1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 VdbeComment((v, aTable[i].zName)); 250 } 251 } 252 253 /* 254 ** Recommended number of samples for sqlite_stat4 255 */ 256 #ifndef SQLITE_STAT4_SAMPLES 257 # define SQLITE_STAT4_SAMPLES 24 258 #endif 259 260 /* 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 262 ** share an instance of the following structure to hold their state 263 ** information. 264 */ 265 typedef struct Stat4Accum Stat4Accum; 266 typedef struct Stat4Sample Stat4Sample; 267 struct Stat4Sample { 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ 272 union { 273 i64 iRowid; /* Rowid in main table of the key */ 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 275 } u; 276 u32 nRowid; /* Sizeof aRowid[] */ 277 u8 isPSample; /* True if a periodic sample */ 278 int iCol; /* If !isPSample, the reason for inclusion */ 279 u32 iHash; /* Tiebreaker hash */ 280 #endif 281 }; 282 struct Stat4Accum { 283 tRowcnt nRow; /* Number of rows in the entire table */ 284 tRowcnt nPSample; /* How often to do a periodic sample */ 285 int nCol; /* Number of columns in index + pk/rowid */ 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 287 int mxSample; /* Maximum number of samples to accumulate */ 288 Stat4Sample current; /* Current row as a Stat4Sample */ 289 u32 iPrn; /* Pseudo-random number used for sampling */ 290 Stat4Sample *aBest; /* Array of nCol best samples */ 291 int iMin; /* Index in a[] of entry with minimum score */ 292 int nSample; /* Current number of samples */ 293 int iGet; /* Index of current sample accessed by stat_get() */ 294 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 295 sqlite3 *db; /* Database connection, for malloc() */ 296 }; 297 298 /* Reclaim memory used by a Stat4Sample 299 */ 300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 301 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 302 assert( db!=0 ); 303 if( p->nRowid ){ 304 sqlite3DbFree(db, p->u.aRowid); 305 p->nRowid = 0; 306 } 307 } 308 #endif 309 310 /* Initialize the BLOB value of a ROWID 311 */ 312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 314 assert( db!=0 ); 315 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 316 p->u.aRowid = sqlite3DbMallocRaw(db, n); 317 if( p->u.aRowid ){ 318 p->nRowid = n; 319 memcpy(p->u.aRowid, pData, n); 320 }else{ 321 p->nRowid = 0; 322 } 323 } 324 #endif 325 326 /* Initialize the INTEGER value of a ROWID. 327 */ 328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 330 assert( db!=0 ); 331 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 332 p->nRowid = 0; 333 p->u.iRowid = iRowid; 334 } 335 #endif 336 337 338 /* 339 ** Copy the contents of object (*pFrom) into (*pTo). 340 */ 341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 343 pTo->isPSample = pFrom->isPSample; 344 pTo->iCol = pFrom->iCol; 345 pTo->iHash = pFrom->iHash; 346 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 347 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 348 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 349 if( pFrom->nRowid ){ 350 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 351 }else{ 352 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 353 } 354 } 355 #endif 356 357 /* 358 ** Reclaim all memory of a Stat4Accum structure. 359 */ 360 static void stat4Destructor(void *pOld){ 361 Stat4Accum *p = (Stat4Accum*)pOld; 362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 363 int i; 364 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 365 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 366 sampleClear(p->db, &p->current); 367 #endif 368 sqlite3DbFree(p->db, p); 369 } 370 371 /* 372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 373 ** are: 374 ** N: The number of columns in the index including the rowid/pk (note 1) 375 ** K: The number of columns in the index excluding the rowid/pk. 376 ** C: The number of rows in the index (note 2) 377 ** 378 ** Note 1: In the special case of the covering index that implements a 379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 380 ** total number of columns in the table. 381 ** 382 ** Note 2: C is only used for STAT3 and STAT4. 383 ** 384 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 386 ** PRIMARY KEY of the table. The covering index that implements the 387 ** original WITHOUT ROWID table as N==K as a special case. 388 ** 389 ** This routine allocates the Stat4Accum object in heap memory. The return 390 ** value is a pointer to the Stat4Accum object. The datatype of the 391 ** return value is BLOB, but it is really just a pointer to the Stat4Accum 392 ** object. 393 */ 394 static void statInit( 395 sqlite3_context *context, 396 int argc, 397 sqlite3_value **argv 398 ){ 399 Stat4Accum *p; 400 int nCol; /* Number of columns in index being sampled */ 401 int nKeyCol; /* Number of key columns */ 402 int nColUp; /* nCol rounded up for alignment */ 403 int n; /* Bytes of space to allocate */ 404 sqlite3 *db; /* Database connection */ 405 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 406 int mxSample = SQLITE_STAT4_SAMPLES; 407 #endif 408 409 /* Decode the three function arguments */ 410 UNUSED_PARAMETER(argc); 411 nCol = sqlite3_value_int(argv[0]); 412 assert( nCol>0 ); 413 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 414 nKeyCol = sqlite3_value_int(argv[1]); 415 assert( nKeyCol<=nCol ); 416 assert( nKeyCol>0 ); 417 418 /* Allocate the space required for the Stat4Accum object */ 419 n = sizeof(*p) 420 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 421 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 423 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 424 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 425 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 426 #endif 427 ; 428 db = sqlite3_context_db_handle(context); 429 p = sqlite3DbMallocZero(db, n); 430 if( p==0 ){ 431 sqlite3_result_error_nomem(context); 432 return; 433 } 434 435 p->db = db; 436 p->nRow = 0; 437 p->nCol = nCol; 438 p->nKeyCol = nKeyCol; 439 p->current.anDLt = (tRowcnt*)&p[1]; 440 p->current.anEq = &p->current.anDLt[nColUp]; 441 442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 443 { 444 u8 *pSpace; /* Allocated space not yet assigned */ 445 int i; /* Used to iterate through p->aSample[] */ 446 447 p->iGet = -1; 448 p->mxSample = mxSample; 449 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 450 p->current.anLt = &p->current.anEq[nColUp]; 451 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 452 453 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 454 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 455 p->aBest = &p->a[mxSample]; 456 pSpace = (u8*)(&p->a[mxSample+nCol]); 457 for(i=0; i<(mxSample+nCol); i++){ 458 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 459 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 460 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 461 } 462 assert( (pSpace - (u8*)p)==n ); 463 464 for(i=0; i<nCol; i++){ 465 p->aBest[i].iCol = i; 466 } 467 } 468 #endif 469 470 /* Return a pointer to the allocated object to the caller. Note that 471 ** only the pointer (the 2nd parameter) matters. The size of the object 472 ** (given by the 3rd parameter) is never used and can be any positive 473 ** value. */ 474 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); 475 } 476 static const FuncDef statInitFuncdef = { 477 2+IsStat34, /* nArg */ 478 SQLITE_UTF8, /* funcFlags */ 479 0, /* pUserData */ 480 0, /* pNext */ 481 statInit, /* xFunc */ 482 0, /* xStep */ 483 0, /* xFinalize */ 484 "stat_init", /* zName */ 485 0, /* pHash */ 486 0 /* pDestructor */ 487 }; 488 489 #ifdef SQLITE_ENABLE_STAT4 490 /* 491 ** pNew and pOld are both candidate non-periodic samples selected for 492 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 493 ** considering only any trailing columns and the sample hash value, this 494 ** function returns true if sample pNew is to be preferred over pOld. 495 ** In other words, if we assume that the cardinalities of the selected 496 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 497 ** 498 ** This function assumes that for each argument sample, the contents of 499 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 500 */ 501 static int sampleIsBetterPost( 502 Stat4Accum *pAccum, 503 Stat4Sample *pNew, 504 Stat4Sample *pOld 505 ){ 506 int nCol = pAccum->nCol; 507 int i; 508 assert( pNew->iCol==pOld->iCol ); 509 for(i=pNew->iCol+1; i<nCol; i++){ 510 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 511 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 512 } 513 if( pNew->iHash>pOld->iHash ) return 1; 514 return 0; 515 } 516 #endif 517 518 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 519 /* 520 ** Return true if pNew is to be preferred over pOld. 521 ** 522 ** This function assumes that for each argument sample, the contents of 523 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 524 */ 525 static int sampleIsBetter( 526 Stat4Accum *pAccum, 527 Stat4Sample *pNew, 528 Stat4Sample *pOld 529 ){ 530 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 531 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 532 533 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 534 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 535 536 if( (nEqNew>nEqOld) ) return 1; 537 #ifdef SQLITE_ENABLE_STAT4 538 if( nEqNew==nEqOld ){ 539 if( pNew->iCol<pOld->iCol ) return 1; 540 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 541 } 542 return 0; 543 #else 544 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 545 #endif 546 } 547 548 /* 549 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 550 ** remove the least desirable sample from p->a[] to make room. 551 */ 552 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 553 Stat4Sample *pSample = 0; 554 int i; 555 556 assert( IsStat4 || nEqZero==0 ); 557 558 #ifdef SQLITE_ENABLE_STAT4 559 if( pNew->isPSample==0 ){ 560 Stat4Sample *pUpgrade = 0; 561 assert( pNew->anEq[pNew->iCol]>0 ); 562 563 /* This sample is being added because the prefix that ends in column 564 ** iCol occurs many times in the table. However, if we have already 565 ** added a sample that shares this prefix, there is no need to add 566 ** this one. Instead, upgrade the priority of the highest priority 567 ** existing sample that shares this prefix. */ 568 for(i=p->nSample-1; i>=0; i--){ 569 Stat4Sample *pOld = &p->a[i]; 570 if( pOld->anEq[pNew->iCol]==0 ){ 571 if( pOld->isPSample ) return; 572 assert( pOld->iCol>pNew->iCol ); 573 assert( sampleIsBetter(p, pNew, pOld) ); 574 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 575 pUpgrade = pOld; 576 } 577 } 578 } 579 if( pUpgrade ){ 580 pUpgrade->iCol = pNew->iCol; 581 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 582 goto find_new_min; 583 } 584 } 585 #endif 586 587 /* If necessary, remove sample iMin to make room for the new sample. */ 588 if( p->nSample>=p->mxSample ){ 589 Stat4Sample *pMin = &p->a[p->iMin]; 590 tRowcnt *anEq = pMin->anEq; 591 tRowcnt *anLt = pMin->anLt; 592 tRowcnt *anDLt = pMin->anDLt; 593 sampleClear(p->db, pMin); 594 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 595 pSample = &p->a[p->nSample-1]; 596 pSample->nRowid = 0; 597 pSample->anEq = anEq; 598 pSample->anDLt = anDLt; 599 pSample->anLt = anLt; 600 p->nSample = p->mxSample-1; 601 } 602 603 /* The "rows less-than" for the rowid column must be greater than that 604 ** for the last sample in the p->a[] array. Otherwise, the samples would 605 ** be out of order. */ 606 #ifdef SQLITE_ENABLE_STAT4 607 assert( p->nSample==0 608 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 609 #endif 610 611 /* Insert the new sample */ 612 pSample = &p->a[p->nSample]; 613 sampleCopy(p, pSample, pNew); 614 p->nSample++; 615 616 /* Zero the first nEqZero entries in the anEq[] array. */ 617 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 618 619 #ifdef SQLITE_ENABLE_STAT4 620 find_new_min: 621 #endif 622 if( p->nSample>=p->mxSample ){ 623 int iMin = -1; 624 for(i=0; i<p->mxSample; i++){ 625 if( p->a[i].isPSample ) continue; 626 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 627 iMin = i; 628 } 629 } 630 assert( iMin>=0 ); 631 p->iMin = iMin; 632 } 633 } 634 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 635 636 /* 637 ** Field iChng of the index being scanned has changed. So at this point 638 ** p->current contains a sample that reflects the previous row of the 639 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 640 ** correct at this point. 641 */ 642 static void samplePushPrevious(Stat4Accum *p, int iChng){ 643 #ifdef SQLITE_ENABLE_STAT4 644 int i; 645 646 /* Check if any samples from the aBest[] array should be pushed 647 ** into IndexSample.a[] at this point. */ 648 for(i=(p->nCol-2); i>=iChng; i--){ 649 Stat4Sample *pBest = &p->aBest[i]; 650 pBest->anEq[i] = p->current.anEq[i]; 651 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 652 sampleInsert(p, pBest, i); 653 } 654 } 655 656 /* Update the anEq[] fields of any samples already collected. */ 657 for(i=p->nSample-1; i>=0; i--){ 658 int j; 659 for(j=iChng; j<p->nCol; j++){ 660 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 661 } 662 } 663 #endif 664 665 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 666 if( iChng==0 ){ 667 tRowcnt nLt = p->current.anLt[0]; 668 tRowcnt nEq = p->current.anEq[0]; 669 670 /* Check if this is to be a periodic sample. If so, add it. */ 671 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 672 p->current.isPSample = 1; 673 sampleInsert(p, &p->current, 0); 674 p->current.isPSample = 0; 675 }else 676 677 /* Or if it is a non-periodic sample. Add it in this case too. */ 678 if( p->nSample<p->mxSample 679 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 680 ){ 681 sampleInsert(p, &p->current, 0); 682 } 683 } 684 #endif 685 686 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 687 UNUSED_PARAMETER( p ); 688 UNUSED_PARAMETER( iChng ); 689 #endif 690 } 691 692 /* 693 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 694 ** Arguments: 695 ** 696 ** P Pointer to the Stat4Accum object created by stat_init() 697 ** C Index of left-most column to differ from previous row 698 ** R Rowid for the current row. Might be a key record for 699 ** WITHOUT ROWID tables. 700 ** 701 ** This SQL function always returns NULL. It's purpose it to accumulate 702 ** statistical data and/or samples in the Stat4Accum object about the 703 ** index being analyzed. The stat_get() SQL function will later be used to 704 ** extract relevant information for constructing the sqlite_statN tables. 705 ** 706 ** The R parameter is only used for STAT3 and STAT4 707 */ 708 static void statPush( 709 sqlite3_context *context, 710 int argc, 711 sqlite3_value **argv 712 ){ 713 int i; 714 715 /* The three function arguments */ 716 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 717 int iChng = sqlite3_value_int(argv[1]); 718 719 UNUSED_PARAMETER( argc ); 720 UNUSED_PARAMETER( context ); 721 assert( p->nCol>0 ); 722 assert( iChng<p->nCol ); 723 724 if( p->nRow==0 ){ 725 /* This is the first call to this function. Do initialization. */ 726 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 727 }else{ 728 /* Second and subsequent calls get processed here */ 729 samplePushPrevious(p, iChng); 730 731 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 732 ** to the current row of the index. */ 733 for(i=0; i<iChng; i++){ 734 p->current.anEq[i]++; 735 } 736 for(i=iChng; i<p->nCol; i++){ 737 p->current.anDLt[i]++; 738 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 739 p->current.anLt[i] += p->current.anEq[i]; 740 #endif 741 p->current.anEq[i] = 1; 742 } 743 } 744 p->nRow++; 745 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 746 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 747 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 748 }else{ 749 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 750 sqlite3_value_blob(argv[2])); 751 } 752 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 753 #endif 754 755 #ifdef SQLITE_ENABLE_STAT4 756 { 757 tRowcnt nLt = p->current.anLt[p->nCol-1]; 758 759 /* Check if this is to be a periodic sample. If so, add it. */ 760 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 761 p->current.isPSample = 1; 762 p->current.iCol = 0; 763 sampleInsert(p, &p->current, p->nCol-1); 764 p->current.isPSample = 0; 765 } 766 767 /* Update the aBest[] array. */ 768 for(i=0; i<(p->nCol-1); i++){ 769 p->current.iCol = i; 770 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 771 sampleCopy(p, &p->aBest[i], &p->current); 772 } 773 } 774 } 775 #endif 776 } 777 static const FuncDef statPushFuncdef = { 778 2+IsStat34, /* nArg */ 779 SQLITE_UTF8, /* funcFlags */ 780 0, /* pUserData */ 781 0, /* pNext */ 782 statPush, /* xFunc */ 783 0, /* xStep */ 784 0, /* xFinalize */ 785 "stat_push", /* zName */ 786 0, /* pHash */ 787 0 /* pDestructor */ 788 }; 789 790 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 791 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 792 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 793 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 794 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 795 796 /* 797 ** Implementation of the stat_get(P,J) SQL function. This routine is 798 ** used to query statistical information that has been gathered into 799 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 800 ** has type BLOB but it is really just a pointer to the Stat4Accum object. 801 ** The content to returned is determined by the parameter J 802 ** which is one of the STAT_GET_xxxx values defined above. 803 ** 804 ** If neither STAT3 nor STAT4 are enabled, then J is always 805 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 806 ** a one-parameter function, stat_get(P), that always returns the 807 ** stat1 table entry information. 808 */ 809 static void statGet( 810 sqlite3_context *context, 811 int argc, 812 sqlite3_value **argv 813 ){ 814 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 815 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 816 /* STAT3 and STAT4 have a parameter on this routine. */ 817 int eCall = sqlite3_value_int(argv[1]); 818 assert( argc==2 ); 819 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 820 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 821 || eCall==STAT_GET_NDLT 822 ); 823 if( eCall==STAT_GET_STAT1 ) 824 #else 825 assert( argc==1 ); 826 #endif 827 { 828 /* Return the value to store in the "stat" column of the sqlite_stat1 829 ** table for this index. 830 ** 831 ** The value is a string composed of a list of integers describing 832 ** the index. The first integer in the list is the total number of 833 ** entries in the index. There is one additional integer in the list 834 ** for each indexed column. This additional integer is an estimate of 835 ** the number of rows matched by a stabbing query on the index using 836 ** a key with the corresponding number of fields. In other words, 837 ** if the index is on columns (a,b) and the sqlite_stat1 value is 838 ** "100 10 2", then SQLite estimates that: 839 ** 840 ** * the index contains 100 rows, 841 ** * "WHERE a=?" matches 10 rows, and 842 ** * "WHERE a=? AND b=?" matches 2 rows. 843 ** 844 ** If D is the count of distinct values and K is the total number of 845 ** rows, then each estimate is computed as: 846 ** 847 ** I = (K+D-1)/D 848 */ 849 char *z; 850 int i; 851 852 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 853 if( zRet==0 ){ 854 sqlite3_result_error_nomem(context); 855 return; 856 } 857 858 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 859 z = zRet + sqlite3Strlen30(zRet); 860 for(i=0; i<p->nKeyCol; i++){ 861 u64 nDistinct = p->current.anDLt[i] + 1; 862 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 863 sqlite3_snprintf(24, z, " %llu", iVal); 864 z += sqlite3Strlen30(z); 865 assert( p->current.anEq[i] ); 866 } 867 assert( z[0]=='\0' && z>zRet ); 868 869 sqlite3_result_text(context, zRet, -1, sqlite3_free); 870 } 871 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 872 else if( eCall==STAT_GET_ROWID ){ 873 if( p->iGet<0 ){ 874 samplePushPrevious(p, 0); 875 p->iGet = 0; 876 } 877 if( p->iGet<p->nSample ){ 878 Stat4Sample *pS = p->a + p->iGet; 879 if( pS->nRowid==0 ){ 880 sqlite3_result_int64(context, pS->u.iRowid); 881 }else{ 882 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 883 SQLITE_TRANSIENT); 884 } 885 } 886 }else{ 887 tRowcnt *aCnt = 0; 888 889 assert( p->iGet<p->nSample ); 890 switch( eCall ){ 891 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 892 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 893 default: { 894 aCnt = p->a[p->iGet].anDLt; 895 p->iGet++; 896 break; 897 } 898 } 899 900 if( IsStat3 ){ 901 sqlite3_result_int64(context, (i64)aCnt[0]); 902 }else{ 903 char *zRet = sqlite3MallocZero(p->nCol * 25); 904 if( zRet==0 ){ 905 sqlite3_result_error_nomem(context); 906 }else{ 907 int i; 908 char *z = zRet; 909 for(i=0; i<p->nCol; i++){ 910 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 911 z += sqlite3Strlen30(z); 912 } 913 assert( z[0]=='\0' && z>zRet ); 914 z[-1] = '\0'; 915 sqlite3_result_text(context, zRet, -1, sqlite3_free); 916 } 917 } 918 } 919 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 920 #ifndef SQLITE_DEBUG 921 UNUSED_PARAMETER( argc ); 922 #endif 923 } 924 static const FuncDef statGetFuncdef = { 925 1+IsStat34, /* nArg */ 926 SQLITE_UTF8, /* funcFlags */ 927 0, /* pUserData */ 928 0, /* pNext */ 929 statGet, /* xFunc */ 930 0, /* xStep */ 931 0, /* xFinalize */ 932 "stat_get", /* zName */ 933 0, /* pHash */ 934 0 /* pDestructor */ 935 }; 936 937 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 938 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 939 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 940 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 941 #elif SQLITE_DEBUG 942 assert( iParam==STAT_GET_STAT1 ); 943 #else 944 UNUSED_PARAMETER( iParam ); 945 #endif 946 sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4, regOut); 947 sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); 948 sqlite3VdbeChangeP5(v, 1 + IsStat34); 949 } 950 951 /* 952 ** Generate code to do an analysis of all indices associated with 953 ** a single table. 954 */ 955 static void analyzeOneTable( 956 Parse *pParse, /* Parser context */ 957 Table *pTab, /* Table whose indices are to be analyzed */ 958 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 959 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 960 int iMem, /* Available memory locations begin here */ 961 int iTab /* Next available cursor */ 962 ){ 963 sqlite3 *db = pParse->db; /* Database handle */ 964 Index *pIdx; /* An index to being analyzed */ 965 int iIdxCur; /* Cursor open on index being analyzed */ 966 int iTabCur; /* Table cursor */ 967 Vdbe *v; /* The virtual machine being built up */ 968 int i; /* Loop counter */ 969 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 970 int iDb; /* Index of database containing pTab */ 971 u8 needTableCnt = 1; /* True to count the table */ 972 int regNewRowid = iMem++; /* Rowid for the inserted record */ 973 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 974 int regChng = iMem++; /* Index of changed index field */ 975 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 976 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 977 #endif 978 int regTemp = iMem++; /* Temporary use register */ 979 int regTabname = iMem++; /* Register containing table name */ 980 int regIdxname = iMem++; /* Register containing index name */ 981 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 982 int regPrev = iMem; /* MUST BE LAST (see below) */ 983 984 pParse->nMem = MAX(pParse->nMem, iMem); 985 v = sqlite3GetVdbe(pParse); 986 if( v==0 || NEVER(pTab==0) ){ 987 return; 988 } 989 if( pTab->tnum==0 ){ 990 /* Do not gather statistics on views or virtual tables */ 991 return; 992 } 993 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ 994 /* Do not gather statistics on system tables */ 995 return; 996 } 997 assert( sqlite3BtreeHoldsAllMutexes(db) ); 998 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 999 assert( iDb>=0 ); 1000 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1001 #ifndef SQLITE_OMIT_AUTHORIZATION 1002 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1003 db->aDb[iDb].zName ) ){ 1004 return; 1005 } 1006 #endif 1007 1008 /* Establish a read-lock on the table at the shared-cache level. 1009 ** Open a read-only cursor on the table. Also allocate a cursor number 1010 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1011 ** this time though. */ 1012 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1013 iTabCur = iTab++; 1014 iIdxCur = iTab++; 1015 pParse->nTab = MAX(pParse->nTab, iTab); 1016 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1017 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1018 1019 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1020 int nCol; /* Number of columns in pIdx. "N" */ 1021 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1022 int addrNextRow; /* Address of "next_row:" */ 1023 const char *zIdxName; /* Name of the index */ 1024 int nColTest; /* Number of columns to test for changes */ 1025 1026 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1027 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1028 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1029 nCol = pIdx->nKeyCol; 1030 zIdxName = pTab->zName; 1031 nColTest = nCol - 1; 1032 }else{ 1033 nCol = pIdx->nColumn; 1034 zIdxName = pIdx->zName; 1035 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1036 } 1037 1038 /* Populate the register containing the index name. */ 1039 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1040 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1041 1042 /* 1043 ** Pseudo-code for loop that calls stat_push(): 1044 ** 1045 ** Rewind csr 1046 ** if eof(csr) goto end_of_scan; 1047 ** regChng = 0 1048 ** goto chng_addr_0; 1049 ** 1050 ** next_row: 1051 ** regChng = 0 1052 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1053 ** regChng = 1 1054 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1055 ** ... 1056 ** regChng = N 1057 ** goto chng_addr_N 1058 ** 1059 ** chng_addr_0: 1060 ** regPrev(0) = idx(0) 1061 ** chng_addr_1: 1062 ** regPrev(1) = idx(1) 1063 ** ... 1064 ** 1065 ** endDistinctTest: 1066 ** regRowid = idx(rowid) 1067 ** stat_push(P, regChng, regRowid) 1068 ** Next csr 1069 ** if !eof(csr) goto next_row; 1070 ** 1071 ** end_of_scan: 1072 */ 1073 1074 /* Make sure there are enough memory cells allocated to accommodate 1075 ** the regPrev array and a trailing rowid (the rowid slot is required 1076 ** when building a record to insert into the sample column of 1077 ** the sqlite_stat4 table. */ 1078 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1079 1080 /* Open a read-only cursor on the index being analyzed. */ 1081 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1082 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1083 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1084 VdbeComment((v, "%s", pIdx->zName)); 1085 1086 /* Invoke the stat_init() function. The arguments are: 1087 ** 1088 ** (1) the number of columns in the index including the rowid 1089 ** (or for a WITHOUT ROWID table, the number of PK columns), 1090 ** (2) the number of columns in the key without the rowid/pk 1091 ** (3) the number of rows in the index, 1092 ** 1093 ** 1094 ** The third argument is only used for STAT3 and STAT4 1095 */ 1096 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1097 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1098 #endif 1099 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1100 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1101 sqlite3VdbeAddOp3(v, OP_Function0, 0, regStat4+1, regStat4); 1102 sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); 1103 sqlite3VdbeChangeP5(v, 2+IsStat34); 1104 1105 /* Implementation of the following: 1106 ** 1107 ** Rewind csr 1108 ** if eof(csr) goto end_of_scan; 1109 ** regChng = 0 1110 ** goto next_push_0; 1111 ** 1112 */ 1113 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1114 VdbeCoverage(v); 1115 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1116 addrNextRow = sqlite3VdbeCurrentAddr(v); 1117 1118 if( nColTest>0 ){ 1119 int endDistinctTest = sqlite3VdbeMakeLabel(v); 1120 int *aGotoChng; /* Array of jump instruction addresses */ 1121 aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest); 1122 if( aGotoChng==0 ) continue; 1123 1124 /* 1125 ** next_row: 1126 ** regChng = 0 1127 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1128 ** regChng = 1 1129 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1130 ** ... 1131 ** regChng = N 1132 ** goto endDistinctTest 1133 */ 1134 sqlite3VdbeAddOp0(v, OP_Goto); 1135 addrNextRow = sqlite3VdbeCurrentAddr(v); 1136 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1137 /* For a single-column UNIQUE index, once we have found a non-NULL 1138 ** row, we know that all the rest will be distinct, so skip 1139 ** subsequent distinctness tests. */ 1140 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1141 VdbeCoverage(v); 1142 } 1143 for(i=0; i<nColTest; i++){ 1144 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1145 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1146 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1147 aGotoChng[i] = 1148 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1149 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1150 VdbeCoverage(v); 1151 } 1152 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1153 sqlite3VdbeGoto(v, endDistinctTest); 1154 1155 1156 /* 1157 ** chng_addr_0: 1158 ** regPrev(0) = idx(0) 1159 ** chng_addr_1: 1160 ** regPrev(1) = idx(1) 1161 ** ... 1162 */ 1163 sqlite3VdbeJumpHere(v, addrNextRow-1); 1164 for(i=0; i<nColTest; i++){ 1165 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1166 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1167 } 1168 sqlite3VdbeResolveLabel(v, endDistinctTest); 1169 sqlite3DbFree(db, aGotoChng); 1170 } 1171 1172 /* 1173 ** chng_addr_N: 1174 ** regRowid = idx(rowid) // STAT34 only 1175 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1176 ** Next csr 1177 ** if !eof(csr) goto next_row; 1178 */ 1179 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1180 assert( regRowid==(regStat4+2) ); 1181 if( HasRowid(pTab) ){ 1182 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1183 }else{ 1184 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1185 int j, k, regKey; 1186 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1187 for(j=0; j<pPk->nKeyCol; j++){ 1188 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1189 assert( k>=0 && k<pTab->nCol ); 1190 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1191 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1192 } 1193 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1194 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1195 } 1196 #endif 1197 assert( regChng==(regStat4+1) ); 1198 sqlite3VdbeAddOp3(v, OP_Function0, 1, regStat4, regTemp); 1199 sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); 1200 sqlite3VdbeChangeP5(v, 2+IsStat34); 1201 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1202 1203 /* Add the entry to the stat1 table. */ 1204 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1205 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1206 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1207 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1208 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1209 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1210 1211 /* Add the entries to the stat3 or stat4 table. */ 1212 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1213 { 1214 int regEq = regStat1; 1215 int regLt = regStat1+1; 1216 int regDLt = regStat1+2; 1217 int regSample = regStat1+3; 1218 int regCol = regStat1+4; 1219 int regSampleRowid = regCol + nCol; 1220 int addrNext; 1221 int addrIsNull; 1222 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1223 1224 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1225 1226 addrNext = sqlite3VdbeCurrentAddr(v); 1227 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1228 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1229 VdbeCoverage(v); 1230 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1231 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1232 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1233 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1234 /* We know that the regSampleRowid row exists because it was read by 1235 ** the previous loop. Thus the not-found jump of seekOp will never 1236 ** be taken */ 1237 VdbeCoverageNeverTaken(v); 1238 #ifdef SQLITE_ENABLE_STAT3 1239 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample); 1240 #else 1241 for(i=0; i<nCol; i++){ 1242 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1243 } 1244 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1245 #endif 1246 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1247 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1248 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1249 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1250 sqlite3VdbeJumpHere(v, addrIsNull); 1251 } 1252 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1253 1254 /* End of analysis */ 1255 sqlite3VdbeJumpHere(v, addrRewind); 1256 } 1257 1258 1259 /* Create a single sqlite_stat1 entry containing NULL as the index 1260 ** name and the row count as the content. 1261 */ 1262 if( pOnlyIdx==0 && needTableCnt ){ 1263 VdbeComment((v, "%s", pTab->zName)); 1264 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1265 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1266 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1267 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1268 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1269 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1270 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1271 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1272 sqlite3VdbeJumpHere(v, jZeroRows); 1273 } 1274 } 1275 1276 1277 /* 1278 ** Generate code that will cause the most recent index analysis to 1279 ** be loaded into internal hash tables where is can be used. 1280 */ 1281 static void loadAnalysis(Parse *pParse, int iDb){ 1282 Vdbe *v = sqlite3GetVdbe(pParse); 1283 if( v ){ 1284 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1285 } 1286 } 1287 1288 /* 1289 ** Generate code that will do an analysis of an entire database 1290 */ 1291 static void analyzeDatabase(Parse *pParse, int iDb){ 1292 sqlite3 *db = pParse->db; 1293 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1294 HashElem *k; 1295 int iStatCur; 1296 int iMem; 1297 int iTab; 1298 1299 sqlite3BeginWriteOperation(pParse, 0, iDb); 1300 iStatCur = pParse->nTab; 1301 pParse->nTab += 3; 1302 openStatTable(pParse, iDb, iStatCur, 0, 0); 1303 iMem = pParse->nMem+1; 1304 iTab = pParse->nTab; 1305 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1306 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1307 Table *pTab = (Table*)sqliteHashData(k); 1308 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1309 } 1310 loadAnalysis(pParse, iDb); 1311 } 1312 1313 /* 1314 ** Generate code that will do an analysis of a single table in 1315 ** a database. If pOnlyIdx is not NULL then it is a single index 1316 ** in pTab that should be analyzed. 1317 */ 1318 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1319 int iDb; 1320 int iStatCur; 1321 1322 assert( pTab!=0 ); 1323 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1324 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1325 sqlite3BeginWriteOperation(pParse, 0, iDb); 1326 iStatCur = pParse->nTab; 1327 pParse->nTab += 3; 1328 if( pOnlyIdx ){ 1329 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1330 }else{ 1331 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1332 } 1333 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1334 loadAnalysis(pParse, iDb); 1335 } 1336 1337 /* 1338 ** Generate code for the ANALYZE command. The parser calls this routine 1339 ** when it recognizes an ANALYZE command. 1340 ** 1341 ** ANALYZE -- 1 1342 ** ANALYZE <database> -- 2 1343 ** ANALYZE ?<database>.?<tablename> -- 3 1344 ** 1345 ** Form 1 causes all indices in all attached databases to be analyzed. 1346 ** Form 2 analyzes all indices the single database named. 1347 ** Form 3 analyzes all indices associated with the named table. 1348 */ 1349 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1350 sqlite3 *db = pParse->db; 1351 int iDb; 1352 int i; 1353 char *z, *zDb; 1354 Table *pTab; 1355 Index *pIdx; 1356 Token *pTableName; 1357 Vdbe *v; 1358 1359 /* Read the database schema. If an error occurs, leave an error message 1360 ** and code in pParse and return NULL. */ 1361 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1362 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1363 return; 1364 } 1365 1366 assert( pName2!=0 || pName1==0 ); 1367 if( pName1==0 ){ 1368 /* Form 1: Analyze everything */ 1369 for(i=0; i<db->nDb; i++){ 1370 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1371 analyzeDatabase(pParse, i); 1372 } 1373 }else if( pName2->n==0 ){ 1374 /* Form 2: Analyze the database or table named */ 1375 iDb = sqlite3FindDb(db, pName1); 1376 if( iDb>=0 ){ 1377 analyzeDatabase(pParse, iDb); 1378 }else{ 1379 z = sqlite3NameFromToken(db, pName1); 1380 if( z ){ 1381 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ 1382 analyzeTable(pParse, pIdx->pTable, pIdx); 1383 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ 1384 analyzeTable(pParse, pTab, 0); 1385 } 1386 sqlite3DbFree(db, z); 1387 } 1388 } 1389 }else{ 1390 /* Form 3: Analyze the fully qualified table name */ 1391 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1392 if( iDb>=0 ){ 1393 zDb = db->aDb[iDb].zName; 1394 z = sqlite3NameFromToken(db, pTableName); 1395 if( z ){ 1396 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1397 analyzeTable(pParse, pIdx->pTable, pIdx); 1398 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1399 analyzeTable(pParse, pTab, 0); 1400 } 1401 sqlite3DbFree(db, z); 1402 } 1403 } 1404 } 1405 v = sqlite3GetVdbe(pParse); 1406 if( v ) sqlite3VdbeAddOp0(v, OP_Expire); 1407 } 1408 1409 /* 1410 ** Used to pass information from the analyzer reader through to the 1411 ** callback routine. 1412 */ 1413 typedef struct analysisInfo analysisInfo; 1414 struct analysisInfo { 1415 sqlite3 *db; 1416 const char *zDatabase; 1417 }; 1418 1419 /* 1420 ** The first argument points to a nul-terminated string containing a 1421 ** list of space separated integers. Read the first nOut of these into 1422 ** the array aOut[]. 1423 */ 1424 static void decodeIntArray( 1425 char *zIntArray, /* String containing int array to decode */ 1426 int nOut, /* Number of slots in aOut[] */ 1427 tRowcnt *aOut, /* Store integers here */ 1428 LogEst *aLog, /* Or, if aOut==0, here */ 1429 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1430 ){ 1431 char *z = zIntArray; 1432 int c; 1433 int i; 1434 tRowcnt v; 1435 1436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1437 if( z==0 ) z = ""; 1438 #else 1439 assert( z!=0 ); 1440 #endif 1441 for(i=0; *z && i<nOut; i++){ 1442 v = 0; 1443 while( (c=z[0])>='0' && c<='9' ){ 1444 v = v*10 + c - '0'; 1445 z++; 1446 } 1447 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1448 if( aOut ) aOut[i] = v; 1449 if( aLog ) aLog[i] = sqlite3LogEst(v); 1450 #else 1451 assert( aOut==0 ); 1452 UNUSED_PARAMETER(aOut); 1453 assert( aLog!=0 ); 1454 aLog[i] = sqlite3LogEst(v); 1455 #endif 1456 if( *z==' ' ) z++; 1457 } 1458 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1459 assert( pIndex!=0 ); { 1460 #else 1461 if( pIndex ){ 1462 #endif 1463 pIndex->bUnordered = 0; 1464 pIndex->noSkipScan = 0; 1465 while( z[0] ){ 1466 if( sqlite3_strglob("unordered*", z)==0 ){ 1467 pIndex->bUnordered = 1; 1468 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1469 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); 1470 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1471 pIndex->noSkipScan = 1; 1472 } 1473 #ifdef SQLITE_ENABLE_COSTMULT 1474 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1475 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1476 } 1477 #endif 1478 while( z[0]!=0 && z[0]!=' ' ) z++; 1479 while( z[0]==' ' ) z++; 1480 } 1481 } 1482 } 1483 1484 /* 1485 ** This callback is invoked once for each index when reading the 1486 ** sqlite_stat1 table. 1487 ** 1488 ** argv[0] = name of the table 1489 ** argv[1] = name of the index (might be NULL) 1490 ** argv[2] = results of analysis - on integer for each column 1491 ** 1492 ** Entries for which argv[1]==NULL simply record the number of rows in 1493 ** the table. 1494 */ 1495 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1496 analysisInfo *pInfo = (analysisInfo*)pData; 1497 Index *pIndex; 1498 Table *pTable; 1499 const char *z; 1500 1501 assert( argc==3 ); 1502 UNUSED_PARAMETER2(NotUsed, argc); 1503 1504 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1505 return 0; 1506 } 1507 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1508 if( pTable==0 ){ 1509 return 0; 1510 } 1511 if( argv[1]==0 ){ 1512 pIndex = 0; 1513 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1514 pIndex = sqlite3PrimaryKeyIndex(pTable); 1515 }else{ 1516 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1517 } 1518 z = argv[2]; 1519 1520 if( pIndex ){ 1521 tRowcnt *aiRowEst = 0; 1522 int nCol = pIndex->nKeyCol+1; 1523 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1524 /* Index.aiRowEst may already be set here if there are duplicate 1525 ** sqlite_stat1 entries for this index. In that case just clobber 1526 ** the old data with the new instead of allocating a new array. */ 1527 if( pIndex->aiRowEst==0 ){ 1528 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1529 if( pIndex->aiRowEst==0 ) pInfo->db->mallocFailed = 1; 1530 } 1531 aiRowEst = pIndex->aiRowEst; 1532 #endif 1533 pIndex->bUnordered = 0; 1534 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1535 if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1536 }else{ 1537 Index fakeIdx; 1538 fakeIdx.szIdxRow = pTable->szTabRow; 1539 #ifdef SQLITE_ENABLE_COSTMULT 1540 fakeIdx.pTable = pTable; 1541 #endif 1542 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1543 pTable->szTabRow = fakeIdx.szIdxRow; 1544 } 1545 1546 return 0; 1547 } 1548 1549 /* 1550 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1551 ** and its contents. 1552 */ 1553 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1555 if( pIdx->aSample ){ 1556 int j; 1557 for(j=0; j<pIdx->nSample; j++){ 1558 IndexSample *p = &pIdx->aSample[j]; 1559 sqlite3DbFree(db, p->p); 1560 } 1561 sqlite3DbFree(db, pIdx->aSample); 1562 } 1563 if( db && db->pnBytesFreed==0 ){ 1564 pIdx->nSample = 0; 1565 pIdx->aSample = 0; 1566 } 1567 #else 1568 UNUSED_PARAMETER(db); 1569 UNUSED_PARAMETER(pIdx); 1570 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1571 } 1572 1573 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1574 /* 1575 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1576 ** stored in pIdx->aSample[]. 1577 */ 1578 static void initAvgEq(Index *pIdx){ 1579 if( pIdx ){ 1580 IndexSample *aSample = pIdx->aSample; 1581 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1582 int iCol; 1583 int nCol = 1; 1584 if( pIdx->nSampleCol>1 ){ 1585 /* If this is stat4 data, then calculate aAvgEq[] values for all 1586 ** sample columns except the last. The last is always set to 1, as 1587 ** once the trailing PK fields are considered all index keys are 1588 ** unique. */ 1589 nCol = pIdx->nSampleCol-1; 1590 pIdx->aAvgEq[nCol] = 1; 1591 } 1592 for(iCol=0; iCol<nCol; iCol++){ 1593 int nSample = pIdx->nSample; 1594 int i; /* Used to iterate through samples */ 1595 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1596 tRowcnt avgEq = 0; 1597 tRowcnt nRow; /* Number of rows in index */ 1598 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1599 i64 nDist100; /* Number of distinct values in index */ 1600 1601 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1602 nRow = pFinal->anLt[iCol]; 1603 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1604 nSample--; 1605 }else{ 1606 nRow = pIdx->aiRowEst[0]; 1607 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1608 } 1609 pIdx->nRowEst0 = nRow; 1610 1611 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1612 ** occur in the stat4 table for this index. Set sumEq to the sum of 1613 ** the nEq values for column iCol for the same set (adding the value 1614 ** only once where there exist duplicate prefixes). */ 1615 for(i=0; i<nSample; i++){ 1616 if( i==(pIdx->nSample-1) 1617 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1618 ){ 1619 sumEq += aSample[i].anEq[iCol]; 1620 nSum100 += 100; 1621 } 1622 } 1623 1624 if( nDist100>nSum100 ){ 1625 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1626 } 1627 if( avgEq==0 ) avgEq = 1; 1628 pIdx->aAvgEq[iCol] = avgEq; 1629 } 1630 } 1631 } 1632 1633 /* 1634 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1635 ** is supplied instead, find the PRIMARY KEY index for that table. 1636 */ 1637 static Index *findIndexOrPrimaryKey( 1638 sqlite3 *db, 1639 const char *zName, 1640 const char *zDb 1641 ){ 1642 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1643 if( pIdx==0 ){ 1644 Table *pTab = sqlite3FindTable(db, zName, zDb); 1645 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1646 } 1647 return pIdx; 1648 } 1649 1650 /* 1651 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1652 ** into the relevant Index.aSample[] arrays. 1653 ** 1654 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1655 ** data equivalent to the following (statements are different for stat3, 1656 ** see the caller of this function for details): 1657 ** 1658 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1659 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1660 ** 1661 ** where %Q is replaced with the database name before the SQL is executed. 1662 */ 1663 static int loadStatTbl( 1664 sqlite3 *db, /* Database handle */ 1665 int bStat3, /* Assume single column records only */ 1666 const char *zSql1, /* SQL statement 1 (see above) */ 1667 const char *zSql2, /* SQL statement 2 (see above) */ 1668 const char *zDb /* Database name (e.g. "main") */ 1669 ){ 1670 int rc; /* Result codes from subroutines */ 1671 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1672 char *zSql; /* Text of the SQL statement */ 1673 Index *pPrevIdx = 0; /* Previous index in the loop */ 1674 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1675 1676 assert( db->lookaside.bEnabled==0 ); 1677 zSql = sqlite3MPrintf(db, zSql1, zDb); 1678 if( !zSql ){ 1679 return SQLITE_NOMEM; 1680 } 1681 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1682 sqlite3DbFree(db, zSql); 1683 if( rc ) return rc; 1684 1685 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1686 int nIdxCol = 1; /* Number of columns in stat4 records */ 1687 1688 char *zIndex; /* Index name */ 1689 Index *pIdx; /* Pointer to the index object */ 1690 int nSample; /* Number of samples */ 1691 int nByte; /* Bytes of space required */ 1692 int i; /* Bytes of space required */ 1693 tRowcnt *pSpace; 1694 1695 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1696 if( zIndex==0 ) continue; 1697 nSample = sqlite3_column_int(pStmt, 1); 1698 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1699 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1700 /* Index.nSample is non-zero at this point if data has already been 1701 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1702 if( pIdx==0 || pIdx->nSample ) continue; 1703 if( bStat3==0 ){ 1704 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1705 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1706 nIdxCol = pIdx->nKeyCol; 1707 }else{ 1708 nIdxCol = pIdx->nColumn; 1709 } 1710 } 1711 pIdx->nSampleCol = nIdxCol; 1712 nByte = sizeof(IndexSample) * nSample; 1713 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1714 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1715 1716 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1717 if( pIdx->aSample==0 ){ 1718 sqlite3_finalize(pStmt); 1719 return SQLITE_NOMEM; 1720 } 1721 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1722 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1723 for(i=0; i<nSample; i++){ 1724 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1725 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1726 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1727 } 1728 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1729 } 1730 rc = sqlite3_finalize(pStmt); 1731 if( rc ) return rc; 1732 1733 zSql = sqlite3MPrintf(db, zSql2, zDb); 1734 if( !zSql ){ 1735 return SQLITE_NOMEM; 1736 } 1737 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1738 sqlite3DbFree(db, zSql); 1739 if( rc ) return rc; 1740 1741 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1742 char *zIndex; /* Index name */ 1743 Index *pIdx; /* Pointer to the index object */ 1744 int nCol = 1; /* Number of columns in index */ 1745 1746 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1747 if( zIndex==0 ) continue; 1748 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1749 if( pIdx==0 ) continue; 1750 /* This next condition is true if data has already been loaded from 1751 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1752 nCol = pIdx->nSampleCol; 1753 if( bStat3 && nCol>1 ) continue; 1754 if( pIdx!=pPrevIdx ){ 1755 initAvgEq(pPrevIdx); 1756 pPrevIdx = pIdx; 1757 } 1758 pSample = &pIdx->aSample[pIdx->nSample]; 1759 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1760 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1761 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1762 1763 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1764 ** This is in case the sample record is corrupted. In that case, the 1765 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1766 ** end of the allocated buffer before it realizes it is dealing with 1767 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1768 ** a buffer overread. */ 1769 pSample->n = sqlite3_column_bytes(pStmt, 4); 1770 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1771 if( pSample->p==0 ){ 1772 sqlite3_finalize(pStmt); 1773 return SQLITE_NOMEM; 1774 } 1775 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1776 pIdx->nSample++; 1777 } 1778 rc = sqlite3_finalize(pStmt); 1779 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1780 return rc; 1781 } 1782 1783 /* 1784 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1785 ** the Index.aSample[] arrays of all indices. 1786 */ 1787 static int loadStat4(sqlite3 *db, const char *zDb){ 1788 int rc = SQLITE_OK; /* Result codes from subroutines */ 1789 1790 assert( db->lookaside.bEnabled==0 ); 1791 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1792 rc = loadStatTbl(db, 0, 1793 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1794 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1795 zDb 1796 ); 1797 } 1798 1799 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1800 rc = loadStatTbl(db, 1, 1801 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1802 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1803 zDb 1804 ); 1805 } 1806 1807 return rc; 1808 } 1809 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1810 1811 /* 1812 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1813 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1814 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1815 ** Index.aSample[] arrays. 1816 ** 1817 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1818 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1819 ** during compilation and the sqlite_stat3/4 table is present, no data is 1820 ** read from it. 1821 ** 1822 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1823 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1824 ** returned. However, in this case, data is read from the sqlite_stat1 1825 ** table (if it is present) before returning. 1826 ** 1827 ** If an OOM error occurs, this function always sets db->mallocFailed. 1828 ** This means if the caller does not care about other errors, the return 1829 ** code may be ignored. 1830 */ 1831 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1832 analysisInfo sInfo; 1833 HashElem *i; 1834 char *zSql; 1835 int rc; 1836 1837 assert( iDb>=0 && iDb<db->nDb ); 1838 assert( db->aDb[iDb].pBt!=0 ); 1839 1840 /* Clear any prior statistics */ 1841 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1842 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1843 Index *pIdx = sqliteHashData(i); 1844 sqlite3DefaultRowEst(pIdx); 1845 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1846 sqlite3DeleteIndexSamples(db, pIdx); 1847 pIdx->aSample = 0; 1848 #endif 1849 } 1850 1851 /* Check to make sure the sqlite_stat1 table exists */ 1852 sInfo.db = db; 1853 sInfo.zDatabase = db->aDb[iDb].zName; 1854 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ 1855 return SQLITE_ERROR; 1856 } 1857 1858 /* Load new statistics out of the sqlite_stat1 table */ 1859 zSql = sqlite3MPrintf(db, 1860 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1861 if( zSql==0 ){ 1862 rc = SQLITE_NOMEM; 1863 }else{ 1864 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1865 sqlite3DbFree(db, zSql); 1866 } 1867 1868 1869 /* Load the statistics from the sqlite_stat4 table. */ 1870 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1871 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){ 1872 int lookasideEnabled = db->lookaside.bEnabled; 1873 db->lookaside.bEnabled = 0; 1874 rc = loadStat4(db, sInfo.zDatabase); 1875 db->lookaside.bEnabled = lookasideEnabled; 1876 } 1877 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1878 Index *pIdx = sqliteHashData(i); 1879 sqlite3_free(pIdx->aiRowEst); 1880 pIdx->aiRowEst = 0; 1881 } 1882 #endif 1883 1884 if( rc==SQLITE_NOMEM ){ 1885 db->mallocFailed = 1; 1886 } 1887 return rc; 1888 } 1889 1890 1891 #endif /* SQLITE_OMIT_ANALYZE */ 1892