xref: /sqlite-3.40.0/src/analyze.c (revision e7952263)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
35 ** not possible to enable both STAT3 and STAT4 at the same time.  If they
36 ** are both enabled, then STAT4 takes precedence.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 # define IsStat3     0
148 #elif defined(SQLITE_ENABLE_STAT3)
149 # define IsStat4     0
150 # define IsStat3     1
151 #else
152 # define IsStat4     0
153 # define IsStat3     0
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
156 #endif
157 #define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */
158 
159 /*
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
162 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
164 **
165 ** If the sqlite_statN tables do not previously exist, it is created.
166 **
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
171 */
172 static void openStatTable(
173   Parse *pParse,          /* Parsing context */
174   int iDb,                /* The database we are looking in */
175   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
176   const char *zWhere,     /* Delete entries for this table or index */
177   const char *zWhereType  /* Either "tbl" or "idx" */
178 ){
179   static const struct {
180     const char *zName;
181     const char *zCols;
182   } aTable[] = {
183     { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186     { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189     { "sqlite_stat4", 0 },
190 #else
191     { "sqlite_stat3", 0 },
192     { "sqlite_stat4", 0 },
193 #endif
194   };
195   int i;
196   sqlite3 *db = pParse->db;
197   Db *pDb;
198   Vdbe *v = sqlite3GetVdbe(pParse);
199   int aRoot[ArraySize(aTable)];
200   u8 aCreateTbl[ArraySize(aTable)];
201 
202   if( v==0 ) return;
203   assert( sqlite3BtreeHoldsAllMutexes(db) );
204   assert( sqlite3VdbeDb(v)==db );
205   pDb = &db->aDb[iDb];
206 
207   /* Create new statistic tables if they do not exist, or clear them
208   ** if they do already exist.
209   */
210   for(i=0; i<ArraySize(aTable); i++){
211     const char *zTab = aTable[i].zName;
212     Table *pStat;
213     if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
214       if( aTable[i].zCols ){
215         /* The sqlite_statN table does not exist. Create it. Note that a
216         ** side-effect of the CREATE TABLE statement is to leave the rootpage
217         ** of the new table in register pParse->regRoot. This is important
218         ** because the OpenWrite opcode below will be needing it. */
219         sqlite3NestedParse(pParse,
220             "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
221         );
222         aRoot[i] = pParse->regRoot;
223         aCreateTbl[i] = OPFLAG_P2ISREG;
224       }
225     }else{
226       /* The table already exists. If zWhere is not NULL, delete all entries
227       ** associated with the table zWhere. If zWhere is NULL, delete the
228       ** entire contents of the table. */
229       aRoot[i] = pStat->tnum;
230       aCreateTbl[i] = 0;
231       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
232       if( zWhere ){
233         sqlite3NestedParse(pParse,
234            "DELETE FROM %Q.%s WHERE %s=%Q",
235            pDb->zDbSName, zTab, zWhereType, zWhere
236         );
237 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
238       }else if( db->xPreUpdateCallback ){
239         sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
240 #endif
241       }else{
242         /* The sqlite_stat[134] table already exists.  Delete all rows. */
243         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
244       }
245     }
246   }
247 
248   /* Open the sqlite_stat[134] tables for writing. */
249   for(i=0; aTable[i].zCols; i++){
250     assert( i<ArraySize(aTable) );
251     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
252     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
253     VdbeComment((v, aTable[i].zName));
254   }
255 }
256 
257 /*
258 ** Recommended number of samples for sqlite_stat4
259 */
260 #ifndef SQLITE_STAT4_SAMPLES
261 # define SQLITE_STAT4_SAMPLES 24
262 #endif
263 
264 /*
265 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
266 ** share an instance of the following structure to hold their state
267 ** information.
268 */
269 typedef struct Stat4Accum Stat4Accum;
270 typedef struct Stat4Sample Stat4Sample;
271 struct Stat4Sample {
272   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
273   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
274 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
275   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
276   union {
277     i64 iRowid;                     /* Rowid in main table of the key */
278     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
279   } u;
280   u32 nRowid;                     /* Sizeof aRowid[] */
281   u8 isPSample;                   /* True if a periodic sample */
282   int iCol;                       /* If !isPSample, the reason for inclusion */
283   u32 iHash;                      /* Tiebreaker hash */
284 #endif
285 };
286 struct Stat4Accum {
287   tRowcnt nRow;             /* Number of rows in the entire table */
288   tRowcnt nPSample;         /* How often to do a periodic sample */
289   int nCol;                 /* Number of columns in index + pk/rowid */
290   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
291   int mxSample;             /* Maximum number of samples to accumulate */
292   Stat4Sample current;      /* Current row as a Stat4Sample */
293   u32 iPrn;                 /* Pseudo-random number used for sampling */
294   Stat4Sample *aBest;       /* Array of nCol best samples */
295   int iMin;                 /* Index in a[] of entry with minimum score */
296   int nSample;              /* Current number of samples */
297   int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
298   int iGet;                 /* Index of current sample accessed by stat_get() */
299   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
300   sqlite3 *db;              /* Database connection, for malloc() */
301 };
302 
303 /* Reclaim memory used by a Stat4Sample
304 */
305 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
306 static void sampleClear(sqlite3 *db, Stat4Sample *p){
307   assert( db!=0 );
308   if( p->nRowid ){
309     sqlite3DbFree(db, p->u.aRowid);
310     p->nRowid = 0;
311   }
312 }
313 #endif
314 
315 /* Initialize the BLOB value of a ROWID
316 */
317 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
318 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
319   assert( db!=0 );
320   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
321   p->u.aRowid = sqlite3DbMallocRawNN(db, n);
322   if( p->u.aRowid ){
323     p->nRowid = n;
324     memcpy(p->u.aRowid, pData, n);
325   }else{
326     p->nRowid = 0;
327   }
328 }
329 #endif
330 
331 /* Initialize the INTEGER value of a ROWID.
332 */
333 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
334 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
335   assert( db!=0 );
336   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
337   p->nRowid = 0;
338   p->u.iRowid = iRowid;
339 }
340 #endif
341 
342 
343 /*
344 ** Copy the contents of object (*pFrom) into (*pTo).
345 */
346 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
347 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
348   pTo->isPSample = pFrom->isPSample;
349   pTo->iCol = pFrom->iCol;
350   pTo->iHash = pFrom->iHash;
351   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
352   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
353   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
354   if( pFrom->nRowid ){
355     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
356   }else{
357     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
358   }
359 }
360 #endif
361 
362 /*
363 ** Reclaim all memory of a Stat4Accum structure.
364 */
365 static void stat4Destructor(void *pOld){
366   Stat4Accum *p = (Stat4Accum*)pOld;
367 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
368   int i;
369   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
370   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
371   sampleClear(p->db, &p->current);
372 #endif
373   sqlite3DbFree(p->db, p);
374 }
375 
376 /*
377 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
378 ** are:
379 **     N:    The number of columns in the index including the rowid/pk (note 1)
380 **     K:    The number of columns in the index excluding the rowid/pk.
381 **     C:    The number of rows in the index (note 2)
382 **
383 ** Note 1:  In the special case of the covering index that implements a
384 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
385 ** total number of columns in the table.
386 **
387 ** Note 2:  C is only used for STAT3 and STAT4.
388 **
389 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
390 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
391 ** PRIMARY KEY of the table.  The covering index that implements the
392 ** original WITHOUT ROWID table as N==K as a special case.
393 **
394 ** This routine allocates the Stat4Accum object in heap memory. The return
395 ** value is a pointer to the Stat4Accum object.  The datatype of the
396 ** return value is BLOB, but it is really just a pointer to the Stat4Accum
397 ** object.
398 */
399 static void statInit(
400   sqlite3_context *context,
401   int argc,
402   sqlite3_value **argv
403 ){
404   Stat4Accum *p;
405   int nCol;                       /* Number of columns in index being sampled */
406   int nKeyCol;                    /* Number of key columns */
407   int nColUp;                     /* nCol rounded up for alignment */
408   int n;                          /* Bytes of space to allocate */
409   sqlite3 *db;                    /* Database connection */
410 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
411   int mxSample = SQLITE_STAT4_SAMPLES;
412 #endif
413 
414   /* Decode the three function arguments */
415   UNUSED_PARAMETER(argc);
416   nCol = sqlite3_value_int(argv[0]);
417   assert( nCol>0 );
418   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
419   nKeyCol = sqlite3_value_int(argv[1]);
420   assert( nKeyCol<=nCol );
421   assert( nKeyCol>0 );
422 
423   /* Allocate the space required for the Stat4Accum object */
424   n = sizeof(*p)
425     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
426     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
427 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
428     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
429     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
430     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
431 #endif
432   ;
433   db = sqlite3_context_db_handle(context);
434   p = sqlite3DbMallocZero(db, n);
435   if( p==0 ){
436     sqlite3_result_error_nomem(context);
437     return;
438   }
439 
440   p->db = db;
441   p->nRow = 0;
442   p->nCol = nCol;
443   p->nKeyCol = nKeyCol;
444   p->current.anDLt = (tRowcnt*)&p[1];
445   p->current.anEq = &p->current.anDLt[nColUp];
446 
447 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
448   {
449     u8 *pSpace;                     /* Allocated space not yet assigned */
450     int i;                          /* Used to iterate through p->aSample[] */
451 
452     p->iGet = -1;
453     p->mxSample = mxSample;
454     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
455     p->current.anLt = &p->current.anEq[nColUp];
456     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
457 
458     /* Set up the Stat4Accum.a[] and aBest[] arrays */
459     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
460     p->aBest = &p->a[mxSample];
461     pSpace = (u8*)(&p->a[mxSample+nCol]);
462     for(i=0; i<(mxSample+nCol); i++){
463       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
464       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
465       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
466     }
467     assert( (pSpace - (u8*)p)==n );
468 
469     for(i=0; i<nCol; i++){
470       p->aBest[i].iCol = i;
471     }
472   }
473 #endif
474 
475   /* Return a pointer to the allocated object to the caller.  Note that
476   ** only the pointer (the 2nd parameter) matters.  The size of the object
477   ** (given by the 3rd parameter) is never used and can be any positive
478   ** value. */
479   sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
480 }
481 static const FuncDef statInitFuncdef = {
482   2+IsStat34,      /* nArg */
483   SQLITE_UTF8,     /* funcFlags */
484   0,               /* pUserData */
485   0,               /* pNext */
486   statInit,        /* xSFunc */
487   0,               /* xFinalize */
488   0, 0,            /* xValue, xInverse */
489   "stat_init",     /* zName */
490   {0}
491 };
492 
493 #ifdef SQLITE_ENABLE_STAT4
494 /*
495 ** pNew and pOld are both candidate non-periodic samples selected for
496 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
497 ** considering only any trailing columns and the sample hash value, this
498 ** function returns true if sample pNew is to be preferred over pOld.
499 ** In other words, if we assume that the cardinalities of the selected
500 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
501 **
502 ** This function assumes that for each argument sample, the contents of
503 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
504 */
505 static int sampleIsBetterPost(
506   Stat4Accum *pAccum,
507   Stat4Sample *pNew,
508   Stat4Sample *pOld
509 ){
510   int nCol = pAccum->nCol;
511   int i;
512   assert( pNew->iCol==pOld->iCol );
513   for(i=pNew->iCol+1; i<nCol; i++){
514     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
515     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
516   }
517   if( pNew->iHash>pOld->iHash ) return 1;
518   return 0;
519 }
520 #endif
521 
522 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
523 /*
524 ** Return true if pNew is to be preferred over pOld.
525 **
526 ** This function assumes that for each argument sample, the contents of
527 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
528 */
529 static int sampleIsBetter(
530   Stat4Accum *pAccum,
531   Stat4Sample *pNew,
532   Stat4Sample *pOld
533 ){
534   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
535   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
536 
537   assert( pOld->isPSample==0 && pNew->isPSample==0 );
538   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
539 
540   if( (nEqNew>nEqOld) ) return 1;
541 #ifdef SQLITE_ENABLE_STAT4
542   if( nEqNew==nEqOld ){
543     if( pNew->iCol<pOld->iCol ) return 1;
544     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
545   }
546   return 0;
547 #else
548   return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
549 #endif
550 }
551 
552 /*
553 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
554 ** remove the least desirable sample from p->a[] to make room.
555 */
556 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
557   Stat4Sample *pSample = 0;
558   int i;
559 
560   assert( IsStat4 || nEqZero==0 );
561 
562 #ifdef SQLITE_ENABLE_STAT4
563   /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0
564   ** values in the anEq[] array of any sample in Stat4Accum.a[]. In
565   ** other words, if nMaxEqZero is n, then it is guaranteed that there
566   ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */
567   if( nEqZero>p->nMaxEqZero ){
568     p->nMaxEqZero = nEqZero;
569   }
570   if( pNew->isPSample==0 ){
571     Stat4Sample *pUpgrade = 0;
572     assert( pNew->anEq[pNew->iCol]>0 );
573 
574     /* This sample is being added because the prefix that ends in column
575     ** iCol occurs many times in the table. However, if we have already
576     ** added a sample that shares this prefix, there is no need to add
577     ** this one. Instead, upgrade the priority of the highest priority
578     ** existing sample that shares this prefix.  */
579     for(i=p->nSample-1; i>=0; i--){
580       Stat4Sample *pOld = &p->a[i];
581       if( pOld->anEq[pNew->iCol]==0 ){
582         if( pOld->isPSample ) return;
583         assert( pOld->iCol>pNew->iCol );
584         assert( sampleIsBetter(p, pNew, pOld) );
585         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
586           pUpgrade = pOld;
587         }
588       }
589     }
590     if( pUpgrade ){
591       pUpgrade->iCol = pNew->iCol;
592       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
593       goto find_new_min;
594     }
595   }
596 #endif
597 
598   /* If necessary, remove sample iMin to make room for the new sample. */
599   if( p->nSample>=p->mxSample ){
600     Stat4Sample *pMin = &p->a[p->iMin];
601     tRowcnt *anEq = pMin->anEq;
602     tRowcnt *anLt = pMin->anLt;
603     tRowcnt *anDLt = pMin->anDLt;
604     sampleClear(p->db, pMin);
605     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
606     pSample = &p->a[p->nSample-1];
607     pSample->nRowid = 0;
608     pSample->anEq = anEq;
609     pSample->anDLt = anDLt;
610     pSample->anLt = anLt;
611     p->nSample = p->mxSample-1;
612   }
613 
614   /* The "rows less-than" for the rowid column must be greater than that
615   ** for the last sample in the p->a[] array. Otherwise, the samples would
616   ** be out of order. */
617 #ifdef SQLITE_ENABLE_STAT4
618   assert( p->nSample==0
619        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
620 #endif
621 
622   /* Insert the new sample */
623   pSample = &p->a[p->nSample];
624   sampleCopy(p, pSample, pNew);
625   p->nSample++;
626 
627   /* Zero the first nEqZero entries in the anEq[] array. */
628   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
629 
630 #ifdef SQLITE_ENABLE_STAT4
631  find_new_min:
632 #endif
633   if( p->nSample>=p->mxSample ){
634     int iMin = -1;
635     for(i=0; i<p->mxSample; i++){
636       if( p->a[i].isPSample ) continue;
637       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
638         iMin = i;
639       }
640     }
641     assert( iMin>=0 );
642     p->iMin = iMin;
643   }
644 }
645 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
646 
647 /*
648 ** Field iChng of the index being scanned has changed. So at this point
649 ** p->current contains a sample that reflects the previous row of the
650 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
651 ** correct at this point.
652 */
653 static void samplePushPrevious(Stat4Accum *p, int iChng){
654 #ifdef SQLITE_ENABLE_STAT4
655   int i;
656 
657   /* Check if any samples from the aBest[] array should be pushed
658   ** into IndexSample.a[] at this point.  */
659   for(i=(p->nCol-2); i>=iChng; i--){
660     Stat4Sample *pBest = &p->aBest[i];
661     pBest->anEq[i] = p->current.anEq[i];
662     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
663       sampleInsert(p, pBest, i);
664     }
665   }
666 
667   /* Check that no sample contains an anEq[] entry with an index of
668   ** p->nMaxEqZero or greater set to zero. */
669   for(i=p->nSample-1; i>=0; i--){
670     int j;
671     for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
672   }
673 
674   /* Update the anEq[] fields of any samples already collected. */
675   if( iChng<p->nMaxEqZero ){
676     for(i=p->nSample-1; i>=0; i--){
677       int j;
678       for(j=iChng; j<p->nCol; j++){
679         if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
680       }
681     }
682     p->nMaxEqZero = iChng;
683   }
684 #endif
685 
686 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
687   if( iChng==0 ){
688     tRowcnt nLt = p->current.anLt[0];
689     tRowcnt nEq = p->current.anEq[0];
690 
691     /* Check if this is to be a periodic sample. If so, add it. */
692     if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
693       p->current.isPSample = 1;
694       sampleInsert(p, &p->current, 0);
695       p->current.isPSample = 0;
696     }else
697 
698     /* Or if it is a non-periodic sample. Add it in this case too. */
699     if( p->nSample<p->mxSample
700      || sampleIsBetter(p, &p->current, &p->a[p->iMin])
701     ){
702       sampleInsert(p, &p->current, 0);
703     }
704   }
705 #endif
706 
707 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
708   UNUSED_PARAMETER( p );
709   UNUSED_PARAMETER( iChng );
710 #endif
711 }
712 
713 /*
714 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
715 ** Arguments:
716 **
717 **    P     Pointer to the Stat4Accum object created by stat_init()
718 **    C     Index of left-most column to differ from previous row
719 **    R     Rowid for the current row.  Might be a key record for
720 **          WITHOUT ROWID tables.
721 **
722 ** This SQL function always returns NULL.  It's purpose it to accumulate
723 ** statistical data and/or samples in the Stat4Accum object about the
724 ** index being analyzed.  The stat_get() SQL function will later be used to
725 ** extract relevant information for constructing the sqlite_statN tables.
726 **
727 ** The R parameter is only used for STAT3 and STAT4
728 */
729 static void statPush(
730   sqlite3_context *context,
731   int argc,
732   sqlite3_value **argv
733 ){
734   int i;
735 
736   /* The three function arguments */
737   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
738   int iChng = sqlite3_value_int(argv[1]);
739 
740   UNUSED_PARAMETER( argc );
741   UNUSED_PARAMETER( context );
742   assert( p->nCol>0 );
743   assert( iChng<p->nCol );
744 
745   if( p->nRow==0 ){
746     /* This is the first call to this function. Do initialization. */
747     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
748   }else{
749     /* Second and subsequent calls get processed here */
750     samplePushPrevious(p, iChng);
751 
752     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
753     ** to the current row of the index. */
754     for(i=0; i<iChng; i++){
755       p->current.anEq[i]++;
756     }
757     for(i=iChng; i<p->nCol; i++){
758       p->current.anDLt[i]++;
759 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
760       p->current.anLt[i] += p->current.anEq[i];
761 #endif
762       p->current.anEq[i] = 1;
763     }
764   }
765   p->nRow++;
766 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
767   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
768     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
769   }else{
770     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
771                                        sqlite3_value_blob(argv[2]));
772   }
773   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
774 #endif
775 
776 #ifdef SQLITE_ENABLE_STAT4
777   {
778     tRowcnt nLt = p->current.anLt[p->nCol-1];
779 
780     /* Check if this is to be a periodic sample. If so, add it. */
781     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
782       p->current.isPSample = 1;
783       p->current.iCol = 0;
784       sampleInsert(p, &p->current, p->nCol-1);
785       p->current.isPSample = 0;
786     }
787 
788     /* Update the aBest[] array. */
789     for(i=0; i<(p->nCol-1); i++){
790       p->current.iCol = i;
791       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
792         sampleCopy(p, &p->aBest[i], &p->current);
793       }
794     }
795   }
796 #endif
797 }
798 static const FuncDef statPushFuncdef = {
799   2+IsStat34,      /* nArg */
800   SQLITE_UTF8,     /* funcFlags */
801   0,               /* pUserData */
802   0,               /* pNext */
803   statPush,        /* xSFunc */
804   0,               /* xFinalize */
805   0, 0,            /* xValue, xInverse */
806   "stat_push",     /* zName */
807   {0}
808 };
809 
810 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
811 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
812 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
813 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
814 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
815 
816 /*
817 ** Implementation of the stat_get(P,J) SQL function.  This routine is
818 ** used to query statistical information that has been gathered into
819 ** the Stat4Accum object by prior calls to stat_push().  The P parameter
820 ** has type BLOB but it is really just a pointer to the Stat4Accum object.
821 ** The content to returned is determined by the parameter J
822 ** which is one of the STAT_GET_xxxx values defined above.
823 **
824 ** The stat_get(P,J) function is not available to generic SQL.  It is
825 ** inserted as part of a manually constructed bytecode program.  (See
826 ** the callStatGet() routine below.)  It is guaranteed that the P
827 ** parameter will always be a poiner to a Stat4Accum object, never a
828 ** NULL.
829 **
830 ** If neither STAT3 nor STAT4 are enabled, then J is always
831 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
832 ** a one-parameter function, stat_get(P), that always returns the
833 ** stat1 table entry information.
834 */
835 static void statGet(
836   sqlite3_context *context,
837   int argc,
838   sqlite3_value **argv
839 ){
840   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
841 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
842   /* STAT3 and STAT4 have a parameter on this routine. */
843   int eCall = sqlite3_value_int(argv[1]);
844   assert( argc==2 );
845   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
846        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
847        || eCall==STAT_GET_NDLT
848   );
849   if( eCall==STAT_GET_STAT1 )
850 #else
851   assert( argc==1 );
852 #endif
853   {
854     /* Return the value to store in the "stat" column of the sqlite_stat1
855     ** table for this index.
856     **
857     ** The value is a string composed of a list of integers describing
858     ** the index. The first integer in the list is the total number of
859     ** entries in the index. There is one additional integer in the list
860     ** for each indexed column. This additional integer is an estimate of
861     ** the number of rows matched by a stabbing query on the index using
862     ** a key with the corresponding number of fields. In other words,
863     ** if the index is on columns (a,b) and the sqlite_stat1 value is
864     ** "100 10 2", then SQLite estimates that:
865     **
866     **   * the index contains 100 rows,
867     **   * "WHERE a=?" matches 10 rows, and
868     **   * "WHERE a=? AND b=?" matches 2 rows.
869     **
870     ** If D is the count of distinct values and K is the total number of
871     ** rows, then each estimate is computed as:
872     **
873     **        I = (K+D-1)/D
874     */
875     char *z;
876     int i;
877 
878     char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
879     if( zRet==0 ){
880       sqlite3_result_error_nomem(context);
881       return;
882     }
883 
884     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
885     z = zRet + sqlite3Strlen30(zRet);
886     for(i=0; i<p->nKeyCol; i++){
887       u64 nDistinct = p->current.anDLt[i] + 1;
888       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
889       sqlite3_snprintf(24, z, " %llu", iVal);
890       z += sqlite3Strlen30(z);
891       assert( p->current.anEq[i] );
892     }
893     assert( z[0]=='\0' && z>zRet );
894 
895     sqlite3_result_text(context, zRet, -1, sqlite3_free);
896   }
897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
898   else if( eCall==STAT_GET_ROWID ){
899     if( p->iGet<0 ){
900       samplePushPrevious(p, 0);
901       p->iGet = 0;
902     }
903     if( p->iGet<p->nSample ){
904       Stat4Sample *pS = p->a + p->iGet;
905       if( pS->nRowid==0 ){
906         sqlite3_result_int64(context, pS->u.iRowid);
907       }else{
908         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
909                             SQLITE_TRANSIENT);
910       }
911     }
912   }else{
913     tRowcnt *aCnt = 0;
914 
915     assert( p->iGet<p->nSample );
916     switch( eCall ){
917       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
918       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
919       default: {
920         aCnt = p->a[p->iGet].anDLt;
921         p->iGet++;
922         break;
923       }
924     }
925 
926     if( IsStat3 ){
927       sqlite3_result_int64(context, (i64)aCnt[0]);
928     }else{
929       char *zRet = sqlite3MallocZero(p->nCol * 25);
930       if( zRet==0 ){
931         sqlite3_result_error_nomem(context);
932       }else{
933         int i;
934         char *z = zRet;
935         for(i=0; i<p->nCol; i++){
936           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
937           z += sqlite3Strlen30(z);
938         }
939         assert( z[0]=='\0' && z>zRet );
940         z[-1] = '\0';
941         sqlite3_result_text(context, zRet, -1, sqlite3_free);
942       }
943     }
944   }
945 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
946 #ifndef SQLITE_DEBUG
947   UNUSED_PARAMETER( argc );
948 #endif
949 }
950 static const FuncDef statGetFuncdef = {
951   1+IsStat34,      /* nArg */
952   SQLITE_UTF8,     /* funcFlags */
953   0,               /* pUserData */
954   0,               /* pNext */
955   statGet,         /* xSFunc */
956   0,               /* xFinalize */
957   0, 0,            /* xValue, xInverse */
958   "stat_get",      /* zName */
959   {0}
960 };
961 
962 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
963   assert( regOut!=regStat4 && regOut!=regStat4+1 );
964 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
965   sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
966 #elif SQLITE_DEBUG
967   assert( iParam==STAT_GET_STAT1 );
968 #else
969   UNUSED_PARAMETER( iParam );
970 #endif
971   sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut,
972                     (char*)&statGetFuncdef, P4_FUNCDEF);
973   sqlite3VdbeChangeP5(v, 1 + IsStat34);
974 }
975 
976 /*
977 ** Generate code to do an analysis of all indices associated with
978 ** a single table.
979 */
980 static void analyzeOneTable(
981   Parse *pParse,   /* Parser context */
982   Table *pTab,     /* Table whose indices are to be analyzed */
983   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
984   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
985   int iMem,        /* Available memory locations begin here */
986   int iTab         /* Next available cursor */
987 ){
988   sqlite3 *db = pParse->db;    /* Database handle */
989   Index *pIdx;                 /* An index to being analyzed */
990   int iIdxCur;                 /* Cursor open on index being analyzed */
991   int iTabCur;                 /* Table cursor */
992   Vdbe *v;                     /* The virtual machine being built up */
993   int i;                       /* Loop counter */
994   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
995   int iDb;                     /* Index of database containing pTab */
996   u8 needTableCnt = 1;         /* True to count the table */
997   int regNewRowid = iMem++;    /* Rowid for the inserted record */
998   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
999   int regChng = iMem++;        /* Index of changed index field */
1000 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1001   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
1002 #endif
1003   int regTemp = iMem++;        /* Temporary use register */
1004   int regTabname = iMem++;     /* Register containing table name */
1005   int regIdxname = iMem++;     /* Register containing index name */
1006   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
1007   int regPrev = iMem;          /* MUST BE LAST (see below) */
1008 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1009   Table *pStat1 = 0;
1010 #endif
1011 
1012   pParse->nMem = MAX(pParse->nMem, iMem);
1013   v = sqlite3GetVdbe(pParse);
1014   if( v==0 || NEVER(pTab==0) ){
1015     return;
1016   }
1017   if( pTab->tnum==0 ){
1018     /* Do not gather statistics on views or virtual tables */
1019     return;
1020   }
1021   if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
1022     /* Do not gather statistics on system tables */
1023     return;
1024   }
1025   assert( sqlite3BtreeHoldsAllMutexes(db) );
1026   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1027   assert( iDb>=0 );
1028   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1029 #ifndef SQLITE_OMIT_AUTHORIZATION
1030   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1031       db->aDb[iDb].zDbSName ) ){
1032     return;
1033   }
1034 #endif
1035 
1036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1037   if( db->xPreUpdateCallback ){
1038     pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
1039     if( pStat1==0 ) return;
1040     pStat1->zName = (char*)&pStat1[1];
1041     memcpy(pStat1->zName, "sqlite_stat1", 13);
1042     pStat1->nCol = 3;
1043     pStat1->iPKey = -1;
1044     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB);
1045   }
1046 #endif
1047 
1048   /* Establish a read-lock on the table at the shared-cache level.
1049   ** Open a read-only cursor on the table. Also allocate a cursor number
1050   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1051   ** this time though.  */
1052   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1053   iTabCur = iTab++;
1054   iIdxCur = iTab++;
1055   pParse->nTab = MAX(pParse->nTab, iTab);
1056   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1057   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1058 
1059   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1060     int nCol;                     /* Number of columns in pIdx. "N" */
1061     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1062     int addrNextRow;              /* Address of "next_row:" */
1063     const char *zIdxName;         /* Name of the index */
1064     int nColTest;                 /* Number of columns to test for changes */
1065 
1066     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1067     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1068     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1069       nCol = pIdx->nKeyCol;
1070       zIdxName = pTab->zName;
1071       nColTest = nCol - 1;
1072     }else{
1073       nCol = pIdx->nColumn;
1074       zIdxName = pIdx->zName;
1075       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1076     }
1077 
1078     /* Populate the register containing the index name. */
1079     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1080     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1081 
1082     /*
1083     ** Pseudo-code for loop that calls stat_push():
1084     **
1085     **   Rewind csr
1086     **   if eof(csr) goto end_of_scan;
1087     **   regChng = 0
1088     **   goto chng_addr_0;
1089     **
1090     **  next_row:
1091     **   regChng = 0
1092     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1093     **   regChng = 1
1094     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1095     **   ...
1096     **   regChng = N
1097     **   goto chng_addr_N
1098     **
1099     **  chng_addr_0:
1100     **   regPrev(0) = idx(0)
1101     **  chng_addr_1:
1102     **   regPrev(1) = idx(1)
1103     **  ...
1104     **
1105     **  endDistinctTest:
1106     **   regRowid = idx(rowid)
1107     **   stat_push(P, regChng, regRowid)
1108     **   Next csr
1109     **   if !eof(csr) goto next_row;
1110     **
1111     **  end_of_scan:
1112     */
1113 
1114     /* Make sure there are enough memory cells allocated to accommodate
1115     ** the regPrev array and a trailing rowid (the rowid slot is required
1116     ** when building a record to insert into the sample column of
1117     ** the sqlite_stat4 table.  */
1118     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1119 
1120     /* Open a read-only cursor on the index being analyzed. */
1121     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1122     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1123     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1124     VdbeComment((v, "%s", pIdx->zName));
1125 
1126     /* Invoke the stat_init() function. The arguments are:
1127     **
1128     **    (1) the number of columns in the index including the rowid
1129     **        (or for a WITHOUT ROWID table, the number of PK columns),
1130     **    (2) the number of columns in the key without the rowid/pk
1131     **    (3) the number of rows in the index,
1132     **
1133     **
1134     ** The third argument is only used for STAT3 and STAT4
1135     */
1136 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1137     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
1138 #endif
1139     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
1140     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
1141     sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4,
1142                      (char*)&statInitFuncdef, P4_FUNCDEF);
1143     sqlite3VdbeChangeP5(v, 2+IsStat34);
1144 
1145     /* Implementation of the following:
1146     **
1147     **   Rewind csr
1148     **   if eof(csr) goto end_of_scan;
1149     **   regChng = 0
1150     **   goto next_push_0;
1151     **
1152     */
1153     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1154     VdbeCoverage(v);
1155     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1156     addrNextRow = sqlite3VdbeCurrentAddr(v);
1157 
1158     if( nColTest>0 ){
1159       int endDistinctTest = sqlite3VdbeMakeLabel(v);
1160       int *aGotoChng;               /* Array of jump instruction addresses */
1161       aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1162       if( aGotoChng==0 ) continue;
1163 
1164       /*
1165       **  next_row:
1166       **   regChng = 0
1167       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1168       **   regChng = 1
1169       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1170       **   ...
1171       **   regChng = N
1172       **   goto endDistinctTest
1173       */
1174       sqlite3VdbeAddOp0(v, OP_Goto);
1175       addrNextRow = sqlite3VdbeCurrentAddr(v);
1176       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1177         /* For a single-column UNIQUE index, once we have found a non-NULL
1178         ** row, we know that all the rest will be distinct, so skip
1179         ** subsequent distinctness tests. */
1180         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1181         VdbeCoverage(v);
1182       }
1183       for(i=0; i<nColTest; i++){
1184         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1185         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1186         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1187         aGotoChng[i] =
1188         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1189         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1190         VdbeCoverage(v);
1191       }
1192       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1193       sqlite3VdbeGoto(v, endDistinctTest);
1194 
1195 
1196       /*
1197       **  chng_addr_0:
1198       **   regPrev(0) = idx(0)
1199       **  chng_addr_1:
1200       **   regPrev(1) = idx(1)
1201       **  ...
1202       */
1203       sqlite3VdbeJumpHere(v, addrNextRow-1);
1204       for(i=0; i<nColTest; i++){
1205         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1206         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1207       }
1208       sqlite3VdbeResolveLabel(v, endDistinctTest);
1209       sqlite3DbFree(db, aGotoChng);
1210     }
1211 
1212     /*
1213     **  chng_addr_N:
1214     **   regRowid = idx(rowid)            // STAT34 only
1215     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
1216     **   Next csr
1217     **   if !eof(csr) goto next_row;
1218     */
1219 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1220     assert( regRowid==(regStat4+2) );
1221     if( HasRowid(pTab) ){
1222       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1223     }else{
1224       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1225       int j, k, regKey;
1226       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1227       for(j=0; j<pPk->nKeyCol; j++){
1228         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1229         assert( k>=0 && k<pIdx->nColumn );
1230         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1231         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1232       }
1233       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1234       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1235     }
1236 #endif
1237     assert( regChng==(regStat4+1) );
1238     sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp,
1239                      (char*)&statPushFuncdef, P4_FUNCDEF);
1240     sqlite3VdbeChangeP5(v, 2+IsStat34);
1241     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1242 
1243     /* Add the entry to the stat1 table. */
1244     callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
1245     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1246     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1247     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1248     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1249 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1250     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1251 #endif
1252     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1253 
1254     /* Add the entries to the stat3 or stat4 table. */
1255 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1256     {
1257       int regEq = regStat1;
1258       int regLt = regStat1+1;
1259       int regDLt = regStat1+2;
1260       int regSample = regStat1+3;
1261       int regCol = regStat1+4;
1262       int regSampleRowid = regCol + nCol;
1263       int addrNext;
1264       int addrIsNull;
1265       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1266 
1267       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1268 
1269       addrNext = sqlite3VdbeCurrentAddr(v);
1270       callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
1271       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1272       VdbeCoverage(v);
1273       callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
1274       callStatGet(v, regStat4, STAT_GET_NLT, regLt);
1275       callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
1276       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1277       VdbeCoverage(v);
1278 #ifdef SQLITE_ENABLE_STAT3
1279       sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample);
1280 #else
1281       for(i=0; i<nCol; i++){
1282         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1283       }
1284       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1285 #endif
1286       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1287       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1288       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1289       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1290       sqlite3VdbeJumpHere(v, addrIsNull);
1291     }
1292 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1293 
1294     /* End of analysis */
1295     sqlite3VdbeJumpHere(v, addrRewind);
1296   }
1297 
1298 
1299   /* Create a single sqlite_stat1 entry containing NULL as the index
1300   ** name and the row count as the content.
1301   */
1302   if( pOnlyIdx==0 && needTableCnt ){
1303     VdbeComment((v, "%s", pTab->zName));
1304     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1305     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1306     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1307     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1308     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1309     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1310     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1311     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1312 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1313     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1314 #endif
1315     sqlite3VdbeJumpHere(v, jZeroRows);
1316   }
1317 }
1318 
1319 
1320 /*
1321 ** Generate code that will cause the most recent index analysis to
1322 ** be loaded into internal hash tables where is can be used.
1323 */
1324 static void loadAnalysis(Parse *pParse, int iDb){
1325   Vdbe *v = sqlite3GetVdbe(pParse);
1326   if( v ){
1327     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1328   }
1329 }
1330 
1331 /*
1332 ** Generate code that will do an analysis of an entire database
1333 */
1334 static void analyzeDatabase(Parse *pParse, int iDb){
1335   sqlite3 *db = pParse->db;
1336   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1337   HashElem *k;
1338   int iStatCur;
1339   int iMem;
1340   int iTab;
1341 
1342   sqlite3BeginWriteOperation(pParse, 0, iDb);
1343   iStatCur = pParse->nTab;
1344   pParse->nTab += 3;
1345   openStatTable(pParse, iDb, iStatCur, 0, 0);
1346   iMem = pParse->nMem+1;
1347   iTab = pParse->nTab;
1348   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1349   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1350     Table *pTab = (Table*)sqliteHashData(k);
1351     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1352   }
1353   loadAnalysis(pParse, iDb);
1354 }
1355 
1356 /*
1357 ** Generate code that will do an analysis of a single table in
1358 ** a database.  If pOnlyIdx is not NULL then it is a single index
1359 ** in pTab that should be analyzed.
1360 */
1361 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1362   int iDb;
1363   int iStatCur;
1364 
1365   assert( pTab!=0 );
1366   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1367   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1368   sqlite3BeginWriteOperation(pParse, 0, iDb);
1369   iStatCur = pParse->nTab;
1370   pParse->nTab += 3;
1371   if( pOnlyIdx ){
1372     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1373   }else{
1374     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1375   }
1376   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1377   loadAnalysis(pParse, iDb);
1378 }
1379 
1380 /*
1381 ** Generate code for the ANALYZE command.  The parser calls this routine
1382 ** when it recognizes an ANALYZE command.
1383 **
1384 **        ANALYZE                            -- 1
1385 **        ANALYZE  <database>                -- 2
1386 **        ANALYZE  ?<database>.?<tablename>  -- 3
1387 **
1388 ** Form 1 causes all indices in all attached databases to be analyzed.
1389 ** Form 2 analyzes all indices the single database named.
1390 ** Form 3 analyzes all indices associated with the named table.
1391 */
1392 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1393   sqlite3 *db = pParse->db;
1394   int iDb;
1395   int i;
1396   char *z, *zDb;
1397   Table *pTab;
1398   Index *pIdx;
1399   Token *pTableName;
1400   Vdbe *v;
1401 
1402   /* Read the database schema. If an error occurs, leave an error message
1403   ** and code in pParse and return NULL. */
1404   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1405   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1406     return;
1407   }
1408 
1409   assert( pName2!=0 || pName1==0 );
1410   if( pName1==0 ){
1411     /* Form 1:  Analyze everything */
1412     for(i=0; i<db->nDb; i++){
1413       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1414       analyzeDatabase(pParse, i);
1415     }
1416   }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1417     /* Analyze the schema named as the argument */
1418     analyzeDatabase(pParse, iDb);
1419   }else{
1420     /* Form 3: Analyze the table or index named as an argument */
1421     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1422     if( iDb>=0 ){
1423       zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1424       z = sqlite3NameFromToken(db, pTableName);
1425       if( z ){
1426         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1427           analyzeTable(pParse, pIdx->pTable, pIdx);
1428         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1429           analyzeTable(pParse, pTab, 0);
1430         }
1431         sqlite3DbFree(db, z);
1432       }
1433     }
1434   }
1435   if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1436     sqlite3VdbeAddOp0(v, OP_Expire);
1437   }
1438 }
1439 
1440 /*
1441 ** Used to pass information from the analyzer reader through to the
1442 ** callback routine.
1443 */
1444 typedef struct analysisInfo analysisInfo;
1445 struct analysisInfo {
1446   sqlite3 *db;
1447   const char *zDatabase;
1448 };
1449 
1450 /*
1451 ** The first argument points to a nul-terminated string containing a
1452 ** list of space separated integers. Read the first nOut of these into
1453 ** the array aOut[].
1454 */
1455 static void decodeIntArray(
1456   char *zIntArray,       /* String containing int array to decode */
1457   int nOut,              /* Number of slots in aOut[] */
1458   tRowcnt *aOut,         /* Store integers here */
1459   LogEst *aLog,          /* Or, if aOut==0, here */
1460   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1461 ){
1462   char *z = zIntArray;
1463   int c;
1464   int i;
1465   tRowcnt v;
1466 
1467 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1468   if( z==0 ) z = "";
1469 #else
1470   assert( z!=0 );
1471 #endif
1472   for(i=0; *z && i<nOut; i++){
1473     v = 0;
1474     while( (c=z[0])>='0' && c<='9' ){
1475       v = v*10 + c - '0';
1476       z++;
1477     }
1478 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1479     if( aOut ) aOut[i] = v;
1480     if( aLog ) aLog[i] = sqlite3LogEst(v);
1481 #else
1482     assert( aOut==0 );
1483     UNUSED_PARAMETER(aOut);
1484     assert( aLog!=0 );
1485     aLog[i] = sqlite3LogEst(v);
1486 #endif
1487     if( *z==' ' ) z++;
1488   }
1489 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1490   assert( pIndex!=0 ); {
1491 #else
1492   if( pIndex ){
1493 #endif
1494     pIndex->bUnordered = 0;
1495     pIndex->noSkipScan = 0;
1496     while( z[0] ){
1497       if( sqlite3_strglob("unordered*", z)==0 ){
1498         pIndex->bUnordered = 1;
1499       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1500         pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
1501       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1502         pIndex->noSkipScan = 1;
1503       }
1504 #ifdef SQLITE_ENABLE_COSTMULT
1505       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1506         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1507       }
1508 #endif
1509       while( z[0]!=0 && z[0]!=' ' ) z++;
1510       while( z[0]==' ' ) z++;
1511     }
1512   }
1513 }
1514 
1515 /*
1516 ** This callback is invoked once for each index when reading the
1517 ** sqlite_stat1 table.
1518 **
1519 **     argv[0] = name of the table
1520 **     argv[1] = name of the index (might be NULL)
1521 **     argv[2] = results of analysis - on integer for each column
1522 **
1523 ** Entries for which argv[1]==NULL simply record the number of rows in
1524 ** the table.
1525 */
1526 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1527   analysisInfo *pInfo = (analysisInfo*)pData;
1528   Index *pIndex;
1529   Table *pTable;
1530   const char *z;
1531 
1532   assert( argc==3 );
1533   UNUSED_PARAMETER2(NotUsed, argc);
1534 
1535   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1536     return 0;
1537   }
1538   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1539   if( pTable==0 ){
1540     return 0;
1541   }
1542   if( argv[1]==0 ){
1543     pIndex = 0;
1544   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1545     pIndex = sqlite3PrimaryKeyIndex(pTable);
1546   }else{
1547     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1548   }
1549   z = argv[2];
1550 
1551   if( pIndex ){
1552     tRowcnt *aiRowEst = 0;
1553     int nCol = pIndex->nKeyCol+1;
1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1555     /* Index.aiRowEst may already be set here if there are duplicate
1556     ** sqlite_stat1 entries for this index. In that case just clobber
1557     ** the old data with the new instead of allocating a new array.  */
1558     if( pIndex->aiRowEst==0 ){
1559       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1560       if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1561     }
1562     aiRowEst = pIndex->aiRowEst;
1563 #endif
1564     pIndex->bUnordered = 0;
1565     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1566     pIndex->hasStat1 = 1;
1567     if( pIndex->pPartIdxWhere==0 ){
1568       pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1569       pTable->tabFlags |= TF_HasStat1;
1570     }
1571   }else{
1572     Index fakeIdx;
1573     fakeIdx.szIdxRow = pTable->szTabRow;
1574 #ifdef SQLITE_ENABLE_COSTMULT
1575     fakeIdx.pTable = pTable;
1576 #endif
1577     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1578     pTable->szTabRow = fakeIdx.szIdxRow;
1579     pTable->tabFlags |= TF_HasStat1;
1580   }
1581 
1582   return 0;
1583 }
1584 
1585 /*
1586 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1587 ** and its contents.
1588 */
1589 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1590 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1591   if( pIdx->aSample ){
1592     int j;
1593     for(j=0; j<pIdx->nSample; j++){
1594       IndexSample *p = &pIdx->aSample[j];
1595       sqlite3DbFree(db, p->p);
1596     }
1597     sqlite3DbFree(db, pIdx->aSample);
1598   }
1599   if( db && db->pnBytesFreed==0 ){
1600     pIdx->nSample = 0;
1601     pIdx->aSample = 0;
1602   }
1603 #else
1604   UNUSED_PARAMETER(db);
1605   UNUSED_PARAMETER(pIdx);
1606 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1607 }
1608 
1609 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1610 /*
1611 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1612 ** stored in pIdx->aSample[].
1613 */
1614 static void initAvgEq(Index *pIdx){
1615   if( pIdx ){
1616     IndexSample *aSample = pIdx->aSample;
1617     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1618     int iCol;
1619     int nCol = 1;
1620     if( pIdx->nSampleCol>1 ){
1621       /* If this is stat4 data, then calculate aAvgEq[] values for all
1622       ** sample columns except the last. The last is always set to 1, as
1623       ** once the trailing PK fields are considered all index keys are
1624       ** unique.  */
1625       nCol = pIdx->nSampleCol-1;
1626       pIdx->aAvgEq[nCol] = 1;
1627     }
1628     for(iCol=0; iCol<nCol; iCol++){
1629       int nSample = pIdx->nSample;
1630       int i;                    /* Used to iterate through samples */
1631       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1632       tRowcnt avgEq = 0;
1633       tRowcnt nRow;             /* Number of rows in index */
1634       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1635       i64 nDist100;             /* Number of distinct values in index */
1636 
1637       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1638         nRow = pFinal->anLt[iCol];
1639         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1640         nSample--;
1641       }else{
1642         nRow = pIdx->aiRowEst[0];
1643         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1644       }
1645       pIdx->nRowEst0 = nRow;
1646 
1647       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1648       ** occur in the stat4 table for this index. Set sumEq to the sum of
1649       ** the nEq values for column iCol for the same set (adding the value
1650       ** only once where there exist duplicate prefixes).  */
1651       for(i=0; i<nSample; i++){
1652         if( i==(pIdx->nSample-1)
1653          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1654         ){
1655           sumEq += aSample[i].anEq[iCol];
1656           nSum100 += 100;
1657         }
1658       }
1659 
1660       if( nDist100>nSum100 && sumEq<nRow ){
1661         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1662       }
1663       if( avgEq==0 ) avgEq = 1;
1664       pIdx->aAvgEq[iCol] = avgEq;
1665     }
1666   }
1667 }
1668 
1669 /*
1670 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1671 ** is supplied instead, find the PRIMARY KEY index for that table.
1672 */
1673 static Index *findIndexOrPrimaryKey(
1674   sqlite3 *db,
1675   const char *zName,
1676   const char *zDb
1677 ){
1678   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1679   if( pIdx==0 ){
1680     Table *pTab = sqlite3FindTable(db, zName, zDb);
1681     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1682   }
1683   return pIdx;
1684 }
1685 
1686 /*
1687 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1688 ** into the relevant Index.aSample[] arrays.
1689 **
1690 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1691 ** data equivalent to the following (statements are different for stat3,
1692 ** see the caller of this function for details):
1693 **
1694 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1695 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1696 **
1697 ** where %Q is replaced with the database name before the SQL is executed.
1698 */
1699 static int loadStatTbl(
1700   sqlite3 *db,                  /* Database handle */
1701   int bStat3,                   /* Assume single column records only */
1702   const char *zSql1,            /* SQL statement 1 (see above) */
1703   const char *zSql2,            /* SQL statement 2 (see above) */
1704   const char *zDb               /* Database name (e.g. "main") */
1705 ){
1706   int rc;                       /* Result codes from subroutines */
1707   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1708   char *zSql;                   /* Text of the SQL statement */
1709   Index *pPrevIdx = 0;          /* Previous index in the loop */
1710   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1711 
1712   assert( db->lookaside.bDisable );
1713   zSql = sqlite3MPrintf(db, zSql1, zDb);
1714   if( !zSql ){
1715     return SQLITE_NOMEM_BKPT;
1716   }
1717   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1718   sqlite3DbFree(db, zSql);
1719   if( rc ) return rc;
1720 
1721   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1722     int nIdxCol = 1;              /* Number of columns in stat4 records */
1723 
1724     char *zIndex;   /* Index name */
1725     Index *pIdx;    /* Pointer to the index object */
1726     int nSample;    /* Number of samples */
1727     int nByte;      /* Bytes of space required */
1728     int i;          /* Bytes of space required */
1729     tRowcnt *pSpace;
1730 
1731     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1732     if( zIndex==0 ) continue;
1733     nSample = sqlite3_column_int(pStmt, 1);
1734     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1735     assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
1736     /* Index.nSample is non-zero at this point if data has already been
1737     ** loaded from the stat4 table. In this case ignore stat3 data.  */
1738     if( pIdx==0 || pIdx->nSample ) continue;
1739     if( bStat3==0 ){
1740       assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1741       if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1742         nIdxCol = pIdx->nKeyCol;
1743       }else{
1744         nIdxCol = pIdx->nColumn;
1745       }
1746     }
1747     pIdx->nSampleCol = nIdxCol;
1748     nByte = sizeof(IndexSample) * nSample;
1749     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1750     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1751 
1752     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1753     if( pIdx->aSample==0 ){
1754       sqlite3_finalize(pStmt);
1755       return SQLITE_NOMEM_BKPT;
1756     }
1757     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1758     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1759     for(i=0; i<nSample; i++){
1760       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1761       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1762       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1763     }
1764     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1765   }
1766   rc = sqlite3_finalize(pStmt);
1767   if( rc ) return rc;
1768 
1769   zSql = sqlite3MPrintf(db, zSql2, zDb);
1770   if( !zSql ){
1771     return SQLITE_NOMEM_BKPT;
1772   }
1773   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1774   sqlite3DbFree(db, zSql);
1775   if( rc ) return rc;
1776 
1777   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1778     char *zIndex;                 /* Index name */
1779     Index *pIdx;                  /* Pointer to the index object */
1780     int nCol = 1;                 /* Number of columns in index */
1781 
1782     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1783     if( zIndex==0 ) continue;
1784     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1785     if( pIdx==0 ) continue;
1786     /* This next condition is true if data has already been loaded from
1787     ** the sqlite_stat4 table. In this case ignore stat3 data.  */
1788     nCol = pIdx->nSampleCol;
1789     if( bStat3 && nCol>1 ) continue;
1790     if( pIdx!=pPrevIdx ){
1791       initAvgEq(pPrevIdx);
1792       pPrevIdx = pIdx;
1793     }
1794     pSample = &pIdx->aSample[pIdx->nSample];
1795     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1796     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1797     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1798 
1799     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1800     ** This is in case the sample record is corrupted. In that case, the
1801     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1802     ** end of the allocated buffer before it realizes it is dealing with
1803     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1804     ** a buffer overread.  */
1805     pSample->n = sqlite3_column_bytes(pStmt, 4);
1806     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1807     if( pSample->p==0 ){
1808       sqlite3_finalize(pStmt);
1809       return SQLITE_NOMEM_BKPT;
1810     }
1811     if( pSample->n ){
1812       memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1813     }
1814     pIdx->nSample++;
1815   }
1816   rc = sqlite3_finalize(pStmt);
1817   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1818   return rc;
1819 }
1820 
1821 /*
1822 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1823 ** the Index.aSample[] arrays of all indices.
1824 */
1825 static int loadStat4(sqlite3 *db, const char *zDb){
1826   int rc = SQLITE_OK;             /* Result codes from subroutines */
1827 
1828   assert( db->lookaside.bDisable );
1829   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1830     rc = loadStatTbl(db, 0,
1831       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1832       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1833       zDb
1834     );
1835   }
1836 
1837   if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
1838     rc = loadStatTbl(db, 1,
1839       "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1840       "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1841       zDb
1842     );
1843   }
1844 
1845   return rc;
1846 }
1847 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1848 
1849 /*
1850 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1851 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1852 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1853 ** Index.aSample[] arrays.
1854 **
1855 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1856 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1857 ** during compilation and the sqlite_stat3/4 table is present, no data is
1858 ** read from it.
1859 **
1860 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1861 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1862 ** returned. However, in this case, data is read from the sqlite_stat1
1863 ** table (if it is present) before returning.
1864 **
1865 ** If an OOM error occurs, this function always sets db->mallocFailed.
1866 ** This means if the caller does not care about other errors, the return
1867 ** code may be ignored.
1868 */
1869 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1870   analysisInfo sInfo;
1871   HashElem *i;
1872   char *zSql;
1873   int rc = SQLITE_OK;
1874   Schema *pSchema = db->aDb[iDb].pSchema;
1875 
1876   assert( iDb>=0 && iDb<db->nDb );
1877   assert( db->aDb[iDb].pBt!=0 );
1878 
1879   /* Clear any prior statistics */
1880   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1881   for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1882     Table *pTab = sqliteHashData(i);
1883     pTab->tabFlags &= ~TF_HasStat1;
1884   }
1885   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1886     Index *pIdx = sqliteHashData(i);
1887     pIdx->hasStat1 = 0;
1888 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1889     sqlite3DeleteIndexSamples(db, pIdx);
1890     pIdx->aSample = 0;
1891 #endif
1892   }
1893 
1894   /* Load new statistics out of the sqlite_stat1 table */
1895   sInfo.db = db;
1896   sInfo.zDatabase = db->aDb[iDb].zDbSName;
1897   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){
1898     zSql = sqlite3MPrintf(db,
1899         "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1900     if( zSql==0 ){
1901       rc = SQLITE_NOMEM_BKPT;
1902     }else{
1903       rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1904       sqlite3DbFree(db, zSql);
1905     }
1906   }
1907 
1908   /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1909   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1910   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1911     Index *pIdx = sqliteHashData(i);
1912     if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1913   }
1914 
1915   /* Load the statistics from the sqlite_stat4 table. */
1916 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1917   if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){
1918     db->lookaside.bDisable++;
1919     rc = loadStat4(db, sInfo.zDatabase);
1920     db->lookaside.bDisable--;
1921   }
1922   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1923     Index *pIdx = sqliteHashData(i);
1924     sqlite3_free(pIdx->aiRowEst);
1925     pIdx->aiRowEst = 0;
1926   }
1927 #endif
1928 
1929   if( rc==SQLITE_NOMEM ){
1930     sqlite3OomFault(db);
1931   }
1932   return rc;
1933 }
1934 
1935 
1936 #endif /* SQLITE_OMIT_ANALYZE */
1937