xref: /sqlite-3.40.0/src/analyze.c (revision e99cb2da)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated.  The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later.  STAT4 is the only variant that is still
36 ** supported.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 #else
148 # define IsStat4     0
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
151 #endif
152 
153 /*
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
156 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
158 **
159 ** If the sqlite_statN tables do not previously exist, it is created.
160 **
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
165 */
166 static void openStatTable(
167   Parse *pParse,          /* Parsing context */
168   int iDb,                /* The database we are looking in */
169   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
170   const char *zWhere,     /* Delete entries for this table or index */
171   const char *zWhereType  /* Either "tbl" or "idx" */
172 ){
173   static const struct {
174     const char *zName;
175     const char *zCols;
176   } aTable[] = {
177     { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
180 #else
181     { "sqlite_stat4", 0 },
182 #endif
183     { "sqlite_stat3", 0 },
184   };
185   int i;
186   sqlite3 *db = pParse->db;
187   Db *pDb;
188   Vdbe *v = sqlite3GetVdbe(pParse);
189   int aRoot[ArraySize(aTable)];
190   u8 aCreateTbl[ArraySize(aTable)];
191 
192   if( v==0 ) return;
193   assert( sqlite3BtreeHoldsAllMutexes(db) );
194   assert( sqlite3VdbeDb(v)==db );
195   pDb = &db->aDb[iDb];
196 
197   /* Create new statistic tables if they do not exist, or clear them
198   ** if they do already exist.
199   */
200   for(i=0; i<ArraySize(aTable); i++){
201     const char *zTab = aTable[i].zName;
202     Table *pStat;
203     if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
204       if( aTable[i].zCols ){
205         /* The sqlite_statN table does not exist. Create it. Note that a
206         ** side-effect of the CREATE TABLE statement is to leave the rootpage
207         ** of the new table in register pParse->regRoot. This is important
208         ** because the OpenWrite opcode below will be needing it. */
209         sqlite3NestedParse(pParse,
210             "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
211         );
212         aRoot[i] = pParse->regRoot;
213         aCreateTbl[i] = OPFLAG_P2ISREG;
214       }
215     }else{
216       /* The table already exists. If zWhere is not NULL, delete all entries
217       ** associated with the table zWhere. If zWhere is NULL, delete the
218       ** entire contents of the table. */
219       aRoot[i] = pStat->tnum;
220       aCreateTbl[i] = 0;
221       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
222       if( zWhere ){
223         sqlite3NestedParse(pParse,
224            "DELETE FROM %Q.%s WHERE %s=%Q",
225            pDb->zDbSName, zTab, zWhereType, zWhere
226         );
227 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
228       }else if( db->xPreUpdateCallback ){
229         sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
230 #endif
231       }else{
232         /* The sqlite_stat[134] table already exists.  Delete all rows. */
233         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
234       }
235     }
236   }
237 
238   /* Open the sqlite_stat[134] tables for writing. */
239   for(i=0; aTable[i].zCols; i++){
240     assert( i<ArraySize(aTable) );
241     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
242     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
243     VdbeComment((v, aTable[i].zName));
244   }
245 }
246 
247 /*
248 ** Recommended number of samples for sqlite_stat4
249 */
250 #ifndef SQLITE_STAT4_SAMPLES
251 # define SQLITE_STAT4_SAMPLES 24
252 #endif
253 
254 /*
255 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
256 ** share an instance of the following structure to hold their state
257 ** information.
258 */
259 typedef struct Stat4Accum Stat4Accum;
260 typedef struct Stat4Sample Stat4Sample;
261 struct Stat4Sample {
262   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
263   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
264 #ifdef SQLITE_ENABLE_STAT4
265   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
266   union {
267     i64 iRowid;                     /* Rowid in main table of the key */
268     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
269   } u;
270   u32 nRowid;                     /* Sizeof aRowid[] */
271   u8 isPSample;                   /* True if a periodic sample */
272   int iCol;                       /* If !isPSample, the reason for inclusion */
273   u32 iHash;                      /* Tiebreaker hash */
274 #endif
275 };
276 struct Stat4Accum {
277   tRowcnt nRow;             /* Number of rows in the entire table */
278   tRowcnt nPSample;         /* How often to do a periodic sample */
279   int nCol;                 /* Number of columns in index + pk/rowid */
280   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
281   int mxSample;             /* Maximum number of samples to accumulate */
282   Stat4Sample current;      /* Current row as a Stat4Sample */
283   u32 iPrn;                 /* Pseudo-random number used for sampling */
284   Stat4Sample *aBest;       /* Array of nCol best samples */
285   int iMin;                 /* Index in a[] of entry with minimum score */
286   int nSample;              /* Current number of samples */
287   int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
288   int iGet;                 /* Index of current sample accessed by stat_get() */
289   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
290   sqlite3 *db;              /* Database connection, for malloc() */
291 };
292 
293 /* Reclaim memory used by a Stat4Sample
294 */
295 #ifdef SQLITE_ENABLE_STAT4
296 static void sampleClear(sqlite3 *db, Stat4Sample *p){
297   assert( db!=0 );
298   if( p->nRowid ){
299     sqlite3DbFree(db, p->u.aRowid);
300     p->nRowid = 0;
301   }
302 }
303 #endif
304 
305 /* Initialize the BLOB value of a ROWID
306 */
307 #ifdef SQLITE_ENABLE_STAT4
308 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
309   assert( db!=0 );
310   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
311   p->u.aRowid = sqlite3DbMallocRawNN(db, n);
312   if( p->u.aRowid ){
313     p->nRowid = n;
314     memcpy(p->u.aRowid, pData, n);
315   }else{
316     p->nRowid = 0;
317   }
318 }
319 #endif
320 
321 /* Initialize the INTEGER value of a ROWID.
322 */
323 #ifdef SQLITE_ENABLE_STAT4
324 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
325   assert( db!=0 );
326   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
327   p->nRowid = 0;
328   p->u.iRowid = iRowid;
329 }
330 #endif
331 
332 
333 /*
334 ** Copy the contents of object (*pFrom) into (*pTo).
335 */
336 #ifdef SQLITE_ENABLE_STAT4
337 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
338   pTo->isPSample = pFrom->isPSample;
339   pTo->iCol = pFrom->iCol;
340   pTo->iHash = pFrom->iHash;
341   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
342   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
343   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
344   if( pFrom->nRowid ){
345     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
346   }else{
347     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
348   }
349 }
350 #endif
351 
352 /*
353 ** Reclaim all memory of a Stat4Accum structure.
354 */
355 static void stat4Destructor(void *pOld){
356   Stat4Accum *p = (Stat4Accum*)pOld;
357 #ifdef SQLITE_ENABLE_STAT4
358   int i;
359   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
360   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
361   sampleClear(p->db, &p->current);
362 #endif
363   sqlite3DbFree(p->db, p);
364 }
365 
366 /*
367 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
368 ** are:
369 **     N:    The number of columns in the index including the rowid/pk (note 1)
370 **     K:    The number of columns in the index excluding the rowid/pk.
371 **     C:    The number of rows in the index (note 2)
372 **
373 ** Note 1:  In the special case of the covering index that implements a
374 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
375 ** total number of columns in the table.
376 **
377 ** Note 2:  C is only used for STAT4.
378 **
379 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
380 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
381 ** PRIMARY KEY of the table.  The covering index that implements the
382 ** original WITHOUT ROWID table as N==K as a special case.
383 **
384 ** This routine allocates the Stat4Accum object in heap memory. The return
385 ** value is a pointer to the Stat4Accum object.  The datatype of the
386 ** return value is BLOB, but it is really just a pointer to the Stat4Accum
387 ** object.
388 */
389 static void statInit(
390   sqlite3_context *context,
391   int argc,
392   sqlite3_value **argv
393 ){
394   Stat4Accum *p;
395   int nCol;                       /* Number of columns in index being sampled */
396   int nKeyCol;                    /* Number of key columns */
397   int nColUp;                     /* nCol rounded up for alignment */
398   int n;                          /* Bytes of space to allocate */
399   sqlite3 *db;                    /* Database connection */
400 #ifdef SQLITE_ENABLE_STAT4
401   int mxSample = SQLITE_STAT4_SAMPLES;
402 #endif
403 
404   /* Decode the three function arguments */
405   UNUSED_PARAMETER(argc);
406   nCol = sqlite3_value_int(argv[0]);
407   assert( nCol>0 );
408   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
409   nKeyCol = sqlite3_value_int(argv[1]);
410   assert( nKeyCol<=nCol );
411   assert( nKeyCol>0 );
412 
413   /* Allocate the space required for the Stat4Accum object */
414   n = sizeof(*p)
415     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
416     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
417 #ifdef SQLITE_ENABLE_STAT4
418     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
419     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
420     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
421 #endif
422   ;
423   db = sqlite3_context_db_handle(context);
424   p = sqlite3DbMallocZero(db, n);
425   if( p==0 ){
426     sqlite3_result_error_nomem(context);
427     return;
428   }
429 
430   p->db = db;
431   p->nRow = 0;
432   p->nCol = nCol;
433   p->nKeyCol = nKeyCol;
434   p->current.anDLt = (tRowcnt*)&p[1];
435   p->current.anEq = &p->current.anDLt[nColUp];
436 
437 #ifdef SQLITE_ENABLE_STAT4
438   {
439     u8 *pSpace;                     /* Allocated space not yet assigned */
440     int i;                          /* Used to iterate through p->aSample[] */
441 
442     p->iGet = -1;
443     p->mxSample = mxSample;
444     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
445     p->current.anLt = &p->current.anEq[nColUp];
446     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
447 
448     /* Set up the Stat4Accum.a[] and aBest[] arrays */
449     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
450     p->aBest = &p->a[mxSample];
451     pSpace = (u8*)(&p->a[mxSample+nCol]);
452     for(i=0; i<(mxSample+nCol); i++){
453       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
454       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
455       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
456     }
457     assert( (pSpace - (u8*)p)==n );
458 
459     for(i=0; i<nCol; i++){
460       p->aBest[i].iCol = i;
461     }
462   }
463 #endif
464 
465   /* Return a pointer to the allocated object to the caller.  Note that
466   ** only the pointer (the 2nd parameter) matters.  The size of the object
467   ** (given by the 3rd parameter) is never used and can be any positive
468   ** value. */
469   sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
470 }
471 static const FuncDef statInitFuncdef = {
472   2+IsStat4,       /* nArg */
473   SQLITE_UTF8,     /* funcFlags */
474   0,               /* pUserData */
475   0,               /* pNext */
476   statInit,        /* xSFunc */
477   0,               /* xFinalize */
478   0, 0,            /* xValue, xInverse */
479   "stat_init",     /* zName */
480   {0}
481 };
482 
483 #ifdef SQLITE_ENABLE_STAT4
484 /*
485 ** pNew and pOld are both candidate non-periodic samples selected for
486 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
487 ** considering only any trailing columns and the sample hash value, this
488 ** function returns true if sample pNew is to be preferred over pOld.
489 ** In other words, if we assume that the cardinalities of the selected
490 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
491 **
492 ** This function assumes that for each argument sample, the contents of
493 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
494 */
495 static int sampleIsBetterPost(
496   Stat4Accum *pAccum,
497   Stat4Sample *pNew,
498   Stat4Sample *pOld
499 ){
500   int nCol = pAccum->nCol;
501   int i;
502   assert( pNew->iCol==pOld->iCol );
503   for(i=pNew->iCol+1; i<nCol; i++){
504     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
505     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
506   }
507   if( pNew->iHash>pOld->iHash ) return 1;
508   return 0;
509 }
510 #endif
511 
512 #ifdef SQLITE_ENABLE_STAT4
513 /*
514 ** Return true if pNew is to be preferred over pOld.
515 **
516 ** This function assumes that for each argument sample, the contents of
517 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
518 */
519 static int sampleIsBetter(
520   Stat4Accum *pAccum,
521   Stat4Sample *pNew,
522   Stat4Sample *pOld
523 ){
524   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
525   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
526 
527   assert( pOld->isPSample==0 && pNew->isPSample==0 );
528   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
529 
530   if( (nEqNew>nEqOld) ) return 1;
531   if( nEqNew==nEqOld ){
532     if( pNew->iCol<pOld->iCol ) return 1;
533     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
534   }
535   return 0;
536 }
537 
538 /*
539 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
540 ** remove the least desirable sample from p->a[] to make room.
541 */
542 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
543   Stat4Sample *pSample = 0;
544   int i;
545 
546   assert( IsStat4 || nEqZero==0 );
547 
548   /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0
549   ** values in the anEq[] array of any sample in Stat4Accum.a[]. In
550   ** other words, if nMaxEqZero is n, then it is guaranteed that there
551   ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */
552   if( nEqZero>p->nMaxEqZero ){
553     p->nMaxEqZero = nEqZero;
554   }
555   if( pNew->isPSample==0 ){
556     Stat4Sample *pUpgrade = 0;
557     assert( pNew->anEq[pNew->iCol]>0 );
558 
559     /* This sample is being added because the prefix that ends in column
560     ** iCol occurs many times in the table. However, if we have already
561     ** added a sample that shares this prefix, there is no need to add
562     ** this one. Instead, upgrade the priority of the highest priority
563     ** existing sample that shares this prefix.  */
564     for(i=p->nSample-1; i>=0; i--){
565       Stat4Sample *pOld = &p->a[i];
566       if( pOld->anEq[pNew->iCol]==0 ){
567         if( pOld->isPSample ) return;
568         assert( pOld->iCol>pNew->iCol );
569         assert( sampleIsBetter(p, pNew, pOld) );
570         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
571           pUpgrade = pOld;
572         }
573       }
574     }
575     if( pUpgrade ){
576       pUpgrade->iCol = pNew->iCol;
577       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
578       goto find_new_min;
579     }
580   }
581 
582   /* If necessary, remove sample iMin to make room for the new sample. */
583   if( p->nSample>=p->mxSample ){
584     Stat4Sample *pMin = &p->a[p->iMin];
585     tRowcnt *anEq = pMin->anEq;
586     tRowcnt *anLt = pMin->anLt;
587     tRowcnt *anDLt = pMin->anDLt;
588     sampleClear(p->db, pMin);
589     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
590     pSample = &p->a[p->nSample-1];
591     pSample->nRowid = 0;
592     pSample->anEq = anEq;
593     pSample->anDLt = anDLt;
594     pSample->anLt = anLt;
595     p->nSample = p->mxSample-1;
596   }
597 
598   /* The "rows less-than" for the rowid column must be greater than that
599   ** for the last sample in the p->a[] array. Otherwise, the samples would
600   ** be out of order. */
601   assert( p->nSample==0
602        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
603 
604   /* Insert the new sample */
605   pSample = &p->a[p->nSample];
606   sampleCopy(p, pSample, pNew);
607   p->nSample++;
608 
609   /* Zero the first nEqZero entries in the anEq[] array. */
610   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
611 
612 find_new_min:
613   if( p->nSample>=p->mxSample ){
614     int iMin = -1;
615     for(i=0; i<p->mxSample; i++){
616       if( p->a[i].isPSample ) continue;
617       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
618         iMin = i;
619       }
620     }
621     assert( iMin>=0 );
622     p->iMin = iMin;
623   }
624 }
625 #endif /* SQLITE_ENABLE_STAT4 */
626 
627 /*
628 ** Field iChng of the index being scanned has changed. So at this point
629 ** p->current contains a sample that reflects the previous row of the
630 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
631 ** correct at this point.
632 */
633 static void samplePushPrevious(Stat4Accum *p, int iChng){
634 #ifdef SQLITE_ENABLE_STAT4
635   int i;
636 
637   /* Check if any samples from the aBest[] array should be pushed
638   ** into IndexSample.a[] at this point.  */
639   for(i=(p->nCol-2); i>=iChng; i--){
640     Stat4Sample *pBest = &p->aBest[i];
641     pBest->anEq[i] = p->current.anEq[i];
642     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
643       sampleInsert(p, pBest, i);
644     }
645   }
646 
647   /* Check that no sample contains an anEq[] entry with an index of
648   ** p->nMaxEqZero or greater set to zero. */
649   for(i=p->nSample-1; i>=0; i--){
650     int j;
651     for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
652   }
653 
654   /* Update the anEq[] fields of any samples already collected. */
655   if( iChng<p->nMaxEqZero ){
656     for(i=p->nSample-1; i>=0; i--){
657       int j;
658       for(j=iChng; j<p->nCol; j++){
659         if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
660       }
661     }
662     p->nMaxEqZero = iChng;
663   }
664 #endif
665 
666 #ifndef SQLITE_ENABLE_STAT4
667   UNUSED_PARAMETER( p );
668   UNUSED_PARAMETER( iChng );
669 #endif
670 }
671 
672 /*
673 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
674 ** Arguments:
675 **
676 **    P     Pointer to the Stat4Accum object created by stat_init()
677 **    C     Index of left-most column to differ from previous row
678 **    R     Rowid for the current row.  Might be a key record for
679 **          WITHOUT ROWID tables.
680 **
681 ** This SQL function always returns NULL.  It's purpose it to accumulate
682 ** statistical data and/or samples in the Stat4Accum object about the
683 ** index being analyzed.  The stat_get() SQL function will later be used to
684 ** extract relevant information for constructing the sqlite_statN tables.
685 **
686 ** The R parameter is only used for STAT4
687 */
688 static void statPush(
689   sqlite3_context *context,
690   int argc,
691   sqlite3_value **argv
692 ){
693   int i;
694 
695   /* The three function arguments */
696   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
697   int iChng = sqlite3_value_int(argv[1]);
698 
699   UNUSED_PARAMETER( argc );
700   UNUSED_PARAMETER( context );
701   assert( p->nCol>0 );
702   assert( iChng<p->nCol );
703 
704   if( p->nRow==0 ){
705     /* This is the first call to this function. Do initialization. */
706     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
707   }else{
708     /* Second and subsequent calls get processed here */
709     samplePushPrevious(p, iChng);
710 
711     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
712     ** to the current row of the index. */
713     for(i=0; i<iChng; i++){
714       p->current.anEq[i]++;
715     }
716     for(i=iChng; i<p->nCol; i++){
717       p->current.anDLt[i]++;
718 #ifdef SQLITE_ENABLE_STAT4
719       p->current.anLt[i] += p->current.anEq[i];
720 #endif
721       p->current.anEq[i] = 1;
722     }
723   }
724   p->nRow++;
725 #ifdef SQLITE_ENABLE_STAT4
726   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
727     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
728   }else{
729     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
730                                        sqlite3_value_blob(argv[2]));
731   }
732   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
733 #endif
734 
735 #ifdef SQLITE_ENABLE_STAT4
736   {
737     tRowcnt nLt = p->current.anLt[p->nCol-1];
738 
739     /* Check if this is to be a periodic sample. If so, add it. */
740     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
741       p->current.isPSample = 1;
742       p->current.iCol = 0;
743       sampleInsert(p, &p->current, p->nCol-1);
744       p->current.isPSample = 0;
745     }
746 
747     /* Update the aBest[] array. */
748     for(i=0; i<(p->nCol-1); i++){
749       p->current.iCol = i;
750       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
751         sampleCopy(p, &p->aBest[i], &p->current);
752       }
753     }
754   }
755 #endif
756 }
757 static const FuncDef statPushFuncdef = {
758   2+IsStat4,       /* nArg */
759   SQLITE_UTF8,     /* funcFlags */
760   0,               /* pUserData */
761   0,               /* pNext */
762   statPush,        /* xSFunc */
763   0,               /* xFinalize */
764   0, 0,            /* xValue, xInverse */
765   "stat_push",     /* zName */
766   {0}
767 };
768 
769 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
770 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
771 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
772 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
773 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
774 
775 /*
776 ** Implementation of the stat_get(P,J) SQL function.  This routine is
777 ** used to query statistical information that has been gathered into
778 ** the Stat4Accum object by prior calls to stat_push().  The P parameter
779 ** has type BLOB but it is really just a pointer to the Stat4Accum object.
780 ** The content to returned is determined by the parameter J
781 ** which is one of the STAT_GET_xxxx values defined above.
782 **
783 ** The stat_get(P,J) function is not available to generic SQL.  It is
784 ** inserted as part of a manually constructed bytecode program.  (See
785 ** the callStatGet() routine below.)  It is guaranteed that the P
786 ** parameter will always be a poiner to a Stat4Accum object, never a
787 ** NULL.
788 **
789 ** If STAT4 is not enabled, then J is always
790 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
791 ** a one-parameter function, stat_get(P), that always returns the
792 ** stat1 table entry information.
793 */
794 static void statGet(
795   sqlite3_context *context,
796   int argc,
797   sqlite3_value **argv
798 ){
799   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
800 #ifdef SQLITE_ENABLE_STAT4
801   /* STAT4 has a parameter on this routine. */
802   int eCall = sqlite3_value_int(argv[1]);
803   assert( argc==2 );
804   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
805        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
806        || eCall==STAT_GET_NDLT
807   );
808   if( eCall==STAT_GET_STAT1 )
809 #else
810   assert( argc==1 );
811 #endif
812   {
813     /* Return the value to store in the "stat" column of the sqlite_stat1
814     ** table for this index.
815     **
816     ** The value is a string composed of a list of integers describing
817     ** the index. The first integer in the list is the total number of
818     ** entries in the index. There is one additional integer in the list
819     ** for each indexed column. This additional integer is an estimate of
820     ** the number of rows matched by a stabbing query on the index using
821     ** a key with the corresponding number of fields. In other words,
822     ** if the index is on columns (a,b) and the sqlite_stat1 value is
823     ** "100 10 2", then SQLite estimates that:
824     **
825     **   * the index contains 100 rows,
826     **   * "WHERE a=?" matches 10 rows, and
827     **   * "WHERE a=? AND b=?" matches 2 rows.
828     **
829     ** If D is the count of distinct values and K is the total number of
830     ** rows, then each estimate is computed as:
831     **
832     **        I = (K+D-1)/D
833     */
834     char *z;
835     int i;
836 
837     char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
838     if( zRet==0 ){
839       sqlite3_result_error_nomem(context);
840       return;
841     }
842 
843     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
844     z = zRet + sqlite3Strlen30(zRet);
845     for(i=0; i<p->nKeyCol; i++){
846       u64 nDistinct = p->current.anDLt[i] + 1;
847       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
848       sqlite3_snprintf(24, z, " %llu", iVal);
849       z += sqlite3Strlen30(z);
850       assert( p->current.anEq[i] );
851     }
852     assert( z[0]=='\0' && z>zRet );
853 
854     sqlite3_result_text(context, zRet, -1, sqlite3_free);
855   }
856 #ifdef SQLITE_ENABLE_STAT4
857   else if( eCall==STAT_GET_ROWID ){
858     if( p->iGet<0 ){
859       samplePushPrevious(p, 0);
860       p->iGet = 0;
861     }
862     if( p->iGet<p->nSample ){
863       Stat4Sample *pS = p->a + p->iGet;
864       if( pS->nRowid==0 ){
865         sqlite3_result_int64(context, pS->u.iRowid);
866       }else{
867         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
868                             SQLITE_TRANSIENT);
869       }
870     }
871   }else{
872     tRowcnt *aCnt = 0;
873 
874     assert( p->iGet<p->nSample );
875     switch( eCall ){
876       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
877       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
878       default: {
879         aCnt = p->a[p->iGet].anDLt;
880         p->iGet++;
881         break;
882       }
883     }
884 
885     {
886       char *zRet = sqlite3MallocZero(p->nCol * 25);
887       if( zRet==0 ){
888         sqlite3_result_error_nomem(context);
889       }else{
890         int i;
891         char *z = zRet;
892         for(i=0; i<p->nCol; i++){
893           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
894           z += sqlite3Strlen30(z);
895         }
896         assert( z[0]=='\0' && z>zRet );
897         z[-1] = '\0';
898         sqlite3_result_text(context, zRet, -1, sqlite3_free);
899       }
900     }
901   }
902 #endif /* SQLITE_ENABLE_STAT4 */
903 #ifndef SQLITE_DEBUG
904   UNUSED_PARAMETER( argc );
905 #endif
906 }
907 static const FuncDef statGetFuncdef = {
908   1+IsStat4,       /* nArg */
909   SQLITE_UTF8,     /* funcFlags */
910   0,               /* pUserData */
911   0,               /* pNext */
912   statGet,         /* xSFunc */
913   0,               /* xFinalize */
914   0, 0,            /* xValue, xInverse */
915   "stat_get",      /* zName */
916   {0}
917 };
918 
919 static void callStatGet(Parse *pParse, int regStat4, int iParam, int regOut){
920 #ifdef SQLITE_ENABLE_STAT4
921   sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat4+1);
922 #elif SQLITE_DEBUG
923   assert( iParam==STAT_GET_STAT1 );
924 #else
925   UNUSED_PARAMETER( iParam );
926 #endif
927   assert( regOut!=regStat4 && regOut!=regStat4+1 );
928   sqlite3VdbeAddFunctionCall(pParse, 0, regStat4, regOut, 1+IsStat4,
929                              &statGetFuncdef, 0);
930 }
931 
932 /*
933 ** Generate code to do an analysis of all indices associated with
934 ** a single table.
935 */
936 static void analyzeOneTable(
937   Parse *pParse,   /* Parser context */
938   Table *pTab,     /* Table whose indices are to be analyzed */
939   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
940   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
941   int iMem,        /* Available memory locations begin here */
942   int iTab         /* Next available cursor */
943 ){
944   sqlite3 *db = pParse->db;    /* Database handle */
945   Index *pIdx;                 /* An index to being analyzed */
946   int iIdxCur;                 /* Cursor open on index being analyzed */
947   int iTabCur;                 /* Table cursor */
948   Vdbe *v;                     /* The virtual machine being built up */
949   int i;                       /* Loop counter */
950   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
951   int iDb;                     /* Index of database containing pTab */
952   u8 needTableCnt = 1;         /* True to count the table */
953   int regNewRowid = iMem++;    /* Rowid for the inserted record */
954   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
955   int regChng = iMem++;        /* Index of changed index field */
956 #ifdef SQLITE_ENABLE_STAT4
957   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
958 #endif
959   int regTemp = iMem++;        /* Temporary use register */
960   int regTabname = iMem++;     /* Register containing table name */
961   int regIdxname = iMem++;     /* Register containing index name */
962   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
963   int regPrev = iMem;          /* MUST BE LAST (see below) */
964 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
965   Table *pStat1 = 0;
966 #endif
967 
968   pParse->nMem = MAX(pParse->nMem, iMem);
969   v = sqlite3GetVdbe(pParse);
970   if( v==0 || NEVER(pTab==0) ){
971     return;
972   }
973   if( pTab->tnum==0 ){
974     /* Do not gather statistics on views or virtual tables */
975     return;
976   }
977   if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
978     /* Do not gather statistics on system tables */
979     return;
980   }
981   assert( sqlite3BtreeHoldsAllMutexes(db) );
982   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
983   assert( iDb>=0 );
984   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
985 #ifndef SQLITE_OMIT_AUTHORIZATION
986   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
987       db->aDb[iDb].zDbSName ) ){
988     return;
989   }
990 #endif
991 
992 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
993   if( db->xPreUpdateCallback ){
994     pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
995     if( pStat1==0 ) return;
996     pStat1->zName = (char*)&pStat1[1];
997     memcpy(pStat1->zName, "sqlite_stat1", 13);
998     pStat1->nCol = 3;
999     pStat1->iPKey = -1;
1000     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB);
1001   }
1002 #endif
1003 
1004   /* Establish a read-lock on the table at the shared-cache level.
1005   ** Open a read-only cursor on the table. Also allocate a cursor number
1006   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1007   ** this time though.  */
1008   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1009   iTabCur = iTab++;
1010   iIdxCur = iTab++;
1011   pParse->nTab = MAX(pParse->nTab, iTab);
1012   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1013   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1014 
1015   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1016     int nCol;                     /* Number of columns in pIdx. "N" */
1017     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1018     int addrNextRow;              /* Address of "next_row:" */
1019     const char *zIdxName;         /* Name of the index */
1020     int nColTest;                 /* Number of columns to test for changes */
1021 
1022     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1023     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1024     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1025       nCol = pIdx->nKeyCol;
1026       zIdxName = pTab->zName;
1027       nColTest = nCol - 1;
1028     }else{
1029       nCol = pIdx->nColumn;
1030       zIdxName = pIdx->zName;
1031       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1032     }
1033 
1034     /* Populate the register containing the index name. */
1035     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1036     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1037 
1038     /*
1039     ** Pseudo-code for loop that calls stat_push():
1040     **
1041     **   Rewind csr
1042     **   if eof(csr) goto end_of_scan;
1043     **   regChng = 0
1044     **   goto chng_addr_0;
1045     **
1046     **  next_row:
1047     **   regChng = 0
1048     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1049     **   regChng = 1
1050     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1051     **   ...
1052     **   regChng = N
1053     **   goto chng_addr_N
1054     **
1055     **  chng_addr_0:
1056     **   regPrev(0) = idx(0)
1057     **  chng_addr_1:
1058     **   regPrev(1) = idx(1)
1059     **  ...
1060     **
1061     **  endDistinctTest:
1062     **   regRowid = idx(rowid)
1063     **   stat_push(P, regChng, regRowid)
1064     **   Next csr
1065     **   if !eof(csr) goto next_row;
1066     **
1067     **  end_of_scan:
1068     */
1069 
1070     /* Make sure there are enough memory cells allocated to accommodate
1071     ** the regPrev array and a trailing rowid (the rowid slot is required
1072     ** when building a record to insert into the sample column of
1073     ** the sqlite_stat4 table.  */
1074     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1075 
1076     /* Open a read-only cursor on the index being analyzed. */
1077     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1078     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1079     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1080     VdbeComment((v, "%s", pIdx->zName));
1081 
1082     /* Invoke the stat_init() function. The arguments are:
1083     **
1084     **    (1) the number of columns in the index including the rowid
1085     **        (or for a WITHOUT ROWID table, the number of PK columns),
1086     **    (2) the number of columns in the key without the rowid/pk
1087     **    (3) the number of rows in the index,
1088     **
1089     **
1090     ** The third argument is only used for STAT4
1091     */
1092 #ifdef SQLITE_ENABLE_STAT4
1093     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
1094 #endif
1095     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
1096     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
1097     sqlite3VdbeAddFunctionCall(pParse, 0, regStat4+1, regStat4, 2+IsStat4,
1098                                &statInitFuncdef, 0);
1099 
1100     /* Implementation of the following:
1101     **
1102     **   Rewind csr
1103     **   if eof(csr) goto end_of_scan;
1104     **   regChng = 0
1105     **   goto next_push_0;
1106     **
1107     */
1108     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1109     VdbeCoverage(v);
1110     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1111     addrNextRow = sqlite3VdbeCurrentAddr(v);
1112 
1113     if( nColTest>0 ){
1114       int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
1115       int *aGotoChng;               /* Array of jump instruction addresses */
1116       aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1117       if( aGotoChng==0 ) continue;
1118 
1119       /*
1120       **  next_row:
1121       **   regChng = 0
1122       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1123       **   regChng = 1
1124       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1125       **   ...
1126       **   regChng = N
1127       **   goto endDistinctTest
1128       */
1129       sqlite3VdbeAddOp0(v, OP_Goto);
1130       addrNextRow = sqlite3VdbeCurrentAddr(v);
1131       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1132         /* For a single-column UNIQUE index, once we have found a non-NULL
1133         ** row, we know that all the rest will be distinct, so skip
1134         ** subsequent distinctness tests. */
1135         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1136         VdbeCoverage(v);
1137       }
1138       for(i=0; i<nColTest; i++){
1139         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1140         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1141         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1142         aGotoChng[i] =
1143         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1144         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1145         VdbeCoverage(v);
1146       }
1147       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1148       sqlite3VdbeGoto(v, endDistinctTest);
1149 
1150 
1151       /*
1152       **  chng_addr_0:
1153       **   regPrev(0) = idx(0)
1154       **  chng_addr_1:
1155       **   regPrev(1) = idx(1)
1156       **  ...
1157       */
1158       sqlite3VdbeJumpHere(v, addrNextRow-1);
1159       for(i=0; i<nColTest; i++){
1160         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1161         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1162       }
1163       sqlite3VdbeResolveLabel(v, endDistinctTest);
1164       sqlite3DbFree(db, aGotoChng);
1165     }
1166 
1167     /*
1168     **  chng_addr_N:
1169     **   regRowid = idx(rowid)            // STAT4 only
1170     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT4 only
1171     **   Next csr
1172     **   if !eof(csr) goto next_row;
1173     */
1174 #ifdef SQLITE_ENABLE_STAT4
1175     assert( regRowid==(regStat4+2) );
1176     if( HasRowid(pTab) ){
1177       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1178     }else{
1179       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1180       int j, k, regKey;
1181       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1182       for(j=0; j<pPk->nKeyCol; j++){
1183         k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1184         assert( k>=0 && k<pIdx->nColumn );
1185         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1186         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1187       }
1188       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1189       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1190     }
1191 #endif
1192     assert( regChng==(regStat4+1) );
1193     sqlite3VdbeAddFunctionCall(pParse, 1, regStat4, regTemp, 2+IsStat4,
1194                                &statPushFuncdef, 0);
1195     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1196 
1197     /* Add the entry to the stat1 table. */
1198     callStatGet(pParse, regStat4, STAT_GET_STAT1, regStat1);
1199     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1200     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1201     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1202     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1203 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1204     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1205 #endif
1206     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1207 
1208     /* Add the entries to the stat4 table. */
1209 #ifdef SQLITE_ENABLE_STAT4
1210     {
1211       int regEq = regStat1;
1212       int regLt = regStat1+1;
1213       int regDLt = regStat1+2;
1214       int regSample = regStat1+3;
1215       int regCol = regStat1+4;
1216       int regSampleRowid = regCol + nCol;
1217       int addrNext;
1218       int addrIsNull;
1219       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1220 
1221       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1222 
1223       addrNext = sqlite3VdbeCurrentAddr(v);
1224       callStatGet(pParse, regStat4, STAT_GET_ROWID, regSampleRowid);
1225       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1226       VdbeCoverage(v);
1227       callStatGet(pParse, regStat4, STAT_GET_NEQ, regEq);
1228       callStatGet(pParse, regStat4, STAT_GET_NLT, regLt);
1229       callStatGet(pParse, regStat4, STAT_GET_NDLT, regDLt);
1230       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1231       VdbeCoverage(v);
1232       for(i=0; i<nCol; i++){
1233         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1234       }
1235       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1236       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1237       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1238       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1239       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1240       sqlite3VdbeJumpHere(v, addrIsNull);
1241     }
1242 #endif /* SQLITE_ENABLE_STAT4 */
1243 
1244     /* End of analysis */
1245     sqlite3VdbeJumpHere(v, addrRewind);
1246   }
1247 
1248 
1249   /* Create a single sqlite_stat1 entry containing NULL as the index
1250   ** name and the row count as the content.
1251   */
1252   if( pOnlyIdx==0 && needTableCnt ){
1253     VdbeComment((v, "%s", pTab->zName));
1254     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1255     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1256     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1257     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1258     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1259     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1260     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1261     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1262 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1263     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1264 #endif
1265     sqlite3VdbeJumpHere(v, jZeroRows);
1266   }
1267 }
1268 
1269 
1270 /*
1271 ** Generate code that will cause the most recent index analysis to
1272 ** be loaded into internal hash tables where is can be used.
1273 */
1274 static void loadAnalysis(Parse *pParse, int iDb){
1275   Vdbe *v = sqlite3GetVdbe(pParse);
1276   if( v ){
1277     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1278   }
1279 }
1280 
1281 /*
1282 ** Generate code that will do an analysis of an entire database
1283 */
1284 static void analyzeDatabase(Parse *pParse, int iDb){
1285   sqlite3 *db = pParse->db;
1286   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1287   HashElem *k;
1288   int iStatCur;
1289   int iMem;
1290   int iTab;
1291 
1292   sqlite3BeginWriteOperation(pParse, 0, iDb);
1293   iStatCur = pParse->nTab;
1294   pParse->nTab += 3;
1295   openStatTable(pParse, iDb, iStatCur, 0, 0);
1296   iMem = pParse->nMem+1;
1297   iTab = pParse->nTab;
1298   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1299   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1300     Table *pTab = (Table*)sqliteHashData(k);
1301     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1302   }
1303   loadAnalysis(pParse, iDb);
1304 }
1305 
1306 /*
1307 ** Generate code that will do an analysis of a single table in
1308 ** a database.  If pOnlyIdx is not NULL then it is a single index
1309 ** in pTab that should be analyzed.
1310 */
1311 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1312   int iDb;
1313   int iStatCur;
1314 
1315   assert( pTab!=0 );
1316   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1317   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1318   sqlite3BeginWriteOperation(pParse, 0, iDb);
1319   iStatCur = pParse->nTab;
1320   pParse->nTab += 3;
1321   if( pOnlyIdx ){
1322     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1323   }else{
1324     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1325   }
1326   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1327   loadAnalysis(pParse, iDb);
1328 }
1329 
1330 /*
1331 ** Generate code for the ANALYZE command.  The parser calls this routine
1332 ** when it recognizes an ANALYZE command.
1333 **
1334 **        ANALYZE                            -- 1
1335 **        ANALYZE  <database>                -- 2
1336 **        ANALYZE  ?<database>.?<tablename>  -- 3
1337 **
1338 ** Form 1 causes all indices in all attached databases to be analyzed.
1339 ** Form 2 analyzes all indices the single database named.
1340 ** Form 3 analyzes all indices associated with the named table.
1341 */
1342 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1343   sqlite3 *db = pParse->db;
1344   int iDb;
1345   int i;
1346   char *z, *zDb;
1347   Table *pTab;
1348   Index *pIdx;
1349   Token *pTableName;
1350   Vdbe *v;
1351 
1352   /* Read the database schema. If an error occurs, leave an error message
1353   ** and code in pParse and return NULL. */
1354   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1355   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1356     return;
1357   }
1358 
1359   assert( pName2!=0 || pName1==0 );
1360   if( pName1==0 ){
1361     /* Form 1:  Analyze everything */
1362     for(i=0; i<db->nDb; i++){
1363       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1364       analyzeDatabase(pParse, i);
1365     }
1366   }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1367     /* Analyze the schema named as the argument */
1368     analyzeDatabase(pParse, iDb);
1369   }else{
1370     /* Form 3: Analyze the table or index named as an argument */
1371     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1372     if( iDb>=0 ){
1373       zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1374       z = sqlite3NameFromToken(db, pTableName);
1375       if( z ){
1376         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1377           analyzeTable(pParse, pIdx->pTable, pIdx);
1378         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1379           analyzeTable(pParse, pTab, 0);
1380         }
1381         sqlite3DbFree(db, z);
1382       }
1383     }
1384   }
1385   if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1386     sqlite3VdbeAddOp0(v, OP_Expire);
1387   }
1388 }
1389 
1390 /*
1391 ** Used to pass information from the analyzer reader through to the
1392 ** callback routine.
1393 */
1394 typedef struct analysisInfo analysisInfo;
1395 struct analysisInfo {
1396   sqlite3 *db;
1397   const char *zDatabase;
1398 };
1399 
1400 /*
1401 ** The first argument points to a nul-terminated string containing a
1402 ** list of space separated integers. Read the first nOut of these into
1403 ** the array aOut[].
1404 */
1405 static void decodeIntArray(
1406   char *zIntArray,       /* String containing int array to decode */
1407   int nOut,              /* Number of slots in aOut[] */
1408   tRowcnt *aOut,         /* Store integers here */
1409   LogEst *aLog,          /* Or, if aOut==0, here */
1410   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1411 ){
1412   char *z = zIntArray;
1413   int c;
1414   int i;
1415   tRowcnt v;
1416 
1417 #ifdef SQLITE_ENABLE_STAT4
1418   if( z==0 ) z = "";
1419 #else
1420   assert( z!=0 );
1421 #endif
1422   for(i=0; *z && i<nOut; i++){
1423     v = 0;
1424     while( (c=z[0])>='0' && c<='9' ){
1425       v = v*10 + c - '0';
1426       z++;
1427     }
1428 #ifdef SQLITE_ENABLE_STAT4
1429     if( aOut ) aOut[i] = v;
1430     if( aLog ) aLog[i] = sqlite3LogEst(v);
1431 #else
1432     assert( aOut==0 );
1433     UNUSED_PARAMETER(aOut);
1434     assert( aLog!=0 );
1435     aLog[i] = sqlite3LogEst(v);
1436 #endif
1437     if( *z==' ' ) z++;
1438   }
1439 #ifndef SQLITE_ENABLE_STAT4
1440   assert( pIndex!=0 ); {
1441 #else
1442   if( pIndex ){
1443 #endif
1444     pIndex->bUnordered = 0;
1445     pIndex->noSkipScan = 0;
1446     while( z[0] ){
1447       if( sqlite3_strglob("unordered*", z)==0 ){
1448         pIndex->bUnordered = 1;
1449       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1450         int sz = sqlite3Atoi(z+3);
1451         if( sz<2 ) sz = 2;
1452         pIndex->szIdxRow = sqlite3LogEst(sz);
1453       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1454         pIndex->noSkipScan = 1;
1455       }
1456 #ifdef SQLITE_ENABLE_COSTMULT
1457       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1458         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1459       }
1460 #endif
1461       while( z[0]!=0 && z[0]!=' ' ) z++;
1462       while( z[0]==' ' ) z++;
1463     }
1464   }
1465 }
1466 
1467 /*
1468 ** This callback is invoked once for each index when reading the
1469 ** sqlite_stat1 table.
1470 **
1471 **     argv[0] = name of the table
1472 **     argv[1] = name of the index (might be NULL)
1473 **     argv[2] = results of analysis - on integer for each column
1474 **
1475 ** Entries for which argv[1]==NULL simply record the number of rows in
1476 ** the table.
1477 */
1478 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1479   analysisInfo *pInfo = (analysisInfo*)pData;
1480   Index *pIndex;
1481   Table *pTable;
1482   const char *z;
1483 
1484   assert( argc==3 );
1485   UNUSED_PARAMETER2(NotUsed, argc);
1486 
1487   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1488     return 0;
1489   }
1490   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1491   if( pTable==0 ){
1492     return 0;
1493   }
1494   if( argv[1]==0 ){
1495     pIndex = 0;
1496   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1497     pIndex = sqlite3PrimaryKeyIndex(pTable);
1498   }else{
1499     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1500   }
1501   z = argv[2];
1502 
1503   if( pIndex ){
1504     tRowcnt *aiRowEst = 0;
1505     int nCol = pIndex->nKeyCol+1;
1506 #ifdef SQLITE_ENABLE_STAT4
1507     /* Index.aiRowEst may already be set here if there are duplicate
1508     ** sqlite_stat1 entries for this index. In that case just clobber
1509     ** the old data with the new instead of allocating a new array.  */
1510     if( pIndex->aiRowEst==0 ){
1511       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1512       if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1513     }
1514     aiRowEst = pIndex->aiRowEst;
1515 #endif
1516     pIndex->bUnordered = 0;
1517     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1518     pIndex->hasStat1 = 1;
1519     if( pIndex->pPartIdxWhere==0 ){
1520       pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1521       pTable->tabFlags |= TF_HasStat1;
1522     }
1523   }else{
1524     Index fakeIdx;
1525     fakeIdx.szIdxRow = pTable->szTabRow;
1526 #ifdef SQLITE_ENABLE_COSTMULT
1527     fakeIdx.pTable = pTable;
1528 #endif
1529     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1530     pTable->szTabRow = fakeIdx.szIdxRow;
1531     pTable->tabFlags |= TF_HasStat1;
1532   }
1533 
1534   return 0;
1535 }
1536 
1537 /*
1538 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1539 ** and its contents.
1540 */
1541 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1542 #ifdef SQLITE_ENABLE_STAT4
1543   if( pIdx->aSample ){
1544     int j;
1545     for(j=0; j<pIdx->nSample; j++){
1546       IndexSample *p = &pIdx->aSample[j];
1547       sqlite3DbFree(db, p->p);
1548     }
1549     sqlite3DbFree(db, pIdx->aSample);
1550   }
1551   if( db && db->pnBytesFreed==0 ){
1552     pIdx->nSample = 0;
1553     pIdx->aSample = 0;
1554   }
1555 #else
1556   UNUSED_PARAMETER(db);
1557   UNUSED_PARAMETER(pIdx);
1558 #endif /* SQLITE_ENABLE_STAT4 */
1559 }
1560 
1561 #ifdef SQLITE_ENABLE_STAT4
1562 /*
1563 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1564 ** stored in pIdx->aSample[].
1565 */
1566 static void initAvgEq(Index *pIdx){
1567   if( pIdx ){
1568     IndexSample *aSample = pIdx->aSample;
1569     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1570     int iCol;
1571     int nCol = 1;
1572     if( pIdx->nSampleCol>1 ){
1573       /* If this is stat4 data, then calculate aAvgEq[] values for all
1574       ** sample columns except the last. The last is always set to 1, as
1575       ** once the trailing PK fields are considered all index keys are
1576       ** unique.  */
1577       nCol = pIdx->nSampleCol-1;
1578       pIdx->aAvgEq[nCol] = 1;
1579     }
1580     for(iCol=0; iCol<nCol; iCol++){
1581       int nSample = pIdx->nSample;
1582       int i;                    /* Used to iterate through samples */
1583       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1584       tRowcnt avgEq = 0;
1585       tRowcnt nRow;             /* Number of rows in index */
1586       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1587       i64 nDist100;             /* Number of distinct values in index */
1588 
1589       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1590         nRow = pFinal->anLt[iCol];
1591         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1592         nSample--;
1593       }else{
1594         nRow = pIdx->aiRowEst[0];
1595         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1596       }
1597       pIdx->nRowEst0 = nRow;
1598 
1599       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1600       ** occur in the stat4 table for this index. Set sumEq to the sum of
1601       ** the nEq values for column iCol for the same set (adding the value
1602       ** only once where there exist duplicate prefixes).  */
1603       for(i=0; i<nSample; i++){
1604         if( i==(pIdx->nSample-1)
1605          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1606         ){
1607           sumEq += aSample[i].anEq[iCol];
1608           nSum100 += 100;
1609         }
1610       }
1611 
1612       if( nDist100>nSum100 && sumEq<nRow ){
1613         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1614       }
1615       if( avgEq==0 ) avgEq = 1;
1616       pIdx->aAvgEq[iCol] = avgEq;
1617     }
1618   }
1619 }
1620 
1621 /*
1622 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1623 ** is supplied instead, find the PRIMARY KEY index for that table.
1624 */
1625 static Index *findIndexOrPrimaryKey(
1626   sqlite3 *db,
1627   const char *zName,
1628   const char *zDb
1629 ){
1630   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1631   if( pIdx==0 ){
1632     Table *pTab = sqlite3FindTable(db, zName, zDb);
1633     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1634   }
1635   return pIdx;
1636 }
1637 
1638 /*
1639 ** Load the content from either the sqlite_stat4
1640 ** into the relevant Index.aSample[] arrays.
1641 **
1642 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1643 ** data equivalent to the following:
1644 **
1645 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1646 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1647 **
1648 ** where %Q is replaced with the database name before the SQL is executed.
1649 */
1650 static int loadStatTbl(
1651   sqlite3 *db,                  /* Database handle */
1652   const char *zSql1,            /* SQL statement 1 (see above) */
1653   const char *zSql2,            /* SQL statement 2 (see above) */
1654   const char *zDb               /* Database name (e.g. "main") */
1655 ){
1656   int rc;                       /* Result codes from subroutines */
1657   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1658   char *zSql;                   /* Text of the SQL statement */
1659   Index *pPrevIdx = 0;          /* Previous index in the loop */
1660   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1661 
1662   assert( db->lookaside.bDisable );
1663   zSql = sqlite3MPrintf(db, zSql1, zDb);
1664   if( !zSql ){
1665     return SQLITE_NOMEM_BKPT;
1666   }
1667   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1668   sqlite3DbFree(db, zSql);
1669   if( rc ) return rc;
1670 
1671   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1672     int nIdxCol = 1;              /* Number of columns in stat4 records */
1673 
1674     char *zIndex;   /* Index name */
1675     Index *pIdx;    /* Pointer to the index object */
1676     int nSample;    /* Number of samples */
1677     int nByte;      /* Bytes of space required */
1678     int i;          /* Bytes of space required */
1679     tRowcnt *pSpace;
1680 
1681     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1682     if( zIndex==0 ) continue;
1683     nSample = sqlite3_column_int(pStmt, 1);
1684     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1685     assert( pIdx==0 || pIdx->nSample==0 );
1686     if( pIdx==0 ) continue;
1687     assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1688     if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1689       nIdxCol = pIdx->nKeyCol;
1690     }else{
1691       nIdxCol = pIdx->nColumn;
1692     }
1693     pIdx->nSampleCol = nIdxCol;
1694     nByte = sizeof(IndexSample) * nSample;
1695     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1696     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1697 
1698     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1699     if( pIdx->aSample==0 ){
1700       sqlite3_finalize(pStmt);
1701       return SQLITE_NOMEM_BKPT;
1702     }
1703     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1704     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1705     for(i=0; i<nSample; i++){
1706       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1707       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1708       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1709     }
1710     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1711   }
1712   rc = sqlite3_finalize(pStmt);
1713   if( rc ) return rc;
1714 
1715   zSql = sqlite3MPrintf(db, zSql2, zDb);
1716   if( !zSql ){
1717     return SQLITE_NOMEM_BKPT;
1718   }
1719   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1720   sqlite3DbFree(db, zSql);
1721   if( rc ) return rc;
1722 
1723   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1724     char *zIndex;                 /* Index name */
1725     Index *pIdx;                  /* Pointer to the index object */
1726     int nCol = 1;                 /* Number of columns in index */
1727 
1728     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1729     if( zIndex==0 ) continue;
1730     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1731     if( pIdx==0 ) continue;
1732     /* This next condition is true if data has already been loaded from
1733     ** the sqlite_stat4 table. */
1734     nCol = pIdx->nSampleCol;
1735     if( pIdx!=pPrevIdx ){
1736       initAvgEq(pPrevIdx);
1737       pPrevIdx = pIdx;
1738     }
1739     pSample = &pIdx->aSample[pIdx->nSample];
1740     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1741     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1742     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1743 
1744     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1745     ** This is in case the sample record is corrupted. In that case, the
1746     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1747     ** end of the allocated buffer before it realizes it is dealing with
1748     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1749     ** a buffer overread.  */
1750     pSample->n = sqlite3_column_bytes(pStmt, 4);
1751     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1752     if( pSample->p==0 ){
1753       sqlite3_finalize(pStmt);
1754       return SQLITE_NOMEM_BKPT;
1755     }
1756     if( pSample->n ){
1757       memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1758     }
1759     pIdx->nSample++;
1760   }
1761   rc = sqlite3_finalize(pStmt);
1762   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1763   return rc;
1764 }
1765 
1766 /*
1767 ** Load content from the sqlite_stat4 table into
1768 ** the Index.aSample[] arrays of all indices.
1769 */
1770 static int loadStat4(sqlite3 *db, const char *zDb){
1771   int rc = SQLITE_OK;             /* Result codes from subroutines */
1772 
1773   assert( db->lookaside.bDisable );
1774   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1775     rc = loadStatTbl(db,
1776       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1777       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1778       zDb
1779     );
1780   }
1781   return rc;
1782 }
1783 #endif /* SQLITE_ENABLE_STAT4 */
1784 
1785 /*
1786 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1787 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1788 ** arrays. The contents of sqlite_stat4 are used to populate the
1789 ** Index.aSample[] arrays.
1790 **
1791 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1792 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1793 ** during compilation and the sqlite_stat4 table is present, no data is
1794 ** read from it.
1795 **
1796 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1797 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1798 ** returned. However, in this case, data is read from the sqlite_stat1
1799 ** table (if it is present) before returning.
1800 **
1801 ** If an OOM error occurs, this function always sets db->mallocFailed.
1802 ** This means if the caller does not care about other errors, the return
1803 ** code may be ignored.
1804 */
1805 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1806   analysisInfo sInfo;
1807   HashElem *i;
1808   char *zSql;
1809   int rc = SQLITE_OK;
1810   Schema *pSchema = db->aDb[iDb].pSchema;
1811 
1812   assert( iDb>=0 && iDb<db->nDb );
1813   assert( db->aDb[iDb].pBt!=0 );
1814 
1815   /* Clear any prior statistics */
1816   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1817   for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1818     Table *pTab = sqliteHashData(i);
1819     pTab->tabFlags &= ~TF_HasStat1;
1820   }
1821   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1822     Index *pIdx = sqliteHashData(i);
1823     pIdx->hasStat1 = 0;
1824 #ifdef SQLITE_ENABLE_STAT4
1825     sqlite3DeleteIndexSamples(db, pIdx);
1826     pIdx->aSample = 0;
1827 #endif
1828   }
1829 
1830   /* Load new statistics out of the sqlite_stat1 table */
1831   sInfo.db = db;
1832   sInfo.zDatabase = db->aDb[iDb].zDbSName;
1833   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){
1834     zSql = sqlite3MPrintf(db,
1835         "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1836     if( zSql==0 ){
1837       rc = SQLITE_NOMEM_BKPT;
1838     }else{
1839       rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1840       sqlite3DbFree(db, zSql);
1841     }
1842   }
1843 
1844   /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1845   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1846   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1847     Index *pIdx = sqliteHashData(i);
1848     if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1849   }
1850 
1851   /* Load the statistics from the sqlite_stat4 table. */
1852 #ifdef SQLITE_ENABLE_STAT4
1853   if( rc==SQLITE_OK ){
1854     DisableLookaside;
1855     rc = loadStat4(db, sInfo.zDatabase);
1856     EnableLookaside;
1857   }
1858   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1859     Index *pIdx = sqliteHashData(i);
1860     sqlite3_free(pIdx->aiRowEst);
1861     pIdx->aiRowEst = 0;
1862   }
1863 #endif
1864 
1865   if( rc==SQLITE_NOMEM ){
1866     sqlite3OomFault(db);
1867   }
1868   return rc;
1869 }
1870 
1871 
1872 #endif /* SQLITE_OMIT_ANALYZE */
1873