xref: /sqlite-3.40.0/src/analyze.c (revision dee0359d)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated.  The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later.  STAT4 is the only variant that is still
36 ** supported.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 #else
148 # define IsStat4     0
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
151 #endif
152 
153 /*
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
156 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
158 **
159 ** If the sqlite_statN tables do not previously exist, it is created.
160 **
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
165 */
166 static void openStatTable(
167   Parse *pParse,          /* Parsing context */
168   int iDb,                /* The database we are looking in */
169   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
170   const char *zWhere,     /* Delete entries for this table or index */
171   const char *zWhereType  /* Either "tbl" or "idx" */
172 ){
173   static const struct {
174     const char *zName;
175     const char *zCols;
176   } aTable[] = {
177     { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
180 #else
181     { "sqlite_stat4", 0 },
182 #endif
183     { "sqlite_stat3", 0 },
184   };
185   int i;
186   sqlite3 *db = pParse->db;
187   Db *pDb;
188   Vdbe *v = sqlite3GetVdbe(pParse);
189   u32 aRoot[ArraySize(aTable)];
190   u8 aCreateTbl[ArraySize(aTable)];
191 #ifdef SQLITE_ENABLE_STAT4
192   const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
193 #else
194   const int nToOpen = 1;
195 #endif
196 
197   if( v==0 ) return;
198   assert( sqlite3BtreeHoldsAllMutexes(db) );
199   assert( sqlite3VdbeDb(v)==db );
200   pDb = &db->aDb[iDb];
201 
202   /* Create new statistic tables if they do not exist, or clear them
203   ** if they do already exist.
204   */
205   for(i=0; i<ArraySize(aTable); i++){
206     const char *zTab = aTable[i].zName;
207     Table *pStat;
208     aCreateTbl[i] = 0;
209     if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
210       if( i<nToOpen ){
211         /* The sqlite_statN table does not exist. Create it. Note that a
212         ** side-effect of the CREATE TABLE statement is to leave the rootpage
213         ** of the new table in register pParse->regRoot. This is important
214         ** because the OpenWrite opcode below will be needing it. */
215         sqlite3NestedParse(pParse,
216             "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
217         );
218         aRoot[i] = (u32)pParse->regRoot;
219         aCreateTbl[i] = OPFLAG_P2ISREG;
220       }
221     }else{
222       /* The table already exists. If zWhere is not NULL, delete all entries
223       ** associated with the table zWhere. If zWhere is NULL, delete the
224       ** entire contents of the table. */
225       aRoot[i] = pStat->tnum;
226       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
227       if( zWhere ){
228         sqlite3NestedParse(pParse,
229            "DELETE FROM %Q.%s WHERE %s=%Q",
230            pDb->zDbSName, zTab, zWhereType, zWhere
231         );
232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
233       }else if( db->xPreUpdateCallback ){
234         sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
235 #endif
236       }else{
237         /* The sqlite_stat[134] table already exists.  Delete all rows. */
238         sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
239       }
240     }
241   }
242 
243   /* Open the sqlite_stat[134] tables for writing. */
244   for(i=0; i<nToOpen; i++){
245     assert( i<ArraySize(aTable) );
246     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
247     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
248     VdbeComment((v, aTable[i].zName));
249   }
250 }
251 
252 /*
253 ** Recommended number of samples for sqlite_stat4
254 */
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
257 #endif
258 
259 /*
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
262 ** information.
263 */
264 typedef struct StatAccum StatAccum;
265 typedef struct StatSample StatSample;
266 struct StatSample {
267   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
268   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT4
270   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
271   union {
272     i64 iRowid;                     /* Rowid in main table of the key */
273     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
274   } u;
275   u32 nRowid;                     /* Sizeof aRowid[] */
276   u8 isPSample;                   /* True if a periodic sample */
277   int iCol;                       /* If !isPSample, the reason for inclusion */
278   u32 iHash;                      /* Tiebreaker hash */
279 #endif
280 };
281 struct StatAccum {
282   sqlite3 *db;              /* Database connection, for malloc() */
283   tRowcnt nEst;             /* Estimated number of rows */
284   tRowcnt nRow;             /* Number of rows visited so far */
285   int nLimit;               /* Analysis row-scan limit */
286   int nCol;                 /* Number of columns in index + pk/rowid */
287   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
288   u8 nSkipAhead;            /* Number of times of skip-ahead */
289   StatSample current;       /* Current row as a StatSample */
290 #ifdef SQLITE_ENABLE_STAT4
291   tRowcnt nPSample;         /* How often to do a periodic sample */
292   int mxSample;             /* Maximum number of samples to accumulate */
293   u32 iPrn;                 /* Pseudo-random number used for sampling */
294   StatSample *aBest;        /* Array of nCol best samples */
295   int iMin;                 /* Index in a[] of entry with minimum score */
296   int nSample;              /* Current number of samples */
297   int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
298   int iGet;                 /* Index of current sample accessed by stat_get() */
299   StatSample *a;            /* Array of mxSample StatSample objects */
300 #endif
301 };
302 
303 /* Reclaim memory used by a StatSample
304 */
305 #ifdef SQLITE_ENABLE_STAT4
306 static void sampleClear(sqlite3 *db, StatSample *p){
307   assert( db!=0 );
308   if( p->nRowid ){
309     sqlite3DbFree(db, p->u.aRowid);
310     p->nRowid = 0;
311   }
312 }
313 #endif
314 
315 /* Initialize the BLOB value of a ROWID
316 */
317 #ifdef SQLITE_ENABLE_STAT4
318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
319   assert( db!=0 );
320   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
321   p->u.aRowid = sqlite3DbMallocRawNN(db, n);
322   if( p->u.aRowid ){
323     p->nRowid = n;
324     memcpy(p->u.aRowid, pData, n);
325   }else{
326     p->nRowid = 0;
327   }
328 }
329 #endif
330 
331 /* Initialize the INTEGER value of a ROWID.
332 */
333 #ifdef SQLITE_ENABLE_STAT4
334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
335   assert( db!=0 );
336   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
337   p->nRowid = 0;
338   p->u.iRowid = iRowid;
339 }
340 #endif
341 
342 
343 /*
344 ** Copy the contents of object (*pFrom) into (*pTo).
345 */
346 #ifdef SQLITE_ENABLE_STAT4
347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
348   pTo->isPSample = pFrom->isPSample;
349   pTo->iCol = pFrom->iCol;
350   pTo->iHash = pFrom->iHash;
351   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
352   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
353   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
354   if( pFrom->nRowid ){
355     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
356   }else{
357     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
358   }
359 }
360 #endif
361 
362 /*
363 ** Reclaim all memory of a StatAccum structure.
364 */
365 static void statAccumDestructor(void *pOld){
366   StatAccum *p = (StatAccum*)pOld;
367 #ifdef SQLITE_ENABLE_STAT4
368   if( p->mxSample ){
369     int i;
370     for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
371     for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
372     sampleClear(p->db, &p->current);
373   }
374 #endif
375   sqlite3DbFree(p->db, p);
376 }
377 
378 /*
379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
380 ** are:
381 **     N:    The number of columns in the index including the rowid/pk (note 1)
382 **     K:    The number of columns in the index excluding the rowid/pk.
383 **     C:    Estimated number of rows in the index
384 **     L:    A limit on the number of rows to scan, or 0 for no-limit
385 **
386 ** Note 1:  In the special case of the covering index that implements a
387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
388 ** total number of columns in the table.
389 **
390 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
392 ** PRIMARY KEY of the table.  The covering index that implements the
393 ** original WITHOUT ROWID table as N==K as a special case.
394 **
395 ** This routine allocates the StatAccum object in heap memory. The return
396 ** value is a pointer to the StatAccum object.  The datatype of the
397 ** return value is BLOB, but it is really just a pointer to the StatAccum
398 ** object.
399 */
400 static void statInit(
401   sqlite3_context *context,
402   int argc,
403   sqlite3_value **argv
404 ){
405   StatAccum *p;
406   int nCol;                       /* Number of columns in index being sampled */
407   int nKeyCol;                    /* Number of key columns */
408   int nColUp;                     /* nCol rounded up for alignment */
409   int n;                          /* Bytes of space to allocate */
410   sqlite3 *db = sqlite3_context_db_handle(context);   /* Database connection */
411 #ifdef SQLITE_ENABLE_STAT4
412   /* Maximum number of samples.  0 if STAT4 data is not collected */
413   int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
414 #endif
415 
416   /* Decode the three function arguments */
417   UNUSED_PARAMETER(argc);
418   nCol = sqlite3_value_int(argv[0]);
419   assert( nCol>0 );
420   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
421   nKeyCol = sqlite3_value_int(argv[1]);
422   assert( nKeyCol<=nCol );
423   assert( nKeyCol>0 );
424 
425   /* Allocate the space required for the StatAccum object */
426   n = sizeof(*p)
427     + sizeof(tRowcnt)*nColUp                  /* StatAccum.anEq */
428     + sizeof(tRowcnt)*nColUp;                 /* StatAccum.anDLt */
429 #ifdef SQLITE_ENABLE_STAT4
430   if( mxSample ){
431     n += sizeof(tRowcnt)*nColUp                  /* StatAccum.anLt */
432       + sizeof(StatSample)*(nCol+mxSample)       /* StatAccum.aBest[], a[] */
433       + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
434   }
435 #endif
436   p = sqlite3DbMallocZero(db, n);
437   if( p==0 ){
438     sqlite3_result_error_nomem(context);
439     return;
440   }
441 
442   p->db = db;
443   p->nEst = sqlite3_value_int64(argv[2]);
444   p->nRow = 0;
445   p->nLimit = sqlite3_value_int64(argv[3]);
446   p->nCol = nCol;
447   p->nKeyCol = nKeyCol;
448   p->nSkipAhead = 0;
449   p->current.anDLt = (tRowcnt*)&p[1];
450   p->current.anEq = &p->current.anDLt[nColUp];
451 
452 #ifdef SQLITE_ENABLE_STAT4
453   p->mxSample = p->nLimit==0 ? mxSample : 0;
454   if( mxSample ){
455     u8 *pSpace;                     /* Allocated space not yet assigned */
456     int i;                          /* Used to iterate through p->aSample[] */
457 
458     p->iGet = -1;
459     p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
460     p->current.anLt = &p->current.anEq[nColUp];
461     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
462 
463     /* Set up the StatAccum.a[] and aBest[] arrays */
464     p->a = (struct StatSample*)&p->current.anLt[nColUp];
465     p->aBest = &p->a[mxSample];
466     pSpace = (u8*)(&p->a[mxSample+nCol]);
467     for(i=0; i<(mxSample+nCol); i++){
468       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
469       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
470       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
471     }
472     assert( (pSpace - (u8*)p)==n );
473 
474     for(i=0; i<nCol; i++){
475       p->aBest[i].iCol = i;
476     }
477   }
478 #endif
479 
480   /* Return a pointer to the allocated object to the caller.  Note that
481   ** only the pointer (the 2nd parameter) matters.  The size of the object
482   ** (given by the 3rd parameter) is never used and can be any positive
483   ** value. */
484   sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
485 }
486 static const FuncDef statInitFuncdef = {
487   4,               /* nArg */
488   SQLITE_UTF8,     /* funcFlags */
489   0,               /* pUserData */
490   0,               /* pNext */
491   statInit,        /* xSFunc */
492   0,               /* xFinalize */
493   0, 0,            /* xValue, xInverse */
494   "stat_init",     /* zName */
495   {0}
496 };
497 
498 #ifdef SQLITE_ENABLE_STAT4
499 /*
500 ** pNew and pOld are both candidate non-periodic samples selected for
501 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
502 ** considering only any trailing columns and the sample hash value, this
503 ** function returns true if sample pNew is to be preferred over pOld.
504 ** In other words, if we assume that the cardinalities of the selected
505 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
506 **
507 ** This function assumes that for each argument sample, the contents of
508 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
509 */
510 static int sampleIsBetterPost(
511   StatAccum *pAccum,
512   StatSample *pNew,
513   StatSample *pOld
514 ){
515   int nCol = pAccum->nCol;
516   int i;
517   assert( pNew->iCol==pOld->iCol );
518   for(i=pNew->iCol+1; i<nCol; i++){
519     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
520     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
521   }
522   if( pNew->iHash>pOld->iHash ) return 1;
523   return 0;
524 }
525 #endif
526 
527 #ifdef SQLITE_ENABLE_STAT4
528 /*
529 ** Return true if pNew is to be preferred over pOld.
530 **
531 ** This function assumes that for each argument sample, the contents of
532 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
533 */
534 static int sampleIsBetter(
535   StatAccum *pAccum,
536   StatSample *pNew,
537   StatSample *pOld
538 ){
539   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
540   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
541 
542   assert( pOld->isPSample==0 && pNew->isPSample==0 );
543   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
544 
545   if( (nEqNew>nEqOld) ) return 1;
546   if( nEqNew==nEqOld ){
547     if( pNew->iCol<pOld->iCol ) return 1;
548     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
549   }
550   return 0;
551 }
552 
553 /*
554 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
555 ** remove the least desirable sample from p->a[] to make room.
556 */
557 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
558   StatSample *pSample = 0;
559   int i;
560 
561   assert( IsStat4 || nEqZero==0 );
562 
563   /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
564   ** values in the anEq[] array of any sample in StatAccum.a[]. In
565   ** other words, if nMaxEqZero is n, then it is guaranteed that there
566   ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
567   if( nEqZero>p->nMaxEqZero ){
568     p->nMaxEqZero = nEqZero;
569   }
570   if( pNew->isPSample==0 ){
571     StatSample *pUpgrade = 0;
572     assert( pNew->anEq[pNew->iCol]>0 );
573 
574     /* This sample is being added because the prefix that ends in column
575     ** iCol occurs many times in the table. However, if we have already
576     ** added a sample that shares this prefix, there is no need to add
577     ** this one. Instead, upgrade the priority of the highest priority
578     ** existing sample that shares this prefix.  */
579     for(i=p->nSample-1; i>=0; i--){
580       StatSample *pOld = &p->a[i];
581       if( pOld->anEq[pNew->iCol]==0 ){
582         if( pOld->isPSample ) return;
583         assert( pOld->iCol>pNew->iCol );
584         assert( sampleIsBetter(p, pNew, pOld) );
585         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
586           pUpgrade = pOld;
587         }
588       }
589     }
590     if( pUpgrade ){
591       pUpgrade->iCol = pNew->iCol;
592       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
593       goto find_new_min;
594     }
595   }
596 
597   /* If necessary, remove sample iMin to make room for the new sample. */
598   if( p->nSample>=p->mxSample ){
599     StatSample *pMin = &p->a[p->iMin];
600     tRowcnt *anEq = pMin->anEq;
601     tRowcnt *anLt = pMin->anLt;
602     tRowcnt *anDLt = pMin->anDLt;
603     sampleClear(p->db, pMin);
604     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
605     pSample = &p->a[p->nSample-1];
606     pSample->nRowid = 0;
607     pSample->anEq = anEq;
608     pSample->anDLt = anDLt;
609     pSample->anLt = anLt;
610     p->nSample = p->mxSample-1;
611   }
612 
613   /* The "rows less-than" for the rowid column must be greater than that
614   ** for the last sample in the p->a[] array. Otherwise, the samples would
615   ** be out of order. */
616   assert( p->nSample==0
617        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
618 
619   /* Insert the new sample */
620   pSample = &p->a[p->nSample];
621   sampleCopy(p, pSample, pNew);
622   p->nSample++;
623 
624   /* Zero the first nEqZero entries in the anEq[] array. */
625   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
626 
627 find_new_min:
628   if( p->nSample>=p->mxSample ){
629     int iMin = -1;
630     for(i=0; i<p->mxSample; i++){
631       if( p->a[i].isPSample ) continue;
632       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
633         iMin = i;
634       }
635     }
636     assert( iMin>=0 );
637     p->iMin = iMin;
638   }
639 }
640 #endif /* SQLITE_ENABLE_STAT4 */
641 
642 #ifdef SQLITE_ENABLE_STAT4
643 /*
644 ** Field iChng of the index being scanned has changed. So at this point
645 ** p->current contains a sample that reflects the previous row of the
646 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
647 ** correct at this point.
648 */
649 static void samplePushPrevious(StatAccum *p, int iChng){
650   int i;
651 
652   /* Check if any samples from the aBest[] array should be pushed
653   ** into IndexSample.a[] at this point.  */
654   for(i=(p->nCol-2); i>=iChng; i--){
655     StatSample *pBest = &p->aBest[i];
656     pBest->anEq[i] = p->current.anEq[i];
657     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
658       sampleInsert(p, pBest, i);
659     }
660   }
661 
662   /* Check that no sample contains an anEq[] entry with an index of
663   ** p->nMaxEqZero or greater set to zero. */
664   for(i=p->nSample-1; i>=0; i--){
665     int j;
666     for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
667   }
668 
669   /* Update the anEq[] fields of any samples already collected. */
670   if( iChng<p->nMaxEqZero ){
671     for(i=p->nSample-1; i>=0; i--){
672       int j;
673       for(j=iChng; j<p->nCol; j++){
674         if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
675       }
676     }
677     p->nMaxEqZero = iChng;
678   }
679 }
680 #endif /* SQLITE_ENABLE_STAT4 */
681 
682 /*
683 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
684 ** Arguments:
685 **
686 **    P     Pointer to the StatAccum object created by stat_init()
687 **    C     Index of left-most column to differ from previous row
688 **    R     Rowid for the current row.  Might be a key record for
689 **          WITHOUT ROWID tables.
690 **
691 ** The purpose of this routine is to collect statistical data and/or
692 ** samples from the index being analyzed into the StatAccum object.
693 ** The stat_get() SQL function will be used afterwards to
694 ** retrieve the information gathered.
695 **
696 ** This SQL function usually returns NULL, but might return an integer
697 ** if it wants the byte-code to do special processing.
698 **
699 ** The R parameter is only used for STAT4
700 */
701 static void statPush(
702   sqlite3_context *context,
703   int argc,
704   sqlite3_value **argv
705 ){
706   int i;
707 
708   /* The three function arguments */
709   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
710   int iChng = sqlite3_value_int(argv[1]);
711 
712   UNUSED_PARAMETER( argc );
713   UNUSED_PARAMETER( context );
714   assert( p->nCol>0 );
715   assert( iChng<p->nCol );
716 
717   if( p->nRow==0 ){
718     /* This is the first call to this function. Do initialization. */
719     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
720   }else{
721     /* Second and subsequent calls get processed here */
722 #ifdef SQLITE_ENABLE_STAT4
723     if( p->mxSample ) samplePushPrevious(p, iChng);
724 #endif
725 
726     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
727     ** to the current row of the index. */
728     for(i=0; i<iChng; i++){
729       p->current.anEq[i]++;
730     }
731     for(i=iChng; i<p->nCol; i++){
732       p->current.anDLt[i]++;
733 #ifdef SQLITE_ENABLE_STAT4
734       if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
735 #endif
736       p->current.anEq[i] = 1;
737     }
738   }
739 
740   p->nRow++;
741 #ifdef SQLITE_ENABLE_STAT4
742   if( p->mxSample ){
743     tRowcnt nLt;
744     if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
745       sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
746     }else{
747       sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
748                                          sqlite3_value_blob(argv[2]));
749     }
750     p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
751 
752     nLt = p->current.anLt[p->nCol-1];
753     /* Check if this is to be a periodic sample. If so, add it. */
754     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
755       p->current.isPSample = 1;
756       p->current.iCol = 0;
757       sampleInsert(p, &p->current, p->nCol-1);
758       p->current.isPSample = 0;
759     }
760 
761     /* Update the aBest[] array. */
762     for(i=0; i<(p->nCol-1); i++){
763       p->current.iCol = i;
764       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
765         sampleCopy(p, &p->aBest[i], &p->current);
766       }
767     }
768   }else
769 #endif
770   if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
771     p->nSkipAhead++;
772     sqlite3_result_int(context, p->current.anDLt[0]>0);
773   }
774 }
775 
776 static const FuncDef statPushFuncdef = {
777   2+IsStat4,       /* nArg */
778   SQLITE_UTF8,     /* funcFlags */
779   0,               /* pUserData */
780   0,               /* pNext */
781   statPush,        /* xSFunc */
782   0,               /* xFinalize */
783   0, 0,            /* xValue, xInverse */
784   "stat_push",     /* zName */
785   {0}
786 };
787 
788 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
789 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
790 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
791 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
792 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
793 
794 /*
795 ** Implementation of the stat_get(P,J) SQL function.  This routine is
796 ** used to query statistical information that has been gathered into
797 ** the StatAccum object by prior calls to stat_push().  The P parameter
798 ** has type BLOB but it is really just a pointer to the StatAccum object.
799 ** The content to returned is determined by the parameter J
800 ** which is one of the STAT_GET_xxxx values defined above.
801 **
802 ** The stat_get(P,J) function is not available to generic SQL.  It is
803 ** inserted as part of a manually constructed bytecode program.  (See
804 ** the callStatGet() routine below.)  It is guaranteed that the P
805 ** parameter will always be a pointer to a StatAccum object, never a
806 ** NULL.
807 **
808 ** If STAT4 is not enabled, then J is always
809 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
810 ** a one-parameter function, stat_get(P), that always returns the
811 ** stat1 table entry information.
812 */
813 static void statGet(
814   sqlite3_context *context,
815   int argc,
816   sqlite3_value **argv
817 ){
818   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
819 #ifdef SQLITE_ENABLE_STAT4
820   /* STAT4 has a parameter on this routine. */
821   int eCall = sqlite3_value_int(argv[1]);
822   assert( argc==2 );
823   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
824        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
825        || eCall==STAT_GET_NDLT
826   );
827   assert( eCall==STAT_GET_STAT1 || p->mxSample );
828   if( eCall==STAT_GET_STAT1 )
829 #else
830   assert( argc==1 );
831 #endif
832   {
833     /* Return the value to store in the "stat" column of the sqlite_stat1
834     ** table for this index.
835     **
836     ** The value is a string composed of a list of integers describing
837     ** the index. The first integer in the list is the total number of
838     ** entries in the index. There is one additional integer in the list
839     ** for each indexed column. This additional integer is an estimate of
840     ** the number of rows matched by a equality query on the index using
841     ** a key with the corresponding number of fields. In other words,
842     ** if the index is on columns (a,b) and the sqlite_stat1 value is
843     ** "100 10 2", then SQLite estimates that:
844     **
845     **   * the index contains 100 rows,
846     **   * "WHERE a=?" matches 10 rows, and
847     **   * "WHERE a=? AND b=?" matches 2 rows.
848     **
849     ** If D is the count of distinct values and K is the total number of
850     ** rows, then each estimate is computed as:
851     **
852     **        I = (K+D-1)/D
853     */
854     sqlite3_str sStat;   /* Text of the constructed "stat" line */
855     int i;               /* Loop counter */
856 
857     sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
858     sqlite3_str_appendf(&sStat, "%llu",
859         p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
860     for(i=0; i<p->nKeyCol; i++){
861       u64 nDistinct = p->current.anDLt[i] + 1;
862       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
863       sqlite3_str_appendf(&sStat, " %llu", iVal);
864       assert( p->current.anEq[i] );
865     }
866     sqlite3ResultStrAccum(context, &sStat);
867   }
868 #ifdef SQLITE_ENABLE_STAT4
869   else if( eCall==STAT_GET_ROWID ){
870     if( p->iGet<0 ){
871       samplePushPrevious(p, 0);
872       p->iGet = 0;
873     }
874     if( p->iGet<p->nSample ){
875       StatSample *pS = p->a + p->iGet;
876       if( pS->nRowid==0 ){
877         sqlite3_result_int64(context, pS->u.iRowid);
878       }else{
879         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
880                             SQLITE_TRANSIENT);
881       }
882     }
883   }else{
884     tRowcnt *aCnt = 0;
885     sqlite3_str sStat;
886     int i;
887 
888     assert( p->iGet<p->nSample );
889     switch( eCall ){
890       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
891       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
892       default: {
893         aCnt = p->a[p->iGet].anDLt;
894         p->iGet++;
895         break;
896       }
897     }
898     sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
899     for(i=0; i<p->nCol; i++){
900       sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
901     }
902     if( sStat.nChar ) sStat.nChar--;
903     sqlite3ResultStrAccum(context, &sStat);
904   }
905 #endif /* SQLITE_ENABLE_STAT4 */
906 #ifndef SQLITE_DEBUG
907   UNUSED_PARAMETER( argc );
908 #endif
909 }
910 static const FuncDef statGetFuncdef = {
911   1+IsStat4,       /* nArg */
912   SQLITE_UTF8,     /* funcFlags */
913   0,               /* pUserData */
914   0,               /* pNext */
915   statGet,         /* xSFunc */
916   0,               /* xFinalize */
917   0, 0,            /* xValue, xInverse */
918   "stat_get",      /* zName */
919   {0}
920 };
921 
922 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
923 #ifdef SQLITE_ENABLE_STAT4
924   sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
925 #elif SQLITE_DEBUG
926   assert( iParam==STAT_GET_STAT1 );
927 #else
928   UNUSED_PARAMETER( iParam );
929 #endif
930   assert( regOut!=regStat && regOut!=regStat+1 );
931   sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
932                              &statGetFuncdef, 0);
933 }
934 
935 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
936 /* Add a comment to the most recent VDBE opcode that is the name
937 ** of the k-th column of the pIdx index.
938 */
939 static void analyzeVdbeCommentIndexWithColumnName(
940   Vdbe *v,         /* Prepared statement under construction */
941   Index *pIdx,     /* Index whose column is being loaded */
942   int k            /* Which column index */
943 ){
944   int i;           /* Index of column in the table */
945   assert( k>=0 && k<pIdx->nColumn );
946   i = pIdx->aiColumn[k];
947   if( NEVER(i==XN_ROWID) ){
948     VdbeComment((v,"%s.rowid",pIdx->zName));
949   }else if( i==XN_EXPR ){
950     VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
951   }else{
952     VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
953   }
954 }
955 #else
956 # define analyzeVdbeCommentIndexWithColumnName(a,b,c)
957 #endif /* SQLITE_DEBUG */
958 
959 /*
960 ** Generate code to do an analysis of all indices associated with
961 ** a single table.
962 */
963 static void analyzeOneTable(
964   Parse *pParse,   /* Parser context */
965   Table *pTab,     /* Table whose indices are to be analyzed */
966   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
967   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
968   int iMem,        /* Available memory locations begin here */
969   int iTab         /* Next available cursor */
970 ){
971   sqlite3 *db = pParse->db;    /* Database handle */
972   Index *pIdx;                 /* An index to being analyzed */
973   int iIdxCur;                 /* Cursor open on index being analyzed */
974   int iTabCur;                 /* Table cursor */
975   Vdbe *v;                     /* The virtual machine being built up */
976   int i;                       /* Loop counter */
977   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
978   int iDb;                     /* Index of database containing pTab */
979   u8 needTableCnt = 1;         /* True to count the table */
980   int regNewRowid = iMem++;    /* Rowid for the inserted record */
981   int regStat = iMem++;        /* Register to hold StatAccum object */
982   int regChng = iMem++;        /* Index of changed index field */
983   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
984   int regTemp = iMem++;        /* Temporary use register */
985   int regTemp2 = iMem++;       /* Second temporary use register */
986   int regTabname = iMem++;     /* Register containing table name */
987   int regIdxname = iMem++;     /* Register containing index name */
988   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
989   int regPrev = iMem;          /* MUST BE LAST (see below) */
990 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
991   Table *pStat1 = 0;
992 #endif
993 
994   pParse->nMem = MAX(pParse->nMem, iMem);
995   v = sqlite3GetVdbe(pParse);
996   if( v==0 || NEVER(pTab==0) ){
997     return;
998   }
999   if( !IsOrdinaryTable(pTab) ){
1000     /* Do not gather statistics on views or virtual tables */
1001     return;
1002   }
1003   if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
1004     /* Do not gather statistics on system tables */
1005     return;
1006   }
1007   assert( sqlite3BtreeHoldsAllMutexes(db) );
1008   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1009   assert( iDb>=0 );
1010   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1011 #ifndef SQLITE_OMIT_AUTHORIZATION
1012   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1013       db->aDb[iDb].zDbSName ) ){
1014     return;
1015   }
1016 #endif
1017 
1018 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1019   if( db->xPreUpdateCallback ){
1020     pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
1021     if( pStat1==0 ) return;
1022     pStat1->zName = (char*)&pStat1[1];
1023     memcpy(pStat1->zName, "sqlite_stat1", 13);
1024     pStat1->nCol = 3;
1025     pStat1->iPKey = -1;
1026     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB);
1027   }
1028 #endif
1029 
1030   /* Establish a read-lock on the table at the shared-cache level.
1031   ** Open a read-only cursor on the table. Also allocate a cursor number
1032   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1033   ** this time though.  */
1034   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1035   iTabCur = iTab++;
1036   iIdxCur = iTab++;
1037   pParse->nTab = MAX(pParse->nTab, iTab);
1038   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1039   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1040 
1041   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1042     int nCol;                     /* Number of columns in pIdx. "N" */
1043     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1044     int addrNextRow;              /* Address of "next_row:" */
1045     const char *zIdxName;         /* Name of the index */
1046     int nColTest;                 /* Number of columns to test for changes */
1047 
1048     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1049     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1050     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1051       nCol = pIdx->nKeyCol;
1052       zIdxName = pTab->zName;
1053       nColTest = nCol - 1;
1054     }else{
1055       nCol = pIdx->nColumn;
1056       zIdxName = pIdx->zName;
1057       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1058     }
1059 
1060     /* Populate the register containing the index name. */
1061     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1062     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1063 
1064     /*
1065     ** Pseudo-code for loop that calls stat_push():
1066     **
1067     **   Rewind csr
1068     **   if eof(csr) goto end_of_scan;
1069     **   regChng = 0
1070     **   goto chng_addr_0;
1071     **
1072     **  next_row:
1073     **   regChng = 0
1074     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1075     **   regChng = 1
1076     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1077     **   ...
1078     **   regChng = N
1079     **   goto chng_addr_N
1080     **
1081     **  chng_addr_0:
1082     **   regPrev(0) = idx(0)
1083     **  chng_addr_1:
1084     **   regPrev(1) = idx(1)
1085     **  ...
1086     **
1087     **  endDistinctTest:
1088     **   regRowid = idx(rowid)
1089     **   stat_push(P, regChng, regRowid)
1090     **   Next csr
1091     **   if !eof(csr) goto next_row;
1092     **
1093     **  end_of_scan:
1094     */
1095 
1096     /* Make sure there are enough memory cells allocated to accommodate
1097     ** the regPrev array and a trailing rowid (the rowid slot is required
1098     ** when building a record to insert into the sample column of
1099     ** the sqlite_stat4 table.  */
1100     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1101 
1102     /* Open a read-only cursor on the index being analyzed. */
1103     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1104     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1105     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1106     VdbeComment((v, "%s", pIdx->zName));
1107 
1108     /* Invoke the stat_init() function. The arguments are:
1109     **
1110     **    (1) the number of columns in the index including the rowid
1111     **        (or for a WITHOUT ROWID table, the number of PK columns),
1112     **    (2) the number of columns in the key without the rowid/pk
1113     **    (3) estimated number of rows in the index,
1114     */
1115     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
1116     assert( regRowid==regStat+2 );
1117     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
1118 #ifdef SQLITE_ENABLE_STAT4
1119     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1120       sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
1121       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1122       VdbeCoverage(v);
1123     }else
1124 #endif
1125     {
1126       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1127       VdbeCoverage(v);
1128       sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
1129     }
1130     assert( regTemp2==regStat+4 );
1131     sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
1132     sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
1133                                &statInitFuncdef, 0);
1134 
1135     /* Implementation of the following:
1136     **
1137     **   Rewind csr
1138     **   if eof(csr) goto end_of_scan;
1139     **   regChng = 0
1140     **   goto next_push_0;
1141     **
1142     */
1143     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1144     addrNextRow = sqlite3VdbeCurrentAddr(v);
1145 
1146     if( nColTest>0 ){
1147       int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
1148       int *aGotoChng;               /* Array of jump instruction addresses */
1149       aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1150       if( aGotoChng==0 ) continue;
1151 
1152       /*
1153       **  next_row:
1154       **   regChng = 0
1155       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1156       **   regChng = 1
1157       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1158       **   ...
1159       **   regChng = N
1160       **   goto endDistinctTest
1161       */
1162       sqlite3VdbeAddOp0(v, OP_Goto);
1163       addrNextRow = sqlite3VdbeCurrentAddr(v);
1164       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1165         /* For a single-column UNIQUE index, once we have found a non-NULL
1166         ** row, we know that all the rest will be distinct, so skip
1167         ** subsequent distinctness tests. */
1168         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1169         VdbeCoverage(v);
1170       }
1171       for(i=0; i<nColTest; i++){
1172         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1173         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1174         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1175         analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1176         aGotoChng[i] =
1177         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1178         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1179         VdbeCoverage(v);
1180       }
1181       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1182       sqlite3VdbeGoto(v, endDistinctTest);
1183 
1184 
1185       /*
1186       **  chng_addr_0:
1187       **   regPrev(0) = idx(0)
1188       **  chng_addr_1:
1189       **   regPrev(1) = idx(1)
1190       **  ...
1191       */
1192       sqlite3VdbeJumpHere(v, addrNextRow-1);
1193       for(i=0; i<nColTest; i++){
1194         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1195         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1196         analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1197       }
1198       sqlite3VdbeResolveLabel(v, endDistinctTest);
1199       sqlite3DbFree(db, aGotoChng);
1200     }
1201 
1202     /*
1203     **  chng_addr_N:
1204     **   regRowid = idx(rowid)            // STAT4 only
1205     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT4 only
1206     **   Next csr
1207     **   if !eof(csr) goto next_row;
1208     */
1209 #ifdef SQLITE_ENABLE_STAT4
1210     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1211       assert( regRowid==(regStat+2) );
1212       if( HasRowid(pTab) ){
1213         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1214       }else{
1215         Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1216         int j, k, regKey;
1217         regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1218         for(j=0; j<pPk->nKeyCol; j++){
1219           k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1220           assert( k>=0 && k<pIdx->nColumn );
1221           sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1222           analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
1223         }
1224         sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1225         sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1226       }
1227     }
1228 #endif
1229     assert( regChng==(regStat+1) );
1230     {
1231       sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
1232                                  &statPushFuncdef, 0);
1233       if( db->nAnalysisLimit ){
1234         int j1, j2, j3;
1235         j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
1236         j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
1237         j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
1238         VdbeCoverage(v);
1239         sqlite3VdbeJumpHere(v, j1);
1240         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1241         sqlite3VdbeJumpHere(v, j2);
1242         sqlite3VdbeJumpHere(v, j3);
1243       }else{
1244         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1245       }
1246     }
1247 
1248     /* Add the entry to the stat1 table. */
1249     callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
1250     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1251     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1252     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1253     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1254 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1255     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1256 #endif
1257     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1258 
1259     /* Add the entries to the stat4 table. */
1260 #ifdef SQLITE_ENABLE_STAT4
1261     if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
1262       int regEq = regStat1;
1263       int regLt = regStat1+1;
1264       int regDLt = regStat1+2;
1265       int regSample = regStat1+3;
1266       int regCol = regStat1+4;
1267       int regSampleRowid = regCol + nCol;
1268       int addrNext;
1269       int addrIsNull;
1270       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1271 
1272       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1273 
1274       addrNext = sqlite3VdbeCurrentAddr(v);
1275       callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
1276       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1277       VdbeCoverage(v);
1278       callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
1279       callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
1280       callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
1281       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1282       VdbeCoverage(v);
1283       for(i=0; i<nCol; i++){
1284         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1285       }
1286       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1287       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1288       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1289       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1290       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1291       sqlite3VdbeJumpHere(v, addrIsNull);
1292     }
1293 #endif /* SQLITE_ENABLE_STAT4 */
1294 
1295     /* End of analysis */
1296     sqlite3VdbeJumpHere(v, addrRewind);
1297   }
1298 
1299 
1300   /* Create a single sqlite_stat1 entry containing NULL as the index
1301   ** name and the row count as the content.
1302   */
1303   if( pOnlyIdx==0 && needTableCnt ){
1304     VdbeComment((v, "%s", pTab->zName));
1305     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1306     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1307     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1308     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1309     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1310     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1311     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1312     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1313 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1314     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1315 #endif
1316     sqlite3VdbeJumpHere(v, jZeroRows);
1317   }
1318 }
1319 
1320 
1321 /*
1322 ** Generate code that will cause the most recent index analysis to
1323 ** be loaded into internal hash tables where is can be used.
1324 */
1325 static void loadAnalysis(Parse *pParse, int iDb){
1326   Vdbe *v = sqlite3GetVdbe(pParse);
1327   if( v ){
1328     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1329   }
1330 }
1331 
1332 /*
1333 ** Generate code that will do an analysis of an entire database
1334 */
1335 static void analyzeDatabase(Parse *pParse, int iDb){
1336   sqlite3 *db = pParse->db;
1337   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1338   HashElem *k;
1339   int iStatCur;
1340   int iMem;
1341   int iTab;
1342 
1343   sqlite3BeginWriteOperation(pParse, 0, iDb);
1344   iStatCur = pParse->nTab;
1345   pParse->nTab += 3;
1346   openStatTable(pParse, iDb, iStatCur, 0, 0);
1347   iMem = pParse->nMem+1;
1348   iTab = pParse->nTab;
1349   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1350   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1351     Table *pTab = (Table*)sqliteHashData(k);
1352     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1353   }
1354   loadAnalysis(pParse, iDb);
1355 }
1356 
1357 /*
1358 ** Generate code that will do an analysis of a single table in
1359 ** a database.  If pOnlyIdx is not NULL then it is a single index
1360 ** in pTab that should be analyzed.
1361 */
1362 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1363   int iDb;
1364   int iStatCur;
1365 
1366   assert( pTab!=0 );
1367   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1368   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1369   sqlite3BeginWriteOperation(pParse, 0, iDb);
1370   iStatCur = pParse->nTab;
1371   pParse->nTab += 3;
1372   if( pOnlyIdx ){
1373     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1374   }else{
1375     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1376   }
1377   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1378   loadAnalysis(pParse, iDb);
1379 }
1380 
1381 /*
1382 ** Generate code for the ANALYZE command.  The parser calls this routine
1383 ** when it recognizes an ANALYZE command.
1384 **
1385 **        ANALYZE                            -- 1
1386 **        ANALYZE  <database>                -- 2
1387 **        ANALYZE  ?<database>.?<tablename>  -- 3
1388 **
1389 ** Form 1 causes all indices in all attached databases to be analyzed.
1390 ** Form 2 analyzes all indices the single database named.
1391 ** Form 3 analyzes all indices associated with the named table.
1392 */
1393 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1394   sqlite3 *db = pParse->db;
1395   int iDb;
1396   int i;
1397   char *z, *zDb;
1398   Table *pTab;
1399   Index *pIdx;
1400   Token *pTableName;
1401   Vdbe *v;
1402 
1403   /* Read the database schema. If an error occurs, leave an error message
1404   ** and code in pParse and return NULL. */
1405   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1406   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1407     return;
1408   }
1409 
1410   assert( pName2!=0 || pName1==0 );
1411   if( pName1==0 ){
1412     /* Form 1:  Analyze everything */
1413     for(i=0; i<db->nDb; i++){
1414       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1415       analyzeDatabase(pParse, i);
1416     }
1417   }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1418     /* Analyze the schema named as the argument */
1419     analyzeDatabase(pParse, iDb);
1420   }else{
1421     /* Form 3: Analyze the table or index named as an argument */
1422     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1423     if( iDb>=0 ){
1424       zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1425       z = sqlite3NameFromToken(db, pTableName);
1426       if( z ){
1427         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1428           analyzeTable(pParse, pIdx->pTable, pIdx);
1429         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1430           analyzeTable(pParse, pTab, 0);
1431         }
1432         sqlite3DbFree(db, z);
1433       }
1434     }
1435   }
1436   if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1437     sqlite3VdbeAddOp0(v, OP_Expire);
1438   }
1439 }
1440 
1441 /*
1442 ** Used to pass information from the analyzer reader through to the
1443 ** callback routine.
1444 */
1445 typedef struct analysisInfo analysisInfo;
1446 struct analysisInfo {
1447   sqlite3 *db;
1448   const char *zDatabase;
1449 };
1450 
1451 /*
1452 ** The first argument points to a nul-terminated string containing a
1453 ** list of space separated integers. Read the first nOut of these into
1454 ** the array aOut[].
1455 */
1456 static void decodeIntArray(
1457   char *zIntArray,       /* String containing int array to decode */
1458   int nOut,              /* Number of slots in aOut[] */
1459   tRowcnt *aOut,         /* Store integers here */
1460   LogEst *aLog,          /* Or, if aOut==0, here */
1461   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1462 ){
1463   char *z = zIntArray;
1464   int c;
1465   int i;
1466   tRowcnt v;
1467 
1468 #ifdef SQLITE_ENABLE_STAT4
1469   if( z==0 ) z = "";
1470 #else
1471   assert( z!=0 );
1472 #endif
1473   for(i=0; *z && i<nOut; i++){
1474     v = 0;
1475     while( (c=z[0])>='0' && c<='9' ){
1476       v = v*10 + c - '0';
1477       z++;
1478     }
1479 #ifdef SQLITE_ENABLE_STAT4
1480     if( aOut ) aOut[i] = v;
1481     if( aLog ) aLog[i] = sqlite3LogEst(v);
1482 #else
1483     assert( aOut==0 );
1484     UNUSED_PARAMETER(aOut);
1485     assert( aLog!=0 );
1486     aLog[i] = sqlite3LogEst(v);
1487 #endif
1488     if( *z==' ' ) z++;
1489   }
1490 #ifndef SQLITE_ENABLE_STAT4
1491   assert( pIndex!=0 ); {
1492 #else
1493   if( pIndex ){
1494 #endif
1495     pIndex->bUnordered = 0;
1496     pIndex->noSkipScan = 0;
1497     while( z[0] ){
1498       if( sqlite3_strglob("unordered*", z)==0 ){
1499         pIndex->bUnordered = 1;
1500       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1501         int sz = sqlite3Atoi(z+3);
1502         if( sz<2 ) sz = 2;
1503         pIndex->szIdxRow = sqlite3LogEst(sz);
1504       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1505         pIndex->noSkipScan = 1;
1506       }
1507 #ifdef SQLITE_ENABLE_COSTMULT
1508       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1509         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1510       }
1511 #endif
1512       while( z[0]!=0 && z[0]!=' ' ) z++;
1513       while( z[0]==' ' ) z++;
1514     }
1515   }
1516 }
1517 
1518 /*
1519 ** This callback is invoked once for each index when reading the
1520 ** sqlite_stat1 table.
1521 **
1522 **     argv[0] = name of the table
1523 **     argv[1] = name of the index (might be NULL)
1524 **     argv[2] = results of analysis - on integer for each column
1525 **
1526 ** Entries for which argv[1]==NULL simply record the number of rows in
1527 ** the table.
1528 */
1529 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1530   analysisInfo *pInfo = (analysisInfo*)pData;
1531   Index *pIndex;
1532   Table *pTable;
1533   const char *z;
1534 
1535   assert( argc==3 );
1536   UNUSED_PARAMETER2(NotUsed, argc);
1537 
1538   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1539     return 0;
1540   }
1541   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1542   if( pTable==0 ){
1543     return 0;
1544   }
1545   if( argv[1]==0 ){
1546     pIndex = 0;
1547   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1548     pIndex = sqlite3PrimaryKeyIndex(pTable);
1549   }else{
1550     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1551   }
1552   z = argv[2];
1553 
1554   if( pIndex ){
1555     tRowcnt *aiRowEst = 0;
1556     int nCol = pIndex->nKeyCol+1;
1557 #ifdef SQLITE_ENABLE_STAT4
1558     /* Index.aiRowEst may already be set here if there are duplicate
1559     ** sqlite_stat1 entries for this index. In that case just clobber
1560     ** the old data with the new instead of allocating a new array.  */
1561     if( pIndex->aiRowEst==0 ){
1562       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1563       if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1564     }
1565     aiRowEst = pIndex->aiRowEst;
1566 #endif
1567     pIndex->bUnordered = 0;
1568     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1569     pIndex->hasStat1 = 1;
1570     if( pIndex->pPartIdxWhere==0 ){
1571       pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1572       pTable->tabFlags |= TF_HasStat1;
1573     }
1574   }else{
1575     Index fakeIdx;
1576     fakeIdx.szIdxRow = pTable->szTabRow;
1577 #ifdef SQLITE_ENABLE_COSTMULT
1578     fakeIdx.pTable = pTable;
1579 #endif
1580     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1581     pTable->szTabRow = fakeIdx.szIdxRow;
1582     pTable->tabFlags |= TF_HasStat1;
1583   }
1584 
1585   return 0;
1586 }
1587 
1588 /*
1589 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1590 ** and its contents.
1591 */
1592 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1593 #ifdef SQLITE_ENABLE_STAT4
1594   if( pIdx->aSample ){
1595     int j;
1596     for(j=0; j<pIdx->nSample; j++){
1597       IndexSample *p = &pIdx->aSample[j];
1598       sqlite3DbFree(db, p->p);
1599     }
1600     sqlite3DbFree(db, pIdx->aSample);
1601   }
1602   if( db && db->pnBytesFreed==0 ){
1603     pIdx->nSample = 0;
1604     pIdx->aSample = 0;
1605   }
1606 #else
1607   UNUSED_PARAMETER(db);
1608   UNUSED_PARAMETER(pIdx);
1609 #endif /* SQLITE_ENABLE_STAT4 */
1610 }
1611 
1612 #ifdef SQLITE_ENABLE_STAT4
1613 /*
1614 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1615 ** stored in pIdx->aSample[].
1616 */
1617 static void initAvgEq(Index *pIdx){
1618   if( pIdx ){
1619     IndexSample *aSample = pIdx->aSample;
1620     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1621     int iCol;
1622     int nCol = 1;
1623     if( pIdx->nSampleCol>1 ){
1624       /* If this is stat4 data, then calculate aAvgEq[] values for all
1625       ** sample columns except the last. The last is always set to 1, as
1626       ** once the trailing PK fields are considered all index keys are
1627       ** unique.  */
1628       nCol = pIdx->nSampleCol-1;
1629       pIdx->aAvgEq[nCol] = 1;
1630     }
1631     for(iCol=0; iCol<nCol; iCol++){
1632       int nSample = pIdx->nSample;
1633       int i;                    /* Used to iterate through samples */
1634       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1635       tRowcnt avgEq = 0;
1636       tRowcnt nRow;             /* Number of rows in index */
1637       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1638       i64 nDist100;             /* Number of distinct values in index */
1639 
1640       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1641         nRow = pFinal->anLt[iCol];
1642         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1643         nSample--;
1644       }else{
1645         nRow = pIdx->aiRowEst[0];
1646         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1647       }
1648       pIdx->nRowEst0 = nRow;
1649 
1650       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1651       ** occur in the stat4 table for this index. Set sumEq to the sum of
1652       ** the nEq values for column iCol for the same set (adding the value
1653       ** only once where there exist duplicate prefixes).  */
1654       for(i=0; i<nSample; i++){
1655         if( i==(pIdx->nSample-1)
1656          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1657         ){
1658           sumEq += aSample[i].anEq[iCol];
1659           nSum100 += 100;
1660         }
1661       }
1662 
1663       if( nDist100>nSum100 && sumEq<nRow ){
1664         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1665       }
1666       if( avgEq==0 ) avgEq = 1;
1667       pIdx->aAvgEq[iCol] = avgEq;
1668     }
1669   }
1670 }
1671 
1672 /*
1673 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1674 ** is supplied instead, find the PRIMARY KEY index for that table.
1675 */
1676 static Index *findIndexOrPrimaryKey(
1677   sqlite3 *db,
1678   const char *zName,
1679   const char *zDb
1680 ){
1681   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1682   if( pIdx==0 ){
1683     Table *pTab = sqlite3FindTable(db, zName, zDb);
1684     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1685   }
1686   return pIdx;
1687 }
1688 
1689 /*
1690 ** Load the content from either the sqlite_stat4
1691 ** into the relevant Index.aSample[] arrays.
1692 **
1693 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1694 ** data equivalent to the following:
1695 **
1696 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1697 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1698 **
1699 ** where %Q is replaced with the database name before the SQL is executed.
1700 */
1701 static int loadStatTbl(
1702   sqlite3 *db,                  /* Database handle */
1703   const char *zSql1,            /* SQL statement 1 (see above) */
1704   const char *zSql2,            /* SQL statement 2 (see above) */
1705   const char *zDb               /* Database name (e.g. "main") */
1706 ){
1707   int rc;                       /* Result codes from subroutines */
1708   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1709   char *zSql;                   /* Text of the SQL statement */
1710   Index *pPrevIdx = 0;          /* Previous index in the loop */
1711   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1712 
1713   assert( db->lookaside.bDisable );
1714   zSql = sqlite3MPrintf(db, zSql1, zDb);
1715   if( !zSql ){
1716     return SQLITE_NOMEM_BKPT;
1717   }
1718   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1719   sqlite3DbFree(db, zSql);
1720   if( rc ) return rc;
1721 
1722   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1723     int nIdxCol = 1;              /* Number of columns in stat4 records */
1724 
1725     char *zIndex;   /* Index name */
1726     Index *pIdx;    /* Pointer to the index object */
1727     int nSample;    /* Number of samples */
1728     int nByte;      /* Bytes of space required */
1729     int i;          /* Bytes of space required */
1730     tRowcnt *pSpace;
1731 
1732     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1733     if( zIndex==0 ) continue;
1734     nSample = sqlite3_column_int(pStmt, 1);
1735     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1736     assert( pIdx==0 || pIdx->nSample==0 );
1737     if( pIdx==0 ) continue;
1738     assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1739     if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1740       nIdxCol = pIdx->nKeyCol;
1741     }else{
1742       nIdxCol = pIdx->nColumn;
1743     }
1744     pIdx->nSampleCol = nIdxCol;
1745     nByte = sizeof(IndexSample) * nSample;
1746     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1747     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1748 
1749     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1750     if( pIdx->aSample==0 ){
1751       sqlite3_finalize(pStmt);
1752       return SQLITE_NOMEM_BKPT;
1753     }
1754     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1755     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1756     pIdx->pTable->tabFlags |= TF_HasStat4;
1757     for(i=0; i<nSample; i++){
1758       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1759       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1760       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1761     }
1762     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1763   }
1764   rc = sqlite3_finalize(pStmt);
1765   if( rc ) return rc;
1766 
1767   zSql = sqlite3MPrintf(db, zSql2, zDb);
1768   if( !zSql ){
1769     return SQLITE_NOMEM_BKPT;
1770   }
1771   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1772   sqlite3DbFree(db, zSql);
1773   if( rc ) return rc;
1774 
1775   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1776     char *zIndex;                 /* Index name */
1777     Index *pIdx;                  /* Pointer to the index object */
1778     int nCol = 1;                 /* Number of columns in index */
1779 
1780     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1781     if( zIndex==0 ) continue;
1782     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1783     if( pIdx==0 ) continue;
1784     /* This next condition is true if data has already been loaded from
1785     ** the sqlite_stat4 table. */
1786     nCol = pIdx->nSampleCol;
1787     if( pIdx!=pPrevIdx ){
1788       initAvgEq(pPrevIdx);
1789       pPrevIdx = pIdx;
1790     }
1791     pSample = &pIdx->aSample[pIdx->nSample];
1792     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1793     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1794     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1795 
1796     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1797     ** This is in case the sample record is corrupted. In that case, the
1798     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1799     ** end of the allocated buffer before it realizes it is dealing with
1800     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1801     ** a buffer overread.  */
1802     pSample->n = sqlite3_column_bytes(pStmt, 4);
1803     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1804     if( pSample->p==0 ){
1805       sqlite3_finalize(pStmt);
1806       return SQLITE_NOMEM_BKPT;
1807     }
1808     if( pSample->n ){
1809       memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1810     }
1811     pIdx->nSample++;
1812   }
1813   rc = sqlite3_finalize(pStmt);
1814   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1815   return rc;
1816 }
1817 
1818 /*
1819 ** Load content from the sqlite_stat4 table into
1820 ** the Index.aSample[] arrays of all indices.
1821 */
1822 static int loadStat4(sqlite3 *db, const char *zDb){
1823   int rc = SQLITE_OK;             /* Result codes from subroutines */
1824   const Table *pStat4;
1825 
1826   assert( db->lookaside.bDisable );
1827   if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
1828    && IsOrdinaryTable(pStat4)
1829   ){
1830     rc = loadStatTbl(db,
1831       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1832       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1833       zDb
1834     );
1835   }
1836   return rc;
1837 }
1838 #endif /* SQLITE_ENABLE_STAT4 */
1839 
1840 /*
1841 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1842 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1843 ** arrays. The contents of sqlite_stat4 are used to populate the
1844 ** Index.aSample[] arrays.
1845 **
1846 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1847 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1848 ** during compilation and the sqlite_stat4 table is present, no data is
1849 ** read from it.
1850 **
1851 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1852 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1853 ** returned. However, in this case, data is read from the sqlite_stat1
1854 ** table (if it is present) before returning.
1855 **
1856 ** If an OOM error occurs, this function always sets db->mallocFailed.
1857 ** This means if the caller does not care about other errors, the return
1858 ** code may be ignored.
1859 */
1860 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1861   analysisInfo sInfo;
1862   HashElem *i;
1863   char *zSql;
1864   int rc = SQLITE_OK;
1865   Schema *pSchema = db->aDb[iDb].pSchema;
1866   const Table *pStat1;
1867 
1868   assert( iDb>=0 && iDb<db->nDb );
1869   assert( db->aDb[iDb].pBt!=0 );
1870 
1871   /* Clear any prior statistics */
1872   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1873   for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1874     Table *pTab = sqliteHashData(i);
1875     pTab->tabFlags &= ~TF_HasStat1;
1876   }
1877   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1878     Index *pIdx = sqliteHashData(i);
1879     pIdx->hasStat1 = 0;
1880 #ifdef SQLITE_ENABLE_STAT4
1881     sqlite3DeleteIndexSamples(db, pIdx);
1882     pIdx->aSample = 0;
1883 #endif
1884   }
1885 
1886   /* Load new statistics out of the sqlite_stat1 table */
1887   sInfo.db = db;
1888   sInfo.zDatabase = db->aDb[iDb].zDbSName;
1889   if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
1890    && IsOrdinaryTable(pStat1)
1891   ){
1892     zSql = sqlite3MPrintf(db,
1893         "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1894     if( zSql==0 ){
1895       rc = SQLITE_NOMEM_BKPT;
1896     }else{
1897       rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1898       sqlite3DbFree(db, zSql);
1899     }
1900   }
1901 
1902   /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1903   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1904   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1905     Index *pIdx = sqliteHashData(i);
1906     if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1907   }
1908 
1909   /* Load the statistics from the sqlite_stat4 table. */
1910 #ifdef SQLITE_ENABLE_STAT4
1911   if( rc==SQLITE_OK ){
1912     DisableLookaside;
1913     rc = loadStat4(db, sInfo.zDatabase);
1914     EnableLookaside;
1915   }
1916   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1917     Index *pIdx = sqliteHashData(i);
1918     sqlite3_free(pIdx->aiRowEst);
1919     pIdx->aiRowEst = 0;
1920   }
1921 #endif
1922 
1923   if( rc==SQLITE_NOMEM ){
1924     sqlite3OomFault(db);
1925   }
1926   return rc;
1927 }
1928 
1929 
1930 #endif /* SQLITE_OMIT_ANALYZE */
1931