1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2 and is also now deprecated. The 33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite 35 ** versions 3.8.1 and later. STAT4 is the only variant that is still 36 ** supported. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 #else 148 # define IsStat4 0 149 # undef SQLITE_STAT4_SAMPLES 150 # define SQLITE_STAT4_SAMPLES 1 151 #endif 152 153 /* 154 ** This routine generates code that opens the sqlite_statN tables. 155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 157 ** appropriate compile-time options are provided. 158 ** 159 ** If the sqlite_statN tables do not previously exist, it is created. 160 ** 161 ** Argument zWhere may be a pointer to a buffer containing a table name, 162 ** or it may be a NULL pointer. If it is not NULL, then all entries in 163 ** the sqlite_statN tables associated with the named table are deleted. 164 ** If zWhere==0, then code is generated to delete all stat table entries. 165 */ 166 static void openStatTable( 167 Parse *pParse, /* Parsing context */ 168 int iDb, /* The database we are looking in */ 169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 170 const char *zWhere, /* Delete entries for this table or index */ 171 const char *zWhereType /* Either "tbl" or "idx" */ 172 ){ 173 static const struct { 174 const char *zName; 175 const char *zCols; 176 } aTable[] = { 177 { "sqlite_stat1", "tbl,idx,stat" }, 178 #if defined(SQLITE_ENABLE_STAT4) 179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 180 #else 181 { "sqlite_stat4", 0 }, 182 #endif 183 { "sqlite_stat3", 0 }, 184 }; 185 int i; 186 sqlite3 *db = pParse->db; 187 Db *pDb; 188 Vdbe *v = sqlite3GetVdbe(pParse); 189 u32 aRoot[ArraySize(aTable)]; 190 u8 aCreateTbl[ArraySize(aTable)]; 191 #ifdef SQLITE_ENABLE_STAT4 192 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1; 193 #else 194 const int nToOpen = 1; 195 #endif 196 197 if( v==0 ) return; 198 assert( sqlite3BtreeHoldsAllMutexes(db) ); 199 assert( sqlite3VdbeDb(v)==db ); 200 pDb = &db->aDb[iDb]; 201 202 /* Create new statistic tables if they do not exist, or clear them 203 ** if they do already exist. 204 */ 205 for(i=0; i<ArraySize(aTable); i++){ 206 const char *zTab = aTable[i].zName; 207 Table *pStat; 208 aCreateTbl[i] = 0; 209 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 210 if( i<nToOpen ){ 211 /* The sqlite_statN table does not exist. Create it. Note that a 212 ** side-effect of the CREATE TABLE statement is to leave the rootpage 213 ** of the new table in register pParse->regRoot. This is important 214 ** because the OpenWrite opcode below will be needing it. */ 215 sqlite3NestedParse(pParse, 216 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 217 ); 218 aRoot[i] = (u32)pParse->regRoot; 219 aCreateTbl[i] = OPFLAG_P2ISREG; 220 } 221 }else{ 222 /* The table already exists. If zWhere is not NULL, delete all entries 223 ** associated with the table zWhere. If zWhere is NULL, delete the 224 ** entire contents of the table. */ 225 aRoot[i] = pStat->tnum; 226 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 227 if( zWhere ){ 228 sqlite3NestedParse(pParse, 229 "DELETE FROM %Q.%s WHERE %s=%Q", 230 pDb->zDbSName, zTab, zWhereType, zWhere 231 ); 232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 233 }else if( db->xPreUpdateCallback ){ 234 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 235 #endif 236 }else{ 237 /* The sqlite_stat[134] table already exists. Delete all rows. */ 238 sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb); 239 } 240 } 241 } 242 243 /* Open the sqlite_stat[134] tables for writing. */ 244 for(i=0; i<nToOpen; i++){ 245 assert( i<ArraySize(aTable) ); 246 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3); 247 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 248 VdbeComment((v, aTable[i].zName)); 249 } 250 } 251 252 /* 253 ** Recommended number of samples for sqlite_stat4 254 */ 255 #ifndef SQLITE_STAT4_SAMPLES 256 # define SQLITE_STAT4_SAMPLES 24 257 #endif 258 259 /* 260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 261 ** share an instance of the following structure to hold their state 262 ** information. 263 */ 264 typedef struct StatAccum StatAccum; 265 typedef struct StatSample StatSample; 266 struct StatSample { 267 tRowcnt *anEq; /* sqlite_stat4.nEq */ 268 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 269 #ifdef SQLITE_ENABLE_STAT4 270 tRowcnt *anLt; /* sqlite_stat4.nLt */ 271 union { 272 i64 iRowid; /* Rowid in main table of the key */ 273 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 274 } u; 275 u32 nRowid; /* Sizeof aRowid[] */ 276 u8 isPSample; /* True if a periodic sample */ 277 int iCol; /* If !isPSample, the reason for inclusion */ 278 u32 iHash; /* Tiebreaker hash */ 279 #endif 280 }; 281 struct StatAccum { 282 sqlite3 *db; /* Database connection, for malloc() */ 283 tRowcnt nEst; /* Estimated number of rows */ 284 tRowcnt nRow; /* Number of rows visited so far */ 285 int nLimit; /* Analysis row-scan limit */ 286 int nCol; /* Number of columns in index + pk/rowid */ 287 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 288 u8 nSkipAhead; /* Number of times of skip-ahead */ 289 StatSample current; /* Current row as a StatSample */ 290 #ifdef SQLITE_ENABLE_STAT4 291 tRowcnt nPSample; /* How often to do a periodic sample */ 292 int mxSample; /* Maximum number of samples to accumulate */ 293 u32 iPrn; /* Pseudo-random number used for sampling */ 294 StatSample *aBest; /* Array of nCol best samples */ 295 int iMin; /* Index in a[] of entry with minimum score */ 296 int nSample; /* Current number of samples */ 297 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 298 int iGet; /* Index of current sample accessed by stat_get() */ 299 StatSample *a; /* Array of mxSample StatSample objects */ 300 #endif 301 }; 302 303 /* Reclaim memory used by a StatSample 304 */ 305 #ifdef SQLITE_ENABLE_STAT4 306 static void sampleClear(sqlite3 *db, StatSample *p){ 307 assert( db!=0 ); 308 if( p->nRowid ){ 309 sqlite3DbFree(db, p->u.aRowid); 310 p->nRowid = 0; 311 } 312 } 313 #endif 314 315 /* Initialize the BLOB value of a ROWID 316 */ 317 #ifdef SQLITE_ENABLE_STAT4 318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ 319 assert( db!=0 ); 320 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 321 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 322 if( p->u.aRowid ){ 323 p->nRowid = n; 324 memcpy(p->u.aRowid, pData, n); 325 }else{ 326 p->nRowid = 0; 327 } 328 } 329 #endif 330 331 /* Initialize the INTEGER value of a ROWID. 332 */ 333 #ifdef SQLITE_ENABLE_STAT4 334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ 335 assert( db!=0 ); 336 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 337 p->nRowid = 0; 338 p->u.iRowid = iRowid; 339 } 340 #endif 341 342 343 /* 344 ** Copy the contents of object (*pFrom) into (*pTo). 345 */ 346 #ifdef SQLITE_ENABLE_STAT4 347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ 348 pTo->isPSample = pFrom->isPSample; 349 pTo->iCol = pFrom->iCol; 350 pTo->iHash = pFrom->iHash; 351 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 352 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 353 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 354 if( pFrom->nRowid ){ 355 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 356 }else{ 357 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 358 } 359 } 360 #endif 361 362 /* 363 ** Reclaim all memory of a StatAccum structure. 364 */ 365 static void statAccumDestructor(void *pOld){ 366 StatAccum *p = (StatAccum*)pOld; 367 #ifdef SQLITE_ENABLE_STAT4 368 if( p->mxSample ){ 369 int i; 370 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 371 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 372 sampleClear(p->db, &p->current); 373 } 374 #endif 375 sqlite3DbFree(p->db, p); 376 } 377 378 /* 379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters 380 ** are: 381 ** N: The number of columns in the index including the rowid/pk (note 1) 382 ** K: The number of columns in the index excluding the rowid/pk. 383 ** C: Estimated number of rows in the index 384 ** L: A limit on the number of rows to scan, or 0 for no-limit 385 ** 386 ** Note 1: In the special case of the covering index that implements a 387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 388 ** total number of columns in the table. 389 ** 390 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 392 ** PRIMARY KEY of the table. The covering index that implements the 393 ** original WITHOUT ROWID table as N==K as a special case. 394 ** 395 ** This routine allocates the StatAccum object in heap memory. The return 396 ** value is a pointer to the StatAccum object. The datatype of the 397 ** return value is BLOB, but it is really just a pointer to the StatAccum 398 ** object. 399 */ 400 static void statInit( 401 sqlite3_context *context, 402 int argc, 403 sqlite3_value **argv 404 ){ 405 StatAccum *p; 406 int nCol; /* Number of columns in index being sampled */ 407 int nKeyCol; /* Number of key columns */ 408 int nColUp; /* nCol rounded up for alignment */ 409 int n; /* Bytes of space to allocate */ 410 sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */ 411 #ifdef SQLITE_ENABLE_STAT4 412 /* Maximum number of samples. 0 if STAT4 data is not collected */ 413 int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0; 414 #endif 415 416 /* Decode the three function arguments */ 417 UNUSED_PARAMETER(argc); 418 nCol = sqlite3_value_int(argv[0]); 419 assert( nCol>0 ); 420 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 421 nKeyCol = sqlite3_value_int(argv[1]); 422 assert( nKeyCol<=nCol ); 423 assert( nKeyCol>0 ); 424 425 /* Allocate the space required for the StatAccum object */ 426 n = sizeof(*p) 427 + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */ 428 + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */ 429 #ifdef SQLITE_ENABLE_STAT4 430 if( mxSample ){ 431 n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ 432 + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ 433 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample); 434 } 435 #endif 436 p = sqlite3DbMallocZero(db, n); 437 if( p==0 ){ 438 sqlite3_result_error_nomem(context); 439 return; 440 } 441 442 p->db = db; 443 p->nEst = sqlite3_value_int64(argv[2]); 444 p->nRow = 0; 445 p->nLimit = sqlite3_value_int64(argv[3]); 446 p->nCol = nCol; 447 p->nKeyCol = nKeyCol; 448 p->nSkipAhead = 0; 449 p->current.anDLt = (tRowcnt*)&p[1]; 450 p->current.anEq = &p->current.anDLt[nColUp]; 451 452 #ifdef SQLITE_ENABLE_STAT4 453 p->mxSample = p->nLimit==0 ? mxSample : 0; 454 if( mxSample ){ 455 u8 *pSpace; /* Allocated space not yet assigned */ 456 int i; /* Used to iterate through p->aSample[] */ 457 458 p->iGet = -1; 459 p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1); 460 p->current.anLt = &p->current.anEq[nColUp]; 461 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 462 463 /* Set up the StatAccum.a[] and aBest[] arrays */ 464 p->a = (struct StatSample*)&p->current.anLt[nColUp]; 465 p->aBest = &p->a[mxSample]; 466 pSpace = (u8*)(&p->a[mxSample+nCol]); 467 for(i=0; i<(mxSample+nCol); i++){ 468 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 469 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 470 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 471 } 472 assert( (pSpace - (u8*)p)==n ); 473 474 for(i=0; i<nCol; i++){ 475 p->aBest[i].iCol = i; 476 } 477 } 478 #endif 479 480 /* Return a pointer to the allocated object to the caller. Note that 481 ** only the pointer (the 2nd parameter) matters. The size of the object 482 ** (given by the 3rd parameter) is never used and can be any positive 483 ** value. */ 484 sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); 485 } 486 static const FuncDef statInitFuncdef = { 487 4, /* nArg */ 488 SQLITE_UTF8, /* funcFlags */ 489 0, /* pUserData */ 490 0, /* pNext */ 491 statInit, /* xSFunc */ 492 0, /* xFinalize */ 493 0, 0, /* xValue, xInverse */ 494 "stat_init", /* zName */ 495 {0} 496 }; 497 498 #ifdef SQLITE_ENABLE_STAT4 499 /* 500 ** pNew and pOld are both candidate non-periodic samples selected for 501 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 502 ** considering only any trailing columns and the sample hash value, this 503 ** function returns true if sample pNew is to be preferred over pOld. 504 ** In other words, if we assume that the cardinalities of the selected 505 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 506 ** 507 ** This function assumes that for each argument sample, the contents of 508 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 509 */ 510 static int sampleIsBetterPost( 511 StatAccum *pAccum, 512 StatSample *pNew, 513 StatSample *pOld 514 ){ 515 int nCol = pAccum->nCol; 516 int i; 517 assert( pNew->iCol==pOld->iCol ); 518 for(i=pNew->iCol+1; i<nCol; i++){ 519 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 520 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 521 } 522 if( pNew->iHash>pOld->iHash ) return 1; 523 return 0; 524 } 525 #endif 526 527 #ifdef SQLITE_ENABLE_STAT4 528 /* 529 ** Return true if pNew is to be preferred over pOld. 530 ** 531 ** This function assumes that for each argument sample, the contents of 532 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 533 */ 534 static int sampleIsBetter( 535 StatAccum *pAccum, 536 StatSample *pNew, 537 StatSample *pOld 538 ){ 539 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 540 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 541 542 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 543 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 544 545 if( (nEqNew>nEqOld) ) return 1; 546 if( nEqNew==nEqOld ){ 547 if( pNew->iCol<pOld->iCol ) return 1; 548 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 549 } 550 return 0; 551 } 552 553 /* 554 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 555 ** remove the least desirable sample from p->a[] to make room. 556 */ 557 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ 558 StatSample *pSample = 0; 559 int i; 560 561 assert( IsStat4 || nEqZero==0 ); 562 563 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 564 ** values in the anEq[] array of any sample in StatAccum.a[]. In 565 ** other words, if nMaxEqZero is n, then it is guaranteed that there 566 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ 567 if( nEqZero>p->nMaxEqZero ){ 568 p->nMaxEqZero = nEqZero; 569 } 570 if( pNew->isPSample==0 ){ 571 StatSample *pUpgrade = 0; 572 assert( pNew->anEq[pNew->iCol]>0 ); 573 574 /* This sample is being added because the prefix that ends in column 575 ** iCol occurs many times in the table. However, if we have already 576 ** added a sample that shares this prefix, there is no need to add 577 ** this one. Instead, upgrade the priority of the highest priority 578 ** existing sample that shares this prefix. */ 579 for(i=p->nSample-1; i>=0; i--){ 580 StatSample *pOld = &p->a[i]; 581 if( pOld->anEq[pNew->iCol]==0 ){ 582 if( pOld->isPSample ) return; 583 assert( pOld->iCol>pNew->iCol ); 584 assert( sampleIsBetter(p, pNew, pOld) ); 585 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 586 pUpgrade = pOld; 587 } 588 } 589 } 590 if( pUpgrade ){ 591 pUpgrade->iCol = pNew->iCol; 592 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 593 goto find_new_min; 594 } 595 } 596 597 /* If necessary, remove sample iMin to make room for the new sample. */ 598 if( p->nSample>=p->mxSample ){ 599 StatSample *pMin = &p->a[p->iMin]; 600 tRowcnt *anEq = pMin->anEq; 601 tRowcnt *anLt = pMin->anLt; 602 tRowcnt *anDLt = pMin->anDLt; 603 sampleClear(p->db, pMin); 604 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 605 pSample = &p->a[p->nSample-1]; 606 pSample->nRowid = 0; 607 pSample->anEq = anEq; 608 pSample->anDLt = anDLt; 609 pSample->anLt = anLt; 610 p->nSample = p->mxSample-1; 611 } 612 613 /* The "rows less-than" for the rowid column must be greater than that 614 ** for the last sample in the p->a[] array. Otherwise, the samples would 615 ** be out of order. */ 616 assert( p->nSample==0 617 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 618 619 /* Insert the new sample */ 620 pSample = &p->a[p->nSample]; 621 sampleCopy(p, pSample, pNew); 622 p->nSample++; 623 624 /* Zero the first nEqZero entries in the anEq[] array. */ 625 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 626 627 find_new_min: 628 if( p->nSample>=p->mxSample ){ 629 int iMin = -1; 630 for(i=0; i<p->mxSample; i++){ 631 if( p->a[i].isPSample ) continue; 632 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 633 iMin = i; 634 } 635 } 636 assert( iMin>=0 ); 637 p->iMin = iMin; 638 } 639 } 640 #endif /* SQLITE_ENABLE_STAT4 */ 641 642 #ifdef SQLITE_ENABLE_STAT4 643 /* 644 ** Field iChng of the index being scanned has changed. So at this point 645 ** p->current contains a sample that reflects the previous row of the 646 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 647 ** correct at this point. 648 */ 649 static void samplePushPrevious(StatAccum *p, int iChng){ 650 int i; 651 652 /* Check if any samples from the aBest[] array should be pushed 653 ** into IndexSample.a[] at this point. */ 654 for(i=(p->nCol-2); i>=iChng; i--){ 655 StatSample *pBest = &p->aBest[i]; 656 pBest->anEq[i] = p->current.anEq[i]; 657 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 658 sampleInsert(p, pBest, i); 659 } 660 } 661 662 /* Check that no sample contains an anEq[] entry with an index of 663 ** p->nMaxEqZero or greater set to zero. */ 664 for(i=p->nSample-1; i>=0; i--){ 665 int j; 666 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 667 } 668 669 /* Update the anEq[] fields of any samples already collected. */ 670 if( iChng<p->nMaxEqZero ){ 671 for(i=p->nSample-1; i>=0; i--){ 672 int j; 673 for(j=iChng; j<p->nCol; j++){ 674 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 675 } 676 } 677 p->nMaxEqZero = iChng; 678 } 679 } 680 #endif /* SQLITE_ENABLE_STAT4 */ 681 682 /* 683 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 684 ** Arguments: 685 ** 686 ** P Pointer to the StatAccum object created by stat_init() 687 ** C Index of left-most column to differ from previous row 688 ** R Rowid for the current row. Might be a key record for 689 ** WITHOUT ROWID tables. 690 ** 691 ** The purpose of this routine is to collect statistical data and/or 692 ** samples from the index being analyzed into the StatAccum object. 693 ** The stat_get() SQL function will be used afterwards to 694 ** retrieve the information gathered. 695 ** 696 ** This SQL function usually returns NULL, but might return an integer 697 ** if it wants the byte-code to do special processing. 698 ** 699 ** The R parameter is only used for STAT4 700 */ 701 static void statPush( 702 sqlite3_context *context, 703 int argc, 704 sqlite3_value **argv 705 ){ 706 int i; 707 708 /* The three function arguments */ 709 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 710 int iChng = sqlite3_value_int(argv[1]); 711 712 UNUSED_PARAMETER( argc ); 713 UNUSED_PARAMETER( context ); 714 assert( p->nCol>0 ); 715 assert( iChng<p->nCol ); 716 717 if( p->nRow==0 ){ 718 /* This is the first call to this function. Do initialization. */ 719 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 720 }else{ 721 /* Second and subsequent calls get processed here */ 722 #ifdef SQLITE_ENABLE_STAT4 723 if( p->mxSample ) samplePushPrevious(p, iChng); 724 #endif 725 726 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 727 ** to the current row of the index. */ 728 for(i=0; i<iChng; i++){ 729 p->current.anEq[i]++; 730 } 731 for(i=iChng; i<p->nCol; i++){ 732 p->current.anDLt[i]++; 733 #ifdef SQLITE_ENABLE_STAT4 734 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i]; 735 #endif 736 p->current.anEq[i] = 1; 737 } 738 } 739 740 p->nRow++; 741 #ifdef SQLITE_ENABLE_STAT4 742 if( p->mxSample ){ 743 tRowcnt nLt; 744 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 745 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 746 }else{ 747 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 748 sqlite3_value_blob(argv[2])); 749 } 750 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 751 752 nLt = p->current.anLt[p->nCol-1]; 753 /* Check if this is to be a periodic sample. If so, add it. */ 754 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 755 p->current.isPSample = 1; 756 p->current.iCol = 0; 757 sampleInsert(p, &p->current, p->nCol-1); 758 p->current.isPSample = 0; 759 } 760 761 /* Update the aBest[] array. */ 762 for(i=0; i<(p->nCol-1); i++){ 763 p->current.iCol = i; 764 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 765 sampleCopy(p, &p->aBest[i], &p->current); 766 } 767 } 768 }else 769 #endif 770 if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){ 771 p->nSkipAhead++; 772 sqlite3_result_int(context, p->current.anDLt[0]>0); 773 } 774 } 775 776 static const FuncDef statPushFuncdef = { 777 2+IsStat4, /* nArg */ 778 SQLITE_UTF8, /* funcFlags */ 779 0, /* pUserData */ 780 0, /* pNext */ 781 statPush, /* xSFunc */ 782 0, /* xFinalize */ 783 0, 0, /* xValue, xInverse */ 784 "stat_push", /* zName */ 785 {0} 786 }; 787 788 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 789 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 790 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 791 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 792 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 793 794 /* 795 ** Implementation of the stat_get(P,J) SQL function. This routine is 796 ** used to query statistical information that has been gathered into 797 ** the StatAccum object by prior calls to stat_push(). The P parameter 798 ** has type BLOB but it is really just a pointer to the StatAccum object. 799 ** The content to returned is determined by the parameter J 800 ** which is one of the STAT_GET_xxxx values defined above. 801 ** 802 ** The stat_get(P,J) function is not available to generic SQL. It is 803 ** inserted as part of a manually constructed bytecode program. (See 804 ** the callStatGet() routine below.) It is guaranteed that the P 805 ** parameter will always be a pointer to a StatAccum object, never a 806 ** NULL. 807 ** 808 ** If STAT4 is not enabled, then J is always 809 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 810 ** a one-parameter function, stat_get(P), that always returns the 811 ** stat1 table entry information. 812 */ 813 static void statGet( 814 sqlite3_context *context, 815 int argc, 816 sqlite3_value **argv 817 ){ 818 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 819 #ifdef SQLITE_ENABLE_STAT4 820 /* STAT4 has a parameter on this routine. */ 821 int eCall = sqlite3_value_int(argv[1]); 822 assert( argc==2 ); 823 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 824 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 825 || eCall==STAT_GET_NDLT 826 ); 827 assert( eCall==STAT_GET_STAT1 || p->mxSample ); 828 if( eCall==STAT_GET_STAT1 ) 829 #else 830 assert( argc==1 ); 831 #endif 832 { 833 /* Return the value to store in the "stat" column of the sqlite_stat1 834 ** table for this index. 835 ** 836 ** The value is a string composed of a list of integers describing 837 ** the index. The first integer in the list is the total number of 838 ** entries in the index. There is one additional integer in the list 839 ** for each indexed column. This additional integer is an estimate of 840 ** the number of rows matched by a equality query on the index using 841 ** a key with the corresponding number of fields. In other words, 842 ** if the index is on columns (a,b) and the sqlite_stat1 value is 843 ** "100 10 2", then SQLite estimates that: 844 ** 845 ** * the index contains 100 rows, 846 ** * "WHERE a=?" matches 10 rows, and 847 ** * "WHERE a=? AND b=?" matches 2 rows. 848 ** 849 ** If D is the count of distinct values and K is the total number of 850 ** rows, then each estimate is usually computed as: 851 ** 852 ** I = (K+D-1)/D 853 ** 854 ** In other words, I is K/D rounded up to the next whole integer. 855 ** However, if I is between 1.0 and 1.1 (in other words if I is 856 ** close to 1.0 but just a little larger) then do not round up but 857 ** instead keep the I value at 1.0. 858 */ 859 sqlite3_str sStat; /* Text of the constructed "stat" line */ 860 int i; /* Loop counter */ 861 862 sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100); 863 sqlite3_str_appendf(&sStat, "%llu", 864 p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow); 865 for(i=0; i<p->nKeyCol; i++){ 866 u64 nDistinct = p->current.anDLt[i] + 1; 867 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 868 if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1; 869 sqlite3_str_appendf(&sStat, " %llu", iVal); 870 assert( p->current.anEq[i] ); 871 } 872 sqlite3ResultStrAccum(context, &sStat); 873 } 874 #ifdef SQLITE_ENABLE_STAT4 875 else if( eCall==STAT_GET_ROWID ){ 876 if( p->iGet<0 ){ 877 samplePushPrevious(p, 0); 878 p->iGet = 0; 879 } 880 if( p->iGet<p->nSample ){ 881 StatSample *pS = p->a + p->iGet; 882 if( pS->nRowid==0 ){ 883 sqlite3_result_int64(context, pS->u.iRowid); 884 }else{ 885 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 886 SQLITE_TRANSIENT); 887 } 888 } 889 }else{ 890 tRowcnt *aCnt = 0; 891 sqlite3_str sStat; 892 int i; 893 894 assert( p->iGet<p->nSample ); 895 switch( eCall ){ 896 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 897 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 898 default: { 899 aCnt = p->a[p->iGet].anDLt; 900 p->iGet++; 901 break; 902 } 903 } 904 sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100); 905 for(i=0; i<p->nCol; i++){ 906 sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]); 907 } 908 if( sStat.nChar ) sStat.nChar--; 909 sqlite3ResultStrAccum(context, &sStat); 910 } 911 #endif /* SQLITE_ENABLE_STAT4 */ 912 #ifndef SQLITE_DEBUG 913 UNUSED_PARAMETER( argc ); 914 #endif 915 } 916 static const FuncDef statGetFuncdef = { 917 1+IsStat4, /* nArg */ 918 SQLITE_UTF8, /* funcFlags */ 919 0, /* pUserData */ 920 0, /* pNext */ 921 statGet, /* xSFunc */ 922 0, /* xFinalize */ 923 0, 0, /* xValue, xInverse */ 924 "stat_get", /* zName */ 925 {0} 926 }; 927 928 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){ 929 #ifdef SQLITE_ENABLE_STAT4 930 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1); 931 #elif SQLITE_DEBUG 932 assert( iParam==STAT_GET_STAT1 ); 933 #else 934 UNUSED_PARAMETER( iParam ); 935 #endif 936 assert( regOut!=regStat && regOut!=regStat+1 ); 937 sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4, 938 &statGetFuncdef, 0); 939 } 940 941 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 942 /* Add a comment to the most recent VDBE opcode that is the name 943 ** of the k-th column of the pIdx index. 944 */ 945 static void analyzeVdbeCommentIndexWithColumnName( 946 Vdbe *v, /* Prepared statement under construction */ 947 Index *pIdx, /* Index whose column is being loaded */ 948 int k /* Which column index */ 949 ){ 950 int i; /* Index of column in the table */ 951 assert( k>=0 && k<pIdx->nColumn ); 952 i = pIdx->aiColumn[k]; 953 if( NEVER(i==XN_ROWID) ){ 954 VdbeComment((v,"%s.rowid",pIdx->zName)); 955 }else if( i==XN_EXPR ){ 956 VdbeComment((v,"%s.expr(%d)",pIdx->zName, k)); 957 }else{ 958 VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName)); 959 } 960 } 961 #else 962 # define analyzeVdbeCommentIndexWithColumnName(a,b,c) 963 #endif /* SQLITE_DEBUG */ 964 965 /* 966 ** Generate code to do an analysis of all indices associated with 967 ** a single table. 968 */ 969 static void analyzeOneTable( 970 Parse *pParse, /* Parser context */ 971 Table *pTab, /* Table whose indices are to be analyzed */ 972 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 973 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 974 int iMem, /* Available memory locations begin here */ 975 int iTab /* Next available cursor */ 976 ){ 977 sqlite3 *db = pParse->db; /* Database handle */ 978 Index *pIdx; /* An index to being analyzed */ 979 int iIdxCur; /* Cursor open on index being analyzed */ 980 int iTabCur; /* Table cursor */ 981 Vdbe *v; /* The virtual machine being built up */ 982 int i; /* Loop counter */ 983 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 984 int iDb; /* Index of database containing pTab */ 985 u8 needTableCnt = 1; /* True to count the table */ 986 int regNewRowid = iMem++; /* Rowid for the inserted record */ 987 int regStat = iMem++; /* Register to hold StatAccum object */ 988 int regChng = iMem++; /* Index of changed index field */ 989 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 990 int regTemp = iMem++; /* Temporary use register */ 991 int regTemp2 = iMem++; /* Second temporary use register */ 992 int regTabname = iMem++; /* Register containing table name */ 993 int regIdxname = iMem++; /* Register containing index name */ 994 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 995 int regPrev = iMem; /* MUST BE LAST (see below) */ 996 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 997 Table *pStat1 = 0; 998 #endif 999 1000 pParse->nMem = MAX(pParse->nMem, iMem); 1001 v = sqlite3GetVdbe(pParse); 1002 if( v==0 || NEVER(pTab==0) ){ 1003 return; 1004 } 1005 if( !IsOrdinaryTable(pTab) ){ 1006 /* Do not gather statistics on views or virtual tables */ 1007 return; 1008 } 1009 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 1010 /* Do not gather statistics on system tables */ 1011 return; 1012 } 1013 assert( sqlite3BtreeHoldsAllMutexes(db) ); 1014 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1015 assert( iDb>=0 ); 1016 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1017 #ifndef SQLITE_OMIT_AUTHORIZATION 1018 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1019 db->aDb[iDb].zDbSName ) ){ 1020 return; 1021 } 1022 #endif 1023 1024 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1025 if( db->xPreUpdateCallback ){ 1026 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 1027 if( pStat1==0 ) return; 1028 pStat1->zName = (char*)&pStat1[1]; 1029 memcpy(pStat1->zName, "sqlite_stat1", 13); 1030 pStat1->nCol = 3; 1031 pStat1->iPKey = -1; 1032 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC); 1033 } 1034 #endif 1035 1036 /* Establish a read-lock on the table at the shared-cache level. 1037 ** Open a read-only cursor on the table. Also allocate a cursor number 1038 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1039 ** this time though. */ 1040 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1041 iTabCur = iTab++; 1042 iIdxCur = iTab++; 1043 pParse->nTab = MAX(pParse->nTab, iTab); 1044 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1045 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1046 1047 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1048 int nCol; /* Number of columns in pIdx. "N" */ 1049 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1050 int addrNextRow; /* Address of "next_row:" */ 1051 const char *zIdxName; /* Name of the index */ 1052 int nColTest; /* Number of columns to test for changes */ 1053 1054 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1055 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1056 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1057 nCol = pIdx->nKeyCol; 1058 zIdxName = pTab->zName; 1059 nColTest = nCol - 1; 1060 }else{ 1061 nCol = pIdx->nColumn; 1062 zIdxName = pIdx->zName; 1063 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1064 } 1065 1066 /* Populate the register containing the index name. */ 1067 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1068 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1069 1070 /* 1071 ** Pseudo-code for loop that calls stat_push(): 1072 ** 1073 ** Rewind csr 1074 ** if eof(csr) goto end_of_scan; 1075 ** regChng = 0 1076 ** goto chng_addr_0; 1077 ** 1078 ** next_row: 1079 ** regChng = 0 1080 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1081 ** regChng = 1 1082 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1083 ** ... 1084 ** regChng = N 1085 ** goto chng_addr_N 1086 ** 1087 ** chng_addr_0: 1088 ** regPrev(0) = idx(0) 1089 ** chng_addr_1: 1090 ** regPrev(1) = idx(1) 1091 ** ... 1092 ** 1093 ** endDistinctTest: 1094 ** regRowid = idx(rowid) 1095 ** stat_push(P, regChng, regRowid) 1096 ** Next csr 1097 ** if !eof(csr) goto next_row; 1098 ** 1099 ** end_of_scan: 1100 */ 1101 1102 /* Make sure there are enough memory cells allocated to accommodate 1103 ** the regPrev array and a trailing rowid (the rowid slot is required 1104 ** when building a record to insert into the sample column of 1105 ** the sqlite_stat4 table. */ 1106 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1107 1108 /* Open a read-only cursor on the index being analyzed. */ 1109 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1110 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1111 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1112 VdbeComment((v, "%s", pIdx->zName)); 1113 1114 /* Invoke the stat_init() function. The arguments are: 1115 ** 1116 ** (1) the number of columns in the index including the rowid 1117 ** (or for a WITHOUT ROWID table, the number of PK columns), 1118 ** (2) the number of columns in the key without the rowid/pk 1119 ** (3) estimated number of rows in the index, 1120 */ 1121 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1); 1122 assert( regRowid==regStat+2 ); 1123 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid); 1124 #ifdef SQLITE_ENABLE_STAT4 1125 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1126 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp); 1127 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1128 VdbeCoverage(v); 1129 }else 1130 #endif 1131 { 1132 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1133 VdbeCoverage(v); 1134 sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1); 1135 } 1136 assert( regTemp2==regStat+4 ); 1137 sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2); 1138 sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4, 1139 &statInitFuncdef, 0); 1140 1141 /* Implementation of the following: 1142 ** 1143 ** Rewind csr 1144 ** if eof(csr) goto end_of_scan; 1145 ** regChng = 0 1146 ** goto next_push_0; 1147 ** 1148 */ 1149 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1150 addrNextRow = sqlite3VdbeCurrentAddr(v); 1151 1152 if( nColTest>0 ){ 1153 int endDistinctTest = sqlite3VdbeMakeLabel(pParse); 1154 int *aGotoChng; /* Array of jump instruction addresses */ 1155 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1156 if( aGotoChng==0 ) continue; 1157 1158 /* 1159 ** next_row: 1160 ** regChng = 0 1161 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1162 ** regChng = 1 1163 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1164 ** ... 1165 ** regChng = N 1166 ** goto endDistinctTest 1167 */ 1168 sqlite3VdbeAddOp0(v, OP_Goto); 1169 addrNextRow = sqlite3VdbeCurrentAddr(v); 1170 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1171 /* For a single-column UNIQUE index, once we have found a non-NULL 1172 ** row, we know that all the rest will be distinct, so skip 1173 ** subsequent distinctness tests. */ 1174 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1175 VdbeCoverage(v); 1176 } 1177 for(i=0; i<nColTest; i++){ 1178 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1179 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1180 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1181 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1182 aGotoChng[i] = 1183 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1184 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1185 VdbeCoverage(v); 1186 } 1187 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1188 sqlite3VdbeGoto(v, endDistinctTest); 1189 1190 1191 /* 1192 ** chng_addr_0: 1193 ** regPrev(0) = idx(0) 1194 ** chng_addr_1: 1195 ** regPrev(1) = idx(1) 1196 ** ... 1197 */ 1198 sqlite3VdbeJumpHere(v, addrNextRow-1); 1199 for(i=0; i<nColTest; i++){ 1200 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1201 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1202 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1203 } 1204 sqlite3VdbeResolveLabel(v, endDistinctTest); 1205 sqlite3DbFree(db, aGotoChng); 1206 } 1207 1208 /* 1209 ** chng_addr_N: 1210 ** regRowid = idx(rowid) // STAT4 only 1211 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only 1212 ** Next csr 1213 ** if !eof(csr) goto next_row; 1214 */ 1215 #ifdef SQLITE_ENABLE_STAT4 1216 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1217 assert( regRowid==(regStat+2) ); 1218 if( HasRowid(pTab) ){ 1219 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1220 }else{ 1221 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1222 int j, k, regKey; 1223 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1224 for(j=0; j<pPk->nKeyCol; j++){ 1225 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1226 assert( k>=0 && k<pIdx->nColumn ); 1227 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1228 analyzeVdbeCommentIndexWithColumnName(v,pIdx,k); 1229 } 1230 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1231 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1232 } 1233 } 1234 #endif 1235 assert( regChng==(regStat+1) ); 1236 { 1237 sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4, 1238 &statPushFuncdef, 0); 1239 if( db->nAnalysisLimit ){ 1240 int j1, j2, j3; 1241 j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v); 1242 j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v); 1243 j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1); 1244 VdbeCoverage(v); 1245 sqlite3VdbeJumpHere(v, j1); 1246 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1247 sqlite3VdbeJumpHere(v, j2); 1248 sqlite3VdbeJumpHere(v, j3); 1249 }else{ 1250 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1251 } 1252 } 1253 1254 /* Add the entry to the stat1 table. */ 1255 callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1); 1256 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1257 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1258 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1259 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1260 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1261 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1262 #endif 1263 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1264 1265 /* Add the entries to the stat4 table. */ 1266 #ifdef SQLITE_ENABLE_STAT4 1267 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){ 1268 int regEq = regStat1; 1269 int regLt = regStat1+1; 1270 int regDLt = regStat1+2; 1271 int regSample = regStat1+3; 1272 int regCol = regStat1+4; 1273 int regSampleRowid = regCol + nCol; 1274 int addrNext; 1275 int addrIsNull; 1276 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1277 1278 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1279 1280 addrNext = sqlite3VdbeCurrentAddr(v); 1281 callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid); 1282 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1283 VdbeCoverage(v); 1284 callStatGet(pParse, regStat, STAT_GET_NEQ, regEq); 1285 callStatGet(pParse, regStat, STAT_GET_NLT, regLt); 1286 callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt); 1287 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1288 VdbeCoverage(v); 1289 for(i=0; i<nCol; i++){ 1290 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1291 } 1292 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1293 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1294 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1295 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1296 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1297 sqlite3VdbeJumpHere(v, addrIsNull); 1298 } 1299 #endif /* SQLITE_ENABLE_STAT4 */ 1300 1301 /* End of analysis */ 1302 sqlite3VdbeJumpHere(v, addrRewind); 1303 } 1304 1305 1306 /* Create a single sqlite_stat1 entry containing NULL as the index 1307 ** name and the row count as the content. 1308 */ 1309 if( pOnlyIdx==0 && needTableCnt ){ 1310 VdbeComment((v, "%s", pTab->zName)); 1311 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1312 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1313 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1314 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1315 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1316 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1317 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1318 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1319 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1320 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1321 #endif 1322 sqlite3VdbeJumpHere(v, jZeroRows); 1323 } 1324 } 1325 1326 1327 /* 1328 ** Generate code that will cause the most recent index analysis to 1329 ** be loaded into internal hash tables where is can be used. 1330 */ 1331 static void loadAnalysis(Parse *pParse, int iDb){ 1332 Vdbe *v = sqlite3GetVdbe(pParse); 1333 if( v ){ 1334 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1335 } 1336 } 1337 1338 /* 1339 ** Generate code that will do an analysis of an entire database 1340 */ 1341 static void analyzeDatabase(Parse *pParse, int iDb){ 1342 sqlite3 *db = pParse->db; 1343 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1344 HashElem *k; 1345 int iStatCur; 1346 int iMem; 1347 int iTab; 1348 1349 sqlite3BeginWriteOperation(pParse, 0, iDb); 1350 iStatCur = pParse->nTab; 1351 pParse->nTab += 3; 1352 openStatTable(pParse, iDb, iStatCur, 0, 0); 1353 iMem = pParse->nMem+1; 1354 iTab = pParse->nTab; 1355 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1356 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1357 Table *pTab = (Table*)sqliteHashData(k); 1358 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1359 } 1360 loadAnalysis(pParse, iDb); 1361 } 1362 1363 /* 1364 ** Generate code that will do an analysis of a single table in 1365 ** a database. If pOnlyIdx is not NULL then it is a single index 1366 ** in pTab that should be analyzed. 1367 */ 1368 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1369 int iDb; 1370 int iStatCur; 1371 1372 assert( pTab!=0 ); 1373 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1374 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1375 sqlite3BeginWriteOperation(pParse, 0, iDb); 1376 iStatCur = pParse->nTab; 1377 pParse->nTab += 3; 1378 if( pOnlyIdx ){ 1379 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1380 }else{ 1381 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1382 } 1383 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1384 loadAnalysis(pParse, iDb); 1385 } 1386 1387 /* 1388 ** Generate code for the ANALYZE command. The parser calls this routine 1389 ** when it recognizes an ANALYZE command. 1390 ** 1391 ** ANALYZE -- 1 1392 ** ANALYZE <database> -- 2 1393 ** ANALYZE ?<database>.?<tablename> -- 3 1394 ** 1395 ** Form 1 causes all indices in all attached databases to be analyzed. 1396 ** Form 2 analyzes all indices the single database named. 1397 ** Form 3 analyzes all indices associated with the named table. 1398 */ 1399 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1400 sqlite3 *db = pParse->db; 1401 int iDb; 1402 int i; 1403 char *z, *zDb; 1404 Table *pTab; 1405 Index *pIdx; 1406 Token *pTableName; 1407 Vdbe *v; 1408 1409 /* Read the database schema. If an error occurs, leave an error message 1410 ** and code in pParse and return NULL. */ 1411 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1412 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1413 return; 1414 } 1415 1416 assert( pName2!=0 || pName1==0 ); 1417 if( pName1==0 ){ 1418 /* Form 1: Analyze everything */ 1419 for(i=0; i<db->nDb; i++){ 1420 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1421 analyzeDatabase(pParse, i); 1422 } 1423 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1424 /* Analyze the schema named as the argument */ 1425 analyzeDatabase(pParse, iDb); 1426 }else{ 1427 /* Form 3: Analyze the table or index named as an argument */ 1428 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1429 if( iDb>=0 ){ 1430 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1431 z = sqlite3NameFromToken(db, pTableName); 1432 if( z ){ 1433 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1434 analyzeTable(pParse, pIdx->pTable, pIdx); 1435 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1436 analyzeTable(pParse, pTab, 0); 1437 } 1438 sqlite3DbFree(db, z); 1439 } 1440 } 1441 } 1442 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1443 sqlite3VdbeAddOp0(v, OP_Expire); 1444 } 1445 } 1446 1447 /* 1448 ** Used to pass information from the analyzer reader through to the 1449 ** callback routine. 1450 */ 1451 typedef struct analysisInfo analysisInfo; 1452 struct analysisInfo { 1453 sqlite3 *db; 1454 const char *zDatabase; 1455 }; 1456 1457 /* 1458 ** The first argument points to a nul-terminated string containing a 1459 ** list of space separated integers. Read the first nOut of these into 1460 ** the array aOut[]. 1461 */ 1462 static void decodeIntArray( 1463 char *zIntArray, /* String containing int array to decode */ 1464 int nOut, /* Number of slots in aOut[] */ 1465 tRowcnt *aOut, /* Store integers here */ 1466 LogEst *aLog, /* Or, if aOut==0, here */ 1467 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1468 ){ 1469 char *z = zIntArray; 1470 int c; 1471 int i; 1472 tRowcnt v; 1473 1474 #ifdef SQLITE_ENABLE_STAT4 1475 if( z==0 ) z = ""; 1476 #else 1477 assert( z!=0 ); 1478 #endif 1479 for(i=0; *z && i<nOut; i++){ 1480 v = 0; 1481 while( (c=z[0])>='0' && c<='9' ){ 1482 v = v*10 + c - '0'; 1483 z++; 1484 } 1485 #ifdef SQLITE_ENABLE_STAT4 1486 if( aOut ) aOut[i] = v; 1487 if( aLog ) aLog[i] = sqlite3LogEst(v); 1488 #else 1489 assert( aOut==0 ); 1490 UNUSED_PARAMETER(aOut); 1491 assert( aLog!=0 ); 1492 aLog[i] = sqlite3LogEst(v); 1493 #endif 1494 if( *z==' ' ) z++; 1495 } 1496 #ifndef SQLITE_ENABLE_STAT4 1497 assert( pIndex!=0 ); { 1498 #else 1499 if( pIndex ){ 1500 #endif 1501 pIndex->bUnordered = 0; 1502 pIndex->noSkipScan = 0; 1503 while( z[0] ){ 1504 if( sqlite3_strglob("unordered*", z)==0 ){ 1505 pIndex->bUnordered = 1; 1506 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1507 int sz = sqlite3Atoi(z+3); 1508 if( sz<2 ) sz = 2; 1509 pIndex->szIdxRow = sqlite3LogEst(sz); 1510 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1511 pIndex->noSkipScan = 1; 1512 } 1513 #ifdef SQLITE_ENABLE_COSTMULT 1514 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1515 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1516 } 1517 #endif 1518 while( z[0]!=0 && z[0]!=' ' ) z++; 1519 while( z[0]==' ' ) z++; 1520 } 1521 } 1522 } 1523 1524 /* 1525 ** This callback is invoked once for each index when reading the 1526 ** sqlite_stat1 table. 1527 ** 1528 ** argv[0] = name of the table 1529 ** argv[1] = name of the index (might be NULL) 1530 ** argv[2] = results of analysis - on integer for each column 1531 ** 1532 ** Entries for which argv[1]==NULL simply record the number of rows in 1533 ** the table. 1534 */ 1535 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1536 analysisInfo *pInfo = (analysisInfo*)pData; 1537 Index *pIndex; 1538 Table *pTable; 1539 const char *z; 1540 1541 assert( argc==3 ); 1542 UNUSED_PARAMETER2(NotUsed, argc); 1543 1544 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1545 return 0; 1546 } 1547 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1548 if( pTable==0 ){ 1549 return 0; 1550 } 1551 if( argv[1]==0 ){ 1552 pIndex = 0; 1553 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1554 pIndex = sqlite3PrimaryKeyIndex(pTable); 1555 }else{ 1556 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1557 } 1558 z = argv[2]; 1559 1560 if( pIndex ){ 1561 tRowcnt *aiRowEst = 0; 1562 int nCol = pIndex->nKeyCol+1; 1563 #ifdef SQLITE_ENABLE_STAT4 1564 /* Index.aiRowEst may already be set here if there are duplicate 1565 ** sqlite_stat1 entries for this index. In that case just clobber 1566 ** the old data with the new instead of allocating a new array. */ 1567 if( pIndex->aiRowEst==0 ){ 1568 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1569 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1570 } 1571 aiRowEst = pIndex->aiRowEst; 1572 #endif 1573 pIndex->bUnordered = 0; 1574 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1575 pIndex->hasStat1 = 1; 1576 if( pIndex->pPartIdxWhere==0 ){ 1577 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1578 pTable->tabFlags |= TF_HasStat1; 1579 } 1580 }else{ 1581 Index fakeIdx; 1582 fakeIdx.szIdxRow = pTable->szTabRow; 1583 #ifdef SQLITE_ENABLE_COSTMULT 1584 fakeIdx.pTable = pTable; 1585 #endif 1586 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1587 pTable->szTabRow = fakeIdx.szIdxRow; 1588 pTable->tabFlags |= TF_HasStat1; 1589 } 1590 1591 return 0; 1592 } 1593 1594 /* 1595 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1596 ** and its contents. 1597 */ 1598 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1599 #ifdef SQLITE_ENABLE_STAT4 1600 if( pIdx->aSample ){ 1601 int j; 1602 for(j=0; j<pIdx->nSample; j++){ 1603 IndexSample *p = &pIdx->aSample[j]; 1604 sqlite3DbFree(db, p->p); 1605 } 1606 sqlite3DbFree(db, pIdx->aSample); 1607 } 1608 if( db && db->pnBytesFreed==0 ){ 1609 pIdx->nSample = 0; 1610 pIdx->aSample = 0; 1611 } 1612 #else 1613 UNUSED_PARAMETER(db); 1614 UNUSED_PARAMETER(pIdx); 1615 #endif /* SQLITE_ENABLE_STAT4 */ 1616 } 1617 1618 #ifdef SQLITE_ENABLE_STAT4 1619 /* 1620 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1621 ** stored in pIdx->aSample[]. 1622 */ 1623 static void initAvgEq(Index *pIdx){ 1624 if( pIdx ){ 1625 IndexSample *aSample = pIdx->aSample; 1626 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1627 int iCol; 1628 int nCol = 1; 1629 if( pIdx->nSampleCol>1 ){ 1630 /* If this is stat4 data, then calculate aAvgEq[] values for all 1631 ** sample columns except the last. The last is always set to 1, as 1632 ** once the trailing PK fields are considered all index keys are 1633 ** unique. */ 1634 nCol = pIdx->nSampleCol-1; 1635 pIdx->aAvgEq[nCol] = 1; 1636 } 1637 for(iCol=0; iCol<nCol; iCol++){ 1638 int nSample = pIdx->nSample; 1639 int i; /* Used to iterate through samples */ 1640 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1641 tRowcnt avgEq = 0; 1642 tRowcnt nRow; /* Number of rows in index */ 1643 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1644 i64 nDist100; /* Number of distinct values in index */ 1645 1646 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1647 nRow = pFinal->anLt[iCol]; 1648 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1649 nSample--; 1650 }else{ 1651 nRow = pIdx->aiRowEst[0]; 1652 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1653 } 1654 pIdx->nRowEst0 = nRow; 1655 1656 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1657 ** occur in the stat4 table for this index. Set sumEq to the sum of 1658 ** the nEq values for column iCol for the same set (adding the value 1659 ** only once where there exist duplicate prefixes). */ 1660 for(i=0; i<nSample; i++){ 1661 if( i==(pIdx->nSample-1) 1662 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1663 ){ 1664 sumEq += aSample[i].anEq[iCol]; 1665 nSum100 += 100; 1666 } 1667 } 1668 1669 if( nDist100>nSum100 && sumEq<nRow ){ 1670 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1671 } 1672 if( avgEq==0 ) avgEq = 1; 1673 pIdx->aAvgEq[iCol] = avgEq; 1674 } 1675 } 1676 } 1677 1678 /* 1679 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1680 ** is supplied instead, find the PRIMARY KEY index for that table. 1681 */ 1682 static Index *findIndexOrPrimaryKey( 1683 sqlite3 *db, 1684 const char *zName, 1685 const char *zDb 1686 ){ 1687 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1688 if( pIdx==0 ){ 1689 Table *pTab = sqlite3FindTable(db, zName, zDb); 1690 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1691 } 1692 return pIdx; 1693 } 1694 1695 /* 1696 ** Load the content from either the sqlite_stat4 1697 ** into the relevant Index.aSample[] arrays. 1698 ** 1699 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1700 ** data equivalent to the following: 1701 ** 1702 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1703 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1704 ** 1705 ** where %Q is replaced with the database name before the SQL is executed. 1706 */ 1707 static int loadStatTbl( 1708 sqlite3 *db, /* Database handle */ 1709 const char *zSql1, /* SQL statement 1 (see above) */ 1710 const char *zSql2, /* SQL statement 2 (see above) */ 1711 const char *zDb /* Database name (e.g. "main") */ 1712 ){ 1713 int rc; /* Result codes from subroutines */ 1714 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1715 char *zSql; /* Text of the SQL statement */ 1716 Index *pPrevIdx = 0; /* Previous index in the loop */ 1717 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1718 1719 assert( db->lookaside.bDisable ); 1720 zSql = sqlite3MPrintf(db, zSql1, zDb); 1721 if( !zSql ){ 1722 return SQLITE_NOMEM_BKPT; 1723 } 1724 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1725 sqlite3DbFree(db, zSql); 1726 if( rc ) return rc; 1727 1728 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1729 int nIdxCol = 1; /* Number of columns in stat4 records */ 1730 1731 char *zIndex; /* Index name */ 1732 Index *pIdx; /* Pointer to the index object */ 1733 int nSample; /* Number of samples */ 1734 int nByte; /* Bytes of space required */ 1735 int i; /* Bytes of space required */ 1736 tRowcnt *pSpace; 1737 1738 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1739 if( zIndex==0 ) continue; 1740 nSample = sqlite3_column_int(pStmt, 1); 1741 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1742 assert( pIdx==0 || pIdx->nSample==0 ); 1743 if( pIdx==0 ) continue; 1744 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1745 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1746 nIdxCol = pIdx->nKeyCol; 1747 }else{ 1748 nIdxCol = pIdx->nColumn; 1749 } 1750 pIdx->nSampleCol = nIdxCol; 1751 nByte = sizeof(IndexSample) * nSample; 1752 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1753 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1754 1755 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1756 if( pIdx->aSample==0 ){ 1757 sqlite3_finalize(pStmt); 1758 return SQLITE_NOMEM_BKPT; 1759 } 1760 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1761 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1762 pIdx->pTable->tabFlags |= TF_HasStat4; 1763 for(i=0; i<nSample; i++){ 1764 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1765 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1766 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1767 } 1768 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1769 } 1770 rc = sqlite3_finalize(pStmt); 1771 if( rc ) return rc; 1772 1773 zSql = sqlite3MPrintf(db, zSql2, zDb); 1774 if( !zSql ){ 1775 return SQLITE_NOMEM_BKPT; 1776 } 1777 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1778 sqlite3DbFree(db, zSql); 1779 if( rc ) return rc; 1780 1781 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1782 char *zIndex; /* Index name */ 1783 Index *pIdx; /* Pointer to the index object */ 1784 int nCol = 1; /* Number of columns in index */ 1785 1786 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1787 if( zIndex==0 ) continue; 1788 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1789 if( pIdx==0 ) continue; 1790 /* This next condition is true if data has already been loaded from 1791 ** the sqlite_stat4 table. */ 1792 nCol = pIdx->nSampleCol; 1793 if( pIdx!=pPrevIdx ){ 1794 initAvgEq(pPrevIdx); 1795 pPrevIdx = pIdx; 1796 } 1797 pSample = &pIdx->aSample[pIdx->nSample]; 1798 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1799 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1800 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1801 1802 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1803 ** This is in case the sample record is corrupted. In that case, the 1804 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1805 ** end of the allocated buffer before it realizes it is dealing with 1806 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1807 ** a buffer overread. */ 1808 pSample->n = sqlite3_column_bytes(pStmt, 4); 1809 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1810 if( pSample->p==0 ){ 1811 sqlite3_finalize(pStmt); 1812 return SQLITE_NOMEM_BKPT; 1813 } 1814 if( pSample->n ){ 1815 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1816 } 1817 pIdx->nSample++; 1818 } 1819 rc = sqlite3_finalize(pStmt); 1820 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1821 return rc; 1822 } 1823 1824 /* 1825 ** Load content from the sqlite_stat4 table into 1826 ** the Index.aSample[] arrays of all indices. 1827 */ 1828 static int loadStat4(sqlite3 *db, const char *zDb){ 1829 int rc = SQLITE_OK; /* Result codes from subroutines */ 1830 const Table *pStat4; 1831 1832 assert( db->lookaside.bDisable ); 1833 if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0 1834 && IsOrdinaryTable(pStat4) 1835 ){ 1836 rc = loadStatTbl(db, 1837 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1838 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1839 zDb 1840 ); 1841 } 1842 return rc; 1843 } 1844 #endif /* SQLITE_ENABLE_STAT4 */ 1845 1846 /* 1847 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The 1848 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1849 ** arrays. The contents of sqlite_stat4 are used to populate the 1850 ** Index.aSample[] arrays. 1851 ** 1852 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1853 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 1854 ** during compilation and the sqlite_stat4 table is present, no data is 1855 ** read from it. 1856 ** 1857 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the 1858 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1859 ** returned. However, in this case, data is read from the sqlite_stat1 1860 ** table (if it is present) before returning. 1861 ** 1862 ** If an OOM error occurs, this function always sets db->mallocFailed. 1863 ** This means if the caller does not care about other errors, the return 1864 ** code may be ignored. 1865 */ 1866 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1867 analysisInfo sInfo; 1868 HashElem *i; 1869 char *zSql; 1870 int rc = SQLITE_OK; 1871 Schema *pSchema = db->aDb[iDb].pSchema; 1872 const Table *pStat1; 1873 1874 assert( iDb>=0 && iDb<db->nDb ); 1875 assert( db->aDb[iDb].pBt!=0 ); 1876 1877 /* Clear any prior statistics */ 1878 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1879 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1880 Table *pTab = sqliteHashData(i); 1881 pTab->tabFlags &= ~TF_HasStat1; 1882 } 1883 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1884 Index *pIdx = sqliteHashData(i); 1885 pIdx->hasStat1 = 0; 1886 #ifdef SQLITE_ENABLE_STAT4 1887 sqlite3DeleteIndexSamples(db, pIdx); 1888 pIdx->aSample = 0; 1889 #endif 1890 } 1891 1892 /* Load new statistics out of the sqlite_stat1 table */ 1893 sInfo.db = db; 1894 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1895 if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)) 1896 && IsOrdinaryTable(pStat1) 1897 ){ 1898 zSql = sqlite3MPrintf(db, 1899 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1900 if( zSql==0 ){ 1901 rc = SQLITE_NOMEM_BKPT; 1902 }else{ 1903 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1904 sqlite3DbFree(db, zSql); 1905 } 1906 } 1907 1908 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1909 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1910 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1911 Index *pIdx = sqliteHashData(i); 1912 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1913 } 1914 1915 /* Load the statistics from the sqlite_stat4 table. */ 1916 #ifdef SQLITE_ENABLE_STAT4 1917 if( rc==SQLITE_OK ){ 1918 DisableLookaside; 1919 rc = loadStat4(db, sInfo.zDatabase); 1920 EnableLookaside; 1921 } 1922 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1923 Index *pIdx = sqliteHashData(i); 1924 sqlite3_free(pIdx->aiRowEst); 1925 pIdx->aiRowEst = 0; 1926 } 1927 #endif 1928 1929 if( rc==SQLITE_NOMEM ){ 1930 sqlite3OomFault(db); 1931 } 1932 return rc; 1933 } 1934 1935 1936 #endif /* SQLITE_OMIT_ANALYZE */ 1937