xref: /sqlite-3.40.0/src/btree.c (revision 119fc11e)
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
15 */
16 #include "btreeInt.h"
17 
18 /*
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
21 */
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
23 
24 /*
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
27 */
28 #if 0
29 int sqlite3BtreeTrace=1;  /* True to enable tracing */
30 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
34 
35 /*
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
38 **
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page.  If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
43 */
44 #define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)
45 
46 /*
47 ** Values passed as the 5th argument to allocateBtreePage()
48 */
49 #define BTALLOC_ANY   0           /* Allocate any page */
50 #define BTALLOC_EXACT 1           /* Allocate exact page if possible */
51 #define BTALLOC_LE    2           /* Allocate any page <= the parameter */
52 
53 /*
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
56 **
57 **   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58 */
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
64 
65 #ifndef SQLITE_OMIT_SHARED_CACHE
66 /*
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache.  This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
71 **
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
73 */
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
80 
81 #ifndef SQLITE_OMIT_SHARED_CACHE
82 /*
83 ** Enable or disable the shared pager and schema features.
84 **
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88 */
89 int sqlite3_enable_shared_cache(int enable){
90   sqlite3GlobalConfig.sharedCacheEnabled = enable;
91   return SQLITE_OK;
92 }
93 #endif
94 
95 
96 
97 #ifdef SQLITE_OMIT_SHARED_CACHE
98   /*
99   ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100   ** and clearAllSharedCacheTableLocks()
101   ** manipulate entries in the BtShared.pLock linked list used to store
102   ** shared-cache table level locks. If the library is compiled with the
103   ** shared-cache feature disabled, then there is only ever one user
104   ** of each BtShared structure and so this locking is not necessary.
105   ** So define the lock related functions as no-ops.
106   */
107   #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108   #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109   #define clearAllSharedCacheTableLocks(a)
110   #define downgradeAllSharedCacheTableLocks(a)
111   #define hasSharedCacheTableLock(a,b,c,d) 1
112   #define hasReadConflicts(a, b) 0
113 #endif
114 
115 #ifndef SQLITE_OMIT_SHARED_CACHE
116 
117 #ifdef SQLITE_DEBUG
118 /*
119 **** This function is only used as part of an assert() statement. ***
120 **
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot.   Return 1 if it does and 0 if not.
123 **
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
126 **
127 **    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128 **
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
135 **
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
139 */
140 static int hasSharedCacheTableLock(
141   Btree *pBtree,         /* Handle that must hold lock */
142   Pgno iRoot,            /* Root page of b-tree */
143   int isIndex,           /* True if iRoot is the root of an index b-tree */
144   int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
145 ){
146   Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147   Pgno iTab = 0;
148   BtLock *pLock;
149 
150   /* If this database is not shareable, or if the client is reading
151   ** and has the read-uncommitted flag set, then no lock is required.
152   ** Return true immediately.
153   */
154   if( (pBtree->sharable==0)
155    || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
156   ){
157     return 1;
158   }
159 
160   /* If the client is reading  or writing an index and the schema is
161   ** not loaded, then it is too difficult to actually check to see if
162   ** the correct locks are held.  So do not bother - just return true.
163   ** This case does not come up very often anyhow.
164   */
165   if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166     return 1;
167   }
168 
169   /* Figure out the root-page that the lock should be held on. For table
170   ** b-trees, this is just the root page of the b-tree being read or
171   ** written. For index b-trees, it is the root page of the associated
172   ** table.  */
173   if( isIndex ){
174     HashElem *p;
175     for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176       Index *pIdx = (Index *)sqliteHashData(p);
177       if( pIdx->tnum==(int)iRoot ){
178         if( iTab ){
179           /* Two or more indexes share the same root page.  There must
180           ** be imposter tables.  So just return true.  The assert is not
181           ** useful in that case. */
182           return 1;
183         }
184         iTab = pIdx->pTable->tnum;
185       }
186     }
187   }else{
188     iTab = iRoot;
189   }
190 
191   /* Search for the required lock. Either a write-lock on root-page iTab, a
192   ** write-lock on the schema table, or (if the client is reading) a
193   ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
194   for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195     if( pLock->pBtree==pBtree
196      && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197      && pLock->eLock>=eLockType
198     ){
199       return 1;
200     }
201   }
202 
203   /* Failed to find the required lock. */
204   return 0;
205 }
206 #endif /* SQLITE_DEBUG */
207 
208 #ifdef SQLITE_DEBUG
209 /*
210 **** This function may be used as part of assert() statements only. ****
211 **
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
215 **
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table.  Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
221 **
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
224 **
225 **    assert( !hasReadConflicts(pBtree, iRoot) );
226 */
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228   BtCursor *p;
229   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230     if( p->pgnoRoot==iRoot
231      && p->pBtree!=pBtree
232      && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233     ){
234       return 1;
235     }
236   }
237   return 0;
238 }
239 #endif    /* #ifdef SQLITE_DEBUG */
240 
241 /*
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
246 */
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248   BtShared *pBt = p->pBt;
249   BtLock *pIter;
250 
251   assert( sqlite3BtreeHoldsMutex(p) );
252   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253   assert( p->db!=0 );
254   assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
255 
256   /* If requesting a write-lock, then the Btree must have an open write
257   ** transaction on this file. And, obviously, for this to be so there
258   ** must be an open write transaction on the file itself.
259   */
260   assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261   assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262 
263   /* This routine is a no-op if the shared-cache is not enabled */
264   if( !p->sharable ){
265     return SQLITE_OK;
266   }
267 
268   /* If some other connection is holding an exclusive lock, the
269   ** requested lock may not be obtained.
270   */
271   if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272     sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273     return SQLITE_LOCKED_SHAREDCACHE;
274   }
275 
276   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277     /* The condition (pIter->eLock!=eLock) in the following if(...)
278     ** statement is a simplification of:
279     **
280     **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281     **
282     ** since we know that if eLock==WRITE_LOCK, then no other connection
283     ** may hold a WRITE_LOCK on any table in this file (since there can
284     ** only be a single writer).
285     */
286     assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287     assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288     if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289       sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290       if( eLock==WRITE_LOCK ){
291         assert( p==pBt->pWriter );
292         pBt->btsFlags |= BTS_PENDING;
293       }
294       return SQLITE_LOCKED_SHAREDCACHE;
295     }
296   }
297   return SQLITE_OK;
298 }
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
300 
301 #ifndef SQLITE_OMIT_SHARED_CACHE
302 /*
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
306 **
307 ** This function assumes the following:
308 **
309 **   (a) The specified Btree object p is connected to a sharable
310 **       database (one with the BtShared.sharable flag set), and
311 **
312 **   (b) No other Btree objects hold a lock that conflicts
313 **       with the requested lock (i.e. querySharedCacheTableLock() has
314 **       already been called and returned SQLITE_OK).
315 **
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
318 */
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320   BtShared *pBt = p->pBt;
321   BtLock *pLock = 0;
322   BtLock *pIter;
323 
324   assert( sqlite3BtreeHoldsMutex(p) );
325   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326   assert( p->db!=0 );
327 
328   /* A connection with the read-uncommitted flag set will never try to
329   ** obtain a read-lock using this function. The only read-lock obtained
330   ** by a connection in read-uncommitted mode is on the sqlite_master
331   ** table, and that lock is obtained in BtreeBeginTrans().  */
332   assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333 
334   /* This function should only be called on a sharable b-tree after it
335   ** has been determined that no other b-tree holds a conflicting lock.  */
336   assert( p->sharable );
337   assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
338 
339   /* First search the list for an existing lock on this table. */
340   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341     if( pIter->iTable==iTable && pIter->pBtree==p ){
342       pLock = pIter;
343       break;
344     }
345   }
346 
347   /* If the above search did not find a BtLock struct associating Btree p
348   ** with table iTable, allocate one and link it into the list.
349   */
350   if( !pLock ){
351     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352     if( !pLock ){
353       return SQLITE_NOMEM_BKPT;
354     }
355     pLock->iTable = iTable;
356     pLock->pBtree = p;
357     pLock->pNext = pBt->pLock;
358     pBt->pLock = pLock;
359   }
360 
361   /* Set the BtLock.eLock variable to the maximum of the current lock
362   ** and the requested lock. This means if a write-lock was already held
363   ** and a read-lock requested, we don't incorrectly downgrade the lock.
364   */
365   assert( WRITE_LOCK>READ_LOCK );
366   if( eLock>pLock->eLock ){
367     pLock->eLock = eLock;
368   }
369 
370   return SQLITE_OK;
371 }
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
373 
374 #ifndef SQLITE_OMIT_SHARED_CACHE
375 /*
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
378 **
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
382 */
383 static void clearAllSharedCacheTableLocks(Btree *p){
384   BtShared *pBt = p->pBt;
385   BtLock **ppIter = &pBt->pLock;
386 
387   assert( sqlite3BtreeHoldsMutex(p) );
388   assert( p->sharable || 0==*ppIter );
389   assert( p->inTrans>0 );
390 
391   while( *ppIter ){
392     BtLock *pLock = *ppIter;
393     assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394     assert( pLock->pBtree->inTrans>=pLock->eLock );
395     if( pLock->pBtree==p ){
396       *ppIter = pLock->pNext;
397       assert( pLock->iTable!=1 || pLock==&p->lock );
398       if( pLock->iTable!=1 ){
399         sqlite3_free(pLock);
400       }
401     }else{
402       ppIter = &pLock->pNext;
403     }
404   }
405 
406   assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407   if( pBt->pWriter==p ){
408     pBt->pWriter = 0;
409     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410   }else if( pBt->nTransaction==2 ){
411     /* This function is called when Btree p is concluding its
412     ** transaction. If there currently exists a writer, and p is not
413     ** that writer, then the number of locks held by connections other
414     ** than the writer must be about to drop to zero. In this case
415     ** set the BTS_PENDING flag to 0.
416     **
417     ** If there is not currently a writer, then BTS_PENDING must
418     ** be zero already. So this next line is harmless in that case.
419     */
420     pBt->btsFlags &= ~BTS_PENDING;
421   }
422 }
423 
424 /*
425 ** This function changes all write-locks held by Btree p into read-locks.
426 */
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428   BtShared *pBt = p->pBt;
429   if( pBt->pWriter==p ){
430     BtLock *pLock;
431     pBt->pWriter = 0;
432     pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433     for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434       assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435       pLock->eLock = READ_LOCK;
436     }
437   }
438 }
439 
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
441 
442 static void releasePage(MemPage *pPage);  /* Forward reference */
443 
444 /*
445 ***** This routine is used inside of assert() only ****
446 **
447 ** Verify that the cursor holds the mutex on its BtShared
448 */
449 #ifdef SQLITE_DEBUG
450 static int cursorHoldsMutex(BtCursor *p){
451   return sqlite3_mutex_held(p->pBt->mutex);
452 }
453 
454 /* Verify that the cursor and the BtShared agree about what is the current
455 ** database connetion. This is important in shared-cache mode. If the database
456 ** connection pointers get out-of-sync, it is possible for routines like
457 ** btreeInitPage() to reference an stale connection pointer that references a
458 ** a connection that has already closed.  This routine is used inside assert()
459 ** statements only and for the purpose of double-checking that the btree code
460 ** does keep the database connection pointers up-to-date.
461 */
462 static int cursorOwnsBtShared(BtCursor *p){
463   assert( cursorHoldsMutex(p) );
464   return (p->pBtree->db==p->pBt->db);
465 }
466 #endif
467 
468 /*
469 ** Invalidate the overflow cache of the cursor passed as the first argument.
470 ** on the shared btree structure pBt.
471 */
472 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
473 
474 /*
475 ** Invalidate the overflow page-list cache for all cursors opened
476 ** on the shared btree structure pBt.
477 */
478 static void invalidateAllOverflowCache(BtShared *pBt){
479   BtCursor *p;
480   assert( sqlite3_mutex_held(pBt->mutex) );
481   for(p=pBt->pCursor; p; p=p->pNext){
482     invalidateOverflowCache(p);
483   }
484 }
485 
486 #ifndef SQLITE_OMIT_INCRBLOB
487 /*
488 ** This function is called before modifying the contents of a table
489 ** to invalidate any incrblob cursors that are open on the
490 ** row or one of the rows being modified.
491 **
492 ** If argument isClearTable is true, then the entire contents of the
493 ** table is about to be deleted. In this case invalidate all incrblob
494 ** cursors open on any row within the table with root-page pgnoRoot.
495 **
496 ** Otherwise, if argument isClearTable is false, then the row with
497 ** rowid iRow is being replaced or deleted. In this case invalidate
498 ** only those incrblob cursors open on that specific row.
499 */
500 static void invalidateIncrblobCursors(
501   Btree *pBtree,          /* The database file to check */
502   i64 iRow,               /* The rowid that might be changing */
503   int isClearTable        /* True if all rows are being deleted */
504 ){
505   BtCursor *p;
506   if( pBtree->hasIncrblobCur==0 ) return;
507   assert( sqlite3BtreeHoldsMutex(pBtree) );
508   pBtree->hasIncrblobCur = 0;
509   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510     if( (p->curFlags & BTCF_Incrblob)!=0 ){
511       pBtree->hasIncrblobCur = 1;
512       if( isClearTable || p->info.nKey==iRow ){
513         p->eState = CURSOR_INVALID;
514       }
515     }
516   }
517 }
518 
519 #else
520   /* Stub function when INCRBLOB is omitted */
521   #define invalidateIncrblobCursors(x,y,z)
522 #endif /* SQLITE_OMIT_INCRBLOB */
523 
524 /*
525 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526 ** when a page that previously contained data becomes a free-list leaf
527 ** page.
528 **
529 ** The BtShared.pHasContent bitvec exists to work around an obscure
530 ** bug caused by the interaction of two useful IO optimizations surrounding
531 ** free-list leaf pages:
532 **
533 **   1) When all data is deleted from a page and the page becomes
534 **      a free-list leaf page, the page is not written to the database
535 **      (as free-list leaf pages contain no meaningful data). Sometimes
536 **      such a page is not even journalled (as it will not be modified,
537 **      why bother journalling it?).
538 **
539 **   2) When a free-list leaf page is reused, its content is not read
540 **      from the database or written to the journal file (why should it
541 **      be, if it is not at all meaningful?).
542 **
543 ** By themselves, these optimizations work fine and provide a handy
544 ** performance boost to bulk delete or insert operations. However, if
545 ** a page is moved to the free-list and then reused within the same
546 ** transaction, a problem comes up. If the page is not journalled when
547 ** it is moved to the free-list and it is also not journalled when it
548 ** is extracted from the free-list and reused, then the original data
549 ** may be lost. In the event of a rollback, it may not be possible
550 ** to restore the database to its original configuration.
551 **
552 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553 ** moved to become a free-list leaf page, the corresponding bit is
554 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
555 ** optimization 2 above is omitted if the corresponding bit is already
556 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
557 ** at the end of every transaction.
558 */
559 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560   int rc = SQLITE_OK;
561   if( !pBt->pHasContent ){
562     assert( pgno<=pBt->nPage );
563     pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
564     if( !pBt->pHasContent ){
565       rc = SQLITE_NOMEM_BKPT;
566     }
567   }
568   if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569     rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570   }
571   return rc;
572 }
573 
574 /*
575 ** Query the BtShared.pHasContent vector.
576 **
577 ** This function is called when a free-list leaf page is removed from the
578 ** free-list for reuse. It returns false if it is safe to retrieve the
579 ** page from the pager layer with the 'no-content' flag set. True otherwise.
580 */
581 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582   Bitvec *p = pBt->pHasContent;
583   return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584 }
585 
586 /*
587 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588 ** invoked at the conclusion of each write-transaction.
589 */
590 static void btreeClearHasContent(BtShared *pBt){
591   sqlite3BitvecDestroy(pBt->pHasContent);
592   pBt->pHasContent = 0;
593 }
594 
595 /*
596 ** Release all of the apPage[] pages for a cursor.
597 */
598 static void btreeReleaseAllCursorPages(BtCursor *pCur){
599   int i;
600   for(i=0; i<=pCur->iPage; i++){
601     releasePage(pCur->apPage[i]);
602     pCur->apPage[i] = 0;
603   }
604   pCur->iPage = -1;
605 }
606 
607 /*
608 ** The cursor passed as the only argument must point to a valid entry
609 ** when this function is called (i.e. have eState==CURSOR_VALID). This
610 ** function saves the current cursor key in variables pCur->nKey and
611 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612 ** code otherwise.
613 **
614 ** If the cursor is open on an intkey table, then the integer key
615 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617 ** set to point to a malloced buffer pCur->nKey bytes in size containing
618 ** the key.
619 */
620 static int saveCursorKey(BtCursor *pCur){
621   int rc = SQLITE_OK;
622   assert( CURSOR_VALID==pCur->eState );
623   assert( 0==pCur->pKey );
624   assert( cursorHoldsMutex(pCur) );
625 
626   if( pCur->curIntKey ){
627     /* Only the rowid is required for a table btree */
628     pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629   }else{
630     /* For an index btree, save the complete key content */
631     void *pKey;
632     pCur->nKey = sqlite3BtreePayloadSize(pCur);
633     pKey = sqlite3Malloc( pCur->nKey );
634     if( pKey ){
635       rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
636       if( rc==SQLITE_OK ){
637         pCur->pKey = pKey;
638       }else{
639         sqlite3_free(pKey);
640       }
641     }else{
642       rc = SQLITE_NOMEM_BKPT;
643     }
644   }
645   assert( !pCur->curIntKey || !pCur->pKey );
646   return rc;
647 }
648 
649 /*
650 ** Save the current cursor position in the variables BtCursor.nKey
651 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
652 **
653 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654 ** prior to calling this routine.
655 */
656 static int saveCursorPosition(BtCursor *pCur){
657   int rc;
658 
659   assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
660   assert( 0==pCur->pKey );
661   assert( cursorHoldsMutex(pCur) );
662 
663   if( pCur->eState==CURSOR_SKIPNEXT ){
664     pCur->eState = CURSOR_VALID;
665   }else{
666     pCur->skipNext = 0;
667   }
668 
669   rc = saveCursorKey(pCur);
670   if( rc==SQLITE_OK ){
671     btreeReleaseAllCursorPages(pCur);
672     pCur->eState = CURSOR_REQUIRESEEK;
673   }
674 
675   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
676   return rc;
677 }
678 
679 /* Forward reference */
680 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681 
682 /*
683 ** Save the positions of all cursors (except pExcept) that are open on
684 ** the table with root-page iRoot.  "Saving the cursor position" means that
685 ** the location in the btree is remembered in such a way that it can be
686 ** moved back to the same spot after the btree has been modified.  This
687 ** routine is called just before cursor pExcept is used to modify the
688 ** table, for example in BtreeDelete() or BtreeInsert().
689 **
690 ** If there are two or more cursors on the same btree, then all such
691 ** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
692 ** routine enforces that rule.  This routine only needs to be called in
693 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
694 **
695 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
696 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697 ** pointless call to this routine.
698 **
699 ** Implementation note:  This routine merely checks to see if any cursors
700 ** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
701 ** event that cursors are in need to being saved.
702 */
703 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704   BtCursor *p;
705   assert( sqlite3_mutex_held(pBt->mutex) );
706   assert( pExcept==0 || pExcept->pBt==pBt );
707   for(p=pBt->pCursor; p; p=p->pNext){
708     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709   }
710   if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711   if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712   return SQLITE_OK;
713 }
714 
715 /* This helper routine to saveAllCursors does the actual work of saving
716 ** the cursors if and when a cursor is found that actually requires saving.
717 ** The common case is that no cursors need to be saved, so this routine is
718 ** broken out from its caller to avoid unnecessary stack pointer movement.
719 */
720 static int SQLITE_NOINLINE saveCursorsOnList(
721   BtCursor *p,         /* The first cursor that needs saving */
722   Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
723   BtCursor *pExcept    /* Do not save this cursor */
724 ){
725   do{
726     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
727       if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
728         int rc = saveCursorPosition(p);
729         if( SQLITE_OK!=rc ){
730           return rc;
731         }
732       }else{
733         testcase( p->iPage>0 );
734         btreeReleaseAllCursorPages(p);
735       }
736     }
737     p = p->pNext;
738   }while( p );
739   return SQLITE_OK;
740 }
741 
742 /*
743 ** Clear the current cursor position.
744 */
745 void sqlite3BtreeClearCursor(BtCursor *pCur){
746   assert( cursorHoldsMutex(pCur) );
747   sqlite3_free(pCur->pKey);
748   pCur->pKey = 0;
749   pCur->eState = CURSOR_INVALID;
750 }
751 
752 /*
753 ** In this version of BtreeMoveto, pKey is a packed index record
754 ** such as is generated by the OP_MakeRecord opcode.  Unpack the
755 ** record and then call BtreeMovetoUnpacked() to do the work.
756 */
757 static int btreeMoveto(
758   BtCursor *pCur,     /* Cursor open on the btree to be searched */
759   const void *pKey,   /* Packed key if the btree is an index */
760   i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
761   int bias,           /* Bias search to the high end */
762   int *pRes           /* Write search results here */
763 ){
764   int rc;                    /* Status code */
765   UnpackedRecord *pIdxKey;   /* Unpacked index key */
766 
767   if( pKey ){
768     assert( nKey==(i64)(int)nKey );
769     pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
770     if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
771     sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
772     if( pIdxKey->nField==0 ){
773       rc = SQLITE_CORRUPT_BKPT;
774       goto moveto_done;
775     }
776   }else{
777     pIdxKey = 0;
778   }
779   rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
780 moveto_done:
781   if( pIdxKey ){
782     sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
783   }
784   return rc;
785 }
786 
787 /*
788 ** Restore the cursor to the position it was in (or as close to as possible)
789 ** when saveCursorPosition() was called. Note that this call deletes the
790 ** saved position info stored by saveCursorPosition(), so there can be
791 ** at most one effective restoreCursorPosition() call after each
792 ** saveCursorPosition().
793 */
794 static int btreeRestoreCursorPosition(BtCursor *pCur){
795   int rc;
796   int skipNext;
797   assert( cursorOwnsBtShared(pCur) );
798   assert( pCur->eState>=CURSOR_REQUIRESEEK );
799   if( pCur->eState==CURSOR_FAULT ){
800     return pCur->skipNext;
801   }
802   pCur->eState = CURSOR_INVALID;
803   rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
804   if( rc==SQLITE_OK ){
805     sqlite3_free(pCur->pKey);
806     pCur->pKey = 0;
807     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
808     pCur->skipNext |= skipNext;
809     if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
810       pCur->eState = CURSOR_SKIPNEXT;
811     }
812   }
813   return rc;
814 }
815 
816 #define restoreCursorPosition(p) \
817   (p->eState>=CURSOR_REQUIRESEEK ? \
818          btreeRestoreCursorPosition(p) : \
819          SQLITE_OK)
820 
821 /*
822 ** Determine whether or not a cursor has moved from the position where
823 ** it was last placed, or has been invalidated for any other reason.
824 ** Cursors can move when the row they are pointing at is deleted out
825 ** from under them, for example.  Cursor might also move if a btree
826 ** is rebalanced.
827 **
828 ** Calling this routine with a NULL cursor pointer returns false.
829 **
830 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
831 ** back to where it ought to be if this routine returns true.
832 */
833 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
834   return pCur->eState!=CURSOR_VALID;
835 }
836 
837 /*
838 ** This routine restores a cursor back to its original position after it
839 ** has been moved by some outside activity (such as a btree rebalance or
840 ** a row having been deleted out from under the cursor).
841 **
842 ** On success, the *pDifferentRow parameter is false if the cursor is left
843 ** pointing at exactly the same row.  *pDifferntRow is the row the cursor
844 ** was pointing to has been deleted, forcing the cursor to point to some
845 ** nearby row.
846 **
847 ** This routine should only be called for a cursor that just returned
848 ** TRUE from sqlite3BtreeCursorHasMoved().
849 */
850 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
851   int rc;
852 
853   assert( pCur!=0 );
854   assert( pCur->eState!=CURSOR_VALID );
855   rc = restoreCursorPosition(pCur);
856   if( rc ){
857     *pDifferentRow = 1;
858     return rc;
859   }
860   if( pCur->eState!=CURSOR_VALID ){
861     *pDifferentRow = 1;
862   }else{
863     assert( pCur->skipNext==0 );
864     *pDifferentRow = 0;
865   }
866   return SQLITE_OK;
867 }
868 
869 #ifdef SQLITE_ENABLE_CURSOR_HINTS
870 /*
871 ** Provide hints to the cursor.  The particular hint given (and the type
872 ** and number of the varargs parameters) is determined by the eHintType
873 ** parameter.  See the definitions of the BTREE_HINT_* macros for details.
874 */
875 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
876   /* Used only by system that substitute their own storage engine */
877 }
878 #endif
879 
880 /*
881 ** Provide flag hints to the cursor.
882 */
883 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
884   assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
885   pCur->hints = x;
886 }
887 
888 
889 #ifndef SQLITE_OMIT_AUTOVACUUM
890 /*
891 ** Given a page number of a regular database page, return the page
892 ** number for the pointer-map page that contains the entry for the
893 ** input page number.
894 **
895 ** Return 0 (not a valid page) for pgno==1 since there is
896 ** no pointer map associated with page 1.  The integrity_check logic
897 ** requires that ptrmapPageno(*,1)!=1.
898 */
899 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
900   int nPagesPerMapPage;
901   Pgno iPtrMap, ret;
902   assert( sqlite3_mutex_held(pBt->mutex) );
903   if( pgno<2 ) return 0;
904   nPagesPerMapPage = (pBt->usableSize/5)+1;
905   iPtrMap = (pgno-2)/nPagesPerMapPage;
906   ret = (iPtrMap*nPagesPerMapPage) + 2;
907   if( ret==PENDING_BYTE_PAGE(pBt) ){
908     ret++;
909   }
910   return ret;
911 }
912 
913 /*
914 ** Write an entry into the pointer map.
915 **
916 ** This routine updates the pointer map entry for page number 'key'
917 ** so that it maps to type 'eType' and parent page number 'pgno'.
918 **
919 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
920 ** a no-op.  If an error occurs, the appropriate error code is written
921 ** into *pRC.
922 */
923 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
924   DbPage *pDbPage;  /* The pointer map page */
925   u8 *pPtrmap;      /* The pointer map data */
926   Pgno iPtrmap;     /* The pointer map page number */
927   int offset;       /* Offset in pointer map page */
928   int rc;           /* Return code from subfunctions */
929 
930   if( *pRC ) return;
931 
932   assert( sqlite3_mutex_held(pBt->mutex) );
933   /* The master-journal page number must never be used as a pointer map page */
934   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
935 
936   assert( pBt->autoVacuum );
937   if( key==0 ){
938     *pRC = SQLITE_CORRUPT_BKPT;
939     return;
940   }
941   iPtrmap = PTRMAP_PAGENO(pBt, key);
942   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
943   if( rc!=SQLITE_OK ){
944     *pRC = rc;
945     return;
946   }
947   offset = PTRMAP_PTROFFSET(iPtrmap, key);
948   if( offset<0 ){
949     *pRC = SQLITE_CORRUPT_BKPT;
950     goto ptrmap_exit;
951   }
952   assert( offset <= (int)pBt->usableSize-5 );
953   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
954 
955   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
956     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
957     *pRC= rc = sqlite3PagerWrite(pDbPage);
958     if( rc==SQLITE_OK ){
959       pPtrmap[offset] = eType;
960       put4byte(&pPtrmap[offset+1], parent);
961     }
962   }
963 
964 ptrmap_exit:
965   sqlite3PagerUnref(pDbPage);
966 }
967 
968 /*
969 ** Read an entry from the pointer map.
970 **
971 ** This routine retrieves the pointer map entry for page 'key', writing
972 ** the type and parent page number to *pEType and *pPgno respectively.
973 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
974 */
975 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
976   DbPage *pDbPage;   /* The pointer map page */
977   int iPtrmap;       /* Pointer map page index */
978   u8 *pPtrmap;       /* Pointer map page data */
979   int offset;        /* Offset of entry in pointer map */
980   int rc;
981 
982   assert( sqlite3_mutex_held(pBt->mutex) );
983 
984   iPtrmap = PTRMAP_PAGENO(pBt, key);
985   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
986   if( rc!=0 ){
987     return rc;
988   }
989   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
990 
991   offset = PTRMAP_PTROFFSET(iPtrmap, key);
992   if( offset<0 ){
993     sqlite3PagerUnref(pDbPage);
994     return SQLITE_CORRUPT_BKPT;
995   }
996   assert( offset <= (int)pBt->usableSize-5 );
997   assert( pEType!=0 );
998   *pEType = pPtrmap[offset];
999   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1000 
1001   sqlite3PagerUnref(pDbPage);
1002   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
1003   return SQLITE_OK;
1004 }
1005 
1006 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1007   #define ptrmapPut(w,x,y,z,rc)
1008   #define ptrmapGet(w,x,y,z) SQLITE_OK
1009   #define ptrmapPutOvflPtr(x, y, rc)
1010 #endif
1011 
1012 /*
1013 ** Given a btree page and a cell index (0 means the first cell on
1014 ** the page, 1 means the second cell, and so forth) return a pointer
1015 ** to the cell content.
1016 **
1017 ** findCellPastPtr() does the same except it skips past the initial
1018 ** 4-byte child pointer found on interior pages, if there is one.
1019 **
1020 ** This routine works only for pages that do not contain overflow cells.
1021 */
1022 #define findCell(P,I) \
1023   ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1024 #define findCellPastPtr(P,I) \
1025   ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1026 
1027 
1028 /*
1029 ** This is common tail processing for btreeParseCellPtr() and
1030 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1031 ** on a single B-tree page.  Make necessary adjustments to the CellInfo
1032 ** structure.
1033 */
1034 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1035   MemPage *pPage,         /* Page containing the cell */
1036   u8 *pCell,              /* Pointer to the cell text. */
1037   CellInfo *pInfo         /* Fill in this structure */
1038 ){
1039   /* If the payload will not fit completely on the local page, we have
1040   ** to decide how much to store locally and how much to spill onto
1041   ** overflow pages.  The strategy is to minimize the amount of unused
1042   ** space on overflow pages while keeping the amount of local storage
1043   ** in between minLocal and maxLocal.
1044   **
1045   ** Warning:  changing the way overflow payload is distributed in any
1046   ** way will result in an incompatible file format.
1047   */
1048   int minLocal;  /* Minimum amount of payload held locally */
1049   int maxLocal;  /* Maximum amount of payload held locally */
1050   int surplus;   /* Overflow payload available for local storage */
1051 
1052   minLocal = pPage->minLocal;
1053   maxLocal = pPage->maxLocal;
1054   surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1055   testcase( surplus==maxLocal );
1056   testcase( surplus==maxLocal+1 );
1057   if( surplus <= maxLocal ){
1058     pInfo->nLocal = (u16)surplus;
1059   }else{
1060     pInfo->nLocal = (u16)minLocal;
1061   }
1062   pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1063 }
1064 
1065 /*
1066 ** The following routines are implementations of the MemPage.xParseCell()
1067 ** method.
1068 **
1069 ** Parse a cell content block and fill in the CellInfo structure.
1070 **
1071 ** btreeParseCellPtr()        =>   table btree leaf nodes
1072 ** btreeParseCellNoPayload()  =>   table btree internal nodes
1073 ** btreeParseCellPtrIndex()   =>   index btree nodes
1074 **
1075 ** There is also a wrapper function btreeParseCell() that works for
1076 ** all MemPage types and that references the cell by index rather than
1077 ** by pointer.
1078 */
1079 static void btreeParseCellPtrNoPayload(
1080   MemPage *pPage,         /* Page containing the cell */
1081   u8 *pCell,              /* Pointer to the cell text. */
1082   CellInfo *pInfo         /* Fill in this structure */
1083 ){
1084   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1085   assert( pPage->leaf==0 );
1086   assert( pPage->childPtrSize==4 );
1087 #ifndef SQLITE_DEBUG
1088   UNUSED_PARAMETER(pPage);
1089 #endif
1090   pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1091   pInfo->nPayload = 0;
1092   pInfo->nLocal = 0;
1093   pInfo->pPayload = 0;
1094   return;
1095 }
1096 static void btreeParseCellPtr(
1097   MemPage *pPage,         /* Page containing the cell */
1098   u8 *pCell,              /* Pointer to the cell text. */
1099   CellInfo *pInfo         /* Fill in this structure */
1100 ){
1101   u8 *pIter;              /* For scanning through pCell */
1102   u32 nPayload;           /* Number of bytes of cell payload */
1103   u64 iKey;               /* Extracted Key value */
1104 
1105   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1106   assert( pPage->leaf==0 || pPage->leaf==1 );
1107   assert( pPage->intKeyLeaf );
1108   assert( pPage->childPtrSize==0 );
1109   pIter = pCell;
1110 
1111   /* The next block of code is equivalent to:
1112   **
1113   **     pIter += getVarint32(pIter, nPayload);
1114   **
1115   ** The code is inlined to avoid a function call.
1116   */
1117   nPayload = *pIter;
1118   if( nPayload>=0x80 ){
1119     u8 *pEnd = &pIter[8];
1120     nPayload &= 0x7f;
1121     do{
1122       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1123     }while( (*pIter)>=0x80 && pIter<pEnd );
1124   }
1125   pIter++;
1126 
1127   /* The next block of code is equivalent to:
1128   **
1129   **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1130   **
1131   ** The code is inlined to avoid a function call.
1132   */
1133   iKey = *pIter;
1134   if( iKey>=0x80 ){
1135     u8 *pEnd = &pIter[7];
1136     iKey &= 0x7f;
1137     while(1){
1138       iKey = (iKey<<7) | (*++pIter & 0x7f);
1139       if( (*pIter)<0x80 ) break;
1140       if( pIter>=pEnd ){
1141         iKey = (iKey<<8) | *++pIter;
1142         break;
1143       }
1144     }
1145   }
1146   pIter++;
1147 
1148   pInfo->nKey = *(i64*)&iKey;
1149   pInfo->nPayload = nPayload;
1150   pInfo->pPayload = pIter;
1151   testcase( nPayload==pPage->maxLocal );
1152   testcase( nPayload==pPage->maxLocal+1 );
1153   if( nPayload<=pPage->maxLocal ){
1154     /* This is the (easy) common case where the entire payload fits
1155     ** on the local page.  No overflow is required.
1156     */
1157     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1158     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1159     pInfo->nLocal = (u16)nPayload;
1160   }else{
1161     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1162   }
1163 }
1164 static void btreeParseCellPtrIndex(
1165   MemPage *pPage,         /* Page containing the cell */
1166   u8 *pCell,              /* Pointer to the cell text. */
1167   CellInfo *pInfo         /* Fill in this structure */
1168 ){
1169   u8 *pIter;              /* For scanning through pCell */
1170   u32 nPayload;           /* Number of bytes of cell payload */
1171 
1172   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1173   assert( pPage->leaf==0 || pPage->leaf==1 );
1174   assert( pPage->intKeyLeaf==0 );
1175   pIter = pCell + pPage->childPtrSize;
1176   nPayload = *pIter;
1177   if( nPayload>=0x80 ){
1178     u8 *pEnd = &pIter[8];
1179     nPayload &= 0x7f;
1180     do{
1181       nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1182     }while( *(pIter)>=0x80 && pIter<pEnd );
1183   }
1184   pIter++;
1185   pInfo->nKey = nPayload;
1186   pInfo->nPayload = nPayload;
1187   pInfo->pPayload = pIter;
1188   testcase( nPayload==pPage->maxLocal );
1189   testcase( nPayload==pPage->maxLocal+1 );
1190   if( nPayload<=pPage->maxLocal ){
1191     /* This is the (easy) common case where the entire payload fits
1192     ** on the local page.  No overflow is required.
1193     */
1194     pInfo->nSize = nPayload + (u16)(pIter - pCell);
1195     if( pInfo->nSize<4 ) pInfo->nSize = 4;
1196     pInfo->nLocal = (u16)nPayload;
1197   }else{
1198     btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1199   }
1200 }
1201 static void btreeParseCell(
1202   MemPage *pPage,         /* Page containing the cell */
1203   int iCell,              /* The cell index.  First cell is 0 */
1204   CellInfo *pInfo         /* Fill in this structure */
1205 ){
1206   pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1207 }
1208 
1209 /*
1210 ** The following routines are implementations of the MemPage.xCellSize
1211 ** method.
1212 **
1213 ** Compute the total number of bytes that a Cell needs in the cell
1214 ** data area of the btree-page.  The return number includes the cell
1215 ** data header and the local payload, but not any overflow page or
1216 ** the space used by the cell pointer.
1217 **
1218 ** cellSizePtrNoPayload()    =>   table internal nodes
1219 ** cellSizePtr()             =>   all index nodes & table leaf nodes
1220 */
1221 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1222   u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1223   u8 *pEnd;                                /* End mark for a varint */
1224   u32 nSize;                               /* Size value to return */
1225 
1226 #ifdef SQLITE_DEBUG
1227   /* The value returned by this function should always be the same as
1228   ** the (CellInfo.nSize) value found by doing a full parse of the
1229   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1230   ** this function verifies that this invariant is not violated. */
1231   CellInfo debuginfo;
1232   pPage->xParseCell(pPage, pCell, &debuginfo);
1233 #endif
1234 
1235   nSize = *pIter;
1236   if( nSize>=0x80 ){
1237     pEnd = &pIter[8];
1238     nSize &= 0x7f;
1239     do{
1240       nSize = (nSize<<7) | (*++pIter & 0x7f);
1241     }while( *(pIter)>=0x80 && pIter<pEnd );
1242   }
1243   pIter++;
1244   if( pPage->intKey ){
1245     /* pIter now points at the 64-bit integer key value, a variable length
1246     ** integer. The following block moves pIter to point at the first byte
1247     ** past the end of the key value. */
1248     pEnd = &pIter[9];
1249     while( (*pIter++)&0x80 && pIter<pEnd );
1250   }
1251   testcase( nSize==pPage->maxLocal );
1252   testcase( nSize==pPage->maxLocal+1 );
1253   if( nSize<=pPage->maxLocal ){
1254     nSize += (u32)(pIter - pCell);
1255     if( nSize<4 ) nSize = 4;
1256   }else{
1257     int minLocal = pPage->minLocal;
1258     nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1259     testcase( nSize==pPage->maxLocal );
1260     testcase( nSize==pPage->maxLocal+1 );
1261     if( nSize>pPage->maxLocal ){
1262       nSize = minLocal;
1263     }
1264     nSize += 4 + (u16)(pIter - pCell);
1265   }
1266   assert( nSize==debuginfo.nSize || CORRUPT_DB );
1267   return (u16)nSize;
1268 }
1269 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1270   u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1271   u8 *pEnd;              /* End mark for a varint */
1272 
1273 #ifdef SQLITE_DEBUG
1274   /* The value returned by this function should always be the same as
1275   ** the (CellInfo.nSize) value found by doing a full parse of the
1276   ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1277   ** this function verifies that this invariant is not violated. */
1278   CellInfo debuginfo;
1279   pPage->xParseCell(pPage, pCell, &debuginfo);
1280 #else
1281   UNUSED_PARAMETER(pPage);
1282 #endif
1283 
1284   assert( pPage->childPtrSize==4 );
1285   pEnd = pIter + 9;
1286   while( (*pIter++)&0x80 && pIter<pEnd );
1287   assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1288   return (u16)(pIter - pCell);
1289 }
1290 
1291 
1292 #ifdef SQLITE_DEBUG
1293 /* This variation on cellSizePtr() is used inside of assert() statements
1294 ** only. */
1295 static u16 cellSize(MemPage *pPage, int iCell){
1296   return pPage->xCellSize(pPage, findCell(pPage, iCell));
1297 }
1298 #endif
1299 
1300 #ifndef SQLITE_OMIT_AUTOVACUUM
1301 /*
1302 ** If the cell pCell, part of page pPage contains a pointer
1303 ** to an overflow page, insert an entry into the pointer-map
1304 ** for the overflow page.
1305 */
1306 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1307   CellInfo info;
1308   if( *pRC ) return;
1309   assert( pCell!=0 );
1310   pPage->xParseCell(pPage, pCell, &info);
1311   if( info.nLocal<info.nPayload ){
1312     Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1313     ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1314   }
1315 }
1316 #endif
1317 
1318 
1319 /*
1320 ** Defragment the page given. This routine reorganizes cells within the
1321 ** page so that there are no free-blocks on the free-block list.
1322 **
1323 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1324 ** present in the page after this routine returns.
1325 **
1326 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1327 ** b-tree page so that there are no freeblocks or fragment bytes, all
1328 ** unused bytes are contained in the unallocated space region, and all
1329 ** cells are packed tightly at the end of the page.
1330 */
1331 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1332   int i;                     /* Loop counter */
1333   int pc;                    /* Address of the i-th cell */
1334   int hdr;                   /* Offset to the page header */
1335   int size;                  /* Size of a cell */
1336   int usableSize;            /* Number of usable bytes on a page */
1337   int cellOffset;            /* Offset to the cell pointer array */
1338   int cbrk;                  /* Offset to the cell content area */
1339   int nCell;                 /* Number of cells on the page */
1340   unsigned char *data;       /* The page data */
1341   unsigned char *temp;       /* Temp area for cell content */
1342   unsigned char *src;        /* Source of content */
1343   int iCellFirst;            /* First allowable cell index */
1344   int iCellLast;             /* Last possible cell index */
1345 
1346   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1347   assert( pPage->pBt!=0 );
1348   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1349   assert( pPage->nOverflow==0 );
1350   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1351   temp = 0;
1352   src = data = pPage->aData;
1353   hdr = pPage->hdrOffset;
1354   cellOffset = pPage->cellOffset;
1355   nCell = pPage->nCell;
1356   assert( nCell==get2byte(&data[hdr+3]) );
1357   iCellFirst = cellOffset + 2*nCell;
1358   usableSize = pPage->pBt->usableSize;
1359 
1360   /* This block handles pages with two or fewer free blocks and nMaxFrag
1361   ** or fewer fragmented bytes. In this case it is faster to move the
1362   ** two (or one) blocks of cells using memmove() and add the required
1363   ** offsets to each pointer in the cell-pointer array than it is to
1364   ** reconstruct the entire page.  */
1365   if( (int)data[hdr+7]<=nMaxFrag ){
1366     int iFree = get2byte(&data[hdr+1]);
1367     if( iFree ){
1368       int iFree2 = get2byte(&data[iFree]);
1369 
1370       /* pageFindSlot() has already verified that free blocks are sorted
1371       ** in order of offset within the page, and that no block extends
1372       ** past the end of the page. Provided the two free slots do not
1373       ** overlap, this guarantees that the memmove() calls below will not
1374       ** overwrite the usableSize byte buffer, even if the database page
1375       ** is corrupt.  */
1376       assert( iFree2==0 || iFree2>iFree );
1377       assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1378       assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1379 
1380       if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1381         u8 *pEnd = &data[cellOffset + nCell*2];
1382         u8 *pAddr;
1383         int sz2 = 0;
1384         int sz = get2byte(&data[iFree+2]);
1385         int top = get2byte(&data[hdr+5]);
1386         if( iFree2 ){
1387           if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_BKPT;
1388           sz2 = get2byte(&data[iFree2+2]);
1389           assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
1390           memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1391           sz += sz2;
1392         }
1393         cbrk = top+sz;
1394         assert( cbrk+(iFree-top) <= usableSize );
1395         memmove(&data[cbrk], &data[top], iFree-top);
1396         for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1397           pc = get2byte(pAddr);
1398           if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1399           else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1400         }
1401         goto defragment_out;
1402       }
1403     }
1404   }
1405 
1406   cbrk = usableSize;
1407   iCellLast = usableSize - 4;
1408   for(i=0; i<nCell; i++){
1409     u8 *pAddr;     /* The i-th cell pointer */
1410     pAddr = &data[cellOffset + i*2];
1411     pc = get2byte(pAddr);
1412     testcase( pc==iCellFirst );
1413     testcase( pc==iCellLast );
1414     /* These conditions have already been verified in btreeInitPage()
1415     ** if PRAGMA cell_size_check=ON.
1416     */
1417     if( pc<iCellFirst || pc>iCellLast ){
1418       return SQLITE_CORRUPT_BKPT;
1419     }
1420     assert( pc>=iCellFirst && pc<=iCellLast );
1421     size = pPage->xCellSize(pPage, &src[pc]);
1422     cbrk -= size;
1423     if( cbrk<iCellFirst || pc+size>usableSize ){
1424       return SQLITE_CORRUPT_BKPT;
1425     }
1426     assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1427     testcase( cbrk+size==usableSize );
1428     testcase( pc+size==usableSize );
1429     put2byte(pAddr, cbrk);
1430     if( temp==0 ){
1431       int x;
1432       if( cbrk==pc ) continue;
1433       temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1434       x = get2byte(&data[hdr+5]);
1435       memcpy(&temp[x], &data[x], (cbrk+size) - x);
1436       src = temp;
1437     }
1438     memcpy(&data[cbrk], &src[pc], size);
1439   }
1440   data[hdr+7] = 0;
1441 
1442  defragment_out:
1443   if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1444     return SQLITE_CORRUPT_BKPT;
1445   }
1446   assert( cbrk>=iCellFirst );
1447   put2byte(&data[hdr+5], cbrk);
1448   data[hdr+1] = 0;
1449   data[hdr+2] = 0;
1450   memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1451   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1452   return SQLITE_OK;
1453 }
1454 
1455 /*
1456 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1457 ** size. If one can be found, return a pointer to the space and remove it
1458 ** from the free-list.
1459 **
1460 ** If no suitable space can be found on the free-list, return NULL.
1461 **
1462 ** This function may detect corruption within pPg.  If corruption is
1463 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1464 **
1465 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1466 ** will be ignored if adding the extra space to the fragmentation count
1467 ** causes the fragmentation count to exceed 60.
1468 */
1469 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1470   const int hdr = pPg->hdrOffset;
1471   u8 * const aData = pPg->aData;
1472   int iAddr = hdr + 1;
1473   int pc = get2byte(&aData[iAddr]);
1474   int x;
1475   int usableSize = pPg->pBt->usableSize;
1476 
1477   assert( pc>0 );
1478   do{
1479     int size;            /* Size of the free slot */
1480     /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1481     ** increasing offset. */
1482     if( pc>usableSize-4 || pc<iAddr+4 ){
1483       *pRc = SQLITE_CORRUPT_BKPT;
1484       return 0;
1485     }
1486     /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1487     ** freeblock form a big-endian integer which is the size of the freeblock
1488     ** in bytes, including the 4-byte header. */
1489     size = get2byte(&aData[pc+2]);
1490     if( (x = size - nByte)>=0 ){
1491       testcase( x==4 );
1492       testcase( x==3 );
1493       if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1494         *pRc = SQLITE_CORRUPT_BKPT;
1495         return 0;
1496       }else if( x<4 ){
1497         /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1498         ** number of bytes in fragments may not exceed 60. */
1499         if( aData[hdr+7]>57 ) return 0;
1500 
1501         /* Remove the slot from the free-list. Update the number of
1502         ** fragmented bytes within the page. */
1503         memcpy(&aData[iAddr], &aData[pc], 2);
1504         aData[hdr+7] += (u8)x;
1505       }else{
1506         /* The slot remains on the free-list. Reduce its size to account
1507          ** for the portion used by the new allocation. */
1508         put2byte(&aData[pc+2], x);
1509       }
1510       return &aData[pc + x];
1511     }
1512     iAddr = pc;
1513     pc = get2byte(&aData[pc]);
1514   }while( pc );
1515 
1516   return 0;
1517 }
1518 
1519 /*
1520 ** Allocate nByte bytes of space from within the B-Tree page passed
1521 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1522 ** of the first byte of allocated space. Return either SQLITE_OK or
1523 ** an error code (usually SQLITE_CORRUPT).
1524 **
1525 ** The caller guarantees that there is sufficient space to make the
1526 ** allocation.  This routine might need to defragment in order to bring
1527 ** all the space together, however.  This routine will avoid using
1528 ** the first two bytes past the cell pointer area since presumably this
1529 ** allocation is being made in order to insert a new cell, so we will
1530 ** also end up needing a new cell pointer.
1531 */
1532 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1533   const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
1534   u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
1535   int top;                             /* First byte of cell content area */
1536   int rc = SQLITE_OK;                  /* Integer return code */
1537   int gap;        /* First byte of gap between cell pointers and cell content */
1538 
1539   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1540   assert( pPage->pBt );
1541   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1542   assert( nByte>=0 );  /* Minimum cell size is 4 */
1543   assert( pPage->nFree>=nByte );
1544   assert( pPage->nOverflow==0 );
1545   assert( nByte < (int)(pPage->pBt->usableSize-8) );
1546 
1547   assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1548   gap = pPage->cellOffset + 2*pPage->nCell;
1549   assert( gap<=65536 );
1550   /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1551   ** and the reserved space is zero (the usual value for reserved space)
1552   ** then the cell content offset of an empty page wants to be 65536.
1553   ** However, that integer is too large to be stored in a 2-byte unsigned
1554   ** integer, so a value of 0 is used in its place. */
1555   top = get2byte(&data[hdr+5]);
1556   assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1557   if( gap>top ){
1558     if( top==0 && pPage->pBt->usableSize==65536 ){
1559       top = 65536;
1560     }else{
1561       return SQLITE_CORRUPT_BKPT;
1562     }
1563   }
1564 
1565   /* If there is enough space between gap and top for one more cell pointer
1566   ** array entry offset, and if the freelist is not empty, then search the
1567   ** freelist looking for a free slot big enough to satisfy the request.
1568   */
1569   testcase( gap+2==top );
1570   testcase( gap+1==top );
1571   testcase( gap==top );
1572   if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1573     u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1574     if( pSpace ){
1575       assert( pSpace>=data && (pSpace - data)<65536 );
1576       *pIdx = (int)(pSpace - data);
1577       return SQLITE_OK;
1578     }else if( rc ){
1579       return rc;
1580     }
1581   }
1582 
1583   /* The request could not be fulfilled using a freelist slot.  Check
1584   ** to see if defragmentation is necessary.
1585   */
1586   testcase( gap+2+nByte==top );
1587   if( gap+2+nByte>top ){
1588     assert( pPage->nCell>0 || CORRUPT_DB );
1589     rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1590     if( rc ) return rc;
1591     top = get2byteNotZero(&data[hdr+5]);
1592     assert( gap+2+nByte<=top );
1593   }
1594 
1595 
1596   /* Allocate memory from the gap in between the cell pointer array
1597   ** and the cell content area.  The btreeInitPage() call has already
1598   ** validated the freelist.  Given that the freelist is valid, there
1599   ** is no way that the allocation can extend off the end of the page.
1600   ** The assert() below verifies the previous sentence.
1601   */
1602   top -= nByte;
1603   put2byte(&data[hdr+5], top);
1604   assert( top+nByte <= (int)pPage->pBt->usableSize );
1605   *pIdx = top;
1606   return SQLITE_OK;
1607 }
1608 
1609 /*
1610 ** Return a section of the pPage->aData to the freelist.
1611 ** The first byte of the new free block is pPage->aData[iStart]
1612 ** and the size of the block is iSize bytes.
1613 **
1614 ** Adjacent freeblocks are coalesced.
1615 **
1616 ** Note that even though the freeblock list was checked by btreeInitPage(),
1617 ** that routine will not detect overlap between cells or freeblocks.  Nor
1618 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1619 ** at the end of the page.  So do additional corruption checks inside this
1620 ** routine and return SQLITE_CORRUPT if any problems are found.
1621 */
1622 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1623   u16 iPtr;                             /* Address of ptr to next freeblock */
1624   u16 iFreeBlk;                         /* Address of the next freeblock */
1625   u8 hdr;                               /* Page header size.  0 or 100 */
1626   u8 nFrag = 0;                         /* Reduction in fragmentation */
1627   u16 iOrigSize = iSize;                /* Original value of iSize */
1628   u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1629   u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
1630   unsigned char *data = pPage->aData;   /* Page content */
1631 
1632   assert( pPage->pBt!=0 );
1633   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1634   assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1635   assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1636   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1637   assert( iSize>=4 );   /* Minimum cell size is 4 */
1638   assert( iStart<=iLast );
1639 
1640   /* Overwrite deleted information with zeros when the secure_delete
1641   ** option is enabled */
1642   if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1643     memset(&data[iStart], 0, iSize);
1644   }
1645 
1646   /* The list of freeblocks must be in ascending order.  Find the
1647   ** spot on the list where iStart should be inserted.
1648   */
1649   hdr = pPage->hdrOffset;
1650   iPtr = hdr + 1;
1651   if( data[iPtr+1]==0 && data[iPtr]==0 ){
1652     iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
1653   }else{
1654     while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1655       if( iFreeBlk<iPtr+4 ){
1656         if( iFreeBlk==0 ) break;
1657         return SQLITE_CORRUPT_BKPT;
1658       }
1659       iPtr = iFreeBlk;
1660     }
1661     if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1662     assert( iFreeBlk>iPtr || iFreeBlk==0 );
1663 
1664     /* At this point:
1665     **    iFreeBlk:   First freeblock after iStart, or zero if none
1666     **    iPtr:       The address of a pointer to iFreeBlk
1667     **
1668     ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1669     */
1670     if( iFreeBlk && iEnd+3>=iFreeBlk ){
1671       nFrag = iFreeBlk - iEnd;
1672       if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1673       iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1674       if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
1675       iSize = iEnd - iStart;
1676       iFreeBlk = get2byte(&data[iFreeBlk]);
1677     }
1678 
1679     /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1680     ** pointer in the page header) then check to see if iStart should be
1681     ** coalesced onto the end of iPtr.
1682     */
1683     if( iPtr>hdr+1 ){
1684       int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1685       if( iPtrEnd+3>=iStart ){
1686         if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1687         nFrag += iStart - iPtrEnd;
1688         iSize = iEnd - iPtr;
1689         iStart = iPtr;
1690       }
1691     }
1692     if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1693     data[hdr+7] -= nFrag;
1694   }
1695   if( iStart==get2byte(&data[hdr+5]) ){
1696     /* The new freeblock is at the beginning of the cell content area,
1697     ** so just extend the cell content area rather than create another
1698     ** freelist entry */
1699     if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1700     put2byte(&data[hdr+1], iFreeBlk);
1701     put2byte(&data[hdr+5], iEnd);
1702   }else{
1703     /* Insert the new freeblock into the freelist */
1704     put2byte(&data[iPtr], iStart);
1705     put2byte(&data[iStart], iFreeBlk);
1706     put2byte(&data[iStart+2], iSize);
1707   }
1708   pPage->nFree += iOrigSize;
1709   return SQLITE_OK;
1710 }
1711 
1712 /*
1713 ** Decode the flags byte (the first byte of the header) for a page
1714 ** and initialize fields of the MemPage structure accordingly.
1715 **
1716 ** Only the following combinations are supported.  Anything different
1717 ** indicates a corrupt database files:
1718 **
1719 **         PTF_ZERODATA
1720 **         PTF_ZERODATA | PTF_LEAF
1721 **         PTF_LEAFDATA | PTF_INTKEY
1722 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1723 */
1724 static int decodeFlags(MemPage *pPage, int flagByte){
1725   BtShared *pBt;     /* A copy of pPage->pBt */
1726 
1727   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1728   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1729   pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
1730   flagByte &= ~PTF_LEAF;
1731   pPage->childPtrSize = 4-4*pPage->leaf;
1732   pPage->xCellSize = cellSizePtr;
1733   pBt = pPage->pBt;
1734   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1735     /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1736     ** interior table b-tree page. */
1737     assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1738     /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1739     ** leaf table b-tree page. */
1740     assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1741     pPage->intKey = 1;
1742     if( pPage->leaf ){
1743       pPage->intKeyLeaf = 1;
1744       pPage->xParseCell = btreeParseCellPtr;
1745     }else{
1746       pPage->intKeyLeaf = 0;
1747       pPage->xCellSize = cellSizePtrNoPayload;
1748       pPage->xParseCell = btreeParseCellPtrNoPayload;
1749     }
1750     pPage->maxLocal = pBt->maxLeaf;
1751     pPage->minLocal = pBt->minLeaf;
1752   }else if( flagByte==PTF_ZERODATA ){
1753     /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1754     ** interior index b-tree page. */
1755     assert( (PTF_ZERODATA)==2 );
1756     /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1757     ** leaf index b-tree page. */
1758     assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1759     pPage->intKey = 0;
1760     pPage->intKeyLeaf = 0;
1761     pPage->xParseCell = btreeParseCellPtrIndex;
1762     pPage->maxLocal = pBt->maxLocal;
1763     pPage->minLocal = pBt->minLocal;
1764   }else{
1765     /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1766     ** an error. */
1767     return SQLITE_CORRUPT_BKPT;
1768   }
1769   pPage->max1bytePayload = pBt->max1bytePayload;
1770   return SQLITE_OK;
1771 }
1772 
1773 /*
1774 ** Initialize the auxiliary information for a disk block.
1775 **
1776 ** Return SQLITE_OK on success.  If we see that the page does
1777 ** not contain a well-formed database page, then return
1778 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
1779 ** guarantee that the page is well-formed.  It only shows that
1780 ** we failed to detect any corruption.
1781 */
1782 static int btreeInitPage(MemPage *pPage){
1783 
1784   assert( pPage->pBt!=0 );
1785   assert( pPage->pBt->db!=0 );
1786   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1787   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1788   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1789   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1790 
1791   if( !pPage->isInit ){
1792     int pc;            /* Address of a freeblock within pPage->aData[] */
1793     u8 hdr;            /* Offset to beginning of page header */
1794     u8 *data;          /* Equal to pPage->aData */
1795     BtShared *pBt;        /* The main btree structure */
1796     int usableSize;    /* Amount of usable space on each page */
1797     u16 cellOffset;    /* Offset from start of page to first cell pointer */
1798     int nFree;         /* Number of unused bytes on the page */
1799     int top;           /* First byte of the cell content area */
1800     int iCellFirst;    /* First allowable cell or freeblock offset */
1801     int iCellLast;     /* Last possible cell or freeblock offset */
1802 
1803     pBt = pPage->pBt;
1804 
1805     hdr = pPage->hdrOffset;
1806     data = pPage->aData;
1807     /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1808     ** the b-tree page type. */
1809     if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1810     assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1811     pPage->maskPage = (u16)(pBt->pageSize - 1);
1812     pPage->nOverflow = 0;
1813     usableSize = pBt->usableSize;
1814     pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1815     pPage->aDataEnd = &data[usableSize];
1816     pPage->aCellIdx = &data[cellOffset];
1817     pPage->aDataOfst = &data[pPage->childPtrSize];
1818     /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1819     ** the start of the cell content area. A zero value for this integer is
1820     ** interpreted as 65536. */
1821     top = get2byteNotZero(&data[hdr+5]);
1822     /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1823     ** number of cells on the page. */
1824     pPage->nCell = get2byte(&data[hdr+3]);
1825     if( pPage->nCell>MX_CELL(pBt) ){
1826       /* To many cells for a single page.  The page must be corrupt */
1827       return SQLITE_CORRUPT_BKPT;
1828     }
1829     testcase( pPage->nCell==MX_CELL(pBt) );
1830     /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1831     ** possible for a root page of a table that contains no rows) then the
1832     ** offset to the cell content area will equal the page size minus the
1833     ** bytes of reserved space. */
1834     assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1835 
1836     /* A malformed database page might cause us to read past the end
1837     ** of page when parsing a cell.
1838     **
1839     ** The following block of code checks early to see if a cell extends
1840     ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1841     ** returned if it does.
1842     */
1843     iCellFirst = cellOffset + 2*pPage->nCell;
1844     iCellLast = usableSize - 4;
1845     if( pBt->db->flags & SQLITE_CellSizeCk ){
1846       int i;            /* Index into the cell pointer array */
1847       int sz;           /* Size of a cell */
1848 
1849       if( !pPage->leaf ) iCellLast--;
1850       for(i=0; i<pPage->nCell; i++){
1851         pc = get2byteAligned(&data[cellOffset+i*2]);
1852         testcase( pc==iCellFirst );
1853         testcase( pc==iCellLast );
1854         if( pc<iCellFirst || pc>iCellLast ){
1855           return SQLITE_CORRUPT_BKPT;
1856         }
1857         sz = pPage->xCellSize(pPage, &data[pc]);
1858         testcase( pc+sz==usableSize );
1859         if( pc+sz>usableSize ){
1860           return SQLITE_CORRUPT_BKPT;
1861         }
1862       }
1863       if( !pPage->leaf ) iCellLast++;
1864     }
1865 
1866     /* Compute the total free space on the page
1867     ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1868     ** start of the first freeblock on the page, or is zero if there are no
1869     ** freeblocks. */
1870     pc = get2byte(&data[hdr+1]);
1871     nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
1872     if( pc>0 ){
1873       u32 next, size;
1874       if( pc<iCellFirst ){
1875         /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1876         ** always be at least one cell before the first freeblock.
1877         */
1878         return SQLITE_CORRUPT_BKPT;
1879       }
1880       while( 1 ){
1881         if( pc>iCellLast ){
1882           return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */
1883         }
1884         next = get2byte(&data[pc]);
1885         size = get2byte(&data[pc+2]);
1886         nFree = nFree + size;
1887         if( next<=pc+size+3 ) break;
1888         pc = next;
1889       }
1890       if( next>0 ){
1891         return SQLITE_CORRUPT_BKPT;  /* Freeblock not in ascending order */
1892       }
1893       if( pc+size>(unsigned int)usableSize ){
1894         return SQLITE_CORRUPT_BKPT;  /* Last freeblock extends past page end */
1895       }
1896     }
1897 
1898     /* At this point, nFree contains the sum of the offset to the start
1899     ** of the cell-content area plus the number of free bytes within
1900     ** the cell-content area. If this is greater than the usable-size
1901     ** of the page, then the page must be corrupted. This check also
1902     ** serves to verify that the offset to the start of the cell-content
1903     ** area, according to the page header, lies within the page.
1904     */
1905     if( nFree>usableSize ){
1906       return SQLITE_CORRUPT_BKPT;
1907     }
1908     pPage->nFree = (u16)(nFree - iCellFirst);
1909     pPage->isInit = 1;
1910   }
1911   return SQLITE_OK;
1912 }
1913 
1914 /*
1915 ** Set up a raw page so that it looks like a database page holding
1916 ** no entries.
1917 */
1918 static void zeroPage(MemPage *pPage, int flags){
1919   unsigned char *data = pPage->aData;
1920   BtShared *pBt = pPage->pBt;
1921   u8 hdr = pPage->hdrOffset;
1922   u16 first;
1923 
1924   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1925   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1926   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1927   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1928   assert( sqlite3_mutex_held(pBt->mutex) );
1929   if( pBt->btsFlags & BTS_SECURE_DELETE ){
1930     memset(&data[hdr], 0, pBt->usableSize - hdr);
1931   }
1932   data[hdr] = (char)flags;
1933   first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1934   memset(&data[hdr+1], 0, 4);
1935   data[hdr+7] = 0;
1936   put2byte(&data[hdr+5], pBt->usableSize);
1937   pPage->nFree = (u16)(pBt->usableSize - first);
1938   decodeFlags(pPage, flags);
1939   pPage->cellOffset = first;
1940   pPage->aDataEnd = &data[pBt->usableSize];
1941   pPage->aCellIdx = &data[first];
1942   pPage->aDataOfst = &data[pPage->childPtrSize];
1943   pPage->nOverflow = 0;
1944   assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1945   pPage->maskPage = (u16)(pBt->pageSize - 1);
1946   pPage->nCell = 0;
1947   pPage->isInit = 1;
1948 }
1949 
1950 
1951 /*
1952 ** Convert a DbPage obtained from the pager into a MemPage used by
1953 ** the btree layer.
1954 */
1955 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1956   MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1957   if( pgno!=pPage->pgno ){
1958     pPage->aData = sqlite3PagerGetData(pDbPage);
1959     pPage->pDbPage = pDbPage;
1960     pPage->pBt = pBt;
1961     pPage->pgno = pgno;
1962     pPage->hdrOffset = pgno==1 ? 100 : 0;
1963   }
1964   assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
1965   return pPage;
1966 }
1967 
1968 /*
1969 ** Get a page from the pager.  Initialize the MemPage.pBt and
1970 ** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
1971 **
1972 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1973 ** about the content of the page at this time.  So do not go to the disk
1974 ** to fetch the content.  Just fill in the content with zeros for now.
1975 ** If in the future we call sqlite3PagerWrite() on this page, that
1976 ** means we have started to be concerned about content and the disk
1977 ** read should occur at that point.
1978 */
1979 static int btreeGetPage(
1980   BtShared *pBt,       /* The btree */
1981   Pgno pgno,           /* Number of the page to fetch */
1982   MemPage **ppPage,    /* Return the page in this parameter */
1983   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1984 ){
1985   int rc;
1986   DbPage *pDbPage;
1987 
1988   assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1989   assert( sqlite3_mutex_held(pBt->mutex) );
1990   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1991   if( rc ) return rc;
1992   *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1993   return SQLITE_OK;
1994 }
1995 
1996 /*
1997 ** Retrieve a page from the pager cache. If the requested page is not
1998 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1999 ** MemPage.aData elements if needed.
2000 */
2001 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2002   DbPage *pDbPage;
2003   assert( sqlite3_mutex_held(pBt->mutex) );
2004   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2005   if( pDbPage ){
2006     return btreePageFromDbPage(pDbPage, pgno, pBt);
2007   }
2008   return 0;
2009 }
2010 
2011 /*
2012 ** Return the size of the database file in pages. If there is any kind of
2013 ** error, return ((unsigned int)-1).
2014 */
2015 static Pgno btreePagecount(BtShared *pBt){
2016   return pBt->nPage;
2017 }
2018 u32 sqlite3BtreeLastPage(Btree *p){
2019   assert( sqlite3BtreeHoldsMutex(p) );
2020   assert( ((p->pBt->nPage)&0x8000000)==0 );
2021   return btreePagecount(p->pBt);
2022 }
2023 
2024 /*
2025 ** Get a page from the pager and initialize it.
2026 **
2027 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2028 ** call.  Do additional sanity checking on the page in this case.
2029 ** And if the fetch fails, this routine must decrement pCur->iPage.
2030 **
2031 ** The page is fetched as read-write unless pCur is not NULL and is
2032 ** a read-only cursor.
2033 **
2034 ** If an error occurs, then *ppPage is undefined. It
2035 ** may remain unchanged, or it may be set to an invalid value.
2036 */
2037 static int getAndInitPage(
2038   BtShared *pBt,                  /* The database file */
2039   Pgno pgno,                      /* Number of the page to get */
2040   MemPage **ppPage,               /* Write the page pointer here */
2041   BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
2042   int bReadOnly                   /* True for a read-only page */
2043 ){
2044   int rc;
2045   DbPage *pDbPage;
2046   assert( sqlite3_mutex_held(pBt->mutex) );
2047   assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2048   assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2049   assert( pCur==0 || pCur->iPage>0 );
2050 
2051   if( pgno>btreePagecount(pBt) ){
2052     rc = SQLITE_CORRUPT_BKPT;
2053     goto getAndInitPage_error;
2054   }
2055   rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2056   if( rc ){
2057     goto getAndInitPage_error;
2058   }
2059   *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2060   if( (*ppPage)->isInit==0 ){
2061     btreePageFromDbPage(pDbPage, pgno, pBt);
2062     rc = btreeInitPage(*ppPage);
2063     if( rc!=SQLITE_OK ){
2064       releasePage(*ppPage);
2065       goto getAndInitPage_error;
2066     }
2067   }
2068   assert( (*ppPage)->pgno==pgno );
2069   assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2070 
2071   /* If obtaining a child page for a cursor, we must verify that the page is
2072   ** compatible with the root page. */
2073   if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2074     rc = SQLITE_CORRUPT_BKPT;
2075     releasePage(*ppPage);
2076     goto getAndInitPage_error;
2077   }
2078   return SQLITE_OK;
2079 
2080 getAndInitPage_error:
2081   if( pCur ) pCur->iPage--;
2082   testcase( pgno==0 );
2083   assert( pgno!=0 || rc==SQLITE_CORRUPT );
2084   return rc;
2085 }
2086 
2087 /*
2088 ** Release a MemPage.  This should be called once for each prior
2089 ** call to btreeGetPage.
2090 */
2091 static void releasePageNotNull(MemPage *pPage){
2092   assert( pPage->aData );
2093   assert( pPage->pBt );
2094   assert( pPage->pDbPage!=0 );
2095   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2096   assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2097   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2098   sqlite3PagerUnrefNotNull(pPage->pDbPage);
2099 }
2100 static void releasePage(MemPage *pPage){
2101   if( pPage ) releasePageNotNull(pPage);
2102 }
2103 
2104 /*
2105 ** Get an unused page.
2106 **
2107 ** This works just like btreeGetPage() with the addition:
2108 **
2109 **   *  If the page is already in use for some other purpose, immediately
2110 **      release it and return an SQLITE_CURRUPT error.
2111 **   *  Make sure the isInit flag is clear
2112 */
2113 static int btreeGetUnusedPage(
2114   BtShared *pBt,       /* The btree */
2115   Pgno pgno,           /* Number of the page to fetch */
2116   MemPage **ppPage,    /* Return the page in this parameter */
2117   int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2118 ){
2119   int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2120   if( rc==SQLITE_OK ){
2121     if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2122       releasePage(*ppPage);
2123       *ppPage = 0;
2124       return SQLITE_CORRUPT_BKPT;
2125     }
2126     (*ppPage)->isInit = 0;
2127   }else{
2128     *ppPage = 0;
2129   }
2130   return rc;
2131 }
2132 
2133 
2134 /*
2135 ** During a rollback, when the pager reloads information into the cache
2136 ** so that the cache is restored to its original state at the start of
2137 ** the transaction, for each page restored this routine is called.
2138 **
2139 ** This routine needs to reset the extra data section at the end of the
2140 ** page to agree with the restored data.
2141 */
2142 static void pageReinit(DbPage *pData){
2143   MemPage *pPage;
2144   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2145   assert( sqlite3PagerPageRefcount(pData)>0 );
2146   if( pPage->isInit ){
2147     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2148     pPage->isInit = 0;
2149     if( sqlite3PagerPageRefcount(pData)>1 ){
2150       /* pPage might not be a btree page;  it might be an overflow page
2151       ** or ptrmap page or a free page.  In those cases, the following
2152       ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2153       ** But no harm is done by this.  And it is very important that
2154       ** btreeInitPage() be called on every btree page so we make
2155       ** the call for every page that comes in for re-initing. */
2156       btreeInitPage(pPage);
2157     }
2158   }
2159 }
2160 
2161 /*
2162 ** Invoke the busy handler for a btree.
2163 */
2164 static int btreeInvokeBusyHandler(void *pArg){
2165   BtShared *pBt = (BtShared*)pArg;
2166   assert( pBt->db );
2167   assert( sqlite3_mutex_held(pBt->db->mutex) );
2168   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2169 }
2170 
2171 /*
2172 ** Open a database file.
2173 **
2174 ** zFilename is the name of the database file.  If zFilename is NULL
2175 ** then an ephemeral database is created.  The ephemeral database might
2176 ** be exclusively in memory, or it might use a disk-based memory cache.
2177 ** Either way, the ephemeral database will be automatically deleted
2178 ** when sqlite3BtreeClose() is called.
2179 **
2180 ** If zFilename is ":memory:" then an in-memory database is created
2181 ** that is automatically destroyed when it is closed.
2182 **
2183 ** The "flags" parameter is a bitmask that might contain bits like
2184 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2185 **
2186 ** If the database is already opened in the same database connection
2187 ** and we are in shared cache mode, then the open will fail with an
2188 ** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
2189 ** objects in the same database connection since doing so will lead
2190 ** to problems with locking.
2191 */
2192 int sqlite3BtreeOpen(
2193   sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
2194   const char *zFilename,  /* Name of the file containing the BTree database */
2195   sqlite3 *db,            /* Associated database handle */
2196   Btree **ppBtree,        /* Pointer to new Btree object written here */
2197   int flags,              /* Options */
2198   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
2199 ){
2200   BtShared *pBt = 0;             /* Shared part of btree structure */
2201   Btree *p;                      /* Handle to return */
2202   sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
2203   int rc = SQLITE_OK;            /* Result code from this function */
2204   u8 nReserve;                   /* Byte of unused space on each page */
2205   unsigned char zDbHeader[100];  /* Database header content */
2206 
2207   /* True if opening an ephemeral, temporary database */
2208   const int isTempDb = zFilename==0 || zFilename[0]==0;
2209 
2210   /* Set the variable isMemdb to true for an in-memory database, or
2211   ** false for a file-based database.
2212   */
2213 #ifdef SQLITE_OMIT_MEMORYDB
2214   const int isMemdb = 0;
2215 #else
2216   const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2217                        || (isTempDb && sqlite3TempInMemory(db))
2218                        || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2219 #endif
2220 
2221   assert( db!=0 );
2222   assert( pVfs!=0 );
2223   assert( sqlite3_mutex_held(db->mutex) );
2224   assert( (flags&0xff)==flags );   /* flags fit in 8 bits */
2225 
2226   /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2227   assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2228 
2229   /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2230   assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2231 
2232   if( isMemdb ){
2233     flags |= BTREE_MEMORY;
2234   }
2235   if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2236     vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2237   }
2238   p = sqlite3MallocZero(sizeof(Btree));
2239   if( !p ){
2240     return SQLITE_NOMEM_BKPT;
2241   }
2242   p->inTrans = TRANS_NONE;
2243   p->db = db;
2244 #ifndef SQLITE_OMIT_SHARED_CACHE
2245   p->lock.pBtree = p;
2246   p->lock.iTable = 1;
2247 #endif
2248 
2249 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2250   /*
2251   ** If this Btree is a candidate for shared cache, try to find an
2252   ** existing BtShared object that we can share with
2253   */
2254   if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2255     if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2256       int nFilename = sqlite3Strlen30(zFilename)+1;
2257       int nFullPathname = pVfs->mxPathname+1;
2258       char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2259       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2260 
2261       p->sharable = 1;
2262       if( !zFullPathname ){
2263         sqlite3_free(p);
2264         return SQLITE_NOMEM_BKPT;
2265       }
2266       if( isMemdb ){
2267         memcpy(zFullPathname, zFilename, nFilename);
2268       }else{
2269         rc = sqlite3OsFullPathname(pVfs, zFilename,
2270                                    nFullPathname, zFullPathname);
2271         if( rc ){
2272           sqlite3_free(zFullPathname);
2273           sqlite3_free(p);
2274           return rc;
2275         }
2276       }
2277 #if SQLITE_THREADSAFE
2278       mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2279       sqlite3_mutex_enter(mutexOpen);
2280       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2281       sqlite3_mutex_enter(mutexShared);
2282 #endif
2283       for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2284         assert( pBt->nRef>0 );
2285         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2286                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2287           int iDb;
2288           for(iDb=db->nDb-1; iDb>=0; iDb--){
2289             Btree *pExisting = db->aDb[iDb].pBt;
2290             if( pExisting && pExisting->pBt==pBt ){
2291               sqlite3_mutex_leave(mutexShared);
2292               sqlite3_mutex_leave(mutexOpen);
2293               sqlite3_free(zFullPathname);
2294               sqlite3_free(p);
2295               return SQLITE_CONSTRAINT;
2296             }
2297           }
2298           p->pBt = pBt;
2299           pBt->nRef++;
2300           break;
2301         }
2302       }
2303       sqlite3_mutex_leave(mutexShared);
2304       sqlite3_free(zFullPathname);
2305     }
2306 #ifdef SQLITE_DEBUG
2307     else{
2308       /* In debug mode, we mark all persistent databases as sharable
2309       ** even when they are not.  This exercises the locking code and
2310       ** gives more opportunity for asserts(sqlite3_mutex_held())
2311       ** statements to find locking problems.
2312       */
2313       p->sharable = 1;
2314     }
2315 #endif
2316   }
2317 #endif
2318   if( pBt==0 ){
2319     /*
2320     ** The following asserts make sure that structures used by the btree are
2321     ** the right size.  This is to guard against size changes that result
2322     ** when compiling on a different architecture.
2323     */
2324     assert( sizeof(i64)==8 );
2325     assert( sizeof(u64)==8 );
2326     assert( sizeof(u32)==4 );
2327     assert( sizeof(u16)==2 );
2328     assert( sizeof(Pgno)==4 );
2329 
2330     pBt = sqlite3MallocZero( sizeof(*pBt) );
2331     if( pBt==0 ){
2332       rc = SQLITE_NOMEM_BKPT;
2333       goto btree_open_out;
2334     }
2335     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2336                           sizeof(MemPage), flags, vfsFlags, pageReinit);
2337     if( rc==SQLITE_OK ){
2338       sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2339       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2340     }
2341     if( rc!=SQLITE_OK ){
2342       goto btree_open_out;
2343     }
2344     pBt->openFlags = (u8)flags;
2345     pBt->db = db;
2346     sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2347     p->pBt = pBt;
2348 
2349     pBt->pCursor = 0;
2350     pBt->pPage1 = 0;
2351     if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2352 #ifdef SQLITE_SECURE_DELETE
2353     pBt->btsFlags |= BTS_SECURE_DELETE;
2354 #endif
2355     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2356     ** determined by the 2-byte integer located at an offset of 16 bytes from
2357     ** the beginning of the database file. */
2358     pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2359     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2360          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2361       pBt->pageSize = 0;
2362 #ifndef SQLITE_OMIT_AUTOVACUUM
2363       /* If the magic name ":memory:" will create an in-memory database, then
2364       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2365       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2366       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2367       ** regular file-name. In this case the auto-vacuum applies as per normal.
2368       */
2369       if( zFilename && !isMemdb ){
2370         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2371         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2372       }
2373 #endif
2374       nReserve = 0;
2375     }else{
2376       /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2377       ** determined by the one-byte unsigned integer found at an offset of 20
2378       ** into the database file header. */
2379       nReserve = zDbHeader[20];
2380       pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2381 #ifndef SQLITE_OMIT_AUTOVACUUM
2382       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2383       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2384 #endif
2385     }
2386     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2387     if( rc ) goto btree_open_out;
2388     pBt->usableSize = pBt->pageSize - nReserve;
2389     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
2390 
2391 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2392     /* Add the new BtShared object to the linked list sharable BtShareds.
2393     */
2394     pBt->nRef = 1;
2395     if( p->sharable ){
2396       MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2397       MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2398       if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2399         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2400         if( pBt->mutex==0 ){
2401           rc = SQLITE_NOMEM_BKPT;
2402           goto btree_open_out;
2403         }
2404       }
2405       sqlite3_mutex_enter(mutexShared);
2406       pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2407       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2408       sqlite3_mutex_leave(mutexShared);
2409     }
2410 #endif
2411   }
2412 
2413 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2414   /* If the new Btree uses a sharable pBtShared, then link the new
2415   ** Btree into the list of all sharable Btrees for the same connection.
2416   ** The list is kept in ascending order by pBt address.
2417   */
2418   if( p->sharable ){
2419     int i;
2420     Btree *pSib;
2421     for(i=0; i<db->nDb; i++){
2422       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2423         while( pSib->pPrev ){ pSib = pSib->pPrev; }
2424         if( (uptr)p->pBt<(uptr)pSib->pBt ){
2425           p->pNext = pSib;
2426           p->pPrev = 0;
2427           pSib->pPrev = p;
2428         }else{
2429           while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2430             pSib = pSib->pNext;
2431           }
2432           p->pNext = pSib->pNext;
2433           p->pPrev = pSib;
2434           if( p->pNext ){
2435             p->pNext->pPrev = p;
2436           }
2437           pSib->pNext = p;
2438         }
2439         break;
2440       }
2441     }
2442   }
2443 #endif
2444   *ppBtree = p;
2445 
2446 btree_open_out:
2447   if( rc!=SQLITE_OK ){
2448     if( pBt && pBt->pPager ){
2449       sqlite3PagerClose(pBt->pPager, 0);
2450     }
2451     sqlite3_free(pBt);
2452     sqlite3_free(p);
2453     *ppBtree = 0;
2454   }else{
2455     sqlite3_file *pFile;
2456 
2457     /* If the B-Tree was successfully opened, set the pager-cache size to the
2458     ** default value. Except, when opening on an existing shared pager-cache,
2459     ** do not change the pager-cache size.
2460     */
2461     if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2462       sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2463     }
2464 
2465     pFile = sqlite3PagerFile(pBt->pPager);
2466     if( pFile->pMethods ){
2467       sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2468     }
2469   }
2470   if( mutexOpen ){
2471     assert( sqlite3_mutex_held(mutexOpen) );
2472     sqlite3_mutex_leave(mutexOpen);
2473   }
2474   assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2475   return rc;
2476 }
2477 
2478 /*
2479 ** Decrement the BtShared.nRef counter.  When it reaches zero,
2480 ** remove the BtShared structure from the sharing list.  Return
2481 ** true if the BtShared.nRef counter reaches zero and return
2482 ** false if it is still positive.
2483 */
2484 static int removeFromSharingList(BtShared *pBt){
2485 #ifndef SQLITE_OMIT_SHARED_CACHE
2486   MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2487   BtShared *pList;
2488   int removed = 0;
2489 
2490   assert( sqlite3_mutex_notheld(pBt->mutex) );
2491   MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2492   sqlite3_mutex_enter(pMaster);
2493   pBt->nRef--;
2494   if( pBt->nRef<=0 ){
2495     if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2496       GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2497     }else{
2498       pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2499       while( ALWAYS(pList) && pList->pNext!=pBt ){
2500         pList=pList->pNext;
2501       }
2502       if( ALWAYS(pList) ){
2503         pList->pNext = pBt->pNext;
2504       }
2505     }
2506     if( SQLITE_THREADSAFE ){
2507       sqlite3_mutex_free(pBt->mutex);
2508     }
2509     removed = 1;
2510   }
2511   sqlite3_mutex_leave(pMaster);
2512   return removed;
2513 #else
2514   return 1;
2515 #endif
2516 }
2517 
2518 /*
2519 ** Make sure pBt->pTmpSpace points to an allocation of
2520 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2521 ** pointer.
2522 */
2523 static void allocateTempSpace(BtShared *pBt){
2524   if( !pBt->pTmpSpace ){
2525     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2526 
2527     /* One of the uses of pBt->pTmpSpace is to format cells before
2528     ** inserting them into a leaf page (function fillInCell()). If
2529     ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2530     ** by the various routines that manipulate binary cells. Which
2531     ** can mean that fillInCell() only initializes the first 2 or 3
2532     ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2533     ** it into a database page. This is not actually a problem, but it
2534     ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2535     ** data is passed to system call write(). So to avoid this error,
2536     ** zero the first 4 bytes of temp space here.
2537     **
2538     ** Also:  Provide four bytes of initialized space before the
2539     ** beginning of pTmpSpace as an area available to prepend the
2540     ** left-child pointer to the beginning of a cell.
2541     */
2542     if( pBt->pTmpSpace ){
2543       memset(pBt->pTmpSpace, 0, 8);
2544       pBt->pTmpSpace += 4;
2545     }
2546   }
2547 }
2548 
2549 /*
2550 ** Free the pBt->pTmpSpace allocation
2551 */
2552 static void freeTempSpace(BtShared *pBt){
2553   if( pBt->pTmpSpace ){
2554     pBt->pTmpSpace -= 4;
2555     sqlite3PageFree(pBt->pTmpSpace);
2556     pBt->pTmpSpace = 0;
2557   }
2558 }
2559 
2560 /*
2561 ** Close an open database and invalidate all cursors.
2562 */
2563 int sqlite3BtreeClose(Btree *p){
2564   BtShared *pBt = p->pBt;
2565   BtCursor *pCur;
2566 
2567   /* Close all cursors opened via this handle.  */
2568   assert( sqlite3_mutex_held(p->db->mutex) );
2569   sqlite3BtreeEnter(p);
2570   pCur = pBt->pCursor;
2571   while( pCur ){
2572     BtCursor *pTmp = pCur;
2573     pCur = pCur->pNext;
2574     if( pTmp->pBtree==p ){
2575       sqlite3BtreeCloseCursor(pTmp);
2576     }
2577   }
2578 
2579   /* Rollback any active transaction and free the handle structure.
2580   ** The call to sqlite3BtreeRollback() drops any table-locks held by
2581   ** this handle.
2582   */
2583   sqlite3BtreeRollback(p, SQLITE_OK, 0);
2584   sqlite3BtreeLeave(p);
2585 
2586   /* If there are still other outstanding references to the shared-btree
2587   ** structure, return now. The remainder of this procedure cleans
2588   ** up the shared-btree.
2589   */
2590   assert( p->wantToLock==0 && p->locked==0 );
2591   if( !p->sharable || removeFromSharingList(pBt) ){
2592     /* The pBt is no longer on the sharing list, so we can access
2593     ** it without having to hold the mutex.
2594     **
2595     ** Clean out and delete the BtShared object.
2596     */
2597     assert( !pBt->pCursor );
2598     sqlite3PagerClose(pBt->pPager, p->db);
2599     if( pBt->xFreeSchema && pBt->pSchema ){
2600       pBt->xFreeSchema(pBt->pSchema);
2601     }
2602     sqlite3DbFree(0, pBt->pSchema);
2603     freeTempSpace(pBt);
2604     sqlite3_free(pBt);
2605   }
2606 
2607 #ifndef SQLITE_OMIT_SHARED_CACHE
2608   assert( p->wantToLock==0 );
2609   assert( p->locked==0 );
2610   if( p->pPrev ) p->pPrev->pNext = p->pNext;
2611   if( p->pNext ) p->pNext->pPrev = p->pPrev;
2612 #endif
2613 
2614   sqlite3_free(p);
2615   return SQLITE_OK;
2616 }
2617 
2618 /*
2619 ** Change the "soft" limit on the number of pages in the cache.
2620 ** Unused and unmodified pages will be recycled when the number of
2621 ** pages in the cache exceeds this soft limit.  But the size of the
2622 ** cache is allowed to grow larger than this limit if it contains
2623 ** dirty pages or pages still in active use.
2624 */
2625 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2626   BtShared *pBt = p->pBt;
2627   assert( sqlite3_mutex_held(p->db->mutex) );
2628   sqlite3BtreeEnter(p);
2629   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2630   sqlite3BtreeLeave(p);
2631   return SQLITE_OK;
2632 }
2633 
2634 /*
2635 ** Change the "spill" limit on the number of pages in the cache.
2636 ** If the number of pages exceeds this limit during a write transaction,
2637 ** the pager might attempt to "spill" pages to the journal early in
2638 ** order to free up memory.
2639 **
2640 ** The value returned is the current spill size.  If zero is passed
2641 ** as an argument, no changes are made to the spill size setting, so
2642 ** using mxPage of 0 is a way to query the current spill size.
2643 */
2644 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2645   BtShared *pBt = p->pBt;
2646   int res;
2647   assert( sqlite3_mutex_held(p->db->mutex) );
2648   sqlite3BtreeEnter(p);
2649   res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2650   sqlite3BtreeLeave(p);
2651   return res;
2652 }
2653 
2654 #if SQLITE_MAX_MMAP_SIZE>0
2655 /*
2656 ** Change the limit on the amount of the database file that may be
2657 ** memory mapped.
2658 */
2659 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2660   BtShared *pBt = p->pBt;
2661   assert( sqlite3_mutex_held(p->db->mutex) );
2662   sqlite3BtreeEnter(p);
2663   sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2664   sqlite3BtreeLeave(p);
2665   return SQLITE_OK;
2666 }
2667 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2668 
2669 /*
2670 ** Change the way data is synced to disk in order to increase or decrease
2671 ** how well the database resists damage due to OS crashes and power
2672 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
2673 ** there is a high probability of damage)  Level 2 is the default.  There
2674 ** is a very low but non-zero probability of damage.  Level 3 reduces the
2675 ** probability of damage to near zero but with a write performance reduction.
2676 */
2677 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2678 int sqlite3BtreeSetPagerFlags(
2679   Btree *p,              /* The btree to set the safety level on */
2680   unsigned pgFlags       /* Various PAGER_* flags */
2681 ){
2682   BtShared *pBt = p->pBt;
2683   assert( sqlite3_mutex_held(p->db->mutex) );
2684   sqlite3BtreeEnter(p);
2685   sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2686   sqlite3BtreeLeave(p);
2687   return SQLITE_OK;
2688 }
2689 #endif
2690 
2691 /*
2692 ** Change the default pages size and the number of reserved bytes per page.
2693 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2694 ** without changing anything.
2695 **
2696 ** The page size must be a power of 2 between 512 and 65536.  If the page
2697 ** size supplied does not meet this constraint then the page size is not
2698 ** changed.
2699 **
2700 ** Page sizes are constrained to be a power of two so that the region
2701 ** of the database file used for locking (beginning at PENDING_BYTE,
2702 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2703 ** at the beginning of a page.
2704 **
2705 ** If parameter nReserve is less than zero, then the number of reserved
2706 ** bytes per page is left unchanged.
2707 **
2708 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2709 ** and autovacuum mode can no longer be changed.
2710 */
2711 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2712   int rc = SQLITE_OK;
2713   BtShared *pBt = p->pBt;
2714   assert( nReserve>=-1 && nReserve<=255 );
2715   sqlite3BtreeEnter(p);
2716 #if SQLITE_HAS_CODEC
2717   if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2718 #endif
2719   if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2720     sqlite3BtreeLeave(p);
2721     return SQLITE_READONLY;
2722   }
2723   if( nReserve<0 ){
2724     nReserve = pBt->pageSize - pBt->usableSize;
2725   }
2726   assert( nReserve>=0 && nReserve<=255 );
2727   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2728         ((pageSize-1)&pageSize)==0 ){
2729     assert( (pageSize & 7)==0 );
2730     assert( !pBt->pCursor );
2731     pBt->pageSize = (u32)pageSize;
2732     freeTempSpace(pBt);
2733   }
2734   rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2735   pBt->usableSize = pBt->pageSize - (u16)nReserve;
2736   if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2737   sqlite3BtreeLeave(p);
2738   return rc;
2739 }
2740 
2741 /*
2742 ** Return the currently defined page size
2743 */
2744 int sqlite3BtreeGetPageSize(Btree *p){
2745   return p->pBt->pageSize;
2746 }
2747 
2748 /*
2749 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2750 ** may only be called if it is guaranteed that the b-tree mutex is already
2751 ** held.
2752 **
2753 ** This is useful in one special case in the backup API code where it is
2754 ** known that the shared b-tree mutex is held, but the mutex on the
2755 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2756 ** were to be called, it might collide with some other operation on the
2757 ** database handle that owns *p, causing undefined behavior.
2758 */
2759 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2760   int n;
2761   assert( sqlite3_mutex_held(p->pBt->mutex) );
2762   n = p->pBt->pageSize - p->pBt->usableSize;
2763   return n;
2764 }
2765 
2766 /*
2767 ** Return the number of bytes of space at the end of every page that
2768 ** are intentually left unused.  This is the "reserved" space that is
2769 ** sometimes used by extensions.
2770 **
2771 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2772 ** greater of the current reserved space and the maximum requested
2773 ** reserve space.
2774 */
2775 int sqlite3BtreeGetOptimalReserve(Btree *p){
2776   int n;
2777   sqlite3BtreeEnter(p);
2778   n = sqlite3BtreeGetReserveNoMutex(p);
2779 #ifdef SQLITE_HAS_CODEC
2780   if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2781 #endif
2782   sqlite3BtreeLeave(p);
2783   return n;
2784 }
2785 
2786 
2787 /*
2788 ** Set the maximum page count for a database if mxPage is positive.
2789 ** No changes are made if mxPage is 0 or negative.
2790 ** Regardless of the value of mxPage, return the maximum page count.
2791 */
2792 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2793   int n;
2794   sqlite3BtreeEnter(p);
2795   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2796   sqlite3BtreeLeave(p);
2797   return n;
2798 }
2799 
2800 /*
2801 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
2802 ** then make no changes.  Always return the value of the BTS_SECURE_DELETE
2803 ** setting after the change.
2804 */
2805 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2806   int b;
2807   if( p==0 ) return 0;
2808   sqlite3BtreeEnter(p);
2809   if( newFlag>=0 ){
2810     p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2811     if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2812   }
2813   b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2814   sqlite3BtreeLeave(p);
2815   return b;
2816 }
2817 
2818 /*
2819 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2820 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2821 ** is disabled. The default value for the auto-vacuum property is
2822 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2823 */
2824 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2825 #ifdef SQLITE_OMIT_AUTOVACUUM
2826   return SQLITE_READONLY;
2827 #else
2828   BtShared *pBt = p->pBt;
2829   int rc = SQLITE_OK;
2830   u8 av = (u8)autoVacuum;
2831 
2832   sqlite3BtreeEnter(p);
2833   if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2834     rc = SQLITE_READONLY;
2835   }else{
2836     pBt->autoVacuum = av ?1:0;
2837     pBt->incrVacuum = av==2 ?1:0;
2838   }
2839   sqlite3BtreeLeave(p);
2840   return rc;
2841 #endif
2842 }
2843 
2844 /*
2845 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2846 ** enabled 1 is returned. Otherwise 0.
2847 */
2848 int sqlite3BtreeGetAutoVacuum(Btree *p){
2849 #ifdef SQLITE_OMIT_AUTOVACUUM
2850   return BTREE_AUTOVACUUM_NONE;
2851 #else
2852   int rc;
2853   sqlite3BtreeEnter(p);
2854   rc = (
2855     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2856     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2857     BTREE_AUTOVACUUM_INCR
2858   );
2859   sqlite3BtreeLeave(p);
2860   return rc;
2861 #endif
2862 }
2863 
2864 /*
2865 ** If the user has not set the safety-level for this database connection
2866 ** using "PRAGMA synchronous", and if the safety-level is not already
2867 ** set to the value passed to this function as the second parameter,
2868 ** set it so.
2869 */
2870 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2871 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2872   sqlite3 *db;
2873   Db *pDb;
2874   if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2875     while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2876     if( pDb->bSyncSet==0
2877      && pDb->safety_level!=safety_level
2878      && pDb!=&db->aDb[1]
2879     ){
2880       pDb->safety_level = safety_level;
2881       sqlite3PagerSetFlags(pBt->pPager,
2882           pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2883     }
2884   }
2885 }
2886 #else
2887 # define setDefaultSyncFlag(pBt,safety_level)
2888 #endif
2889 
2890 /*
2891 ** Get a reference to pPage1 of the database file.  This will
2892 ** also acquire a readlock on that file.
2893 **
2894 ** SQLITE_OK is returned on success.  If the file is not a
2895 ** well-formed database file, then SQLITE_CORRUPT is returned.
2896 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
2897 ** is returned if we run out of memory.
2898 */
2899 static int lockBtree(BtShared *pBt){
2900   int rc;              /* Result code from subfunctions */
2901   MemPage *pPage1;     /* Page 1 of the database file */
2902   int nPage;           /* Number of pages in the database */
2903   int nPageFile = 0;   /* Number of pages in the database file */
2904   int nPageHeader;     /* Number of pages in the database according to hdr */
2905 
2906   assert( sqlite3_mutex_held(pBt->mutex) );
2907   assert( pBt->pPage1==0 );
2908   rc = sqlite3PagerSharedLock(pBt->pPager);
2909   if( rc!=SQLITE_OK ) return rc;
2910   rc = btreeGetPage(pBt, 1, &pPage1, 0);
2911   if( rc!=SQLITE_OK ) return rc;
2912 
2913   /* Do some checking to help insure the file we opened really is
2914   ** a valid database file.
2915   */
2916   nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2917   sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2918   if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2919     nPage = nPageFile;
2920   }
2921   if( nPage>0 ){
2922     u32 pageSize;
2923     u32 usableSize;
2924     u8 *page1 = pPage1->aData;
2925     rc = SQLITE_NOTADB;
2926     /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2927     ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2928     ** 61 74 20 33 00. */
2929     if( memcmp(page1, zMagicHeader, 16)!=0 ){
2930       goto page1_init_failed;
2931     }
2932 
2933 #ifdef SQLITE_OMIT_WAL
2934     if( page1[18]>1 ){
2935       pBt->btsFlags |= BTS_READ_ONLY;
2936     }
2937     if( page1[19]>1 ){
2938       goto page1_init_failed;
2939     }
2940 #else
2941     if( page1[18]>2 ){
2942       pBt->btsFlags |= BTS_READ_ONLY;
2943     }
2944     if( page1[19]>2 ){
2945       goto page1_init_failed;
2946     }
2947 
2948     /* If the write version is set to 2, this database should be accessed
2949     ** in WAL mode. If the log is not already open, open it now. Then
2950     ** return SQLITE_OK and return without populating BtShared.pPage1.
2951     ** The caller detects this and calls this function again. This is
2952     ** required as the version of page 1 currently in the page1 buffer
2953     ** may not be the latest version - there may be a newer one in the log
2954     ** file.
2955     */
2956     if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2957       int isOpen = 0;
2958       rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2959       if( rc!=SQLITE_OK ){
2960         goto page1_init_failed;
2961       }else{
2962         setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
2963         if( isOpen==0 ){
2964           releasePage(pPage1);
2965           return SQLITE_OK;
2966         }
2967       }
2968       rc = SQLITE_NOTADB;
2969     }else{
2970       setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
2971     }
2972 #endif
2973 
2974     /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2975     ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2976     **
2977     ** The original design allowed these amounts to vary, but as of
2978     ** version 3.6.0, we require them to be fixed.
2979     */
2980     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2981       goto page1_init_failed;
2982     }
2983     /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2984     ** determined by the 2-byte integer located at an offset of 16 bytes from
2985     ** the beginning of the database file. */
2986     pageSize = (page1[16]<<8) | (page1[17]<<16);
2987     /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2988     ** between 512 and 65536 inclusive. */
2989     if( ((pageSize-1)&pageSize)!=0
2990      || pageSize>SQLITE_MAX_PAGE_SIZE
2991      || pageSize<=256
2992     ){
2993       goto page1_init_failed;
2994     }
2995     assert( (pageSize & 7)==0 );
2996     /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2997     ** integer at offset 20 is the number of bytes of space at the end of
2998     ** each page to reserve for extensions.
2999     **
3000     ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3001     ** determined by the one-byte unsigned integer found at an offset of 20
3002     ** into the database file header. */
3003     usableSize = pageSize - page1[20];
3004     if( (u32)pageSize!=pBt->pageSize ){
3005       /* After reading the first page of the database assuming a page size
3006       ** of BtShared.pageSize, we have discovered that the page-size is
3007       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3008       ** zero and return SQLITE_OK. The caller will call this function
3009       ** again with the correct page-size.
3010       */
3011       releasePage(pPage1);
3012       pBt->usableSize = usableSize;
3013       pBt->pageSize = pageSize;
3014       freeTempSpace(pBt);
3015       rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3016                                    pageSize-usableSize);
3017       return rc;
3018     }
3019     if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
3020       rc = SQLITE_CORRUPT_BKPT;
3021       goto page1_init_failed;
3022     }
3023     /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3024     ** be less than 480. In other words, if the page size is 512, then the
3025     ** reserved space size cannot exceed 32. */
3026     if( usableSize<480 ){
3027       goto page1_init_failed;
3028     }
3029     pBt->pageSize = pageSize;
3030     pBt->usableSize = usableSize;
3031 #ifndef SQLITE_OMIT_AUTOVACUUM
3032     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3033     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3034 #endif
3035   }
3036 
3037   /* maxLocal is the maximum amount of payload to store locally for
3038   ** a cell.  Make sure it is small enough so that at least minFanout
3039   ** cells can will fit on one page.  We assume a 10-byte page header.
3040   ** Besides the payload, the cell must store:
3041   **     2-byte pointer to the cell
3042   **     4-byte child pointer
3043   **     9-byte nKey value
3044   **     4-byte nData value
3045   **     4-byte overflow page pointer
3046   ** So a cell consists of a 2-byte pointer, a header which is as much as
3047   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3048   ** page pointer.
3049   */
3050   pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3051   pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3052   pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3053   pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3054   if( pBt->maxLocal>127 ){
3055     pBt->max1bytePayload = 127;
3056   }else{
3057     pBt->max1bytePayload = (u8)pBt->maxLocal;
3058   }
3059   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3060   pBt->pPage1 = pPage1;
3061   pBt->nPage = nPage;
3062   return SQLITE_OK;
3063 
3064 page1_init_failed:
3065   releasePage(pPage1);
3066   pBt->pPage1 = 0;
3067   return rc;
3068 }
3069 
3070 #ifndef NDEBUG
3071 /*
3072 ** Return the number of cursors open on pBt. This is for use
3073 ** in assert() expressions, so it is only compiled if NDEBUG is not
3074 ** defined.
3075 **
3076 ** Only write cursors are counted if wrOnly is true.  If wrOnly is
3077 ** false then all cursors are counted.
3078 **
3079 ** For the purposes of this routine, a cursor is any cursor that
3080 ** is capable of reading or writing to the database.  Cursors that
3081 ** have been tripped into the CURSOR_FAULT state are not counted.
3082 */
3083 static int countValidCursors(BtShared *pBt, int wrOnly){
3084   BtCursor *pCur;
3085   int r = 0;
3086   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3087     if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3088      && pCur->eState!=CURSOR_FAULT ) r++;
3089   }
3090   return r;
3091 }
3092 #endif
3093 
3094 /*
3095 ** If there are no outstanding cursors and we are not in the middle
3096 ** of a transaction but there is a read lock on the database, then
3097 ** this routine unrefs the first page of the database file which
3098 ** has the effect of releasing the read lock.
3099 **
3100 ** If there is a transaction in progress, this routine is a no-op.
3101 */
3102 static void unlockBtreeIfUnused(BtShared *pBt){
3103   assert( sqlite3_mutex_held(pBt->mutex) );
3104   assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3105   if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3106     MemPage *pPage1 = pBt->pPage1;
3107     assert( pPage1->aData );
3108     assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3109     pBt->pPage1 = 0;
3110     releasePageNotNull(pPage1);
3111   }
3112 }
3113 
3114 /*
3115 ** If pBt points to an empty file then convert that empty file
3116 ** into a new empty database by initializing the first page of
3117 ** the database.
3118 */
3119 static int newDatabase(BtShared *pBt){
3120   MemPage *pP1;
3121   unsigned char *data;
3122   int rc;
3123 
3124   assert( sqlite3_mutex_held(pBt->mutex) );
3125   if( pBt->nPage>0 ){
3126     return SQLITE_OK;
3127   }
3128   pP1 = pBt->pPage1;
3129   assert( pP1!=0 );
3130   data = pP1->aData;
3131   rc = sqlite3PagerWrite(pP1->pDbPage);
3132   if( rc ) return rc;
3133   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3134   assert( sizeof(zMagicHeader)==16 );
3135   data[16] = (u8)((pBt->pageSize>>8)&0xff);
3136   data[17] = (u8)((pBt->pageSize>>16)&0xff);
3137   data[18] = 1;
3138   data[19] = 1;
3139   assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3140   data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3141   data[21] = 64;
3142   data[22] = 32;
3143   data[23] = 32;
3144   memset(&data[24], 0, 100-24);
3145   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3146   pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3147 #ifndef SQLITE_OMIT_AUTOVACUUM
3148   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3149   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3150   put4byte(&data[36 + 4*4], pBt->autoVacuum);
3151   put4byte(&data[36 + 7*4], pBt->incrVacuum);
3152 #endif
3153   pBt->nPage = 1;
3154   data[31] = 1;
3155   return SQLITE_OK;
3156 }
3157 
3158 /*
3159 ** Initialize the first page of the database file (creating a database
3160 ** consisting of a single page and no schema objects). Return SQLITE_OK
3161 ** if successful, or an SQLite error code otherwise.
3162 */
3163 int sqlite3BtreeNewDb(Btree *p){
3164   int rc;
3165   sqlite3BtreeEnter(p);
3166   p->pBt->nPage = 0;
3167   rc = newDatabase(p->pBt);
3168   sqlite3BtreeLeave(p);
3169   return rc;
3170 }
3171 
3172 /*
3173 ** Attempt to start a new transaction. A write-transaction
3174 ** is started if the second argument is nonzero, otherwise a read-
3175 ** transaction.  If the second argument is 2 or more and exclusive
3176 ** transaction is started, meaning that no other process is allowed
3177 ** to access the database.  A preexisting transaction may not be
3178 ** upgraded to exclusive by calling this routine a second time - the
3179 ** exclusivity flag only works for a new transaction.
3180 **
3181 ** A write-transaction must be started before attempting any
3182 ** changes to the database.  None of the following routines
3183 ** will work unless a transaction is started first:
3184 **
3185 **      sqlite3BtreeCreateTable()
3186 **      sqlite3BtreeCreateIndex()
3187 **      sqlite3BtreeClearTable()
3188 **      sqlite3BtreeDropTable()
3189 **      sqlite3BtreeInsert()
3190 **      sqlite3BtreeDelete()
3191 **      sqlite3BtreeUpdateMeta()
3192 **
3193 ** If an initial attempt to acquire the lock fails because of lock contention
3194 ** and the database was previously unlocked, then invoke the busy handler
3195 ** if there is one.  But if there was previously a read-lock, do not
3196 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is
3197 ** returned when there is already a read-lock in order to avoid a deadlock.
3198 **
3199 ** Suppose there are two processes A and B.  A has a read lock and B has
3200 ** a reserved lock.  B tries to promote to exclusive but is blocked because
3201 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
3202 ** One or the other of the two processes must give way or there can be
3203 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
3204 ** when A already has a read lock, we encourage A to give up and let B
3205 ** proceed.
3206 */
3207 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3208   BtShared *pBt = p->pBt;
3209   int rc = SQLITE_OK;
3210 
3211   sqlite3BtreeEnter(p);
3212   btreeIntegrity(p);
3213 
3214   /* If the btree is already in a write-transaction, or it
3215   ** is already in a read-transaction and a read-transaction
3216   ** is requested, this is a no-op.
3217   */
3218   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3219     goto trans_begun;
3220   }
3221   assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3222 
3223   /* Write transactions are not possible on a read-only database */
3224   if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3225     rc = SQLITE_READONLY;
3226     goto trans_begun;
3227   }
3228 
3229 #ifndef SQLITE_OMIT_SHARED_CACHE
3230   {
3231     sqlite3 *pBlock = 0;
3232     /* If another database handle has already opened a write transaction
3233     ** on this shared-btree structure and a second write transaction is
3234     ** requested, return SQLITE_LOCKED.
3235     */
3236     if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3237      || (pBt->btsFlags & BTS_PENDING)!=0
3238     ){
3239       pBlock = pBt->pWriter->db;
3240     }else if( wrflag>1 ){
3241       BtLock *pIter;
3242       for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3243         if( pIter->pBtree!=p ){
3244           pBlock = pIter->pBtree->db;
3245           break;
3246         }
3247       }
3248     }
3249     if( pBlock ){
3250       sqlite3ConnectionBlocked(p->db, pBlock);
3251       rc = SQLITE_LOCKED_SHAREDCACHE;
3252       goto trans_begun;
3253     }
3254   }
3255 #endif
3256 
3257   /* Any read-only or read-write transaction implies a read-lock on
3258   ** page 1. So if some other shared-cache client already has a write-lock
3259   ** on page 1, the transaction cannot be opened. */
3260   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3261   if( SQLITE_OK!=rc ) goto trans_begun;
3262 
3263   pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3264   if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3265   do {
3266     /* Call lockBtree() until either pBt->pPage1 is populated or
3267     ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3268     ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3269     ** reading page 1 it discovers that the page-size of the database
3270     ** file is not pBt->pageSize. In this case lockBtree() will update
3271     ** pBt->pageSize to the page-size of the file on disk.
3272     */
3273     while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3274 
3275     if( rc==SQLITE_OK && wrflag ){
3276       if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3277         rc = SQLITE_READONLY;
3278       }else{
3279         rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3280         if( rc==SQLITE_OK ){
3281           rc = newDatabase(pBt);
3282         }
3283       }
3284     }
3285 
3286     if( rc!=SQLITE_OK ){
3287       unlockBtreeIfUnused(pBt);
3288     }
3289   }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3290           btreeInvokeBusyHandler(pBt) );
3291 
3292   if( rc==SQLITE_OK ){
3293     if( p->inTrans==TRANS_NONE ){
3294       pBt->nTransaction++;
3295 #ifndef SQLITE_OMIT_SHARED_CACHE
3296       if( p->sharable ){
3297         assert( p->lock.pBtree==p && p->lock.iTable==1 );
3298         p->lock.eLock = READ_LOCK;
3299         p->lock.pNext = pBt->pLock;
3300         pBt->pLock = &p->lock;
3301       }
3302 #endif
3303     }
3304     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3305     if( p->inTrans>pBt->inTransaction ){
3306       pBt->inTransaction = p->inTrans;
3307     }
3308     if( wrflag ){
3309       MemPage *pPage1 = pBt->pPage1;
3310 #ifndef SQLITE_OMIT_SHARED_CACHE
3311       assert( !pBt->pWriter );
3312       pBt->pWriter = p;
3313       pBt->btsFlags &= ~BTS_EXCLUSIVE;
3314       if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3315 #endif
3316 
3317       /* If the db-size header field is incorrect (as it may be if an old
3318       ** client has been writing the database file), update it now. Doing
3319       ** this sooner rather than later means the database size can safely
3320       ** re-read the database size from page 1 if a savepoint or transaction
3321       ** rollback occurs within the transaction.
3322       */
3323       if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3324         rc = sqlite3PagerWrite(pPage1->pDbPage);
3325         if( rc==SQLITE_OK ){
3326           put4byte(&pPage1->aData[28], pBt->nPage);
3327         }
3328       }
3329     }
3330   }
3331 
3332 
3333 trans_begun:
3334   if( rc==SQLITE_OK && wrflag ){
3335     /* This call makes sure that the pager has the correct number of
3336     ** open savepoints. If the second parameter is greater than 0 and
3337     ** the sub-journal is not already open, then it will be opened here.
3338     */
3339     rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3340   }
3341 
3342   btreeIntegrity(p);
3343   sqlite3BtreeLeave(p);
3344   return rc;
3345 }
3346 
3347 #ifndef SQLITE_OMIT_AUTOVACUUM
3348 
3349 /*
3350 ** Set the pointer-map entries for all children of page pPage. Also, if
3351 ** pPage contains cells that point to overflow pages, set the pointer
3352 ** map entries for the overflow pages as well.
3353 */
3354 static int setChildPtrmaps(MemPage *pPage){
3355   int i;                             /* Counter variable */
3356   int nCell;                         /* Number of cells in page pPage */
3357   int rc;                            /* Return code */
3358   BtShared *pBt = pPage->pBt;
3359   Pgno pgno = pPage->pgno;
3360 
3361   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3362   rc = btreeInitPage(pPage);
3363   if( rc!=SQLITE_OK ) return rc;
3364   nCell = pPage->nCell;
3365 
3366   for(i=0; i<nCell; i++){
3367     u8 *pCell = findCell(pPage, i);
3368 
3369     ptrmapPutOvflPtr(pPage, pCell, &rc);
3370 
3371     if( !pPage->leaf ){
3372       Pgno childPgno = get4byte(pCell);
3373       ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3374     }
3375   }
3376 
3377   if( !pPage->leaf ){
3378     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3379     ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3380   }
3381 
3382   return rc;
3383 }
3384 
3385 /*
3386 ** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
3387 ** that it points to iTo. Parameter eType describes the type of pointer to
3388 ** be modified, as  follows:
3389 **
3390 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child
3391 **                   page of pPage.
3392 **
3393 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3394 **                   page pointed to by one of the cells on pPage.
3395 **
3396 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3397 **                   overflow page in the list.
3398 */
3399 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3400   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3401   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3402   if( eType==PTRMAP_OVERFLOW2 ){
3403     /* The pointer is always the first 4 bytes of the page in this case.  */
3404     if( get4byte(pPage->aData)!=iFrom ){
3405       return SQLITE_CORRUPT_BKPT;
3406     }
3407     put4byte(pPage->aData, iTo);
3408   }else{
3409     int i;
3410     int nCell;
3411     int rc;
3412 
3413     rc = btreeInitPage(pPage);
3414     if( rc ) return rc;
3415     nCell = pPage->nCell;
3416 
3417     for(i=0; i<nCell; i++){
3418       u8 *pCell = findCell(pPage, i);
3419       if( eType==PTRMAP_OVERFLOW1 ){
3420         CellInfo info;
3421         pPage->xParseCell(pPage, pCell, &info);
3422         if( info.nLocal<info.nPayload ){
3423           if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3424             return SQLITE_CORRUPT_BKPT;
3425           }
3426           if( iFrom==get4byte(pCell+info.nSize-4) ){
3427             put4byte(pCell+info.nSize-4, iTo);
3428             break;
3429           }
3430         }
3431       }else{
3432         if( get4byte(pCell)==iFrom ){
3433           put4byte(pCell, iTo);
3434           break;
3435         }
3436       }
3437     }
3438 
3439     if( i==nCell ){
3440       if( eType!=PTRMAP_BTREE ||
3441           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3442         return SQLITE_CORRUPT_BKPT;
3443       }
3444       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3445     }
3446   }
3447   return SQLITE_OK;
3448 }
3449 
3450 
3451 /*
3452 ** Move the open database page pDbPage to location iFreePage in the
3453 ** database. The pDbPage reference remains valid.
3454 **
3455 ** The isCommit flag indicates that there is no need to remember that
3456 ** the journal needs to be sync()ed before database page pDbPage->pgno
3457 ** can be written to. The caller has already promised not to write to that
3458 ** page.
3459 */
3460 static int relocatePage(
3461   BtShared *pBt,           /* Btree */
3462   MemPage *pDbPage,        /* Open page to move */
3463   u8 eType,                /* Pointer map 'type' entry for pDbPage */
3464   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
3465   Pgno iFreePage,          /* The location to move pDbPage to */
3466   int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
3467 ){
3468   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
3469   Pgno iDbPage = pDbPage->pgno;
3470   Pager *pPager = pBt->pPager;
3471   int rc;
3472 
3473   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3474       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3475   assert( sqlite3_mutex_held(pBt->mutex) );
3476   assert( pDbPage->pBt==pBt );
3477 
3478   /* Move page iDbPage from its current location to page number iFreePage */
3479   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3480       iDbPage, iFreePage, iPtrPage, eType));
3481   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3482   if( rc!=SQLITE_OK ){
3483     return rc;
3484   }
3485   pDbPage->pgno = iFreePage;
3486 
3487   /* If pDbPage was a btree-page, then it may have child pages and/or cells
3488   ** that point to overflow pages. The pointer map entries for all these
3489   ** pages need to be changed.
3490   **
3491   ** If pDbPage is an overflow page, then the first 4 bytes may store a
3492   ** pointer to a subsequent overflow page. If this is the case, then
3493   ** the pointer map needs to be updated for the subsequent overflow page.
3494   */
3495   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3496     rc = setChildPtrmaps(pDbPage);
3497     if( rc!=SQLITE_OK ){
3498       return rc;
3499     }
3500   }else{
3501     Pgno nextOvfl = get4byte(pDbPage->aData);
3502     if( nextOvfl!=0 ){
3503       ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3504       if( rc!=SQLITE_OK ){
3505         return rc;
3506       }
3507     }
3508   }
3509 
3510   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3511   ** that it points at iFreePage. Also fix the pointer map entry for
3512   ** iPtrPage.
3513   */
3514   if( eType!=PTRMAP_ROOTPAGE ){
3515     rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3516     if( rc!=SQLITE_OK ){
3517       return rc;
3518     }
3519     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3520     if( rc!=SQLITE_OK ){
3521       releasePage(pPtrPage);
3522       return rc;
3523     }
3524     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3525     releasePage(pPtrPage);
3526     if( rc==SQLITE_OK ){
3527       ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3528     }
3529   }
3530   return rc;
3531 }
3532 
3533 /* Forward declaration required by incrVacuumStep(). */
3534 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3535 
3536 /*
3537 ** Perform a single step of an incremental-vacuum. If successful, return
3538 ** SQLITE_OK. If there is no work to do (and therefore no point in
3539 ** calling this function again), return SQLITE_DONE. Or, if an error
3540 ** occurs, return some other error code.
3541 **
3542 ** More specifically, this function attempts to re-organize the database so
3543 ** that the last page of the file currently in use is no longer in use.
3544 **
3545 ** Parameter nFin is the number of pages that this database would contain
3546 ** were this function called until it returns SQLITE_DONE.
3547 **
3548 ** If the bCommit parameter is non-zero, this function assumes that the
3549 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3550 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3551 ** operation, or false for an incremental vacuum.
3552 */
3553 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3554   Pgno nFreeList;           /* Number of pages still on the free-list */
3555   int rc;
3556 
3557   assert( sqlite3_mutex_held(pBt->mutex) );
3558   assert( iLastPg>nFin );
3559 
3560   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3561     u8 eType;
3562     Pgno iPtrPage;
3563 
3564     nFreeList = get4byte(&pBt->pPage1->aData[36]);
3565     if( nFreeList==0 ){
3566       return SQLITE_DONE;
3567     }
3568 
3569     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3570     if( rc!=SQLITE_OK ){
3571       return rc;
3572     }
3573     if( eType==PTRMAP_ROOTPAGE ){
3574       return SQLITE_CORRUPT_BKPT;
3575     }
3576 
3577     if( eType==PTRMAP_FREEPAGE ){
3578       if( bCommit==0 ){
3579         /* Remove the page from the files free-list. This is not required
3580         ** if bCommit is non-zero. In that case, the free-list will be
3581         ** truncated to zero after this function returns, so it doesn't
3582         ** matter if it still contains some garbage entries.
3583         */
3584         Pgno iFreePg;
3585         MemPage *pFreePg;
3586         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3587         if( rc!=SQLITE_OK ){
3588           return rc;
3589         }
3590         assert( iFreePg==iLastPg );
3591         releasePage(pFreePg);
3592       }
3593     } else {
3594       Pgno iFreePg;             /* Index of free page to move pLastPg to */
3595       MemPage *pLastPg;
3596       u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
3597       Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */
3598 
3599       rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3600       if( rc!=SQLITE_OK ){
3601         return rc;
3602       }
3603 
3604       /* If bCommit is zero, this loop runs exactly once and page pLastPg
3605       ** is swapped with the first free page pulled off the free list.
3606       **
3607       ** On the other hand, if bCommit is greater than zero, then keep
3608       ** looping until a free-page located within the first nFin pages
3609       ** of the file is found.
3610       */
3611       if( bCommit==0 ){
3612         eMode = BTALLOC_LE;
3613         iNear = nFin;
3614       }
3615       do {
3616         MemPage *pFreePg;
3617         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3618         if( rc!=SQLITE_OK ){
3619           releasePage(pLastPg);
3620           return rc;
3621         }
3622         releasePage(pFreePg);
3623       }while( bCommit && iFreePg>nFin );
3624       assert( iFreePg<iLastPg );
3625 
3626       rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3627       releasePage(pLastPg);
3628       if( rc!=SQLITE_OK ){
3629         return rc;
3630       }
3631     }
3632   }
3633 
3634   if( bCommit==0 ){
3635     do {
3636       iLastPg--;
3637     }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3638     pBt->bDoTruncate = 1;
3639     pBt->nPage = iLastPg;
3640   }
3641   return SQLITE_OK;
3642 }
3643 
3644 /*
3645 ** The database opened by the first argument is an auto-vacuum database
3646 ** nOrig pages in size containing nFree free pages. Return the expected
3647 ** size of the database in pages following an auto-vacuum operation.
3648 */
3649 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3650   int nEntry;                     /* Number of entries on one ptrmap page */
3651   Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
3652   Pgno nFin;                      /* Return value */
3653 
3654   nEntry = pBt->usableSize/5;
3655   nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3656   nFin = nOrig - nFree - nPtrmap;
3657   if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3658     nFin--;
3659   }
3660   while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3661     nFin--;
3662   }
3663 
3664   return nFin;
3665 }
3666 
3667 /*
3668 ** A write-transaction must be opened before calling this function.
3669 ** It performs a single unit of work towards an incremental vacuum.
3670 **
3671 ** If the incremental vacuum is finished after this function has run,
3672 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3673 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3674 */
3675 int sqlite3BtreeIncrVacuum(Btree *p){
3676   int rc;
3677   BtShared *pBt = p->pBt;
3678 
3679   sqlite3BtreeEnter(p);
3680   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3681   if( !pBt->autoVacuum ){
3682     rc = SQLITE_DONE;
3683   }else{
3684     Pgno nOrig = btreePagecount(pBt);
3685     Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3686     Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3687 
3688     if( nOrig<nFin ){
3689       rc = SQLITE_CORRUPT_BKPT;
3690     }else if( nFree>0 ){
3691       rc = saveAllCursors(pBt, 0, 0);
3692       if( rc==SQLITE_OK ){
3693         invalidateAllOverflowCache(pBt);
3694         rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3695       }
3696       if( rc==SQLITE_OK ){
3697         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3698         put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3699       }
3700     }else{
3701       rc = SQLITE_DONE;
3702     }
3703   }
3704   sqlite3BtreeLeave(p);
3705   return rc;
3706 }
3707 
3708 /*
3709 ** This routine is called prior to sqlite3PagerCommit when a transaction
3710 ** is committed for an auto-vacuum database.
3711 **
3712 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3713 ** the database file should be truncated to during the commit process.
3714 ** i.e. the database has been reorganized so that only the first *pnTrunc
3715 ** pages are in use.
3716 */
3717 static int autoVacuumCommit(BtShared *pBt){
3718   int rc = SQLITE_OK;
3719   Pager *pPager = pBt->pPager;
3720   VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3721 
3722   assert( sqlite3_mutex_held(pBt->mutex) );
3723   invalidateAllOverflowCache(pBt);
3724   assert(pBt->autoVacuum);
3725   if( !pBt->incrVacuum ){
3726     Pgno nFin;         /* Number of pages in database after autovacuuming */
3727     Pgno nFree;        /* Number of pages on the freelist initially */
3728     Pgno iFree;        /* The next page to be freed */
3729     Pgno nOrig;        /* Database size before freeing */
3730 
3731     nOrig = btreePagecount(pBt);
3732     if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3733       /* It is not possible to create a database for which the final page
3734       ** is either a pointer-map page or the pending-byte page. If one
3735       ** is encountered, this indicates corruption.
3736       */
3737       return SQLITE_CORRUPT_BKPT;
3738     }
3739 
3740     nFree = get4byte(&pBt->pPage1->aData[36]);
3741     nFin = finalDbSize(pBt, nOrig, nFree);
3742     if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3743     if( nFin<nOrig ){
3744       rc = saveAllCursors(pBt, 0, 0);
3745     }
3746     for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3747       rc = incrVacuumStep(pBt, nFin, iFree, 1);
3748     }
3749     if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3750       rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3751       put4byte(&pBt->pPage1->aData[32], 0);
3752       put4byte(&pBt->pPage1->aData[36], 0);
3753       put4byte(&pBt->pPage1->aData[28], nFin);
3754       pBt->bDoTruncate = 1;
3755       pBt->nPage = nFin;
3756     }
3757     if( rc!=SQLITE_OK ){
3758       sqlite3PagerRollback(pPager);
3759     }
3760   }
3761 
3762   assert( nRef>=sqlite3PagerRefcount(pPager) );
3763   return rc;
3764 }
3765 
3766 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3767 # define setChildPtrmaps(x) SQLITE_OK
3768 #endif
3769 
3770 /*
3771 ** This routine does the first phase of a two-phase commit.  This routine
3772 ** causes a rollback journal to be created (if it does not already exist)
3773 ** and populated with enough information so that if a power loss occurs
3774 ** the database can be restored to its original state by playing back
3775 ** the journal.  Then the contents of the journal are flushed out to
3776 ** the disk.  After the journal is safely on oxide, the changes to the
3777 ** database are written into the database file and flushed to oxide.
3778 ** At the end of this call, the rollback journal still exists on the
3779 ** disk and we are still holding all locks, so the transaction has not
3780 ** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3781 ** commit process.
3782 **
3783 ** This call is a no-op if no write-transaction is currently active on pBt.
3784 **
3785 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3786 ** the name of a master journal file that should be written into the
3787 ** individual journal file, or is NULL, indicating no master journal file
3788 ** (single database transaction).
3789 **
3790 ** When this is called, the master journal should already have been
3791 ** created, populated with this journal pointer and synced to disk.
3792 **
3793 ** Once this is routine has returned, the only thing required to commit
3794 ** the write-transaction for this database file is to delete the journal.
3795 */
3796 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3797   int rc = SQLITE_OK;
3798   if( p->inTrans==TRANS_WRITE ){
3799     BtShared *pBt = p->pBt;
3800     sqlite3BtreeEnter(p);
3801 #ifndef SQLITE_OMIT_AUTOVACUUM
3802     if( pBt->autoVacuum ){
3803       rc = autoVacuumCommit(pBt);
3804       if( rc!=SQLITE_OK ){
3805         sqlite3BtreeLeave(p);
3806         return rc;
3807       }
3808     }
3809     if( pBt->bDoTruncate ){
3810       sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3811     }
3812 #endif
3813     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3814     sqlite3BtreeLeave(p);
3815   }
3816   return rc;
3817 }
3818 
3819 /*
3820 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3821 ** at the conclusion of a transaction.
3822 */
3823 static void btreeEndTransaction(Btree *p){
3824   BtShared *pBt = p->pBt;
3825   sqlite3 *db = p->db;
3826   assert( sqlite3BtreeHoldsMutex(p) );
3827 
3828 #ifndef SQLITE_OMIT_AUTOVACUUM
3829   pBt->bDoTruncate = 0;
3830 #endif
3831   if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3832     /* If there are other active statements that belong to this database
3833     ** handle, downgrade to a read-only transaction. The other statements
3834     ** may still be reading from the database.  */
3835     downgradeAllSharedCacheTableLocks(p);
3836     p->inTrans = TRANS_READ;
3837   }else{
3838     /* If the handle had any kind of transaction open, decrement the
3839     ** transaction count of the shared btree. If the transaction count
3840     ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3841     ** call below will unlock the pager.  */
3842     if( p->inTrans!=TRANS_NONE ){
3843       clearAllSharedCacheTableLocks(p);
3844       pBt->nTransaction--;
3845       if( 0==pBt->nTransaction ){
3846         pBt->inTransaction = TRANS_NONE;
3847       }
3848     }
3849 
3850     /* Set the current transaction state to TRANS_NONE and unlock the
3851     ** pager if this call closed the only read or write transaction.  */
3852     p->inTrans = TRANS_NONE;
3853     unlockBtreeIfUnused(pBt);
3854   }
3855 
3856   btreeIntegrity(p);
3857 }
3858 
3859 /*
3860 ** Commit the transaction currently in progress.
3861 **
3862 ** This routine implements the second phase of a 2-phase commit.  The
3863 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3864 ** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
3865 ** routine did all the work of writing information out to disk and flushing the
3866 ** contents so that they are written onto the disk platter.  All this
3867 ** routine has to do is delete or truncate or zero the header in the
3868 ** the rollback journal (which causes the transaction to commit) and
3869 ** drop locks.
3870 **
3871 ** Normally, if an error occurs while the pager layer is attempting to
3872 ** finalize the underlying journal file, this function returns an error and
3873 ** the upper layer will attempt a rollback. However, if the second argument
3874 ** is non-zero then this b-tree transaction is part of a multi-file
3875 ** transaction. In this case, the transaction has already been committed
3876 ** (by deleting a master journal file) and the caller will ignore this
3877 ** functions return code. So, even if an error occurs in the pager layer,
3878 ** reset the b-tree objects internal state to indicate that the write
3879 ** transaction has been closed. This is quite safe, as the pager will have
3880 ** transitioned to the error state.
3881 **
3882 ** This will release the write lock on the database file.  If there
3883 ** are no active cursors, it also releases the read lock.
3884 */
3885 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3886 
3887   if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3888   sqlite3BtreeEnter(p);
3889   btreeIntegrity(p);
3890 
3891   /* If the handle has a write-transaction open, commit the shared-btrees
3892   ** transaction and set the shared state to TRANS_READ.
3893   */
3894   if( p->inTrans==TRANS_WRITE ){
3895     int rc;
3896     BtShared *pBt = p->pBt;
3897     assert( pBt->inTransaction==TRANS_WRITE );
3898     assert( pBt->nTransaction>0 );
3899     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3900     if( rc!=SQLITE_OK && bCleanup==0 ){
3901       sqlite3BtreeLeave(p);
3902       return rc;
3903     }
3904     p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
3905     pBt->inTransaction = TRANS_READ;
3906     btreeClearHasContent(pBt);
3907   }
3908 
3909   btreeEndTransaction(p);
3910   sqlite3BtreeLeave(p);
3911   return SQLITE_OK;
3912 }
3913 
3914 /*
3915 ** Do both phases of a commit.
3916 */
3917 int sqlite3BtreeCommit(Btree *p){
3918   int rc;
3919   sqlite3BtreeEnter(p);
3920   rc = sqlite3BtreeCommitPhaseOne(p, 0);
3921   if( rc==SQLITE_OK ){
3922     rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3923   }
3924   sqlite3BtreeLeave(p);
3925   return rc;
3926 }
3927 
3928 /*
3929 ** This routine sets the state to CURSOR_FAULT and the error
3930 ** code to errCode for every cursor on any BtShared that pBtree
3931 ** references.  Or if the writeOnly flag is set to 1, then only
3932 ** trip write cursors and leave read cursors unchanged.
3933 **
3934 ** Every cursor is a candidate to be tripped, including cursors
3935 ** that belong to other database connections that happen to be
3936 ** sharing the cache with pBtree.
3937 **
3938 ** This routine gets called when a rollback occurs. If the writeOnly
3939 ** flag is true, then only write-cursors need be tripped - read-only
3940 ** cursors save their current positions so that they may continue
3941 ** following the rollback. Or, if writeOnly is false, all cursors are
3942 ** tripped. In general, writeOnly is false if the transaction being
3943 ** rolled back modified the database schema. In this case b-tree root
3944 ** pages may be moved or deleted from the database altogether, making
3945 ** it unsafe for read cursors to continue.
3946 **
3947 ** If the writeOnly flag is true and an error is encountered while
3948 ** saving the current position of a read-only cursor, all cursors,
3949 ** including all read-cursors are tripped.
3950 **
3951 ** SQLITE_OK is returned if successful, or if an error occurs while
3952 ** saving a cursor position, an SQLite error code.
3953 */
3954 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3955   BtCursor *p;
3956   int rc = SQLITE_OK;
3957 
3958   assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3959   if( pBtree ){
3960     sqlite3BtreeEnter(pBtree);
3961     for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3962       int i;
3963       if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3964         if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
3965           rc = saveCursorPosition(p);
3966           if( rc!=SQLITE_OK ){
3967             (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3968             break;
3969           }
3970         }
3971       }else{
3972         sqlite3BtreeClearCursor(p);
3973         p->eState = CURSOR_FAULT;
3974         p->skipNext = errCode;
3975       }
3976       for(i=0; i<=p->iPage; i++){
3977         releasePage(p->apPage[i]);
3978         p->apPage[i] = 0;
3979       }
3980     }
3981     sqlite3BtreeLeave(pBtree);
3982   }
3983   return rc;
3984 }
3985 
3986 /*
3987 ** Rollback the transaction in progress.
3988 **
3989 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3990 ** Only write cursors are tripped if writeOnly is true but all cursors are
3991 ** tripped if writeOnly is false.  Any attempt to use
3992 ** a tripped cursor will result in an error.
3993 **
3994 ** This will release the write lock on the database file.  If there
3995 ** are no active cursors, it also releases the read lock.
3996 */
3997 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3998   int rc;
3999   BtShared *pBt = p->pBt;
4000   MemPage *pPage1;
4001 
4002   assert( writeOnly==1 || writeOnly==0 );
4003   assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4004   sqlite3BtreeEnter(p);
4005   if( tripCode==SQLITE_OK ){
4006     rc = tripCode = saveAllCursors(pBt, 0, 0);
4007     if( rc ) writeOnly = 0;
4008   }else{
4009     rc = SQLITE_OK;
4010   }
4011   if( tripCode ){
4012     int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4013     assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4014     if( rc2!=SQLITE_OK ) rc = rc2;
4015   }
4016   btreeIntegrity(p);
4017 
4018   if( p->inTrans==TRANS_WRITE ){
4019     int rc2;
4020 
4021     assert( TRANS_WRITE==pBt->inTransaction );
4022     rc2 = sqlite3PagerRollback(pBt->pPager);
4023     if( rc2!=SQLITE_OK ){
4024       rc = rc2;
4025     }
4026 
4027     /* The rollback may have destroyed the pPage1->aData value.  So
4028     ** call btreeGetPage() on page 1 again to make
4029     ** sure pPage1->aData is set correctly. */
4030     if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4031       int nPage = get4byte(28+(u8*)pPage1->aData);
4032       testcase( nPage==0 );
4033       if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4034       testcase( pBt->nPage!=nPage );
4035       pBt->nPage = nPage;
4036       releasePage(pPage1);
4037     }
4038     assert( countValidCursors(pBt, 1)==0 );
4039     pBt->inTransaction = TRANS_READ;
4040     btreeClearHasContent(pBt);
4041   }
4042 
4043   btreeEndTransaction(p);
4044   sqlite3BtreeLeave(p);
4045   return rc;
4046 }
4047 
4048 /*
4049 ** Start a statement subtransaction. The subtransaction can be rolled
4050 ** back independently of the main transaction. You must start a transaction
4051 ** before starting a subtransaction. The subtransaction is ended automatically
4052 ** if the main transaction commits or rolls back.
4053 **
4054 ** Statement subtransactions are used around individual SQL statements
4055 ** that are contained within a BEGIN...COMMIT block.  If a constraint
4056 ** error occurs within the statement, the effect of that one statement
4057 ** can be rolled back without having to rollback the entire transaction.
4058 **
4059 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4060 ** value passed as the second parameter is the total number of savepoints,
4061 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4062 ** are no active savepoints and no other statement-transactions open,
4063 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4064 ** using the sqlite3BtreeSavepoint() function.
4065 */
4066 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4067   int rc;
4068   BtShared *pBt = p->pBt;
4069   sqlite3BtreeEnter(p);
4070   assert( p->inTrans==TRANS_WRITE );
4071   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4072   assert( iStatement>0 );
4073   assert( iStatement>p->db->nSavepoint );
4074   assert( pBt->inTransaction==TRANS_WRITE );
4075   /* At the pager level, a statement transaction is a savepoint with
4076   ** an index greater than all savepoints created explicitly using
4077   ** SQL statements. It is illegal to open, release or rollback any
4078   ** such savepoints while the statement transaction savepoint is active.
4079   */
4080   rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4081   sqlite3BtreeLeave(p);
4082   return rc;
4083 }
4084 
4085 /*
4086 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4087 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4088 ** savepoint identified by parameter iSavepoint, depending on the value
4089 ** of op.
4090 **
4091 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4092 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4093 ** contents of the entire transaction are rolled back. This is different
4094 ** from a normal transaction rollback, as no locks are released and the
4095 ** transaction remains open.
4096 */
4097 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4098   int rc = SQLITE_OK;
4099   if( p && p->inTrans==TRANS_WRITE ){
4100     BtShared *pBt = p->pBt;
4101     assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4102     assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4103     sqlite3BtreeEnter(p);
4104     if( op==SAVEPOINT_ROLLBACK ){
4105       rc = saveAllCursors(pBt, 0, 0);
4106     }
4107     if( rc==SQLITE_OK ){
4108       rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4109     }
4110     if( rc==SQLITE_OK ){
4111       if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4112         pBt->nPage = 0;
4113       }
4114       rc = newDatabase(pBt);
4115       pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4116 
4117       /* The database size was written into the offset 28 of the header
4118       ** when the transaction started, so we know that the value at offset
4119       ** 28 is nonzero. */
4120       assert( pBt->nPage>0 );
4121     }
4122     sqlite3BtreeLeave(p);
4123   }
4124   return rc;
4125 }
4126 
4127 /*
4128 ** Create a new cursor for the BTree whose root is on the page
4129 ** iTable. If a read-only cursor is requested, it is assumed that
4130 ** the caller already has at least a read-only transaction open
4131 ** on the database already. If a write-cursor is requested, then
4132 ** the caller is assumed to have an open write transaction.
4133 **
4134 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4135 ** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
4136 ** can be used for reading or for writing if other conditions for writing
4137 ** are also met.  These are the conditions that must be met in order
4138 ** for writing to be allowed:
4139 **
4140 ** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
4141 **
4142 ** 2:  Other database connections that share the same pager cache
4143 **     but which are not in the READ_UNCOMMITTED state may not have
4144 **     cursors open with wrFlag==0 on the same table.  Otherwise
4145 **     the changes made by this write cursor would be visible to
4146 **     the read cursors in the other database connection.
4147 **
4148 ** 3:  The database must be writable (not on read-only media)
4149 **
4150 ** 4:  There must be an active transaction.
4151 **
4152 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4153 ** is set.  If FORDELETE is set, that is a hint to the implementation that
4154 ** this cursor will only be used to seek to and delete entries of an index
4155 ** as part of a larger DELETE statement.  The FORDELETE hint is not used by
4156 ** this implementation.  But in a hypothetical alternative storage engine
4157 ** in which index entries are automatically deleted when corresponding table
4158 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4159 ** operations on this cursor can be no-ops and all READ operations can
4160 ** return a null row (2-bytes: 0x01 0x00).
4161 **
4162 ** No checking is done to make sure that page iTable really is the
4163 ** root page of a b-tree.  If it is not, then the cursor acquired
4164 ** will not work correctly.
4165 **
4166 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4167 ** on pCur to initialize the memory space prior to invoking this routine.
4168 */
4169 static int btreeCursor(
4170   Btree *p,                              /* The btree */
4171   int iTable,                            /* Root page of table to open */
4172   int wrFlag,                            /* 1 to write. 0 read-only */
4173   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
4174   BtCursor *pCur                         /* Space for new cursor */
4175 ){
4176   BtShared *pBt = p->pBt;                /* Shared b-tree handle */
4177   BtCursor *pX;                          /* Looping over other all cursors */
4178 
4179   assert( sqlite3BtreeHoldsMutex(p) );
4180   assert( wrFlag==0
4181        || wrFlag==BTREE_WRCSR
4182        || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4183   );
4184 
4185   /* The following assert statements verify that if this is a sharable
4186   ** b-tree database, the connection is holding the required table locks,
4187   ** and that no other connection has any open cursor that conflicts with
4188   ** this lock.  */
4189   assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4190   assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4191 
4192   /* Assert that the caller has opened the required transaction. */
4193   assert( p->inTrans>TRANS_NONE );
4194   assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4195   assert( pBt->pPage1 && pBt->pPage1->aData );
4196   assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4197 
4198   if( wrFlag ){
4199     allocateTempSpace(pBt);
4200     if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4201   }
4202   if( iTable==1 && btreePagecount(pBt)==0 ){
4203     assert( wrFlag==0 );
4204     iTable = 0;
4205   }
4206 
4207   /* Now that no other errors can occur, finish filling in the BtCursor
4208   ** variables and link the cursor into the BtShared list.  */
4209   pCur->pgnoRoot = (Pgno)iTable;
4210   pCur->iPage = -1;
4211   pCur->pKeyInfo = pKeyInfo;
4212   pCur->pBtree = p;
4213   pCur->pBt = pBt;
4214   pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4215   pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4216   /* If there are two or more cursors on the same btree, then all such
4217   ** cursors *must* have the BTCF_Multiple flag set. */
4218   for(pX=pBt->pCursor; pX; pX=pX->pNext){
4219     if( pX->pgnoRoot==(Pgno)iTable ){
4220       pX->curFlags |= BTCF_Multiple;
4221       pCur->curFlags |= BTCF_Multiple;
4222     }
4223   }
4224   pCur->pNext = pBt->pCursor;
4225   pBt->pCursor = pCur;
4226   pCur->eState = CURSOR_INVALID;
4227   return SQLITE_OK;
4228 }
4229 int sqlite3BtreeCursor(
4230   Btree *p,                                   /* The btree */
4231   int iTable,                                 /* Root page of table to open */
4232   int wrFlag,                                 /* 1 to write. 0 read-only */
4233   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
4234   BtCursor *pCur                              /* Write new cursor here */
4235 ){
4236   int rc;
4237   if( iTable<1 ){
4238     rc = SQLITE_CORRUPT_BKPT;
4239   }else{
4240     sqlite3BtreeEnter(p);
4241     rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4242     sqlite3BtreeLeave(p);
4243   }
4244   return rc;
4245 }
4246 
4247 /*
4248 ** Return the size of a BtCursor object in bytes.
4249 **
4250 ** This interfaces is needed so that users of cursors can preallocate
4251 ** sufficient storage to hold a cursor.  The BtCursor object is opaque
4252 ** to users so they cannot do the sizeof() themselves - they must call
4253 ** this routine.
4254 */
4255 int sqlite3BtreeCursorSize(void){
4256   return ROUND8(sizeof(BtCursor));
4257 }
4258 
4259 /*
4260 ** Initialize memory that will be converted into a BtCursor object.
4261 **
4262 ** The simple approach here would be to memset() the entire object
4263 ** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
4264 ** do not need to be zeroed and they are large, so we can save a lot
4265 ** of run-time by skipping the initialization of those elements.
4266 */
4267 void sqlite3BtreeCursorZero(BtCursor *p){
4268   memset(p, 0, offsetof(BtCursor, iPage));
4269 }
4270 
4271 /*
4272 ** Close a cursor.  The read lock on the database file is released
4273 ** when the last cursor is closed.
4274 */
4275 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4276   Btree *pBtree = pCur->pBtree;
4277   if( pBtree ){
4278     int i;
4279     BtShared *pBt = pCur->pBt;
4280     sqlite3BtreeEnter(pBtree);
4281     sqlite3BtreeClearCursor(pCur);
4282     assert( pBt->pCursor!=0 );
4283     if( pBt->pCursor==pCur ){
4284       pBt->pCursor = pCur->pNext;
4285     }else{
4286       BtCursor *pPrev = pBt->pCursor;
4287       do{
4288         if( pPrev->pNext==pCur ){
4289           pPrev->pNext = pCur->pNext;
4290           break;
4291         }
4292         pPrev = pPrev->pNext;
4293       }while( ALWAYS(pPrev) );
4294     }
4295     for(i=0; i<=pCur->iPage; i++){
4296       releasePage(pCur->apPage[i]);
4297     }
4298     unlockBtreeIfUnused(pBt);
4299     sqlite3_free(pCur->aOverflow);
4300     /* sqlite3_free(pCur); */
4301     sqlite3BtreeLeave(pBtree);
4302   }
4303   return SQLITE_OK;
4304 }
4305 
4306 /*
4307 ** Make sure the BtCursor* given in the argument has a valid
4308 ** BtCursor.info structure.  If it is not already valid, call
4309 ** btreeParseCell() to fill it in.
4310 **
4311 ** BtCursor.info is a cache of the information in the current cell.
4312 ** Using this cache reduces the number of calls to btreeParseCell().
4313 */
4314 #ifndef NDEBUG
4315   static void assertCellInfo(BtCursor *pCur){
4316     CellInfo info;
4317     int iPage = pCur->iPage;
4318     memset(&info, 0, sizeof(info));
4319     btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
4320     assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4321   }
4322 #else
4323   #define assertCellInfo(x)
4324 #endif
4325 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4326   if( pCur->info.nSize==0 ){
4327     int iPage = pCur->iPage;
4328     pCur->curFlags |= BTCF_ValidNKey;
4329     btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4330   }else{
4331     assertCellInfo(pCur);
4332   }
4333 }
4334 
4335 #ifndef NDEBUG  /* The next routine used only within assert() statements */
4336 /*
4337 ** Return true if the given BtCursor is valid.  A valid cursor is one
4338 ** that is currently pointing to a row in a (non-empty) table.
4339 ** This is a verification routine is used only within assert() statements.
4340 */
4341 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4342   return pCur && pCur->eState==CURSOR_VALID;
4343 }
4344 #endif /* NDEBUG */
4345 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4346   assert( pCur!=0 );
4347   return pCur->eState==CURSOR_VALID;
4348 }
4349 
4350 /*
4351 ** Return the value of the integer key or "rowid" for a table btree.
4352 ** This routine is only valid for a cursor that is pointing into a
4353 ** ordinary table btree.  If the cursor points to an index btree or
4354 ** is invalid, the result of this routine is undefined.
4355 */
4356 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4357   assert( cursorHoldsMutex(pCur) );
4358   assert( pCur->eState==CURSOR_VALID );
4359   assert( pCur->curIntKey );
4360   getCellInfo(pCur);
4361   return pCur->info.nKey;
4362 }
4363 
4364 /*
4365 ** Return the number of bytes of payload for the entry that pCur is
4366 ** currently pointing to.  For table btrees, this will be the amount
4367 ** of data.  For index btrees, this will be the size of the key.
4368 **
4369 ** The caller must guarantee that the cursor is pointing to a non-NULL
4370 ** valid entry.  In other words, the calling procedure must guarantee
4371 ** that the cursor has Cursor.eState==CURSOR_VALID.
4372 */
4373 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4374   assert( cursorHoldsMutex(pCur) );
4375   assert( pCur->eState==CURSOR_VALID );
4376   getCellInfo(pCur);
4377   return pCur->info.nPayload;
4378 }
4379 
4380 /*
4381 ** Given the page number of an overflow page in the database (parameter
4382 ** ovfl), this function finds the page number of the next page in the
4383 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4384 ** pointer-map data instead of reading the content of page ovfl to do so.
4385 **
4386 ** If an error occurs an SQLite error code is returned. Otherwise:
4387 **
4388 ** The page number of the next overflow page in the linked list is
4389 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4390 ** list, *pPgnoNext is set to zero.
4391 **
4392 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4393 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4394 ** reference. It is the responsibility of the caller to call releasePage()
4395 ** on *ppPage to free the reference. In no reference was obtained (because
4396 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4397 ** *ppPage is set to zero.
4398 */
4399 static int getOverflowPage(
4400   BtShared *pBt,               /* The database file */
4401   Pgno ovfl,                   /* Current overflow page number */
4402   MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
4403   Pgno *pPgnoNext              /* OUT: Next overflow page number */
4404 ){
4405   Pgno next = 0;
4406   MemPage *pPage = 0;
4407   int rc = SQLITE_OK;
4408 
4409   assert( sqlite3_mutex_held(pBt->mutex) );
4410   assert(pPgnoNext);
4411 
4412 #ifndef SQLITE_OMIT_AUTOVACUUM
4413   /* Try to find the next page in the overflow list using the
4414   ** autovacuum pointer-map pages. Guess that the next page in
4415   ** the overflow list is page number (ovfl+1). If that guess turns
4416   ** out to be wrong, fall back to loading the data of page
4417   ** number ovfl to determine the next page number.
4418   */
4419   if( pBt->autoVacuum ){
4420     Pgno pgno;
4421     Pgno iGuess = ovfl+1;
4422     u8 eType;
4423 
4424     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4425       iGuess++;
4426     }
4427 
4428     if( iGuess<=btreePagecount(pBt) ){
4429       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4430       if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4431         next = iGuess;
4432         rc = SQLITE_DONE;
4433       }
4434     }
4435   }
4436 #endif
4437 
4438   assert( next==0 || rc==SQLITE_DONE );
4439   if( rc==SQLITE_OK ){
4440     rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4441     assert( rc==SQLITE_OK || pPage==0 );
4442     if( rc==SQLITE_OK ){
4443       next = get4byte(pPage->aData);
4444     }
4445   }
4446 
4447   *pPgnoNext = next;
4448   if( ppPage ){
4449     *ppPage = pPage;
4450   }else{
4451     releasePage(pPage);
4452   }
4453   return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4454 }
4455 
4456 /*
4457 ** Copy data from a buffer to a page, or from a page to a buffer.
4458 **
4459 ** pPayload is a pointer to data stored on database page pDbPage.
4460 ** If argument eOp is false, then nByte bytes of data are copied
4461 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4462 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4463 ** of data are copied from the buffer pBuf to pPayload.
4464 **
4465 ** SQLITE_OK is returned on success, otherwise an error code.
4466 */
4467 static int copyPayload(
4468   void *pPayload,           /* Pointer to page data */
4469   void *pBuf,               /* Pointer to buffer */
4470   int nByte,                /* Number of bytes to copy */
4471   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
4472   DbPage *pDbPage           /* Page containing pPayload */
4473 ){
4474   if( eOp ){
4475     /* Copy data from buffer to page (a write operation) */
4476     int rc = sqlite3PagerWrite(pDbPage);
4477     if( rc!=SQLITE_OK ){
4478       return rc;
4479     }
4480     memcpy(pPayload, pBuf, nByte);
4481   }else{
4482     /* Copy data from page to buffer (a read operation) */
4483     memcpy(pBuf, pPayload, nByte);
4484   }
4485   return SQLITE_OK;
4486 }
4487 
4488 /*
4489 ** This function is used to read or overwrite payload information
4490 ** for the entry that the pCur cursor is pointing to. The eOp
4491 ** argument is interpreted as follows:
4492 **
4493 **   0: The operation is a read. Populate the overflow cache.
4494 **   1: The operation is a write. Populate the overflow cache.
4495 **
4496 ** A total of "amt" bytes are read or written beginning at "offset".
4497 ** Data is read to or from the buffer pBuf.
4498 **
4499 ** The content being read or written might appear on the main page
4500 ** or be scattered out on multiple overflow pages.
4501 **
4502 ** If the current cursor entry uses one or more overflow pages
4503 ** this function may allocate space for and lazily populate
4504 ** the overflow page-list cache array (BtCursor.aOverflow).
4505 ** Subsequent calls use this cache to make seeking to the supplied offset
4506 ** more efficient.
4507 **
4508 ** Once an overflow page-list cache has been allocated, it must be
4509 ** invalidated if some other cursor writes to the same table, or if
4510 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4511 ** mode, the following events may invalidate an overflow page-list cache.
4512 **
4513 **   * An incremental vacuum,
4514 **   * A commit in auto_vacuum="full" mode,
4515 **   * Creating a table (may require moving an overflow page).
4516 */
4517 static int accessPayload(
4518   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4519   u32 offset,          /* Begin reading this far into payload */
4520   u32 amt,             /* Read this many bytes */
4521   unsigned char *pBuf, /* Write the bytes into this buffer */
4522   int eOp              /* zero to read. non-zero to write. */
4523 ){
4524   unsigned char *aPayload;
4525   int rc = SQLITE_OK;
4526   int iIdx = 0;
4527   MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4528   BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
4529 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4530   unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
4531 #endif
4532 
4533   assert( pPage );
4534   assert( eOp==0 || eOp==1 );
4535   assert( pCur->eState==CURSOR_VALID );
4536   assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4537   assert( cursorHoldsMutex(pCur) );
4538 
4539   getCellInfo(pCur);
4540   aPayload = pCur->info.pPayload;
4541   assert( offset+amt <= pCur->info.nPayload );
4542 
4543   assert( aPayload > pPage->aData );
4544   if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4545     /* Trying to read or write past the end of the data is an error.  The
4546     ** conditional above is really:
4547     **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4548     ** but is recast into its current form to avoid integer overflow problems
4549     */
4550     return SQLITE_CORRUPT_BKPT;
4551   }
4552 
4553   /* Check if data must be read/written to/from the btree page itself. */
4554   if( offset<pCur->info.nLocal ){
4555     int a = amt;
4556     if( a+offset>pCur->info.nLocal ){
4557       a = pCur->info.nLocal - offset;
4558     }
4559     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4560     offset = 0;
4561     pBuf += a;
4562     amt -= a;
4563   }else{
4564     offset -= pCur->info.nLocal;
4565   }
4566 
4567 
4568   if( rc==SQLITE_OK && amt>0 ){
4569     const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
4570     Pgno nextPage;
4571 
4572     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4573 
4574     /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4575     **
4576     ** The aOverflow[] array is sized at one entry for each overflow page
4577     ** in the overflow chain. The page number of the first overflow page is
4578     ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4579     ** means "not yet known" (the cache is lazily populated).
4580     */
4581     if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4582       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4583       if( nOvfl>pCur->nOvflAlloc ){
4584         Pgno *aNew = (Pgno*)sqlite3Realloc(
4585             pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4586         );
4587         if( aNew==0 ){
4588           return SQLITE_NOMEM_BKPT;
4589         }else{
4590           pCur->nOvflAlloc = nOvfl*2;
4591           pCur->aOverflow = aNew;
4592         }
4593       }
4594       memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4595       pCur->curFlags |= BTCF_ValidOvfl;
4596     }else{
4597       /* If the overflow page-list cache has been allocated and the
4598       ** entry for the first required overflow page is valid, skip
4599       ** directly to it.
4600       */
4601       if( pCur->aOverflow[offset/ovflSize] ){
4602         iIdx = (offset/ovflSize);
4603         nextPage = pCur->aOverflow[iIdx];
4604         offset = (offset%ovflSize);
4605       }
4606     }
4607 
4608     assert( rc==SQLITE_OK && amt>0 );
4609     while( nextPage ){
4610       /* If required, populate the overflow page-list cache. */
4611       assert( pCur->aOverflow[iIdx]==0
4612               || pCur->aOverflow[iIdx]==nextPage
4613               || CORRUPT_DB );
4614       pCur->aOverflow[iIdx] = nextPage;
4615 
4616       if( offset>=ovflSize ){
4617         /* The only reason to read this page is to obtain the page
4618         ** number for the next page in the overflow chain. The page
4619         ** data is not required. So first try to lookup the overflow
4620         ** page-list cache, if any, then fall back to the getOverflowPage()
4621         ** function.
4622         */
4623         assert( pCur->curFlags & BTCF_ValidOvfl );
4624         assert( pCur->pBtree->db==pBt->db );
4625         if( pCur->aOverflow[iIdx+1] ){
4626           nextPage = pCur->aOverflow[iIdx+1];
4627         }else{
4628           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4629         }
4630         offset -= ovflSize;
4631       }else{
4632         /* Need to read this page properly. It contains some of the
4633         ** range of data that is being read (eOp==0) or written (eOp!=0).
4634         */
4635 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4636         sqlite3_file *fd;      /* File from which to do direct overflow read */
4637 #endif
4638         int a = amt;
4639         if( a + offset > ovflSize ){
4640           a = ovflSize - offset;
4641         }
4642 
4643 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4644         /* If all the following are true:
4645         **
4646         **   1) this is a read operation, and
4647         **   2) data is required from the start of this overflow page, and
4648         **   3) there is no open write-transaction, and
4649         **   4) the database is file-backed, and
4650         **   5) the page is not in the WAL file
4651         **   6) at least 4 bytes have already been read into the output buffer
4652         **
4653         ** then data can be read directly from the database file into the
4654         ** output buffer, bypassing the page-cache altogether. This speeds
4655         ** up loading large records that span many overflow pages.
4656         */
4657         if( eOp==0                                             /* (1) */
4658          && offset==0                                          /* (2) */
4659          && pBt->inTransaction==TRANS_READ                     /* (3) */
4660          && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
4661          && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
4662          && &pBuf[-4]>=pBufStart                               /* (6) */
4663         ){
4664           u8 aSave[4];
4665           u8 *aWrite = &pBuf[-4];
4666           assert( aWrite>=pBufStart );                         /* due to (6) */
4667           memcpy(aSave, aWrite, 4);
4668           rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4669           nextPage = get4byte(aWrite);
4670           memcpy(aWrite, aSave, 4);
4671         }else
4672 #endif
4673 
4674         {
4675           DbPage *pDbPage;
4676           rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4677               (eOp==0 ? PAGER_GET_READONLY : 0)
4678           );
4679           if( rc==SQLITE_OK ){
4680             aPayload = sqlite3PagerGetData(pDbPage);
4681             nextPage = get4byte(aPayload);
4682             rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4683             sqlite3PagerUnref(pDbPage);
4684             offset = 0;
4685           }
4686         }
4687         amt -= a;
4688         if( amt==0 ) return rc;
4689         pBuf += a;
4690       }
4691       if( rc ) break;
4692       iIdx++;
4693     }
4694   }
4695 
4696   if( rc==SQLITE_OK && amt>0 ){
4697     return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */
4698   }
4699   return rc;
4700 }
4701 
4702 /*
4703 ** Read part of the payload for the row at which that cursor pCur is currently
4704 ** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
4705 ** begins at "offset".
4706 **
4707 ** pCur can be pointing to either a table or an index b-tree.
4708 ** If pointing to a table btree, then the content section is read.  If
4709 ** pCur is pointing to an index b-tree then the key section is read.
4710 **
4711 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4712 ** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
4713 ** cursor might be invalid or might need to be restored before being read.
4714 **
4715 ** Return SQLITE_OK on success or an error code if anything goes
4716 ** wrong.  An error is returned if "offset+amt" is larger than
4717 ** the available payload.
4718 */
4719 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4720   assert( cursorHoldsMutex(pCur) );
4721   assert( pCur->eState==CURSOR_VALID );
4722   assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4723   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4724   return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4725 }
4726 
4727 /*
4728 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4729 ** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
4730 ** interface.
4731 */
4732 #ifndef SQLITE_OMIT_INCRBLOB
4733 static SQLITE_NOINLINE int accessPayloadChecked(
4734   BtCursor *pCur,
4735   u32 offset,
4736   u32 amt,
4737   void *pBuf
4738 ){
4739   int rc;
4740   if ( pCur->eState==CURSOR_INVALID ){
4741     return SQLITE_ABORT;
4742   }
4743   assert( cursorOwnsBtShared(pCur) );
4744   rc = btreeRestoreCursorPosition(pCur);
4745   return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4746 }
4747 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4748   if( pCur->eState==CURSOR_VALID ){
4749     assert( cursorOwnsBtShared(pCur) );
4750     return accessPayload(pCur, offset, amt, pBuf, 0);
4751   }else{
4752     return accessPayloadChecked(pCur, offset, amt, pBuf);
4753   }
4754 }
4755 #endif /* SQLITE_OMIT_INCRBLOB */
4756 
4757 /*
4758 ** Return a pointer to payload information from the entry that the
4759 ** pCur cursor is pointing to.  The pointer is to the beginning of
4760 ** the key if index btrees (pPage->intKey==0) and is the data for
4761 ** table btrees (pPage->intKey==1). The number of bytes of available
4762 ** key/data is written into *pAmt.  If *pAmt==0, then the value
4763 ** returned will not be a valid pointer.
4764 **
4765 ** This routine is an optimization.  It is common for the entire key
4766 ** and data to fit on the local page and for there to be no overflow
4767 ** pages.  When that is so, this routine can be used to access the
4768 ** key and data without making a copy.  If the key and/or data spills
4769 ** onto overflow pages, then accessPayload() must be used to reassemble
4770 ** the key/data and copy it into a preallocated buffer.
4771 **
4772 ** The pointer returned by this routine looks directly into the cached
4773 ** page of the database.  The data might change or move the next time
4774 ** any btree routine is called.
4775 */
4776 static const void *fetchPayload(
4777   BtCursor *pCur,      /* Cursor pointing to entry to read from */
4778   u32 *pAmt            /* Write the number of available bytes here */
4779 ){
4780   u32 amt;
4781   assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4782   assert( pCur->eState==CURSOR_VALID );
4783   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4784   assert( cursorOwnsBtShared(pCur) );
4785   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4786   assert( pCur->info.nSize>0 );
4787   assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4788   assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4789   amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4790   if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4791   *pAmt = amt;
4792   return (void*)pCur->info.pPayload;
4793 }
4794 
4795 
4796 /*
4797 ** For the entry that cursor pCur is point to, return as
4798 ** many bytes of the key or data as are available on the local
4799 ** b-tree page.  Write the number of available bytes into *pAmt.
4800 **
4801 ** The pointer returned is ephemeral.  The key/data may move
4802 ** or be destroyed on the next call to any Btree routine,
4803 ** including calls from other threads against the same cache.
4804 ** Hence, a mutex on the BtShared should be held prior to calling
4805 ** this routine.
4806 **
4807 ** These routines is used to get quick access to key and data
4808 ** in the common case where no overflow pages are used.
4809 */
4810 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4811   return fetchPayload(pCur, pAmt);
4812 }
4813 
4814 
4815 /*
4816 ** Move the cursor down to a new child page.  The newPgno argument is the
4817 ** page number of the child page to move to.
4818 **
4819 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4820 ** the new child page does not match the flags field of the parent (i.e.
4821 ** if an intkey page appears to be the parent of a non-intkey page, or
4822 ** vice-versa).
4823 */
4824 static int moveToChild(BtCursor *pCur, u32 newPgno){
4825   BtShared *pBt = pCur->pBt;
4826 
4827   assert( cursorOwnsBtShared(pCur) );
4828   assert( pCur->eState==CURSOR_VALID );
4829   assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4830   assert( pCur->iPage>=0 );
4831   if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4832     return SQLITE_CORRUPT_BKPT;
4833   }
4834   pCur->info.nSize = 0;
4835   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4836   pCur->iPage++;
4837   pCur->aiIdx[pCur->iPage] = 0;
4838   return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4839                         pCur, pCur->curPagerFlags);
4840 }
4841 
4842 #ifdef SQLITE_DEBUG
4843 /*
4844 ** Page pParent is an internal (non-leaf) tree page. This function
4845 ** asserts that page number iChild is the left-child if the iIdx'th
4846 ** cell in page pParent. Or, if iIdx is equal to the total number of
4847 ** cells in pParent, that page number iChild is the right-child of
4848 ** the page.
4849 */
4850 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4851   if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
4852                             ** in a corrupt database */
4853   assert( iIdx<=pParent->nCell );
4854   if( iIdx==pParent->nCell ){
4855     assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4856   }else{
4857     assert( get4byte(findCell(pParent, iIdx))==iChild );
4858   }
4859 }
4860 #else
4861 #  define assertParentIndex(x,y,z)
4862 #endif
4863 
4864 /*
4865 ** Move the cursor up to the parent page.
4866 **
4867 ** pCur->idx is set to the cell index that contains the pointer
4868 ** to the page we are coming from.  If we are coming from the
4869 ** right-most child page then pCur->idx is set to one more than
4870 ** the largest cell index.
4871 */
4872 static void moveToParent(BtCursor *pCur){
4873   assert( cursorOwnsBtShared(pCur) );
4874   assert( pCur->eState==CURSOR_VALID );
4875   assert( pCur->iPage>0 );
4876   assert( pCur->apPage[pCur->iPage] );
4877   assertParentIndex(
4878     pCur->apPage[pCur->iPage-1],
4879     pCur->aiIdx[pCur->iPage-1],
4880     pCur->apPage[pCur->iPage]->pgno
4881   );
4882   testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4883   pCur->info.nSize = 0;
4884   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4885   releasePageNotNull(pCur->apPage[pCur->iPage--]);
4886 }
4887 
4888 /*
4889 ** Move the cursor to point to the root page of its b-tree structure.
4890 **
4891 ** If the table has a virtual root page, then the cursor is moved to point
4892 ** to the virtual root page instead of the actual root page. A table has a
4893 ** virtual root page when the actual root page contains no cells and a
4894 ** single child page. This can only happen with the table rooted at page 1.
4895 **
4896 ** If the b-tree structure is empty, the cursor state is set to
4897 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4898 ** cell located on the root (or virtual root) page and the cursor state
4899 ** is set to CURSOR_VALID.
4900 **
4901 ** If this function returns successfully, it may be assumed that the
4902 ** page-header flags indicate that the [virtual] root-page is the expected
4903 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4904 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4905 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4906 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4907 ** b-tree).
4908 */
4909 static int moveToRoot(BtCursor *pCur){
4910   MemPage *pRoot;
4911   int rc = SQLITE_OK;
4912 
4913   assert( cursorOwnsBtShared(pCur) );
4914   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4915   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
4916   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
4917   if( pCur->eState>=CURSOR_REQUIRESEEK ){
4918     if( pCur->eState==CURSOR_FAULT ){
4919       assert( pCur->skipNext!=SQLITE_OK );
4920       return pCur->skipNext;
4921     }
4922     sqlite3BtreeClearCursor(pCur);
4923   }
4924 
4925   if( pCur->iPage>=0 ){
4926     if( pCur->iPage ){
4927       do{
4928         assert( pCur->apPage[pCur->iPage]!=0 );
4929         releasePageNotNull(pCur->apPage[pCur->iPage--]);
4930       }while( pCur->iPage);
4931       goto skip_init;
4932     }
4933   }else if( pCur->pgnoRoot==0 ){
4934     pCur->eState = CURSOR_INVALID;
4935     return SQLITE_OK;
4936   }else{
4937     assert( pCur->iPage==(-1) );
4938     rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4939                         0, pCur->curPagerFlags);
4940     if( rc!=SQLITE_OK ){
4941       pCur->eState = CURSOR_INVALID;
4942        return rc;
4943     }
4944     pCur->iPage = 0;
4945     pCur->curIntKey = pCur->apPage[0]->intKey;
4946   }
4947   pRoot = pCur->apPage[0];
4948   assert( pRoot->pgno==pCur->pgnoRoot );
4949 
4950   /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4951   ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4952   ** NULL, the caller expects a table b-tree. If this is not the case,
4953   ** return an SQLITE_CORRUPT error.
4954   **
4955   ** Earlier versions of SQLite assumed that this test could not fail
4956   ** if the root page was already loaded when this function was called (i.e.
4957   ** if pCur->iPage>=0). But this is not so if the database is corrupted
4958   ** in such a way that page pRoot is linked into a second b-tree table
4959   ** (or the freelist).  */
4960   assert( pRoot->intKey==1 || pRoot->intKey==0 );
4961   if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4962     return SQLITE_CORRUPT_BKPT;
4963   }
4964 
4965 skip_init:
4966   pCur->aiIdx[0] = 0;
4967   pCur->info.nSize = 0;
4968   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4969 
4970   pRoot = pCur->apPage[0];
4971   if( pRoot->nCell>0 ){
4972     pCur->eState = CURSOR_VALID;
4973   }else if( !pRoot->leaf ){
4974     Pgno subpage;
4975     if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4976     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4977     pCur->eState = CURSOR_VALID;
4978     rc = moveToChild(pCur, subpage);
4979   }else{
4980     pCur->eState = CURSOR_INVALID;
4981   }
4982   return rc;
4983 }
4984 
4985 /*
4986 ** Move the cursor down to the left-most leaf entry beneath the
4987 ** entry to which it is currently pointing.
4988 **
4989 ** The left-most leaf is the one with the smallest key - the first
4990 ** in ascending order.
4991 */
4992 static int moveToLeftmost(BtCursor *pCur){
4993   Pgno pgno;
4994   int rc = SQLITE_OK;
4995   MemPage *pPage;
4996 
4997   assert( cursorOwnsBtShared(pCur) );
4998   assert( pCur->eState==CURSOR_VALID );
4999   while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
5000     assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
5001     pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
5002     rc = moveToChild(pCur, pgno);
5003   }
5004   return rc;
5005 }
5006 
5007 /*
5008 ** Move the cursor down to the right-most leaf entry beneath the
5009 ** page to which it is currently pointing.  Notice the difference
5010 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
5011 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5012 ** finds the right-most entry beneath the *page*.
5013 **
5014 ** The right-most entry is the one with the largest key - the last
5015 ** key in ascending order.
5016 */
5017 static int moveToRightmost(BtCursor *pCur){
5018   Pgno pgno;
5019   int rc = SQLITE_OK;
5020   MemPage *pPage = 0;
5021 
5022   assert( cursorOwnsBtShared(pCur) );
5023   assert( pCur->eState==CURSOR_VALID );
5024   while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
5025     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5026     pCur->aiIdx[pCur->iPage] = pPage->nCell;
5027     rc = moveToChild(pCur, pgno);
5028     if( rc ) return rc;
5029   }
5030   pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
5031   assert( pCur->info.nSize==0 );
5032   assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5033   return SQLITE_OK;
5034 }
5035 
5036 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
5037 ** on success.  Set *pRes to 0 if the cursor actually points to something
5038 ** or set *pRes to 1 if the table is empty.
5039 */
5040 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5041   int rc;
5042 
5043   assert( cursorOwnsBtShared(pCur) );
5044   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5045   rc = moveToRoot(pCur);
5046   if( rc==SQLITE_OK ){
5047     if( pCur->eState==CURSOR_INVALID ){
5048       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5049       *pRes = 1;
5050     }else{
5051       assert( pCur->apPage[pCur->iPage]->nCell>0 );
5052       *pRes = 0;
5053       rc = moveToLeftmost(pCur);
5054     }
5055   }
5056   return rc;
5057 }
5058 
5059 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
5060 ** on success.  Set *pRes to 0 if the cursor actually points to something
5061 ** or set *pRes to 1 if the table is empty.
5062 */
5063 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5064   int rc;
5065 
5066   assert( cursorOwnsBtShared(pCur) );
5067   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5068 
5069   /* If the cursor already points to the last entry, this is a no-op. */
5070   if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5071 #ifdef SQLITE_DEBUG
5072     /* This block serves to assert() that the cursor really does point
5073     ** to the last entry in the b-tree. */
5074     int ii;
5075     for(ii=0; ii<pCur->iPage; ii++){
5076       assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5077     }
5078     assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5079     assert( pCur->apPage[pCur->iPage]->leaf );
5080 #endif
5081     return SQLITE_OK;
5082   }
5083 
5084   rc = moveToRoot(pCur);
5085   if( rc==SQLITE_OK ){
5086     if( CURSOR_INVALID==pCur->eState ){
5087       assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5088       *pRes = 1;
5089     }else{
5090       assert( pCur->eState==CURSOR_VALID );
5091       *pRes = 0;
5092       rc = moveToRightmost(pCur);
5093       if( rc==SQLITE_OK ){
5094         pCur->curFlags |= BTCF_AtLast;
5095       }else{
5096         pCur->curFlags &= ~BTCF_AtLast;
5097       }
5098 
5099     }
5100   }
5101   return rc;
5102 }
5103 
5104 /* Move the cursor so that it points to an entry near the key
5105 ** specified by pIdxKey or intKey.   Return a success code.
5106 **
5107 ** For INTKEY tables, the intKey parameter is used.  pIdxKey
5108 ** must be NULL.  For index tables, pIdxKey is used and intKey
5109 ** is ignored.
5110 **
5111 ** If an exact match is not found, then the cursor is always
5112 ** left pointing at a leaf page which would hold the entry if it
5113 ** were present.  The cursor might point to an entry that comes
5114 ** before or after the key.
5115 **
5116 ** An integer is written into *pRes which is the result of
5117 ** comparing the key with the entry to which the cursor is
5118 ** pointing.  The meaning of the integer written into
5119 ** *pRes is as follows:
5120 **
5121 **     *pRes<0      The cursor is left pointing at an entry that
5122 **                  is smaller than intKey/pIdxKey or if the table is empty
5123 **                  and the cursor is therefore left point to nothing.
5124 **
5125 **     *pRes==0     The cursor is left pointing at an entry that
5126 **                  exactly matches intKey/pIdxKey.
5127 **
5128 **     *pRes>0      The cursor is left pointing at an entry that
5129 **                  is larger than intKey/pIdxKey.
5130 **
5131 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5132 ** exists an entry in the table that exactly matches pIdxKey.
5133 */
5134 int sqlite3BtreeMovetoUnpacked(
5135   BtCursor *pCur,          /* The cursor to be moved */
5136   UnpackedRecord *pIdxKey, /* Unpacked index key */
5137   i64 intKey,              /* The table key */
5138   int biasRight,           /* If true, bias the search to the high end */
5139   int *pRes                /* Write search results here */
5140 ){
5141   int rc;
5142   RecordCompare xRecordCompare;
5143 
5144   assert( cursorOwnsBtShared(pCur) );
5145   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5146   assert( pRes );
5147   assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5148   assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5149 
5150   /* If the cursor is already positioned at the point we are trying
5151   ** to move to, then just return without doing any work */
5152   if( pIdxKey==0
5153    && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5154   ){
5155     if( pCur->info.nKey==intKey ){
5156       *pRes = 0;
5157       return SQLITE_OK;
5158     }
5159     if( pCur->info.nKey<intKey ){
5160       if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5161         *pRes = -1;
5162         return SQLITE_OK;
5163       }
5164       /* If the requested key is one more than the previous key, then
5165       ** try to get there using sqlite3BtreeNext() rather than a full
5166       ** binary search.  This is an optimization only.  The correct answer
5167       ** is still obtained without this ase, only a little more slowely */
5168       if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5169         *pRes = 0;
5170         rc = sqlite3BtreeNext(pCur, pRes);
5171         if( rc ) return rc;
5172         if( *pRes==0 ){
5173           getCellInfo(pCur);
5174           if( pCur->info.nKey==intKey ){
5175             return SQLITE_OK;
5176           }
5177         }
5178       }
5179     }
5180   }
5181 
5182   if( pIdxKey ){
5183     xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5184     pIdxKey->errCode = 0;
5185     assert( pIdxKey->default_rc==1
5186          || pIdxKey->default_rc==0
5187          || pIdxKey->default_rc==-1
5188     );
5189   }else{
5190     xRecordCompare = 0; /* All keys are integers */
5191   }
5192 
5193   rc = moveToRoot(pCur);
5194   if( rc ){
5195     return rc;
5196   }
5197   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5198   assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5199   assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
5200   if( pCur->eState==CURSOR_INVALID ){
5201     *pRes = -1;
5202     assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
5203     return SQLITE_OK;
5204   }
5205   assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5206   assert( pCur->curIntKey || pIdxKey );
5207   for(;;){
5208     int lwr, upr, idx, c;
5209     Pgno chldPg;
5210     MemPage *pPage = pCur->apPage[pCur->iPage];
5211     u8 *pCell;                          /* Pointer to current cell in pPage */
5212 
5213     /* pPage->nCell must be greater than zero. If this is the root-page
5214     ** the cursor would have been INVALID above and this for(;;) loop
5215     ** not run. If this is not the root-page, then the moveToChild() routine
5216     ** would have already detected db corruption. Similarly, pPage must
5217     ** be the right kind (index or table) of b-tree page. Otherwise
5218     ** a moveToChild() or moveToRoot() call would have detected corruption.  */
5219     assert( pPage->nCell>0 );
5220     assert( pPage->intKey==(pIdxKey==0) );
5221     lwr = 0;
5222     upr = pPage->nCell-1;
5223     assert( biasRight==0 || biasRight==1 );
5224     idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5225     pCur->aiIdx[pCur->iPage] = (u16)idx;
5226     if( xRecordCompare==0 ){
5227       for(;;){
5228         i64 nCellKey;
5229         pCell = findCellPastPtr(pPage, idx);
5230         if( pPage->intKeyLeaf ){
5231           while( 0x80 <= *(pCell++) ){
5232             if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5233           }
5234         }
5235         getVarint(pCell, (u64*)&nCellKey);
5236         if( nCellKey<intKey ){
5237           lwr = idx+1;
5238           if( lwr>upr ){ c = -1; break; }
5239         }else if( nCellKey>intKey ){
5240           upr = idx-1;
5241           if( lwr>upr ){ c = +1; break; }
5242         }else{
5243           assert( nCellKey==intKey );
5244           pCur->aiIdx[pCur->iPage] = (u16)idx;
5245           if( !pPage->leaf ){
5246             lwr = idx;
5247             goto moveto_next_layer;
5248           }else{
5249             pCur->curFlags |= BTCF_ValidNKey;
5250             pCur->info.nKey = nCellKey;
5251             pCur->info.nSize = 0;
5252             *pRes = 0;
5253             return SQLITE_OK;
5254           }
5255         }
5256         assert( lwr+upr>=0 );
5257         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
5258       }
5259     }else{
5260       for(;;){
5261         int nCell;  /* Size of the pCell cell in bytes */
5262         pCell = findCellPastPtr(pPage, idx);
5263 
5264         /* The maximum supported page-size is 65536 bytes. This means that
5265         ** the maximum number of record bytes stored on an index B-Tree
5266         ** page is less than 16384 bytes and may be stored as a 2-byte
5267         ** varint. This information is used to attempt to avoid parsing
5268         ** the entire cell by checking for the cases where the record is
5269         ** stored entirely within the b-tree page by inspecting the first
5270         ** 2 bytes of the cell.
5271         */
5272         nCell = pCell[0];
5273         if( nCell<=pPage->max1bytePayload ){
5274           /* This branch runs if the record-size field of the cell is a
5275           ** single byte varint and the record fits entirely on the main
5276           ** b-tree page.  */
5277           testcase( pCell+nCell+1==pPage->aDataEnd );
5278           c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5279         }else if( !(pCell[1] & 0x80)
5280           && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5281         ){
5282           /* The record-size field is a 2 byte varint and the record
5283           ** fits entirely on the main b-tree page.  */
5284           testcase( pCell+nCell+2==pPage->aDataEnd );
5285           c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5286         }else{
5287           /* The record flows over onto one or more overflow pages. In
5288           ** this case the whole cell needs to be parsed, a buffer allocated
5289           ** and accessPayload() used to retrieve the record into the
5290           ** buffer before VdbeRecordCompare() can be called.
5291           **
5292           ** If the record is corrupt, the xRecordCompare routine may read
5293           ** up to two varints past the end of the buffer. An extra 18
5294           ** bytes of padding is allocated at the end of the buffer in
5295           ** case this happens.  */
5296           void *pCellKey;
5297           u8 * const pCellBody = pCell - pPage->childPtrSize;
5298           pPage->xParseCell(pPage, pCellBody, &pCur->info);
5299           nCell = (int)pCur->info.nKey;
5300           testcase( nCell<0 );   /* True if key size is 2^32 or more */
5301           testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
5302           testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
5303           testcase( nCell==2 );  /* Minimum legal index key size */
5304           if( nCell<2 ){
5305             rc = SQLITE_CORRUPT_BKPT;
5306             goto moveto_finish;
5307           }
5308           pCellKey = sqlite3Malloc( nCell+18 );
5309           if( pCellKey==0 ){
5310             rc = SQLITE_NOMEM_BKPT;
5311             goto moveto_finish;
5312           }
5313           pCur->aiIdx[pCur->iPage] = (u16)idx;
5314           rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5315           pCur->curFlags &= ~BTCF_ValidOvfl;
5316           if( rc ){
5317             sqlite3_free(pCellKey);
5318             goto moveto_finish;
5319           }
5320           c = xRecordCompare(nCell, pCellKey, pIdxKey);
5321           sqlite3_free(pCellKey);
5322         }
5323         assert(
5324             (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5325          && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5326         );
5327         if( c<0 ){
5328           lwr = idx+1;
5329         }else if( c>0 ){
5330           upr = idx-1;
5331         }else{
5332           assert( c==0 );
5333           *pRes = 0;
5334           rc = SQLITE_OK;
5335           pCur->aiIdx[pCur->iPage] = (u16)idx;
5336           if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
5337           goto moveto_finish;
5338         }
5339         if( lwr>upr ) break;
5340         assert( lwr+upr>=0 );
5341         idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
5342       }
5343     }
5344     assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5345     assert( pPage->isInit );
5346     if( pPage->leaf ){
5347       assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
5348       pCur->aiIdx[pCur->iPage] = (u16)idx;
5349       *pRes = c;
5350       rc = SQLITE_OK;
5351       goto moveto_finish;
5352     }
5353 moveto_next_layer:
5354     if( lwr>=pPage->nCell ){
5355       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5356     }else{
5357       chldPg = get4byte(findCell(pPage, lwr));
5358     }
5359     pCur->aiIdx[pCur->iPage] = (u16)lwr;
5360     rc = moveToChild(pCur, chldPg);
5361     if( rc ) break;
5362   }
5363 moveto_finish:
5364   pCur->info.nSize = 0;
5365   assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5366   return rc;
5367 }
5368 
5369 
5370 /*
5371 ** Return TRUE if the cursor is not pointing at an entry of the table.
5372 **
5373 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5374 ** past the last entry in the table or sqlite3BtreePrev() moves past
5375 ** the first entry.  TRUE is also returned if the table is empty.
5376 */
5377 int sqlite3BtreeEof(BtCursor *pCur){
5378   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5379   ** have been deleted? This API will need to change to return an error code
5380   ** as well as the boolean result value.
5381   */
5382   return (CURSOR_VALID!=pCur->eState);
5383 }
5384 
5385 /*
5386 ** Return an estimate for the number of rows in the table that pCur is
5387 ** pointing to.  Return a negative number if no estimate is currently
5388 ** available.
5389 */
5390 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5391   i64 n;
5392   u8 i;
5393 
5394   assert( cursorOwnsBtShared(pCur) );
5395   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5396 
5397   /* Currently this interface is only called by the OP_IfSmaller
5398   ** opcode, and it that case the cursor will always be valid and
5399   ** will always point to a leaf node. */
5400   if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5401   if( NEVER(pCur->apPage[pCur->iPage]->leaf==0) ) return -1;
5402 
5403   for(n=1, i=0; i<=pCur->iPage; i++){
5404     n *= pCur->apPage[i]->nCell;
5405   }
5406   return n;
5407 }
5408 
5409 /*
5410 ** Advance the cursor to the next entry in the database.  If
5411 ** successful then set *pRes=0.  If the cursor
5412 ** was already pointing to the last entry in the database before
5413 ** this routine was called, then set *pRes=1.
5414 **
5415 ** The main entry point is sqlite3BtreeNext().  That routine is optimized
5416 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5417 ** to the next cell on the current page.  The (slower) btreeNext() helper
5418 ** routine is called when it is necessary to move to a different page or
5419 ** to restore the cursor.
5420 **
5421 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5422 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5423 ** if this routine could have been skipped if that SQL index had been
5424 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5425 ** Zero is the common case. The btree implementation is free to use the
5426 ** initial *pRes value as a hint to improve performance, but the current
5427 ** SQLite btree implementation does not. (Note that the comdb2 btree
5428 ** implementation does use this hint, however.)
5429 */
5430 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
5431   int rc;
5432   int idx;
5433   MemPage *pPage;
5434 
5435   assert( cursorOwnsBtShared(pCur) );
5436   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5437   assert( *pRes==0 );
5438   if( pCur->eState!=CURSOR_VALID ){
5439     assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5440     rc = restoreCursorPosition(pCur);
5441     if( rc!=SQLITE_OK ){
5442       return rc;
5443     }
5444     if( CURSOR_INVALID==pCur->eState ){
5445       *pRes = 1;
5446       return SQLITE_OK;
5447     }
5448     if( pCur->skipNext ){
5449       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5450       pCur->eState = CURSOR_VALID;
5451       if( pCur->skipNext>0 ){
5452         pCur->skipNext = 0;
5453         return SQLITE_OK;
5454       }
5455       pCur->skipNext = 0;
5456     }
5457   }
5458 
5459   pPage = pCur->apPage[pCur->iPage];
5460   idx = ++pCur->aiIdx[pCur->iPage];
5461   assert( pPage->isInit );
5462 
5463   /* If the database file is corrupt, it is possible for the value of idx
5464   ** to be invalid here. This can only occur if a second cursor modifies
5465   ** the page while cursor pCur is holding a reference to it. Which can
5466   ** only happen if the database is corrupt in such a way as to link the
5467   ** page into more than one b-tree structure. */
5468   testcase( idx>pPage->nCell );
5469 
5470   if( idx>=pPage->nCell ){
5471     if( !pPage->leaf ){
5472       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5473       if( rc ) return rc;
5474       return moveToLeftmost(pCur);
5475     }
5476     do{
5477       if( pCur->iPage==0 ){
5478         *pRes = 1;
5479         pCur->eState = CURSOR_INVALID;
5480         return SQLITE_OK;
5481       }
5482       moveToParent(pCur);
5483       pPage = pCur->apPage[pCur->iPage];
5484     }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
5485     if( pPage->intKey ){
5486       return sqlite3BtreeNext(pCur, pRes);
5487     }else{
5488       return SQLITE_OK;
5489     }
5490   }
5491   if( pPage->leaf ){
5492     return SQLITE_OK;
5493   }else{
5494     return moveToLeftmost(pCur);
5495   }
5496 }
5497 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5498   MemPage *pPage;
5499   assert( cursorOwnsBtShared(pCur) );
5500   assert( pRes!=0 );
5501   assert( *pRes==0 || *pRes==1 );
5502   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5503   pCur->info.nSize = 0;
5504   pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5505   *pRes = 0;
5506   if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5507   pPage = pCur->apPage[pCur->iPage];
5508   if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5509     pCur->aiIdx[pCur->iPage]--;
5510     return btreeNext(pCur, pRes);
5511   }
5512   if( pPage->leaf ){
5513     return SQLITE_OK;
5514   }else{
5515     return moveToLeftmost(pCur);
5516   }
5517 }
5518 
5519 /*
5520 ** Step the cursor to the back to the previous entry in the database.  If
5521 ** successful then set *pRes=0.  If the cursor
5522 ** was already pointing to the first entry in the database before
5523 ** this routine was called, then set *pRes=1.
5524 **
5525 ** The main entry point is sqlite3BtreePrevious().  That routine is optimized
5526 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5527 ** to the previous cell on the current page.  The (slower) btreePrevious()
5528 ** helper routine is called when it is necessary to move to a different page
5529 ** or to restore the cursor.
5530 **
5531 ** The calling function will set *pRes to 0 or 1.  The initial *pRes value
5532 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5533 ** if this routine could have been skipped if that SQL index had been
5534 ** a unique index.  Otherwise the caller will have set *pRes to zero.
5535 ** Zero is the common case. The btree implementation is free to use the
5536 ** initial *pRes value as a hint to improve performance, but the current
5537 ** SQLite btree implementation does not. (Note that the comdb2 btree
5538 ** implementation does use this hint, however.)
5539 */
5540 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5541   int rc;
5542   MemPage *pPage;
5543 
5544   assert( cursorOwnsBtShared(pCur) );
5545   assert( pRes!=0 );
5546   assert( *pRes==0 );
5547   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5548   assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5549   assert( pCur->info.nSize==0 );
5550   if( pCur->eState!=CURSOR_VALID ){
5551     rc = restoreCursorPosition(pCur);
5552     if( rc!=SQLITE_OK ){
5553       return rc;
5554     }
5555     if( CURSOR_INVALID==pCur->eState ){
5556       *pRes = 1;
5557       return SQLITE_OK;
5558     }
5559     if( pCur->skipNext ){
5560       assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5561       pCur->eState = CURSOR_VALID;
5562       if( pCur->skipNext<0 ){
5563         pCur->skipNext = 0;
5564         return SQLITE_OK;
5565       }
5566       pCur->skipNext = 0;
5567     }
5568   }
5569 
5570   pPage = pCur->apPage[pCur->iPage];
5571   assert( pPage->isInit );
5572   if( !pPage->leaf ){
5573     int idx = pCur->aiIdx[pCur->iPage];
5574     rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5575     if( rc ) return rc;
5576     rc = moveToRightmost(pCur);
5577   }else{
5578     while( pCur->aiIdx[pCur->iPage]==0 ){
5579       if( pCur->iPage==0 ){
5580         pCur->eState = CURSOR_INVALID;
5581         *pRes = 1;
5582         return SQLITE_OK;
5583       }
5584       moveToParent(pCur);
5585     }
5586     assert( pCur->info.nSize==0 );
5587     assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5588 
5589     pCur->aiIdx[pCur->iPage]--;
5590     pPage = pCur->apPage[pCur->iPage];
5591     if( pPage->intKey && !pPage->leaf ){
5592       rc = sqlite3BtreePrevious(pCur, pRes);
5593     }else{
5594       rc = SQLITE_OK;
5595     }
5596   }
5597   return rc;
5598 }
5599 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5600   assert( cursorOwnsBtShared(pCur) );
5601   assert( pRes!=0 );
5602   assert( *pRes==0 || *pRes==1 );
5603   assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5604   *pRes = 0;
5605   pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5606   pCur->info.nSize = 0;
5607   if( pCur->eState!=CURSOR_VALID
5608    || pCur->aiIdx[pCur->iPage]==0
5609    || pCur->apPage[pCur->iPage]->leaf==0
5610   ){
5611     return btreePrevious(pCur, pRes);
5612   }
5613   pCur->aiIdx[pCur->iPage]--;
5614   return SQLITE_OK;
5615 }
5616 
5617 /*
5618 ** Allocate a new page from the database file.
5619 **
5620 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
5621 ** has already been called on the new page.)  The new page has also
5622 ** been referenced and the calling routine is responsible for calling
5623 ** sqlite3PagerUnref() on the new page when it is done.
5624 **
5625 ** SQLITE_OK is returned on success.  Any other return value indicates
5626 ** an error.  *ppPage is set to NULL in the event of an error.
5627 **
5628 ** If the "nearby" parameter is not 0, then an effort is made to
5629 ** locate a page close to the page number "nearby".  This can be used in an
5630 ** attempt to keep related pages close to each other in the database file,
5631 ** which in turn can make database access faster.
5632 **
5633 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5634 ** anywhere on the free-list, then it is guaranteed to be returned.  If
5635 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5636 ** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
5637 ** are no restrictions on which page is returned.
5638 */
5639 static int allocateBtreePage(
5640   BtShared *pBt,         /* The btree */
5641   MemPage **ppPage,      /* Store pointer to the allocated page here */
5642   Pgno *pPgno,           /* Store the page number here */
5643   Pgno nearby,           /* Search for a page near this one */
5644   u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5645 ){
5646   MemPage *pPage1;
5647   int rc;
5648   u32 n;     /* Number of pages on the freelist */
5649   u32 k;     /* Number of leaves on the trunk of the freelist */
5650   MemPage *pTrunk = 0;
5651   MemPage *pPrevTrunk = 0;
5652   Pgno mxPage;     /* Total size of the database file */
5653 
5654   assert( sqlite3_mutex_held(pBt->mutex) );
5655   assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5656   pPage1 = pBt->pPage1;
5657   mxPage = btreePagecount(pBt);
5658   /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5659   ** stores stores the total number of pages on the freelist. */
5660   n = get4byte(&pPage1->aData[36]);
5661   testcase( n==mxPage-1 );
5662   if( n>=mxPage ){
5663     return SQLITE_CORRUPT_BKPT;
5664   }
5665   if( n>0 ){
5666     /* There are pages on the freelist.  Reuse one of those pages. */
5667     Pgno iTrunk;
5668     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5669     u32 nSearch = 0;   /* Count of the number of search attempts */
5670 
5671     /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5672     ** shows that the page 'nearby' is somewhere on the free-list, then
5673     ** the entire-list will be searched for that page.
5674     */
5675 #ifndef SQLITE_OMIT_AUTOVACUUM
5676     if( eMode==BTALLOC_EXACT ){
5677       if( nearby<=mxPage ){
5678         u8 eType;
5679         assert( nearby>0 );
5680         assert( pBt->autoVacuum );
5681         rc = ptrmapGet(pBt, nearby, &eType, 0);
5682         if( rc ) return rc;
5683         if( eType==PTRMAP_FREEPAGE ){
5684           searchList = 1;
5685         }
5686       }
5687     }else if( eMode==BTALLOC_LE ){
5688       searchList = 1;
5689     }
5690 #endif
5691 
5692     /* Decrement the free-list count by 1. Set iTrunk to the index of the
5693     ** first free-list trunk page. iPrevTrunk is initially 1.
5694     */
5695     rc = sqlite3PagerWrite(pPage1->pDbPage);
5696     if( rc ) return rc;
5697     put4byte(&pPage1->aData[36], n-1);
5698 
5699     /* The code within this loop is run only once if the 'searchList' variable
5700     ** is not true. Otherwise, it runs once for each trunk-page on the
5701     ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5702     ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5703     */
5704     do {
5705       pPrevTrunk = pTrunk;
5706       if( pPrevTrunk ){
5707         /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5708         ** is the page number of the next freelist trunk page in the list or
5709         ** zero if this is the last freelist trunk page. */
5710         iTrunk = get4byte(&pPrevTrunk->aData[0]);
5711       }else{
5712         /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5713         ** stores the page number of the first page of the freelist, or zero if
5714         ** the freelist is empty. */
5715         iTrunk = get4byte(&pPage1->aData[32]);
5716       }
5717       testcase( iTrunk==mxPage );
5718       if( iTrunk>mxPage || nSearch++ > n ){
5719         rc = SQLITE_CORRUPT_BKPT;
5720       }else{
5721         rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5722       }
5723       if( rc ){
5724         pTrunk = 0;
5725         goto end_allocate_page;
5726       }
5727       assert( pTrunk!=0 );
5728       assert( pTrunk->aData!=0 );
5729       /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5730       ** is the number of leaf page pointers to follow. */
5731       k = get4byte(&pTrunk->aData[4]);
5732       if( k==0 && !searchList ){
5733         /* The trunk has no leaves and the list is not being searched.
5734         ** So extract the trunk page itself and use it as the newly
5735         ** allocated page */
5736         assert( pPrevTrunk==0 );
5737         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5738         if( rc ){
5739           goto end_allocate_page;
5740         }
5741         *pPgno = iTrunk;
5742         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5743         *ppPage = pTrunk;
5744         pTrunk = 0;
5745         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5746       }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5747         /* Value of k is out of range.  Database corruption */
5748         rc = SQLITE_CORRUPT_BKPT;
5749         goto end_allocate_page;
5750 #ifndef SQLITE_OMIT_AUTOVACUUM
5751       }else if( searchList
5752             && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5753       ){
5754         /* The list is being searched and this trunk page is the page
5755         ** to allocate, regardless of whether it has leaves.
5756         */
5757         *pPgno = iTrunk;
5758         *ppPage = pTrunk;
5759         searchList = 0;
5760         rc = sqlite3PagerWrite(pTrunk->pDbPage);
5761         if( rc ){
5762           goto end_allocate_page;
5763         }
5764         if( k==0 ){
5765           if( !pPrevTrunk ){
5766             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5767           }else{
5768             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5769             if( rc!=SQLITE_OK ){
5770               goto end_allocate_page;
5771             }
5772             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5773           }
5774         }else{
5775           /* The trunk page is required by the caller but it contains
5776           ** pointers to free-list leaves. The first leaf becomes a trunk
5777           ** page in this case.
5778           */
5779           MemPage *pNewTrunk;
5780           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5781           if( iNewTrunk>mxPage ){
5782             rc = SQLITE_CORRUPT_BKPT;
5783             goto end_allocate_page;
5784           }
5785           testcase( iNewTrunk==mxPage );
5786           rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5787           if( rc!=SQLITE_OK ){
5788             goto end_allocate_page;
5789           }
5790           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5791           if( rc!=SQLITE_OK ){
5792             releasePage(pNewTrunk);
5793             goto end_allocate_page;
5794           }
5795           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5796           put4byte(&pNewTrunk->aData[4], k-1);
5797           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5798           releasePage(pNewTrunk);
5799           if( !pPrevTrunk ){
5800             assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5801             put4byte(&pPage1->aData[32], iNewTrunk);
5802           }else{
5803             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5804             if( rc ){
5805               goto end_allocate_page;
5806             }
5807             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5808           }
5809         }
5810         pTrunk = 0;
5811         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5812 #endif
5813       }else if( k>0 ){
5814         /* Extract a leaf from the trunk */
5815         u32 closest;
5816         Pgno iPage;
5817         unsigned char *aData = pTrunk->aData;
5818         if( nearby>0 ){
5819           u32 i;
5820           closest = 0;
5821           if( eMode==BTALLOC_LE ){
5822             for(i=0; i<k; i++){
5823               iPage = get4byte(&aData[8+i*4]);
5824               if( iPage<=nearby ){
5825                 closest = i;
5826                 break;
5827               }
5828             }
5829           }else{
5830             int dist;
5831             dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5832             for(i=1; i<k; i++){
5833               int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5834               if( d2<dist ){
5835                 closest = i;
5836                 dist = d2;
5837               }
5838             }
5839           }
5840         }else{
5841           closest = 0;
5842         }
5843 
5844         iPage = get4byte(&aData[8+closest*4]);
5845         testcase( iPage==mxPage );
5846         if( iPage>mxPage ){
5847           rc = SQLITE_CORRUPT_BKPT;
5848           goto end_allocate_page;
5849         }
5850         testcase( iPage==mxPage );
5851         if( !searchList
5852          || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5853         ){
5854           int noContent;
5855           *pPgno = iPage;
5856           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5857                  ": %d more free pages\n",
5858                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
5859           rc = sqlite3PagerWrite(pTrunk->pDbPage);
5860           if( rc ) goto end_allocate_page;
5861           if( closest<k-1 ){
5862             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5863           }
5864           put4byte(&aData[4], k-1);
5865           noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5866           rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5867           if( rc==SQLITE_OK ){
5868             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5869             if( rc!=SQLITE_OK ){
5870               releasePage(*ppPage);
5871               *ppPage = 0;
5872             }
5873           }
5874           searchList = 0;
5875         }
5876       }
5877       releasePage(pPrevTrunk);
5878       pPrevTrunk = 0;
5879     }while( searchList );
5880   }else{
5881     /* There are no pages on the freelist, so append a new page to the
5882     ** database image.
5883     **
5884     ** Normally, new pages allocated by this block can be requested from the
5885     ** pager layer with the 'no-content' flag set. This prevents the pager
5886     ** from trying to read the pages content from disk. However, if the
5887     ** current transaction has already run one or more incremental-vacuum
5888     ** steps, then the page we are about to allocate may contain content
5889     ** that is required in the event of a rollback. In this case, do
5890     ** not set the no-content flag. This causes the pager to load and journal
5891     ** the current page content before overwriting it.
5892     **
5893     ** Note that the pager will not actually attempt to load or journal
5894     ** content for any page that really does lie past the end of the database
5895     ** file on disk. So the effects of disabling the no-content optimization
5896     ** here are confined to those pages that lie between the end of the
5897     ** database image and the end of the database file.
5898     */
5899     int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5900 
5901     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5902     if( rc ) return rc;
5903     pBt->nPage++;
5904     if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5905 
5906 #ifndef SQLITE_OMIT_AUTOVACUUM
5907     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5908       /* If *pPgno refers to a pointer-map page, allocate two new pages
5909       ** at the end of the file instead of one. The first allocated page
5910       ** becomes a new pointer-map page, the second is used by the caller.
5911       */
5912       MemPage *pPg = 0;
5913       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5914       assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5915       rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5916       if( rc==SQLITE_OK ){
5917         rc = sqlite3PagerWrite(pPg->pDbPage);
5918         releasePage(pPg);
5919       }
5920       if( rc ) return rc;
5921       pBt->nPage++;
5922       if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5923     }
5924 #endif
5925     put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5926     *pPgno = pBt->nPage;
5927 
5928     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5929     rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5930     if( rc ) return rc;
5931     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5932     if( rc!=SQLITE_OK ){
5933       releasePage(*ppPage);
5934       *ppPage = 0;
5935     }
5936     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5937   }
5938 
5939   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5940 
5941 end_allocate_page:
5942   releasePage(pTrunk);
5943   releasePage(pPrevTrunk);
5944   assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5945   assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5946   return rc;
5947 }
5948 
5949 /*
5950 ** This function is used to add page iPage to the database file free-list.
5951 ** It is assumed that the page is not already a part of the free-list.
5952 **
5953 ** The value passed as the second argument to this function is optional.
5954 ** If the caller happens to have a pointer to the MemPage object
5955 ** corresponding to page iPage handy, it may pass it as the second value.
5956 ** Otherwise, it may pass NULL.
5957 **
5958 ** If a pointer to a MemPage object is passed as the second argument,
5959 ** its reference count is not altered by this function.
5960 */
5961 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5962   MemPage *pTrunk = 0;                /* Free-list trunk page */
5963   Pgno iTrunk = 0;                    /* Page number of free-list trunk page */
5964   MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
5965   MemPage *pPage;                     /* Page being freed. May be NULL. */
5966   int rc;                             /* Return Code */
5967   int nFree;                          /* Initial number of pages on free-list */
5968 
5969   assert( sqlite3_mutex_held(pBt->mutex) );
5970   assert( CORRUPT_DB || iPage>1 );
5971   assert( !pMemPage || pMemPage->pgno==iPage );
5972 
5973   if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
5974   if( pMemPage ){
5975     pPage = pMemPage;
5976     sqlite3PagerRef(pPage->pDbPage);
5977   }else{
5978     pPage = btreePageLookup(pBt, iPage);
5979   }
5980 
5981   /* Increment the free page count on pPage1 */
5982   rc = sqlite3PagerWrite(pPage1->pDbPage);
5983   if( rc ) goto freepage_out;
5984   nFree = get4byte(&pPage1->aData[36]);
5985   put4byte(&pPage1->aData[36], nFree+1);
5986 
5987   if( pBt->btsFlags & BTS_SECURE_DELETE ){
5988     /* If the secure_delete option is enabled, then
5989     ** always fully overwrite deleted information with zeros.
5990     */
5991     if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5992      ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5993     ){
5994       goto freepage_out;
5995     }
5996     memset(pPage->aData, 0, pPage->pBt->pageSize);
5997   }
5998 
5999   /* If the database supports auto-vacuum, write an entry in the pointer-map
6000   ** to indicate that the page is free.
6001   */
6002   if( ISAUTOVACUUM ){
6003     ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6004     if( rc ) goto freepage_out;
6005   }
6006 
6007   /* Now manipulate the actual database free-list structure. There are two
6008   ** possibilities. If the free-list is currently empty, or if the first
6009   ** trunk page in the free-list is full, then this page will become a
6010   ** new free-list trunk page. Otherwise, it will become a leaf of the
6011   ** first trunk page in the current free-list. This block tests if it
6012   ** is possible to add the page as a new free-list leaf.
6013   */
6014   if( nFree!=0 ){
6015     u32 nLeaf;                /* Initial number of leaf cells on trunk page */
6016 
6017     iTrunk = get4byte(&pPage1->aData[32]);
6018     rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6019     if( rc!=SQLITE_OK ){
6020       goto freepage_out;
6021     }
6022 
6023     nLeaf = get4byte(&pTrunk->aData[4]);
6024     assert( pBt->usableSize>32 );
6025     if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6026       rc = SQLITE_CORRUPT_BKPT;
6027       goto freepage_out;
6028     }
6029     if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6030       /* In this case there is room on the trunk page to insert the page
6031       ** being freed as a new leaf.
6032       **
6033       ** Note that the trunk page is not really full until it contains
6034       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6035       ** coded.  But due to a coding error in versions of SQLite prior to
6036       ** 3.6.0, databases with freelist trunk pages holding more than
6037       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
6038       ** to maintain backwards compatibility with older versions of SQLite,
6039       ** we will continue to restrict the number of entries to usableSize/4 - 8
6040       ** for now.  At some point in the future (once everyone has upgraded
6041       ** to 3.6.0 or later) we should consider fixing the conditional above
6042       ** to read "usableSize/4-2" instead of "usableSize/4-8".
6043       **
6044       ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6045       ** avoid using the last six entries in the freelist trunk page array in
6046       ** order that database files created by newer versions of SQLite can be
6047       ** read by older versions of SQLite.
6048       */
6049       rc = sqlite3PagerWrite(pTrunk->pDbPage);
6050       if( rc==SQLITE_OK ){
6051         put4byte(&pTrunk->aData[4], nLeaf+1);
6052         put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6053         if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6054           sqlite3PagerDontWrite(pPage->pDbPage);
6055         }
6056         rc = btreeSetHasContent(pBt, iPage);
6057       }
6058       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6059       goto freepage_out;
6060     }
6061   }
6062 
6063   /* If control flows to this point, then it was not possible to add the
6064   ** the page being freed as a leaf page of the first trunk in the free-list.
6065   ** Possibly because the free-list is empty, or possibly because the
6066   ** first trunk in the free-list is full. Either way, the page being freed
6067   ** will become the new first trunk page in the free-list.
6068   */
6069   if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6070     goto freepage_out;
6071   }
6072   rc = sqlite3PagerWrite(pPage->pDbPage);
6073   if( rc!=SQLITE_OK ){
6074     goto freepage_out;
6075   }
6076   put4byte(pPage->aData, iTrunk);
6077   put4byte(&pPage->aData[4], 0);
6078   put4byte(&pPage1->aData[32], iPage);
6079   TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6080 
6081 freepage_out:
6082   if( pPage ){
6083     pPage->isInit = 0;
6084   }
6085   releasePage(pPage);
6086   releasePage(pTrunk);
6087   return rc;
6088 }
6089 static void freePage(MemPage *pPage, int *pRC){
6090   if( (*pRC)==SQLITE_OK ){
6091     *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6092   }
6093 }
6094 
6095 /*
6096 ** Free any overflow pages associated with the given Cell.  Write the
6097 ** local Cell size (the number of bytes on the original page, omitting
6098 ** overflow) into *pnSize.
6099 */
6100 static int clearCell(
6101   MemPage *pPage,          /* The page that contains the Cell */
6102   unsigned char *pCell,    /* First byte of the Cell */
6103   CellInfo *pInfo          /* Size information about the cell */
6104 ){
6105   BtShared *pBt = pPage->pBt;
6106   Pgno ovflPgno;
6107   int rc;
6108   int nOvfl;
6109   u32 ovflPageSize;
6110 
6111   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6112   pPage->xParseCell(pPage, pCell, pInfo);
6113   if( pInfo->nLocal==pInfo->nPayload ){
6114     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
6115   }
6116   if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
6117     return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
6118   }
6119   ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6120   assert( pBt->usableSize > 4 );
6121   ovflPageSize = pBt->usableSize - 4;
6122   nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6123   assert( nOvfl>0 ||
6124     (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6125   );
6126   while( nOvfl-- ){
6127     Pgno iNext = 0;
6128     MemPage *pOvfl = 0;
6129     if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6130       /* 0 is not a legal page number and page 1 cannot be an
6131       ** overflow page. Therefore if ovflPgno<2 or past the end of the
6132       ** file the database must be corrupt. */
6133       return SQLITE_CORRUPT_BKPT;
6134     }
6135     if( nOvfl ){
6136       rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6137       if( rc ) return rc;
6138     }
6139 
6140     if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6141      && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6142     ){
6143       /* There is no reason any cursor should have an outstanding reference
6144       ** to an overflow page belonging to a cell that is being deleted/updated.
6145       ** So if there exists more than one reference to this page, then it
6146       ** must not really be an overflow page and the database must be corrupt.
6147       ** It is helpful to detect this before calling freePage2(), as
6148       ** freePage2() may zero the page contents if secure-delete mode is
6149       ** enabled. If this 'overflow' page happens to be a page that the
6150       ** caller is iterating through or using in some other way, this
6151       ** can be problematic.
6152       */
6153       rc = SQLITE_CORRUPT_BKPT;
6154     }else{
6155       rc = freePage2(pBt, pOvfl, ovflPgno);
6156     }
6157 
6158     if( pOvfl ){
6159       sqlite3PagerUnref(pOvfl->pDbPage);
6160     }
6161     if( rc ) return rc;
6162     ovflPgno = iNext;
6163   }
6164   return SQLITE_OK;
6165 }
6166 
6167 /*
6168 ** Create the byte sequence used to represent a cell on page pPage
6169 ** and write that byte sequence into pCell[].  Overflow pages are
6170 ** allocated and filled in as necessary.  The calling procedure
6171 ** is responsible for making sure sufficient space has been allocated
6172 ** for pCell[].
6173 **
6174 ** Note that pCell does not necessary need to point to the pPage->aData
6175 ** area.  pCell might point to some temporary storage.  The cell will
6176 ** be constructed in this temporary area then copied into pPage->aData
6177 ** later.
6178 */
6179 static int fillInCell(
6180   MemPage *pPage,                /* The page that contains the cell */
6181   unsigned char *pCell,          /* Complete text of the cell */
6182   const BtreePayload *pX,        /* Payload with which to construct the cell */
6183   int *pnSize                    /* Write cell size here */
6184 ){
6185   int nPayload;
6186   const u8 *pSrc;
6187   int nSrc, n, rc;
6188   int spaceLeft;
6189   MemPage *pOvfl = 0;
6190   MemPage *pToRelease = 0;
6191   unsigned char *pPrior;
6192   unsigned char *pPayload;
6193   BtShared *pBt = pPage->pBt;
6194   Pgno pgnoOvfl = 0;
6195   int nHeader;
6196 
6197   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6198 
6199   /* pPage is not necessarily writeable since pCell might be auxiliary
6200   ** buffer space that is separate from the pPage buffer area */
6201   assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6202             || sqlite3PagerIswriteable(pPage->pDbPage) );
6203 
6204   /* Fill in the header. */
6205   nHeader = pPage->childPtrSize;
6206   if( pPage->intKey ){
6207     nPayload = pX->nData + pX->nZero;
6208     pSrc = pX->pData;
6209     nSrc = pX->nData;
6210     assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6211     nHeader += putVarint32(&pCell[nHeader], nPayload);
6212     nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6213   }else{
6214     assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6215     nSrc = nPayload = (int)pX->nKey;
6216     pSrc = pX->pKey;
6217     nHeader += putVarint32(&pCell[nHeader], nPayload);
6218   }
6219 
6220   /* Fill in the payload */
6221   if( nPayload<=pPage->maxLocal ){
6222     n = nHeader + nPayload;
6223     testcase( n==3 );
6224     testcase( n==4 );
6225     if( n<4 ) n = 4;
6226     *pnSize = n;
6227     spaceLeft = nPayload;
6228     pPrior = pCell;
6229   }else{
6230     int mn = pPage->minLocal;
6231     n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6232     testcase( n==pPage->maxLocal );
6233     testcase( n==pPage->maxLocal+1 );
6234     if( n > pPage->maxLocal ) n = mn;
6235     spaceLeft = n;
6236     *pnSize = n + nHeader + 4;
6237     pPrior = &pCell[nHeader+n];
6238   }
6239   pPayload = &pCell[nHeader];
6240 
6241   /* At this point variables should be set as follows:
6242   **
6243   **   nPayload           Total payload size in bytes
6244   **   pPayload           Begin writing payload here
6245   **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
6246   **                      that means content must spill into overflow pages.
6247   **   *pnSize            Size of the local cell (not counting overflow pages)
6248   **   pPrior             Where to write the pgno of the first overflow page
6249   **
6250   ** Use a call to btreeParseCellPtr() to verify that the values above
6251   ** were computed correctly.
6252   */
6253 #ifdef SQLITE_DEBUG
6254   {
6255     CellInfo info;
6256     pPage->xParseCell(pPage, pCell, &info);
6257     assert( nHeader==(int)(info.pPayload - pCell) );
6258     assert( info.nKey==pX->nKey );
6259     assert( *pnSize == info.nSize );
6260     assert( spaceLeft == info.nLocal );
6261   }
6262 #endif
6263 
6264   /* Write the payload into the local Cell and any extra into overflow pages */
6265   while( nPayload>0 ){
6266     if( spaceLeft==0 ){
6267 #ifndef SQLITE_OMIT_AUTOVACUUM
6268       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6269       if( pBt->autoVacuum ){
6270         do{
6271           pgnoOvfl++;
6272         } while(
6273           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6274         );
6275       }
6276 #endif
6277       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6278 #ifndef SQLITE_OMIT_AUTOVACUUM
6279       /* If the database supports auto-vacuum, and the second or subsequent
6280       ** overflow page is being allocated, add an entry to the pointer-map
6281       ** for that page now.
6282       **
6283       ** If this is the first overflow page, then write a partial entry
6284       ** to the pointer-map. If we write nothing to this pointer-map slot,
6285       ** then the optimistic overflow chain processing in clearCell()
6286       ** may misinterpret the uninitialized values and delete the
6287       ** wrong pages from the database.
6288       */
6289       if( pBt->autoVacuum && rc==SQLITE_OK ){
6290         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6291         ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6292         if( rc ){
6293           releasePage(pOvfl);
6294         }
6295       }
6296 #endif
6297       if( rc ){
6298         releasePage(pToRelease);
6299         return rc;
6300       }
6301 
6302       /* If pToRelease is not zero than pPrior points into the data area
6303       ** of pToRelease.  Make sure pToRelease is still writeable. */
6304       assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6305 
6306       /* If pPrior is part of the data area of pPage, then make sure pPage
6307       ** is still writeable */
6308       assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6309             || sqlite3PagerIswriteable(pPage->pDbPage) );
6310 
6311       put4byte(pPrior, pgnoOvfl);
6312       releasePage(pToRelease);
6313       pToRelease = pOvfl;
6314       pPrior = pOvfl->aData;
6315       put4byte(pPrior, 0);
6316       pPayload = &pOvfl->aData[4];
6317       spaceLeft = pBt->usableSize - 4;
6318     }
6319     n = nPayload;
6320     if( n>spaceLeft ) n = spaceLeft;
6321 
6322     /* If pToRelease is not zero than pPayload points into the data area
6323     ** of pToRelease.  Make sure pToRelease is still writeable. */
6324     assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6325 
6326     /* If pPayload is part of the data area of pPage, then make sure pPage
6327     ** is still writeable */
6328     assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6329             || sqlite3PagerIswriteable(pPage->pDbPage) );
6330 
6331     if( nSrc>0 ){
6332       if( n>nSrc ) n = nSrc;
6333       assert( pSrc );
6334       memcpy(pPayload, pSrc, n);
6335     }else{
6336       memset(pPayload, 0, n);
6337     }
6338     nPayload -= n;
6339     pPayload += n;
6340     pSrc += n;
6341     nSrc -= n;
6342     spaceLeft -= n;
6343   }
6344   releasePage(pToRelease);
6345   return SQLITE_OK;
6346 }
6347 
6348 /*
6349 ** Remove the i-th cell from pPage.  This routine effects pPage only.
6350 ** The cell content is not freed or deallocated.  It is assumed that
6351 ** the cell content has been copied someplace else.  This routine just
6352 ** removes the reference to the cell from pPage.
6353 **
6354 ** "sz" must be the number of bytes in the cell.
6355 */
6356 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6357   u32 pc;         /* Offset to cell content of cell being deleted */
6358   u8 *data;       /* pPage->aData */
6359   u8 *ptr;        /* Used to move bytes around within data[] */
6360   int rc;         /* The return code */
6361   int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */
6362 
6363   if( *pRC ) return;
6364   assert( idx>=0 && idx<pPage->nCell );
6365   assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6366   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6367   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6368   data = pPage->aData;
6369   ptr = &pPage->aCellIdx[2*idx];
6370   pc = get2byte(ptr);
6371   hdr = pPage->hdrOffset;
6372   testcase( pc==get2byte(&data[hdr+5]) );
6373   testcase( pc+sz==pPage->pBt->usableSize );
6374   if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
6375     *pRC = SQLITE_CORRUPT_BKPT;
6376     return;
6377   }
6378   rc = freeSpace(pPage, pc, sz);
6379   if( rc ){
6380     *pRC = rc;
6381     return;
6382   }
6383   pPage->nCell--;
6384   if( pPage->nCell==0 ){
6385     memset(&data[hdr+1], 0, 4);
6386     data[hdr+7] = 0;
6387     put2byte(&data[hdr+5], pPage->pBt->usableSize);
6388     pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6389                        - pPage->childPtrSize - 8;
6390   }else{
6391     memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6392     put2byte(&data[hdr+3], pPage->nCell);
6393     pPage->nFree += 2;
6394   }
6395 }
6396 
6397 /*
6398 ** Insert a new cell on pPage at cell index "i".  pCell points to the
6399 ** content of the cell.
6400 **
6401 ** If the cell content will fit on the page, then put it there.  If it
6402 ** will not fit, then make a copy of the cell content into pTemp if
6403 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
6404 ** in pPage->apOvfl[] and make it point to the cell content (either
6405 ** in pTemp or the original pCell) and also record its index.
6406 ** Allocating a new entry in pPage->aCell[] implies that
6407 ** pPage->nOverflow is incremented.
6408 **
6409 ** *pRC must be SQLITE_OK when this routine is called.
6410 */
6411 static void insertCell(
6412   MemPage *pPage,   /* Page into which we are copying */
6413   int i,            /* New cell becomes the i-th cell of the page */
6414   u8 *pCell,        /* Content of the new cell */
6415   int sz,           /* Bytes of content in pCell */
6416   u8 *pTemp,        /* Temp storage space for pCell, if needed */
6417   Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
6418   int *pRC          /* Read and write return code from here */
6419 ){
6420   int idx = 0;      /* Where to write new cell content in data[] */
6421   int j;            /* Loop counter */
6422   u8 *data;         /* The content of the whole page */
6423   u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */
6424 
6425   assert( *pRC==SQLITE_OK );
6426   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6427   assert( MX_CELL(pPage->pBt)<=10921 );
6428   assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6429   assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6430   assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6431   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6432   /* The cell should normally be sized correctly.  However, when moving a
6433   ** malformed cell from a leaf page to an interior page, if the cell size
6434   ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6435   ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
6436   ** the term after the || in the following assert(). */
6437   assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6438   if( pPage->nOverflow || sz+2>pPage->nFree ){
6439     if( pTemp ){
6440       memcpy(pTemp, pCell, sz);
6441       pCell = pTemp;
6442     }
6443     if( iChild ){
6444       put4byte(pCell, iChild);
6445     }
6446     j = pPage->nOverflow++;
6447     /* Comparison against ArraySize-1 since we hold back one extra slot
6448     ** as a contingency.  In other words, never need more than 3 overflow
6449     ** slots but 4 are allocated, just to be safe. */
6450     assert( j < ArraySize(pPage->apOvfl)-1 );
6451     pPage->apOvfl[j] = pCell;
6452     pPage->aiOvfl[j] = (u16)i;
6453 
6454     /* When multiple overflows occur, they are always sequential and in
6455     ** sorted order.  This invariants arise because multiple overflows can
6456     ** only occur when inserting divider cells into the parent page during
6457     ** balancing, and the dividers are adjacent and sorted.
6458     */
6459     assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6460     assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
6461   }else{
6462     int rc = sqlite3PagerWrite(pPage->pDbPage);
6463     if( rc!=SQLITE_OK ){
6464       *pRC = rc;
6465       return;
6466     }
6467     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6468     data = pPage->aData;
6469     assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6470     rc = allocateSpace(pPage, sz, &idx);
6471     if( rc ){ *pRC = rc; return; }
6472     /* The allocateSpace() routine guarantees the following properties
6473     ** if it returns successfully */
6474     assert( idx >= 0 );
6475     assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6476     assert( idx+sz <= (int)pPage->pBt->usableSize );
6477     pPage->nFree -= (u16)(2 + sz);
6478     memcpy(&data[idx], pCell, sz);
6479     if( iChild ){
6480       put4byte(&data[idx], iChild);
6481     }
6482     pIns = pPage->aCellIdx + i*2;
6483     memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6484     put2byte(pIns, idx);
6485     pPage->nCell++;
6486     /* increment the cell count */
6487     if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6488     assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6489 #ifndef SQLITE_OMIT_AUTOVACUUM
6490     if( pPage->pBt->autoVacuum ){
6491       /* The cell may contain a pointer to an overflow page. If so, write
6492       ** the entry for the overflow page into the pointer map.
6493       */
6494       ptrmapPutOvflPtr(pPage, pCell, pRC);
6495     }
6496 #endif
6497   }
6498 }
6499 
6500 /*
6501 ** A CellArray object contains a cache of pointers and sizes for a
6502 ** consecutive sequence of cells that might be held on multiple pages.
6503 */
6504 typedef struct CellArray CellArray;
6505 struct CellArray {
6506   int nCell;              /* Number of cells in apCell[] */
6507   MemPage *pRef;          /* Reference page */
6508   u8 **apCell;            /* All cells begin balanced */
6509   u16 *szCell;            /* Local size of all cells in apCell[] */
6510 };
6511 
6512 /*
6513 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6514 ** computed.
6515 */
6516 static void populateCellCache(CellArray *p, int idx, int N){
6517   assert( idx>=0 && idx+N<=p->nCell );
6518   while( N>0 ){
6519     assert( p->apCell[idx]!=0 );
6520     if( p->szCell[idx]==0 ){
6521       p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6522     }else{
6523       assert( CORRUPT_DB ||
6524               p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6525     }
6526     idx++;
6527     N--;
6528   }
6529 }
6530 
6531 /*
6532 ** Return the size of the Nth element of the cell array
6533 */
6534 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6535   assert( N>=0 && N<p->nCell );
6536   assert( p->szCell[N]==0 );
6537   p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6538   return p->szCell[N];
6539 }
6540 static u16 cachedCellSize(CellArray *p, int N){
6541   assert( N>=0 && N<p->nCell );
6542   if( p->szCell[N] ) return p->szCell[N];
6543   return computeCellSize(p, N);
6544 }
6545 
6546 /*
6547 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6548 ** szCell[] array contains the size in bytes of each cell. This function
6549 ** replaces the current contents of page pPg with the contents of the cell
6550 ** array.
6551 **
6552 ** Some of the cells in apCell[] may currently be stored in pPg. This
6553 ** function works around problems caused by this by making a copy of any
6554 ** such cells before overwriting the page data.
6555 **
6556 ** The MemPage.nFree field is invalidated by this function. It is the
6557 ** responsibility of the caller to set it correctly.
6558 */
6559 static int rebuildPage(
6560   MemPage *pPg,                   /* Edit this page */
6561   int nCell,                      /* Final number of cells on page */
6562   u8 **apCell,                    /* Array of cells */
6563   u16 *szCell                     /* Array of cell sizes */
6564 ){
6565   const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
6566   u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
6567   const int usableSize = pPg->pBt->usableSize;
6568   u8 * const pEnd = &aData[usableSize];
6569   int i;
6570   u8 *pCellptr = pPg->aCellIdx;
6571   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6572   u8 *pData;
6573 
6574   i = get2byte(&aData[hdr+5]);
6575   memcpy(&pTmp[i], &aData[i], usableSize - i);
6576 
6577   pData = pEnd;
6578   for(i=0; i<nCell; i++){
6579     u8 *pCell = apCell[i];
6580     if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6581       pCell = &pTmp[pCell - aData];
6582     }
6583     pData -= szCell[i];
6584     put2byte(pCellptr, (pData - aData));
6585     pCellptr += 2;
6586     if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6587     memcpy(pData, pCell, szCell[i]);
6588     assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6589     testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6590   }
6591 
6592   /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6593   pPg->nCell = nCell;
6594   pPg->nOverflow = 0;
6595 
6596   put2byte(&aData[hdr+1], 0);
6597   put2byte(&aData[hdr+3], pPg->nCell);
6598   put2byte(&aData[hdr+5], pData - aData);
6599   aData[hdr+7] = 0x00;
6600   return SQLITE_OK;
6601 }
6602 
6603 /*
6604 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6605 ** contains the size in bytes of each such cell. This function attempts to
6606 ** add the cells stored in the array to page pPg. If it cannot (because
6607 ** the page needs to be defragmented before the cells will fit), non-zero
6608 ** is returned. Otherwise, if the cells are added successfully, zero is
6609 ** returned.
6610 **
6611 ** Argument pCellptr points to the first entry in the cell-pointer array
6612 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6613 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6614 ** cell in the array. It is the responsibility of the caller to ensure
6615 ** that it is safe to overwrite this part of the cell-pointer array.
6616 **
6617 ** When this function is called, *ppData points to the start of the
6618 ** content area on page pPg. If the size of the content area is extended,
6619 ** *ppData is updated to point to the new start of the content area
6620 ** before returning.
6621 **
6622 ** Finally, argument pBegin points to the byte immediately following the
6623 ** end of the space required by this page for the cell-pointer area (for
6624 ** all cells - not just those inserted by the current call). If the content
6625 ** area must be extended to before this point in order to accomodate all
6626 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6627 */
6628 static int pageInsertArray(
6629   MemPage *pPg,                   /* Page to add cells to */
6630   u8 *pBegin,                     /* End of cell-pointer array */
6631   u8 **ppData,                    /* IN/OUT: Page content -area pointer */
6632   u8 *pCellptr,                   /* Pointer to cell-pointer area */
6633   int iFirst,                     /* Index of first cell to add */
6634   int nCell,                      /* Number of cells to add to pPg */
6635   CellArray *pCArray              /* Array of cells */
6636 ){
6637   int i;
6638   u8 *aData = pPg->aData;
6639   u8 *pData = *ppData;
6640   int iEnd = iFirst + nCell;
6641   assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
6642   for(i=iFirst; i<iEnd; i++){
6643     int sz, rc;
6644     u8 *pSlot;
6645     sz = cachedCellSize(pCArray, i);
6646     if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6647       if( (pData - pBegin)<sz ) return 1;
6648       pData -= sz;
6649       pSlot = pData;
6650     }
6651     /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6652     ** database.  But they might for a corrupt database.  Hence use memmove()
6653     ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6654     assert( (pSlot+sz)<=pCArray->apCell[i]
6655          || pSlot>=(pCArray->apCell[i]+sz)
6656          || CORRUPT_DB );
6657     memmove(pSlot, pCArray->apCell[i], sz);
6658     put2byte(pCellptr, (pSlot - aData));
6659     pCellptr += 2;
6660   }
6661   *ppData = pData;
6662   return 0;
6663 }
6664 
6665 /*
6666 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6667 ** contains the size in bytes of each such cell. This function adds the
6668 ** space associated with each cell in the array that is currently stored
6669 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6670 ** fields of the page are not updated.
6671 **
6672 ** This function returns the total number of cells added to the free-list.
6673 */
6674 static int pageFreeArray(
6675   MemPage *pPg,                   /* Page to edit */
6676   int iFirst,                     /* First cell to delete */
6677   int nCell,                      /* Cells to delete */
6678   CellArray *pCArray              /* Array of cells */
6679 ){
6680   u8 * const aData = pPg->aData;
6681   u8 * const pEnd = &aData[pPg->pBt->usableSize];
6682   u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6683   int nRet = 0;
6684   int i;
6685   int iEnd = iFirst + nCell;
6686   u8 *pFree = 0;
6687   int szFree = 0;
6688 
6689   for(i=iFirst; i<iEnd; i++){
6690     u8 *pCell = pCArray->apCell[i];
6691     if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6692       int sz;
6693       /* No need to use cachedCellSize() here.  The sizes of all cells that
6694       ** are to be freed have already been computing while deciding which
6695       ** cells need freeing */
6696       sz = pCArray->szCell[i];  assert( sz>0 );
6697       if( pFree!=(pCell + sz) ){
6698         if( pFree ){
6699           assert( pFree>aData && (pFree - aData)<65536 );
6700           freeSpace(pPg, (u16)(pFree - aData), szFree);
6701         }
6702         pFree = pCell;
6703         szFree = sz;
6704         if( pFree+sz>pEnd ) return 0;
6705       }else{
6706         pFree = pCell;
6707         szFree += sz;
6708       }
6709       nRet++;
6710     }
6711   }
6712   if( pFree ){
6713     assert( pFree>aData && (pFree - aData)<65536 );
6714     freeSpace(pPg, (u16)(pFree - aData), szFree);
6715   }
6716   return nRet;
6717 }
6718 
6719 /*
6720 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6721 ** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
6722 ** with apCell[iOld].  After balancing, this page should hold nNew cells
6723 ** starting at apCell[iNew].
6724 **
6725 ** This routine makes the necessary adjustments to pPg so that it contains
6726 ** the correct cells after being balanced.
6727 **
6728 ** The pPg->nFree field is invalid when this function returns. It is the
6729 ** responsibility of the caller to set it correctly.
6730 */
6731 static int editPage(
6732   MemPage *pPg,                   /* Edit this page */
6733   int iOld,                       /* Index of first cell currently on page */
6734   int iNew,                       /* Index of new first cell on page */
6735   int nNew,                       /* Final number of cells on page */
6736   CellArray *pCArray              /* Array of cells and sizes */
6737 ){
6738   u8 * const aData = pPg->aData;
6739   const int hdr = pPg->hdrOffset;
6740   u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6741   int nCell = pPg->nCell;       /* Cells stored on pPg */
6742   u8 *pData;
6743   u8 *pCellptr;
6744   int i;
6745   int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6746   int iNewEnd = iNew + nNew;
6747 
6748 #ifdef SQLITE_DEBUG
6749   u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6750   memcpy(pTmp, aData, pPg->pBt->usableSize);
6751 #endif
6752 
6753   /* Remove cells from the start and end of the page */
6754   if( iOld<iNew ){
6755     int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6756     memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6757     nCell -= nShift;
6758   }
6759   if( iNewEnd < iOldEnd ){
6760     nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6761   }
6762 
6763   pData = &aData[get2byteNotZero(&aData[hdr+5])];
6764   if( pData<pBegin ) goto editpage_fail;
6765 
6766   /* Add cells to the start of the page */
6767   if( iNew<iOld ){
6768     int nAdd = MIN(nNew,iOld-iNew);
6769     assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6770     pCellptr = pPg->aCellIdx;
6771     memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6772     if( pageInsertArray(
6773           pPg, pBegin, &pData, pCellptr,
6774           iNew, nAdd, pCArray
6775     ) ) goto editpage_fail;
6776     nCell += nAdd;
6777   }
6778 
6779   /* Add any overflow cells */
6780   for(i=0; i<pPg->nOverflow; i++){
6781     int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6782     if( iCell>=0 && iCell<nNew ){
6783       pCellptr = &pPg->aCellIdx[iCell * 2];
6784       memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6785       nCell++;
6786       if( pageInsertArray(
6787             pPg, pBegin, &pData, pCellptr,
6788             iCell+iNew, 1, pCArray
6789       ) ) goto editpage_fail;
6790     }
6791   }
6792 
6793   /* Append cells to the end of the page */
6794   pCellptr = &pPg->aCellIdx[nCell*2];
6795   if( pageInsertArray(
6796         pPg, pBegin, &pData, pCellptr,
6797         iNew+nCell, nNew-nCell, pCArray
6798   ) ) goto editpage_fail;
6799 
6800   pPg->nCell = nNew;
6801   pPg->nOverflow = 0;
6802 
6803   put2byte(&aData[hdr+3], pPg->nCell);
6804   put2byte(&aData[hdr+5], pData - aData);
6805 
6806 #ifdef SQLITE_DEBUG
6807   for(i=0; i<nNew && !CORRUPT_DB; i++){
6808     u8 *pCell = pCArray->apCell[i+iNew];
6809     int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6810     if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6811       pCell = &pTmp[pCell - aData];
6812     }
6813     assert( 0==memcmp(pCell, &aData[iOff],
6814             pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6815   }
6816 #endif
6817 
6818   return SQLITE_OK;
6819  editpage_fail:
6820   /* Unable to edit this page. Rebuild it from scratch instead. */
6821   populateCellCache(pCArray, iNew, nNew);
6822   return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6823 }
6824 
6825 /*
6826 ** The following parameters determine how many adjacent pages get involved
6827 ** in a balancing operation.  NN is the number of neighbors on either side
6828 ** of the page that participate in the balancing operation.  NB is the
6829 ** total number of pages that participate, including the target page and
6830 ** NN neighbors on either side.
6831 **
6832 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
6833 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6834 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6835 ** The value of NN appears to give the best results overall.
6836 */
6837 #define NN 1             /* Number of neighbors on either side of pPage */
6838 #define NB (NN*2+1)      /* Total pages involved in the balance */
6839 
6840 
6841 #ifndef SQLITE_OMIT_QUICKBALANCE
6842 /*
6843 ** This version of balance() handles the common special case where
6844 ** a new entry is being inserted on the extreme right-end of the
6845 ** tree, in other words, when the new entry will become the largest
6846 ** entry in the tree.
6847 **
6848 ** Instead of trying to balance the 3 right-most leaf pages, just add
6849 ** a new page to the right-hand side and put the one new entry in
6850 ** that page.  This leaves the right side of the tree somewhat
6851 ** unbalanced.  But odds are that we will be inserting new entries
6852 ** at the end soon afterwards so the nearly empty page will quickly
6853 ** fill up.  On average.
6854 **
6855 ** pPage is the leaf page which is the right-most page in the tree.
6856 ** pParent is its parent.  pPage must have a single overflow entry
6857 ** which is also the right-most entry on the page.
6858 **
6859 ** The pSpace buffer is used to store a temporary copy of the divider
6860 ** cell that will be inserted into pParent. Such a cell consists of a 4
6861 ** byte page number followed by a variable length integer. In other
6862 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6863 ** least 13 bytes in size.
6864 */
6865 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6866   BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
6867   MemPage *pNew;                       /* Newly allocated page */
6868   int rc;                              /* Return Code */
6869   Pgno pgnoNew;                        /* Page number of pNew */
6870 
6871   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6872   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6873   assert( pPage->nOverflow==1 );
6874 
6875   /* This error condition is now caught prior to reaching this function */
6876   if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6877 
6878   /* Allocate a new page. This page will become the right-sibling of
6879   ** pPage. Make the parent page writable, so that the new divider cell
6880   ** may be inserted. If both these operations are successful, proceed.
6881   */
6882   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6883 
6884   if( rc==SQLITE_OK ){
6885 
6886     u8 *pOut = &pSpace[4];
6887     u8 *pCell = pPage->apOvfl[0];
6888     u16 szCell = pPage->xCellSize(pPage, pCell);
6889     u8 *pStop;
6890 
6891     assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6892     assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6893     zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6894     rc = rebuildPage(pNew, 1, &pCell, &szCell);
6895     if( NEVER(rc) ) return rc;
6896     pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6897 
6898     /* If this is an auto-vacuum database, update the pointer map
6899     ** with entries for the new page, and any pointer from the
6900     ** cell on the page to an overflow page. If either of these
6901     ** operations fails, the return code is set, but the contents
6902     ** of the parent page are still manipulated by thh code below.
6903     ** That is Ok, at this point the parent page is guaranteed to
6904     ** be marked as dirty. Returning an error code will cause a
6905     ** rollback, undoing any changes made to the parent page.
6906     */
6907     if( ISAUTOVACUUM ){
6908       ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6909       if( szCell>pNew->minLocal ){
6910         ptrmapPutOvflPtr(pNew, pCell, &rc);
6911       }
6912     }
6913 
6914     /* Create a divider cell to insert into pParent. The divider cell
6915     ** consists of a 4-byte page number (the page number of pPage) and
6916     ** a variable length key value (which must be the same value as the
6917     ** largest key on pPage).
6918     **
6919     ** To find the largest key value on pPage, first find the right-most
6920     ** cell on pPage. The first two fields of this cell are the
6921     ** record-length (a variable length integer at most 32-bits in size)
6922     ** and the key value (a variable length integer, may have any value).
6923     ** The first of the while(...) loops below skips over the record-length
6924     ** field. The second while(...) loop copies the key value from the
6925     ** cell on pPage into the pSpace buffer.
6926     */
6927     pCell = findCell(pPage, pPage->nCell-1);
6928     pStop = &pCell[9];
6929     while( (*(pCell++)&0x80) && pCell<pStop );
6930     pStop = &pCell[9];
6931     while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6932 
6933     /* Insert the new divider cell into pParent. */
6934     if( rc==SQLITE_OK ){
6935       insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6936                    0, pPage->pgno, &rc);
6937     }
6938 
6939     /* Set the right-child pointer of pParent to point to the new page. */
6940     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6941 
6942     /* Release the reference to the new page. */
6943     releasePage(pNew);
6944   }
6945 
6946   return rc;
6947 }
6948 #endif /* SQLITE_OMIT_QUICKBALANCE */
6949 
6950 #if 0
6951 /*
6952 ** This function does not contribute anything to the operation of SQLite.
6953 ** it is sometimes activated temporarily while debugging code responsible
6954 ** for setting pointer-map entries.
6955 */
6956 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6957   int i, j;
6958   for(i=0; i<nPage; i++){
6959     Pgno n;
6960     u8 e;
6961     MemPage *pPage = apPage[i];
6962     BtShared *pBt = pPage->pBt;
6963     assert( pPage->isInit );
6964 
6965     for(j=0; j<pPage->nCell; j++){
6966       CellInfo info;
6967       u8 *z;
6968 
6969       z = findCell(pPage, j);
6970       pPage->xParseCell(pPage, z, &info);
6971       if( info.nLocal<info.nPayload ){
6972         Pgno ovfl = get4byte(&z[info.nSize-4]);
6973         ptrmapGet(pBt, ovfl, &e, &n);
6974         assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6975       }
6976       if( !pPage->leaf ){
6977         Pgno child = get4byte(z);
6978         ptrmapGet(pBt, child, &e, &n);
6979         assert( n==pPage->pgno && e==PTRMAP_BTREE );
6980       }
6981     }
6982     if( !pPage->leaf ){
6983       Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6984       ptrmapGet(pBt, child, &e, &n);
6985       assert( n==pPage->pgno && e==PTRMAP_BTREE );
6986     }
6987   }
6988   return 1;
6989 }
6990 #endif
6991 
6992 /*
6993 ** This function is used to copy the contents of the b-tree node stored
6994 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6995 ** the pointer-map entries for each child page are updated so that the
6996 ** parent page stored in the pointer map is page pTo. If pFrom contained
6997 ** any cells with overflow page pointers, then the corresponding pointer
6998 ** map entries are also updated so that the parent page is page pTo.
6999 **
7000 ** If pFrom is currently carrying any overflow cells (entries in the
7001 ** MemPage.apOvfl[] array), they are not copied to pTo.
7002 **
7003 ** Before returning, page pTo is reinitialized using btreeInitPage().
7004 **
7005 ** The performance of this function is not critical. It is only used by
7006 ** the balance_shallower() and balance_deeper() procedures, neither of
7007 ** which are called often under normal circumstances.
7008 */
7009 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7010   if( (*pRC)==SQLITE_OK ){
7011     BtShared * const pBt = pFrom->pBt;
7012     u8 * const aFrom = pFrom->aData;
7013     u8 * const aTo = pTo->aData;
7014     int const iFromHdr = pFrom->hdrOffset;
7015     int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7016     int rc;
7017     int iData;
7018 
7019 
7020     assert( pFrom->isInit );
7021     assert( pFrom->nFree>=iToHdr );
7022     assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7023 
7024     /* Copy the b-tree node content from page pFrom to page pTo. */
7025     iData = get2byte(&aFrom[iFromHdr+5]);
7026     memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7027     memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7028 
7029     /* Reinitialize page pTo so that the contents of the MemPage structure
7030     ** match the new data. The initialization of pTo can actually fail under
7031     ** fairly obscure circumstances, even though it is a copy of initialized
7032     ** page pFrom.
7033     */
7034     pTo->isInit = 0;
7035     rc = btreeInitPage(pTo);
7036     if( rc!=SQLITE_OK ){
7037       *pRC = rc;
7038       return;
7039     }
7040 
7041     /* If this is an auto-vacuum database, update the pointer-map entries
7042     ** for any b-tree or overflow pages that pTo now contains the pointers to.
7043     */
7044     if( ISAUTOVACUUM ){
7045       *pRC = setChildPtrmaps(pTo);
7046     }
7047   }
7048 }
7049 
7050 /*
7051 ** This routine redistributes cells on the iParentIdx'th child of pParent
7052 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7053 ** same amount of free space. Usually a single sibling on either side of the
7054 ** page are used in the balancing, though both siblings might come from one
7055 ** side if the page is the first or last child of its parent. If the page
7056 ** has fewer than 2 siblings (something which can only happen if the page
7057 ** is a root page or a child of a root page) then all available siblings
7058 ** participate in the balancing.
7059 **
7060 ** The number of siblings of the page might be increased or decreased by
7061 ** one or two in an effort to keep pages nearly full but not over full.
7062 **
7063 ** Note that when this routine is called, some of the cells on the page
7064 ** might not actually be stored in MemPage.aData[]. This can happen
7065 ** if the page is overfull. This routine ensures that all cells allocated
7066 ** to the page and its siblings fit into MemPage.aData[] before returning.
7067 **
7068 ** In the course of balancing the page and its siblings, cells may be
7069 ** inserted into or removed from the parent page (pParent). Doing so
7070 ** may cause the parent page to become overfull or underfull. If this
7071 ** happens, it is the responsibility of the caller to invoke the correct
7072 ** balancing routine to fix this problem (see the balance() routine).
7073 **
7074 ** If this routine fails for any reason, it might leave the database
7075 ** in a corrupted state. So if this routine fails, the database should
7076 ** be rolled back.
7077 **
7078 ** The third argument to this function, aOvflSpace, is a pointer to a
7079 ** buffer big enough to hold one page. If while inserting cells into the parent
7080 ** page (pParent) the parent page becomes overfull, this buffer is
7081 ** used to store the parent's overflow cells. Because this function inserts
7082 ** a maximum of four divider cells into the parent page, and the maximum
7083 ** size of a cell stored within an internal node is always less than 1/4
7084 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7085 ** enough for all overflow cells.
7086 **
7087 ** If aOvflSpace is set to a null pointer, this function returns
7088 ** SQLITE_NOMEM.
7089 */
7090 static int balance_nonroot(
7091   MemPage *pParent,               /* Parent page of siblings being balanced */
7092   int iParentIdx,                 /* Index of "the page" in pParent */
7093   u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
7094   int isRoot,                     /* True if pParent is a root-page */
7095   int bBulk                       /* True if this call is part of a bulk load */
7096 ){
7097   BtShared *pBt;               /* The whole database */
7098   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
7099   int nNew = 0;                /* Number of pages in apNew[] */
7100   int nOld;                    /* Number of pages in apOld[] */
7101   int i, j, k;                 /* Loop counters */
7102   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
7103   int rc = SQLITE_OK;          /* The return code */
7104   u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
7105   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
7106   int usableSpace;             /* Bytes in pPage beyond the header */
7107   int pageFlags;               /* Value of pPage->aData[0] */
7108   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
7109   int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
7110   int szScratch;               /* Size of scratch memory requested */
7111   MemPage *apOld[NB];          /* pPage and up to two siblings */
7112   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
7113   u8 *pRight;                  /* Location in parent of right-sibling pointer */
7114   u8 *apDiv[NB-1];             /* Divider cells in pParent */
7115   int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
7116   int cntOld[NB+2];            /* Old index in b.apCell[] */
7117   int szNew[NB+2];             /* Combined size of cells placed on i-th page */
7118   u8 *aSpace1;                 /* Space for copies of dividers cells */
7119   Pgno pgno;                   /* Temp var to store a page number in */
7120   u8 abDone[NB+2];             /* True after i'th new page is populated */
7121   Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
7122   Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
7123   u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
7124   CellArray b;                  /* Parsed information on cells being balanced */
7125 
7126   memset(abDone, 0, sizeof(abDone));
7127   b.nCell = 0;
7128   b.apCell = 0;
7129   pBt = pParent->pBt;
7130   assert( sqlite3_mutex_held(pBt->mutex) );
7131   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7132 
7133 #if 0
7134   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7135 #endif
7136 
7137   /* At this point pParent may have at most one overflow cell. And if
7138   ** this overflow cell is present, it must be the cell with
7139   ** index iParentIdx. This scenario comes about when this function
7140   ** is called (indirectly) from sqlite3BtreeDelete().
7141   */
7142   assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7143   assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7144 
7145   if( !aOvflSpace ){
7146     return SQLITE_NOMEM_BKPT;
7147   }
7148 
7149   /* Find the sibling pages to balance. Also locate the cells in pParent
7150   ** that divide the siblings. An attempt is made to find NN siblings on
7151   ** either side of pPage. More siblings are taken from one side, however,
7152   ** if there are fewer than NN siblings on the other side. If pParent
7153   ** has NB or fewer children then all children of pParent are taken.
7154   **
7155   ** This loop also drops the divider cells from the parent page. This
7156   ** way, the remainder of the function does not have to deal with any
7157   ** overflow cells in the parent page, since if any existed they will
7158   ** have already been removed.
7159   */
7160   i = pParent->nOverflow + pParent->nCell;
7161   if( i<2 ){
7162     nxDiv = 0;
7163   }else{
7164     assert( bBulk==0 || bBulk==1 );
7165     if( iParentIdx==0 ){
7166       nxDiv = 0;
7167     }else if( iParentIdx==i ){
7168       nxDiv = i-2+bBulk;
7169     }else{
7170       nxDiv = iParentIdx-1;
7171     }
7172     i = 2-bBulk;
7173   }
7174   nOld = i+1;
7175   if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7176     pRight = &pParent->aData[pParent->hdrOffset+8];
7177   }else{
7178     pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7179   }
7180   pgno = get4byte(pRight);
7181   while( 1 ){
7182     rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7183     if( rc ){
7184       memset(apOld, 0, (i+1)*sizeof(MemPage*));
7185       goto balance_cleanup;
7186     }
7187     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7188     if( (i--)==0 ) break;
7189 
7190     if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7191       apDiv[i] = pParent->apOvfl[0];
7192       pgno = get4byte(apDiv[i]);
7193       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7194       pParent->nOverflow = 0;
7195     }else{
7196       apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7197       pgno = get4byte(apDiv[i]);
7198       szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7199 
7200       /* Drop the cell from the parent page. apDiv[i] still points to
7201       ** the cell within the parent, even though it has been dropped.
7202       ** This is safe because dropping a cell only overwrites the first
7203       ** four bytes of it, and this function does not need the first
7204       ** four bytes of the divider cell. So the pointer is safe to use
7205       ** later on.
7206       **
7207       ** But not if we are in secure-delete mode. In secure-delete mode,
7208       ** the dropCell() routine will overwrite the entire cell with zeroes.
7209       ** In this case, temporarily copy the cell into the aOvflSpace[]
7210       ** buffer. It will be copied out again as soon as the aSpace[] buffer
7211       ** is allocated.  */
7212       if( pBt->btsFlags & BTS_SECURE_DELETE ){
7213         int iOff;
7214 
7215         iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7216         if( (iOff+szNew[i])>(int)pBt->usableSize ){
7217           rc = SQLITE_CORRUPT_BKPT;
7218           memset(apOld, 0, (i+1)*sizeof(MemPage*));
7219           goto balance_cleanup;
7220         }else{
7221           memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7222           apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7223         }
7224       }
7225       dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7226     }
7227   }
7228 
7229   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7230   ** alignment */
7231   nMaxCells = (nMaxCells + 3)&~3;
7232 
7233   /*
7234   ** Allocate space for memory structures
7235   */
7236   szScratch =
7237        nMaxCells*sizeof(u8*)                       /* b.apCell */
7238      + nMaxCells*sizeof(u16)                       /* b.szCell */
7239      + pBt->pageSize;                              /* aSpace1 */
7240 
7241   /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7242   ** that is more than 6 times the database page size. */
7243   assert( szScratch<=6*(int)pBt->pageSize );
7244   b.apCell = sqlite3ScratchMalloc( szScratch );
7245   if( b.apCell==0 ){
7246     rc = SQLITE_NOMEM_BKPT;
7247     goto balance_cleanup;
7248   }
7249   b.szCell = (u16*)&b.apCell[nMaxCells];
7250   aSpace1 = (u8*)&b.szCell[nMaxCells];
7251   assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7252 
7253   /*
7254   ** Load pointers to all cells on sibling pages and the divider cells
7255   ** into the local b.apCell[] array.  Make copies of the divider cells
7256   ** into space obtained from aSpace1[]. The divider cells have already
7257   ** been removed from pParent.
7258   **
7259   ** If the siblings are on leaf pages, then the child pointers of the
7260   ** divider cells are stripped from the cells before they are copied
7261   ** into aSpace1[].  In this way, all cells in b.apCell[] are without
7262   ** child pointers.  If siblings are not leaves, then all cell in
7263   ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
7264   ** are alike.
7265   **
7266   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
7267   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
7268   */
7269   b.pRef = apOld[0];
7270   leafCorrection = b.pRef->leaf*4;
7271   leafData = b.pRef->intKeyLeaf;
7272   for(i=0; i<nOld; i++){
7273     MemPage *pOld = apOld[i];
7274     int limit = pOld->nCell;
7275     u8 *aData = pOld->aData;
7276     u16 maskPage = pOld->maskPage;
7277     u8 *piCell = aData + pOld->cellOffset;
7278     u8 *piEnd;
7279 
7280     /* Verify that all sibling pages are of the same "type" (table-leaf,
7281     ** table-interior, index-leaf, or index-interior).
7282     */
7283     if( pOld->aData[0]!=apOld[0]->aData[0] ){
7284       rc = SQLITE_CORRUPT_BKPT;
7285       goto balance_cleanup;
7286     }
7287 
7288     /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
7289     ** constains overflow cells, include them in the b.apCell[] array
7290     ** in the correct spot.
7291     **
7292     ** Note that when there are multiple overflow cells, it is always the
7293     ** case that they are sequential and adjacent.  This invariant arises
7294     ** because multiple overflows can only occurs when inserting divider
7295     ** cells into a parent on a prior balance, and divider cells are always
7296     ** adjacent and are inserted in order.  There is an assert() tagged
7297     ** with "NOTE 1" in the overflow cell insertion loop to prove this
7298     ** invariant.
7299     **
7300     ** This must be done in advance.  Once the balance starts, the cell
7301     ** offset section of the btree page will be overwritten and we will no
7302     ** long be able to find the cells if a pointer to each cell is not saved
7303     ** first.
7304     */
7305     memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7306     if( pOld->nOverflow>0 ){
7307       limit = pOld->aiOvfl[0];
7308       for(j=0; j<limit; j++){
7309         b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7310         piCell += 2;
7311         b.nCell++;
7312       }
7313       for(k=0; k<pOld->nOverflow; k++){
7314         assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7315         b.apCell[b.nCell] = pOld->apOvfl[k];
7316         b.nCell++;
7317       }
7318     }
7319     piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7320     while( piCell<piEnd ){
7321       assert( b.nCell<nMaxCells );
7322       b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7323       piCell += 2;
7324       b.nCell++;
7325     }
7326 
7327     cntOld[i] = b.nCell;
7328     if( i<nOld-1 && !leafData){
7329       u16 sz = (u16)szNew[i];
7330       u8 *pTemp;
7331       assert( b.nCell<nMaxCells );
7332       b.szCell[b.nCell] = sz;
7333       pTemp = &aSpace1[iSpace1];
7334       iSpace1 += sz;
7335       assert( sz<=pBt->maxLocal+23 );
7336       assert( iSpace1 <= (int)pBt->pageSize );
7337       memcpy(pTemp, apDiv[i], sz);
7338       b.apCell[b.nCell] = pTemp+leafCorrection;
7339       assert( leafCorrection==0 || leafCorrection==4 );
7340       b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7341       if( !pOld->leaf ){
7342         assert( leafCorrection==0 );
7343         assert( pOld->hdrOffset==0 );
7344         /* The right pointer of the child page pOld becomes the left
7345         ** pointer of the divider cell */
7346         memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7347       }else{
7348         assert( leafCorrection==4 );
7349         while( b.szCell[b.nCell]<4 ){
7350           /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7351           ** does exist, pad it with 0x00 bytes. */
7352           assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7353           assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7354           aSpace1[iSpace1++] = 0x00;
7355           b.szCell[b.nCell]++;
7356         }
7357       }
7358       b.nCell++;
7359     }
7360   }
7361 
7362   /*
7363   ** Figure out the number of pages needed to hold all b.nCell cells.
7364   ** Store this number in "k".  Also compute szNew[] which is the total
7365   ** size of all cells on the i-th page and cntNew[] which is the index
7366   ** in b.apCell[] of the cell that divides page i from page i+1.
7367   ** cntNew[k] should equal b.nCell.
7368   **
7369   ** Values computed by this block:
7370   **
7371   **           k: The total number of sibling pages
7372   **    szNew[i]: Spaced used on the i-th sibling page.
7373   **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7374   **              the right of the i-th sibling page.
7375   ** usableSpace: Number of bytes of space available on each sibling.
7376   **
7377   */
7378   usableSpace = pBt->usableSize - 12 + leafCorrection;
7379   for(i=0; i<nOld; i++){
7380     MemPage *p = apOld[i];
7381     szNew[i] = usableSpace - p->nFree;
7382     for(j=0; j<p->nOverflow; j++){
7383       szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7384     }
7385     cntNew[i] = cntOld[i];
7386   }
7387   k = nOld;
7388   for(i=0; i<k; i++){
7389     int sz;
7390     while( szNew[i]>usableSpace ){
7391       if( i+1>=k ){
7392         k = i+2;
7393         if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7394         szNew[k-1] = 0;
7395         cntNew[k-1] = b.nCell;
7396       }
7397       sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7398       szNew[i] -= sz;
7399       if( !leafData ){
7400         if( cntNew[i]<b.nCell ){
7401           sz = 2 + cachedCellSize(&b, cntNew[i]);
7402         }else{
7403           sz = 0;
7404         }
7405       }
7406       szNew[i+1] += sz;
7407       cntNew[i]--;
7408     }
7409     while( cntNew[i]<b.nCell ){
7410       sz = 2 + cachedCellSize(&b, cntNew[i]);
7411       if( szNew[i]+sz>usableSpace ) break;
7412       szNew[i] += sz;
7413       cntNew[i]++;
7414       if( !leafData ){
7415         if( cntNew[i]<b.nCell ){
7416           sz = 2 + cachedCellSize(&b, cntNew[i]);
7417         }else{
7418           sz = 0;
7419         }
7420       }
7421       szNew[i+1] -= sz;
7422     }
7423     if( cntNew[i]>=b.nCell ){
7424       k = i+1;
7425     }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7426       rc = SQLITE_CORRUPT_BKPT;
7427       goto balance_cleanup;
7428     }
7429   }
7430 
7431   /*
7432   ** The packing computed by the previous block is biased toward the siblings
7433   ** on the left side (siblings with smaller keys). The left siblings are
7434   ** always nearly full, while the right-most sibling might be nearly empty.
7435   ** The next block of code attempts to adjust the packing of siblings to
7436   ** get a better balance.
7437   **
7438   ** This adjustment is more than an optimization.  The packing above might
7439   ** be so out of balance as to be illegal.  For example, the right-most
7440   ** sibling might be completely empty.  This adjustment is not optional.
7441   */
7442   for(i=k-1; i>0; i--){
7443     int szRight = szNew[i];  /* Size of sibling on the right */
7444     int szLeft = szNew[i-1]; /* Size of sibling on the left */
7445     int r;              /* Index of right-most cell in left sibling */
7446     int d;              /* Index of first cell to the left of right sibling */
7447 
7448     r = cntNew[i-1] - 1;
7449     d = r + 1 - leafData;
7450     (void)cachedCellSize(&b, d);
7451     do{
7452       assert( d<nMaxCells );
7453       assert( r<nMaxCells );
7454       (void)cachedCellSize(&b, r);
7455       if( szRight!=0
7456        && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7457         break;
7458       }
7459       szRight += b.szCell[d] + 2;
7460       szLeft -= b.szCell[r] + 2;
7461       cntNew[i-1] = r;
7462       r--;
7463       d--;
7464     }while( r>=0 );
7465     szNew[i] = szRight;
7466     szNew[i-1] = szLeft;
7467     if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7468       rc = SQLITE_CORRUPT_BKPT;
7469       goto balance_cleanup;
7470     }
7471   }
7472 
7473   /* Sanity check:  For a non-corrupt database file one of the follwing
7474   ** must be true:
7475   **    (1) We found one or more cells (cntNew[0])>0), or
7476   **    (2) pPage is a virtual root page.  A virtual root page is when
7477   **        the real root page is page 1 and we are the only child of
7478   **        that page.
7479   */
7480   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7481   TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7482     apOld[0]->pgno, apOld[0]->nCell,
7483     nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7484     nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7485   ));
7486 
7487   /*
7488   ** Allocate k new pages.  Reuse old pages where possible.
7489   */
7490   pageFlags = apOld[0]->aData[0];
7491   for(i=0; i<k; i++){
7492     MemPage *pNew;
7493     if( i<nOld ){
7494       pNew = apNew[i] = apOld[i];
7495       apOld[i] = 0;
7496       rc = sqlite3PagerWrite(pNew->pDbPage);
7497       nNew++;
7498       if( rc ) goto balance_cleanup;
7499     }else{
7500       assert( i>0 );
7501       rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7502       if( rc ) goto balance_cleanup;
7503       zeroPage(pNew, pageFlags);
7504       apNew[i] = pNew;
7505       nNew++;
7506       cntOld[i] = b.nCell;
7507 
7508       /* Set the pointer-map entry for the new sibling page. */
7509       if( ISAUTOVACUUM ){
7510         ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7511         if( rc!=SQLITE_OK ){
7512           goto balance_cleanup;
7513         }
7514       }
7515     }
7516   }
7517 
7518   /*
7519   ** Reassign page numbers so that the new pages are in ascending order.
7520   ** This helps to keep entries in the disk file in order so that a scan
7521   ** of the table is closer to a linear scan through the file. That in turn
7522   ** helps the operating system to deliver pages from the disk more rapidly.
7523   **
7524   ** An O(n^2) insertion sort algorithm is used, but since n is never more
7525   ** than (NB+2) (a small constant), that should not be a problem.
7526   **
7527   ** When NB==3, this one optimization makes the database about 25% faster
7528   ** for large insertions and deletions.
7529   */
7530   for(i=0; i<nNew; i++){
7531     aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7532     aPgFlags[i] = apNew[i]->pDbPage->flags;
7533     for(j=0; j<i; j++){
7534       if( aPgno[j]==aPgno[i] ){
7535         /* This branch is taken if the set of sibling pages somehow contains
7536         ** duplicate entries. This can happen if the database is corrupt.
7537         ** It would be simpler to detect this as part of the loop below, but
7538         ** we do the detection here in order to avoid populating the pager
7539         ** cache with two separate objects associated with the same
7540         ** page number.  */
7541         assert( CORRUPT_DB );
7542         rc = SQLITE_CORRUPT_BKPT;
7543         goto balance_cleanup;
7544       }
7545     }
7546   }
7547   for(i=0; i<nNew; i++){
7548     int iBest = 0;                /* aPgno[] index of page number to use */
7549     for(j=1; j<nNew; j++){
7550       if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7551     }
7552     pgno = aPgOrder[iBest];
7553     aPgOrder[iBest] = 0xffffffff;
7554     if( iBest!=i ){
7555       if( iBest>i ){
7556         sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7557       }
7558       sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7559       apNew[i]->pgno = pgno;
7560     }
7561   }
7562 
7563   TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7564          "%d(%d nc=%d) %d(%d nc=%d)\n",
7565     apNew[0]->pgno, szNew[0], cntNew[0],
7566     nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7567     nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7568     nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7569     nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7570     nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7571     nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7572     nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7573     nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7574   ));
7575 
7576   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7577   put4byte(pRight, apNew[nNew-1]->pgno);
7578 
7579   /* If the sibling pages are not leaves, ensure that the right-child pointer
7580   ** of the right-most new sibling page is set to the value that was
7581   ** originally in the same field of the right-most old sibling page. */
7582   if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7583     MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7584     memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7585   }
7586 
7587   /* Make any required updates to pointer map entries associated with
7588   ** cells stored on sibling pages following the balance operation. Pointer
7589   ** map entries associated with divider cells are set by the insertCell()
7590   ** routine. The associated pointer map entries are:
7591   **
7592   **   a) if the cell contains a reference to an overflow chain, the
7593   **      entry associated with the first page in the overflow chain, and
7594   **
7595   **   b) if the sibling pages are not leaves, the child page associated
7596   **      with the cell.
7597   **
7598   ** If the sibling pages are not leaves, then the pointer map entry
7599   ** associated with the right-child of each sibling may also need to be
7600   ** updated. This happens below, after the sibling pages have been
7601   ** populated, not here.
7602   */
7603   if( ISAUTOVACUUM ){
7604     MemPage *pNew = apNew[0];
7605     u8 *aOld = pNew->aData;
7606     int cntOldNext = pNew->nCell + pNew->nOverflow;
7607     int usableSize = pBt->usableSize;
7608     int iNew = 0;
7609     int iOld = 0;
7610 
7611     for(i=0; i<b.nCell; i++){
7612       u8 *pCell = b.apCell[i];
7613       if( i==cntOldNext ){
7614         MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7615         cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7616         aOld = pOld->aData;
7617       }
7618       if( i==cntNew[iNew] ){
7619         pNew = apNew[++iNew];
7620         if( !leafData ) continue;
7621       }
7622 
7623       /* Cell pCell is destined for new sibling page pNew. Originally, it
7624       ** was either part of sibling page iOld (possibly an overflow cell),
7625       ** or else the divider cell to the left of sibling page iOld. So,
7626       ** if sibling page iOld had the same page number as pNew, and if
7627       ** pCell really was a part of sibling page iOld (not a divider or
7628       ** overflow cell), we can skip updating the pointer map entries.  */
7629       if( iOld>=nNew
7630        || pNew->pgno!=aPgno[iOld]
7631        || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7632       ){
7633         if( !leafCorrection ){
7634           ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7635         }
7636         if( cachedCellSize(&b,i)>pNew->minLocal ){
7637           ptrmapPutOvflPtr(pNew, pCell, &rc);
7638         }
7639         if( rc ) goto balance_cleanup;
7640       }
7641     }
7642   }
7643 
7644   /* Insert new divider cells into pParent. */
7645   for(i=0; i<nNew-1; i++){
7646     u8 *pCell;
7647     u8 *pTemp;
7648     int sz;
7649     MemPage *pNew = apNew[i];
7650     j = cntNew[i];
7651 
7652     assert( j<nMaxCells );
7653     assert( b.apCell[j]!=0 );
7654     pCell = b.apCell[j];
7655     sz = b.szCell[j] + leafCorrection;
7656     pTemp = &aOvflSpace[iOvflSpace];
7657     if( !pNew->leaf ){
7658       memcpy(&pNew->aData[8], pCell, 4);
7659     }else if( leafData ){
7660       /* If the tree is a leaf-data tree, and the siblings are leaves,
7661       ** then there is no divider cell in b.apCell[]. Instead, the divider
7662       ** cell consists of the integer key for the right-most cell of
7663       ** the sibling-page assembled above only.
7664       */
7665       CellInfo info;
7666       j--;
7667       pNew->xParseCell(pNew, b.apCell[j], &info);
7668       pCell = pTemp;
7669       sz = 4 + putVarint(&pCell[4], info.nKey);
7670       pTemp = 0;
7671     }else{
7672       pCell -= 4;
7673       /* Obscure case for non-leaf-data trees: If the cell at pCell was
7674       ** previously stored on a leaf node, and its reported size was 4
7675       ** bytes, then it may actually be smaller than this
7676       ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7677       ** any cell). But it is important to pass the correct size to
7678       ** insertCell(), so reparse the cell now.
7679       **
7680       ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7681       ** and WITHOUT ROWID tables with exactly one column which is the
7682       ** primary key.
7683       */
7684       if( b.szCell[j]==4 ){
7685         assert(leafCorrection==4);
7686         sz = pParent->xCellSize(pParent, pCell);
7687       }
7688     }
7689     iOvflSpace += sz;
7690     assert( sz<=pBt->maxLocal+23 );
7691     assert( iOvflSpace <= (int)pBt->pageSize );
7692     insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7693     if( rc!=SQLITE_OK ) goto balance_cleanup;
7694     assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7695   }
7696 
7697   /* Now update the actual sibling pages. The order in which they are updated
7698   ** is important, as this code needs to avoid disrupting any page from which
7699   ** cells may still to be read. In practice, this means:
7700   **
7701   **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7702   **      then it is not safe to update page apNew[iPg] until after
7703   **      the left-hand sibling apNew[iPg-1] has been updated.
7704   **
7705   **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7706   **      then it is not safe to update page apNew[iPg] until after
7707   **      the right-hand sibling apNew[iPg+1] has been updated.
7708   **
7709   ** If neither of the above apply, the page is safe to update.
7710   **
7711   ** The iPg value in the following loop starts at nNew-1 goes down
7712   ** to 0, then back up to nNew-1 again, thus making two passes over
7713   ** the pages.  On the initial downward pass, only condition (1) above
7714   ** needs to be tested because (2) will always be true from the previous
7715   ** step.  On the upward pass, both conditions are always true, so the
7716   ** upwards pass simply processes pages that were missed on the downward
7717   ** pass.
7718   */
7719   for(i=1-nNew; i<nNew; i++){
7720     int iPg = i<0 ? -i : i;
7721     assert( iPg>=0 && iPg<nNew );
7722     if( abDone[iPg] ) continue;         /* Skip pages already processed */
7723     if( i>=0                            /* On the upwards pass, or... */
7724      || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
7725     ){
7726       int iNew;
7727       int iOld;
7728       int nNewCell;
7729 
7730       /* Verify condition (1):  If cells are moving left, update iPg
7731       ** only after iPg-1 has already been updated. */
7732       assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7733 
7734       /* Verify condition (2):  If cells are moving right, update iPg
7735       ** only after iPg+1 has already been updated. */
7736       assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7737 
7738       if( iPg==0 ){
7739         iNew = iOld = 0;
7740         nNewCell = cntNew[0];
7741       }else{
7742         iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7743         iNew = cntNew[iPg-1] + !leafData;
7744         nNewCell = cntNew[iPg] - iNew;
7745       }
7746 
7747       rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7748       if( rc ) goto balance_cleanup;
7749       abDone[iPg]++;
7750       apNew[iPg]->nFree = usableSpace-szNew[iPg];
7751       assert( apNew[iPg]->nOverflow==0 );
7752       assert( apNew[iPg]->nCell==nNewCell );
7753     }
7754   }
7755 
7756   /* All pages have been processed exactly once */
7757   assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7758 
7759   assert( nOld>0 );
7760   assert( nNew>0 );
7761 
7762   if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7763     /* The root page of the b-tree now contains no cells. The only sibling
7764     ** page is the right-child of the parent. Copy the contents of the
7765     ** child page into the parent, decreasing the overall height of the
7766     ** b-tree structure by one. This is described as the "balance-shallower"
7767     ** sub-algorithm in some documentation.
7768     **
7769     ** If this is an auto-vacuum database, the call to copyNodeContent()
7770     ** sets all pointer-map entries corresponding to database image pages
7771     ** for which the pointer is stored within the content being copied.
7772     **
7773     ** It is critical that the child page be defragmented before being
7774     ** copied into the parent, because if the parent is page 1 then it will
7775     ** by smaller than the child due to the database header, and so all the
7776     ** free space needs to be up front.
7777     */
7778     assert( nNew==1 || CORRUPT_DB );
7779     rc = defragmentPage(apNew[0], -1);
7780     testcase( rc!=SQLITE_OK );
7781     assert( apNew[0]->nFree ==
7782         (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7783       || rc!=SQLITE_OK
7784     );
7785     copyNodeContent(apNew[0], pParent, &rc);
7786     freePage(apNew[0], &rc);
7787   }else if( ISAUTOVACUUM && !leafCorrection ){
7788     /* Fix the pointer map entries associated with the right-child of each
7789     ** sibling page. All other pointer map entries have already been taken
7790     ** care of.  */
7791     for(i=0; i<nNew; i++){
7792       u32 key = get4byte(&apNew[i]->aData[8]);
7793       ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7794     }
7795   }
7796 
7797   assert( pParent->isInit );
7798   TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7799           nOld, nNew, b.nCell));
7800 
7801   /* Free any old pages that were not reused as new pages.
7802   */
7803   for(i=nNew; i<nOld; i++){
7804     freePage(apOld[i], &rc);
7805   }
7806 
7807 #if 0
7808   if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7809     /* The ptrmapCheckPages() contains assert() statements that verify that
7810     ** all pointer map pages are set correctly. This is helpful while
7811     ** debugging. This is usually disabled because a corrupt database may
7812     ** cause an assert() statement to fail.  */
7813     ptrmapCheckPages(apNew, nNew);
7814     ptrmapCheckPages(&pParent, 1);
7815   }
7816 #endif
7817 
7818   /*
7819   ** Cleanup before returning.
7820   */
7821 balance_cleanup:
7822   sqlite3ScratchFree(b.apCell);
7823   for(i=0; i<nOld; i++){
7824     releasePage(apOld[i]);
7825   }
7826   for(i=0; i<nNew; i++){
7827     releasePage(apNew[i]);
7828   }
7829 
7830   return rc;
7831 }
7832 
7833 
7834 /*
7835 ** This function is called when the root page of a b-tree structure is
7836 ** overfull (has one or more overflow pages).
7837 **
7838 ** A new child page is allocated and the contents of the current root
7839 ** page, including overflow cells, are copied into the child. The root
7840 ** page is then overwritten to make it an empty page with the right-child
7841 ** pointer pointing to the new page.
7842 **
7843 ** Before returning, all pointer-map entries corresponding to pages
7844 ** that the new child-page now contains pointers to are updated. The
7845 ** entry corresponding to the new right-child pointer of the root
7846 ** page is also updated.
7847 **
7848 ** If successful, *ppChild is set to contain a reference to the child
7849 ** page and SQLITE_OK is returned. In this case the caller is required
7850 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7851 ** an error code is returned and *ppChild is set to 0.
7852 */
7853 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7854   int rc;                        /* Return value from subprocedures */
7855   MemPage *pChild = 0;           /* Pointer to a new child page */
7856   Pgno pgnoChild = 0;            /* Page number of the new child page */
7857   BtShared *pBt = pRoot->pBt;    /* The BTree */
7858 
7859   assert( pRoot->nOverflow>0 );
7860   assert( sqlite3_mutex_held(pBt->mutex) );
7861 
7862   /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7863   ** page that will become the new right-child of pPage. Copy the contents
7864   ** of the node stored on pRoot into the new child page.
7865   */
7866   rc = sqlite3PagerWrite(pRoot->pDbPage);
7867   if( rc==SQLITE_OK ){
7868     rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7869     copyNodeContent(pRoot, pChild, &rc);
7870     if( ISAUTOVACUUM ){
7871       ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7872     }
7873   }
7874   if( rc ){
7875     *ppChild = 0;
7876     releasePage(pChild);
7877     return rc;
7878   }
7879   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7880   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7881   assert( pChild->nCell==pRoot->nCell );
7882 
7883   TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7884 
7885   /* Copy the overflow cells from pRoot to pChild */
7886   memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7887          pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7888   memcpy(pChild->apOvfl, pRoot->apOvfl,
7889          pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7890   pChild->nOverflow = pRoot->nOverflow;
7891 
7892   /* Zero the contents of pRoot. Then install pChild as the right-child. */
7893   zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7894   put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7895 
7896   *ppChild = pChild;
7897   return SQLITE_OK;
7898 }
7899 
7900 /*
7901 ** The page that pCur currently points to has just been modified in
7902 ** some way. This function figures out if this modification means the
7903 ** tree needs to be balanced, and if so calls the appropriate balancing
7904 ** routine. Balancing routines are:
7905 **
7906 **   balance_quick()
7907 **   balance_deeper()
7908 **   balance_nonroot()
7909 */
7910 static int balance(BtCursor *pCur){
7911   int rc = SQLITE_OK;
7912   const int nMin = pCur->pBt->usableSize * 2 / 3;
7913   u8 aBalanceQuickSpace[13];
7914   u8 *pFree = 0;
7915 
7916   VVA_ONLY( int balance_quick_called = 0 );
7917   VVA_ONLY( int balance_deeper_called = 0 );
7918 
7919   do {
7920     int iPage = pCur->iPage;
7921     MemPage *pPage = pCur->apPage[iPage];
7922 
7923     if( iPage==0 ){
7924       if( pPage->nOverflow ){
7925         /* The root page of the b-tree is overfull. In this case call the
7926         ** balance_deeper() function to create a new child for the root-page
7927         ** and copy the current contents of the root-page to it. The
7928         ** next iteration of the do-loop will balance the child page.
7929         */
7930         assert( balance_deeper_called==0 );
7931         VVA_ONLY( balance_deeper_called++ );
7932         rc = balance_deeper(pPage, &pCur->apPage[1]);
7933         if( rc==SQLITE_OK ){
7934           pCur->iPage = 1;
7935           pCur->aiIdx[0] = 0;
7936           pCur->aiIdx[1] = 0;
7937           assert( pCur->apPage[1]->nOverflow );
7938         }
7939       }else{
7940         break;
7941       }
7942     }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7943       break;
7944     }else{
7945       MemPage * const pParent = pCur->apPage[iPage-1];
7946       int const iIdx = pCur->aiIdx[iPage-1];
7947 
7948       rc = sqlite3PagerWrite(pParent->pDbPage);
7949       if( rc==SQLITE_OK ){
7950 #ifndef SQLITE_OMIT_QUICKBALANCE
7951         if( pPage->intKeyLeaf
7952          && pPage->nOverflow==1
7953          && pPage->aiOvfl[0]==pPage->nCell
7954          && pParent->pgno!=1
7955          && pParent->nCell==iIdx
7956         ){
7957           /* Call balance_quick() to create a new sibling of pPage on which
7958           ** to store the overflow cell. balance_quick() inserts a new cell
7959           ** into pParent, which may cause pParent overflow. If this
7960           ** happens, the next iteration of the do-loop will balance pParent
7961           ** use either balance_nonroot() or balance_deeper(). Until this
7962           ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7963           ** buffer.
7964           **
7965           ** The purpose of the following assert() is to check that only a
7966           ** single call to balance_quick() is made for each call to this
7967           ** function. If this were not verified, a subtle bug involving reuse
7968           ** of the aBalanceQuickSpace[] might sneak in.
7969           */
7970           assert( balance_quick_called==0 );
7971           VVA_ONLY( balance_quick_called++ );
7972           rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7973         }else
7974 #endif
7975         {
7976           /* In this case, call balance_nonroot() to redistribute cells
7977           ** between pPage and up to 2 of its sibling pages. This involves
7978           ** modifying the contents of pParent, which may cause pParent to
7979           ** become overfull or underfull. The next iteration of the do-loop
7980           ** will balance the parent page to correct this.
7981           **
7982           ** If the parent page becomes overfull, the overflow cell or cells
7983           ** are stored in the pSpace buffer allocated immediately below.
7984           ** A subsequent iteration of the do-loop will deal with this by
7985           ** calling balance_nonroot() (balance_deeper() may be called first,
7986           ** but it doesn't deal with overflow cells - just moves them to a
7987           ** different page). Once this subsequent call to balance_nonroot()
7988           ** has completed, it is safe to release the pSpace buffer used by
7989           ** the previous call, as the overflow cell data will have been
7990           ** copied either into the body of a database page or into the new
7991           ** pSpace buffer passed to the latter call to balance_nonroot().
7992           */
7993           u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7994           rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7995                                pCur->hints&BTREE_BULKLOAD);
7996           if( pFree ){
7997             /* If pFree is not NULL, it points to the pSpace buffer used
7998             ** by a previous call to balance_nonroot(). Its contents are
7999             ** now stored either on real database pages or within the
8000             ** new pSpace buffer, so it may be safely freed here. */
8001             sqlite3PageFree(pFree);
8002           }
8003 
8004           /* The pSpace buffer will be freed after the next call to
8005           ** balance_nonroot(), or just before this function returns, whichever
8006           ** comes first. */
8007           pFree = pSpace;
8008         }
8009       }
8010 
8011       pPage->nOverflow = 0;
8012 
8013       /* The next iteration of the do-loop balances the parent page. */
8014       releasePage(pPage);
8015       pCur->iPage--;
8016       assert( pCur->iPage>=0 );
8017     }
8018   }while( rc==SQLITE_OK );
8019 
8020   if( pFree ){
8021     sqlite3PageFree(pFree);
8022   }
8023   return rc;
8024 }
8025 
8026 
8027 /*
8028 ** Insert a new record into the BTree.  The content of the new record
8029 ** is described by the pX object.  The pCur cursor is used only to
8030 ** define what table the record should be inserted into, and is left
8031 ** pointing at a random location.
8032 **
8033 ** For a table btree (used for rowid tables), only the pX.nKey value of
8034 ** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
8035 ** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
8036 ** hold the content of the row.
8037 **
8038 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8039 ** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The
8040 ** pX.pData,nData,nZero fields must be zero.
8041 **
8042 ** If the seekResult parameter is non-zero, then a successful call to
8043 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8044 ** been performed.  In other words, if seekResult!=0 then the cursor
8045 ** is currently pointing to a cell that will be adjacent to the cell
8046 ** to be inserted.  If seekResult<0 then pCur points to a cell that is
8047 ** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
8048 ** that is larger than (pKey,nKey).
8049 **
8050 ** If seekResult==0, that means pCur is pointing at some unknown location.
8051 ** In that case, this routine must seek the cursor to the correct insertion
8052 ** point for (pKey,nKey) before doing the insertion.  For index btrees,
8053 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8054 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8055 ** to decode the key.
8056 */
8057 int sqlite3BtreeInsert(
8058   BtCursor *pCur,                /* Insert data into the table of this cursor */
8059   const BtreePayload *pX,        /* Content of the row to be inserted */
8060   int flags,                     /* True if this is likely an append */
8061   int seekResult                 /* Result of prior MovetoUnpacked() call */
8062 ){
8063   int rc;
8064   int loc = seekResult;          /* -1: before desired location  +1: after */
8065   int szNew = 0;
8066   int idx;
8067   MemPage *pPage;
8068   Btree *p = pCur->pBtree;
8069   BtShared *pBt = p->pBt;
8070   unsigned char *oldCell;
8071   unsigned char *newCell = 0;
8072 
8073   assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8074 
8075   if( pCur->eState==CURSOR_FAULT ){
8076     assert( pCur->skipNext!=SQLITE_OK );
8077     return pCur->skipNext;
8078   }
8079 
8080   assert( cursorOwnsBtShared(pCur) );
8081   assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8082               && pBt->inTransaction==TRANS_WRITE
8083               && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8084   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8085 
8086   /* Assert that the caller has been consistent. If this cursor was opened
8087   ** expecting an index b-tree, then the caller should be inserting blob
8088   ** keys with no associated data. If the cursor was opened expecting an
8089   ** intkey table, the caller should be inserting integer keys with a
8090   ** blob of associated data.  */
8091   assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8092 
8093   /* Save the positions of any other cursors open on this table.
8094   **
8095   ** In some cases, the call to btreeMoveto() below is a no-op. For
8096   ** example, when inserting data into a table with auto-generated integer
8097   ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8098   ** integer key to use. It then calls this function to actually insert the
8099   ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8100   ** that the cursor is already where it needs to be and returns without
8101   ** doing any work. To avoid thwarting these optimizations, it is important
8102   ** not to clear the cursor here.
8103   */
8104   if( pCur->curFlags & BTCF_Multiple ){
8105     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8106     if( rc ) return rc;
8107   }
8108 
8109   if( pCur->pKeyInfo==0 ){
8110     assert( pX->pKey==0 );
8111     /* If this is an insert into a table b-tree, invalidate any incrblob
8112     ** cursors open on the row being replaced */
8113     invalidateIncrblobCursors(p, pX->nKey, 0);
8114 
8115     /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8116     ** to a row with the same key as the new entry being inserted.  */
8117     assert( (flags & BTREE_SAVEPOSITION)==0 ||
8118             ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8119 
8120     /* If the cursor is currently on the last row and we are appending a
8121     ** new row onto the end, set the "loc" to avoid an unnecessary
8122     ** btreeMoveto() call */
8123     if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8124       loc = 0;
8125     }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8126                && pCur->info.nKey==pX->nKey-1 ){
8127       loc = -1;
8128     }else if( loc==0 ){
8129       rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8130       if( rc ) return rc;
8131     }
8132   }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8133     if( pX->nMem ){
8134       UnpackedRecord r;
8135       r.pKeyInfo = pCur->pKeyInfo;
8136       r.aMem = pX->aMem;
8137       r.nField = pX->nMem;
8138       r.default_rc = 0;
8139       r.errCode = 0;
8140       r.r1 = 0;
8141       r.r2 = 0;
8142       r.eqSeen = 0;
8143       rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8144     }else{
8145       rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8146     }
8147     if( rc ) return rc;
8148   }
8149   assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8150 
8151   pPage = pCur->apPage[pCur->iPage];
8152   assert( pPage->intKey || pX->nKey>=0 );
8153   assert( pPage->leaf || !pPage->intKey );
8154 
8155   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8156           pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8157           loc==0 ? "overwrite" : "new entry"));
8158   assert( pPage->isInit );
8159   newCell = pBt->pTmpSpace;
8160   assert( newCell!=0 );
8161   rc = fillInCell(pPage, newCell, pX, &szNew);
8162   if( rc ) goto end_insert;
8163   assert( szNew==pPage->xCellSize(pPage, newCell) );
8164   assert( szNew <= MX_CELL_SIZE(pBt) );
8165   idx = pCur->aiIdx[pCur->iPage];
8166   if( loc==0 ){
8167     CellInfo info;
8168     assert( idx<pPage->nCell );
8169     rc = sqlite3PagerWrite(pPage->pDbPage);
8170     if( rc ){
8171       goto end_insert;
8172     }
8173     oldCell = findCell(pPage, idx);
8174     if( !pPage->leaf ){
8175       memcpy(newCell, oldCell, 4);
8176     }
8177     rc = clearCell(pPage, oldCell, &info);
8178     if( info.nSize==szNew && info.nLocal==info.nPayload ){
8179       /* Overwrite the old cell with the new if they are the same size.
8180       ** We could also try to do this if the old cell is smaller, then add
8181       ** the leftover space to the free list.  But experiments show that
8182       ** doing that is no faster then skipping this optimization and just
8183       ** calling dropCell() and insertCell(). */
8184       assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8185       if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8186       memcpy(oldCell, newCell, szNew);
8187       return SQLITE_OK;
8188     }
8189     dropCell(pPage, idx, info.nSize, &rc);
8190     if( rc ) goto end_insert;
8191   }else if( loc<0 && pPage->nCell>0 ){
8192     assert( pPage->leaf );
8193     idx = ++pCur->aiIdx[pCur->iPage];
8194   }else{
8195     assert( pPage->leaf );
8196   }
8197   insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8198   assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8199   assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8200 
8201   /* If no error has occurred and pPage has an overflow cell, call balance()
8202   ** to redistribute the cells within the tree. Since balance() may move
8203   ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8204   ** variables.
8205   **
8206   ** Previous versions of SQLite called moveToRoot() to move the cursor
8207   ** back to the root page as balance() used to invalidate the contents
8208   ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8209   ** set the cursor state to "invalid". This makes common insert operations
8210   ** slightly faster.
8211   **
8212   ** There is a subtle but important optimization here too. When inserting
8213   ** multiple records into an intkey b-tree using a single cursor (as can
8214   ** happen while processing an "INSERT INTO ... SELECT" statement), it
8215   ** is advantageous to leave the cursor pointing to the last entry in
8216   ** the b-tree if possible. If the cursor is left pointing to the last
8217   ** entry in the table, and the next row inserted has an integer key
8218   ** larger than the largest existing key, it is possible to insert the
8219   ** row without seeking the cursor. This can be a big performance boost.
8220   */
8221   pCur->info.nSize = 0;
8222   if( pPage->nOverflow ){
8223     assert( rc==SQLITE_OK );
8224     pCur->curFlags &= ~(BTCF_ValidNKey);
8225     rc = balance(pCur);
8226 
8227     /* Must make sure nOverflow is reset to zero even if the balance()
8228     ** fails. Internal data structure corruption will result otherwise.
8229     ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8230     ** from trying to save the current position of the cursor.  */
8231     pCur->apPage[pCur->iPage]->nOverflow = 0;
8232     pCur->eState = CURSOR_INVALID;
8233     if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8234       rc = moveToRoot(pCur);
8235       if( pCur->pKeyInfo ){
8236         assert( pCur->pKey==0 );
8237         pCur->pKey = sqlite3Malloc( pX->nKey );
8238         if( pCur->pKey==0 ){
8239           rc = SQLITE_NOMEM;
8240         }else{
8241           memcpy(pCur->pKey, pX->pKey, pX->nKey);
8242         }
8243       }
8244       pCur->eState = CURSOR_REQUIRESEEK;
8245       pCur->nKey = pX->nKey;
8246     }
8247   }
8248   assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
8249 
8250 end_insert:
8251   return rc;
8252 }
8253 
8254 /*
8255 ** Delete the entry that the cursor is pointing to.
8256 **
8257 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8258 ** the cursor is left pointing at an arbitrary location after the delete.
8259 ** But if that bit is set, then the cursor is left in a state such that
8260 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8261 ** as it would have been on if the call to BtreeDelete() had been omitted.
8262 **
8263 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8264 ** associated with a single table entry and its indexes.  Only one of those
8265 ** deletes is considered the "primary" delete.  The primary delete occurs
8266 ** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
8267 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8268 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8269 ** but which might be used by alternative storage engines.
8270 */
8271 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8272   Btree *p = pCur->pBtree;
8273   BtShared *pBt = p->pBt;
8274   int rc;                              /* Return code */
8275   MemPage *pPage;                      /* Page to delete cell from */
8276   unsigned char *pCell;                /* Pointer to cell to delete */
8277   int iCellIdx;                        /* Index of cell to delete */
8278   int iCellDepth;                      /* Depth of node containing pCell */
8279   CellInfo info;                       /* Size of the cell being deleted */
8280   int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
8281   u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */
8282 
8283   assert( cursorOwnsBtShared(pCur) );
8284   assert( pBt->inTransaction==TRANS_WRITE );
8285   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8286   assert( pCur->curFlags & BTCF_WriteFlag );
8287   assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8288   assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8289   assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8290   assert( pCur->eState==CURSOR_VALID );
8291   assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8292 
8293   iCellDepth = pCur->iPage;
8294   iCellIdx = pCur->aiIdx[iCellDepth];
8295   pPage = pCur->apPage[iCellDepth];
8296   pCell = findCell(pPage, iCellIdx);
8297 
8298   /* If the bPreserve flag is set to true, then the cursor position must
8299   ** be preserved following this delete operation. If the current delete
8300   ** will cause a b-tree rebalance, then this is done by saving the cursor
8301   ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8302   ** returning.
8303   **
8304   ** Or, if the current delete will not cause a rebalance, then the cursor
8305   ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8306   ** before or after the deleted entry. In this case set bSkipnext to true.  */
8307   if( bPreserve ){
8308     if( !pPage->leaf
8309      || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8310     ){
8311       /* A b-tree rebalance will be required after deleting this entry.
8312       ** Save the cursor key.  */
8313       rc = saveCursorKey(pCur);
8314       if( rc ) return rc;
8315     }else{
8316       bSkipnext = 1;
8317     }
8318   }
8319 
8320   /* If the page containing the entry to delete is not a leaf page, move
8321   ** the cursor to the largest entry in the tree that is smaller than
8322   ** the entry being deleted. This cell will replace the cell being deleted
8323   ** from the internal node. The 'previous' entry is used for this instead
8324   ** of the 'next' entry, as the previous entry is always a part of the
8325   ** sub-tree headed by the child page of the cell being deleted. This makes
8326   ** balancing the tree following the delete operation easier.  */
8327   if( !pPage->leaf ){
8328     int notUsed = 0;
8329     rc = sqlite3BtreePrevious(pCur, &notUsed);
8330     if( rc ) return rc;
8331   }
8332 
8333   /* Save the positions of any other cursors open on this table before
8334   ** making any modifications.  */
8335   if( pCur->curFlags & BTCF_Multiple ){
8336     rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8337     if( rc ) return rc;
8338   }
8339 
8340   /* If this is a delete operation to remove a row from a table b-tree,
8341   ** invalidate any incrblob cursors open on the row being deleted.  */
8342   if( pCur->pKeyInfo==0 ){
8343     invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8344   }
8345 
8346   /* Make the page containing the entry to be deleted writable. Then free any
8347   ** overflow pages associated with the entry and finally remove the cell
8348   ** itself from within the page.  */
8349   rc = sqlite3PagerWrite(pPage->pDbPage);
8350   if( rc ) return rc;
8351   rc = clearCell(pPage, pCell, &info);
8352   dropCell(pPage, iCellIdx, info.nSize, &rc);
8353   if( rc ) return rc;
8354 
8355   /* If the cell deleted was not located on a leaf page, then the cursor
8356   ** is currently pointing to the largest entry in the sub-tree headed
8357   ** by the child-page of the cell that was just deleted from an internal
8358   ** node. The cell from the leaf node needs to be moved to the internal
8359   ** node to replace the deleted cell.  */
8360   if( !pPage->leaf ){
8361     MemPage *pLeaf = pCur->apPage[pCur->iPage];
8362     int nCell;
8363     Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8364     unsigned char *pTmp;
8365 
8366     pCell = findCell(pLeaf, pLeaf->nCell-1);
8367     if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8368     nCell = pLeaf->xCellSize(pLeaf, pCell);
8369     assert( MX_CELL_SIZE(pBt) >= nCell );
8370     pTmp = pBt->pTmpSpace;
8371     assert( pTmp!=0 );
8372     rc = sqlite3PagerWrite(pLeaf->pDbPage);
8373     if( rc==SQLITE_OK ){
8374       insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8375     }
8376     dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8377     if( rc ) return rc;
8378   }
8379 
8380   /* Balance the tree. If the entry deleted was located on a leaf page,
8381   ** then the cursor still points to that page. In this case the first
8382   ** call to balance() repairs the tree, and the if(...) condition is
8383   ** never true.
8384   **
8385   ** Otherwise, if the entry deleted was on an internal node page, then
8386   ** pCur is pointing to the leaf page from which a cell was removed to
8387   ** replace the cell deleted from the internal node. This is slightly
8388   ** tricky as the leaf node may be underfull, and the internal node may
8389   ** be either under or overfull. In this case run the balancing algorithm
8390   ** on the leaf node first. If the balance proceeds far enough up the
8391   ** tree that we can be sure that any problem in the internal node has
8392   ** been corrected, so be it. Otherwise, after balancing the leaf node,
8393   ** walk the cursor up the tree to the internal node and balance it as
8394   ** well.  */
8395   rc = balance(pCur);
8396   if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8397     while( pCur->iPage>iCellDepth ){
8398       releasePage(pCur->apPage[pCur->iPage--]);
8399     }
8400     rc = balance(pCur);
8401   }
8402 
8403   if( rc==SQLITE_OK ){
8404     if( bSkipnext ){
8405       assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8406       assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
8407       assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8408       pCur->eState = CURSOR_SKIPNEXT;
8409       if( iCellIdx>=pPage->nCell ){
8410         pCur->skipNext = -1;
8411         pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8412       }else{
8413         pCur->skipNext = 1;
8414       }
8415     }else{
8416       rc = moveToRoot(pCur);
8417       if( bPreserve ){
8418         pCur->eState = CURSOR_REQUIRESEEK;
8419       }
8420     }
8421   }
8422   return rc;
8423 }
8424 
8425 /*
8426 ** Create a new BTree table.  Write into *piTable the page
8427 ** number for the root page of the new table.
8428 **
8429 ** The type of type is determined by the flags parameter.  Only the
8430 ** following values of flags are currently in use.  Other values for
8431 ** flags might not work:
8432 **
8433 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
8434 **     BTREE_ZERODATA                  Used for SQL indices
8435 */
8436 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8437   BtShared *pBt = p->pBt;
8438   MemPage *pRoot;
8439   Pgno pgnoRoot;
8440   int rc;
8441   int ptfFlags;          /* Page-type flage for the root page of new table */
8442 
8443   assert( sqlite3BtreeHoldsMutex(p) );
8444   assert( pBt->inTransaction==TRANS_WRITE );
8445   assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8446 
8447 #ifdef SQLITE_OMIT_AUTOVACUUM
8448   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8449   if( rc ){
8450     return rc;
8451   }
8452 #else
8453   if( pBt->autoVacuum ){
8454     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
8455     MemPage *pPageMove; /* The page to move to. */
8456 
8457     /* Creating a new table may probably require moving an existing database
8458     ** to make room for the new tables root page. In case this page turns
8459     ** out to be an overflow page, delete all overflow page-map caches
8460     ** held by open cursors.
8461     */
8462     invalidateAllOverflowCache(pBt);
8463 
8464     /* Read the value of meta[3] from the database to determine where the
8465     ** root page of the new table should go. meta[3] is the largest root-page
8466     ** created so far, so the new root-page is (meta[3]+1).
8467     */
8468     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8469     pgnoRoot++;
8470 
8471     /* The new root-page may not be allocated on a pointer-map page, or the
8472     ** PENDING_BYTE page.
8473     */
8474     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8475         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8476       pgnoRoot++;
8477     }
8478     assert( pgnoRoot>=3 || CORRUPT_DB );
8479     testcase( pgnoRoot<3 );
8480 
8481     /* Allocate a page. The page that currently resides at pgnoRoot will
8482     ** be moved to the allocated page (unless the allocated page happens
8483     ** to reside at pgnoRoot).
8484     */
8485     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8486     if( rc!=SQLITE_OK ){
8487       return rc;
8488     }
8489 
8490     if( pgnoMove!=pgnoRoot ){
8491       /* pgnoRoot is the page that will be used for the root-page of
8492       ** the new table (assuming an error did not occur). But we were
8493       ** allocated pgnoMove. If required (i.e. if it was not allocated
8494       ** by extending the file), the current page at position pgnoMove
8495       ** is already journaled.
8496       */
8497       u8 eType = 0;
8498       Pgno iPtrPage = 0;
8499 
8500       /* Save the positions of any open cursors. This is required in
8501       ** case they are holding a reference to an xFetch reference
8502       ** corresponding to page pgnoRoot.  */
8503       rc = saveAllCursors(pBt, 0, 0);
8504       releasePage(pPageMove);
8505       if( rc!=SQLITE_OK ){
8506         return rc;
8507       }
8508 
8509       /* Move the page currently at pgnoRoot to pgnoMove. */
8510       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8511       if( rc!=SQLITE_OK ){
8512         return rc;
8513       }
8514       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8515       if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8516         rc = SQLITE_CORRUPT_BKPT;
8517       }
8518       if( rc!=SQLITE_OK ){
8519         releasePage(pRoot);
8520         return rc;
8521       }
8522       assert( eType!=PTRMAP_ROOTPAGE );
8523       assert( eType!=PTRMAP_FREEPAGE );
8524       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8525       releasePage(pRoot);
8526 
8527       /* Obtain the page at pgnoRoot */
8528       if( rc!=SQLITE_OK ){
8529         return rc;
8530       }
8531       rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8532       if( rc!=SQLITE_OK ){
8533         return rc;
8534       }
8535       rc = sqlite3PagerWrite(pRoot->pDbPage);
8536       if( rc!=SQLITE_OK ){
8537         releasePage(pRoot);
8538         return rc;
8539       }
8540     }else{
8541       pRoot = pPageMove;
8542     }
8543 
8544     /* Update the pointer-map and meta-data with the new root-page number. */
8545     ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8546     if( rc ){
8547       releasePage(pRoot);
8548       return rc;
8549     }
8550 
8551     /* When the new root page was allocated, page 1 was made writable in
8552     ** order either to increase the database filesize, or to decrement the
8553     ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8554     */
8555     assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8556     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8557     if( NEVER(rc) ){
8558       releasePage(pRoot);
8559       return rc;
8560     }
8561 
8562   }else{
8563     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8564     if( rc ) return rc;
8565   }
8566 #endif
8567   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8568   if( createTabFlags & BTREE_INTKEY ){
8569     ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8570   }else{
8571     ptfFlags = PTF_ZERODATA | PTF_LEAF;
8572   }
8573   zeroPage(pRoot, ptfFlags);
8574   sqlite3PagerUnref(pRoot->pDbPage);
8575   assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8576   *piTable = (int)pgnoRoot;
8577   return SQLITE_OK;
8578 }
8579 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8580   int rc;
8581   sqlite3BtreeEnter(p);
8582   rc = btreeCreateTable(p, piTable, flags);
8583   sqlite3BtreeLeave(p);
8584   return rc;
8585 }
8586 
8587 /*
8588 ** Erase the given database page and all its children.  Return
8589 ** the page to the freelist.
8590 */
8591 static int clearDatabasePage(
8592   BtShared *pBt,           /* The BTree that contains the table */
8593   Pgno pgno,               /* Page number to clear */
8594   int freePageFlag,        /* Deallocate page if true */
8595   int *pnChange            /* Add number of Cells freed to this counter */
8596 ){
8597   MemPage *pPage;
8598   int rc;
8599   unsigned char *pCell;
8600   int i;
8601   int hdr;
8602   CellInfo info;
8603 
8604   assert( sqlite3_mutex_held(pBt->mutex) );
8605   if( pgno>btreePagecount(pBt) ){
8606     return SQLITE_CORRUPT_BKPT;
8607   }
8608   rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8609   if( rc ) return rc;
8610   if( pPage->bBusy ){
8611     rc = SQLITE_CORRUPT_BKPT;
8612     goto cleardatabasepage_out;
8613   }
8614   pPage->bBusy = 1;
8615   hdr = pPage->hdrOffset;
8616   for(i=0; i<pPage->nCell; i++){
8617     pCell = findCell(pPage, i);
8618     if( !pPage->leaf ){
8619       rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8620       if( rc ) goto cleardatabasepage_out;
8621     }
8622     rc = clearCell(pPage, pCell, &info);
8623     if( rc ) goto cleardatabasepage_out;
8624   }
8625   if( !pPage->leaf ){
8626     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8627     if( rc ) goto cleardatabasepage_out;
8628   }else if( pnChange ){
8629     assert( pPage->intKey || CORRUPT_DB );
8630     testcase( !pPage->intKey );
8631     *pnChange += pPage->nCell;
8632   }
8633   if( freePageFlag ){
8634     freePage(pPage, &rc);
8635   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8636     zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8637   }
8638 
8639 cleardatabasepage_out:
8640   pPage->bBusy = 0;
8641   releasePage(pPage);
8642   return rc;
8643 }
8644 
8645 /*
8646 ** Delete all information from a single table in the database.  iTable is
8647 ** the page number of the root of the table.  After this routine returns,
8648 ** the root page is empty, but still exists.
8649 **
8650 ** This routine will fail with SQLITE_LOCKED if there are any open
8651 ** read cursors on the table.  Open write cursors are moved to the
8652 ** root of the table.
8653 **
8654 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8655 ** integer value pointed to by pnChange is incremented by the number of
8656 ** entries in the table.
8657 */
8658 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8659   int rc;
8660   BtShared *pBt = p->pBt;
8661   sqlite3BtreeEnter(p);
8662   assert( p->inTrans==TRANS_WRITE );
8663 
8664   rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8665 
8666   if( SQLITE_OK==rc ){
8667     /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8668     ** is the root of a table b-tree - if it is not, the following call is
8669     ** a no-op).  */
8670     invalidateIncrblobCursors(p, 0, 1);
8671     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8672   }
8673   sqlite3BtreeLeave(p);
8674   return rc;
8675 }
8676 
8677 /*
8678 ** Delete all information from the single table that pCur is open on.
8679 **
8680 ** This routine only work for pCur on an ephemeral table.
8681 */
8682 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8683   return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8684 }
8685 
8686 /*
8687 ** Erase all information in a table and add the root of the table to
8688 ** the freelist.  Except, the root of the principle table (the one on
8689 ** page 1) is never added to the freelist.
8690 **
8691 ** This routine will fail with SQLITE_LOCKED if there are any open
8692 ** cursors on the table.
8693 **
8694 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8695 ** root page in the database file, then the last root page
8696 ** in the database file is moved into the slot formerly occupied by
8697 ** iTable and that last slot formerly occupied by the last root page
8698 ** is added to the freelist instead of iTable.  In this say, all
8699 ** root pages are kept at the beginning of the database file, which
8700 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the
8701 ** page number that used to be the last root page in the file before
8702 ** the move.  If no page gets moved, *piMoved is set to 0.
8703 ** The last root page is recorded in meta[3] and the value of
8704 ** meta[3] is updated by this procedure.
8705 */
8706 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8707   int rc;
8708   MemPage *pPage = 0;
8709   BtShared *pBt = p->pBt;
8710 
8711   assert( sqlite3BtreeHoldsMutex(p) );
8712   assert( p->inTrans==TRANS_WRITE );
8713   assert( iTable>=2 );
8714 
8715   rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8716   if( rc ) return rc;
8717   rc = sqlite3BtreeClearTable(p, iTable, 0);
8718   if( rc ){
8719     releasePage(pPage);
8720     return rc;
8721   }
8722 
8723   *piMoved = 0;
8724 
8725 #ifdef SQLITE_OMIT_AUTOVACUUM
8726   freePage(pPage, &rc);
8727   releasePage(pPage);
8728 #else
8729   if( pBt->autoVacuum ){
8730     Pgno maxRootPgno;
8731     sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8732 
8733     if( iTable==maxRootPgno ){
8734       /* If the table being dropped is the table with the largest root-page
8735       ** number in the database, put the root page on the free list.
8736       */
8737       freePage(pPage, &rc);
8738       releasePage(pPage);
8739       if( rc!=SQLITE_OK ){
8740         return rc;
8741       }
8742     }else{
8743       /* The table being dropped does not have the largest root-page
8744       ** number in the database. So move the page that does into the
8745       ** gap left by the deleted root-page.
8746       */
8747       MemPage *pMove;
8748       releasePage(pPage);
8749       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8750       if( rc!=SQLITE_OK ){
8751         return rc;
8752       }
8753       rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8754       releasePage(pMove);
8755       if( rc!=SQLITE_OK ){
8756         return rc;
8757       }
8758       pMove = 0;
8759       rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8760       freePage(pMove, &rc);
8761       releasePage(pMove);
8762       if( rc!=SQLITE_OK ){
8763         return rc;
8764       }
8765       *piMoved = maxRootPgno;
8766     }
8767 
8768     /* Set the new 'max-root-page' value in the database header. This
8769     ** is the old value less one, less one more if that happens to
8770     ** be a root-page number, less one again if that is the
8771     ** PENDING_BYTE_PAGE.
8772     */
8773     maxRootPgno--;
8774     while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8775            || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8776       maxRootPgno--;
8777     }
8778     assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8779 
8780     rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8781   }else{
8782     freePage(pPage, &rc);
8783     releasePage(pPage);
8784   }
8785 #endif
8786   return rc;
8787 }
8788 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8789   int rc;
8790   sqlite3BtreeEnter(p);
8791   rc = btreeDropTable(p, iTable, piMoved);
8792   sqlite3BtreeLeave(p);
8793   return rc;
8794 }
8795 
8796 
8797 /*
8798 ** This function may only be called if the b-tree connection already
8799 ** has a read or write transaction open on the database.
8800 **
8801 ** Read the meta-information out of a database file.  Meta[0]
8802 ** is the number of free pages currently in the database.  Meta[1]
8803 ** through meta[15] are available for use by higher layers.  Meta[0]
8804 ** is read-only, the others are read/write.
8805 **
8806 ** The schema layer numbers meta values differently.  At the schema
8807 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8808 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
8809 **
8810 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
8811 ** of reading the value out of the header, it instead loads the "DataVersion"
8812 ** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
8813 ** database file.  It is a number computed by the pager.  But its access
8814 ** pattern is the same as header meta values, and so it is convenient to
8815 ** read it from this routine.
8816 */
8817 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8818   BtShared *pBt = p->pBt;
8819 
8820   sqlite3BtreeEnter(p);
8821   assert( p->inTrans>TRANS_NONE );
8822   assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8823   assert( pBt->pPage1 );
8824   assert( idx>=0 && idx<=15 );
8825 
8826   if( idx==BTREE_DATA_VERSION ){
8827     *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8828   }else{
8829     *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8830   }
8831 
8832   /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8833   ** database, mark the database as read-only.  */
8834 #ifdef SQLITE_OMIT_AUTOVACUUM
8835   if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8836     pBt->btsFlags |= BTS_READ_ONLY;
8837   }
8838 #endif
8839 
8840   sqlite3BtreeLeave(p);
8841 }
8842 
8843 /*
8844 ** Write meta-information back into the database.  Meta[0] is
8845 ** read-only and may not be written.
8846 */
8847 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8848   BtShared *pBt = p->pBt;
8849   unsigned char *pP1;
8850   int rc;
8851   assert( idx>=1 && idx<=15 );
8852   sqlite3BtreeEnter(p);
8853   assert( p->inTrans==TRANS_WRITE );
8854   assert( pBt->pPage1!=0 );
8855   pP1 = pBt->pPage1->aData;
8856   rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8857   if( rc==SQLITE_OK ){
8858     put4byte(&pP1[36 + idx*4], iMeta);
8859 #ifndef SQLITE_OMIT_AUTOVACUUM
8860     if( idx==BTREE_INCR_VACUUM ){
8861       assert( pBt->autoVacuum || iMeta==0 );
8862       assert( iMeta==0 || iMeta==1 );
8863       pBt->incrVacuum = (u8)iMeta;
8864     }
8865 #endif
8866   }
8867   sqlite3BtreeLeave(p);
8868   return rc;
8869 }
8870 
8871 #ifndef SQLITE_OMIT_BTREECOUNT
8872 /*
8873 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8874 ** number of entries in the b-tree and write the result to *pnEntry.
8875 **
8876 ** SQLITE_OK is returned if the operation is successfully executed.
8877 ** Otherwise, if an error is encountered (i.e. an IO error or database
8878 ** corruption) an SQLite error code is returned.
8879 */
8880 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8881   i64 nEntry = 0;                      /* Value to return in *pnEntry */
8882   int rc;                              /* Return code */
8883 
8884   if( pCur->pgnoRoot==0 ){
8885     *pnEntry = 0;
8886     return SQLITE_OK;
8887   }
8888   rc = moveToRoot(pCur);
8889 
8890   /* Unless an error occurs, the following loop runs one iteration for each
8891   ** page in the B-Tree structure (not including overflow pages).
8892   */
8893   while( rc==SQLITE_OK ){
8894     int iIdx;                          /* Index of child node in parent */
8895     MemPage *pPage;                    /* Current page of the b-tree */
8896 
8897     /* If this is a leaf page or the tree is not an int-key tree, then
8898     ** this page contains countable entries. Increment the entry counter
8899     ** accordingly.
8900     */
8901     pPage = pCur->apPage[pCur->iPage];
8902     if( pPage->leaf || !pPage->intKey ){
8903       nEntry += pPage->nCell;
8904     }
8905 
8906     /* pPage is a leaf node. This loop navigates the cursor so that it
8907     ** points to the first interior cell that it points to the parent of
8908     ** the next page in the tree that has not yet been visited. The
8909     ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8910     ** of the page, or to the number of cells in the page if the next page
8911     ** to visit is the right-child of its parent.
8912     **
8913     ** If all pages in the tree have been visited, return SQLITE_OK to the
8914     ** caller.
8915     */
8916     if( pPage->leaf ){
8917       do {
8918         if( pCur->iPage==0 ){
8919           /* All pages of the b-tree have been visited. Return successfully. */
8920           *pnEntry = nEntry;
8921           return moveToRoot(pCur);
8922         }
8923         moveToParent(pCur);
8924       }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8925 
8926       pCur->aiIdx[pCur->iPage]++;
8927       pPage = pCur->apPage[pCur->iPage];
8928     }
8929 
8930     /* Descend to the child node of the cell that the cursor currently
8931     ** points at. This is the right-child if (iIdx==pPage->nCell).
8932     */
8933     iIdx = pCur->aiIdx[pCur->iPage];
8934     if( iIdx==pPage->nCell ){
8935       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8936     }else{
8937       rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8938     }
8939   }
8940 
8941   /* An error has occurred. Return an error code. */
8942   return rc;
8943 }
8944 #endif
8945 
8946 /*
8947 ** Return the pager associated with a BTree.  This routine is used for
8948 ** testing and debugging only.
8949 */
8950 Pager *sqlite3BtreePager(Btree *p){
8951   return p->pBt->pPager;
8952 }
8953 
8954 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8955 /*
8956 ** Append a message to the error message string.
8957 */
8958 static void checkAppendMsg(
8959   IntegrityCk *pCheck,
8960   const char *zFormat,
8961   ...
8962 ){
8963   va_list ap;
8964   if( !pCheck->mxErr ) return;
8965   pCheck->mxErr--;
8966   pCheck->nErr++;
8967   va_start(ap, zFormat);
8968   if( pCheck->errMsg.nChar ){
8969     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
8970   }
8971   if( pCheck->zPfx ){
8972     sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
8973   }
8974   sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
8975   va_end(ap);
8976   if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
8977     pCheck->mallocFailed = 1;
8978   }
8979 }
8980 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8981 
8982 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8983 
8984 /*
8985 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8986 ** corresponds to page iPg is already set.
8987 */
8988 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8989   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8990   return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8991 }
8992 
8993 /*
8994 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8995 */
8996 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8997   assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8998   pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8999 }
9000 
9001 
9002 /*
9003 ** Add 1 to the reference count for page iPage.  If this is the second
9004 ** reference to the page, add an error message to pCheck->zErrMsg.
9005 ** Return 1 if there are 2 or more references to the page and 0 if
9006 ** if this is the first reference to the page.
9007 **
9008 ** Also check that the page number is in bounds.
9009 */
9010 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9011   if( iPage==0 ) return 1;
9012   if( iPage>pCheck->nPage ){
9013     checkAppendMsg(pCheck, "invalid page number %d", iPage);
9014     return 1;
9015   }
9016   if( getPageReferenced(pCheck, iPage) ){
9017     checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9018     return 1;
9019   }
9020   setPageReferenced(pCheck, iPage);
9021   return 0;
9022 }
9023 
9024 #ifndef SQLITE_OMIT_AUTOVACUUM
9025 /*
9026 ** Check that the entry in the pointer-map for page iChild maps to
9027 ** page iParent, pointer type ptrType. If not, append an error message
9028 ** to pCheck.
9029 */
9030 static void checkPtrmap(
9031   IntegrityCk *pCheck,   /* Integrity check context */
9032   Pgno iChild,           /* Child page number */
9033   u8 eType,              /* Expected pointer map type */
9034   Pgno iParent           /* Expected pointer map parent page number */
9035 ){
9036   int rc;
9037   u8 ePtrmapType;
9038   Pgno iPtrmapParent;
9039 
9040   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9041   if( rc!=SQLITE_OK ){
9042     if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9043     checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9044     return;
9045   }
9046 
9047   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9048     checkAppendMsg(pCheck,
9049       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9050       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9051   }
9052 }
9053 #endif
9054 
9055 /*
9056 ** Check the integrity of the freelist or of an overflow page list.
9057 ** Verify that the number of pages on the list is N.
9058 */
9059 static void checkList(
9060   IntegrityCk *pCheck,  /* Integrity checking context */
9061   int isFreeList,       /* True for a freelist.  False for overflow page list */
9062   int iPage,            /* Page number for first page in the list */
9063   int N                 /* Expected number of pages in the list */
9064 ){
9065   int i;
9066   int expected = N;
9067   int iFirst = iPage;
9068   while( N-- > 0 && pCheck->mxErr ){
9069     DbPage *pOvflPage;
9070     unsigned char *pOvflData;
9071     if( iPage<1 ){
9072       checkAppendMsg(pCheck,
9073          "%d of %d pages missing from overflow list starting at %d",
9074           N+1, expected, iFirst);
9075       break;
9076     }
9077     if( checkRef(pCheck, iPage) ) break;
9078     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9079       checkAppendMsg(pCheck, "failed to get page %d", iPage);
9080       break;
9081     }
9082     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9083     if( isFreeList ){
9084       int n = get4byte(&pOvflData[4]);
9085 #ifndef SQLITE_OMIT_AUTOVACUUM
9086       if( pCheck->pBt->autoVacuum ){
9087         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9088       }
9089 #endif
9090       if( n>(int)pCheck->pBt->usableSize/4-2 ){
9091         checkAppendMsg(pCheck,
9092            "freelist leaf count too big on page %d", iPage);
9093         N--;
9094       }else{
9095         for(i=0; i<n; i++){
9096           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9097 #ifndef SQLITE_OMIT_AUTOVACUUM
9098           if( pCheck->pBt->autoVacuum ){
9099             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9100           }
9101 #endif
9102           checkRef(pCheck, iFreePage);
9103         }
9104         N -= n;
9105       }
9106     }
9107 #ifndef SQLITE_OMIT_AUTOVACUUM
9108     else{
9109       /* If this database supports auto-vacuum and iPage is not the last
9110       ** page in this overflow list, check that the pointer-map entry for
9111       ** the following page matches iPage.
9112       */
9113       if( pCheck->pBt->autoVacuum && N>0 ){
9114         i = get4byte(pOvflData);
9115         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9116       }
9117     }
9118 #endif
9119     iPage = get4byte(pOvflData);
9120     sqlite3PagerUnref(pOvflPage);
9121 
9122     if( isFreeList && N<(iPage!=0) ){
9123       checkAppendMsg(pCheck, "free-page count in header is too small");
9124     }
9125   }
9126 }
9127 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9128 
9129 /*
9130 ** An implementation of a min-heap.
9131 **
9132 ** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
9133 ** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
9134 ** and aHeap[N*2+1].
9135 **
9136 ** The heap property is this:  Every node is less than or equal to both
9137 ** of its daughter nodes.  A consequence of the heap property is that the
9138 ** root node aHeap[1] is always the minimum value currently in the heap.
9139 **
9140 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9141 ** the heap, preserving the heap property.  The btreeHeapPull() routine
9142 ** removes the root element from the heap (the minimum value in the heap)
9143 ** and then moves other nodes around as necessary to preserve the heap
9144 ** property.
9145 **
9146 ** This heap is used for cell overlap and coverage testing.  Each u32
9147 ** entry represents the span of a cell or freeblock on a btree page.
9148 ** The upper 16 bits are the index of the first byte of a range and the
9149 ** lower 16 bits are the index of the last byte of that range.
9150 */
9151 static void btreeHeapInsert(u32 *aHeap, u32 x){
9152   u32 j, i = ++aHeap[0];
9153   aHeap[i] = x;
9154   while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9155     x = aHeap[j];
9156     aHeap[j] = aHeap[i];
9157     aHeap[i] = x;
9158     i = j;
9159   }
9160 }
9161 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9162   u32 j, i, x;
9163   if( (x = aHeap[0])==0 ) return 0;
9164   *pOut = aHeap[1];
9165   aHeap[1] = aHeap[x];
9166   aHeap[x] = 0xffffffff;
9167   aHeap[0]--;
9168   i = 1;
9169   while( (j = i*2)<=aHeap[0] ){
9170     if( aHeap[j]>aHeap[j+1] ) j++;
9171     if( aHeap[i]<aHeap[j] ) break;
9172     x = aHeap[i];
9173     aHeap[i] = aHeap[j];
9174     aHeap[j] = x;
9175     i = j;
9176   }
9177   return 1;
9178 }
9179 
9180 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9181 /*
9182 ** Do various sanity checks on a single page of a tree.  Return
9183 ** the tree depth.  Root pages return 0.  Parents of root pages
9184 ** return 1, and so forth.
9185 **
9186 ** These checks are done:
9187 **
9188 **      1.  Make sure that cells and freeblocks do not overlap
9189 **          but combine to completely cover the page.
9190 **      2.  Make sure integer cell keys are in order.
9191 **      3.  Check the integrity of overflow pages.
9192 **      4.  Recursively call checkTreePage on all children.
9193 **      5.  Verify that the depth of all children is the same.
9194 */
9195 static int checkTreePage(
9196   IntegrityCk *pCheck,  /* Context for the sanity check */
9197   int iPage,            /* Page number of the page to check */
9198   i64 *piMinKey,        /* Write minimum integer primary key here */
9199   i64 maxKey            /* Error if integer primary key greater than this */
9200 ){
9201   MemPage *pPage = 0;      /* The page being analyzed */
9202   int i;                   /* Loop counter */
9203   int rc;                  /* Result code from subroutine call */
9204   int depth = -1, d2;      /* Depth of a subtree */
9205   int pgno;                /* Page number */
9206   int nFrag;               /* Number of fragmented bytes on the page */
9207   int hdr;                 /* Offset to the page header */
9208   int cellStart;           /* Offset to the start of the cell pointer array */
9209   int nCell;               /* Number of cells */
9210   int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9211   int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
9212                            ** False if IPK must be strictly less than maxKey */
9213   u8 *data;                /* Page content */
9214   u8 *pCell;               /* Cell content */
9215   u8 *pCellIdx;            /* Next element of the cell pointer array */
9216   BtShared *pBt;           /* The BtShared object that owns pPage */
9217   u32 pc;                  /* Address of a cell */
9218   u32 usableSize;          /* Usable size of the page */
9219   u32 contentOffset;       /* Offset to the start of the cell content area */
9220   u32 *heap = 0;           /* Min-heap used for checking cell coverage */
9221   u32 x, prev = 0;         /* Next and previous entry on the min-heap */
9222   const char *saved_zPfx = pCheck->zPfx;
9223   int saved_v1 = pCheck->v1;
9224   int saved_v2 = pCheck->v2;
9225   u8 savedIsInit = 0;
9226 
9227   /* Check that the page exists
9228   */
9229   pBt = pCheck->pBt;
9230   usableSize = pBt->usableSize;
9231   if( iPage==0 ) return 0;
9232   if( checkRef(pCheck, iPage) ) return 0;
9233   pCheck->zPfx = "Page %d: ";
9234   pCheck->v1 = iPage;
9235   if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9236     checkAppendMsg(pCheck,
9237        "unable to get the page. error code=%d", rc);
9238     goto end_of_check;
9239   }
9240 
9241   /* Clear MemPage.isInit to make sure the corruption detection code in
9242   ** btreeInitPage() is executed.  */
9243   savedIsInit = pPage->isInit;
9244   pPage->isInit = 0;
9245   if( (rc = btreeInitPage(pPage))!=0 ){
9246     assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
9247     checkAppendMsg(pCheck,
9248                    "btreeInitPage() returns error code %d", rc);
9249     goto end_of_check;
9250   }
9251   data = pPage->aData;
9252   hdr = pPage->hdrOffset;
9253 
9254   /* Set up for cell analysis */
9255   pCheck->zPfx = "On tree page %d cell %d: ";
9256   contentOffset = get2byteNotZero(&data[hdr+5]);
9257   assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
9258 
9259   /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9260   ** number of cells on the page. */
9261   nCell = get2byte(&data[hdr+3]);
9262   assert( pPage->nCell==nCell );
9263 
9264   /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9265   ** immediately follows the b-tree page header. */
9266   cellStart = hdr + 12 - 4*pPage->leaf;
9267   assert( pPage->aCellIdx==&data[cellStart] );
9268   pCellIdx = &data[cellStart + 2*(nCell-1)];
9269 
9270   if( !pPage->leaf ){
9271     /* Analyze the right-child page of internal pages */
9272     pgno = get4byte(&data[hdr+8]);
9273 #ifndef SQLITE_OMIT_AUTOVACUUM
9274     if( pBt->autoVacuum ){
9275       pCheck->zPfx = "On page %d at right child: ";
9276       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9277     }
9278 #endif
9279     depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9280     keyCanBeEqual = 0;
9281   }else{
9282     /* For leaf pages, the coverage check will occur in the same loop
9283     ** as the other cell checks, so initialize the heap.  */
9284     heap = pCheck->heap;
9285     heap[0] = 0;
9286   }
9287 
9288   /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9289   ** integer offsets to the cell contents. */
9290   for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9291     CellInfo info;
9292 
9293     /* Check cell size */
9294     pCheck->v2 = i;
9295     assert( pCellIdx==&data[cellStart + i*2] );
9296     pc = get2byteAligned(pCellIdx);
9297     pCellIdx -= 2;
9298     if( pc<contentOffset || pc>usableSize-4 ){
9299       checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9300                              pc, contentOffset, usableSize-4);
9301       doCoverageCheck = 0;
9302       continue;
9303     }
9304     pCell = &data[pc];
9305     pPage->xParseCell(pPage, pCell, &info);
9306     if( pc+info.nSize>usableSize ){
9307       checkAppendMsg(pCheck, "Extends off end of page");
9308       doCoverageCheck = 0;
9309       continue;
9310     }
9311 
9312     /* Check for integer primary key out of range */
9313     if( pPage->intKey ){
9314       if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9315         checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9316       }
9317       maxKey = info.nKey;
9318     }
9319 
9320     /* Check the content overflow list */
9321     if( info.nPayload>info.nLocal ){
9322       int nPage;       /* Number of pages on the overflow chain */
9323       Pgno pgnoOvfl;   /* First page of the overflow chain */
9324       assert( pc + info.nSize - 4 <= usableSize );
9325       nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9326       pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9327 #ifndef SQLITE_OMIT_AUTOVACUUM
9328       if( pBt->autoVacuum ){
9329         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9330       }
9331 #endif
9332       checkList(pCheck, 0, pgnoOvfl, nPage);
9333     }
9334 
9335     if( !pPage->leaf ){
9336       /* Check sanity of left child page for internal pages */
9337       pgno = get4byte(pCell);
9338 #ifndef SQLITE_OMIT_AUTOVACUUM
9339       if( pBt->autoVacuum ){
9340         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9341       }
9342 #endif
9343       d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9344       keyCanBeEqual = 0;
9345       if( d2!=depth ){
9346         checkAppendMsg(pCheck, "Child page depth differs");
9347         depth = d2;
9348       }
9349     }else{
9350       /* Populate the coverage-checking heap for leaf pages */
9351       btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9352     }
9353   }
9354   *piMinKey = maxKey;
9355 
9356   /* Check for complete coverage of the page
9357   */
9358   pCheck->zPfx = 0;
9359   if( doCoverageCheck && pCheck->mxErr>0 ){
9360     /* For leaf pages, the min-heap has already been initialized and the
9361     ** cells have already been inserted.  But for internal pages, that has
9362     ** not yet been done, so do it now */
9363     if( !pPage->leaf ){
9364       heap = pCheck->heap;
9365       heap[0] = 0;
9366       for(i=nCell-1; i>=0; i--){
9367         u32 size;
9368         pc = get2byteAligned(&data[cellStart+i*2]);
9369         size = pPage->xCellSize(pPage, &data[pc]);
9370         btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9371       }
9372     }
9373     /* Add the freeblocks to the min-heap
9374     **
9375     ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9376     ** is the offset of the first freeblock, or zero if there are no
9377     ** freeblocks on the page.
9378     */
9379     i = get2byte(&data[hdr+1]);
9380     while( i>0 ){
9381       int size, j;
9382       assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
9383       size = get2byte(&data[i+2]);
9384       assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
9385       btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9386       /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9387       ** big-endian integer which is the offset in the b-tree page of the next
9388       ** freeblock in the chain, or zero if the freeblock is the last on the
9389       ** chain. */
9390       j = get2byte(&data[i]);
9391       /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9392       ** increasing offset. */
9393       assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
9394       assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
9395       i = j;
9396     }
9397     /* Analyze the min-heap looking for overlap between cells and/or
9398     ** freeblocks, and counting the number of untracked bytes in nFrag.
9399     **
9400     ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
9401     ** There is an implied first entry the covers the page header, the cell
9402     ** pointer index, and the gap between the cell pointer index and the start
9403     ** of cell content.
9404     **
9405     ** The loop below pulls entries from the min-heap in order and compares
9406     ** the start_address against the previous end_address.  If there is an
9407     ** overlap, that means bytes are used multiple times.  If there is a gap,
9408     ** that gap is added to the fragmentation count.
9409     */
9410     nFrag = 0;
9411     prev = contentOffset - 1;   /* Implied first min-heap entry */
9412     while( btreeHeapPull(heap,&x) ){
9413       if( (prev&0xffff)>=(x>>16) ){
9414         checkAppendMsg(pCheck,
9415           "Multiple uses for byte %u of page %d", x>>16, iPage);
9416         break;
9417       }else{
9418         nFrag += (x>>16) - (prev&0xffff) - 1;
9419         prev = x;
9420       }
9421     }
9422     nFrag += usableSize - (prev&0xffff) - 1;
9423     /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9424     ** is stored in the fifth field of the b-tree page header.
9425     ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9426     ** number of fragmented free bytes within the cell content area.
9427     */
9428     if( heap[0]==0 && nFrag!=data[hdr+7] ){
9429       checkAppendMsg(pCheck,
9430           "Fragmentation of %d bytes reported as %d on page %d",
9431           nFrag, data[hdr+7], iPage);
9432     }
9433   }
9434 
9435 end_of_check:
9436   if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9437   releasePage(pPage);
9438   pCheck->zPfx = saved_zPfx;
9439   pCheck->v1 = saved_v1;
9440   pCheck->v2 = saved_v2;
9441   return depth+1;
9442 }
9443 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9444 
9445 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9446 /*
9447 ** This routine does a complete check of the given BTree file.  aRoot[] is
9448 ** an array of pages numbers were each page number is the root page of
9449 ** a table.  nRoot is the number of entries in aRoot.
9450 **
9451 ** A read-only or read-write transaction must be opened before calling
9452 ** this function.
9453 **
9454 ** Write the number of error seen in *pnErr.  Except for some memory
9455 ** allocation errors,  an error message held in memory obtained from
9456 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
9457 ** returned.  If a memory allocation error occurs, NULL is returned.
9458 */
9459 char *sqlite3BtreeIntegrityCheck(
9460   Btree *p,     /* The btree to be checked */
9461   int *aRoot,   /* An array of root pages numbers for individual trees */
9462   int nRoot,    /* Number of entries in aRoot[] */
9463   int mxErr,    /* Stop reporting errors after this many */
9464   int *pnErr    /* Write number of errors seen to this variable */
9465 ){
9466   Pgno i;
9467   IntegrityCk sCheck;
9468   BtShared *pBt = p->pBt;
9469   int savedDbFlags = pBt->db->flags;
9470   char zErr[100];
9471   VVA_ONLY( int nRef );
9472 
9473   sqlite3BtreeEnter(p);
9474   assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9475   VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9476   assert( nRef>=0 );
9477   sCheck.pBt = pBt;
9478   sCheck.pPager = pBt->pPager;
9479   sCheck.nPage = btreePagecount(sCheck.pBt);
9480   sCheck.mxErr = mxErr;
9481   sCheck.nErr = 0;
9482   sCheck.mallocFailed = 0;
9483   sCheck.zPfx = 0;
9484   sCheck.v1 = 0;
9485   sCheck.v2 = 0;
9486   sCheck.aPgRef = 0;
9487   sCheck.heap = 0;
9488   sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9489   sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9490   if( sCheck.nPage==0 ){
9491     goto integrity_ck_cleanup;
9492   }
9493 
9494   sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9495   if( !sCheck.aPgRef ){
9496     sCheck.mallocFailed = 1;
9497     goto integrity_ck_cleanup;
9498   }
9499   sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9500   if( sCheck.heap==0 ){
9501     sCheck.mallocFailed = 1;
9502     goto integrity_ck_cleanup;
9503   }
9504 
9505   i = PENDING_BYTE_PAGE(pBt);
9506   if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9507 
9508   /* Check the integrity of the freelist
9509   */
9510   sCheck.zPfx = "Main freelist: ";
9511   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9512             get4byte(&pBt->pPage1->aData[36]));
9513   sCheck.zPfx = 0;
9514 
9515   /* Check all the tables.
9516   */
9517   testcase( pBt->db->flags & SQLITE_CellSizeCk );
9518   pBt->db->flags &= ~SQLITE_CellSizeCk;
9519   for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9520     i64 notUsed;
9521     if( aRoot[i]==0 ) continue;
9522 #ifndef SQLITE_OMIT_AUTOVACUUM
9523     if( pBt->autoVacuum && aRoot[i]>1 ){
9524       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9525     }
9526 #endif
9527     checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9528   }
9529   pBt->db->flags = savedDbFlags;
9530 
9531   /* Make sure every page in the file is referenced
9532   */
9533   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9534 #ifdef SQLITE_OMIT_AUTOVACUUM
9535     if( getPageReferenced(&sCheck, i)==0 ){
9536       checkAppendMsg(&sCheck, "Page %d is never used", i);
9537     }
9538 #else
9539     /* If the database supports auto-vacuum, make sure no tables contain
9540     ** references to pointer-map pages.
9541     */
9542     if( getPageReferenced(&sCheck, i)==0 &&
9543        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9544       checkAppendMsg(&sCheck, "Page %d is never used", i);
9545     }
9546     if( getPageReferenced(&sCheck, i)!=0 &&
9547        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9548       checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9549     }
9550 #endif
9551   }
9552 
9553   /* Clean  up and report errors.
9554   */
9555 integrity_ck_cleanup:
9556   sqlite3PageFree(sCheck.heap);
9557   sqlite3_free(sCheck.aPgRef);
9558   if( sCheck.mallocFailed ){
9559     sqlite3StrAccumReset(&sCheck.errMsg);
9560     sCheck.nErr++;
9561   }
9562   *pnErr = sCheck.nErr;
9563   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9564   /* Make sure this analysis did not leave any unref() pages. */
9565   assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9566   sqlite3BtreeLeave(p);
9567   return sqlite3StrAccumFinish(&sCheck.errMsg);
9568 }
9569 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9570 
9571 /*
9572 ** Return the full pathname of the underlying database file.  Return
9573 ** an empty string if the database is in-memory or a TEMP database.
9574 **
9575 ** The pager filename is invariant as long as the pager is
9576 ** open so it is safe to access without the BtShared mutex.
9577 */
9578 const char *sqlite3BtreeGetFilename(Btree *p){
9579   assert( p->pBt->pPager!=0 );
9580   return sqlite3PagerFilename(p->pBt->pPager, 1);
9581 }
9582 
9583 /*
9584 ** Return the pathname of the journal file for this database. The return
9585 ** value of this routine is the same regardless of whether the journal file
9586 ** has been created or not.
9587 **
9588 ** The pager journal filename is invariant as long as the pager is
9589 ** open so it is safe to access without the BtShared mutex.
9590 */
9591 const char *sqlite3BtreeGetJournalname(Btree *p){
9592   assert( p->pBt->pPager!=0 );
9593   return sqlite3PagerJournalname(p->pBt->pPager);
9594 }
9595 
9596 /*
9597 ** Return non-zero if a transaction is active.
9598 */
9599 int sqlite3BtreeIsInTrans(Btree *p){
9600   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9601   return (p && (p->inTrans==TRANS_WRITE));
9602 }
9603 
9604 #ifndef SQLITE_OMIT_WAL
9605 /*
9606 ** Run a checkpoint on the Btree passed as the first argument.
9607 **
9608 ** Return SQLITE_LOCKED if this or any other connection has an open
9609 ** transaction on the shared-cache the argument Btree is connected to.
9610 **
9611 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9612 */
9613 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9614   int rc = SQLITE_OK;
9615   if( p ){
9616     BtShared *pBt = p->pBt;
9617     sqlite3BtreeEnter(p);
9618     if( pBt->inTransaction!=TRANS_NONE ){
9619       rc = SQLITE_LOCKED;
9620     }else{
9621       rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9622     }
9623     sqlite3BtreeLeave(p);
9624   }
9625   return rc;
9626 }
9627 #endif
9628 
9629 /*
9630 ** Return non-zero if a read (or write) transaction is active.
9631 */
9632 int sqlite3BtreeIsInReadTrans(Btree *p){
9633   assert( p );
9634   assert( sqlite3_mutex_held(p->db->mutex) );
9635   return p->inTrans!=TRANS_NONE;
9636 }
9637 
9638 int sqlite3BtreeIsInBackup(Btree *p){
9639   assert( p );
9640   assert( sqlite3_mutex_held(p->db->mutex) );
9641   return p->nBackup!=0;
9642 }
9643 
9644 /*
9645 ** This function returns a pointer to a blob of memory associated with
9646 ** a single shared-btree. The memory is used by client code for its own
9647 ** purposes (for example, to store a high-level schema associated with
9648 ** the shared-btree). The btree layer manages reference counting issues.
9649 **
9650 ** The first time this is called on a shared-btree, nBytes bytes of memory
9651 ** are allocated, zeroed, and returned to the caller. For each subsequent
9652 ** call the nBytes parameter is ignored and a pointer to the same blob
9653 ** of memory returned.
9654 **
9655 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9656 ** allocated, a null pointer is returned. If the blob has already been
9657 ** allocated, it is returned as normal.
9658 **
9659 ** Just before the shared-btree is closed, the function passed as the
9660 ** xFree argument when the memory allocation was made is invoked on the
9661 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9662 ** on the memory, the btree layer does that.
9663 */
9664 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9665   BtShared *pBt = p->pBt;
9666   sqlite3BtreeEnter(p);
9667   if( !pBt->pSchema && nBytes ){
9668     pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9669     pBt->xFreeSchema = xFree;
9670   }
9671   sqlite3BtreeLeave(p);
9672   return pBt->pSchema;
9673 }
9674 
9675 /*
9676 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9677 ** btree as the argument handle holds an exclusive lock on the
9678 ** sqlite_master table. Otherwise SQLITE_OK.
9679 */
9680 int sqlite3BtreeSchemaLocked(Btree *p){
9681   int rc;
9682   assert( sqlite3_mutex_held(p->db->mutex) );
9683   sqlite3BtreeEnter(p);
9684   rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9685   assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9686   sqlite3BtreeLeave(p);
9687   return rc;
9688 }
9689 
9690 
9691 #ifndef SQLITE_OMIT_SHARED_CACHE
9692 /*
9693 ** Obtain a lock on the table whose root page is iTab.  The
9694 ** lock is a write lock if isWritelock is true or a read lock
9695 ** if it is false.
9696 */
9697 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9698   int rc = SQLITE_OK;
9699   assert( p->inTrans!=TRANS_NONE );
9700   if( p->sharable ){
9701     u8 lockType = READ_LOCK + isWriteLock;
9702     assert( READ_LOCK+1==WRITE_LOCK );
9703     assert( isWriteLock==0 || isWriteLock==1 );
9704 
9705     sqlite3BtreeEnter(p);
9706     rc = querySharedCacheTableLock(p, iTab, lockType);
9707     if( rc==SQLITE_OK ){
9708       rc = setSharedCacheTableLock(p, iTab, lockType);
9709     }
9710     sqlite3BtreeLeave(p);
9711   }
9712   return rc;
9713 }
9714 #endif
9715 
9716 #ifndef SQLITE_OMIT_INCRBLOB
9717 /*
9718 ** Argument pCsr must be a cursor opened for writing on an
9719 ** INTKEY table currently pointing at a valid table entry.
9720 ** This function modifies the data stored as part of that entry.
9721 **
9722 ** Only the data content may only be modified, it is not possible to
9723 ** change the length of the data stored. If this function is called with
9724 ** parameters that attempt to write past the end of the existing data,
9725 ** no modifications are made and SQLITE_CORRUPT is returned.
9726 */
9727 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9728   int rc;
9729   assert( cursorOwnsBtShared(pCsr) );
9730   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9731   assert( pCsr->curFlags & BTCF_Incrblob );
9732 
9733   rc = restoreCursorPosition(pCsr);
9734   if( rc!=SQLITE_OK ){
9735     return rc;
9736   }
9737   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9738   if( pCsr->eState!=CURSOR_VALID ){
9739     return SQLITE_ABORT;
9740   }
9741 
9742   /* Save the positions of all other cursors open on this table. This is
9743   ** required in case any of them are holding references to an xFetch
9744   ** version of the b-tree page modified by the accessPayload call below.
9745   **
9746   ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9747   ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9748   ** saveAllCursors can only return SQLITE_OK.
9749   */
9750   VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9751   assert( rc==SQLITE_OK );
9752 
9753   /* Check some assumptions:
9754   **   (a) the cursor is open for writing,
9755   **   (b) there is a read/write transaction open,
9756   **   (c) the connection holds a write-lock on the table (if required),
9757   **   (d) there are no conflicting read-locks, and
9758   **   (e) the cursor points at a valid row of an intKey table.
9759   */
9760   if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9761     return SQLITE_READONLY;
9762   }
9763   assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9764               && pCsr->pBt->inTransaction==TRANS_WRITE );
9765   assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9766   assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9767   assert( pCsr->apPage[pCsr->iPage]->intKey );
9768 
9769   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9770 }
9771 
9772 /*
9773 ** Mark this cursor as an incremental blob cursor.
9774 */
9775 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9776   pCur->curFlags |= BTCF_Incrblob;
9777   pCur->pBtree->hasIncrblobCur = 1;
9778 }
9779 #endif
9780 
9781 /*
9782 ** Set both the "read version" (single byte at byte offset 18) and
9783 ** "write version" (single byte at byte offset 19) fields in the database
9784 ** header to iVersion.
9785 */
9786 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9787   BtShared *pBt = pBtree->pBt;
9788   int rc;                         /* Return code */
9789 
9790   assert( iVersion==1 || iVersion==2 );
9791 
9792   /* If setting the version fields to 1, do not automatically open the
9793   ** WAL connection, even if the version fields are currently set to 2.
9794   */
9795   pBt->btsFlags &= ~BTS_NO_WAL;
9796   if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9797 
9798   rc = sqlite3BtreeBeginTrans(pBtree, 0);
9799   if( rc==SQLITE_OK ){
9800     u8 *aData = pBt->pPage1->aData;
9801     if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9802       rc = sqlite3BtreeBeginTrans(pBtree, 2);
9803       if( rc==SQLITE_OK ){
9804         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9805         if( rc==SQLITE_OK ){
9806           aData[18] = (u8)iVersion;
9807           aData[19] = (u8)iVersion;
9808         }
9809       }
9810     }
9811   }
9812 
9813   pBt->btsFlags &= ~BTS_NO_WAL;
9814   return rc;
9815 }
9816 
9817 /*
9818 ** Return true if the cursor has a hint specified.  This routine is
9819 ** only used from within assert() statements
9820 */
9821 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9822   return (pCsr->hints & mask)!=0;
9823 }
9824 
9825 /*
9826 ** Return true if the given Btree is read-only.
9827 */
9828 int sqlite3BtreeIsReadonly(Btree *p){
9829   return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9830 }
9831 
9832 /*
9833 ** Return the size of the header added to each page by this module.
9834 */
9835 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9836 
9837 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9838 /*
9839 ** Return true if the Btree passed as the only argument is sharable.
9840 */
9841 int sqlite3BtreeSharable(Btree *p){
9842   return p->sharable;
9843 }
9844 
9845 /*
9846 ** Return the number of connections to the BtShared object accessed by
9847 ** the Btree handle passed as the only argument. For private caches
9848 ** this is always 1. For shared caches it may be 1 or greater.
9849 */
9850 int sqlite3BtreeConnectionCount(Btree *p){
9851   testcase( p->sharable );
9852   return p->pBt->nRef;
9853 }
9854 #endif
9855