xref: /sqlite-3.40.0/src/bitvec.c (revision cb6acda9)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property.  Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled.  In those cases,
21 ** the bitmap becomes dense with high cardinality.  The algorithm needs
22 ** to handle both cases well.
23 **
24 ** The size of the bitmap is fixed when the object is created.
25 **
26 ** All bits are clear when the bitmap is created.  Individual bits
27 ** may be set or cleared one at a time.
28 **
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare.  There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger.  The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
36 */
37 #include "sqliteInt.h"
38 
39 /* Size of the Bitvec structure in bytes. */
40 #define BITVEC_SZ        512
41 
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE \
45     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
46 
47 /* Type of the array "element" for the bitmap representation.
48 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
49 ** Setting this to the "natural word" size of your CPU may improve
50 ** performance. */
51 #define BITVEC_TELEM     u8
52 /* Size, in bits, of the bitmap element. */
53 #define BITVEC_SZELEM    8
54 /* Number of elements in a bitmap array. */
55 #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
56 /* Number of bits in the bitmap array. */
57 #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
58 
59 /* Number of u32 values in hash table. */
60 #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
61 /* Maximum number of entries in hash table before
62 ** sub-dividing and re-hashing. */
63 #define BITVEC_MXHASH    (BITVEC_NINT/2)
64 /* Hashing function for the aHash representation.
65 ** Empirical testing showed that the *37 multiplier
66 ** (an arbitrary prime)in the hash function provided
67 ** no fewer collisions than the no-op *1. */
68 #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
69 
70 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
71 
72 
73 /*
74 ** A bitmap is an instance of the following structure.
75 **
76 ** This bitmap records the existence of zero or more bits
77 ** with values between 1 and iSize, inclusive.
78 **
79 ** There are three possible representations of the bitmap.
80 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
81 ** bitmap.  The least significant bit is bit 1.
82 **
83 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
84 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
85 **
86 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
87 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
88 ** handles up to iDivisor separate values of i.  apSub[0] holds
89 ** values between 1 and iDivisor.  apSub[1] holds values between
90 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
91 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
92 ** to hold deal with values between 1 and iDivisor.
93 */
94 struct Bitvec {
95   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
96   u32 nSet;       /* Number of bits that are set - only valid for aHash
97                   ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
98                   ** this would be 125. */
99   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
100                   /* Should >=0 for apSub element. */
101                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
102                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
103   union {
104     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
105     u32 aHash[BITVEC_NINT];      /* Hash table representation */
106     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
107   } u;
108 };
109 
110 /*
111 ** Create a new bitmap object able to handle bits between 0 and iSize,
112 ** inclusive.  Return a pointer to the new object.  Return NULL if
113 ** malloc fails.
114 */
115 Bitvec *sqlite3BitvecCreate(u32 iSize){
116   Bitvec *p;
117   assert( sizeof(*p)==BITVEC_SZ );
118   p = sqlite3MallocZero( sizeof(*p) );
119   if( p ){
120     p->iSize = iSize;
121   }
122   return p;
123 }
124 
125 /*
126 ** Check to see if the i-th bit is set.  Return true or false.
127 ** If p is NULL (if the bitmap has not been created) or if
128 ** i is out of range, then return false.
129 */
130 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
131   assert( p!=0 );
132   i--;
133   if( i>=p->iSize ) return 0;
134   while( p->iDivisor ){
135     u32 bin = i/p->iDivisor;
136     i = i%p->iDivisor;
137     p = p->u.apSub[bin];
138     if (!p) {
139       return 0;
140     }
141   }
142   if( p->iSize<=BITVEC_NBIT ){
143     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
144   } else{
145     u32 h = BITVEC_HASH(i++);
146     while( p->u.aHash[h] ){
147       if( p->u.aHash[h]==i ) return 1;
148       h = (h+1) % BITVEC_NINT;
149     }
150     return 0;
151   }
152 }
153 int sqlite3BitvecTest(Bitvec *p, u32 i){
154   return p!=0 && sqlite3BitvecTestNotNull(p,i);
155 }
156 
157 /*
158 ** Set the i-th bit.  Return 0 on success and an error code if
159 ** anything goes wrong.
160 **
161 ** This routine might cause sub-bitmaps to be allocated.  Failing
162 ** to get the memory needed to hold the sub-bitmap is the only
163 ** that can go wrong with an insert, assuming p and i are valid.
164 **
165 ** The calling function must ensure that p is a valid Bitvec object
166 ** and that the value for "i" is within range of the Bitvec object.
167 ** Otherwise the behavior is undefined.
168 */
169 int sqlite3BitvecSet(Bitvec *p, u32 i){
170   u32 h;
171   if( p==0 ) return SQLITE_OK;
172   assert( i>0 );
173   assert( i<=p->iSize );
174   i--;
175   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
176     u32 bin = i/p->iDivisor;
177     i = i%p->iDivisor;
178     if( p->u.apSub[bin]==0 ){
179       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
180       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
181     }
182     p = p->u.apSub[bin];
183   }
184   if( p->iSize<=BITVEC_NBIT ){
185     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
186     return SQLITE_OK;
187   }
188   h = BITVEC_HASH(i++);
189   /* if there wasn't a hash collision, and this doesn't */
190   /* completely fill the hash, then just add it without */
191   /* worring about sub-dividing and re-hashing. */
192   if( !p->u.aHash[h] ){
193     if (p->nSet<(BITVEC_NINT-1)) {
194       goto bitvec_set_end;
195     } else {
196       goto bitvec_set_rehash;
197     }
198   }
199   /* there was a collision, check to see if it's already */
200   /* in hash, if not, try to find a spot for it */
201   do {
202     if( p->u.aHash[h]==i ) return SQLITE_OK;
203     h++;
204     if( h>=BITVEC_NINT ) h = 0;
205   } while( p->u.aHash[h] );
206   /* we didn't find it in the hash.  h points to the first */
207   /* available free spot. check to see if this is going to */
208   /* make our hash too "full".  */
209 bitvec_set_rehash:
210   if( p->nSet>=BITVEC_MXHASH ){
211     unsigned int j;
212     int rc;
213     u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
214     if( aiValues==0 ){
215       return SQLITE_NOMEM_BKPT;
216     }else{
217       memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
218       memset(p->u.apSub, 0, sizeof(p->u.apSub));
219       p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
220       rc = sqlite3BitvecSet(p, i);
221       for(j=0; j<BITVEC_NINT; j++){
222         if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
223       }
224       sqlite3StackFree(0, aiValues);
225       return rc;
226     }
227   }
228 bitvec_set_end:
229   p->nSet++;
230   p->u.aHash[h] = i;
231   return SQLITE_OK;
232 }
233 
234 /*
235 ** Clear the i-th bit.
236 **
237 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
238 ** that BitvecClear can use to rebuilt its hash table.
239 */
240 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
241   if( p==0 ) return;
242   assert( i>0 );
243   i--;
244   while( p->iDivisor ){
245     u32 bin = i/p->iDivisor;
246     i = i%p->iDivisor;
247     p = p->u.apSub[bin];
248     if (!p) {
249       return;
250     }
251   }
252   if( p->iSize<=BITVEC_NBIT ){
253     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
254   }else{
255     unsigned int j;
256     u32 *aiValues = pBuf;
257     memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
258     memset(p->u.aHash, 0, sizeof(p->u.aHash));
259     p->nSet = 0;
260     for(j=0; j<BITVEC_NINT; j++){
261       if( aiValues[j] && aiValues[j]!=(i+1) ){
262         u32 h = BITVEC_HASH(aiValues[j]-1);
263         p->nSet++;
264         while( p->u.aHash[h] ){
265           h++;
266           if( h>=BITVEC_NINT ) h = 0;
267         }
268         p->u.aHash[h] = aiValues[j];
269       }
270     }
271   }
272 }
273 
274 /*
275 ** Destroy a bitmap object.  Reclaim all memory used.
276 */
277 void sqlite3BitvecDestroy(Bitvec *p){
278   if( p==0 ) return;
279   if( p->iDivisor ){
280     unsigned int i;
281     for(i=0; i<BITVEC_NPTR; i++){
282       sqlite3BitvecDestroy(p->u.apSub[i]);
283     }
284   }
285   sqlite3_free(p);
286 }
287 
288 /*
289 ** Return the value of the iSize parameter specified when Bitvec *p
290 ** was created.
291 */
292 u32 sqlite3BitvecSize(Bitvec *p){
293   return p->iSize;
294 }
295 
296 #ifndef SQLITE_UNTESTABLE
297 /*
298 ** Let V[] be an array of unsigned characters sufficient to hold
299 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
300 ** Then the following macros can be used to set, clear, or test
301 ** individual bits within V.
302 */
303 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
304 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
305 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
306 
307 /*
308 ** This routine runs an extensive test of the Bitvec code.
309 **
310 ** The input is an array of integers that acts as a program
311 ** to test the Bitvec.  The integers are opcodes followed
312 ** by 0, 1, or 3 operands, depending on the opcode.  Another
313 ** opcode follows immediately after the last operand.
314 **
315 ** There are 6 opcodes numbered from 0 through 5.  0 is the
316 ** "halt" opcode and causes the test to end.
317 **
318 **    0          Halt and return the number of errors
319 **    1 N S X    Set N bits beginning with S and incrementing by X
320 **    2 N S X    Clear N bits beginning with S and incrementing by X
321 **    3 N        Set N randomly chosen bits
322 **    4 N        Clear N randomly chosen bits
323 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
324 **
325 ** The opcodes 1 through 4 perform set and clear operations are performed
326 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
327 ** Opcode 5 works on the linear array only, not on the Bitvec.
328 ** Opcode 5 is used to deliberately induce a fault in order to
329 ** confirm that error detection works.
330 **
331 ** At the conclusion of the test the linear array is compared
332 ** against the Bitvec object.  If there are any differences,
333 ** an error is returned.  If they are the same, zero is returned.
334 **
335 ** If a memory allocation error occurs, return -1.
336 */
337 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
338   Bitvec *pBitvec = 0;
339   unsigned char *pV = 0;
340   int rc = -1;
341   int i, nx, pc, op;
342   void *pTmpSpace;
343 
344   /* Allocate the Bitvec to be tested and a linear array of
345   ** bits to act as the reference */
346   pBitvec = sqlite3BitvecCreate( sz );
347   pV = sqlite3MallocZero( (sz+7)/8 + 1 );
348   pTmpSpace = sqlite3_malloc64(BITVEC_SZ);
349   if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;
350 
351   /* NULL pBitvec tests */
352   sqlite3BitvecSet(0, 1);
353   sqlite3BitvecClear(0, 1, pTmpSpace);
354 
355   /* Run the program */
356   pc = 0;
357   while( (op = aOp[pc])!=0 ){
358     switch( op ){
359       case 1:
360       case 2:
361       case 5: {
362         nx = 4;
363         i = aOp[pc+2] - 1;
364         aOp[pc+2] += aOp[pc+3];
365         break;
366       }
367       case 3:
368       case 4:
369       default: {
370         nx = 2;
371         sqlite3_randomness(sizeof(i), &i);
372         break;
373       }
374     }
375     if( (--aOp[pc+1]) > 0 ) nx = 0;
376     pc += nx;
377     i = (i & 0x7fffffff)%sz;
378     if( (op & 1)!=0 ){
379       SETBIT(pV, (i+1));
380       if( op!=5 ){
381         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
382       }
383     }else{
384       CLEARBIT(pV, (i+1));
385       sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
386     }
387   }
388 
389   /* Test to make sure the linear array exactly matches the
390   ** Bitvec object.  Start with the assumption that they do
391   ** match (rc==0).  Change rc to non-zero if a discrepancy
392   ** is found.
393   */
394   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
395           + sqlite3BitvecTest(pBitvec, 0)
396           + (sqlite3BitvecSize(pBitvec) - sz);
397   for(i=1; i<=sz; i++){
398     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
399       rc = i;
400       break;
401     }
402   }
403 
404   /* Free allocated structure */
405 bitvec_end:
406   sqlite3_free(pTmpSpace);
407   sqlite3_free(pV);
408   sqlite3BitvecDestroy(pBitvec);
409   return rc;
410 }
411 #endif /* SQLITE_UNTESTABLE */
412