     if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8713       int rc = sqlite3PagerWrite(pPage->pDbPage);
8714       if( rc ) return rc;
8715       /* In a corrupt database, it is possible for the source and destination
8716       ** buffers to overlap.  This is harmless since the database is already
8717       ** corrupt but it does cause valgrind and ASAN warnings.  So use
8718       ** memmove(). */
8719       memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8720     }
8721   }
8722   return SQLITE_OK;
8723 }
8724 
8725 /*
8726 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8727 ** contained in pX.
8728 */
8729 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8730   int iOffset;                        /* Next byte of pX->pData to write */
8731   int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8732   int rc;                             /* Return code */
8733   MemPage *pPage = pCur->pPage;       /* Page being written */
8734   BtShared *pBt;                      /* Btree */
8735   Pgno ovflPgno;                      /* Next overflow page to write */
8736   u32 ovflPageSize;                   /* Size to write on overflow page */
8737 
8738   if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8739    || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8740   ){
8741     return SQLITE_CORRUPT_BKPT;
8742   }
8743   /* Overwrite the local portion first */
8744   rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8745                              0, pCur->info.nLocal);
8746   if( rc ) return rc;
8747   if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8748 
8749   /* Now overwrite the overflow pages */
8750   iOffset = pCur->info.nLocal;
8751   assert( nTotal>=0 );
8752   assert( iOffset>=0 );
8753   ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8754   pBt = pPage->pBt;
8755   ovflPageSize = pBt->usableSize - 4;
8756   do{
8757     rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8758     if( rc ) return rc;
8759     if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8760       rc = SQLITE_CORRUPT_BKPT;
8761     }else{
8762       if( iOffset+ovflPageSize<(u32)nTotal ){
8763         ovflPgno = get4byte(pPage->aData);
8764       }else{
8765         ovflPageSize = nTotal - iOffset;
8766       }
8767       rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8768                                  iOffset, ovflPageSize);
8769     }
8770     sqlite3PagerUnref(pPage->pDbPage);
8771     if( rc ) return rc;
8772     iOffset += ovflPageSize;
8773   }while( iOffset<nTotal );
8774   return SQLITE_OK;
8775 }
8776 
8777 
8778 /*
8779 ** Insert a new record into the BTree.  The content of the new record
8780 ** is described by the pX object.  The pCur cursor is used only to
8781 ** define what table the record should be inserted into, and is left
8782 ** pointing at a random location.
8783 **
8784 ** For a table btree (used for rowid tables), only the pX.nKey value of
8785 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8786 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8787 ** hold the content of the row.
8788 **
8789 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8790 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8791 ** pX.pData,nData,nZero fields must be zero.
8792 **
8793 ** If the seekResult parameter is non-zero, then a successful call to
8794 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8795 ** been performed.  In other words, if seekResult!=0 then the cursor
8796 ** is currently pointing to a cell that will be adjacent to the cell
8797 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8798 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8799 ** that is larger than (pKey,nKey).
8800 **
8801 ** If seekResult==0, that means pCur is pointing at some unknown location.
8802 ** In that case, this routine must seek the cursor to the correct insertion
8803 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8804 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8805 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8806 ** to decode the key.
8807 */
8808 int sqlite3BtreeInsert(
8809   BtCursor *pCur,                /* Insert data into the table of this cursor */
8810   const BtreePayload *pX,        /* Content of the row to be inserted */
8811   int flags,                     /* True if this is likely an append */
8812   int seekResult                 /* Result of prior MovetoUnpacked() call */
8813 ){
8814   int rc;
8815   int loc = seekResult;          /* -1: before desired location  +1: after */
8816   int szNew = 0;
8817   int idx;
8818   MemPage *pPage;
8819   Btree *p = pCur->pBtree;
8820   BtShared *pBt = p->pBt;
8821   unsigned char *oldCell;
8822   unsigned char *newCell = 0;
8823 
8824   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
8825   assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
8826 
8827   if( pCur->eState==CURSOR_FAULT ){
8828     assert( pCur->skipNext!=SQLITE_OK );
8829     return pCur->skipNext;
8830   }
8831 
8832   assert( cursorOwnsBtShared(pCur) );
8833   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8834               && pBt->inTransaction==TRANS_WRITE
8835               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8836   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8837 
8838   /* Assert that the caller has been consistent. If this cursor was opened
8839   ** expecting an index b-tree, then the caller should be inserting blob
8840   ** keys with no associated data. If the cursor was opened expecting an
8841   ** intkey table, the caller should be inserting integer keys with a
8842   ** blob of associated data.  */
8843   assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
8844 
8845   /* Save the positions of any other cursors open on this table.
8846   **
8847   ** In some cases, the call to btreeMoveto() below is a no-op. For
8848   ** example, when inserting data into a table with auto-generated integer
8849   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8850   ** integer key to use. It then calls this function to actually insert the
8851   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8852   ** that the cursor is already where it needs to be and returns without
8853   ** doing any work. To avoid thwarting these optimizations, it is important
8854   ** not to clear the cursor here.
8855   */
8856   if( pCur->curFlags & BTCF_Multiple ){
8857     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8858     if( rc ) return rc;
8859     if( loc && pCur->iPage<0 ){
8860       /* This can only happen if the schema is corrupt such that there is more
8861       ** than one table or index with the same root page as used by the cursor.
8862       ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8863       ** the schema was loaded. This cannot be asserted though, as a user might
8864       ** set the flag, load the schema, and then unset the flag.  */
8865       return SQLITE_CORRUPT_BKPT;
8866     }
8867   }
8868 
8869   if( pCur->pKeyInfo==0 ){
8870     assert( pX->pKey==0 );
8871     /* If this is an insert into a table b-tree, invalidate any incrblob
8872     ** cursors open on the row being replaced */
8873     if( p->hasIncrblobCur ){
8874       invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8875     }
8876 
8877     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8878     ** to a row with the same key as the new entry being inserted.
8879     */
8880 #ifdef SQLITE_DEBUG
8881     if( flags & BTREE_SAVEPOSITION ){
8882       assert( pCur->curFlags & BTCF_ValidNKey );
8883       assert( pX->nKey==pCur->info.nKey );
8884       assert( loc==0 );
8885     }
8886 #endif
8887 
8888     /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8889     ** that the cursor is not pointing to a row to be overwritten.
8890     ** So do a complete check.
8891     */
8892     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8893       /* The cursor is pointing to the entry that is to be
8894       ** overwritten */
8895       assert( pX->nData>=0 && pX->nZero>=0 );
8896       if( pCur->info.nSize!=0
8897        && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8898       ){
8899         /* New entry is the same size as the old.  Do an overwrite */
8900         return btreeOverwriteCell(pCur, pX);
8901       }
8902       assert( loc==0 );
8903     }else if( loc==0 ){
8904       /* The cursor is *not* pointing to the cell to be overwritten, nor
8905       ** to an adjacent cell.  Move the cursor so that it is pointing either
8906       ** to the cell to be overwritten or an adjacent cell.
8907       */
8908       rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8909                (flags & BTREE_APPEND)!=0, &loc);
8910       if( rc ) return rc;
8911     }
8912   }else{
8913     /* This is an index or a WITHOUT ROWID table */
8914 
8915     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8916     ** to a row with the same key as the new entry being inserted.
8917     */
8918     assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8919 
8920     /* If the cursor is not already pointing either to the cell to be
8921     ** overwritten, or if a new cell is being inserted, if the cursor is
8922     ** not pointing to an immediately adjacent cell, then move the cursor
8923     ** so that it does.
8924     */
8925     if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8926       if( pX->nMem ){
8927         UnpackedRecord r;
8928         r.pKeyInfo = pCur->pKeyInfo;
8929         r.aMem = pX->aMem;
8930         r.nField = pX->nMem;
8931         r.default_rc = 0;
8932         r.eqSeen = 0;
8933         rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
8934       }else{
8935         rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8936                     (flags & BTREE_APPEND)!=0, &loc);
8937       }
8938       if( rc ) return rc;
8939     }
8940 
8941     /* If the cursor is currently pointing to an entry to be overwritten
8942     ** and the new content is the same as as the old, then use the
8943     ** overwrite optimization.
8944     */
8945     if( loc==0 ){
8946       getCellInfo(pCur);
8947       if( pCur->info.nKey==pX->nKey ){
8948         BtreePayload x2;
8949         x2.pData = pX->pKey;
8950         x2.nData = pX->nKey;
8951         x2.nZero = 0;
8952         return btreeOverwriteCell(pCur, &x2);
8953       }
8954     }
8955   }
8956   assert( pCur->eState==CURSOR_VALID
8957        || (pCur->eState==CURSOR_INVALID && loc)
8958        || CORRUPT_DB );
8959 
8960   pPage = pCur->pPage;
8961   assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
8962   assert( pPage->leaf || !pPage->intKey );
8963   if( pPage->nFree<0 ){
8964     if( NEVER(pCur->eState>CURSOR_INVALID) ){
8965       rc = SQLITE_CORRUPT_BKPT;
8966     }else{
8967       rc = btreeComputeFreeSpace(pPage);
8968     }
8969     if( rc ) return rc;
8970   }
8971 
8972   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8973           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8974           loc==0 ? "overwrite" : "new entry"));
8975   assert( pPage->isInit );
8976   newCell = pBt->pTmpSpace;
8977   assert( newCell!=0 );
8978   if( flags & BTREE_PREFORMAT ){
8979     rc = SQLITE_OK;
8980     szNew = pBt->nPreformatSize;
8981     if( szNew<4 ) szNew = 4;
8982     if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
8983       CellInfo info;
8984       pPage->xParseCell(pPage, newCell, &info);
8985       if( info.nPayload!=info.nLocal ){
8986         Pgno ovfl = get4byte(&newCell[szNew-4]);
8987         ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
8988       }
8989     }
8990   }else{
8991     rc = fillInCell(pPage, newCell, pX, &szNew);
8992   }
8993   if( rc ) goto end_insert;
8994   assert( szNew==pPage->xCellSize(pPage, newCell) );
8995   assert( szNew <= MX_CELL_SIZE(pBt) );
8996   idx = pCur->ix;
8997   if( loc==0 ){
8998     CellInfo info;
8999     assert( idx>=0 );
9000     if( idx>=pPage->nCell ){
9001       return SQLITE_CORRUPT_BKPT;
9002     }
9003     rc = sqlite3PagerWrite(pPage->pDbPage);
9004     if( rc ){
9005       goto end_insert;
9006     }
9007     oldCell = findCell(pPage, idx);
9008     if( !pPage->leaf ){
9009       memcpy(newCell, oldCell, 4);
9010     }
9011     BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9012     testcase( pCur->curFlags & BTCF_ValidOvfl );
9013     invalidateOverflowCache(pCur);
9014     if( info.nSize==szNew && info.nLocal==info.nPayload
9015      && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9016     ){
9017       /* Overwrite the old cell with the new if they are the same size.
9018       ** We could also try to do this if the old cell is smaller, then add
9019       ** the leftover space to the free list.  But experiments show that
9020       ** doing that is no faster then skipping this optimization and just
9021       ** calling dropCell() and insertCell().
9022       **
9023       ** This optimization cannot be used on an autovacuum database if the
9024       ** new entry uses overflow pages, as the insertCell() call below is
9025       ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
9026       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9027       if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9028         return SQLITE_CORRUPT_BKPT;
9029       }
9030       if( oldCell+szNew > pPage->aDataEnd ){
9031         return SQLITE_CORRUPT_BKPT;
9032       }
9033       memcpy(oldCell, newCell, szNew);
9034       return SQLITE_OK;
9035     }
9036     dropCell(pPage, idx, info.nSize, &rc);
9037     if( rc ) goto end_insert;
9038   }else if( loc<0 && pPage->nCell>0 ){
9039     assert( pPage->leaf );
9040     idx = ++pCur->ix;
9041     pCur->curFlags &= ~BTCF_ValidNKey;
9042   }else{
9043     assert( pPage->leaf );
9044   }
9045   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9046   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9047   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9048 
9049   /* If no error has occurred and pPage has an overflow cell, call balance()
9050   ** to redistribute the cells within the tree. Since balance() may move
9051   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9052   ** variables.
9053   **
9054   ** Previous versions of SQLite called moveToRoot() to move the cursor
9055   ** back to the root page as balance() used to invalidate the contents
9056   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9057   ** set the cursor state to "invalid". This makes common insert operations
9058   ** slightly faster.
9059   **
9060   ** There is a subtle but important optimization here too. When inserting
9061   ** multiple records into an intkey b-tree using a single cursor (as can
9062   ** happen while processing an "INSERT INTO ... SELECT" statement), it
9063   ** is advantageous to leave the cursor pointing to the last entry in
9064   ** the b-tree if possible. If the cursor is left pointing to the last
9065   ** entry in the table, and the next row inserted has an integer key
9066   ** larger than the largest existing key, it is possible to insert the
9067   ** row without seeking the cursor. This can be a big performance boost.
9068   */
9069   pCur->info.nSize = 0;
9070   if( pPage->nOverflow ){
9071     assert( rc==SQLITE_OK );
9072     pCur->curFlags &= ~(BTCF_ValidNKey);
9073     rc = balance(pCur);
9074 
9075     /* Must make sure nOverflow is reset to zero even if the balance()
9076     ** fails. Internal data structure corruption will result otherwise.
9077     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9078     ** from trying to save the current position of the cursor.  */
9079     pCur->pPage->nOverflow = 0;
9080     pCur->eState = CURSOR_INVALID;
9081     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9082       btreeReleaseAllCursorPages(pCur);
9083       if( pCur->pKeyInfo ){
9084         assert( pCur->pKey==0 );
9085         pCur->pKey = sqlite3Malloc( pX->nKey );
9086         if( pCur->pKey==0 ){
9087           rc = SQLITE_NOMEM;
9088         }else{
9089           memcpy(pCur->pKey, pX->pKey, pX->nKey);
9090         }
9091       }
9092       pCur->eState = CURSOR_REQUIRESEEK;
9093       pCur->nKey = pX->nKey;
9094     }
9095   }
9096   assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9097 
9098 end_insert:
9099   return rc;
9100 }
9101 
9102 /*
9103 ** This function is used as part of copying the current row from cursor
9104 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9105 ** parameter iKey is used as the rowid value when the record is copied
9106 ** into pDest. Otherwise, the record is copied verbatim.
9107 **
9108 ** This function does not actually write the new value to cursor pDest.
9109 ** Instead, it creates and populates any required overflow pages and
9110 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9111 ** for the destination database. The size of the cell, in bytes, is left
9112 ** in BtShared.nPreformatSize. The caller completes the insertion by
9113 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9114 **
9115 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9116 */
9117 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9118   int rc = SQLITE_OK;
9119   BtShared *pBt = pDest->pBt;
9120   u8 *aOut = pBt->pTmpSpace;    /* Pointer to next output buffer */
9121   const u8 *aIn;                /* Pointer to next input buffer */
9122   u32 nIn;                      /* Size of input buffer aIn[] */
9123   u32 nRem;                     /* Bytes of data still to copy */
9124 
9125   getCellInfo(pSrc);
9126   aOut += putVarint32(aOut, pSrc->info.nPayload);
9127   if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9128   nIn = pSrc->info.nLocal;
9129   aIn = pSrc->info.pPayload;
9130   if( aIn+nIn>pSrc->pPage->aDataEnd ){
9131     return SQLITE_CORRUPT_BKPT;
9132   }
9133   nRem = pSrc->info.nPayload;
9134   if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9135     memcpy(aOut, aIn, nIn);
9136     pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9137   }else{
9138     Pager *pSrcPager = pSrc->pBt->pPager;
9139     u8 *pPgnoOut = 0;
9140     Pgno ovflIn = 0;
9141     DbPage *pPageIn = 0;
9142     MemPage *pPageOut = 0;
9143     u32 nOut;                     /* Size of output buffer aOut[] */
9144 
9145     nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9146     pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9147     if( nOut<pSrc->info.nPayload ){
9148       pPgnoOut = &aOut[nOut];
9149       pBt->nPreformatSize += 4;
9150     }
9151 
9152     if( nRem>nIn ){
9153       if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9154         return SQLITE_CORRUPT_BKPT;
9155       }
9156       ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9157     }
9158 
9159     do {
9160       nRem -= nOut;
9161       do{
9162         assert( nOut>0 );
9163         if( nIn>0 ){
9164           int nCopy = MIN(nOut, nIn);
9165           memcpy(aOut, aIn, nCopy);
9166           nOut -= nCopy;
9167           nIn -= nCopy;
9168           aOut += nCopy;
9169           aIn += nCopy;
9170         }
9171         if( nOut>0 ){
9172           sqlite3PagerUnref(pPageIn);
9173           pPageIn = 0;
9174           rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9175           if( rc==SQLITE_OK ){
9176             aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9177             ovflIn = get4byte(aIn);
9178             aIn += 4;
9179             nIn = pSrc->pBt->usableSize - 4;
9180           }
9181         }
9182       }while( rc==SQLITE_OK && nOut>0 );
9183 
9184       if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9185         Pgno pgnoNew;
9186         MemPage *pNew = 0;
9187         rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9188         put4byte(pPgnoOut, pgnoNew);
9189         if( ISAUTOVACUUM && pPageOut ){
9190           ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9191         }
9192         releasePage(pPageOut);
9193         pPageOut = pNew;
9194         if( pPageOut ){
9195           pPgnoOut = pPageOut->aData;
9196           put4byte(pPgnoOut, 0);
9197           aOut = &pPgnoOut[4];
9198           nOut = MIN(pBt->usableSize - 4, nRem);
9199         }
9200       }
9201     }while( nRem>0 && rc==SQLITE_OK );
9202 
9203     releasePage(pPageOut);
9204     sqlite3PagerUnref(pPageIn);
9205   }
9206 
9207   return rc;
9208 }
9209 
9210 /*
9211 ** Delete the entry that the cursor is pointing to.
9212 **
9213 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9214 ** the cursor is left pointing at an arbitrary location after the delete.
9215 ** But if that bit is set, then the cursor is left in a state such that
9216 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9217 ** as it would have been on if the call to BtreeDelete() had been omitted.
9218 **
9219 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9220 ** associated with a single table entry and its indexes.  Only one of those
9221 ** deletes is considered the "primary" delete.  The primary delete occurs
9222 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
9223 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9224 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9225 ** but which might be used by alternative storage engines.
9226 */
9227 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9228   Btree *p = pCur->pBtree;
9229   BtShared *pBt = p->pBt;
9230   int rc;                              /* Return code */
9231   MemPage *pPage;                      /* Page to delete cell from */
9232   unsigned char *pCell;                /* Pointer to cell to delete */
9233   int iCellIdx;                        /* Index of cell to delete */
9234   int iCellDepth;                      /* Depth of node containing pCell */
9235   CellInfo info;                       /* Size of the cell being deleted */
9236   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
9237   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
9238 
9239   assert( cursorOwnsBtShared(pCur) );
9240   assert( pBt->inTransaction==TRANS_WRITE );
9241   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9242   assert( pCur->curFlags & BTCF_WriteFlag );
9243   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9244   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9245   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9246   if( pCur->eState==CURSOR_REQUIRESEEK ){
9247     rc = btreeRestoreCursorPosition(pCur);
9248     assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9249     if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9250   }
9251   assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
9252 
9253   iCellDepth = pCur->iPage;
9254   iCellIdx = pCur->ix;
9255   pPage = pCur->pPage;
9256   pCell = findCell(pPage, iCellIdx);
9257   if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
9258 
9259   /* If the bPreserve flag is set to true, then the cursor position must
9260   ** be preserved following this delete operation. If the current delete
9261   ** will cause a b-tree rebalance, then this is done by saving the cursor
9262   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9263   ** returning.
9264   **
9265   ** Or, if the current delete will not cause a rebalance, then the cursor
9266   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9267   ** before or after the deleted entry. In this case set bSkipnext to true.  */
9268   if( bPreserve ){
9269     if( !pPage->leaf
9270      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
9271      || pPage->nCell==1  /* See dbfuzz001.test for a test case */
9272     ){
9273       /* A b-tree rebalance will be required after deleting this entry.
9274       ** Save the cursor key.  */
9275       rc = saveCursorKey(pCur);
9276       if( rc ) return rc;
9277     }else{
9278       bSkipnext = 1;
9279     }
9280   }
9281 
9282   /* If the page containing the entry to delete is not a leaf page, move
9283   ** the cursor to the largest entry in the tree that is smaller than
9284   ** the entry being deleted. This cell will replace the cell being deleted
9285   ** from the internal node. The 'previous' entry is used for this instead
9286   ** of the 'next' entry, as the previous entry is always a part of the
9287   ** sub-tree headed by the child page of the cell being deleted. This makes
9288   ** balancing the tree following the delete operation easier.  */
9289   if( !pPage->leaf ){
9290     rc = sqlite3BtreePrevious(pCur, 0);
9291     assert( rc!=SQLITE_DONE );
9292     if( rc ) return rc;
9293   }
9294 
9295   /* Save the positions of any other cursors open on this table before
9296   ** making any modifications.  */
9297   if( pCur->curFlags & BTCF_Multiple ){
9298     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9299     if( rc ) return rc;
9300   }
9301 
9302   /* If this is a delete operation to remove a row from a table b-tree,
9303   ** invalidate any incrblob cursors open on the row being deleted.  */
9304   if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9305     invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9306   }
9307 
9308   /* Make the page containing the entry to be deleted writable. Then free any
9309   ** overflow pages associated with the entry and finally remove the cell
9310   ** itself from within the page.  */
9311   rc = sqlite3PagerWrite(pPage->pDbPage);
9312   if( rc ) return rc;
9313   BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9314   dropCell(pPage, iCellIdx, info.nSize, &rc);
9315   if( rc ) return rc;
9316 
9317   /* If the cell deleted was not located on a leaf page, then the cursor
9318   ** is currently pointing to the largest entry in the sub-tree headed
9319   ** by the child-page of the cell that was just deleted from an internal
9320   ** node. The cell from the leaf node needs to be moved to the internal
9321   ** node to replace the deleted cell.  */
9322   if( !pPage->leaf ){
9323     MemPage *pLeaf = pCur->pPage;
9324     int nCell;
9325     Pgno n;
9326     unsigned char *pTmp;
9327 
9328     if( pLeaf->nFree<0 ){
9329       rc = btreeComputeFreeSpace(pLeaf);
9330       if( rc ) return rc;
9331     }
9332     if( iCellDepth<pCur->iPage-1 ){
9333       n = pCur->apPage[iCellDepth+1]->pgno;
9334     }else{
9335       n = pCur->pPage->pgno;
9336     }
9337     pCell = findCell(pLeaf, pLeaf->nCell-1);
9338     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9339     nCell = pLeaf->xCellSize(pLeaf, pCell);
9340     assert( MX_CELL_SIZE(pBt) >= nCell );
9341     pTmp = pBt->pTmpSpace;
9342     assert( pTmp!=0 );
9343     rc = sqlite3PagerWrite(pLeaf->pDbPage);
9344     if( rc==SQLITE_OK ){
9345       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9346     }
9347     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9348     if( rc ) return rc;
9349   }
9350 
9351   /* Balance the tree. If the entry deleted was located on a leaf page,
9352   ** then the cursor still points to that page. In this case the first
9353   ** call to balance() repairs the tree, and the if(...) condition is
9354   ** never true.
9355   **
9356   ** Otherwise, if the entry deleted was on an internal node page, then
9357   ** pCur is pointing to the leaf page from which a cell was removed to
9358   ** replace the cell deleted from the internal node. This is slightly
9359   ** tricky as the leaf node may be underfull, and the internal node may
9360   ** be either under or overfull. In this case run the balancing algorithm
9361   ** on the leaf node first. If the balance proceeds far enough up the
9362   ** tree that we can be sure that any problem in the internal node has
9363   ** been corrected, so be it. Otherwise, after balancing the leaf node,
9364   ** walk the cursor up the tree to the internal node and balance it as
9365   ** well.  */
9366   rc = balance(pCur);
9367   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9368     releasePageNotNull(pCur->pPage);
9369     pCur->iPage--;
9370     while( pCur->iPage>iCellDepth ){
9371       releasePage(pCur->apPage[pCur->iPage--]);
9372     }
9373     pCur->pPage = pCur->apPage[pCur->iPage];
9374     rc = balance(pCur);
9375   }
9376 
9377   if( rc==SQLITE_OK ){
9378     if( bSkipnext ){
9379       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
9380       assert( pPage==pCur->pPage || CORRUPT_DB );
9381       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9382       pCur->eState = CURSOR_SKIPNEXT;
9383       if( iCellIdx>=pPage->nCell ){
9384         pCur->skipNext = -1;
9385         pCur->ix = pPage->nCell-1;
9386       }else{
9387         pCur->skipNext = 1;
9388       }
9389     }else{
9390       rc = moveToRoot(pCur);
9391       if( bPreserve ){
9392         btreeReleaseAllCursorPages(pCur);
9393         pCur->eState = CURSOR_REQUIRESEEK;
9394       }
9395       if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9396     }
9397   }
9398   return rc;
9399 }
9400 
9401 /*
9402 ** Create a new BTree table.  Write into *piTable the page
9403 ** number for the root page of the new table.
9404 **
9405 ** The type of type is determined by the flags parameter.  Only the
9406 ** following values of flags are currently in use.  Other values for
9407 ** flags might not work:
9408 **
9409 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
9410 **     BTREE_ZERODATA                  Used for SQL indices
9411 */
9412 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9413   BtShared *pBt = p->pBt;
9414   MemPage *pRoot;
9415   Pgno pgnoRoot;
9416   int rc;
9417   int ptfFlags;          /* Page-type flage for the root page of new table */
9418 
9419   assert( sqlite3BtreeHoldsMutex(p) );
9420   assert( pBt->inTransaction==TRANS_WRITE );
9421   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9422 
9423 #ifdef SQLITE_OMIT_AUTOVACUUM
9424   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9425   if( rc ){
9426     return rc;
9427   }
9428 #else
9429   if( pBt->autoVacuum ){
9430     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
9431     MemPage *pPageMove; /* The page to move to. */
9432 
9433     /* Creating a new table may probably require moving an existing database
9434     ** to make room for the new tables root page. In case this page turns
9435     ** out to be an overflow page, delete all overflow page-map caches
9436     ** held by open cursors.
9437     */
9438     invalidateAllOverflowCache(pBt);
9439 
9440     /* Read the value of meta[3] from the database to determine where the
9441     ** root page of the new table should go. meta[3] is the largest root-page
9442     ** created so far, so the new root-page is (meta[3]+1).
9443     */
9444     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9445     if( pgnoRoot>btreePagecount(pBt) ){
9446       return SQLITE_CORRUPT_BKPT;
9447     }
9448     pgnoRoot++;
9449 
9450     /* The new root-page may not be allocated on a pointer-map page, or the
9451     ** PENDING_BYTE page.
9452     */
9453     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9454         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9455       pgnoRoot++;
9456     }
9457     assert( pgnoRoot>=3 );
9458 
9459     /* Allocate a page. The page that currently resides at pgnoRoot will
9460     ** be moved to the allocated page (unless the allocated page happens
9461     ** to reside at pgnoRoot).
9462     */
9463     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9464     if( rc!=SQLITE_OK ){
9465       return rc;
9466     }
9467 
9468     if( pgnoMove!=pgnoRoot ){
9469       /* pgnoRoot is the page that will be used for the root-page of
9470       ** the new table (assuming an error did not occur). But we were
9471       ** allocated pgnoMove. If required (i.e. if it was not allocated
9472       ** by extending the file), the current page at position pgnoMove
9473       ** is already journaled.
9474       */
9475       u8 eType = 0;
9476       Pgno iPtrPage = 0;
9477 
9478       /* Save the positions of any open cursors. This is required in
9479       ** case they are holding a reference to an xFetch reference
9480       ** corresponding to page pgnoRoot.  */
9481       rc = saveAllCursors(pBt, 0, 0);
9482       releasePage(pPageMove);
9483       if( rc!=SQLITE_OK ){
9484         return rc;
9485       }
9486 
9487       /* Move the page currently at pgnoRoot to pgnoMove. */
9488       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9489       if( rc!=SQLITE_OK ){
9490         return rc;
9491       }
9492       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9493       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9494         rc = SQLITE_CORRUPT_BKPT;
9495       }
9496       if( rc!=SQLITE_OK ){
9497         releasePage(pRoot);
9498         return rc;
9499       }
9500       assert( eType!=PTRMAP_ROOTPAGE );
9501       assert( eType!=PTRMAP_FREEPAGE );
9502       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9503       releasePage(pRoot);
9504 
9505       /* Obtain the page at pgnoRoot */
9506       if( rc!=SQLITE_OK ){
9507         return rc;
9508       }
9509       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9510       if( rc!=SQLITE_OK ){
9511         return rc;
9512       }
9513       rc = sqlite3PagerWrite(pRoot->pDbPage);
9514       if( rc!=SQLITE_OK ){
9515         releasePage(pRoot);
9516         return rc;
9517       }
9518     }else{
9519       pRoot = pPageMove;
9520     }
9521 
9522     /* Update the pointer-map and meta-data with the new root-page number. */
9523     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9524     if( rc ){
9525       releasePage(pRoot);
9526       return rc;
9527     }
9528 
9529     /* When the new root page was allocated, page 1 was made writable in
9530     ** order either to increase the database filesize, or to decrement the
9531     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9532     */
9533     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9534     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9535     if( NEVER(rc) ){
9536       releasePage(pRoot);
9537       return rc;
9538     }
9539 
9540   }else{
9541     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9542     if( rc ) return rc;
9543   }
9544 #endif
9545   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9546   if( createTabFlags & BTREE_INTKEY ){
9547     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9548   }else{
9549     ptfFlags = PTF_ZERODATA | PTF_LEAF;
9550   }
9551   zeroPage(pRoot, ptfFlags);
9552   sqlite3PagerUnref(pRoot->pDbPage);
9553   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9554   *piTable = pgnoRoot;
9555   return SQLITE_OK;
9556 }
9557 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9558   int rc;
9559   sqlite3BtreeEnter(p);
9560   rc = btreeCreateTable(p, piTable, flags);
9561   sqlite3BtreeLeave(p);
9562   return rc;
9563 }
9564 
9565 /*
9566 ** Erase the given database page and all its children.  Return
9567 ** the page to the freelist.
9568 */
9569 static int clearDatabasePage(
9570   BtShared *pBt,           /* The BTree that contains the table */
9571   Pgno pgno,               /* Page number to clear */
9572   int freePageFlag,        /* Deallocate page if true */
9573   i64 *pnChange            /* Add number of Cells freed to this counter */
9574 ){
9575   MemPage *pPage;
9576   int rc;
9577   unsigned char *pCell;
9578   int i;
9579   int hdr;
9580   CellInfo info;
9581 
9582   assert( sqlite3_mutex_held(pBt->mutex) );
9583   if( pgno>btreePagecount(pBt) ){
9584     return SQLITE_CORRUPT_BKPT;
9585   }
9586   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9587   if( rc ) return rc;
9588   if( (pBt->openFlags & BTREE_SINGLE)==0
9589    && sqlite3PagerPageRefcount(pPage->pDbPage)!=1
9590   ){
9591     rc = SQLITE_CORRUPT_BKPT;
9592     goto cleardatabasepage_out;
9593   }
9594   hdr = pPage->hdrOffset;
9595   for(i=0; i<pPage->nCell; i++){
9596     pCell = findCell(pPage, i);
9597     if( !pPage->leaf ){
9598       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9599       if( rc ) goto cleardatabasepage_out;
9600     }
9601     BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9602     if( rc ) goto cleardatabasepage_out;
9603   }
9604   if( !pPage->leaf ){
9605     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9606     if( rc ) goto cleardatabasepage_out;
9607     if( pPage->intKey ) pnChange = 0;
9608   }
9609   if( pnChange ){
9610     testcase( !pPage->intKey );
9611     *pnChange += pPage->nCell;
9612   }
9613   if( freePageFlag ){
9614     freePage(pPage, &rc);
9615   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9616     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9617   }
9618 
9619 cleardatabasepage_out:
9620   releasePage(pPage);
9621   return rc;
9622 }
9623 
9624 /*
9625 ** Delete all information from a single table in the database.  iTable is
9626 ** the page number of the root of the table.  After this routine returns,
9627 ** the root page is empty, but still exists.
9628 **
9629 ** This routine will fail with SQLITE_LOCKED if there are any open
9630 ** read cursors on the table.  Open write cursors are moved to the
9631 ** root of the table.
9632 **
9633 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9634 ** is incremented by the number of entries in the table.
9635 */
9636 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9637   int rc;
9638   BtShared *pBt = p->pBt;
9639   sqlite3BtreeEnter(p);
9640   assert( p->inTrans==TRANS_WRITE );
9641 
9642   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9643 
9644   if( SQLITE_OK==rc ){
9645     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9646     ** is the root of a table b-tree - if it is not, the following call is
9647     ** a no-op).  */
9648     if( p->hasIncrblobCur ){
9649       invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9650     }
9651     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9652   }
9653   sqlite3BtreeLeave(p);
9654   return rc;
9655 }
9656 
9657 /*
9658 ** Delete all information from the single table that pCur is open on.
9659 **
9660 ** This routine only work for pCur on an ephemeral table.
9661 */
9662 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9663   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9664 }
9665 
9666 /*
9667 ** Erase all information in a table and add the root of the table to
9668 ** the freelist.  Except, the root of the principle table (the one on
9669 ** page 1) is never added to the freelist.
9670 **
9671 ** This routine will fail with SQLITE_LOCKED if there are any open
9672 ** cursors on the table.
9673 **
9674 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9675 ** root page in the database file, then the last root page
9676 ** in the database file is moved into the slot formerly occupied by
9677 ** iTable and that last slot formerly occupied by the last root page
9678 ** is added to the freelist instead of iTable.  In this say, all
9679 ** root pages are kept at the beginning of the database file, which
9680 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
9681 ** page number that used to be the last root page in the file before
9682 ** the move.  If no page gets moved, *piMoved is set to 0.
9683 ** The last root page is recorded in meta[3] and the value of
9684 ** meta[3] is updated by this procedure.
9685 */
9686 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9687   int rc;
9688   MemPage *pPage = 0;
9689   BtShared *pBt = p->pBt;
9690 
9691   assert( sqlite3BtreeHoldsMutex(p) );
9692   assert( p->inTrans==TRANS_WRITE );
9693   assert( iTable>=2 );
9694   if( iTable>btreePagecount(pBt) ){
9695     return SQLITE_CORRUPT_BKPT;
9696   }
9697 
9698   rc = sqlite3BtreeClearTable(p, iTable, 0);
9699   if( rc ) return rc;
9700   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9701   if( NEVER(rc) ){
9702     releasePage(pPage);
9703     return rc;
9704   }
9705 
9706   *piMoved = 0;
9707 
9708 #ifdef SQLITE_OMIT_AUTOVACUUM
9709   freePage(pPage, &rc);
9710   releasePage(pPage);
9711 #else
9712   if( pBt->autoVacuum ){
9713     Pgno maxRootPgno;
9714     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9715 
9716     if( iTable==maxRootPgno ){
9717       /* If the table being dropped is the table with the largest root-page
9718       ** number in the database, put the root page on the free list.
9719       */
9720       freePage(pPage, &rc);
9721       releasePage(pPage);
9722       if( rc!=SQLITE_OK ){
9723         return rc;
9724       }
9725     }else{
9726       /* The table being dropped does not have the largest root-page
9727       ** number in the database. So move the page that does into the
9728       ** gap left by the deleted root-page.
9729       */
9730       MemPage *pMove;
9731       releasePage(pPage);
9732       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9733       if( rc!=SQLITE_OK ){
9734         return rc;
9735       }
9736       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9737       releasePage(pMove);
9738       if( rc!=SQLITE_OK ){
9739         return rc;
9740       }
9741       pMove = 0;
9742       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9743       freePage(pMove, &rc);
9744       releasePage(pMove);
9745       if( rc!=SQLITE_OK ){
9746         return rc;
9747       }
9748       *piMoved = maxRootPgno;
9749     }
9750 
9751     /* Set the new 'max-root-page' value in the database header. This
9752     ** is the old value less one, less one more if that happens to
9753     ** be a root-page number, less one again if that is the
9754     ** PENDING_BYTE_PAGE.
9755     */
9756     maxRootPgno--;
9757     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9758            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9759       maxRootPgno--;
9760     }
9761     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9762 
9763     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9764   }else{
9765     freePage(pPage, &rc);
9766     releasePage(pPage);
9767   }
9768 #endif
9769   return rc;
9770 }
9771 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9772   int rc;
9773   sqlite3BtreeEnter(p);
9774   rc = btreeDropTable(p, iTable, piMoved);
9775   sqlite3BtreeLeave(p);
9776   return rc;
9777 }
9778 
9779 
9780 /*
9781 ** This function may only be called if the b-tree connection already
9782 ** has a read or write transaction open on the database.
9783 **
9784 ** Read the meta-information out of a database file.  Meta[0]
9785 ** is the number of free pages currently in the database.  Meta[1]
9786 ** through meta[15] are available for use by higher layers.  Meta[0]
9787 ** is read-only, the others are read/write.
9788 **
9789 ** The schema layer numbers meta values differently.  At the schema
9790 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9791 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
9792 **
9793 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
9794 ** of reading the value out of the header, it instead loads the "DataVersion"
9795 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
9796 ** database file.  It is a number computed by the pager.  But its access
9797 ** pattern is the same as header meta values, and so it is convenient to
9798 ** read it from this routine.
9799 */
9800 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9801   BtShared *pBt = p->pBt;
9802 
9803   sqlite3BtreeEnter(p);
9804   assert( p->inTrans>TRANS_NONE );
9805   assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9806   assert( pBt->pPage1 );
9807   assert( idx>=0 && idx<=15 );
9808 
9809   if( idx==BTREE_DATA_VERSION ){
9810     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
9811   }else{
9812     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9813   }
9814 
9815   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9816   ** database, mark the database as read-only.  */
9817 #ifdef SQLITE_OMIT_AUTOVACUUM
9818   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9819     pBt->btsFlags |= BTS_READ_ONLY;
9820   }
9821 #endif
9822 
9823   sqlite3BtreeLeave(p);
9824 }
9825 
9826 /*
9827 ** Write meta-information back into the database.  Meta[0] is
9828 ** read-only and may not be written.
9829 */
9830 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9831   BtShared *pBt = p->pBt;
9832   unsigned char *pP1;
9833   int rc;
9834   assert( idx>=1 && idx<=15 );
9835   sqlite3BtreeEnter(p);
9836   assert( p->inTrans==TRANS_WRITE );
9837   assert( pBt->pPage1!=0 );
9838   pP1 = pBt->pPage1->aData;
9839   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9840   if( rc==SQLITE_OK ){
9841     put4byte(&pP1[36 + idx*4], iMeta);
9842 #ifndef SQLITE_OMIT_AUTOVACUUM
9843     if( idx==BTREE_INCR_VACUUM ){
9844       assert( pBt->autoVacuum || iMeta==0 );
9845       assert( iMeta==0 || iMeta==1 );
9846       pBt->incrVacuum = (u8)iMeta;
9847     }
9848 #endif
9849   }
9850   sqlite3BtreeLeave(p);
9851   return rc;
9852 }
9853 
9854 /*
9855 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9856 ** number of entries in the b-tree and write the result to *pnEntry.
9857 **
9858 ** SQLITE_OK is returned if the operation is successfully executed.
9859 ** Otherwise, if an error is encountered (i.e. an IO error or database
9860 ** corruption) an SQLite error code is returned.
9861 */
9862 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9863   i64 nEntry = 0;                      /* Value to return in *pnEntry */
9864   int rc;                              /* Return code */
9865 
9866   rc = moveToRoot(pCur);
9867   if( rc==SQLITE_EMPTY ){
9868     *pnEntry = 0;
9869     return SQLITE_OK;
9870   }
9871 
9872   /* Unless an error occurs, the following loop runs one iteration for each
9873   ** page in the B-Tree structure (not including overflow pages).
9874   */
9875   while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9876     int iIdx;                          /* Index of child node in parent */
9877     MemPage *pPage;                    /* Current page of the b-tree */
9878 
9879     /* If this is a leaf page or the tree is not an int-key tree, then
9880     ** this page contains countable entries. Increment the entry counter
9881     ** accordingly.
9882     */
9883     pPage = pCur->pPage;
9884     if( pPage->leaf || !pPage->intKey ){
9885       nEntry += pPage->nCell;
9886     }
9887 
9888     /* pPage is a leaf node. This loop navigates the cursor so that it
9889     ** points to the first interior cell that it points to the parent of
9890     ** the next page in the tree that has not yet been visited. The
9891     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9892     ** of the page, or to the number of cells in the page if the next page
9893     ** to visit is the right-child of its parent.
9894     **
9895     ** If all pages in the tree have been visited, return SQLITE_OK to the
9896     ** caller.
9897     */
9898     if( pPage->leaf ){
9899       do {
9900         if( pCur->iPage==0 ){
9901           /* All pages of the b-tree have been visited. Return successfully. */
9902           *pnEntry = nEntry;
9903           return moveToRoot(pCur);
9904         }
9905         moveToParent(pCur);
9906       }while ( pCur->ix>=pCur->pPage->nCell );
9907 
9908       pCur->ix++;
9909       pPage = pCur->pPage;
9910     }
9911 
9912     /* Descend to the child node of the cell that the cursor currently
9913     ** points at. This is the right-child if (iIdx==pPage->nCell).
9914     */
9915     iIdx = pCur->ix;
9916     if( iIdx==pPage->nCell ){
9917       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9918     }else{
9919       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9920     }
9921   }
9922 
9923   /* An error has occurred. Return an error code. */
9924   return rc;
9925 }
9926 
9927 /*
9928 ** Return the pager associated with a BTree.  This routine is used for
9929 ** testing and debugging only.
9930 */
9931 Pager *sqlite3BtreePager(Btree *p){
9932   return p->pBt->pPager;
9933 }
9934 
9935 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9936 /*
9937 ** Append a message to the error message string.
9938 */
9939 static void checkAppendMsg(
9940   IntegrityCk *pCheck,
9941   const char *zFormat,
9942   ...
9943 ){
9944   va_list ap;
9945   if( !pCheck->mxErr ) return;
9946   pCheck->mxErr--;
9947   pCheck->nErr++;
9948   va_start(ap, zFormat);
9949   if( pCheck->errMsg.nChar ){
9950     sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9951   }
9952   if( pCheck->zPfx ){
9953     sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9954   }
9955   sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9956   va_end(ap);
9957   if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9958     pCheck->bOomFault = 1;
9959   }
9960 }
9961 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9962 
9963 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9964 
9965 /*
9966 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9967 ** corresponds to page iPg is already set.
9968 */
9969 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9970   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9971   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9972 }
9973 
9974 /*
9975 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9976 */
9977 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9978   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9979   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9980 }
9981 
9982 
9983 /*
9984 ** Add 1 to the reference count for page iPage.  If this is the second
9985 ** reference to the page, add an error message to pCheck->zErrMsg.
9986 ** Return 1 if there are 2 or more references to the page and 0 if
9987 ** if this is the first reference to the page.
9988 **
9989 ** Also check that the page number is in bounds.
9990 */
9991 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9992   if( iPage>pCheck->nPage || iPage==0 ){
9993     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9994     return 1;
9995   }
9996   if( getPageReferenced(pCheck, iPage) ){
9997     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9998     return 1;
9999   }
10000   if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
10001   setPageReferenced(pCheck, iPage);
10002   return 0;
10003 }
10004 
10005 #ifndef SQLITE_OMIT_AUTOVACUUM
10006 /*
10007 ** Check that the entry in the pointer-map for page iChild maps to
10008 ** page iParent, pointer type ptrType. If not, append an error message
10009 ** to pCheck.
10010 */
10011 static void checkPtrmap(
10012   IntegrityCk *pCheck,   /* Integrity check context */
10013   Pgno iChild,           /* Child page number */
10014   u8 eType,              /* Expected pointer map type */
10015   Pgno iParent           /* Expected pointer map parent page number */
10016 ){
10017   int rc;
10018   u8 ePtrmapType;
10019   Pgno iPtrmapParent;
10020 
10021   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10022   if( rc!=SQLITE_OK ){
10023     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
10024     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10025     return;
10026   }
10027 
10028   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10029     checkAppendMsg(pCheck,
10030       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10031       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10032   }
10033 }
10034 #endif
10035 
10036 /*
10037 ** Check the integrity of the freelist or of an overflow page list.
10038 ** Verify that the number of pages on the list is N.
10039 */
10040 static void checkList(
10041   IntegrityCk *pCheck,  /* Integrity checking context */
10042   int isFreeList,       /* True for a freelist.  False for overflow page list */
10043   Pgno iPage,           /* Page number for first page in the list */
10044   u32 N                 /* Expected number of pages in the list */
10045 ){
10046   int i;
10047   u32 expected = N;
10048   int nErrAtStart = pCheck->nErr;
10049   while( iPage!=0 && pCheck->mxErr ){
10050     DbPage *pOvflPage;
10051     unsigned char *pOvflData;
10052     if( checkRef(pCheck, iPage) ) break;
10053     N--;
10054     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10055       checkAppendMsg(pCheck, "failed to get page %d", iPage);
10056       break;
10057     }
10058     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10059     if( isFreeList ){
10060       u32 n = (u32)get4byte(&pOvflData[4]);
10061 #ifndef SQLITE_OMIT_AUTOVACUUM
10062       if( pCheck->pBt->autoVacuum ){
10063         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10064       }
10065 #endif
10066       if( n>pCheck->pBt->usableSize/4-2 ){
10067         checkAppendMsg(pCheck,
10068            "freelist leaf count too big on page %d", iPage);
10069         N--;
10070       }else{
10071         for(i=0; i<(int)n; i++){
10072           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10073 #ifndef SQLITE_OMIT_AUTOVACUUM
10074           if( pCheck->pBt->autoVacuum ){
10075             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10076           }
10077 #endif
10078           checkRef(pCheck, iFreePage);
10079         }
10080         N -= n;
10081       }
10082     }
10083 #ifndef SQLITE_OMIT_AUTOVACUUM
10084     else{
10085       /* If this database supports auto-vacuum and iPage is not the last
10086       ** page in this overflow list, check that the pointer-map entry for
10087       ** the following page matches iPage.
10088       */
10089       if( pCheck->pBt->autoVacuum && N>0 ){
10090         i = get4byte(pOvflData);
10091         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10092       }
10093     }
10094 #endif
10095     iPage = get4byte(pOvflData);
10096     sqlite3PagerUnref(pOvflPage);
10097   }
10098   if( N && nErrAtStart==pCheck->nErr ){
10099     checkAppendMsg(pCheck,
10100       "%s is %d but should be %d",
10101       isFreeList ? "size" : "overflow list length",
10102       expected-N, expected);
10103   }
10104 }
10105 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10106 
10107 /*
10108 ** An implementation of a min-heap.
10109 **
10110 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
10111 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
10112 ** and aHeap[N*2+1].
10113 **
10114 ** The heap property is this:  Every node is less than or equal to both
10115 ** of its daughter nodes.  A consequence of the heap property is that the
10116 ** root node aHeap[1] is always the minimum value currently in the heap.
10117 **
10118 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10119 ** the heap, preserving the heap property.  The btreeHeapPull() routine
10120 ** removes the root element from the heap (the minimum value in the heap)
10121 ** and then moves other nodes around as necessary to preserve the heap
10122 ** property.
10123 **
10124 ** This heap is used for cell overlap and coverage testing.  Each u32
10125 ** entry represents the span of a cell or freeblock on a btree page.
10126 ** The upper 16 bits are the index of the first byte of a range and the
10127 ** lower 16 bits are the index of the last byte of that range.
10128 */
10129 static void btreeHeapInsert(u32 *aHeap, u32 x){
10130   u32 j, i = ++aHeap[0];
10131   aHeap[i] = x;
10132   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10133     x = aHeap[j];
10134     aHeap[j] = aHeap[i];
10135     aHeap[i] = x;
10136     i = j;
10137   }
10138 }
10139 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10140   u32 j, i, x;
10141   if( (x = aHeap[0])==0 ) return 0;
10142   *pOut = aHeap[1];
10143   aHeap[1] = aHeap[x];
10144   aHeap[x] = 0xffffffff;
10145   aHeap[0]--;
10146   i = 1;
10147   while( (j = i*2)<=aHeap[0] ){
10148     if( aHeap[j]>aHeap[j+1] ) j++;
10149     if( aHeap[i]<aHeap[j] ) break;
10150     x = aHeap[i];
10151     aHeap[i] = aHeap[j];
10152     aHeap[j] = x;
10153     i = j;
10154   }
10155   return 1;
10156 }
10157 
10158 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10159 /*
10160 ** Do various sanity checks on a single page of a tree.  Return
10161 ** the tree depth.  Root pages return 0.  Parents of root pages
10162 ** return 1, and so forth.
10163 **
10164 ** These checks are done:
10165 **
10166 **      1.  Make sure that cells and freeblocks do not overlap
10167 **          but combine to completely cover the page.
10168 **      2.  Make sure integer cell keys are in order.
10169 **      3.  Check the integrity of overflow pages.
10170 **      4.  Recursively call checkTreePage on all children.
10171 **      5.  Verify that the depth of all children is the same.
10172 */
10173 static int checkTreePage(
10174   IntegrityCk *pCheck,  /* Context for the sanity check */
10175   Pgno iPage,           /* Page number of the page to check */
10176   i64 *piMinKey,        /* Write minimum integer primary key here */
10177   i64 maxKey            /* Error if integer primary key greater than this */
10178 ){
10179   MemPage *pPage = 0;      /* The page being analyzed */
10180   int i;                   /* Loop counter */
10181   int rc;                  /* Result code from subroutine call */
10182   int depth = -1, d2;      /* Depth of a subtree */
10183   int pgno;                /* Page number */
10184   int nFrag;               /* Number of fragmented bytes on the page */
10185   int hdr;                 /* Offset to the page header */
10186   int cellStart;           /* Offset to the start of the cell pointer array */
10187   int nCell;               /* Number of cells */
10188   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10189   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
10190                            ** False if IPK must be strictly less than maxKey */
10191   u8 *data;                /* Page content */
10192   u8 *pCell;               /* Cell content */
10193   u8 *pCellIdx;            /* Next element of the cell pointer array */
10194   BtShared *pBt;           /* The BtShared object that owns pPage */
10195   u32 pc;                  /* Address of a cell */
10196   u32 usableSize;          /* Usable size of the page */
10197   u32 contentOffset;       /* Offset to the start of the cell content area */
10198   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
10199   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
10200   const char *saved_zPfx = pCheck->zPfx;
10201   int saved_v1 = pCheck->v1;
10202   int saved_v2 = pCheck->v2;
10203   u8 savedIsInit = 0;
10204 
10205   /* Check that the page exists
10206   */
10207   pBt = pCheck->pBt;
10208   usableSize = pBt->usableSize;
10209   if( iPage==0 ) return 0;
10210   if( checkRef(pCheck, iPage) ) return 0;
10211   pCheck->zPfx = "Page %u: ";
10212   pCheck->v1 = iPage;
10213   if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10214     checkAppendMsg(pCheck,
10215        "unable to get the page. error code=%d", rc);
10216     goto end_of_check;
10217   }
10218 
10219   /* Clear MemPage.isInit to make sure the corruption detection code in
10220   ** btreeInitPage() is executed.  */
10221   savedIsInit = pPage->isInit;
10222   pPage->isInit = 0;
10223   if( (rc = btreeInitPage(pPage))!=0 ){
10224     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
10225     checkAppendMsg(pCheck,
10226                    "btreeInitPage() returns error code %d", rc);
10227     goto end_of_check;
10228   }
10229   if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10230     assert( rc==SQLITE_CORRUPT );
10231     checkAppendMsg(pCheck, "free space corruption", rc);
10232     goto end_of_check;
10233   }
10234   data = pPage->aData;
10235   hdr = pPage->hdrOffset;
10236 
10237   /* Set up for cell analysis */
10238   pCheck->zPfx = "On tree page %u cell %d: ";
10239   contentOffset = get2byteNotZero(&data[hdr+5]);
10240   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
10241 
10242   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10243   ** number of cells on the page. */
10244   nCell = get2byte(&data[hdr+3]);
10245   assert( pPage->nCell==nCell );
10246 
10247   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10248   ** immediately follows the b-tree page header. */
10249   cellStart = hdr + 12 - 4*pPage->leaf;
10250   assert( pPage->aCellIdx==&data[cellStart] );
10251   pCellIdx = &data[cellStart + 2*(nCell-1)];
10252 
10253   if( !pPage->leaf ){
10254     /* Analyze the right-child page of internal pages */
10255     pgno = get4byte(&data[hdr+8]);
10256 #ifndef SQLITE_OMIT_AUTOVACUUM
10257     if( pBt->autoVacuum ){
10258       pCheck->zPfx = "On page %u at right child: ";
10259       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10260     }
10261 #endif
10262     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10263     keyCanBeEqual = 0;
10264   }else{
10265     /* For leaf pages, the coverage check will occur in the same loop
10266     ** as the other cell checks, so initialize the heap.  */
10267     heap = pCheck->heap;
10268     heap[0] = 0;
10269   }
10270 
10271   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10272   ** integer offsets to the cell contents. */
10273   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10274     CellInfo info;
10275 
10276     /* Check cell size */
10277     pCheck->v2 = i;
10278     assert( pCellIdx==&data[cellStart + i*2] );
10279     pc = get2byteAligned(pCellIdx);
10280     pCellIdx -= 2;
10281     if( pc<contentOffset || pc>usableSize-4 ){
10282       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10283                              pc, contentOffset, usableSize-4);
10284       doCoverageCheck = 0;
10285       continue;
10286     }
10287     pCell = &data[pc];
10288     pPage->xParseCell(pPage, pCell, &info);
10289     if( pc+info.nSize>usableSize ){
10290       checkAppendMsg(pCheck, "Extends off end of page");
10291       doCoverageCheck = 0;
10292       continue;
10293     }
10294 
10295     /* Check for integer primary key out of range */
10296     if( pPage->intKey ){
10297       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10298         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10299       }
10300       maxKey = info.nKey;
10301       keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
10302     }
10303 
10304     /* Check the content overflow list */
10305     if( info.nPayload>info.nLocal ){
10306       u32 nPage;       /* Number of pages on the overflow chain */
10307       Pgno pgnoOvfl;   /* First page of the overflow chain */
10308       assert( pc + info.nSize - 4 <= usableSize );
10309       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10310       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10311 #ifndef SQLITE_OMIT_AUTOVACUUM
10312       if( pBt->autoVacuum ){
10313         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10314       }
10315 #endif
10316       checkList(pCheck, 0, pgnoOvfl, nPage);
10317     }
10318 
10319     if( !pPage->leaf ){
10320       /* Check sanity of left child page for internal pages */
10321       pgno = get4byte(pCell);
10322 #ifndef SQLITE_OMIT_AUTOVACUUM
10323       if( pBt->autoVacuum ){
10324         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10325       }
10326 #endif
10327       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10328       keyCanBeEqual = 0;
10329       if( d2!=depth ){
10330         checkAppendMsg(pCheck, "Child page depth differs");
10331         depth = d2;
10332       }
10333     }else{
10334       /* Populate the coverage-checking heap for leaf pages */
10335       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10336     }
10337   }
10338   *piMinKey = maxKey;
10339 
10340   /* Check for complete coverage of the page
10341   */
10342   pCheck->zPfx = 0;
10343   if( doCoverageCheck && pCheck->mxErr>0 ){
10344     /* For leaf pages, the min-heap has already been initialized and the
10345     ** cells have already been inserted.  But for internal pages, that has
10346     ** not yet been done, so do it now */
10347     if( !pPage->leaf ){
10348       heap = pCheck->heap;
10349       heap[0] = 0;
10350       for(i=nCell-1; i>=0; i--){
10351         u32 size;
10352         pc = get2byteAligned(&data[cellStart+i*2]);
10353         size = pPage->xCellSize(pPage, &data[pc]);
10354         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10355       }
10356     }
10357     /* Add the freeblocks to the min-heap
10358     **
10359     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10360     ** is the offset of the first freeblock, or zero if there are no
10361     ** freeblocks on the page.
10362     */
10363     i = get2byte(&data[hdr+1]);
10364     while( i>0 ){
10365       int size, j;
10366       assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10367       size = get2byte(&data[i+2]);
10368       assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10369       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10370       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10371       ** big-endian integer which is the offset in the b-tree page of the next
10372       ** freeblock in the chain, or zero if the freeblock is the last on the
10373       ** chain. */
10374       j = get2byte(&data[i]);
10375       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10376       ** increasing offset. */
10377       assert( j==0 || j>i+size );     /* Enforced by btreeComputeFreeSpace() */
10378       assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10379       i = j;
10380     }
10381     /* Analyze the min-heap looking for overlap between cells and/or
10382     ** freeblocks, and counting the number of untracked bytes in nFrag.
10383     **
10384     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
10385     ** There is an implied first entry the covers the page header, the cell
10386     ** pointer index, and the gap between the cell pointer index and the start
10387     ** of cell content.
10388     **
10389     ** The loop below pulls entries from the min-heap in order and compares
10390     ** the start_address against the previous end_address.  If there is an
10391     ** overlap, that means bytes are used multiple times.  If there is a gap,
10392     ** that gap is added to the fragmentation count.
10393     */
10394     nFrag = 0;
10395     prev = contentOffset - 1;   /* Implied first min-heap entry */
10396     while( btreeHeapPull(heap,&x) ){
10397       if( (prev&0xffff)>=(x>>16) ){
10398         checkAppendMsg(pCheck,
10399           "Multiple uses for byte %u of page %u", x>>16, iPage);
10400         break;
10401       }else{
10402         nFrag += (x>>16) - (prev&0xffff) - 1;
10403         prev = x;
10404       }
10405     }
10406     nFrag += usableSize - (prev&0xffff) - 1;
10407     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10408     ** is stored in the fifth field of the b-tree page header.
10409     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10410     ** number of fragmented free bytes within the cell content area.
10411     */
10412     if( heap[0]==0 && nFrag!=data[hdr+7] ){
10413       checkAppendMsg(pCheck,
10414           "Fragmentation of %d bytes reported as %d on page %u",
10415           nFrag, data[hdr+7], iPage);
10416     }
10417   }
10418 
10419 end_of_check:
10420   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10421   releasePage(pPage);
10422   pCheck->zPfx = saved_zPfx;
10423   pCheck->v1 = saved_v1;
10424   pCheck->v2 = saved_v2;
10425   return depth+1;
10426 }
10427 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10428 
10429 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10430 /*
10431 ** This routine does a complete check of the given BTree file.  aRoot[] is
10432 ** an array of pages numbers were each page number is the root page of
10433 ** a table.  nRoot is the number of entries in aRoot.
10434 **
10435 ** A read-only or read-write transaction must be opened before calling
10436 ** this function.
10437 **
10438 ** Write the number of error seen in *pnErr.  Except for some memory
10439 ** allocation errors,  an error message held in memory obtained from
10440 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
10441 ** returned.  If a memory allocation error occurs, NULL is returned.
10442 **
10443 ** If the first entry in aRoot[] is 0, that indicates that the list of
10444 ** root pages is incomplete.  This is a "partial integrity-check".  This
10445 ** happens when performing an integrity check on a single table.  The
10446 ** zero is skipped, of course.  But in addition, the freelist checks
10447 ** and the checks to make sure every page is referenced are also skipped,
10448 ** since obviously it is not possible to know which pages are covered by
10449 ** the unverified btrees.  Except, if aRoot[1] is 1, then the freelist
10450 ** checks are still performed.
10451 */
10452 char *sqlite3BtreeIntegrityCheck(
10453   sqlite3 *db,  /* Database connection that is running the check */
10454   Btree *p,     /* The btree to be checked */
10455   Pgno *aRoot,  /* An array of root pages numbers for individual trees */
10456   int nRoot,    /* Number of entries in aRoot[] */
10457   int mxErr,    /* Stop reporting errors after this many */
10458   int *pnErr    /* Write number of errors seen to this variable */
10459 ){
10460   Pgno i;
10461   IntegrityCk sCheck;
10462   BtShared *pBt = p->pBt;
10463   u64 savedDbFlags = pBt->db->flags;
10464   char zErr[100];
10465   int bPartial = 0;            /* True if not checking all btrees */
10466   int bCkFreelist = 1;         /* True to scan the freelist */
10467   VVA_ONLY( int nRef );
10468   assert( nRoot>0 );
10469 
10470   /* aRoot[0]==0 means this is a partial check */
10471   if( aRoot[0]==0 ){
10472     assert( nRoot>1 );
10473     bPartial = 1;
10474     if( aRoot[1]!=1 ) bCkFreelist = 0;
10475   }
10476 
10477   sqlite3BtreeEnter(p);
10478   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10479   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10480   assert( nRef>=0 );
10481   sCheck.db = db;
10482   sCheck.pBt = pBt;
10483   sCheck.pPager = pBt->pPager;
10484   sCheck.nPage = btreePagecount(sCheck.pBt);
10485   sCheck.mxErr = mxErr;
10486   sCheck.nErr = 0;
10487   sCheck.bOomFault = 0;
10488   sCheck.zPfx = 0;
10489   sCheck.v1 = 0;
10490   sCheck.v2 = 0;
10491   sCheck.aPgRef = 0;
10492   sCheck.heap = 0;
10493   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10494   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10495   if( sCheck.nPage==0 ){
10496     goto integrity_ck_cleanup;
10497   }
10498 
10499   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10500   if( !sCheck.aPgRef ){
10501     sCheck.bOomFault = 1;
10502     goto integrity_ck_cleanup;
10503   }
10504   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10505   if( sCheck.heap==0 ){
10506     sCheck.bOomFault = 1;
10507     goto integrity_ck_cleanup;
10508   }
10509 
10510   i = PENDING_BYTE_PAGE(pBt);
10511   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10512 
10513   /* Check the integrity of the freelist
10514   */
10515   if( bCkFreelist ){
10516     sCheck.zPfx = "Main freelist: ";
10517     checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10518               get4byte(&pBt->pPage1->aData[36]));
10519     sCheck.zPfx = 0;
10520   }
10521 
10522   /* Check all the tables.
10523   */
10524 #ifndef SQLITE_OMIT_AUTOVACUUM
10525   if( !bPartial ){
10526     if( pBt->autoVacuum ){
10527       Pgno mx = 0;
10528       Pgno mxInHdr;
10529       for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10530       mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10531       if( mx!=mxInHdr ){
10532         checkAppendMsg(&sCheck,
10533           "max rootpage (%d) disagrees with header (%d)",
10534           mx, mxInHdr
10535         );
10536       }
10537     }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10538       checkAppendMsg(&sCheck,
10539         "incremental_vacuum enabled with a max rootpage of zero"
10540       );
10541     }
10542   }
10543 #endif
10544   testcase( pBt->db->flags & SQLITE_CellSizeCk );
10545   pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10546   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10547     i64 notUsed;
10548     if( aRoot[i]==0 ) continue;
10549 #ifndef SQLITE_OMIT_AUTOVACUUM
10550     if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10551       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10552     }
10553 #endif
10554     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10555   }
10556   pBt->db->flags = savedDbFlags;
10557 
10558   /* Make sure every page in the file is referenced
10559   */
10560   if( !bPartial ){
10561     for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10562 #ifdef SQLITE_OMIT_AUTOVACUUM
10563       if( getPageReferenced(&sCheck, i)==0 ){
10564         checkAppendMsg(&sCheck, "Page %d is never used", i);
10565       }
10566 #else
10567       /* If the database supports auto-vacuum, make sure no tables contain
10568       ** references to pointer-map pages.
10569       */
10570       if( getPageReferenced(&sCheck, i)==0 &&
10571          (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10572         checkAppendMsg(&sCheck, "Page %d is never used", i);
10573       }
10574       if( getPageReferenced(&sCheck, i)!=0 &&
10575          (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10576         checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10577       }
10578 #endif
10579     }
10580   }
10581 
10582   /* Clean  up and report errors.
10583   */
10584 integrity_ck_cleanup:
10585   sqlite3PageFree(sCheck.heap);
10586   sqlite3_free(sCheck.aPgRef);
10587   if( sCheck.bOomFault ){
10588     sqlite3_str_reset(&sCheck.errMsg);
10589     sCheck.nErr++;
10590   }
10591   *pnErr = sCheck.nErr;
10592   if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10593   /* Make sure this analysis did not leave any unref() pages. */
10594   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10595   sqlite3BtreeLeave(p);
10596   return sqlite3StrAccumFinish(&sCheck.errMsg);
10597 }
10598 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10599 
10600 /*
10601 ** Return the full pathname of the underlying database file.  Return
10602 ** an empty string if the database is in-memory or a TEMP database.
10603 **
10604 ** The pager filename is invariant as long as the pager is
10605 ** open so it is safe to access without the BtShared mutex.
10606 */
10607 const char *sqlite3BtreeGetFilename(Btree *p){
10608   assert( p->pBt->pPager!=0 );
10609   return sqlite3PagerFilename(p->pBt->pPager, 1);
10610 }
10611 
10612 /*
10613 ** Return the pathname of the journal file for this database. The return
10614 ** value of this routine is the same regardless of whether the journal file
10615 ** has been created or not.
10616 **
10617 ** The pager journal filename is invariant as long as the pager is
10618 ** open so it is safe to access without the BtShared mutex.
10619 */
10620 const char *sqlite3BtreeGetJournalname(Btree *p){
10621   assert( p->pBt->pPager!=0 );
10622   return sqlite3PagerJournalname(p->pBt->pPager);
10623 }
10624 
10625 /*
10626 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10627 ** to describe the current transaction state of Btree p.
10628 */
10629 int sqlite3BtreeTxnState(Btree *p){
10630   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10631   return p ? p->inTrans : 0;
10632 }
10633 
10634 #ifndef SQLITE_OMIT_WAL
10635 /*
10636 ** Run a checkpoint on the Btree passed as the first argument.
10637 **
10638 ** Return SQLITE_LOCKED if this or any other connection has an open
10639 ** transaction on the shared-cache the argument Btree is connected to.
10640 **
10641 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10642 */
10643 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10644   int rc = SQLITE_OK;
10645   if( p ){
10646     BtShared *pBt = p->pBt;
10647     sqlite3BtreeEnter(p);
10648     if( pBt->inTransaction!=TRANS_NONE ){
10649       rc = SQLITE_LOCKED;
10650     }else{
10651       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10652     }
10653     sqlite3BtreeLeave(p);
10654   }
10655   return rc;
10656 }
10657 #endif
10658 
10659 /*
10660 ** Return true if there is currently a backup running on Btree p.
10661 */
10662 int sqlite3BtreeIsInBackup(Btree *p){
10663   assert( p );
10664   assert( sqlite3_mutex_held(p->db->mutex) );
10665   return p->nBackup!=0;
10666 }
10667 
10668 /*
10669 ** This function returns a pointer to a blob of memory associated with
10670 ** a single shared-btree. The memory is used by client code for its own
10671 ** purposes (for example, to store a high-level schema associated with
10672 ** the shared-btree). The btree layer manages reference counting issues.
10673 **
10674 ** The first time this is called on a shared-btree, nBytes bytes of memory
10675 ** are allocated, zeroed, and returned to the caller. For each subsequent
10676 ** call the nBytes parameter is ignored and a pointer to the same blob
10677 ** of memory returned.
10678 **
10679 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10680 ** allocated, a null pointer is returned. If the blob has already been
10681 ** allocated, it is returned as normal.
10682 **
10683 ** Just before the shared-btree is closed, the function passed as the
10684 ** xFree argument when the memory allocation was made is invoked on the
10685 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10686 ** on the memory, the btree layer does that.
10687 */
10688 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10689   BtShared *pBt = p->pBt;
10690   sqlite3BtreeEnter(p);
10691   if( !pBt->pSchema && nBytes ){
10692     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10693     pBt->xFreeSchema = xFree;
10694   }
10695   sqlite3BtreeLeave(p);
10696   return pBt->pSchema;
10697 }
10698 
10699 /*
10700 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10701 ** btree as the argument handle holds an exclusive lock on the
10702 ** sqlite_schema table. Otherwise SQLITE_OK.
10703 */
10704 int sqlite3BtreeSchemaLocked(Btree *p){
10705   int rc;
10706   assert( sqlite3_mutex_held(p->db->mutex) );
10707   sqlite3BtreeEnter(p);
10708   rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10709   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10710   sqlite3BtreeLeave(p);
10711   return rc;
10712 }
10713 
10714 
10715 #ifndef SQLITE_OMIT_SHARED_CACHE
10716 /*
10717 ** Obtain a lock on the table whose root page is iTab.  The
10718 ** lock is a write lock if isWritelock is true or a read lock
10719 ** if it is false.
10720 */
10721 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10722   int rc = SQLITE_OK;
10723   assert( p->inTrans!=TRANS_NONE );
10724   if( p->sharable ){
10725     u8 lockType = READ_LOCK + isWriteLock;
10726     assert( READ_LOCK+1==WRITE_LOCK );
10727     assert( isWriteLock==0 || isWriteLock==1 );
10728 
10729     sqlite3BtreeEnter(p);
10730     rc = querySharedCacheTableLock(p, iTab, lockType);
10731     if( rc==SQLITE_OK ){
10732       rc = setSharedCacheTableLock(p, iTab, lockType);
10733     }
10734     sqlite3BtreeLeave(p);
10735   }
10736   return rc;
10737 }
10738 #endif
10739 
10740 #ifndef SQLITE_OMIT_INCRBLOB
10741 /*
10742 ** Argument pCsr must be a cursor opened for writing on an
10743 ** INTKEY table currently pointing at a valid table entry.
10744 ** This function modifies the data stored as part of that entry.
10745 **
10746 ** Only the data content may only be modified, it is not possible to
10747 ** change the length of the data stored. If this function is called with
10748 ** parameters that attempt to write past the end of the existing data,
10749 ** no modifications are made and SQLITE_CORRUPT is returned.
10750 */
10751 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10752   int rc;
10753   assert( cursorOwnsBtShared(pCsr) );
10754   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10755   assert( pCsr->curFlags & BTCF_Incrblob );
10756 
10757   rc = restoreCursorPosition(pCsr);
10758   if( rc!=SQLITE_OK ){
10759     return rc;
10760   }
10761   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10762   if( pCsr->eState!=CURSOR_VALID ){
10763     return SQLITE_ABORT;
10764   }
10765 
10766   /* Save the positions of all other cursors open on this table. This is
10767   ** required in case any of them are holding references to an xFetch
10768   ** version of the b-tree page modified by the accessPayload call below.
10769   **
10770   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10771   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10772   ** saveAllCursors can only return SQLITE_OK.
10773   */
10774   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10775   assert( rc==SQLITE_OK );
10776 
10777   /* Check some assumptions:
10778   **   (a) the cursor is open for writing,
10779   **   (b) there is a read/write transaction open,
10780   **   (c) the connection holds a write-lock on the table (if required),
10781   **   (d) there are no conflicting read-locks, and
10782   **   (e) the cursor points at a valid row of an intKey table.
10783   */
10784   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10785     return SQLITE_READONLY;
10786   }
10787   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10788               && pCsr->pBt->inTransaction==TRANS_WRITE );
10789   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10790   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10791   assert( pCsr->pPage->intKey );
10792 
10793   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10794 }
10795 
10796 /*
10797 ** Mark this cursor as an incremental blob cursor.
10798 */
10799 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10800   pCur->curFlags |= BTCF_Incrblob;
10801   pCur->pBtree->hasIncrblobCur = 1;
10802 }
10803 #endif
10804 
10805 /*
10806 ** Set both the "read version" (single byte at byte offset 18) and
10807 ** "write version" (single byte at byte offset 19) fields in the database
10808 ** header to iVersion.
10809 */
10810 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10811   BtShared *pBt = pBtree->pBt;
10812   int rc;                         /* Return code */
10813 
10814   assert( iVersion==1 || iVersion==2 );
10815 
10816   /* If setting the version fields to 1, do not automatically open the
10817   ** WAL connection, even if the version fields are currently set to 2.
10818   */
10819   pBt->btsFlags &= ~BTS_NO_WAL;
10820   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10821 
10822   rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10823   if( rc==SQLITE_OK ){
10824     u8 *aData = pBt->pPage1->aData;
10825     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10826       rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10827       if( rc==SQLITE_OK ){
10828         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10829         if( rc==SQLITE_OK ){
10830           aData[18] = (u8)iVersion;
10831           aData[19] = (u8)iVersion;
10832         }
10833       }
10834     }
10835   }
10836 
10837   pBt->btsFlags &= ~BTS_NO_WAL;
10838   return rc;
10839 }
10840 
10841 /*
10842 ** Return true if the cursor has a hint specified.  This routine is
10843 ** only used from within assert() statements
10844 */
10845 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10846   return (pCsr->hints & mask)!=0;
10847 }
10848 
10849 /*
10850 ** Return true if the given Btree is read-only.
10851 */
10852 int sqlite3BtreeIsReadonly(Btree *p){
10853   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10854 }
10855 
10856 /*
10857 ** Return the size of the header added to each page by this module.
10858 */
10859 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10860 
10861 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10862 /*
10863 ** Return true if the Btree passed as the only argument is sharable.
10864 */
10865 int sqlite3BtreeSharable(Btree *p){
10866   return p->sharable;
10867 }
10868 
10869 /*
10870 ** Return the number of connections to the BtShared object accessed by
10871 ** the Btree handle passed as the only argument. For private caches
10872 ** this is always 1. For shared caches it may be 1 or greater.
10873 */
10874 int sqlite3BtreeConnectionCount(Btree *p){
10875   testcase( p->sharable );
10876   return p->pBt->nRef;
10877 }
10878 #endif
10879