xref: /sqlite-3.40.0/src/analyze.c (revision a8e41eca)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated.  The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later.  STAT4 is the only variant that is still
36 ** supported.
37 **
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 #else
148 # define IsStat4     0
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
151 #endif
152 
153 /*
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
156 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
158 **
159 ** If the sqlite_statN tables do not previously exist, it is created.
160 **
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
165 */
166 static void openStatTable(
167   Parse *pParse,          /* Parsing context */
168   int iDb,                /* The database we are looking in */
169   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
170   const char *zWhere,     /* Delete entries for this table or index */
171   const char *zWhereType  /* Either "tbl" or "idx" */
172 ){
173   static const struct {
174     const char *zName;
175     const char *zCols;
176   } aTable[] = {
177     { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
180 #else
181     { "sqlite_stat4", 0 },
182 #endif
183     { "sqlite_stat3", 0 },
184   };
185   int i;
186   sqlite3 *db = pParse->db;
187   Db *pDb;
188   Vdbe *v = sqlite3GetVdbe(pParse);
189   int aRoot[ArraySize(aTable)];
190   u8 aCreateTbl[ArraySize(aTable)];
191 #ifdef SQLITE_ENABLE_STAT4
192   const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
193 #else
194   const int nToOpen = 1;
195 #endif
196 
197   if( v==0 ) return;
198   assert( sqlite3BtreeHoldsAllMutexes(db) );
199   assert( sqlite3VdbeDb(v)==db );
200   pDb = &db->aDb[iDb];
201 
202   /* Create new statistic tables if they do not exist, or clear them
203   ** if they do already exist.
204   */
205   for(i=0; i<ArraySize(aTable); i++){
206     const char *zTab = aTable[i].zName;
207     Table *pStat;
208     aCreateTbl[i] = 0;
209     if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
210       if( i<nToOpen ){
211         /* The sqlite_statN table does not exist. Create it. Note that a
212         ** side-effect of the CREATE TABLE statement is to leave the rootpage
213         ** of the new table in register pParse->regRoot. This is important
214         ** because the OpenWrite opcode below will be needing it. */
215         sqlite3NestedParse(pParse,
216             "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
217         );
218         aRoot[i] = pParse->regRoot;
219         aCreateTbl[i] = OPFLAG_P2ISREG;
220       }
221     }else{
222       /* The table already exists. If zWhere is not NULL, delete all entries
223       ** associated with the table zWhere. If zWhere is NULL, delete the
224       ** entire contents of the table. */
225       aRoot[i] = pStat->tnum;
226       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
227       if( zWhere ){
228         sqlite3NestedParse(pParse,
229            "DELETE FROM %Q.%s WHERE %s=%Q",
230            pDb->zDbSName, zTab, zWhereType, zWhere
231         );
232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
233       }else if( db->xPreUpdateCallback ){
234         sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
235 #endif
236       }else{
237         /* The sqlite_stat[134] table already exists.  Delete all rows. */
238         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
239       }
240     }
241   }
242 
243   /* Open the sqlite_stat[134] tables for writing. */
244   for(i=0; i<nToOpen; i++){
245     assert( i<ArraySize(aTable) );
246     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
247     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
248     VdbeComment((v, aTable[i].zName));
249   }
250 }
251 
252 /*
253 ** Recommended number of samples for sqlite_stat4
254 */
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
257 #endif
258 
259 /*
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
262 ** information.
263 */
264 typedef struct StatAccum StatAccum;
265 typedef struct StatSample StatSample;
266 struct StatSample {
267   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
268   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT4
270   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
271   union {
272     i64 iRowid;                     /* Rowid in main table of the key */
273     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
274   } u;
275   u32 nRowid;                     /* Sizeof aRowid[] */
276   u8 isPSample;                   /* True if a periodic sample */
277   int iCol;                       /* If !isPSample, the reason for inclusion */
278   u32 iHash;                      /* Tiebreaker hash */
279 #endif
280 };
281 struct StatAccum {
282   sqlite3 *db;              /* Database connection, for malloc() */
283   tRowcnt nEst;             /* Estimated number of rows */
284   tRowcnt nRow;             /* Number of rows visited so far */
285   int nLimit;               /* Analysis row-scan limit */
286   int nCol;                 /* Number of columns in index + pk/rowid */
287   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
288   u8 nSkipAhead;            /* Number of times of skip-ahead */
289   StatSample current;       /* Current row as a StatSample */
290 #ifdef SQLITE_ENABLE_STAT4
291   tRowcnt nPSample;         /* How often to do a periodic sample */
292   int mxSample;             /* Maximum number of samples to accumulate */
293   u32 iPrn;                 /* Pseudo-random number used for sampling */
294   StatSample *aBest;        /* Array of nCol best samples */
295   int iMin;                 /* Index in a[] of entry with minimum score */
296   int nSample;              /* Current number of samples */
297   int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
298   int iGet;                 /* Index of current sample accessed by stat_get() */
299   StatSample *a;            /* Array of mxSample StatSample objects */
300 #endif
301 };
302 
303 /* Reclaim memory used by a StatSample
304 */
305 #ifdef SQLITE_ENABLE_STAT4
306 static void sampleClear(sqlite3 *db, StatSample *p){
307   assert( db!=0 );
308   if( p->nRowid ){
309     sqlite3DbFree(db, p->u.aRowid);
310     p->nRowid = 0;
311   }
312 }
313 #endif
314 
315 /* Initialize the BLOB value of a ROWID
316 */
317 #ifdef SQLITE_ENABLE_STAT4
318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
319   assert( db!=0 );
320   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
321   p->u.aRowid = sqlite3DbMallocRawNN(db, n);
322   if( p->u.aRowid ){
323     p->nRowid = n;
324     memcpy(p->u.aRowid, pData, n);
325   }else{
326     p->nRowid = 0;
327   }
328 }
329 #endif
330 
331 /* Initialize the INTEGER value of a ROWID.
332 */
333 #ifdef SQLITE_ENABLE_STAT4
334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
335   assert( db!=0 );
336   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
337   p->nRowid = 0;
338   p->u.iRowid = iRowid;
339 }
340 #endif
341 
342 
343 /*
344 ** Copy the contents of object (*pFrom) into (*pTo).
345 */
346 #ifdef SQLITE_ENABLE_STAT4
347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
348   pTo->isPSample = pFrom->isPSample;
349   pTo->iCol = pFrom->iCol;
350   pTo->iHash = pFrom->iHash;
351   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
352   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
353   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
354   if( pFrom->nRowid ){
355     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
356   }else{
357     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
358   }
359 }
360 #endif
361 
362 /*
363 ** Reclaim all memory of a StatAccum structure.
364 */
365 static void statAccumDestructor(void *pOld){
366   StatAccum *p = (StatAccum*)pOld;
367 #ifdef SQLITE_ENABLE_STAT4
368   if( p->mxSample ){
369     int i;
370     for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
371     for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
372     sampleClear(p->db, &p->current);
373   }
374 #endif
375   sqlite3DbFree(p->db, p);
376 }
377 
378 /*
379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
380 ** are:
381 **     N:    The number of columns in the index including the rowid/pk (note 1)
382 **     K:    The number of columns in the index excluding the rowid/pk.
383 **     C:    Estimated number of rows in the index
384 **     L:    A limit on the number of rows to scan, or 0 for no-limit
385 **
386 ** Note 1:  In the special case of the covering index that implements a
387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
388 ** total number of columns in the table.
389 **
390 ** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
392 ** PRIMARY KEY of the table.  The covering index that implements the
393 ** original WITHOUT ROWID table as N==K as a special case.
394 **
395 ** This routine allocates the StatAccum object in heap memory. The return
396 ** value is a pointer to the StatAccum object.  The datatype of the
397 ** return value is BLOB, but it is really just a pointer to the StatAccum
398 ** object.
399 */
400 static void statInit(
401   sqlite3_context *context,
402   int argc,
403   sqlite3_value **argv
404 ){
405   StatAccum *p;
406   int nCol;                       /* Number of columns in index being sampled */
407   int nKeyCol;                    /* Number of key columns */
408   int nColUp;                     /* nCol rounded up for alignment */
409   int n;                          /* Bytes of space to allocate */
410   sqlite3 *db = sqlite3_context_db_handle(context);   /* Database connection */
411 #ifdef SQLITE_ENABLE_STAT4
412   /* Maximum number of samples.  0 if STAT4 data is not collected */
413   int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
414 #endif
415 
416   /* Decode the three function arguments */
417   UNUSED_PARAMETER(argc);
418   nCol = sqlite3_value_int(argv[0]);
419   assert( nCol>0 );
420   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
421   nKeyCol = sqlite3_value_int(argv[1]);
422   assert( nKeyCol<=nCol );
423   assert( nKeyCol>0 );
424 
425   /* Allocate the space required for the StatAccum object */
426   n = sizeof(*p)
427     + sizeof(tRowcnt)*nColUp                  /* StatAccum.anEq */
428     + sizeof(tRowcnt)*nColUp;                 /* StatAccum.anDLt */
429 #ifdef SQLITE_ENABLE_STAT4
430   if( mxSample ){
431     n += sizeof(tRowcnt)*nColUp                  /* StatAccum.anLt */
432       + sizeof(StatSample)*(nCol+mxSample)       /* StatAccum.aBest[], a[] */
433       + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
434   }
435 #endif
436   db = sqlite3_context_db_handle(context);
437   p = sqlite3DbMallocZero(db, n);
438   if( p==0 ){
439     sqlite3_result_error_nomem(context);
440     return;
441   }
442 
443   p->db = db;
444   p->nEst = sqlite3_value_int64(argv[2]);
445   p->nRow = 0;
446   p->nLimit = sqlite3_value_int64(argv[3]);
447   p->nCol = nCol;
448   p->nKeyCol = nKeyCol;
449   p->nSkipAhead = 0;
450   p->current.anDLt = (tRowcnt*)&p[1];
451   p->current.anEq = &p->current.anDLt[nColUp];
452 
453 #ifdef SQLITE_ENABLE_STAT4
454   p->mxSample = p->nLimit==0 ? mxSample : 0;
455   if( mxSample ){
456     u8 *pSpace;                     /* Allocated space not yet assigned */
457     int i;                          /* Used to iterate through p->aSample[] */
458 
459     p->iGet = -1;
460     p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
461     p->current.anLt = &p->current.anEq[nColUp];
462     p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
463 
464     /* Set up the StatAccum.a[] and aBest[] arrays */
465     p->a = (struct StatSample*)&p->current.anLt[nColUp];
466     p->aBest = &p->a[mxSample];
467     pSpace = (u8*)(&p->a[mxSample+nCol]);
468     for(i=0; i<(mxSample+nCol); i++){
469       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
470       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
471       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
472     }
473     assert( (pSpace - (u8*)p)==n );
474 
475     for(i=0; i<nCol; i++){
476       p->aBest[i].iCol = i;
477     }
478   }
479 #endif
480 
481   /* Return a pointer to the allocated object to the caller.  Note that
482   ** only the pointer (the 2nd parameter) matters.  The size of the object
483   ** (given by the 3rd parameter) is never used and can be any positive
484   ** value. */
485   sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
486 }
487 static const FuncDef statInitFuncdef = {
488   4,               /* nArg */
489   SQLITE_UTF8,     /* funcFlags */
490   0,               /* pUserData */
491   0,               /* pNext */
492   statInit,        /* xSFunc */
493   0,               /* xFinalize */
494   0, 0,            /* xValue, xInverse */
495   "stat_init",     /* zName */
496   {0}
497 };
498 
499 #ifdef SQLITE_ENABLE_STAT4
500 /*
501 ** pNew and pOld are both candidate non-periodic samples selected for
502 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
503 ** considering only any trailing columns and the sample hash value, this
504 ** function returns true if sample pNew is to be preferred over pOld.
505 ** In other words, if we assume that the cardinalities of the selected
506 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
507 **
508 ** This function assumes that for each argument sample, the contents of
509 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
510 */
511 static int sampleIsBetterPost(
512   StatAccum *pAccum,
513   StatSample *pNew,
514   StatSample *pOld
515 ){
516   int nCol = pAccum->nCol;
517   int i;
518   assert( pNew->iCol==pOld->iCol );
519   for(i=pNew->iCol+1; i<nCol; i++){
520     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
521     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
522   }
523   if( pNew->iHash>pOld->iHash ) return 1;
524   return 0;
525 }
526 #endif
527 
528 #ifdef SQLITE_ENABLE_STAT4
529 /*
530 ** Return true if pNew is to be preferred over pOld.
531 **
532 ** This function assumes that for each argument sample, the contents of
533 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
534 */
535 static int sampleIsBetter(
536   StatAccum *pAccum,
537   StatSample *pNew,
538   StatSample *pOld
539 ){
540   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
541   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
542 
543   assert( pOld->isPSample==0 && pNew->isPSample==0 );
544   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
545 
546   if( (nEqNew>nEqOld) ) return 1;
547   if( nEqNew==nEqOld ){
548     if( pNew->iCol<pOld->iCol ) return 1;
549     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
550   }
551   return 0;
552 }
553 
554 /*
555 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
556 ** remove the least desirable sample from p->a[] to make room.
557 */
558 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
559   StatSample *pSample = 0;
560   int i;
561 
562   assert( IsStat4 || nEqZero==0 );
563 
564   /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
565   ** values in the anEq[] array of any sample in StatAccum.a[]. In
566   ** other words, if nMaxEqZero is n, then it is guaranteed that there
567   ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
568   if( nEqZero>p->nMaxEqZero ){
569     p->nMaxEqZero = nEqZero;
570   }
571   if( pNew->isPSample==0 ){
572     StatSample *pUpgrade = 0;
573     assert( pNew->anEq[pNew->iCol]>0 );
574 
575     /* This sample is being added because the prefix that ends in column
576     ** iCol occurs many times in the table. However, if we have already
577     ** added a sample that shares this prefix, there is no need to add
578     ** this one. Instead, upgrade the priority of the highest priority
579     ** existing sample that shares this prefix.  */
580     for(i=p->nSample-1; i>=0; i--){
581       StatSample *pOld = &p->a[i];
582       if( pOld->anEq[pNew->iCol]==0 ){
583         if( pOld->isPSample ) return;
584         assert( pOld->iCol>pNew->iCol );
585         assert( sampleIsBetter(p, pNew, pOld) );
586         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
587           pUpgrade = pOld;
588         }
589       }
590     }
591     if( pUpgrade ){
592       pUpgrade->iCol = pNew->iCol;
593       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
594       goto find_new_min;
595     }
596   }
597 
598   /* If necessary, remove sample iMin to make room for the new sample. */
599   if( p->nSample>=p->mxSample ){
600     StatSample *pMin = &p->a[p->iMin];
601     tRowcnt *anEq = pMin->anEq;
602     tRowcnt *anLt = pMin->anLt;
603     tRowcnt *anDLt = pMin->anDLt;
604     sampleClear(p->db, pMin);
605     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
606     pSample = &p->a[p->nSample-1];
607     pSample->nRowid = 0;
608     pSample->anEq = anEq;
609     pSample->anDLt = anDLt;
610     pSample->anLt = anLt;
611     p->nSample = p->mxSample-1;
612   }
613 
614   /* The "rows less-than" for the rowid column must be greater than that
615   ** for the last sample in the p->a[] array. Otherwise, the samples would
616   ** be out of order. */
617   assert( p->nSample==0
618        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
619 
620   /* Insert the new sample */
621   pSample = &p->a[p->nSample];
622   sampleCopy(p, pSample, pNew);
623   p->nSample++;
624 
625   /* Zero the first nEqZero entries in the anEq[] array. */
626   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
627 
628 find_new_min:
629   if( p->nSample>=p->mxSample ){
630     int iMin = -1;
631     for(i=0; i<p->mxSample; i++){
632       if( p->a[i].isPSample ) continue;
633       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
634         iMin = i;
635       }
636     }
637     assert( iMin>=0 );
638     p->iMin = iMin;
639   }
640 }
641 #endif /* SQLITE_ENABLE_STAT4 */
642 
643 #ifdef SQLITE_ENABLE_STAT4
644 /*
645 ** Field iChng of the index being scanned has changed. So at this point
646 ** p->current contains a sample that reflects the previous row of the
647 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
648 ** correct at this point.
649 */
650 static void samplePushPrevious(StatAccum *p, int iChng){
651   int i;
652 
653   /* Check if any samples from the aBest[] array should be pushed
654   ** into IndexSample.a[] at this point.  */
655   for(i=(p->nCol-2); i>=iChng; i--){
656     StatSample *pBest = &p->aBest[i];
657     pBest->anEq[i] = p->current.anEq[i];
658     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
659       sampleInsert(p, pBest, i);
660     }
661   }
662 
663   /* Check that no sample contains an anEq[] entry with an index of
664   ** p->nMaxEqZero or greater set to zero. */
665   for(i=p->nSample-1; i>=0; i--){
666     int j;
667     for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
668   }
669 
670   /* Update the anEq[] fields of any samples already collected. */
671   if( iChng<p->nMaxEqZero ){
672     for(i=p->nSample-1; i>=0; i--){
673       int j;
674       for(j=iChng; j<p->nCol; j++){
675         if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
676       }
677     }
678     p->nMaxEqZero = iChng;
679   }
680 }
681 #endif /* SQLITE_ENABLE_STAT4 */
682 
683 /*
684 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
685 ** Arguments:
686 **
687 **    P     Pointer to the StatAccum object created by stat_init()
688 **    C     Index of left-most column to differ from previous row
689 **    R     Rowid for the current row.  Might be a key record for
690 **          WITHOUT ROWID tables.
691 **
692 ** The purpose of this routine is to collect statistical data and/or
693 ** samples from the index being analyzed into the StatAccum object.
694 ** The stat_get() SQL function will be used afterwards to
695 ** retrieve the information gathered.
696 **
697 ** This SQL function usually returns NULL, but might return an integer
698 ** if it wants the byte-code to do special processing.
699 **
700 ** The R parameter is only used for STAT4
701 */
702 static void statPush(
703   sqlite3_context *context,
704   int argc,
705   sqlite3_value **argv
706 ){
707   int i;
708 
709   /* The three function arguments */
710   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
711   int iChng = sqlite3_value_int(argv[1]);
712 
713   UNUSED_PARAMETER( argc );
714   UNUSED_PARAMETER( context );
715   assert( p->nCol>0 );
716   assert( iChng<p->nCol );
717 
718   if( p->nRow==0 ){
719     /* This is the first call to this function. Do initialization. */
720     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
721   }else{
722     /* Second and subsequent calls get processed here */
723 #ifdef SQLITE_ENABLE_STAT4
724     if( p->mxSample ) samplePushPrevious(p, iChng);
725 #endif
726 
727     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
728     ** to the current row of the index. */
729     for(i=0; i<iChng; i++){
730       p->current.anEq[i]++;
731     }
732     for(i=iChng; i<p->nCol; i++){
733       p->current.anDLt[i]++;
734 #ifdef SQLITE_ENABLE_STAT4
735       if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
736 #endif
737       p->current.anEq[i] = 1;
738     }
739   }
740 
741   p->nRow++;
742 #ifdef SQLITE_ENABLE_STAT4
743   if( p->mxSample ){
744     tRowcnt nLt;
745     if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
746       sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
747     }else{
748       sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
749                                          sqlite3_value_blob(argv[2]));
750     }
751     p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
752 
753     nLt = p->current.anLt[p->nCol-1];
754     /* Check if this is to be a periodic sample. If so, add it. */
755     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
756       p->current.isPSample = 1;
757       p->current.iCol = 0;
758       sampleInsert(p, &p->current, p->nCol-1);
759       p->current.isPSample = 0;
760     }
761 
762     /* Update the aBest[] array. */
763     for(i=0; i<(p->nCol-1); i++){
764       p->current.iCol = i;
765       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
766         sampleCopy(p, &p->aBest[i], &p->current);
767       }
768     }
769   }else
770 #endif
771   if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
772     p->nSkipAhead++;
773     sqlite3_result_int(context, p->current.anDLt[0]>0);
774   }
775 }
776 
777 static const FuncDef statPushFuncdef = {
778   2+IsStat4,       /* nArg */
779   SQLITE_UTF8,     /* funcFlags */
780   0,               /* pUserData */
781   0,               /* pNext */
782   statPush,        /* xSFunc */
783   0,               /* xFinalize */
784   0, 0,            /* xValue, xInverse */
785   "stat_push",     /* zName */
786   {0}
787 };
788 
789 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
790 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
791 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
792 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
793 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
794 
795 /*
796 ** Implementation of the stat_get(P,J) SQL function.  This routine is
797 ** used to query statistical information that has been gathered into
798 ** the StatAccum object by prior calls to stat_push().  The P parameter
799 ** has type BLOB but it is really just a pointer to the StatAccum object.
800 ** The content to returned is determined by the parameter J
801 ** which is one of the STAT_GET_xxxx values defined above.
802 **
803 ** The stat_get(P,J) function is not available to generic SQL.  It is
804 ** inserted as part of a manually constructed bytecode program.  (See
805 ** the callStatGet() routine below.)  It is guaranteed that the P
806 ** parameter will always be a pointer to a StatAccum object, never a
807 ** NULL.
808 **
809 ** If STAT4 is not enabled, then J is always
810 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
811 ** a one-parameter function, stat_get(P), that always returns the
812 ** stat1 table entry information.
813 */
814 static void statGet(
815   sqlite3_context *context,
816   int argc,
817   sqlite3_value **argv
818 ){
819   StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
820 #ifdef SQLITE_ENABLE_STAT4
821   /* STAT4 has a parameter on this routine. */
822   int eCall = sqlite3_value_int(argv[1]);
823   assert( argc==2 );
824   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
825        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
826        || eCall==STAT_GET_NDLT
827   );
828   assert( eCall==STAT_GET_STAT1 || p->mxSample );
829   if( eCall==STAT_GET_STAT1 )
830 #else
831   assert( argc==1 );
832 #endif
833   {
834     /* Return the value to store in the "stat" column of the sqlite_stat1
835     ** table for this index.
836     **
837     ** The value is a string composed of a list of integers describing
838     ** the index. The first integer in the list is the total number of
839     ** entries in the index. There is one additional integer in the list
840     ** for each indexed column. This additional integer is an estimate of
841     ** the number of rows matched by a equality query on the index using
842     ** a key with the corresponding number of fields. In other words,
843     ** if the index is on columns (a,b) and the sqlite_stat1 value is
844     ** "100 10 2", then SQLite estimates that:
845     **
846     **   * the index contains 100 rows,
847     **   * "WHERE a=?" matches 10 rows, and
848     **   * "WHERE a=? AND b=?" matches 2 rows.
849     **
850     ** If D is the count of distinct values and K is the total number of
851     ** rows, then each estimate is computed as:
852     **
853     **        I = (K+D-1)/D
854     */
855     char *z;
856     int i;
857 
858     char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
859     if( zRet==0 ){
860       sqlite3_result_error_nomem(context);
861       return;
862     }
863 
864     sqlite3_snprintf(24, zRet, "%llu",
865         p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
866     z = zRet + sqlite3Strlen30(zRet);
867     for(i=0; i<p->nKeyCol; i++){
868       u64 nDistinct = p->current.anDLt[i] + 1;
869       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
870       sqlite3_snprintf(24, z, " %llu", iVal);
871       z += sqlite3Strlen30(z);
872       assert( p->current.anEq[i] );
873     }
874     assert( z[0]=='\0' && z>zRet );
875 
876     sqlite3_result_text(context, zRet, -1, sqlite3_free);
877   }
878 #ifdef SQLITE_ENABLE_STAT4
879   else if( eCall==STAT_GET_ROWID ){
880     if( p->iGet<0 ){
881       samplePushPrevious(p, 0);
882       p->iGet = 0;
883     }
884     if( p->iGet<p->nSample ){
885       StatSample *pS = p->a + p->iGet;
886       if( pS->nRowid==0 ){
887         sqlite3_result_int64(context, pS->u.iRowid);
888       }else{
889         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
890                             SQLITE_TRANSIENT);
891       }
892     }
893   }else{
894     tRowcnt *aCnt = 0;
895 
896     assert( p->iGet<p->nSample );
897     switch( eCall ){
898       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
899       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
900       default: {
901         aCnt = p->a[p->iGet].anDLt;
902         p->iGet++;
903         break;
904       }
905     }
906 
907     {
908       char *zRet = sqlite3MallocZero(p->nCol * 25);
909       if( zRet==0 ){
910         sqlite3_result_error_nomem(context);
911       }else{
912         int i;
913         char *z = zRet;
914         for(i=0; i<p->nCol; i++){
915           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
916           z += sqlite3Strlen30(z);
917         }
918         assert( z[0]=='\0' && z>zRet );
919         z[-1] = '\0';
920         sqlite3_result_text(context, zRet, -1, sqlite3_free);
921       }
922     }
923   }
924 #endif /* SQLITE_ENABLE_STAT4 */
925 #ifndef SQLITE_DEBUG
926   UNUSED_PARAMETER( argc );
927 #endif
928 }
929 static const FuncDef statGetFuncdef = {
930   1+IsStat4,       /* nArg */
931   SQLITE_UTF8,     /* funcFlags */
932   0,               /* pUserData */
933   0,               /* pNext */
934   statGet,         /* xSFunc */
935   0,               /* xFinalize */
936   0, 0,            /* xValue, xInverse */
937   "stat_get",      /* zName */
938   {0}
939 };
940 
941 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
942 #ifdef SQLITE_ENABLE_STAT4
943   sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
944 #elif SQLITE_DEBUG
945   assert( iParam==STAT_GET_STAT1 );
946 #else
947   UNUSED_PARAMETER( iParam );
948 #endif
949   assert( regOut!=regStat && regOut!=regStat+1 );
950   sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
951                              &statGetFuncdef, 0);
952 }
953 
954 /*
955 ** Generate code to do an analysis of all indices associated with
956 ** a single table.
957 */
958 static void analyzeOneTable(
959   Parse *pParse,   /* Parser context */
960   Table *pTab,     /* Table whose indices are to be analyzed */
961   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
962   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
963   int iMem,        /* Available memory locations begin here */
964   int iTab         /* Next available cursor */
965 ){
966   sqlite3 *db = pParse->db;    /* Database handle */
967   Index *pIdx;                 /* An index to being analyzed */
968   int iIdxCur;                 /* Cursor open on index being analyzed */
969   int iTabCur;                 /* Table cursor */
970   Vdbe *v;                     /* The virtual machine being built up */
971   int i;                       /* Loop counter */
972   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
973   int iDb;                     /* Index of database containing pTab */
974   u8 needTableCnt = 1;         /* True to count the table */
975   int regNewRowid = iMem++;    /* Rowid for the inserted record */
976   int regStat = iMem++;        /* Register to hold StatAccum object */
977   int regChng = iMem++;        /* Index of changed index field */
978   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
979   int regTemp = iMem++;        /* Temporary use register */
980   int regTemp2 = iMem++;       /* Second temporary use register */
981   int regTabname = iMem++;     /* Register containing table name */
982   int regIdxname = iMem++;     /* Register containing index name */
983   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
984   int regPrev = iMem;          /* MUST BE LAST (see below) */
985 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
986   Table *pStat1 = 0;
987 #endif
988 
989   pParse->nMem = MAX(pParse->nMem, iMem);
990   v = sqlite3GetVdbe(pParse);
991   if( v==0 || NEVER(pTab==0) ){
992     return;
993   }
994   if( pTab->tnum==0 ){
995     /* Do not gather statistics on views or virtual tables */
996     return;
997   }
998   if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
999     /* Do not gather statistics on system tables */
1000     return;
1001   }
1002   assert( sqlite3BtreeHoldsAllMutexes(db) );
1003   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1004   assert( iDb>=0 );
1005   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1006 #ifndef SQLITE_OMIT_AUTHORIZATION
1007   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1008       db->aDb[iDb].zDbSName ) ){
1009     return;
1010   }
1011 #endif
1012 
1013 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1014   if( db->xPreUpdateCallback ){
1015     pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
1016     if( pStat1==0 ) return;
1017     pStat1->zName = (char*)&pStat1[1];
1018     memcpy(pStat1->zName, "sqlite_stat1", 13);
1019     pStat1->nCol = 3;
1020     pStat1->iPKey = -1;
1021     sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB);
1022   }
1023 #endif
1024 
1025   /* Establish a read-lock on the table at the shared-cache level.
1026   ** Open a read-only cursor on the table. Also allocate a cursor number
1027   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1028   ** this time though.  */
1029   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1030   iTabCur = iTab++;
1031   iIdxCur = iTab++;
1032   pParse->nTab = MAX(pParse->nTab, iTab);
1033   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1034   sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1035 
1036   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1037     int nCol;                     /* Number of columns in pIdx. "N" */
1038     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1039     int addrNextRow;              /* Address of "next_row:" */
1040     const char *zIdxName;         /* Name of the index */
1041     int nColTest;                 /* Number of columns to test for changes */
1042 
1043     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1044     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1045     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1046       nCol = pIdx->nKeyCol;
1047       zIdxName = pTab->zName;
1048       nColTest = nCol - 1;
1049     }else{
1050       nCol = pIdx->nColumn;
1051       zIdxName = pIdx->zName;
1052       nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1053     }
1054 
1055     /* Populate the register containing the index name. */
1056     sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1057     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1058 
1059     /*
1060     ** Pseudo-code for loop that calls stat_push():
1061     **
1062     **   Rewind csr
1063     **   if eof(csr) goto end_of_scan;
1064     **   regChng = 0
1065     **   goto chng_addr_0;
1066     **
1067     **  next_row:
1068     **   regChng = 0
1069     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1070     **   regChng = 1
1071     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1072     **   ...
1073     **   regChng = N
1074     **   goto chng_addr_N
1075     **
1076     **  chng_addr_0:
1077     **   regPrev(0) = idx(0)
1078     **  chng_addr_1:
1079     **   regPrev(1) = idx(1)
1080     **  ...
1081     **
1082     **  endDistinctTest:
1083     **   regRowid = idx(rowid)
1084     **   stat_push(P, regChng, regRowid)
1085     **   Next csr
1086     **   if !eof(csr) goto next_row;
1087     **
1088     **  end_of_scan:
1089     */
1090 
1091     /* Make sure there are enough memory cells allocated to accommodate
1092     ** the regPrev array and a trailing rowid (the rowid slot is required
1093     ** when building a record to insert into the sample column of
1094     ** the sqlite_stat4 table.  */
1095     pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1096 
1097     /* Open a read-only cursor on the index being analyzed. */
1098     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1099     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1100     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1101     VdbeComment((v, "%s", pIdx->zName));
1102 
1103     /* Invoke the stat_init() function. The arguments are:
1104     **
1105     **    (1) the number of columns in the index including the rowid
1106     **        (or for a WITHOUT ROWID table, the number of PK columns),
1107     **    (2) the number of columns in the key without the rowid/pk
1108     **    (3) estimated number of rows in the index,
1109     */
1110     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
1111     assert( regRowid==regStat+2 );
1112     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
1113 #ifdef SQLITE_ENABLE_STAT4
1114     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1115       sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
1116       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1117       VdbeCoverage(v);
1118     }else
1119 #endif
1120     {
1121       addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1122       VdbeCoverage(v);
1123       sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
1124     }
1125     assert( regTemp2==regStat+4 );
1126     sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
1127     sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
1128                                &statInitFuncdef, 0);
1129 
1130     /* Implementation of the following:
1131     **
1132     **   Rewind csr
1133     **   if eof(csr) goto end_of_scan;
1134     **   regChng = 0
1135     **   goto next_push_0;
1136     **
1137     */
1138     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1139     addrNextRow = sqlite3VdbeCurrentAddr(v);
1140 
1141     if( nColTest>0 ){
1142       int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
1143       int *aGotoChng;               /* Array of jump instruction addresses */
1144       aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1145       if( aGotoChng==0 ) continue;
1146 
1147       /*
1148       **  next_row:
1149       **   regChng = 0
1150       **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1151       **   regChng = 1
1152       **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1153       **   ...
1154       **   regChng = N
1155       **   goto endDistinctTest
1156       */
1157       sqlite3VdbeAddOp0(v, OP_Goto);
1158       addrNextRow = sqlite3VdbeCurrentAddr(v);
1159       if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1160         /* For a single-column UNIQUE index, once we have found a non-NULL
1161         ** row, we know that all the rest will be distinct, so skip
1162         ** subsequent distinctness tests. */
1163         sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1164         VdbeCoverage(v);
1165       }
1166       for(i=0; i<nColTest; i++){
1167         char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1168         sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1169         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1170         VdbeComment((v, "%s.column(%d)", pIdx->zName, i));
1171         aGotoChng[i] =
1172         sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1173         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1174         VdbeCoverage(v);
1175       }
1176       sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1177       sqlite3VdbeGoto(v, endDistinctTest);
1178 
1179 
1180       /*
1181       **  chng_addr_0:
1182       **   regPrev(0) = idx(0)
1183       **  chng_addr_1:
1184       **   regPrev(1) = idx(1)
1185       **  ...
1186       */
1187       sqlite3VdbeJumpHere(v, addrNextRow-1);
1188       for(i=0; i<nColTest; i++){
1189         sqlite3VdbeJumpHere(v, aGotoChng[i]);
1190         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1191         VdbeComment((v, "%s.column(%d)", pIdx->zName, i));
1192       }
1193       sqlite3VdbeResolveLabel(v, endDistinctTest);
1194       sqlite3DbFree(db, aGotoChng);
1195     }
1196 
1197     /*
1198     **  chng_addr_N:
1199     **   regRowid = idx(rowid)            // STAT4 only
1200     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT4 only
1201     **   Next csr
1202     **   if !eof(csr) goto next_row;
1203     */
1204 #ifdef SQLITE_ENABLE_STAT4
1205     if( OptimizationEnabled(db, SQLITE_Stat4) ){
1206       assert( regRowid==(regStat+2) );
1207       if( HasRowid(pTab) ){
1208         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1209       }else{
1210         Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1211         int j, k, regKey;
1212         regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1213         for(j=0; j<pPk->nKeyCol; j++){
1214           k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1215           assert( k>=0 && k<pIdx->nColumn );
1216           sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1217           VdbeComment((v, "%s.column(%d)", pIdx->zName, i));
1218         }
1219         sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1220         sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1221       }
1222     }
1223 #endif
1224     assert( regChng==(regStat+1) );
1225     {
1226       sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
1227                                  &statPushFuncdef, 0);
1228       if( db->nAnalysisLimit ){
1229         int j1, j2, j3;
1230         j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
1231         j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
1232         j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
1233         VdbeCoverage(v);
1234         sqlite3VdbeJumpHere(v, j1);
1235         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1236         sqlite3VdbeJumpHere(v, j2);
1237         sqlite3VdbeJumpHere(v, j3);
1238       }else{
1239         sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1240       }
1241     }
1242 
1243     /* Add the entry to the stat1 table. */
1244     callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
1245     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1246     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1247     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1248     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1249 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1250     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1251 #endif
1252     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1253 
1254     /* Add the entries to the stat4 table. */
1255 #ifdef SQLITE_ENABLE_STAT4
1256     if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
1257       int regEq = regStat1;
1258       int regLt = regStat1+1;
1259       int regDLt = regStat1+2;
1260       int regSample = regStat1+3;
1261       int regCol = regStat1+4;
1262       int regSampleRowid = regCol + nCol;
1263       int addrNext;
1264       int addrIsNull;
1265       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1266 
1267       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1268 
1269       addrNext = sqlite3VdbeCurrentAddr(v);
1270       callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
1271       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1272       VdbeCoverage(v);
1273       callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
1274       callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
1275       callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
1276       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1277       VdbeCoverage(v);
1278       for(i=0; i<nCol; i++){
1279         sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1280       }
1281       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1282       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1283       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1284       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1285       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1286       sqlite3VdbeJumpHere(v, addrIsNull);
1287     }
1288 #endif /* SQLITE_ENABLE_STAT4 */
1289 
1290     /* End of analysis */
1291     sqlite3VdbeJumpHere(v, addrRewind);
1292   }
1293 
1294 
1295   /* Create a single sqlite_stat1 entry containing NULL as the index
1296   ** name and the row count as the content.
1297   */
1298   if( pOnlyIdx==0 && needTableCnt ){
1299     VdbeComment((v, "%s", pTab->zName));
1300     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1301     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1302     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1303     assert( "BBB"[0]==SQLITE_AFF_TEXT );
1304     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1305     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1306     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1307     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1308 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1309     sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1310 #endif
1311     sqlite3VdbeJumpHere(v, jZeroRows);
1312   }
1313 }
1314 
1315 
1316 /*
1317 ** Generate code that will cause the most recent index analysis to
1318 ** be loaded into internal hash tables where is can be used.
1319 */
1320 static void loadAnalysis(Parse *pParse, int iDb){
1321   Vdbe *v = sqlite3GetVdbe(pParse);
1322   if( v ){
1323     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1324   }
1325 }
1326 
1327 /*
1328 ** Generate code that will do an analysis of an entire database
1329 */
1330 static void analyzeDatabase(Parse *pParse, int iDb){
1331   sqlite3 *db = pParse->db;
1332   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1333   HashElem *k;
1334   int iStatCur;
1335   int iMem;
1336   int iTab;
1337 
1338   sqlite3BeginWriteOperation(pParse, 0, iDb);
1339   iStatCur = pParse->nTab;
1340   pParse->nTab += 3;
1341   openStatTable(pParse, iDb, iStatCur, 0, 0);
1342   iMem = pParse->nMem+1;
1343   iTab = pParse->nTab;
1344   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1345   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1346     Table *pTab = (Table*)sqliteHashData(k);
1347     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1348   }
1349   loadAnalysis(pParse, iDb);
1350 }
1351 
1352 /*
1353 ** Generate code that will do an analysis of a single table in
1354 ** a database.  If pOnlyIdx is not NULL then it is a single index
1355 ** in pTab that should be analyzed.
1356 */
1357 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1358   int iDb;
1359   int iStatCur;
1360 
1361   assert( pTab!=0 );
1362   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1363   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1364   sqlite3BeginWriteOperation(pParse, 0, iDb);
1365   iStatCur = pParse->nTab;
1366   pParse->nTab += 3;
1367   if( pOnlyIdx ){
1368     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1369   }else{
1370     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1371   }
1372   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1373   loadAnalysis(pParse, iDb);
1374 }
1375 
1376 /*
1377 ** Generate code for the ANALYZE command.  The parser calls this routine
1378 ** when it recognizes an ANALYZE command.
1379 **
1380 **        ANALYZE                            -- 1
1381 **        ANALYZE  <database>                -- 2
1382 **        ANALYZE  ?<database>.?<tablename>  -- 3
1383 **
1384 ** Form 1 causes all indices in all attached databases to be analyzed.
1385 ** Form 2 analyzes all indices the single database named.
1386 ** Form 3 analyzes all indices associated with the named table.
1387 */
1388 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1389   sqlite3 *db = pParse->db;
1390   int iDb;
1391   int i;
1392   char *z, *zDb;
1393   Table *pTab;
1394   Index *pIdx;
1395   Token *pTableName;
1396   Vdbe *v;
1397 
1398   /* Read the database schema. If an error occurs, leave an error message
1399   ** and code in pParse and return NULL. */
1400   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1401   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1402     return;
1403   }
1404 
1405   assert( pName2!=0 || pName1==0 );
1406   if( pName1==0 ){
1407     /* Form 1:  Analyze everything */
1408     for(i=0; i<db->nDb; i++){
1409       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1410       analyzeDatabase(pParse, i);
1411     }
1412   }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1413     /* Analyze the schema named as the argument */
1414     analyzeDatabase(pParse, iDb);
1415   }else{
1416     /* Form 3: Analyze the table or index named as an argument */
1417     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1418     if( iDb>=0 ){
1419       zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1420       z = sqlite3NameFromToken(db, pTableName);
1421       if( z ){
1422         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1423           analyzeTable(pParse, pIdx->pTable, pIdx);
1424         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1425           analyzeTable(pParse, pTab, 0);
1426         }
1427         sqlite3DbFree(db, z);
1428       }
1429     }
1430   }
1431   if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1432     sqlite3VdbeAddOp0(v, OP_Expire);
1433   }
1434 }
1435 
1436 /*
1437 ** Used to pass information from the analyzer reader through to the
1438 ** callback routine.
1439 */
1440 typedef struct analysisInfo analysisInfo;
1441 struct analysisInfo {
1442   sqlite3 *db;
1443   const char *zDatabase;
1444 };
1445 
1446 /*
1447 ** The first argument points to a nul-terminated string containing a
1448 ** list of space separated integers. Read the first nOut of these into
1449 ** the array aOut[].
1450 */
1451 static void decodeIntArray(
1452   char *zIntArray,       /* String containing int array to decode */
1453   int nOut,              /* Number of slots in aOut[] */
1454   tRowcnt *aOut,         /* Store integers here */
1455   LogEst *aLog,          /* Or, if aOut==0, here */
1456   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1457 ){
1458   char *z = zIntArray;
1459   int c;
1460   int i;
1461   tRowcnt v;
1462 
1463 #ifdef SQLITE_ENABLE_STAT4
1464   if( z==0 ) z = "";
1465 #else
1466   assert( z!=0 );
1467 #endif
1468   for(i=0; *z && i<nOut; i++){
1469     v = 0;
1470     while( (c=z[0])>='0' && c<='9' ){
1471       v = v*10 + c - '0';
1472       z++;
1473     }
1474 #ifdef SQLITE_ENABLE_STAT4
1475     if( aOut ) aOut[i] = v;
1476     if( aLog ) aLog[i] = sqlite3LogEst(v);
1477 #else
1478     assert( aOut==0 );
1479     UNUSED_PARAMETER(aOut);
1480     assert( aLog!=0 );
1481     aLog[i] = sqlite3LogEst(v);
1482 #endif
1483     if( *z==' ' ) z++;
1484   }
1485 #ifndef SQLITE_ENABLE_STAT4
1486   assert( pIndex!=0 ); {
1487 #else
1488   if( pIndex ){
1489 #endif
1490     pIndex->bUnordered = 0;
1491     pIndex->noSkipScan = 0;
1492     while( z[0] ){
1493       if( sqlite3_strglob("unordered*", z)==0 ){
1494         pIndex->bUnordered = 1;
1495       }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1496         int sz = sqlite3Atoi(z+3);
1497         if( sz<2 ) sz = 2;
1498         pIndex->szIdxRow = sqlite3LogEst(sz);
1499       }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1500         pIndex->noSkipScan = 1;
1501       }
1502 #ifdef SQLITE_ENABLE_COSTMULT
1503       else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1504         pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1505       }
1506 #endif
1507       while( z[0]!=0 && z[0]!=' ' ) z++;
1508       while( z[0]==' ' ) z++;
1509     }
1510   }
1511 }
1512 
1513 /*
1514 ** This callback is invoked once for each index when reading the
1515 ** sqlite_stat1 table.
1516 **
1517 **     argv[0] = name of the table
1518 **     argv[1] = name of the index (might be NULL)
1519 **     argv[2] = results of analysis - on integer for each column
1520 **
1521 ** Entries for which argv[1]==NULL simply record the number of rows in
1522 ** the table.
1523 */
1524 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1525   analysisInfo *pInfo = (analysisInfo*)pData;
1526   Index *pIndex;
1527   Table *pTable;
1528   const char *z;
1529 
1530   assert( argc==3 );
1531   UNUSED_PARAMETER2(NotUsed, argc);
1532 
1533   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1534     return 0;
1535   }
1536   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1537   if( pTable==0 ){
1538     return 0;
1539   }
1540   if( argv[1]==0 ){
1541     pIndex = 0;
1542   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1543     pIndex = sqlite3PrimaryKeyIndex(pTable);
1544   }else{
1545     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1546   }
1547   z = argv[2];
1548 
1549   if( pIndex ){
1550     tRowcnt *aiRowEst = 0;
1551     int nCol = pIndex->nKeyCol+1;
1552 #ifdef SQLITE_ENABLE_STAT4
1553     /* Index.aiRowEst may already be set here if there are duplicate
1554     ** sqlite_stat1 entries for this index. In that case just clobber
1555     ** the old data with the new instead of allocating a new array.  */
1556     if( pIndex->aiRowEst==0 ){
1557       pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1558       if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1559     }
1560     aiRowEst = pIndex->aiRowEst;
1561 #endif
1562     pIndex->bUnordered = 0;
1563     decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1564     pIndex->hasStat1 = 1;
1565     if( pIndex->pPartIdxWhere==0 ){
1566       pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1567       pTable->tabFlags |= TF_HasStat1;
1568     }
1569   }else{
1570     Index fakeIdx;
1571     fakeIdx.szIdxRow = pTable->szTabRow;
1572 #ifdef SQLITE_ENABLE_COSTMULT
1573     fakeIdx.pTable = pTable;
1574 #endif
1575     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1576     pTable->szTabRow = fakeIdx.szIdxRow;
1577     pTable->tabFlags |= TF_HasStat1;
1578   }
1579 
1580   return 0;
1581 }
1582 
1583 /*
1584 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1585 ** and its contents.
1586 */
1587 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1588 #ifdef SQLITE_ENABLE_STAT4
1589   if( pIdx->aSample ){
1590     int j;
1591     for(j=0; j<pIdx->nSample; j++){
1592       IndexSample *p = &pIdx->aSample[j];
1593       sqlite3DbFree(db, p->p);
1594     }
1595     sqlite3DbFree(db, pIdx->aSample);
1596   }
1597   if( db && db->pnBytesFreed==0 ){
1598     pIdx->nSample = 0;
1599     pIdx->aSample = 0;
1600   }
1601 #else
1602   UNUSED_PARAMETER(db);
1603   UNUSED_PARAMETER(pIdx);
1604 #endif /* SQLITE_ENABLE_STAT4 */
1605 }
1606 
1607 #ifdef SQLITE_ENABLE_STAT4
1608 /*
1609 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1610 ** stored in pIdx->aSample[].
1611 */
1612 static void initAvgEq(Index *pIdx){
1613   if( pIdx ){
1614     IndexSample *aSample = pIdx->aSample;
1615     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1616     int iCol;
1617     int nCol = 1;
1618     if( pIdx->nSampleCol>1 ){
1619       /* If this is stat4 data, then calculate aAvgEq[] values for all
1620       ** sample columns except the last. The last is always set to 1, as
1621       ** once the trailing PK fields are considered all index keys are
1622       ** unique.  */
1623       nCol = pIdx->nSampleCol-1;
1624       pIdx->aAvgEq[nCol] = 1;
1625     }
1626     for(iCol=0; iCol<nCol; iCol++){
1627       int nSample = pIdx->nSample;
1628       int i;                    /* Used to iterate through samples */
1629       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1630       tRowcnt avgEq = 0;
1631       tRowcnt nRow;             /* Number of rows in index */
1632       i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
1633       i64 nDist100;             /* Number of distinct values in index */
1634 
1635       if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1636         nRow = pFinal->anLt[iCol];
1637         nDist100 = (i64)100 * pFinal->anDLt[iCol];
1638         nSample--;
1639       }else{
1640         nRow = pIdx->aiRowEst[0];
1641         nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1642       }
1643       pIdx->nRowEst0 = nRow;
1644 
1645       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1646       ** occur in the stat4 table for this index. Set sumEq to the sum of
1647       ** the nEq values for column iCol for the same set (adding the value
1648       ** only once where there exist duplicate prefixes).  */
1649       for(i=0; i<nSample; i++){
1650         if( i==(pIdx->nSample-1)
1651          || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1652         ){
1653           sumEq += aSample[i].anEq[iCol];
1654           nSum100 += 100;
1655         }
1656       }
1657 
1658       if( nDist100>nSum100 && sumEq<nRow ){
1659         avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1660       }
1661       if( avgEq==0 ) avgEq = 1;
1662       pIdx->aAvgEq[iCol] = avgEq;
1663     }
1664   }
1665 }
1666 
1667 /*
1668 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1669 ** is supplied instead, find the PRIMARY KEY index for that table.
1670 */
1671 static Index *findIndexOrPrimaryKey(
1672   sqlite3 *db,
1673   const char *zName,
1674   const char *zDb
1675 ){
1676   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1677   if( pIdx==0 ){
1678     Table *pTab = sqlite3FindTable(db, zName, zDb);
1679     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1680   }
1681   return pIdx;
1682 }
1683 
1684 /*
1685 ** Load the content from either the sqlite_stat4
1686 ** into the relevant Index.aSample[] arrays.
1687 **
1688 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1689 ** data equivalent to the following:
1690 **
1691 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1692 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1693 **
1694 ** where %Q is replaced with the database name before the SQL is executed.
1695 */
1696 static int loadStatTbl(
1697   sqlite3 *db,                  /* Database handle */
1698   const char *zSql1,            /* SQL statement 1 (see above) */
1699   const char *zSql2,            /* SQL statement 2 (see above) */
1700   const char *zDb               /* Database name (e.g. "main") */
1701 ){
1702   int rc;                       /* Result codes from subroutines */
1703   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1704   char *zSql;                   /* Text of the SQL statement */
1705   Index *pPrevIdx = 0;          /* Previous index in the loop */
1706   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1707 
1708   assert( db->lookaside.bDisable );
1709   zSql = sqlite3MPrintf(db, zSql1, zDb);
1710   if( !zSql ){
1711     return SQLITE_NOMEM_BKPT;
1712   }
1713   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1714   sqlite3DbFree(db, zSql);
1715   if( rc ) return rc;
1716 
1717   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1718     int nIdxCol = 1;              /* Number of columns in stat4 records */
1719 
1720     char *zIndex;   /* Index name */
1721     Index *pIdx;    /* Pointer to the index object */
1722     int nSample;    /* Number of samples */
1723     int nByte;      /* Bytes of space required */
1724     int i;          /* Bytes of space required */
1725     tRowcnt *pSpace;
1726 
1727     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1728     if( zIndex==0 ) continue;
1729     nSample = sqlite3_column_int(pStmt, 1);
1730     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1731     assert( pIdx==0 || pIdx->nSample==0 );
1732     if( pIdx==0 ) continue;
1733     assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1734     if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1735       nIdxCol = pIdx->nKeyCol;
1736     }else{
1737       nIdxCol = pIdx->nColumn;
1738     }
1739     pIdx->nSampleCol = nIdxCol;
1740     nByte = sizeof(IndexSample) * nSample;
1741     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1742     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1743 
1744     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1745     if( pIdx->aSample==0 ){
1746       sqlite3_finalize(pStmt);
1747       return SQLITE_NOMEM_BKPT;
1748     }
1749     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1750     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1751     for(i=0; i<nSample; i++){
1752       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1753       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1754       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1755     }
1756     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1757   }
1758   rc = sqlite3_finalize(pStmt);
1759   if( rc ) return rc;
1760 
1761   zSql = sqlite3MPrintf(db, zSql2, zDb);
1762   if( !zSql ){
1763     return SQLITE_NOMEM_BKPT;
1764   }
1765   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1766   sqlite3DbFree(db, zSql);
1767   if( rc ) return rc;
1768 
1769   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1770     char *zIndex;                 /* Index name */
1771     Index *pIdx;                  /* Pointer to the index object */
1772     int nCol = 1;                 /* Number of columns in index */
1773 
1774     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1775     if( zIndex==0 ) continue;
1776     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1777     if( pIdx==0 ) continue;
1778     /* This next condition is true if data has already been loaded from
1779     ** the sqlite_stat4 table. */
1780     nCol = pIdx->nSampleCol;
1781     if( pIdx!=pPrevIdx ){
1782       initAvgEq(pPrevIdx);
1783       pPrevIdx = pIdx;
1784     }
1785     pSample = &pIdx->aSample[pIdx->nSample];
1786     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1787     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1788     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1789 
1790     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1791     ** This is in case the sample record is corrupted. In that case, the
1792     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1793     ** end of the allocated buffer before it realizes it is dealing with
1794     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1795     ** a buffer overread.  */
1796     pSample->n = sqlite3_column_bytes(pStmt, 4);
1797     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1798     if( pSample->p==0 ){
1799       sqlite3_finalize(pStmt);
1800       return SQLITE_NOMEM_BKPT;
1801     }
1802     if( pSample->n ){
1803       memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1804     }
1805     pIdx->nSample++;
1806   }
1807   rc = sqlite3_finalize(pStmt);
1808   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1809   return rc;
1810 }
1811 
1812 /*
1813 ** Load content from the sqlite_stat4 table into
1814 ** the Index.aSample[] arrays of all indices.
1815 */
1816 static int loadStat4(sqlite3 *db, const char *zDb){
1817   int rc = SQLITE_OK;             /* Result codes from subroutines */
1818 
1819   assert( db->lookaside.bDisable );
1820   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1821     rc = loadStatTbl(db,
1822       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1823       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1824       zDb
1825     );
1826   }
1827   return rc;
1828 }
1829 #endif /* SQLITE_ENABLE_STAT4 */
1830 
1831 /*
1832 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1833 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1834 ** arrays. The contents of sqlite_stat4 are used to populate the
1835 ** Index.aSample[] arrays.
1836 **
1837 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1838 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1839 ** during compilation and the sqlite_stat4 table is present, no data is
1840 ** read from it.
1841 **
1842 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1843 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1844 ** returned. However, in this case, data is read from the sqlite_stat1
1845 ** table (if it is present) before returning.
1846 **
1847 ** If an OOM error occurs, this function always sets db->mallocFailed.
1848 ** This means if the caller does not care about other errors, the return
1849 ** code may be ignored.
1850 */
1851 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1852   analysisInfo sInfo;
1853   HashElem *i;
1854   char *zSql;
1855   int rc = SQLITE_OK;
1856   Schema *pSchema = db->aDb[iDb].pSchema;
1857 
1858   assert( iDb>=0 && iDb<db->nDb );
1859   assert( db->aDb[iDb].pBt!=0 );
1860 
1861   /* Clear any prior statistics */
1862   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1863   for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1864     Table *pTab = sqliteHashData(i);
1865     pTab->tabFlags &= ~TF_HasStat1;
1866   }
1867   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1868     Index *pIdx = sqliteHashData(i);
1869     pIdx->hasStat1 = 0;
1870 #ifdef SQLITE_ENABLE_STAT4
1871     sqlite3DeleteIndexSamples(db, pIdx);
1872     pIdx->aSample = 0;
1873 #endif
1874   }
1875 
1876   /* Load new statistics out of the sqlite_stat1 table */
1877   sInfo.db = db;
1878   sInfo.zDatabase = db->aDb[iDb].zDbSName;
1879   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){
1880     zSql = sqlite3MPrintf(db,
1881         "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1882     if( zSql==0 ){
1883       rc = SQLITE_NOMEM_BKPT;
1884     }else{
1885       rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1886       sqlite3DbFree(db, zSql);
1887     }
1888   }
1889 
1890   /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1891   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1892   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1893     Index *pIdx = sqliteHashData(i);
1894     if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1895   }
1896 
1897   /* Load the statistics from the sqlite_stat4 table. */
1898 #ifdef SQLITE_ENABLE_STAT4
1899   if( rc==SQLITE_OK ){
1900     DisableLookaside;
1901     rc = loadStat4(db, sInfo.zDatabase);
1902     EnableLookaside;
1903   }
1904   for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1905     Index *pIdx = sqliteHashData(i);
1906     sqlite3_free(pIdx->aiRowEst);
1907     pIdx->aiRowEst = 0;
1908   }
1909 #endif
1910 
1911   if( rc==SQLITE_NOMEM ){
1912     sqlite3OomFault(db);
1913   }
1914   return rc;
1915 }
1916 
1917 
1918 #endif /* SQLITE_OMIT_ANALYZE */
1919