1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2 and is also now deprecated. The 33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite 35 ** versions 3.8.1 and later. STAT4 is the only variant that is still 36 ** supported. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statistics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 #else 148 # define IsStat4 0 149 # undef SQLITE_STAT4_SAMPLES 150 # define SQLITE_STAT4_SAMPLES 1 151 #endif 152 153 /* 154 ** This routine generates code that opens the sqlite_statN tables. 155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 157 ** appropriate compile-time options are provided. 158 ** 159 ** If the sqlite_statN tables do not previously exist, it is created. 160 ** 161 ** Argument zWhere may be a pointer to a buffer containing a table name, 162 ** or it may be a NULL pointer. If it is not NULL, then all entries in 163 ** the sqlite_statN tables associated with the named table are deleted. 164 ** If zWhere==0, then code is generated to delete all stat table entries. 165 */ 166 static void openStatTable( 167 Parse *pParse, /* Parsing context */ 168 int iDb, /* The database we are looking in */ 169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 170 const char *zWhere, /* Delete entries for this table or index */ 171 const char *zWhereType /* Either "tbl" or "idx" */ 172 ){ 173 static const struct { 174 const char *zName; 175 const char *zCols; 176 } aTable[] = { 177 { "sqlite_stat1", "tbl,idx,stat" }, 178 #if defined(SQLITE_ENABLE_STAT4) 179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 180 #else 181 { "sqlite_stat4", 0 }, 182 #endif 183 { "sqlite_stat3", 0 }, 184 }; 185 int i; 186 sqlite3 *db = pParse->db; 187 Db *pDb; 188 Vdbe *v = sqlite3GetVdbe(pParse); 189 int aRoot[ArraySize(aTable)]; 190 u8 aCreateTbl[ArraySize(aTable)]; 191 #ifdef SQLITE_ENABLE_STAT4 192 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1; 193 #else 194 const int nToOpen = 1; 195 #endif 196 197 if( v==0 ) return; 198 assert( sqlite3BtreeHoldsAllMutexes(db) ); 199 assert( sqlite3VdbeDb(v)==db ); 200 pDb = &db->aDb[iDb]; 201 202 /* Create new statistic tables if they do not exist, or clear them 203 ** if they do already exist. 204 */ 205 for(i=0; i<ArraySize(aTable); i++){ 206 const char *zTab = aTable[i].zName; 207 Table *pStat; 208 aCreateTbl[i] = 0; 209 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){ 210 if( i<nToOpen ){ 211 /* The sqlite_statN table does not exist. Create it. Note that a 212 ** side-effect of the CREATE TABLE statement is to leave the rootpage 213 ** of the new table in register pParse->regRoot. This is important 214 ** because the OpenWrite opcode below will be needing it. */ 215 sqlite3NestedParse(pParse, 216 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols 217 ); 218 aRoot[i] = pParse->regRoot; 219 aCreateTbl[i] = OPFLAG_P2ISREG; 220 } 221 }else{ 222 /* The table already exists. If zWhere is not NULL, delete all entries 223 ** associated with the table zWhere. If zWhere is NULL, delete the 224 ** entire contents of the table. */ 225 aRoot[i] = pStat->tnum; 226 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 227 if( zWhere ){ 228 sqlite3NestedParse(pParse, 229 "DELETE FROM %Q.%s WHERE %s=%Q", 230 pDb->zDbSName, zTab, zWhereType, zWhere 231 ); 232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 233 }else if( db->xPreUpdateCallback ){ 234 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab); 235 #endif 236 }else{ 237 /* The sqlite_stat[134] table already exists. Delete all rows. */ 238 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 239 } 240 } 241 } 242 243 /* Open the sqlite_stat[134] tables for writing. */ 244 for(i=0; i<nToOpen; i++){ 245 assert( i<ArraySize(aTable) ); 246 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 247 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 248 VdbeComment((v, aTable[i].zName)); 249 } 250 } 251 252 /* 253 ** Recommended number of samples for sqlite_stat4 254 */ 255 #ifndef SQLITE_STAT4_SAMPLES 256 # define SQLITE_STAT4_SAMPLES 24 257 #endif 258 259 /* 260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 261 ** share an instance of the following structure to hold their state 262 ** information. 263 */ 264 typedef struct StatAccum StatAccum; 265 typedef struct StatSample StatSample; 266 struct StatSample { 267 tRowcnt *anEq; /* sqlite_stat4.nEq */ 268 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 269 #ifdef SQLITE_ENABLE_STAT4 270 tRowcnt *anLt; /* sqlite_stat4.nLt */ 271 union { 272 i64 iRowid; /* Rowid in main table of the key */ 273 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 274 } u; 275 u32 nRowid; /* Sizeof aRowid[] */ 276 u8 isPSample; /* True if a periodic sample */ 277 int iCol; /* If !isPSample, the reason for inclusion */ 278 u32 iHash; /* Tiebreaker hash */ 279 #endif 280 }; 281 struct StatAccum { 282 sqlite3 *db; /* Database connection, for malloc() */ 283 tRowcnt nEst; /* Estimated number of rows */ 284 tRowcnt nRow; /* Number of rows visited so far */ 285 int nLimit; /* Analysis row-scan limit */ 286 int nCol; /* Number of columns in index + pk/rowid */ 287 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 288 u8 nSkipAhead; /* Number of times of skip-ahead */ 289 StatSample current; /* Current row as a StatSample */ 290 #ifdef SQLITE_ENABLE_STAT4 291 tRowcnt nPSample; /* How often to do a periodic sample */ 292 int mxSample; /* Maximum number of samples to accumulate */ 293 u32 iPrn; /* Pseudo-random number used for sampling */ 294 StatSample *aBest; /* Array of nCol best samples */ 295 int iMin; /* Index in a[] of entry with minimum score */ 296 int nSample; /* Current number of samples */ 297 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */ 298 int iGet; /* Index of current sample accessed by stat_get() */ 299 StatSample *a; /* Array of mxSample StatSample objects */ 300 #endif 301 }; 302 303 /* Reclaim memory used by a StatSample 304 */ 305 #ifdef SQLITE_ENABLE_STAT4 306 static void sampleClear(sqlite3 *db, StatSample *p){ 307 assert( db!=0 ); 308 if( p->nRowid ){ 309 sqlite3DbFree(db, p->u.aRowid); 310 p->nRowid = 0; 311 } 312 } 313 #endif 314 315 /* Initialize the BLOB value of a ROWID 316 */ 317 #ifdef SQLITE_ENABLE_STAT4 318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){ 319 assert( db!=0 ); 320 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 321 p->u.aRowid = sqlite3DbMallocRawNN(db, n); 322 if( p->u.aRowid ){ 323 p->nRowid = n; 324 memcpy(p->u.aRowid, pData, n); 325 }else{ 326 p->nRowid = 0; 327 } 328 } 329 #endif 330 331 /* Initialize the INTEGER value of a ROWID. 332 */ 333 #ifdef SQLITE_ENABLE_STAT4 334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){ 335 assert( db!=0 ); 336 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 337 p->nRowid = 0; 338 p->u.iRowid = iRowid; 339 } 340 #endif 341 342 343 /* 344 ** Copy the contents of object (*pFrom) into (*pTo). 345 */ 346 #ifdef SQLITE_ENABLE_STAT4 347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){ 348 pTo->isPSample = pFrom->isPSample; 349 pTo->iCol = pFrom->iCol; 350 pTo->iHash = pFrom->iHash; 351 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 352 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 353 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 354 if( pFrom->nRowid ){ 355 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 356 }else{ 357 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 358 } 359 } 360 #endif 361 362 /* 363 ** Reclaim all memory of a StatAccum structure. 364 */ 365 static void statAccumDestructor(void *pOld){ 366 StatAccum *p = (StatAccum*)pOld; 367 #ifdef SQLITE_ENABLE_STAT4 368 if( p->mxSample ){ 369 int i; 370 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 371 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 372 sampleClear(p->db, &p->current); 373 } 374 #endif 375 sqlite3DbFree(p->db, p); 376 } 377 378 /* 379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters 380 ** are: 381 ** N: The number of columns in the index including the rowid/pk (note 1) 382 ** K: The number of columns in the index excluding the rowid/pk. 383 ** C: Estimated number of rows in the index 384 ** L: A limit on the number of rows to scan, or 0 for no-limit 385 ** 386 ** Note 1: In the special case of the covering index that implements a 387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the 388 ** total number of columns in the table. 389 ** 390 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on 391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the 392 ** PRIMARY KEY of the table. The covering index that implements the 393 ** original WITHOUT ROWID table as N==K as a special case. 394 ** 395 ** This routine allocates the StatAccum object in heap memory. The return 396 ** value is a pointer to the StatAccum object. The datatype of the 397 ** return value is BLOB, but it is really just a pointer to the StatAccum 398 ** object. 399 */ 400 static void statInit( 401 sqlite3_context *context, 402 int argc, 403 sqlite3_value **argv 404 ){ 405 StatAccum *p; 406 int nCol; /* Number of columns in index being sampled */ 407 int nKeyCol; /* Number of key columns */ 408 int nColUp; /* nCol rounded up for alignment */ 409 int n; /* Bytes of space to allocate */ 410 sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */ 411 #ifdef SQLITE_ENABLE_STAT4 412 /* Maximum number of samples. 0 if STAT4 data is not collected */ 413 int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0; 414 #endif 415 416 /* Decode the three function arguments */ 417 UNUSED_PARAMETER(argc); 418 nCol = sqlite3_value_int(argv[0]); 419 assert( nCol>0 ); 420 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 421 nKeyCol = sqlite3_value_int(argv[1]); 422 assert( nKeyCol<=nCol ); 423 assert( nKeyCol>0 ); 424 425 /* Allocate the space required for the StatAccum object */ 426 n = sizeof(*p) 427 + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */ 428 + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */ 429 #ifdef SQLITE_ENABLE_STAT4 430 if( mxSample ){ 431 n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */ 432 + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */ 433 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample); 434 } 435 #endif 436 db = sqlite3_context_db_handle(context); 437 p = sqlite3DbMallocZero(db, n); 438 if( p==0 ){ 439 sqlite3_result_error_nomem(context); 440 return; 441 } 442 443 p->db = db; 444 p->nEst = sqlite3_value_int64(argv[2]); 445 p->nRow = 0; 446 p->nLimit = sqlite3_value_int64(argv[3]); 447 p->nCol = nCol; 448 p->nKeyCol = nKeyCol; 449 p->nSkipAhead = 0; 450 p->current.anDLt = (tRowcnt*)&p[1]; 451 p->current.anEq = &p->current.anDLt[nColUp]; 452 453 #ifdef SQLITE_ENABLE_STAT4 454 p->mxSample = p->nLimit==0 ? mxSample : 0; 455 if( mxSample ){ 456 u8 *pSpace; /* Allocated space not yet assigned */ 457 int i; /* Used to iterate through p->aSample[] */ 458 459 p->iGet = -1; 460 p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1); 461 p->current.anLt = &p->current.anEq[nColUp]; 462 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]); 463 464 /* Set up the StatAccum.a[] and aBest[] arrays */ 465 p->a = (struct StatSample*)&p->current.anLt[nColUp]; 466 p->aBest = &p->a[mxSample]; 467 pSpace = (u8*)(&p->a[mxSample+nCol]); 468 for(i=0; i<(mxSample+nCol); i++){ 469 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 470 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 471 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 472 } 473 assert( (pSpace - (u8*)p)==n ); 474 475 for(i=0; i<nCol; i++){ 476 p->aBest[i].iCol = i; 477 } 478 } 479 #endif 480 481 /* Return a pointer to the allocated object to the caller. Note that 482 ** only the pointer (the 2nd parameter) matters. The size of the object 483 ** (given by the 3rd parameter) is never used and can be any positive 484 ** value. */ 485 sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor); 486 } 487 static const FuncDef statInitFuncdef = { 488 4, /* nArg */ 489 SQLITE_UTF8, /* funcFlags */ 490 0, /* pUserData */ 491 0, /* pNext */ 492 statInit, /* xSFunc */ 493 0, /* xFinalize */ 494 0, 0, /* xValue, xInverse */ 495 "stat_init", /* zName */ 496 {0} 497 }; 498 499 #ifdef SQLITE_ENABLE_STAT4 500 /* 501 ** pNew and pOld are both candidate non-periodic samples selected for 502 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 503 ** considering only any trailing columns and the sample hash value, this 504 ** function returns true if sample pNew is to be preferred over pOld. 505 ** In other words, if we assume that the cardinalities of the selected 506 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 507 ** 508 ** This function assumes that for each argument sample, the contents of 509 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 510 */ 511 static int sampleIsBetterPost( 512 StatAccum *pAccum, 513 StatSample *pNew, 514 StatSample *pOld 515 ){ 516 int nCol = pAccum->nCol; 517 int i; 518 assert( pNew->iCol==pOld->iCol ); 519 for(i=pNew->iCol+1; i<nCol; i++){ 520 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 521 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 522 } 523 if( pNew->iHash>pOld->iHash ) return 1; 524 return 0; 525 } 526 #endif 527 528 #ifdef SQLITE_ENABLE_STAT4 529 /* 530 ** Return true if pNew is to be preferred over pOld. 531 ** 532 ** This function assumes that for each argument sample, the contents of 533 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 534 */ 535 static int sampleIsBetter( 536 StatAccum *pAccum, 537 StatSample *pNew, 538 StatSample *pOld 539 ){ 540 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 541 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 542 543 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 544 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 545 546 if( (nEqNew>nEqOld) ) return 1; 547 if( nEqNew==nEqOld ){ 548 if( pNew->iCol<pOld->iCol ) return 1; 549 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 550 } 551 return 0; 552 } 553 554 /* 555 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 556 ** remove the least desirable sample from p->a[] to make room. 557 */ 558 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){ 559 StatSample *pSample = 0; 560 int i; 561 562 assert( IsStat4 || nEqZero==0 ); 563 564 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0 565 ** values in the anEq[] array of any sample in StatAccum.a[]. In 566 ** other words, if nMaxEqZero is n, then it is guaranteed that there 567 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */ 568 if( nEqZero>p->nMaxEqZero ){ 569 p->nMaxEqZero = nEqZero; 570 } 571 if( pNew->isPSample==0 ){ 572 StatSample *pUpgrade = 0; 573 assert( pNew->anEq[pNew->iCol]>0 ); 574 575 /* This sample is being added because the prefix that ends in column 576 ** iCol occurs many times in the table. However, if we have already 577 ** added a sample that shares this prefix, there is no need to add 578 ** this one. Instead, upgrade the priority of the highest priority 579 ** existing sample that shares this prefix. */ 580 for(i=p->nSample-1; i>=0; i--){ 581 StatSample *pOld = &p->a[i]; 582 if( pOld->anEq[pNew->iCol]==0 ){ 583 if( pOld->isPSample ) return; 584 assert( pOld->iCol>pNew->iCol ); 585 assert( sampleIsBetter(p, pNew, pOld) ); 586 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 587 pUpgrade = pOld; 588 } 589 } 590 } 591 if( pUpgrade ){ 592 pUpgrade->iCol = pNew->iCol; 593 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 594 goto find_new_min; 595 } 596 } 597 598 /* If necessary, remove sample iMin to make room for the new sample. */ 599 if( p->nSample>=p->mxSample ){ 600 StatSample *pMin = &p->a[p->iMin]; 601 tRowcnt *anEq = pMin->anEq; 602 tRowcnt *anLt = pMin->anLt; 603 tRowcnt *anDLt = pMin->anDLt; 604 sampleClear(p->db, pMin); 605 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 606 pSample = &p->a[p->nSample-1]; 607 pSample->nRowid = 0; 608 pSample->anEq = anEq; 609 pSample->anDLt = anDLt; 610 pSample->anLt = anLt; 611 p->nSample = p->mxSample-1; 612 } 613 614 /* The "rows less-than" for the rowid column must be greater than that 615 ** for the last sample in the p->a[] array. Otherwise, the samples would 616 ** be out of order. */ 617 assert( p->nSample==0 618 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 619 620 /* Insert the new sample */ 621 pSample = &p->a[p->nSample]; 622 sampleCopy(p, pSample, pNew); 623 p->nSample++; 624 625 /* Zero the first nEqZero entries in the anEq[] array. */ 626 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 627 628 find_new_min: 629 if( p->nSample>=p->mxSample ){ 630 int iMin = -1; 631 for(i=0; i<p->mxSample; i++){ 632 if( p->a[i].isPSample ) continue; 633 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 634 iMin = i; 635 } 636 } 637 assert( iMin>=0 ); 638 p->iMin = iMin; 639 } 640 } 641 #endif /* SQLITE_ENABLE_STAT4 */ 642 643 #ifdef SQLITE_ENABLE_STAT4 644 /* 645 ** Field iChng of the index being scanned has changed. So at this point 646 ** p->current contains a sample that reflects the previous row of the 647 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 648 ** correct at this point. 649 */ 650 static void samplePushPrevious(StatAccum *p, int iChng){ 651 int i; 652 653 /* Check if any samples from the aBest[] array should be pushed 654 ** into IndexSample.a[] at this point. */ 655 for(i=(p->nCol-2); i>=iChng; i--){ 656 StatSample *pBest = &p->aBest[i]; 657 pBest->anEq[i] = p->current.anEq[i]; 658 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 659 sampleInsert(p, pBest, i); 660 } 661 } 662 663 /* Check that no sample contains an anEq[] entry with an index of 664 ** p->nMaxEqZero or greater set to zero. */ 665 for(i=p->nSample-1; i>=0; i--){ 666 int j; 667 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 ); 668 } 669 670 /* Update the anEq[] fields of any samples already collected. */ 671 if( iChng<p->nMaxEqZero ){ 672 for(i=p->nSample-1; i>=0; i--){ 673 int j; 674 for(j=iChng; j<p->nCol; j++){ 675 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 676 } 677 } 678 p->nMaxEqZero = iChng; 679 } 680 } 681 #endif /* SQLITE_ENABLE_STAT4 */ 682 683 /* 684 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 685 ** Arguments: 686 ** 687 ** P Pointer to the StatAccum object created by stat_init() 688 ** C Index of left-most column to differ from previous row 689 ** R Rowid for the current row. Might be a key record for 690 ** WITHOUT ROWID tables. 691 ** 692 ** The purpose of this routine is to collect statistical data and/or 693 ** samples from the index being analyzed into the StatAccum object. 694 ** The stat_get() SQL function will be used afterwards to 695 ** retrieve the information gathered. 696 ** 697 ** This SQL function usually returns NULL, but might return an integer 698 ** if it wants the byte-code to do special processing. 699 ** 700 ** The R parameter is only used for STAT4 701 */ 702 static void statPush( 703 sqlite3_context *context, 704 int argc, 705 sqlite3_value **argv 706 ){ 707 int i; 708 709 /* The three function arguments */ 710 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 711 int iChng = sqlite3_value_int(argv[1]); 712 713 UNUSED_PARAMETER( argc ); 714 UNUSED_PARAMETER( context ); 715 assert( p->nCol>0 ); 716 assert( iChng<p->nCol ); 717 718 if( p->nRow==0 ){ 719 /* This is the first call to this function. Do initialization. */ 720 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 721 }else{ 722 /* Second and subsequent calls get processed here */ 723 #ifdef SQLITE_ENABLE_STAT4 724 if( p->mxSample ) samplePushPrevious(p, iChng); 725 #endif 726 727 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 728 ** to the current row of the index. */ 729 for(i=0; i<iChng; i++){ 730 p->current.anEq[i]++; 731 } 732 for(i=iChng; i<p->nCol; i++){ 733 p->current.anDLt[i]++; 734 #ifdef SQLITE_ENABLE_STAT4 735 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i]; 736 #endif 737 p->current.anEq[i] = 1; 738 } 739 } 740 741 p->nRow++; 742 #ifdef SQLITE_ENABLE_STAT4 743 if( p->mxSample ){ 744 tRowcnt nLt; 745 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 746 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 747 }else{ 748 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 749 sqlite3_value_blob(argv[2])); 750 } 751 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 752 753 nLt = p->current.anLt[p->nCol-1]; 754 /* Check if this is to be a periodic sample. If so, add it. */ 755 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 756 p->current.isPSample = 1; 757 p->current.iCol = 0; 758 sampleInsert(p, &p->current, p->nCol-1); 759 p->current.isPSample = 0; 760 } 761 762 /* Update the aBest[] array. */ 763 for(i=0; i<(p->nCol-1); i++){ 764 p->current.iCol = i; 765 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 766 sampleCopy(p, &p->aBest[i], &p->current); 767 } 768 } 769 }else 770 #endif 771 if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){ 772 p->nSkipAhead++; 773 sqlite3_result_int(context, p->current.anDLt[0]>0); 774 } 775 } 776 777 static const FuncDef statPushFuncdef = { 778 2+IsStat4, /* nArg */ 779 SQLITE_UTF8, /* funcFlags */ 780 0, /* pUserData */ 781 0, /* pNext */ 782 statPush, /* xSFunc */ 783 0, /* xFinalize */ 784 0, 0, /* xValue, xInverse */ 785 "stat_push", /* zName */ 786 {0} 787 }; 788 789 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 790 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 791 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 792 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 793 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 794 795 /* 796 ** Implementation of the stat_get(P,J) SQL function. This routine is 797 ** used to query statistical information that has been gathered into 798 ** the StatAccum object by prior calls to stat_push(). The P parameter 799 ** has type BLOB but it is really just a pointer to the StatAccum object. 800 ** The content to returned is determined by the parameter J 801 ** which is one of the STAT_GET_xxxx values defined above. 802 ** 803 ** The stat_get(P,J) function is not available to generic SQL. It is 804 ** inserted as part of a manually constructed bytecode program. (See 805 ** the callStatGet() routine below.) It is guaranteed that the P 806 ** parameter will always be a pointer to a StatAccum object, never a 807 ** NULL. 808 ** 809 ** If STAT4 is not enabled, then J is always 810 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 811 ** a one-parameter function, stat_get(P), that always returns the 812 ** stat1 table entry information. 813 */ 814 static void statGet( 815 sqlite3_context *context, 816 int argc, 817 sqlite3_value **argv 818 ){ 819 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]); 820 #ifdef SQLITE_ENABLE_STAT4 821 /* STAT4 has a parameter on this routine. */ 822 int eCall = sqlite3_value_int(argv[1]); 823 assert( argc==2 ); 824 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 825 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 826 || eCall==STAT_GET_NDLT 827 ); 828 assert( eCall==STAT_GET_STAT1 || p->mxSample ); 829 if( eCall==STAT_GET_STAT1 ) 830 #else 831 assert( argc==1 ); 832 #endif 833 { 834 /* Return the value to store in the "stat" column of the sqlite_stat1 835 ** table for this index. 836 ** 837 ** The value is a string composed of a list of integers describing 838 ** the index. The first integer in the list is the total number of 839 ** entries in the index. There is one additional integer in the list 840 ** for each indexed column. This additional integer is an estimate of 841 ** the number of rows matched by a equality query on the index using 842 ** a key with the corresponding number of fields. In other words, 843 ** if the index is on columns (a,b) and the sqlite_stat1 value is 844 ** "100 10 2", then SQLite estimates that: 845 ** 846 ** * the index contains 100 rows, 847 ** * "WHERE a=?" matches 10 rows, and 848 ** * "WHERE a=? AND b=?" matches 2 rows. 849 ** 850 ** If D is the count of distinct values and K is the total number of 851 ** rows, then each estimate is computed as: 852 ** 853 ** I = (K+D-1)/D 854 */ 855 char *z; 856 int i; 857 858 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 859 if( zRet==0 ){ 860 sqlite3_result_error_nomem(context); 861 return; 862 } 863 864 sqlite3_snprintf(24, zRet, "%llu", 865 p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow); 866 z = zRet + sqlite3Strlen30(zRet); 867 for(i=0; i<p->nKeyCol; i++){ 868 u64 nDistinct = p->current.anDLt[i] + 1; 869 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 870 sqlite3_snprintf(24, z, " %llu", iVal); 871 z += sqlite3Strlen30(z); 872 assert( p->current.anEq[i] ); 873 } 874 assert( z[0]=='\0' && z>zRet ); 875 876 sqlite3_result_text(context, zRet, -1, sqlite3_free); 877 } 878 #ifdef SQLITE_ENABLE_STAT4 879 else if( eCall==STAT_GET_ROWID ){ 880 if( p->iGet<0 ){ 881 samplePushPrevious(p, 0); 882 p->iGet = 0; 883 } 884 if( p->iGet<p->nSample ){ 885 StatSample *pS = p->a + p->iGet; 886 if( pS->nRowid==0 ){ 887 sqlite3_result_int64(context, pS->u.iRowid); 888 }else{ 889 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 890 SQLITE_TRANSIENT); 891 } 892 } 893 }else{ 894 tRowcnt *aCnt = 0; 895 896 assert( p->iGet<p->nSample ); 897 switch( eCall ){ 898 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 899 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 900 default: { 901 aCnt = p->a[p->iGet].anDLt; 902 p->iGet++; 903 break; 904 } 905 } 906 907 { 908 char *zRet = sqlite3MallocZero(p->nCol * 25); 909 if( zRet==0 ){ 910 sqlite3_result_error_nomem(context); 911 }else{ 912 int i; 913 char *z = zRet; 914 for(i=0; i<p->nCol; i++){ 915 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 916 z += sqlite3Strlen30(z); 917 } 918 assert( z[0]=='\0' && z>zRet ); 919 z[-1] = '\0'; 920 sqlite3_result_text(context, zRet, -1, sqlite3_free); 921 } 922 } 923 } 924 #endif /* SQLITE_ENABLE_STAT4 */ 925 #ifndef SQLITE_DEBUG 926 UNUSED_PARAMETER( argc ); 927 #endif 928 } 929 static const FuncDef statGetFuncdef = { 930 1+IsStat4, /* nArg */ 931 SQLITE_UTF8, /* funcFlags */ 932 0, /* pUserData */ 933 0, /* pNext */ 934 statGet, /* xSFunc */ 935 0, /* xFinalize */ 936 0, 0, /* xValue, xInverse */ 937 "stat_get", /* zName */ 938 {0} 939 }; 940 941 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){ 942 #ifdef SQLITE_ENABLE_STAT4 943 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1); 944 #elif SQLITE_DEBUG 945 assert( iParam==STAT_GET_STAT1 ); 946 #else 947 UNUSED_PARAMETER( iParam ); 948 #endif 949 assert( regOut!=regStat && regOut!=regStat+1 ); 950 sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4, 951 &statGetFuncdef, 0); 952 } 953 954 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 955 /* Add a comment to the most recent VDBE opcode that is the name 956 ** of the k-th column of the pIdx index. 957 */ 958 static void analyzeVdbeCommentIndexWithColumnName( 959 Vdbe *v, /* Prepared statement under construction */ 960 Index *pIdx, /* Index whose column is being loaded */ 961 int k /* Which column index */ 962 ){ 963 int i; /* Index of column in the table */ 964 assert( k>=0 && k<pIdx->nColumn ); 965 i = pIdx->aiColumn[k]; 966 if( NEVER(i==XN_ROWID) ){ 967 VdbeComment((v,"%s.rowid",pIdx->zName)); 968 }else if( i==XN_EXPR ){ 969 VdbeComment((v,"%s.expr(%d)",pIdx->zName, k)); 970 }else{ 971 VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zName)); 972 } 973 } 974 #else 975 # define analyzeVdbeCommentIndexWithColumnName(a,b,c) 976 #endif /* SQLITE_DEBUG */ 977 978 /* 979 ** Generate code to do an analysis of all indices associated with 980 ** a single table. 981 */ 982 static void analyzeOneTable( 983 Parse *pParse, /* Parser context */ 984 Table *pTab, /* Table whose indices are to be analyzed */ 985 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 986 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 987 int iMem, /* Available memory locations begin here */ 988 int iTab /* Next available cursor */ 989 ){ 990 sqlite3 *db = pParse->db; /* Database handle */ 991 Index *pIdx; /* An index to being analyzed */ 992 int iIdxCur; /* Cursor open on index being analyzed */ 993 int iTabCur; /* Table cursor */ 994 Vdbe *v; /* The virtual machine being built up */ 995 int i; /* Loop counter */ 996 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 997 int iDb; /* Index of database containing pTab */ 998 u8 needTableCnt = 1; /* True to count the table */ 999 int regNewRowid = iMem++; /* Rowid for the inserted record */ 1000 int regStat = iMem++; /* Register to hold StatAccum object */ 1001 int regChng = iMem++; /* Index of changed index field */ 1002 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 1003 int regTemp = iMem++; /* Temporary use register */ 1004 int regTemp2 = iMem++; /* Second temporary use register */ 1005 int regTabname = iMem++; /* Register containing table name */ 1006 int regIdxname = iMem++; /* Register containing index name */ 1007 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 1008 int regPrev = iMem; /* MUST BE LAST (see below) */ 1009 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1010 Table *pStat1 = 0; 1011 #endif 1012 1013 pParse->nMem = MAX(pParse->nMem, iMem); 1014 v = sqlite3GetVdbe(pParse); 1015 if( v==0 || NEVER(pTab==0) ){ 1016 return; 1017 } 1018 if( pTab->tnum==0 ){ 1019 /* Do not gather statistics on views or virtual tables */ 1020 return; 1021 } 1022 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){ 1023 /* Do not gather statistics on system tables */ 1024 return; 1025 } 1026 assert( sqlite3BtreeHoldsAllMutexes(db) ); 1027 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 1028 assert( iDb>=0 ); 1029 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1030 #ifndef SQLITE_OMIT_AUTHORIZATION 1031 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 1032 db->aDb[iDb].zDbSName ) ){ 1033 return; 1034 } 1035 #endif 1036 1037 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1038 if( db->xPreUpdateCallback ){ 1039 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13); 1040 if( pStat1==0 ) return; 1041 pStat1->zName = (char*)&pStat1[1]; 1042 memcpy(pStat1->zName, "sqlite_stat1", 13); 1043 pStat1->nCol = 3; 1044 pStat1->iPKey = -1; 1045 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB); 1046 } 1047 #endif 1048 1049 /* Establish a read-lock on the table at the shared-cache level. 1050 ** Open a read-only cursor on the table. Also allocate a cursor number 1051 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 1052 ** this time though. */ 1053 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1054 iTabCur = iTab++; 1055 iIdxCur = iTab++; 1056 pParse->nTab = MAX(pParse->nTab, iTab); 1057 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1058 sqlite3VdbeLoadString(v, regTabname, pTab->zName); 1059 1060 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1061 int nCol; /* Number of columns in pIdx. "N" */ 1062 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1063 int addrNextRow; /* Address of "next_row:" */ 1064 const char *zIdxName; /* Name of the index */ 1065 int nColTest; /* Number of columns to test for changes */ 1066 1067 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1068 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1069 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1070 nCol = pIdx->nKeyCol; 1071 zIdxName = pTab->zName; 1072 nColTest = nCol - 1; 1073 }else{ 1074 nCol = pIdx->nColumn; 1075 zIdxName = pIdx->zName; 1076 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; 1077 } 1078 1079 /* Populate the register containing the index name. */ 1080 sqlite3VdbeLoadString(v, regIdxname, zIdxName); 1081 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1082 1083 /* 1084 ** Pseudo-code for loop that calls stat_push(): 1085 ** 1086 ** Rewind csr 1087 ** if eof(csr) goto end_of_scan; 1088 ** regChng = 0 1089 ** goto chng_addr_0; 1090 ** 1091 ** next_row: 1092 ** regChng = 0 1093 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1094 ** regChng = 1 1095 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1096 ** ... 1097 ** regChng = N 1098 ** goto chng_addr_N 1099 ** 1100 ** chng_addr_0: 1101 ** regPrev(0) = idx(0) 1102 ** chng_addr_1: 1103 ** regPrev(1) = idx(1) 1104 ** ... 1105 ** 1106 ** endDistinctTest: 1107 ** regRowid = idx(rowid) 1108 ** stat_push(P, regChng, regRowid) 1109 ** Next csr 1110 ** if !eof(csr) goto next_row; 1111 ** 1112 ** end_of_scan: 1113 */ 1114 1115 /* Make sure there are enough memory cells allocated to accommodate 1116 ** the regPrev array and a trailing rowid (the rowid slot is required 1117 ** when building a record to insert into the sample column of 1118 ** the sqlite_stat4 table. */ 1119 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); 1120 1121 /* Open a read-only cursor on the index being analyzed. */ 1122 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1123 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1124 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1125 VdbeComment((v, "%s", pIdx->zName)); 1126 1127 /* Invoke the stat_init() function. The arguments are: 1128 ** 1129 ** (1) the number of columns in the index including the rowid 1130 ** (or for a WITHOUT ROWID table, the number of PK columns), 1131 ** (2) the number of columns in the key without the rowid/pk 1132 ** (3) estimated number of rows in the index, 1133 */ 1134 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1); 1135 assert( regRowid==regStat+2 ); 1136 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid); 1137 #ifdef SQLITE_ENABLE_STAT4 1138 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1139 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp); 1140 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1141 VdbeCoverage(v); 1142 }else 1143 #endif 1144 { 1145 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1146 VdbeCoverage(v); 1147 sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1); 1148 } 1149 assert( regTemp2==regStat+4 ); 1150 sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2); 1151 sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4, 1152 &statInitFuncdef, 0); 1153 1154 /* Implementation of the following: 1155 ** 1156 ** Rewind csr 1157 ** if eof(csr) goto end_of_scan; 1158 ** regChng = 0 1159 ** goto next_push_0; 1160 ** 1161 */ 1162 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1163 addrNextRow = sqlite3VdbeCurrentAddr(v); 1164 1165 if( nColTest>0 ){ 1166 int endDistinctTest = sqlite3VdbeMakeLabel(pParse); 1167 int *aGotoChng; /* Array of jump instruction addresses */ 1168 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest); 1169 if( aGotoChng==0 ) continue; 1170 1171 /* 1172 ** next_row: 1173 ** regChng = 0 1174 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1175 ** regChng = 1 1176 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1177 ** ... 1178 ** regChng = N 1179 ** goto endDistinctTest 1180 */ 1181 sqlite3VdbeAddOp0(v, OP_Goto); 1182 addrNextRow = sqlite3VdbeCurrentAddr(v); 1183 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ 1184 /* For a single-column UNIQUE index, once we have found a non-NULL 1185 ** row, we know that all the rest will be distinct, so skip 1186 ** subsequent distinctness tests. */ 1187 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); 1188 VdbeCoverage(v); 1189 } 1190 for(i=0; i<nColTest; i++){ 1191 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1192 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1193 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1194 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1195 aGotoChng[i] = 1196 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1197 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1198 VdbeCoverage(v); 1199 } 1200 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); 1201 sqlite3VdbeGoto(v, endDistinctTest); 1202 1203 1204 /* 1205 ** chng_addr_0: 1206 ** regPrev(0) = idx(0) 1207 ** chng_addr_1: 1208 ** regPrev(1) = idx(1) 1209 ** ... 1210 */ 1211 sqlite3VdbeJumpHere(v, addrNextRow-1); 1212 for(i=0; i<nColTest; i++){ 1213 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1214 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1215 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i); 1216 } 1217 sqlite3VdbeResolveLabel(v, endDistinctTest); 1218 sqlite3DbFree(db, aGotoChng); 1219 } 1220 1221 /* 1222 ** chng_addr_N: 1223 ** regRowid = idx(rowid) // STAT4 only 1224 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only 1225 ** Next csr 1226 ** if !eof(csr) goto next_row; 1227 */ 1228 #ifdef SQLITE_ENABLE_STAT4 1229 if( OptimizationEnabled(db, SQLITE_Stat4) ){ 1230 assert( regRowid==(regStat+2) ); 1231 if( HasRowid(pTab) ){ 1232 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1233 }else{ 1234 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1235 int j, k, regKey; 1236 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1237 for(j=0; j<pPk->nKeyCol; j++){ 1238 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]); 1239 assert( k>=0 && k<pIdx->nColumn ); 1240 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1241 analyzeVdbeCommentIndexWithColumnName(v,pIdx,k); 1242 } 1243 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1244 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1245 } 1246 } 1247 #endif 1248 assert( regChng==(regStat+1) ); 1249 { 1250 sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4, 1251 &statPushFuncdef, 0); 1252 if( db->nAnalysisLimit ){ 1253 int j1, j2, j3; 1254 j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v); 1255 j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v); 1256 j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1); 1257 VdbeCoverage(v); 1258 sqlite3VdbeJumpHere(v, j1); 1259 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1260 sqlite3VdbeJumpHere(v, j2); 1261 sqlite3VdbeJumpHere(v, j3); 1262 }else{ 1263 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1264 } 1265 } 1266 1267 /* Add the entry to the stat1 table. */ 1268 callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1); 1269 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1270 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1271 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1272 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1273 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1274 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1275 #endif 1276 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1277 1278 /* Add the entries to the stat4 table. */ 1279 #ifdef SQLITE_ENABLE_STAT4 1280 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){ 1281 int regEq = regStat1; 1282 int regLt = regStat1+1; 1283 int regDLt = regStat1+2; 1284 int regSample = regStat1+3; 1285 int regCol = regStat1+4; 1286 int regSampleRowid = regCol + nCol; 1287 int addrNext; 1288 int addrIsNull; 1289 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1290 1291 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1292 1293 addrNext = sqlite3VdbeCurrentAddr(v); 1294 callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid); 1295 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1296 VdbeCoverage(v); 1297 callStatGet(pParse, regStat, STAT_GET_NEQ, regEq); 1298 callStatGet(pParse, regStat, STAT_GET_NLT, regLt); 1299 callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt); 1300 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1301 VdbeCoverage(v); 1302 for(i=0; i<nCol; i++){ 1303 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i); 1304 } 1305 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1306 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1307 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1308 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1309 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1310 sqlite3VdbeJumpHere(v, addrIsNull); 1311 } 1312 #endif /* SQLITE_ENABLE_STAT4 */ 1313 1314 /* End of analysis */ 1315 sqlite3VdbeJumpHere(v, addrRewind); 1316 } 1317 1318 1319 /* Create a single sqlite_stat1 entry containing NULL as the index 1320 ** name and the row count as the content. 1321 */ 1322 if( pOnlyIdx==0 && needTableCnt ){ 1323 VdbeComment((v, "%s", pTab->zName)); 1324 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1325 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1326 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1327 assert( "BBB"[0]==SQLITE_AFF_TEXT ); 1328 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); 1329 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1330 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1331 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1332 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 1333 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE); 1334 #endif 1335 sqlite3VdbeJumpHere(v, jZeroRows); 1336 } 1337 } 1338 1339 1340 /* 1341 ** Generate code that will cause the most recent index analysis to 1342 ** be loaded into internal hash tables where is can be used. 1343 */ 1344 static void loadAnalysis(Parse *pParse, int iDb){ 1345 Vdbe *v = sqlite3GetVdbe(pParse); 1346 if( v ){ 1347 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1348 } 1349 } 1350 1351 /* 1352 ** Generate code that will do an analysis of an entire database 1353 */ 1354 static void analyzeDatabase(Parse *pParse, int iDb){ 1355 sqlite3 *db = pParse->db; 1356 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1357 HashElem *k; 1358 int iStatCur; 1359 int iMem; 1360 int iTab; 1361 1362 sqlite3BeginWriteOperation(pParse, 0, iDb); 1363 iStatCur = pParse->nTab; 1364 pParse->nTab += 3; 1365 openStatTable(pParse, iDb, iStatCur, 0, 0); 1366 iMem = pParse->nMem+1; 1367 iTab = pParse->nTab; 1368 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1369 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1370 Table *pTab = (Table*)sqliteHashData(k); 1371 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1372 } 1373 loadAnalysis(pParse, iDb); 1374 } 1375 1376 /* 1377 ** Generate code that will do an analysis of a single table in 1378 ** a database. If pOnlyIdx is not NULL then it is a single index 1379 ** in pTab that should be analyzed. 1380 */ 1381 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1382 int iDb; 1383 int iStatCur; 1384 1385 assert( pTab!=0 ); 1386 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1387 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1388 sqlite3BeginWriteOperation(pParse, 0, iDb); 1389 iStatCur = pParse->nTab; 1390 pParse->nTab += 3; 1391 if( pOnlyIdx ){ 1392 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1393 }else{ 1394 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1395 } 1396 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1397 loadAnalysis(pParse, iDb); 1398 } 1399 1400 /* 1401 ** Generate code for the ANALYZE command. The parser calls this routine 1402 ** when it recognizes an ANALYZE command. 1403 ** 1404 ** ANALYZE -- 1 1405 ** ANALYZE <database> -- 2 1406 ** ANALYZE ?<database>.?<tablename> -- 3 1407 ** 1408 ** Form 1 causes all indices in all attached databases to be analyzed. 1409 ** Form 2 analyzes all indices the single database named. 1410 ** Form 3 analyzes all indices associated with the named table. 1411 */ 1412 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1413 sqlite3 *db = pParse->db; 1414 int iDb; 1415 int i; 1416 char *z, *zDb; 1417 Table *pTab; 1418 Index *pIdx; 1419 Token *pTableName; 1420 Vdbe *v; 1421 1422 /* Read the database schema. If an error occurs, leave an error message 1423 ** and code in pParse and return NULL. */ 1424 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1425 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1426 return; 1427 } 1428 1429 assert( pName2!=0 || pName1==0 ); 1430 if( pName1==0 ){ 1431 /* Form 1: Analyze everything */ 1432 for(i=0; i<db->nDb; i++){ 1433 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1434 analyzeDatabase(pParse, i); 1435 } 1436 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){ 1437 /* Analyze the schema named as the argument */ 1438 analyzeDatabase(pParse, iDb); 1439 }else{ 1440 /* Form 3: Analyze the table or index named as an argument */ 1441 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1442 if( iDb>=0 ){ 1443 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0; 1444 z = sqlite3NameFromToken(db, pTableName); 1445 if( z ){ 1446 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1447 analyzeTable(pParse, pIdx->pTable, pIdx); 1448 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1449 analyzeTable(pParse, pTab, 0); 1450 } 1451 sqlite3DbFree(db, z); 1452 } 1453 } 1454 } 1455 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){ 1456 sqlite3VdbeAddOp0(v, OP_Expire); 1457 } 1458 } 1459 1460 /* 1461 ** Used to pass information from the analyzer reader through to the 1462 ** callback routine. 1463 */ 1464 typedef struct analysisInfo analysisInfo; 1465 struct analysisInfo { 1466 sqlite3 *db; 1467 const char *zDatabase; 1468 }; 1469 1470 /* 1471 ** The first argument points to a nul-terminated string containing a 1472 ** list of space separated integers. Read the first nOut of these into 1473 ** the array aOut[]. 1474 */ 1475 static void decodeIntArray( 1476 char *zIntArray, /* String containing int array to decode */ 1477 int nOut, /* Number of slots in aOut[] */ 1478 tRowcnt *aOut, /* Store integers here */ 1479 LogEst *aLog, /* Or, if aOut==0, here */ 1480 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1481 ){ 1482 char *z = zIntArray; 1483 int c; 1484 int i; 1485 tRowcnt v; 1486 1487 #ifdef SQLITE_ENABLE_STAT4 1488 if( z==0 ) z = ""; 1489 #else 1490 assert( z!=0 ); 1491 #endif 1492 for(i=0; *z && i<nOut; i++){ 1493 v = 0; 1494 while( (c=z[0])>='0' && c<='9' ){ 1495 v = v*10 + c - '0'; 1496 z++; 1497 } 1498 #ifdef SQLITE_ENABLE_STAT4 1499 if( aOut ) aOut[i] = v; 1500 if( aLog ) aLog[i] = sqlite3LogEst(v); 1501 #else 1502 assert( aOut==0 ); 1503 UNUSED_PARAMETER(aOut); 1504 assert( aLog!=0 ); 1505 aLog[i] = sqlite3LogEst(v); 1506 #endif 1507 if( *z==' ' ) z++; 1508 } 1509 #ifndef SQLITE_ENABLE_STAT4 1510 assert( pIndex!=0 ); { 1511 #else 1512 if( pIndex ){ 1513 #endif 1514 pIndex->bUnordered = 0; 1515 pIndex->noSkipScan = 0; 1516 while( z[0] ){ 1517 if( sqlite3_strglob("unordered*", z)==0 ){ 1518 pIndex->bUnordered = 1; 1519 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1520 int sz = sqlite3Atoi(z+3); 1521 if( sz<2 ) sz = 2; 1522 pIndex->szIdxRow = sqlite3LogEst(sz); 1523 }else if( sqlite3_strglob("noskipscan*", z)==0 ){ 1524 pIndex->noSkipScan = 1; 1525 } 1526 #ifdef SQLITE_ENABLE_COSTMULT 1527 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ 1528 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); 1529 } 1530 #endif 1531 while( z[0]!=0 && z[0]!=' ' ) z++; 1532 while( z[0]==' ' ) z++; 1533 } 1534 } 1535 } 1536 1537 /* 1538 ** This callback is invoked once for each index when reading the 1539 ** sqlite_stat1 table. 1540 ** 1541 ** argv[0] = name of the table 1542 ** argv[1] = name of the index (might be NULL) 1543 ** argv[2] = results of analysis - on integer for each column 1544 ** 1545 ** Entries for which argv[1]==NULL simply record the number of rows in 1546 ** the table. 1547 */ 1548 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1549 analysisInfo *pInfo = (analysisInfo*)pData; 1550 Index *pIndex; 1551 Table *pTable; 1552 const char *z; 1553 1554 assert( argc==3 ); 1555 UNUSED_PARAMETER2(NotUsed, argc); 1556 1557 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1558 return 0; 1559 } 1560 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1561 if( pTable==0 ){ 1562 return 0; 1563 } 1564 if( argv[1]==0 ){ 1565 pIndex = 0; 1566 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1567 pIndex = sqlite3PrimaryKeyIndex(pTable); 1568 }else{ 1569 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1570 } 1571 z = argv[2]; 1572 1573 if( pIndex ){ 1574 tRowcnt *aiRowEst = 0; 1575 int nCol = pIndex->nKeyCol+1; 1576 #ifdef SQLITE_ENABLE_STAT4 1577 /* Index.aiRowEst may already be set here if there are duplicate 1578 ** sqlite_stat1 entries for this index. In that case just clobber 1579 ** the old data with the new instead of allocating a new array. */ 1580 if( pIndex->aiRowEst==0 ){ 1581 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol); 1582 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db); 1583 } 1584 aiRowEst = pIndex->aiRowEst; 1585 #endif 1586 pIndex->bUnordered = 0; 1587 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); 1588 pIndex->hasStat1 = 1; 1589 if( pIndex->pPartIdxWhere==0 ){ 1590 pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1591 pTable->tabFlags |= TF_HasStat1; 1592 } 1593 }else{ 1594 Index fakeIdx; 1595 fakeIdx.szIdxRow = pTable->szTabRow; 1596 #ifdef SQLITE_ENABLE_COSTMULT 1597 fakeIdx.pTable = pTable; 1598 #endif 1599 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1600 pTable->szTabRow = fakeIdx.szIdxRow; 1601 pTable->tabFlags |= TF_HasStat1; 1602 } 1603 1604 return 0; 1605 } 1606 1607 /* 1608 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1609 ** and its contents. 1610 */ 1611 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1612 #ifdef SQLITE_ENABLE_STAT4 1613 if( pIdx->aSample ){ 1614 int j; 1615 for(j=0; j<pIdx->nSample; j++){ 1616 IndexSample *p = &pIdx->aSample[j]; 1617 sqlite3DbFree(db, p->p); 1618 } 1619 sqlite3DbFree(db, pIdx->aSample); 1620 } 1621 if( db && db->pnBytesFreed==0 ){ 1622 pIdx->nSample = 0; 1623 pIdx->aSample = 0; 1624 } 1625 #else 1626 UNUSED_PARAMETER(db); 1627 UNUSED_PARAMETER(pIdx); 1628 #endif /* SQLITE_ENABLE_STAT4 */ 1629 } 1630 1631 #ifdef SQLITE_ENABLE_STAT4 1632 /* 1633 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1634 ** stored in pIdx->aSample[]. 1635 */ 1636 static void initAvgEq(Index *pIdx){ 1637 if( pIdx ){ 1638 IndexSample *aSample = pIdx->aSample; 1639 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1640 int iCol; 1641 int nCol = 1; 1642 if( pIdx->nSampleCol>1 ){ 1643 /* If this is stat4 data, then calculate aAvgEq[] values for all 1644 ** sample columns except the last. The last is always set to 1, as 1645 ** once the trailing PK fields are considered all index keys are 1646 ** unique. */ 1647 nCol = pIdx->nSampleCol-1; 1648 pIdx->aAvgEq[nCol] = 1; 1649 } 1650 for(iCol=0; iCol<nCol; iCol++){ 1651 int nSample = pIdx->nSample; 1652 int i; /* Used to iterate through samples */ 1653 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1654 tRowcnt avgEq = 0; 1655 tRowcnt nRow; /* Number of rows in index */ 1656 i64 nSum100 = 0; /* Number of terms contributing to sumEq */ 1657 i64 nDist100; /* Number of distinct values in index */ 1658 1659 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ 1660 nRow = pFinal->anLt[iCol]; 1661 nDist100 = (i64)100 * pFinal->anDLt[iCol]; 1662 nSample--; 1663 }else{ 1664 nRow = pIdx->aiRowEst[0]; 1665 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; 1666 } 1667 pIdx->nRowEst0 = nRow; 1668 1669 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1670 ** occur in the stat4 table for this index. Set sumEq to the sum of 1671 ** the nEq values for column iCol for the same set (adding the value 1672 ** only once where there exist duplicate prefixes). */ 1673 for(i=0; i<nSample; i++){ 1674 if( i==(pIdx->nSample-1) 1675 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 1676 ){ 1677 sumEq += aSample[i].anEq[iCol]; 1678 nSum100 += 100; 1679 } 1680 } 1681 1682 if( nDist100>nSum100 && sumEq<nRow ){ 1683 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); 1684 } 1685 if( avgEq==0 ) avgEq = 1; 1686 pIdx->aAvgEq[iCol] = avgEq; 1687 } 1688 } 1689 } 1690 1691 /* 1692 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1693 ** is supplied instead, find the PRIMARY KEY index for that table. 1694 */ 1695 static Index *findIndexOrPrimaryKey( 1696 sqlite3 *db, 1697 const char *zName, 1698 const char *zDb 1699 ){ 1700 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1701 if( pIdx==0 ){ 1702 Table *pTab = sqlite3FindTable(db, zName, zDb); 1703 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1704 } 1705 return pIdx; 1706 } 1707 1708 /* 1709 ** Load the content from either the sqlite_stat4 1710 ** into the relevant Index.aSample[] arrays. 1711 ** 1712 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1713 ** data equivalent to the following: 1714 ** 1715 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1716 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1717 ** 1718 ** where %Q is replaced with the database name before the SQL is executed. 1719 */ 1720 static int loadStatTbl( 1721 sqlite3 *db, /* Database handle */ 1722 const char *zSql1, /* SQL statement 1 (see above) */ 1723 const char *zSql2, /* SQL statement 2 (see above) */ 1724 const char *zDb /* Database name (e.g. "main") */ 1725 ){ 1726 int rc; /* Result codes from subroutines */ 1727 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1728 char *zSql; /* Text of the SQL statement */ 1729 Index *pPrevIdx = 0; /* Previous index in the loop */ 1730 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1731 1732 assert( db->lookaside.bDisable ); 1733 zSql = sqlite3MPrintf(db, zSql1, zDb); 1734 if( !zSql ){ 1735 return SQLITE_NOMEM_BKPT; 1736 } 1737 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1738 sqlite3DbFree(db, zSql); 1739 if( rc ) return rc; 1740 1741 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1742 int nIdxCol = 1; /* Number of columns in stat4 records */ 1743 1744 char *zIndex; /* Index name */ 1745 Index *pIdx; /* Pointer to the index object */ 1746 int nSample; /* Number of samples */ 1747 int nByte; /* Bytes of space required */ 1748 int i; /* Bytes of space required */ 1749 tRowcnt *pSpace; 1750 1751 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1752 if( zIndex==0 ) continue; 1753 nSample = sqlite3_column_int(pStmt, 1); 1754 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1755 assert( pIdx==0 || pIdx->nSample==0 ); 1756 if( pIdx==0 ) continue; 1757 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1758 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1759 nIdxCol = pIdx->nKeyCol; 1760 }else{ 1761 nIdxCol = pIdx->nColumn; 1762 } 1763 pIdx->nSampleCol = nIdxCol; 1764 nByte = sizeof(IndexSample) * nSample; 1765 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1766 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1767 1768 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1769 if( pIdx->aSample==0 ){ 1770 sqlite3_finalize(pStmt); 1771 return SQLITE_NOMEM_BKPT; 1772 } 1773 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1774 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1775 for(i=0; i<nSample; i++){ 1776 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1777 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1778 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1779 } 1780 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1781 } 1782 rc = sqlite3_finalize(pStmt); 1783 if( rc ) return rc; 1784 1785 zSql = sqlite3MPrintf(db, zSql2, zDb); 1786 if( !zSql ){ 1787 return SQLITE_NOMEM_BKPT; 1788 } 1789 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1790 sqlite3DbFree(db, zSql); 1791 if( rc ) return rc; 1792 1793 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1794 char *zIndex; /* Index name */ 1795 Index *pIdx; /* Pointer to the index object */ 1796 int nCol = 1; /* Number of columns in index */ 1797 1798 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1799 if( zIndex==0 ) continue; 1800 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1801 if( pIdx==0 ) continue; 1802 /* This next condition is true if data has already been loaded from 1803 ** the sqlite_stat4 table. */ 1804 nCol = pIdx->nSampleCol; 1805 if( pIdx!=pPrevIdx ){ 1806 initAvgEq(pPrevIdx); 1807 pPrevIdx = pIdx; 1808 } 1809 pSample = &pIdx->aSample[pIdx->nSample]; 1810 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1811 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1812 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1813 1814 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1815 ** This is in case the sample record is corrupted. In that case, the 1816 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1817 ** end of the allocated buffer before it realizes it is dealing with 1818 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1819 ** a buffer overread. */ 1820 pSample->n = sqlite3_column_bytes(pStmt, 4); 1821 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1822 if( pSample->p==0 ){ 1823 sqlite3_finalize(pStmt); 1824 return SQLITE_NOMEM_BKPT; 1825 } 1826 if( pSample->n ){ 1827 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1828 } 1829 pIdx->nSample++; 1830 } 1831 rc = sqlite3_finalize(pStmt); 1832 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1833 return rc; 1834 } 1835 1836 /* 1837 ** Load content from the sqlite_stat4 table into 1838 ** the Index.aSample[] arrays of all indices. 1839 */ 1840 static int loadStat4(sqlite3 *db, const char *zDb){ 1841 int rc = SQLITE_OK; /* Result codes from subroutines */ 1842 1843 assert( db->lookaside.bDisable ); 1844 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1845 rc = loadStatTbl(db, 1846 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1847 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1848 zDb 1849 ); 1850 } 1851 return rc; 1852 } 1853 #endif /* SQLITE_ENABLE_STAT4 */ 1854 1855 /* 1856 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The 1857 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1858 ** arrays. The contents of sqlite_stat4 are used to populate the 1859 ** Index.aSample[] arrays. 1860 ** 1861 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1862 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 1863 ** during compilation and the sqlite_stat4 table is present, no data is 1864 ** read from it. 1865 ** 1866 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the 1867 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1868 ** returned. However, in this case, data is read from the sqlite_stat1 1869 ** table (if it is present) before returning. 1870 ** 1871 ** If an OOM error occurs, this function always sets db->mallocFailed. 1872 ** This means if the caller does not care about other errors, the return 1873 ** code may be ignored. 1874 */ 1875 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1876 analysisInfo sInfo; 1877 HashElem *i; 1878 char *zSql; 1879 int rc = SQLITE_OK; 1880 Schema *pSchema = db->aDb[iDb].pSchema; 1881 1882 assert( iDb>=0 && iDb<db->nDb ); 1883 assert( db->aDb[iDb].pBt!=0 ); 1884 1885 /* Clear any prior statistics */ 1886 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1887 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){ 1888 Table *pTab = sqliteHashData(i); 1889 pTab->tabFlags &= ~TF_HasStat1; 1890 } 1891 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1892 Index *pIdx = sqliteHashData(i); 1893 pIdx->hasStat1 = 0; 1894 #ifdef SQLITE_ENABLE_STAT4 1895 sqlite3DeleteIndexSamples(db, pIdx); 1896 pIdx->aSample = 0; 1897 #endif 1898 } 1899 1900 /* Load new statistics out of the sqlite_stat1 table */ 1901 sInfo.db = db; 1902 sInfo.zDatabase = db->aDb[iDb].zDbSName; 1903 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){ 1904 zSql = sqlite3MPrintf(db, 1905 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1906 if( zSql==0 ){ 1907 rc = SQLITE_NOMEM_BKPT; 1908 }else{ 1909 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1910 sqlite3DbFree(db, zSql); 1911 } 1912 } 1913 1914 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */ 1915 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1916 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1917 Index *pIdx = sqliteHashData(i); 1918 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx); 1919 } 1920 1921 /* Load the statistics from the sqlite_stat4 table. */ 1922 #ifdef SQLITE_ENABLE_STAT4 1923 if( rc==SQLITE_OK ){ 1924 DisableLookaside; 1925 rc = loadStat4(db, sInfo.zDatabase); 1926 EnableLookaside; 1927 } 1928 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){ 1929 Index *pIdx = sqliteHashData(i); 1930 sqlite3_free(pIdx->aiRowEst); 1931 pIdx->aiRowEst = 0; 1932 } 1933 #endif 1934 1935 if( rc==SQLITE_NOMEM ){ 1936 sqlite3OomFault(db); 1937 } 1938 return rc; 1939 } 1940 1941 1942 #endif /* SQLITE_OMIT_ANALYZE */ 1943