1 /* 2 ** 2008 February 16 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an object that represents a fixed-length 13 ** bitmap. Bits are numbered starting with 1. 14 ** 15 ** A bitmap is used to record which pages of a database file have been 16 ** journalled during a transaction, or which pages have the "dont-write" 17 ** property. Usually only a few pages are meet either condition. 18 ** So the bitmap is usually sparse and has low cardinality. 19 ** But sometimes (for example when during a DROP of a large table) most 20 ** or all of the pages in a database can get journalled. In those cases, 21 ** the bitmap becomes dense with high cardinality. The algorithm needs 22 ** to handle both cases well. 23 ** 24 ** The size of the bitmap is fixed when the object is created. 25 ** 26 ** All bits are clear when the bitmap is created. Individual bits 27 ** may be set or cleared one at a time. 28 ** 29 ** Test operations are about 100 times more common that set operations. 30 ** Clear operations are exceedingly rare. There are usually between 31 ** 5 and 500 set operations per Bitvec object, though the number of sets can 32 ** sometimes grow into tens of thousands or larger. The size of the 33 ** Bitvec object is the number of pages in the database file at the 34 ** start of a transaction, and is thus usually less than a few thousand, 35 ** but can be as large as 2 billion for a really big database. 36 */ 37 #include "sqliteInt.h" 38 39 /* Size of the Bitvec structure in bytes. */ 40 #define BITVEC_SZ 512 41 42 /* Round the union size down to the nearest pointer boundary, since that's how 43 ** it will be aligned within the Bitvec struct. */ 44 #define BITVEC_USIZE \ 45 (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) 46 47 /* Type of the array "element" for the bitmap representation. 48 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 49 ** Setting this to the "natural word" size of your CPU may improve 50 ** performance. */ 51 #define BITVEC_TELEM u8 52 /* Size, in bits, of the bitmap element. */ 53 #define BITVEC_SZELEM 8 54 /* Number of elements in a bitmap array. */ 55 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) 56 /* Number of bits in the bitmap array. */ 57 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) 58 59 /* Number of u32 values in hash table. */ 60 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) 61 /* Maximum number of entries in hash table before 62 ** sub-dividing and re-hashing. */ 63 #define BITVEC_MXHASH (BITVEC_NINT/2) 64 /* Hashing function for the aHash representation. 65 ** Empirical testing showed that the *37 multiplier 66 ** (an arbitrary prime)in the hash function provided 67 ** no fewer collisions than the no-op *1. */ 68 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) 69 70 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) 71 72 73 /* 74 ** A bitmap is an instance of the following structure. 75 ** 76 ** This bitmap records the existence of zero or more bits 77 ** with values between 1 and iSize, inclusive. 78 ** 79 ** There are three possible representations of the bitmap. 80 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight 81 ** bitmap. The least significant bit is bit 1. 82 ** 83 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is 84 ** a hash table that will hold up to BITVEC_MXHASH distinct values. 85 ** 86 ** Otherwise, the value i is redirected into one of BITVEC_NPTR 87 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap 88 ** handles up to iDivisor separate values of i. apSub[0] holds 89 ** values between 1 and iDivisor. apSub[1] holds values between 90 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between 91 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized 92 ** to hold deal with values between 1 and iDivisor. 93 */ 94 struct Bitvec { 95 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ 96 u32 nSet; /* Number of bits that are set - only valid for aHash 97 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, 98 ** this would be 125. */ 99 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ 100 /* Should >=0 for apSub element. */ 101 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ 102 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ 103 union { 104 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ 105 u32 aHash[BITVEC_NINT]; /* Hash table representation */ 106 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ 107 } u; 108 }; 109 110 /* 111 ** Create a new bitmap object able to handle bits between 0 and iSize, 112 ** inclusive. Return a pointer to the new object. Return NULL if 113 ** malloc fails. 114 */ 115 Bitvec *sqlite3BitvecCreate(u32 iSize){ 116 Bitvec *p; 117 assert( sizeof(*p)==BITVEC_SZ ); 118 p = sqlite3MallocZero( sizeof(*p) ); 119 if( p ){ 120 p->iSize = iSize; 121 } 122 return p; 123 } 124 125 /* 126 ** Check to see if the i-th bit is set. Return true or false. 127 ** If p is NULL (if the bitmap has not been created) or if 128 ** i is out of range, then return false. 129 */ 130 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ 131 assert( p!=0 ); 132 i--; 133 if( i>=p->iSize ) return 0; 134 while( p->iDivisor ){ 135 u32 bin = i/p->iDivisor; 136 i = i%p->iDivisor; 137 p = p->u.apSub[bin]; 138 if (!p) { 139 return 0; 140 } 141 } 142 if( p->iSize<=BITVEC_NBIT ){ 143 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; 144 } else{ 145 u32 h = BITVEC_HASH(i++); 146 while( p->u.aHash[h] ){ 147 if( p->u.aHash[h]==i ) return 1; 148 h = (h+1) % BITVEC_NINT; 149 } 150 return 0; 151 } 152 } 153 int sqlite3BitvecTest(Bitvec *p, u32 i){ 154 return p!=0 && sqlite3BitvecTestNotNull(p,i); 155 } 156 157 /* 158 ** Set the i-th bit. Return 0 on success and an error code if 159 ** anything goes wrong. 160 ** 161 ** This routine might cause sub-bitmaps to be allocated. Failing 162 ** to get the memory needed to hold the sub-bitmap is the only 163 ** that can go wrong with an insert, assuming p and i are valid. 164 ** 165 ** The calling function must ensure that p is a valid Bitvec object 166 ** and that the value for "i" is within range of the Bitvec object. 167 ** Otherwise the behavior is undefined. 168 */ 169 int sqlite3BitvecSet(Bitvec *p, u32 i){ 170 u32 h; 171 if( p==0 ) return SQLITE_OK; 172 assert( i>0 ); 173 assert( i<=p->iSize ); 174 i--; 175 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { 176 u32 bin = i/p->iDivisor; 177 i = i%p->iDivisor; 178 if( p->u.apSub[bin]==0 ){ 179 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); 180 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; 181 } 182 p = p->u.apSub[bin]; 183 } 184 if( p->iSize<=BITVEC_NBIT ){ 185 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); 186 return SQLITE_OK; 187 } 188 h = BITVEC_HASH(i++); 189 /* if there wasn't a hash collision, and this doesn't */ 190 /* completely fill the hash, then just add it without */ 191 /* worring about sub-dividing and re-hashing. */ 192 if( !p->u.aHash[h] ){ 193 if (p->nSet<(BITVEC_NINT-1)) { 194 goto bitvec_set_end; 195 } else { 196 goto bitvec_set_rehash; 197 } 198 } 199 /* there was a collision, check to see if it's already */ 200 /* in hash, if not, try to find a spot for it */ 201 do { 202 if( p->u.aHash[h]==i ) return SQLITE_OK; 203 h++; 204 if( h>=BITVEC_NINT ) h = 0; 205 } while( p->u.aHash[h] ); 206 /* we didn't find it in the hash. h points to the first */ 207 /* available free spot. check to see if this is going to */ 208 /* make our hash too "full". */ 209 bitvec_set_rehash: 210 if( p->nSet>=BITVEC_MXHASH ){ 211 unsigned int j; 212 int rc; 213 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); 214 if( aiValues==0 ){ 215 return SQLITE_NOMEM_BKPT; 216 }else{ 217 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 218 memset(p->u.apSub, 0, sizeof(p->u.apSub)); 219 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; 220 rc = sqlite3BitvecSet(p, i); 221 for(j=0; j<BITVEC_NINT; j++){ 222 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); 223 } 224 sqlite3StackFree(0, aiValues); 225 return rc; 226 } 227 } 228 bitvec_set_end: 229 p->nSet++; 230 p->u.aHash[h] = i; 231 return SQLITE_OK; 232 } 233 234 /* 235 ** Clear the i-th bit. 236 ** 237 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage 238 ** that BitvecClear can use to rebuilt its hash table. 239 */ 240 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ 241 if( p==0 ) return; 242 assert( i>0 ); 243 i--; 244 while( p->iDivisor ){ 245 u32 bin = i/p->iDivisor; 246 i = i%p->iDivisor; 247 p = p->u.apSub[bin]; 248 if (!p) { 249 return; 250 } 251 } 252 if( p->iSize<=BITVEC_NBIT ){ 253 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); 254 }else{ 255 unsigned int j; 256 u32 *aiValues = pBuf; 257 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); 258 memset(p->u.aHash, 0, sizeof(p->u.aHash)); 259 p->nSet = 0; 260 for(j=0; j<BITVEC_NINT; j++){ 261 if( aiValues[j] && aiValues[j]!=(i+1) ){ 262 u32 h = BITVEC_HASH(aiValues[j]-1); 263 p->nSet++; 264 while( p->u.aHash[h] ){ 265 h++; 266 if( h>=BITVEC_NINT ) h = 0; 267 } 268 p->u.aHash[h] = aiValues[j]; 269 } 270 } 271 } 272 } 273 274 /* 275 ** Destroy a bitmap object. Reclaim all memory used. 276 */ 277 void sqlite3BitvecDestroy(Bitvec *p){ 278 if( p==0 ) return; 279 if( p->iDivisor ){ 280 unsigned int i; 281 for(i=0; i<BITVEC_NPTR; i++){ 282 sqlite3BitvecDestroy(p->u.apSub[i]); 283 } 284 } 285 sqlite3_free(p); 286 } 287 288 /* 289 ** Return the value of the iSize parameter specified when Bitvec *p 290 ** was created. 291 */ 292 u32 sqlite3BitvecSize(Bitvec *p){ 293 return p->iSize; 294 } 295 296 #ifndef SQLITE_UNTESTABLE 297 /* 298 ** Let V[] be an array of unsigned characters sufficient to hold 299 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. 300 ** Then the following macros can be used to set, clear, or test 301 ** individual bits within V. 302 */ 303 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) 304 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) 305 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 306 307 /* 308 ** This routine runs an extensive test of the Bitvec code. 309 ** 310 ** The input is an array of integers that acts as a program 311 ** to test the Bitvec. The integers are opcodes followed 312 ** by 0, 1, or 3 operands, depending on the opcode. Another 313 ** opcode follows immediately after the last operand. 314 ** 315 ** There are 6 opcodes numbered from 0 through 5. 0 is the 316 ** "halt" opcode and causes the test to end. 317 ** 318 ** 0 Halt and return the number of errors 319 ** 1 N S X Set N bits beginning with S and incrementing by X 320 ** 2 N S X Clear N bits beginning with S and incrementing by X 321 ** 3 N Set N randomly chosen bits 322 ** 4 N Clear N randomly chosen bits 323 ** 5 N S X Set N bits from S increment X in array only, not in bitvec 324 ** 325 ** The opcodes 1 through 4 perform set and clear operations are performed 326 ** on both a Bitvec object and on a linear array of bits obtained from malloc. 327 ** Opcode 5 works on the linear array only, not on the Bitvec. 328 ** Opcode 5 is used to deliberately induce a fault in order to 329 ** confirm that error detection works. 330 ** 331 ** At the conclusion of the test the linear array is compared 332 ** against the Bitvec object. If there are any differences, 333 ** an error is returned. If they are the same, zero is returned. 334 ** 335 ** If a memory allocation error occurs, return -1. 336 */ 337 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ 338 Bitvec *pBitvec = 0; 339 unsigned char *pV = 0; 340 int rc = -1; 341 int i, nx, pc, op; 342 void *pTmpSpace; 343 344 /* Allocate the Bitvec to be tested and a linear array of 345 ** bits to act as the reference */ 346 pBitvec = sqlite3BitvecCreate( sz ); 347 pV = sqlite3MallocZero( (sz+7)/8 + 1 ); 348 pTmpSpace = sqlite3_malloc64(BITVEC_SZ); 349 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; 350 351 /* NULL pBitvec tests */ 352 sqlite3BitvecSet(0, 1); 353 sqlite3BitvecClear(0, 1, pTmpSpace); 354 355 /* Run the program */ 356 pc = i = 0; 357 while( (op = aOp[pc])!=0 ){ 358 switch( op ){ 359 case 1: 360 case 2: 361 case 5: { 362 nx = 4; 363 i = aOp[pc+2] - 1; 364 aOp[pc+2] += aOp[pc+3]; 365 break; 366 } 367 case 3: 368 case 4: 369 default: { 370 nx = 2; 371 sqlite3_randomness(sizeof(i), &i); 372 break; 373 } 374 } 375 if( (--aOp[pc+1]) > 0 ) nx = 0; 376 pc += nx; 377 i = (i & 0x7fffffff)%sz; 378 if( (op & 1)!=0 ){ 379 SETBIT(pV, (i+1)); 380 if( op!=5 ){ 381 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; 382 } 383 }else{ 384 CLEARBIT(pV, (i+1)); 385 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); 386 } 387 } 388 389 /* Test to make sure the linear array exactly matches the 390 ** Bitvec object. Start with the assumption that they do 391 ** match (rc==0). Change rc to non-zero if a discrepancy 392 ** is found. 393 */ 394 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) 395 + sqlite3BitvecTest(pBitvec, 0) 396 + (sqlite3BitvecSize(pBitvec) - sz); 397 for(i=1; i<=sz; i++){ 398 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ 399 rc = i; 400 break; 401 } 402 } 403 404 /* Free allocated structure */ 405 bitvec_end: 406 sqlite3_free(pTmpSpace); 407 sqlite3_free(pV); 408 sqlite3BitvecDestroy(pBitvec); 409 return rc; 410 } 411 #endif /* SQLITE_UNTESTABLE */ 412