xref: /sqlite-3.40.0/src/analyze.c (revision a3fdec71)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
35 ** not possible to enable both STAT3 and STAT4 at the same time.  If they
36 ** are both enabled, then STAT4 takes precedence.
37 **
38 ** For most applications, sqlite_stat1 provides all the statisics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 # define IsStat3     0
148 #elif defined(SQLITE_ENABLE_STAT3)
149 # define IsStat4     0
150 # define IsStat3     1
151 #else
152 # define IsStat4     0
153 # define IsStat3     0
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
156 #endif
157 #define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */
158 
159 /*
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
162 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
164 **
165 ** If the sqlite_statN tables do not previously exist, it is created.
166 **
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
171 */
172 static void openStatTable(
173   Parse *pParse,          /* Parsing context */
174   int iDb,                /* The database we are looking in */
175   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
176   const char *zWhere,     /* Delete entries for this table or index */
177   const char *zWhereType  /* Either "tbl" or "idx" */
178 ){
179   static const struct {
180     const char *zName;
181     const char *zCols;
182   } aTable[] = {
183     { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186     { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189     { "sqlite_stat4", 0 },
190 #else
191     { "sqlite_stat3", 0 },
192     { "sqlite_stat4", 0 },
193 #endif
194   };
195   int i;
196   sqlite3 *db = pParse->db;
197   Db *pDb;
198   Vdbe *v = sqlite3GetVdbe(pParse);
199   int aRoot[ArraySize(aTable)];
200   u8 aCreateTbl[ArraySize(aTable)];
201 
202   if( v==0 ) return;
203   assert( sqlite3BtreeHoldsAllMutexes(db) );
204   assert( sqlite3VdbeDb(v)==db );
205   pDb = &db->aDb[iDb];
206 
207   /* Create new statistic tables if they do not exist, or clear them
208   ** if they do already exist.
209   */
210   for(i=0; i<ArraySize(aTable); i++){
211     const char *zTab = aTable[i].zName;
212     Table *pStat;
213     if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
214       if( aTable[i].zCols ){
215         /* The sqlite_statN table does not exist. Create it. Note that a
216         ** side-effect of the CREATE TABLE statement is to leave the rootpage
217         ** of the new table in register pParse->regRoot. This is important
218         ** because the OpenWrite opcode below will be needing it. */
219         sqlite3NestedParse(pParse,
220             "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
221         );
222         aRoot[i] = pParse->regRoot;
223         aCreateTbl[i] = OPFLAG_P2ISREG;
224       }
225     }else{
226       /* The table already exists. If zWhere is not NULL, delete all entries
227       ** associated with the table zWhere. If zWhere is NULL, delete the
228       ** entire contents of the table. */
229       aRoot[i] = pStat->tnum;
230       aCreateTbl[i] = 0;
231       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
232       if( zWhere ){
233         sqlite3NestedParse(pParse,
234            "DELETE FROM %Q.%s WHERE %s=%Q",
235            pDb->zName, zTab, zWhereType, zWhere
236         );
237       }else{
238         /* The sqlite_stat[134] table already exists.  Delete all rows. */
239         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
240       }
241     }
242   }
243 
244   /* Open the sqlite_stat[134] tables for writing. */
245   for(i=0; aTable[i].zCols; i++){
246     assert( i<ArraySize(aTable) );
247     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
248     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
249   }
250 }
251 
252 /*
253 ** Recommended number of samples for sqlite_stat4
254 */
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
257 #endif
258 
259 /*
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
262 ** information.
263 */
264 typedef struct Stat4Accum Stat4Accum;
265 typedef struct Stat4Sample Stat4Sample;
266 struct Stat4Sample {
267   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
268   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
270   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
271   union {
272     i64 iRowid;                     /* Rowid in main table of the key */
273     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
274   } u;
275   u32 nRowid;                     /* Sizeof aRowid[] */
276   u8 isPSample;                   /* True if a periodic sample */
277   int iCol;                       /* If !isPSample, the reason for inclusion */
278   u32 iHash;                      /* Tiebreaker hash */
279 #endif
280 };
281 struct Stat4Accum {
282   tRowcnt nRow;             /* Number of rows in the entire table */
283   tRowcnt nPSample;         /* How often to do a periodic sample */
284   int nCol;                 /* Number of columns in index + rowid */
285   int mxSample;             /* Maximum number of samples to accumulate */
286   Stat4Sample current;      /* Current row as a Stat4Sample */
287   u32 iPrn;                 /* Pseudo-random number used for sampling */
288   Stat4Sample *aBest;       /* Array of nCol best samples */
289   int iMin;                 /* Index in a[] of entry with minimum score */
290   int nSample;              /* Current number of samples */
291   int iGet;                 /* Index of current sample accessed by stat_get() */
292   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
293   sqlite3 *db;              /* Database connection, for malloc() */
294 };
295 
296 /* Reclaim memory used by a Stat4Sample
297 */
298 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
299 static void sampleClear(sqlite3 *db, Stat4Sample *p){
300   assert( db!=0 );
301   if( p->nRowid ){
302     sqlite3DbFree(db, p->u.aRowid);
303     p->nRowid = 0;
304   }
305 }
306 #endif
307 
308 /* Initialize the BLOB value of a ROWID
309 */
310 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
311 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
312   assert( db!=0 );
313   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
314   p->u.aRowid = sqlite3DbMallocRaw(db, n);
315   if( p->u.aRowid ){
316     p->nRowid = n;
317     memcpy(p->u.aRowid, pData, n);
318   }else{
319     p->nRowid = 0;
320   }
321 }
322 #endif
323 
324 /* Initialize the INTEGER value of a ROWID.
325 */
326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
327 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
328   assert( db!=0 );
329   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
330   p->nRowid = 0;
331   p->u.iRowid = iRowid;
332 }
333 #endif
334 
335 
336 /*
337 ** Copy the contents of object (*pFrom) into (*pTo).
338 */
339 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
340 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
341   pTo->isPSample = pFrom->isPSample;
342   pTo->iCol = pFrom->iCol;
343   pTo->iHash = pFrom->iHash;
344   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
345   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
346   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
347   if( pFrom->nRowid ){
348     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
349   }else{
350     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
351   }
352 }
353 #endif
354 
355 /*
356 ** Reclaim all memory of a Stat4Accum structure.
357 */
358 static void stat4Destructor(void *pOld){
359   Stat4Accum *p = (Stat4Accum*)pOld;
360 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
361   int i;
362   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
363   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
364   sampleClear(p->db, &p->current);
365 #endif
366   sqlite3DbFree(p->db, p);
367 }
368 
369 /*
370 ** Implementation of the stat_init(N,C) SQL function. The two parameters
371 ** are the number of rows in the table or index (C) and the number of columns
372 ** in the index (N).  The second argument (C) is only used for STAT3 and STAT4.
373 **
374 ** This routine allocates the Stat4Accum object in heap memory. The return
375 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e.
376 ** the size of the blob is sizeof(void*) bytes).
377 */
378 static void statInit(
379   sqlite3_context *context,
380   int argc,
381   sqlite3_value **argv
382 ){
383   Stat4Accum *p;
384   int nCol;                       /* Number of columns in index being sampled */
385   int nColUp;                     /* nCol rounded up for alignment */
386   int n;                          /* Bytes of space to allocate */
387   sqlite3 *db;                    /* Database connection */
388 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
389   int mxSample = SQLITE_STAT4_SAMPLES;
390 #endif
391 
392   /* Decode the three function arguments */
393   UNUSED_PARAMETER(argc);
394   nCol = sqlite3_value_int(argv[0]);
395   assert( nCol>1 );               /* >1 because it includes the rowid column */
396   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
397 
398   /* Allocate the space required for the Stat4Accum object */
399   n = sizeof(*p)
400     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
401     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
402 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
403     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
404     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
405     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
406 #endif
407   ;
408   db = sqlite3_context_db_handle(context);
409   p = sqlite3DbMallocZero(db, n);
410   if( p==0 ){
411     sqlite3_result_error_nomem(context);
412     return;
413   }
414 
415   p->db = db;
416   p->nRow = 0;
417   p->nCol = nCol;
418   p->current.anDLt = (tRowcnt*)&p[1];
419   p->current.anEq = &p->current.anDLt[nColUp];
420 
421 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
422   {
423     u8 *pSpace;                     /* Allocated space not yet assigned */
424     int i;                          /* Used to iterate through p->aSample[] */
425 
426     p->iGet = -1;
427     p->mxSample = mxSample;
428     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[1])/(mxSample/3+1) + 1);
429     p->current.anLt = &p->current.anEq[nColUp];
430     p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[1])*0xd0944565;
431 
432     /* Set up the Stat4Accum.a[] and aBest[] arrays */
433     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
434     p->aBest = &p->a[mxSample];
435     pSpace = (u8*)(&p->a[mxSample+nCol]);
436     for(i=0; i<(mxSample+nCol); i++){
437       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
438       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
439       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
440     }
441     assert( (pSpace - (u8*)p)==n );
442 
443     for(i=0; i<nCol; i++){
444       p->aBest[i].iCol = i;
445     }
446   }
447 #endif
448 
449   /* Return a pointer to the allocated object to the caller */
450   sqlite3_result_blob(context, p, sizeof(p), stat4Destructor);
451 }
452 static const FuncDef statInitFuncdef = {
453   1+IsStat34,      /* nArg */
454   SQLITE_UTF8,     /* funcFlags */
455   0,               /* pUserData */
456   0,               /* pNext */
457   statInit,        /* xFunc */
458   0,               /* xStep */
459   0,               /* xFinalize */
460   "stat_init",     /* zName */
461   0,               /* pHash */
462   0                /* pDestructor */
463 };
464 
465 #ifdef SQLITE_ENABLE_STAT4
466 /*
467 ** pNew and pOld are both candidate non-periodic samples selected for
468 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
469 ** considering only any trailing columns and the sample hash value, this
470 ** function returns true if sample pNew is to be preferred over pOld.
471 ** In other words, if we assume that the cardinalities of the selected
472 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
473 **
474 ** This function assumes that for each argument sample, the contents of
475 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
476 */
477 static int sampleIsBetterPost(
478   Stat4Accum *pAccum,
479   Stat4Sample *pNew,
480   Stat4Sample *pOld
481 ){
482   int nCol = pAccum->nCol;
483   int i;
484   assert( pNew->iCol==pOld->iCol );
485   for(i=pNew->iCol+1; i<nCol; i++){
486     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
487     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
488   }
489   if( pNew->iHash>pOld->iHash ) return 1;
490   return 0;
491 }
492 #endif
493 
494 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
495 /*
496 ** Return true if pNew is to be preferred over pOld.
497 **
498 ** This function assumes that for each argument sample, the contents of
499 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
500 */
501 static int sampleIsBetter(
502   Stat4Accum *pAccum,
503   Stat4Sample *pNew,
504   Stat4Sample *pOld
505 ){
506   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
507   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
508 
509   assert( pOld->isPSample==0 && pNew->isPSample==0 );
510   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
511 
512   if( (nEqNew>nEqOld) ) return 1;
513 #ifdef SQLITE_ENABLE_STAT4
514   if( nEqNew==nEqOld ){
515     if( pNew->iCol<pOld->iCol ) return 1;
516     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
517   }
518   return 0;
519 #else
520   return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
521 #endif
522 }
523 
524 /*
525 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
526 ** remove the least desirable sample from p->a[] to make room.
527 */
528 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
529   Stat4Sample *pSample = 0;
530   int i;
531 
532   assert( IsStat4 || nEqZero==0 );
533 
534 #ifdef SQLITE_ENABLE_STAT4
535   if( pNew->isPSample==0 ){
536     Stat4Sample *pUpgrade = 0;
537     assert( pNew->anEq[pNew->iCol]>0 );
538 
539     /* This sample is being added because the prefix that ends in column
540     ** iCol occurs many times in the table. However, if we have already
541     ** added a sample that shares this prefix, there is no need to add
542     ** this one. Instead, upgrade the priority of the highest priority
543     ** existing sample that shares this prefix.  */
544     for(i=p->nSample-1; i>=0; i--){
545       Stat4Sample *pOld = &p->a[i];
546       if( pOld->anEq[pNew->iCol]==0 ){
547         if( pOld->isPSample ) return;
548         assert( pOld->iCol>pNew->iCol );
549         assert( sampleIsBetter(p, pNew, pOld) );
550         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
551           pUpgrade = pOld;
552         }
553       }
554     }
555     if( pUpgrade ){
556       pUpgrade->iCol = pNew->iCol;
557       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
558       goto find_new_min;
559     }
560   }
561 #endif
562 
563   /* If necessary, remove sample iMin to make room for the new sample. */
564   if( p->nSample>=p->mxSample ){
565     Stat4Sample *pMin = &p->a[p->iMin];
566     tRowcnt *anEq = pMin->anEq;
567     tRowcnt *anLt = pMin->anLt;
568     tRowcnt *anDLt = pMin->anDLt;
569     sampleClear(p->db, pMin);
570     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
571     pSample = &p->a[p->nSample-1];
572     pSample->nRowid = 0;
573     pSample->anEq = anEq;
574     pSample->anDLt = anDLt;
575     pSample->anLt = anLt;
576     p->nSample = p->mxSample-1;
577   }
578 
579   /* The "rows less-than" for the rowid column must be greater than that
580   ** for the last sample in the p->a[] array. Otherwise, the samples would
581   ** be out of order. */
582 #ifdef SQLITE_ENABLE_STAT4
583   assert( p->nSample==0
584        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
585 #endif
586 
587   /* Insert the new sample */
588   pSample = &p->a[p->nSample];
589   sampleCopy(p, pSample, pNew);
590   p->nSample++;
591 
592   /* Zero the first nEqZero entries in the anEq[] array. */
593   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
594 
595 #ifdef SQLITE_ENABLE_STAT4
596  find_new_min:
597 #endif
598   if( p->nSample>=p->mxSample ){
599     int iMin = -1;
600     for(i=0; i<p->mxSample; i++){
601       if( p->a[i].isPSample ) continue;
602       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
603         iMin = i;
604       }
605     }
606     assert( iMin>=0 );
607     p->iMin = iMin;
608   }
609 }
610 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
611 
612 /*
613 ** Field iChng of the index being scanned has changed. So at this point
614 ** p->current contains a sample that reflects the previous row of the
615 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
616 ** correct at this point.
617 */
618 static void samplePushPrevious(Stat4Accum *p, int iChng){
619 #ifdef SQLITE_ENABLE_STAT4
620   int i;
621 
622   /* Check if any samples from the aBest[] array should be pushed
623   ** into IndexSample.a[] at this point.  */
624   for(i=(p->nCol-2); i>=iChng; i--){
625     Stat4Sample *pBest = &p->aBest[i];
626     pBest->anEq[i] = p->current.anEq[i];
627     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
628       sampleInsert(p, pBest, i);
629     }
630   }
631 
632   /* Update the anEq[] fields of any samples already collected. */
633   for(i=p->nSample-1; i>=0; i--){
634     int j;
635     for(j=iChng; j<p->nCol; j++){
636       if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
637     }
638   }
639 #endif
640 
641 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
642   if( iChng==0 ){
643     tRowcnt nLt = p->current.anLt[0];
644     tRowcnt nEq = p->current.anEq[0];
645 
646     /* Check if this is to be a periodic sample. If so, add it. */
647     if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
648       p->current.isPSample = 1;
649       sampleInsert(p, &p->current, 0);
650       p->current.isPSample = 0;
651     }else
652 
653     /* Or if it is a non-periodic sample. Add it in this case too. */
654     if( p->nSample<p->mxSample
655      || sampleIsBetter(p, &p->current, &p->a[p->iMin])
656     ){
657       sampleInsert(p, &p->current, 0);
658     }
659   }
660 #endif
661 
662 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
663   UNUSED_PARAMETER( p );
664   UNUSED_PARAMETER( iChng );
665 #endif
666 }
667 
668 /*
669 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
670 ** Arguments:
671 **
672 **    P     Pointer to the Stat4Accum object created by stat_init()
673 **    C     Index of left-most column to differ from previous row
674 **    R     Rowid for the current row.  Might be a key record for
675 **          WITHOUT ROWID tables.
676 **
677 ** The SQL function always returns NULL.
678 **
679 ** The R parameter is only used for STAT3 and STAT4
680 */
681 static void statPush(
682   sqlite3_context *context,
683   int argc,
684   sqlite3_value **argv
685 ){
686   int i;
687 
688   /* The three function arguments */
689   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
690   int iChng = sqlite3_value_int(argv[1]);
691 
692   UNUSED_PARAMETER( argc );
693   UNUSED_PARAMETER( context );
694   assert( p->nCol>1 );        /* Includes rowid field */
695   assert( iChng<p->nCol );
696 
697   if( p->nRow==0 ){
698     /* This is the first call to this function. Do initialization. */
699     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
700   }else{
701     /* Second and subsequent calls get processed here */
702     samplePushPrevious(p, iChng);
703 
704     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
705     ** to the current row of the index. */
706     for(i=0; i<iChng; i++){
707       p->current.anEq[i]++;
708     }
709     for(i=iChng; i<p->nCol; i++){
710       p->current.anDLt[i]++;
711 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
712       p->current.anLt[i] += p->current.anEq[i];
713 #endif
714       p->current.anEq[i] = 1;
715     }
716   }
717   p->nRow++;
718 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
719   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
720     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
721   }else{
722     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
723                                        sqlite3_value_blob(argv[2]));
724   }
725   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
726 #endif
727 
728 #ifdef SQLITE_ENABLE_STAT4
729   {
730     tRowcnt nLt = p->current.anLt[p->nCol-1];
731 
732     /* Check if this is to be a periodic sample. If so, add it. */
733     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
734       p->current.isPSample = 1;
735       p->current.iCol = 0;
736       sampleInsert(p, &p->current, p->nCol-1);
737       p->current.isPSample = 0;
738     }
739 
740     /* Update the aBest[] array. */
741     for(i=0; i<(p->nCol-1); i++){
742       p->current.iCol = i;
743       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
744         sampleCopy(p, &p->aBest[i], &p->current);
745       }
746     }
747   }
748 #endif
749 }
750 static const FuncDef statPushFuncdef = {
751   2+IsStat34,      /* nArg */
752   SQLITE_UTF8,     /* funcFlags */
753   0,               /* pUserData */
754   0,               /* pNext */
755   statPush,        /* xFunc */
756   0,               /* xStep */
757   0,               /* xFinalize */
758   "stat_push",     /* zName */
759   0,               /* pHash */
760   0                /* pDestructor */
761 };
762 
763 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
764 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
765 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
766 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
767 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
768 
769 /*
770 ** Implementation of the stat_get(P,J) SQL function.  This routine is
771 ** used to query the results.  Content is returned for parameter J
772 ** which is one of the STAT_GET_xxxx values defined above.
773 **
774 ** If neither STAT3 nor STAT4 are enabled, then J is always
775 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
776 ** a one-parameter function, stat_get(P), that always returns the
777 ** stat1 table entry information.
778 */
779 static void statGet(
780   sqlite3_context *context,
781   int argc,
782   sqlite3_value **argv
783 ){
784   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
785 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
786   /* STAT3 and STAT4 have a parameter on this routine. */
787   int eCall = sqlite3_value_int(argv[1]);
788   assert( argc==2 );
789   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
790        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
791        || eCall==STAT_GET_NDLT
792   );
793   if( eCall==STAT_GET_STAT1 )
794 #else
795   assert( argc==1 );
796 #endif
797   {
798     /* Return the value to store in the "stat" column of the sqlite_stat1
799     ** table for this index.
800     **
801     ** The value is a string composed of a list of integers describing
802     ** the index. The first integer in the list is the total number of
803     ** entries in the index. There is one additional integer in the list
804     ** for each indexed column. This additional integer is an estimate of
805     ** the number of rows matched by a stabbing query on the index using
806     ** a key with the corresponding number of fields. In other words,
807     ** if the index is on columns (a,b) and the sqlite_stat1 value is
808     ** "100 10 2", then SQLite estimates that:
809     **
810     **   * the index contains 100 rows,
811     **   * "WHERE a=?" matches 10 rows, and
812     **   * "WHERE a=? AND b=?" matches 2 rows.
813     **
814     ** If D is the count of distinct values and K is the total number of
815     ** rows, then each estimate is computed as:
816     **
817     **        I = (K+D-1)/D
818     */
819     char *z;
820     int i;
821 
822     char *zRet = sqlite3MallocZero(p->nCol * 25);
823     if( zRet==0 ){
824       sqlite3_result_error_nomem(context);
825       return;
826     }
827 
828     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
829     z = zRet + sqlite3Strlen30(zRet);
830     for(i=0; i<(p->nCol-1); i++){
831       u64 nDistinct = p->current.anDLt[i] + 1;
832       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
833       sqlite3_snprintf(24, z, " %llu", iVal);
834       z += sqlite3Strlen30(z);
835       assert( p->current.anEq[i] );
836     }
837     assert( z[0]=='\0' && z>zRet );
838 
839     sqlite3_result_text(context, zRet, -1, sqlite3_free);
840   }
841 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
842   else if( eCall==STAT_GET_ROWID ){
843     if( p->iGet<0 ){
844       samplePushPrevious(p, 0);
845       p->iGet = 0;
846     }
847     if( p->iGet<p->nSample ){
848       Stat4Sample *pS = p->a + p->iGet;
849       if( pS->nRowid==0 ){
850         sqlite3_result_int64(context, pS->u.iRowid);
851       }else{
852         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
853                             SQLITE_TRANSIENT);
854       }
855     }
856   }else{
857     tRowcnt *aCnt = 0;
858 
859     assert( p->iGet<p->nSample );
860     switch( eCall ){
861       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
862       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
863       default: {
864         aCnt = p->a[p->iGet].anDLt;
865         p->iGet++;
866         break;
867       }
868     }
869 
870     if( IsStat3 ){
871       sqlite3_result_int64(context, (i64)aCnt[0]);
872     }else{
873       char *zRet = sqlite3MallocZero(p->nCol * 25);
874       if( zRet==0 ){
875         sqlite3_result_error_nomem(context);
876       }else{
877         int i;
878         char *z = zRet;
879         for(i=0; i<p->nCol; i++){
880           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
881           z += sqlite3Strlen30(z);
882         }
883         assert( z[0]=='\0' && z>zRet );
884         z[-1] = '\0';
885         sqlite3_result_text(context, zRet, -1, sqlite3_free);
886       }
887     }
888   }
889 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
890 #ifndef SQLITE_DEBUG
891   UNUSED_PARAMETER( argc );
892 #endif
893 }
894 static const FuncDef statGetFuncdef = {
895   1+IsStat34,      /* nArg */
896   SQLITE_UTF8,     /* funcFlags */
897   0,               /* pUserData */
898   0,               /* pNext */
899   statGet,         /* xFunc */
900   0,               /* xStep */
901   0,               /* xFinalize */
902   "stat_get",      /* zName */
903   0,               /* pHash */
904   0                /* pDestructor */
905 };
906 
907 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
908   assert( regOut!=regStat4 && regOut!=regStat4+1 );
909 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
910   sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
911 #elif SQLITE_DEBUG
912   assert( iParam==STAT_GET_STAT1 );
913 #else
914   UNUSED_PARAMETER( iParam );
915 #endif
916   sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
917   sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
918   sqlite3VdbeChangeP5(v, 1 + IsStat34);
919 }
920 
921 /*
922 ** Generate code to do an analysis of all indices associated with
923 ** a single table.
924 */
925 static void analyzeOneTable(
926   Parse *pParse,   /* Parser context */
927   Table *pTab,     /* Table whose indices are to be analyzed */
928   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
929   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
930   int iMem,        /* Available memory locations begin here */
931   int iTab         /* Next available cursor */
932 ){
933   sqlite3 *db = pParse->db;    /* Database handle */
934   Index *pIdx;                 /* An index to being analyzed */
935   int iIdxCur;                 /* Cursor open on index being analyzed */
936   int iTabCur;                 /* Table cursor */
937   Vdbe *v;                     /* The virtual machine being built up */
938   int i;                       /* Loop counter */
939   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
940   int iDb;                     /* Index of database containing pTab */
941   u8 needTableCnt = 1;         /* True to count the table */
942   int regNewRowid = iMem++;    /* Rowid for the inserted record */
943   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
944   int regChng = iMem++;        /* Index of changed index field */
945 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
946   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
947 #endif
948   int regTemp = iMem++;        /* Temporary use register */
949   int regTabname = iMem++;     /* Register containing table name */
950   int regIdxname = iMem++;     /* Register containing index name */
951   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
952   int regPrev = iMem;          /* MUST BE LAST (see below) */
953 
954   pParse->nMem = MAX(pParse->nMem, iMem);
955   v = sqlite3GetVdbe(pParse);
956   if( v==0 || NEVER(pTab==0) ){
957     return;
958   }
959   if( pTab->tnum==0 ){
960     /* Do not gather statistics on views or virtual tables */
961     return;
962   }
963   if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
964     /* Do not gather statistics on system tables */
965     return;
966   }
967   assert( sqlite3BtreeHoldsAllMutexes(db) );
968   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
969   assert( iDb>=0 );
970   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
971 #ifndef SQLITE_OMIT_AUTHORIZATION
972   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
973       db->aDb[iDb].zName ) ){
974     return;
975   }
976 #endif
977 
978   /* Establish a read-lock on the table at the shared-cache level.
979   ** Open a read-only cursor on the table. Also allocate a cursor number
980   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
981   ** this time though.  */
982   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
983   iTabCur = iTab++;
984   iIdxCur = iTab++;
985   pParse->nTab = MAX(pParse->nTab, iTab);
986   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
987   sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
988 
989   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
990     int nCol;                     /* Number of columns indexed by pIdx */
991     int *aGotoChng;               /* Array of jump instruction addresses */
992     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
993     int addrGotoChng0;            /* Address of "Goto addr_chng_0" */
994     int addrNextRow;              /* Address of "next_row:" */
995     const char *zIdxName;         /* Name of the index */
996 
997     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
998     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
999     VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
1000     nCol = pIdx->nKeyCol;
1001     aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
1002     if( aGotoChng==0 ) continue;
1003 
1004     /* Populate the register containing the index name. */
1005     if( pIdx->autoIndex==2 && !HasRowid(pTab) ){
1006       zIdxName = pTab->zName;
1007     }else{
1008       zIdxName = pIdx->zName;
1009     }
1010     sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0);
1011 
1012     /*
1013     ** Pseudo-code for loop that calls stat_push():
1014     **
1015     **   Rewind csr
1016     **   if eof(csr) goto end_of_scan;
1017     **   regChng = 0
1018     **   goto chng_addr_0;
1019     **
1020     **  next_row:
1021     **   regChng = 0
1022     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1023     **   regChng = 1
1024     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1025     **   ...
1026     **   regChng = N
1027     **   goto chng_addr_N
1028     **
1029     **  chng_addr_0:
1030     **   regPrev(0) = idx(0)
1031     **  chng_addr_1:
1032     **   regPrev(1) = idx(1)
1033     **  ...
1034     **
1035     **  chng_addr_N:
1036     **   regRowid = idx(rowid)
1037     **   stat_push(P, regChng, regRowid)
1038     **   Next csr
1039     **   if !eof(csr) goto next_row;
1040     **
1041     **  end_of_scan:
1042     */
1043 
1044     /* Make sure there are enough memory cells allocated to accommodate
1045     ** the regPrev array and a trailing rowid (the rowid slot is required
1046     ** when building a record to insert into the sample column of
1047     ** the sqlite_stat4 table.  */
1048     pParse->nMem = MAX(pParse->nMem, regPrev+nCol);
1049 
1050     /* Open a read-only cursor on the index being analyzed. */
1051     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1052     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1053     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1054     VdbeComment((v, "%s", pIdx->zName));
1055 
1056     /* Invoke the stat_init() function. The arguments are:
1057     **
1058     **    (1) the number of columns in the index including the rowid,
1059     **    (2) the number of rows in the index,
1060     **
1061     ** The second argument is only used for STAT3 and STAT4
1062     */
1063 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1064     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+2);
1065 #endif
1066     sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+1);
1067     sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
1068     sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
1069     sqlite3VdbeChangeP5(v, 1+IsStat34);
1070 
1071     /* Implementation of the following:
1072     **
1073     **   Rewind csr
1074     **   if eof(csr) goto end_of_scan;
1075     **   regChng = 0
1076     **   goto next_push_0;
1077     **
1078     */
1079     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1080     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1081     addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);
1082 
1083     /*
1084     **  next_row:
1085     **   regChng = 0
1086     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1087     **   regChng = 1
1088     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1089     **   ...
1090     **   regChng = N
1091     **   goto chng_addr_N
1092     */
1093     addrNextRow = sqlite3VdbeCurrentAddr(v);
1094     for(i=0; i<nCol; i++){
1095       char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1096       sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1097       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1098       aGotoChng[i] =
1099       sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1100       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1101     }
1102     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
1103     aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);
1104 
1105     /*
1106     **  chng_addr_0:
1107     **   regPrev(0) = idx(0)
1108     **  chng_addr_1:
1109     **   regPrev(1) = idx(1)
1110     **  ...
1111     */
1112     sqlite3VdbeJumpHere(v, addrGotoChng0);
1113     for(i=0; i<nCol; i++){
1114       sqlite3VdbeJumpHere(v, aGotoChng[i]);
1115       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1116     }
1117 
1118     /*
1119     **  chng_addr_N:
1120     **   regRowid = idx(rowid)            // STAT34 only
1121     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
1122     **   Next csr
1123     **   if !eof(csr) goto next_row;
1124     */
1125     sqlite3VdbeJumpHere(v, aGotoChng[nCol]);
1126 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1127     assert( regRowid==(regStat4+2) );
1128     if( HasRowid(pTab) ){
1129       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1130     }else{
1131       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1132       int j, k, regKey;
1133       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1134       for(j=0; j<pPk->nKeyCol; j++){
1135         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1136         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1137         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1138       }
1139       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1140       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1141     }
1142 #endif
1143     assert( regChng==(regStat4+1) );
1144     sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
1145     sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
1146     sqlite3VdbeChangeP5(v, 2+IsStat34);
1147     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow);
1148 
1149     /* Add the entry to the stat1 table. */
1150     callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
1151     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
1152     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1153     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1154     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1155 
1156     /* Add the entries to the stat3 or stat4 table. */
1157 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1158     {
1159       int regEq = regStat1;
1160       int regLt = regStat1+1;
1161       int regDLt = regStat1+2;
1162       int regSample = regStat1+3;
1163       int regCol = regStat1+4;
1164       int regSampleRowid = regCol + nCol;
1165       int addrNext;
1166       int addrIsNull;
1167       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1168 
1169       pParse->nMem = MAX(pParse->nMem, regCol+nCol+1);
1170 
1171       addrNext = sqlite3VdbeCurrentAddr(v);
1172       callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
1173       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1174       callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
1175       callStatGet(v, regStat4, STAT_GET_NLT, regLt);
1176       callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
1177       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1178 #ifdef SQLITE_ENABLE_STAT3
1179       sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
1180                                       pIdx->aiColumn[0], regSample);
1181 #else
1182       for(i=0; i<nCol; i++){
1183         i16 iCol = pIdx->aiColumn[i];
1184         sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
1185       }
1186       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample);
1187 #endif
1188       sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0);
1189       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1190       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1191       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
1192       sqlite3VdbeJumpHere(v, addrIsNull);
1193     }
1194 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1195 
1196     /* End of analysis */
1197     sqlite3VdbeJumpHere(v, addrRewind);
1198     sqlite3DbFree(db, aGotoChng);
1199   }
1200 
1201 
1202   /* Create a single sqlite_stat1 entry containing NULL as the index
1203   ** name and the row count as the content.
1204   */
1205   if( pOnlyIdx==0 && needTableCnt ){
1206     VdbeComment((v, "%s", pTab->zName));
1207     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1208     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
1209     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1210     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
1211     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1212     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1213     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1214     sqlite3VdbeJumpHere(v, jZeroRows);
1215   }
1216 }
1217 
1218 
1219 /*
1220 ** Generate code that will cause the most recent index analysis to
1221 ** be loaded into internal hash tables where is can be used.
1222 */
1223 static void loadAnalysis(Parse *pParse, int iDb){
1224   Vdbe *v = sqlite3GetVdbe(pParse);
1225   if( v ){
1226     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1227   }
1228 }
1229 
1230 /*
1231 ** Generate code that will do an analysis of an entire database
1232 */
1233 static void analyzeDatabase(Parse *pParse, int iDb){
1234   sqlite3 *db = pParse->db;
1235   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1236   HashElem *k;
1237   int iStatCur;
1238   int iMem;
1239   int iTab;
1240 
1241   sqlite3BeginWriteOperation(pParse, 0, iDb);
1242   iStatCur = pParse->nTab;
1243   pParse->nTab += 3;
1244   openStatTable(pParse, iDb, iStatCur, 0, 0);
1245   iMem = pParse->nMem+1;
1246   iTab = pParse->nTab;
1247   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1248   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1249     Table *pTab = (Table*)sqliteHashData(k);
1250     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1251   }
1252   loadAnalysis(pParse, iDb);
1253 }
1254 
1255 /*
1256 ** Generate code that will do an analysis of a single table in
1257 ** a database.  If pOnlyIdx is not NULL then it is a single index
1258 ** in pTab that should be analyzed.
1259 */
1260 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1261   int iDb;
1262   int iStatCur;
1263 
1264   assert( pTab!=0 );
1265   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1266   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1267   sqlite3BeginWriteOperation(pParse, 0, iDb);
1268   iStatCur = pParse->nTab;
1269   pParse->nTab += 3;
1270   if( pOnlyIdx ){
1271     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1272   }else{
1273     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1274   }
1275   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1276   loadAnalysis(pParse, iDb);
1277 }
1278 
1279 /*
1280 ** Generate code for the ANALYZE command.  The parser calls this routine
1281 ** when it recognizes an ANALYZE command.
1282 **
1283 **        ANALYZE                            -- 1
1284 **        ANALYZE  <database>                -- 2
1285 **        ANALYZE  ?<database>.?<tablename>  -- 3
1286 **
1287 ** Form 1 causes all indices in all attached databases to be analyzed.
1288 ** Form 2 analyzes all indices the single database named.
1289 ** Form 3 analyzes all indices associated with the named table.
1290 */
1291 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1292   sqlite3 *db = pParse->db;
1293   int iDb;
1294   int i;
1295   char *z, *zDb;
1296   Table *pTab;
1297   Index *pIdx;
1298   Token *pTableName;
1299 
1300   /* Read the database schema. If an error occurs, leave an error message
1301   ** and code in pParse and return NULL. */
1302   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1303   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1304     return;
1305   }
1306 
1307   assert( pName2!=0 || pName1==0 );
1308   if( pName1==0 ){
1309     /* Form 1:  Analyze everything */
1310     for(i=0; i<db->nDb; i++){
1311       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1312       analyzeDatabase(pParse, i);
1313     }
1314   }else if( pName2->n==0 ){
1315     /* Form 2:  Analyze the database or table named */
1316     iDb = sqlite3FindDb(db, pName1);
1317     if( iDb>=0 ){
1318       analyzeDatabase(pParse, iDb);
1319     }else{
1320       z = sqlite3NameFromToken(db, pName1);
1321       if( z ){
1322         if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
1323           analyzeTable(pParse, pIdx->pTable, pIdx);
1324         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
1325           analyzeTable(pParse, pTab, 0);
1326         }
1327         sqlite3DbFree(db, z);
1328       }
1329     }
1330   }else{
1331     /* Form 3: Analyze the fully qualified table name */
1332     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1333     if( iDb>=0 ){
1334       zDb = db->aDb[iDb].zName;
1335       z = sqlite3NameFromToken(db, pTableName);
1336       if( z ){
1337         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1338           analyzeTable(pParse, pIdx->pTable, pIdx);
1339         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1340           analyzeTable(pParse, pTab, 0);
1341         }
1342         sqlite3DbFree(db, z);
1343       }
1344     }
1345   }
1346 }
1347 
1348 /*
1349 ** Used to pass information from the analyzer reader through to the
1350 ** callback routine.
1351 */
1352 typedef struct analysisInfo analysisInfo;
1353 struct analysisInfo {
1354   sqlite3 *db;
1355   const char *zDatabase;
1356 };
1357 
1358 /*
1359 ** The first argument points to a nul-terminated string containing a
1360 ** list of space separated integers. Read the first nOut of these into
1361 ** the array aOut[].
1362 */
1363 static void decodeIntArray(
1364   char *zIntArray,       /* String containing int array to decode */
1365   int nOut,              /* Number of slots in aOut[] */
1366   tRowcnt *aOut,         /* Store integers here */
1367   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1368 ){
1369   char *z = zIntArray;
1370   int c;
1371   int i;
1372   tRowcnt v;
1373 
1374 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1375   if( z==0 ) z = "";
1376 #else
1377   if( NEVER(z==0) ) z = "";
1378 #endif
1379   for(i=0; *z && i<nOut; i++){
1380     v = 0;
1381     while( (c=z[0])>='0' && c<='9' ){
1382       v = v*10 + c - '0';
1383       z++;
1384     }
1385     aOut[i] = v;
1386     if( *z==' ' ) z++;
1387   }
1388 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1389   assert( pIndex!=0 );
1390 #else
1391   if( pIndex )
1392 #endif
1393   {
1394     if( strcmp(z, "unordered")==0 ){
1395       pIndex->bUnordered = 1;
1396     }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1397       int v32 = 0;
1398       sqlite3GetInt32(z+3, &v32);
1399       pIndex->szIdxRow = sqlite3LogEst(v32);
1400     }
1401   }
1402 }
1403 
1404 /*
1405 ** This callback is invoked once for each index when reading the
1406 ** sqlite_stat1 table.
1407 **
1408 **     argv[0] = name of the table
1409 **     argv[1] = name of the index (might be NULL)
1410 **     argv[2] = results of analysis - on integer for each column
1411 **
1412 ** Entries for which argv[1]==NULL simply record the number of rows in
1413 ** the table.
1414 */
1415 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1416   analysisInfo *pInfo = (analysisInfo*)pData;
1417   Index *pIndex;
1418   Table *pTable;
1419   const char *z;
1420 
1421   assert( argc==3 );
1422   UNUSED_PARAMETER2(NotUsed, argc);
1423 
1424   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1425     return 0;
1426   }
1427   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1428   if( pTable==0 ){
1429     return 0;
1430   }
1431   if( argv[1]==0 ){
1432     pIndex = 0;
1433   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1434     pIndex = sqlite3PrimaryKeyIndex(pTable);
1435   }else{
1436     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1437   }
1438   z = argv[2];
1439 
1440   if( pIndex ){
1441     decodeIntArray((char*)z, pIndex->nKeyCol+1, pIndex->aiRowEst, pIndex);
1442     if( pIndex->pPartIdxWhere==0 ) pTable->nRowEst = pIndex->aiRowEst[0];
1443   }else{
1444     Index fakeIdx;
1445     fakeIdx.szIdxRow = pTable->szTabRow;
1446     decodeIntArray((char*)z, 1, &pTable->nRowEst, &fakeIdx);
1447     pTable->szTabRow = fakeIdx.szIdxRow;
1448   }
1449 
1450   return 0;
1451 }
1452 
1453 /*
1454 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1455 ** and its contents.
1456 */
1457 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1458 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1459   if( pIdx->aSample ){
1460     int j;
1461     for(j=0; j<pIdx->nSample; j++){
1462       IndexSample *p = &pIdx->aSample[j];
1463       sqlite3DbFree(db, p->p);
1464     }
1465     sqlite3DbFree(db, pIdx->aSample);
1466   }
1467   if( db && db->pnBytesFreed==0 ){
1468     pIdx->nSample = 0;
1469     pIdx->aSample = 0;
1470   }
1471 #else
1472   UNUSED_PARAMETER(db);
1473   UNUSED_PARAMETER(pIdx);
1474 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1475 }
1476 
1477 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1478 /*
1479 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1480 ** stored in pIdx->aSample[].
1481 */
1482 static void initAvgEq(Index *pIdx){
1483   if( pIdx ){
1484     IndexSample *aSample = pIdx->aSample;
1485     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1486     int iCol;
1487     for(iCol=0; iCol<pIdx->nKeyCol; iCol++){
1488       int i;                    /* Used to iterate through samples */
1489       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1490       tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
1491       tRowcnt avgEq = 0;
1492       tRowcnt nDLt = pFinal->anDLt[iCol];
1493 
1494       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1495       ** occur in the stat4 table for this index before pFinal. Set
1496       ** sumEq to the sum of the nEq values for column iCol for the same
1497       ** set (adding the value only once where there exist dupicate
1498       ** prefixes).  */
1499       for(i=0; i<(pIdx->nSample-1); i++){
1500         if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
1501           sumEq += aSample[i].anEq[iCol];
1502           nSum++;
1503         }
1504       }
1505       if( nDLt>nSum ){
1506         avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
1507       }
1508       if( avgEq==0 ) avgEq = 1;
1509       pIdx->aAvgEq[iCol] = avgEq;
1510       if( pIdx->nSampleCol==1 ) break;
1511     }
1512   }
1513 }
1514 
1515 /*
1516 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1517 ** is supplied instead, find the PRIMARY KEY index for that table.
1518 */
1519 static Index *findIndexOrPrimaryKey(
1520   sqlite3 *db,
1521   const char *zName,
1522   const char *zDb
1523 ){
1524   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1525   if( pIdx==0 ){
1526     Table *pTab = sqlite3FindTable(db, zName, zDb);
1527     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1528   }
1529   return pIdx;
1530 }
1531 
1532 /*
1533 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1534 ** into the relevant Index.aSample[] arrays.
1535 **
1536 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1537 ** data equivalent to the following (statements are different for stat3,
1538 ** see the caller of this function for details):
1539 **
1540 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1541 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1542 **
1543 ** where %Q is replaced with the database name before the SQL is executed.
1544 */
1545 static int loadStatTbl(
1546   sqlite3 *db,                  /* Database handle */
1547   int bStat3,                   /* Assume single column records only */
1548   const char *zSql1,            /* SQL statement 1 (see above) */
1549   const char *zSql2,            /* SQL statement 2 (see above) */
1550   const char *zDb               /* Database name (e.g. "main") */
1551 ){
1552   int rc;                       /* Result codes from subroutines */
1553   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1554   char *zSql;                   /* Text of the SQL statement */
1555   Index *pPrevIdx = 0;          /* Previous index in the loop */
1556   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1557 
1558   assert( db->lookaside.bEnabled==0 );
1559   zSql = sqlite3MPrintf(db, zSql1, zDb);
1560   if( !zSql ){
1561     return SQLITE_NOMEM;
1562   }
1563   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1564   sqlite3DbFree(db, zSql);
1565   if( rc ) return rc;
1566 
1567   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1568     int nIdxCol = 1;              /* Number of columns in stat4 records */
1569     int nAvgCol = 1;              /* Number of entries in Index.aAvgEq */
1570 
1571     char *zIndex;   /* Index name */
1572     Index *pIdx;    /* Pointer to the index object */
1573     int nSample;    /* Number of samples */
1574     int nByte;      /* Bytes of space required */
1575     int i;          /* Bytes of space required */
1576     tRowcnt *pSpace;
1577 
1578     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1579     if( zIndex==0 ) continue;
1580     nSample = sqlite3_column_int(pStmt, 1);
1581     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1582     assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
1583     /* Index.nSample is non-zero at this point if data has already been
1584     ** loaded from the stat4 table. In this case ignore stat3 data.  */
1585     if( pIdx==0 || pIdx->nSample ) continue;
1586     if( bStat3==0 ){
1587       nIdxCol = pIdx->nKeyCol+1;
1588       nAvgCol = pIdx->nKeyCol;
1589     }
1590     pIdx->nSampleCol = nIdxCol;
1591     nByte = sizeof(IndexSample) * nSample;
1592     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1593     nByte += nAvgCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1594 
1595     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1596     if( pIdx->aSample==0 ){
1597       sqlite3_finalize(pStmt);
1598       return SQLITE_NOMEM;
1599     }
1600     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1601     pIdx->aAvgEq = pSpace; pSpace += nAvgCol;
1602     for(i=0; i<nSample; i++){
1603       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1604       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1605       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1606     }
1607     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1608   }
1609   rc = sqlite3_finalize(pStmt);
1610   if( rc ) return rc;
1611 
1612   zSql = sqlite3MPrintf(db, zSql2, zDb);
1613   if( !zSql ){
1614     return SQLITE_NOMEM;
1615   }
1616   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1617   sqlite3DbFree(db, zSql);
1618   if( rc ) return rc;
1619 
1620   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1621     char *zIndex;                 /* Index name */
1622     Index *pIdx;                  /* Pointer to the index object */
1623     int nCol = 1;                 /* Number of columns in index */
1624 
1625     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1626     if( zIndex==0 ) continue;
1627     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1628     if( pIdx==0 ) continue;
1629     /* This next condition is true if data has already been loaded from
1630     ** the sqlite_stat4 table. In this case ignore stat3 data.  */
1631     nCol = pIdx->nSampleCol;
1632     if( bStat3 && nCol>1 ) continue;
1633     if( pIdx!=pPrevIdx ){
1634       initAvgEq(pPrevIdx);
1635       pPrevIdx = pIdx;
1636     }
1637     pSample = &pIdx->aSample[pIdx->nSample];
1638     decodeIntArray((char*)sqlite3_column_text(pStmt,1), nCol, pSample->anEq, 0);
1639     decodeIntArray((char*)sqlite3_column_text(pStmt,2), nCol, pSample->anLt, 0);
1640     decodeIntArray((char*)sqlite3_column_text(pStmt,3), nCol, pSample->anDLt,0);
1641 
1642     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1643     ** This is in case the sample record is corrupted. In that case, the
1644     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1645     ** end of the allocated buffer before it realizes it is dealing with
1646     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1647     ** a buffer overread.  */
1648     pSample->n = sqlite3_column_bytes(pStmt, 4);
1649     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1650     if( pSample->p==0 ){
1651       sqlite3_finalize(pStmt);
1652       return SQLITE_NOMEM;
1653     }
1654     memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1655     pIdx->nSample++;
1656   }
1657   rc = sqlite3_finalize(pStmt);
1658   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1659   return rc;
1660 }
1661 
1662 /*
1663 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1664 ** the Index.aSample[] arrays of all indices.
1665 */
1666 static int loadStat4(sqlite3 *db, const char *zDb){
1667   int rc = SQLITE_OK;             /* Result codes from subroutines */
1668 
1669   assert( db->lookaside.bEnabled==0 );
1670   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1671     rc = loadStatTbl(db, 0,
1672       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1673       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1674       zDb
1675     );
1676   }
1677 
1678   if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
1679     rc = loadStatTbl(db, 1,
1680       "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1681       "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1682       zDb
1683     );
1684   }
1685 
1686   return rc;
1687 }
1688 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1689 
1690 /*
1691 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1692 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1693 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1694 ** Index.aSample[] arrays.
1695 **
1696 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1697 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1698 ** during compilation and the sqlite_stat3/4 table is present, no data is
1699 ** read from it.
1700 **
1701 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1702 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1703 ** returned. However, in this case, data is read from the sqlite_stat1
1704 ** table (if it is present) before returning.
1705 **
1706 ** If an OOM error occurs, this function always sets db->mallocFailed.
1707 ** This means if the caller does not care about other errors, the return
1708 ** code may be ignored.
1709 */
1710 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1711   analysisInfo sInfo;
1712   HashElem *i;
1713   char *zSql;
1714   int rc;
1715 
1716   assert( iDb>=0 && iDb<db->nDb );
1717   assert( db->aDb[iDb].pBt!=0 );
1718 
1719   /* Clear any prior statistics */
1720   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1721   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1722     Index *pIdx = sqliteHashData(i);
1723     sqlite3DefaultRowEst(pIdx);
1724 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1725     sqlite3DeleteIndexSamples(db, pIdx);
1726     pIdx->aSample = 0;
1727 #endif
1728   }
1729 
1730   /* Check to make sure the sqlite_stat1 table exists */
1731   sInfo.db = db;
1732   sInfo.zDatabase = db->aDb[iDb].zName;
1733   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
1734     return SQLITE_ERROR;
1735   }
1736 
1737   /* Load new statistics out of the sqlite_stat1 table */
1738   zSql = sqlite3MPrintf(db,
1739       "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1740   if( zSql==0 ){
1741     rc = SQLITE_NOMEM;
1742   }else{
1743     rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1744     sqlite3DbFree(db, zSql);
1745   }
1746 
1747 
1748   /* Load the statistics from the sqlite_stat4 table. */
1749 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1750   if( rc==SQLITE_OK ){
1751     int lookasideEnabled = db->lookaside.bEnabled;
1752     db->lookaside.bEnabled = 0;
1753     rc = loadStat4(db, sInfo.zDatabase);
1754     db->lookaside.bEnabled = lookasideEnabled;
1755   }
1756 #endif
1757 
1758   if( rc==SQLITE_NOMEM ){
1759     db->mallocFailed = 1;
1760   }
1761   return rc;
1762 }
1763 
1764 
1765 #endif /* SQLITE_OMIT_ANALYZE */
1766