1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zDbSName, zTab, zWhereType, zWhere 236 ); 237 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 238 }else if( db->xPreUpdateCallback ){ 239 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 240 #endif 241 }else{ 242 /* The sqlite_stat[134] table already exists. Delete all rows. */ 243 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 244 } 245 } 246 } 247 248 /* Open the sqlite_stat[134] tables for writing. */ 249 for(i=0; aTable[i].zCols; i++){ 250 assert( i<ArraySize(aTable) ); 251 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 252 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 253 VdbeComment((v, aTable[i].zName)); 254 } 255 } 256 257 /* 258 ** Recommended number of samples for sqlite_stat4 259 */ 260 #ifndef SQLITE_STAT4_SAMPLES 261 # define SQLITE_STAT4_SAMPLES 24 262 #endif 263 264 /* 265 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 266 ** share an instance of the following structure to hold their state 267 ** information. 268 */ 269 typedef struct Stat4Accum Stat4Accum; 270 typedef struct Stat4Sample Stat4Sample; 271 struct Stat4Sample { 272 tRowcnt *anEq; /* sqlite_stat4.nEq */ 273 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 274 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 275 tRowcnt *anLt; /* sqlite_stat4.nLt */ 276 union { 277 i64 iRowid; /* Rowid in main table of the key */ 278 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 279 } u; 280 u32 nRowid; /* Sizeof aRowid[] */ 281 u8 isPSample; /* True if a periodic sample */ 282 int iCol; /* If !isPSample, the reason for inclusion */ 283 u32 iHash; /* Tiebreaker hash */ 284 #endif 285 }; 286 struct Stat4Accum { 287 tRowcnt nRow; /* Number of rows in the entire table */ 288 tRowcnt nPSample; /* How often to do a periodic sample */ 289 int nCol; /* Number of columns in index + pk/rowid */ 290 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 291 int mxSample; /* Maximum number of samples to accumulate */ 292 Stat4Sample current; /* Current row as a Stat4Sample */ 293 u32 iPrn; /* Pseudo-random number used for sampling */ 294 Stat4Sample *aBest; /* Array of nCol best samples */ 295 int iMin; /* Index in a[] of entry with minimum score */ 296 int nSample; /* Current number of samples */ 297 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 298 int iGet; /* Index of current sample accessed by stat_get() */ 299 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 300 sqlite3 *db; /* Database connection, for malloc() */ 301 }; 302 303 /* Reclaim memory used by a Stat4Sample 304 */ 305 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 306 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 307 assert( db!=0 ); 308 if( p->nRowid ){ 309 sqlite3DbFree(db, p->u.aRowid); 310 p->nRowid = 0; 311 } 312 } 313 #endif 314 315 /* Initialize the BLOB value of a ROWID 316 */ 317 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 318 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 319 assert( db!=0 ); 320 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 321 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 322 if( p->u.aRowid ){ 323 p->nRowid = n; 324 memcpy(p->u.aRowid, pData, n); 325 }else{ 326 p->nRowid = 0; 327 } 328 } 329 #endif 330 331 /* Initialize the INTEGER value of a ROWID. 332 */ 333 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 334 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 335 assert( db!=0 ); 336 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 337 p->nRowid = 0; 338 p->u.iRowid = iRowid; 339 } 340 #endif 341 342 343 /* 344 ** Copy the contents of object (*pFrom) into (*pTo). 345 */ 346 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 347 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 348 pTo->isPSample = pFrom->isPSample; 349 pTo->iCol = pFrom->iCol; 350 pTo->iHash = pFrom->iHash; 351 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 352 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 353 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 354 if( pFrom->nRowid ){ 355 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 356 }else{ 357 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 358 } 359 } 360 #endif 361 362 /* 363 ** Reclaim all memory of a Stat4Accum structure. 364 */ 365 static void stat4Destructor(void *pOld){ 366 Stat4Accum *p = (Stat4Accum*)pOld; 367 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 368 int i; 369 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 370 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 371 sampleClear(p->db, &p->current); 372 #endif 373 sqlite3DbFree(p->db, p); 374 } 375 376 /* 377 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 378 ** are: 379 ** N: The number of columns in the index including the rowid/pk (note 1) 380 ** K: The number of columns in the index excluding the rowid/pk. 381 ** C: The number of rows in the index (note 2) 382 ** 383 ** Note 1: In the special case of the covering index that implements a 384 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 385 ** total number of columns in the table. 386 ** 387 ** Note 2: C is only used for STAT3 and STAT4. 388 ** 389 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 390 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 391 ** PRIMARY KEY of the table. The covering index that implements the 392 ** original WITHOUT ROWID table as N==K as a special case. 393 ** 394 ** This routine allocates the Stat4Accum object in heap memory. The return 395 ** value is a pointer to the Stat4Accum object. The datatype of the 396 ** return value is BLOB, but it is really just a pointer to the Stat4Accum 397 ** object. 398 */ 399 static void statInit( 400 sqlite3_context *context, 401 int argc, 402 sqlite3_value **argv 403 ){ 404 Stat4Accum *p; 405 int nCol; /* Number of columns in index being sampled */ 406 int nKeyCol; /* Number of key columns */ 407 int nColUp; /* nCol rounded up for alignment */ 408 int n; /* Bytes of space to allocate */ 409 sqlite3 *db; /* Database connection */ 410 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 411 int mxSample = SQLITE_STAT4_SAMPLES; 412 #endif 413 414 /* Decode the three function arguments */ 415 UNUSED_PARAMETER(argc); 416 nCol = sqlite3_value_int(argv[0]); 417 assert( nCol>0 ); 418 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 419 nKeyCol = sqlite3_value_int(argv[1]); 420 assert( nKeyCol<=nCol ); 421 assert( nKeyCol>0 ); 422 423 /* Allocate the space required for the Stat4Accum object */ 424 n = sizeof(*p) 425 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 426 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 427 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 428 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 429 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 430 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 431 #endif 432 ; 433 db = sqlite3_context_db_handle(context); 434 p = sqlite3DbMallocZero(db, n); 435 if( p==0 ){ 436 sqlite3_result_error_nomem(context); 437 return; 438 } 439 440 p->db = db; 441 p->nRow = 0; 442 p->nCol = nCol; 443 p->nKeyCol = nKeyCol; 444 p->current.anDLt = (tRowcnt*)&p[1]; 445 p->current.anEq = &p->current.anDLt[nColUp]; 446 447 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 448 { 449 u8 *pSpace; /* Allocated space not yet assigned */ 450 int i; /* Used to iterate through p->aSample[] */ 451 452 p->iGet = -1; 453 p->mxSample = mxSample; 454 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 455 p->current.anLt = &p->current.anEq[nColUp]; 456 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 457 458 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 459 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 460 p->aBest = &p->a[mxSample]; 461 pSpace = (u8*)(&p->a[mxSample+nCol]); 462 for(i=0; i<(mxSample+nCol); i++){ 463 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 464 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 465 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 466 } 467 assert( (pSpace - (u8*)p)==n ); 468 469 for(i=0; i<nCol; i++){ 470 p->aBest[i].iCol = i; 471 } 472 } 473 #endif 474 475 /* Return a pointer to the allocated object to the caller. Note that 476 ** only the pointer (the 2nd parameter) matters. The size of the object 477 ** (given by the 3rd parameter) is never used and can be any positive 478 ** value. */ 479 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); 480 } 481 static const FuncDef statInitFuncdef = { 482 2+IsStat34, /* nArg */ 483 SQLITE_UTF8, /* funcFlags */ 484 0, /* pUserData */ 485 0, /* pNext */ 486 statInit, /* xSFunc */ 487 0, /* xFinalize */ 488 0, 0, /* xValue, xInverse */ 489 "stat_init", /* zName */ 490 {0} 491 }; 492 493 #ifdef SQLITE_ENABLE_STAT4 494 /* 495 ** pNew and pOld are both candidate non-periodic samples selected for 496 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 497 ** considering only any trailing columns and the sample hash value, this 498 ** function returns true if sample pNew is to be preferred over pOld. 499 ** In other words, if we assume that the cardinalities of the selected 500 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 501 ** 502 ** This function assumes that for each argument sample, the contents of 503 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 504 */ 505 static int sampleIsBetterPost( 506 Stat4Accum *pAccum, 507 Stat4Sample *pNew, 508 Stat4Sample *pOld 509 ){ 510 int nCol = pAccum->nCol; 511 int i; 512 assert( pNew->iCol==pOld->iCol ); 513 for(i=pNew->iCol+1; i<nCol; i++){ 514 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 515 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 516 } 517 if( pNew->iHash>pOld->iHash ) return 1; 518 return 0; 519 } 520 #endif 521 522 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 523 /* 524 ** Return true if pNew is to be preferred over pOld. 525 ** 526 ** This function assumes that for each argument sample, the contents of 527 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 528 */ 529 static int sampleIsBetter( 530 Stat4Accum *pAccum, 531 Stat4Sample *pNew, 532 Stat4Sample *pOld 533 ){ 534 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 535 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 536 537 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 538 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 539 540 if( (nEqNew>nEqOld) ) return 1; 541 #ifdef SQLITE_ENABLE_STAT4 542 if( nEqNew==nEqOld ){ 543 if( pNew->iCol<pOld->iCol ) return 1; 544 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 545 } 546 return 0; 547 #else 548 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 549 #endif 550 } 551 552 /* 553 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 554 ** remove the least desirable sample from p->a[] to make room. 555 */ 556 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 557 Stat4Sample *pSample = 0; 558 int i; 559 560 assert( IsStat4 || nEqZero==0 ); 561 562 #ifdef SQLITE_ENABLE_STAT4 563 /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0 564 ** values in the anEq[] array of any sample in Stat4Accum.a[]. In 565 ** other words, if nMaxEqZero is n, then it is guaranteed that there 566 ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */ 567 if( nEqZero>p->nMaxEqZero ){ 568 p->nMaxEqZero = nEqZero; 569 } 570 if( pNew->isPSample==0 ){ 571 Stat4Sample *pUpgrade = 0; 572 assert( pNew->anEq[pNew->iCol]>0 ); 573 574 /* This sample is being added because the prefix that ends in column 575 ** iCol occurs many times in the table. However, if we have already 576 ** added a sample that shares this prefix, there is no need to add 577 ** this one. Instead, upgrade the priority of the highest priority 578 ** existing sample that shares this prefix. */ 579 for(i=p->nSample-1; i>=0; i--){ 580 Stat4Sample *pOld = &p->a[i]; 581 if( pOld->anEq[pNew->iCol]==0 ){ 582 if( pOld->isPSample ) return; 583 assert( pOld->iCol>pNew->iCol ); 584 assert( sampleIsBetter(p, pNew, pOld) ); 585 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 586 pUpgrade = pOld; 587 } 588 } 589 } 590 if( pUpgrade ){ 591 pUpgrade->iCol = pNew->iCol; 592 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 593 goto find_new_min; 594 } 595 } 596 #endif 597 598 /* If necessary, remove sample iMin to make room for the new sample. */ 599 if( p->nSample>=p->mxSample ){ 600 Stat4Sample *pMin = &p->a[p->iMin]; 601 tRowcnt *anEq = pMin->anEq; 602 tRowcnt *anLt = pMin->anLt; 603 tRowcnt *anDLt = pMin->anDLt; 604 sampleClear(p->db, pMin); 605 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 606 pSample = &p->a[p->nSample-1]; 607 pSample->nRowid = 0; 608 pSample->anEq = anEq; 609 pSample->anDLt = anDLt; 610 pSample->anLt = anLt; 611 p->nSample = p->mxSample-1; 612 } 613 614 /* The "rows less-than" for the rowid column must be greater than that 615 ** for the last sample in the p->a[] array. Otherwise, the samples would 616 ** be out of order. */ 617 #ifdef SQLITE_ENABLE_STAT4 618 assert( p->nSample==0 619 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 620 #endif 621 622 /* Insert the new sample */ 623 pSample = &p->a[p->nSample]; 624 sampleCopy(p, pSample, pNew); 625 p->nSample++; 626 627 /* Zero the first nEqZero entries in the anEq[] array. */ 628 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 629 630 #ifdef SQLITE_ENABLE_STAT4 631 find_new_min: 632 #endif 633 if( p->nSample>=p->mxSample ){ 634 int iMin = -1; 635 for(i=0; i<p->mxSample; i++){ 636 if( p->a[i].isPSample ) continue; 637 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 638 iMin = i; 639 } 640 } 641 assert( iMin>=0 ); 642 p->iMin = iMin; 643 } 644 } 645 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 646 647 /* 648 ** Field iChng of the index being scanned has changed. So at this point 649 ** p->current contains a sample that reflects the previous row of the 650 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 651 ** correct at this point. 652 */ 653 static void samplePushPrevious(Stat4Accum *p, int iChng){ 654 #ifdef SQLITE_ENABLE_STAT4 655 int i; 656 657 /* Check if any samples from the aBest[] array should be pushed 658 ** into IndexSample.a[] at this point. */ 659 for(i=(p->nCol-2); i>=iChng; i--){ 660 Stat4Sample *pBest = &p->aBest[i]; 661 pBest->anEq[i] = p->current.anEq[i]; 662 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 663 sampleInsert(p, pBest, i); 664 } 665 } 666 667 /* Check that no sample contains an anEq[] entry with an index of 668 ** p->nMaxEqZero or greater set to zero. */ 669 for(i=p->nSample-1; i>=0; i--){ 670 int j; 671 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 672 } 673 674 /* Update the anEq[] fields of any samples already collected. */ 675 if( iChng<p->nMaxEqZero ){ 676 for(i=p->nSample-1; i>=0; i--){ 677 int j; 678 for(j=iChng; j<p->nCol; j++){ 679 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 680 } 681 } 682 p->nMaxEqZero = iChng; 683 } 684 #endif 685 686 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 687 if( iChng==0 ){ 688 tRowcnt nLt = p->current.anLt[0]; 689 tRowcnt nEq = p->current.anEq[0]; 690 691 /* Check if this is to be a periodic sample. If so, add it. */ 692 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 693 p->current.isPSample = 1; 694 sampleInsert(p, &p->current, 0); 695 p->current.isPSample = 0; 696 }else 697 698 /* Or if it is a non-periodic sample. Add it in this case too. */ 699 if( p->nSample<p->mxSample 700 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 701 ){ 702 sampleInsert(p, &p->current, 0); 703 } 704 } 705 #endif 706 707 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 708 UNUSED_PARAMETER( p ); 709 UNUSED_PARAMETER( iChng ); 710 #endif 711 } 712 713 /* 714 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 715 ** Arguments: 716 ** 717 ** P Pointer to the Stat4Accum object created by stat_init() 718 ** C Index of left-most column to differ from previous row 719 ** R Rowid for the current row. Might be a key record for 720 ** WITHOUT ROWID tables. 721 ** 722 ** This SQL function always returns NULL. It's purpose it to accumulate 723 ** statistical data and/or samples in the Stat4Accum object about the 724 ** index being analyzed. The stat_get() SQL function will later be used to 725 ** extract relevant information for constructing the sqlite_statN tables. 726 ** 727 ** The R parameter is only used for STAT3 and STAT4 728 */ 729 static void statPush( 730 sqlite3_context *context, 731 int argc, 732 sqlite3_value **argv 733 ){ 734 int i; 735 736 /* The three function arguments */ 737 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 738 int iChng = sqlite3_value_int(argv[1]); 739 740 UNUSED_PARAMETER( argc ); 741 UNUSED_PARAMETER( context ); 742 assert( p->nCol>0 ); 743 assert( iChng<p->nCol ); 744 745 if( p->nRow==0 ){ 746 /* This is the first call to this function. Do initialization. */ 747 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 748 }else{ 749 /* Second and subsequent calls get processed here */ 750 samplePushPrevious(p, iChng); 751 752 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 753 ** to the current row of the index. */ 754 for(i=0; i<iChng; i++){ 755 p->current.anEq[i]++; 756 } 757 for(i=iChng; i<p->nCol; i++){ 758 p->current.anDLt[i]++; 759 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 760 p->current.anLt[i] += p->current.anEq[i]; 761 #endif 762 p->current.anEq[i] = 1; 763 } 764 } 765 p->nRow++; 766 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 767 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 768 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 769 }else{ 770 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 771 sqlite3_value_blob(argv[2])); 772 } 773 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 774 #endif 775 776 #ifdef SQLITE_ENABLE_STAT4 777 { 778 tRowcnt nLt = p->current.anLt[p->nCol-1]; 779 780 /* Check if this is to be a periodic sample. If so, add it. */ 781 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 782 p->current.isPSample = 1; 783 p->current.iCol = 0; 784 sampleInsert(p, &p->current, p->nCol-1); 785 p->current.isPSample = 0; 786 } 787 788 /* Update the aBest[] array. */ 789 for(i=0; i<(p->nCol-1); i++){ 790 p->current.iCol = i; 791 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 792 sampleCopy(p, &p->aBest[i], &p->current); 793 } 794 } 795 } 796 #endif 797 } 798 static const FuncDef statPushFuncdef = { 799 2+IsStat34, /* nArg */ 800 SQLITE_UTF8, /* funcFlags */ 801 0, /* pUserData */ 802 0, /* pNext */ 803 statPush, /* xSFunc */ 804 0, /* xFinalize */ 805 0, 0, /* xValue, xInverse */ 806 "stat_push", /* zName */ 807 {0} 808 }; 809 810 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 811 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 812 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 813 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 814 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 815 816 /* 817 ** Implementation of the stat_get(P,J) SQL function. This routine is 818 ** used to query statistical information that has been gathered into 819 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 820 ** has type BLOB but it is really just a pointer to the Stat4Accum object. 821 ** The content to returned is determined by the parameter J 822 ** which is one of the STAT_GET_xxxx values defined above. 823 ** 824 ** The stat_get(P,J) function is not available to generic SQL. It is 825 ** inserted as part of a manually constructed bytecode program. (See 826 ** the callStatGet() routine below.) It is guaranteed that the P 827 ** parameter will always be a poiner to a Stat4Accum object, never a 828 ** NULL. 829 ** 830 ** If neither STAT3 nor STAT4 are enabled, then J is always 831 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 832 ** a one-parameter function, stat_get(P), that always returns the 833 ** stat1 table entry information. 834 */ 835 static void statGet( 836 sqlite3_context *context, 837 int argc, 838 sqlite3_value **argv 839 ){ 840 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 841 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 842 /* STAT3 and STAT4 have a parameter on this routine. */ 843 int eCall = sqlite3_value_int(argv[1]); 844 assert( argc==2 ); 845 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 846 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 847 || eCall==STAT_GET_NDLT 848 ); 849 if( eCall==STAT_GET_STAT1 ) 850 #else 851 assert( argc==1 ); 852 #endif 853 { 854 /* Return the value to store in the "stat" column of the sqlite_stat1 855 ** table for this index. 856 ** 857 ** The value is a string composed of a list of integers describing 858 ** the index. The first integer in the list is the total number of 859 ** entries in the index. There is one additional integer in the list 860 ** for each indexed column. This additional integer is an estimate of 861 ** the number of rows matched by a stabbing query on the index using 862 ** a key with the corresponding number of fields. In other words, 863 ** if the index is on columns (a,b) and the sqlite_stat1 value is 864 ** "100 10 2", then SQLite estimates that: 865 ** 866 ** * the index contains 100 rows, 867 ** * "WHERE a=?" matches 10 rows, and 868 ** * "WHERE a=? AND b=?" matches 2 rows. 869 ** 870 ** If D is the count of distinct values and K is the total number of 871 ** rows, then each estimate is computed as: 872 ** 873 ** I = (K+D-1)/D 874 */ 875 char *z; 876 int i; 877 878 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 879 if( zRet==0 ){ 880 sqlite3_result_error_nomem(context); 881 return; 882 } 883 884 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 885 z = zRet + sqlite3Strlen30(zRet); 886 for(i=0; i<p->nKeyCol; i++){ 887 u64 nDistinct = p->current.anDLt[i] + 1; 888 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 889 sqlite3_snprintf(24, z, " %llu", iVal); 890 z += sqlite3Strlen30(z); 891 assert( p->current.anEq[i] ); 892 } 893 assert( z[0]=='\0' && z>zRet ); 894 895 sqlite3_result_text(context, zRet, -1, sqlite3_free); 896 } 897 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 898 else if( eCall==STAT_GET_ROWID ){ 899 if( p->iGet<0 ){ 900 samplePushPrevious(p, 0); 901 p->iGet = 0; 902 } 903 if( p->iGet<p->nSample ){ 904 Stat4Sample *pS = p->a + p->iGet; 905 if( pS->nRowid==0 ){ 906 sqlite3_result_int64(context, pS->u.iRowid); 907 }else{ 908 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 909 SQLITE_TRANSIENT); 910 } 911 } 912 }else{ 913 tRowcnt *aCnt = 0; 914 915 assert( p->iGet<p->nSample ); 916 switch( eCall ){ 917 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 918 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 919 default: { 920 aCnt = p->a[p->iGet].anDLt; 921 p->iGet++; 922 break; 923 } 924 } 925 926 if( IsStat3 ){ 927 sqlite3_result_int64(context, (i64)aCnt[0]); 928 }else{ 929 char *zRet = sqlite3MallocZero(p->nCol * 25); 930 if( zRet==0 ){ 931 sqlite3_result_error_nomem(context); 932 }else{ 933 int i; 934 char *z = zRet; 935 for(i=0; i<p->nCol; i++){ 936 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 937 z += sqlite3Strlen30(z); 938 } 939 assert( z[0]=='\0' && z>zRet ); 940 z[-1] = '\0'; 941 sqlite3_result_text(context, zRet, -1, sqlite3_free); 942 } 943 } 944 } 945 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 946 #ifndef SQLITE_DEBUG 947 UNUSED_PARAMETER( argc ); 948 #endif 949 } 950 static const FuncDef statGetFuncdef = { 951 1+IsStat34, /* nArg */ 952 SQLITE_UTF8, /* funcFlags */ 953 0, /* pUserData */ 954 0, /* pNext */ 955 statGet, /* xSFunc */ 956 0, /* xFinalize */ 957 0, 0, /* xValue, xInverse */ 958 "stat_get", /* zName */ 959 {0} 960 }; 961 962 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 963 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 964 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 965 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 966 #elif SQLITE_DEBUG 967 assert( iParam==STAT_GET_STAT1 ); 968 #else 969 UNUSED_PARAMETER( iParam ); 970 #endif 971 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut, 972 (char*)&statGetFuncdef, P4_FUNCDEF); 973 sqlite3VdbeChangeP5(v, 1 + IsStat34); 974 } 975 976 /* 977 ** Generate code to do an analysis of all indices associated with 978 ** a single table. 979 */ 980 static void analyzeOneTable( 981 Parse *pParse, /* Parser context */ 982 Table *pTab, /* Table whose indices are to be analyzed */ 983 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 984 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 985 int iMem, /* Available memory locations begin here */ 986 int iTab /* Next available cursor */ 987 ){ 988 sqlite3 *db = pParse->db; /* Database handle */ 989 Index *pIdx; /* An index to being analyzed */ 990 int iIdxCur; /* Cursor open on index being analyzed */ 991 int iTabCur; /* Table cursor */ 992 Vdbe *v; /* The virtual machine being built up */ 993 int i; /* Loop counter */ 994 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 995 int iDb; /* Index of database containing pTab */ 996 u8 needTableCnt = 1; /* True to count the table */ 997 int regNewRowid = iMem++; /* Rowid for the inserted record */ 998 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 999 int regChng = iMem++; /* Index of changed index field */ 1000 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1001 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 1002 #endif 1003 int regTemp = iMem++; /* Temporary use register */ 1004 int regTabname = iMem++; /* Register containing table name */ 1005 int regIdxname = iMem++; /* Register containing index name */ 1006 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 1007 int regPrev = iMem; /* MUST BE LAST (see below) */ 1008 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1009 Table *pStat1 = 0; 1010 #endif 1011 1012 pParse->nMem = MAX(pParse->nMem, iMem); 1013 v = sqlite3GetVdbe(pParse); 1014 if( v==0 || NEVER(pTab==0) ){ 1015 return; 1016 } 1017 if( pTab->tnum==0 ){ 1018 /* Do not gather statistics on views or virtual tables */ 1019 return; 1020 } 1021 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 1022 /* Do not gather statistics on system tables */ 1023 return; 1024 } 1025 assert( sqlite3BtreeHoldsAllMutexes(db) ); 1026 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1027 assert( iDb>=0 ); 1028 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1029 #ifndef SQLITE_OMIT_AUTHORIZATION 1030 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1031 db->aDb[iDb].zDbSName ) ){ 1032 return; 1033 } 1034 #endif 1035 1036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1037 if( db->xPreUpdateCallback ){ 1038 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 1039 if( pStat1==0 ) return; 1040 pStat1->zName = (char*)&pStat1[1]; 1041 memcpy(pStat1->zName, "sqlite_stat1", 13); 1042 pStat1->nCol = 3; 1043 pStat1->iPKey = -1; 1044 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB); 1045 } 1046 #endif 1047 1048 /* Establish a read-lock on the table at the shared-cache level. 1049 ** Open a read-only cursor on the table. Also allocate a cursor number 1050 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1051 ** this time though. */ 1052 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1053 iTabCur = iTab++; 1054 iIdxCur = iTab++; 1055 pParse->nTab = MAX(pParse->nTab, iTab); 1056 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1057 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1058 1059 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1060 int nCol; /* Number of columns in pIdx. "N" */ 1061 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1062 int addrNextRow; /* Address of "next_row:" */ 1063 const char *zIdxName; /* Name of the index */ 1064 int nColTest; /* Number of columns to test for changes */ 1065 1066 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1067 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1068 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1069 nCol = pIdx->nKeyCol; 1070 zIdxName = pTab->zName; 1071 nColTest = nCol - 1; 1072 }else{ 1073 nCol = pIdx->nColumn; 1074 zIdxName = pIdx->zName; 1075 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1076 } 1077 1078 /* Populate the register containing the index name. */ 1079 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1080 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1081 1082 /* 1083 ** Pseudo-code for loop that calls stat_push(): 1084 ** 1085 ** Rewind csr 1086 ** if eof(csr) goto end_of_scan; 1087 ** regChng = 0 1088 ** goto chng_addr_0; 1089 ** 1090 ** next_row: 1091 ** regChng = 0 1092 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1093 ** regChng = 1 1094 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1095 ** ... 1096 ** regChng = N 1097 ** goto chng_addr_N 1098 ** 1099 ** chng_addr_0: 1100 ** regPrev(0) = idx(0) 1101 ** chng_addr_1: 1102 ** regPrev(1) = idx(1) 1103 ** ... 1104 ** 1105 ** endDistinctTest: 1106 ** regRowid = idx(rowid) 1107 ** stat_push(P, regChng, regRowid) 1108 ** Next csr 1109 ** if !eof(csr) goto next_row; 1110 ** 1111 ** end_of_scan: 1112 */ 1113 1114 /* Make sure there are enough memory cells allocated to accommodate 1115 ** the regPrev array and a trailing rowid (the rowid slot is required 1116 ** when building a record to insert into the sample column of 1117 ** the sqlite_stat4 table. */ 1118 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1119 1120 /* Open a read-only cursor on the index being analyzed. */ 1121 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1122 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1123 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1124 VdbeComment((v, "%s", pIdx->zName)); 1125 1126 /* Invoke the stat_init() function. The arguments are: 1127 ** 1128 ** (1) the number of columns in the index including the rowid 1129 ** (or for a WITHOUT ROWID table, the number of PK columns), 1130 ** (2) the number of columns in the key without the rowid/pk 1131 ** (3) the number of rows in the index, 1132 ** 1133 ** 1134 ** The third argument is only used for STAT3 and STAT4 1135 */ 1136 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1137 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1138 #endif 1139 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1140 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1141 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4, 1142 (char*)&statInitFuncdef, P4_FUNCDEF); 1143 sqlite3VdbeChangeP5(v, 2+IsStat34); 1144 1145 /* Implementation of the following: 1146 ** 1147 ** Rewind csr 1148 ** if eof(csr) goto end_of_scan; 1149 ** regChng = 0 1150 ** goto next_push_0; 1151 ** 1152 */ 1153 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1154 VdbeCoverage(v); 1155 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1156 addrNextRow = sqlite3VdbeCurrentAddr(v); 1157 1158 if( nColTest>0 ){ 1159 int endDistinctTest = sqlite3VdbeMakeLabel(v); 1160 int *aGotoChng; /* Array of jump instruction addresses */ 1161 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1162 if( aGotoChng==0 ) continue; 1163 1164 /* 1165 ** next_row: 1166 ** regChng = 0 1167 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1168 ** regChng = 1 1169 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1170 ** ... 1171 ** regChng = N 1172 ** goto endDistinctTest 1173 */ 1174 sqlite3VdbeAddOp0(v, OP_Goto); 1175 addrNextRow = sqlite3VdbeCurrentAddr(v); 1176 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1177 /* For a single-column UNIQUE index, once we have found a non-NULL 1178 ** row, we know that all the rest will be distinct, so skip 1179 ** subsequent distinctness tests. */ 1180 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1181 VdbeCoverage(v); 1182 } 1183 for(i=0; i<nColTest; i++){ 1184 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1185 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1186 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1187 aGotoChng[i] = 1188 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1189 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1190 VdbeCoverage(v); 1191 } 1192 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1193 sqlite3VdbeGoto(v, endDistinctTest); 1194 1195 1196 /* 1197 ** chng_addr_0: 1198 ** regPrev(0) = idx(0) 1199 ** chng_addr_1: 1200 ** regPrev(1) = idx(1) 1201 ** ... 1202 */ 1203 sqlite3VdbeJumpHere(v, addrNextRow-1); 1204 for(i=0; i<nColTest; i++){ 1205 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1206 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1207 } 1208 sqlite3VdbeResolveLabel(v, endDistinctTest); 1209 sqlite3DbFree(db, aGotoChng); 1210 } 1211 1212 /* 1213 ** chng_addr_N: 1214 ** regRowid = idx(rowid) // STAT34 only 1215 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1216 ** Next csr 1217 ** if !eof(csr) goto next_row; 1218 */ 1219 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1220 assert( regRowid==(regStat4+2) ); 1221 if( HasRowid(pTab) ){ 1222 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1223 }else{ 1224 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1225 int j, k, regKey; 1226 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1227 for(j=0; j<pPk->nKeyCol; j++){ 1228 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1229 assert( k>=0 && k<pIdx->nColumn ); 1230 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1231 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1232 } 1233 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1234 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1235 } 1236 #endif 1237 assert( regChng==(regStat4+1) ); 1238 sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp, 1239 (char*)&statPushFuncdef, P4_FUNCDEF); 1240 sqlite3VdbeChangeP5(v, 2+IsStat34); 1241 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1242 1243 /* Add the entry to the stat1 table. */ 1244 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1245 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1246 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1247 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1248 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1249 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1250 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1251 #endif 1252 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1253 1254 /* Add the entries to the stat3 or stat4 table. */ 1255 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1256 { 1257 int regEq = regStat1; 1258 int regLt = regStat1+1; 1259 int regDLt = regStat1+2; 1260 int regSample = regStat1+3; 1261 int regCol = regStat1+4; 1262 int regSampleRowid = regCol + nCol; 1263 int addrNext; 1264 int addrIsNull; 1265 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1266 1267 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1268 1269 addrNext = sqlite3VdbeCurrentAddr(v); 1270 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1271 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1272 VdbeCoverage(v); 1273 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1274 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1275 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1276 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1277 VdbeCoverage(v); 1278 #ifdef SQLITE_ENABLE_STAT3 1279 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample); 1280 #else 1281 for(i=0; i<nCol; i++){ 1282 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1283 } 1284 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1285 #endif 1286 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1287 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1288 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1289 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1290 sqlite3VdbeJumpHere(v, addrIsNull); 1291 } 1292 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1293 1294 /* End of analysis */ 1295 sqlite3VdbeJumpHere(v, addrRewind); 1296 } 1297 1298 1299 /* Create a single sqlite_stat1 entry containing NULL as the index 1300 ** name and the row count as the content. 1301 */ 1302 if( pOnlyIdx==0 && needTableCnt ){ 1303 VdbeComment((v, "%s", pTab->zName)); 1304 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1305 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1306 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1307 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1308 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1309 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1310 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1311 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1312 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1313 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1314 #endif 1315 sqlite3VdbeJumpHere(v, jZeroRows); 1316 } 1317 } 1318 1319 1320 /* 1321 ** Generate code that will cause the most recent index analysis to 1322 ** be loaded into internal hash tables where is can be used. 1323 */ 1324 static void loadAnalysis(Parse *pParse, int iDb){ 1325 Vdbe *v = sqlite3GetVdbe(pParse); 1326 if( v ){ 1327 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1328 } 1329 } 1330 1331 /* 1332 ** Generate code that will do an analysis of an entire database 1333 */ 1334 static void analyzeDatabase(Parse *pParse, int iDb){ 1335 sqlite3 *db = pParse->db; 1336 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1337 HashElem *k; 1338 int iStatCur; 1339 int iMem; 1340 int iTab; 1341 1342 sqlite3BeginWriteOperation(pParse, 0, iDb); 1343 iStatCur = pParse->nTab; 1344 pParse->nTab += 3; 1345 openStatTable(pParse, iDb, iStatCur, 0, 0); 1346 iMem = pParse->nMem+1; 1347 iTab = pParse->nTab; 1348 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1349 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1350 Table *pTab = (Table*)sqliteHashData(k); 1351 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1352 } 1353 loadAnalysis(pParse, iDb); 1354 } 1355 1356 /* 1357 ** Generate code that will do an analysis of a single table in 1358 ** a database. If pOnlyIdx is not NULL then it is a single index 1359 ** in pTab that should be analyzed. 1360 */ 1361 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1362 int iDb; 1363 int iStatCur; 1364 1365 assert( pTab!=0 ); 1366 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1367 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1368 sqlite3BeginWriteOperation(pParse, 0, iDb); 1369 iStatCur = pParse->nTab; 1370 pParse->nTab += 3; 1371 if( pOnlyIdx ){ 1372 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1373 }else{ 1374 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1375 } 1376 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1377 loadAnalysis(pParse, iDb); 1378 } 1379 1380 /* 1381 ** Generate code for the ANALYZE command. The parser calls this routine 1382 ** when it recognizes an ANALYZE command. 1383 ** 1384 ** ANALYZE -- 1 1385 ** ANALYZE <database> -- 2 1386 ** ANALYZE ?<database>.?<tablename> -- 3 1387 ** 1388 ** Form 1 causes all indices in all attached databases to be analyzed. 1389 ** Form 2 analyzes all indices the single database named. 1390 ** Form 3 analyzes all indices associated with the named table. 1391 */ 1392 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1393 sqlite3 *db = pParse->db; 1394 int iDb; 1395 int i; 1396 char *z, *zDb; 1397 Table *pTab; 1398 Index *pIdx; 1399 Token *pTableName; 1400 Vdbe *v; 1401 1402 /* Read the database schema. If an error occurs, leave an error message 1403 ** and code in pParse and return NULL. */ 1404 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1405 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1406 return; 1407 } 1408 1409 assert( pName2!=0 || pName1==0 ); 1410 if( pName1==0 ){ 1411 /* Form 1: Analyze everything */ 1412 for(i=0; i<db->nDb; i++){ 1413 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1414 analyzeDatabase(pParse, i); 1415 } 1416 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1417 /* Analyze the schema named as the argument */ 1418 analyzeDatabase(pParse, iDb); 1419 }else{ 1420 /* Form 3: Analyze the table or index named as an argument */ 1421 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1422 if( iDb>=0 ){ 1423 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1424 z = sqlite3NameFromToken(db, pTableName); 1425 if( z ){ 1426 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1427 analyzeTable(pParse, pIdx->pTable, pIdx); 1428 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1429 analyzeTable(pParse, pTab, 0); 1430 } 1431 sqlite3DbFree(db, z); 1432 } 1433 } 1434 } 1435 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1436 sqlite3VdbeAddOp0(v, OP_Expire); 1437 } 1438 } 1439 1440 /* 1441 ** Used to pass information from the analyzer reader through to the 1442 ** callback routine. 1443 */ 1444 typedef struct analysisInfo analysisInfo; 1445 struct analysisInfo { 1446 sqlite3 *db; 1447 const char *zDatabase; 1448 }; 1449 1450 /* 1451 ** The first argument points to a nul-terminated string containing a 1452 ** list of space separated integers. Read the first nOut of these into 1453 ** the array aOut[]. 1454 */ 1455 static void decodeIntArray( 1456 char *zIntArray, /* String containing int array to decode */ 1457 int nOut, /* Number of slots in aOut[] */ 1458 tRowcnt *aOut, /* Store integers here */ 1459 LogEst *aLog, /* Or, if aOut==0, here */ 1460 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1461 ){ 1462 char *z = zIntArray; 1463 int c; 1464 int i; 1465 tRowcnt v; 1466 1467 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1468 if( z==0 ) z = ""; 1469 #else 1470 assert( z!=0 ); 1471 #endif 1472 for(i=0; *z && i<nOut; i++){ 1473 v = 0; 1474 while( (c=z[0])>='0' && c<='9' ){ 1475 v = v*10 + c - '0'; 1476 z++; 1477 } 1478 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1479 if( aOut ) aOut[i] = v; 1480 if( aLog ) aLog[i] = sqlite3LogEst(v); 1481 #else 1482 assert( aOut==0 ); 1483 UNUSED_PARAMETER(aOut); 1484 assert( aLog!=0 ); 1485 aLog[i] = sqlite3LogEst(v); 1486 #endif 1487 if( *z==' ' ) z++; 1488 } 1489 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1490 assert( pIndex!=0 ); { 1491 #else 1492 if( pIndex ){ 1493 #endif 1494 pIndex->bUnordered = 0; 1495 pIndex->noSkipScan = 0; 1496 while( z[0] ){ 1497 if( sqlite3_strglob("unordered*", z)==0 ){ 1498 pIndex->bUnordered = 1; 1499 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1500 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); 1501 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1502 pIndex->noSkipScan = 1; 1503 } 1504 #ifdef SQLITE_ENABLE_COSTMULT 1505 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1506 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1507 } 1508 #endif 1509 while( z[0]!=0 && z[0]!=' ' ) z++; 1510 while( z[0]==' ' ) z++; 1511 } 1512 } 1513 } 1514 1515 /* 1516 ** This callback is invoked once for each index when reading the 1517 ** sqlite_stat1 table. 1518 ** 1519 ** argv[0] = name of the table 1520 ** argv[1] = name of the index (might be NULL) 1521 ** argv[2] = results of analysis - on integer for each column 1522 ** 1523 ** Entries for which argv[1]==NULL simply record the number of rows in 1524 ** the table. 1525 */ 1526 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1527 analysisInfo *pInfo = (analysisInfo*)pData; 1528 Index *pIndex; 1529 Table *pTable; 1530 const char *z; 1531 1532 assert( argc==3 ); 1533 UNUSED_PARAMETER2(NotUsed, argc); 1534 1535 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1536 return 0; 1537 } 1538 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1539 if( pTable==0 ){ 1540 return 0; 1541 } 1542 if( argv[1]==0 ){ 1543 pIndex = 0; 1544 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1545 pIndex = sqlite3PrimaryKeyIndex(pTable); 1546 }else{ 1547 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1548 } 1549 z = argv[2]; 1550 1551 if( pIndex ){ 1552 tRowcnt *aiRowEst = 0; 1553 int nCol = pIndex->nKeyCol+1; 1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1555 /* Index.aiRowEst may already be set here if there are duplicate 1556 ** sqlite_stat1 entries for this index. In that case just clobber 1557 ** the old data with the new instead of allocating a new array. */ 1558 if( pIndex->aiRowEst==0 ){ 1559 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1560 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1561 } 1562 aiRowEst = pIndex->aiRowEst; 1563 #endif 1564 pIndex->bUnordered = 0; 1565 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1566 pIndex->hasStat1 = 1; 1567 if( pIndex->pPartIdxWhere==0 ){ 1568 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1569 pTable->tabFlags |= TF_HasStat1; 1570 } 1571 }else{ 1572 Index fakeIdx; 1573 fakeIdx.szIdxRow = pTable->szTabRow; 1574 #ifdef SQLITE_ENABLE_COSTMULT 1575 fakeIdx.pTable = pTable; 1576 #endif 1577 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1578 pTable->szTabRow = fakeIdx.szIdxRow; 1579 pTable->tabFlags |= TF_HasStat1; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* 1586 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1587 ** and its contents. 1588 */ 1589 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1590 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1591 if( pIdx->aSample ){ 1592 int j; 1593 for(j=0; j<pIdx->nSample; j++){ 1594 IndexSample *p = &pIdx->aSample[j]; 1595 sqlite3DbFree(db, p->p); 1596 } 1597 sqlite3DbFree(db, pIdx->aSample); 1598 } 1599 if( db && db->pnBytesFreed==0 ){ 1600 pIdx->nSample = 0; 1601 pIdx->aSample = 0; 1602 } 1603 #else 1604 UNUSED_PARAMETER(db); 1605 UNUSED_PARAMETER(pIdx); 1606 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1607 } 1608 1609 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1610 /* 1611 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1612 ** stored in pIdx->aSample[]. 1613 */ 1614 static void initAvgEq(Index *pIdx){ 1615 if( pIdx ){ 1616 IndexSample *aSample = pIdx->aSample; 1617 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1618 int iCol; 1619 int nCol = 1; 1620 if( pIdx->nSampleCol>1 ){ 1621 /* If this is stat4 data, then calculate aAvgEq[] values for all 1622 ** sample columns except the last. The last is always set to 1, as 1623 ** once the trailing PK fields are considered all index keys are 1624 ** unique. */ 1625 nCol = pIdx->nSampleCol-1; 1626 pIdx->aAvgEq[nCol] = 1; 1627 } 1628 for(iCol=0; iCol<nCol; iCol++){ 1629 int nSample = pIdx->nSample; 1630 int i; /* Used to iterate through samples */ 1631 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1632 tRowcnt avgEq = 0; 1633 tRowcnt nRow; /* Number of rows in index */ 1634 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1635 i64 nDist100; /* Number of distinct values in index */ 1636 1637 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1638 nRow = pFinal->anLt[iCol]; 1639 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1640 nSample--; 1641 }else{ 1642 nRow = pIdx->aiRowEst[0]; 1643 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1644 } 1645 pIdx->nRowEst0 = nRow; 1646 1647 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1648 ** occur in the stat4 table for this index. Set sumEq to the sum of 1649 ** the nEq values for column iCol for the same set (adding the value 1650 ** only once where there exist duplicate prefixes). */ 1651 for(i=0; i<nSample; i++){ 1652 if( i==(pIdx->nSample-1) 1653 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1654 ){ 1655 sumEq += aSample[i].anEq[iCol]; 1656 nSum100 += 100; 1657 } 1658 } 1659 1660 if( nDist100>nSum100 && sumEq<nRow ){ 1661 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1662 } 1663 if( avgEq==0 ) avgEq = 1; 1664 pIdx->aAvgEq[iCol] = avgEq; 1665 } 1666 } 1667 } 1668 1669 /* 1670 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1671 ** is supplied instead, find the PRIMARY KEY index for that table. 1672 */ 1673 static Index *findIndexOrPrimaryKey( 1674 sqlite3 *db, 1675 const char *zName, 1676 const char *zDb 1677 ){ 1678 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1679 if( pIdx==0 ){ 1680 Table *pTab = sqlite3FindTable(db, zName, zDb); 1681 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1682 } 1683 return pIdx; 1684 } 1685 1686 /* 1687 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1688 ** into the relevant Index.aSample[] arrays. 1689 ** 1690 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1691 ** data equivalent to the following (statements are different for stat3, 1692 ** see the caller of this function for details): 1693 ** 1694 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1695 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1696 ** 1697 ** where %Q is replaced with the database name before the SQL is executed. 1698 */ 1699 static int loadStatTbl( 1700 sqlite3 *db, /* Database handle */ 1701 int bStat3, /* Assume single column records only */ 1702 const char *zSql1, /* SQL statement 1 (see above) */ 1703 const char *zSql2, /* SQL statement 2 (see above) */ 1704 const char *zDb /* Database name (e.g. "main") */ 1705 ){ 1706 int rc; /* Result codes from subroutines */ 1707 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1708 char *zSql; /* Text of the SQL statement */ 1709 Index *pPrevIdx = 0; /* Previous index in the loop */ 1710 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1711 1712 assert( db->lookaside.bDisable ); 1713 zSql = sqlite3MPrintf(db, zSql1, zDb); 1714 if( !zSql ){ 1715 return SQLITE_NOMEM_BKPT; 1716 } 1717 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1718 sqlite3DbFree(db, zSql); 1719 if( rc ) return rc; 1720 1721 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1722 int nIdxCol = 1; /* Number of columns in stat4 records */ 1723 1724 char *zIndex; /* Index name */ 1725 Index *pIdx; /* Pointer to the index object */ 1726 int nSample; /* Number of samples */ 1727 int nByte; /* Bytes of space required */ 1728 int i; /* Bytes of space required */ 1729 tRowcnt *pSpace; 1730 1731 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1732 if( zIndex==0 ) continue; 1733 nSample = sqlite3_column_int(pStmt, 1); 1734 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1735 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1736 /* Index.nSample is non-zero at this point if data has already been 1737 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1738 if( pIdx==0 || pIdx->nSample ) continue; 1739 if( bStat3==0 ){ 1740 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1741 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1742 nIdxCol = pIdx->nKeyCol; 1743 }else{ 1744 nIdxCol = pIdx->nColumn; 1745 } 1746 } 1747 pIdx->nSampleCol = nIdxCol; 1748 nByte = sizeof(IndexSample) * nSample; 1749 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1750 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1751 1752 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1753 if( pIdx->aSample==0 ){ 1754 sqlite3_finalize(pStmt); 1755 return SQLITE_NOMEM_BKPT; 1756 } 1757 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1758 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1759 for(i=0; i<nSample; i++){ 1760 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1761 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1762 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1763 } 1764 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1765 } 1766 rc = sqlite3_finalize(pStmt); 1767 if( rc ) return rc; 1768 1769 zSql = sqlite3MPrintf(db, zSql2, zDb); 1770 if( !zSql ){ 1771 return SQLITE_NOMEM_BKPT; 1772 } 1773 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1774 sqlite3DbFree(db, zSql); 1775 if( rc ) return rc; 1776 1777 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1778 char *zIndex; /* Index name */ 1779 Index *pIdx; /* Pointer to the index object */ 1780 int nCol = 1; /* Number of columns in index */ 1781 1782 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1783 if( zIndex==0 ) continue; 1784 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1785 if( pIdx==0 ) continue; 1786 /* This next condition is true if data has already been loaded from 1787 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1788 nCol = pIdx->nSampleCol; 1789 if( bStat3 && nCol>1 ) continue; 1790 if( pIdx!=pPrevIdx ){ 1791 initAvgEq(pPrevIdx); 1792 pPrevIdx = pIdx; 1793 } 1794 pSample = &pIdx->aSample[pIdx->nSample]; 1795 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1796 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1797 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1798 1799 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1800 ** This is in case the sample record is corrupted. In that case, the 1801 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1802 ** end of the allocated buffer before it realizes it is dealing with 1803 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1804 ** a buffer overread. */ 1805 pSample->n = sqlite3_column_bytes(pStmt, 4); 1806 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1807 if( pSample->p==0 ){ 1808 sqlite3_finalize(pStmt); 1809 return SQLITE_NOMEM_BKPT; 1810 } 1811 if( pSample->n ){ 1812 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1813 } 1814 pIdx->nSample++; 1815 } 1816 rc = sqlite3_finalize(pStmt); 1817 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1818 return rc; 1819 } 1820 1821 /* 1822 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1823 ** the Index.aSample[] arrays of all indices. 1824 */ 1825 static int loadStat4(sqlite3 *db, const char *zDb){ 1826 int rc = SQLITE_OK; /* Result codes from subroutines */ 1827 1828 assert( db->lookaside.bDisable ); 1829 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1830 rc = loadStatTbl(db, 0, 1831 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1832 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1833 zDb 1834 ); 1835 } 1836 1837 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1838 rc = loadStatTbl(db, 1, 1839 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1840 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1841 zDb 1842 ); 1843 } 1844 1845 return rc; 1846 } 1847 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1848 1849 /* 1850 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1851 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1852 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1853 ** Index.aSample[] arrays. 1854 ** 1855 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1856 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1857 ** during compilation and the sqlite_stat3/4 table is present, no data is 1858 ** read from it. 1859 ** 1860 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1861 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1862 ** returned. However, in this case, data is read from the sqlite_stat1 1863 ** table (if it is present) before returning. 1864 ** 1865 ** If an OOM error occurs, this function always sets db->mallocFailed. 1866 ** This means if the caller does not care about other errors, the return 1867 ** code may be ignored. 1868 */ 1869 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1870 analysisInfo sInfo; 1871 HashElem *i; 1872 char *zSql; 1873 int rc = SQLITE_OK; 1874 Schema *pSchema = db->aDb[iDb].pSchema; 1875 1876 assert( iDb>=0 && iDb<db->nDb ); 1877 assert( db->aDb[iDb].pBt!=0 ); 1878 1879 /* Clear any prior statistics */ 1880 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1881 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1882 Table *pTab = sqliteHashData(i); 1883 pTab->tabFlags &= ~TF_HasStat1; 1884 } 1885 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1886 Index *pIdx = sqliteHashData(i); 1887 pIdx->hasStat1 = 0; 1888 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1889 sqlite3DeleteIndexSamples(db, pIdx); 1890 pIdx->aSample = 0; 1891 #endif 1892 } 1893 1894 /* Load new statistics out of the sqlite_stat1 table */ 1895 sInfo.db = db; 1896 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1897 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1898 zSql = sqlite3MPrintf(db, 1899 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1900 if( zSql==0 ){ 1901 rc = SQLITE_NOMEM_BKPT; 1902 }else{ 1903 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1904 sqlite3DbFree(db, zSql); 1905 } 1906 } 1907 1908 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1909 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1910 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1911 Index *pIdx = sqliteHashData(i); 1912 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1913 } 1914 1915 /* Load the statistics from the sqlite_stat4 table. */ 1916 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1917 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){ 1918 db->lookaside.bDisable++; 1919 rc = loadStat4(db, sInfo.zDatabase); 1920 db->lookaside.bDisable--; 1921 } 1922 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1923 Index *pIdx = sqliteHashData(i); 1924 sqlite3_free(pIdx->aiRowEst); 1925 pIdx->aiRowEst = 0; 1926 } 1927 #endif 1928 1929 if( rc==SQLITE_NOMEM ){ 1930 sqlite3OomFault(db); 1931 } 1932 return rc; 1933 } 1934 1935 1936 #endif /* SQLITE_OMIT_ANALYZE */ 1937