1 /* 2 ** 2008 February 16 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an object that represents a fixed-length 13 ** bitmap. Bits are numbered starting with 1. 14 ** 15 ** A bitmap is used to record which pages of a database file have been 16 ** journalled during a transaction, or which pages have the "dont-write" 17 ** property. Usually only a few pages are meet either condition. 18 ** So the bitmap is usually sparse and has low cardinality. 19 ** But sometimes (for example when during a DROP of a large table) most 20 ** or all of the pages in a database can get journalled. In those cases, 21 ** the bitmap becomes dense with high cardinality. The algorithm needs 22 ** to handle both cases well. 23 ** 24 ** The size of the bitmap is fixed when the object is created. 25 ** 26 ** All bits are clear when the bitmap is created. Individual bits 27 ** may be set or cleared one at a time. 28 ** 29 ** Test operations are about 100 times more common that set operations. 30 ** Clear operations are exceedingly rare. There are usually between 31 ** 5 and 500 set operations per Bitvec object, though the number of sets can 32 ** sometimes grow into tens of thousands or larger. The size of the 33 ** Bitvec object is the number of pages in the database file at the 34 ** start of a transaction, and is thus usually less than a few thousand, 35 ** but can be as large as 2 billion for a really big database. 36 ** 37 ** @(#) $Id: bitvec.c,v 1.17 2009/07/25 17:33:26 drh Exp $ 38 */ 39 #include "sqliteInt.h" 40 41 /* Size of the Bitvec structure in bytes. */ 42 #define BITVEC_SZ 512 43 44 /* Round the union size down to the nearest pointer boundary, since that's how 45 ** it will be aligned within the Bitvec struct. */ 46 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) 47 48 /* Type of the array "element" for the bitmap representation. 49 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 50 ** Setting this to the "natural word" size of your CPU may improve 51 ** performance. */ 52 #define BITVEC_TELEM u8 53 /* Size, in bits, of the bitmap element. */ 54 #define BITVEC_SZELEM 8 55 /* Number of elements in a bitmap array. */ 56 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) 57 /* Number of bits in the bitmap array. */ 58 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) 59 60 /* Number of u32 values in hash table. */ 61 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) 62 /* Maximum number of entries in hash table before 63 ** sub-dividing and re-hashing. */ 64 #define BITVEC_MXHASH (BITVEC_NINT/2) 65 /* Hashing function for the aHash representation. 66 ** Empirical testing showed that the *37 multiplier 67 ** (an arbitrary prime)in the hash function provided 68 ** no fewer collisions than the no-op *1. */ 69 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) 70 71 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) 72 73 74 /* 75 ** A bitmap is an instance of the following structure. 76 ** 77 ** This bitmap records the existance of zero or more bits 78 ** with values between 1 and iSize, inclusive. 79 ** 80 ** There are three possible representations of the bitmap. 81 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight 82 ** bitmap. The least significant bit is bit 1. 83 ** 84 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is 85 ** a hash table that will hold up to BITVEC_MXHASH distinct values. 86 ** 87 ** Otherwise, the value i is redirected into one of BITVEC_NPTR 88 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap 89 ** handles up to iDivisor separate values of i. apSub[0] holds 90 ** values between 1 and iDivisor. apSub[1] holds values between 91 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between 92 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized 93 ** to hold deal with values between 1 and iDivisor. 94 */ 95 struct Bitvec { 96 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ 97 u32 nSet; /* Number of bits that are set - only valid for aHash 98 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, 99 ** this would be 125. */ 100 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ 101 /* Should >=0 for apSub element. */ 102 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ 103 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ 104 union { 105 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ 106 u32 aHash[BITVEC_NINT]; /* Hash table representation */ 107 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ 108 } u; 109 }; 110 111 /* 112 ** Create a new bitmap object able to handle bits between 0 and iSize, 113 ** inclusive. Return a pointer to the new object. Return NULL if 114 ** malloc fails. 115 */ 116 Bitvec *sqlite3BitvecCreate(u32 iSize){ 117 Bitvec *p; 118 assert( sizeof(*p)==BITVEC_SZ ); 119 p = sqlite3MallocZero( sizeof(*p) ); 120 if( p ){ 121 p->iSize = iSize; 122 } 123 return p; 124 } 125 126 /* 127 ** Check to see if the i-th bit is set. Return true or false. 128 ** If p is NULL (if the bitmap has not been created) or if 129 ** i is out of range, then return false. 130 */ 131 int sqlite3BitvecTest(Bitvec *p, u32 i){ 132 if( p==0 ) return 0; 133 if( i>p->iSize || i==0 ) return 0; 134 i--; 135 while( p->iDivisor ){ 136 u32 bin = i/p->iDivisor; 137 i = i%p->iDivisor; 138 p = p->u.apSub[bin]; 139 if (!p) { 140 return 0; 141 } 142 } 143 if( p->iSize<=BITVEC_NBIT ){ 144 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; 145 } else{ 146 u32 h = BITVEC_HASH(i++); 147 while( p->u.aHash[h] ){ 148 if( p->u.aHash[h]==i ) return 1; 149 h = (h+1) % BITVEC_NINT; 150 } 151 return 0; 152 } 153 } 154 155 /* 156 ** Set the i-th bit. Return 0 on success and an error code if 157 ** anything goes wrong. 158 ** 159 ** This routine might cause sub-bitmaps to be allocated. Failing 160 ** to get the memory needed to hold the sub-bitmap is the only 161 ** that can go wrong with an insert, assuming p and i are valid. 162 ** 163 ** The calling function must ensure that p is a valid Bitvec object 164 ** and that the value for "i" is within range of the Bitvec object. 165 ** Otherwise the behavior is undefined. 166 */ 167 int sqlite3BitvecSet(Bitvec *p, u32 i){ 168 u32 h; 169 if( p==0 ) return SQLITE_OK; 170 assert( i>0 ); 171 assert( i<=p->iSize ); 172 i--; 173 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { 174 u32 bin = i/p->iDivisor; 175 i = i%p->iDivisor; 176 if( p->u.apSub[bin]==0 ){ 177 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); 178 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; 179 } 180 p = p->u.apSub[bin]; 181 } 182 if( p->iSize<=BITVEC_NBIT ){ 183 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); 184 return SQLITE_OK; 185 } 186 h = BITVEC_HASH(i++); 187 /* if there wasn't a hash collision, and this doesn't */ 188 /* completely fill the hash, then just add it without */ 189 /* worring about sub-dividing and re-hashing. */ 190 if( !p->u.aHash[h] ){ 191 if (p->nSet<(BITVEC_NINT-1)) { 192 goto bitvec_set_end; 193 } else { 194 goto bitvec_set_rehash; 195 } 196 } 197 /* there was a collision, check to see if it's already */ 198 /* in hash, if not, try to find a spot for it */ 199 do { 200 if( p->u.aHash[h]==i ) return SQLITE_OK; 201 h++; 202 if( h>=BITVEC_NINT ) h = 0; 203 } while( p->u.aHash[h] ); 204 /* we didn't find it in the hash. h points to the first */ 205 /* available free spot. check to see if this is going to */ 206 /* make our hash too "full". */ 207 bitvec_set_rehash: 208 if( p->nSet>=BITVEC_MXHASH ){ 209 unsigned int j; 210 int rc; 211 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); 212 if( aiValues==0 ){ 213 return SQLITE_NOMEM; 214 }else{ 215 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 216 memset(p->u.apSub, 0, sizeof(p->u.apSub)); 217 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; 218 rc = sqlite3BitvecSet(p, i); 219 for(j=0; j<BITVEC_NINT; j++){ 220 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); 221 } 222 sqlite3StackFree(0, aiValues); 223 return rc; 224 } 225 } 226 bitvec_set_end: 227 p->nSet++; 228 p->u.aHash[h] = i; 229 return SQLITE_OK; 230 } 231 232 /* 233 ** Clear the i-th bit. 234 ** 235 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage 236 ** that BitvecClear can use to rebuilt its hash table. 237 */ 238 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ 239 if( p==0 ) return; 240 assert( i>0 ); 241 i--; 242 while( p->iDivisor ){ 243 u32 bin = i/p->iDivisor; 244 i = i%p->iDivisor; 245 p = p->u.apSub[bin]; 246 if (!p) { 247 return; 248 } 249 } 250 if( p->iSize<=BITVEC_NBIT ){ 251 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); 252 }else{ 253 unsigned int j; 254 u32 *aiValues = pBuf; 255 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 256 memset(p->u.aHash, 0, sizeof(p->u.aHash)); 257 p->nSet = 0; 258 for(j=0; j<BITVEC_NINT; j++){ 259 if( aiValues[j] && aiValues[j]!=(i+1) ){ 260 u32 h = BITVEC_HASH(aiValues[j]-1); 261 p->nSet++; 262 while( p->u.aHash[h] ){ 263 h++; 264 if( h>=BITVEC_NINT ) h = 0; 265 } 266 p->u.aHash[h] = aiValues[j]; 267 } 268 } 269 } 270 } 271 272 /* 273 ** Destroy a bitmap object. Reclaim all memory used. 274 */ 275 void sqlite3BitvecDestroy(Bitvec *p){ 276 if( p==0 ) return; 277 if( p->iDivisor ){ 278 unsigned int i; 279 for(i=0; i<BITVEC_NPTR; i++){ 280 sqlite3BitvecDestroy(p->u.apSub[i]); 281 } 282 } 283 sqlite3_free(p); 284 } 285 286 /* 287 ** Return the value of the iSize parameter specified when Bitvec *p 288 ** was created. 289 */ 290 u32 sqlite3BitvecSize(Bitvec *p){ 291 return p->iSize; 292 } 293 294 #ifndef SQLITE_OMIT_BUILTIN_TEST 295 /* 296 ** Let V[] be an array of unsigned characters sufficient to hold 297 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. 298 ** Then the following macros can be used to set, clear, or test 299 ** individual bits within V. 300 */ 301 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) 302 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) 303 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 304 305 /* 306 ** This routine runs an extensive test of the Bitvec code. 307 ** 308 ** The input is an array of integers that acts as a program 309 ** to test the Bitvec. The integers are opcodes followed 310 ** by 0, 1, or 3 operands, depending on the opcode. Another 311 ** opcode follows immediately after the last operand. 312 ** 313 ** There are 6 opcodes numbered from 0 through 5. 0 is the 314 ** "halt" opcode and causes the test to end. 315 ** 316 ** 0 Halt and return the number of errors 317 ** 1 N S X Set N bits beginning with S and incrementing by X 318 ** 2 N S X Clear N bits beginning with S and incrementing by X 319 ** 3 N Set N randomly chosen bits 320 ** 4 N Clear N randomly chosen bits 321 ** 5 N S X Set N bits from S increment X in array only, not in bitvec 322 ** 323 ** The opcodes 1 through 4 perform set and clear operations are performed 324 ** on both a Bitvec object and on a linear array of bits obtained from malloc. 325 ** Opcode 5 works on the linear array only, not on the Bitvec. 326 ** Opcode 5 is used to deliberately induce a fault in order to 327 ** confirm that error detection works. 328 ** 329 ** At the conclusion of the test the linear array is compared 330 ** against the Bitvec object. If there are any differences, 331 ** an error is returned. If they are the same, zero is returned. 332 ** 333 ** If a memory allocation error occurs, return -1. 334 */ 335 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ 336 Bitvec *pBitvec = 0; 337 unsigned char *pV = 0; 338 int rc = -1; 339 int i, nx, pc, op; 340 void *pTmpSpace; 341 342 /* Allocate the Bitvec to be tested and a linear array of 343 ** bits to act as the reference */ 344 pBitvec = sqlite3BitvecCreate( sz ); 345 pV = sqlite3_malloc( (sz+7)/8 + 1 ); 346 pTmpSpace = sqlite3_malloc(BITVEC_SZ); 347 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; 348 memset(pV, 0, (sz+7)/8 + 1); 349 350 /* NULL pBitvec tests */ 351 sqlite3BitvecSet(0, 1); 352 sqlite3BitvecClear(0, 1, pTmpSpace); 353 354 /* Run the program */ 355 pc = 0; 356 while( (op = aOp[pc])!=0 ){ 357 switch( op ){ 358 case 1: 359 case 2: 360 case 5: { 361 nx = 4; 362 i = aOp[pc+2] - 1; 363 aOp[pc+2] += aOp[pc+3]; 364 break; 365 } 366 case 3: 367 case 4: 368 default: { 369 nx = 2; 370 sqlite3_randomness(sizeof(i), &i); 371 break; 372 } 373 } 374 if( (--aOp[pc+1]) > 0 ) nx = 0; 375 pc += nx; 376 i = (i & 0x7fffffff)%sz; 377 if( (op & 1)!=0 ){ 378 SETBIT(pV, (i+1)); 379 if( op!=5 ){ 380 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; 381 } 382 }else{ 383 CLEARBIT(pV, (i+1)); 384 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); 385 } 386 } 387 388 /* Test to make sure the linear array exactly matches the 389 ** Bitvec object. Start with the assumption that they do 390 ** match (rc==0). Change rc to non-zero if a discrepancy 391 ** is found. 392 */ 393 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) 394 + sqlite3BitvecTest(pBitvec, 0) 395 + (sqlite3BitvecSize(pBitvec) - sz); 396 for(i=1; i<=sz; i++){ 397 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ 398 rc = i; 399 break; 400 } 401 } 402 403 /* Free allocated structure */ 404 bitvec_end: 405 sqlite3_free(pTmpSpace); 406 sqlite3_free(pV); 407 sqlite3BitvecDestroy(pBitvec); 408 return rc; 409 } 410 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 411