1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statisics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 VdbeComment((v, aTable[i].zName)); 250 } 251 } 252 253 /* 254 ** Recommended number of samples for sqlite_stat4 255 */ 256 #ifndef SQLITE_STAT4_SAMPLES 257 # define SQLITE_STAT4_SAMPLES 24 258 #endif 259 260 /* 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 262 ** share an instance of the following structure to hold their state 263 ** information. 264 */ 265 typedef struct Stat4Accum Stat4Accum; 266 typedef struct Stat4Sample Stat4Sample; 267 struct Stat4Sample { 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ 272 union { 273 i64 iRowid; /* Rowid in main table of the key */ 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 275 } u; 276 u32 nRowid; /* Sizeof aRowid[] */ 277 u8 isPSample; /* True if a periodic sample */ 278 int iCol; /* If !isPSample, the reason for inclusion */ 279 u32 iHash; /* Tiebreaker hash */ 280 #endif 281 }; 282 struct Stat4Accum { 283 tRowcnt nRow; /* Number of rows in the entire table */ 284 tRowcnt nPSample; /* How often to do a periodic sample */ 285 int nCol; /* Number of columns in index + pk/rowid */ 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 287 int mxSample; /* Maximum number of samples to accumulate */ 288 Stat4Sample current; /* Current row as a Stat4Sample */ 289 u32 iPrn; /* Pseudo-random number used for sampling */ 290 Stat4Sample *aBest; /* Array of nCol best samples */ 291 int iMin; /* Index in a[] of entry with minimum score */ 292 int nSample; /* Current number of samples */ 293 int iGet; /* Index of current sample accessed by stat_get() */ 294 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 295 sqlite3 *db; /* Database connection, for malloc() */ 296 }; 297 298 /* Reclaim memory used by a Stat4Sample 299 */ 300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 301 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 302 assert( db!=0 ); 303 if( p->nRowid ){ 304 sqlite3DbFree(db, p->u.aRowid); 305 p->nRowid = 0; 306 } 307 } 308 #endif 309 310 /* Initialize the BLOB value of a ROWID 311 */ 312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 314 assert( db!=0 ); 315 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 316 p->u.aRowid = sqlite3DbMallocRaw(db, n); 317 if( p->u.aRowid ){ 318 p->nRowid = n; 319 memcpy(p->u.aRowid, pData, n); 320 }else{ 321 p->nRowid = 0; 322 } 323 } 324 #endif 325 326 /* Initialize the INTEGER value of a ROWID. 327 */ 328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 330 assert( db!=0 ); 331 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 332 p->nRowid = 0; 333 p->u.iRowid = iRowid; 334 } 335 #endif 336 337 338 /* 339 ** Copy the contents of object (*pFrom) into (*pTo). 340 */ 341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 343 pTo->isPSample = pFrom->isPSample; 344 pTo->iCol = pFrom->iCol; 345 pTo->iHash = pFrom->iHash; 346 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 347 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 348 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 349 if( pFrom->nRowid ){ 350 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 351 }else{ 352 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 353 } 354 } 355 #endif 356 357 /* 358 ** Reclaim all memory of a Stat4Accum structure. 359 */ 360 static void stat4Destructor(void *pOld){ 361 Stat4Accum *p = (Stat4Accum*)pOld; 362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 363 int i; 364 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 365 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 366 sampleClear(p->db, &p->current); 367 #endif 368 sqlite3DbFree(p->db, p); 369 } 370 371 /* 372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 373 ** are: 374 ** N: The number of columns in the index including the rowid/pk (note 1) 375 ** K: The number of columns in the index excluding the rowid/pk. 376 ** C: The number of rows in the index (note 2) 377 ** 378 ** Note 1: In the special case of the covering index that implements a 379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 380 ** total number of columns in the table. 381 ** 382 ** Note 2: C is only used for STAT3 and STAT4. 383 ** 384 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 386 ** PRIMARY KEY of the table. The covering index that implements the 387 ** original WITHOUT ROWID table as N==K as a special case. 388 ** 389 ** This routine allocates the Stat4Accum object in heap memory. The return 390 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. 391 ** the size of the blob is sizeof(void*) bytes). 392 */ 393 static void statInit( 394 sqlite3_context *context, 395 int argc, 396 sqlite3_value **argv 397 ){ 398 Stat4Accum *p; 399 int nCol; /* Number of columns in index being sampled */ 400 int nKeyCol; /* Number of key columns */ 401 int nColUp; /* nCol rounded up for alignment */ 402 int n; /* Bytes of space to allocate */ 403 sqlite3 *db; /* Database connection */ 404 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 405 int mxSample = SQLITE_STAT4_SAMPLES; 406 #endif 407 408 /* Decode the three function arguments */ 409 UNUSED_PARAMETER(argc); 410 nCol = sqlite3_value_int(argv[0]); 411 assert( nCol>0 ); 412 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 413 nKeyCol = sqlite3_value_int(argv[1]); 414 assert( nKeyCol<=nCol ); 415 assert( nKeyCol>0 ); 416 417 /* Allocate the space required for the Stat4Accum object */ 418 n = sizeof(*p) 419 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 420 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 421 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 422 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 423 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 424 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 425 #endif 426 ; 427 db = sqlite3_context_db_handle(context); 428 p = sqlite3DbMallocZero(db, n); 429 if( p==0 ){ 430 sqlite3_result_error_nomem(context); 431 return; 432 } 433 434 p->db = db; 435 p->nRow = 0; 436 p->nCol = nCol; 437 p->nKeyCol = nKeyCol; 438 p->current.anDLt = (tRowcnt*)&p[1]; 439 p->current.anEq = &p->current.anDLt[nColUp]; 440 441 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 442 { 443 u8 *pSpace; /* Allocated space not yet assigned */ 444 int i; /* Used to iterate through p->aSample[] */ 445 446 p->iGet = -1; 447 p->mxSample = mxSample; 448 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 449 p->current.anLt = &p->current.anEq[nColUp]; 450 p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565; 451 452 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 453 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 454 p->aBest = &p->a[mxSample]; 455 pSpace = (u8*)(&p->a[mxSample+nCol]); 456 for(i=0; i<(mxSample+nCol); i++){ 457 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 458 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 459 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 460 } 461 assert( (pSpace - (u8*)p)==n ); 462 463 for(i=0; i<nCol; i++){ 464 p->aBest[i].iCol = i; 465 } 466 } 467 #endif 468 469 /* Return a pointer to the allocated object to the caller */ 470 sqlite3_result_blob(context, p, sizeof(p), stat4Destructor); 471 } 472 static const FuncDef statInitFuncdef = { 473 2+IsStat34, /* nArg */ 474 SQLITE_UTF8, /* funcFlags */ 475 0, /* pUserData */ 476 0, /* pNext */ 477 statInit, /* xFunc */ 478 0, /* xStep */ 479 0, /* xFinalize */ 480 "stat_init", /* zName */ 481 0, /* pHash */ 482 0 /* pDestructor */ 483 }; 484 485 #ifdef SQLITE_ENABLE_STAT4 486 /* 487 ** pNew and pOld are both candidate non-periodic samples selected for 488 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 489 ** considering only any trailing columns and the sample hash value, this 490 ** function returns true if sample pNew is to be preferred over pOld. 491 ** In other words, if we assume that the cardinalities of the selected 492 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 493 ** 494 ** This function assumes that for each argument sample, the contents of 495 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 496 */ 497 static int sampleIsBetterPost( 498 Stat4Accum *pAccum, 499 Stat4Sample *pNew, 500 Stat4Sample *pOld 501 ){ 502 int nCol = pAccum->nCol; 503 int i; 504 assert( pNew->iCol==pOld->iCol ); 505 for(i=pNew->iCol+1; i<nCol; i++){ 506 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 507 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 508 } 509 if( pNew->iHash>pOld->iHash ) return 1; 510 return 0; 511 } 512 #endif 513 514 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 515 /* 516 ** Return true if pNew is to be preferred over pOld. 517 ** 518 ** This function assumes that for each argument sample, the contents of 519 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 520 */ 521 static int sampleIsBetter( 522 Stat4Accum *pAccum, 523 Stat4Sample *pNew, 524 Stat4Sample *pOld 525 ){ 526 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 527 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 528 529 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 530 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 531 532 if( (nEqNew>nEqOld) ) return 1; 533 #ifdef SQLITE_ENABLE_STAT4 534 if( nEqNew==nEqOld ){ 535 if( pNew->iCol<pOld->iCol ) return 1; 536 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 537 } 538 return 0; 539 #else 540 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 541 #endif 542 } 543 544 /* 545 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 546 ** remove the least desirable sample from p->a[] to make room. 547 */ 548 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 549 Stat4Sample *pSample = 0; 550 int i; 551 552 assert( IsStat4 || nEqZero==0 ); 553 554 #ifdef SQLITE_ENABLE_STAT4 555 if( pNew->isPSample==0 ){ 556 Stat4Sample *pUpgrade = 0; 557 assert( pNew->anEq[pNew->iCol]>0 ); 558 559 /* This sample is being added because the prefix that ends in column 560 ** iCol occurs many times in the table. However, if we have already 561 ** added a sample that shares this prefix, there is no need to add 562 ** this one. Instead, upgrade the priority of the highest priority 563 ** existing sample that shares this prefix. */ 564 for(i=p->nSample-1; i>=0; i--){ 565 Stat4Sample *pOld = &p->a[i]; 566 if( pOld->anEq[pNew->iCol]==0 ){ 567 if( pOld->isPSample ) return; 568 assert( pOld->iCol>pNew->iCol ); 569 assert( sampleIsBetter(p, pNew, pOld) ); 570 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 571 pUpgrade = pOld; 572 } 573 } 574 } 575 if( pUpgrade ){ 576 pUpgrade->iCol = pNew->iCol; 577 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 578 goto find_new_min; 579 } 580 } 581 #endif 582 583 /* If necessary, remove sample iMin to make room for the new sample. */ 584 if( p->nSample>=p->mxSample ){ 585 Stat4Sample *pMin = &p->a[p->iMin]; 586 tRowcnt *anEq = pMin->anEq; 587 tRowcnt *anLt = pMin->anLt; 588 tRowcnt *anDLt = pMin->anDLt; 589 sampleClear(p->db, pMin); 590 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 591 pSample = &p->a[p->nSample-1]; 592 pSample->nRowid = 0; 593 pSample->anEq = anEq; 594 pSample->anDLt = anDLt; 595 pSample->anLt = anLt; 596 p->nSample = p->mxSample-1; 597 } 598 599 /* The "rows less-than" for the rowid column must be greater than that 600 ** for the last sample in the p->a[] array. Otherwise, the samples would 601 ** be out of order. */ 602 #ifdef SQLITE_ENABLE_STAT4 603 assert( p->nSample==0 604 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 605 #endif 606 607 /* Insert the new sample */ 608 pSample = &p->a[p->nSample]; 609 sampleCopy(p, pSample, pNew); 610 p->nSample++; 611 612 /* Zero the first nEqZero entries in the anEq[] array. */ 613 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 614 615 #ifdef SQLITE_ENABLE_STAT4 616 find_new_min: 617 #endif 618 if( p->nSample>=p->mxSample ){ 619 int iMin = -1; 620 for(i=0; i<p->mxSample; i++){ 621 if( p->a[i].isPSample ) continue; 622 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 623 iMin = i; 624 } 625 } 626 assert( iMin>=0 ); 627 p->iMin = iMin; 628 } 629 } 630 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 631 632 /* 633 ** Field iChng of the index being scanned has changed. So at this point 634 ** p->current contains a sample that reflects the previous row of the 635 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 636 ** correct at this point. 637 */ 638 static void samplePushPrevious(Stat4Accum *p, int iChng){ 639 #ifdef SQLITE_ENABLE_STAT4 640 int i; 641 642 /* Check if any samples from the aBest[] array should be pushed 643 ** into IndexSample.a[] at this point. */ 644 for(i=(p->nCol-2); i>=iChng; i--){ 645 Stat4Sample *pBest = &p->aBest[i]; 646 pBest->anEq[i] = p->current.anEq[i]; 647 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 648 sampleInsert(p, pBest, i); 649 } 650 } 651 652 /* Update the anEq[] fields of any samples already collected. */ 653 for(i=p->nSample-1; i>=0; i--){ 654 int j; 655 for(j=iChng; j<p->nCol; j++){ 656 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 657 } 658 } 659 #endif 660 661 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 662 if( iChng==0 ){ 663 tRowcnt nLt = p->current.anLt[0]; 664 tRowcnt nEq = p->current.anEq[0]; 665 666 /* Check if this is to be a periodic sample. If so, add it. */ 667 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 668 p->current.isPSample = 1; 669 sampleInsert(p, &p->current, 0); 670 p->current.isPSample = 0; 671 }else 672 673 /* Or if it is a non-periodic sample. Add it in this case too. */ 674 if( p->nSample<p->mxSample 675 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 676 ){ 677 sampleInsert(p, &p->current, 0); 678 } 679 } 680 #endif 681 682 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 683 UNUSED_PARAMETER( p ); 684 UNUSED_PARAMETER( iChng ); 685 #endif 686 } 687 688 /* 689 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 690 ** Arguments: 691 ** 692 ** P Pointer to the Stat4Accum object created by stat_init() 693 ** C Index of left-most column to differ from previous row 694 ** R Rowid for the current row. Might be a key record for 695 ** WITHOUT ROWID tables. 696 ** 697 ** This SQL function always returns NULL. It's purpose it to accumulate 698 ** statistical data and/or samples in the Stat4Accum object about the 699 ** index being analyzed. The stat_get() SQL function will later be used to 700 ** extract relevant information for constructing the sqlite_statN tables. 701 ** 702 ** The R parameter is only used for STAT3 and STAT4 703 */ 704 static void statPush( 705 sqlite3_context *context, 706 int argc, 707 sqlite3_value **argv 708 ){ 709 int i; 710 711 /* The three function arguments */ 712 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 713 int iChng = sqlite3_value_int(argv[1]); 714 715 UNUSED_PARAMETER( argc ); 716 UNUSED_PARAMETER( context ); 717 assert( p->nCol>0 ); 718 assert( iChng<p->nCol ); 719 720 if( p->nRow==0 ){ 721 /* This is the first call to this function. Do initialization. */ 722 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 723 }else{ 724 /* Second and subsequent calls get processed here */ 725 samplePushPrevious(p, iChng); 726 727 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 728 ** to the current row of the index. */ 729 for(i=0; i<iChng; i++){ 730 p->current.anEq[i]++; 731 } 732 for(i=iChng; i<p->nCol; i++){ 733 p->current.anDLt[i]++; 734 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 735 p->current.anLt[i] += p->current.anEq[i]; 736 #endif 737 p->current.anEq[i] = 1; 738 } 739 } 740 p->nRow++; 741 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 742 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 743 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 744 }else{ 745 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 746 sqlite3_value_blob(argv[2])); 747 } 748 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 749 #endif 750 751 #ifdef SQLITE_ENABLE_STAT4 752 { 753 tRowcnt nLt = p->current.anLt[p->nCol-1]; 754 755 /* Check if this is to be a periodic sample. If so, add it. */ 756 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 757 p->current.isPSample = 1; 758 p->current.iCol = 0; 759 sampleInsert(p, &p->current, p->nCol-1); 760 p->current.isPSample = 0; 761 } 762 763 /* Update the aBest[] array. */ 764 for(i=0; i<(p->nCol-1); i++){ 765 p->current.iCol = i; 766 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 767 sampleCopy(p, &p->aBest[i], &p->current); 768 } 769 } 770 } 771 #endif 772 } 773 static const FuncDef statPushFuncdef = { 774 2+IsStat34, /* nArg */ 775 SQLITE_UTF8, /* funcFlags */ 776 0, /* pUserData */ 777 0, /* pNext */ 778 statPush, /* xFunc */ 779 0, /* xStep */ 780 0, /* xFinalize */ 781 "stat_push", /* zName */ 782 0, /* pHash */ 783 0 /* pDestructor */ 784 }; 785 786 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 787 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 788 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 789 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 790 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 791 792 /* 793 ** Implementation of the stat_get(P,J) SQL function. This routine is 794 ** used to query statistical information that has been gathered into 795 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 796 ** is a BLOB which is decoded into a pointer to the Stat4Accum objects. 797 ** The content to returned is determined by the parameter J 798 ** which is one of the STAT_GET_xxxx values defined above. 799 ** 800 ** If neither STAT3 nor STAT4 are enabled, then J is always 801 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 802 ** a one-parameter function, stat_get(P), that always returns the 803 ** stat1 table entry information. 804 */ 805 static void statGet( 806 sqlite3_context *context, 807 int argc, 808 sqlite3_value **argv 809 ){ 810 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 811 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 812 /* STAT3 and STAT4 have a parameter on this routine. */ 813 int eCall = sqlite3_value_int(argv[1]); 814 assert( argc==2 ); 815 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 816 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 817 || eCall==STAT_GET_NDLT 818 ); 819 if( eCall==STAT_GET_STAT1 ) 820 #else 821 assert( argc==1 ); 822 #endif 823 { 824 /* Return the value to store in the "stat" column of the sqlite_stat1 825 ** table for this index. 826 ** 827 ** The value is a string composed of a list of integers describing 828 ** the index. The first integer in the list is the total number of 829 ** entries in the index. There is one additional integer in the list 830 ** for each indexed column. This additional integer is an estimate of 831 ** the number of rows matched by a stabbing query on the index using 832 ** a key with the corresponding number of fields. In other words, 833 ** if the index is on columns (a,b) and the sqlite_stat1 value is 834 ** "100 10 2", then SQLite estimates that: 835 ** 836 ** * the index contains 100 rows, 837 ** * "WHERE a=?" matches 10 rows, and 838 ** * "WHERE a=? AND b=?" matches 2 rows. 839 ** 840 ** If D is the count of distinct values and K is the total number of 841 ** rows, then each estimate is computed as: 842 ** 843 ** I = (K+D-1)/D 844 */ 845 char *z; 846 int i; 847 848 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 849 if( zRet==0 ){ 850 sqlite3_result_error_nomem(context); 851 return; 852 } 853 854 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 855 z = zRet + sqlite3Strlen30(zRet); 856 for(i=0; i<p->nKeyCol; i++){ 857 u64 nDistinct = p->current.anDLt[i] + 1; 858 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 859 sqlite3_snprintf(24, z, " %llu", iVal); 860 z += sqlite3Strlen30(z); 861 assert( p->current.anEq[i] ); 862 } 863 assert( z[0]=='\0' && z>zRet ); 864 865 sqlite3_result_text(context, zRet, -1, sqlite3_free); 866 } 867 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 868 else if( eCall==STAT_GET_ROWID ){ 869 if( p->iGet<0 ){ 870 samplePushPrevious(p, 0); 871 p->iGet = 0; 872 } 873 if( p->iGet<p->nSample ){ 874 Stat4Sample *pS = p->a + p->iGet; 875 if( pS->nRowid==0 ){ 876 sqlite3_result_int64(context, pS->u.iRowid); 877 }else{ 878 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 879 SQLITE_TRANSIENT); 880 } 881 } 882 }else{ 883 tRowcnt *aCnt = 0; 884 885 assert( p->iGet<p->nSample ); 886 switch( eCall ){ 887 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 888 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 889 default: { 890 aCnt = p->a[p->iGet].anDLt; 891 p->iGet++; 892 break; 893 } 894 } 895 896 if( IsStat3 ){ 897 sqlite3_result_int64(context, (i64)aCnt[0]); 898 }else{ 899 char *zRet = sqlite3MallocZero(p->nCol * 25); 900 if( zRet==0 ){ 901 sqlite3_result_error_nomem(context); 902 }else{ 903 int i; 904 char *z = zRet; 905 for(i=0; i<p->nCol; i++){ 906 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 907 z += sqlite3Strlen30(z); 908 } 909 assert( z[0]=='\0' && z>zRet ); 910 z[-1] = '\0'; 911 sqlite3_result_text(context, zRet, -1, sqlite3_free); 912 } 913 } 914 } 915 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 916 #ifndef SQLITE_DEBUG 917 UNUSED_PARAMETER( argc ); 918 #endif 919 } 920 static const FuncDef statGetFuncdef = { 921 1+IsStat34, /* nArg */ 922 SQLITE_UTF8, /* funcFlags */ 923 0, /* pUserData */ 924 0, /* pNext */ 925 statGet, /* xFunc */ 926 0, /* xStep */ 927 0, /* xFinalize */ 928 "stat_get", /* zName */ 929 0, /* pHash */ 930 0 /* pDestructor */ 931 }; 932 933 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 934 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 935 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 936 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 937 #elif SQLITE_DEBUG 938 assert( iParam==STAT_GET_STAT1 ); 939 #else 940 UNUSED_PARAMETER( iParam ); 941 #endif 942 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); 943 sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); 944 sqlite3VdbeChangeP5(v, 1 + IsStat34); 945 } 946 947 /* 948 ** Generate code to do an analysis of all indices associated with 949 ** a single table. 950 */ 951 static void analyzeOneTable( 952 Parse *pParse, /* Parser context */ 953 Table *pTab, /* Table whose indices are to be analyzed */ 954 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 955 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 956 int iMem, /* Available memory locations begin here */ 957 int iTab /* Next available cursor */ 958 ){ 959 sqlite3 *db = pParse->db; /* Database handle */ 960 Index *pIdx; /* An index to being analyzed */ 961 int iIdxCur; /* Cursor open on index being analyzed */ 962 int iTabCur; /* Table cursor */ 963 Vdbe *v; /* The virtual machine being built up */ 964 int i; /* Loop counter */ 965 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 966 int iDb; /* Index of database containing pTab */ 967 u8 needTableCnt = 1; /* True to count the table */ 968 int regNewRowid = iMem++; /* Rowid for the inserted record */ 969 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 970 int regChng = iMem++; /* Index of changed index field */ 971 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 972 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 973 #endif 974 int regTemp = iMem++; /* Temporary use register */ 975 int regTabname = iMem++; /* Register containing table name */ 976 int regIdxname = iMem++; /* Register containing index name */ 977 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 978 int regPrev = iMem; /* MUST BE LAST (see below) */ 979 980 pParse->nMem = MAX(pParse->nMem, iMem); 981 v = sqlite3GetVdbe(pParse); 982 if( v==0 || NEVER(pTab==0) ){ 983 return; 984 } 985 if( pTab->tnum==0 ){ 986 /* Do not gather statistics on views or virtual tables */ 987 return; 988 } 989 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ 990 /* Do not gather statistics on system tables */ 991 return; 992 } 993 assert( sqlite3BtreeHoldsAllMutexes(db) ); 994 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 995 assert( iDb>=0 ); 996 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 997 #ifndef SQLITE_OMIT_AUTHORIZATION 998 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 999 db->aDb[iDb].zName ) ){ 1000 return; 1001 } 1002 #endif 1003 1004 /* Establish a read-lock on the table at the shared-cache level. 1005 ** Open a read-only cursor on the table. Also allocate a cursor number 1006 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1007 ** this time though. */ 1008 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1009 iTabCur = iTab++; 1010 iIdxCur = iTab++; 1011 pParse->nTab = MAX(pParse->nTab, iTab); 1012 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1013 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); 1014 1015 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1016 int nCol; /* Number of columns in pIdx. "N" */ 1017 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1018 int addrNextRow; /* Address of "next_row:" */ 1019 const char *zIdxName; /* Name of the index */ 1020 int nColTest; /* Number of columns to test for changes */ 1021 1022 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1023 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1024 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1025 nCol = pIdx->nKeyCol; 1026 zIdxName = pTab->zName; 1027 nColTest = nCol - 1; 1028 }else{ 1029 nCol = pIdx->nColumn; 1030 zIdxName = pIdx->zName; 1031 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1032 } 1033 1034 /* Populate the register containing the index name. */ 1035 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); 1036 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1037 1038 /* 1039 ** Pseudo-code for loop that calls stat_push(): 1040 ** 1041 ** Rewind csr 1042 ** if eof(csr) goto end_of_scan; 1043 ** regChng = 0 1044 ** goto chng_addr_0; 1045 ** 1046 ** next_row: 1047 ** regChng = 0 1048 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1049 ** regChng = 1 1050 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1051 ** ... 1052 ** regChng = N 1053 ** goto chng_addr_N 1054 ** 1055 ** chng_addr_0: 1056 ** regPrev(0) = idx(0) 1057 ** chng_addr_1: 1058 ** regPrev(1) = idx(1) 1059 ** ... 1060 ** 1061 ** endDistinctTest: 1062 ** regRowid = idx(rowid) 1063 ** stat_push(P, regChng, regRowid) 1064 ** Next csr 1065 ** if !eof(csr) goto next_row; 1066 ** 1067 ** end_of_scan: 1068 */ 1069 1070 /* Make sure there are enough memory cells allocated to accommodate 1071 ** the regPrev array and a trailing rowid (the rowid slot is required 1072 ** when building a record to insert into the sample column of 1073 ** the sqlite_stat4 table. */ 1074 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1075 1076 /* Open a read-only cursor on the index being analyzed. */ 1077 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1078 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1079 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1080 VdbeComment((v, "%s", pIdx->zName)); 1081 1082 /* Invoke the stat_init() function. The arguments are: 1083 ** 1084 ** (1) the number of columns in the index including the rowid 1085 ** (or for a WITHOUT ROWID table, the number of PK columns), 1086 ** (2) the number of columns in the key without the rowid/pk 1087 ** (3) the number of rows in the index, 1088 ** 1089 ** 1090 ** The third argument is only used for STAT3 and STAT4 1091 */ 1092 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1093 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1094 #endif 1095 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1096 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1097 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); 1098 sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); 1099 sqlite3VdbeChangeP5(v, 2+IsStat34); 1100 1101 /* Implementation of the following: 1102 ** 1103 ** Rewind csr 1104 ** if eof(csr) goto end_of_scan; 1105 ** regChng = 0 1106 ** goto next_push_0; 1107 ** 1108 */ 1109 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1110 VdbeCoverage(v); 1111 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1112 addrNextRow = sqlite3VdbeCurrentAddr(v); 1113 1114 if( nColTest>0 ){ 1115 int endDistinctTest = sqlite3VdbeMakeLabel(v); 1116 int *aGotoChng; /* Array of jump instruction addresses */ 1117 aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest); 1118 if( aGotoChng==0 ) continue; 1119 1120 /* 1121 ** next_row: 1122 ** regChng = 0 1123 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1124 ** regChng = 1 1125 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1126 ** ... 1127 ** regChng = N 1128 ** goto endDistinctTest 1129 */ 1130 sqlite3VdbeAddOp0(v, OP_Goto); 1131 addrNextRow = sqlite3VdbeCurrentAddr(v); 1132 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1133 /* For a single-column UNIQUE index, once we have found a non-NULL 1134 ** row, we know that all the rest will be distinct, so skip 1135 ** subsequent distinctness tests. */ 1136 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1137 VdbeCoverage(v); 1138 } 1139 for(i=0; i<nColTest; i++){ 1140 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1141 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1142 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1143 aGotoChng[i] = 1144 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1145 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1146 VdbeCoverage(v); 1147 } 1148 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1149 sqlite3VdbeAddOp2(v, OP_Goto, 0, endDistinctTest); 1150 1151 1152 /* 1153 ** chng_addr_0: 1154 ** regPrev(0) = idx(0) 1155 ** chng_addr_1: 1156 ** regPrev(1) = idx(1) 1157 ** ... 1158 */ 1159 sqlite3VdbeJumpHere(v, addrNextRow-1); 1160 for(i=0; i<nColTest; i++){ 1161 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1162 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1163 } 1164 sqlite3VdbeResolveLabel(v, endDistinctTest); 1165 sqlite3DbFree(db, aGotoChng); 1166 } 1167 1168 /* 1169 ** chng_addr_N: 1170 ** regRowid = idx(rowid) // STAT34 only 1171 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1172 ** Next csr 1173 ** if !eof(csr) goto next_row; 1174 */ 1175 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1176 assert( regRowid==(regStat4+2) ); 1177 if( HasRowid(pTab) ){ 1178 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1179 }else{ 1180 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1181 int j, k, regKey; 1182 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1183 for(j=0; j<pPk->nKeyCol; j++){ 1184 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1185 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1186 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1187 } 1188 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1189 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1190 } 1191 #endif 1192 assert( regChng==(regStat4+1) ); 1193 sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); 1194 sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); 1195 sqlite3VdbeChangeP5(v, 2+IsStat34); 1196 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1197 1198 /* Add the entry to the stat1 table. */ 1199 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1200 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1201 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1202 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1203 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1204 1205 /* Add the entries to the stat3 or stat4 table. */ 1206 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1207 { 1208 int regEq = regStat1; 1209 int regLt = regStat1+1; 1210 int regDLt = regStat1+2; 1211 int regSample = regStat1+3; 1212 int regCol = regStat1+4; 1213 int regSampleRowid = regCol + nCol; 1214 int addrNext; 1215 int addrIsNull; 1216 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1217 1218 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1219 1220 addrNext = sqlite3VdbeCurrentAddr(v); 1221 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1222 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1223 VdbeCoverage(v); 1224 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1225 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1226 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1227 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1228 /* We know that the regSampleRowid row exists because it was read by 1229 ** the previous loop. Thus the not-found jump of seekOp will never 1230 ** be taken */ 1231 VdbeCoverageNeverTaken(v); 1232 #ifdef SQLITE_ENABLE_STAT3 1233 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, 1234 pIdx->aiColumn[0], regSample); 1235 #else 1236 for(i=0; i<nCol; i++){ 1237 i16 iCol = pIdx->aiColumn[i]; 1238 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); 1239 } 1240 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1241 #endif 1242 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1243 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1244 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1245 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1246 sqlite3VdbeJumpHere(v, addrIsNull); 1247 } 1248 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1249 1250 /* End of analysis */ 1251 sqlite3VdbeJumpHere(v, addrRewind); 1252 } 1253 1254 1255 /* Create a single sqlite_stat1 entry containing NULL as the index 1256 ** name and the row count as the content. 1257 */ 1258 if( pOnlyIdx==0 && needTableCnt ){ 1259 VdbeComment((v, "%s", pTab->zName)); 1260 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1261 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1262 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1263 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1264 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1265 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1266 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1267 sqlite3VdbeJumpHere(v, jZeroRows); 1268 } 1269 } 1270 1271 1272 /* 1273 ** Generate code that will cause the most recent index analysis to 1274 ** be loaded into internal hash tables where is can be used. 1275 */ 1276 static void loadAnalysis(Parse *pParse, int iDb){ 1277 Vdbe *v = sqlite3GetVdbe(pParse); 1278 if( v ){ 1279 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1280 } 1281 } 1282 1283 /* 1284 ** Generate code that will do an analysis of an entire database 1285 */ 1286 static void analyzeDatabase(Parse *pParse, int iDb){ 1287 sqlite3 *db = pParse->db; 1288 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1289 HashElem *k; 1290 int iStatCur; 1291 int iMem; 1292 int iTab; 1293 1294 sqlite3BeginWriteOperation(pParse, 0, iDb); 1295 iStatCur = pParse->nTab; 1296 pParse->nTab += 3; 1297 openStatTable(pParse, iDb, iStatCur, 0, 0); 1298 iMem = pParse->nMem+1; 1299 iTab = pParse->nTab; 1300 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1301 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1302 Table *pTab = (Table*)sqliteHashData(k); 1303 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1304 } 1305 loadAnalysis(pParse, iDb); 1306 } 1307 1308 /* 1309 ** Generate code that will do an analysis of a single table in 1310 ** a database. If pOnlyIdx is not NULL then it is a single index 1311 ** in pTab that should be analyzed. 1312 */ 1313 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1314 int iDb; 1315 int iStatCur; 1316 1317 assert( pTab!=0 ); 1318 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1319 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1320 sqlite3BeginWriteOperation(pParse, 0, iDb); 1321 iStatCur = pParse->nTab; 1322 pParse->nTab += 3; 1323 if( pOnlyIdx ){ 1324 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1325 }else{ 1326 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1327 } 1328 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1329 loadAnalysis(pParse, iDb); 1330 } 1331 1332 /* 1333 ** Generate code for the ANALYZE command. The parser calls this routine 1334 ** when it recognizes an ANALYZE command. 1335 ** 1336 ** ANALYZE -- 1 1337 ** ANALYZE <database> -- 2 1338 ** ANALYZE ?<database>.?<tablename> -- 3 1339 ** 1340 ** Form 1 causes all indices in all attached databases to be analyzed. 1341 ** Form 2 analyzes all indices the single database named. 1342 ** Form 3 analyzes all indices associated with the named table. 1343 */ 1344 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1345 sqlite3 *db = pParse->db; 1346 int iDb; 1347 int i; 1348 char *z, *zDb; 1349 Table *pTab; 1350 Index *pIdx; 1351 Token *pTableName; 1352 Vdbe *v; 1353 1354 /* Read the database schema. If an error occurs, leave an error message 1355 ** and code in pParse and return NULL. */ 1356 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1357 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1358 return; 1359 } 1360 1361 assert( pName2!=0 || pName1==0 ); 1362 if( pName1==0 ){ 1363 /* Form 1: Analyze everything */ 1364 for(i=0; i<db->nDb; i++){ 1365 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1366 analyzeDatabase(pParse, i); 1367 } 1368 }else if( pName2->n==0 ){ 1369 /* Form 2: Analyze the database or table named */ 1370 iDb = sqlite3FindDb(db, pName1); 1371 if( iDb>=0 ){ 1372 analyzeDatabase(pParse, iDb); 1373 }else{ 1374 z = sqlite3NameFromToken(db, pName1); 1375 if( z ){ 1376 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ 1377 analyzeTable(pParse, pIdx->pTable, pIdx); 1378 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ 1379 analyzeTable(pParse, pTab, 0); 1380 } 1381 sqlite3DbFree(db, z); 1382 } 1383 } 1384 }else{ 1385 /* Form 3: Analyze the fully qualified table name */ 1386 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1387 if( iDb>=0 ){ 1388 zDb = db->aDb[iDb].zName; 1389 z = sqlite3NameFromToken(db, pTableName); 1390 if( z ){ 1391 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1392 analyzeTable(pParse, pIdx->pTable, pIdx); 1393 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1394 analyzeTable(pParse, pTab, 0); 1395 } 1396 sqlite3DbFree(db, z); 1397 } 1398 } 1399 } 1400 v = sqlite3GetVdbe(pParse); 1401 if( v ) sqlite3VdbeAddOp0(v, OP_Expire); 1402 } 1403 1404 /* 1405 ** Used to pass information from the analyzer reader through to the 1406 ** callback routine. 1407 */ 1408 typedef struct analysisInfo analysisInfo; 1409 struct analysisInfo { 1410 sqlite3 *db; 1411 const char *zDatabase; 1412 }; 1413 1414 /* 1415 ** The first argument points to a nul-terminated string containing a 1416 ** list of space separated integers. Read the first nOut of these into 1417 ** the array aOut[]. 1418 */ 1419 static void decodeIntArray( 1420 char *zIntArray, /* String containing int array to decode */ 1421 int nOut, /* Number of slots in aOut[] */ 1422 tRowcnt *aOut, /* Store integers here */ 1423 LogEst *aLog, /* Or, if aOut==0, here */ 1424 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1425 ){ 1426 char *z = zIntArray; 1427 int c; 1428 int i; 1429 tRowcnt v; 1430 1431 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1432 if( z==0 ) z = ""; 1433 #else 1434 if( NEVER(z==0) ) z = ""; 1435 #endif 1436 for(i=0; *z && i<nOut; i++){ 1437 v = 0; 1438 while( (c=z[0])>='0' && c<='9' ){ 1439 v = v*10 + c - '0'; 1440 z++; 1441 } 1442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1443 if( aOut ){ 1444 aOut[i] = v; 1445 }else 1446 #else 1447 assert( aOut==0 ); 1448 UNUSED_PARAMETER(aOut); 1449 #endif 1450 { 1451 aLog[i] = sqlite3LogEst(v); 1452 } 1453 if( *z==' ' ) z++; 1454 } 1455 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1456 assert( pIndex!=0 ); 1457 #else 1458 if( pIndex ) 1459 #endif 1460 while( z[0] ){ 1461 if( sqlite3_strglob("unordered*", z)==0 ){ 1462 pIndex->bUnordered = 1; 1463 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1464 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); 1465 } 1466 #ifdef SQLITE_ENABLE_COSTMULT 1467 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1468 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1469 } 1470 #endif 1471 while( z[0]!=0 && z[0]!=' ' ) z++; 1472 while( z[0]==' ' ) z++; 1473 } 1474 } 1475 1476 /* 1477 ** This callback is invoked once for each index when reading the 1478 ** sqlite_stat1 table. 1479 ** 1480 ** argv[0] = name of the table 1481 ** argv[1] = name of the index (might be NULL) 1482 ** argv[2] = results of analysis - on integer for each column 1483 ** 1484 ** Entries for which argv[1]==NULL simply record the number of rows in 1485 ** the table. 1486 */ 1487 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1488 analysisInfo *pInfo = (analysisInfo*)pData; 1489 Index *pIndex; 1490 Table *pTable; 1491 const char *z; 1492 1493 assert( argc==3 ); 1494 UNUSED_PARAMETER2(NotUsed, argc); 1495 1496 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1497 return 0; 1498 } 1499 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1500 if( pTable==0 ){ 1501 return 0; 1502 } 1503 if( argv[1]==0 ){ 1504 pIndex = 0; 1505 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1506 pIndex = sqlite3PrimaryKeyIndex(pTable); 1507 }else{ 1508 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1509 } 1510 z = argv[2]; 1511 1512 if( pIndex ){ 1513 pIndex->bUnordered = 0; 1514 decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex); 1515 if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1516 }else{ 1517 Index fakeIdx; 1518 fakeIdx.szIdxRow = pTable->szTabRow; 1519 #ifdef SQLITE_ENABLE_COSTMULT 1520 fakeIdx.pTable = pTable; 1521 #endif 1522 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1523 pTable->szTabRow = fakeIdx.szIdxRow; 1524 } 1525 1526 return 0; 1527 } 1528 1529 /* 1530 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1531 ** and its contents. 1532 */ 1533 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1534 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1535 if( pIdx->aSample ){ 1536 int j; 1537 for(j=0; j<pIdx->nSample; j++){ 1538 IndexSample *p = &pIdx->aSample[j]; 1539 sqlite3DbFree(db, p->p); 1540 } 1541 sqlite3DbFree(db, pIdx->aSample); 1542 } 1543 if( db && db->pnBytesFreed==0 ){ 1544 pIdx->nSample = 0; 1545 pIdx->aSample = 0; 1546 } 1547 #else 1548 UNUSED_PARAMETER(db); 1549 UNUSED_PARAMETER(pIdx); 1550 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1551 } 1552 1553 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1554 /* 1555 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1556 ** stored in pIdx->aSample[]. 1557 */ 1558 static void initAvgEq(Index *pIdx){ 1559 if( pIdx ){ 1560 IndexSample *aSample = pIdx->aSample; 1561 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1562 int iCol; 1563 int nCol = 1; 1564 if( pIdx->nSampleCol>1 ){ 1565 /* If this is stat4 data, then calculate aAvgEq[] values for all 1566 ** sample columns except the last. The last is always set to 1, as 1567 ** once the trailing PK fields are considered all index keys are 1568 ** unique. */ 1569 nCol = pIdx->nSampleCol-1; 1570 pIdx->aAvgEq[nCol] = 1; 1571 } 1572 for(iCol=0; iCol<nCol; iCol++){ 1573 int i; /* Used to iterate through samples */ 1574 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1575 tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ 1576 tRowcnt avgEq = 0; 1577 tRowcnt nDLt = pFinal->anDLt[iCol]; 1578 1579 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1580 ** occur in the stat4 table for this index before pFinal. Set 1581 ** sumEq to the sum of the nEq values for column iCol for the same 1582 ** set (adding the value only once where there exist dupicate 1583 ** prefixes). */ 1584 for(i=0; i<(pIdx->nSample-1); i++){ 1585 if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ 1586 sumEq += aSample[i].anEq[iCol]; 1587 nSum++; 1588 } 1589 } 1590 if( nDLt>nSum ){ 1591 avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum); 1592 } 1593 if( avgEq==0 ) avgEq = 1; 1594 pIdx->aAvgEq[iCol] = avgEq; 1595 } 1596 } 1597 } 1598 1599 /* 1600 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1601 ** is supplied instead, find the PRIMARY KEY index for that table. 1602 */ 1603 static Index *findIndexOrPrimaryKey( 1604 sqlite3 *db, 1605 const char *zName, 1606 const char *zDb 1607 ){ 1608 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1609 if( pIdx==0 ){ 1610 Table *pTab = sqlite3FindTable(db, zName, zDb); 1611 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1612 } 1613 return pIdx; 1614 } 1615 1616 /* 1617 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1618 ** into the relevant Index.aSample[] arrays. 1619 ** 1620 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1621 ** data equivalent to the following (statements are different for stat3, 1622 ** see the caller of this function for details): 1623 ** 1624 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1625 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1626 ** 1627 ** where %Q is replaced with the database name before the SQL is executed. 1628 */ 1629 static int loadStatTbl( 1630 sqlite3 *db, /* Database handle */ 1631 int bStat3, /* Assume single column records only */ 1632 const char *zSql1, /* SQL statement 1 (see above) */ 1633 const char *zSql2, /* SQL statement 2 (see above) */ 1634 const char *zDb /* Database name (e.g. "main") */ 1635 ){ 1636 int rc; /* Result codes from subroutines */ 1637 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1638 char *zSql; /* Text of the SQL statement */ 1639 Index *pPrevIdx = 0; /* Previous index in the loop */ 1640 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1641 1642 assert( db->lookaside.bEnabled==0 ); 1643 zSql = sqlite3MPrintf(db, zSql1, zDb); 1644 if( !zSql ){ 1645 return SQLITE_NOMEM; 1646 } 1647 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1648 sqlite3DbFree(db, zSql); 1649 if( rc ) return rc; 1650 1651 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1652 int nIdxCol = 1; /* Number of columns in stat4 records */ 1653 1654 char *zIndex; /* Index name */ 1655 Index *pIdx; /* Pointer to the index object */ 1656 int nSample; /* Number of samples */ 1657 int nByte; /* Bytes of space required */ 1658 int i; /* Bytes of space required */ 1659 tRowcnt *pSpace; 1660 1661 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1662 if( zIndex==0 ) continue; 1663 nSample = sqlite3_column_int(pStmt, 1); 1664 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1665 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1666 /* Index.nSample is non-zero at this point if data has already been 1667 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1668 if( pIdx==0 || pIdx->nSample ) continue; 1669 if( bStat3==0 ){ 1670 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1671 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1672 nIdxCol = pIdx->nKeyCol; 1673 }else{ 1674 nIdxCol = pIdx->nColumn; 1675 } 1676 } 1677 pIdx->nSampleCol = nIdxCol; 1678 nByte = sizeof(IndexSample) * nSample; 1679 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1680 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1681 1682 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1683 if( pIdx->aSample==0 ){ 1684 sqlite3_finalize(pStmt); 1685 return SQLITE_NOMEM; 1686 } 1687 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1688 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1689 for(i=0; i<nSample; i++){ 1690 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1691 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1692 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1693 } 1694 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1695 } 1696 rc = sqlite3_finalize(pStmt); 1697 if( rc ) return rc; 1698 1699 zSql = sqlite3MPrintf(db, zSql2, zDb); 1700 if( !zSql ){ 1701 return SQLITE_NOMEM; 1702 } 1703 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1704 sqlite3DbFree(db, zSql); 1705 if( rc ) return rc; 1706 1707 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1708 char *zIndex; /* Index name */ 1709 Index *pIdx; /* Pointer to the index object */ 1710 int nCol = 1; /* Number of columns in index */ 1711 1712 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1713 if( zIndex==0 ) continue; 1714 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1715 if( pIdx==0 ) continue; 1716 /* This next condition is true if data has already been loaded from 1717 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1718 nCol = pIdx->nSampleCol; 1719 if( bStat3 && nCol>1 ) continue; 1720 if( pIdx!=pPrevIdx ){ 1721 initAvgEq(pPrevIdx); 1722 pPrevIdx = pIdx; 1723 } 1724 pSample = &pIdx->aSample[pIdx->nSample]; 1725 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1726 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1727 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1728 1729 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1730 ** This is in case the sample record is corrupted. In that case, the 1731 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1732 ** end of the allocated buffer before it realizes it is dealing with 1733 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1734 ** a buffer overread. */ 1735 pSample->n = sqlite3_column_bytes(pStmt, 4); 1736 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1737 if( pSample->p==0 ){ 1738 sqlite3_finalize(pStmt); 1739 return SQLITE_NOMEM; 1740 } 1741 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1742 pIdx->nSample++; 1743 } 1744 rc = sqlite3_finalize(pStmt); 1745 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1746 return rc; 1747 } 1748 1749 /* 1750 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1751 ** the Index.aSample[] arrays of all indices. 1752 */ 1753 static int loadStat4(sqlite3 *db, const char *zDb){ 1754 int rc = SQLITE_OK; /* Result codes from subroutines */ 1755 1756 assert( db->lookaside.bEnabled==0 ); 1757 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1758 rc = loadStatTbl(db, 0, 1759 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1760 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1761 zDb 1762 ); 1763 } 1764 1765 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1766 rc = loadStatTbl(db, 1, 1767 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1768 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1769 zDb 1770 ); 1771 } 1772 1773 return rc; 1774 } 1775 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1776 1777 /* 1778 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1779 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1780 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1781 ** Index.aSample[] arrays. 1782 ** 1783 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1784 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1785 ** during compilation and the sqlite_stat3/4 table is present, no data is 1786 ** read from it. 1787 ** 1788 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1789 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1790 ** returned. However, in this case, data is read from the sqlite_stat1 1791 ** table (if it is present) before returning. 1792 ** 1793 ** If an OOM error occurs, this function always sets db->mallocFailed. 1794 ** This means if the caller does not care about other errors, the return 1795 ** code may be ignored. 1796 */ 1797 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1798 analysisInfo sInfo; 1799 HashElem *i; 1800 char *zSql; 1801 int rc; 1802 1803 assert( iDb>=0 && iDb<db->nDb ); 1804 assert( db->aDb[iDb].pBt!=0 ); 1805 1806 /* Clear any prior statistics */ 1807 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1808 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1809 Index *pIdx = sqliteHashData(i); 1810 sqlite3DefaultRowEst(pIdx); 1811 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1812 sqlite3DeleteIndexSamples(db, pIdx); 1813 pIdx->aSample = 0; 1814 #endif 1815 } 1816 1817 /* Check to make sure the sqlite_stat1 table exists */ 1818 sInfo.db = db; 1819 sInfo.zDatabase = db->aDb[iDb].zName; 1820 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ 1821 return SQLITE_ERROR; 1822 } 1823 1824 /* Load new statistics out of the sqlite_stat1 table */ 1825 zSql = sqlite3MPrintf(db, 1826 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1827 if( zSql==0 ){ 1828 rc = SQLITE_NOMEM; 1829 }else{ 1830 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1831 sqlite3DbFree(db, zSql); 1832 } 1833 1834 1835 /* Load the statistics from the sqlite_stat4 table. */ 1836 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1837 if( rc==SQLITE_OK ){ 1838 int lookasideEnabled = db->lookaside.bEnabled; 1839 db->lookaside.bEnabled = 0; 1840 rc = loadStat4(db, sInfo.zDatabase); 1841 db->lookaside.bEnabled = lookasideEnabled; 1842 } 1843 #endif 1844 1845 if( rc==SQLITE_NOMEM ){ 1846 db->mallocFailed = 1; 1847 } 1848 return rc; 1849 } 1850 1851 1852 #endif /* SQLITE_OMIT_ANALYZE */ 1853