1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2 and is also now deprecated. The 33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite 35 ** versions 3.8.1 and later. STAT4 is the only variant that is still 36 ** supported. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 #else 148 # define IsStat4 0 149 # undef SQLITE_STAT4_SAMPLES 150 # define SQLITE_STAT4_SAMPLES 1 151 #endif 152 153 /* 154 ** This routine generates code that opens the sqlite_statN tables. 155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 157 ** appropriate compile-time options are provided. 158 ** 159 ** If the sqlite_statN tables do not previously exist, it is created. 160 ** 161 ** Argument zWhere may be a pointer to a buffer containing a table name, 162 ** or it may be a NULL pointer. If it is not NULL, then all entries in 163 ** the sqlite_statN tables associated with the named table are deleted. 164 ** If zWhere==0, then code is generated to delete all stat table entries. 165 */ 166 static void openStatTable( 167 Parse *pParse, /* Parsing context */ 168 int iDb, /* The database we are looking in */ 169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 170 const char *zWhere, /* Delete entries for this table or index */ 171 const char *zWhereType /* Either "tbl" or "idx" */ 172 ){ 173 static const struct { 174 const char *zName; 175 const char *zCols; 176 } aTable[] = { 177 { "sqlite_stat1", "tbl,idx,stat" }, 178 #if defined(SQLITE_ENABLE_STAT4) 179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 180 #else 181 { "sqlite_stat4", 0 }, 182 #endif 183 { "sqlite_stat3", 0 }, 184 }; 185 int i; 186 sqlite3 *db = pParse->db; 187 Db *pDb; 188 Vdbe *v = sqlite3GetVdbe(pParse); 189 u32 aRoot[ArraySize(aTable)]; 190 u8 aCreateTbl[ArraySize(aTable)]; 191 #ifdef SQLITE_ENABLE_STAT4 192 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1; 193 #else 194 const int nToOpen = 1; 195 #endif 196 197 if( v==0 ) return; 198 assert( sqlite3BtreeHoldsAllMutexes(db) ); 199 assert( sqlite3VdbeDb(v)==db ); 200 pDb = &db->aDb[iDb]; 201 202 /* Create new statistic tables if they do not exist, or clear them 203 ** if they do already exist. 204 */ 205 for(i=0; i<ArraySize(aTable); i++){ 206 const char *zTab = aTable[i].zName; 207 Table *pStat; 208 aCreateTbl[i] = 0; 209 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 210 if( i<nToOpen ){ 211 /* The sqlite_statN table does not exist. Create it. Note that a 212 ** side-effect of the CREATE TABLE statement is to leave the rootpage 213 ** of the new table in register pParse->regRoot. This is important 214 ** because the OpenWrite opcode below will be needing it. */ 215 sqlite3NestedParse(pParse, 216 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 217 ); 218 aRoot[i] = (u32)pParse->regRoot; 219 aCreateTbl[i] = OPFLAG_P2ISREG; 220 } 221 }else{ 222 /* The table already exists. If zWhere is not NULL, delete all entries 223 ** associated with the table zWhere. If zWhere is NULL, delete the 224 ** entire contents of the table. */ 225 aRoot[i] = pStat->tnum; 226 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 227 if( zWhere ){ 228 sqlite3NestedParse(pParse, 229 "DELETE FROM %Q.%s WHERE %s=%Q", 230 pDb->zDbSName, zTab, zWhereType, zWhere 231 ); 232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 233 }else if( db->xPreUpdateCallback ){ 234 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 235 #endif 236 }else{ 237 /* The sqlite_stat[134] table already exists. Delete all rows. */ 238 sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb); 239 } 240 } 241 } 242 243 /* Open the sqlite_stat[134] tables for writing. */ 244 for(i=0; i<nToOpen; i++){ 245 assert( i<ArraySize(aTable) ); 246 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3); 247 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 248 VdbeComment((v, aTable[i].zName)); 249 } 250 } 251 252 /* 253 ** Recommended number of samples for sqlite_stat4 254 */ 255 #ifndef SQLITE_STAT4_SAMPLES 256 # define SQLITE_STAT4_SAMPLES 24 257 #endif 258 259 /* 260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 261 ** share an instance of the following structure to hold their state 262 ** information. 263 */ 264 typedef struct StatAccum StatAccum; 265 typedef struct StatSample StatSample; 266 struct StatSample { 267 tRowcnt *anEq; /* sqlite_stat4.nEq */ 268 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 269 #ifdef SQLITE_ENABLE_STAT4 270 tRowcnt *anLt; /* sqlite_stat4.nLt */ 271 union { 272 i64 iRowid; /* Rowid in main table of the key */ 273 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 274 } u; 275 u32 nRowid; /* Sizeof aRowid[] */ 276 u8 isPSample; /* True if a periodic sample */ 277 int iCol; /* If !isPSample, the reason for inclusion */ 278 u32 iHash; /* Tiebreaker hash */ 279 #endif 280 }; 281 struct StatAccum { 282 sqlite3 *db; /* Database connection, for malloc() */ 283 tRowcnt nEst; /* Estimated number of rows */ 284 tRowcnt nRow; /* Number of rows visited so far */ 285 int nLimit; /* Analysis row-scan limit */ 286 int nCol; /* Number of columns in index + pk/rowid */ 287 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 288 u8 nSkipAhead; /* Number of times of skip-ahead */ 289 StatSample current; /* Current row as a StatSample */ 290 #ifdef SQLITE_ENABLE_STAT4 291 tRowcnt nPSample; /* How often to do a periodic sample */ 292 int mxSample; /* Maximum number of samples to accumulate */ 293 u32 iPrn; /* Pseudo-random number used for sampling */ 294 StatSample *aBest; /* Array of nCol best samples */ 295 int iMin; /* Index in a[] of entry with minimum score */ 296 int nSample; /* Current number of samples */ 297 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 298 int iGet; /* Index of current sample accessed by stat_get() */ 299 StatSample *a; /* Array of mxSample StatSample objects */ 300 #endif 301 }; 302 303 /* Reclaim memory used by a StatSample 304 */ 305 #ifdef SQLITE_ENABLE_STAT4 306 static void sampleClear(sqlite3 *db, StatSample *p){ 307 assert( db!=0 ); 308 if( p->nRowid ){ 309 sqlite3DbFree(db, p->u.aRowid); 310 p->nRowid = 0; 311 } 312 } 313 #endif 314 315 /* Initialize the BLOB value of a ROWID 316 */ 317 #ifdef SQLITE_ENABLE_STAT4 318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ 319 assert( db!=0 ); 320 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 321 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 322 if( p->u.aRowid ){ 323 p->nRowid = n; 324 memcpy(p->u.aRowid, pData, n); 325 }else{ 326 p->nRowid = 0; 327 } 328 } 329 #endif 330 331 /* Initialize the INTEGER value of a ROWID. 332 */ 333 #ifdef SQLITE_ENABLE_STAT4 334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ 335 assert( db!=0 ); 336 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 337 p->nRowid = 0; 338 p->u.iRowid = iRowid; 339 } 340 #endif 341 342 343 /* 344 ** Copy the contents of object (*pFrom) into (*pTo). 345 */ 346 #ifdef SQLITE_ENABLE_STAT4 347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ 348 pTo->isPSample = pFrom->isPSample; 349 pTo->iCol = pFrom->iCol; 350 pTo->iHash = pFrom->iHash; 351 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 352 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 353 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 354 if( pFrom->nRowid ){ 355 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 356 }else{ 357 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 358 } 359 } 360 #endif 361 362 /* 363 ** Reclaim all memory of a StatAccum structure. 364 */ 365 static void statAccumDestructor(void *pOld){ 366 StatAccum *p = (StatAccum*)pOld; 367 #ifdef SQLITE_ENABLE_STAT4 368 if( p->mxSample ){ 369 int i; 370 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 371 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 372 sampleClear(p->db, &p->current); 373 } 374 #endif 375 sqlite3DbFree(p->db, p); 376 } 377 378 /* 379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters 380 ** are: 381 ** N: The number of columns in the index including the rowid/pk (note 1) 382 ** K: The number of columns in the index excluding the rowid/pk. 383 ** C: Estimated number of rows in the index 384 ** L: A limit on the number of rows to scan, or 0 for no-limit 385 ** 386 ** Note 1: In the special case of the covering index that implements a 387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 388 ** total number of columns in the table. 389 ** 390 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 392 ** PRIMARY KEY of the table. The covering index that implements the 393 ** original WITHOUT ROWID table as N==K as a special case. 394 ** 395 ** This routine allocates the StatAccum object in heap memory. The return 396 ** value is a pointer to the StatAccum object. The datatype of the 397 ** return value is BLOB, but it is really just a pointer to the StatAccum 398 ** object. 399 */ 400 static void statInit( 401 sqlite3_context *context, 402 int argc, 403 sqlite3_value **argv 404 ){ 405 StatAccum *p; 406 int nCol; /* Number of columns in index being sampled */ 407 int nKeyCol; /* Number of key columns */ 408 int nColUp; /* nCol rounded up for alignment */ 409 int n; /* Bytes of space to allocate */ 410 sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */ 411 #ifdef SQLITE_ENABLE_STAT4 412 /* Maximum number of samples. 0 if STAT4 data is not collected */ 413 int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0; 414 #endif 415 416 /* Decode the three function arguments */ 417 UNUSED_PARAMETER(argc); 418 nCol = sqlite3_value_int(argv[0]); 419 assert( nCol>0 ); 420 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 421 nKeyCol = sqlite3_value_int(argv[1]); 422 assert( nKeyCol<=nCol ); 423 assert( nKeyCol>0 ); 424 425 /* Allocate the space required for the StatAccum object */ 426 n = sizeof(*p) 427 + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */ 428 + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */ 429 #ifdef SQLITE_ENABLE_STAT4 430 if( mxSample ){ 431 n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ 432 + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ 433 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample); 434 } 435 #endif 436 p = sqlite3DbMallocZero(db, n); 437 if( p==0 ){ 438 sqlite3_result_error_nomem(context); 439 return; 440 } 441 442 p->db = db; 443 p->nEst = sqlite3_value_int64(argv[2]); 444 p->nRow = 0; 445 p->nLimit = sqlite3_value_int64(argv[3]); 446 p->nCol = nCol; 447 p->nKeyCol = nKeyCol; 448 p->nSkipAhead = 0; 449 p->current.anDLt = (tRowcnt*)&p[1]; 450 p->current.anEq = &p->current.anDLt[nColUp]; 451 452 #ifdef SQLITE_ENABLE_STAT4 453 p->mxSample = p->nLimit==0 ? mxSample : 0; 454 if( mxSample ){ 455 u8 *pSpace; /* Allocated space not yet assigned */ 456 int i; /* Used to iterate through p->aSample[] */ 457 458 p->iGet = -1; 459 p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1); 460 p->current.anLt = &p->current.anEq[nColUp]; 461 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 462 463 /* Set up the StatAccum.a[] and aBest[] arrays */ 464 p->a = (struct StatSample*)&p->current.anLt[nColUp]; 465 p->aBest = &p->a[mxSample]; 466 pSpace = (u8*)(&p->a[mxSample+nCol]); 467 for(i=0; i<(mxSample+nCol); i++){ 468 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 469 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 470 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 471 } 472 assert( (pSpace - (u8*)p)==n ); 473 474 for(i=0; i<nCol; i++){ 475 p->aBest[i].iCol = i; 476 } 477 } 478 #endif 479 480 /* Return a pointer to the allocated object to the caller. Note that 481 ** only the pointer (the 2nd parameter) matters. The size of the object 482 ** (given by the 3rd parameter) is never used and can be any positive 483 ** value. */ 484 sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); 485 } 486 static const FuncDef statInitFuncdef = { 487 4, /* nArg */ 488 SQLITE_UTF8, /* funcFlags */ 489 0, /* pUserData */ 490 0, /* pNext */ 491 statInit, /* xSFunc */ 492 0, /* xFinalize */ 493 0, 0, /* xValue, xInverse */ 494 "stat_init", /* zName */ 495 {0} 496 }; 497 498 #ifdef SQLITE_ENABLE_STAT4 499 /* 500 ** pNew and pOld are both candidate non-periodic samples selected for 501 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 502 ** considering only any trailing columns and the sample hash value, this 503 ** function returns true if sample pNew is to be preferred over pOld. 504 ** In other words, if we assume that the cardinalities of the selected 505 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 506 ** 507 ** This function assumes that for each argument sample, the contents of 508 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 509 */ 510 static int sampleIsBetterPost( 511 StatAccum *pAccum, 512 StatSample *pNew, 513 StatSample *pOld 514 ){ 515 int nCol = pAccum->nCol; 516 int i; 517 assert( pNew->iCol==pOld->iCol ); 518 for(i=pNew->iCol+1; i<nCol; i++){ 519 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 520 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 521 } 522 if( pNew->iHash>pOld->iHash ) return 1; 523 return 0; 524 } 525 #endif 526 527 #ifdef SQLITE_ENABLE_STAT4 528 /* 529 ** Return true if pNew is to be preferred over pOld. 530 ** 531 ** This function assumes that for each argument sample, the contents of 532 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 533 */ 534 static int sampleIsBetter( 535 StatAccum *pAccum, 536 StatSample *pNew, 537 StatSample *pOld 538 ){ 539 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 540 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 541 542 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 543 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 544 545 if( (nEqNew>nEqOld) ) return 1; 546 if( nEqNew==nEqOld ){ 547 if( pNew->iCol<pOld->iCol ) return 1; 548 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 549 } 550 return 0; 551 } 552 553 /* 554 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 555 ** remove the least desirable sample from p->a[] to make room. 556 */ 557 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ 558 StatSample *pSample = 0; 559 int i; 560 561 assert( IsStat4 || nEqZero==0 ); 562 563 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 564 ** values in the anEq[] array of any sample in StatAccum.a[]. In 565 ** other words, if nMaxEqZero is n, then it is guaranteed that there 566 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ 567 if( nEqZero>p->nMaxEqZero ){ 568 p->nMaxEqZero = nEqZero; 569 } 570 if( pNew->isPSample==0 ){ 571 StatSample *pUpgrade = 0; 572 assert( pNew->anEq[pNew->iCol]>0 ); 573 574 /* This sample is being added because the prefix that ends in column 575 ** iCol occurs many times in the table. However, if we have already 576 ** added a sample that shares this prefix, there is no need to add 577 ** this one. Instead, upgrade the priority of the highest priority 578 ** existing sample that shares this prefix. */ 579 for(i=p->nSample-1; i>=0; i--){ 580 StatSample *pOld = &p->a[i]; 581 if( pOld->anEq[pNew->iCol]==0 ){ 582 if( pOld->isPSample ) return; 583 assert( pOld->iCol>pNew->iCol ); 584 assert( sampleIsBetter(p, pNew, pOld) ); 585 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 586 pUpgrade = pOld; 587 } 588 } 589 } 590 if( pUpgrade ){ 591 pUpgrade->iCol = pNew->iCol; 592 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 593 goto find_new_min; 594 } 595 } 596 597 /* If necessary, remove sample iMin to make room for the new sample. */ 598 if( p->nSample>=p->mxSample ){ 599 StatSample *pMin = &p->a[p->iMin]; 600 tRowcnt *anEq = pMin->anEq; 601 tRowcnt *anLt = pMin->anLt; 602 tRowcnt *anDLt = pMin->anDLt; 603 sampleClear(p->db, pMin); 604 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 605 pSample = &p->a[p->nSample-1]; 606 pSample->nRowid = 0; 607 pSample->anEq = anEq; 608 pSample->anDLt = anDLt; 609 pSample->anLt = anLt; 610 p->nSample = p->mxSample-1; 611 } 612 613 /* The "rows less-than" for the rowid column must be greater than that 614 ** for the last sample in the p->a[] array. Otherwise, the samples would 615 ** be out of order. */ 616 assert( p->nSample==0 617 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 618 619 /* Insert the new sample */ 620 pSample = &p->a[p->nSample]; 621 sampleCopy(p, pSample, pNew); 622 p->nSample++; 623 624 /* Zero the first nEqZero entries in the anEq[] array. */ 625 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 626 627 find_new_min: 628 if( p->nSample>=p->mxSample ){ 629 int iMin = -1; 630 for(i=0; i<p->mxSample; i++){ 631 if( p->a[i].isPSample ) continue; 632 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 633 iMin = i; 634 } 635 } 636 assert( iMin>=0 ); 637 p->iMin = iMin; 638 } 639 } 640 #endif /* SQLITE_ENABLE_STAT4 */ 641 642 #ifdef SQLITE_ENABLE_STAT4 643 /* 644 ** Field iChng of the index being scanned has changed. So at this point 645 ** p->current contains a sample that reflects the previous row of the 646 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 647 ** correct at this point. 648 */ 649 static void samplePushPrevious(StatAccum *p, int iChng){ 650 int i; 651 652 /* Check if any samples from the aBest[] array should be pushed 653 ** into IndexSample.a[] at this point. */ 654 for(i=(p->nCol-2); i>=iChng; i--){ 655 StatSample *pBest = &p->aBest[i]; 656 pBest->anEq[i] = p->current.anEq[i]; 657 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 658 sampleInsert(p, pBest, i); 659 } 660 } 661 662 /* Check that no sample contains an anEq[] entry with an index of 663 ** p->nMaxEqZero or greater set to zero. */ 664 for(i=p->nSample-1; i>=0; i--){ 665 int j; 666 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 667 } 668 669 /* Update the anEq[] fields of any samples already collected. */ 670 if( iChng<p->nMaxEqZero ){ 671 for(i=p->nSample-1; i>=0; i--){ 672 int j; 673 for(j=iChng; j<p->nCol; j++){ 674 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 675 } 676 } 677 p->nMaxEqZero = iChng; 678 } 679 } 680 #endif /* SQLITE_ENABLE_STAT4 */ 681 682 /* 683 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 684 ** Arguments: 685 ** 686 ** P Pointer to the StatAccum object created by stat_init() 687 ** C Index of left-most column to differ from previous row 688 ** R Rowid for the current row. Might be a key record for 689 ** WITHOUT ROWID tables. 690 ** 691 ** The purpose of this routine is to collect statistical data and/or 692 ** samples from the index being analyzed into the StatAccum object. 693 ** The stat_get() SQL function will be used afterwards to 694 ** retrieve the information gathered. 695 ** 696 ** This SQL function usually returns NULL, but might return an integer 697 ** if it wants the byte-code to do special processing. 698 ** 699 ** The R parameter is only used for STAT4 700 */ 701 static void statPush( 702 sqlite3_context *context, 703 int argc, 704 sqlite3_value **argv 705 ){ 706 int i; 707 708 /* The three function arguments */ 709 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 710 int iChng = sqlite3_value_int(argv[1]); 711 712 UNUSED_PARAMETER( argc ); 713 UNUSED_PARAMETER( context ); 714 assert( p->nCol>0 ); 715 assert( iChng<p->nCol ); 716 717 if( p->nRow==0 ){ 718 /* This is the first call to this function. Do initialization. */ 719 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 720 }else{ 721 /* Second and subsequent calls get processed here */ 722 #ifdef SQLITE_ENABLE_STAT4 723 if( p->mxSample ) samplePushPrevious(p, iChng); 724 #endif 725 726 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 727 ** to the current row of the index. */ 728 for(i=0; i<iChng; i++){ 729 p->current.anEq[i]++; 730 } 731 for(i=iChng; i<p->nCol; i++){ 732 p->current.anDLt[i]++; 733 #ifdef SQLITE_ENABLE_STAT4 734 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i]; 735 #endif 736 p->current.anEq[i] = 1; 737 } 738 } 739 740 p->nRow++; 741 #ifdef SQLITE_ENABLE_STAT4 742 if( p->mxSample ){ 743 tRowcnt nLt; 744 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 745 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 746 }else{ 747 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 748 sqlite3_value_blob(argv[2])); 749 } 750 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 751 752 nLt = p->current.anLt[p->nCol-1]; 753 /* Check if this is to be a periodic sample. If so, add it. */ 754 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 755 p->current.isPSample = 1; 756 p->current.iCol = 0; 757 sampleInsert(p, &p->current, p->nCol-1); 758 p->current.isPSample = 0; 759 } 760 761 /* Update the aBest[] array. */ 762 for(i=0; i<(p->nCol-1); i++){ 763 p->current.iCol = i; 764 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 765 sampleCopy(p, &p->aBest[i], &p->current); 766 } 767 } 768 }else 769 #endif 770 if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){ 771 p->nSkipAhead++; 772 sqlite3_result_int(context, p->current.anDLt[0]>0); 773 } 774 } 775 776 static const FuncDef statPushFuncdef = { 777 2+IsStat4, /* nArg */ 778 SQLITE_UTF8, /* funcFlags */ 779 0, /* pUserData */ 780 0, /* pNext */ 781 statPush, /* xSFunc */ 782 0, /* xFinalize */ 783 0, 0, /* xValue, xInverse */ 784 "stat_push", /* zName */ 785 {0} 786 }; 787 788 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 789 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 790 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 791 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 792 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 793 794 /* 795 ** Implementation of the stat_get(P,J) SQL function. This routine is 796 ** used to query statistical information that has been gathered into 797 ** the StatAccum object by prior calls to stat_push(). The P parameter 798 ** has type BLOB but it is really just a pointer to the StatAccum object. 799 ** The content to returned is determined by the parameter J 800 ** which is one of the STAT_GET_xxxx values defined above. 801 ** 802 ** The stat_get(P,J) function is not available to generic SQL. It is 803 ** inserted as part of a manually constructed bytecode program. (See 804 ** the callStatGet() routine below.) It is guaranteed that the P 805 ** parameter will always be a pointer to a StatAccum object, never a 806 ** NULL. 807 ** 808 ** If STAT4 is not enabled, then J is always 809 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 810 ** a one-parameter function, stat_get(P), that always returns the 811 ** stat1 table entry information. 812 */ 813 static void statGet( 814 sqlite3_context *context, 815 int argc, 816 sqlite3_value **argv 817 ){ 818 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 819 #ifdef SQLITE_ENABLE_STAT4 820 /* STAT4 has a parameter on this routine. */ 821 int eCall = sqlite3_value_int(argv[1]); 822 assert( argc==2 ); 823 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 824 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 825 || eCall==STAT_GET_NDLT 826 ); 827 assert( eCall==STAT_GET_STAT1 || p->mxSample ); 828 if( eCall==STAT_GET_STAT1 ) 829 #else 830 assert( argc==1 ); 831 #endif 832 { 833 /* Return the value to store in the "stat" column of the sqlite_stat1 834 ** table for this index. 835 ** 836 ** The value is a string composed of a list of integers describing 837 ** the index. The first integer in the list is the total number of 838 ** entries in the index. There is one additional integer in the list 839 ** for each indexed column. This additional integer is an estimate of 840 ** the number of rows matched by a equality query on the index using 841 ** a key with the corresponding number of fields. In other words, 842 ** if the index is on columns (a,b) and the sqlite_stat1 value is 843 ** "100 10 2", then SQLite estimates that: 844 ** 845 ** * the index contains 100 rows, 846 ** * "WHERE a=?" matches 10 rows, and 847 ** * "WHERE a=? AND b=?" matches 2 rows. 848 ** 849 ** If D is the count of distinct values and K is the total number of 850 ** rows, then each estimate is computed as: 851 ** 852 ** I = (K+D-1)/D 853 */ 854 sqlite3_str sStat; /* Text of the constructed "stat" line */ 855 int i; /* Loop counter */ 856 857 sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100); 858 sqlite3_str_appendf(&sStat, "%llu", 859 p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow); 860 for(i=0; i<p->nKeyCol; i++){ 861 u64 nDistinct = p->current.anDLt[i] + 1; 862 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 863 sqlite3_str_appendf(&sStat, " %llu", iVal); 864 assert( p->current.anEq[i] ); 865 } 866 sqlite3ResultStrAccum(context, &sStat); 867 } 868 #ifdef SQLITE_ENABLE_STAT4 869 else if( eCall==STAT_GET_ROWID ){ 870 if( p->iGet<0 ){ 871 samplePushPrevious(p, 0); 872 p->iGet = 0; 873 } 874 if( p->iGet<p->nSample ){ 875 StatSample *pS = p->a + p->iGet; 876 if( pS->nRowid==0 ){ 877 sqlite3_result_int64(context, pS->u.iRowid); 878 }else{ 879 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 880 SQLITE_TRANSIENT); 881 } 882 } 883 }else{ 884 tRowcnt *aCnt = 0; 885 sqlite3_str sStat; 886 int i; 887 888 assert( p->iGet<p->nSample ); 889 switch( eCall ){ 890 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 891 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 892 default: { 893 aCnt = p->a[p->iGet].anDLt; 894 p->iGet++; 895 break; 896 } 897 } 898 sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100); 899 for(i=0; i<p->nCol; i++){ 900 sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]); 901 } 902 if( sStat.nChar ) sStat.nChar--; 903 sqlite3ResultStrAccum(context, &sStat); 904 } 905 #endif /* SQLITE_ENABLE_STAT4 */ 906 #ifndef SQLITE_DEBUG 907 UNUSED_PARAMETER( argc ); 908 #endif 909 } 910 static const FuncDef statGetFuncdef = { 911 1+IsStat4, /* nArg */ 912 SQLITE_UTF8, /* funcFlags */ 913 0, /* pUserData */ 914 0, /* pNext */ 915 statGet, /* xSFunc */ 916 0, /* xFinalize */ 917 0, 0, /* xValue, xInverse */ 918 "stat_get", /* zName */ 919 {0} 920 }; 921 922 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){ 923 #ifdef SQLITE_ENABLE_STAT4 924 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1); 925 #elif SQLITE_DEBUG 926 assert( iParam==STAT_GET_STAT1 ); 927 #else 928 UNUSED_PARAMETER( iParam ); 929 #endif 930 assert( regOut!=regStat && regOut!=regStat+1 ); 931 sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4, 932 &statGetFuncdef, 0); 933 } 934 935 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 936 /* Add a comment to the most recent VDBE opcode that is the name 937 ** of the k-th column of the pIdx index. 938 */ 939 static void analyzeVdbeCommentIndexWithColumnName( 940 Vdbe *v, /* Prepared statement under construction */ 941 Index *pIdx, /* Index whose column is being loaded */ 942 int k /* Which column index */ 943 ){ 944 int i; /* Index of column in the table */ 945 assert( k>=0 && k<pIdx->nColumn ); 946 i = pIdx->aiColumn[k]; 947 if( NEVER(i==XN_ROWID) ){ 948 VdbeComment((v,"%s.rowid",pIdx->zName)); 949 }else if( i==XN_EXPR ){ 950 VdbeComment((v,"%s.expr(%d)",pIdx->zName, k)); 951 }else{ 952 VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName)); 953 } 954 } 955 #else 956 # define analyzeVdbeCommentIndexWithColumnName(a,b,c) 957 #endif /* SQLITE_DEBUG */ 958 959 /* 960 ** Generate code to do an analysis of all indices associated with 961 ** a single table. 962 */ 963 static void analyzeOneTable( 964 Parse *pParse, /* Parser context */ 965 Table *pTab, /* Table whose indices are to be analyzed */ 966 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 967 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 968 int iMem, /* Available memory locations begin here */ 969 int iTab /* Next available cursor */ 970 ){ 971 sqlite3 *db = pParse->db; /* Database handle */ 972 Index *pIdx; /* An index to being analyzed */ 973 int iIdxCur; /* Cursor open on index being analyzed */ 974 int iTabCur; /* Table cursor */ 975 Vdbe *v; /* The virtual machine being built up */ 976 int i; /* Loop counter */ 977 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 978 int iDb; /* Index of database containing pTab */ 979 u8 needTableCnt = 1; /* True to count the table */ 980 int regNewRowid = iMem++; /* Rowid for the inserted record */ 981 int regStat = iMem++; /* Register to hold StatAccum object */ 982 int regChng = iMem++; /* Index of changed index field */ 983 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 984 int regTemp = iMem++; /* Temporary use register */ 985 int regTemp2 = iMem++; /* Second temporary use register */ 986 int regTabname = iMem++; /* Register containing table name */ 987 int regIdxname = iMem++; /* Register containing index name */ 988 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 989 int regPrev = iMem; /* MUST BE LAST (see below) */ 990 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 991 Table *pStat1 = 0; 992 #endif 993 994 pParse->nMem = MAX(pParse->nMem, iMem); 995 v = sqlite3GetVdbe(pParse); 996 if( v==0 || NEVER(pTab==0) ){ 997 return; 998 } 999 if( !IsOrdinaryTable(pTab) ){ 1000 /* Do not gather statistics on views or virtual tables */ 1001 return; 1002 } 1003 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 1004 /* Do not gather statistics on system tables */ 1005 return; 1006 } 1007 assert( sqlite3BtreeHoldsAllMutexes(db) ); 1008 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1009 assert( iDb>=0 ); 1010 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1011 #ifndef SQLITE_OMIT_AUTHORIZATION 1012 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1013 db->aDb[iDb].zDbSName ) ){ 1014 return; 1015 } 1016 #endif 1017 1018 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1019 if( db->xPreUpdateCallback ){ 1020 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 1021 if( pStat1==0 ) return; 1022 pStat1->zName = (char*)&pStat1[1]; 1023 memcpy(pStat1->zName, "sqlite_stat1", 13); 1024 pStat1->nCol = 3; 1025 pStat1->iPKey = -1; 1026 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB); 1027 } 1028 #endif 1029 1030 /* Establish a read-lock on the table at the shared-cache level. 1031 ** Open a read-only cursor on the table. Also allocate a cursor number 1032 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1033 ** this time though. */ 1034 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1035 iTabCur = iTab++; 1036 iIdxCur = iTab++; 1037 pParse->nTab = MAX(pParse->nTab, iTab); 1038 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1039 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1040 1041 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1042 int nCol; /* Number of columns in pIdx. "N" */ 1043 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1044 int addrNextRow; /* Address of "next_row:" */ 1045 const char *zIdxName; /* Name of the index */ 1046 int nColTest; /* Number of columns to test for changes */ 1047 1048 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1049 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1050 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1051 nCol = pIdx->nKeyCol; 1052 zIdxName = pTab->zName; 1053 nColTest = nCol - 1; 1054 }else{ 1055 nCol = pIdx->nColumn; 1056 zIdxName = pIdx->zName; 1057 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1058 } 1059 1060 /* Populate the register containing the index name. */ 1061 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1062 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1063 1064 /* 1065 ** Pseudo-code for loop that calls stat_push(): 1066 ** 1067 ** Rewind csr 1068 ** if eof(csr) goto end_of_scan; 1069 ** regChng = 0 1070 ** goto chng_addr_0; 1071 ** 1072 ** next_row: 1073 ** regChng = 0 1074 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1075 ** regChng = 1 1076 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1077 ** ... 1078 ** regChng = N 1079 ** goto chng_addr_N 1080 ** 1081 ** chng_addr_0: 1082 ** regPrev(0) = idx(0) 1083 ** chng_addr_1: 1084 ** regPrev(1) = idx(1) 1085 ** ... 1086 ** 1087 ** endDistinctTest: 1088 ** regRowid = idx(rowid) 1089 ** stat_push(P, regChng, regRowid) 1090 ** Next csr 1091 ** if !eof(csr) goto next_row; 1092 ** 1093 ** end_of_scan: 1094 */ 1095 1096 /* Make sure there are enough memory cells allocated to accommodate 1097 ** the regPrev array and a trailing rowid (the rowid slot is required 1098 ** when building a record to insert into the sample column of 1099 ** the sqlite_stat4 table. */ 1100 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1101 1102 /* Open a read-only cursor on the index being analyzed. */ 1103 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1104 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1105 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1106 VdbeComment((v, "%s", pIdx->zName)); 1107 1108 /* Invoke the stat_init() function. The arguments are: 1109 ** 1110 ** (1) the number of columns in the index including the rowid 1111 ** (or for a WITHOUT ROWID table, the number of PK columns), 1112 ** (2) the number of columns in the key without the rowid/pk 1113 ** (3) estimated number of rows in the index, 1114 */ 1115 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1); 1116 assert( regRowid==regStat+2 ); 1117 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid); 1118 #ifdef SQLITE_ENABLE_STAT4 1119 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1120 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp); 1121 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1122 VdbeCoverage(v); 1123 }else 1124 #endif 1125 { 1126 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1127 VdbeCoverage(v); 1128 sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1); 1129 } 1130 assert( regTemp2==regStat+4 ); 1131 sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2); 1132 sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4, 1133 &statInitFuncdef, 0); 1134 1135 /* Implementation of the following: 1136 ** 1137 ** Rewind csr 1138 ** if eof(csr) goto end_of_scan; 1139 ** regChng = 0 1140 ** goto next_push_0; 1141 ** 1142 */ 1143 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1144 addrNextRow = sqlite3VdbeCurrentAddr(v); 1145 1146 if( nColTest>0 ){ 1147 int endDistinctTest = sqlite3VdbeMakeLabel(pParse); 1148 int *aGotoChng; /* Array of jump instruction addresses */ 1149 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1150 if( aGotoChng==0 ) continue; 1151 1152 /* 1153 ** next_row: 1154 ** regChng = 0 1155 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1156 ** regChng = 1 1157 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1158 ** ... 1159 ** regChng = N 1160 ** goto endDistinctTest 1161 */ 1162 sqlite3VdbeAddOp0(v, OP_Goto); 1163 addrNextRow = sqlite3VdbeCurrentAddr(v); 1164 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1165 /* For a single-column UNIQUE index, once we have found a non-NULL 1166 ** row, we know that all the rest will be distinct, so skip 1167 ** subsequent distinctness tests. */ 1168 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1169 VdbeCoverage(v); 1170 } 1171 for(i=0; i<nColTest; i++){ 1172 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1173 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1174 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1175 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1176 aGotoChng[i] = 1177 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1178 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1179 VdbeCoverage(v); 1180 } 1181 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1182 sqlite3VdbeGoto(v, endDistinctTest); 1183 1184 1185 /* 1186 ** chng_addr_0: 1187 ** regPrev(0) = idx(0) 1188 ** chng_addr_1: 1189 ** regPrev(1) = idx(1) 1190 ** ... 1191 */ 1192 sqlite3VdbeJumpHere(v, addrNextRow-1); 1193 for(i=0; i<nColTest; i++){ 1194 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1195 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1196 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1197 } 1198 sqlite3VdbeResolveLabel(v, endDistinctTest); 1199 sqlite3DbFree(db, aGotoChng); 1200 } 1201 1202 /* 1203 ** chng_addr_N: 1204 ** regRowid = idx(rowid) // STAT4 only 1205 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only 1206 ** Next csr 1207 ** if !eof(csr) goto next_row; 1208 */ 1209 #ifdef SQLITE_ENABLE_STAT4 1210 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1211 assert( regRowid==(regStat+2) ); 1212 if( HasRowid(pTab) ){ 1213 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1214 }else{ 1215 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1216 int j, k, regKey; 1217 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1218 for(j=0; j<pPk->nKeyCol; j++){ 1219 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1220 assert( k>=0 && k<pIdx->nColumn ); 1221 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1222 analyzeVdbeCommentIndexWithColumnName(v,pIdx,k); 1223 } 1224 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1225 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1226 } 1227 } 1228 #endif 1229 assert( regChng==(regStat+1) ); 1230 { 1231 sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4, 1232 &statPushFuncdef, 0); 1233 if( db->nAnalysisLimit ){ 1234 int j1, j2, j3; 1235 j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v); 1236 j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v); 1237 j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1); 1238 VdbeCoverage(v); 1239 sqlite3VdbeJumpHere(v, j1); 1240 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1241 sqlite3VdbeJumpHere(v, j2); 1242 sqlite3VdbeJumpHere(v, j3); 1243 }else{ 1244 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1245 } 1246 } 1247 1248 /* Add the entry to the stat1 table. */ 1249 callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1); 1250 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1251 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1252 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1253 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1254 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1255 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1256 #endif 1257 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1258 1259 /* Add the entries to the stat4 table. */ 1260 #ifdef SQLITE_ENABLE_STAT4 1261 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){ 1262 int regEq = regStat1; 1263 int regLt = regStat1+1; 1264 int regDLt = regStat1+2; 1265 int regSample = regStat1+3; 1266 int regCol = regStat1+4; 1267 int regSampleRowid = regCol + nCol; 1268 int addrNext; 1269 int addrIsNull; 1270 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1271 1272 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1273 1274 addrNext = sqlite3VdbeCurrentAddr(v); 1275 callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid); 1276 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1277 VdbeCoverage(v); 1278 callStatGet(pParse, regStat, STAT_GET_NEQ, regEq); 1279 callStatGet(pParse, regStat, STAT_GET_NLT, regLt); 1280 callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt); 1281 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1282 VdbeCoverage(v); 1283 for(i=0; i<nCol; i++){ 1284 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1285 } 1286 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1287 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1288 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1289 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1290 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1291 sqlite3VdbeJumpHere(v, addrIsNull); 1292 } 1293 #endif /* SQLITE_ENABLE_STAT4 */ 1294 1295 /* End of analysis */ 1296 sqlite3VdbeJumpHere(v, addrRewind); 1297 } 1298 1299 1300 /* Create a single sqlite_stat1 entry containing NULL as the index 1301 ** name and the row count as the content. 1302 */ 1303 if( pOnlyIdx==0 && needTableCnt ){ 1304 VdbeComment((v, "%s", pTab->zName)); 1305 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1306 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1307 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1308 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1309 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1310 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1311 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1312 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1313 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1314 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1315 #endif 1316 sqlite3VdbeJumpHere(v, jZeroRows); 1317 } 1318 } 1319 1320 1321 /* 1322 ** Generate code that will cause the most recent index analysis to 1323 ** be loaded into internal hash tables where is can be used. 1324 */ 1325 static void loadAnalysis(Parse *pParse, int iDb){ 1326 Vdbe *v = sqlite3GetVdbe(pParse); 1327 if( v ){ 1328 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1329 } 1330 } 1331 1332 /* 1333 ** Generate code that will do an analysis of an entire database 1334 */ 1335 static void analyzeDatabase(Parse *pParse, int iDb){ 1336 sqlite3 *db = pParse->db; 1337 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1338 HashElem *k; 1339 int iStatCur; 1340 int iMem; 1341 int iTab; 1342 1343 sqlite3BeginWriteOperation(pParse, 0, iDb); 1344 iStatCur = pParse->nTab; 1345 pParse->nTab += 3; 1346 openStatTable(pParse, iDb, iStatCur, 0, 0); 1347 iMem = pParse->nMem+1; 1348 iTab = pParse->nTab; 1349 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1350 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1351 Table *pTab = (Table*)sqliteHashData(k); 1352 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1353 } 1354 loadAnalysis(pParse, iDb); 1355 } 1356 1357 /* 1358 ** Generate code that will do an analysis of a single table in 1359 ** a database. If pOnlyIdx is not NULL then it is a single index 1360 ** in pTab that should be analyzed. 1361 */ 1362 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1363 int iDb; 1364 int iStatCur; 1365 1366 assert( pTab!=0 ); 1367 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1368 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1369 sqlite3BeginWriteOperation(pParse, 0, iDb); 1370 iStatCur = pParse->nTab; 1371 pParse->nTab += 3; 1372 if( pOnlyIdx ){ 1373 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1374 }else{ 1375 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1376 } 1377 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1378 loadAnalysis(pParse, iDb); 1379 } 1380 1381 /* 1382 ** Generate code for the ANALYZE command. The parser calls this routine 1383 ** when it recognizes an ANALYZE command. 1384 ** 1385 ** ANALYZE -- 1 1386 ** ANALYZE <database> -- 2 1387 ** ANALYZE ?<database>.?<tablename> -- 3 1388 ** 1389 ** Form 1 causes all indices in all attached databases to be analyzed. 1390 ** Form 2 analyzes all indices the single database named. 1391 ** Form 3 analyzes all indices associated with the named table. 1392 */ 1393 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1394 sqlite3 *db = pParse->db; 1395 int iDb; 1396 int i; 1397 char *z, *zDb; 1398 Table *pTab; 1399 Index *pIdx; 1400 Token *pTableName; 1401 Vdbe *v; 1402 1403 /* Read the database schema. If an error occurs, leave an error message 1404 ** and code in pParse and return NULL. */ 1405 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1406 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1407 return; 1408 } 1409 1410 assert( pName2!=0 || pName1==0 ); 1411 if( pName1==0 ){ 1412 /* Form 1: Analyze everything */ 1413 for(i=0; i<db->nDb; i++){ 1414 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1415 analyzeDatabase(pParse, i); 1416 } 1417 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1418 /* Analyze the schema named as the argument */ 1419 analyzeDatabase(pParse, iDb); 1420 }else{ 1421 /* Form 3: Analyze the table or index named as an argument */ 1422 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1423 if( iDb>=0 ){ 1424 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1425 z = sqlite3NameFromToken(db, pTableName); 1426 if( z ){ 1427 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1428 analyzeTable(pParse, pIdx->pTable, pIdx); 1429 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1430 analyzeTable(pParse, pTab, 0); 1431 } 1432 sqlite3DbFree(db, z); 1433 } 1434 } 1435 } 1436 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1437 sqlite3VdbeAddOp0(v, OP_Expire); 1438 } 1439 } 1440 1441 /* 1442 ** Used to pass information from the analyzer reader through to the 1443 ** callback routine. 1444 */ 1445 typedef struct analysisInfo analysisInfo; 1446 struct analysisInfo { 1447 sqlite3 *db; 1448 const char *zDatabase; 1449 }; 1450 1451 /* 1452 ** The first argument points to a nul-terminated string containing a 1453 ** list of space separated integers. Read the first nOut of these into 1454 ** the array aOut[]. 1455 */ 1456 static void decodeIntArray( 1457 char *zIntArray, /* String containing int array to decode */ 1458 int nOut, /* Number of slots in aOut[] */ 1459 tRowcnt *aOut, /* Store integers here */ 1460 LogEst *aLog, /* Or, if aOut==0, here */ 1461 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1462 ){ 1463 char *z = zIntArray; 1464 int c; 1465 int i; 1466 tRowcnt v; 1467 1468 #ifdef SQLITE_ENABLE_STAT4 1469 if( z==0 ) z = ""; 1470 #else 1471 assert( z!=0 ); 1472 #endif 1473 for(i=0; *z && i<nOut; i++){ 1474 v = 0; 1475 while( (c=z[0])>='0' && c<='9' ){ 1476 v = v*10 + c - '0'; 1477 z++; 1478 } 1479 #ifdef SQLITE_ENABLE_STAT4 1480 if( aOut ) aOut[i] = v; 1481 if( aLog ) aLog[i] = sqlite3LogEst(v); 1482 #else 1483 assert( aOut==0 ); 1484 UNUSED_PARAMETER(aOut); 1485 assert( aLog!=0 ); 1486 aLog[i] = sqlite3LogEst(v); 1487 #endif 1488 if( *z==' ' ) z++; 1489 } 1490 #ifndef SQLITE_ENABLE_STAT4 1491 assert( pIndex!=0 ); { 1492 #else 1493 if( pIndex ){ 1494 #endif 1495 pIndex->bUnordered = 0; 1496 pIndex->noSkipScan = 0; 1497 while( z[0] ){ 1498 if( sqlite3_strglob("unordered*", z)==0 ){ 1499 pIndex->bUnordered = 1; 1500 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1501 int sz = sqlite3Atoi(z+3); 1502 if( sz<2 ) sz = 2; 1503 pIndex->szIdxRow = sqlite3LogEst(sz); 1504 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1505 pIndex->noSkipScan = 1; 1506 } 1507 #ifdef SQLITE_ENABLE_COSTMULT 1508 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1509 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1510 } 1511 #endif 1512 while( z[0]!=0 && z[0]!=' ' ) z++; 1513 while( z[0]==' ' ) z++; 1514 } 1515 } 1516 } 1517 1518 /* 1519 ** This callback is invoked once for each index when reading the 1520 ** sqlite_stat1 table. 1521 ** 1522 ** argv[0] = name of the table 1523 ** argv[1] = name of the index (might be NULL) 1524 ** argv[2] = results of analysis - on integer for each column 1525 ** 1526 ** Entries for which argv[1]==NULL simply record the number of rows in 1527 ** the table. 1528 */ 1529 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1530 analysisInfo *pInfo = (analysisInfo*)pData; 1531 Index *pIndex; 1532 Table *pTable; 1533 const char *z; 1534 1535 assert( argc==3 ); 1536 UNUSED_PARAMETER2(NotUsed, argc); 1537 1538 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1539 return 0; 1540 } 1541 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1542 if( pTable==0 ){ 1543 return 0; 1544 } 1545 if( argv[1]==0 ){ 1546 pIndex = 0; 1547 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1548 pIndex = sqlite3PrimaryKeyIndex(pTable); 1549 }else{ 1550 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1551 } 1552 z = argv[2]; 1553 1554 if( pIndex ){ 1555 tRowcnt *aiRowEst = 0; 1556 int nCol = pIndex->nKeyCol+1; 1557 #ifdef SQLITE_ENABLE_STAT4 1558 /* Index.aiRowEst may already be set here if there are duplicate 1559 ** sqlite_stat1 entries for this index. In that case just clobber 1560 ** the old data with the new instead of allocating a new array. */ 1561 if( pIndex->aiRowEst==0 ){ 1562 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1563 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1564 } 1565 aiRowEst = pIndex->aiRowEst; 1566 #endif 1567 pIndex->bUnordered = 0; 1568 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1569 pIndex->hasStat1 = 1; 1570 if( pIndex->pPartIdxWhere==0 ){ 1571 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1572 pTable->tabFlags |= TF_HasStat1; 1573 } 1574 }else{ 1575 Index fakeIdx; 1576 fakeIdx.szIdxRow = pTable->szTabRow; 1577 #ifdef SQLITE_ENABLE_COSTMULT 1578 fakeIdx.pTable = pTable; 1579 #endif 1580 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1581 pTable->szTabRow = fakeIdx.szIdxRow; 1582 pTable->tabFlags |= TF_HasStat1; 1583 } 1584 1585 return 0; 1586 } 1587 1588 /* 1589 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1590 ** and its contents. 1591 */ 1592 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1593 #ifdef SQLITE_ENABLE_STAT4 1594 if( pIdx->aSample ){ 1595 int j; 1596 for(j=0; j<pIdx->nSample; j++){ 1597 IndexSample *p = &pIdx->aSample[j]; 1598 sqlite3DbFree(db, p->p); 1599 } 1600 sqlite3DbFree(db, pIdx->aSample); 1601 } 1602 if( db && db->pnBytesFreed==0 ){ 1603 pIdx->nSample = 0; 1604 pIdx->aSample = 0; 1605 } 1606 #else 1607 UNUSED_PARAMETER(db); 1608 UNUSED_PARAMETER(pIdx); 1609 #endif /* SQLITE_ENABLE_STAT4 */ 1610 } 1611 1612 #ifdef SQLITE_ENABLE_STAT4 1613 /* 1614 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1615 ** stored in pIdx->aSample[]. 1616 */ 1617 static void initAvgEq(Index *pIdx){ 1618 if( pIdx ){ 1619 IndexSample *aSample = pIdx->aSample; 1620 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1621 int iCol; 1622 int nCol = 1; 1623 if( pIdx->nSampleCol>1 ){ 1624 /* If this is stat4 data, then calculate aAvgEq[] values for all 1625 ** sample columns except the last. The last is always set to 1, as 1626 ** once the trailing PK fields are considered all index keys are 1627 ** unique. */ 1628 nCol = pIdx->nSampleCol-1; 1629 pIdx->aAvgEq[nCol] = 1; 1630 } 1631 for(iCol=0; iCol<nCol; iCol++){ 1632 int nSample = pIdx->nSample; 1633 int i; /* Used to iterate through samples */ 1634 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1635 tRowcnt avgEq = 0; 1636 tRowcnt nRow; /* Number of rows in index */ 1637 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1638 i64 nDist100; /* Number of distinct values in index */ 1639 1640 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1641 nRow = pFinal->anLt[iCol]; 1642 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1643 nSample--; 1644 }else{ 1645 nRow = pIdx->aiRowEst[0]; 1646 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1647 } 1648 pIdx->nRowEst0 = nRow; 1649 1650 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1651 ** occur in the stat4 table for this index. Set sumEq to the sum of 1652 ** the nEq values for column iCol for the same set (adding the value 1653 ** only once where there exist duplicate prefixes). */ 1654 for(i=0; i<nSample; i++){ 1655 if( i==(pIdx->nSample-1) 1656 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1657 ){ 1658 sumEq += aSample[i].anEq[iCol]; 1659 nSum100 += 100; 1660 } 1661 } 1662 1663 if( nDist100>nSum100 && sumEq<nRow ){ 1664 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1665 } 1666 if( avgEq==0 ) avgEq = 1; 1667 pIdx->aAvgEq[iCol] = avgEq; 1668 } 1669 } 1670 } 1671 1672 /* 1673 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1674 ** is supplied instead, find the PRIMARY KEY index for that table. 1675 */ 1676 static Index *findIndexOrPrimaryKey( 1677 sqlite3 *db, 1678 const char *zName, 1679 const char *zDb 1680 ){ 1681 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1682 if( pIdx==0 ){ 1683 Table *pTab = sqlite3FindTable(db, zName, zDb); 1684 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1685 } 1686 return pIdx; 1687 } 1688 1689 /* 1690 ** Load the content from either the sqlite_stat4 1691 ** into the relevant Index.aSample[] arrays. 1692 ** 1693 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1694 ** data equivalent to the following: 1695 ** 1696 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1697 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1698 ** 1699 ** where %Q is replaced with the database name before the SQL is executed. 1700 */ 1701 static int loadStatTbl( 1702 sqlite3 *db, /* Database handle */ 1703 const char *zSql1, /* SQL statement 1 (see above) */ 1704 const char *zSql2, /* SQL statement 2 (see above) */ 1705 const char *zDb /* Database name (e.g. "main") */ 1706 ){ 1707 int rc; /* Result codes from subroutines */ 1708 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1709 char *zSql; /* Text of the SQL statement */ 1710 Index *pPrevIdx = 0; /* Previous index in the loop */ 1711 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1712 1713 assert( db->lookaside.bDisable ); 1714 zSql = sqlite3MPrintf(db, zSql1, zDb); 1715 if( !zSql ){ 1716 return SQLITE_NOMEM_BKPT; 1717 } 1718 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1719 sqlite3DbFree(db, zSql); 1720 if( rc ) return rc; 1721 1722 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1723 int nIdxCol = 1; /* Number of columns in stat4 records */ 1724 1725 char *zIndex; /* Index name */ 1726 Index *pIdx; /* Pointer to the index object */ 1727 int nSample; /* Number of samples */ 1728 int nByte; /* Bytes of space required */ 1729 int i; /* Bytes of space required */ 1730 tRowcnt *pSpace; 1731 1732 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1733 if( zIndex==0 ) continue; 1734 nSample = sqlite3_column_int(pStmt, 1); 1735 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1736 assert( pIdx==0 || pIdx->nSample==0 ); 1737 if( pIdx==0 ) continue; 1738 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1739 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1740 nIdxCol = pIdx->nKeyCol; 1741 }else{ 1742 nIdxCol = pIdx->nColumn; 1743 } 1744 pIdx->nSampleCol = nIdxCol; 1745 nByte = sizeof(IndexSample) * nSample; 1746 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1747 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1748 1749 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1750 if( pIdx->aSample==0 ){ 1751 sqlite3_finalize(pStmt); 1752 return SQLITE_NOMEM_BKPT; 1753 } 1754 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1755 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1756 pIdx->pTable->tabFlags |= TF_HasStat4; 1757 for(i=0; i<nSample; i++){ 1758 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1759 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1760 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1761 } 1762 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1763 } 1764 rc = sqlite3_finalize(pStmt); 1765 if( rc ) return rc; 1766 1767 zSql = sqlite3MPrintf(db, zSql2, zDb); 1768 if( !zSql ){ 1769 return SQLITE_NOMEM_BKPT; 1770 } 1771 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1772 sqlite3DbFree(db, zSql); 1773 if( rc ) return rc; 1774 1775 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1776 char *zIndex; /* Index name */ 1777 Index *pIdx; /* Pointer to the index object */ 1778 int nCol = 1; /* Number of columns in index */ 1779 1780 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1781 if( zIndex==0 ) continue; 1782 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1783 if( pIdx==0 ) continue; 1784 /* This next condition is true if data has already been loaded from 1785 ** the sqlite_stat4 table. */ 1786 nCol = pIdx->nSampleCol; 1787 if( pIdx!=pPrevIdx ){ 1788 initAvgEq(pPrevIdx); 1789 pPrevIdx = pIdx; 1790 } 1791 pSample = &pIdx->aSample[pIdx->nSample]; 1792 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1793 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1794 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1795 1796 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1797 ** This is in case the sample record is corrupted. In that case, the 1798 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1799 ** end of the allocated buffer before it realizes it is dealing with 1800 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1801 ** a buffer overread. */ 1802 pSample->n = sqlite3_column_bytes(pStmt, 4); 1803 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1804 if( pSample->p==0 ){ 1805 sqlite3_finalize(pStmt); 1806 return SQLITE_NOMEM_BKPT; 1807 } 1808 if( pSample->n ){ 1809 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1810 } 1811 pIdx->nSample++; 1812 } 1813 rc = sqlite3_finalize(pStmt); 1814 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1815 return rc; 1816 } 1817 1818 /* 1819 ** Load content from the sqlite_stat4 table into 1820 ** the Index.aSample[] arrays of all indices. 1821 */ 1822 static int loadStat4(sqlite3 *db, const char *zDb){ 1823 int rc = SQLITE_OK; /* Result codes from subroutines */ 1824 const Table *pStat4; 1825 1826 assert( db->lookaside.bDisable ); 1827 if( (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0 1828 && IsOrdinaryTable(pStat4) 1829 ){ 1830 rc = loadStatTbl(db, 1831 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1832 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1833 zDb 1834 ); 1835 } 1836 return rc; 1837 } 1838 #endif /* SQLITE_ENABLE_STAT4 */ 1839 1840 /* 1841 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The 1842 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1843 ** arrays. The contents of sqlite_stat4 are used to populate the 1844 ** Index.aSample[] arrays. 1845 ** 1846 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1847 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 1848 ** during compilation and the sqlite_stat4 table is present, no data is 1849 ** read from it. 1850 ** 1851 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the 1852 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1853 ** returned. However, in this case, data is read from the sqlite_stat1 1854 ** table (if it is present) before returning. 1855 ** 1856 ** If an OOM error occurs, this function always sets db->mallocFailed. 1857 ** This means if the caller does not care about other errors, the return 1858 ** code may be ignored. 1859 */ 1860 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1861 analysisInfo sInfo; 1862 HashElem *i; 1863 char *zSql; 1864 int rc = SQLITE_OK; 1865 Schema *pSchema = db->aDb[iDb].pSchema; 1866 const Table *pStat1; 1867 1868 assert( iDb>=0 && iDb<db->nDb ); 1869 assert( db->aDb[iDb].pBt!=0 ); 1870 1871 /* Clear any prior statistics */ 1872 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1873 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1874 Table *pTab = sqliteHashData(i); 1875 pTab->tabFlags &= ~TF_HasStat1; 1876 } 1877 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1878 Index *pIdx = sqliteHashData(i); 1879 pIdx->hasStat1 = 0; 1880 #ifdef SQLITE_ENABLE_STAT4 1881 sqlite3DeleteIndexSamples(db, pIdx); 1882 pIdx->aSample = 0; 1883 #endif 1884 } 1885 1886 /* Load new statistics out of the sqlite_stat1 table */ 1887 sInfo.db = db; 1888 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1889 if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)) 1890 && IsOrdinaryTable(pStat1) 1891 ){ 1892 zSql = sqlite3MPrintf(db, 1893 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1894 if( zSql==0 ){ 1895 rc = SQLITE_NOMEM_BKPT; 1896 }else{ 1897 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1898 sqlite3DbFree(db, zSql); 1899 } 1900 } 1901 1902 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1903 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1904 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1905 Index *pIdx = sqliteHashData(i); 1906 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1907 } 1908 1909 /* Load the statistics from the sqlite_stat4 table. */ 1910 #ifdef SQLITE_ENABLE_STAT4 1911 if( rc==SQLITE_OK ){ 1912 DisableLookaside; 1913 rc = loadStat4(db, sInfo.zDatabase); 1914 EnableLookaside; 1915 } 1916 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1917 Index *pIdx = sqliteHashData(i); 1918 sqlite3_free(pIdx->aiRowEst); 1919 pIdx->aiRowEst = 0; 1920 } 1921 #endif 1922 1923 if( rc==SQLITE_NOMEM ){ 1924 sqlite3OomFault(db); 1925 } 1926 return rc; 1927 } 1928 1929 1930 #endif /* SQLITE_OMIT_ANALYZE */ 1931