xref: /sqlite-3.40.0/src/bitvec.c (revision 64f798dd)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property.  Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled.  In those cases,
21 ** the bitmap becomes dense with high cardinality.  The algorithm needs
22 ** to handle both cases well.
23 **
24 ** The size of the bitmap is fixed when the object is created.
25 **
26 ** All bits are clear when the bitmap is created.  Individual bits
27 ** may be set or cleared one at a time.
28 **
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare.  There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger.  The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
36 **
37 ** @(#) $Id: bitvec.c,v 1.14 2009/04/01 23:49:04 drh Exp $
38 */
39 #include "sqliteInt.h"
40 
41 /* Size of the Bitvec structure in bytes. */
42 #define BITVEC_SZ        512
43 
44 /* Round the union size down to the nearest pointer boundary, since that's how
45 ** it will be aligned within the Bitvec struct. */
46 #define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
47 
48 /* Type of the array "element" for the bitmap representation.
49 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
50 ** Setting this to the "natural word" size of your CPU may improve
51 ** performance. */
52 #define BITVEC_TELEM     u8
53 /* Size, in bits, of the bitmap element. */
54 #define BITVEC_SZELEM    8
55 /* Number of elements in a bitmap array. */
56 #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
57 /* Number of bits in the bitmap array. */
58 #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
59 
60 /* Number of u32 values in hash table. */
61 #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
62 /* Maximum number of entries in hash table before
63 ** sub-dividing and re-hashing. */
64 #define BITVEC_MXHASH    (BITVEC_NINT/2)
65 /* Hashing function for the aHash representation.
66 ** Empirical testing showed that the *37 multiplier
67 ** (an arbitrary prime)in the hash function provided
68 ** no fewer collisions than the no-op *1. */
69 #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
70 
71 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
72 
73 
74 /*
75 ** A bitmap is an instance of the following structure.
76 **
77 ** This bitmap records the existance of zero or more bits
78 ** with values between 1 and iSize, inclusive.
79 **
80 ** There are three possible representations of the bitmap.
81 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
82 ** bitmap.  The least significant bit is bit 1.
83 **
84 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
85 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
86 **
87 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
88 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
89 ** handles up to iDivisor separate values of i.  apSub[0] holds
90 ** values between 1 and iDivisor.  apSub[1] holds values between
91 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
92 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
93 ** to hold deal with values between 1 and iDivisor.
94 */
95 struct Bitvec {
96   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
97   u32 nSet;       /* Number of bits that are set - only valid for aHash
98                   ** element.  Max is BITVEC_NINT.  For BITVEC_SZ of 512,
99                   ** this would be 125. */
100   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
101                   /* Should >=0 for apSub element. */
102                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
103                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
104   union {
105     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
106     u32 aHash[BITVEC_NINT];      /* Hash table representation */
107     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
108   } u;
109 };
110 
111 /*
112 ** Create a new bitmap object able to handle bits between 0 and iSize,
113 ** inclusive.  Return a pointer to the new object.  Return NULL if
114 ** malloc fails.
115 */
116 Bitvec *sqlite3BitvecCreate(u32 iSize){
117   Bitvec *p;
118   assert( sizeof(*p)==BITVEC_SZ );
119   p = sqlite3MallocZero( sizeof(*p) );
120   if( p ){
121     p->iSize = iSize;
122   }
123   return p;
124 }
125 
126 /*
127 ** Check to see if the i-th bit is set.  Return true or false.
128 ** If p is NULL (if the bitmap has not been created) or if
129 ** i is out of range, then return false.
130 */
131 int sqlite3BitvecTest(Bitvec *p, u32 i){
132   if( p==0 ) return 0;
133   if( i>p->iSize || i==0 ) return 0;
134   i--;
135   while( p->iDivisor ){
136     u32 bin = i/p->iDivisor;
137     i = i%p->iDivisor;
138     p = p->u.apSub[bin];
139     if (!p) {
140       return 0;
141     }
142   }
143   if( p->iSize<=BITVEC_NBIT ){
144     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
145   } else{
146     u32 h = BITVEC_HASH(i++);
147     while( p->u.aHash[h] ){
148       if( p->u.aHash[h]==i ) return 1;
149       h++;
150       if( h>=BITVEC_NINT ) h = 0;
151     }
152     return 0;
153   }
154 }
155 
156 /*
157 ** Set the i-th bit.  Return 0 on success and an error code if
158 ** anything goes wrong.
159 **
160 ** This routine might cause sub-bitmaps to be allocated.  Failing
161 ** to get the memory needed to hold the sub-bitmap is the only
162 ** that can go wrong with an insert, assuming p and i are valid.
163 **
164 ** The calling function must ensure that p is a valid Bitvec object
165 ** and that the value for "i" is within range of the Bitvec object.
166 ** Otherwise the behavior is undefined.
167 */
168 int sqlite3BitvecSet(Bitvec *p, u32 i){
169   u32 h;
170   assert( p!=0 );
171   assert( i>0 );
172   assert( i<=p->iSize );
173   i--;
174   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
175     u32 bin = i/p->iDivisor;
176     i = i%p->iDivisor;
177     if( p->u.apSub[bin]==0 ){
178       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
179       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
180     }
181     p = p->u.apSub[bin];
182   }
183   if( p->iSize<=BITVEC_NBIT ){
184     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
185     return SQLITE_OK;
186   }
187   h = BITVEC_HASH(i++);
188   /* if there wasn't a hash collision, and this doesn't */
189   /* completely fill the hash, then just add it without */
190   /* worring about sub-dividing and re-hashing. */
191   if( !p->u.aHash[h] ){
192     if (p->nSet<(BITVEC_NINT-1)) {
193       goto bitvec_set_end;
194     } else {
195       goto bitvec_set_rehash;
196     }
197   }
198   /* there was a collision, check to see if it's already */
199   /* in hash, if not, try to find a spot for it */
200   do {
201     if( p->u.aHash[h]==i ) return SQLITE_OK;
202     h++;
203     if( h>=BITVEC_NINT ) h = 0;
204   } while( p->u.aHash[h] );
205   /* we didn't find it in the hash.  h points to the first */
206   /* available free spot. check to see if this is going to */
207   /* make our hash too "full".  */
208 bitvec_set_rehash:
209   if( p->nSet>=BITVEC_MXHASH ){
210     unsigned int j;
211     int rc;
212     u32 aiValues[BITVEC_NINT];
213     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
214     memset(p->u.apSub, 0, sizeof(aiValues));
215     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
216     rc = sqlite3BitvecSet(p, i);
217     for(j=0; j<BITVEC_NINT; j++){
218       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
219     }
220     return rc;
221   }
222 bitvec_set_end:
223   p->nSet++;
224   p->u.aHash[h] = i;
225   return SQLITE_OK;
226 }
227 
228 /*
229 ** Clear the i-th bit.
230 */
231 void sqlite3BitvecClear(Bitvec *p, u32 i){
232   assert( p!=0 );
233   assert( i>0 );
234   i--;
235   while( p->iDivisor ){
236     u32 bin = i/p->iDivisor;
237     i = i%p->iDivisor;
238     p = p->u.apSub[bin];
239     if (!p) {
240       return;
241     }
242   }
243   if( p->iSize<=BITVEC_NBIT ){
244     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
245   }else{
246     unsigned int j;
247     u32 aiValues[BITVEC_NINT];
248     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
249     memset(p->u.aHash, 0, sizeof(aiValues));
250     p->nSet = 0;
251     for(j=0; j<BITVEC_NINT; j++){
252       if( aiValues[j] && aiValues[j]!=(i+1) ){
253         u32 h = BITVEC_HASH(aiValues[j]-1);
254         p->nSet++;
255         while( p->u.aHash[h] ){
256           h++;
257           if( h>=BITVEC_NINT ) h = 0;
258         }
259         p->u.aHash[h] = aiValues[j];
260       }
261     }
262   }
263 }
264 
265 /*
266 ** Destroy a bitmap object.  Reclaim all memory used.
267 */
268 void sqlite3BitvecDestroy(Bitvec *p){
269   if( p==0 ) return;
270   if( p->iDivisor ){
271     unsigned int i;
272     for(i=0; i<BITVEC_NPTR; i++){
273       sqlite3BitvecDestroy(p->u.apSub[i]);
274     }
275   }
276   sqlite3_free(p);
277 }
278 
279 /*
280 ** Return the value of the iSize parameter specified when Bitvec *p
281 ** was created.
282 */
283 u32 sqlite3BitvecSize(Bitvec *p){
284   return p->iSize;
285 }
286 
287 #ifndef SQLITE_OMIT_BUILTIN_TEST
288 /*
289 ** Let V[] be an array of unsigned characters sufficient to hold
290 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
291 ** Then the following macros can be used to set, clear, or test
292 ** individual bits within V.
293 */
294 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
295 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
296 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
297 
298 /*
299 ** This routine runs an extensive test of the Bitvec code.
300 **
301 ** The input is an array of integers that acts as a program
302 ** to test the Bitvec.  The integers are opcodes followed
303 ** by 0, 1, or 3 operands, depending on the opcode.  Another
304 ** opcode follows immediately after the last operand.
305 **
306 ** There are 6 opcodes numbered from 0 through 5.  0 is the
307 ** "halt" opcode and causes the test to end.
308 **
309 **    0          Halt and return the number of errors
310 **    1 N S X    Set N bits beginning with S and incrementing by X
311 **    2 N S X    Clear N bits beginning with S and incrementing by X
312 **    3 N        Set N randomly chosen bits
313 **    4 N        Clear N randomly chosen bits
314 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
315 **
316 ** The opcodes 1 through 4 perform set and clear operations are performed
317 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
318 ** Opcode 5 works on the linear array only, not on the Bitvec.
319 ** Opcode 5 is used to deliberately induce a fault in order to
320 ** confirm that error detection works.
321 **
322 ** At the conclusion of the test the linear array is compared
323 ** against the Bitvec object.  If there are any differences,
324 ** an error is returned.  If they are the same, zero is returned.
325 **
326 ** If a memory allocation error occurs, return -1.
327 */
328 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
329   Bitvec *pBitvec = 0;
330   unsigned char *pV = 0;
331   int rc = -1;
332   int i, nx, pc, op;
333 
334   /* Allocate the Bitvec to be tested and a linear array of
335   ** bits to act as the reference */
336   pBitvec = sqlite3BitvecCreate( sz );
337   pV = sqlite3_malloc( (sz+7)/8 + 1 );
338   if( pBitvec==0 || pV==0 ) goto bitvec_end;
339   memset(pV, 0, (sz+7)/8 + 1);
340 
341   /* Run the program */
342   pc = 0;
343   while( (op = aOp[pc])!=0 ){
344     switch( op ){
345       case 1:
346       case 2:
347       case 5: {
348         nx = 4;
349         i = aOp[pc+2] - 1;
350         aOp[pc+2] += aOp[pc+3];
351         break;
352       }
353       case 3:
354       case 4:
355       default: {
356         nx = 2;
357         sqlite3_randomness(sizeof(i), &i);
358         break;
359       }
360     }
361     if( (--aOp[pc+1]) > 0 ) nx = 0;
362     pc += nx;
363     i = (i & 0x7fffffff)%sz;
364     if( (op & 1)!=0 ){
365       SETBIT(pV, (i+1));
366       if( op!=5 ){
367         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
368       }
369     }else{
370       CLEARBIT(pV, (i+1));
371       sqlite3BitvecClear(pBitvec, i+1);
372     }
373   }
374 
375   /* Test to make sure the linear array exactly matches the
376   ** Bitvec object.  Start with the assumption that they do
377   ** match (rc==0).  Change rc to non-zero if a discrepancy
378   ** is found.
379   */
380   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
381           + sqlite3BitvecTest(pBitvec, 0)
382           + (sqlite3BitvecSize(pBitvec) - sz);
383   for(i=1; i<=sz; i++){
384     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
385       rc = i;
386       break;
387     }
388   }
389 
390   /* Free allocated structure */
391 bitvec_end:
392   sqlite3_free(pV);
393   sqlite3BitvecDestroy(pBitvec);
394   return rc;
395 }
396 #endif /* SQLITE_OMIT_BUILTIN_TEST */
397