xref: /sqlite-3.40.0/src/bitvec.c (revision c56fac74)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property.  Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled.  In those cases,
21 ** the bitmap becomes dense with high cardinality.  The algorithm needs
22 ** to handle both cases well.
23 **
24 ** The size of the bitmap is fixed when the object is created.
25 **
26 ** All bits are clear when the bitmap is created.  Individual bits
27 ** may be set or cleared one at a time.
28 **
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare.  There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger.  The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
36 */
37 #include "sqliteInt.h"
38 
39 /* Size of the Bitvec structure in bytes. */
40 #define BITVEC_SZ        512
41 
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
45 
46 /* Type of the array "element" for the bitmap representation.
47 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
48 ** Setting this to the "natural word" size of your CPU may improve
49 ** performance. */
50 #define BITVEC_TELEM     u8
51 /* Size, in bits, of the bitmap element. */
52 #define BITVEC_SZELEM    8
53 /* Number of elements in a bitmap array. */
54 #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
55 /* Number of bits in the bitmap array. */
56 #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
57 
58 /* Number of u32 values in hash table. */
59 #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
60 /* Maximum number of entries in hash table before
61 ** sub-dividing and re-hashing. */
62 #define BITVEC_MXHASH    (BITVEC_NINT/2)
63 /* Hashing function for the aHash representation.
64 ** Empirical testing showed that the *37 multiplier
65 ** (an arbitrary prime)in the hash function provided
66 ** no fewer collisions than the no-op *1. */
67 #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
68 
69 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
70 
71 
72 /*
73 ** A bitmap is an instance of the following structure.
74 **
75 ** This bitmap records the existence of zero or more bits
76 ** with values between 1 and iSize, inclusive.
77 **
78 ** There are three possible representations of the bitmap.
79 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
80 ** bitmap.  The least significant bit is bit 1.
81 **
82 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
83 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
84 **
85 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
86 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
87 ** handles up to iDivisor separate values of i.  apSub[0] holds
88 ** values between 1 and iDivisor.  apSub[1] holds values between
89 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
90 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
91 ** to hold deal with values between 1 and iDivisor.
92 */
93 struct Bitvec {
94   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
95   u32 nSet;       /* Number of bits that are set - only valid for aHash
96                   ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
97                   ** this would be 125. */
98   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
99                   /* Should >=0 for apSub element. */
100                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
101                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
102   union {
103     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
104     u32 aHash[BITVEC_NINT];      /* Hash table representation */
105     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
106   } u;
107 };
108 
109 /*
110 ** Create a new bitmap object able to handle bits between 0 and iSize,
111 ** inclusive.  Return a pointer to the new object.  Return NULL if
112 ** malloc fails.
113 */
114 Bitvec *sqlite3BitvecCreate(u32 iSize){
115   Bitvec *p;
116   assert( sizeof(*p)==BITVEC_SZ );
117   p = sqlite3MallocZero( sizeof(*p) );
118   if( p ){
119     p->iSize = iSize;
120   }
121   return p;
122 }
123 
124 /*
125 ** Check to see if the i-th bit is set.  Return true or false.
126 ** If p is NULL (if the bitmap has not been created) or if
127 ** i is out of range, then return false.
128 */
129 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
130   assert( p!=0 );
131   i--;
132   if( i>=p->iSize ) return 0;
133   while( p->iDivisor ){
134     u32 bin = i/p->iDivisor;
135     i = i%p->iDivisor;
136     p = p->u.apSub[bin];
137     if (!p) {
138       return 0;
139     }
140   }
141   if( p->iSize<=BITVEC_NBIT ){
142     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
143   } else{
144     u32 h = BITVEC_HASH(i++);
145     while( p->u.aHash[h] ){
146       if( p->u.aHash[h]==i ) return 1;
147       h = (h+1) % BITVEC_NINT;
148     }
149     return 0;
150   }
151 }
152 int sqlite3BitvecTest(Bitvec *p, u32 i){
153   return p!=0 && sqlite3BitvecTestNotNull(p,i);
154 }
155 
156 /*
157 ** Set the i-th bit.  Return 0 on success and an error code if
158 ** anything goes wrong.
159 **
160 ** This routine might cause sub-bitmaps to be allocated.  Failing
161 ** to get the memory needed to hold the sub-bitmap is the only
162 ** that can go wrong with an insert, assuming p and i are valid.
163 **
164 ** The calling function must ensure that p is a valid Bitvec object
165 ** and that the value for "i" is within range of the Bitvec object.
166 ** Otherwise the behavior is undefined.
167 */
168 int sqlite3BitvecSet(Bitvec *p, u32 i){
169   u32 h;
170   if( p==0 ) return SQLITE_OK;
171   assert( i>0 );
172   assert( i<=p->iSize );
173   i--;
174   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
175     u32 bin = i/p->iDivisor;
176     i = i%p->iDivisor;
177     if( p->u.apSub[bin]==0 ){
178       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
179       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
180     }
181     p = p->u.apSub[bin];
182   }
183   if( p->iSize<=BITVEC_NBIT ){
184     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
185     return SQLITE_OK;
186   }
187   h = BITVEC_HASH(i++);
188   /* if there wasn't a hash collision, and this doesn't */
189   /* completely fill the hash, then just add it without */
190   /* worring about sub-dividing and re-hashing. */
191   if( !p->u.aHash[h] ){
192     if (p->nSet<(BITVEC_NINT-1)) {
193       goto bitvec_set_end;
194     } else {
195       goto bitvec_set_rehash;
196     }
197   }
198   /* there was a collision, check to see if it's already */
199   /* in hash, if not, try to find a spot for it */
200   do {
201     if( p->u.aHash[h]==i ) return SQLITE_OK;
202     h++;
203     if( h>=BITVEC_NINT ) h = 0;
204   } while( p->u.aHash[h] );
205   /* we didn't find it in the hash.  h points to the first */
206   /* available free spot. check to see if this is going to */
207   /* make our hash too "full".  */
208 bitvec_set_rehash:
209   if( p->nSet>=BITVEC_MXHASH ){
210     unsigned int j;
211     int rc;
212     u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
213     if( aiValues==0 ){
214       return SQLITE_NOMEM;
215     }else{
216       memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
217       memset(p->u.apSub, 0, sizeof(p->u.apSub));
218       p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
219       rc = sqlite3BitvecSet(p, i);
220       for(j=0; j<BITVEC_NINT; j++){
221         if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
222       }
223       sqlite3StackFree(0, aiValues);
224       return rc;
225     }
226   }
227 bitvec_set_end:
228   p->nSet++;
229   p->u.aHash[h] = i;
230   return SQLITE_OK;
231 }
232 
233 /*
234 ** Clear the i-th bit.
235 **
236 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
237 ** that BitvecClear can use to rebuilt its hash table.
238 */
239 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
240   if( p==0 ) return;
241   assert( i>0 );
242   i--;
243   while( p->iDivisor ){
244     u32 bin = i/p->iDivisor;
245     i = i%p->iDivisor;
246     p = p->u.apSub[bin];
247     if (!p) {
248       return;
249     }
250   }
251   if( p->iSize<=BITVEC_NBIT ){
252     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
253   }else{
254     unsigned int j;
255     u32 *aiValues = pBuf;
256     memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
257     memset(p->u.aHash, 0, sizeof(p->u.aHash));
258     p->nSet = 0;
259     for(j=0; j<BITVEC_NINT; j++){
260       if( aiValues[j] && aiValues[j]!=(i+1) ){
261         u32 h = BITVEC_HASH(aiValues[j]-1);
262         p->nSet++;
263         while( p->u.aHash[h] ){
264           h++;
265           if( h>=BITVEC_NINT ) h = 0;
266         }
267         p->u.aHash[h] = aiValues[j];
268       }
269     }
270   }
271 }
272 
273 /*
274 ** Destroy a bitmap object.  Reclaim all memory used.
275 */
276 void sqlite3BitvecDestroy(Bitvec *p){
277   if( p==0 ) return;
278   if( p->iDivisor ){
279     unsigned int i;
280     for(i=0; i<BITVEC_NPTR; i++){
281       sqlite3BitvecDestroy(p->u.apSub[i]);
282     }
283   }
284   sqlite3_free(p);
285 }
286 
287 /*
288 ** Return the value of the iSize parameter specified when Bitvec *p
289 ** was created.
290 */
291 u32 sqlite3BitvecSize(Bitvec *p){
292   return p->iSize;
293 }
294 
295 #ifndef SQLITE_OMIT_BUILTIN_TEST
296 /*
297 ** Let V[] be an array of unsigned characters sufficient to hold
298 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
299 ** Then the following macros can be used to set, clear, or test
300 ** individual bits within V.
301 */
302 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
303 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
304 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
305 
306 /*
307 ** This routine runs an extensive test of the Bitvec code.
308 **
309 ** The input is an array of integers that acts as a program
310 ** to test the Bitvec.  The integers are opcodes followed
311 ** by 0, 1, or 3 operands, depending on the opcode.  Another
312 ** opcode follows immediately after the last operand.
313 **
314 ** There are 6 opcodes numbered from 0 through 5.  0 is the
315 ** "halt" opcode and causes the test to end.
316 **
317 **    0          Halt and return the number of errors
318 **    1 N S X    Set N bits beginning with S and incrementing by X
319 **    2 N S X    Clear N bits beginning with S and incrementing by X
320 **    3 N        Set N randomly chosen bits
321 **    4 N        Clear N randomly chosen bits
322 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
323 **
324 ** The opcodes 1 through 4 perform set and clear operations are performed
325 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
326 ** Opcode 5 works on the linear array only, not on the Bitvec.
327 ** Opcode 5 is used to deliberately induce a fault in order to
328 ** confirm that error detection works.
329 **
330 ** At the conclusion of the test the linear array is compared
331 ** against the Bitvec object.  If there are any differences,
332 ** an error is returned.  If they are the same, zero is returned.
333 **
334 ** If a memory allocation error occurs, return -1.
335 */
336 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
337   Bitvec *pBitvec = 0;
338   unsigned char *pV = 0;
339   int rc = -1;
340   int i, nx, pc, op;
341   void *pTmpSpace;
342 
343   /* Allocate the Bitvec to be tested and a linear array of
344   ** bits to act as the reference */
345   pBitvec = sqlite3BitvecCreate( sz );
346   pV = sqlite3MallocZero( (sz+7)/8 + 1 );
347   pTmpSpace = sqlite3_malloc64(BITVEC_SZ);
348   if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;
349 
350   /* NULL pBitvec tests */
351   sqlite3BitvecSet(0, 1);
352   sqlite3BitvecClear(0, 1, pTmpSpace);
353 
354   /* Run the program */
355   pc = 0;
356   while( (op = aOp[pc])!=0 ){
357     switch( op ){
358       case 1:
359       case 2:
360       case 5: {
361         nx = 4;
362         i = aOp[pc+2] - 1;
363         aOp[pc+2] += aOp[pc+3];
364         break;
365       }
366       case 3:
367       case 4:
368       default: {
369         nx = 2;
370         sqlite3_randomness(sizeof(i), &i);
371         break;
372       }
373     }
374     if( (--aOp[pc+1]) > 0 ) nx = 0;
375     pc += nx;
376     i = (i & 0x7fffffff)%sz;
377     if( (op & 1)!=0 ){
378       SETBIT(pV, (i+1));
379       if( op!=5 ){
380         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
381       }
382     }else{
383       CLEARBIT(pV, (i+1));
384       sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
385     }
386   }
387 
388   /* Test to make sure the linear array exactly matches the
389   ** Bitvec object.  Start with the assumption that they do
390   ** match (rc==0).  Change rc to non-zero if a discrepancy
391   ** is found.
392   */
393   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
394           + sqlite3BitvecTest(pBitvec, 0)
395           + (sqlite3BitvecSize(pBitvec) - sz);
396   for(i=1; i<=sz; i++){
397     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
398       rc = i;
399       break;
400     }
401   }
402 
403   /* Free allocated structure */
404 bitvec_end:
405   sqlite3_free(pTmpSpace);
406   sqlite3_free(pV);
407   sqlite3BitvecDestroy(pBitvec);
408   return rc;
409 }
410 #endif /* SQLITE_OMIT_BUILTIN_TEST */
411