1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statisics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 } 250 } 251 252 /* 253 ** Recommended number of samples for sqlite_stat4 254 */ 255 #ifndef SQLITE_STAT4_SAMPLES 256 # define SQLITE_STAT4_SAMPLES 24 257 #endif 258 259 /* 260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 261 ** share an instance of the following structure to hold their state 262 ** information. 263 */ 264 typedef struct Stat4Accum Stat4Accum; 265 typedef struct Stat4Sample Stat4Sample; 266 struct Stat4Sample { 267 tRowcnt *anEq; /* sqlite_stat4.nEq */ 268 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 269 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 270 tRowcnt *anLt; /* sqlite_stat4.nLt */ 271 union { 272 i64 iRowid; /* Rowid in main table of the key */ 273 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 274 } u; 275 u32 nRowid; /* Sizeof aRowid[] */ 276 u8 isPSample; /* True if a periodic sample */ 277 int iCol; /* If !isPSample, the reason for inclusion */ 278 u32 iHash; /* Tiebreaker hash */ 279 #endif 280 }; 281 struct Stat4Accum { 282 tRowcnt nRow; /* Number of rows in the entire table */ 283 tRowcnt nPSample; /* How often to do a periodic sample */ 284 int nCol; /* Number of columns in index + rowid */ 285 int mxSample; /* Maximum number of samples to accumulate */ 286 Stat4Sample current; /* Current row as a Stat4Sample */ 287 u32 iPrn; /* Pseudo-random number used for sampling */ 288 Stat4Sample *aBest; /* Array of nCol best samples */ 289 int iMin; /* Index in a[] of entry with minimum score */ 290 int nSample; /* Current number of samples */ 291 int iGet; /* Index of current sample accessed by stat_get() */ 292 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 293 sqlite3 *db; /* Database connection, for malloc() */ 294 }; 295 296 /* Reclaim memory used by a Stat4Sample 297 */ 298 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 299 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 300 assert( db!=0 ); 301 if( p->nRowid ){ 302 sqlite3DbFree(db, p->u.aRowid); 303 p->nRowid = 0; 304 } 305 } 306 #endif 307 308 /* Initialize the BLOB value of a ROWID 309 */ 310 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 311 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 312 assert( db!=0 ); 313 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 314 p->u.aRowid = sqlite3DbMallocRaw(db, n); 315 if( p->u.aRowid ){ 316 p->nRowid = n; 317 memcpy(p->u.aRowid, pData, n); 318 }else{ 319 p->nRowid = 0; 320 } 321 } 322 #endif 323 324 /* Initialize the INTEGER value of a ROWID. 325 */ 326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 327 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 328 assert( db!=0 ); 329 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 330 p->nRowid = 0; 331 p->u.iRowid = iRowid; 332 } 333 #endif 334 335 336 /* 337 ** Copy the contents of object (*pFrom) into (*pTo). 338 */ 339 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 340 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 341 pTo->isPSample = pFrom->isPSample; 342 pTo->iCol = pFrom->iCol; 343 pTo->iHash = pFrom->iHash; 344 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 345 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 346 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 347 if( pFrom->nRowid ){ 348 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 349 }else{ 350 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 351 } 352 } 353 #endif 354 355 /* 356 ** Reclaim all memory of a Stat4Accum structure. 357 */ 358 static void stat4Destructor(void *pOld){ 359 Stat4Accum *p = (Stat4Accum*)pOld; 360 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 361 int i; 362 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 363 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 364 sampleClear(p->db, &p->current); 365 #endif 366 sqlite3DbFree(p->db, p); 367 } 368 369 /* 370 ** Implementation of the stat_init(N,C) SQL function. The two parameters 371 ** are the number of rows in the table or index (C) and the number of columns 372 ** in the index (N). The second argument (C) is only used for STAT3 and STAT4. 373 ** 374 ** This routine allocates the Stat4Accum object in heap memory. The return 375 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. 376 ** the size of the blob is sizeof(void*) bytes). 377 */ 378 static void statInit( 379 sqlite3_context *context, 380 int argc, 381 sqlite3_value **argv 382 ){ 383 Stat4Accum *p; 384 int nCol; /* Number of columns in index being sampled */ 385 int nColUp; /* nCol rounded up for alignment */ 386 int n; /* Bytes of space to allocate */ 387 sqlite3 *db; /* Database connection */ 388 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 389 int mxSample = SQLITE_STAT4_SAMPLES; 390 #endif 391 392 /* Decode the three function arguments */ 393 UNUSED_PARAMETER(argc); 394 nCol = sqlite3_value_int(argv[0]); 395 assert( nCol>1 ); /* >1 because it includes the rowid column */ 396 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 397 398 /* Allocate the space required for the Stat4Accum object */ 399 n = sizeof(*p) 400 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 401 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 402 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 403 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 404 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 405 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 406 #endif 407 ; 408 db = sqlite3_context_db_handle(context); 409 p = sqlite3DbMallocZero(db, n); 410 if( p==0 ){ 411 sqlite3_result_error_nomem(context); 412 return; 413 } 414 415 p->db = db; 416 p->nRow = 0; 417 p->nCol = nCol; 418 p->current.anDLt = (tRowcnt*)&p[1]; 419 p->current.anEq = &p->current.anDLt[nColUp]; 420 421 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 422 { 423 u8 *pSpace; /* Allocated space not yet assigned */ 424 int i; /* Used to iterate through p->aSample[] */ 425 426 p->iGet = -1; 427 p->mxSample = mxSample; 428 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[1])/(mxSample/3+1) + 1); 429 p->current.anLt = &p->current.anEq[nColUp]; 430 p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[1])*0xd0944565; 431 432 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 433 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 434 p->aBest = &p->a[mxSample]; 435 pSpace = (u8*)(&p->a[mxSample+nCol]); 436 for(i=0; i<(mxSample+nCol); i++){ 437 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 438 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 439 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 440 } 441 assert( (pSpace - (u8*)p)==n ); 442 443 for(i=0; i<nCol; i++){ 444 p->aBest[i].iCol = i; 445 } 446 } 447 #endif 448 449 /* Return a pointer to the allocated object to the caller */ 450 sqlite3_result_blob(context, p, sizeof(p), stat4Destructor); 451 } 452 static const FuncDef statInitFuncdef = { 453 1+IsStat34, /* nArg */ 454 SQLITE_UTF8, /* funcFlags */ 455 0, /* pUserData */ 456 0, /* pNext */ 457 statInit, /* xFunc */ 458 0, /* xStep */ 459 0, /* xFinalize */ 460 "stat_init", /* zName */ 461 0, /* pHash */ 462 0 /* pDestructor */ 463 }; 464 465 #ifdef SQLITE_ENABLE_STAT4 466 /* 467 ** pNew and pOld are both candidate non-periodic samples selected for 468 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 469 ** considering only any trailing columns and the sample hash value, this 470 ** function returns true if sample pNew is to be preferred over pOld. 471 ** In other words, if we assume that the cardinalities of the selected 472 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 473 ** 474 ** This function assumes that for each argument sample, the contents of 475 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 476 */ 477 static int sampleIsBetterPost( 478 Stat4Accum *pAccum, 479 Stat4Sample *pNew, 480 Stat4Sample *pOld 481 ){ 482 int nCol = pAccum->nCol; 483 int i; 484 assert( pNew->iCol==pOld->iCol ); 485 for(i=pNew->iCol+1; i<nCol; i++){ 486 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 487 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 488 } 489 if( pNew->iHash>pOld->iHash ) return 1; 490 return 0; 491 } 492 #endif 493 494 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 495 /* 496 ** Return true if pNew is to be preferred over pOld. 497 ** 498 ** This function assumes that for each argument sample, the contents of 499 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 500 */ 501 static int sampleIsBetter( 502 Stat4Accum *pAccum, 503 Stat4Sample *pNew, 504 Stat4Sample *pOld 505 ){ 506 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 507 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 508 509 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 510 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 511 512 if( (nEqNew>nEqOld) ) return 1; 513 #ifdef SQLITE_ENABLE_STAT4 514 if( nEqNew==nEqOld ){ 515 if( pNew->iCol<pOld->iCol ) return 1; 516 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 517 } 518 return 0; 519 #else 520 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 521 #endif 522 } 523 524 /* 525 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 526 ** remove the least desirable sample from p->a[] to make room. 527 */ 528 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 529 Stat4Sample *pSample = 0; 530 int i; 531 532 assert( IsStat4 || nEqZero==0 ); 533 534 #ifdef SQLITE_ENABLE_STAT4 535 if( pNew->isPSample==0 ){ 536 Stat4Sample *pUpgrade = 0; 537 assert( pNew->anEq[pNew->iCol]>0 ); 538 539 /* This sample is being added because the prefix that ends in column 540 ** iCol occurs many times in the table. However, if we have already 541 ** added a sample that shares this prefix, there is no need to add 542 ** this one. Instead, upgrade the priority of the highest priority 543 ** existing sample that shares this prefix. */ 544 for(i=p->nSample-1; i>=0; i--){ 545 Stat4Sample *pOld = &p->a[i]; 546 if( pOld->anEq[pNew->iCol]==0 ){ 547 if( pOld->isPSample ) return; 548 assert( pOld->iCol>pNew->iCol ); 549 assert( sampleIsBetter(p, pNew, pOld) ); 550 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 551 pUpgrade = pOld; 552 } 553 } 554 } 555 if( pUpgrade ){ 556 pUpgrade->iCol = pNew->iCol; 557 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 558 goto find_new_min; 559 } 560 } 561 #endif 562 563 /* If necessary, remove sample iMin to make room for the new sample. */ 564 if( p->nSample>=p->mxSample ){ 565 Stat4Sample *pMin = &p->a[p->iMin]; 566 tRowcnt *anEq = pMin->anEq; 567 tRowcnt *anLt = pMin->anLt; 568 tRowcnt *anDLt = pMin->anDLt; 569 sampleClear(p->db, pMin); 570 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 571 pSample = &p->a[p->nSample-1]; 572 pSample->nRowid = 0; 573 pSample->anEq = anEq; 574 pSample->anDLt = anDLt; 575 pSample->anLt = anLt; 576 p->nSample = p->mxSample-1; 577 } 578 579 /* The "rows less-than" for the rowid column must be greater than that 580 ** for the last sample in the p->a[] array. Otherwise, the samples would 581 ** be out of order. */ 582 #ifdef SQLITE_ENABLE_STAT4 583 assert( p->nSample==0 584 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 585 #endif 586 587 /* Insert the new sample */ 588 pSample = &p->a[p->nSample]; 589 sampleCopy(p, pSample, pNew); 590 p->nSample++; 591 592 /* Zero the first nEqZero entries in the anEq[] array. */ 593 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 594 595 #ifdef SQLITE_ENABLE_STAT4 596 find_new_min: 597 #endif 598 if( p->nSample>=p->mxSample ){ 599 int iMin = -1; 600 for(i=0; i<p->mxSample; i++){ 601 if( p->a[i].isPSample ) continue; 602 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 603 iMin = i; 604 } 605 } 606 assert( iMin>=0 ); 607 p->iMin = iMin; 608 } 609 } 610 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 611 612 /* 613 ** Field iChng of the index being scanned has changed. So at this point 614 ** p->current contains a sample that reflects the previous row of the 615 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 616 ** correct at this point. 617 */ 618 static void samplePushPrevious(Stat4Accum *p, int iChng){ 619 #ifdef SQLITE_ENABLE_STAT4 620 int i; 621 622 /* Check if any samples from the aBest[] array should be pushed 623 ** into IndexSample.a[] at this point. */ 624 for(i=(p->nCol-2); i>=iChng; i--){ 625 Stat4Sample *pBest = &p->aBest[i]; 626 pBest->anEq[i] = p->current.anEq[i]; 627 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 628 sampleInsert(p, pBest, i); 629 } 630 } 631 632 /* Update the anEq[] fields of any samples already collected. */ 633 for(i=p->nSample-1; i>=0; i--){ 634 int j; 635 for(j=iChng; j<p->nCol; j++){ 636 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 637 } 638 } 639 #endif 640 641 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 642 if( iChng==0 ){ 643 tRowcnt nLt = p->current.anLt[0]; 644 tRowcnt nEq = p->current.anEq[0]; 645 646 /* Check if this is to be a periodic sample. If so, add it. */ 647 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 648 p->current.isPSample = 1; 649 sampleInsert(p, &p->current, 0); 650 p->current.isPSample = 0; 651 }else 652 653 /* Or if it is a non-periodic sample. Add it in this case too. */ 654 if( p->nSample<p->mxSample 655 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 656 ){ 657 sampleInsert(p, &p->current, 0); 658 } 659 } 660 #endif 661 662 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 663 UNUSED_PARAMETER( p ); 664 UNUSED_PARAMETER( iChng ); 665 #endif 666 } 667 668 /* 669 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 670 ** Arguments: 671 ** 672 ** P Pointer to the Stat4Accum object created by stat_init() 673 ** C Index of left-most column to differ from previous row 674 ** R Rowid for the current row. Might be a key record for 675 ** WITHOUT ROWID tables. 676 ** 677 ** The SQL function always returns NULL. 678 ** 679 ** The R parameter is only used for STAT3 and STAT4 680 */ 681 static void statPush( 682 sqlite3_context *context, 683 int argc, 684 sqlite3_value **argv 685 ){ 686 int i; 687 688 /* The three function arguments */ 689 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 690 int iChng = sqlite3_value_int(argv[1]); 691 692 UNUSED_PARAMETER( argc ); 693 UNUSED_PARAMETER( context ); 694 assert( p->nCol>1 ); /* Includes rowid field */ 695 assert( iChng<p->nCol ); 696 697 if( p->nRow==0 ){ 698 /* This is the first call to this function. Do initialization. */ 699 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 700 }else{ 701 /* Second and subsequent calls get processed here */ 702 samplePushPrevious(p, iChng); 703 704 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 705 ** to the current row of the index. */ 706 for(i=0; i<iChng; i++){ 707 p->current.anEq[i]++; 708 } 709 for(i=iChng; i<p->nCol; i++){ 710 p->current.anDLt[i]++; 711 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 712 p->current.anLt[i] += p->current.anEq[i]; 713 #endif 714 p->current.anEq[i] = 1; 715 } 716 } 717 p->nRow++; 718 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 719 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 720 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 721 }else{ 722 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 723 sqlite3_value_blob(argv[2])); 724 } 725 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 726 #endif 727 728 #ifdef SQLITE_ENABLE_STAT4 729 { 730 tRowcnt nLt = p->current.anLt[p->nCol-1]; 731 732 /* Check if this is to be a periodic sample. If so, add it. */ 733 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 734 p->current.isPSample = 1; 735 p->current.iCol = 0; 736 sampleInsert(p, &p->current, p->nCol-1); 737 p->current.isPSample = 0; 738 } 739 740 /* Update the aBest[] array. */ 741 for(i=0; i<(p->nCol-1); i++){ 742 p->current.iCol = i; 743 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 744 sampleCopy(p, &p->aBest[i], &p->current); 745 } 746 } 747 } 748 #endif 749 } 750 static const FuncDef statPushFuncdef = { 751 2+IsStat34, /* nArg */ 752 SQLITE_UTF8, /* funcFlags */ 753 0, /* pUserData */ 754 0, /* pNext */ 755 statPush, /* xFunc */ 756 0, /* xStep */ 757 0, /* xFinalize */ 758 "stat_push", /* zName */ 759 0, /* pHash */ 760 0 /* pDestructor */ 761 }; 762 763 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 764 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 765 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 766 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 767 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 768 769 /* 770 ** Implementation of the stat_get(P,J) SQL function. This routine is 771 ** used to query the results. Content is returned for parameter J 772 ** which is one of the STAT_GET_xxxx values defined above. 773 ** 774 ** If neither STAT3 nor STAT4 are enabled, then J is always 775 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 776 ** a one-parameter function, stat_get(P), that always returns the 777 ** stat1 table entry information. 778 */ 779 static void statGet( 780 sqlite3_context *context, 781 int argc, 782 sqlite3_value **argv 783 ){ 784 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 785 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 786 /* STAT3 and STAT4 have a parameter on this routine. */ 787 int eCall = sqlite3_value_int(argv[1]); 788 assert( argc==2 ); 789 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 790 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 791 || eCall==STAT_GET_NDLT 792 ); 793 if( eCall==STAT_GET_STAT1 ) 794 #else 795 assert( argc==1 ); 796 #endif 797 { 798 /* Return the value to store in the "stat" column of the sqlite_stat1 799 ** table for this index. 800 ** 801 ** The value is a string composed of a list of integers describing 802 ** the index. The first integer in the list is the total number of 803 ** entries in the index. There is one additional integer in the list 804 ** for each indexed column. This additional integer is an estimate of 805 ** the number of rows matched by a stabbing query on the index using 806 ** a key with the corresponding number of fields. In other words, 807 ** if the index is on columns (a,b) and the sqlite_stat1 value is 808 ** "100 10 2", then SQLite estimates that: 809 ** 810 ** * the index contains 100 rows, 811 ** * "WHERE a=?" matches 10 rows, and 812 ** * "WHERE a=? AND b=?" matches 2 rows. 813 ** 814 ** If D is the count of distinct values and K is the total number of 815 ** rows, then each estimate is computed as: 816 ** 817 ** I = (K+D-1)/D 818 */ 819 char *z; 820 int i; 821 822 char *zRet = sqlite3MallocZero(p->nCol * 25); 823 if( zRet==0 ){ 824 sqlite3_result_error_nomem(context); 825 return; 826 } 827 828 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 829 z = zRet + sqlite3Strlen30(zRet); 830 for(i=0; i<(p->nCol-1); i++){ 831 u64 nDistinct = p->current.anDLt[i] + 1; 832 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 833 sqlite3_snprintf(24, z, " %llu", iVal); 834 z += sqlite3Strlen30(z); 835 assert( p->current.anEq[i] ); 836 } 837 assert( z[0]=='\0' && z>zRet ); 838 839 sqlite3_result_text(context, zRet, -1, sqlite3_free); 840 } 841 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 842 else if( eCall==STAT_GET_ROWID ){ 843 if( p->iGet<0 ){ 844 samplePushPrevious(p, 0); 845 p->iGet = 0; 846 } 847 if( p->iGet<p->nSample ){ 848 Stat4Sample *pS = p->a + p->iGet; 849 if( pS->nRowid==0 ){ 850 sqlite3_result_int64(context, pS->u.iRowid); 851 }else{ 852 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 853 SQLITE_TRANSIENT); 854 } 855 } 856 }else{ 857 tRowcnt *aCnt = 0; 858 859 assert( p->iGet<p->nSample ); 860 switch( eCall ){ 861 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 862 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 863 default: { 864 aCnt = p->a[p->iGet].anDLt; 865 p->iGet++; 866 break; 867 } 868 } 869 870 if( IsStat3 ){ 871 sqlite3_result_int64(context, (i64)aCnt[0]); 872 }else{ 873 char *zRet = sqlite3MallocZero(p->nCol * 25); 874 if( zRet==0 ){ 875 sqlite3_result_error_nomem(context); 876 }else{ 877 int i; 878 char *z = zRet; 879 for(i=0; i<p->nCol; i++){ 880 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 881 z += sqlite3Strlen30(z); 882 } 883 assert( z[0]=='\0' && z>zRet ); 884 z[-1] = '\0'; 885 sqlite3_result_text(context, zRet, -1, sqlite3_free); 886 } 887 } 888 } 889 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 890 #ifndef SQLITE_DEBUG 891 UNUSED_PARAMETER( argc ); 892 #endif 893 } 894 static const FuncDef statGetFuncdef = { 895 1+IsStat34, /* nArg */ 896 SQLITE_UTF8, /* funcFlags */ 897 0, /* pUserData */ 898 0, /* pNext */ 899 statGet, /* xFunc */ 900 0, /* xStep */ 901 0, /* xFinalize */ 902 "stat_get", /* zName */ 903 0, /* pHash */ 904 0 /* pDestructor */ 905 }; 906 907 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 908 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 909 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 910 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 911 #elif SQLITE_DEBUG 912 assert( iParam==STAT_GET_STAT1 ); 913 #else 914 UNUSED_PARAMETER( iParam ); 915 #endif 916 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); 917 sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); 918 sqlite3VdbeChangeP5(v, 1 + IsStat34); 919 } 920 921 /* 922 ** Generate code to do an analysis of all indices associated with 923 ** a single table. 924 */ 925 static void analyzeOneTable( 926 Parse *pParse, /* Parser context */ 927 Table *pTab, /* Table whose indices are to be analyzed */ 928 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 929 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 930 int iMem, /* Available memory locations begin here */ 931 int iTab /* Next available cursor */ 932 ){ 933 sqlite3 *db = pParse->db; /* Database handle */ 934 Index *pIdx; /* An index to being analyzed */ 935 int iIdxCur; /* Cursor open on index being analyzed */ 936 int iTabCur; /* Table cursor */ 937 Vdbe *v; /* The virtual machine being built up */ 938 int i; /* Loop counter */ 939 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 940 int iDb; /* Index of database containing pTab */ 941 u8 needTableCnt = 1; /* True to count the table */ 942 int regNewRowid = iMem++; /* Rowid for the inserted record */ 943 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 944 int regChng = iMem++; /* Index of changed index field */ 945 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 946 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 947 #endif 948 int regTemp = iMem++; /* Temporary use register */ 949 int regTabname = iMem++; /* Register containing table name */ 950 int regIdxname = iMem++; /* Register containing index name */ 951 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 952 int regPrev = iMem; /* MUST BE LAST (see below) */ 953 954 pParse->nMem = MAX(pParse->nMem, iMem); 955 v = sqlite3GetVdbe(pParse); 956 if( v==0 || NEVER(pTab==0) ){ 957 return; 958 } 959 if( pTab->tnum==0 ){ 960 /* Do not gather statistics on views or virtual tables */ 961 return; 962 } 963 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ 964 /* Do not gather statistics on system tables */ 965 return; 966 } 967 assert( sqlite3BtreeHoldsAllMutexes(db) ); 968 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 969 assert( iDb>=0 ); 970 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 971 #ifndef SQLITE_OMIT_AUTHORIZATION 972 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 973 db->aDb[iDb].zName ) ){ 974 return; 975 } 976 #endif 977 978 /* Establish a read-lock on the table at the shared-cache level. 979 ** Open a read-only cursor on the table. Also allocate a cursor number 980 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 981 ** this time though. */ 982 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 983 iTabCur = iTab++; 984 iIdxCur = iTab++; 985 pParse->nTab = MAX(pParse->nTab, iTab); 986 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 987 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); 988 989 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 990 int nCol; /* Number of columns indexed by pIdx */ 991 int *aGotoChng; /* Array of jump instruction addresses */ 992 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 993 int addrGotoChng0; /* Address of "Goto addr_chng_0" */ 994 int addrNextRow; /* Address of "next_row:" */ 995 const char *zIdxName; /* Name of the index */ 996 997 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 998 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 999 VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); 1000 nCol = pIdx->nKeyCol; 1001 aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1)); 1002 if( aGotoChng==0 ) continue; 1003 1004 /* Populate the register containing the index name. */ 1005 if( pIdx->autoIndex==2 && !HasRowid(pTab) ){ 1006 zIdxName = pTab->zName; 1007 }else{ 1008 zIdxName = pIdx->zName; 1009 } 1010 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); 1011 1012 /* 1013 ** Pseudo-code for loop that calls stat_push(): 1014 ** 1015 ** Rewind csr 1016 ** if eof(csr) goto end_of_scan; 1017 ** regChng = 0 1018 ** goto chng_addr_0; 1019 ** 1020 ** next_row: 1021 ** regChng = 0 1022 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1023 ** regChng = 1 1024 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1025 ** ... 1026 ** regChng = N 1027 ** goto chng_addr_N 1028 ** 1029 ** chng_addr_0: 1030 ** regPrev(0) = idx(0) 1031 ** chng_addr_1: 1032 ** regPrev(1) = idx(1) 1033 ** ... 1034 ** 1035 ** chng_addr_N: 1036 ** regRowid = idx(rowid) 1037 ** stat_push(P, regChng, regRowid) 1038 ** Next csr 1039 ** if !eof(csr) goto next_row; 1040 ** 1041 ** end_of_scan: 1042 */ 1043 1044 /* Make sure there are enough memory cells allocated to accommodate 1045 ** the regPrev array and a trailing rowid (the rowid slot is required 1046 ** when building a record to insert into the sample column of 1047 ** the sqlite_stat4 table. */ 1048 pParse->nMem = MAX(pParse->nMem, regPrev+nCol); 1049 1050 /* Open a read-only cursor on the index being analyzed. */ 1051 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1052 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1053 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1054 VdbeComment((v, "%s", pIdx->zName)); 1055 1056 /* Invoke the stat_init() function. The arguments are: 1057 ** 1058 ** (1) the number of columns in the index including the rowid, 1059 ** (2) the number of rows in the index, 1060 ** 1061 ** The second argument is only used for STAT3 and STAT4 1062 */ 1063 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1064 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+2); 1065 #endif 1066 sqlite3VdbeAddOp2(v, OP_Integer, nCol+1, regStat4+1); 1067 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); 1068 sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); 1069 sqlite3VdbeChangeP5(v, 1+IsStat34); 1070 1071 /* Implementation of the following: 1072 ** 1073 ** Rewind csr 1074 ** if eof(csr) goto end_of_scan; 1075 ** regChng = 0 1076 ** goto next_push_0; 1077 ** 1078 */ 1079 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1080 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1081 addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); 1082 1083 /* 1084 ** next_row: 1085 ** regChng = 0 1086 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1087 ** regChng = 1 1088 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1089 ** ... 1090 ** regChng = N 1091 ** goto chng_addr_N 1092 */ 1093 addrNextRow = sqlite3VdbeCurrentAddr(v); 1094 for(i=0; i<nCol; i++){ 1095 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1096 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1097 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1098 aGotoChng[i] = 1099 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1100 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1101 } 1102 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); 1103 aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); 1104 1105 /* 1106 ** chng_addr_0: 1107 ** regPrev(0) = idx(0) 1108 ** chng_addr_1: 1109 ** regPrev(1) = idx(1) 1110 ** ... 1111 */ 1112 sqlite3VdbeJumpHere(v, addrGotoChng0); 1113 for(i=0; i<nCol; i++){ 1114 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1115 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1116 } 1117 1118 /* 1119 ** chng_addr_N: 1120 ** regRowid = idx(rowid) // STAT34 only 1121 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1122 ** Next csr 1123 ** if !eof(csr) goto next_row; 1124 */ 1125 sqlite3VdbeJumpHere(v, aGotoChng[nCol]); 1126 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1127 assert( regRowid==(regStat4+2) ); 1128 if( HasRowid(pTab) ){ 1129 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1130 }else{ 1131 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1132 int j, k, regKey; 1133 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1134 for(j=0; j<pPk->nKeyCol; j++){ 1135 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1136 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1137 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1138 } 1139 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1140 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1141 } 1142 #endif 1143 assert( regChng==(regStat4+1) ); 1144 sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); 1145 sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); 1146 sqlite3VdbeChangeP5(v, 2+IsStat34); 1147 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); 1148 1149 /* Add the entry to the stat1 table. */ 1150 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1151 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1152 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1153 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1154 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1155 1156 /* Add the entries to the stat3 or stat4 table. */ 1157 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1158 { 1159 int regEq = regStat1; 1160 int regLt = regStat1+1; 1161 int regDLt = regStat1+2; 1162 int regSample = regStat1+3; 1163 int regCol = regStat1+4; 1164 int regSampleRowid = regCol + nCol; 1165 int addrNext; 1166 int addrIsNull; 1167 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1168 1169 pParse->nMem = MAX(pParse->nMem, regCol+nCol+1); 1170 1171 addrNext = sqlite3VdbeCurrentAddr(v); 1172 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1173 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1174 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1175 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1176 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1177 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1178 #ifdef SQLITE_ENABLE_STAT3 1179 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, 1180 pIdx->aiColumn[0], regSample); 1181 #else 1182 for(i=0; i<nCol; i++){ 1183 i16 iCol = pIdx->aiColumn[i]; 1184 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); 1185 } 1186 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); 1187 #endif 1188 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regTemp, "bbbbbb", 0); 1189 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1190 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1191 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext); 1192 sqlite3VdbeJumpHere(v, addrIsNull); 1193 } 1194 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1195 1196 /* End of analysis */ 1197 sqlite3VdbeJumpHere(v, addrRewind); 1198 sqlite3DbFree(db, aGotoChng); 1199 } 1200 1201 1202 /* Create a single sqlite_stat1 entry containing NULL as the index 1203 ** name and the row count as the content. 1204 */ 1205 if( pOnlyIdx==0 && needTableCnt ){ 1206 VdbeComment((v, "%s", pTab->zName)); 1207 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1208 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); 1209 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1210 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1211 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1212 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1213 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1214 sqlite3VdbeJumpHere(v, jZeroRows); 1215 } 1216 } 1217 1218 1219 /* 1220 ** Generate code that will cause the most recent index analysis to 1221 ** be loaded into internal hash tables where is can be used. 1222 */ 1223 static void loadAnalysis(Parse *pParse, int iDb){ 1224 Vdbe *v = sqlite3GetVdbe(pParse); 1225 if( v ){ 1226 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1227 } 1228 } 1229 1230 /* 1231 ** Generate code that will do an analysis of an entire database 1232 */ 1233 static void analyzeDatabase(Parse *pParse, int iDb){ 1234 sqlite3 *db = pParse->db; 1235 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1236 HashElem *k; 1237 int iStatCur; 1238 int iMem; 1239 int iTab; 1240 1241 sqlite3BeginWriteOperation(pParse, 0, iDb); 1242 iStatCur = pParse->nTab; 1243 pParse->nTab += 3; 1244 openStatTable(pParse, iDb, iStatCur, 0, 0); 1245 iMem = pParse->nMem+1; 1246 iTab = pParse->nTab; 1247 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1248 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1249 Table *pTab = (Table*)sqliteHashData(k); 1250 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1251 } 1252 loadAnalysis(pParse, iDb); 1253 } 1254 1255 /* 1256 ** Generate code that will do an analysis of a single table in 1257 ** a database. If pOnlyIdx is not NULL then it is a single index 1258 ** in pTab that should be analyzed. 1259 */ 1260 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1261 int iDb; 1262 int iStatCur; 1263 1264 assert( pTab!=0 ); 1265 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1266 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1267 sqlite3BeginWriteOperation(pParse, 0, iDb); 1268 iStatCur = pParse->nTab; 1269 pParse->nTab += 3; 1270 if( pOnlyIdx ){ 1271 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1272 }else{ 1273 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1274 } 1275 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1276 loadAnalysis(pParse, iDb); 1277 } 1278 1279 /* 1280 ** Generate code for the ANALYZE command. The parser calls this routine 1281 ** when it recognizes an ANALYZE command. 1282 ** 1283 ** ANALYZE -- 1 1284 ** ANALYZE <database> -- 2 1285 ** ANALYZE ?<database>.?<tablename> -- 3 1286 ** 1287 ** Form 1 causes all indices in all attached databases to be analyzed. 1288 ** Form 2 analyzes all indices the single database named. 1289 ** Form 3 analyzes all indices associated with the named table. 1290 */ 1291 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1292 sqlite3 *db = pParse->db; 1293 int iDb; 1294 int i; 1295 char *z, *zDb; 1296 Table *pTab; 1297 Index *pIdx; 1298 Token *pTableName; 1299 1300 /* Read the database schema. If an error occurs, leave an error message 1301 ** and code in pParse and return NULL. */ 1302 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1303 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1304 return; 1305 } 1306 1307 assert( pName2!=0 || pName1==0 ); 1308 if( pName1==0 ){ 1309 /* Form 1: Analyze everything */ 1310 for(i=0; i<db->nDb; i++){ 1311 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1312 analyzeDatabase(pParse, i); 1313 } 1314 }else if( pName2->n==0 ){ 1315 /* Form 2: Analyze the database or table named */ 1316 iDb = sqlite3FindDb(db, pName1); 1317 if( iDb>=0 ){ 1318 analyzeDatabase(pParse, iDb); 1319 }else{ 1320 z = sqlite3NameFromToken(db, pName1); 1321 if( z ){ 1322 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ 1323 analyzeTable(pParse, pIdx->pTable, pIdx); 1324 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ 1325 analyzeTable(pParse, pTab, 0); 1326 } 1327 sqlite3DbFree(db, z); 1328 } 1329 } 1330 }else{ 1331 /* Form 3: Analyze the fully qualified table name */ 1332 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1333 if( iDb>=0 ){ 1334 zDb = db->aDb[iDb].zName; 1335 z = sqlite3NameFromToken(db, pTableName); 1336 if( z ){ 1337 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1338 analyzeTable(pParse, pIdx->pTable, pIdx); 1339 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1340 analyzeTable(pParse, pTab, 0); 1341 } 1342 sqlite3DbFree(db, z); 1343 } 1344 } 1345 } 1346 } 1347 1348 /* 1349 ** Used to pass information from the analyzer reader through to the 1350 ** callback routine. 1351 */ 1352 typedef struct analysisInfo analysisInfo; 1353 struct analysisInfo { 1354 sqlite3 *db; 1355 const char *zDatabase; 1356 }; 1357 1358 /* 1359 ** The first argument points to a nul-terminated string containing a 1360 ** list of space separated integers. Read the first nOut of these into 1361 ** the array aOut[]. 1362 */ 1363 static void decodeIntArray( 1364 char *zIntArray, /* String containing int array to decode */ 1365 int nOut, /* Number of slots in aOut[] */ 1366 tRowcnt *aOut, /* Store integers here */ 1367 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1368 ){ 1369 char *z = zIntArray; 1370 int c; 1371 int i; 1372 tRowcnt v; 1373 1374 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1375 if( z==0 ) z = ""; 1376 #else 1377 if( NEVER(z==0) ) z = ""; 1378 #endif 1379 for(i=0; *z && i<nOut; i++){ 1380 v = 0; 1381 while( (c=z[0])>='0' && c<='9' ){ 1382 v = v*10 + c - '0'; 1383 z++; 1384 } 1385 aOut[i] = v; 1386 if( *z==' ' ) z++; 1387 } 1388 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1389 assert( pIndex!=0 ); 1390 #else 1391 if( pIndex ) 1392 #endif 1393 { 1394 if( strcmp(z, "unordered")==0 ){ 1395 pIndex->bUnordered = 1; 1396 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1397 int v32 = 0; 1398 sqlite3GetInt32(z+3, &v32); 1399 pIndex->szIdxRow = sqlite3LogEst(v32); 1400 } 1401 } 1402 } 1403 1404 /* 1405 ** This callback is invoked once for each index when reading the 1406 ** sqlite_stat1 table. 1407 ** 1408 ** argv[0] = name of the table 1409 ** argv[1] = name of the index (might be NULL) 1410 ** argv[2] = results of analysis - on integer for each column 1411 ** 1412 ** Entries for which argv[1]==NULL simply record the number of rows in 1413 ** the table. 1414 */ 1415 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1416 analysisInfo *pInfo = (analysisInfo*)pData; 1417 Index *pIndex; 1418 Table *pTable; 1419 const char *z; 1420 1421 assert( argc==3 ); 1422 UNUSED_PARAMETER2(NotUsed, argc); 1423 1424 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1425 return 0; 1426 } 1427 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1428 if( pTable==0 ){ 1429 return 0; 1430 } 1431 if( argv[1]==0 ){ 1432 pIndex = 0; 1433 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1434 pIndex = sqlite3PrimaryKeyIndex(pTable); 1435 }else{ 1436 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1437 } 1438 z = argv[2]; 1439 1440 if( pIndex ){ 1441 decodeIntArray((char*)z, pIndex->nKeyCol+1, pIndex->aiRowEst, pIndex); 1442 if( pIndex->pPartIdxWhere==0 ) pTable->nRowEst = pIndex->aiRowEst[0]; 1443 }else{ 1444 Index fakeIdx; 1445 fakeIdx.szIdxRow = pTable->szTabRow; 1446 decodeIntArray((char*)z, 1, &pTable->nRowEst, &fakeIdx); 1447 pTable->szTabRow = fakeIdx.szIdxRow; 1448 } 1449 1450 return 0; 1451 } 1452 1453 /* 1454 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1455 ** and its contents. 1456 */ 1457 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1458 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1459 if( pIdx->aSample ){ 1460 int j; 1461 for(j=0; j<pIdx->nSample; j++){ 1462 IndexSample *p = &pIdx->aSample[j]; 1463 sqlite3DbFree(db, p->p); 1464 } 1465 sqlite3DbFree(db, pIdx->aSample); 1466 } 1467 if( db && db->pnBytesFreed==0 ){ 1468 pIdx->nSample = 0; 1469 pIdx->aSample = 0; 1470 } 1471 #else 1472 UNUSED_PARAMETER(db); 1473 UNUSED_PARAMETER(pIdx); 1474 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1475 } 1476 1477 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1478 /* 1479 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1480 ** stored in pIdx->aSample[]. 1481 */ 1482 static void initAvgEq(Index *pIdx){ 1483 if( pIdx ){ 1484 IndexSample *aSample = pIdx->aSample; 1485 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1486 int iCol; 1487 for(iCol=0; iCol<pIdx->nKeyCol; iCol++){ 1488 int i; /* Used to iterate through samples */ 1489 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1490 tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ 1491 tRowcnt avgEq = 0; 1492 tRowcnt nDLt = pFinal->anDLt[iCol]; 1493 1494 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1495 ** occur in the stat4 table for this index before pFinal. Set 1496 ** sumEq to the sum of the nEq values for column iCol for the same 1497 ** set (adding the value only once where there exist dupicate 1498 ** prefixes). */ 1499 for(i=0; i<(pIdx->nSample-1); i++){ 1500 if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ 1501 sumEq += aSample[i].anEq[iCol]; 1502 nSum++; 1503 } 1504 } 1505 if( nDLt>nSum ){ 1506 avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum); 1507 } 1508 if( avgEq==0 ) avgEq = 1; 1509 pIdx->aAvgEq[iCol] = avgEq; 1510 if( pIdx->nSampleCol==1 ) break; 1511 } 1512 } 1513 } 1514 1515 /* 1516 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1517 ** is supplied instead, find the PRIMARY KEY index for that table. 1518 */ 1519 static Index *findIndexOrPrimaryKey( 1520 sqlite3 *db, 1521 const char *zName, 1522 const char *zDb 1523 ){ 1524 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1525 if( pIdx==0 ){ 1526 Table *pTab = sqlite3FindTable(db, zName, zDb); 1527 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1528 } 1529 return pIdx; 1530 } 1531 1532 /* 1533 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1534 ** into the relevant Index.aSample[] arrays. 1535 ** 1536 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1537 ** data equivalent to the following (statements are different for stat3, 1538 ** see the caller of this function for details): 1539 ** 1540 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1541 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1542 ** 1543 ** where %Q is replaced with the database name before the SQL is executed. 1544 */ 1545 static int loadStatTbl( 1546 sqlite3 *db, /* Database handle */ 1547 int bStat3, /* Assume single column records only */ 1548 const char *zSql1, /* SQL statement 1 (see above) */ 1549 const char *zSql2, /* SQL statement 2 (see above) */ 1550 const char *zDb /* Database name (e.g. "main") */ 1551 ){ 1552 int rc; /* Result codes from subroutines */ 1553 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1554 char *zSql; /* Text of the SQL statement */ 1555 Index *pPrevIdx = 0; /* Previous index in the loop */ 1556 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1557 1558 assert( db->lookaside.bEnabled==0 ); 1559 zSql = sqlite3MPrintf(db, zSql1, zDb); 1560 if( !zSql ){ 1561 return SQLITE_NOMEM; 1562 } 1563 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1564 sqlite3DbFree(db, zSql); 1565 if( rc ) return rc; 1566 1567 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1568 int nIdxCol = 1; /* Number of columns in stat4 records */ 1569 int nAvgCol = 1; /* Number of entries in Index.aAvgEq */ 1570 1571 char *zIndex; /* Index name */ 1572 Index *pIdx; /* Pointer to the index object */ 1573 int nSample; /* Number of samples */ 1574 int nByte; /* Bytes of space required */ 1575 int i; /* Bytes of space required */ 1576 tRowcnt *pSpace; 1577 1578 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1579 if( zIndex==0 ) continue; 1580 nSample = sqlite3_column_int(pStmt, 1); 1581 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1582 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1583 /* Index.nSample is non-zero at this point if data has already been 1584 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1585 if( pIdx==0 || pIdx->nSample ) continue; 1586 if( bStat3==0 ){ 1587 nIdxCol = pIdx->nKeyCol+1; 1588 nAvgCol = pIdx->nKeyCol; 1589 } 1590 pIdx->nSampleCol = nIdxCol; 1591 nByte = sizeof(IndexSample) * nSample; 1592 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1593 nByte += nAvgCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1594 1595 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1596 if( pIdx->aSample==0 ){ 1597 sqlite3_finalize(pStmt); 1598 return SQLITE_NOMEM; 1599 } 1600 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1601 pIdx->aAvgEq = pSpace; pSpace += nAvgCol; 1602 for(i=0; i<nSample; i++){ 1603 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1604 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1605 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1606 } 1607 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1608 } 1609 rc = sqlite3_finalize(pStmt); 1610 if( rc ) return rc; 1611 1612 zSql = sqlite3MPrintf(db, zSql2, zDb); 1613 if( !zSql ){ 1614 return SQLITE_NOMEM; 1615 } 1616 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1617 sqlite3DbFree(db, zSql); 1618 if( rc ) return rc; 1619 1620 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1621 char *zIndex; /* Index name */ 1622 Index *pIdx; /* Pointer to the index object */ 1623 int nCol = 1; /* Number of columns in index */ 1624 1625 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1626 if( zIndex==0 ) continue; 1627 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1628 if( pIdx==0 ) continue; 1629 /* This next condition is true if data has already been loaded from 1630 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1631 nCol = pIdx->nSampleCol; 1632 if( bStat3 && nCol>1 ) continue; 1633 if( pIdx!=pPrevIdx ){ 1634 initAvgEq(pPrevIdx); 1635 pPrevIdx = pIdx; 1636 } 1637 pSample = &pIdx->aSample[pIdx->nSample]; 1638 decodeIntArray((char*)sqlite3_column_text(pStmt,1), nCol, pSample->anEq, 0); 1639 decodeIntArray((char*)sqlite3_column_text(pStmt,2), nCol, pSample->anLt, 0); 1640 decodeIntArray((char*)sqlite3_column_text(pStmt,3), nCol, pSample->anDLt,0); 1641 1642 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1643 ** This is in case the sample record is corrupted. In that case, the 1644 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1645 ** end of the allocated buffer before it realizes it is dealing with 1646 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1647 ** a buffer overread. */ 1648 pSample->n = sqlite3_column_bytes(pStmt, 4); 1649 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1650 if( pSample->p==0 ){ 1651 sqlite3_finalize(pStmt); 1652 return SQLITE_NOMEM; 1653 } 1654 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1655 pIdx->nSample++; 1656 } 1657 rc = sqlite3_finalize(pStmt); 1658 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1659 return rc; 1660 } 1661 1662 /* 1663 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1664 ** the Index.aSample[] arrays of all indices. 1665 */ 1666 static int loadStat4(sqlite3 *db, const char *zDb){ 1667 int rc = SQLITE_OK; /* Result codes from subroutines */ 1668 1669 assert( db->lookaside.bEnabled==0 ); 1670 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1671 rc = loadStatTbl(db, 0, 1672 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1673 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1674 zDb 1675 ); 1676 } 1677 1678 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1679 rc = loadStatTbl(db, 1, 1680 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1681 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1682 zDb 1683 ); 1684 } 1685 1686 return rc; 1687 } 1688 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1689 1690 /* 1691 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1692 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1693 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1694 ** Index.aSample[] arrays. 1695 ** 1696 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1697 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1698 ** during compilation and the sqlite_stat3/4 table is present, no data is 1699 ** read from it. 1700 ** 1701 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1702 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1703 ** returned. However, in this case, data is read from the sqlite_stat1 1704 ** table (if it is present) before returning. 1705 ** 1706 ** If an OOM error occurs, this function always sets db->mallocFailed. 1707 ** This means if the caller does not care about other errors, the return 1708 ** code may be ignored. 1709 */ 1710 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1711 analysisInfo sInfo; 1712 HashElem *i; 1713 char *zSql; 1714 int rc; 1715 1716 assert( iDb>=0 && iDb<db->nDb ); 1717 assert( db->aDb[iDb].pBt!=0 ); 1718 1719 /* Clear any prior statistics */ 1720 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1721 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1722 Index *pIdx = sqliteHashData(i); 1723 sqlite3DefaultRowEst(pIdx); 1724 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1725 sqlite3DeleteIndexSamples(db, pIdx); 1726 pIdx->aSample = 0; 1727 #endif 1728 } 1729 1730 /* Check to make sure the sqlite_stat1 table exists */ 1731 sInfo.db = db; 1732 sInfo.zDatabase = db->aDb[iDb].zName; 1733 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ 1734 return SQLITE_ERROR; 1735 } 1736 1737 /* Load new statistics out of the sqlite_stat1 table */ 1738 zSql = sqlite3MPrintf(db, 1739 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1740 if( zSql==0 ){ 1741 rc = SQLITE_NOMEM; 1742 }else{ 1743 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1744 sqlite3DbFree(db, zSql); 1745 } 1746 1747 1748 /* Load the statistics from the sqlite_stat4 table. */ 1749 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1750 if( rc==SQLITE_OK ){ 1751 int lookasideEnabled = db->lookaside.bEnabled; 1752 db->lookaside.bEnabled = 0; 1753 rc = loadStat4(db, sInfo.zDatabase); 1754 db->lookaside.bEnabled = lookasideEnabled; 1755 } 1756 #endif 1757 1758 if( rc==SQLITE_NOMEM ){ 1759 db->mallocFailed = 1; 1760 } 1761 return rc; 1762 } 1763 1764 1765 #endif /* SQLITE_OMIT_ANALYZE */ 1766