xref: /sqlite-3.40.0/src/bitvec.c (revision 86a7a69c)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property.  Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled.  In those cases,
21 ** the bitmap becomes dense with high cardinality.  The algorithm needs
22 ** to handle both cases well.
23 **
24 ** The size of the bitmap is fixed when the object is created.
25 **
26 ** All bits are clear when the bitmap is created.  Individual bits
27 ** may be set or cleared one at a time.
28 **
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare.  There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger.  The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
36 **
37 ** @(#) $Id: bitvec.c,v 1.8 2008/11/11 15:48:48 drh Exp $
38 */
39 #include "sqliteInt.h"
40 
41 #define BITVEC_SZ        512
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
45 #define BITVEC_NCHAR     BITVEC_USIZE
46 #define BITVEC_NBIT      (BITVEC_NCHAR*8)
47 #define BITVEC_NINT      (BITVEC_USIZE/4)
48 #define BITVEC_MXHASH    (BITVEC_NINT/2)
49 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
50 
51 #define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)
52 
53 /*
54 ** A bitmap is an instance of the following structure.
55 **
56 ** This bitmap records the existance of zero or more bits
57 ** with values between 1 and iSize, inclusive.
58 **
59 ** There are three possible representations of the bitmap.
60 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
61 ** bitmap.  The least significant bit is bit 1.
62 **
63 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
64 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
65 **
66 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
67 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
68 ** handles up to iDivisor separate values of i.  apSub[0] holds
69 ** values between 1 and iDivisor.  apSub[1] holds values between
70 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
71 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
72 ** to hold deal with values between 1 and iDivisor.
73 */
74 struct Bitvec {
75   u32 iSize;      /* Maximum bit index */
76   u32 nSet;       /* Number of bits that are set */
77   u32 iDivisor;   /* Number of bits handled by each apSub[] entry */
78   union {
79     u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */
80     u32 aHash[BITVEC_NINT];      /* Hash table representation */
81     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
82   } u;
83 };
84 
85 /*
86 ** Create a new bitmap object able to handle bits between 0 and iSize,
87 ** inclusive.  Return a pointer to the new object.  Return NULL if
88 ** malloc fails.
89 */
90 Bitvec *sqlite3BitvecCreate(u32 iSize){
91   Bitvec *p;
92   assert( sizeof(*p)==BITVEC_SZ );
93   p = sqlite3MallocZero( sizeof(*p) );
94   if( p ){
95     p->iSize = iSize;
96   }
97   return p;
98 }
99 
100 /*
101 ** Check to see if the i-th bit is set.  Return true or false.
102 ** If p is NULL (if the bitmap has not been created) or if
103 ** i is out of range, then return false.
104 */
105 int sqlite3BitvecTest(Bitvec *p, u32 i){
106   if( p==0 ) return 0;
107   if( i>p->iSize || i==0 ) return 0;
108   if( p->iSize<=BITVEC_NBIT ){
109     i--;
110     return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
111   }
112   if( p->iDivisor>0 ){
113     u32 bin = (i-1)/p->iDivisor;
114     i = (i-1)%p->iDivisor + 1;
115     return sqlite3BitvecTest(p->u.apSub[bin], i);
116   }else{
117     u32 h = BITVEC_HASH(i);
118     while( p->u.aHash[h] ){
119       if( p->u.aHash[h]==i ) return 1;
120       h++;
121       if( h>=BITVEC_NINT ) h = 0;
122     }
123     return 0;
124   }
125 }
126 
127 /*
128 ** Set the i-th bit.  Return 0 on success and an error code if
129 ** anything goes wrong.
130 **
131 ** This routine might cause sub-bitmaps to be allocated.  Failing
132 ** to get the memory needed to hold the sub-bitmap is the only
133 ** that can go wrong with an insert, assuming p and i are valid.
134 **
135 ** The calling function must ensure that p is a valid Bitvec object
136 ** and that the value for "i" is within range of the Bitvec object.
137 ** Otherwise the behavior is undefined.
138 */
139 int sqlite3BitvecSet(Bitvec *p, u32 i){
140   u32 h;
141   assert( p!=0 );
142   assert( i>0 );
143   assert( i<=p->iSize );
144   if( p->iSize<=BITVEC_NBIT ){
145     i--;
146     p->u.aBitmap[i/8] |= 1 << (i&7);
147     return SQLITE_OK;
148   }
149   if( p->iDivisor ){
150     u32 bin = (i-1)/p->iDivisor;
151     i = (i-1)%p->iDivisor + 1;
152     if( p->u.apSub[bin]==0 ){
153       sqlite3BeginBenignMalloc();
154       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
155       sqlite3EndBenignMalloc();
156       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
157     }
158     return sqlite3BitvecSet(p->u.apSub[bin], i);
159   }
160   h = BITVEC_HASH(i);
161   while( p->u.aHash[h] ){
162     if( p->u.aHash[h]==i ) return SQLITE_OK;
163     h++;
164     if( h==BITVEC_NINT ) h = 0;
165   }
166   p->nSet++;
167   if( p->nSet>=BITVEC_MXHASH ){
168     unsigned int j;
169     int rc;
170     u32 aiValues[BITVEC_NINT];
171     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
172     memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
173     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
174     rc = sqlite3BitvecSet(p, i);
175     for(j=0; j<BITVEC_NINT; j++){
176       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
177     }
178     return rc;
179   }
180   p->u.aHash[h] = i;
181   return SQLITE_OK;
182 }
183 
184 /*
185 ** Clear the i-th bit.  Return 0 on success and an error code if
186 ** anything goes wrong.
187 */
188 void sqlite3BitvecClear(Bitvec *p, u32 i){
189   assert( p!=0 );
190   assert( i>0 );
191   if( p->iSize<=BITVEC_NBIT ){
192     i--;
193     p->u.aBitmap[i/8] &= ~(1 << (i&7));
194   }else if( p->iDivisor ){
195     u32 bin = (i-1)/p->iDivisor;
196     i = (i-1)%p->iDivisor + 1;
197     if( p->u.apSub[bin] ){
198       sqlite3BitvecClear(p->u.apSub[bin], i);
199     }
200   }else{
201     unsigned int j;
202     u32 aiValues[BITVEC_NINT];
203     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
204     memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
205     p->nSet = 0;
206     for(j=0; j<BITVEC_NINT; j++){
207       if( aiValues[j] && aiValues[j]!=i ){
208         sqlite3BitvecSet(p, aiValues[j]);
209       }
210     }
211   }
212 }
213 
214 /*
215 ** Destroy a bitmap object.  Reclaim all memory used.
216 */
217 void sqlite3BitvecDestroy(Bitvec *p){
218   if( p==0 ) return;
219   if( p->iDivisor ){
220     unsigned int i;
221     for(i=0; i<BITVEC_NPTR; i++){
222       sqlite3BitvecDestroy(p->u.apSub[i]);
223     }
224   }
225   sqlite3_free(p);
226 }
227 
228 #ifndef SQLITE_OMIT_BUILTIN_TEST
229 /*
230 ** Let V[] be an array of unsigned characters sufficient to hold
231 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
232 ** Then the following macros can be used to set, clear, or test
233 ** individual bits within V.
234 */
235 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
236 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
237 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
238 
239 /*
240 ** This routine runs an extensive test of the Bitvec code.
241 **
242 ** The input is an array of integers that acts as a program
243 ** to test the Bitvec.  The integers are opcodes followed
244 ** by 0, 1, or 3 operands, depending on the opcode.  Another
245 ** opcode follows immediately after the last operand.
246 **
247 ** There are 6 opcodes numbered from 0 through 5.  0 is the
248 ** "halt" opcode and causes the test to end.
249 **
250 **    0          Halt and return the number of errors
251 **    1 N S X    Set N bits beginning with S and incrementing by X
252 **    2 N S X    Clear N bits beginning with S and incrementing by X
253 **    3 N        Set N randomly chosen bits
254 **    4 N        Clear N randomly chosen bits
255 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
256 **
257 ** The opcodes 1 through 4 perform set and clear operations are performed
258 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
259 ** Opcode 5 works on the linear array only, not on the Bitvec.
260 ** Opcode 5 is used to deliberately induce a fault in order to
261 ** confirm that error detection works.
262 **
263 ** At the conclusion of the test the linear array is compared
264 ** against the Bitvec object.  If there are any differences,
265 ** an error is returned.  If they are the same, zero is returned.
266 **
267 ** If a memory allocation error occurs, return -1.
268 */
269 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
270   Bitvec *pBitvec = 0;
271   unsigned char *pV = 0;
272   int rc = -1;
273   int i, nx, pc, op;
274 
275   /* Allocate the Bitvec to be tested and a linear array of
276   ** bits to act as the reference */
277   pBitvec = sqlite3BitvecCreate( sz );
278   pV = sqlite3_malloc( (sz+7)/8 + 1 );
279   if( pBitvec==0 || pV==0 ) goto bitvec_end;
280   memset(pV, 0, (sz+7)/8 + 1);
281 
282   /* Run the program */
283   pc = 0;
284   while( (op = aOp[pc])!=0 ){
285     switch( op ){
286       case 1:
287       case 2:
288       case 5: {
289         nx = 4;
290         i = aOp[pc+2] - 1;
291         aOp[pc+2] += aOp[pc+3];
292         break;
293       }
294       case 3:
295       case 4:
296       default: {
297         nx = 2;
298         sqlite3_randomness(sizeof(i), &i);
299         break;
300       }
301     }
302     if( (--aOp[pc+1]) > 0 ) nx = 0;
303     pc += nx;
304     i = (i & 0x7fffffff)%sz;
305     if( (op & 1)!=0 ){
306       SETBIT(pV, (i+1));
307       if( op!=5 ){
308         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
309       }
310     }else{
311       CLEARBIT(pV, (i+1));
312       sqlite3BitvecClear(pBitvec, i+1);
313     }
314   }
315 
316   /* Test to make sure the linear array exactly matches the
317   ** Bitvec object.  Start with the assumption that they do
318   ** match (rc==0).  Change rc to non-zero if a discrepancy
319   ** is found.
320   */
321   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
322           + sqlite3BitvecTest(pBitvec, 0);
323   for(i=1; i<=sz; i++){
324     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
325       rc = i;
326       break;
327     }
328   }
329 
330   /* Free allocated structure */
331 bitvec_end:
332   sqlite3_free(pV);
333   sqlite3BitvecDestroy(pBitvec);
334   return rc;
335 }
336 #endif /* SQLITE_OMIT_BUILTIN_TEST */
337