1 /* 2 ** 2005-07-08 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains code associated with the ANALYZE command. 13 ** 14 ** The ANALYZE command gather statistics about the content of tables 15 ** and indices. These statistics are made available to the query planner 16 ** to help it make better decisions about how to perform queries. 17 ** 18 ** The following system tables are or have been supported: 19 ** 20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat); 21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); 22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); 23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); 24 ** 25 ** Additional tables might be added in future releases of SQLite. 26 ** The sqlite_stat2 table is not created or used unless the SQLite version 27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled 28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. 29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only 30 ** created and used by SQLite versions 3.7.9 and later and with 31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced 33 ** version of sqlite_stat3 and is only available when compiled with 34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is 35 ** not possible to enable both STAT3 and STAT4 at the same time. If they 36 ** are both enabled, then STAT4 takes precedence. 37 ** 38 ** For most applications, sqlite_stat1 provides all the statisics required 39 ** for the query planner to make good choices. 40 ** 41 ** Format of sqlite_stat1: 42 ** 43 ** There is normally one row per index, with the index identified by the 44 ** name in the idx column. The tbl column is the name of the table to 45 ** which the index belongs. In each such row, the stat column will be 46 ** a string consisting of a list of integers. The first integer in this 47 ** list is the number of rows in the index. (This is the same as the 48 ** number of rows in the table, except for partial indices.) The second 49 ** integer is the average number of rows in the index that have the same 50 ** value in the first column of the index. The third integer is the average 51 ** number of rows in the index that have the same value for the first two 52 ** columns. The N-th integer (for N>1) is the average number of rows in 53 ** the index which have the same value for the first N-1 columns. For 54 ** a K-column index, there will be K+1 integers in the stat column. If 55 ** the index is unique, then the last integer will be 1. 56 ** 57 ** The list of integers in the stat column can optionally be followed 58 ** by the keyword "unordered". The "unordered" keyword, if it is present, 59 ** must be separated from the last integer by a single space. If the 60 ** "unordered" keyword is present, then the query planner assumes that 61 ** the index is unordered and will not use the index for a range query. 62 ** 63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat 64 ** column contains a single integer which is the (estimated) number of 65 ** rows in the table identified by sqlite_stat1.tbl. 66 ** 67 ** Format of sqlite_stat2: 68 ** 69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled 70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between 71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information 72 ** about the distribution of keys within an index. The index is identified by 73 ** the "idx" column and the "tbl" column is the name of the table to which 74 ** the index belongs. There are usually 10 rows in the sqlite_stat2 75 ** table for each index. 76 ** 77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 78 ** inclusive are samples of the left-most key value in the index taken at 79 ** evenly spaced points along the index. Let the number of samples be S 80 ** (10 in the standard build) and let C be the number of rows in the index. 81 ** Then the sampled rows are given by: 82 ** 83 ** rownumber = (i*C*2 + C)/(S*2) 84 ** 85 ** For i between 0 and S-1. Conceptually, the index space is divided into 86 ** S uniform buckets and the samples are the middle row from each bucket. 87 ** 88 ** The format for sqlite_stat2 is recorded here for legacy reference. This 89 ** version of SQLite does not support sqlite_stat2. It neither reads nor 90 ** writes the sqlite_stat2 table. This version of SQLite only supports 91 ** sqlite_stat3. 92 ** 93 ** Format for sqlite_stat3: 94 ** 95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the 96 ** sqlite_stat4 format will be described first. Further information 97 ** about sqlite_stat3 follows the sqlite_stat4 description. 98 ** 99 ** Format for sqlite_stat4: 100 ** 101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data 102 ** to aid the query planner in choosing good indices based on the values 103 ** that indexed columns are compared against in the WHERE clauses of 104 ** queries. 105 ** 106 ** The sqlite_stat4 table contains multiple entries for each index. 107 ** The idx column names the index and the tbl column is the table of the 108 ** index. If the idx and tbl columns are the same, then the sample is 109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the 110 ** binary encoding of a key from the index. The nEq column is a 111 ** list of integers. The first integer is the approximate number 112 ** of entries in the index whose left-most column exactly matches 113 ** the left-most column of the sample. The second integer in nEq 114 ** is the approximate number of entries in the index where the 115 ** first two columns match the first two columns of the sample. 116 ** And so forth. nLt is another list of integers that show the approximate 117 ** number of entries that are strictly less than the sample. The first 118 ** integer in nLt contains the number of entries in the index where the 119 ** left-most column is less than the left-most column of the sample. 120 ** The K-th integer in the nLt entry is the number of index entries 121 ** where the first K columns are less than the first K columns of the 122 ** sample. The nDLt column is like nLt except that it contains the 123 ** number of distinct entries in the index that are less than the 124 ** sample. 125 ** 126 ** There can be an arbitrary number of sqlite_stat4 entries per index. 127 ** The ANALYZE command will typically generate sqlite_stat4 tables 128 ** that contain between 10 and 40 samples which are distributed across 129 ** the key space, though not uniformly, and which include samples with 130 ** large nEq values. 131 ** 132 ** Format for sqlite_stat3 redux: 133 ** 134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only 135 ** looks at the left-most column of the index. The sqlite_stat3.sample 136 ** column contains the actual value of the left-most column instead 137 ** of a blob encoding of the complete index key as is found in 138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 139 ** all contain just a single integer which is the same as the first 140 ** integer in the equivalent columns in sqlite_stat4. 141 */ 142 #ifndef SQLITE_OMIT_ANALYZE 143 #include "sqliteInt.h" 144 145 #if defined(SQLITE_ENABLE_STAT4) 146 # define IsStat4 1 147 # define IsStat3 0 148 #elif defined(SQLITE_ENABLE_STAT3) 149 # define IsStat4 0 150 # define IsStat3 1 151 #else 152 # define IsStat4 0 153 # define IsStat3 0 154 # undef SQLITE_STAT4_SAMPLES 155 # define SQLITE_STAT4_SAMPLES 1 156 #endif 157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ 158 159 /* 160 ** This routine generates code that opens the sqlite_statN tables. 161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now 162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when 163 ** appropriate compile-time options are provided. 164 ** 165 ** If the sqlite_statN tables do not previously exist, it is created. 166 ** 167 ** Argument zWhere may be a pointer to a buffer containing a table name, 168 ** or it may be a NULL pointer. If it is not NULL, then all entries in 169 ** the sqlite_statN tables associated with the named table are deleted. 170 ** If zWhere==0, then code is generated to delete all stat table entries. 171 */ 172 static void openStatTable( 173 Parse *pParse, /* Parsing context */ 174 int iDb, /* The database we are looking in */ 175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */ 176 const char *zWhere, /* Delete entries for this table or index */ 177 const char *zWhereType /* Either "tbl" or "idx" */ 178 ){ 179 static const struct { 180 const char *zName; 181 const char *zCols; 182 } aTable[] = { 183 { "sqlite_stat1", "tbl,idx,stat" }, 184 #if defined(SQLITE_ENABLE_STAT4) 185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, 186 { "sqlite_stat3", 0 }, 187 #elif defined(SQLITE_ENABLE_STAT3) 188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, 189 { "sqlite_stat4", 0 }, 190 #else 191 { "sqlite_stat3", 0 }, 192 { "sqlite_stat4", 0 }, 193 #endif 194 }; 195 int i; 196 sqlite3 *db = pParse->db; 197 Db *pDb; 198 Vdbe *v = sqlite3GetVdbe(pParse); 199 int aRoot[ArraySize(aTable)]; 200 u8 aCreateTbl[ArraySize(aTable)]; 201 202 if( v==0 ) return; 203 assert( sqlite3BtreeHoldsAllMutexes(db) ); 204 assert( sqlite3VdbeDb(v)==db ); 205 pDb = &db->aDb[iDb]; 206 207 /* Create new statistic tables if they do not exist, or clear them 208 ** if they do already exist. 209 */ 210 for(i=0; i<ArraySize(aTable); i++){ 211 const char *zTab = aTable[i].zName; 212 Table *pStat; 213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ 214 if( aTable[i].zCols ){ 215 /* The sqlite_statN table does not exist. Create it. Note that a 216 ** side-effect of the CREATE TABLE statement is to leave the rootpage 217 ** of the new table in register pParse->regRoot. This is important 218 ** because the OpenWrite opcode below will be needing it. */ 219 sqlite3NestedParse(pParse, 220 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols 221 ); 222 aRoot[i] = pParse->regRoot; 223 aCreateTbl[i] = OPFLAG_P2ISREG; 224 } 225 }else{ 226 /* The table already exists. If zWhere is not NULL, delete all entries 227 ** associated with the table zWhere. If zWhere is NULL, delete the 228 ** entire contents of the table. */ 229 aRoot[i] = pStat->tnum; 230 aCreateTbl[i] = 0; 231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); 232 if( zWhere ){ 233 sqlite3NestedParse(pParse, 234 "DELETE FROM %Q.%s WHERE %s=%Q", 235 pDb->zName, zTab, zWhereType, zWhere 236 ); 237 }else{ 238 /* The sqlite_stat[134] table already exists. Delete all rows. */ 239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); 240 } 241 } 242 } 243 244 /* Open the sqlite_stat[134] tables for writing. */ 245 for(i=0; aTable[i].zCols; i++){ 246 assert( i<ArraySize(aTable) ); 247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); 248 sqlite3VdbeChangeP5(v, aCreateTbl[i]); 249 VdbeComment((v, aTable[i].zName)); 250 } 251 } 252 253 /* 254 ** Recommended number of samples for sqlite_stat4 255 */ 256 #ifndef SQLITE_STAT4_SAMPLES 257 # define SQLITE_STAT4_SAMPLES 24 258 #endif 259 260 /* 261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() - 262 ** share an instance of the following structure to hold their state 263 ** information. 264 */ 265 typedef struct Stat4Accum Stat4Accum; 266 typedef struct Stat4Sample Stat4Sample; 267 struct Stat4Sample { 268 tRowcnt *anEq; /* sqlite_stat4.nEq */ 269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */ 270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 271 tRowcnt *anLt; /* sqlite_stat4.nLt */ 272 union { 273 i64 iRowid; /* Rowid in main table of the key */ 274 u8 *aRowid; /* Key for WITHOUT ROWID tables */ 275 } u; 276 u32 nRowid; /* Sizeof aRowid[] */ 277 u8 isPSample; /* True if a periodic sample */ 278 int iCol; /* If !isPSample, the reason for inclusion */ 279 u32 iHash; /* Tiebreaker hash */ 280 #endif 281 }; 282 struct Stat4Accum { 283 tRowcnt nRow; /* Number of rows in the entire table */ 284 tRowcnt nPSample; /* How often to do a periodic sample */ 285 int nCol; /* Number of columns in index + pk/rowid */ 286 int nKeyCol; /* Number of index columns w/o the pk/rowid */ 287 int mxSample; /* Maximum number of samples to accumulate */ 288 Stat4Sample current; /* Current row as a Stat4Sample */ 289 u32 iPrn; /* Pseudo-random number used for sampling */ 290 Stat4Sample *aBest; /* Array of nCol best samples */ 291 int iMin; /* Index in a[] of entry with minimum score */ 292 int nSample; /* Current number of samples */ 293 int iGet; /* Index of current sample accessed by stat_get() */ 294 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ 295 sqlite3 *db; /* Database connection, for malloc() */ 296 }; 297 298 /* Reclaim memory used by a Stat4Sample 299 */ 300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 301 static void sampleClear(sqlite3 *db, Stat4Sample *p){ 302 assert( db!=0 ); 303 if( p->nRowid ){ 304 sqlite3DbFree(db, p->u.aRowid); 305 p->nRowid = 0; 306 } 307 } 308 #endif 309 310 /* Initialize the BLOB value of a ROWID 311 */ 312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ 314 assert( db!=0 ); 315 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 316 p->u.aRowid = sqlite3DbMallocRaw(db, n); 317 if( p->u.aRowid ){ 318 p->nRowid = n; 319 memcpy(p->u.aRowid, pData, n); 320 }else{ 321 p->nRowid = 0; 322 } 323 } 324 #endif 325 326 /* Initialize the INTEGER value of a ROWID. 327 */ 328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ 330 assert( db!=0 ); 331 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); 332 p->nRowid = 0; 333 p->u.iRowid = iRowid; 334 } 335 #endif 336 337 338 /* 339 ** Copy the contents of object (*pFrom) into (*pTo). 340 */ 341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ 343 pTo->isPSample = pFrom->isPSample; 344 pTo->iCol = pFrom->iCol; 345 pTo->iHash = pFrom->iHash; 346 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); 347 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); 348 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); 349 if( pFrom->nRowid ){ 350 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); 351 }else{ 352 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); 353 } 354 } 355 #endif 356 357 /* 358 ** Reclaim all memory of a Stat4Accum structure. 359 */ 360 static void stat4Destructor(void *pOld){ 361 Stat4Accum *p = (Stat4Accum*)pOld; 362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 363 int i; 364 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); 365 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); 366 sampleClear(p->db, &p->current); 367 #endif 368 sqlite3DbFree(p->db, p); 369 } 370 371 /* 372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters 373 ** are: 374 ** N: The number of columns in the index including the rowid/pk 375 ** K: The number of columns in the index excluding the rowid/pk 376 ** C: The number of rows in the index 377 ** 378 ** C is only used for STAT3 and STAT4. 379 ** 380 ** For ordinary rowid tables, N==K+1. But for WITHOUT ROWID tables, 381 ** N=K+P where P is the number of columns in the primary key. For the 382 ** covering index that implements the original WITHOUT ROWID table, N==K. 383 ** 384 ** This routine allocates the Stat4Accum object in heap memory. The return 385 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e. 386 ** the size of the blob is sizeof(void*) bytes). 387 */ 388 static void statInit( 389 sqlite3_context *context, 390 int argc, 391 sqlite3_value **argv 392 ){ 393 Stat4Accum *p; 394 int nCol; /* Number of columns in index being sampled */ 395 int nKeyCol; /* Number of key columns */ 396 int nColUp; /* nCol rounded up for alignment */ 397 int n; /* Bytes of space to allocate */ 398 sqlite3 *db; /* Database connection */ 399 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 400 int mxSample = SQLITE_STAT4_SAMPLES; 401 #endif 402 403 /* Decode the three function arguments */ 404 UNUSED_PARAMETER(argc); 405 nCol = sqlite3_value_int(argv[0]); 406 assert( nCol>0 ); 407 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; 408 nKeyCol = sqlite3_value_int(argv[1]); 409 assert( nKeyCol<=nCol ); 410 assert( nKeyCol>0 ); 411 412 /* Allocate the space required for the Stat4Accum object */ 413 n = sizeof(*p) 414 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ 415 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ 416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 417 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ 418 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ 419 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) 420 #endif 421 ; 422 db = sqlite3_context_db_handle(context); 423 p = sqlite3DbMallocZero(db, n); 424 if( p==0 ){ 425 sqlite3_result_error_nomem(context); 426 return; 427 } 428 429 p->db = db; 430 p->nRow = 0; 431 p->nCol = nCol; 432 p->nKeyCol = nKeyCol; 433 p->current.anDLt = (tRowcnt*)&p[1]; 434 p->current.anEq = &p->current.anDLt[nColUp]; 435 436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 437 { 438 u8 *pSpace; /* Allocated space not yet assigned */ 439 int i; /* Used to iterate through p->aSample[] */ 440 441 p->iGet = -1; 442 p->mxSample = mxSample; 443 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); 444 p->current.anLt = &p->current.anEq[nColUp]; 445 p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565; 446 447 /* Set up the Stat4Accum.a[] and aBest[] arrays */ 448 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; 449 p->aBest = &p->a[mxSample]; 450 pSpace = (u8*)(&p->a[mxSample+nCol]); 451 for(i=0; i<(mxSample+nCol); i++){ 452 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 453 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 454 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); 455 } 456 assert( (pSpace - (u8*)p)==n ); 457 458 for(i=0; i<nCol; i++){ 459 p->aBest[i].iCol = i; 460 } 461 } 462 #endif 463 464 /* Return a pointer to the allocated object to the caller */ 465 sqlite3_result_blob(context, p, sizeof(p), stat4Destructor); 466 } 467 static const FuncDef statInitFuncdef = { 468 2+IsStat34, /* nArg */ 469 SQLITE_UTF8, /* funcFlags */ 470 0, /* pUserData */ 471 0, /* pNext */ 472 statInit, /* xFunc */ 473 0, /* xStep */ 474 0, /* xFinalize */ 475 "stat_init", /* zName */ 476 0, /* pHash */ 477 0 /* pDestructor */ 478 }; 479 480 #ifdef SQLITE_ENABLE_STAT4 481 /* 482 ** pNew and pOld are both candidate non-periodic samples selected for 483 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 484 ** considering only any trailing columns and the sample hash value, this 485 ** function returns true if sample pNew is to be preferred over pOld. 486 ** In other words, if we assume that the cardinalities of the selected 487 ** column for pNew and pOld are equal, is pNew to be preferred over pOld. 488 ** 489 ** This function assumes that for each argument sample, the contents of 490 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 491 */ 492 static int sampleIsBetterPost( 493 Stat4Accum *pAccum, 494 Stat4Sample *pNew, 495 Stat4Sample *pOld 496 ){ 497 int nCol = pAccum->nCol; 498 int i; 499 assert( pNew->iCol==pOld->iCol ); 500 for(i=pNew->iCol+1; i<nCol; i++){ 501 if( pNew->anEq[i]>pOld->anEq[i] ) return 1; 502 if( pNew->anEq[i]<pOld->anEq[i] ) return 0; 503 } 504 if( pNew->iHash>pOld->iHash ) return 1; 505 return 0; 506 } 507 #endif 508 509 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 510 /* 511 ** Return true if pNew is to be preferred over pOld. 512 ** 513 ** This function assumes that for each argument sample, the contents of 514 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 515 */ 516 static int sampleIsBetter( 517 Stat4Accum *pAccum, 518 Stat4Sample *pNew, 519 Stat4Sample *pOld 520 ){ 521 tRowcnt nEqNew = pNew->anEq[pNew->iCol]; 522 tRowcnt nEqOld = pOld->anEq[pOld->iCol]; 523 524 assert( pOld->isPSample==0 && pNew->isPSample==0 ); 525 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); 526 527 if( (nEqNew>nEqOld) ) return 1; 528 #ifdef SQLITE_ENABLE_STAT4 529 if( nEqNew==nEqOld ){ 530 if( pNew->iCol<pOld->iCol ) return 1; 531 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); 532 } 533 return 0; 534 #else 535 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); 536 #endif 537 } 538 539 /* 540 ** Copy the contents of sample *pNew into the p->a[] array. If necessary, 541 ** remove the least desirable sample from p->a[] to make room. 542 */ 543 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ 544 Stat4Sample *pSample = 0; 545 int i; 546 547 assert( IsStat4 || nEqZero==0 ); 548 549 #ifdef SQLITE_ENABLE_STAT4 550 if( pNew->isPSample==0 ){ 551 Stat4Sample *pUpgrade = 0; 552 assert( pNew->anEq[pNew->iCol]>0 ); 553 554 /* This sample is being added because the prefix that ends in column 555 ** iCol occurs many times in the table. However, if we have already 556 ** added a sample that shares this prefix, there is no need to add 557 ** this one. Instead, upgrade the priority of the highest priority 558 ** existing sample that shares this prefix. */ 559 for(i=p->nSample-1; i>=0; i--){ 560 Stat4Sample *pOld = &p->a[i]; 561 if( pOld->anEq[pNew->iCol]==0 ){ 562 if( pOld->isPSample ) return; 563 assert( pOld->iCol>pNew->iCol ); 564 assert( sampleIsBetter(p, pNew, pOld) ); 565 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ 566 pUpgrade = pOld; 567 } 568 } 569 } 570 if( pUpgrade ){ 571 pUpgrade->iCol = pNew->iCol; 572 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; 573 goto find_new_min; 574 } 575 } 576 #endif 577 578 /* If necessary, remove sample iMin to make room for the new sample. */ 579 if( p->nSample>=p->mxSample ){ 580 Stat4Sample *pMin = &p->a[p->iMin]; 581 tRowcnt *anEq = pMin->anEq; 582 tRowcnt *anLt = pMin->anLt; 583 tRowcnt *anDLt = pMin->anDLt; 584 sampleClear(p->db, pMin); 585 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); 586 pSample = &p->a[p->nSample-1]; 587 pSample->nRowid = 0; 588 pSample->anEq = anEq; 589 pSample->anDLt = anDLt; 590 pSample->anLt = anLt; 591 p->nSample = p->mxSample-1; 592 } 593 594 /* The "rows less-than" for the rowid column must be greater than that 595 ** for the last sample in the p->a[] array. Otherwise, the samples would 596 ** be out of order. */ 597 #ifdef SQLITE_ENABLE_STAT4 598 assert( p->nSample==0 599 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); 600 #endif 601 602 /* Insert the new sample */ 603 pSample = &p->a[p->nSample]; 604 sampleCopy(p, pSample, pNew); 605 p->nSample++; 606 607 /* Zero the first nEqZero entries in the anEq[] array. */ 608 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); 609 610 #ifdef SQLITE_ENABLE_STAT4 611 find_new_min: 612 #endif 613 if( p->nSample>=p->mxSample ){ 614 int iMin = -1; 615 for(i=0; i<p->mxSample; i++){ 616 if( p->a[i].isPSample ) continue; 617 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ 618 iMin = i; 619 } 620 } 621 assert( iMin>=0 ); 622 p->iMin = iMin; 623 } 624 } 625 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 626 627 /* 628 ** Field iChng of the index being scanned has changed. So at this point 629 ** p->current contains a sample that reflects the previous row of the 630 ** index. The value of anEq[iChng] and subsequent anEq[] elements are 631 ** correct at this point. 632 */ 633 static void samplePushPrevious(Stat4Accum *p, int iChng){ 634 #ifdef SQLITE_ENABLE_STAT4 635 int i; 636 637 /* Check if any samples from the aBest[] array should be pushed 638 ** into IndexSample.a[] at this point. */ 639 for(i=(p->nCol-2); i>=iChng; i--){ 640 Stat4Sample *pBest = &p->aBest[i]; 641 pBest->anEq[i] = p->current.anEq[i]; 642 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ 643 sampleInsert(p, pBest, i); 644 } 645 } 646 647 /* Update the anEq[] fields of any samples already collected. */ 648 for(i=p->nSample-1; i>=0; i--){ 649 int j; 650 for(j=iChng; j<p->nCol; j++){ 651 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; 652 } 653 } 654 #endif 655 656 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) 657 if( iChng==0 ){ 658 tRowcnt nLt = p->current.anLt[0]; 659 tRowcnt nEq = p->current.anEq[0]; 660 661 /* Check if this is to be a periodic sample. If so, add it. */ 662 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ 663 p->current.isPSample = 1; 664 sampleInsert(p, &p->current, 0); 665 p->current.isPSample = 0; 666 }else 667 668 /* Or if it is a non-periodic sample. Add it in this case too. */ 669 if( p->nSample<p->mxSample 670 || sampleIsBetter(p, &p->current, &p->a[p->iMin]) 671 ){ 672 sampleInsert(p, &p->current, 0); 673 } 674 } 675 #endif 676 677 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 678 UNUSED_PARAMETER( p ); 679 UNUSED_PARAMETER( iChng ); 680 #endif 681 } 682 683 /* 684 ** Implementation of the stat_push SQL function: stat_push(P,C,R) 685 ** Arguments: 686 ** 687 ** P Pointer to the Stat4Accum object created by stat_init() 688 ** C Index of left-most column to differ from previous row 689 ** R Rowid for the current row. Might be a key record for 690 ** WITHOUT ROWID tables. 691 ** 692 ** The SQL function always returns NULL. 693 ** 694 ** The R parameter is only used for STAT3 and STAT4 695 */ 696 static void statPush( 697 sqlite3_context *context, 698 int argc, 699 sqlite3_value **argv 700 ){ 701 int i; 702 703 /* The three function arguments */ 704 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 705 int iChng = sqlite3_value_int(argv[1]); 706 707 UNUSED_PARAMETER( argc ); 708 UNUSED_PARAMETER( context ); 709 assert( p->nCol>0 ); 710 assert( iChng<p->nCol ); 711 712 if( p->nRow==0 ){ 713 /* This is the first call to this function. Do initialization. */ 714 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; 715 }else{ 716 /* Second and subsequent calls get processed here */ 717 samplePushPrevious(p, iChng); 718 719 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply 720 ** to the current row of the index. */ 721 for(i=0; i<iChng; i++){ 722 p->current.anEq[i]++; 723 } 724 for(i=iChng; i<p->nCol; i++){ 725 p->current.anDLt[i]++; 726 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 727 p->current.anLt[i] += p->current.anEq[i]; 728 #endif 729 p->current.anEq[i] = 1; 730 } 731 } 732 p->nRow++; 733 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 734 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ 735 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); 736 }else{ 737 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), 738 sqlite3_value_blob(argv[2])); 739 } 740 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; 741 #endif 742 743 #ifdef SQLITE_ENABLE_STAT4 744 { 745 tRowcnt nLt = p->current.anLt[p->nCol-1]; 746 747 /* Check if this is to be a periodic sample. If so, add it. */ 748 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ 749 p->current.isPSample = 1; 750 p->current.iCol = 0; 751 sampleInsert(p, &p->current, p->nCol-1); 752 p->current.isPSample = 0; 753 } 754 755 /* Update the aBest[] array. */ 756 for(i=0; i<(p->nCol-1); i++){ 757 p->current.iCol = i; 758 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ 759 sampleCopy(p, &p->aBest[i], &p->current); 760 } 761 } 762 } 763 #endif 764 } 765 static const FuncDef statPushFuncdef = { 766 2+IsStat34, /* nArg */ 767 SQLITE_UTF8, /* funcFlags */ 768 0, /* pUserData */ 769 0, /* pNext */ 770 statPush, /* xFunc */ 771 0, /* xStep */ 772 0, /* xFinalize */ 773 "stat_push", /* zName */ 774 0, /* pHash */ 775 0 /* pDestructor */ 776 }; 777 778 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ 779 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ 780 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ 781 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ 782 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ 783 784 /* 785 ** Implementation of the stat_get(P,J) SQL function. This routine is 786 ** used to query the results. Content is returned for parameter J 787 ** which is one of the STAT_GET_xxxx values defined above. 788 ** 789 ** If neither STAT3 nor STAT4 are enabled, then J is always 790 ** STAT_GET_STAT1 and is hence omitted and this routine becomes 791 ** a one-parameter function, stat_get(P), that always returns the 792 ** stat1 table entry information. 793 */ 794 static void statGet( 795 sqlite3_context *context, 796 int argc, 797 sqlite3_value **argv 798 ){ 799 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); 800 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 801 /* STAT3 and STAT4 have a parameter on this routine. */ 802 int eCall = sqlite3_value_int(argv[1]); 803 assert( argc==2 ); 804 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 805 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT 806 || eCall==STAT_GET_NDLT 807 ); 808 if( eCall==STAT_GET_STAT1 ) 809 #else 810 assert( argc==1 ); 811 #endif 812 { 813 /* Return the value to store in the "stat" column of the sqlite_stat1 814 ** table for this index. 815 ** 816 ** The value is a string composed of a list of integers describing 817 ** the index. The first integer in the list is the total number of 818 ** entries in the index. There is one additional integer in the list 819 ** for each indexed column. This additional integer is an estimate of 820 ** the number of rows matched by a stabbing query on the index using 821 ** a key with the corresponding number of fields. In other words, 822 ** if the index is on columns (a,b) and the sqlite_stat1 value is 823 ** "100 10 2", then SQLite estimates that: 824 ** 825 ** * the index contains 100 rows, 826 ** * "WHERE a=?" matches 10 rows, and 827 ** * "WHERE a=? AND b=?" matches 2 rows. 828 ** 829 ** If D is the count of distinct values and K is the total number of 830 ** rows, then each estimate is computed as: 831 ** 832 ** I = (K+D-1)/D 833 */ 834 char *z; 835 int i; 836 837 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); 838 if( zRet==0 ){ 839 sqlite3_result_error_nomem(context); 840 return; 841 } 842 843 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); 844 z = zRet + sqlite3Strlen30(zRet); 845 for(i=0; i<p->nKeyCol; i++){ 846 u64 nDistinct = p->current.anDLt[i] + 1; 847 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; 848 sqlite3_snprintf(24, z, " %llu", iVal); 849 z += sqlite3Strlen30(z); 850 assert( p->current.anEq[i] ); 851 } 852 assert( z[0]=='\0' && z>zRet ); 853 854 sqlite3_result_text(context, zRet, -1, sqlite3_free); 855 } 856 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 857 else if( eCall==STAT_GET_ROWID ){ 858 if( p->iGet<0 ){ 859 samplePushPrevious(p, 0); 860 p->iGet = 0; 861 } 862 if( p->iGet<p->nSample ){ 863 Stat4Sample *pS = p->a + p->iGet; 864 if( pS->nRowid==0 ){ 865 sqlite3_result_int64(context, pS->u.iRowid); 866 }else{ 867 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, 868 SQLITE_TRANSIENT); 869 } 870 } 871 }else{ 872 tRowcnt *aCnt = 0; 873 874 assert( p->iGet<p->nSample ); 875 switch( eCall ){ 876 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; 877 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; 878 default: { 879 aCnt = p->a[p->iGet].anDLt; 880 p->iGet++; 881 break; 882 } 883 } 884 885 if( IsStat3 ){ 886 sqlite3_result_int64(context, (i64)aCnt[0]); 887 }else{ 888 char *zRet = sqlite3MallocZero(p->nCol * 25); 889 if( zRet==0 ){ 890 sqlite3_result_error_nomem(context); 891 }else{ 892 int i; 893 char *z = zRet; 894 for(i=0; i<p->nCol; i++){ 895 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); 896 z += sqlite3Strlen30(z); 897 } 898 assert( z[0]=='\0' && z>zRet ); 899 z[-1] = '\0'; 900 sqlite3_result_text(context, zRet, -1, sqlite3_free); 901 } 902 } 903 } 904 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 905 #ifndef SQLITE_DEBUG 906 UNUSED_PARAMETER( argc ); 907 #endif 908 } 909 static const FuncDef statGetFuncdef = { 910 1+IsStat34, /* nArg */ 911 SQLITE_UTF8, /* funcFlags */ 912 0, /* pUserData */ 913 0, /* pNext */ 914 statGet, /* xFunc */ 915 0, /* xStep */ 916 0, /* xFinalize */ 917 "stat_get", /* zName */ 918 0, /* pHash */ 919 0 /* pDestructor */ 920 }; 921 922 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ 923 assert( regOut!=regStat4 && regOut!=regStat4+1 ); 924 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 925 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); 926 #elif SQLITE_DEBUG 927 assert( iParam==STAT_GET_STAT1 ); 928 #else 929 UNUSED_PARAMETER( iParam ); 930 #endif 931 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); 932 sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); 933 sqlite3VdbeChangeP5(v, 1 + IsStat34); 934 } 935 936 /* 937 ** Generate code to do an analysis of all indices associated with 938 ** a single table. 939 */ 940 static void analyzeOneTable( 941 Parse *pParse, /* Parser context */ 942 Table *pTab, /* Table whose indices are to be analyzed */ 943 Index *pOnlyIdx, /* If not NULL, only analyze this one index */ 944 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ 945 int iMem, /* Available memory locations begin here */ 946 int iTab /* Next available cursor */ 947 ){ 948 sqlite3 *db = pParse->db; /* Database handle */ 949 Index *pIdx; /* An index to being analyzed */ 950 int iIdxCur; /* Cursor open on index being analyzed */ 951 int iTabCur; /* Table cursor */ 952 Vdbe *v; /* The virtual machine being built up */ 953 int i; /* Loop counter */ 954 int jZeroRows = -1; /* Jump from here if number of rows is zero */ 955 int iDb; /* Index of database containing pTab */ 956 u8 needTableCnt = 1; /* True to count the table */ 957 int regNewRowid = iMem++; /* Rowid for the inserted record */ 958 int regStat4 = iMem++; /* Register to hold Stat4Accum object */ 959 int regChng = iMem++; /* Index of changed index field */ 960 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 961 int regRowid = iMem++; /* Rowid argument passed to stat_push() */ 962 #endif 963 int regTemp = iMem++; /* Temporary use register */ 964 int regTabname = iMem++; /* Register containing table name */ 965 int regIdxname = iMem++; /* Register containing index name */ 966 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ 967 int regPrev = iMem; /* MUST BE LAST (see below) */ 968 969 pParse->nMem = MAX(pParse->nMem, iMem); 970 v = sqlite3GetVdbe(pParse); 971 if( v==0 || NEVER(pTab==0) ){ 972 return; 973 } 974 if( pTab->tnum==0 ){ 975 /* Do not gather statistics on views or virtual tables */ 976 return; 977 } 978 if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ 979 /* Do not gather statistics on system tables */ 980 return; 981 } 982 assert( sqlite3BtreeHoldsAllMutexes(db) ); 983 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 984 assert( iDb>=0 ); 985 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 986 #ifndef SQLITE_OMIT_AUTHORIZATION 987 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, 988 db->aDb[iDb].zName ) ){ 989 return; 990 } 991 #endif 992 993 /* Establish a read-lock on the table at the shared-cache level. 994 ** Open a read-only cursor on the table. Also allocate a cursor number 995 ** to use for scanning indexes (iIdxCur). No index cursor is opened at 996 ** this time though. */ 997 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 998 iTabCur = iTab++; 999 iIdxCur = iTab++; 1000 pParse->nTab = MAX(pParse->nTab, iTab); 1001 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); 1002 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); 1003 1004 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1005 int nCol; /* Number of columns indexed by pIdx */ 1006 int *aGotoChng; /* Array of jump instruction addresses */ 1007 int addrRewind; /* Address of "OP_Rewind iIdxCur" */ 1008 int addrGotoChng0; /* Address of "Goto addr_chng_0" */ 1009 int addrNextRow; /* Address of "next_row:" */ 1010 const char *zIdxName; /* Name of the index */ 1011 1012 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; 1013 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; 1014 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ 1015 nCol = pIdx->nKeyCol; 1016 zIdxName = pTab->zName; 1017 }else{ 1018 nCol = pIdx->nColumn; 1019 zIdxName = pIdx->zName; 1020 } 1021 aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1)); 1022 if( aGotoChng==0 ) continue; 1023 1024 /* Populate the register containing the index name. */ 1025 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); 1026 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); 1027 1028 /* 1029 ** Pseudo-code for loop that calls stat_push(): 1030 ** 1031 ** Rewind csr 1032 ** if eof(csr) goto end_of_scan; 1033 ** regChng = 0 1034 ** goto chng_addr_0; 1035 ** 1036 ** next_row: 1037 ** regChng = 0 1038 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1039 ** regChng = 1 1040 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1041 ** ... 1042 ** regChng = N 1043 ** goto chng_addr_N 1044 ** 1045 ** chng_addr_0: 1046 ** regPrev(0) = idx(0) 1047 ** chng_addr_1: 1048 ** regPrev(1) = idx(1) 1049 ** ... 1050 ** 1051 ** chng_addr_N: 1052 ** regRowid = idx(rowid) 1053 ** stat_push(P, regChng, regRowid) 1054 ** Next csr 1055 ** if !eof(csr) goto next_row; 1056 ** 1057 ** end_of_scan: 1058 */ 1059 1060 /* Make sure there are enough memory cells allocated to accommodate 1061 ** the regPrev array and a trailing rowid (the rowid slot is required 1062 ** when building a record to insert into the sample column of 1063 ** the sqlite_stat4 table. */ 1064 pParse->nMem = MAX(pParse->nMem, regPrev+nCol); 1065 1066 /* Open a read-only cursor on the index being analyzed. */ 1067 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); 1068 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); 1069 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1070 VdbeComment((v, "%s", pIdx->zName)); 1071 1072 /* Invoke the stat_init() function. The arguments are: 1073 ** 1074 ** (1) the number of columns in the index including the rowid, 1075 ** (2) the number of rows in the index, 1076 ** 1077 ** The second argument is only used for STAT3 and STAT4 1078 */ 1079 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1080 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); 1081 #endif 1082 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); 1083 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); 1084 sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); 1085 sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); 1086 sqlite3VdbeChangeP5(v, 2+IsStat34); 1087 1088 /* Implementation of the following: 1089 ** 1090 ** Rewind csr 1091 ** if eof(csr) goto end_of_scan; 1092 ** regChng = 0 1093 ** goto next_push_0; 1094 ** 1095 */ 1096 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); 1097 VdbeCoverage(v); 1098 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); 1099 addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto); 1100 1101 /* 1102 ** next_row: 1103 ** regChng = 0 1104 ** if( idx(0) != regPrev(0) ) goto chng_addr_0 1105 ** regChng = 1 1106 ** if( idx(1) != regPrev(1) ) goto chng_addr_1 1107 ** ... 1108 ** regChng = N 1109 ** goto chng_addr_N 1110 */ 1111 addrNextRow = sqlite3VdbeCurrentAddr(v); 1112 for(i=0; i<nCol; i++){ 1113 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); 1114 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); 1115 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); 1116 aGotoChng[i] = 1117 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); 1118 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1119 VdbeCoverage(v); 1120 } 1121 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng); 1122 aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto); 1123 1124 /* 1125 ** chng_addr_0: 1126 ** regPrev(0) = idx(0) 1127 ** chng_addr_1: 1128 ** regPrev(1) = idx(1) 1129 ** ... 1130 */ 1131 sqlite3VdbeJumpHere(v, addrGotoChng0); 1132 for(i=0; i<nCol; i++){ 1133 sqlite3VdbeJumpHere(v, aGotoChng[i]); 1134 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); 1135 } 1136 1137 /* 1138 ** chng_addr_N: 1139 ** regRowid = idx(rowid) // STAT34 only 1140 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only 1141 ** Next csr 1142 ** if !eof(csr) goto next_row; 1143 */ 1144 sqlite3VdbeJumpHere(v, aGotoChng[nCol]); 1145 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1146 assert( regRowid==(regStat4+2) ); 1147 if( HasRowid(pTab) ){ 1148 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); 1149 }else{ 1150 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 1151 int j, k, regKey; 1152 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); 1153 for(j=0; j<pPk->nKeyCol; j++){ 1154 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 1155 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); 1156 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); 1157 } 1158 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); 1159 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); 1160 } 1161 #endif 1162 assert( regChng==(regStat4+1) ); 1163 sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); 1164 sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); 1165 sqlite3VdbeChangeP5(v, 2+IsStat34); 1166 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); 1167 1168 /* Add the entry to the stat1 table. */ 1169 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); 1170 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1171 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1172 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1173 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1174 1175 /* Add the entries to the stat3 or stat4 table. */ 1176 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1177 { 1178 int regEq = regStat1; 1179 int regLt = regStat1+1; 1180 int regDLt = regStat1+2; 1181 int regSample = regStat1+3; 1182 int regCol = regStat1+4; 1183 int regSampleRowid = regCol + nCol; 1184 int addrNext; 1185 int addrIsNull; 1186 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; 1187 1188 pParse->nMem = MAX(pParse->nMem, regCol+nCol); 1189 1190 addrNext = sqlite3VdbeCurrentAddr(v); 1191 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); 1192 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); 1193 VdbeCoverage(v); 1194 callStatGet(v, regStat4, STAT_GET_NEQ, regEq); 1195 callStatGet(v, regStat4, STAT_GET_NLT, regLt); 1196 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); 1197 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); 1198 /* We know that the regSampleRowid row exists because it was read by 1199 ** the previous loop. Thus the not-found jump of seekOp will never 1200 ** be taken */ 1201 VdbeCoverageNeverTaken(v); 1202 #ifdef SQLITE_ENABLE_STAT3 1203 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, 1204 pIdx->aiColumn[0], regSample); 1205 #else 1206 for(i=0; i<nCol; i++){ 1207 i16 iCol = pIdx->aiColumn[i]; 1208 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); 1209 } 1210 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); 1211 #endif 1212 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); 1213 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); 1214 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); 1215 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ 1216 sqlite3VdbeJumpHere(v, addrIsNull); 1217 } 1218 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1219 1220 /* End of analysis */ 1221 sqlite3VdbeJumpHere(v, addrRewind); 1222 sqlite3DbFree(db, aGotoChng); 1223 } 1224 1225 1226 /* Create a single sqlite_stat1 entry containing NULL as the index 1227 ** name and the row count as the content. 1228 */ 1229 if( pOnlyIdx==0 && needTableCnt ){ 1230 VdbeComment((v, "%s", pTab->zName)); 1231 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); 1232 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); 1233 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); 1234 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0); 1235 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); 1236 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); 1237 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1238 sqlite3VdbeJumpHere(v, jZeroRows); 1239 } 1240 } 1241 1242 1243 /* 1244 ** Generate code that will cause the most recent index analysis to 1245 ** be loaded into internal hash tables where is can be used. 1246 */ 1247 static void loadAnalysis(Parse *pParse, int iDb){ 1248 Vdbe *v = sqlite3GetVdbe(pParse); 1249 if( v ){ 1250 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); 1251 } 1252 } 1253 1254 /* 1255 ** Generate code that will do an analysis of an entire database 1256 */ 1257 static void analyzeDatabase(Parse *pParse, int iDb){ 1258 sqlite3 *db = pParse->db; 1259 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ 1260 HashElem *k; 1261 int iStatCur; 1262 int iMem; 1263 int iTab; 1264 1265 sqlite3BeginWriteOperation(pParse, 0, iDb); 1266 iStatCur = pParse->nTab; 1267 pParse->nTab += 3; 1268 openStatTable(pParse, iDb, iStatCur, 0, 0); 1269 iMem = pParse->nMem+1; 1270 iTab = pParse->nTab; 1271 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1272 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ 1273 Table *pTab = (Table*)sqliteHashData(k); 1274 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); 1275 } 1276 loadAnalysis(pParse, iDb); 1277 } 1278 1279 /* 1280 ** Generate code that will do an analysis of a single table in 1281 ** a database. If pOnlyIdx is not NULL then it is a single index 1282 ** in pTab that should be analyzed. 1283 */ 1284 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ 1285 int iDb; 1286 int iStatCur; 1287 1288 assert( pTab!=0 ); 1289 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1290 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1291 sqlite3BeginWriteOperation(pParse, 0, iDb); 1292 iStatCur = pParse->nTab; 1293 pParse->nTab += 3; 1294 if( pOnlyIdx ){ 1295 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); 1296 }else{ 1297 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); 1298 } 1299 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); 1300 loadAnalysis(pParse, iDb); 1301 } 1302 1303 /* 1304 ** Generate code for the ANALYZE command. The parser calls this routine 1305 ** when it recognizes an ANALYZE command. 1306 ** 1307 ** ANALYZE -- 1 1308 ** ANALYZE <database> -- 2 1309 ** ANALYZE ?<database>.?<tablename> -- 3 1310 ** 1311 ** Form 1 causes all indices in all attached databases to be analyzed. 1312 ** Form 2 analyzes all indices the single database named. 1313 ** Form 3 analyzes all indices associated with the named table. 1314 */ 1315 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ 1316 sqlite3 *db = pParse->db; 1317 int iDb; 1318 int i; 1319 char *z, *zDb; 1320 Table *pTab; 1321 Index *pIdx; 1322 Token *pTableName; 1323 1324 /* Read the database schema. If an error occurs, leave an error message 1325 ** and code in pParse and return NULL. */ 1326 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); 1327 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 1328 return; 1329 } 1330 1331 assert( pName2!=0 || pName1==0 ); 1332 if( pName1==0 ){ 1333 /* Form 1: Analyze everything */ 1334 for(i=0; i<db->nDb; i++){ 1335 if( i==1 ) continue; /* Do not analyze the TEMP database */ 1336 analyzeDatabase(pParse, i); 1337 } 1338 }else if( pName2->n==0 ){ 1339 /* Form 2: Analyze the database or table named */ 1340 iDb = sqlite3FindDb(db, pName1); 1341 if( iDb>=0 ){ 1342 analyzeDatabase(pParse, iDb); 1343 }else{ 1344 z = sqlite3NameFromToken(db, pName1); 1345 if( z ){ 1346 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ 1347 analyzeTable(pParse, pIdx->pTable, pIdx); 1348 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ 1349 analyzeTable(pParse, pTab, 0); 1350 } 1351 sqlite3DbFree(db, z); 1352 } 1353 } 1354 }else{ 1355 /* Form 3: Analyze the fully qualified table name */ 1356 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); 1357 if( iDb>=0 ){ 1358 zDb = db->aDb[iDb].zName; 1359 z = sqlite3NameFromToken(db, pTableName); 1360 if( z ){ 1361 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ 1362 analyzeTable(pParse, pIdx->pTable, pIdx); 1363 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ 1364 analyzeTable(pParse, pTab, 0); 1365 } 1366 sqlite3DbFree(db, z); 1367 } 1368 } 1369 } 1370 } 1371 1372 /* 1373 ** Used to pass information from the analyzer reader through to the 1374 ** callback routine. 1375 */ 1376 typedef struct analysisInfo analysisInfo; 1377 struct analysisInfo { 1378 sqlite3 *db; 1379 const char *zDatabase; 1380 }; 1381 1382 /* 1383 ** The first argument points to a nul-terminated string containing a 1384 ** list of space separated integers. Read the first nOut of these into 1385 ** the array aOut[]. 1386 */ 1387 static void decodeIntArray( 1388 char *zIntArray, /* String containing int array to decode */ 1389 int nOut, /* Number of slots in aOut[] */ 1390 tRowcnt *aOut, /* Store integers here */ 1391 LogEst *aLog, /* Or, if aOut==0, here */ 1392 Index *pIndex /* Handle extra flags for this index, if not NULL */ 1393 ){ 1394 char *z = zIntArray; 1395 int c; 1396 int i; 1397 tRowcnt v; 1398 1399 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1400 if( z==0 ) z = ""; 1401 #else 1402 if( NEVER(z==0) ) z = ""; 1403 #endif 1404 for(i=0; *z && i<nOut; i++){ 1405 v = 0; 1406 while( (c=z[0])>='0' && c<='9' ){ 1407 v = v*10 + c - '0'; 1408 z++; 1409 } 1410 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1411 if( aOut ){ 1412 aOut[i] = v; 1413 }else 1414 #else 1415 assert( aOut==0 ); 1416 UNUSED_PARAMETER(aOut); 1417 #endif 1418 { 1419 aLog[i] = sqlite3LogEst(v); 1420 } 1421 if( *z==' ' ) z++; 1422 } 1423 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 1424 assert( pIndex!=0 ); 1425 #else 1426 if( pIndex ) 1427 #endif 1428 { 1429 if( strcmp(z, "unordered")==0 ){ 1430 pIndex->bUnordered = 1; 1431 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ 1432 int v32 = 0; 1433 sqlite3GetInt32(z+3, &v32); 1434 pIndex->szIdxRow = sqlite3LogEst(v32); 1435 } 1436 } 1437 } 1438 1439 /* 1440 ** This callback is invoked once for each index when reading the 1441 ** sqlite_stat1 table. 1442 ** 1443 ** argv[0] = name of the table 1444 ** argv[1] = name of the index (might be NULL) 1445 ** argv[2] = results of analysis - on integer for each column 1446 ** 1447 ** Entries for which argv[1]==NULL simply record the number of rows in 1448 ** the table. 1449 */ 1450 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ 1451 analysisInfo *pInfo = (analysisInfo*)pData; 1452 Index *pIndex; 1453 Table *pTable; 1454 const char *z; 1455 1456 assert( argc==3 ); 1457 UNUSED_PARAMETER2(NotUsed, argc); 1458 1459 if( argv==0 || argv[0]==0 || argv[2]==0 ){ 1460 return 0; 1461 } 1462 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); 1463 if( pTable==0 ){ 1464 return 0; 1465 } 1466 if( argv[1]==0 ){ 1467 pIndex = 0; 1468 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ 1469 pIndex = sqlite3PrimaryKeyIndex(pTable); 1470 }else{ 1471 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); 1472 } 1473 z = argv[2]; 1474 1475 if( pIndex ){ 1476 decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex); 1477 if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; 1478 }else{ 1479 Index fakeIdx; 1480 fakeIdx.szIdxRow = pTable->szTabRow; 1481 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); 1482 pTable->szTabRow = fakeIdx.szIdxRow; 1483 } 1484 1485 return 0; 1486 } 1487 1488 /* 1489 ** If the Index.aSample variable is not NULL, delete the aSample[] array 1490 ** and its contents. 1491 */ 1492 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ 1493 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1494 if( pIdx->aSample ){ 1495 int j; 1496 for(j=0; j<pIdx->nSample; j++){ 1497 IndexSample *p = &pIdx->aSample[j]; 1498 sqlite3DbFree(db, p->p); 1499 } 1500 sqlite3DbFree(db, pIdx->aSample); 1501 } 1502 if( db && db->pnBytesFreed==0 ){ 1503 pIdx->nSample = 0; 1504 pIdx->aSample = 0; 1505 } 1506 #else 1507 UNUSED_PARAMETER(db); 1508 UNUSED_PARAMETER(pIdx); 1509 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1510 } 1511 1512 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1513 /* 1514 ** Populate the pIdx->aAvgEq[] array based on the samples currently 1515 ** stored in pIdx->aSample[]. 1516 */ 1517 static void initAvgEq(Index *pIdx){ 1518 if( pIdx ){ 1519 IndexSample *aSample = pIdx->aSample; 1520 IndexSample *pFinal = &aSample[pIdx->nSample-1]; 1521 int iCol; 1522 int nCol = 1; 1523 if( pIdx->nSampleCol>1 ){ 1524 /* If this is stat4 data, then calculate aAvgEq[] values for all 1525 ** sample columns except the last. The last is always set to 1, as 1526 ** once the trailing PK fields are considered all index keys are 1527 ** unique. */ 1528 nCol = pIdx->nSampleCol-1; 1529 pIdx->aAvgEq[nCol] = 1; 1530 } 1531 for(iCol=0; iCol<nCol; iCol++){ 1532 int i; /* Used to iterate through samples */ 1533 tRowcnt sumEq = 0; /* Sum of the nEq values */ 1534 tRowcnt nSum = 0; /* Number of terms contributing to sumEq */ 1535 tRowcnt avgEq = 0; 1536 tRowcnt nDLt = pFinal->anDLt[iCol]; 1537 1538 /* Set nSum to the number of distinct (iCol+1) field prefixes that 1539 ** occur in the stat4 table for this index before pFinal. Set 1540 ** sumEq to the sum of the nEq values for column iCol for the same 1541 ** set (adding the value only once where there exist dupicate 1542 ** prefixes). */ 1543 for(i=0; i<(pIdx->nSample-1); i++){ 1544 if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){ 1545 sumEq += aSample[i].anEq[iCol]; 1546 nSum++; 1547 } 1548 } 1549 if( nDLt>nSum ){ 1550 avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum); 1551 } 1552 if( avgEq==0 ) avgEq = 1; 1553 pIdx->aAvgEq[iCol] = avgEq; 1554 } 1555 } 1556 } 1557 1558 /* 1559 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table 1560 ** is supplied instead, find the PRIMARY KEY index for that table. 1561 */ 1562 static Index *findIndexOrPrimaryKey( 1563 sqlite3 *db, 1564 const char *zName, 1565 const char *zDb 1566 ){ 1567 Index *pIdx = sqlite3FindIndex(db, zName, zDb); 1568 if( pIdx==0 ){ 1569 Table *pTab = sqlite3FindTable(db, zName, zDb); 1570 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); 1571 } 1572 return pIdx; 1573 } 1574 1575 /* 1576 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table 1577 ** into the relevant Index.aSample[] arrays. 1578 ** 1579 ** Arguments zSql1 and zSql2 must point to SQL statements that return 1580 ** data equivalent to the following (statements are different for stat3, 1581 ** see the caller of this function for details): 1582 ** 1583 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx 1584 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 1585 ** 1586 ** where %Q is replaced with the database name before the SQL is executed. 1587 */ 1588 static int loadStatTbl( 1589 sqlite3 *db, /* Database handle */ 1590 int bStat3, /* Assume single column records only */ 1591 const char *zSql1, /* SQL statement 1 (see above) */ 1592 const char *zSql2, /* SQL statement 2 (see above) */ 1593 const char *zDb /* Database name (e.g. "main") */ 1594 ){ 1595 int rc; /* Result codes from subroutines */ 1596 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ 1597 char *zSql; /* Text of the SQL statement */ 1598 Index *pPrevIdx = 0; /* Previous index in the loop */ 1599 IndexSample *pSample; /* A slot in pIdx->aSample[] */ 1600 1601 assert( db->lookaside.bEnabled==0 ); 1602 zSql = sqlite3MPrintf(db, zSql1, zDb); 1603 if( !zSql ){ 1604 return SQLITE_NOMEM; 1605 } 1606 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1607 sqlite3DbFree(db, zSql); 1608 if( rc ) return rc; 1609 1610 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1611 int nIdxCol = 1; /* Number of columns in stat4 records */ 1612 1613 char *zIndex; /* Index name */ 1614 Index *pIdx; /* Pointer to the index object */ 1615 int nSample; /* Number of samples */ 1616 int nByte; /* Bytes of space required */ 1617 int i; /* Bytes of space required */ 1618 tRowcnt *pSpace; 1619 1620 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1621 if( zIndex==0 ) continue; 1622 nSample = sqlite3_column_int(pStmt, 1); 1623 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1624 assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); 1625 /* Index.nSample is non-zero at this point if data has already been 1626 ** loaded from the stat4 table. In this case ignore stat3 data. */ 1627 if( pIdx==0 || pIdx->nSample ) continue; 1628 if( bStat3==0 ){ 1629 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); 1630 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 1631 nIdxCol = pIdx->nKeyCol; 1632 }else{ 1633 nIdxCol = pIdx->nColumn; 1634 } 1635 } 1636 pIdx->nSampleCol = nIdxCol; 1637 nByte = sizeof(IndexSample) * nSample; 1638 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; 1639 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ 1640 1641 pIdx->aSample = sqlite3DbMallocZero(db, nByte); 1642 if( pIdx->aSample==0 ){ 1643 sqlite3_finalize(pStmt); 1644 return SQLITE_NOMEM; 1645 } 1646 pSpace = (tRowcnt*)&pIdx->aSample[nSample]; 1647 pIdx->aAvgEq = pSpace; pSpace += nIdxCol; 1648 for(i=0; i<nSample; i++){ 1649 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; 1650 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; 1651 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; 1652 } 1653 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); 1654 } 1655 rc = sqlite3_finalize(pStmt); 1656 if( rc ) return rc; 1657 1658 zSql = sqlite3MPrintf(db, zSql2, zDb); 1659 if( !zSql ){ 1660 return SQLITE_NOMEM; 1661 } 1662 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); 1663 sqlite3DbFree(db, zSql); 1664 if( rc ) return rc; 1665 1666 while( sqlite3_step(pStmt)==SQLITE_ROW ){ 1667 char *zIndex; /* Index name */ 1668 Index *pIdx; /* Pointer to the index object */ 1669 int nCol = 1; /* Number of columns in index */ 1670 1671 zIndex = (char *)sqlite3_column_text(pStmt, 0); 1672 if( zIndex==0 ) continue; 1673 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); 1674 if( pIdx==0 ) continue; 1675 /* This next condition is true if data has already been loaded from 1676 ** the sqlite_stat4 table. In this case ignore stat3 data. */ 1677 nCol = pIdx->nSampleCol; 1678 if( bStat3 && nCol>1 ) continue; 1679 if( pIdx!=pPrevIdx ){ 1680 initAvgEq(pPrevIdx); 1681 pPrevIdx = pIdx; 1682 } 1683 pSample = &pIdx->aSample[pIdx->nSample]; 1684 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); 1685 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); 1686 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); 1687 1688 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. 1689 ** This is in case the sample record is corrupted. In that case, the 1690 ** sqlite3VdbeRecordCompare() may read up to two varints past the 1691 ** end of the allocated buffer before it realizes it is dealing with 1692 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing 1693 ** a buffer overread. */ 1694 pSample->n = sqlite3_column_bytes(pStmt, 4); 1695 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); 1696 if( pSample->p==0 ){ 1697 sqlite3_finalize(pStmt); 1698 return SQLITE_NOMEM; 1699 } 1700 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); 1701 pIdx->nSample++; 1702 } 1703 rc = sqlite3_finalize(pStmt); 1704 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); 1705 return rc; 1706 } 1707 1708 /* 1709 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into 1710 ** the Index.aSample[] arrays of all indices. 1711 */ 1712 static int loadStat4(sqlite3 *db, const char *zDb){ 1713 int rc = SQLITE_OK; /* Result codes from subroutines */ 1714 1715 assert( db->lookaside.bEnabled==0 ); 1716 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ 1717 rc = loadStatTbl(db, 0, 1718 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", 1719 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", 1720 zDb 1721 ); 1722 } 1723 1724 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ 1725 rc = loadStatTbl(db, 1, 1726 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", 1727 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", 1728 zDb 1729 ); 1730 } 1731 1732 return rc; 1733 } 1734 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1735 1736 /* 1737 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The 1738 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] 1739 ** arrays. The contents of sqlite_stat3/4 are used to populate the 1740 ** Index.aSample[] arrays. 1741 ** 1742 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR 1743 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined 1744 ** during compilation and the sqlite_stat3/4 table is present, no data is 1745 ** read from it. 1746 ** 1747 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the 1748 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is 1749 ** returned. However, in this case, data is read from the sqlite_stat1 1750 ** table (if it is present) before returning. 1751 ** 1752 ** If an OOM error occurs, this function always sets db->mallocFailed. 1753 ** This means if the caller does not care about other errors, the return 1754 ** code may be ignored. 1755 */ 1756 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ 1757 analysisInfo sInfo; 1758 HashElem *i; 1759 char *zSql; 1760 int rc; 1761 1762 assert( iDb>=0 && iDb<db->nDb ); 1763 assert( db->aDb[iDb].pBt!=0 ); 1764 1765 /* Clear any prior statistics */ 1766 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1767 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ 1768 Index *pIdx = sqliteHashData(i); 1769 sqlite3DefaultRowEst(pIdx); 1770 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1771 sqlite3DeleteIndexSamples(db, pIdx); 1772 pIdx->aSample = 0; 1773 #endif 1774 } 1775 1776 /* Check to make sure the sqlite_stat1 table exists */ 1777 sInfo.db = db; 1778 sInfo.zDatabase = db->aDb[iDb].zName; 1779 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ 1780 return SQLITE_ERROR; 1781 } 1782 1783 /* Load new statistics out of the sqlite_stat1 table */ 1784 zSql = sqlite3MPrintf(db, 1785 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); 1786 if( zSql==0 ){ 1787 rc = SQLITE_NOMEM; 1788 }else{ 1789 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); 1790 sqlite3DbFree(db, zSql); 1791 } 1792 1793 1794 /* Load the statistics from the sqlite_stat4 table. */ 1795 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1796 if( rc==SQLITE_OK ){ 1797 int lookasideEnabled = db->lookaside.bEnabled; 1798 db->lookaside.bEnabled = 0; 1799 rc = loadStat4(db, sInfo.zDatabase); 1800 db->lookaside.bEnabled = lookasideEnabled; 1801 } 1802 #endif 1803 1804 if( rc==SQLITE_NOMEM ){ 1805 db->mallocFailed = 1; 1806 } 1807 return rc; 1808 } 1809 1810 1811 #endif /* SQLITE_OMIT_ANALYZE */ 1812