1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2 and is also now deprecated. The 33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite 35 ** versions 3.8.1 and later. STAT4 is the only variant that is still 36 ** supported. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 #else 148 # define IsStat4 0 149 # undef SQLITE_STAT4_SAMPLES 150 # define SQLITE_STAT4_SAMPLES 1 151 #endif 152 153 /* 154 ** This routine generates code that opens the sqlite_statN tables. 155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 157 ** appropriate compile-time options are provided. 158 ** 159 ** If the sqlite_statN tables do not previously exist, it is created. 160 ** 161 ** Argument zWhere may be a pointer to a buffer containing a table name, 162 ** or it may be a NULL pointer. If it is not NULL, then all entries in 163 ** the sqlite_statN tables associated with the named table are deleted. 164 ** If zWhere==0, then code is generated to delete all stat table entries. 165 */ 166 static void openStatTable( 167 Parse *pParse, /* Parsing context */ 168 int iDb, /* The database we are looking in */ 169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 170 const char *zWhere, /* Delete entries for this table or index */ 171 const char *zWhereType /* Either "tbl" or "idx" */ 172 ){ 173 static const struct { 174 const char *zName; 175 const char *zCols; 176 } aTable[] = { 177 { "sqlite_stat1", "tbl,idx,stat" }, 178 #if defined(SQLITE_ENABLE_STAT4) 179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 180 #else 181 { "sqlite_stat4", 0 }, 182 #endif 183 { "sqlite_stat3", 0 }, 184 }; 185 int i; 186 sqlite3 *db = pParse->db; 187 Db *pDb; 188 Vdbe *v = sqlite3GetVdbe(pParse); 189 int aRoot[ArraySize(aTable)]; 190 u8 aCreateTbl[ArraySize(aTable)]; 191 192 if( v==0 ) return; 193 assert( sqlite3BtreeHoldsAllMutexes(db) ); 194 assert( sqlite3VdbeDb(v)==db ); 195 pDb = &db->aDb[iDb]; 196 197 /* Create new statistic tables if they do not exist, or clear them 198 ** if they do already exist. 199 */ 200 for(i=0; i<ArraySize(aTable); i++){ 201 const char *zTab = aTable[i].zName; 202 Table *pStat; 203 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 204 if( aTable[i].zCols ){ 205 /* The sqlite_statN table does not exist. Create it. Note that a 206 ** side-effect of the CREATE TABLE statement is to leave the rootpage 207 ** of the new table in register pParse->regRoot. This is important 208 ** because the OpenWrite opcode below will be needing it. */ 209 sqlite3NestedParse(pParse, 210 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 211 ); 212 aRoot[i] = pParse->regRoot; 213 aCreateTbl[i] = OPFLAG_P2ISREG; 214 } 215 }else{ 216 /* The table already exists. If zWhere is not NULL, delete all entries 217 ** associated with the table zWhere. If zWhere is NULL, delete the 218 ** entire contents of the table. */ 219 aRoot[i] = pStat->tnum; 220 aCreateTbl[i] = 0; 221 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 222 if( zWhere ){ 223 sqlite3NestedParse(pParse, 224 "DELETE FROM %Q.%s WHERE %s=%Q", 225 pDb->zDbSName, zTab, zWhereType, zWhere 226 ); 227 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 228 }else if( db->xPreUpdateCallback ){ 229 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 230 #endif 231 }else{ 232 /* The sqlite_stat[134] table already exists. Delete all rows. */ 233 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 234 } 235 } 236 } 237 238 /* Open the sqlite_stat[134] tables for writing. */ 239 for(i=0; aTable[i].zCols; i++){ 240 assert( i<ArraySize(aTable) ); 241 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 242 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 243 VdbeComment((v, aTable[i].zName)); 244 } 245 } 246 247 /* 248 ** Recommended number of samples for sqlite_stat4 249 */ 250 #ifndef SQLITE_STAT4_SAMPLES 251 # define SQLITE_STAT4_SAMPLES 24 252 #endif 253 254 /* 255 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 256 ** share an instance of the following structure to hold their state 257 ** information. 258 */ 259 typedef struct Stat4Accum Stat4Accum; 260 typedef struct Stat4Sample Stat4Sample; 261 struct Stat4Sample { 262 tRowcnt *anEq; /* sqlite_stat4.nEq */ 263 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 264 #ifdef SQLITE_ENABLE_STAT4 265 tRowcnt *anLt; /* sqlite_stat4.nLt */ 266 union { 267 i64 iRowid; /* Rowid in main table of the key */ 268 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 269 } u; 270 u32 nRowid; /* Sizeof aRowid[] */ 271 u8 isPSample; /* True if a periodic sample */ 272 int iCol; /* If !isPSample, the reason for inclusion */ 273 u32 iHash; /* Tiebreaker hash */ 274 #endif 275 }; 276 struct Stat4Accum { 277 tRowcnt nRow; /* Number of rows in the entire table */ 278 tRowcnt nPSample; /* How often to do a periodic sample */ 279 int nCol; /* Number of columns in index + pk/rowid */ 280 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 281 int mxSample; /* Maximum number of samples to accumulate */ 282 Stat4Sample current; /* Current row as a Stat4Sample */ 283 u32 iPrn; /* Pseudo-random number used for sampling */ 284 Stat4Sample *aBest; /* Array of nCol best samples */ 285 int iMin; /* Index in a[] of entry with minimum score */ 286 int nSample; /* Current number of samples */ 287 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 288 int iGet; /* Index of current sample accessed by stat_get() */ 289 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 290 sqlite3 *db; /* Database connection, for malloc() */ 291 }; 292 293 /* Reclaim memory used by a Stat4Sample 294 */ 295 #ifdef SQLITE_ENABLE_STAT4 296 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 297 assert( db!=0 ); 298 if( p->nRowid ){ 299 sqlite3DbFree(db, p->u.aRowid); 300 p->nRowid = 0; 301 } 302 } 303 #endif 304 305 /* Initialize the BLOB value of a ROWID 306 */ 307 #ifdef SQLITE_ENABLE_STAT4 308 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 309 assert( db!=0 ); 310 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 311 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 312 if( p->u.aRowid ){ 313 p->nRowid = n; 314 memcpy(p->u.aRowid, pData, n); 315 }else{ 316 p->nRowid = 0; 317 } 318 } 319 #endif 320 321 /* Initialize the INTEGER value of a ROWID. 322 */ 323 #ifdef SQLITE_ENABLE_STAT4 324 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 325 assert( db!=0 ); 326 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 327 p->nRowid = 0; 328 p->u.iRowid = iRowid; 329 } 330 #endif 331 332 333 /* 334 ** Copy the contents of object (*pFrom) into (*pTo). 335 */ 336 #ifdef SQLITE_ENABLE_STAT4 337 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 338 pTo->isPSample = pFrom->isPSample; 339 pTo->iCol = pFrom->iCol; 340 pTo->iHash = pFrom->iHash; 341 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 342 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 343 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 344 if( pFrom->nRowid ){ 345 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 346 }else{ 347 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 348 } 349 } 350 #endif 351 352 /* 353 ** Reclaim all memory of a Stat4Accum structure. 354 */ 355 static void stat4Destructor(void *pOld){ 356 Stat4Accum *p = (Stat4Accum*)pOld; 357 #ifdef SQLITE_ENABLE_STAT4 358 int i; 359 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 360 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 361 sampleClear(p->db, &p->current); 362 #endif 363 sqlite3DbFree(p->db, p); 364 } 365 366 /* 367 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 368 ** are: 369 ** N: The number of columns in the index including the rowid/pk (note 1) 370 ** K: The number of columns in the index excluding the rowid/pk. 371 ** C: The number of rows in the index (note 2) 372 ** 373 ** Note 1: In the special case of the covering index that implements a 374 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 375 ** total number of columns in the table. 376 ** 377 ** Note 2: C is only used for STAT4. 378 ** 379 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 380 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 381 ** PRIMARY KEY of the table. The covering index that implements the 382 ** original WITHOUT ROWID table as N==K as a special case. 383 ** 384 ** This routine allocates the Stat4Accum object in heap memory. The return 385 ** value is a pointer to the Stat4Accum object. The datatype of the 386 ** return value is BLOB, but it is really just a pointer to the Stat4Accum 387 ** object. 388 */ 389 static void statInit( 390 sqlite3_context *context, 391 int argc, 392 sqlite3_value **argv 393 ){ 394 Stat4Accum *p; 395 int nCol; /* Number of columns in index being sampled */ 396 int nKeyCol; /* Number of key columns */ 397 int nColUp; /* nCol rounded up for alignment */ 398 int n; /* Bytes of space to allocate */ 399 sqlite3 *db; /* Database connection */ 400 #ifdef SQLITE_ENABLE_STAT4 401 int mxSample = SQLITE_STAT4_SAMPLES; 402 #endif 403 404 /* Decode the three function arguments */ 405 UNUSED_PARAMETER(argc); 406 nCol = sqlite3_value_int(argv[0]); 407 assert( nCol>0 ); 408 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 409 nKeyCol = sqlite3_value_int(argv[1]); 410 assert( nKeyCol<=nCol ); 411 assert( nKeyCol>0 ); 412 413 /* Allocate the space required for the Stat4Accum object */ 414 n = sizeof(*p) 415 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 416 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 417 #ifdef SQLITE_ENABLE_STAT4 418 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 419 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 420 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 421 #endif 422 ; 423 db = sqlite3_context_db_handle(context); 424 p = sqlite3DbMallocZero(db, n); 425 if( p==0 ){ 426 sqlite3_result_error_nomem(context); 427 return; 428 } 429 430 p->db = db; 431 p->nRow = 0; 432 p->nCol = nCol; 433 p->nKeyCol = nKeyCol; 434 p->current.anDLt = (tRowcnt*)&p[1]; 435 p->current.anEq = &p->current.anDLt[nColUp]; 436 437 #ifdef SQLITE_ENABLE_STAT4 438 { 439 u8 *pSpace; /* Allocated space not yet assigned */ 440 int i; /* Used to iterate through p->aSample[] */ 441 442 p->iGet = -1; 443 p->mxSample = mxSample; 444 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 445 p->current.anLt = &p->current.anEq[nColUp]; 446 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 447 448 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 449 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 450 p->aBest = &p->a[mxSample]; 451 pSpace = (u8*)(&p->a[mxSample+nCol]); 452 for(i=0; i<(mxSample+nCol); i++){ 453 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 454 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 455 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 456 } 457 assert( (pSpace - (u8*)p)==n ); 458 459 for(i=0; i<nCol; i++){ 460 p->aBest[i].iCol = i; 461 } 462 } 463 #endif 464 465 /* Return a pointer to the allocated object to the caller. Note that 466 ** only the pointer (the 2nd parameter) matters. The size of the object 467 ** (given by the 3rd parameter) is never used and can be any positive 468 ** value. */ 469 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); 470 } 471 static const FuncDef statInitFuncdef = { 472 2+IsStat4, /* nArg */ 473 SQLITE_UTF8, /* funcFlags */ 474 0, /* pUserData */ 475 0, /* pNext */ 476 statInit, /* xSFunc */ 477 0, /* xFinalize */ 478 0, 0, /* xValue, xInverse */ 479 "stat_init", /* zName */ 480 {0} 481 }; 482 483 #ifdef SQLITE_ENABLE_STAT4 484 /* 485 ** pNew and pOld are both candidate non-periodic samples selected for 486 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 487 ** considering only any trailing columns and the sample hash value, this 488 ** function returns true if sample pNew is to be preferred over pOld. 489 ** In other words, if we assume that the cardinalities of the selected 490 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 491 ** 492 ** This function assumes that for each argument sample, the contents of 493 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 494 */ 495 static int sampleIsBetterPost( 496 Stat4Accum *pAccum, 497 Stat4Sample *pNew, 498 Stat4Sample *pOld 499 ){ 500 int nCol = pAccum->nCol; 501 int i; 502 assert( pNew->iCol==pOld->iCol ); 503 for(i=pNew->iCol+1; i<nCol; i++){ 504 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 505 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 506 } 507 if( pNew->iHash>pOld->iHash ) return 1; 508 return 0; 509 } 510 #endif 511 512 #ifdef SQLITE_ENABLE_STAT4 513 /* 514 ** Return true if pNew is to be preferred over pOld. 515 ** 516 ** This function assumes that for each argument sample, the contents of 517 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 518 */ 519 static int sampleIsBetter( 520 Stat4Accum *pAccum, 521 Stat4Sample *pNew, 522 Stat4Sample *pOld 523 ){ 524 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 525 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 526 527 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 528 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 529 530 if( (nEqNew>nEqOld) ) return 1; 531 if( nEqNew==nEqOld ){ 532 if( pNew->iCol<pOld->iCol ) return 1; 533 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 534 } 535 return 0; 536 } 537 538 /* 539 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 540 ** remove the least desirable sample from p->a[] to make room. 541 */ 542 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 543 Stat4Sample *pSample = 0; 544 int i; 545 546 assert( IsStat4 || nEqZero==0 ); 547 548 /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0 549 ** values in the anEq[] array of any sample in Stat4Accum.a[]. In 550 ** other words, if nMaxEqZero is n, then it is guaranteed that there 551 ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */ 552 if( nEqZero>p->nMaxEqZero ){ 553 p->nMaxEqZero = nEqZero; 554 } 555 if( pNew->isPSample==0 ){ 556 Stat4Sample *pUpgrade = 0; 557 assert( pNew->anEq[pNew->iCol]>0 ); 558 559 /* This sample is being added because the prefix that ends in column 560 ** iCol occurs many times in the table. However, if we have already 561 ** added a sample that shares this prefix, there is no need to add 562 ** this one. Instead, upgrade the priority of the highest priority 563 ** existing sample that shares this prefix. */ 564 for(i=p->nSample-1; i>=0; i--){ 565 Stat4Sample *pOld = &p->a[i]; 566 if( pOld->anEq[pNew->iCol]==0 ){ 567 if( pOld->isPSample ) return; 568 assert( pOld->iCol>pNew->iCol ); 569 assert( sampleIsBetter(p, pNew, pOld) ); 570 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 571 pUpgrade = pOld; 572 } 573 } 574 } 575 if( pUpgrade ){ 576 pUpgrade->iCol = pNew->iCol; 577 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 578 goto find_new_min; 579 } 580 } 581 582 /* If necessary, remove sample iMin to make room for the new sample. */ 583 if( p->nSample>=p->mxSample ){ 584 Stat4Sample *pMin = &p->a[p->iMin]; 585 tRowcnt *anEq = pMin->anEq; 586 tRowcnt *anLt = pMin->anLt; 587 tRowcnt *anDLt = pMin->anDLt; 588 sampleClear(p->db, pMin); 589 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 590 pSample = &p->a[p->nSample-1]; 591 pSample->nRowid = 0; 592 pSample->anEq = anEq; 593 pSample->anDLt = anDLt; 594 pSample->anLt = anLt; 595 p->nSample = p->mxSample-1; 596 } 597 598 /* The "rows less-than" for the rowid column must be greater than that 599 ** for the last sample in the p->a[] array. Otherwise, the samples would 600 ** be out of order. */ 601 assert( p->nSample==0 602 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 603 604 /* Insert the new sample */ 605 pSample = &p->a[p->nSample]; 606 sampleCopy(p, pSample, pNew); 607 p->nSample++; 608 609 /* Zero the first nEqZero entries in the anEq[] array. */ 610 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 611 612 find_new_min: 613 if( p->nSample>=p->mxSample ){ 614 int iMin = -1; 615 for(i=0; i<p->mxSample; i++){ 616 if( p->a[i].isPSample ) continue; 617 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 618 iMin = i; 619 } 620 } 621 assert( iMin>=0 ); 622 p->iMin = iMin; 623 } 624 } 625 #endif /* SQLITE_ENABLE_STAT4 */ 626 627 /* 628 ** Field iChng of the index being scanned has changed. So at this point 629 ** p->current contains a sample that reflects the previous row of the 630 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 631 ** correct at this point. 632 */ 633 static void samplePushPrevious(Stat4Accum *p, int iChng){ 634 #ifdef SQLITE_ENABLE_STAT4 635 int i; 636 637 /* Check if any samples from the aBest[] array should be pushed 638 ** into IndexSample.a[] at this point. */ 639 for(i=(p->nCol-2); i>=iChng; i--){ 640 Stat4Sample *pBest = &p->aBest[i]; 641 pBest->anEq[i] = p->current.anEq[i]; 642 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 643 sampleInsert(p, pBest, i); 644 } 645 } 646 647 /* Check that no sample contains an anEq[] entry with an index of 648 ** p->nMaxEqZero or greater set to zero. */ 649 for(i=p->nSample-1; i>=0; i--){ 650 int j; 651 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 652 } 653 654 /* Update the anEq[] fields of any samples already collected. */ 655 if( iChng<p->nMaxEqZero ){ 656 for(i=p->nSample-1; i>=0; i--){ 657 int j; 658 for(j=iChng; j<p->nCol; j++){ 659 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 660 } 661 } 662 p->nMaxEqZero = iChng; 663 } 664 #endif 665 666 #ifndef SQLITE_ENABLE_STAT4 667 UNUSED_PARAMETER( p ); 668 UNUSED_PARAMETER( iChng ); 669 #endif 670 } 671 672 /* 673 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 674 ** Arguments: 675 ** 676 ** P Pointer to the Stat4Accum object created by stat_init() 677 ** C Index of left-most column to differ from previous row 678 ** R Rowid for the current row. Might be a key record for 679 ** WITHOUT ROWID tables. 680 ** 681 ** This SQL function always returns NULL. It's purpose it to accumulate 682 ** statistical data and/or samples in the Stat4Accum object about the 683 ** index being analyzed. The stat_get() SQL function will later be used to 684 ** extract relevant information for constructing the sqlite_statN tables. 685 ** 686 ** The R parameter is only used for STAT4 687 */ 688 static void statPush( 689 sqlite3_context *context, 690 int argc, 691 sqlite3_value **argv 692 ){ 693 int i; 694 695 /* The three function arguments */ 696 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 697 int iChng = sqlite3_value_int(argv[1]); 698 699 UNUSED_PARAMETER( argc ); 700 UNUSED_PARAMETER( context ); 701 assert( p->nCol>0 ); 702 assert( iChng<p->nCol ); 703 704 if( p->nRow==0 ){ 705 /* This is the first call to this function. Do initialization. */ 706 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 707 }else{ 708 /* Second and subsequent calls get processed here */ 709 samplePushPrevious(p, iChng); 710 711 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 712 ** to the current row of the index. */ 713 for(i=0; i<iChng; i++){ 714 p->current.anEq[i]++; 715 } 716 for(i=iChng; i<p->nCol; i++){ 717 p->current.anDLt[i]++; 718 #ifdef SQLITE_ENABLE_STAT4 719 p->current.anLt[i] += p->current.anEq[i]; 720 #endif 721 p->current.anEq[i] = 1; 722 } 723 } 724 p->nRow++; 725 #ifdef SQLITE_ENABLE_STAT4 726 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 727 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 728 }else{ 729 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 730 sqlite3_value_blob(argv[2])); 731 } 732 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 733 #endif 734 735 #ifdef SQLITE_ENABLE_STAT4 736 { 737 tRowcnt nLt = p->current.anLt[p->nCol-1]; 738 739 /* Check if this is to be a periodic sample. If so, add it. */ 740 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 741 p->current.isPSample = 1; 742 p->current.iCol = 0; 743 sampleInsert(p, &p->current, p->nCol-1); 744 p->current.isPSample = 0; 745 } 746 747 /* Update the aBest[] array. */ 748 for(i=0; i<(p->nCol-1); i++){ 749 p->current.iCol = i; 750 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 751 sampleCopy(p, &p->aBest[i], &p->current); 752 } 753 } 754 } 755 #endif 756 } 757 static const FuncDef statPushFuncdef = { 758 2+IsStat4, /* nArg */ 759 SQLITE_UTF8, /* funcFlags */ 760 0, /* pUserData */ 761 0, /* pNext */ 762 statPush, /* xSFunc */ 763 0, /* xFinalize */ 764 0, 0, /* xValue, xInverse */ 765 "stat_push", /* zName */ 766 {0} 767 }; 768 769 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 770 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 771 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 772 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 773 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 774 775 /* 776 ** Implementation of the stat_get(P,J) SQL function. This routine is 777 ** used to query statistical information that has been gathered into 778 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 779 ** has type BLOB but it is really just a pointer to the Stat4Accum object. 780 ** The content to returned is determined by the parameter J 781 ** which is one of the STAT_GET_xxxx values defined above. 782 ** 783 ** The stat_get(P,J) function is not available to generic SQL. It is 784 ** inserted as part of a manually constructed bytecode program. (See 785 ** the callStatGet() routine below.) It is guaranteed that the P 786 ** parameter will always be a poiner to a Stat4Accum object, never a 787 ** NULL. 788 ** 789 ** If STAT4 is not enabled, then J is always 790 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 791 ** a one-parameter function, stat_get(P), that always returns the 792 ** stat1 table entry information. 793 */ 794 static void statGet( 795 sqlite3_context *context, 796 int argc, 797 sqlite3_value **argv 798 ){ 799 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 800 #ifdef SQLITE_ENABLE_STAT4 801 /* STAT4 has a parameter on this routine. */ 802 int eCall = sqlite3_value_int(argv[1]); 803 assert( argc==2 ); 804 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 805 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 806 || eCall==STAT_GET_NDLT 807 ); 808 if( eCall==STAT_GET_STAT1 ) 809 #else 810 assert( argc==1 ); 811 #endif 812 { 813 /* Return the value to store in the "stat" column of the sqlite_stat1 814 ** table for this index. 815 ** 816 ** The value is a string composed of a list of integers describing 817 ** the index. The first integer in the list is the total number of 818 ** entries in the index. There is one additional integer in the list 819 ** for each indexed column. This additional integer is an estimate of 820 ** the number of rows matched by a stabbing query on the index using 821 ** a key with the corresponding number of fields. In other words, 822 ** if the index is on columns (a,b) and the sqlite_stat1 value is 823 ** "100 10 2", then SQLite estimates that: 824 ** 825 ** * the index contains 100 rows, 826 ** * "WHERE a=?" matches 10 rows, and 827 ** * "WHERE a=? AND b=?" matches 2 rows. 828 ** 829 ** If D is the count of distinct values and K is the total number of 830 ** rows, then each estimate is computed as: 831 ** 832 ** I = (K+D-1)/D 833 */ 834 char *z; 835 int i; 836 837 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 838 if( zRet==0 ){ 839 sqlite3_result_error_nomem(context); 840 return; 841 } 842 843 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 844 z = zRet + sqlite3Strlen30(zRet); 845 for(i=0; i<p->nKeyCol; i++){ 846 u64 nDistinct = p->current.anDLt[i] + 1; 847 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 848 sqlite3_snprintf(24, z, " %llu", iVal); 849 z += sqlite3Strlen30(z); 850 assert( p->current.anEq[i] ); 851 } 852 assert( z[0]=='\0' && z>zRet ); 853 854 sqlite3_result_text(context, zRet, -1, sqlite3_free); 855 } 856 #ifdef SQLITE_ENABLE_STAT4 857 else if( eCall==STAT_GET_ROWID ){ 858 if( p->iGet<0 ){ 859 samplePushPrevious(p, 0); 860 p->iGet = 0; 861 } 862 if( p->iGet<p->nSample ){ 863 Stat4Sample *pS = p->a + p->iGet; 864 if( pS->nRowid==0 ){ 865 sqlite3_result_int64(context, pS->u.iRowid); 866 }else{ 867 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 868 SQLITE_TRANSIENT); 869 } 870 } 871 }else{ 872 tRowcnt *aCnt = 0; 873 874 assert( p->iGet<p->nSample ); 875 switch( eCall ){ 876 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 877 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 878 default: { 879 aCnt = p->a[p->iGet].anDLt; 880 p->iGet++; 881 break; 882 } 883 } 884 885 { 886 char *zRet = sqlite3MallocZero(p->nCol * 25); 887 if( zRet==0 ){ 888 sqlite3_result_error_nomem(context); 889 }else{ 890 int i; 891 char *z = zRet; 892 for(i=0; i<p->nCol; i++){ 893 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 894 z += sqlite3Strlen30(z); 895 } 896 assert( z[0]=='\0' && z>zRet ); 897 z[-1] = '\0'; 898 sqlite3_result_text(context, zRet, -1, sqlite3_free); 899 } 900 } 901 } 902 #endif /* SQLITE_ENABLE_STAT4 */ 903 #ifndef SQLITE_DEBUG 904 UNUSED_PARAMETER( argc ); 905 #endif 906 } 907 static const FuncDef statGetFuncdef = { 908 1+IsStat4, /* nArg */ 909 SQLITE_UTF8, /* funcFlags */ 910 0, /* pUserData */ 911 0, /* pNext */ 912 statGet, /* xSFunc */ 913 0, /* xFinalize */ 914 0, 0, /* xValue, xInverse */ 915 "stat_get", /* zName */ 916 {0} 917 }; 918 919 static void callStatGet(Parse *pParse, int regStat4, int iParam, int regOut){ 920 #ifdef SQLITE_ENABLE_STAT4 921 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat4+1); 922 #elif SQLITE_DEBUG 923 assert( iParam==STAT_GET_STAT1 ); 924 #else 925 UNUSED_PARAMETER( iParam ); 926 #endif 927 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 928 sqlite3VdbeAddFunctionCall(pParse, 0, regStat4, regOut, 1+IsStat4, 929 &statGetFuncdef, 0); 930 } 931 932 /* 933 ** Generate code to do an analysis of all indices associated with 934 ** a single table. 935 */ 936 static void analyzeOneTable( 937 Parse *pParse, /* Parser context */ 938 Table *pTab, /* Table whose indices are to be analyzed */ 939 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 940 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 941 int iMem, /* Available memory locations begin here */ 942 int iTab /* Next available cursor */ 943 ){ 944 sqlite3 *db = pParse->db; /* Database handle */ 945 Index *pIdx; /* An index to being analyzed */ 946 int iIdxCur; /* Cursor open on index being analyzed */ 947 int iTabCur; /* Table cursor */ 948 Vdbe *v; /* The virtual machine being built up */ 949 int i; /* Loop counter */ 950 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 951 int iDb; /* Index of database containing pTab */ 952 u8 needTableCnt = 1; /* True to count the table */ 953 int regNewRowid = iMem++; /* Rowid for the inserted record */ 954 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 955 int regChng = iMem++; /* Index of changed index field */ 956 #ifdef SQLITE_ENABLE_STAT4 957 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 958 #endif 959 int regTemp = iMem++; /* Temporary use register */ 960 int regTabname = iMem++; /* Register containing table name */ 961 int regIdxname = iMem++; /* Register containing index name */ 962 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 963 int regPrev = iMem; /* MUST BE LAST (see below) */ 964 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 965 Table *pStat1 = 0; 966 #endif 967 968 pParse->nMem = MAX(pParse->nMem, iMem); 969 v = sqlite3GetVdbe(pParse); 970 if( v==0 || NEVER(pTab==0) ){ 971 return; 972 } 973 if( pTab->tnum==0 ){ 974 /* Do not gather statistics on views or virtual tables */ 975 return; 976 } 977 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 978 /* Do not gather statistics on system tables */ 979 return; 980 } 981 assert( sqlite3BtreeHoldsAllMutexes(db) ); 982 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 983 assert( iDb>=0 ); 984 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 985 #ifndef SQLITE_OMIT_AUTHORIZATION 986 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 987 db->aDb[iDb].zDbSName ) ){ 988 return; 989 } 990 #endif 991 992 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 993 if( db->xPreUpdateCallback ){ 994 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 995 if( pStat1==0 ) return; 996 pStat1->zName = (char*)&pStat1[1]; 997 memcpy(pStat1->zName, "sqlite_stat1", 13); 998 pStat1->nCol = 3; 999 pStat1->iPKey = -1; 1000 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB); 1001 } 1002 #endif 1003 1004 /* Establish a read-lock on the table at the shared-cache level. 1005 ** Open a read-only cursor on the table. Also allocate a cursor number 1006 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1007 ** this time though. */ 1008 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1009 iTabCur = iTab++; 1010 iIdxCur = iTab++; 1011 pParse->nTab = MAX(pParse->nTab, iTab); 1012 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1013 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1014 1015 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1016 int nCol; /* Number of columns in pIdx. "N" */ 1017 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1018 int addrNextRow; /* Address of "next_row:" */ 1019 const char *zIdxName; /* Name of the index */ 1020 int nColTest; /* Number of columns to test for changes */ 1021 1022 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1023 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1024 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1025 nCol = pIdx->nKeyCol; 1026 zIdxName = pTab->zName; 1027 nColTest = nCol - 1; 1028 }else{ 1029 nCol = pIdx->nColumn; 1030 zIdxName = pIdx->zName; 1031 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1032 } 1033 1034 /* Populate the register containing the index name. */ 1035 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1036 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1037 1038 /* 1039 ** Pseudo-code for loop that calls stat_push(): 1040 ** 1041 ** Rewind csr 1042 ** if eof(csr) goto end_of_scan; 1043 ** regChng = 0 1044 ** goto chng_addr_0; 1045 ** 1046 ** next_row: 1047 ** regChng = 0 1048 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1049 ** regChng = 1 1050 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1051 ** ... 1052 ** regChng = N 1053 ** goto chng_addr_N 1054 ** 1055 ** chng_addr_0: 1056 ** regPrev(0) = idx(0) 1057 ** chng_addr_1: 1058 ** regPrev(1) = idx(1) 1059 ** ... 1060 ** 1061 ** endDistinctTest: 1062 ** regRowid = idx(rowid) 1063 ** stat_push(P, regChng, regRowid) 1064 ** Next csr 1065 ** if !eof(csr) goto next_row; 1066 ** 1067 ** end_of_scan: 1068 */ 1069 1070 /* Make sure there are enough memory cells allocated to accommodate 1071 ** the regPrev array and a trailing rowid (the rowid slot is required 1072 ** when building a record to insert into the sample column of 1073 ** the sqlite_stat4 table. */ 1074 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1075 1076 /* Open a read-only cursor on the index being analyzed. */ 1077 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1078 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1079 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1080 VdbeComment((v, "%s", pIdx->zName)); 1081 1082 /* Invoke the stat_init() function. The arguments are: 1083 ** 1084 ** (1) the number of columns in the index including the rowid 1085 ** (or for a WITHOUT ROWID table, the number of PK columns), 1086 ** (2) the number of columns in the key without the rowid/pk 1087 ** (3) the number of rows in the index, 1088 ** 1089 ** 1090 ** The third argument is only used for STAT4 1091 */ 1092 #ifdef SQLITE_ENABLE_STAT4 1093 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1094 #endif 1095 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1096 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1097 sqlite3VdbeAddFunctionCall(pParse, 0, regStat4+1, regStat4, 2+IsStat4, 1098 &statInitFuncdef, 0); 1099 1100 /* Implementation of the following: 1101 ** 1102 ** Rewind csr 1103 ** if eof(csr) goto end_of_scan; 1104 ** regChng = 0 1105 ** goto next_push_0; 1106 ** 1107 */ 1108 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1109 VdbeCoverage(v); 1110 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1111 addrNextRow = sqlite3VdbeCurrentAddr(v); 1112 1113 if( nColTest>0 ){ 1114 int endDistinctTest = sqlite3VdbeMakeLabel(pParse); 1115 int *aGotoChng; /* Array of jump instruction addresses */ 1116 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1117 if( aGotoChng==0 ) continue; 1118 1119 /* 1120 ** next_row: 1121 ** regChng = 0 1122 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1123 ** regChng = 1 1124 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1125 ** ... 1126 ** regChng = N 1127 ** goto endDistinctTest 1128 */ 1129 sqlite3VdbeAddOp0(v, OP_Goto); 1130 addrNextRow = sqlite3VdbeCurrentAddr(v); 1131 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1132 /* For a single-column UNIQUE index, once we have found a non-NULL 1133 ** row, we know that all the rest will be distinct, so skip 1134 ** subsequent distinctness tests. */ 1135 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1136 VdbeCoverage(v); 1137 } 1138 for(i=0; i<nColTest; i++){ 1139 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1140 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1141 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1142 aGotoChng[i] = 1143 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1144 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1145 VdbeCoverage(v); 1146 } 1147 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1148 sqlite3VdbeGoto(v, endDistinctTest); 1149 1150 1151 /* 1152 ** chng_addr_0: 1153 ** regPrev(0) = idx(0) 1154 ** chng_addr_1: 1155 ** regPrev(1) = idx(1) 1156 ** ... 1157 */ 1158 sqlite3VdbeJumpHere(v, addrNextRow-1); 1159 for(i=0; i<nColTest; i++){ 1160 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1161 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1162 } 1163 sqlite3VdbeResolveLabel(v, endDistinctTest); 1164 sqlite3DbFree(db, aGotoChng); 1165 } 1166 1167 /* 1168 ** chng_addr_N: 1169 ** regRowid = idx(rowid) // STAT4 only 1170 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only 1171 ** Next csr 1172 ** if !eof(csr) goto next_row; 1173 */ 1174 #ifdef SQLITE_ENABLE_STAT4 1175 assert( regRowid==(regStat4+2) ); 1176 if( HasRowid(pTab) ){ 1177 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1178 }else{ 1179 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1180 int j, k, regKey; 1181 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1182 for(j=0; j<pPk->nKeyCol; j++){ 1183 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1184 assert( k>=0 && k<pIdx->nColumn ); 1185 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1186 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1187 } 1188 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1189 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1190 } 1191 #endif 1192 assert( regChng==(regStat4+1) ); 1193 sqlite3VdbeAddFunctionCall(pParse, 1, regStat4, regTemp, 2+IsStat4, 1194 &statPushFuncdef, 0); 1195 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1196 1197 /* Add the entry to the stat1 table. */ 1198 callStatGet(pParse, regStat4, STAT_GET_STAT1, regStat1); 1199 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1200 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1201 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1202 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1203 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1204 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1205 #endif 1206 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1207 1208 /* Add the entries to the stat4 table. */ 1209 #ifdef SQLITE_ENABLE_STAT4 1210 { 1211 int regEq = regStat1; 1212 int regLt = regStat1+1; 1213 int regDLt = regStat1+2; 1214 int regSample = regStat1+3; 1215 int regCol = regStat1+4; 1216 int regSampleRowid = regCol + nCol; 1217 int addrNext; 1218 int addrIsNull; 1219 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1220 1221 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1222 1223 addrNext = sqlite3VdbeCurrentAddr(v); 1224 callStatGet(pParse, regStat4, STAT_GET_ROWID, regSampleRowid); 1225 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1226 VdbeCoverage(v); 1227 callStatGet(pParse, regStat4, STAT_GET_NEQ, regEq); 1228 callStatGet(pParse, regStat4, STAT_GET_NLT, regLt); 1229 callStatGet(pParse, regStat4, STAT_GET_NDLT, regDLt); 1230 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1231 VdbeCoverage(v); 1232 for(i=0; i<nCol; i++){ 1233 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1234 } 1235 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1237 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1238 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1239 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1240 sqlite3VdbeJumpHere(v, addrIsNull); 1241 } 1242 #endif /* SQLITE_ENABLE_STAT4 */ 1243 1244 /* End of analysis */ 1245 sqlite3VdbeJumpHere(v, addrRewind); 1246 } 1247 1248 1249 /* Create a single sqlite_stat1 entry containing NULL as the index 1250 ** name and the row count as the content. 1251 */ 1252 if( pOnlyIdx==0 && needTableCnt ){ 1253 VdbeComment((v, "%s", pTab->zName)); 1254 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1255 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1256 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1257 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1258 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1259 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1260 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1261 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1262 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1263 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1264 #endif 1265 sqlite3VdbeJumpHere(v, jZeroRows); 1266 } 1267 } 1268 1269 1270 /* 1271 ** Generate code that will cause the most recent index analysis to 1272 ** be loaded into internal hash tables where is can be used. 1273 */ 1274 static void loadAnalysis(Parse *pParse, int iDb){ 1275 Vdbe *v = sqlite3GetVdbe(pParse); 1276 if( v ){ 1277 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1278 } 1279 } 1280 1281 /* 1282 ** Generate code that will do an analysis of an entire database 1283 */ 1284 static void analyzeDatabase(Parse *pParse, int iDb){ 1285 sqlite3 *db = pParse->db; 1286 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1287 HashElem *k; 1288 int iStatCur; 1289 int iMem; 1290 int iTab; 1291 1292 sqlite3BeginWriteOperation(pParse, 0, iDb); 1293 iStatCur = pParse->nTab; 1294 pParse->nTab += 3; 1295 openStatTable(pParse, iDb, iStatCur, 0, 0); 1296 iMem = pParse->nMem+1; 1297 iTab = pParse->nTab; 1298 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1299 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1300 Table *pTab = (Table*)sqliteHashData(k); 1301 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1302 } 1303 loadAnalysis(pParse, iDb); 1304 } 1305 1306 /* 1307 ** Generate code that will do an analysis of a single table in 1308 ** a database. If pOnlyIdx is not NULL then it is a single index 1309 ** in pTab that should be analyzed. 1310 */ 1311 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1312 int iDb; 1313 int iStatCur; 1314 1315 assert( pTab!=0 ); 1316 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1317 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1318 sqlite3BeginWriteOperation(pParse, 0, iDb); 1319 iStatCur = pParse->nTab; 1320 pParse->nTab += 3; 1321 if( pOnlyIdx ){ 1322 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1323 }else{ 1324 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1325 } 1326 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1327 loadAnalysis(pParse, iDb); 1328 } 1329 1330 /* 1331 ** Generate code for the ANALYZE command. The parser calls this routine 1332 ** when it recognizes an ANALYZE command. 1333 ** 1334 ** ANALYZE -- 1 1335 ** ANALYZE <database> -- 2 1336 ** ANALYZE ?<database>.?<tablename> -- 3 1337 ** 1338 ** Form 1 causes all indices in all attached databases to be analyzed. 1339 ** Form 2 analyzes all indices the single database named. 1340 ** Form 3 analyzes all indices associated with the named table. 1341 */ 1342 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1343 sqlite3 *db = pParse->db; 1344 int iDb; 1345 int i; 1346 char *z, *zDb; 1347 Table *pTab; 1348 Index *pIdx; 1349 Token *pTableName; 1350 Vdbe *v; 1351 1352 /* Read the database schema. If an error occurs, leave an error message 1353 ** and code in pParse and return NULL. */ 1354 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1355 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1356 return; 1357 } 1358 1359 assert( pName2!=0 || pName1==0 ); 1360 if( pName1==0 ){ 1361 /* Form 1: Analyze everything */ 1362 for(i=0; i<db->nDb; i++){ 1363 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1364 analyzeDatabase(pParse, i); 1365 } 1366 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1367 /* Analyze the schema named as the argument */ 1368 analyzeDatabase(pParse, iDb); 1369 }else{ 1370 /* Form 3: Analyze the table or index named as an argument */ 1371 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1372 if( iDb>=0 ){ 1373 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1374 z = sqlite3NameFromToken(db, pTableName); 1375 if( z ){ 1376 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1377 analyzeTable(pParse, pIdx->pTable, pIdx); 1378 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1379 analyzeTable(pParse, pTab, 0); 1380 } 1381 sqlite3DbFree(db, z); 1382 } 1383 } 1384 } 1385 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1386 sqlite3VdbeAddOp0(v, OP_Expire); 1387 } 1388 } 1389 1390 /* 1391 ** Used to pass information from the analyzer reader through to the 1392 ** callback routine. 1393 */ 1394 typedef struct analysisInfo analysisInfo; 1395 struct analysisInfo { 1396 sqlite3 *db; 1397 const char *zDatabase; 1398 }; 1399 1400 /* 1401 ** The first argument points to a nul-terminated string containing a 1402 ** list of space separated integers. Read the first nOut of these into 1403 ** the array aOut[]. 1404 */ 1405 static void decodeIntArray( 1406 char *zIntArray, /* String containing int array to decode */ 1407 int nOut, /* Number of slots in aOut[] */ 1408 tRowcnt *aOut, /* Store integers here */ 1409 LogEst *aLog, /* Or, if aOut==0, here */ 1410 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1411 ){ 1412 char *z = zIntArray; 1413 int c; 1414 int i; 1415 tRowcnt v; 1416 1417 #ifdef SQLITE_ENABLE_STAT4 1418 if( z==0 ) z = ""; 1419 #else 1420 assert( z!=0 ); 1421 #endif 1422 for(i=0; *z && i<nOut; i++){ 1423 v = 0; 1424 while( (c=z[0])>='0' && c<='9' ){ 1425 v = v*10 + c - '0'; 1426 z++; 1427 } 1428 #ifdef SQLITE_ENABLE_STAT4 1429 if( aOut ) aOut[i] = v; 1430 if( aLog ) aLog[i] = sqlite3LogEst(v); 1431 #else 1432 assert( aOut==0 ); 1433 UNUSED_PARAMETER(aOut); 1434 assert( aLog!=0 ); 1435 aLog[i] = sqlite3LogEst(v); 1436 #endif 1437 if( *z==' ' ) z++; 1438 } 1439 #ifndef SQLITE_ENABLE_STAT4 1440 assert( pIndex!=0 ); { 1441 #else 1442 if( pIndex ){ 1443 #endif 1444 pIndex->bUnordered = 0; 1445 pIndex->noSkipScan = 0; 1446 while( z[0] ){ 1447 if( sqlite3_strglob("unordered*", z)==0 ){ 1448 pIndex->bUnordered = 1; 1449 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1450 int sz = sqlite3Atoi(z+3); 1451 if( sz<2 ) sz = 2; 1452 pIndex->szIdxRow = sqlite3LogEst(sz); 1453 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1454 pIndex->noSkipScan = 1; 1455 } 1456 #ifdef SQLITE_ENABLE_COSTMULT 1457 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1458 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1459 } 1460 #endif 1461 while( z[0]!=0 && z[0]!=' ' ) z++; 1462 while( z[0]==' ' ) z++; 1463 } 1464 } 1465 } 1466 1467 /* 1468 ** This callback is invoked once for each index when reading the 1469 ** sqlite_stat1 table. 1470 ** 1471 ** argv[0] = name of the table 1472 ** argv[1] = name of the index (might be NULL) 1473 ** argv[2] = results of analysis - on integer for each column 1474 ** 1475 ** Entries for which argv[1]==NULL simply record the number of rows in 1476 ** the table. 1477 */ 1478 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1479 analysisInfo *pInfo = (analysisInfo*)pData; 1480 Index *pIndex; 1481 Table *pTable; 1482 const char *z; 1483 1484 assert( argc==3 ); 1485 UNUSED_PARAMETER2(NotUsed, argc); 1486 1487 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1488 return 0; 1489 } 1490 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1491 if( pTable==0 ){ 1492 return 0; 1493 } 1494 if( argv[1]==0 ){ 1495 pIndex = 0; 1496 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1497 pIndex = sqlite3PrimaryKeyIndex(pTable); 1498 }else{ 1499 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1500 } 1501 z = argv[2]; 1502 1503 if( pIndex ){ 1504 tRowcnt *aiRowEst = 0; 1505 int nCol = pIndex->nKeyCol+1; 1506 #ifdef SQLITE_ENABLE_STAT4 1507 /* Index.aiRowEst may already be set here if there are duplicate 1508 ** sqlite_stat1 entries for this index. In that case just clobber 1509 ** the old data with the new instead of allocating a new array. */ 1510 if( pIndex->aiRowEst==0 ){ 1511 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1512 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1513 } 1514 aiRowEst = pIndex->aiRowEst; 1515 #endif 1516 pIndex->bUnordered = 0; 1517 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1518 pIndex->hasStat1 = 1; 1519 if( pIndex->pPartIdxWhere==0 ){ 1520 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1521 pTable->tabFlags |= TF_HasStat1; 1522 } 1523 }else{ 1524 Index fakeIdx; 1525 fakeIdx.szIdxRow = pTable->szTabRow; 1526 #ifdef SQLITE_ENABLE_COSTMULT 1527 fakeIdx.pTable = pTable; 1528 #endif 1529 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1530 pTable->szTabRow = fakeIdx.szIdxRow; 1531 pTable->tabFlags |= TF_HasStat1; 1532 } 1533 1534 return 0; 1535 } 1536 1537 /* 1538 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1539 ** and its contents. 1540 */ 1541 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1542 #ifdef SQLITE_ENABLE_STAT4 1543 if( pIdx->aSample ){ 1544 int j; 1545 for(j=0; j<pIdx->nSample; j++){ 1546 IndexSample *p = &pIdx->aSample[j]; 1547 sqlite3DbFree(db, p->p); 1548 } 1549 sqlite3DbFree(db, pIdx->aSample); 1550 } 1551 if( db && db->pnBytesFreed==0 ){ 1552 pIdx->nSample = 0; 1553 pIdx->aSample = 0; 1554 } 1555 #else 1556 UNUSED_PARAMETER(db); 1557 UNUSED_PARAMETER(pIdx); 1558 #endif /* SQLITE_ENABLE_STAT4 */ 1559 } 1560 1561 #ifdef SQLITE_ENABLE_STAT4 1562 /* 1563 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1564 ** stored in pIdx->aSample[]. 1565 */ 1566 static void initAvgEq(Index *pIdx){ 1567 if( pIdx ){ 1568 IndexSample *aSample = pIdx->aSample; 1569 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1570 int iCol; 1571 int nCol = 1; 1572 if( pIdx->nSampleCol>1 ){ 1573 /* If this is stat4 data, then calculate aAvgEq[] values for all 1574 ** sample columns except the last. The last is always set to 1, as 1575 ** once the trailing PK fields are considered all index keys are 1576 ** unique. */ 1577 nCol = pIdx->nSampleCol-1; 1578 pIdx->aAvgEq[nCol] = 1; 1579 } 1580 for(iCol=0; iCol<nCol; iCol++){ 1581 int nSample = pIdx->nSample; 1582 int i; /* Used to iterate through samples */ 1583 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1584 tRowcnt avgEq = 0; 1585 tRowcnt nRow; /* Number of rows in index */ 1586 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1587 i64 nDist100; /* Number of distinct values in index */ 1588 1589 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1590 nRow = pFinal->anLt[iCol]; 1591 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1592 nSample--; 1593 }else{ 1594 nRow = pIdx->aiRowEst[0]; 1595 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1596 } 1597 pIdx->nRowEst0 = nRow; 1598 1599 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1600 ** occur in the stat4 table for this index. Set sumEq to the sum of 1601 ** the nEq values for column iCol for the same set (adding the value 1602 ** only once where there exist duplicate prefixes). */ 1603 for(i=0; i<nSample; i++){ 1604 if( i==(pIdx->nSample-1) 1605 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1606 ){ 1607 sumEq += aSample[i].anEq[iCol]; 1608 nSum100 += 100; 1609 } 1610 } 1611 1612 if( nDist100>nSum100 && sumEq<nRow ){ 1613 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1614 } 1615 if( avgEq==0 ) avgEq = 1; 1616 pIdx->aAvgEq[iCol] = avgEq; 1617 } 1618 } 1619 } 1620 1621 /* 1622 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1623 ** is supplied instead, find the PRIMARY KEY index for that table. 1624 */ 1625 static Index *findIndexOrPrimaryKey( 1626 sqlite3 *db, 1627 const char *zName, 1628 const char *zDb 1629 ){ 1630 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1631 if( pIdx==0 ){ 1632 Table *pTab = sqlite3FindTable(db, zName, zDb); 1633 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1634 } 1635 return pIdx; 1636 } 1637 1638 /* 1639 ** Load the content from either the sqlite_stat4 1640 ** into the relevant Index.aSample[] arrays. 1641 ** 1642 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1643 ** data equivalent to the following: 1644 ** 1645 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1646 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1647 ** 1648 ** where %Q is replaced with the database name before the SQL is executed. 1649 */ 1650 static int loadStatTbl( 1651 sqlite3 *db, /* Database handle */ 1652 const char *zSql1, /* SQL statement 1 (see above) */ 1653 const char *zSql2, /* SQL statement 2 (see above) */ 1654 const char *zDb /* Database name (e.g. "main") */ 1655 ){ 1656 int rc; /* Result codes from subroutines */ 1657 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1658 char *zSql; /* Text of the SQL statement */ 1659 Index *pPrevIdx = 0; /* Previous index in the loop */ 1660 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1661 1662 assert( db->lookaside.bDisable ); 1663 zSql = sqlite3MPrintf(db, zSql1, zDb); 1664 if( !zSql ){ 1665 return SQLITE_NOMEM_BKPT; 1666 } 1667 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1668 sqlite3DbFree(db, zSql); 1669 if( rc ) return rc; 1670 1671 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1672 int nIdxCol = 1; /* Number of columns in stat4 records */ 1673 1674 char *zIndex; /* Index name */ 1675 Index *pIdx; /* Pointer to the index object */ 1676 int nSample; /* Number of samples */ 1677 int nByte; /* Bytes of space required */ 1678 int i; /* Bytes of space required */ 1679 tRowcnt *pSpace; 1680 1681 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1682 if( zIndex==0 ) continue; 1683 nSample = sqlite3_column_int(pStmt, 1); 1684 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1685 assert( pIdx==0 || pIdx->nSample==0 ); 1686 if( pIdx==0 ) continue; 1687 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1688 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1689 nIdxCol = pIdx->nKeyCol; 1690 }else{ 1691 nIdxCol = pIdx->nColumn; 1692 } 1693 pIdx->nSampleCol = nIdxCol; 1694 nByte = sizeof(IndexSample) * nSample; 1695 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1696 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1697 1698 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1699 if( pIdx->aSample==0 ){ 1700 sqlite3_finalize(pStmt); 1701 return SQLITE_NOMEM_BKPT; 1702 } 1703 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1704 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1705 for(i=0; i<nSample; i++){ 1706 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1707 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1708 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1709 } 1710 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1711 } 1712 rc = sqlite3_finalize(pStmt); 1713 if( rc ) return rc; 1714 1715 zSql = sqlite3MPrintf(db, zSql2, zDb); 1716 if( !zSql ){ 1717 return SQLITE_NOMEM_BKPT; 1718 } 1719 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1720 sqlite3DbFree(db, zSql); 1721 if( rc ) return rc; 1722 1723 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1724 char *zIndex; /* Index name */ 1725 Index *pIdx; /* Pointer to the index object */ 1726 int nCol = 1; /* Number of columns in index */ 1727 1728 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1729 if( zIndex==0 ) continue; 1730 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1731 if( pIdx==0 ) continue; 1732 /* This next condition is true if data has already been loaded from 1733 ** the sqlite_stat4 table. */ 1734 nCol = pIdx->nSampleCol; 1735 if( pIdx!=pPrevIdx ){ 1736 initAvgEq(pPrevIdx); 1737 pPrevIdx = pIdx; 1738 } 1739 pSample = &pIdx->aSample[pIdx->nSample]; 1740 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1741 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1742 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1743 1744 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1745 ** This is in case the sample record is corrupted. In that case, the 1746 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1747 ** end of the allocated buffer before it realizes it is dealing with 1748 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1749 ** a buffer overread. */ 1750 pSample->n = sqlite3_column_bytes(pStmt, 4); 1751 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1752 if( pSample->p==0 ){ 1753 sqlite3_finalize(pStmt); 1754 return SQLITE_NOMEM_BKPT; 1755 } 1756 if( pSample->n ){ 1757 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1758 } 1759 pIdx->nSample++; 1760 } 1761 rc = sqlite3_finalize(pStmt); 1762 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1763 return rc; 1764 } 1765 1766 /* 1767 ** Load content from the sqlite_stat4 table into 1768 ** the Index.aSample[] arrays of all indices. 1769 */ 1770 static int loadStat4(sqlite3 *db, const char *zDb){ 1771 int rc = SQLITE_OK; /* Result codes from subroutines */ 1772 1773 assert( db->lookaside.bDisable ); 1774 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1775 rc = loadStatTbl(db, 1776 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1777 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1778 zDb 1779 ); 1780 } 1781 return rc; 1782 } 1783 #endif /* SQLITE_ENABLE_STAT4 */ 1784 1785 /* 1786 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The 1787 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1788 ** arrays. The contents of sqlite_stat4 are used to populate the 1789 ** Index.aSample[] arrays. 1790 ** 1791 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1792 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 1793 ** during compilation and the sqlite_stat4 table is present, no data is 1794 ** read from it. 1795 ** 1796 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the 1797 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1798 ** returned. However, in this case, data is read from the sqlite_stat1 1799 ** table (if it is present) before returning. 1800 ** 1801 ** If an OOM error occurs, this function always sets db->mallocFailed. 1802 ** This means if the caller does not care about other errors, the return 1803 ** code may be ignored. 1804 */ 1805 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1806 analysisInfo sInfo; 1807 HashElem *i; 1808 char *zSql; 1809 int rc = SQLITE_OK; 1810 Schema *pSchema = db->aDb[iDb].pSchema; 1811 1812 assert( iDb>=0 && iDb<db->nDb ); 1813 assert( db->aDb[iDb].pBt!=0 ); 1814 1815 /* Clear any prior statistics */ 1816 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1817 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1818 Table *pTab = sqliteHashData(i); 1819 pTab->tabFlags &= ~TF_HasStat1; 1820 } 1821 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1822 Index *pIdx = sqliteHashData(i); 1823 pIdx->hasStat1 = 0; 1824 #ifdef SQLITE_ENABLE_STAT4 1825 sqlite3DeleteIndexSamples(db, pIdx); 1826 pIdx->aSample = 0; 1827 #endif 1828 } 1829 1830 /* Load new statistics out of the sqlite_stat1 table */ 1831 sInfo.db = db; 1832 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1833 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1834 zSql = sqlite3MPrintf(db, 1835 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1836 if( zSql==0 ){ 1837 rc = SQLITE_NOMEM_BKPT; 1838 }else{ 1839 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1840 sqlite3DbFree(db, zSql); 1841 } 1842 } 1843 1844 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1845 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1846 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1847 Index *pIdx = sqliteHashData(i); 1848 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1849 } 1850 1851 /* Load the statistics from the sqlite_stat4 table. */ 1852 #ifdef SQLITE_ENABLE_STAT4 1853 if( rc==SQLITE_OK ){ 1854 DisableLookaside; 1855 rc = loadStat4(db, sInfo.zDatabase); 1856 EnableLookaside; 1857 } 1858 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1859 Index *pIdx = sqliteHashData(i); 1860 sqlite3_free(pIdx->aiRowEst); 1861 pIdx->aiRowEst = 0; 1862 } 1863 #endif 1864 1865 if( rc==SQLITE_NOMEM ){ 1866 sqlite3OomFault(db); 1867 } 1868 return rc; 1869 } 1870 1871 1872 #endif /* SQLITE_OMIT_ANALYZE */ 1873