1 /* 2 ** 2008 February 16 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file implements an object that represents a fixed-length 13 ** bitmap. Bits are numbered starting with 1. 14 ** 15 ** A bitmap is used to record which pages of a database file have been 16 ** journalled during a transaction, or which pages have the "dont-write" 17 ** property. Usually only a few pages are meet either condition. 18 ** So the bitmap is usually sparse and has low cardinality. 19 ** But sometimes (for example when during a DROP of a large table) most 20 ** or all of the pages in a database can get journalled. In those cases, 21 ** the bitmap becomes dense with high cardinality. The algorithm needs 22 ** to handle both cases well. 23 ** 24 ** The size of the bitmap is fixed when the object is created. 25 ** 26 ** All bits are clear when the bitmap is created. Individual bits 27 ** may be set or cleared one at a time. 28 ** 29 ** Test operations are about 100 times more common that set operations. 30 ** Clear operations are exceedingly rare. There are usually between 31 ** 5 and 500 set operations per Bitvec object, though the number of sets can 32 ** sometimes grow into tens of thousands or larger. The size of the 33 ** Bitvec object is the number of pages in the database file at the 34 ** start of a transaction, and is thus usually less than a few thousand, 35 ** but can be as large as 2 billion for a really big database. 36 ** 37 ** @(#) $Id: bitvec.c,v 1.9 2008/11/19 18:30:35 shane Exp $ 38 */ 39 #include "sqliteInt.h" 40 41 /* Size of the Bitvec structure in bytes. */ 42 #define BITVEC_SZ 512 43 44 /* Round the union size down to the nearest pointer boundary, since that's how 45 ** it will be aligned within the Bitvec struct. */ 46 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) 47 48 /* Type of the array "element" for the bitmap representation. 49 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 50 ** Setting this to the "natural word" size of your CPU may improve 51 ** performance. */ 52 #define BITVEC_TELEM u8 53 /* Size, in bits, of the bitmap element. */ 54 #define BITVEC_SZELEM 8 55 /* Number of elements in a bitmap array. */ 56 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) 57 /* Number of bits in the bitmap array. */ 58 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) 59 60 /* Number of u32 values in hash table. */ 61 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) 62 /* Maximum number of entries in hash table before 63 ** sub-dividing and re-hashing. */ 64 #define BITVEC_MXHASH (BITVEC_NINT/2) 65 /* Hashing function for the aHash representation. 66 ** Empirical testing showed that the *37 multiplier 67 ** (an arbitrary prime)in the hash function provided 68 ** no fewer collisions than the no-op *1. */ 69 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) 70 71 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) 72 73 74 /* 75 ** A bitmap is an instance of the following structure. 76 ** 77 ** This bitmap records the existance of zero or more bits 78 ** with values between 1 and iSize, inclusive. 79 ** 80 ** There are three possible representations of the bitmap. 81 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight 82 ** bitmap. The least significant bit is bit 1. 83 ** 84 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is 85 ** a hash table that will hold up to BITVEC_MXHASH distinct values. 86 ** 87 ** Otherwise, the value i is redirected into one of BITVEC_NPTR 88 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap 89 ** handles up to iDivisor separate values of i. apSub[0] holds 90 ** values between 1 and iDivisor. apSub[1] holds values between 91 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between 92 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized 93 ** to hold deal with values between 1 and iDivisor. 94 */ 95 struct Bitvec { 96 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ 97 u32 nSet; /* Number of bits that are set - only valid for aHash element */ 98 /* Max nSet is BITVEC_NINT. For BITVEC_SZ of 512, this would be 125. */ 99 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ 100 /* Should >=0 for apSub element. */ 101 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ 102 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ 103 union { 104 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ 105 u32 aHash[BITVEC_NINT]; /* Hash table representation */ 106 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ 107 } u; 108 }; 109 110 /* 111 ** Create a new bitmap object able to handle bits between 0 and iSize, 112 ** inclusive. Return a pointer to the new object. Return NULL if 113 ** malloc fails. 114 */ 115 Bitvec *sqlite3BitvecCreate(u32 iSize){ 116 Bitvec *p; 117 assert( sizeof(*p)==BITVEC_SZ ); 118 p = sqlite3MallocZero( sizeof(*p) ); 119 if( p ){ 120 p->iSize = iSize; 121 } 122 return p; 123 } 124 125 /* 126 ** Check to see if the i-th bit is set. Return true or false. 127 ** If p is NULL (if the bitmap has not been created) or if 128 ** i is out of range, then return false. 129 */ 130 int sqlite3BitvecTest(Bitvec *p, u32 i){ 131 if( p==0 ) return 0; 132 if( i>p->iSize || i==0 ) return 0; 133 i--; 134 while( p->iDivisor ){ 135 u32 bin = i/p->iDivisor; 136 i = i%p->iDivisor; 137 p = p->u.apSub[bin]; 138 if (!p) { 139 return 0; 140 } 141 } 142 if( p->iSize<=BITVEC_NBIT ){ 143 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; 144 } else{ 145 u32 h = BITVEC_HASH(i++); 146 while( p->u.aHash[h] ){ 147 if( p->u.aHash[h]==i ) return 1; 148 h++; 149 if( h>=BITVEC_NINT ) h = 0; 150 } 151 return 0; 152 } 153 } 154 155 /* 156 ** Set the i-th bit. Return 0 on success and an error code if 157 ** anything goes wrong. 158 ** 159 ** This routine might cause sub-bitmaps to be allocated. Failing 160 ** to get the memory needed to hold the sub-bitmap is the only 161 ** that can go wrong with an insert, assuming p and i are valid. 162 ** 163 ** The calling function must ensure that p is a valid Bitvec object 164 ** and that the value for "i" is within range of the Bitvec object. 165 ** Otherwise the behavior is undefined. 166 */ 167 int sqlite3BitvecSet(Bitvec *p, u32 i){ 168 u32 h; 169 assert( p!=0 ); 170 assert( i>0 ); 171 assert( i<=p->iSize ); 172 i--; 173 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { 174 u32 bin = i/p->iDivisor; 175 i = i%p->iDivisor; 176 if( p->u.apSub[bin]==0 ){ 177 sqlite3BeginBenignMalloc(); 178 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); 179 sqlite3EndBenignMalloc(); 180 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; 181 } 182 p = p->u.apSub[bin]; 183 } 184 if( p->iSize<=BITVEC_NBIT ){ 185 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); 186 return SQLITE_OK; 187 } 188 h = BITVEC_HASH(i++); 189 /* if there wasn't a hash collision, and this doesn't */ 190 /* completely fill the hash, then just add it without */ 191 /* worring about sub-dividing and re-hashing. */ 192 if( !p->u.aHash[h] ){ 193 if (p->nSet<(BITVEC_NINT-1)) { 194 goto bitvec_set_end; 195 } else { 196 goto bitvec_set_rehash; 197 } 198 } 199 /* there was a collision, check to see if it's already */ 200 /* in hash, if not, try to find a spot for it */ 201 do { 202 if( p->u.aHash[h]==i ) return SQLITE_OK; 203 h++; 204 if( h>=BITVEC_NINT ) h = 0; 205 } while( p->u.aHash[h] ); 206 /* we didn't find it in the hash. h points to the first */ 207 /* available free spot. check to see if this is going to */ 208 /* make our hash too "full". */ 209 bitvec_set_rehash: 210 if( p->nSet>=BITVEC_MXHASH ){ 211 unsigned int j; 212 int rc; 213 u32 aiValues[BITVEC_NINT]; 214 memcpy(aiValues, p->u.aHash, sizeof(aiValues)); 215 memset(p->u.apSub, 0, sizeof(aiValues)); 216 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; 217 rc = sqlite3BitvecSet(p, i); 218 for(j=0; j<BITVEC_NINT; j++){ 219 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); 220 } 221 return rc; 222 } 223 bitvec_set_end: 224 p->nSet++; 225 p->u.aHash[h] = i; 226 return SQLITE_OK; 227 } 228 229 /* 230 ** Clear the i-th bit. 231 */ 232 void sqlite3BitvecClear(Bitvec *p, u32 i){ 233 assert( p!=0 ); 234 assert( i>0 ); 235 i--; 236 while( p->iDivisor ){ 237 u32 bin = i/p->iDivisor; 238 i = i%p->iDivisor; 239 p = p->u.apSub[bin]; 240 if (!p) { 241 return; 242 } 243 } 244 if( p->iSize<=BITVEC_NBIT ){ 245 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); 246 }else{ 247 unsigned int j; 248 u32 aiValues[BITVEC_NINT]; 249 memcpy(aiValues, p->u.aHash, sizeof(aiValues)); 250 memset(p->u.aHash, 0, sizeof(aiValues)); 251 p->nSet = 0; 252 for(j=0; j<BITVEC_NINT; j++){ 253 if( aiValues[j] && aiValues[j]!=(i+1) ){ 254 u32 h = BITVEC_HASH(aiValues[j]-1); 255 p->nSet++; 256 while( p->u.aHash[h] ){ 257 h++; 258 if( h>=BITVEC_NINT ) h = 0; 259 } 260 p->u.aHash[h] = aiValues[j]; 261 } 262 } 263 } 264 } 265 266 /* 267 ** Destroy a bitmap object. Reclaim all memory used. 268 */ 269 void sqlite3BitvecDestroy(Bitvec *p){ 270 if( p==0 ) return; 271 if( p->iDivisor ){ 272 unsigned int i; 273 for(i=0; i<BITVEC_NPTR; i++){ 274 sqlite3BitvecDestroy(p->u.apSub[i]); 275 } 276 } 277 sqlite3_free(p); 278 } 279 280 #ifndef SQLITE_OMIT_BUILTIN_TEST 281 /* 282 ** Let V[] be an array of unsigned characters sufficient to hold 283 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. 284 ** Then the following macros can be used to set, clear, or test 285 ** individual bits within V. 286 */ 287 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) 288 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) 289 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 290 291 /* 292 ** This routine runs an extensive test of the Bitvec code. 293 ** 294 ** The input is an array of integers that acts as a program 295 ** to test the Bitvec. The integers are opcodes followed 296 ** by 0, 1, or 3 operands, depending on the opcode. Another 297 ** opcode follows immediately after the last operand. 298 ** 299 ** There are 6 opcodes numbered from 0 through 5. 0 is the 300 ** "halt" opcode and causes the test to end. 301 ** 302 ** 0 Halt and return the number of errors 303 ** 1 N S X Set N bits beginning with S and incrementing by X 304 ** 2 N S X Clear N bits beginning with S and incrementing by X 305 ** 3 N Set N randomly chosen bits 306 ** 4 N Clear N randomly chosen bits 307 ** 5 N S X Set N bits from S increment X in array only, not in bitvec 308 ** 309 ** The opcodes 1 through 4 perform set and clear operations are performed 310 ** on both a Bitvec object and on a linear array of bits obtained from malloc. 311 ** Opcode 5 works on the linear array only, not on the Bitvec. 312 ** Opcode 5 is used to deliberately induce a fault in order to 313 ** confirm that error detection works. 314 ** 315 ** At the conclusion of the test the linear array is compared 316 ** against the Bitvec object. If there are any differences, 317 ** an error is returned. If they are the same, zero is returned. 318 ** 319 ** If a memory allocation error occurs, return -1. 320 */ 321 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ 322 Bitvec *pBitvec = 0; 323 unsigned char *pV = 0; 324 int rc = -1; 325 int i, nx, pc, op; 326 327 /* Allocate the Bitvec to be tested and a linear array of 328 ** bits to act as the reference */ 329 pBitvec = sqlite3BitvecCreate( sz ); 330 pV = sqlite3_malloc( (sz+7)/8 + 1 ); 331 if( pBitvec==0 || pV==0 ) goto bitvec_end; 332 memset(pV, 0, (sz+7)/8 + 1); 333 334 /* Run the program */ 335 pc = 0; 336 while( (op = aOp[pc])!=0 ){ 337 switch( op ){ 338 case 1: 339 case 2: 340 case 5: { 341 nx = 4; 342 i = aOp[pc+2] - 1; 343 aOp[pc+2] += aOp[pc+3]; 344 break; 345 } 346 case 3: 347 case 4: 348 default: { 349 nx = 2; 350 sqlite3_randomness(sizeof(i), &i); 351 break; 352 } 353 } 354 if( (--aOp[pc+1]) > 0 ) nx = 0; 355 pc += nx; 356 i = (i & 0x7fffffff)%sz; 357 if( (op & 1)!=0 ){ 358 SETBIT(pV, (i+1)); 359 if( op!=5 ){ 360 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; 361 } 362 }else{ 363 CLEARBIT(pV, (i+1)); 364 sqlite3BitvecClear(pBitvec, i+1); 365 } 366 } 367 368 /* Test to make sure the linear array exactly matches the 369 ** Bitvec object. Start with the assumption that they do 370 ** match (rc==0). Change rc to non-zero if a discrepancy 371 ** is found. 372 */ 373 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) 374 + sqlite3BitvecTest(pBitvec, 0); 375 for(i=1; i<=sz; i++){ 376 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ 377 rc = i; 378 break; 379 } 380 } 381 382 /* Free allocated structure */ 383 bitvec_end: 384 sqlite3_free(pV); 385 sqlite3BitvecDestroy(pBitvec); 386 return rc; 387 } 388 #endif /* SQLITE_OMIT_BUILTIN_TEST */ 389