xref: /sqlite-3.40.0/src/analyze.c (revision bd5af9ea)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
35 ** not possible to enable both STAT3 and STAT4 at the same time.  If they
36 ** are both enabled, then STAT4 takes precedence.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 # define IsStat3     0
148 #elif defined(SQLITE_ENABLE_STAT3)
149 # define IsStat4     0
150 # define IsStat3     1
151 #else
152 # define IsStat4     0
153 # define IsStat3     0
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
156 #endif
157 #define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */
158 
159 /*
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
162 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
164 **
165 ** If the sqlite_statN tables do not previously exist, it is created.
166 **
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
171 */
172 static void openStatTable(
173   Parse *pParse,          /* Parsing context */
174   int iDb,                /* The database we are looking in */
175   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
176   const char *zWhere,     /* Delete entries for this table or index */
177   const char *zWhereType  /* Either "tbl" or "idx" */
178 ){
179   static const struct {
180     const char *zName;
181     const char *zCols;
182   } aTable[] = {
183     { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186     { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189     { "sqlite_stat4", 0 },
190 #else
191     { "sqlite_stat3", 0 },
192     { "sqlite_stat4", 0 },
193 #endif
194   };
195   int i;
196   sqlite3 *db = pParse->db;
197   Db *pDb;
198   Vdbe *v = sqlite3GetVdbe(pParse);
199   int aRoot[ArraySize(aTable)];
200   u8 aCreateTbl[ArraySize(aTable)];
201 
202   if( v==0 ) return;
203   assert( sqlite3BtreeHoldsAllMutexes(db) );
204   assert( sqlite3VdbeDb(v)==db );
205   pDb = &db->aDb[iDb];
206 
207   /* Create new statistic tables if they do not exist, or clear them
208   ** if they do already exist.
209   */
210   for(i=0; i<ArraySize(aTable); i++){
211     const char *zTab = aTable[i].zName;
212     Table *pStat;
213     if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
214       if( aTable[i].zCols ){
215         /* The sqlite_statN table does not exist. Create it. Note that a
216         ** side-effect of the CREATE TABLE statement is to leave the rootpage
217         ** of the new table in register pParse->regRoot. This is important
218         ** because the OpenWrite opcode below will be needing it. */
219         sqlite3NestedParse(pParse,
220             "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
221         );
222         aRoot[i] = pParse->regRoot;
223         aCreateTbl[i] = OPFLAG_P2ISREG;
224       }
225     }else{
226       /* The table already exists. If zWhere is not NULL, delete all entries
227       ** associated with the table zWhere. If zWhere is NULL, delete the
228       ** entire contents of the table. */
229       aRoot[i] = pStat->tnum;
230       aCreateTbl[i] = 0;
231       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
232       if( zWhere ){
233         sqlite3NestedParse(pParse,
234            "DELETE FROM %Q.%s WHERE %s=%Q",
235            pDb->zName, zTab, zWhereType, zWhere
236         );
237       }else{
238         /* The sqlite_stat[134] table already exists.  Delete all rows. */
239         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
240       }
241     }
242   }
243 
244   /* Open the sqlite_stat[134] tables for writing. */
245   for(i=0; aTable[i].zCols; i++){
246     assert( i<ArraySize(aTable) );
247     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
248     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
249     VdbeComment((v, aTable[i].zName));
250   }
251 }
252 
253 /*
254 ** Recommended number of samples for sqlite_stat4
255 */
256 #ifndef SQLITE_STAT4_SAMPLES
257 # define SQLITE_STAT4_SAMPLES 24
258 #endif
259 
260 /*
261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
262 ** share an instance of the following structure to hold their state
263 ** information.
264 */
265 typedef struct Stat4Accum Stat4Accum;
266 typedef struct Stat4Sample Stat4Sample;
267 struct Stat4Sample {
268   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
269   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
271   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
272   union {
273     i64 iRowid;                     /* Rowid in main table of the key */
274     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
275   } u;
276   u32 nRowid;                     /* Sizeof aRowid[] */
277   u8 isPSample;                   /* True if a periodic sample */
278   int iCol;                       /* If !isPSample, the reason for inclusion */
279   u32 iHash;                      /* Tiebreaker hash */
280 #endif
281 };
282 struct Stat4Accum {
283   tRowcnt nRow;             /* Number of rows in the entire table */
284   tRowcnt nPSample;         /* How often to do a periodic sample */
285   int nCol;                 /* Number of columns in index + pk/rowid */
286   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
287   int mxSample;             /* Maximum number of samples to accumulate */
288   Stat4Sample current;      /* Current row as a Stat4Sample */
289   u32 iPrn;                 /* Pseudo-random number used for sampling */
290   Stat4Sample *aBest;       /* Array of nCol best samples */
291   int iMin;                 /* Index in a[] of entry with minimum score */
292   int nSample;              /* Current number of samples */
293   int iGet;                 /* Index of current sample accessed by stat_get() */
294   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
295   sqlite3 *db;              /* Database connection, for malloc() */
296 };
297 
298 /* Reclaim memory used by a Stat4Sample
299 */
300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
301 static void sampleClear(sqlite3 *db, Stat4Sample *p){
302   assert( db!=0 );
303   if( p->nRowid ){
304     sqlite3DbFree(db, p->u.aRowid);
305     p->nRowid = 0;
306   }
307 }
308 #endif
309 
310 /* Initialize the BLOB value of a ROWID
311 */
312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
314   assert( db!=0 );
315   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
316   p->u.aRowid = sqlite3DbMallocRaw(db, n);
317   if( p->u.aRowid ){
318     p->nRowid = n;
319     memcpy(p->u.aRowid, pData, n);
320   }else{
321     p->nRowid = 0;
322   }
323 }
324 #endif
325 
326 /* Initialize the INTEGER value of a ROWID.
327 */
328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
330   assert( db!=0 );
331   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
332   p->nRowid = 0;
333   p->u.iRowid = iRowid;
334 }
335 #endif
336 
337 
338 /*
339 ** Copy the contents of object (*pFrom) into (*pTo).
340 */
341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
343   pTo->isPSample = pFrom->isPSample;
344   pTo->iCol = pFrom->iCol;
345   pTo->iHash = pFrom->iHash;
346   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
347   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
348   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
349   if( pFrom->nRowid ){
350     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
351   }else{
352     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
353   }
354 }
355 #endif
356 
357 /*
358 ** Reclaim all memory of a Stat4Accum structure.
359 */
360 static void stat4Destructor(void *pOld){
361   Stat4Accum *p = (Stat4Accum*)pOld;
362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
363   int i;
364   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
365   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
366   sampleClear(p->db, &p->current);
367 #endif
368   sqlite3DbFree(p->db, p);
369 }
370 
371 /*
372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
373 ** are:
374 **     N:    The number of columns in the index including the rowid/pk (note 1)
375 **     K:    The number of columns in the index excluding the rowid/pk.
376 **     C:    The number of rows in the index (note 2)
377 **
378 ** Note 1:  In the special case of the covering index that implements a
379 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
380 ** total number of columns in the table.
381 **
382 ** Note 2:  C is only used for STAT3 and STAT4.
383 **
384 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
385 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
386 ** PRIMARY KEY of the table.  The covering index that implements the
387 ** original WITHOUT ROWID table as N==K as a special case.
388 **
389 ** This routine allocates the Stat4Accum object in heap memory. The return
390 ** value is a pointer to the Stat4Accum object.  The datatype of the
391 ** return value is BLOB, but it is really just a pointer to the Stat4Accum
392 ** object.
393 */
394 static void statInit(
395   sqlite3_context *context,
396   int argc,
397   sqlite3_value **argv
398 ){
399   Stat4Accum *p;
400   int nCol;                       /* Number of columns in index being sampled */
401   int nKeyCol;                    /* Number of key columns */
402   int nColUp;                     /* nCol rounded up for alignment */
403   int n;                          /* Bytes of space to allocate */
404   sqlite3 *db;                    /* Database connection */
405 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
406   int mxSample = SQLITE_STAT4_SAMPLES;
407 #endif
408 
409   /* Decode the three function arguments */
410   UNUSED_PARAMETER(argc);
411   nCol = sqlite3_value_int(argv[0]);
412   assert( nCol>0 );
413   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
414   nKeyCol = sqlite3_value_int(argv[1]);
415   assert( nKeyCol<=nCol );
416   assert( nKeyCol>0 );
417 
418   /* Allocate the space required for the Stat4Accum object */
419   n = sizeof(*p)
420     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
421     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
422 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
423     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
424     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
425     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
426 #endif
427   ;
428   db = sqlite3_context_db_handle(context);
429   p = sqlite3DbMallocZero(db, n);
430   if( p==0 ){
431     sqlite3_result_error_nomem(context);
432     return;
433   }
434 
435   p->db = db;
436   p->nRow = 0;
437   p->nCol = nCol;
438   p->nKeyCol = nKeyCol;
439   p->current.anDLt = (tRowcnt*)&p[1];
440   p->current.anEq = &p->current.anDLt[nColUp];
441 
442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
443   {
444     u8 *pSpace;                     /* Allocated space not yet assigned */
445     int i;                          /* Used to iterate through p->aSample[] */
446 
447     p->iGet = -1;
448     p->mxSample = mxSample;
449     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
450     p->current.anLt = &p->current.anEq[nColUp];
451     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
452 
453     /* Set up the Stat4Accum.a[] and aBest[] arrays */
454     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
455     p->aBest = &p->a[mxSample];
456     pSpace = (u8*)(&p->a[mxSample+nCol]);
457     for(i=0; i<(mxSample+nCol); i++){
458       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
459       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
460       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
461     }
462     assert( (pSpace - (u8*)p)==n );
463 
464     for(i=0; i<nCol; i++){
465       p->aBest[i].iCol = i;
466     }
467   }
468 #endif
469 
470   /* Return a pointer to the allocated object to the caller.  Note that
471   ** only the pointer (the 2nd parameter) matters.  The size of the object
472   ** (given by the 3rd parameter) is never used and can be any positive
473   ** value. */
474   sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
475 }
476 static const FuncDef statInitFuncdef = {
477   2+IsStat34,      /* nArg */
478   SQLITE_UTF8,     /* funcFlags */
479   0,               /* pUserData */
480   0,               /* pNext */
481   statInit,        /* xSFunc */
482   0,               /* xFinalize */
483   "stat_init",     /* zName */
484   0,               /* pHash */
485   0                /* pDestructor */
486 };
487 
488 #ifdef SQLITE_ENABLE_STAT4
489 /*
490 ** pNew and pOld are both candidate non-periodic samples selected for
491 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
492 ** considering only any trailing columns and the sample hash value, this
493 ** function returns true if sample pNew is to be preferred over pOld.
494 ** In other words, if we assume that the cardinalities of the selected
495 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
496 **
497 ** This function assumes that for each argument sample, the contents of
498 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
499 */
500 static int sampleIsBetterPost(
501   Stat4Accum *pAccum,
502   Stat4Sample *pNew,
503   Stat4Sample *pOld
504 ){
505   int nCol = pAccum->nCol;
506   int i;
507   assert( pNew->iCol==pOld->iCol );
508   for(i=pNew->iCol+1; i<nCol; i++){
509     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
510     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
511   }
512   if( pNew->iHash>pOld->iHash ) return 1;
513   return 0;
514 }
515 #endif
516 
517 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
518 /*
519 ** Return true if pNew is to be preferred over pOld.
520 **
521 ** This function assumes that for each argument sample, the contents of
522 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
523 */
524 static int sampleIsBetter(
525   Stat4Accum *pAccum,
526   Stat4Sample *pNew,
527   Stat4Sample *pOld
528 ){
529   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
530   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
531 
532   assert( pOld->isPSample==0 && pNew->isPSample==0 );
533   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
534 
535   if( (nEqNew>nEqOld) ) return 1;
536 #ifdef SQLITE_ENABLE_STAT4
537   if( nEqNew==nEqOld ){
538     if( pNew->iCol<pOld->iCol ) return 1;
539     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
540   }
541   return 0;
542 #else
543   return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
544 #endif
545 }
546 
547 /*
548 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
549 ** remove the least desirable sample from p->a[] to make room.
550 */
551 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
552   Stat4Sample *pSample = 0;
553   int i;
554 
555   assert( IsStat4 || nEqZero==0 );
556 
557 #ifdef SQLITE_ENABLE_STAT4
558   if( pNew->isPSample==0 ){
559     Stat4Sample *pUpgrade = 0;
560     assert( pNew->anEq[pNew->iCol]>0 );
561 
562     /* This sample is being added because the prefix that ends in column
563     ** iCol occurs many times in the table. However, if we have already
564     ** added a sample that shares this prefix, there is no need to add
565     ** this one. Instead, upgrade the priority of the highest priority
566     ** existing sample that shares this prefix.  */
567     for(i=p->nSample-1; i>=0; i--){
568       Stat4Sample *pOld = &p->a[i];
569       if( pOld->anEq[pNew->iCol]==0 ){
570         if( pOld->isPSample ) return;
571         assert( pOld->iCol>pNew->iCol );
572         assert( sampleIsBetter(p, pNew, pOld) );
573         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
574           pUpgrade = pOld;
575         }
576       }
577     }
578     if( pUpgrade ){
579       pUpgrade->iCol = pNew->iCol;
580       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
581       goto find_new_min;
582     }
583   }
584 #endif
585 
586   /* If necessary, remove sample iMin to make room for the new sample. */
587   if( p->nSample>=p->mxSample ){
588     Stat4Sample *pMin = &p->a[p->iMin];
589     tRowcnt *anEq = pMin->anEq;
590     tRowcnt *anLt = pMin->anLt;
591     tRowcnt *anDLt = pMin->anDLt;
592     sampleClear(p->db, pMin);
593     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
594     pSample = &p->a[p->nSample-1];
595     pSample->nRowid = 0;
596     pSample->anEq = anEq;
597     pSample->anDLt = anDLt;
598     pSample->anLt = anLt;
599     p->nSample = p->mxSample-1;
600   }
601 
602   /* The "rows less-than" for the rowid column must be greater than that
603   ** for the last sample in the p->a[] array. Otherwise, the samples would
604   ** be out of order. */
605 #ifdef SQLITE_ENABLE_STAT4
606   assert( p->nSample==0
607        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
608 #endif
609 
610   /* Insert the new sample */
611   pSample = &p->a[p->nSample];
612   sampleCopy(p, pSample, pNew);
613   p->nSample++;
614 
615   /* Zero the first nEqZero entries in the anEq[] array. */
616   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
617 
618 #ifdef SQLITE_ENABLE_STAT4
619  find_new_min:
620 #endif
621   if( p->nSample>=p->mxSample ){
622     int iMin = -1;
623     for(i=0; i<p->mxSample; i++){
624       if( p->a[i].isPSample ) continue;
625       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
626         iMin = i;
627       }
628     }
629     assert( iMin>=0 );
630     p->iMin = iMin;
631   }
632 }
633 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
634 
635 /*
636 ** Field iChng of the index being scanned has changed. So at this point
637 ** p->current contains a sample that reflects the previous row of the
638 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
639 ** correct at this point.
640 */
641 static void samplePushPrevious(Stat4Accum *p, int iChng){
642 #ifdef SQLITE_ENABLE_STAT4
643   int i;
644 
645   /* Check if any samples from the aBest[] array should be pushed
646   ** into IndexSample.a[] at this point.  */
647   for(i=(p->nCol-2); i>=iChng; i--){
648     Stat4Sample *pBest = &p->aBest[i];
649     pBest->anEq[i] = p->current.anEq[i];
650     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
651       sampleInsert(p, pBest, i);
652     }
653   }
654 
655   /* Update the anEq[] fields of any samples already collected. */
656   for(i=p->nSample-1; i>=0; i--){
657     int j;
658     for(j=iChng; j<p->nCol; j++){
659       if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
660     }
661   }
662 #endif
663 
664 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
665   if( iChng==0 ){
666     tRowcnt nLt = p->current.anLt[0];
667     tRowcnt nEq = p->current.anEq[0];
668 
669     /* Check if this is to be a periodic sample. If so, add it. */
670     if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
671       p->current.isPSample = 1;
672       sampleInsert(p, &p->current, 0);
673       p->current.isPSample = 0;
674     }else
675 
676     /* Or if it is a non-periodic sample. Add it in this case too. */
677     if( p->nSample<p->mxSample
678      || sampleIsBetter(p, &p->current, &p->a[p->iMin])
679     ){
680       sampleInsert(p, &p->current, 0);
681     }
682   }
683 #endif
684 
685 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
686   UNUSED_PARAMETER( p );
687   UNUSED_PARAMETER( iChng );
688 #endif
689 }
690 
691 /*
692 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
693 ** Arguments:
694 **
695 **    P     Pointer to the Stat4Accum object created by stat_init()
696 **    C     Index of left-most column to differ from previous row
697 **    R     Rowid for the current row.  Might be a key record for
698 **          WITHOUT ROWID tables.
699 **
700 ** This SQL function always returns NULL.  It's purpose it to accumulate
701 ** statistical data and/or samples in the Stat4Accum object about the
702 ** index being analyzed.  The stat_get() SQL function will later be used to
703 ** extract relevant information for constructing the sqlite_statN tables.
704 **
705 ** The R parameter is only used for STAT3 and STAT4
706 */
707 static void statPush(
708   sqlite3_context *context,
709   int argc,
710   sqlite3_value **argv
711 ){
712   int i;
713 
714   /* The three function arguments */
715   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
716   int iChng = sqlite3_value_int(argv[1]);
717 
718   UNUSED_PARAMETER( argc );
719   UNUSED_PARAMETER( context );
720   assert( p->nCol>0 );
721   assert( iChng<p->nCol );
722 
723   if( p->nRow==0 ){
724     /* This is the first call to this function. Do initialization. */
725     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
726   }else{
727     /* Second and subsequent calls get processed here */
728     samplePushPrevious(p, iChng);
729 
730     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
731     ** to the current row of the index. */
732     for(i=0; i<iChng; i++){
733       p->current.anEq[i]++;
734     }
735     for(i=iChng; i<p->nCol; i++){
736       p->current.anDLt[i]++;
737 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
738       p->current.anLt[i] += p->current.anEq[i];
739 #endif
740       p->current.anEq[i] = 1;
741     }
742   }
743   p->nRow++;
744 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
745   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
746     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
747   }else{
748     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
749                                        sqlite3_value_blob(argv[2]));
750   }
751   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
752 #endif
753 
754 #ifdef SQLITE_ENABLE_STAT4
755   {
756     tRowcnt nLt = p->current.anLt[p->nCol-1];
757 
758     /* Check if this is to be a periodic sample. If so, add it. */
759     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
760       p->current.isPSample = 1;
761       p->current.iCol = 0;
762       sampleInsert(p, &p->current, p->nCol-1);
763       p->current.isPSample = 0;
764     }
765 
766     /* Update the aBest[] array. */
767     for(i=0; i<(p->nCol-1); i++){
768       p->current.iCol = i;
769       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
770         sampleCopy(p, &p->aBest[i], &p->current);
771       }
772     }
773   }
774 #endif
775 }
776 static const FuncDef statPushFuncdef = {
777   2+IsStat34,      /* nArg */
778   SQLITE_UTF8,     /* funcFlags */
779   0,               /* pUserData */
780   0,               /* pNext */
781   statPush,        /* xSFunc */
782   0,               /* xFinalize */
783   "stat_push",     /* zName */
784   0,               /* pHash */
785   0                /* pDestructor */
786 };
787 
788 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
789 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
790 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
791 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
792 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
793 
794 /*
795 ** Implementation of the stat_get(P,J) SQL function.  This routine is
796 ** used to query statistical information that has been gathered into
797 ** the Stat4Accum object by prior calls to stat_push().  The P parameter
798 ** has type BLOB but it is really just a pointer to the Stat4Accum object.
799 ** The content to returned is determined by the parameter J
800 ** which is one of the STAT_GET_xxxx values defined above.
801 **
802 ** If neither STAT3 nor STAT4 are enabled, then J is always
803 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
804 ** a one-parameter function, stat_get(P), that always returns the
805 ** stat1 table entry information.
806 */
807 static void statGet(
808   sqlite3_context *context,
809   int argc,
810   sqlite3_value **argv
811 ){
812   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
813 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
814   /* STAT3 and STAT4 have a parameter on this routine. */
815   int eCall = sqlite3_value_int(argv[1]);
816   assert( argc==2 );
817   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
818        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
819        || eCall==STAT_GET_NDLT
820   );
821   if( eCall==STAT_GET_STAT1 )
822 #else
823   assert( argc==1 );
824 #endif
825   {
826     /* Return the value to store in the "stat" column of the sqlite_stat1
827     ** table for this index.
828     **
829     ** The value is a string composed of a list of integers describing
830     ** the index. The first integer in the list is the total number of
831     ** entries in the index. There is one additional integer in the list
832     ** for each indexed column. This additional integer is an estimate of
833     ** the number of rows matched by a stabbing query on the index using
834     ** a key with the corresponding number of fields. In other words,
835     ** if the index is on columns (a,b) and the sqlite_stat1 value is
836     ** "100 10 2", then SQLite estimates that:
837     **
838     **   * the index contains 100 rows,
839     **   * "WHERE a=?" matches 10 rows, and
840     **   * "WHERE a=? AND b=?" matches 2 rows.
841     **
842     ** If D is the count of distinct values and K is the total number of
843     ** rows, then each estimate is computed as:
844     **
845     **        I = (K+D-1)/D
846     */
847     char *z;
848     int i;
849 
850     char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
851     if( zRet==0 ){
852       sqlite3_result_error_nomem(context);
853       return;
854     }
855 
856     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
857     z = zRet + sqlite3Strlen30(zRet);
858     for(i=0; i<p->nKeyCol; i++){
859       u64 nDistinct = p->current.anDLt[i] + 1;
860       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
861       sqlite3_snprintf(24, z, " %llu", iVal);
862       z += sqlite3Strlen30(z);
863       assert( p->current.anEq[i] );
864     }
865     assert( z[0]=='\0' && z>zRet );
866 
867     sqlite3_result_text(context, zRet, -1, sqlite3_free);
868   }
869 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
870   else if( eCall==STAT_GET_ROWID ){
871     if( p->iGet<0 ){
872       samplePushPrevious(p, 0);
873       p->iGet = 0;
874     }
875     if( p->iGet<p->nSample ){
876       Stat4Sample *pS = p->a + p->iGet;
877       if( pS->nRowid==0 ){
878         sqlite3_result_int64(context, pS->u.iRowid);
879       }else{
880         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
881                             SQLITE_TRANSIENT);
882       }
883     }
884   }else{
885     tRowcnt *aCnt = 0;
886 
887     assert( p->iGet<p->nSample );
888     switch( eCall ){
889       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
890       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
891       default: {
892         aCnt = p->a[p->iGet].anDLt;
893         p->iGet++;
894         break;
895       }
896     }
897 
898     if( IsStat3 ){
899       sqlite3_result_int64(context, (i64)aCnt[0]);
900     }else{
901       char *zRet = sqlite3MallocZero(p->nCol * 25);
902       if( zRet==0 ){
903         sqlite3_result_error_nomem(context);
904       }else{
905         int i;
906         char *z = zRet;
907         for(i=0; i<p->nCol; i++){
908           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
909           z += sqlite3Strlen30(z);
910         }
911         assert( z[0]=='\0' && z>zRet );
912         z[-1] = '\0';
913         sqlite3_result_text(context, zRet, -1, sqlite3_free);
914       }
915     }
916   }
917 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
918 #ifndef SQLITE_DEBUG
919   UNUSED_PARAMETER( argc );
920 #endif
921 }
922 static const FuncDef statGetFuncdef = {
923   1+IsStat34,      /* nArg */
924   SQLITE_UTF8,     /* funcFlags */
925   0,               /* pUserData */
926   0,               /* pNext */
927   statGet,         /* xSFunc */
928   0,               /* xFinalize */
929   "stat_get",      /* zName */
930   0,               /* pHash */
931   0                /* pDestructor */
932 };
933 
934 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
935   assert( regOut!=regStat4 && regOut!=regStat4+1 );
936 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
937   sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
938 #elif SQLITE_DEBUG
939   assert( iParam==STAT_GET_STAT1 );
940 #else
941   UNUSED_PARAMETER( iParam );
942 #endif
943   sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut,
944                     (char*)&statGetFuncdef, P4_FUNCDEF);
945   sqlite3VdbeChangeP5(v, 1 + IsStat34);
946 }
947 
948 /*
949 ** Generate code to do an analysis of all indices associated with
950 ** a single table.
951 */
952 static void analyzeOneTable(
953   Parse *pParse,   /* Parser context */
954   Table *pTab,     /* Table whose indices are to be analyzed */
955   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
956   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
957   int iMem,        /* Available memory locations begin here */
958   int iTab         /* Next available cursor */
959 ){
960   sqlite3 *db = pParse->db;    /* Database handle */
961   Index *pIdx;                 /* An index to being analyzed */
962   int iIdxCur;                 /* Cursor open on index being analyzed */
963   int iTabCur;                 /* Table cursor */
964   Vdbe *v;                     /* The virtual machine being built up */
965   int i;                       /* Loop counter */
966   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
967   int iDb;                     /* Index of database containing pTab */
968   u8 needTableCnt = 1;         /* True to count the table */
969   int regNewRowid = iMem++;    /* Rowid for the inserted record */
970   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
971   int regChng = iMem++;        /* Index of changed index field */
972 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
973   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
974 #endif
975   int regTemp = iMem++;        /* Temporary use register */
976   int regTabname = iMem++;     /* Register containing table name */
977   int regIdxname = iMem++;     /* Register containing index name */
978   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
979   int regPrev = iMem;          /* MUST BE LAST (see below) */
980 
981   pParse->nMem = MAX(pParse->nMem, iMem);
982   v = sqlite3GetVdbe(pParse);
983   if( v==0 || NEVER(pTab==0) ){
984     return;
985   }
986   if( pTab->tnum==0 ){
987     /* Do not gather statistics on views or virtual tables */
988     return;
989   }
990   if( sqlite3_strlike("sqlite_%", pTab->zName, 0)==0 ){
991     /* Do not gather statistics on system tables */
992     return;
993   }
994   assert( sqlite3BtreeHoldsAllMutexes(db) );
995   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
996   assert( iDb>=0 );
997   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
998 #ifndef SQLITE_OMIT_AUTHORIZATION
999   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1000       db->aDb[iDb].zName ) ){
1001     return;
1002   }
1003 #endif
1004 
1005   /* Establish a read-lock on the table at the shared-cache level.
1006   ** Open a read-only cursor on the table. Also allocate a cursor number
1007   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1008   ** this time though.  */
1009   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1010   iTabCur = iTab++;
1011   iIdxCur = iTab++;
1012   pParse->nTab = MAX(pParse->nTab, iTab);
1013   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1014   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1015 
1016   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1017     int nCol;                     /* Number of columns in pIdx. "N" */
1018     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1019     int addrNextRow;              /* Address of "next_row:" */
1020     const char *zIdxName;         /* Name of the index */
1021     int nColTest;                 /* Number of columns to test for changes */
1022 
1023     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1024     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1025     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1026       nCol = pIdx->nKeyCol;
1027       zIdxName = pTab->zName;
1028       nColTest = nCol - 1;
1029     }else{
1030       nCol = pIdx->nColumn;
1031       zIdxName = pIdx->zName;
1032       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1033     }
1034 
1035     /* Populate the register containing the index name. */
1036     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1037     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1038 
1039     /*
1040     ** Pseudo-code for loop that calls stat_push():
1041     **
1042     **   Rewind csr
1043     **   if eof(csr) goto end_of_scan;
1044     **   regChng = 0
1045     **   goto chng_addr_0;
1046     **
1047     **  next_row:
1048     **   regChng = 0
1049     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1050     **   regChng = 1
1051     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1052     **   ...
1053     **   regChng = N
1054     **   goto chng_addr_N
1055     **
1056     **  chng_addr_0:
1057     **   regPrev(0) = idx(0)
1058     **  chng_addr_1:
1059     **   regPrev(1) = idx(1)
1060     **  ...
1061     **
1062     **  endDistinctTest:
1063     **   regRowid = idx(rowid)
1064     **   stat_push(P, regChng, regRowid)
1065     **   Next csr
1066     **   if !eof(csr) goto next_row;
1067     **
1068     **  end_of_scan:
1069     */
1070 
1071     /* Make sure there are enough memory cells allocated to accommodate
1072     ** the regPrev array and a trailing rowid (the rowid slot is required
1073     ** when building a record to insert into the sample column of
1074     ** the sqlite_stat4 table.  */
1075     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1076 
1077     /* Open a read-only cursor on the index being analyzed. */
1078     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1079     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1080     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1081     VdbeComment((v, "%s", pIdx->zName));
1082 
1083     /* Invoke the stat_init() function. The arguments are:
1084     **
1085     **    (1) the number of columns in the index including the rowid
1086     **        (or for a WITHOUT ROWID table, the number of PK columns),
1087     **    (2) the number of columns in the key without the rowid/pk
1088     **    (3) the number of rows in the index,
1089     **
1090     **
1091     ** The third argument is only used for STAT3 and STAT4
1092     */
1093 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1094     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
1095 #endif
1096     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
1097     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
1098     sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4,
1099                      (char*)&statInitFuncdef, P4_FUNCDEF);
1100     sqlite3VdbeChangeP5(v, 2+IsStat34);
1101 
1102     /* Implementation of the following:
1103     **
1104     **   Rewind csr
1105     **   if eof(csr) goto end_of_scan;
1106     **   regChng = 0
1107     **   goto next_push_0;
1108     **
1109     */
1110     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1111     VdbeCoverage(v);
1112     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1113     addrNextRow = sqlite3VdbeCurrentAddr(v);
1114 
1115     if( nColTest>0 ){
1116       int endDistinctTest = sqlite3VdbeMakeLabel(v);
1117       int *aGotoChng;               /* Array of jump instruction addresses */
1118       aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest);
1119       if( aGotoChng==0 ) continue;
1120 
1121       /*
1122       **  next_row:
1123       **   regChng = 0
1124       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1125       **   regChng = 1
1126       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1127       **   ...
1128       **   regChng = N
1129       **   goto endDistinctTest
1130       */
1131       sqlite3VdbeAddOp0(v, OP_Goto);
1132       addrNextRow = sqlite3VdbeCurrentAddr(v);
1133       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1134         /* For a single-column UNIQUE index, once we have found a non-NULL
1135         ** row, we know that all the rest will be distinct, so skip
1136         ** subsequent distinctness tests. */
1137         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1138         VdbeCoverage(v);
1139       }
1140       for(i=0; i<nColTest; i++){
1141         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1142         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1143         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1144         aGotoChng[i] =
1145         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1146         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1147         VdbeCoverage(v);
1148       }
1149       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1150       sqlite3VdbeGoto(v, endDistinctTest);
1151 
1152 
1153       /*
1154       **  chng_addr_0:
1155       **   regPrev(0) = idx(0)
1156       **  chng_addr_1:
1157       **   regPrev(1) = idx(1)
1158       **  ...
1159       */
1160       sqlite3VdbeJumpHere(v, addrNextRow-1);
1161       for(i=0; i<nColTest; i++){
1162         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1163         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1164       }
1165       sqlite3VdbeResolveLabel(v, endDistinctTest);
1166       sqlite3DbFree(db, aGotoChng);
1167     }
1168 
1169     /*
1170     **  chng_addr_N:
1171     **   regRowid = idx(rowid)            // STAT34 only
1172     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
1173     **   Next csr
1174     **   if !eof(csr) goto next_row;
1175     */
1176 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1177     assert( regRowid==(regStat4+2) );
1178     if( HasRowid(pTab) ){
1179       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1180     }else{
1181       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1182       int j, k, regKey;
1183       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1184       for(j=0; j<pPk->nKeyCol; j++){
1185         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1186         assert( k>=0 && k<pTab->nCol );
1187         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1188         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1189       }
1190       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1191       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1192     }
1193 #endif
1194     assert( regChng==(regStat4+1) );
1195     sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp,
1196                      (char*)&statPushFuncdef, P4_FUNCDEF);
1197     sqlite3VdbeChangeP5(v, 2+IsStat34);
1198     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1199 
1200     /* Add the entry to the stat1 table. */
1201     callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
1202     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1203     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1204     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1205     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1206     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1207 
1208     /* Add the entries to the stat3 or stat4 table. */
1209 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1210     {
1211       int regEq = regStat1;
1212       int regLt = regStat1+1;
1213       int regDLt = regStat1+2;
1214       int regSample = regStat1+3;
1215       int regCol = regStat1+4;
1216       int regSampleRowid = regCol + nCol;
1217       int addrNext;
1218       int addrIsNull;
1219       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1220 
1221       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1222 
1223       addrNext = sqlite3VdbeCurrentAddr(v);
1224       callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
1225       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1226       VdbeCoverage(v);
1227       callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
1228       callStatGet(v, regStat4, STAT_GET_NLT, regLt);
1229       callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
1230       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1231       /* We know that the regSampleRowid row exists because it was read by
1232       ** the previous loop.  Thus the not-found jump of seekOp will never
1233       ** be taken */
1234       VdbeCoverageNeverTaken(v);
1235 #ifdef SQLITE_ENABLE_STAT3
1236       sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample);
1237 #else
1238       for(i=0; i<nCol; i++){
1239         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1240       }
1241       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1242 #endif
1243       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1244       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1245       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1246       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1247       sqlite3VdbeJumpHere(v, addrIsNull);
1248     }
1249 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1250 
1251     /* End of analysis */
1252     sqlite3VdbeJumpHere(v, addrRewind);
1253   }
1254 
1255 
1256   /* Create a single sqlite_stat1 entry containing NULL as the index
1257   ** name and the row count as the content.
1258   */
1259   if( pOnlyIdx==0 && needTableCnt ){
1260     VdbeComment((v, "%s", pTab->zName));
1261     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1262     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1263     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1264     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1265     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1266     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1267     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1268     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1269     sqlite3VdbeJumpHere(v, jZeroRows);
1270   }
1271 }
1272 
1273 
1274 /*
1275 ** Generate code that will cause the most recent index analysis to
1276 ** be loaded into internal hash tables where is can be used.
1277 */
1278 static void loadAnalysis(Parse *pParse, int iDb){
1279   Vdbe *v = sqlite3GetVdbe(pParse);
1280   if( v ){
1281     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1282   }
1283 }
1284 
1285 /*
1286 ** Generate code that will do an analysis of an entire database
1287 */
1288 static void analyzeDatabase(Parse *pParse, int iDb){
1289   sqlite3 *db = pParse->db;
1290   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1291   HashElem *k;
1292   int iStatCur;
1293   int iMem;
1294   int iTab;
1295 
1296   sqlite3BeginWriteOperation(pParse, 0, iDb);
1297   iStatCur = pParse->nTab;
1298   pParse->nTab += 3;
1299   openStatTable(pParse, iDb, iStatCur, 0, 0);
1300   iMem = pParse->nMem+1;
1301   iTab = pParse->nTab;
1302   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1303   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1304     Table *pTab = (Table*)sqliteHashData(k);
1305     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1306   }
1307   loadAnalysis(pParse, iDb);
1308 }
1309 
1310 /*
1311 ** Generate code that will do an analysis of a single table in
1312 ** a database.  If pOnlyIdx is not NULL then it is a single index
1313 ** in pTab that should be analyzed.
1314 */
1315 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1316   int iDb;
1317   int iStatCur;
1318 
1319   assert( pTab!=0 );
1320   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1321   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1322   sqlite3BeginWriteOperation(pParse, 0, iDb);
1323   iStatCur = pParse->nTab;
1324   pParse->nTab += 3;
1325   if( pOnlyIdx ){
1326     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1327   }else{
1328     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1329   }
1330   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1331   loadAnalysis(pParse, iDb);
1332 }
1333 
1334 /*
1335 ** Generate code for the ANALYZE command.  The parser calls this routine
1336 ** when it recognizes an ANALYZE command.
1337 **
1338 **        ANALYZE                            -- 1
1339 **        ANALYZE  <database>                -- 2
1340 **        ANALYZE  ?<database>.?<tablename>  -- 3
1341 **
1342 ** Form 1 causes all indices in all attached databases to be analyzed.
1343 ** Form 2 analyzes all indices the single database named.
1344 ** Form 3 analyzes all indices associated with the named table.
1345 */
1346 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1347   sqlite3 *db = pParse->db;
1348   int iDb;
1349   int i;
1350   char *z, *zDb;
1351   Table *pTab;
1352   Index *pIdx;
1353   Token *pTableName;
1354   Vdbe *v;
1355 
1356   /* Read the database schema. If an error occurs, leave an error message
1357   ** and code in pParse and return NULL. */
1358   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1359   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1360     return;
1361   }
1362 
1363   assert( pName2!=0 || pName1==0 );
1364   if( pName1==0 ){
1365     /* Form 1:  Analyze everything */
1366     for(i=0; i<db->nDb; i++){
1367       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1368       analyzeDatabase(pParse, i);
1369     }
1370   }else if( pName2->n==0 ){
1371     /* Form 2:  Analyze the database or table named */
1372     iDb = sqlite3FindDb(db, pName1);
1373     if( iDb>=0 ){
1374       analyzeDatabase(pParse, iDb);
1375     }else{
1376       z = sqlite3NameFromToken(db, pName1);
1377       if( z ){
1378         if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
1379           analyzeTable(pParse, pIdx->pTable, pIdx);
1380         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
1381           analyzeTable(pParse, pTab, 0);
1382         }
1383         sqlite3DbFree(db, z);
1384       }
1385     }
1386   }else{
1387     /* Form 3: Analyze the fully qualified table name */
1388     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1389     if( iDb>=0 ){
1390       zDb = db->aDb[iDb].zName;
1391       z = sqlite3NameFromToken(db, pTableName);
1392       if( z ){
1393         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1394           analyzeTable(pParse, pIdx->pTable, pIdx);
1395         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1396           analyzeTable(pParse, pTab, 0);
1397         }
1398         sqlite3DbFree(db, z);
1399       }
1400     }
1401   }
1402   v = sqlite3GetVdbe(pParse);
1403   if( v ) sqlite3VdbeAddOp0(v, OP_Expire);
1404 }
1405 
1406 /*
1407 ** Used to pass information from the analyzer reader through to the
1408 ** callback routine.
1409 */
1410 typedef struct analysisInfo analysisInfo;
1411 struct analysisInfo {
1412   sqlite3 *db;
1413   const char *zDatabase;
1414 };
1415 
1416 /*
1417 ** The first argument points to a nul-terminated string containing a
1418 ** list of space separated integers. Read the first nOut of these into
1419 ** the array aOut[].
1420 */
1421 static void decodeIntArray(
1422   char *zIntArray,       /* String containing int array to decode */
1423   int nOut,              /* Number of slots in aOut[] */
1424   tRowcnt *aOut,         /* Store integers here */
1425   LogEst *aLog,          /* Or, if aOut==0, here */
1426   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1427 ){
1428   char *z = zIntArray;
1429   int c;
1430   int i;
1431   tRowcnt v;
1432 
1433 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1434   if( z==0 ) z = "";
1435 #else
1436   assert( z!=0 );
1437 #endif
1438   for(i=0; *z && i<nOut; i++){
1439     v = 0;
1440     while( (c=z[0])>='0' && c<='9' ){
1441       v = v*10 + c - '0';
1442       z++;
1443     }
1444 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1445     if( aOut ) aOut[i] = v;
1446     if( aLog ) aLog[i] = sqlite3LogEst(v);
1447 #else
1448     assert( aOut==0 );
1449     UNUSED_PARAMETER(aOut);
1450     assert( aLog!=0 );
1451     aLog[i] = sqlite3LogEst(v);
1452 #endif
1453     if( *z==' ' ) z++;
1454   }
1455 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1456   assert( pIndex!=0 ); {
1457 #else
1458   if( pIndex ){
1459 #endif
1460     pIndex->bUnordered = 0;
1461     pIndex->noSkipScan = 0;
1462     while( z[0] ){
1463       if( sqlite3_strglob("unordered*", z)==0 ){
1464         pIndex->bUnordered = 1;
1465       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1466         pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
1467       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1468         pIndex->noSkipScan = 1;
1469       }
1470 #ifdef SQLITE_ENABLE_COSTMULT
1471       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1472         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1473       }
1474 #endif
1475       while( z[0]!=0 && z[0]!=' ' ) z++;
1476       while( z[0]==' ' ) z++;
1477     }
1478   }
1479 }
1480 
1481 /*
1482 ** This callback is invoked once for each index when reading the
1483 ** sqlite_stat1 table.
1484 **
1485 **     argv[0] = name of the table
1486 **     argv[1] = name of the index (might be NULL)
1487 **     argv[2] = results of analysis - on integer for each column
1488 **
1489 ** Entries for which argv[1]==NULL simply record the number of rows in
1490 ** the table.
1491 */
1492 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1493   analysisInfo *pInfo = (analysisInfo*)pData;
1494   Index *pIndex;
1495   Table *pTable;
1496   const char *z;
1497 
1498   assert( argc==3 );
1499   UNUSED_PARAMETER2(NotUsed, argc);
1500 
1501   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1502     return 0;
1503   }
1504   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1505   if( pTable==0 ){
1506     return 0;
1507   }
1508   if( argv[1]==0 ){
1509     pIndex = 0;
1510   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1511     pIndex = sqlite3PrimaryKeyIndex(pTable);
1512   }else{
1513     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1514   }
1515   z = argv[2];
1516 
1517   if( pIndex ){
1518     tRowcnt *aiRowEst = 0;
1519     int nCol = pIndex->nKeyCol+1;
1520 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1521     /* Index.aiRowEst may already be set here if there are duplicate
1522     ** sqlite_stat1 entries for this index. In that case just clobber
1523     ** the old data with the new instead of allocating a new array.  */
1524     if( pIndex->aiRowEst==0 ){
1525       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1526       if( pIndex->aiRowEst==0 ) pInfo->db->mallocFailed = 1;
1527     }
1528     aiRowEst = pIndex->aiRowEst;
1529 #endif
1530     pIndex->bUnordered = 0;
1531     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1532     if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1533   }else{
1534     Index fakeIdx;
1535     fakeIdx.szIdxRow = pTable->szTabRow;
1536 #ifdef SQLITE_ENABLE_COSTMULT
1537     fakeIdx.pTable = pTable;
1538 #endif
1539     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1540     pTable->szTabRow = fakeIdx.szIdxRow;
1541   }
1542 
1543   return 0;
1544 }
1545 
1546 /*
1547 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1548 ** and its contents.
1549 */
1550 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1551 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1552   if( pIdx->aSample ){
1553     int j;
1554     for(j=0; j<pIdx->nSample; j++){
1555       IndexSample *p = &pIdx->aSample[j];
1556       sqlite3DbFree(db, p->p);
1557     }
1558     sqlite3DbFree(db, pIdx->aSample);
1559   }
1560   if( db && db->pnBytesFreed==0 ){
1561     pIdx->nSample = 0;
1562     pIdx->aSample = 0;
1563   }
1564 #else
1565   UNUSED_PARAMETER(db);
1566   UNUSED_PARAMETER(pIdx);
1567 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1568 }
1569 
1570 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1571 /*
1572 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1573 ** stored in pIdx->aSample[].
1574 */
1575 static void initAvgEq(Index *pIdx){
1576   if( pIdx ){
1577     IndexSample *aSample = pIdx->aSample;
1578     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1579     int iCol;
1580     int nCol = 1;
1581     if( pIdx->nSampleCol>1 ){
1582       /* If this is stat4 data, then calculate aAvgEq[] values for all
1583       ** sample columns except the last. The last is always set to 1, as
1584       ** once the trailing PK fields are considered all index keys are
1585       ** unique.  */
1586       nCol = pIdx->nSampleCol-1;
1587       pIdx->aAvgEq[nCol] = 1;
1588     }
1589     for(iCol=0; iCol<nCol; iCol++){
1590       int nSample = pIdx->nSample;
1591       int i;                    /* Used to iterate through samples */
1592       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1593       tRowcnt avgEq = 0;
1594       tRowcnt nRow;             /* Number of rows in index */
1595       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1596       i64 nDist100;             /* Number of distinct values in index */
1597 
1598       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1599         nRow = pFinal->anLt[iCol];
1600         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1601         nSample--;
1602       }else{
1603         nRow = pIdx->aiRowEst[0];
1604         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1605       }
1606       pIdx->nRowEst0 = nRow;
1607 
1608       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1609       ** occur in the stat4 table for this index. Set sumEq to the sum of
1610       ** the nEq values for column iCol for the same set (adding the value
1611       ** only once where there exist duplicate prefixes).  */
1612       for(i=0; i<nSample; i++){
1613         if( i==(pIdx->nSample-1)
1614          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1615         ){
1616           sumEq += aSample[i].anEq[iCol];
1617           nSum100 += 100;
1618         }
1619       }
1620 
1621       if( nDist100>nSum100 ){
1622         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1623       }
1624       if( avgEq==0 ) avgEq = 1;
1625       pIdx->aAvgEq[iCol] = avgEq;
1626     }
1627   }
1628 }
1629 
1630 /*
1631 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1632 ** is supplied instead, find the PRIMARY KEY index for that table.
1633 */
1634 static Index *findIndexOrPrimaryKey(
1635   sqlite3 *db,
1636   const char *zName,
1637   const char *zDb
1638 ){
1639   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1640   if( pIdx==0 ){
1641     Table *pTab = sqlite3FindTable(db, zName, zDb);
1642     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1643   }
1644   return pIdx;
1645 }
1646 
1647 /*
1648 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1649 ** into the relevant Index.aSample[] arrays.
1650 **
1651 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1652 ** data equivalent to the following (statements are different for stat3,
1653 ** see the caller of this function for details):
1654 **
1655 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1656 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1657 **
1658 ** where %Q is replaced with the database name before the SQL is executed.
1659 */
1660 static int loadStatTbl(
1661   sqlite3 *db,                  /* Database handle */
1662   int bStat3,                   /* Assume single column records only */
1663   const char *zSql1,            /* SQL statement 1 (see above) */
1664   const char *zSql2,            /* SQL statement 2 (see above) */
1665   const char *zDb               /* Database name (e.g. "main") */
1666 ){
1667   int rc;                       /* Result codes from subroutines */
1668   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1669   char *zSql;                   /* Text of the SQL statement */
1670   Index *pPrevIdx = 0;          /* Previous index in the loop */
1671   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1672 
1673   assert( db->lookaside.bEnabled==0 );
1674   zSql = sqlite3MPrintf(db, zSql1, zDb);
1675   if( !zSql ){
1676     return SQLITE_NOMEM;
1677   }
1678   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1679   sqlite3DbFree(db, zSql);
1680   if( rc ) return rc;
1681 
1682   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1683     int nIdxCol = 1;              /* Number of columns in stat4 records */
1684 
1685     char *zIndex;   /* Index name */
1686     Index *pIdx;    /* Pointer to the index object */
1687     int nSample;    /* Number of samples */
1688     int nByte;      /* Bytes of space required */
1689     int i;          /* Bytes of space required */
1690     tRowcnt *pSpace;
1691 
1692     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1693     if( zIndex==0 ) continue;
1694     nSample = sqlite3_column_int(pStmt, 1);
1695     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1696     assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
1697     /* Index.nSample is non-zero at this point if data has already been
1698     ** loaded from the stat4 table. In this case ignore stat3 data.  */
1699     if( pIdx==0 || pIdx->nSample ) continue;
1700     if( bStat3==0 ){
1701       assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1702       if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1703         nIdxCol = pIdx->nKeyCol;
1704       }else{
1705         nIdxCol = pIdx->nColumn;
1706       }
1707     }
1708     pIdx->nSampleCol = nIdxCol;
1709     nByte = sizeof(IndexSample) * nSample;
1710     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1711     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1712 
1713     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1714     if( pIdx->aSample==0 ){
1715       sqlite3_finalize(pStmt);
1716       return SQLITE_NOMEM;
1717     }
1718     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1719     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1720     for(i=0; i<nSample; i++){
1721       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1722       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1723       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1724     }
1725     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1726   }
1727   rc = sqlite3_finalize(pStmt);
1728   if( rc ) return rc;
1729 
1730   zSql = sqlite3MPrintf(db, zSql2, zDb);
1731   if( !zSql ){
1732     return SQLITE_NOMEM;
1733   }
1734   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1735   sqlite3DbFree(db, zSql);
1736   if( rc ) return rc;
1737 
1738   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1739     char *zIndex;                 /* Index name */
1740     Index *pIdx;                  /* Pointer to the index object */
1741     int nCol = 1;                 /* Number of columns in index */
1742 
1743     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1744     if( zIndex==0 ) continue;
1745     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1746     if( pIdx==0 ) continue;
1747     /* This next condition is true if data has already been loaded from
1748     ** the sqlite_stat4 table. In this case ignore stat3 data.  */
1749     nCol = pIdx->nSampleCol;
1750     if( bStat3 && nCol>1 ) continue;
1751     if( pIdx!=pPrevIdx ){
1752       initAvgEq(pPrevIdx);
1753       pPrevIdx = pIdx;
1754     }
1755     pSample = &pIdx->aSample[pIdx->nSample];
1756     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1757     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1758     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1759 
1760     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1761     ** This is in case the sample record is corrupted. In that case, the
1762     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1763     ** end of the allocated buffer before it realizes it is dealing with
1764     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1765     ** a buffer overread.  */
1766     pSample->n = sqlite3_column_bytes(pStmt, 4);
1767     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1768     if( pSample->p==0 ){
1769       sqlite3_finalize(pStmt);
1770       return SQLITE_NOMEM;
1771     }
1772     memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1773     pIdx->nSample++;
1774   }
1775   rc = sqlite3_finalize(pStmt);
1776   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1777   return rc;
1778 }
1779 
1780 /*
1781 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1782 ** the Index.aSample[] arrays of all indices.
1783 */
1784 static int loadStat4(sqlite3 *db, const char *zDb){
1785   int rc = SQLITE_OK;             /* Result codes from subroutines */
1786 
1787   assert( db->lookaside.bEnabled==0 );
1788   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1789     rc = loadStatTbl(db, 0,
1790       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1791       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1792       zDb
1793     );
1794   }
1795 
1796   if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
1797     rc = loadStatTbl(db, 1,
1798       "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1799       "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1800       zDb
1801     );
1802   }
1803 
1804   return rc;
1805 }
1806 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1807 
1808 /*
1809 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1810 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1811 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1812 ** Index.aSample[] arrays.
1813 **
1814 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1815 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1816 ** during compilation and the sqlite_stat3/4 table is present, no data is
1817 ** read from it.
1818 **
1819 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1820 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1821 ** returned. However, in this case, data is read from the sqlite_stat1
1822 ** table (if it is present) before returning.
1823 **
1824 ** If an OOM error occurs, this function always sets db->mallocFailed.
1825 ** This means if the caller does not care about other errors, the return
1826 ** code may be ignored.
1827 */
1828 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1829   analysisInfo sInfo;
1830   HashElem *i;
1831   char *zSql;
1832   int rc;
1833 
1834   assert( iDb>=0 && iDb<db->nDb );
1835   assert( db->aDb[iDb].pBt!=0 );
1836 
1837   /* Clear any prior statistics */
1838   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1839   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1840     Index *pIdx = sqliteHashData(i);
1841     sqlite3DefaultRowEst(pIdx);
1842 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1843     sqlite3DeleteIndexSamples(db, pIdx);
1844     pIdx->aSample = 0;
1845 #endif
1846   }
1847 
1848   /* Check to make sure the sqlite_stat1 table exists */
1849   sInfo.db = db;
1850   sInfo.zDatabase = db->aDb[iDb].zName;
1851   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
1852     return SQLITE_ERROR;
1853   }
1854 
1855   /* Load new statistics out of the sqlite_stat1 table */
1856   zSql = sqlite3MPrintf(db,
1857       "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1858   if( zSql==0 ){
1859     rc = SQLITE_NOMEM;
1860   }else{
1861     rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1862     sqlite3DbFree(db, zSql);
1863   }
1864 
1865 
1866   /* Load the statistics from the sqlite_stat4 table. */
1867 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1868   if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){
1869     int lookasideEnabled = db->lookaside.bEnabled;
1870     db->lookaside.bEnabled = 0;
1871     rc = loadStat4(db, sInfo.zDatabase);
1872     db->lookaside.bEnabled = lookasideEnabled;
1873   }
1874   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1875     Index *pIdx = sqliteHashData(i);
1876     sqlite3_free(pIdx->aiRowEst);
1877     pIdx->aiRowEst = 0;
1878   }
1879 #endif
1880 
1881   if( rc==SQLITE_NOMEM ){
1882     db->mallocFailed = 1;
1883   }
1884   return rc;
1885 }
1886 
1887 
1888 #endif /* SQLITE_OMIT_ANALYZE */
1889