xref: /sqlite-3.40.0/src/bitvec.c (revision 2d1d86fb)
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap.  Bits are numbered starting with 1.
14 **
15 ** A bitmap is used to record what pages a database file have been
16 ** journalled during a transaction.  Usually only a few pages are
17 ** journalled.  So the bitmap is usually sparse and has low cardinality.
18 ** But sometimes (for example when during a DROP of a large table) most
19 ** or all of the pages get journalled.  In those cases, the bitmap becomes
20 ** dense.  The algorithm needs to handle both cases well.
21 **
22 ** The size of the bitmap is fixed when the object is created.
23 **
24 ** All bits are clear when the bitmap is created.  Individual bits
25 ** may be set or cleared one at a time.
26 **
27 ** Test operations are about 100 times more common that set operations.
28 ** Clear operations are exceedingly rare.  There are usually between
29 ** 5 and 500 set operations per Bitvec object, though the number of sets can
30 ** sometimes grow into tens of thousands or larger.  The size of the
31 ** Bitvec object is the number of pages in the database file at the
32 ** start of a transaction, and is thus usually less than a few thousand,
33 ** but can be as large as 2 billion for a really big database.
34 **
35 ** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
36 */
37 #include "sqliteInt.h"
38 
39 #define BITVEC_SZ        512
40 /* Round the union size down to the nearest pointer boundary, since that's how
41 ** it will be aligned within the Bitvec struct. */
42 #define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
43 #define BITVEC_NCHAR     BITVEC_USIZE
44 #define BITVEC_NBIT      (BITVEC_NCHAR*8)
45 #define BITVEC_NINT      (BITVEC_USIZE/4)
46 #define BITVEC_MXHASH    (BITVEC_NINT/2)
47 #define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
48 
49 #define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)
50 
51 /*
52 ** A bitmap is an instance of the following structure.
53 **
54 ** This bitmap records the existance of zero or more bits
55 ** with values between 1 and iSize, inclusive.
56 **
57 ** There are three possible representations of the bitmap.
58 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
59 ** bitmap.  The least significant bit is bit 1.
60 **
61 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
62 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
63 **
64 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
65 ** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
66 ** handles up to iDivisor separate values of i.  apSub[0] holds
67 ** values between 1 and iDivisor.  apSub[1] holds values between
68 ** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
69 ** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
70 ** to hold deal with values between 1 and iDivisor.
71 */
72 struct Bitvec {
73   u32 iSize;      /* Maximum bit index */
74   u32 nSet;       /* Number of bits that are set */
75   u32 iDivisor;   /* Number of bits handled by each apSub[] entry */
76   union {
77     u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */
78     u32 aHash[BITVEC_NINT];      /* Hash table representation */
79     Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
80   } u;
81 };
82 
83 /*
84 ** Create a new bitmap object able to handle bits between 0 and iSize,
85 ** inclusive.  Return a pointer to the new object.  Return NULL if
86 ** malloc fails.
87 */
88 Bitvec *sqlite3BitvecCreate(u32 iSize){
89   Bitvec *p;
90   assert( sizeof(*p)==BITVEC_SZ );
91   p = sqlite3MallocZero( sizeof(*p) );
92   if( p ){
93     p->iSize = iSize;
94   }
95   return p;
96 }
97 
98 /*
99 ** Check to see if the i-th bit is set.  Return true or false.
100 ** If p is NULL (if the bitmap has not been created) or if
101 ** i is out of range, then return false.
102 */
103 int sqlite3BitvecTest(Bitvec *p, u32 i){
104   if( p==0 ) return 0;
105   if( i>p->iSize || i==0 ) return 0;
106   if( p->iSize<=BITVEC_NBIT ){
107     i--;
108     return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
109   }
110   if( p->iDivisor>0 ){
111     u32 bin = (i-1)/p->iDivisor;
112     i = (i-1)%p->iDivisor + 1;
113     return sqlite3BitvecTest(p->u.apSub[bin], i);
114   }else{
115     u32 h = BITVEC_HASH(i);
116     while( p->u.aHash[h] ){
117       if( p->u.aHash[h]==i ) return 1;
118       h++;
119       if( h>=BITVEC_NINT ) h = 0;
120     }
121     return 0;
122   }
123 }
124 
125 /*
126 ** Set the i-th bit.  Return 0 on success and an error code if
127 ** anything goes wrong.
128 */
129 int sqlite3BitvecSet(Bitvec *p, u32 i){
130   u32 h;
131   assert( p!=0 );
132   assert( i>0 );
133   assert( i<=p->iSize );
134   if( p->iSize<=BITVEC_NBIT ){
135     i--;
136     p->u.aBitmap[i/8] |= 1 << (i&7);
137     return SQLITE_OK;
138   }
139   if( p->iDivisor ){
140     u32 bin = (i-1)/p->iDivisor;
141     i = (i-1)%p->iDivisor + 1;
142     if( p->u.apSub[bin]==0 ){
143       sqlite3BeginBenignMalloc();
144       p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
145       sqlite3EndBenignMalloc();
146       if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
147     }
148     return sqlite3BitvecSet(p->u.apSub[bin], i);
149   }
150   h = BITVEC_HASH(i);
151   while( p->u.aHash[h] ){
152     if( p->u.aHash[h]==i ) return SQLITE_OK;
153     h++;
154     if( h==BITVEC_NINT ) h = 0;
155   }
156   p->nSet++;
157   if( p->nSet>=BITVEC_MXHASH ){
158     int j, rc;
159     u32 aiValues[BITVEC_NINT];
160     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
161     memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
162     p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
163     rc = sqlite3BitvecSet(p, i);
164     for(j=0; j<BITVEC_NINT; j++){
165       if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
166     }
167     return rc;
168   }
169   p->u.aHash[h] = i;
170   return SQLITE_OK;
171 }
172 
173 /*
174 ** Clear the i-th bit.  Return 0 on success and an error code if
175 ** anything goes wrong.
176 */
177 void sqlite3BitvecClear(Bitvec *p, u32 i){
178   assert( p!=0 );
179   assert( i>0 );
180   if( p->iSize<=BITVEC_NBIT ){
181     i--;
182     p->u.aBitmap[i/8] &= ~(1 << (i&7));
183   }else if( p->iDivisor ){
184     u32 bin = (i-1)/p->iDivisor;
185     i = (i-1)%p->iDivisor + 1;
186     if( p->u.apSub[bin] ){
187       sqlite3BitvecClear(p->u.apSub[bin], i);
188     }
189   }else{
190     int j;
191     u32 aiValues[BITVEC_NINT];
192     memcpy(aiValues, p->u.aHash, sizeof(aiValues));
193     memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
194     p->nSet = 0;
195     for(j=0; j<BITVEC_NINT; j++){
196       if( aiValues[j] && aiValues[j]!=i ){
197         sqlite3BitvecSet(p, aiValues[j]);
198       }
199     }
200   }
201 }
202 
203 /*
204 ** Destroy a bitmap object.  Reclaim all memory used.
205 */
206 void sqlite3BitvecDestroy(Bitvec *p){
207   if( p==0 ) return;
208   if( p->iDivisor ){
209     int i;
210     for(i=0; i<BITVEC_NPTR; i++){
211       sqlite3BitvecDestroy(p->u.apSub[i]);
212     }
213   }
214   sqlite3_free(p);
215 }
216 
217 #ifndef SQLITE_OMIT_BUILTIN_TEST
218 /*
219 ** Let V[] be an array of unsigned characters sufficient to hold
220 ** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
221 ** Then the following macros can be used to set, clear, or test
222 ** individual bits within V.
223 */
224 #define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
225 #define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
226 #define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
227 
228 /*
229 ** This routine runs an extensive test of the Bitvec code.
230 **
231 ** The input is an array of integers that acts as a program
232 ** to test the Bitvec.  The integers are opcodes followed
233 ** by 0, 1, or 3 operands, depending on the opcode.  Another
234 ** opcode follows immediately after the last operand.
235 **
236 ** There are 6 opcodes numbered from 0 through 5.  0 is the
237 ** "halt" opcode and causes the test to end.
238 **
239 **    0          Halt and return the number of errors
240 **    1 N S X    Set N bits beginning with S and incrementing by X
241 **    2 N S X    Clear N bits beginning with S and incrementing by X
242 **    3 N        Set N randomly chosen bits
243 **    4 N        Clear N randomly chosen bits
244 **    5 N S X    Set N bits from S increment X in array only, not in bitvec
245 **
246 ** The opcodes 1 through 4 perform set and clear operations are performed
247 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
248 ** Opcode 5 works on the linear array only, not on the Bitvec.
249 ** Opcode 5 is used to deliberately induce a fault in order to
250 ** confirm that error detection works.
251 **
252 ** At the conclusion of the test the linear array is compared
253 ** against the Bitvec object.  If there are any differences,
254 ** an error is returned.  If they are the same, zero is returned.
255 **
256 ** If a memory allocation error occurs, return -1.
257 */
258 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
259   Bitvec *pBitvec = 0;
260   unsigned char *pV = 0;
261   int rc = -1;
262   int i, nx, pc, op;
263 
264   /* Allocate the Bitvec to be tested and a linear array of
265   ** bits to act as the reference */
266   pBitvec = sqlite3BitvecCreate( sz );
267   pV = sqlite3_malloc( (sz+7)/8 + 1 );
268   if( pBitvec==0 || pV==0 ) goto bitvec_end;
269   memset(pV, 0, (sz+7)/8 + 1);
270 
271   /* Run the program */
272   pc = 0;
273   while( (op = aOp[pc])!=0 ){
274     switch( op ){
275       case 1:
276       case 2:
277       case 5: {
278         nx = 4;
279         i = aOp[pc+2] - 1;
280         aOp[pc+2] += aOp[pc+3];
281         break;
282       }
283       case 3:
284       case 4:
285       default: {
286         nx = 2;
287         sqlite3_randomness(sizeof(i), &i);
288         break;
289       }
290     }
291     if( (--aOp[pc+1]) > 0 ) nx = 0;
292     pc += nx;
293     i = (i & 0x7fffffff)%sz;
294     if( (op & 1)!=0 ){
295       SETBIT(pV, (i+1));
296       if( op!=5 ){
297         if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
298       }
299     }else{
300       CLEARBIT(pV, (i+1));
301       sqlite3BitvecClear(pBitvec, i+1);
302     }
303   }
304 
305   /* Test to make sure the linear array exactly matches the
306   ** Bitvec object.  Start with the assumption that they do
307   ** match (rc==0).  Change rc to non-zero if a discrepancy
308   ** is found.
309   */
310   rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
311           + sqlite3BitvecTest(pBitvec, 0);
312   for(i=1; i<=sz; i++){
313     if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
314       rc = i;
315       break;
316     }
317   }
318 
319   /* Free allocated structure */
320 bitvec_end:
321   sqlite3_free(pV);
322   sqlite3BitvecDestroy(pBitvec);
323   return rc;
324 }
325 #endif /* SQLITE_OMIT_BUILTIN_TEST */
326