xref: /sqlite-3.40.0/src/bitvec.c (revision 443c0597)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property.  Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled.  In those cases,
21 ** the bitmap becomes dense with high cardinality.  The algorithm needs
22 ** to handle both cases well.
23 **
24 ** The size of the bitmap is fixed when the object is created.
25 **
26 ** All bits are clear when the bitmap is created.  Individual bits
27 ** may be set or cleared one at a time.
28 **
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare.  There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger.  The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
36 **
37 ** @(#) $Id: bitvec.c,v 1.11 2009/01/16 15:21:05 danielk1977 Exp $
38 */
39 #include "sqliteInt.h"
40 
41 /* Size of the Bitvec structure in bytes. */
42 #define BITVEC_SZ        512
43 
44 /* Round the union size down to the nearest pointer boundary, since that's how
45 ** it will be aligned within the Bitvec struct. */
46 #define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
47 
48 /* Type of the array "element" for the bitmap representation.
49 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
50 ** Setting this to the "natural word" size of your CPU may improve
51 ** performance. */
52 #define BITVEC_TELEM     u8
53 /* Size, in bits, of the bitmap element. */
54 #define BITVEC_SZELEM    8
55 /* Number of elements in a bitmap array. */
56 #define BITVEC_NELEM     (BITVEC_USIZE/sizeof(BITVEC_TELEM))
57 /* Number of bits in the bitmap array. */
58 #define BITVEC_NBIT      (BITVEC_NELEM*BITVEC_SZELEM)
59 
60 /* Number of u32 values in hash table. */
61 #define BITVEC_NINT      (BITVEC_USIZE/sizeof(u32))
62 /* Maximum number of entries in hash table before
63 ** sub-dividing and re-hashing. */
64 #define BITVEC_MXHASH    (BITVEC_NINT/2)
65 /* Hashing function for the aHash representation.
66 ** Empirical testing showed that the *37 multiplier
67 ** (an arbitrary prime)in the hash function provided
68 ** no fewer collisions than the no-op *1. */
69 #define BITVEC_HASH(X)   (((X)*1)%BITVEC_NINT)
70 
71 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
72 
73 
74 /*
75 ** A bitmap is an instance of the following structure.
76 **
77 ** This bitmap records the existance of zero or more bits
78 ** with values between 1 and iSize, inclusive.
79 **
80 ** There are three possible representations of the bitmap.
81 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
82 ** bitmap.  The least significant bit is bit 1.
83 **
84 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
85 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
86 **
87 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
88 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
89 ** handles up to iDivisor separate values of i.  apSub[0] holds
90 ** values between 1 and iDivisor.  apSub[1] holds values between
91 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
92 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
93 ** to hold deal with values between 1 and iDivisor.
94 */
95 struct Bitvec {
96   u32 iSize;      /* Maximum bit index.  Max iSize is 4,294,967,296. */
97   u32 nSet;       /* Number of bits that are set - only valid for aHash element */
98                   /* Max nSet is BITVEC_NINT.  For BITVEC_SZ of 512, this would be 125. */
99   u32 iDivisor;   /* Number of bits handled by each apSub[] entry. */
100                   /* Should >=0 for apSub element. */
101                   /* Max iDivisor is max(u32) / BITVEC_NPTR + 1.  */
102                   /* For a BITVEC_SZ of 512, this would be 34,359,739. */
103   union {
104     BITVEC_TELEM aBitmap[BITVEC_NELEM];    /* Bitmap representation */
105     u32 aHash[BITVEC_NINT];      /* Hash table representation */
106     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
107   } u;
108 };
109 
110 /*
111 ** Create a new bitmap object able to handle bits between 0 and iSize,
112 ** inclusive.  Return a pointer to the new object.  Return NULL if
113 ** malloc fails.
114 */
115 Bitvec *sqlite3BitvecCreate(u32 iSize){
116   Bitvec *p;
117   assert( sizeof(*p)==BITVEC_SZ );
118   p = sqlite3MallocZero( sizeof(*p) );
119   if( p ){
120     p->iSize = iSize;
121   }
122   return p;
123 }
124 
125 /*
126 ** Check to see if the i-th bit is set.  Return true or false.
127 ** If p is NULL (if the bitmap has not been created) or if
128 ** i is out of range, then return false.
129 */
130 int sqlite3BitvecTest(Bitvec *p, u32 i){
131   if( p==0 ) return 0;
132   if( i>p->iSize || i==0 ) return 0;
133   i--;
134   while( p->iDivisor ){
135     u32 bin = i/p->iDivisor;
136     i = i%p->iDivisor;
137     p = p->u.apSub[bin];
138     if (!p) {
139       return 0;
140     }
141   }
142   if( p->iSize<=BITVEC_NBIT ){
143     return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
144   } else{
145     u32 h = BITVEC_HASH(i++);
146     while( p->u.aHash[h] ){
147       if( p->u.aHash[h]==i ) return 1;
148       h++;
149       if( h>=BITVEC_NINT ) h = 0;
150     }
151     return 0;
152   }
153 }
154 
155 /*
156 ** Set the i-th bit.  Return 0 on success and an error code if
157 ** anything goes wrong.
158 **
159 ** This routine might cause sub-bitmaps to be allocated.  Failing
160 ** to get the memory needed to hold the sub-bitmap is the only
161 ** that can go wrong with an insert, assuming p and i are valid.
162 **
163 ** The calling function must ensure that p is a valid Bitvec object
164 ** and that the value for "i" is within range of the Bitvec object.
165 ** Otherwise the behavior is undefined.
166 */
167 int sqlite3BitvecSet(Bitvec *p, u32 i){
168   u32 h;
169   assert( p!=0 );
170   assert( i>0 );
171   assert( i<=p->iSize );
172   i--;
173   while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
174     u32 bin = i/p->iDivisor;
175     i = i%p->iDivisor;
176     if( p->u.apSub[bin]==0 ){
177       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
178       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
179     }
180     p = p->u.apSub[bin];
181   }
182   if( p->iSize<=BITVEC_NBIT ){
183     p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
184     return SQLITE_OK;
185   }
186   h = BITVEC_HASH(i++);
187   /* if there wasn't a hash collision, and this doesn't */
188   /* completely fill the hash, then just add it without */
189   /* worring about sub-dividing and re-hashing. */
190   if( !p->u.aHash[h] ){
191     if (p->nSet<(BITVEC_NINT-1)) {
192       goto bitvec_set_end;
193     } else {
194       goto bitvec_set_rehash;
195     }
196   }
197   /* there was a collision, check to see if it's already */
198   /* in hash, if not, try to find a spot for it */
199   do {
200     if( p->u.aHash[h]==i ) return SQLITE_OK;
201     h++;
202     if( h>=BITVEC_NINT ) h = 0;
203   } while( p->u.aHash[h] );
204   /* we didn't find it in the hash.  h points to the first */
205   /* available free spot. check to see if this is going to */
206   /* make our hash too "full".  */
207 bitvec_set_rehash:
208   if( p->nSet>=BITVEC_MXHASH ){
209     unsigned int j;
210     int rc;
211     u32 aiValues[BITVEC_NINT];
212     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
213     memset(p->u.apSub, 0, sizeof(aiValues));
214     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
215     rc = sqlite3BitvecSet(p, i);
216     for(j=0; j<BITVEC_NINT; j++){
217       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
218     }
219     return rc;
220   }
221 bitvec_set_end:
222   p->nSet++;
223   p->u.aHash[h] = i;
224   return SQLITE_OK;
225 }
226 
227 /*
228 ** Clear the i-th bit.
229 */
230 void sqlite3BitvecClear(Bitvec *p, u32 i){
231   assert( p!=0 );
232   assert( i>0 );
233   i--;
234   while( p->iDivisor ){
235     u32 bin = i/p->iDivisor;
236     i = i%p->iDivisor;
237     p = p->u.apSub[bin];
238     if (!p) {
239       return;
240     }
241   }
242   if( p->iSize<=BITVEC_NBIT ){
243     p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
244   }else{
245     unsigned int j;
246     u32 aiValues[BITVEC_NINT];
247     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
248     memset(p->u.aHash, 0, sizeof(aiValues));
249     p->nSet = 0;
250     for(j=0; j<BITVEC_NINT; j++){
251       if( aiValues[j] && aiValues[j]!=(i+1) ){
252         u32 h = BITVEC_HASH(aiValues[j]-1);
253         p->nSet++;
254         while( p->u.aHash[h] ){
255           h++;
256           if( h>=BITVEC_NINT ) h = 0;
257         }
258         p->u.aHash[h] = aiValues[j];
259       }
260     }
261   }
262 }
263 
264 /*
265 ** Destroy a bitmap object.  Reclaim all memory used.
266 */
267 void sqlite3BitvecDestroy(Bitvec *p){
268   if( p==0 ) return;
269   if( p->iDivisor ){
270     unsigned int i;
271     for(i=0; i<BITVEC_NPTR; i++){
272       sqlite3BitvecDestroy(p->u.apSub[i]);
273     }
274   }
275   sqlite3_free(p);
276 }
277 
278 /*
279 ** Return the value of the iSize parameter specified when Bitvec *p
280 ** was created.
281 */
282 u32 sqlite3BitvecSize(Bitvec *p){
283   return p->iSize;
284 }
285 
286 #ifndef SQLITE_OMIT_BUILTIN_TEST
287 /*
288 ** Let V[] be an array of unsigned characters sufficient to hold
289 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
290 ** Then the following macros can be used to set, clear, or test
291 ** individual bits within V.
292 */
293 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
294 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
295 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
296 
297 /*
298 ** This routine runs an extensive test of the Bitvec code.
299 **
300 ** The input is an array of integers that acts as a program
301 ** to test the Bitvec.  The integers are opcodes followed
302 ** by 0, 1, or 3 operands, depending on the opcode.  Another
303 ** opcode follows immediately after the last operand.
304 **
305 ** There are 6 opcodes numbered from 0 through 5.  0 is the
306 ** "halt" opcode and causes the test to end.
307 **
308 **    0          Halt and return the number of errors
309 **    1 N S X    Set N bits beginning with S and incrementing by X
310 **    2 N S X    Clear N bits beginning with S and incrementing by X
311 **    3 N        Set N randomly chosen bits
312 **    4 N        Clear N randomly chosen bits
313 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
314 **
315 ** The opcodes 1 through 4 perform set and clear operations are performed
316 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
317 ** Opcode 5 works on the linear array only, not on the Bitvec.
318 ** Opcode 5 is used to deliberately induce a fault in order to
319 ** confirm that error detection works.
320 **
321 ** At the conclusion of the test the linear array is compared
322 ** against the Bitvec object.  If there are any differences,
323 ** an error is returned.  If they are the same, zero is returned.
324 **
325 ** If a memory allocation error occurs, return -1.
326 */
327 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
328   Bitvec *pBitvec = 0;
329   unsigned char *pV = 0;
330   int rc = -1;
331   int i, nx, pc, op;
332 
333   /* Allocate the Bitvec to be tested and a linear array of
334   ** bits to act as the reference */
335   pBitvec = sqlite3BitvecCreate( sz );
336   pV = sqlite3_malloc( (sz+7)/8 + 1 );
337   if( pBitvec==0 || pV==0 ) goto bitvec_end;
338   memset(pV, 0, (sz+7)/8 + 1);
339 
340   /* Run the program */
341   pc = 0;
342   while( (op = aOp[pc])!=0 ){
343     switch( op ){
344       case 1:
345       case 2:
346       case 5: {
347         nx = 4;
348         i = aOp[pc+2] - 1;
349         aOp[pc+2] += aOp[pc+3];
350         break;
351       }
352       case 3:
353       case 4:
354       default: {
355         nx = 2;
356         sqlite3_randomness(sizeof(i), &i);
357         break;
358       }
359     }
360     if( (--aOp[pc+1]) > 0 ) nx = 0;
361     pc += nx;
362     i = (i & 0x7fffffff)%sz;
363     if( (op & 1)!=0 ){
364       SETBIT(pV, (i+1));
365       if( op!=5 ){
366         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
367       }
368     }else{
369       CLEARBIT(pV, (i+1));
370       sqlite3BitvecClear(pBitvec, i+1);
371     }
372   }
373 
374   /* Test to make sure the linear array exactly matches the
375   ** Bitvec object.  Start with the assumption that they do
376   ** match (rc==0).  Change rc to non-zero if a discrepancy
377   ** is found.
378   */
379   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
380           + sqlite3BitvecTest(pBitvec, 0);
381   for(i=1; i<=sz; i++){
382     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
383       rc = i;
384       break;
385     }
386   }
387 
388   /* Free allocated structure */
389 bitvec_end:
390   sqlite3_free(pV);
391   sqlite3BitvecDestroy(pBitvec);
392   return rc;
393 }
394 #endif /* SQLITE_OMIT_BUILTIN_TEST */
395