1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2 and is also now deprecated. The 33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite 35 ** versions 3.8.1 and later. STAT4 is the only variant that is still 36 ** supported. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 #else 148 # define IsStat4 0 149 # undef SQLITE_STAT4_SAMPLES 150 # define SQLITE_STAT4_SAMPLES 1 151 #endif 152 153 /* 154 ** This routine generates code that opens the sqlite_statN tables. 155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 157 ** appropriate compile-time options are provided. 158 ** 159 ** If the sqlite_statN tables do not previously exist, it is created. 160 ** 161 ** Argument zWhere may be a pointer to a buffer containing a table name, 162 ** or it may be a NULL pointer. If it is not NULL, then all entries in 163 ** the sqlite_statN tables associated with the named table are deleted. 164 ** If zWhere==0, then code is generated to delete all stat table entries. 165 */ 166 static void openStatTable( 167 Parse *pParse, /* Parsing context */ 168 int iDb, /* The database we are looking in */ 169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 170 const char *zWhere, /* Delete entries for this table or index */ 171 const char *zWhereType /* Either "tbl" or "idx" */ 172 ){ 173 static const struct { 174 const char *zName; 175 const char *zCols; 176 } aTable[] = { 177 { "sqlite_stat1", "tbl,idx,stat" }, 178 #if defined(SQLITE_ENABLE_STAT4) 179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 180 #else 181 { "sqlite_stat4", 0 }, 182 #endif 183 { "sqlite_stat3", 0 }, 184 }; 185 int i; 186 sqlite3 *db = pParse->db; 187 Db *pDb; 188 Vdbe *v = sqlite3GetVdbe(pParse); 189 int aRoot[ArraySize(aTable)]; 190 u8 aCreateTbl[ArraySize(aTable)]; 191 192 if( v==0 ) return; 193 assert( sqlite3BtreeHoldsAllMutexes(db) ); 194 assert( sqlite3VdbeDb(v)==db ); 195 pDb = &db->aDb[iDb]; 196 197 /* Create new statistic tables if they do not exist, or clear them 198 ** if they do already exist. 199 */ 200 for(i=0; i<ArraySize(aTable); i++){ 201 const char *zTab = aTable[i].zName; 202 Table *pStat; 203 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 204 if( aTable[i].zCols ){ 205 /* The sqlite_statN table does not exist. Create it. Note that a 206 ** side-effect of the CREATE TABLE statement is to leave the rootpage 207 ** of the new table in register pParse->regRoot. This is important 208 ** because the OpenWrite opcode below will be needing it. */ 209 sqlite3NestedParse(pParse, 210 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 211 ); 212 aRoot[i] = pParse->regRoot; 213 aCreateTbl[i] = OPFLAG_P2ISREG; 214 } 215 }else{ 216 /* The table already exists. If zWhere is not NULL, delete all entries 217 ** associated with the table zWhere. If zWhere is NULL, delete the 218 ** entire contents of the table. */ 219 aRoot[i] = pStat->tnum; 220 aCreateTbl[i] = 0; 221 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 222 if( zWhere ){ 223 sqlite3NestedParse(pParse, 224 "DELETE FROM %Q.%s WHERE %s=%Q", 225 pDb->zDbSName, zTab, zWhereType, zWhere 226 ); 227 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 228 }else if( db->xPreUpdateCallback ){ 229 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 230 #endif 231 }else{ 232 /* The sqlite_stat[134] table already exists. Delete all rows. */ 233 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 234 } 235 } 236 } 237 238 /* Open the sqlite_stat[134] tables for writing. */ 239 for(i=0; aTable[i].zCols; i++){ 240 assert( i<ArraySize(aTable) ); 241 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 242 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 243 VdbeComment((v, aTable[i].zName)); 244 } 245 } 246 247 /* 248 ** Recommended number of samples for sqlite_stat4 249 */ 250 #ifndef SQLITE_STAT4_SAMPLES 251 # define SQLITE_STAT4_SAMPLES 24 252 #endif 253 254 /* 255 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 256 ** share an instance of the following structure to hold their state 257 ** information. 258 */ 259 typedef struct StatAccum StatAccum; 260 typedef struct StatSample StatSample; 261 struct StatSample { 262 tRowcnt *anEq; /* sqlite_stat4.nEq */ 263 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 264 #ifdef SQLITE_ENABLE_STAT4 265 tRowcnt *anLt; /* sqlite_stat4.nLt */ 266 union { 267 i64 iRowid; /* Rowid in main table of the key */ 268 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 269 } u; 270 u32 nRowid; /* Sizeof aRowid[] */ 271 u8 isPSample; /* True if a periodic sample */ 272 int iCol; /* If !isPSample, the reason for inclusion */ 273 u32 iHash; /* Tiebreaker hash */ 274 #endif 275 }; 276 struct StatAccum { 277 sqlite3 *db; /* Database connection, for malloc() */ 278 tRowcnt nRow; /* Number of rows in the entire table */ 279 int nCol; /* Number of columns in index + pk/rowid */ 280 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 281 StatSample current; /* Current row as a StatSample */ 282 #ifdef SQLITE_ENABLE_STAT4 283 tRowcnt nPSample; /* How often to do a periodic sample */ 284 int mxSample; /* Maximum number of samples to accumulate */ 285 u32 iPrn; /* Pseudo-random number used for sampling */ 286 StatSample *aBest; /* Array of nCol best samples */ 287 int iMin; /* Index in a[] of entry with minimum score */ 288 int nSample; /* Current number of samples */ 289 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 290 int iGet; /* Index of current sample accessed by stat_get() */ 291 StatSample *a; /* Array of mxSample StatSample objects */ 292 #endif 293 }; 294 295 /* Reclaim memory used by a StatSample 296 */ 297 #ifdef SQLITE_ENABLE_STAT4 298 static void sampleClear(sqlite3 *db, StatSample *p){ 299 assert( db!=0 ); 300 if( p->nRowid ){ 301 sqlite3DbFree(db, p->u.aRowid); 302 p->nRowid = 0; 303 } 304 } 305 #endif 306 307 /* Initialize the BLOB value of a ROWID 308 */ 309 #ifdef SQLITE_ENABLE_STAT4 310 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ 311 assert( db!=0 ); 312 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 313 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 314 if( p->u.aRowid ){ 315 p->nRowid = n; 316 memcpy(p->u.aRowid, pData, n); 317 }else{ 318 p->nRowid = 0; 319 } 320 } 321 #endif 322 323 /* Initialize the INTEGER value of a ROWID. 324 */ 325 #ifdef SQLITE_ENABLE_STAT4 326 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ 327 assert( db!=0 ); 328 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 329 p->nRowid = 0; 330 p->u.iRowid = iRowid; 331 } 332 #endif 333 334 335 /* 336 ** Copy the contents of object (*pFrom) into (*pTo). 337 */ 338 #ifdef SQLITE_ENABLE_STAT4 339 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ 340 pTo->isPSample = pFrom->isPSample; 341 pTo->iCol = pFrom->iCol; 342 pTo->iHash = pFrom->iHash; 343 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 344 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 345 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 346 if( pFrom->nRowid ){ 347 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 348 }else{ 349 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 350 } 351 } 352 #endif 353 354 /* 355 ** Reclaim all memory of a StatAccum structure. 356 */ 357 static void statAccumDestructor(void *pOld){ 358 StatAccum *p = (StatAccum*)pOld; 359 #ifdef SQLITE_ENABLE_STAT4 360 int i; 361 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 362 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 363 sampleClear(p->db, &p->current); 364 #endif 365 sqlite3DbFree(p->db, p); 366 } 367 368 /* 369 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 370 ** are: 371 ** N: The number of columns in the index including the rowid/pk (note 1) 372 ** K: The number of columns in the index excluding the rowid/pk. 373 ** C: The number of rows in the index (note 2) 374 ** 375 ** Note 1: In the special case of the covering index that implements a 376 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 377 ** total number of columns in the table. 378 ** 379 ** Note 2: C is only used for STAT4. 380 ** 381 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 382 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 383 ** PRIMARY KEY of the table. The covering index that implements the 384 ** original WITHOUT ROWID table as N==K as a special case. 385 ** 386 ** This routine allocates the StatAccum object in heap memory. The return 387 ** value is a pointer to the StatAccum object. The datatype of the 388 ** return value is BLOB, but it is really just a pointer to the StatAccum 389 ** object. 390 */ 391 static void statInit( 392 sqlite3_context *context, 393 int argc, 394 sqlite3_value **argv 395 ){ 396 StatAccum *p; 397 int nCol; /* Number of columns in index being sampled */ 398 int nKeyCol; /* Number of key columns */ 399 int nColUp; /* nCol rounded up for alignment */ 400 int n; /* Bytes of space to allocate */ 401 sqlite3 *db; /* Database connection */ 402 #ifdef SQLITE_ENABLE_STAT4 403 int mxSample = SQLITE_STAT4_SAMPLES; 404 #endif 405 406 /* Decode the three function arguments */ 407 UNUSED_PARAMETER(argc); 408 nCol = sqlite3_value_int(argv[0]); 409 assert( nCol>0 ); 410 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 411 nKeyCol = sqlite3_value_int(argv[1]); 412 assert( nKeyCol<=nCol ); 413 assert( nKeyCol>0 ); 414 415 /* Allocate the space required for the StatAccum object */ 416 n = sizeof(*p) 417 + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */ 418 + sizeof(tRowcnt)*nColUp /* StatAccum.anDLt */ 419 #ifdef SQLITE_ENABLE_STAT4 420 + sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ 421 + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ 422 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 423 #endif 424 ; 425 db = sqlite3_context_db_handle(context); 426 p = sqlite3DbMallocZero(db, n); 427 if( p==0 ){ 428 sqlite3_result_error_nomem(context); 429 return; 430 } 431 432 p->db = db; 433 p->nRow = 0; 434 p->nCol = nCol; 435 p->nKeyCol = nKeyCol; 436 p->current.anDLt = (tRowcnt*)&p[1]; 437 p->current.anEq = &p->current.anDLt[nColUp]; 438 439 #ifdef SQLITE_ENABLE_STAT4 440 { 441 u8 *pSpace; /* Allocated space not yet assigned */ 442 int i; /* Used to iterate through p->aSample[] */ 443 444 p->iGet = -1; 445 p->mxSample = mxSample; 446 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 447 p->current.anLt = &p->current.anEq[nColUp]; 448 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 449 450 /* Set up the StatAccum.a[] and aBest[] arrays */ 451 p->a = (struct StatSample*)&p->current.anLt[nColUp]; 452 p->aBest = &p->a[mxSample]; 453 pSpace = (u8*)(&p->a[mxSample+nCol]); 454 for(i=0; i<(mxSample+nCol); i++){ 455 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 456 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 457 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 458 } 459 assert( (pSpace - (u8*)p)==n ); 460 461 for(i=0; i<nCol; i++){ 462 p->aBest[i].iCol = i; 463 } 464 } 465 #endif 466 467 /* Return a pointer to the allocated object to the caller. Note that 468 ** only the pointer (the 2nd parameter) matters. The size of the object 469 ** (given by the 3rd parameter) is never used and can be any positive 470 ** value. */ 471 sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); 472 } 473 static const FuncDef statInitFuncdef = { 474 2+IsStat4, /* nArg */ 475 SQLITE_UTF8, /* funcFlags */ 476 0, /* pUserData */ 477 0, /* pNext */ 478 statInit, /* xSFunc */ 479 0, /* xFinalize */ 480 0, 0, /* xValue, xInverse */ 481 "stat_init", /* zName */ 482 {0} 483 }; 484 485 #ifdef SQLITE_ENABLE_STAT4 486 /* 487 ** pNew and pOld are both candidate non-periodic samples selected for 488 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 489 ** considering only any trailing columns and the sample hash value, this 490 ** function returns true if sample pNew is to be preferred over pOld. 491 ** In other words, if we assume that the cardinalities of the selected 492 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 493 ** 494 ** This function assumes that for each argument sample, the contents of 495 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 496 */ 497 static int sampleIsBetterPost( 498 StatAccum *pAccum, 499 StatSample *pNew, 500 StatSample *pOld 501 ){ 502 int nCol = pAccum->nCol; 503 int i; 504 assert( pNew->iCol==pOld->iCol ); 505 for(i=pNew->iCol+1; i<nCol; i++){ 506 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 507 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 508 } 509 if( pNew->iHash>pOld->iHash ) return 1; 510 return 0; 511 } 512 #endif 513 514 #ifdef SQLITE_ENABLE_STAT4 515 /* 516 ** Return true if pNew is to be preferred over pOld. 517 ** 518 ** This function assumes that for each argument sample, the contents of 519 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 520 */ 521 static int sampleIsBetter( 522 StatAccum *pAccum, 523 StatSample *pNew, 524 StatSample *pOld 525 ){ 526 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 527 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 528 529 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 530 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 531 532 if( (nEqNew>nEqOld) ) return 1; 533 if( nEqNew==nEqOld ){ 534 if( pNew->iCol<pOld->iCol ) return 1; 535 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 536 } 537 return 0; 538 } 539 540 /* 541 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 542 ** remove the least desirable sample from p->a[] to make room. 543 */ 544 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ 545 StatSample *pSample = 0; 546 int i; 547 548 assert( IsStat4 || nEqZero==0 ); 549 550 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 551 ** values in the anEq[] array of any sample in StatAccum.a[]. In 552 ** other words, if nMaxEqZero is n, then it is guaranteed that there 553 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ 554 if( nEqZero>p->nMaxEqZero ){ 555 p->nMaxEqZero = nEqZero; 556 } 557 if( pNew->isPSample==0 ){ 558 StatSample *pUpgrade = 0; 559 assert( pNew->anEq[pNew->iCol]>0 ); 560 561 /* This sample is being added because the prefix that ends in column 562 ** iCol occurs many times in the table. However, if we have already 563 ** added a sample that shares this prefix, there is no need to add 564 ** this one. Instead, upgrade the priority of the highest priority 565 ** existing sample that shares this prefix. */ 566 for(i=p->nSample-1; i>=0; i--){ 567 StatSample *pOld = &p->a[i]; 568 if( pOld->anEq[pNew->iCol]==0 ){ 569 if( pOld->isPSample ) return; 570 assert( pOld->iCol>pNew->iCol ); 571 assert( sampleIsBetter(p, pNew, pOld) ); 572 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 573 pUpgrade = pOld; 574 } 575 } 576 } 577 if( pUpgrade ){ 578 pUpgrade->iCol = pNew->iCol; 579 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 580 goto find_new_min; 581 } 582 } 583 584 /* If necessary, remove sample iMin to make room for the new sample. */ 585 if( p->nSample>=p->mxSample ){ 586 StatSample *pMin = &p->a[p->iMin]; 587 tRowcnt *anEq = pMin->anEq; 588 tRowcnt *anLt = pMin->anLt; 589 tRowcnt *anDLt = pMin->anDLt; 590 sampleClear(p->db, pMin); 591 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 592 pSample = &p->a[p->nSample-1]; 593 pSample->nRowid = 0; 594 pSample->anEq = anEq; 595 pSample->anDLt = anDLt; 596 pSample->anLt = anLt; 597 p->nSample = p->mxSample-1; 598 } 599 600 /* The "rows less-than" for the rowid column must be greater than that 601 ** for the last sample in the p->a[] array. Otherwise, the samples would 602 ** be out of order. */ 603 assert( p->nSample==0 604 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 605 606 /* Insert the new sample */ 607 pSample = &p->a[p->nSample]; 608 sampleCopy(p, pSample, pNew); 609 p->nSample++; 610 611 /* Zero the first nEqZero entries in the anEq[] array. */ 612 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 613 614 find_new_min: 615 if( p->nSample>=p->mxSample ){ 616 int iMin = -1; 617 for(i=0; i<p->mxSample; i++){ 618 if( p->a[i].isPSample ) continue; 619 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 620 iMin = i; 621 } 622 } 623 assert( iMin>=0 ); 624 p->iMin = iMin; 625 } 626 } 627 #endif /* SQLITE_ENABLE_STAT4 */ 628 629 #ifdef SQLITE_ENABLE_STAT4 630 /* 631 ** Field iChng of the index being scanned has changed. So at this point 632 ** p->current contains a sample that reflects the previous row of the 633 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 634 ** correct at this point. 635 */ 636 static void samplePushPrevious(StatAccum *p, int iChng){ 637 int i; 638 639 /* Check if any samples from the aBest[] array should be pushed 640 ** into IndexSample.a[] at this point. */ 641 for(i=(p->nCol-2); i>=iChng; i--){ 642 StatSample *pBest = &p->aBest[i]; 643 pBest->anEq[i] = p->current.anEq[i]; 644 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 645 sampleInsert(p, pBest, i); 646 } 647 } 648 649 /* Check that no sample contains an anEq[] entry with an index of 650 ** p->nMaxEqZero or greater set to zero. */ 651 for(i=p->nSample-1; i>=0; i--){ 652 int j; 653 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 654 } 655 656 /* Update the anEq[] fields of any samples already collected. */ 657 if( iChng<p->nMaxEqZero ){ 658 for(i=p->nSample-1; i>=0; i--){ 659 int j; 660 for(j=iChng; j<p->nCol; j++){ 661 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 662 } 663 } 664 p->nMaxEqZero = iChng; 665 } 666 } 667 #endif /* SQLITE_ENABLE_STAT4 */ 668 669 /* 670 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 671 ** Arguments: 672 ** 673 ** P Pointer to the StatAccum object created by stat_init() 674 ** C Index of left-most column to differ from previous row 675 ** R Rowid for the current row. Might be a key record for 676 ** WITHOUT ROWID tables. 677 ** 678 ** This SQL function always returns NULL. It's purpose it to accumulate 679 ** statistical data and/or samples in the StatAccum object about the 680 ** index being analyzed. The stat_get() SQL function will later be used to 681 ** extract relevant information for constructing the sqlite_statN tables. 682 ** 683 ** The R parameter is only used for STAT4 684 */ 685 static void statPush( 686 sqlite3_context *context, 687 int argc, 688 sqlite3_value **argv 689 ){ 690 int i; 691 692 /* The three function arguments */ 693 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 694 int iChng = sqlite3_value_int(argv[1]); 695 696 UNUSED_PARAMETER( argc ); 697 UNUSED_PARAMETER( context ); 698 assert( p->nCol>0 ); 699 assert( iChng<p->nCol ); 700 701 if( p->nRow==0 ){ 702 /* This is the first call to this function. Do initialization. */ 703 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 704 }else{ 705 /* Second and subsequent calls get processed here */ 706 #ifdef SQLITE_ENABLE_STAT4 707 samplePushPrevious(p, iChng); 708 #endif 709 710 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 711 ** to the current row of the index. */ 712 for(i=0; i<iChng; i++){ 713 p->current.anEq[i]++; 714 } 715 for(i=iChng; i<p->nCol; i++){ 716 p->current.anDLt[i]++; 717 #ifdef SQLITE_ENABLE_STAT4 718 p->current.anLt[i] += p->current.anEq[i]; 719 #endif 720 p->current.anEq[i] = 1; 721 } 722 } 723 p->nRow++; 724 #ifdef SQLITE_ENABLE_STAT4 725 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 726 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 727 }else{ 728 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 729 sqlite3_value_blob(argv[2])); 730 } 731 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 732 #endif 733 734 #ifdef SQLITE_ENABLE_STAT4 735 { 736 tRowcnt nLt = p->current.anLt[p->nCol-1]; 737 738 /* Check if this is to be a periodic sample. If so, add it. */ 739 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 740 p->current.isPSample = 1; 741 p->current.iCol = 0; 742 sampleInsert(p, &p->current, p->nCol-1); 743 p->current.isPSample = 0; 744 } 745 746 /* Update the aBest[] array. */ 747 for(i=0; i<(p->nCol-1); i++){ 748 p->current.iCol = i; 749 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 750 sampleCopy(p, &p->aBest[i], &p->current); 751 } 752 } 753 } 754 #endif 755 } 756 static const FuncDef statPushFuncdef = { 757 2+IsStat4, /* nArg */ 758 SQLITE_UTF8, /* funcFlags */ 759 0, /* pUserData */ 760 0, /* pNext */ 761 statPush, /* xSFunc */ 762 0, /* xFinalize */ 763 0, 0, /* xValue, xInverse */ 764 "stat_push", /* zName */ 765 {0} 766 }; 767 768 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 769 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 770 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 771 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 772 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 773 774 /* 775 ** Implementation of the stat_get(P,J) SQL function. This routine is 776 ** used to query statistical information that has been gathered into 777 ** the StatAccum object by prior calls to stat_push(). The P parameter 778 ** has type BLOB but it is really just a pointer to the StatAccum object. 779 ** The content to returned is determined by the parameter J 780 ** which is one of the STAT_GET_xxxx values defined above. 781 ** 782 ** The stat_get(P,J) function is not available to generic SQL. It is 783 ** inserted as part of a manually constructed bytecode program. (See 784 ** the callStatGet() routine below.) It is guaranteed that the P 785 ** parameter will always be a pointer to a StatAccum object, never a 786 ** NULL. 787 ** 788 ** If STAT4 is not enabled, then J is always 789 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 790 ** a one-parameter function, stat_get(P), that always returns the 791 ** stat1 table entry information. 792 */ 793 static void statGet( 794 sqlite3_context *context, 795 int argc, 796 sqlite3_value **argv 797 ){ 798 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 799 #ifdef SQLITE_ENABLE_STAT4 800 /* STAT4 has a parameter on this routine. */ 801 int eCall = sqlite3_value_int(argv[1]); 802 assert( argc==2 ); 803 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 804 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 805 || eCall==STAT_GET_NDLT 806 ); 807 if( eCall==STAT_GET_STAT1 ) 808 #else 809 assert( argc==1 ); 810 #endif 811 { 812 /* Return the value to store in the "stat" column of the sqlite_stat1 813 ** table for this index. 814 ** 815 ** The value is a string composed of a list of integers describing 816 ** the index. The first integer in the list is the total number of 817 ** entries in the index. There is one additional integer in the list 818 ** for each indexed column. This additional integer is an estimate of 819 ** the number of rows matched by a equality query on the index using 820 ** a key with the corresponding number of fields. In other words, 821 ** if the index is on columns (a,b) and the sqlite_stat1 value is 822 ** "100 10 2", then SQLite estimates that: 823 ** 824 ** * the index contains 100 rows, 825 ** * "WHERE a=?" matches 10 rows, and 826 ** * "WHERE a=? AND b=?" matches 2 rows. 827 ** 828 ** If D is the count of distinct values and K is the total number of 829 ** rows, then each estimate is computed as: 830 ** 831 ** I = (K+D-1)/D 832 */ 833 char *z; 834 int i; 835 836 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 837 if( zRet==0 ){ 838 sqlite3_result_error_nomem(context); 839 return; 840 } 841 842 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 843 z = zRet + sqlite3Strlen30(zRet); 844 for(i=0; i<p->nKeyCol; i++){ 845 u64 nDistinct = p->current.anDLt[i] + 1; 846 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 847 sqlite3_snprintf(24, z, " %llu", iVal); 848 z += sqlite3Strlen30(z); 849 assert( p->current.anEq[i] ); 850 } 851 assert( z[0]=='\0' && z>zRet ); 852 853 sqlite3_result_text(context, zRet, -1, sqlite3_free); 854 } 855 #ifdef SQLITE_ENABLE_STAT4 856 else if( eCall==STAT_GET_ROWID ){ 857 if( p->iGet<0 ){ 858 samplePushPrevious(p, 0); 859 p->iGet = 0; 860 } 861 if( p->iGet<p->nSample ){ 862 StatSample *pS = p->a + p->iGet; 863 if( pS->nRowid==0 ){ 864 sqlite3_result_int64(context, pS->u.iRowid); 865 }else{ 866 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 867 SQLITE_TRANSIENT); 868 } 869 } 870 }else{ 871 tRowcnt *aCnt = 0; 872 873 assert( p->iGet<p->nSample ); 874 switch( eCall ){ 875 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 876 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 877 default: { 878 aCnt = p->a[p->iGet].anDLt; 879 p->iGet++; 880 break; 881 } 882 } 883 884 { 885 char *zRet = sqlite3MallocZero(p->nCol * 25); 886 if( zRet==0 ){ 887 sqlite3_result_error_nomem(context); 888 }else{ 889 int i; 890 char *z = zRet; 891 for(i=0; i<p->nCol; i++){ 892 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 893 z += sqlite3Strlen30(z); 894 } 895 assert( z[0]=='\0' && z>zRet ); 896 z[-1] = '\0'; 897 sqlite3_result_text(context, zRet, -1, sqlite3_free); 898 } 899 } 900 } 901 #endif /* SQLITE_ENABLE_STAT4 */ 902 #ifndef SQLITE_DEBUG 903 UNUSED_PARAMETER( argc ); 904 #endif 905 } 906 static const FuncDef statGetFuncdef = { 907 1+IsStat4, /* nArg */ 908 SQLITE_UTF8, /* funcFlags */ 909 0, /* pUserData */ 910 0, /* pNext */ 911 statGet, /* xSFunc */ 912 0, /* xFinalize */ 913 0, 0, /* xValue, xInverse */ 914 "stat_get", /* zName */ 915 {0} 916 }; 917 918 static void callStatGet(Parse *pParse, int regStat4, int iParam, int regOut){ 919 #ifdef SQLITE_ENABLE_STAT4 920 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat4+1); 921 #elif SQLITE_DEBUG 922 assert( iParam==STAT_GET_STAT1 ); 923 #else 924 UNUSED_PARAMETER( iParam ); 925 #endif 926 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 927 sqlite3VdbeAddFunctionCall(pParse, 0, regStat4, regOut, 1+IsStat4, 928 &statGetFuncdef, 0); 929 } 930 931 /* 932 ** Generate code to do an analysis of all indices associated with 933 ** a single table. 934 */ 935 static void analyzeOneTable( 936 Parse *pParse, /* Parser context */ 937 Table *pTab, /* Table whose indices are to be analyzed */ 938 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 939 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 940 int iMem, /* Available memory locations begin here */ 941 int iTab /* Next available cursor */ 942 ){ 943 sqlite3 *db = pParse->db; /* Database handle */ 944 Index *pIdx; /* An index to being analyzed */ 945 int iIdxCur; /* Cursor open on index being analyzed */ 946 int iTabCur; /* Table cursor */ 947 Vdbe *v; /* The virtual machine being built up */ 948 int i; /* Loop counter */ 949 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 950 int iDb; /* Index of database containing pTab */ 951 u8 needTableCnt = 1; /* True to count the table */ 952 int regNewRowid = iMem++; /* Rowid for the inserted record */ 953 int regStat4 = iMem++; /* Register to hold StatAccum object */ 954 int regChng = iMem++; /* Index of changed index field */ 955 #ifdef SQLITE_ENABLE_STAT4 956 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 957 #endif 958 int regTemp = iMem++; /* Temporary use register */ 959 int regTabname = iMem++; /* Register containing table name */ 960 int regIdxname = iMem++; /* Register containing index name */ 961 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 962 int regPrev = iMem; /* MUST BE LAST (see below) */ 963 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 964 Table *pStat1 = 0; 965 #endif 966 967 pParse->nMem = MAX(pParse->nMem, iMem); 968 v = sqlite3GetVdbe(pParse); 969 if( v==0 || NEVER(pTab==0) ){ 970 return; 971 } 972 if( pTab->tnum==0 ){ 973 /* Do not gather statistics on views or virtual tables */ 974 return; 975 } 976 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 977 /* Do not gather statistics on system tables */ 978 return; 979 } 980 assert( sqlite3BtreeHoldsAllMutexes(db) ); 981 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 982 assert( iDb>=0 ); 983 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 984 #ifndef SQLITE_OMIT_AUTHORIZATION 985 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 986 db->aDb[iDb].zDbSName ) ){ 987 return; 988 } 989 #endif 990 991 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 992 if( db->xPreUpdateCallback ){ 993 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 994 if( pStat1==0 ) return; 995 pStat1->zName = (char*)&pStat1[1]; 996 memcpy(pStat1->zName, "sqlite_stat1", 13); 997 pStat1->nCol = 3; 998 pStat1->iPKey = -1; 999 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB); 1000 } 1001 #endif 1002 1003 /* Establish a read-lock on the table at the shared-cache level. 1004 ** Open a read-only cursor on the table. Also allocate a cursor number 1005 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1006 ** this time though. */ 1007 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1008 iTabCur = iTab++; 1009 iIdxCur = iTab++; 1010 pParse->nTab = MAX(pParse->nTab, iTab); 1011 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1012 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1013 1014 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1015 int nCol; /* Number of columns in pIdx. "N" */ 1016 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1017 int addrNextRow; /* Address of "next_row:" */ 1018 const char *zIdxName; /* Name of the index */ 1019 int nColTest; /* Number of columns to test for changes */ 1020 1021 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1022 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1023 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1024 nCol = pIdx->nKeyCol; 1025 zIdxName = pTab->zName; 1026 nColTest = nCol - 1; 1027 }else{ 1028 nCol = pIdx->nColumn; 1029 zIdxName = pIdx->zName; 1030 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1031 } 1032 1033 /* Populate the register containing the index name. */ 1034 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1035 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1036 1037 /* 1038 ** Pseudo-code for loop that calls stat_push(): 1039 ** 1040 ** Rewind csr 1041 ** if eof(csr) goto end_of_scan; 1042 ** regChng = 0 1043 ** goto chng_addr_0; 1044 ** 1045 ** next_row: 1046 ** regChng = 0 1047 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1048 ** regChng = 1 1049 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1050 ** ... 1051 ** regChng = N 1052 ** goto chng_addr_N 1053 ** 1054 ** chng_addr_0: 1055 ** regPrev(0) = idx(0) 1056 ** chng_addr_1: 1057 ** regPrev(1) = idx(1) 1058 ** ... 1059 ** 1060 ** endDistinctTest: 1061 ** regRowid = idx(rowid) 1062 ** stat_push(P, regChng, regRowid) 1063 ** Next csr 1064 ** if !eof(csr) goto next_row; 1065 ** 1066 ** end_of_scan: 1067 */ 1068 1069 /* Make sure there are enough memory cells allocated to accommodate 1070 ** the regPrev array and a trailing rowid (the rowid slot is required 1071 ** when building a record to insert into the sample column of 1072 ** the sqlite_stat4 table. */ 1073 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1074 1075 /* Open a read-only cursor on the index being analyzed. */ 1076 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1077 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1078 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1079 VdbeComment((v, "%s", pIdx->zName)); 1080 1081 /* Invoke the stat_init() function. The arguments are: 1082 ** 1083 ** (1) the number of columns in the index including the rowid 1084 ** (or for a WITHOUT ROWID table, the number of PK columns), 1085 ** (2) the number of columns in the key without the rowid/pk 1086 ** (3) the number of rows in the index, 1087 ** 1088 ** 1089 ** The third argument is only used for STAT4 1090 */ 1091 #ifdef SQLITE_ENABLE_STAT4 1092 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1093 #endif 1094 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1095 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1096 sqlite3VdbeAddFunctionCall(pParse, 0, regStat4+1, regStat4, 2+IsStat4, 1097 &statInitFuncdef, 0); 1098 1099 /* Implementation of the following: 1100 ** 1101 ** Rewind csr 1102 ** if eof(csr) goto end_of_scan; 1103 ** regChng = 0 1104 ** goto next_push_0; 1105 ** 1106 */ 1107 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1108 VdbeCoverage(v); 1109 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1110 addrNextRow = sqlite3VdbeCurrentAddr(v); 1111 1112 if( nColTest>0 ){ 1113 int endDistinctTest = sqlite3VdbeMakeLabel(pParse); 1114 int *aGotoChng; /* Array of jump instruction addresses */ 1115 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1116 if( aGotoChng==0 ) continue; 1117 1118 /* 1119 ** next_row: 1120 ** regChng = 0 1121 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1122 ** regChng = 1 1123 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1124 ** ... 1125 ** regChng = N 1126 ** goto endDistinctTest 1127 */ 1128 sqlite3VdbeAddOp0(v, OP_Goto); 1129 addrNextRow = sqlite3VdbeCurrentAddr(v); 1130 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1131 /* For a single-column UNIQUE index, once we have found a non-NULL 1132 ** row, we know that all the rest will be distinct, so skip 1133 ** subsequent distinctness tests. */ 1134 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1135 VdbeCoverage(v); 1136 } 1137 for(i=0; i<nColTest; i++){ 1138 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1139 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1140 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1141 aGotoChng[i] = 1142 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1143 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1144 VdbeCoverage(v); 1145 } 1146 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1147 sqlite3VdbeGoto(v, endDistinctTest); 1148 1149 1150 /* 1151 ** chng_addr_0: 1152 ** regPrev(0) = idx(0) 1153 ** chng_addr_1: 1154 ** regPrev(1) = idx(1) 1155 ** ... 1156 */ 1157 sqlite3VdbeJumpHere(v, addrNextRow-1); 1158 for(i=0; i<nColTest; i++){ 1159 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1160 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1161 } 1162 sqlite3VdbeResolveLabel(v, endDistinctTest); 1163 sqlite3DbFree(db, aGotoChng); 1164 } 1165 1166 /* 1167 ** chng_addr_N: 1168 ** regRowid = idx(rowid) // STAT4 only 1169 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only 1170 ** Next csr 1171 ** if !eof(csr) goto next_row; 1172 */ 1173 #ifdef SQLITE_ENABLE_STAT4 1174 assert( regRowid==(regStat4+2) ); 1175 if( HasRowid(pTab) ){ 1176 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1177 }else{ 1178 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1179 int j, k, regKey; 1180 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1181 for(j=0; j<pPk->nKeyCol; j++){ 1182 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1183 assert( k>=0 && k<pIdx->nColumn ); 1184 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1185 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1186 } 1187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1188 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1189 } 1190 #endif 1191 assert( regChng==(regStat4+1) ); 1192 sqlite3VdbeAddFunctionCall(pParse, 1, regStat4, regTemp, 2+IsStat4, 1193 &statPushFuncdef, 0); 1194 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1195 1196 /* Add the entry to the stat1 table. */ 1197 callStatGet(pParse, regStat4, STAT_GET_STAT1, regStat1); 1198 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1199 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1200 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1201 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1202 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1203 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1204 #endif 1205 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1206 1207 /* Add the entries to the stat4 table. */ 1208 #ifdef SQLITE_ENABLE_STAT4 1209 { 1210 int regEq = regStat1; 1211 int regLt = regStat1+1; 1212 int regDLt = regStat1+2; 1213 int regSample = regStat1+3; 1214 int regCol = regStat1+4; 1215 int regSampleRowid = regCol + nCol; 1216 int addrNext; 1217 int addrIsNull; 1218 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1219 1220 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1221 1222 addrNext = sqlite3VdbeCurrentAddr(v); 1223 callStatGet(pParse, regStat4, STAT_GET_ROWID, regSampleRowid); 1224 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1225 VdbeCoverage(v); 1226 callStatGet(pParse, regStat4, STAT_GET_NEQ, regEq); 1227 callStatGet(pParse, regStat4, STAT_GET_NLT, regLt); 1228 callStatGet(pParse, regStat4, STAT_GET_NDLT, regDLt); 1229 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1230 VdbeCoverage(v); 1231 for(i=0; i<nCol; i++){ 1232 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1233 } 1234 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1235 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1236 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1237 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1238 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1239 sqlite3VdbeJumpHere(v, addrIsNull); 1240 } 1241 #endif /* SQLITE_ENABLE_STAT4 */ 1242 1243 /* End of analysis */ 1244 sqlite3VdbeJumpHere(v, addrRewind); 1245 } 1246 1247 1248 /* Create a single sqlite_stat1 entry containing NULL as the index 1249 ** name and the row count as the content. 1250 */ 1251 if( pOnlyIdx==0 && needTableCnt ){ 1252 VdbeComment((v, "%s", pTab->zName)); 1253 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1254 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1255 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1256 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1257 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1258 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1259 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1260 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1261 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1262 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1263 #endif 1264 sqlite3VdbeJumpHere(v, jZeroRows); 1265 } 1266 } 1267 1268 1269 /* 1270 ** Generate code that will cause the most recent index analysis to 1271 ** be loaded into internal hash tables where is can be used. 1272 */ 1273 static void loadAnalysis(Parse *pParse, int iDb){ 1274 Vdbe *v = sqlite3GetVdbe(pParse); 1275 if( v ){ 1276 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1277 } 1278 } 1279 1280 /* 1281 ** Generate code that will do an analysis of an entire database 1282 */ 1283 static void analyzeDatabase(Parse *pParse, int iDb){ 1284 sqlite3 *db = pParse->db; 1285 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1286 HashElem *k; 1287 int iStatCur; 1288 int iMem; 1289 int iTab; 1290 1291 sqlite3BeginWriteOperation(pParse, 0, iDb); 1292 iStatCur = pParse->nTab; 1293 pParse->nTab += 3; 1294 openStatTable(pParse, iDb, iStatCur, 0, 0); 1295 iMem = pParse->nMem+1; 1296 iTab = pParse->nTab; 1297 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1298 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1299 Table *pTab = (Table*)sqliteHashData(k); 1300 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1301 } 1302 loadAnalysis(pParse, iDb); 1303 } 1304 1305 /* 1306 ** Generate code that will do an analysis of a single table in 1307 ** a database. If pOnlyIdx is not NULL then it is a single index 1308 ** in pTab that should be analyzed. 1309 */ 1310 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1311 int iDb; 1312 int iStatCur; 1313 1314 assert( pTab!=0 ); 1315 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1316 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1317 sqlite3BeginWriteOperation(pParse, 0, iDb); 1318 iStatCur = pParse->nTab; 1319 pParse->nTab += 3; 1320 if( pOnlyIdx ){ 1321 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1322 }else{ 1323 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1324 } 1325 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1326 loadAnalysis(pParse, iDb); 1327 } 1328 1329 /* 1330 ** Generate code for the ANALYZE command. The parser calls this routine 1331 ** when it recognizes an ANALYZE command. 1332 ** 1333 ** ANALYZE -- 1 1334 ** ANALYZE <database> -- 2 1335 ** ANALYZE ?<database>.?<tablename> -- 3 1336 ** 1337 ** Form 1 causes all indices in all attached databases to be analyzed. 1338 ** Form 2 analyzes all indices the single database named. 1339 ** Form 3 analyzes all indices associated with the named table. 1340 */ 1341 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1342 sqlite3 *db = pParse->db; 1343 int iDb; 1344 int i; 1345 char *z, *zDb; 1346 Table *pTab; 1347 Index *pIdx; 1348 Token *pTableName; 1349 Vdbe *v; 1350 1351 /* Read the database schema. If an error occurs, leave an error message 1352 ** and code in pParse and return NULL. */ 1353 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1355 return; 1356 } 1357 1358 assert( pName2!=0 || pName1==0 ); 1359 if( pName1==0 ){ 1360 /* Form 1: Analyze everything */ 1361 for(i=0; i<db->nDb; i++){ 1362 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1363 analyzeDatabase(pParse, i); 1364 } 1365 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1366 /* Analyze the schema named as the argument */ 1367 analyzeDatabase(pParse, iDb); 1368 }else{ 1369 /* Form 3: Analyze the table or index named as an argument */ 1370 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1371 if( iDb>=0 ){ 1372 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1373 z = sqlite3NameFromToken(db, pTableName); 1374 if( z ){ 1375 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1376 analyzeTable(pParse, pIdx->pTable, pIdx); 1377 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1378 analyzeTable(pParse, pTab, 0); 1379 } 1380 sqlite3DbFree(db, z); 1381 } 1382 } 1383 } 1384 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1385 sqlite3VdbeAddOp0(v, OP_Expire); 1386 } 1387 } 1388 1389 /* 1390 ** Used to pass information from the analyzer reader through to the 1391 ** callback routine. 1392 */ 1393 typedef struct analysisInfo analysisInfo; 1394 struct analysisInfo { 1395 sqlite3 *db; 1396 const char *zDatabase; 1397 }; 1398 1399 /* 1400 ** The first argument points to a nul-terminated string containing a 1401 ** list of space separated integers. Read the first nOut of these into 1402 ** the array aOut[]. 1403 */ 1404 static void decodeIntArray( 1405 char *zIntArray, /* String containing int array to decode */ 1406 int nOut, /* Number of slots in aOut[] */ 1407 tRowcnt *aOut, /* Store integers here */ 1408 LogEst *aLog, /* Or, if aOut==0, here */ 1409 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1410 ){ 1411 char *z = zIntArray; 1412 int c; 1413 int i; 1414 tRowcnt v; 1415 1416 #ifdef SQLITE_ENABLE_STAT4 1417 if( z==0 ) z = ""; 1418 #else 1419 assert( z!=0 ); 1420 #endif 1421 for(i=0; *z && i<nOut; i++){ 1422 v = 0; 1423 while( (c=z[0])>='0' && c<='9' ){ 1424 v = v*10 + c - '0'; 1425 z++; 1426 } 1427 #ifdef SQLITE_ENABLE_STAT4 1428 if( aOut ) aOut[i] = v; 1429 if( aLog ) aLog[i] = sqlite3LogEst(v); 1430 #else 1431 assert( aOut==0 ); 1432 UNUSED_PARAMETER(aOut); 1433 assert( aLog!=0 ); 1434 aLog[i] = sqlite3LogEst(v); 1435 #endif 1436 if( *z==' ' ) z++; 1437 } 1438 #ifndef SQLITE_ENABLE_STAT4 1439 assert( pIndex!=0 ); { 1440 #else 1441 if( pIndex ){ 1442 #endif 1443 pIndex->bUnordered = 0; 1444 pIndex->noSkipScan = 0; 1445 while( z[0] ){ 1446 if( sqlite3_strglob("unordered*", z)==0 ){ 1447 pIndex->bUnordered = 1; 1448 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1449 int sz = sqlite3Atoi(z+3); 1450 if( sz<2 ) sz = 2; 1451 pIndex->szIdxRow = sqlite3LogEst(sz); 1452 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1453 pIndex->noSkipScan = 1; 1454 } 1455 #ifdef SQLITE_ENABLE_COSTMULT 1456 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1457 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1458 } 1459 #endif 1460 while( z[0]!=0 && z[0]!=' ' ) z++; 1461 while( z[0]==' ' ) z++; 1462 } 1463 } 1464 } 1465 1466 /* 1467 ** This callback is invoked once for each index when reading the 1468 ** sqlite_stat1 table. 1469 ** 1470 ** argv[0] = name of the table 1471 ** argv[1] = name of the index (might be NULL) 1472 ** argv[2] = results of analysis - on integer for each column 1473 ** 1474 ** Entries for which argv[1]==NULL simply record the number of rows in 1475 ** the table. 1476 */ 1477 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1478 analysisInfo *pInfo = (analysisInfo*)pData; 1479 Index *pIndex; 1480 Table *pTable; 1481 const char *z; 1482 1483 assert( argc==3 ); 1484 UNUSED_PARAMETER2(NotUsed, argc); 1485 1486 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1487 return 0; 1488 } 1489 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1490 if( pTable==0 ){ 1491 return 0; 1492 } 1493 if( argv[1]==0 ){ 1494 pIndex = 0; 1495 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1496 pIndex = sqlite3PrimaryKeyIndex(pTable); 1497 }else{ 1498 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1499 } 1500 z = argv[2]; 1501 1502 if( pIndex ){ 1503 tRowcnt *aiRowEst = 0; 1504 int nCol = pIndex->nKeyCol+1; 1505 #ifdef SQLITE_ENABLE_STAT4 1506 /* Index.aiRowEst may already be set here if there are duplicate 1507 ** sqlite_stat1 entries for this index. In that case just clobber 1508 ** the old data with the new instead of allocating a new array. */ 1509 if( pIndex->aiRowEst==0 ){ 1510 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1511 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1512 } 1513 aiRowEst = pIndex->aiRowEst; 1514 #endif 1515 pIndex->bUnordered = 0; 1516 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1517 pIndex->hasStat1 = 1; 1518 if( pIndex->pPartIdxWhere==0 ){ 1519 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1520 pTable->tabFlags |= TF_HasStat1; 1521 } 1522 }else{ 1523 Index fakeIdx; 1524 fakeIdx.szIdxRow = pTable->szTabRow; 1525 #ifdef SQLITE_ENABLE_COSTMULT 1526 fakeIdx.pTable = pTable; 1527 #endif 1528 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1529 pTable->szTabRow = fakeIdx.szIdxRow; 1530 pTable->tabFlags |= TF_HasStat1; 1531 } 1532 1533 return 0; 1534 } 1535 1536 /* 1537 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1538 ** and its contents. 1539 */ 1540 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1541 #ifdef SQLITE_ENABLE_STAT4 1542 if( pIdx->aSample ){ 1543 int j; 1544 for(j=0; j<pIdx->nSample; j++){ 1545 IndexSample *p = &pIdx->aSample[j]; 1546 sqlite3DbFree(db, p->p); 1547 } 1548 sqlite3DbFree(db, pIdx->aSample); 1549 } 1550 if( db && db->pnBytesFreed==0 ){ 1551 pIdx->nSample = 0; 1552 pIdx->aSample = 0; 1553 } 1554 #else 1555 UNUSED_PARAMETER(db); 1556 UNUSED_PARAMETER(pIdx); 1557 #endif /* SQLITE_ENABLE_STAT4 */ 1558 } 1559 1560 #ifdef SQLITE_ENABLE_STAT4 1561 /* 1562 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1563 ** stored in pIdx->aSample[]. 1564 */ 1565 static void initAvgEq(Index *pIdx){ 1566 if( pIdx ){ 1567 IndexSample *aSample = pIdx->aSample; 1568 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1569 int iCol; 1570 int nCol = 1; 1571 if( pIdx->nSampleCol>1 ){ 1572 /* If this is stat4 data, then calculate aAvgEq[] values for all 1573 ** sample columns except the last. The last is always set to 1, as 1574 ** once the trailing PK fields are considered all index keys are 1575 ** unique. */ 1576 nCol = pIdx->nSampleCol-1; 1577 pIdx->aAvgEq[nCol] = 1; 1578 } 1579 for(iCol=0; iCol<nCol; iCol++){ 1580 int nSample = pIdx->nSample; 1581 int i; /* Used to iterate through samples */ 1582 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1583 tRowcnt avgEq = 0; 1584 tRowcnt nRow; /* Number of rows in index */ 1585 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1586 i64 nDist100; /* Number of distinct values in index */ 1587 1588 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1589 nRow = pFinal->anLt[iCol]; 1590 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1591 nSample--; 1592 }else{ 1593 nRow = pIdx->aiRowEst[0]; 1594 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1595 } 1596 pIdx->nRowEst0 = nRow; 1597 1598 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1599 ** occur in the stat4 table for this index. Set sumEq to the sum of 1600 ** the nEq values for column iCol for the same set (adding the value 1601 ** only once where there exist duplicate prefixes). */ 1602 for(i=0; i<nSample; i++){ 1603 if( i==(pIdx->nSample-1) 1604 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1605 ){ 1606 sumEq += aSample[i].anEq[iCol]; 1607 nSum100 += 100; 1608 } 1609 } 1610 1611 if( nDist100>nSum100 && sumEq<nRow ){ 1612 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1613 } 1614 if( avgEq==0 ) avgEq = 1; 1615 pIdx->aAvgEq[iCol] = avgEq; 1616 } 1617 } 1618 } 1619 1620 /* 1621 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1622 ** is supplied instead, find the PRIMARY KEY index for that table. 1623 */ 1624 static Index *findIndexOrPrimaryKey( 1625 sqlite3 *db, 1626 const char *zName, 1627 const char *zDb 1628 ){ 1629 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1630 if( pIdx==0 ){ 1631 Table *pTab = sqlite3FindTable(db, zName, zDb); 1632 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1633 } 1634 return pIdx; 1635 } 1636 1637 /* 1638 ** Load the content from either the sqlite_stat4 1639 ** into the relevant Index.aSample[] arrays. 1640 ** 1641 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1642 ** data equivalent to the following: 1643 ** 1644 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1645 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1646 ** 1647 ** where %Q is replaced with the database name before the SQL is executed. 1648 */ 1649 static int loadStatTbl( 1650 sqlite3 *db, /* Database handle */ 1651 const char *zSql1, /* SQL statement 1 (see above) */ 1652 const char *zSql2, /* SQL statement 2 (see above) */ 1653 const char *zDb /* Database name (e.g. "main") */ 1654 ){ 1655 int rc; /* Result codes from subroutines */ 1656 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1657 char *zSql; /* Text of the SQL statement */ 1658 Index *pPrevIdx = 0; /* Previous index in the loop */ 1659 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1660 1661 assert( db->lookaside.bDisable ); 1662 zSql = sqlite3MPrintf(db, zSql1, zDb); 1663 if( !zSql ){ 1664 return SQLITE_NOMEM_BKPT; 1665 } 1666 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1667 sqlite3DbFree(db, zSql); 1668 if( rc ) return rc; 1669 1670 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1671 int nIdxCol = 1; /* Number of columns in stat4 records */ 1672 1673 char *zIndex; /* Index name */ 1674 Index *pIdx; /* Pointer to the index object */ 1675 int nSample; /* Number of samples */ 1676 int nByte; /* Bytes of space required */ 1677 int i; /* Bytes of space required */ 1678 tRowcnt *pSpace; 1679 1680 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1681 if( zIndex==0 ) continue; 1682 nSample = sqlite3_column_int(pStmt, 1); 1683 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1684 assert( pIdx==0 || pIdx->nSample==0 ); 1685 if( pIdx==0 ) continue; 1686 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1687 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1688 nIdxCol = pIdx->nKeyCol; 1689 }else{ 1690 nIdxCol = pIdx->nColumn; 1691 } 1692 pIdx->nSampleCol = nIdxCol; 1693 nByte = sizeof(IndexSample) * nSample; 1694 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1695 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1696 1697 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1698 if( pIdx->aSample==0 ){ 1699 sqlite3_finalize(pStmt); 1700 return SQLITE_NOMEM_BKPT; 1701 } 1702 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1703 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1704 for(i=0; i<nSample; i++){ 1705 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1706 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1707 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1708 } 1709 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1710 } 1711 rc = sqlite3_finalize(pStmt); 1712 if( rc ) return rc; 1713 1714 zSql = sqlite3MPrintf(db, zSql2, zDb); 1715 if( !zSql ){ 1716 return SQLITE_NOMEM_BKPT; 1717 } 1718 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1719 sqlite3DbFree(db, zSql); 1720 if( rc ) return rc; 1721 1722 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1723 char *zIndex; /* Index name */ 1724 Index *pIdx; /* Pointer to the index object */ 1725 int nCol = 1; /* Number of columns in index */ 1726 1727 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1728 if( zIndex==0 ) continue; 1729 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1730 if( pIdx==0 ) continue; 1731 /* This next condition is true if data has already been loaded from 1732 ** the sqlite_stat4 table. */ 1733 nCol = pIdx->nSampleCol; 1734 if( pIdx!=pPrevIdx ){ 1735 initAvgEq(pPrevIdx); 1736 pPrevIdx = pIdx; 1737 } 1738 pSample = &pIdx->aSample[pIdx->nSample]; 1739 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1740 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1741 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1742 1743 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1744 ** This is in case the sample record is corrupted. In that case, the 1745 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1746 ** end of the allocated buffer before it realizes it is dealing with 1747 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1748 ** a buffer overread. */ 1749 pSample->n = sqlite3_column_bytes(pStmt, 4); 1750 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1751 if( pSample->p==0 ){ 1752 sqlite3_finalize(pStmt); 1753 return SQLITE_NOMEM_BKPT; 1754 } 1755 if( pSample->n ){ 1756 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1757 } 1758 pIdx->nSample++; 1759 } 1760 rc = sqlite3_finalize(pStmt); 1761 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1762 return rc; 1763 } 1764 1765 /* 1766 ** Load content from the sqlite_stat4 table into 1767 ** the Index.aSample[] arrays of all indices. 1768 */ 1769 static int loadStat4(sqlite3 *db, const char *zDb){ 1770 int rc = SQLITE_OK; /* Result codes from subroutines */ 1771 1772 assert( db->lookaside.bDisable ); 1773 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1774 rc = loadStatTbl(db, 1775 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1776 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1777 zDb 1778 ); 1779 } 1780 return rc; 1781 } 1782 #endif /* SQLITE_ENABLE_STAT4 */ 1783 1784 /* 1785 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The 1786 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1787 ** arrays. The contents of sqlite_stat4 are used to populate the 1788 ** Index.aSample[] arrays. 1789 ** 1790 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1791 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 1792 ** during compilation and the sqlite_stat4 table is present, no data is 1793 ** read from it. 1794 ** 1795 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the 1796 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1797 ** returned. However, in this case, data is read from the sqlite_stat1 1798 ** table (if it is present) before returning. 1799 ** 1800 ** If an OOM error occurs, this function always sets db->mallocFailed. 1801 ** This means if the caller does not care about other errors, the return 1802 ** code may be ignored. 1803 */ 1804 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1805 analysisInfo sInfo; 1806 HashElem *i; 1807 char *zSql; 1808 int rc = SQLITE_OK; 1809 Schema *pSchema = db->aDb[iDb].pSchema; 1810 1811 assert( iDb>=0 && iDb<db->nDb ); 1812 assert( db->aDb[iDb].pBt!=0 ); 1813 1814 /* Clear any prior statistics */ 1815 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1816 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1817 Table *pTab = sqliteHashData(i); 1818 pTab->tabFlags &= ~TF_HasStat1; 1819 } 1820 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1821 Index *pIdx = sqliteHashData(i); 1822 pIdx->hasStat1 = 0; 1823 #ifdef SQLITE_ENABLE_STAT4 1824 sqlite3DeleteIndexSamples(db, pIdx); 1825 pIdx->aSample = 0; 1826 #endif 1827 } 1828 1829 /* Load new statistics out of the sqlite_stat1 table */ 1830 sInfo.db = db; 1831 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1832 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1833 zSql = sqlite3MPrintf(db, 1834 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1835 if( zSql==0 ){ 1836 rc = SQLITE_NOMEM_BKPT; 1837 }else{ 1838 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1839 sqlite3DbFree(db, zSql); 1840 } 1841 } 1842 1843 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1844 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1845 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1846 Index *pIdx = sqliteHashData(i); 1847 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1848 } 1849 1850 /* Load the statistics from the sqlite_stat4 table. */ 1851 #ifdef SQLITE_ENABLE_STAT4 1852 if( rc==SQLITE_OK ){ 1853 DisableLookaside; 1854 rc = loadStat4(db, sInfo.zDatabase); 1855 EnableLookaside; 1856 } 1857 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1858 Index *pIdx = sqliteHashData(i); 1859 sqlite3_free(pIdx->aiRowEst); 1860 pIdx->aiRowEst = 0; 1861 } 1862 #endif 1863 1864 if( rc==SQLITE_NOMEM ){ 1865 sqlite3OomFault(db); 1866 } 1867 return rc; 1868 } 1869 1870 1871 #endif /* SQLITE_OMIT_ANALYZE */ 1872