1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zDbSName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 VdbeComment((v, aTable[i].zName)); 250 } 251 } 252 253 /* 254 ** Recommended number of samples for sqlite_stat4 255 */ 256 #ifndef SQLITE_STAT4_SAMPLES 257 # define SQLITE_STAT4_SAMPLES 24 258 #endif 259 260 /* 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 262 ** share an instance of the following structure to hold their state 263 ** information. 264 */ 265 typedef struct Stat4Accum Stat4Accum; 266 typedef struct Stat4Sample Stat4Sample; 267 struct Stat4Sample { 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ 272 union { 273 i64 iRowid; /* Rowid in main table of the key */ 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 275 } u; 276 u32 nRowid; /* Sizeof aRowid[] */ 277 u8 isPSample; /* True if a periodic sample */ 278 int iCol; /* If !isPSample, the reason for inclusion */ 279 u32 iHash; /* Tiebreaker hash */ 280 #endif 281 }; 282 struct Stat4Accum { 283 tRowcnt nRow; /* Number of rows in the entire table */ 284 tRowcnt nPSample; /* How often to do a periodic sample */ 285 int nCol; /* Number of columns in index + pk/rowid */ 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 287 int mxSample; /* Maximum number of samples to accumulate */ 288 Stat4Sample current; /* Current row as a Stat4Sample */ 289 u32 iPrn; /* Pseudo-random number used for sampling */ 290 Stat4Sample *aBest; /* Array of nCol best samples */ 291 int iMin; /* Index in a[] of entry with minimum score */ 292 int nSample; /* Current number of samples */ 293 int iGet; /* Index of current sample accessed by stat_get() */ 294 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 295 sqlite3 *db; /* Database connection, for malloc() */ 296 }; 297 298 /* Reclaim memory used by a Stat4Sample 299 */ 300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 301 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 302 assert( db!=0 ); 303 if( p->nRowid ){ 304 sqlite3DbFree(db, p->u.aRowid); 305 p->nRowid = 0; 306 } 307 } 308 #endif 309 310 /* Initialize the BLOB value of a ROWID 311 */ 312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 314 assert( db!=0 ); 315 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 316 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 317 if( p->u.aRowid ){ 318 p->nRowid = n; 319 memcpy(p->u.aRowid, pData, n); 320 }else{ 321 p->nRowid = 0; 322 } 323 } 324 #endif 325 326 /* Initialize the INTEGER value of a ROWID. 327 */ 328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 330 assert( db!=0 ); 331 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 332 p->nRowid = 0; 333 p->u.iRowid = iRowid; 334 } 335 #endif 336 337 338 /* 339 ** Copy the contents of object (*pFrom) into (*pTo). 340 */ 341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 343 pTo->isPSample = pFrom->isPSample; 344 pTo->iCol = pFrom->iCol; 345 pTo->iHash = pFrom->iHash; 346 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 347 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 348 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 349 if( pFrom->nRowid ){ 350 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 351 }else{ 352 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 353 } 354 } 355 #endif 356 357 /* 358 ** Reclaim all memory of a Stat4Accum structure. 359 */ 360 static void stat4Destructor(void *pOld){ 361 Stat4Accum *p = (Stat4Accum*)pOld; 362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 363 int i; 364 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 365 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 366 sampleClear(p->db, &p->current); 367 #endif 368 sqlite3DbFree(p->db, p); 369 } 370 371 /* 372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 373 ** are: 374 ** N: The number of columns in the index including the rowid/pk (note 1) 375 ** K: The number of columns in the index excluding the rowid/pk. 376 ** C: The number of rows in the index (note 2) 377 ** 378 ** Note 1: In the special case of the covering index that implements a 379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 380 ** total number of columns in the table. 381 ** 382 ** Note 2: C is only used for STAT3 and STAT4. 383 ** 384 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 386 ** PRIMARY KEY of the table. The covering index that implements the 387 ** original WITHOUT ROWID table as N==K as a special case. 388 ** 389 ** This routine allocates the Stat4Accum object in heap memory. The return 390 ** value is a pointer to the Stat4Accum object. The datatype of the 391 ** return value is BLOB, but it is really just a pointer to the Stat4Accum 392 ** object. 393 */ 394 static void statInit( 395 sqlite3_context *context, 396 int argc, 397 sqlite3_value **argv 398 ){ 399 Stat4Accum *p; 400 int nCol; /* Number of columns in index being sampled */ 401 int nKeyCol; /* Number of key columns */ 402 int nColUp; /* nCol rounded up for alignment */ 403 int n; /* Bytes of space to allocate */ 404 sqlite3 *db; /* Database connection */ 405 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 406 int mxSample = SQLITE_STAT4_SAMPLES; 407 #endif 408 409 /* Decode the three function arguments */ 410 UNUSED_PARAMETER(argc); 411 nCol = sqlite3_value_int(argv[0]); 412 assert( nCol>0 ); 413 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 414 nKeyCol = sqlite3_value_int(argv[1]); 415 assert( nKeyCol<=nCol ); 416 assert( nKeyCol>0 ); 417 418 /* Allocate the space required for the Stat4Accum object */ 419 n = sizeof(*p) 420 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 421 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 423 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 424 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 425 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 426 #endif 427 ; 428 db = sqlite3_context_db_handle(context); 429 p = sqlite3DbMallocZero(db, n); 430 if( p==0 ){ 431 sqlite3_result_error_nomem(context); 432 return; 433 } 434 435 p->db = db; 436 p->nRow = 0; 437 p->nCol = nCol; 438 p->nKeyCol = nKeyCol; 439 p->current.anDLt = (tRowcnt*)&p[1]; 440 p->current.anEq = &p->current.anDLt[nColUp]; 441 442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 443 { 444 u8 *pSpace; /* Allocated space not yet assigned */ 445 int i; /* Used to iterate through p->aSample[] */ 446 447 p->iGet = -1; 448 p->mxSample = mxSample; 449 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 450 p->current.anLt = &p->current.anEq[nColUp]; 451 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 452 453 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 454 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 455 p->aBest = &p->a[mxSample]; 456 pSpace = (u8*)(&p->a[mxSample+nCol]); 457 for(i=0; i<(mxSample+nCol); i++){ 458 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 459 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 460 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 461 } 462 assert( (pSpace - (u8*)p)==n ); 463 464 for(i=0; i<nCol; i++){ 465 p->aBest[i].iCol = i; 466 } 467 } 468 #endif 469 470 /* Return a pointer to the allocated object to the caller. Note that 471 ** only the pointer (the 2nd parameter) matters. The size of the object 472 ** (given by the 3rd parameter) is never used and can be any positive 473 ** value. */ 474 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); 475 } 476 static const FuncDef statInitFuncdef = { 477 2+IsStat34, /* nArg */ 478 SQLITE_UTF8, /* funcFlags */ 479 0, /* pUserData */ 480 0, /* pNext */ 481 statInit, /* xSFunc */ 482 0, /* xFinalize */ 483 "stat_init", /* zName */ 484 {0} 485 }; 486 487 #ifdef SQLITE_ENABLE_STAT4 488 /* 489 ** pNew and pOld are both candidate non-periodic samples selected for 490 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 491 ** considering only any trailing columns and the sample hash value, this 492 ** function returns true if sample pNew is to be preferred over pOld. 493 ** In other words, if we assume that the cardinalities of the selected 494 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 495 ** 496 ** This function assumes that for each argument sample, the contents of 497 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 498 */ 499 static int sampleIsBetterPost( 500 Stat4Accum *pAccum, 501 Stat4Sample *pNew, 502 Stat4Sample *pOld 503 ){ 504 int nCol = pAccum->nCol; 505 int i; 506 assert( pNew->iCol==pOld->iCol ); 507 for(i=pNew->iCol+1; i<nCol; i++){ 508 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 509 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 510 } 511 if( pNew->iHash>pOld->iHash ) return 1; 512 return 0; 513 } 514 #endif 515 516 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 517 /* 518 ** Return true if pNew is to be preferred over pOld. 519 ** 520 ** This function assumes that for each argument sample, the contents of 521 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 522 */ 523 static int sampleIsBetter( 524 Stat4Accum *pAccum, 525 Stat4Sample *pNew, 526 Stat4Sample *pOld 527 ){ 528 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 529 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 530 531 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 532 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 533 534 if( (nEqNew>nEqOld) ) return 1; 535 #ifdef SQLITE_ENABLE_STAT4 536 if( nEqNew==nEqOld ){ 537 if( pNew->iCol<pOld->iCol ) return 1; 538 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 539 } 540 return 0; 541 #else 542 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 543 #endif 544 } 545 546 /* 547 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 548 ** remove the least desirable sample from p->a[] to make room. 549 */ 550 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 551 Stat4Sample *pSample = 0; 552 int i; 553 554 assert( IsStat4 || nEqZero==0 ); 555 556 #ifdef SQLITE_ENABLE_STAT4 557 if( pNew->isPSample==0 ){ 558 Stat4Sample *pUpgrade = 0; 559 assert( pNew->anEq[pNew->iCol]>0 ); 560 561 /* This sample is being added because the prefix that ends in column 562 ** iCol occurs many times in the table. However, if we have already 563 ** added a sample that shares this prefix, there is no need to add 564 ** this one. Instead, upgrade the priority of the highest priority 565 ** existing sample that shares this prefix. */ 566 for(i=p->nSample-1; i>=0; i--){ 567 Stat4Sample *pOld = &p->a[i]; 568 if( pOld->anEq[pNew->iCol]==0 ){ 569 if( pOld->isPSample ) return; 570 assert( pOld->iCol>pNew->iCol ); 571 assert( sampleIsBetter(p, pNew, pOld) ); 572 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 573 pUpgrade = pOld; 574 } 575 } 576 } 577 if( pUpgrade ){ 578 pUpgrade->iCol = pNew->iCol; 579 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 580 goto find_new_min; 581 } 582 } 583 #endif 584 585 /* If necessary, remove sample iMin to make room for the new sample. */ 586 if( p->nSample>=p->mxSample ){ 587 Stat4Sample *pMin = &p->a[p->iMin]; 588 tRowcnt *anEq = pMin->anEq; 589 tRowcnt *anLt = pMin->anLt; 590 tRowcnt *anDLt = pMin->anDLt; 591 sampleClear(p->db, pMin); 592 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 593 pSample = &p->a[p->nSample-1]; 594 pSample->nRowid = 0; 595 pSample->anEq = anEq; 596 pSample->anDLt = anDLt; 597 pSample->anLt = anLt; 598 p->nSample = p->mxSample-1; 599 } 600 601 /* The "rows less-than" for the rowid column must be greater than that 602 ** for the last sample in the p->a[] array. Otherwise, the samples would 603 ** be out of order. */ 604 #ifdef SQLITE_ENABLE_STAT4 605 assert( p->nSample==0 606 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 607 #endif 608 609 /* Insert the new sample */ 610 pSample = &p->a[p->nSample]; 611 sampleCopy(p, pSample, pNew); 612 p->nSample++; 613 614 /* Zero the first nEqZero entries in the anEq[] array. */ 615 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 616 617 #ifdef SQLITE_ENABLE_STAT4 618 find_new_min: 619 #endif 620 if( p->nSample>=p->mxSample ){ 621 int iMin = -1; 622 for(i=0; i<p->mxSample; i++){ 623 if( p->a[i].isPSample ) continue; 624 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 625 iMin = i; 626 } 627 } 628 assert( iMin>=0 ); 629 p->iMin = iMin; 630 } 631 } 632 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 633 634 /* 635 ** Field iChng of the index being scanned has changed. So at this point 636 ** p->current contains a sample that reflects the previous row of the 637 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 638 ** correct at this point. 639 */ 640 static void samplePushPrevious(Stat4Accum *p, int iChng){ 641 #ifdef SQLITE_ENABLE_STAT4 642 int i; 643 644 /* Check if any samples from the aBest[] array should be pushed 645 ** into IndexSample.a[] at this point. */ 646 for(i=(p->nCol-2); i>=iChng; i--){ 647 Stat4Sample *pBest = &p->aBest[i]; 648 pBest->anEq[i] = p->current.anEq[i]; 649 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 650 sampleInsert(p, pBest, i); 651 } 652 } 653 654 /* Update the anEq[] fields of any samples already collected. */ 655 for(i=p->nSample-1; i>=0; i--){ 656 int j; 657 for(j=iChng; j<p->nCol; j++){ 658 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 659 } 660 } 661 #endif 662 663 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 664 if( iChng==0 ){ 665 tRowcnt nLt = p->current.anLt[0]; 666 tRowcnt nEq = p->current.anEq[0]; 667 668 /* Check if this is to be a periodic sample. If so, add it. */ 669 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 670 p->current.isPSample = 1; 671 sampleInsert(p, &p->current, 0); 672 p->current.isPSample = 0; 673 }else 674 675 /* Or if it is a non-periodic sample. Add it in this case too. */ 676 if( p->nSample<p->mxSample 677 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 678 ){ 679 sampleInsert(p, &p->current, 0); 680 } 681 } 682 #endif 683 684 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 685 UNUSED_PARAMETER( p ); 686 UNUSED_PARAMETER( iChng ); 687 #endif 688 } 689 690 /* 691 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 692 ** Arguments: 693 ** 694 ** P Pointer to the Stat4Accum object created by stat_init() 695 ** C Index of left-most column to differ from previous row 696 ** R Rowid for the current row. Might be a key record for 697 ** WITHOUT ROWID tables. 698 ** 699 ** This SQL function always returns NULL. It's purpose it to accumulate 700 ** statistical data and/or samples in the Stat4Accum object about the 701 ** index being analyzed. The stat_get() SQL function will later be used to 702 ** extract relevant information for constructing the sqlite_statN tables. 703 ** 704 ** The R parameter is only used for STAT3 and STAT4 705 */ 706 static void statPush( 707 sqlite3_context *context, 708 int argc, 709 sqlite3_value **argv 710 ){ 711 int i; 712 713 /* The three function arguments */ 714 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 715 int iChng = sqlite3_value_int(argv[1]); 716 717 UNUSED_PARAMETER( argc ); 718 UNUSED_PARAMETER( context ); 719 assert( p->nCol>0 ); 720 assert( iChng<p->nCol ); 721 722 if( p->nRow==0 ){ 723 /* This is the first call to this function. Do initialization. */ 724 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 725 }else{ 726 /* Second and subsequent calls get processed here */ 727 samplePushPrevious(p, iChng); 728 729 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 730 ** to the current row of the index. */ 731 for(i=0; i<iChng; i++){ 732 p->current.anEq[i]++; 733 } 734 for(i=iChng; i<p->nCol; i++){ 735 p->current.anDLt[i]++; 736 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 737 p->current.anLt[i] += p->current.anEq[i]; 738 #endif 739 p->current.anEq[i] = 1; 740 } 741 } 742 p->nRow++; 743 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 744 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 745 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 746 }else{ 747 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 748 sqlite3_value_blob(argv[2])); 749 } 750 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 751 #endif 752 753 #ifdef SQLITE_ENABLE_STAT4 754 { 755 tRowcnt nLt = p->current.anLt[p->nCol-1]; 756 757 /* Check if this is to be a periodic sample. If so, add it. */ 758 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 759 p->current.isPSample = 1; 760 p->current.iCol = 0; 761 sampleInsert(p, &p->current, p->nCol-1); 762 p->current.isPSample = 0; 763 } 764 765 /* Update the aBest[] array. */ 766 for(i=0; i<(p->nCol-1); i++){ 767 p->current.iCol = i; 768 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 769 sampleCopy(p, &p->aBest[i], &p->current); 770 } 771 } 772 } 773 #endif 774 } 775 static const FuncDef statPushFuncdef = { 776 2+IsStat34, /* nArg */ 777 SQLITE_UTF8, /* funcFlags */ 778 0, /* pUserData */ 779 0, /* pNext */ 780 statPush, /* xSFunc */ 781 0, /* xFinalize */ 782 "stat_push", /* zName */ 783 {0} 784 }; 785 786 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 787 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 788 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 789 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 790 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 791 792 /* 793 ** Implementation of the stat_get(P,J) SQL function. This routine is 794 ** used to query statistical information that has been gathered into 795 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 796 ** has type BLOB but it is really just a pointer to the Stat4Accum object. 797 ** The content to returned is determined by the parameter J 798 ** which is one of the STAT_GET_xxxx values defined above. 799 ** 800 ** If neither STAT3 nor STAT4 are enabled, then J is always 801 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 802 ** a one-parameter function, stat_get(P), that always returns the 803 ** stat1 table entry information. 804 */ 805 static void statGet( 806 sqlite3_context *context, 807 int argc, 808 sqlite3_value **argv 809 ){ 810 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 811 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 812 /* STAT3 and STAT4 have a parameter on this routine. */ 813 int eCall = sqlite3_value_int(argv[1]); 814 assert( argc==2 ); 815 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 816 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 817 || eCall==STAT_GET_NDLT 818 ); 819 if( eCall==STAT_GET_STAT1 ) 820 #else 821 assert( argc==1 ); 822 #endif 823 { 824 /* Return the value to store in the "stat" column of the sqlite_stat1 825 ** table for this index. 826 ** 827 ** The value is a string composed of a list of integers describing 828 ** the index. The first integer in the list is the total number of 829 ** entries in the index. There is one additional integer in the list 830 ** for each indexed column. This additional integer is an estimate of 831 ** the number of rows matched by a stabbing query on the index using 832 ** a key with the corresponding number of fields. In other words, 833 ** if the index is on columns (a,b) and the sqlite_stat1 value is 834 ** "100 10 2", then SQLite estimates that: 835 ** 836 ** * the index contains 100 rows, 837 ** * "WHERE a=?" matches 10 rows, and 838 ** * "WHERE a=? AND b=?" matches 2 rows. 839 ** 840 ** If D is the count of distinct values and K is the total number of 841 ** rows, then each estimate is computed as: 842 ** 843 ** I = (K+D-1)/D 844 */ 845 char *z; 846 int i; 847 848 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 849 if( zRet==0 ){ 850 sqlite3_result_error_nomem(context); 851 return; 852 } 853 854 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 855 z = zRet + sqlite3Strlen30(zRet); 856 for(i=0; i<p->nKeyCol; i++){ 857 u64 nDistinct = p->current.anDLt[i] + 1; 858 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 859 sqlite3_snprintf(24, z, " %llu", iVal); 860 z += sqlite3Strlen30(z); 861 assert( p->current.anEq[i] ); 862 } 863 assert( z[0]=='\0' && z>zRet ); 864 865 sqlite3_result_text(context, zRet, -1, sqlite3_free); 866 } 867 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 868 else if( eCall==STAT_GET_ROWID ){ 869 if( p->iGet<0 ){ 870 samplePushPrevious(p, 0); 871 p->iGet = 0; 872 } 873 if( p->iGet<p->nSample ){ 874 Stat4Sample *pS = p->a + p->iGet; 875 if( pS->nRowid==0 ){ 876 sqlite3_result_int64(context, pS->u.iRowid); 877 }else{ 878 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 879 SQLITE_TRANSIENT); 880 } 881 } 882 }else{ 883 tRowcnt *aCnt = 0; 884 885 assert( p->iGet<p->nSample ); 886 switch( eCall ){ 887 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 888 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 889 default: { 890 aCnt = p->a[p->iGet].anDLt; 891 p->iGet++; 892 break; 893 } 894 } 895 896 if( IsStat3 ){ 897 sqlite3_result_int64(context, (i64)aCnt[0]); 898 }else{ 899 char *zRet = sqlite3MallocZero(p->nCol * 25); 900 if( zRet==0 ){ 901 sqlite3_result_error_nomem(context); 902 }else{ 903 int i; 904 char *z = zRet; 905 for(i=0; i<p->nCol; i++){ 906 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 907 z += sqlite3Strlen30(z); 908 } 909 assert( z[0]=='\0' && z>zRet ); 910 z[-1] = '\0'; 911 sqlite3_result_text(context, zRet, -1, sqlite3_free); 912 } 913 } 914 } 915 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 916 #ifndef SQLITE_DEBUG 917 UNUSED_PARAMETER( argc ); 918 #endif 919 } 920 static const FuncDef statGetFuncdef = { 921 1+IsStat34, /* nArg */ 922 SQLITE_UTF8, /* funcFlags */ 923 0, /* pUserData */ 924 0, /* pNext */ 925 statGet, /* xSFunc */ 926 0, /* xFinalize */ 927 "stat_get", /* zName */ 928 {0} 929 }; 930 931 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 932 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 933 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 934 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 935 #elif SQLITE_DEBUG 936 assert( iParam==STAT_GET_STAT1 ); 937 #else 938 UNUSED_PARAMETER( iParam ); 939 #endif 940 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut, 941 (char*)&statGetFuncdef, P4_FUNCDEF); 942 sqlite3VdbeChangeP5(v, 1 + IsStat34); 943 } 944 945 /* 946 ** Generate code to do an analysis of all indices associated with 947 ** a single table. 948 */ 949 static void analyzeOneTable( 950 Parse *pParse, /* Parser context */ 951 Table *pTab, /* Table whose indices are to be analyzed */ 952 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 953 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 954 int iMem, /* Available memory locations begin here */ 955 int iTab /* Next available cursor */ 956 ){ 957 sqlite3 *db = pParse->db; /* Database handle */ 958 Index *pIdx; /* An index to being analyzed */ 959 int iIdxCur; /* Cursor open on index being analyzed */ 960 int iTabCur; /* Table cursor */ 961 Vdbe *v; /* The virtual machine being built up */ 962 int i; /* Loop counter */ 963 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 964 int iDb; /* Index of database containing pTab */ 965 u8 needTableCnt = 1; /* True to count the table */ 966 int regNewRowid = iMem++; /* Rowid for the inserted record */ 967 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 968 int regChng = iMem++; /* Index of changed index field */ 969 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 970 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 971 #endif 972 int regTemp = iMem++; /* Temporary use register */ 973 int regTabname = iMem++; /* Register containing table name */ 974 int regIdxname = iMem++; /* Register containing index name */ 975 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 976 int regPrev = iMem; /* MUST BE LAST (see below) */ 977 978 pParse->nMem = MAX(pParse->nMem, iMem); 979 v = sqlite3GetVdbe(pParse); 980 if( v==0 || NEVER(pTab==0) ){ 981 return; 982 } 983 if( pTab->tnum==0 ){ 984 /* Do not gather statistics on views or virtual tables */ 985 return; 986 } 987 if( sqlite3_strlike("sqlite_%", pTab->zName, 0)==0 ){ 988 /* Do not gather statistics on system tables */ 989 return; 990 } 991 assert( sqlite3BtreeHoldsAllMutexes(db) ); 992 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 993 assert( iDb>=0 ); 994 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 995 #ifndef SQLITE_OMIT_AUTHORIZATION 996 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 997 db->aDb[iDb].zDbSName ) ){ 998 return; 999 } 1000 #endif 1001 1002 /* Establish a read-lock on the table at the shared-cache level. 1003 ** Open a read-only cursor on the table. Also allocate a cursor number 1004 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1005 ** this time though. */ 1006 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1007 iTabCur = iTab++; 1008 iIdxCur = iTab++; 1009 pParse->nTab = MAX(pParse->nTab, iTab); 1010 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1011 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1012 1013 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1014 int nCol; /* Number of columns in pIdx. "N" */ 1015 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1016 int addrNextRow; /* Address of "next_row:" */ 1017 const char *zIdxName; /* Name of the index */ 1018 int nColTest; /* Number of columns to test for changes */ 1019 1020 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1021 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1022 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1023 nCol = pIdx->nKeyCol; 1024 zIdxName = pTab->zName; 1025 nColTest = nCol - 1; 1026 }else{ 1027 nCol = pIdx->nColumn; 1028 zIdxName = pIdx->zName; 1029 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1030 } 1031 1032 /* Populate the register containing the index name. */ 1033 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1034 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1035 1036 /* 1037 ** Pseudo-code for loop that calls stat_push(): 1038 ** 1039 ** Rewind csr 1040 ** if eof(csr) goto end_of_scan; 1041 ** regChng = 0 1042 ** goto chng_addr_0; 1043 ** 1044 ** next_row: 1045 ** regChng = 0 1046 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1047 ** regChng = 1 1048 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1049 ** ... 1050 ** regChng = N 1051 ** goto chng_addr_N 1052 ** 1053 ** chng_addr_0: 1054 ** regPrev(0) = idx(0) 1055 ** chng_addr_1: 1056 ** regPrev(1) = idx(1) 1057 ** ... 1058 ** 1059 ** endDistinctTest: 1060 ** regRowid = idx(rowid) 1061 ** stat_push(P, regChng, regRowid) 1062 ** Next csr 1063 ** if !eof(csr) goto next_row; 1064 ** 1065 ** end_of_scan: 1066 */ 1067 1068 /* Make sure there are enough memory cells allocated to accommodate 1069 ** the regPrev array and a trailing rowid (the rowid slot is required 1070 ** when building a record to insert into the sample column of 1071 ** the sqlite_stat4 table. */ 1072 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1073 1074 /* Open a read-only cursor on the index being analyzed. */ 1075 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1076 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1077 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1078 VdbeComment((v, "%s", pIdx->zName)); 1079 1080 /* Invoke the stat_init() function. The arguments are: 1081 ** 1082 ** (1) the number of columns in the index including the rowid 1083 ** (or for a WITHOUT ROWID table, the number of PK columns), 1084 ** (2) the number of columns in the key without the rowid/pk 1085 ** (3) the number of rows in the index, 1086 ** 1087 ** 1088 ** The third argument is only used for STAT3 and STAT4 1089 */ 1090 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1091 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1092 #endif 1093 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1094 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1095 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4, 1096 (char*)&statInitFuncdef, P4_FUNCDEF); 1097 sqlite3VdbeChangeP5(v, 2+IsStat34); 1098 1099 /* Implementation of the following: 1100 ** 1101 ** Rewind csr 1102 ** if eof(csr) goto end_of_scan; 1103 ** regChng = 0 1104 ** goto next_push_0; 1105 ** 1106 */ 1107 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1108 VdbeCoverage(v); 1109 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1110 addrNextRow = sqlite3VdbeCurrentAddr(v); 1111 1112 if( nColTest>0 ){ 1113 int endDistinctTest = sqlite3VdbeMakeLabel(v); 1114 int *aGotoChng; /* Array of jump instruction addresses */ 1115 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1116 if( aGotoChng==0 ) continue; 1117 1118 /* 1119 ** next_row: 1120 ** regChng = 0 1121 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1122 ** regChng = 1 1123 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1124 ** ... 1125 ** regChng = N 1126 ** goto endDistinctTest 1127 */ 1128 sqlite3VdbeAddOp0(v, OP_Goto); 1129 addrNextRow = sqlite3VdbeCurrentAddr(v); 1130 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1131 /* For a single-column UNIQUE index, once we have found a non-NULL 1132 ** row, we know that all the rest will be distinct, so skip 1133 ** subsequent distinctness tests. */ 1134 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1135 VdbeCoverage(v); 1136 } 1137 for(i=0; i<nColTest; i++){ 1138 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1139 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1140 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1141 aGotoChng[i] = 1142 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1143 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1144 VdbeCoverage(v); 1145 } 1146 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1147 sqlite3VdbeGoto(v, endDistinctTest); 1148 1149 1150 /* 1151 ** chng_addr_0: 1152 ** regPrev(0) = idx(0) 1153 ** chng_addr_1: 1154 ** regPrev(1) = idx(1) 1155 ** ... 1156 */ 1157 sqlite3VdbeJumpHere(v, addrNextRow-1); 1158 for(i=0; i<nColTest; i++){ 1159 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1160 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1161 } 1162 sqlite3VdbeResolveLabel(v, endDistinctTest); 1163 sqlite3DbFree(db, aGotoChng); 1164 } 1165 1166 /* 1167 ** chng_addr_N: 1168 ** regRowid = idx(rowid) // STAT34 only 1169 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1170 ** Next csr 1171 ** if !eof(csr) goto next_row; 1172 */ 1173 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1174 assert( regRowid==(regStat4+2) ); 1175 if( HasRowid(pTab) ){ 1176 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1177 }else{ 1178 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1179 int j, k, regKey; 1180 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1181 for(j=0; j<pPk->nKeyCol; j++){ 1182 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1183 assert( k>=0 && k<pTab->nCol ); 1184 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1185 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1186 } 1187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1188 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1189 } 1190 #endif 1191 assert( regChng==(regStat4+1) ); 1192 sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp, 1193 (char*)&statPushFuncdef, P4_FUNCDEF); 1194 sqlite3VdbeChangeP5(v, 2+IsStat34); 1195 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1196 1197 /* Add the entry to the stat1 table. */ 1198 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1199 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1200 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1201 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1202 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1203 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1204 1205 /* Add the entries to the stat3 or stat4 table. */ 1206 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1207 { 1208 int regEq = regStat1; 1209 int regLt = regStat1+1; 1210 int regDLt = regStat1+2; 1211 int regSample = regStat1+3; 1212 int regCol = regStat1+4; 1213 int regSampleRowid = regCol + nCol; 1214 int addrNext; 1215 int addrIsNull; 1216 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1217 1218 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1219 1220 addrNext = sqlite3VdbeCurrentAddr(v); 1221 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1222 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1223 VdbeCoverage(v); 1224 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1225 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1226 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1227 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1228 /* We know that the regSampleRowid row exists because it was read by 1229 ** the previous loop. Thus the not-found jump of seekOp will never 1230 ** be taken */ 1231 VdbeCoverageNeverTaken(v); 1232 #ifdef SQLITE_ENABLE_STAT3 1233 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample); 1234 #else 1235 for(i=0; i<nCol; i++){ 1236 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1237 } 1238 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1239 #endif 1240 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1241 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1242 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1243 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1244 sqlite3VdbeJumpHere(v, addrIsNull); 1245 } 1246 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1247 1248 /* End of analysis */ 1249 sqlite3VdbeJumpHere(v, addrRewind); 1250 } 1251 1252 1253 /* Create a single sqlite_stat1 entry containing NULL as the index 1254 ** name and the row count as the content. 1255 */ 1256 if( pOnlyIdx==0 && needTableCnt ){ 1257 VdbeComment((v, "%s", pTab->zName)); 1258 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1259 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1260 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1261 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1262 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1263 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1264 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1265 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1266 sqlite3VdbeJumpHere(v, jZeroRows); 1267 } 1268 } 1269 1270 1271 /* 1272 ** Generate code that will cause the most recent index analysis to 1273 ** be loaded into internal hash tables where is can be used. 1274 */ 1275 static void loadAnalysis(Parse *pParse, int iDb){ 1276 Vdbe *v = sqlite3GetVdbe(pParse); 1277 if( v ){ 1278 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1279 } 1280 } 1281 1282 /* 1283 ** Generate code that will do an analysis of an entire database 1284 */ 1285 static void analyzeDatabase(Parse *pParse, int iDb){ 1286 sqlite3 *db = pParse->db; 1287 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1288 HashElem *k; 1289 int iStatCur; 1290 int iMem; 1291 int iTab; 1292 1293 sqlite3BeginWriteOperation(pParse, 0, iDb); 1294 iStatCur = pParse->nTab; 1295 pParse->nTab += 3; 1296 openStatTable(pParse, iDb, iStatCur, 0, 0); 1297 iMem = pParse->nMem+1; 1298 iTab = pParse->nTab; 1299 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1300 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1301 Table *pTab = (Table*)sqliteHashData(k); 1302 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1303 } 1304 loadAnalysis(pParse, iDb); 1305 } 1306 1307 /* 1308 ** Generate code that will do an analysis of a single table in 1309 ** a database. If pOnlyIdx is not NULL then it is a single index 1310 ** in pTab that should be analyzed. 1311 */ 1312 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1313 int iDb; 1314 int iStatCur; 1315 1316 assert( pTab!=0 ); 1317 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1318 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1319 sqlite3BeginWriteOperation(pParse, 0, iDb); 1320 iStatCur = pParse->nTab; 1321 pParse->nTab += 3; 1322 if( pOnlyIdx ){ 1323 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1324 }else{ 1325 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1326 } 1327 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1328 loadAnalysis(pParse, iDb); 1329 } 1330 1331 /* 1332 ** Generate code for the ANALYZE command. The parser calls this routine 1333 ** when it recognizes an ANALYZE command. 1334 ** 1335 ** ANALYZE -- 1 1336 ** ANALYZE <database> -- 2 1337 ** ANALYZE ?<database>.?<tablename> -- 3 1338 ** 1339 ** Form 1 causes all indices in all attached databases to be analyzed. 1340 ** Form 2 analyzes all indices the single database named. 1341 ** Form 3 analyzes all indices associated with the named table. 1342 */ 1343 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1344 sqlite3 *db = pParse->db; 1345 int iDb; 1346 int i; 1347 char *z, *zDb; 1348 Table *pTab; 1349 Index *pIdx; 1350 Token *pTableName; 1351 Vdbe *v; 1352 1353 /* Read the database schema. If an error occurs, leave an error message 1354 ** and code in pParse and return NULL. */ 1355 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1356 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1357 return; 1358 } 1359 1360 assert( pName2!=0 || pName1==0 ); 1361 if( pName1==0 ){ 1362 /* Form 1: Analyze everything */ 1363 for(i=0; i<db->nDb; i++){ 1364 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1365 analyzeDatabase(pParse, i); 1366 } 1367 }else if( pName2->n==0 ){ 1368 /* Form 2: Analyze the database or table named */ 1369 iDb = sqlite3FindDb(db, pName1); 1370 if( iDb>=0 ){ 1371 analyzeDatabase(pParse, iDb); 1372 }else{ 1373 z = sqlite3NameFromToken(db, pName1); 1374 if( z ){ 1375 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ 1376 analyzeTable(pParse, pIdx->pTable, pIdx); 1377 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ 1378 analyzeTable(pParse, pTab, 0); 1379 } 1380 sqlite3DbFree(db, z); 1381 } 1382 } 1383 }else{ 1384 /* Form 3: Analyze the fully qualified table name */ 1385 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1386 if( iDb>=0 ){ 1387 zDb = db->aDb[iDb].zDbSName; 1388 z = sqlite3NameFromToken(db, pTableName); 1389 if( z ){ 1390 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1391 analyzeTable(pParse, pIdx->pTable, pIdx); 1392 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1393 analyzeTable(pParse, pTab, 0); 1394 } 1395 sqlite3DbFree(db, z); 1396 } 1397 } 1398 } 1399 v = sqlite3GetVdbe(pParse); 1400 if( v ) sqlite3VdbeAddOp0(v, OP_Expire); 1401 } 1402 1403 /* 1404 ** Used to pass information from the analyzer reader through to the 1405 ** callback routine. 1406 */ 1407 typedef struct analysisInfo analysisInfo; 1408 struct analysisInfo { 1409 sqlite3 *db; 1410 const char *zDatabase; 1411 }; 1412 1413 /* 1414 ** The first argument points to a nul-terminated string containing a 1415 ** list of space separated integers. Read the first nOut of these into 1416 ** the array aOut[]. 1417 */ 1418 static void decodeIntArray( 1419 char *zIntArray, /* String containing int array to decode */ 1420 int nOut, /* Number of slots in aOut[] */ 1421 tRowcnt *aOut, /* Store integers here */ 1422 LogEst *aLog, /* Or, if aOut==0, here */ 1423 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1424 ){ 1425 char *z = zIntArray; 1426 int c; 1427 int i; 1428 tRowcnt v; 1429 1430 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1431 if( z==0 ) z = ""; 1432 #else 1433 assert( z!=0 ); 1434 #endif 1435 for(i=0; *z && i<nOut; i++){ 1436 v = 0; 1437 while( (c=z[0])>='0' && c<='9' ){ 1438 v = v*10 + c - '0'; 1439 z++; 1440 } 1441 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1442 if( aOut ) aOut[i] = v; 1443 if( aLog ) aLog[i] = sqlite3LogEst(v); 1444 #else 1445 assert( aOut==0 ); 1446 UNUSED_PARAMETER(aOut); 1447 assert( aLog!=0 ); 1448 aLog[i] = sqlite3LogEst(v); 1449 #endif 1450 if( *z==' ' ) z++; 1451 } 1452 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1453 assert( pIndex!=0 ); { 1454 #else 1455 if( pIndex ){ 1456 #endif 1457 pIndex->bUnordered = 0; 1458 pIndex->noSkipScan = 0; 1459 while( z[0] ){ 1460 if( sqlite3_strglob("unordered*", z)==0 ){ 1461 pIndex->bUnordered = 1; 1462 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1463 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); 1464 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1465 pIndex->noSkipScan = 1; 1466 } 1467 #ifdef SQLITE_ENABLE_COSTMULT 1468 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1469 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1470 } 1471 #endif 1472 while( z[0]!=0 && z[0]!=' ' ) z++; 1473 while( z[0]==' ' ) z++; 1474 } 1475 } 1476 } 1477 1478 /* 1479 ** This callback is invoked once for each index when reading the 1480 ** sqlite_stat1 table. 1481 ** 1482 ** argv[0] = name of the table 1483 ** argv[1] = name of the index (might be NULL) 1484 ** argv[2] = results of analysis - on integer for each column 1485 ** 1486 ** Entries for which argv[1]==NULL simply record the number of rows in 1487 ** the table. 1488 */ 1489 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1490 analysisInfo *pInfo = (analysisInfo*)pData; 1491 Index *pIndex; 1492 Table *pTable; 1493 const char *z; 1494 1495 assert( argc==3 ); 1496 UNUSED_PARAMETER2(NotUsed, argc); 1497 1498 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1499 return 0; 1500 } 1501 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1502 if( pTable==0 ){ 1503 return 0; 1504 } 1505 if( argv[1]==0 ){ 1506 pIndex = 0; 1507 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1508 pIndex = sqlite3PrimaryKeyIndex(pTable); 1509 }else{ 1510 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1511 } 1512 z = argv[2]; 1513 1514 if( pIndex ){ 1515 tRowcnt *aiRowEst = 0; 1516 int nCol = pIndex->nKeyCol+1; 1517 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1518 /* Index.aiRowEst may already be set here if there are duplicate 1519 ** sqlite_stat1 entries for this index. In that case just clobber 1520 ** the old data with the new instead of allocating a new array. */ 1521 if( pIndex->aiRowEst==0 ){ 1522 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1523 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1524 } 1525 aiRowEst = pIndex->aiRowEst; 1526 #endif 1527 pIndex->bUnordered = 0; 1528 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1529 if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1530 }else{ 1531 Index fakeIdx; 1532 fakeIdx.szIdxRow = pTable->szTabRow; 1533 #ifdef SQLITE_ENABLE_COSTMULT 1534 fakeIdx.pTable = pTable; 1535 #endif 1536 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1537 pTable->szTabRow = fakeIdx.szIdxRow; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* 1544 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1545 ** and its contents. 1546 */ 1547 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1548 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1549 if( pIdx->aSample ){ 1550 int j; 1551 for(j=0; j<pIdx->nSample; j++){ 1552 IndexSample *p = &pIdx->aSample[j]; 1553 sqlite3DbFree(db, p->p); 1554 } 1555 sqlite3DbFree(db, pIdx->aSample); 1556 } 1557 if( db && db->pnBytesFreed==0 ){ 1558 pIdx->nSample = 0; 1559 pIdx->aSample = 0; 1560 } 1561 #else 1562 UNUSED_PARAMETER(db); 1563 UNUSED_PARAMETER(pIdx); 1564 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1565 } 1566 1567 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1568 /* 1569 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1570 ** stored in pIdx->aSample[]. 1571 */ 1572 static void initAvgEq(Index *pIdx){ 1573 if( pIdx ){ 1574 IndexSample *aSample = pIdx->aSample; 1575 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1576 int iCol; 1577 int nCol = 1; 1578 if( pIdx->nSampleCol>1 ){ 1579 /* If this is stat4 data, then calculate aAvgEq[] values for all 1580 ** sample columns except the last. The last is always set to 1, as 1581 ** once the trailing PK fields are considered all index keys are 1582 ** unique. */ 1583 nCol = pIdx->nSampleCol-1; 1584 pIdx->aAvgEq[nCol] = 1; 1585 } 1586 for(iCol=0; iCol<nCol; iCol++){ 1587 int nSample = pIdx->nSample; 1588 int i; /* Used to iterate through samples */ 1589 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1590 tRowcnt avgEq = 0; 1591 tRowcnt nRow; /* Number of rows in index */ 1592 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1593 i64 nDist100; /* Number of distinct values in index */ 1594 1595 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1596 nRow = pFinal->anLt[iCol]; 1597 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1598 nSample--; 1599 }else{ 1600 nRow = pIdx->aiRowEst[0]; 1601 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1602 } 1603 pIdx->nRowEst0 = nRow; 1604 1605 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1606 ** occur in the stat4 table for this index. Set sumEq to the sum of 1607 ** the nEq values for column iCol for the same set (adding the value 1608 ** only once where there exist duplicate prefixes). */ 1609 for(i=0; i<nSample; i++){ 1610 if( i==(pIdx->nSample-1) 1611 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1612 ){ 1613 sumEq += aSample[i].anEq[iCol]; 1614 nSum100 += 100; 1615 } 1616 } 1617 1618 if( nDist100>nSum100 ){ 1619 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1620 } 1621 if( avgEq==0 ) avgEq = 1; 1622 pIdx->aAvgEq[iCol] = avgEq; 1623 } 1624 } 1625 } 1626 1627 /* 1628 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1629 ** is supplied instead, find the PRIMARY KEY index for that table. 1630 */ 1631 static Index *findIndexOrPrimaryKey( 1632 sqlite3 *db, 1633 const char *zName, 1634 const char *zDb 1635 ){ 1636 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1637 if( pIdx==0 ){ 1638 Table *pTab = sqlite3FindTable(db, zName, zDb); 1639 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1640 } 1641 return pIdx; 1642 } 1643 1644 /* 1645 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1646 ** into the relevant Index.aSample[] arrays. 1647 ** 1648 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1649 ** data equivalent to the following (statements are different for stat3, 1650 ** see the caller of this function for details): 1651 ** 1652 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1653 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1654 ** 1655 ** where %Q is replaced with the database name before the SQL is executed. 1656 */ 1657 static int loadStatTbl( 1658 sqlite3 *db, /* Database handle */ 1659 int bStat3, /* Assume single column records only */ 1660 const char *zSql1, /* SQL statement 1 (see above) */ 1661 const char *zSql2, /* SQL statement 2 (see above) */ 1662 const char *zDb /* Database name (e.g. "main") */ 1663 ){ 1664 int rc; /* Result codes from subroutines */ 1665 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1666 char *zSql; /* Text of the SQL statement */ 1667 Index *pPrevIdx = 0; /* Previous index in the loop */ 1668 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1669 1670 assert( db->lookaside.bDisable ); 1671 zSql = sqlite3MPrintf(db, zSql1, zDb); 1672 if( !zSql ){ 1673 return SQLITE_NOMEM_BKPT; 1674 } 1675 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1676 sqlite3DbFree(db, zSql); 1677 if( rc ) return rc; 1678 1679 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1680 int nIdxCol = 1; /* Number of columns in stat4 records */ 1681 1682 char *zIndex; /* Index name */ 1683 Index *pIdx; /* Pointer to the index object */ 1684 int nSample; /* Number of samples */ 1685 int nByte; /* Bytes of space required */ 1686 int i; /* Bytes of space required */ 1687 tRowcnt *pSpace; 1688 1689 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1690 if( zIndex==0 ) continue; 1691 nSample = sqlite3_column_int(pStmt, 1); 1692 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1693 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1694 /* Index.nSample is non-zero at this point if data has already been 1695 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1696 if( pIdx==0 || pIdx->nSample ) continue; 1697 if( bStat3==0 ){ 1698 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1699 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1700 nIdxCol = pIdx->nKeyCol; 1701 }else{ 1702 nIdxCol = pIdx->nColumn; 1703 } 1704 } 1705 pIdx->nSampleCol = nIdxCol; 1706 nByte = sizeof(IndexSample) * nSample; 1707 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1708 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1709 1710 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1711 if( pIdx->aSample==0 ){ 1712 sqlite3_finalize(pStmt); 1713 return SQLITE_NOMEM_BKPT; 1714 } 1715 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1716 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1717 for(i=0; i<nSample; i++){ 1718 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1719 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1720 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1721 } 1722 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1723 } 1724 rc = sqlite3_finalize(pStmt); 1725 if( rc ) return rc; 1726 1727 zSql = sqlite3MPrintf(db, zSql2, zDb); 1728 if( !zSql ){ 1729 return SQLITE_NOMEM_BKPT; 1730 } 1731 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1732 sqlite3DbFree(db, zSql); 1733 if( rc ) return rc; 1734 1735 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1736 char *zIndex; /* Index name */ 1737 Index *pIdx; /* Pointer to the index object */ 1738 int nCol = 1; /* Number of columns in index */ 1739 1740 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1741 if( zIndex==0 ) continue; 1742 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1743 if( pIdx==0 ) continue; 1744 /* This next condition is true if data has already been loaded from 1745 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1746 nCol = pIdx->nSampleCol; 1747 if( bStat3 && nCol>1 ) continue; 1748 if( pIdx!=pPrevIdx ){ 1749 initAvgEq(pPrevIdx); 1750 pPrevIdx = pIdx; 1751 } 1752 pSample = &pIdx->aSample[pIdx->nSample]; 1753 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1754 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1755 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1756 1757 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1758 ** This is in case the sample record is corrupted. In that case, the 1759 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1760 ** end of the allocated buffer before it realizes it is dealing with 1761 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1762 ** a buffer overread. */ 1763 pSample->n = sqlite3_column_bytes(pStmt, 4); 1764 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1765 if( pSample->p==0 ){ 1766 sqlite3_finalize(pStmt); 1767 return SQLITE_NOMEM_BKPT; 1768 } 1769 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1770 pIdx->nSample++; 1771 } 1772 rc = sqlite3_finalize(pStmt); 1773 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1774 return rc; 1775 } 1776 1777 /* 1778 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1779 ** the Index.aSample[] arrays of all indices. 1780 */ 1781 static int loadStat4(sqlite3 *db, const char *zDb){ 1782 int rc = SQLITE_OK; /* Result codes from subroutines */ 1783 1784 assert( db->lookaside.bDisable ); 1785 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1786 rc = loadStatTbl(db, 0, 1787 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1788 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1789 zDb 1790 ); 1791 } 1792 1793 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1794 rc = loadStatTbl(db, 1, 1795 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1796 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1797 zDb 1798 ); 1799 } 1800 1801 return rc; 1802 } 1803 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1804 1805 /* 1806 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1807 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1808 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1809 ** Index.aSample[] arrays. 1810 ** 1811 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1812 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1813 ** during compilation and the sqlite_stat3/4 table is present, no data is 1814 ** read from it. 1815 ** 1816 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1817 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1818 ** returned. However, in this case, data is read from the sqlite_stat1 1819 ** table (if it is present) before returning. 1820 ** 1821 ** If an OOM error occurs, this function always sets db->mallocFailed. 1822 ** This means if the caller does not care about other errors, the return 1823 ** code may be ignored. 1824 */ 1825 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1826 analysisInfo sInfo; 1827 HashElem *i; 1828 char *zSql; 1829 int rc = SQLITE_OK; 1830 1831 assert( iDb>=0 && iDb<db->nDb ); 1832 assert( db->aDb[iDb].pBt!=0 ); 1833 1834 /* Clear any prior statistics */ 1835 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1836 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1837 Index *pIdx = sqliteHashData(i); 1838 pIdx->aiRowLogEst[0] = 0; 1839 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1840 sqlite3DeleteIndexSamples(db, pIdx); 1841 pIdx->aSample = 0; 1842 #endif 1843 } 1844 1845 /* Load new statistics out of the sqlite_stat1 table */ 1846 sInfo.db = db; 1847 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1848 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1849 zSql = sqlite3MPrintf(db, 1850 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1851 if( zSql==0 ){ 1852 rc = SQLITE_NOMEM_BKPT; 1853 }else{ 1854 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1855 sqlite3DbFree(db, zSql); 1856 } 1857 } 1858 1859 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1860 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1861 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1862 Index *pIdx = sqliteHashData(i); 1863 if( pIdx->aiRowLogEst[0]==0 ) sqlite3DefaultRowEst(pIdx); 1864 } 1865 1866 /* Load the statistics from the sqlite_stat4 table. */ 1867 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1868 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){ 1869 db->lookaside.bDisable++; 1870 rc = loadStat4(db, sInfo.zDatabase); 1871 db->lookaside.bDisable--; 1872 } 1873 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1874 Index *pIdx = sqliteHashData(i); 1875 sqlite3_free(pIdx->aiRowEst); 1876 pIdx->aiRowEst = 0; 1877 } 1878 #endif 1879 1880 if( rc==SQLITE_NOMEM ){ 1881 sqlite3OomFault(db); 1882 } 1883 return rc; 1884 } 1885 1886 1887 #endif /* SQLITE_OMIT_ANALYZE */ 1888