xref: /sqlite-3.40.0/src/bitvec.c (revision 8a29dfde)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record what pages a database file have been
16 ** journalled during a transaction.  Usually only a few pages are
17 ** journalled.  So the bitmap is usually sparse and has low cardinality.
18 ** But sometimes (for example when during a DROP of a large table) most
19 ** or all of the pages get journalled.  In those cases, the bitmap becomes
20 ** dense.  The algorithm needs to handle both cases well.
21 **
22 ** The size of the bitmap is fixed when the object is created.
23 **
24 ** All bits are clear when the bitmap is created.  Individual bits
25 ** may be set or cleared one at a time.
26 **
27 ** Test operations are about 100 times more common that set operations.
28 ** Clear operations are exceedingly rare.  There are usually between
29 ** 5 and 500 set operations per Bitvec object, though the number of sets can
30 ** sometimes grow into tens of thousands or larger.  The size of the
31 ** Bitvec object is the number of pages in the database file at the
32 ** start of a transaction, and is thus usually less than a few thousand,
33 ** but can be as large as 2 billion for a really big database.
34 **
35 ** @(#) $Id: bitvec.c,v 1.3 2008/03/21 16:45:47 drh Exp $
36 */
37 #include "sqliteInt.h"
38 
39 #define BITVEC_SZ        512
40 /* Round the union size down to the nearest pointer boundary, since that's how
41 ** it will be aligned within the Bitvec struct. */
42 #define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
43 #define BITVEC_NCHAR     BITVEC_USIZE
44 #define BITVEC_NBIT      (BITVEC_NCHAR*8)
45 #define BITVEC_NINT      (BITVEC_USIZE/4)
46 #define BITVEC_MXHASH    (BITVEC_NINT/2)
47 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
48 
49 #define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)
50 
51 /*
52 ** A bitmap is an instance of the following structure.
53 **
54 ** This bitmap records the existance of zero or more bits
55 ** with values between 1 and iSize, inclusive.
56 **
57 ** There are three possible representations of the bitmap.
58 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
59 ** bitmap.  The least significant bit is bit 1.
60 **
61 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
62 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
63 **
64 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
65 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
66 ** handles up to iDivisor separate values of i.  apSub[0] holds
67 ** values between 1 and iDivisor.  apSub[1] holds values between
68 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
69 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
70 ** to hold deal with values between 1 and iDivisor.
71 */
72 struct Bitvec {
73   u32 iSize;      /* Maximum bit index */
74   u32 nSet;       /* Number of bits that are set */
75   u32 iDivisor;   /* Number of bits handled by each apSub[] entry */
76   union {
77     u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */
78     u32 aHash[BITVEC_NINT];      /* Hash table representation */
79     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
80   } u;
81 };
82 
83 /*
84 ** Create a new bitmap object able to handle bits between 0 and iSize,
85 ** inclusive.  Return a pointer to the new object.  Return NULL if
86 ** malloc fails.
87 */
88 Bitvec *sqlite3BitvecCreate(u32 iSize){
89   Bitvec *p;
90   assert( sizeof(*p)==BITVEC_SZ );
91   p = sqlite3MallocZero( sizeof(*p) );
92   if( p ){
93     p->iSize = iSize;
94   }
95   return p;
96 }
97 
98 /*
99 ** Check to see if the i-th bit is set.  Return true or false.
100 ** If p is NULL (if the bitmap has not been created) or if
101 ** i is out of range, then return false.
102 */
103 int sqlite3BitvecTest(Bitvec *p, u32 i){
104   if( p==0 ) return 0;
105   if( i>p->iSize || i==0 ) return 0;
106   if( p->iSize<=BITVEC_NBIT ){
107     i--;
108     return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
109   }
110   if( p->iDivisor>0 ){
111     u32 bin = (i-1)/p->iDivisor;
112     i = (i-1)%p->iDivisor + 1;
113     return sqlite3BitvecTest(p->u.apSub[bin], i);
114   }else{
115     u32 h = BITVEC_HASH(i);
116     while( p->u.aHash[h] ){
117       if( p->u.aHash[h]==i ) return 1;
118       h++;
119       if( h>=BITVEC_NINT ) h = 0;
120     }
121     return 0;
122   }
123 }
124 
125 /*
126 ** Set the i-th bit.  Return 0 on success and an error code if
127 ** anything goes wrong.
128 */
129 int sqlite3BitvecSet(Bitvec *p, u32 i){
130   u32 h;
131   assert( p!=0 );
132   assert( i>0 );
133   if( p->iSize<=BITVEC_NBIT ){
134     i--;
135     p->u.aBitmap[i/8] |= 1 << (i&7);
136     return SQLITE_OK;
137   }
138   if( p->iDivisor ){
139     u32 bin = (i-1)/p->iDivisor;
140     i = (i-1)%p->iDivisor + 1;
141     if( p->u.apSub[bin]==0 ){
142       sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1);
143       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
144       sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0);
145       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
146     }
147     return sqlite3BitvecSet(p->u.apSub[bin], i);
148   }
149   h = BITVEC_HASH(i);
150   while( p->u.aHash[h] ){
151     if( p->u.aHash[h]==i ) return SQLITE_OK;
152     h++;
153     if( h==BITVEC_NINT ) h = 0;
154   }
155   p->nSet++;
156   if( p->nSet>=BITVEC_MXHASH ){
157     int j, rc;
158     u32 aiValues[BITVEC_NINT];
159     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
160     memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
161     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
162     rc = sqlite3BitvecSet(p, i);
163     for(j=0; j<BITVEC_NINT; j++){
164       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
165     }
166     return rc;
167   }
168   p->u.aHash[h] = i;
169   return SQLITE_OK;
170 }
171 
172 /*
173 ** Clear the i-th bit.  Return 0 on success and an error code if
174 ** anything goes wrong.
175 */
176 void sqlite3BitvecClear(Bitvec *p, u32 i){
177   assert( p!=0 );
178   assert( i>0 );
179   if( p->iSize<=BITVEC_NBIT ){
180     i--;
181     p->u.aBitmap[i/8] &= ~(1 << (i&7));
182   }else if( p->iDivisor ){
183     u32 bin = (i-1)/p->iDivisor;
184     i = (i-1)%p->iDivisor + 1;
185     if( p->u.apSub[bin] ){
186       sqlite3BitvecClear(p->u.apSub[bin], i);
187     }
188   }else{
189     int j;
190     u32 aiValues[BITVEC_NINT];
191     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
192     memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
193     p->nSet = 0;
194     for(j=0; j<BITVEC_NINT; j++){
195       if( aiValues[j] && aiValues[j]!=i ){
196         sqlite3BitvecSet(p, aiValues[j]);
197       }
198     }
199   }
200 }
201 
202 /*
203 ** Destroy a bitmap object.  Reclaim all memory used.
204 */
205 void sqlite3BitvecDestroy(Bitvec *p){
206   if( p==0 ) return;
207   if( p->iDivisor ){
208     int i;
209     for(i=0; i<BITVEC_NPTR; i++){
210       sqlite3BitvecDestroy(p->u.apSub[i]);
211     }
212   }
213   sqlite3_free(p);
214 }
215 
216 #ifndef SQLITE_OMIT_BUILTIN_TEST
217 /*
218 ** Let V[] be an array of unsigned characters sufficient to hold
219 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
220 ** Then the following macros can be used to set, clear, or test
221 ** individual bits within V.
222 */
223 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
224 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
225 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
226 
227 /*
228 ** This routine runs an extensive test of the Bitvec code.
229 **
230 ** The input is an array of integers that acts as a program
231 ** to test the Bitvec.  The integers are opcodes followed
232 ** by 0, 1, or 3 operands, depending on the opcode.  Another
233 ** opcode follows immediately after the last operand.
234 **
235 ** There are 6 opcodes numbered from 0 through 5.  0 is the
236 ** "halt" opcode and causes the test to end.
237 **
238 **    0          Halt and return the number of errors
239 **    1 N S X    Set N bits beginning with S and incrementing by X
240 **    2 N S X    Clear N bits beginning with S and incrementing by X
241 **    3 N        Set N randomly chosen bits
242 **    4 N        Clear N randomly chosen bits
243 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
244 **
245 ** The opcodes 1 through 4 perform set and clear operations are performed
246 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
247 ** Opcode 5 works on the linear array only, not on the Bitvec.
248 ** Opcode 5 is used to deliberately induce a fault in order to
249 ** confirm that error detection works.
250 **
251 ** At the conclusion of the test the linear array is compared
252 ** against the Bitvec object.  If there are any differences,
253 ** an error is returned.  If they are the same, zero is returned.
254 **
255 ** If a memory allocation error occurs, return -1.
256 */
257 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
258   Bitvec *pBitvec = 0;
259   unsigned char *pV = 0;
260   int rc = -1;
261   int i, nx, pc, op;
262 
263   /* Allocate the Bitvec to be tested and a linear array of
264   ** bits to act as the reference */
265   pBitvec = sqlite3BitvecCreate( sz );
266   pV = sqlite3_malloc( (sz+7)/8 + 1 );
267   if( pBitvec==0 || pV==0 ) goto bitvec_end;
268   memset(pV, 0, (sz+7)/8 + 1);
269 
270   /* Run the program */
271   pc = 0;
272   while( (op = aOp[pc])!=0 ){
273     switch( op ){
274       case 1:
275       case 2:
276       case 5: {
277         nx = 4;
278         i = aOp[pc+2] - 1;
279         aOp[pc+2] += aOp[pc+3];
280         break;
281       }
282       case 3:
283       case 4:
284       default: {
285         nx = 2;
286         sqlite3_randomness(sizeof(i), &i);
287         break;
288       }
289     }
290     if( (--aOp[pc+1]) > 0 ) nx = 0;
291     pc += nx;
292     i = (i & 0x7fffffff)%sz;
293     if( (op & 1)!=0 ){
294       SETBIT(pV, (i+1));
295       if( op!=5 ){
296         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
297       }
298     }else{
299       CLEARBIT(pV, (i+1));
300       sqlite3BitvecClear(pBitvec, i+1);
301     }
302   }
303 
304   /* Test to make sure the linear array exactly matches the
305   ** Bitvec object.  Start with the assumption that they do
306   ** match (rc==0).  Change rc to non-zero if a discrepancy
307   ** is found.
308   */
309   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
310           + sqlite3BitvecTest(pBitvec, 0);
311   for(i=1; i<=sz; i++){
312     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
313       rc = i;
314       break;
315     }
316   }
317 
318   /* Free allocated structure */
319 bitvec_end:
320   sqlite3_free(pV);
321   sqlite3BitvecDestroy(pBitvec);
322   return rc;
323 }
324 #endif /* SQLITE_OMIT_BUILTIN_TEST */
325