1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zDbSName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 VdbeComment((v, aTable[i].zName)); 250 } 251 } 252 253 /* 254 ** Recommended number of samples for sqlite_stat4 255 */ 256 #ifndef SQLITE_STAT4_SAMPLES 257 # define SQLITE_STAT4_SAMPLES 24 258 #endif 259 260 /* 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 262 ** share an instance of the following structure to hold their state 263 ** information. 264 */ 265 typedef struct Stat4Accum Stat4Accum; 266 typedef struct Stat4Sample Stat4Sample; 267 struct Stat4Sample { 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ 272 union { 273 i64 iRowid; /* Rowid in main table of the key */ 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 275 } u; 276 u32 nRowid; /* Sizeof aRowid[] */ 277 u8 isPSample; /* True if a periodic sample */ 278 int iCol; /* If !isPSample, the reason for inclusion */ 279 u32 iHash; /* Tiebreaker hash */ 280 #endif 281 }; 282 struct Stat4Accum { 283 tRowcnt nRow; /* Number of rows in the entire table */ 284 tRowcnt nPSample; /* How often to do a periodic sample */ 285 int nCol; /* Number of columns in index + pk/rowid */ 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 287 int mxSample; /* Maximum number of samples to accumulate */ 288 Stat4Sample current; /* Current row as a Stat4Sample */ 289 u32 iPrn; /* Pseudo-random number used for sampling */ 290 Stat4Sample *aBest; /* Array of nCol best samples */ 291 int iMin; /* Index in a[] of entry with minimum score */ 292 int nSample; /* Current number of samples */ 293 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 294 int iGet; /* Index of current sample accessed by stat_get() */ 295 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 296 sqlite3 *db; /* Database connection, for malloc() */ 297 }; 298 299 /* Reclaim memory used by a Stat4Sample 300 */ 301 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 302 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 303 assert( db!=0 ); 304 if( p->nRowid ){ 305 sqlite3DbFree(db, p->u.aRowid); 306 p->nRowid = 0; 307 } 308 } 309 #endif 310 311 /* Initialize the BLOB value of a ROWID 312 */ 313 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 314 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 315 assert( db!=0 ); 316 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 317 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 318 if( p->u.aRowid ){ 319 p->nRowid = n; 320 memcpy(p->u.aRowid, pData, n); 321 }else{ 322 p->nRowid = 0; 323 } 324 } 325 #endif 326 327 /* Initialize the INTEGER value of a ROWID. 328 */ 329 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 330 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 331 assert( db!=0 ); 332 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 333 p->nRowid = 0; 334 p->u.iRowid = iRowid; 335 } 336 #endif 337 338 339 /* 340 ** Copy the contents of object (*pFrom) into (*pTo). 341 */ 342 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 343 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 344 pTo->isPSample = pFrom->isPSample; 345 pTo->iCol = pFrom->iCol; 346 pTo->iHash = pFrom->iHash; 347 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 348 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 349 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 350 if( pFrom->nRowid ){ 351 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 352 }else{ 353 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 354 } 355 } 356 #endif 357 358 /* 359 ** Reclaim all memory of a Stat4Accum structure. 360 */ 361 static void stat4Destructor(void *pOld){ 362 Stat4Accum *p = (Stat4Accum*)pOld; 363 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 364 int i; 365 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 366 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 367 sampleClear(p->db, &p->current); 368 #endif 369 sqlite3DbFree(p->db, p); 370 } 371 372 /* 373 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 374 ** are: 375 ** N: The number of columns in the index including the rowid/pk (note 1) 376 ** K: The number of columns in the index excluding the rowid/pk. 377 ** C: The number of rows in the index (note 2) 378 ** 379 ** Note 1: In the special case of the covering index that implements a 380 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 381 ** total number of columns in the table. 382 ** 383 ** Note 2: C is only used for STAT3 and STAT4. 384 ** 385 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 386 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 387 ** PRIMARY KEY of the table. The covering index that implements the 388 ** original WITHOUT ROWID table as N==K as a special case. 389 ** 390 ** This routine allocates the Stat4Accum object in heap memory. The return 391 ** value is a pointer to the Stat4Accum object. The datatype of the 392 ** return value is BLOB, but it is really just a pointer to the Stat4Accum 393 ** object. 394 */ 395 static void statInit( 396 sqlite3_context *context, 397 int argc, 398 sqlite3_value **argv 399 ){ 400 Stat4Accum *p; 401 int nCol; /* Number of columns in index being sampled */ 402 int nKeyCol; /* Number of key columns */ 403 int nColUp; /* nCol rounded up for alignment */ 404 int n; /* Bytes of space to allocate */ 405 sqlite3 *db; /* Database connection */ 406 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 407 int mxSample = SQLITE_STAT4_SAMPLES; 408 #endif 409 410 /* Decode the three function arguments */ 411 UNUSED_PARAMETER(argc); 412 nCol = sqlite3_value_int(argv[0]); 413 assert( nCol>0 ); 414 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 415 nKeyCol = sqlite3_value_int(argv[1]); 416 assert( nKeyCol<=nCol ); 417 assert( nKeyCol>0 ); 418 419 /* Allocate the space required for the Stat4Accum object */ 420 n = sizeof(*p) 421 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 422 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 423 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 424 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 425 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 426 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 427 #endif 428 ; 429 db = sqlite3_context_db_handle(context); 430 p = sqlite3DbMallocZero(db, n); 431 if( p==0 ){ 432 sqlite3_result_error_nomem(context); 433 return; 434 } 435 436 p->db = db; 437 p->nRow = 0; 438 p->nCol = nCol; 439 p->nKeyCol = nKeyCol; 440 p->current.anDLt = (tRowcnt*)&p[1]; 441 p->current.anEq = &p->current.anDLt[nColUp]; 442 443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 444 { 445 u8 *pSpace; /* Allocated space not yet assigned */ 446 int i; /* Used to iterate through p->aSample[] */ 447 448 p->iGet = -1; 449 p->mxSample = mxSample; 450 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 451 p->current.anLt = &p->current.anEq[nColUp]; 452 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 453 454 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 455 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 456 p->aBest = &p->a[mxSample]; 457 pSpace = (u8*)(&p->a[mxSample+nCol]); 458 for(i=0; i<(mxSample+nCol); i++){ 459 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 460 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 461 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 462 } 463 assert( (pSpace - (u8*)p)==n ); 464 465 for(i=0; i<nCol; i++){ 466 p->aBest[i].iCol = i; 467 } 468 } 469 #endif 470 471 /* Return a pointer to the allocated object to the caller. Note that 472 ** only the pointer (the 2nd parameter) matters. The size of the object 473 ** (given by the 3rd parameter) is never used and can be any positive 474 ** value. */ 475 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); 476 } 477 static const FuncDef statInitFuncdef = { 478 2+IsStat34, /* nArg */ 479 SQLITE_UTF8, /* funcFlags */ 480 0, /* pUserData */ 481 0, /* pNext */ 482 statInit, /* xSFunc */ 483 0, /* xFinalize */ 484 "stat_init", /* zName */ 485 {0} 486 }; 487 488 #ifdef SQLITE_ENABLE_STAT4 489 /* 490 ** pNew and pOld are both candidate non-periodic samples selected for 491 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 492 ** considering only any trailing columns and the sample hash value, this 493 ** function returns true if sample pNew is to be preferred over pOld. 494 ** In other words, if we assume that the cardinalities of the selected 495 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 496 ** 497 ** This function assumes that for each argument sample, the contents of 498 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 499 */ 500 static int sampleIsBetterPost( 501 Stat4Accum *pAccum, 502 Stat4Sample *pNew, 503 Stat4Sample *pOld 504 ){ 505 int nCol = pAccum->nCol; 506 int i; 507 assert( pNew->iCol==pOld->iCol ); 508 for(i=pNew->iCol+1; i<nCol; i++){ 509 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 510 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 511 } 512 if( pNew->iHash>pOld->iHash ) return 1; 513 return 0; 514 } 515 #endif 516 517 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 518 /* 519 ** Return true if pNew is to be preferred over pOld. 520 ** 521 ** This function assumes that for each argument sample, the contents of 522 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 523 */ 524 static int sampleIsBetter( 525 Stat4Accum *pAccum, 526 Stat4Sample *pNew, 527 Stat4Sample *pOld 528 ){ 529 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 530 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 531 532 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 533 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 534 535 if( (nEqNew>nEqOld) ) return 1; 536 #ifdef SQLITE_ENABLE_STAT4 537 if( nEqNew==nEqOld ){ 538 if( pNew->iCol<pOld->iCol ) return 1; 539 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 540 } 541 return 0; 542 #else 543 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 544 #endif 545 } 546 547 /* 548 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 549 ** remove the least desirable sample from p->a[] to make room. 550 */ 551 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 552 Stat4Sample *pSample = 0; 553 int i; 554 555 assert( IsStat4 || nEqZero==0 ); 556 557 #ifdef SQLITE_ENABLE_STAT4 558 /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0 559 ** values in the anEq[] array of any sample in Stat4Accum.a[]. In 560 ** other words, if nMaxEqZero is n, then it is guaranteed that there 561 ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */ 562 if( nEqZero>p->nMaxEqZero ){ 563 p->nMaxEqZero = nEqZero; 564 } 565 if( pNew->isPSample==0 ){ 566 Stat4Sample *pUpgrade = 0; 567 assert( pNew->anEq[pNew->iCol]>0 ); 568 569 /* This sample is being added because the prefix that ends in column 570 ** iCol occurs many times in the table. However, if we have already 571 ** added a sample that shares this prefix, there is no need to add 572 ** this one. Instead, upgrade the priority of the highest priority 573 ** existing sample that shares this prefix. */ 574 for(i=p->nSample-1; i>=0; i--){ 575 Stat4Sample *pOld = &p->a[i]; 576 if( pOld->anEq[pNew->iCol]==0 ){ 577 if( pOld->isPSample ) return; 578 assert( pOld->iCol>pNew->iCol ); 579 assert( sampleIsBetter(p, pNew, pOld) ); 580 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 581 pUpgrade = pOld; 582 } 583 } 584 } 585 if( pUpgrade ){ 586 pUpgrade->iCol = pNew->iCol; 587 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 588 goto find_new_min; 589 } 590 } 591 #endif 592 593 /* If necessary, remove sample iMin to make room for the new sample. */ 594 if( p->nSample>=p->mxSample ){ 595 Stat4Sample *pMin = &p->a[p->iMin]; 596 tRowcnt *anEq = pMin->anEq; 597 tRowcnt *anLt = pMin->anLt; 598 tRowcnt *anDLt = pMin->anDLt; 599 sampleClear(p->db, pMin); 600 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 601 pSample = &p->a[p->nSample-1]; 602 pSample->nRowid = 0; 603 pSample->anEq = anEq; 604 pSample->anDLt = anDLt; 605 pSample->anLt = anLt; 606 p->nSample = p->mxSample-1; 607 } 608 609 /* The "rows less-than" for the rowid column must be greater than that 610 ** for the last sample in the p->a[] array. Otherwise, the samples would 611 ** be out of order. */ 612 #ifdef SQLITE_ENABLE_STAT4 613 assert( p->nSample==0 614 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 615 #endif 616 617 /* Insert the new sample */ 618 pSample = &p->a[p->nSample]; 619 sampleCopy(p, pSample, pNew); 620 p->nSample++; 621 622 /* Zero the first nEqZero entries in the anEq[] array. */ 623 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 624 625 #ifdef SQLITE_ENABLE_STAT4 626 find_new_min: 627 #endif 628 if( p->nSample>=p->mxSample ){ 629 int iMin = -1; 630 for(i=0; i<p->mxSample; i++){ 631 if( p->a[i].isPSample ) continue; 632 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 633 iMin = i; 634 } 635 } 636 assert( iMin>=0 ); 637 p->iMin = iMin; 638 } 639 } 640 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 641 642 /* 643 ** Field iChng of the index being scanned has changed. So at this point 644 ** p->current contains a sample that reflects the previous row of the 645 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 646 ** correct at this point. 647 */ 648 static void samplePushPrevious(Stat4Accum *p, int iChng){ 649 #ifdef SQLITE_ENABLE_STAT4 650 int i; 651 652 /* Check if any samples from the aBest[] array should be pushed 653 ** into IndexSample.a[] at this point. */ 654 for(i=(p->nCol-2); i>=iChng; i--){ 655 Stat4Sample *pBest = &p->aBest[i]; 656 pBest->anEq[i] = p->current.anEq[i]; 657 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 658 sampleInsert(p, pBest, i); 659 } 660 } 661 662 /* Check that no sample contains an anEq[] entry with an index of 663 ** p->nMaxEqZero or greater set to zero. */ 664 for(i=p->nSample-1; i>=0; i--){ 665 int j; 666 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 667 } 668 669 /* Update the anEq[] fields of any samples already collected. */ 670 if( iChng<p->nMaxEqZero ){ 671 for(i=p->nSample-1; i>=0; i--){ 672 int j; 673 for(j=iChng; j<p->nCol; j++){ 674 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 675 } 676 } 677 p->nMaxEqZero = iChng; 678 } 679 #endif 680 681 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 682 if( iChng==0 ){ 683 tRowcnt nLt = p->current.anLt[0]; 684 tRowcnt nEq = p->current.anEq[0]; 685 686 /* Check if this is to be a periodic sample. If so, add it. */ 687 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 688 p->current.isPSample = 1; 689 sampleInsert(p, &p->current, 0); 690 p->current.isPSample = 0; 691 }else 692 693 /* Or if it is a non-periodic sample. Add it in this case too. */ 694 if( p->nSample<p->mxSample 695 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 696 ){ 697 sampleInsert(p, &p->current, 0); 698 } 699 } 700 #endif 701 702 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 703 UNUSED_PARAMETER( p ); 704 UNUSED_PARAMETER( iChng ); 705 #endif 706 } 707 708 /* 709 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 710 ** Arguments: 711 ** 712 ** P Pointer to the Stat4Accum object created by stat_init() 713 ** C Index of left-most column to differ from previous row 714 ** R Rowid for the current row. Might be a key record for 715 ** WITHOUT ROWID tables. 716 ** 717 ** This SQL function always returns NULL. It's purpose it to accumulate 718 ** statistical data and/or samples in the Stat4Accum object about the 719 ** index being analyzed. The stat_get() SQL function will later be used to 720 ** extract relevant information for constructing the sqlite_statN tables. 721 ** 722 ** The R parameter is only used for STAT3 and STAT4 723 */ 724 static void statPush( 725 sqlite3_context *context, 726 int argc, 727 sqlite3_value **argv 728 ){ 729 int i; 730 731 /* The three function arguments */ 732 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 733 int iChng = sqlite3_value_int(argv[1]); 734 735 UNUSED_PARAMETER( argc ); 736 UNUSED_PARAMETER( context ); 737 assert( p->nCol>0 ); 738 assert( iChng<p->nCol ); 739 740 if( p->nRow==0 ){ 741 /* This is the first call to this function. Do initialization. */ 742 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 743 }else{ 744 /* Second and subsequent calls get processed here */ 745 samplePushPrevious(p, iChng); 746 747 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 748 ** to the current row of the index. */ 749 for(i=0; i<iChng; i++){ 750 p->current.anEq[i]++; 751 } 752 for(i=iChng; i<p->nCol; i++){ 753 p->current.anDLt[i]++; 754 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 755 p->current.anLt[i] += p->current.anEq[i]; 756 #endif 757 p->current.anEq[i] = 1; 758 } 759 } 760 p->nRow++; 761 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 762 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 763 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 764 }else{ 765 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 766 sqlite3_value_blob(argv[2])); 767 } 768 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 769 #endif 770 771 #ifdef SQLITE_ENABLE_STAT4 772 { 773 tRowcnt nLt = p->current.anLt[p->nCol-1]; 774 775 /* Check if this is to be a periodic sample. If so, add it. */ 776 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 777 p->current.isPSample = 1; 778 p->current.iCol = 0; 779 sampleInsert(p, &p->current, p->nCol-1); 780 p->current.isPSample = 0; 781 } 782 783 /* Update the aBest[] array. */ 784 for(i=0; i<(p->nCol-1); i++){ 785 p->current.iCol = i; 786 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 787 sampleCopy(p, &p->aBest[i], &p->current); 788 } 789 } 790 } 791 #endif 792 } 793 static const FuncDef statPushFuncdef = { 794 2+IsStat34, /* nArg */ 795 SQLITE_UTF8, /* funcFlags */ 796 0, /* pUserData */ 797 0, /* pNext */ 798 statPush, /* xSFunc */ 799 0, /* xFinalize */ 800 "stat_push", /* zName */ 801 {0} 802 }; 803 804 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 805 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 806 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 807 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 808 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 809 810 /* 811 ** Implementation of the stat_get(P,J) SQL function. This routine is 812 ** used to query statistical information that has been gathered into 813 ** the Stat4Accum object by prior calls to stat_push(). The P parameter 814 ** has type BLOB but it is really just a pointer to the Stat4Accum object. 815 ** The content to returned is determined by the parameter J 816 ** which is one of the STAT_GET_xxxx values defined above. 817 ** 818 ** The stat_get(P,J) function is not available to generic SQL. It is 819 ** inserted as part of a manually constructed bytecode program. (See 820 ** the callStatGet() routine below.) It is guaranteed that the P 821 ** parameter will always be a poiner to a Stat4Accum object, never a 822 ** NULL. 823 ** 824 ** If neither STAT3 nor STAT4 are enabled, then J is always 825 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 826 ** a one-parameter function, stat_get(P), that always returns the 827 ** stat1 table entry information. 828 */ 829 static void statGet( 830 sqlite3_context *context, 831 int argc, 832 sqlite3_value **argv 833 ){ 834 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 835 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 836 /* STAT3 and STAT4 have a parameter on this routine. */ 837 int eCall = sqlite3_value_int(argv[1]); 838 assert( argc==2 ); 839 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 840 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 841 || eCall==STAT_GET_NDLT 842 ); 843 if( eCall==STAT_GET_STAT1 ) 844 #else 845 assert( argc==1 ); 846 #endif 847 { 848 /* Return the value to store in the "stat" column of the sqlite_stat1 849 ** table for this index. 850 ** 851 ** The value is a string composed of a list of integers describing 852 ** the index. The first integer in the list is the total number of 853 ** entries in the index. There is one additional integer in the list 854 ** for each indexed column. This additional integer is an estimate of 855 ** the number of rows matched by a stabbing query on the index using 856 ** a key with the corresponding number of fields. In other words, 857 ** if the index is on columns (a,b) and the sqlite_stat1 value is 858 ** "100 10 2", then SQLite estimates that: 859 ** 860 ** * the index contains 100 rows, 861 ** * "WHERE a=?" matches 10 rows, and 862 ** * "WHERE a=? AND b=?" matches 2 rows. 863 ** 864 ** If D is the count of distinct values and K is the total number of 865 ** rows, then each estimate is computed as: 866 ** 867 ** I = (K+D-1)/D 868 */ 869 char *z; 870 int i; 871 872 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 873 if( zRet==0 ){ 874 sqlite3_result_error_nomem(context); 875 return; 876 } 877 878 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 879 z = zRet + sqlite3Strlen30(zRet); 880 for(i=0; i<p->nKeyCol; i++){ 881 u64 nDistinct = p->current.anDLt[i] + 1; 882 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 883 sqlite3_snprintf(24, z, " %llu", iVal); 884 z += sqlite3Strlen30(z); 885 assert( p->current.anEq[i] ); 886 } 887 assert( z[0]=='\0' && z>zRet ); 888 889 sqlite3_result_text(context, zRet, -1, sqlite3_free); 890 } 891 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 892 else if( eCall==STAT_GET_ROWID ){ 893 if( p->iGet<0 ){ 894 samplePushPrevious(p, 0); 895 p->iGet = 0; 896 } 897 if( p->iGet<p->nSample ){ 898 Stat4Sample *pS = p->a + p->iGet; 899 if( pS->nRowid==0 ){ 900 sqlite3_result_int64(context, pS->u.iRowid); 901 }else{ 902 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 903 SQLITE_TRANSIENT); 904 } 905 } 906 }else{ 907 tRowcnt *aCnt = 0; 908 909 assert( p->iGet<p->nSample ); 910 switch( eCall ){ 911 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 912 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 913 default: { 914 aCnt = p->a[p->iGet].anDLt; 915 p->iGet++; 916 break; 917 } 918 } 919 920 if( IsStat3 ){ 921 sqlite3_result_int64(context, (i64)aCnt[0]); 922 }else{ 923 char *zRet = sqlite3MallocZero(p->nCol * 25); 924 if( zRet==0 ){ 925 sqlite3_result_error_nomem(context); 926 }else{ 927 int i; 928 char *z = zRet; 929 for(i=0; i<p->nCol; i++){ 930 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 931 z += sqlite3Strlen30(z); 932 } 933 assert( z[0]=='\0' && z>zRet ); 934 z[-1] = '\0'; 935 sqlite3_result_text(context, zRet, -1, sqlite3_free); 936 } 937 } 938 } 939 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 940 #ifndef SQLITE_DEBUG 941 UNUSED_PARAMETER( argc ); 942 #endif 943 } 944 static const FuncDef statGetFuncdef = { 945 1+IsStat34, /* nArg */ 946 SQLITE_UTF8, /* funcFlags */ 947 0, /* pUserData */ 948 0, /* pNext */ 949 statGet, /* xSFunc */ 950 0, /* xFinalize */ 951 "stat_get", /* zName */ 952 {0} 953 }; 954 955 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 956 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 957 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 958 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 959 #elif SQLITE_DEBUG 960 assert( iParam==STAT_GET_STAT1 ); 961 #else 962 UNUSED_PARAMETER( iParam ); 963 #endif 964 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut, 965 (char*)&statGetFuncdef, P4_FUNCDEF); 966 sqlite3VdbeChangeP5(v, 1 + IsStat34); 967 } 968 969 /* 970 ** Generate code to do an analysis of all indices associated with 971 ** a single table. 972 */ 973 static void analyzeOneTable( 974 Parse *pParse, /* Parser context */ 975 Table *pTab, /* Table whose indices are to be analyzed */ 976 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 977 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 978 int iMem, /* Available memory locations begin here */ 979 int iTab /* Next available cursor */ 980 ){ 981 sqlite3 *db = pParse->db; /* Database handle */ 982 Index *pIdx; /* An index to being analyzed */ 983 int iIdxCur; /* Cursor open on index being analyzed */ 984 int iTabCur; /* Table cursor */ 985 Vdbe *v; /* The virtual machine being built up */ 986 int i; /* Loop counter */ 987 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 988 int iDb; /* Index of database containing pTab */ 989 u8 needTableCnt = 1; /* True to count the table */ 990 int regNewRowid = iMem++; /* Rowid for the inserted record */ 991 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 992 int regChng = iMem++; /* Index of changed index field */ 993 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 994 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 995 #endif 996 int regTemp = iMem++; /* Temporary use register */ 997 int regTabname = iMem++; /* Register containing table name */ 998 int regIdxname = iMem++; /* Register containing index name */ 999 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 1000 int regPrev = iMem; /* MUST BE LAST (see below) */ 1001 1002 pParse->nMem = MAX(pParse->nMem, iMem); 1003 v = sqlite3GetVdbe(pParse); 1004 if( v==0 || NEVER(pTab==0) ){ 1005 return; 1006 } 1007 if( pTab->tnum==0 ){ 1008 /* Do not gather statistics on views or virtual tables */ 1009 return; 1010 } 1011 if( sqlite3_strlike("sqlite_%", pTab->zName, 0)==0 ){ 1012 /* Do not gather statistics on system tables */ 1013 return; 1014 } 1015 assert( sqlite3BtreeHoldsAllMutexes(db) ); 1016 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1017 assert( iDb>=0 ); 1018 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1019 #ifndef SQLITE_OMIT_AUTHORIZATION 1020 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1021 db->aDb[iDb].zDbSName ) ){ 1022 return; 1023 } 1024 #endif 1025 1026 /* Establish a read-lock on the table at the shared-cache level. 1027 ** Open a read-only cursor on the table. Also allocate a cursor number 1028 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1029 ** this time though. */ 1030 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1031 iTabCur = iTab++; 1032 iIdxCur = iTab++; 1033 pParse->nTab = MAX(pParse->nTab, iTab); 1034 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1035 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1036 1037 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1038 int nCol; /* Number of columns in pIdx. "N" */ 1039 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1040 int addrNextRow; /* Address of "next_row:" */ 1041 const char *zIdxName; /* Name of the index */ 1042 int nColTest; /* Number of columns to test for changes */ 1043 1044 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1045 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1046 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1047 nCol = pIdx->nKeyCol; 1048 zIdxName = pTab->zName; 1049 nColTest = nCol - 1; 1050 }else{ 1051 nCol = pIdx->nColumn; 1052 zIdxName = pIdx->zName; 1053 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1054 } 1055 1056 /* Populate the register containing the index name. */ 1057 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1058 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1059 1060 /* 1061 ** Pseudo-code for loop that calls stat_push(): 1062 ** 1063 ** Rewind csr 1064 ** if eof(csr) goto end_of_scan; 1065 ** regChng = 0 1066 ** goto chng_addr_0; 1067 ** 1068 ** next_row: 1069 ** regChng = 0 1070 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1071 ** regChng = 1 1072 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1073 ** ... 1074 ** regChng = N 1075 ** goto chng_addr_N 1076 ** 1077 ** chng_addr_0: 1078 ** regPrev(0) = idx(0) 1079 ** chng_addr_1: 1080 ** regPrev(1) = idx(1) 1081 ** ... 1082 ** 1083 ** endDistinctTest: 1084 ** regRowid = idx(rowid) 1085 ** stat_push(P, regChng, regRowid) 1086 ** Next csr 1087 ** if !eof(csr) goto next_row; 1088 ** 1089 ** end_of_scan: 1090 */ 1091 1092 /* Make sure there are enough memory cells allocated to accommodate 1093 ** the regPrev array and a trailing rowid (the rowid slot is required 1094 ** when building a record to insert into the sample column of 1095 ** the sqlite_stat4 table. */ 1096 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1097 1098 /* Open a read-only cursor on the index being analyzed. */ 1099 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1100 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1101 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1102 VdbeComment((v, "%s", pIdx->zName)); 1103 1104 /* Invoke the stat_init() function. The arguments are: 1105 ** 1106 ** (1) the number of columns in the index including the rowid 1107 ** (or for a WITHOUT ROWID table, the number of PK columns), 1108 ** (2) the number of columns in the key without the rowid/pk 1109 ** (3) the number of rows in the index, 1110 ** 1111 ** 1112 ** The third argument is only used for STAT3 and STAT4 1113 */ 1114 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1115 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1116 #endif 1117 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1118 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1119 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4, 1120 (char*)&statInitFuncdef, P4_FUNCDEF); 1121 sqlite3VdbeChangeP5(v, 2+IsStat34); 1122 1123 /* Implementation of the following: 1124 ** 1125 ** Rewind csr 1126 ** if eof(csr) goto end_of_scan; 1127 ** regChng = 0 1128 ** goto next_push_0; 1129 ** 1130 */ 1131 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1132 VdbeCoverage(v); 1133 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1134 addrNextRow = sqlite3VdbeCurrentAddr(v); 1135 1136 if( nColTest>0 ){ 1137 int endDistinctTest = sqlite3VdbeMakeLabel(v); 1138 int *aGotoChng; /* Array of jump instruction addresses */ 1139 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1140 if( aGotoChng==0 ) continue; 1141 1142 /* 1143 ** next_row: 1144 ** regChng = 0 1145 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1146 ** regChng = 1 1147 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1148 ** ... 1149 ** regChng = N 1150 ** goto endDistinctTest 1151 */ 1152 sqlite3VdbeAddOp0(v, OP_Goto); 1153 addrNextRow = sqlite3VdbeCurrentAddr(v); 1154 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1155 /* For a single-column UNIQUE index, once we have found a non-NULL 1156 ** row, we know that all the rest will be distinct, so skip 1157 ** subsequent distinctness tests. */ 1158 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1159 VdbeCoverage(v); 1160 } 1161 for(i=0; i<nColTest; i++){ 1162 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1163 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1164 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1165 aGotoChng[i] = 1166 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1167 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1168 VdbeCoverage(v); 1169 } 1170 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1171 sqlite3VdbeGoto(v, endDistinctTest); 1172 1173 1174 /* 1175 ** chng_addr_0: 1176 ** regPrev(0) = idx(0) 1177 ** chng_addr_1: 1178 ** regPrev(1) = idx(1) 1179 ** ... 1180 */ 1181 sqlite3VdbeJumpHere(v, addrNextRow-1); 1182 for(i=0; i<nColTest; i++){ 1183 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1184 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1185 } 1186 sqlite3VdbeResolveLabel(v, endDistinctTest); 1187 sqlite3DbFree(db, aGotoChng); 1188 } 1189 1190 /* 1191 ** chng_addr_N: 1192 ** regRowid = idx(rowid) // STAT34 only 1193 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1194 ** Next csr 1195 ** if !eof(csr) goto next_row; 1196 */ 1197 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1198 assert( regRowid==(regStat4+2) ); 1199 if( HasRowid(pTab) ){ 1200 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1201 }else{ 1202 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1203 int j, k, regKey; 1204 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1205 for(j=0; j<pPk->nKeyCol; j++){ 1206 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1207 assert( k>=0 && k<pIdx->nColumn ); 1208 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1209 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1210 } 1211 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1212 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1213 } 1214 #endif 1215 assert( regChng==(regStat4+1) ); 1216 sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp, 1217 (char*)&statPushFuncdef, P4_FUNCDEF); 1218 sqlite3VdbeChangeP5(v, 2+IsStat34); 1219 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1220 1221 /* Add the entry to the stat1 table. */ 1222 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1223 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1224 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1225 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1226 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1227 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1228 1229 /* Add the entries to the stat3 or stat4 table. */ 1230 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1231 { 1232 int regEq = regStat1; 1233 int regLt = regStat1+1; 1234 int regDLt = regStat1+2; 1235 int regSample = regStat1+3; 1236 int regCol = regStat1+4; 1237 int regSampleRowid = regCol + nCol; 1238 int addrNext; 1239 int addrIsNull; 1240 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1241 1242 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1243 1244 addrNext = sqlite3VdbeCurrentAddr(v); 1245 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1246 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1247 VdbeCoverage(v); 1248 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1249 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1250 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1251 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1252 /* We know that the regSampleRowid row exists because it was read by 1253 ** the previous loop. Thus the not-found jump of seekOp will never 1254 ** be taken */ 1255 VdbeCoverageNeverTaken(v); 1256 #ifdef SQLITE_ENABLE_STAT3 1257 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample); 1258 #else 1259 for(i=0; i<nCol; i++){ 1260 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1261 } 1262 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1263 #endif 1264 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1265 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1266 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1267 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1268 sqlite3VdbeJumpHere(v, addrIsNull); 1269 } 1270 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1271 1272 /* End of analysis */ 1273 sqlite3VdbeJumpHere(v, addrRewind); 1274 } 1275 1276 1277 /* Create a single sqlite_stat1 entry containing NULL as the index 1278 ** name and the row count as the content. 1279 */ 1280 if( pOnlyIdx==0 && needTableCnt ){ 1281 VdbeComment((v, "%s", pTab->zName)); 1282 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1283 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1284 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1285 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1286 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1287 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1288 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1289 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1290 sqlite3VdbeJumpHere(v, jZeroRows); 1291 } 1292 } 1293 1294 1295 /* 1296 ** Generate code that will cause the most recent index analysis to 1297 ** be loaded into internal hash tables where is can be used. 1298 */ 1299 static void loadAnalysis(Parse *pParse, int iDb){ 1300 Vdbe *v = sqlite3GetVdbe(pParse); 1301 if( v ){ 1302 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1303 } 1304 } 1305 1306 /* 1307 ** Generate code that will do an analysis of an entire database 1308 */ 1309 static void analyzeDatabase(Parse *pParse, int iDb){ 1310 sqlite3 *db = pParse->db; 1311 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1312 HashElem *k; 1313 int iStatCur; 1314 int iMem; 1315 int iTab; 1316 1317 sqlite3BeginWriteOperation(pParse, 0, iDb); 1318 iStatCur = pParse->nTab; 1319 pParse->nTab += 3; 1320 openStatTable(pParse, iDb, iStatCur, 0, 0); 1321 iMem = pParse->nMem+1; 1322 iTab = pParse->nTab; 1323 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1324 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1325 Table *pTab = (Table*)sqliteHashData(k); 1326 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1327 } 1328 loadAnalysis(pParse, iDb); 1329 } 1330 1331 /* 1332 ** Generate code that will do an analysis of a single table in 1333 ** a database. If pOnlyIdx is not NULL then it is a single index 1334 ** in pTab that should be analyzed. 1335 */ 1336 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1337 int iDb; 1338 int iStatCur; 1339 1340 assert( pTab!=0 ); 1341 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1342 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1343 sqlite3BeginWriteOperation(pParse, 0, iDb); 1344 iStatCur = pParse->nTab; 1345 pParse->nTab += 3; 1346 if( pOnlyIdx ){ 1347 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1348 }else{ 1349 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1350 } 1351 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1352 loadAnalysis(pParse, iDb); 1353 } 1354 1355 /* 1356 ** Generate code for the ANALYZE command. The parser calls this routine 1357 ** when it recognizes an ANALYZE command. 1358 ** 1359 ** ANALYZE -- 1 1360 ** ANALYZE <database> -- 2 1361 ** ANALYZE ?<database>.?<tablename> -- 3 1362 ** 1363 ** Form 1 causes all indices in all attached databases to be analyzed. 1364 ** Form 2 analyzes all indices the single database named. 1365 ** Form 3 analyzes all indices associated with the named table. 1366 */ 1367 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1368 sqlite3 *db = pParse->db; 1369 int iDb; 1370 int i; 1371 char *z, *zDb; 1372 Table *pTab; 1373 Index *pIdx; 1374 Token *pTableName; 1375 Vdbe *v; 1376 1377 /* Read the database schema. If an error occurs, leave an error message 1378 ** and code in pParse and return NULL. */ 1379 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1380 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1381 return; 1382 } 1383 1384 assert( pName2!=0 || pName1==0 ); 1385 if( pName1==0 ){ 1386 /* Form 1: Analyze everything */ 1387 for(i=0; i<db->nDb; i++){ 1388 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1389 analyzeDatabase(pParse, i); 1390 } 1391 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1392 /* Analyze the schema named as the argument */ 1393 analyzeDatabase(pParse, iDb); 1394 }else{ 1395 /* Form 3: Analyze the table or index named as an argument */ 1396 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1397 if( iDb>=0 ){ 1398 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1399 z = sqlite3NameFromToken(db, pTableName); 1400 if( z ){ 1401 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1402 analyzeTable(pParse, pIdx->pTable, pIdx); 1403 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1404 analyzeTable(pParse, pTab, 0); 1405 } 1406 sqlite3DbFree(db, z); 1407 } 1408 } 1409 } 1410 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1411 sqlite3VdbeAddOp0(v, OP_Expire); 1412 } 1413 } 1414 1415 /* 1416 ** Used to pass information from the analyzer reader through to the 1417 ** callback routine. 1418 */ 1419 typedef struct analysisInfo analysisInfo; 1420 struct analysisInfo { 1421 sqlite3 *db; 1422 const char *zDatabase; 1423 }; 1424 1425 /* 1426 ** The first argument points to a nul-terminated string containing a 1427 ** list of space separated integers. Read the first nOut of these into 1428 ** the array aOut[]. 1429 */ 1430 static void decodeIntArray( 1431 char *zIntArray, /* String containing int array to decode */ 1432 int nOut, /* Number of slots in aOut[] */ 1433 tRowcnt *aOut, /* Store integers here */ 1434 LogEst *aLog, /* Or, if aOut==0, here */ 1435 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1436 ){ 1437 char *z = zIntArray; 1438 int c; 1439 int i; 1440 tRowcnt v; 1441 1442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1443 if( z==0 ) z = ""; 1444 #else 1445 assert( z!=0 ); 1446 #endif 1447 for(i=0; *z && i<nOut; i++){ 1448 v = 0; 1449 while( (c=z[0])>='0' && c<='9' ){ 1450 v = v*10 + c - '0'; 1451 z++; 1452 } 1453 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1454 if( aOut ) aOut[i] = v; 1455 if( aLog ) aLog[i] = sqlite3LogEst(v); 1456 #else 1457 assert( aOut==0 ); 1458 UNUSED_PARAMETER(aOut); 1459 assert( aLog!=0 ); 1460 aLog[i] = sqlite3LogEst(v); 1461 #endif 1462 if( *z==' ' ) z++; 1463 } 1464 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1465 assert( pIndex!=0 ); { 1466 #else 1467 if( pIndex ){ 1468 #endif 1469 pIndex->bUnordered = 0; 1470 pIndex->noSkipScan = 0; 1471 while( z[0] ){ 1472 if( sqlite3_strglob("unordered*", z)==0 ){ 1473 pIndex->bUnordered = 1; 1474 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1475 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); 1476 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1477 pIndex->noSkipScan = 1; 1478 } 1479 #ifdef SQLITE_ENABLE_COSTMULT 1480 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1481 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1482 } 1483 #endif 1484 while( z[0]!=0 && z[0]!=' ' ) z++; 1485 while( z[0]==' ' ) z++; 1486 } 1487 } 1488 } 1489 1490 /* 1491 ** This callback is invoked once for each index when reading the 1492 ** sqlite_stat1 table. 1493 ** 1494 ** argv[0] = name of the table 1495 ** argv[1] = name of the index (might be NULL) 1496 ** argv[2] = results of analysis - on integer for each column 1497 ** 1498 ** Entries for which argv[1]==NULL simply record the number of rows in 1499 ** the table. 1500 */ 1501 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1502 analysisInfo *pInfo = (analysisInfo*)pData; 1503 Index *pIndex; 1504 Table *pTable; 1505 const char *z; 1506 1507 assert( argc==3 ); 1508 UNUSED_PARAMETER2(NotUsed, argc); 1509 1510 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1511 return 0; 1512 } 1513 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1514 if( pTable==0 ){ 1515 return 0; 1516 } 1517 if( argv[1]==0 ){ 1518 pIndex = 0; 1519 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1520 pIndex = sqlite3PrimaryKeyIndex(pTable); 1521 }else{ 1522 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1523 } 1524 z = argv[2]; 1525 1526 if( pIndex ){ 1527 tRowcnt *aiRowEst = 0; 1528 int nCol = pIndex->nKeyCol+1; 1529 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1530 /* Index.aiRowEst may already be set here if there are duplicate 1531 ** sqlite_stat1 entries for this index. In that case just clobber 1532 ** the old data with the new instead of allocating a new array. */ 1533 if( pIndex->aiRowEst==0 ){ 1534 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1535 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1536 } 1537 aiRowEst = pIndex->aiRowEst; 1538 #endif 1539 pIndex->bUnordered = 0; 1540 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1541 pIndex->hasStat1 = 1; 1542 if( pIndex->pPartIdxWhere==0 ){ 1543 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1544 pTable->tabFlags |= TF_HasStat1; 1545 } 1546 }else{ 1547 Index fakeIdx; 1548 fakeIdx.szIdxRow = pTable->szTabRow; 1549 #ifdef SQLITE_ENABLE_COSTMULT 1550 fakeIdx.pTable = pTable; 1551 #endif 1552 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1553 pTable->szTabRow = fakeIdx.szIdxRow; 1554 pTable->tabFlags |= TF_HasStat1; 1555 } 1556 1557 return 0; 1558 } 1559 1560 /* 1561 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1562 ** and its contents. 1563 */ 1564 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1565 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1566 if( pIdx->aSample ){ 1567 int j; 1568 for(j=0; j<pIdx->nSample; j++){ 1569 IndexSample *p = &pIdx->aSample[j]; 1570 sqlite3DbFree(db, p->p); 1571 } 1572 sqlite3DbFree(db, pIdx->aSample); 1573 } 1574 if( db && db->pnBytesFreed==0 ){ 1575 pIdx->nSample = 0; 1576 pIdx->aSample = 0; 1577 } 1578 #else 1579 UNUSED_PARAMETER(db); 1580 UNUSED_PARAMETER(pIdx); 1581 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1582 } 1583 1584 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1585 /* 1586 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1587 ** stored in pIdx->aSample[]. 1588 */ 1589 static void initAvgEq(Index *pIdx){ 1590 if( pIdx ){ 1591 IndexSample *aSample = pIdx->aSample; 1592 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1593 int iCol; 1594 int nCol = 1; 1595 if( pIdx->nSampleCol>1 ){ 1596 /* If this is stat4 data, then calculate aAvgEq[] values for all 1597 ** sample columns except the last. The last is always set to 1, as 1598 ** once the trailing PK fields are considered all index keys are 1599 ** unique. */ 1600 nCol = pIdx->nSampleCol-1; 1601 pIdx->aAvgEq[nCol] = 1; 1602 } 1603 for(iCol=0; iCol<nCol; iCol++){ 1604 int nSample = pIdx->nSample; 1605 int i; /* Used to iterate through samples */ 1606 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1607 tRowcnt avgEq = 0; 1608 tRowcnt nRow; /* Number of rows in index */ 1609 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1610 i64 nDist100; /* Number of distinct values in index */ 1611 1612 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1613 nRow = pFinal->anLt[iCol]; 1614 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1615 nSample--; 1616 }else{ 1617 nRow = pIdx->aiRowEst[0]; 1618 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1619 } 1620 pIdx->nRowEst0 = nRow; 1621 1622 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1623 ** occur in the stat4 table for this index. Set sumEq to the sum of 1624 ** the nEq values for column iCol for the same set (adding the value 1625 ** only once where there exist duplicate prefixes). */ 1626 for(i=0; i<nSample; i++){ 1627 if( i==(pIdx->nSample-1) 1628 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1629 ){ 1630 sumEq += aSample[i].anEq[iCol]; 1631 nSum100 += 100; 1632 } 1633 } 1634 1635 if( nDist100>nSum100 && sumEq<nRow ){ 1636 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1637 } 1638 if( avgEq==0 ) avgEq = 1; 1639 pIdx->aAvgEq[iCol] = avgEq; 1640 } 1641 } 1642 } 1643 1644 /* 1645 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1646 ** is supplied instead, find the PRIMARY KEY index for that table. 1647 */ 1648 static Index *findIndexOrPrimaryKey( 1649 sqlite3 *db, 1650 const char *zName, 1651 const char *zDb 1652 ){ 1653 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1654 if( pIdx==0 ){ 1655 Table *pTab = sqlite3FindTable(db, zName, zDb); 1656 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1657 } 1658 return pIdx; 1659 } 1660 1661 /* 1662 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1663 ** into the relevant Index.aSample[] arrays. 1664 ** 1665 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1666 ** data equivalent to the following (statements are different for stat3, 1667 ** see the caller of this function for details): 1668 ** 1669 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1670 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1671 ** 1672 ** where %Q is replaced with the database name before the SQL is executed. 1673 */ 1674 static int loadStatTbl( 1675 sqlite3 *db, /* Database handle */ 1676 int bStat3, /* Assume single column records only */ 1677 const char *zSql1, /* SQL statement 1 (see above) */ 1678 const char *zSql2, /* SQL statement 2 (see above) */ 1679 const char *zDb /* Database name (e.g. "main") */ 1680 ){ 1681 int rc; /* Result codes from subroutines */ 1682 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1683 char *zSql; /* Text of the SQL statement */ 1684 Index *pPrevIdx = 0; /* Previous index in the loop */ 1685 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1686 1687 assert( db->lookaside.bDisable ); 1688 zSql = sqlite3MPrintf(db, zSql1, zDb); 1689 if( !zSql ){ 1690 return SQLITE_NOMEM_BKPT; 1691 } 1692 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1693 sqlite3DbFree(db, zSql); 1694 if( rc ) return rc; 1695 1696 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1697 int nIdxCol = 1; /* Number of columns in stat4 records */ 1698 1699 char *zIndex; /* Index name */ 1700 Index *pIdx; /* Pointer to the index object */ 1701 int nSample; /* Number of samples */ 1702 int nByte; /* Bytes of space required */ 1703 int i; /* Bytes of space required */ 1704 tRowcnt *pSpace; 1705 1706 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1707 if( zIndex==0 ) continue; 1708 nSample = sqlite3_column_int(pStmt, 1); 1709 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1710 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1711 /* Index.nSample is non-zero at this point if data has already been 1712 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1713 if( pIdx==0 || pIdx->nSample ) continue; 1714 if( bStat3==0 ){ 1715 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1716 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1717 nIdxCol = pIdx->nKeyCol; 1718 }else{ 1719 nIdxCol = pIdx->nColumn; 1720 } 1721 } 1722 pIdx->nSampleCol = nIdxCol; 1723 nByte = sizeof(IndexSample) * nSample; 1724 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1725 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1726 1727 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1728 if( pIdx->aSample==0 ){ 1729 sqlite3_finalize(pStmt); 1730 return SQLITE_NOMEM_BKPT; 1731 } 1732 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1733 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1734 for(i=0; i<nSample; i++){ 1735 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1736 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1737 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1738 } 1739 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1740 } 1741 rc = sqlite3_finalize(pStmt); 1742 if( rc ) return rc; 1743 1744 zSql = sqlite3MPrintf(db, zSql2, zDb); 1745 if( !zSql ){ 1746 return SQLITE_NOMEM_BKPT; 1747 } 1748 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1749 sqlite3DbFree(db, zSql); 1750 if( rc ) return rc; 1751 1752 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1753 char *zIndex; /* Index name */ 1754 Index *pIdx; /* Pointer to the index object */ 1755 int nCol = 1; /* Number of columns in index */ 1756 1757 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1758 if( zIndex==0 ) continue; 1759 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1760 if( pIdx==0 ) continue; 1761 /* This next condition is true if data has already been loaded from 1762 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1763 nCol = pIdx->nSampleCol; 1764 if( bStat3 && nCol>1 ) continue; 1765 if( pIdx!=pPrevIdx ){ 1766 initAvgEq(pPrevIdx); 1767 pPrevIdx = pIdx; 1768 } 1769 pSample = &pIdx->aSample[pIdx->nSample]; 1770 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1771 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1772 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1773 1774 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1775 ** This is in case the sample record is corrupted. In that case, the 1776 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1777 ** end of the allocated buffer before it realizes it is dealing with 1778 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1779 ** a buffer overread. */ 1780 pSample->n = sqlite3_column_bytes(pStmt, 4); 1781 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1782 if( pSample->p==0 ){ 1783 sqlite3_finalize(pStmt); 1784 return SQLITE_NOMEM_BKPT; 1785 } 1786 if( pSample->n ){ 1787 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1788 } 1789 pIdx->nSample++; 1790 } 1791 rc = sqlite3_finalize(pStmt); 1792 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1793 return rc; 1794 } 1795 1796 /* 1797 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1798 ** the Index.aSample[] arrays of all indices. 1799 */ 1800 static int loadStat4(sqlite3 *db, const char *zDb){ 1801 int rc = SQLITE_OK; /* Result codes from subroutines */ 1802 1803 assert( db->lookaside.bDisable ); 1804 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1805 rc = loadStatTbl(db, 0, 1806 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1807 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1808 zDb 1809 ); 1810 } 1811 1812 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1813 rc = loadStatTbl(db, 1, 1814 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1815 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1816 zDb 1817 ); 1818 } 1819 1820 return rc; 1821 } 1822 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1823 1824 /* 1825 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1826 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1827 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1828 ** Index.aSample[] arrays. 1829 ** 1830 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1831 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1832 ** during compilation and the sqlite_stat3/4 table is present, no data is 1833 ** read from it. 1834 ** 1835 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1836 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1837 ** returned. However, in this case, data is read from the sqlite_stat1 1838 ** table (if it is present) before returning. 1839 ** 1840 ** If an OOM error occurs, this function always sets db->mallocFailed. 1841 ** This means if the caller does not care about other errors, the return 1842 ** code may be ignored. 1843 */ 1844 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1845 analysisInfo sInfo; 1846 HashElem *i; 1847 char *zSql; 1848 int rc = SQLITE_OK; 1849 Schema *pSchema = db->aDb[iDb].pSchema; 1850 1851 assert( iDb>=0 && iDb<db->nDb ); 1852 assert( db->aDb[iDb].pBt!=0 ); 1853 1854 /* Clear any prior statistics */ 1855 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1856 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1857 Table *pTab = sqliteHashData(i); 1858 pTab->tabFlags &= ~TF_HasStat1; 1859 } 1860 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1861 Index *pIdx = sqliteHashData(i); 1862 pIdx->hasStat1 = 0; 1863 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1864 sqlite3DeleteIndexSamples(db, pIdx); 1865 pIdx->aSample = 0; 1866 #endif 1867 } 1868 1869 /* Load new statistics out of the sqlite_stat1 table */ 1870 sInfo.db = db; 1871 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1872 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1873 zSql = sqlite3MPrintf(db, 1874 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1875 if( zSql==0 ){ 1876 rc = SQLITE_NOMEM_BKPT; 1877 }else{ 1878 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1879 sqlite3DbFree(db, zSql); 1880 } 1881 } 1882 1883 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1884 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1885 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1886 Index *pIdx = sqliteHashData(i); 1887 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1888 } 1889 1890 /* Load the statistics from the sqlite_stat4 table. */ 1891 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1892 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){ 1893 db->lookaside.bDisable++; 1894 rc = loadStat4(db, sInfo.zDatabase); 1895 db->lookaside.bDisable--; 1896 } 1897 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1898 Index *pIdx = sqliteHashData(i); 1899 sqlite3_free(pIdx->aiRowEst); 1900 pIdx->aiRowEst = 0; 1901 } 1902 #endif 1903 1904 if( rc==SQLITE_NOMEM ){ 1905 sqlite3OomFault(db); 1906 } 1907 return rc; 1908 } 1909 1910 1911 #endif /* SQLITE_OMIT_ANALYZE */ 1912