xref: /sqlite-3.40.0/src/analyze.c (revision 42d3d37a)
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
13 **
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices.  These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
17 **
18 ** The following system tables are or have been supported:
19 **
20 **    CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 **    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 **    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 **    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
24 **
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2.  The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later.  It is
35 ** not possible to enable both STAT3 and STAT4 at the same time.  If they
36 ** are both enabled, then STAT4 takes precedence.
37 **
38 ** For most applications, sqlite_stat1 provides all the statisics required
39 ** for the query planner to make good choices.
40 **
41 ** Format of sqlite_stat1:
42 **
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column.  The tbl column is the name of the table to
45 ** which the index belongs.  In each such row, the stat column will be
46 ** a string consisting of a list of integers.  The first integer in this
47 ** list is the number of rows in the index.  (This is the same as the
48 ** number of rows in the table, except for partial indices.)  The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index.  The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns.  The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns.  For
54 ** a K-column index, there will be K+1 integers in the stat column.  If
55 ** the index is unique, then the last integer will be 1.
56 **
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered".  The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space.  If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
66 **
67 ** Format of sqlite_stat2:
68 **
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
72 ** about the distribution of keys within an index.  The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs.  There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
76 **
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index.  Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
82 **
83 **     rownumber = (i*C*2 + C)/(S*2)
84 **
85 ** For i between 0 and S-1.  Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
87 **
88 ** The format for sqlite_stat2 is recorded here for legacy reference.  This
89 ** version of SQLite does not support sqlite_stat2.  It neither reads nor
90 ** writes the sqlite_stat2 table.  This version of SQLite only supports
91 ** sqlite_stat3.
92 **
93 ** Format for sqlite_stat3:
94 **
95 ** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
96 ** sqlite_stat4 format will be described first.  Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
98 **
99 ** Format for sqlite_stat4:
100 **
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
105 **
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index.  If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
110 ** binary encoding of a key from the index.  The nEq column is a
111 ** list of integers.  The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample.  The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth.  nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample.  The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample.  The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
125 **
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
131 **
132 ** Format for sqlite_stat3 redux:
133 **
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index.  The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
141 */
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
144 
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4     1
147 # define IsStat3     0
148 #elif defined(SQLITE_ENABLE_STAT3)
149 # define IsStat4     0
150 # define IsStat3     1
151 #else
152 # define IsStat4     0
153 # define IsStat3     0
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
156 #endif
157 #define IsStat34    (IsStat3+IsStat4)  /* 1 for STAT3 or STAT4. 0 otherwise */
158 
159 /*
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
162 ** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
164 **
165 ** If the sqlite_statN tables do not previously exist, it is created.
166 **
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
171 */
172 static void openStatTable(
173   Parse *pParse,          /* Parsing context */
174   int iDb,                /* The database we are looking in */
175   int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
176   const char *zWhere,     /* Delete entries for this table or index */
177   const char *zWhereType  /* Either "tbl" or "idx" */
178 ){
179   static const struct {
180     const char *zName;
181     const char *zCols;
182   } aTable[] = {
183     { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185     { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186     { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188     { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189     { "sqlite_stat4", 0 },
190 #else
191     { "sqlite_stat3", 0 },
192     { "sqlite_stat4", 0 },
193 #endif
194   };
195   int i;
196   sqlite3 *db = pParse->db;
197   Db *pDb;
198   Vdbe *v = sqlite3GetVdbe(pParse);
199   int aRoot[ArraySize(aTable)];
200   u8 aCreateTbl[ArraySize(aTable)];
201 
202   if( v==0 ) return;
203   assert( sqlite3BtreeHoldsAllMutexes(db) );
204   assert( sqlite3VdbeDb(v)==db );
205   pDb = &db->aDb[iDb];
206 
207   /* Create new statistic tables if they do not exist, or clear them
208   ** if they do already exist.
209   */
210   for(i=0; i<ArraySize(aTable); i++){
211     const char *zTab = aTable[i].zName;
212     Table *pStat;
213     if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
214       if( aTable[i].zCols ){
215         /* The sqlite_statN table does not exist. Create it. Note that a
216         ** side-effect of the CREATE TABLE statement is to leave the rootpage
217         ** of the new table in register pParse->regRoot. This is important
218         ** because the OpenWrite opcode below will be needing it. */
219         sqlite3NestedParse(pParse,
220             "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
221         );
222         aRoot[i] = pParse->regRoot;
223         aCreateTbl[i] = OPFLAG_P2ISREG;
224       }
225     }else{
226       /* The table already exists. If zWhere is not NULL, delete all entries
227       ** associated with the table zWhere. If zWhere is NULL, delete the
228       ** entire contents of the table. */
229       aRoot[i] = pStat->tnum;
230       aCreateTbl[i] = 0;
231       sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
232       if( zWhere ){
233         sqlite3NestedParse(pParse,
234            "DELETE FROM %Q.%s WHERE %s=%Q",
235            pDb->zName, zTab, zWhereType, zWhere
236         );
237       }else{
238         /* The sqlite_stat[134] table already exists.  Delete all rows. */
239         sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
240       }
241     }
242   }
243 
244   /* Open the sqlite_stat[134] tables for writing. */
245   for(i=0; aTable[i].zCols; i++){
246     assert( i<ArraySize(aTable) );
247     sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
248     sqlite3VdbeChangeP5(v, aCreateTbl[i]);
249     VdbeComment((v, aTable[i].zName));
250   }
251 }
252 
253 /*
254 ** Recommended number of samples for sqlite_stat4
255 */
256 #ifndef SQLITE_STAT4_SAMPLES
257 # define SQLITE_STAT4_SAMPLES 24
258 #endif
259 
260 /*
261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
262 ** share an instance of the following structure to hold their state
263 ** information.
264 */
265 typedef struct Stat4Accum Stat4Accum;
266 typedef struct Stat4Sample Stat4Sample;
267 struct Stat4Sample {
268   tRowcnt *anEq;                  /* sqlite_stat4.nEq */
269   tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
271   tRowcnt *anLt;                  /* sqlite_stat4.nLt */
272   union {
273     i64 iRowid;                     /* Rowid in main table of the key */
274     u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
275   } u;
276   u32 nRowid;                     /* Sizeof aRowid[] */
277   u8 isPSample;                   /* True if a periodic sample */
278   int iCol;                       /* If !isPSample, the reason for inclusion */
279   u32 iHash;                      /* Tiebreaker hash */
280 #endif
281 };
282 struct Stat4Accum {
283   tRowcnt nRow;             /* Number of rows in the entire table */
284   tRowcnt nPSample;         /* How often to do a periodic sample */
285   int nCol;                 /* Number of columns in index + pk/rowid */
286   int nKeyCol;              /* Number of index columns w/o the pk/rowid */
287   int mxSample;             /* Maximum number of samples to accumulate */
288   Stat4Sample current;      /* Current row as a Stat4Sample */
289   u32 iPrn;                 /* Pseudo-random number used for sampling */
290   Stat4Sample *aBest;       /* Array of nCol best samples */
291   int iMin;                 /* Index in a[] of entry with minimum score */
292   int nSample;              /* Current number of samples */
293   int iGet;                 /* Index of current sample accessed by stat_get() */
294   Stat4Sample *a;           /* Array of mxSample Stat4Sample objects */
295   sqlite3 *db;              /* Database connection, for malloc() */
296 };
297 
298 /* Reclaim memory used by a Stat4Sample
299 */
300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
301 static void sampleClear(sqlite3 *db, Stat4Sample *p){
302   assert( db!=0 );
303   if( p->nRowid ){
304     sqlite3DbFree(db, p->u.aRowid);
305     p->nRowid = 0;
306   }
307 }
308 #endif
309 
310 /* Initialize the BLOB value of a ROWID
311 */
312 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
313 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
314   assert( db!=0 );
315   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
316   p->u.aRowid = sqlite3DbMallocRaw(db, n);
317   if( p->u.aRowid ){
318     p->nRowid = n;
319     memcpy(p->u.aRowid, pData, n);
320   }else{
321     p->nRowid = 0;
322   }
323 }
324 #endif
325 
326 /* Initialize the INTEGER value of a ROWID.
327 */
328 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
329 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
330   assert( db!=0 );
331   if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
332   p->nRowid = 0;
333   p->u.iRowid = iRowid;
334 }
335 #endif
336 
337 
338 /*
339 ** Copy the contents of object (*pFrom) into (*pTo).
340 */
341 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
342 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
343   pTo->isPSample = pFrom->isPSample;
344   pTo->iCol = pFrom->iCol;
345   pTo->iHash = pFrom->iHash;
346   memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
347   memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
348   memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
349   if( pFrom->nRowid ){
350     sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
351   }else{
352     sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
353   }
354 }
355 #endif
356 
357 /*
358 ** Reclaim all memory of a Stat4Accum structure.
359 */
360 static void stat4Destructor(void *pOld){
361   Stat4Accum *p = (Stat4Accum*)pOld;
362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
363   int i;
364   for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
365   for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
366   sampleClear(p->db, &p->current);
367 #endif
368   sqlite3DbFree(p->db, p);
369 }
370 
371 /*
372 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
373 ** are:
374 **     N:    The number of columns in the index including the rowid/pk
375 **     K:    The number of columns in the index excluding the rowid/pk
376 **     C:    The number of rows in the index
377 **
378 ** C is only used for STAT3 and STAT4.
379 **
380 ** For ordinary rowid tables, N==K+1.  But for WITHOUT ROWID tables,
381 ** N=K+P where P is the number of columns in the primary key.  For the
382 ** covering index that implements the original WITHOUT ROWID table, N==K.
383 **
384 ** This routine allocates the Stat4Accum object in heap memory. The return
385 ** value is a pointer to the the Stat4Accum object encoded as a blob (i.e.
386 ** the size of the blob is sizeof(void*) bytes).
387 */
388 static void statInit(
389   sqlite3_context *context,
390   int argc,
391   sqlite3_value **argv
392 ){
393   Stat4Accum *p;
394   int nCol;                       /* Number of columns in index being sampled */
395   int nKeyCol;                    /* Number of key columns */
396   int nColUp;                     /* nCol rounded up for alignment */
397   int n;                          /* Bytes of space to allocate */
398   sqlite3 *db;                    /* Database connection */
399 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
400   int mxSample = SQLITE_STAT4_SAMPLES;
401 #endif
402 
403   /* Decode the three function arguments */
404   UNUSED_PARAMETER(argc);
405   nCol = sqlite3_value_int(argv[0]);
406   assert( nCol>0 );
407   nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
408   nKeyCol = sqlite3_value_int(argv[1]);
409   assert( nKeyCol<=nCol );
410   assert( nKeyCol>0 );
411 
412   /* Allocate the space required for the Stat4Accum object */
413   n = sizeof(*p)
414     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anEq */
415     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anDLt */
416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
417     + sizeof(tRowcnt)*nColUp                  /* Stat4Accum.anLt */
418     + sizeof(Stat4Sample)*(nCol+mxSample)     /* Stat4Accum.aBest[], a[] */
419     + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
420 #endif
421   ;
422   db = sqlite3_context_db_handle(context);
423   p = sqlite3DbMallocZero(db, n);
424   if( p==0 ){
425     sqlite3_result_error_nomem(context);
426     return;
427   }
428 
429   p->db = db;
430   p->nRow = 0;
431   p->nCol = nCol;
432   p->nKeyCol = nKeyCol;
433   p->current.anDLt = (tRowcnt*)&p[1];
434   p->current.anEq = &p->current.anDLt[nColUp];
435 
436 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
437   {
438     u8 *pSpace;                     /* Allocated space not yet assigned */
439     int i;                          /* Used to iterate through p->aSample[] */
440 
441     p->iGet = -1;
442     p->mxSample = mxSample;
443     p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
444     p->current.anLt = &p->current.anEq[nColUp];
445     p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565;
446 
447     /* Set up the Stat4Accum.a[] and aBest[] arrays */
448     p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
449     p->aBest = &p->a[mxSample];
450     pSpace = (u8*)(&p->a[mxSample+nCol]);
451     for(i=0; i<(mxSample+nCol); i++){
452       p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
453       p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
454       p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
455     }
456     assert( (pSpace - (u8*)p)==n );
457 
458     for(i=0; i<nCol; i++){
459       p->aBest[i].iCol = i;
460     }
461   }
462 #endif
463 
464   /* Return a pointer to the allocated object to the caller */
465   sqlite3_result_blob(context, p, sizeof(p), stat4Destructor);
466 }
467 static const FuncDef statInitFuncdef = {
468   2+IsStat34,      /* nArg */
469   SQLITE_UTF8,     /* funcFlags */
470   0,               /* pUserData */
471   0,               /* pNext */
472   statInit,        /* xFunc */
473   0,               /* xStep */
474   0,               /* xFinalize */
475   "stat_init",     /* zName */
476   0,               /* pHash */
477   0                /* pDestructor */
478 };
479 
480 #ifdef SQLITE_ENABLE_STAT4
481 /*
482 ** pNew and pOld are both candidate non-periodic samples selected for
483 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
484 ** considering only any trailing columns and the sample hash value, this
485 ** function returns true if sample pNew is to be preferred over pOld.
486 ** In other words, if we assume that the cardinalities of the selected
487 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
488 **
489 ** This function assumes that for each argument sample, the contents of
490 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
491 */
492 static int sampleIsBetterPost(
493   Stat4Accum *pAccum,
494   Stat4Sample *pNew,
495   Stat4Sample *pOld
496 ){
497   int nCol = pAccum->nCol;
498   int i;
499   assert( pNew->iCol==pOld->iCol );
500   for(i=pNew->iCol+1; i<nCol; i++){
501     if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
502     if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
503   }
504   if( pNew->iHash>pOld->iHash ) return 1;
505   return 0;
506 }
507 #endif
508 
509 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
510 /*
511 ** Return true if pNew is to be preferred over pOld.
512 **
513 ** This function assumes that for each argument sample, the contents of
514 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
515 */
516 static int sampleIsBetter(
517   Stat4Accum *pAccum,
518   Stat4Sample *pNew,
519   Stat4Sample *pOld
520 ){
521   tRowcnt nEqNew = pNew->anEq[pNew->iCol];
522   tRowcnt nEqOld = pOld->anEq[pOld->iCol];
523 
524   assert( pOld->isPSample==0 && pNew->isPSample==0 );
525   assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
526 
527   if( (nEqNew>nEqOld) ) return 1;
528 #ifdef SQLITE_ENABLE_STAT4
529   if( nEqNew==nEqOld ){
530     if( pNew->iCol<pOld->iCol ) return 1;
531     return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
532   }
533   return 0;
534 #else
535   return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
536 #endif
537 }
538 
539 /*
540 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
541 ** remove the least desirable sample from p->a[] to make room.
542 */
543 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
544   Stat4Sample *pSample = 0;
545   int i;
546 
547   assert( IsStat4 || nEqZero==0 );
548 
549 #ifdef SQLITE_ENABLE_STAT4
550   if( pNew->isPSample==0 ){
551     Stat4Sample *pUpgrade = 0;
552     assert( pNew->anEq[pNew->iCol]>0 );
553 
554     /* This sample is being added because the prefix that ends in column
555     ** iCol occurs many times in the table. However, if we have already
556     ** added a sample that shares this prefix, there is no need to add
557     ** this one. Instead, upgrade the priority of the highest priority
558     ** existing sample that shares this prefix.  */
559     for(i=p->nSample-1; i>=0; i--){
560       Stat4Sample *pOld = &p->a[i];
561       if( pOld->anEq[pNew->iCol]==0 ){
562         if( pOld->isPSample ) return;
563         assert( pOld->iCol>pNew->iCol );
564         assert( sampleIsBetter(p, pNew, pOld) );
565         if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
566           pUpgrade = pOld;
567         }
568       }
569     }
570     if( pUpgrade ){
571       pUpgrade->iCol = pNew->iCol;
572       pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
573       goto find_new_min;
574     }
575   }
576 #endif
577 
578   /* If necessary, remove sample iMin to make room for the new sample. */
579   if( p->nSample>=p->mxSample ){
580     Stat4Sample *pMin = &p->a[p->iMin];
581     tRowcnt *anEq = pMin->anEq;
582     tRowcnt *anLt = pMin->anLt;
583     tRowcnt *anDLt = pMin->anDLt;
584     sampleClear(p->db, pMin);
585     memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
586     pSample = &p->a[p->nSample-1];
587     pSample->nRowid = 0;
588     pSample->anEq = anEq;
589     pSample->anDLt = anDLt;
590     pSample->anLt = anLt;
591     p->nSample = p->mxSample-1;
592   }
593 
594   /* The "rows less-than" for the rowid column must be greater than that
595   ** for the last sample in the p->a[] array. Otherwise, the samples would
596   ** be out of order. */
597 #ifdef SQLITE_ENABLE_STAT4
598   assert( p->nSample==0
599        || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
600 #endif
601 
602   /* Insert the new sample */
603   pSample = &p->a[p->nSample];
604   sampleCopy(p, pSample, pNew);
605   p->nSample++;
606 
607   /* Zero the first nEqZero entries in the anEq[] array. */
608   memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
609 
610 #ifdef SQLITE_ENABLE_STAT4
611  find_new_min:
612 #endif
613   if( p->nSample>=p->mxSample ){
614     int iMin = -1;
615     for(i=0; i<p->mxSample; i++){
616       if( p->a[i].isPSample ) continue;
617       if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
618         iMin = i;
619       }
620     }
621     assert( iMin>=0 );
622     p->iMin = iMin;
623   }
624 }
625 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
626 
627 /*
628 ** Field iChng of the index being scanned has changed. So at this point
629 ** p->current contains a sample that reflects the previous row of the
630 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
631 ** correct at this point.
632 */
633 static void samplePushPrevious(Stat4Accum *p, int iChng){
634 #ifdef SQLITE_ENABLE_STAT4
635   int i;
636 
637   /* Check if any samples from the aBest[] array should be pushed
638   ** into IndexSample.a[] at this point.  */
639   for(i=(p->nCol-2); i>=iChng; i--){
640     Stat4Sample *pBest = &p->aBest[i];
641     pBest->anEq[i] = p->current.anEq[i];
642     if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
643       sampleInsert(p, pBest, i);
644     }
645   }
646 
647   /* Update the anEq[] fields of any samples already collected. */
648   for(i=p->nSample-1; i>=0; i--){
649     int j;
650     for(j=iChng; j<p->nCol; j++){
651       if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
652     }
653   }
654 #endif
655 
656 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
657   if( iChng==0 ){
658     tRowcnt nLt = p->current.anLt[0];
659     tRowcnt nEq = p->current.anEq[0];
660 
661     /* Check if this is to be a periodic sample. If so, add it. */
662     if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
663       p->current.isPSample = 1;
664       sampleInsert(p, &p->current, 0);
665       p->current.isPSample = 0;
666     }else
667 
668     /* Or if it is a non-periodic sample. Add it in this case too. */
669     if( p->nSample<p->mxSample
670      || sampleIsBetter(p, &p->current, &p->a[p->iMin])
671     ){
672       sampleInsert(p, &p->current, 0);
673     }
674   }
675 #endif
676 
677 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
678   UNUSED_PARAMETER( p );
679   UNUSED_PARAMETER( iChng );
680 #endif
681 }
682 
683 /*
684 ** Implementation of the stat_push SQL function:  stat_push(P,C,R)
685 ** Arguments:
686 **
687 **    P     Pointer to the Stat4Accum object created by stat_init()
688 **    C     Index of left-most column to differ from previous row
689 **    R     Rowid for the current row.  Might be a key record for
690 **          WITHOUT ROWID tables.
691 **
692 ** The SQL function always returns NULL.
693 **
694 ** The R parameter is only used for STAT3 and STAT4
695 */
696 static void statPush(
697   sqlite3_context *context,
698   int argc,
699   sqlite3_value **argv
700 ){
701   int i;
702 
703   /* The three function arguments */
704   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
705   int iChng = sqlite3_value_int(argv[1]);
706 
707   UNUSED_PARAMETER( argc );
708   UNUSED_PARAMETER( context );
709   assert( p->nCol>0 );
710   assert( iChng<p->nCol );
711 
712   if( p->nRow==0 ){
713     /* This is the first call to this function. Do initialization. */
714     for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
715   }else{
716     /* Second and subsequent calls get processed here */
717     samplePushPrevious(p, iChng);
718 
719     /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
720     ** to the current row of the index. */
721     for(i=0; i<iChng; i++){
722       p->current.anEq[i]++;
723     }
724     for(i=iChng; i<p->nCol; i++){
725       p->current.anDLt[i]++;
726 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
727       p->current.anLt[i] += p->current.anEq[i];
728 #endif
729       p->current.anEq[i] = 1;
730     }
731   }
732   p->nRow++;
733 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
734   if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
735     sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
736   }else{
737     sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
738                                        sqlite3_value_blob(argv[2]));
739   }
740   p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
741 #endif
742 
743 #ifdef SQLITE_ENABLE_STAT4
744   {
745     tRowcnt nLt = p->current.anLt[p->nCol-1];
746 
747     /* Check if this is to be a periodic sample. If so, add it. */
748     if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
749       p->current.isPSample = 1;
750       p->current.iCol = 0;
751       sampleInsert(p, &p->current, p->nCol-1);
752       p->current.isPSample = 0;
753     }
754 
755     /* Update the aBest[] array. */
756     for(i=0; i<(p->nCol-1); i++){
757       p->current.iCol = i;
758       if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
759         sampleCopy(p, &p->aBest[i], &p->current);
760       }
761     }
762   }
763 #endif
764 }
765 static const FuncDef statPushFuncdef = {
766   2+IsStat34,      /* nArg */
767   SQLITE_UTF8,     /* funcFlags */
768   0,               /* pUserData */
769   0,               /* pNext */
770   statPush,        /* xFunc */
771   0,               /* xStep */
772   0,               /* xFinalize */
773   "stat_push",     /* zName */
774   0,               /* pHash */
775   0                /* pDestructor */
776 };
777 
778 #define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
779 #define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
780 #define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
781 #define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
782 #define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */
783 
784 /*
785 ** Implementation of the stat_get(P,J) SQL function.  This routine is
786 ** used to query the results.  Content is returned for parameter J
787 ** which is one of the STAT_GET_xxxx values defined above.
788 **
789 ** If neither STAT3 nor STAT4 are enabled, then J is always
790 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
791 ** a one-parameter function, stat_get(P), that always returns the
792 ** stat1 table entry information.
793 */
794 static void statGet(
795   sqlite3_context *context,
796   int argc,
797   sqlite3_value **argv
798 ){
799   Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
800 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
801   /* STAT3 and STAT4 have a parameter on this routine. */
802   int eCall = sqlite3_value_int(argv[1]);
803   assert( argc==2 );
804   assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
805        || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
806        || eCall==STAT_GET_NDLT
807   );
808   if( eCall==STAT_GET_STAT1 )
809 #else
810   assert( argc==1 );
811 #endif
812   {
813     /* Return the value to store in the "stat" column of the sqlite_stat1
814     ** table for this index.
815     **
816     ** The value is a string composed of a list of integers describing
817     ** the index. The first integer in the list is the total number of
818     ** entries in the index. There is one additional integer in the list
819     ** for each indexed column. This additional integer is an estimate of
820     ** the number of rows matched by a stabbing query on the index using
821     ** a key with the corresponding number of fields. In other words,
822     ** if the index is on columns (a,b) and the sqlite_stat1 value is
823     ** "100 10 2", then SQLite estimates that:
824     **
825     **   * the index contains 100 rows,
826     **   * "WHERE a=?" matches 10 rows, and
827     **   * "WHERE a=? AND b=?" matches 2 rows.
828     **
829     ** If D is the count of distinct values and K is the total number of
830     ** rows, then each estimate is computed as:
831     **
832     **        I = (K+D-1)/D
833     */
834     char *z;
835     int i;
836 
837     char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
838     if( zRet==0 ){
839       sqlite3_result_error_nomem(context);
840       return;
841     }
842 
843     sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
844     z = zRet + sqlite3Strlen30(zRet);
845     for(i=0; i<p->nKeyCol; i++){
846       u64 nDistinct = p->current.anDLt[i] + 1;
847       u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
848       sqlite3_snprintf(24, z, " %llu", iVal);
849       z += sqlite3Strlen30(z);
850       assert( p->current.anEq[i] );
851     }
852     assert( z[0]=='\0' && z>zRet );
853 
854     sqlite3_result_text(context, zRet, -1, sqlite3_free);
855   }
856 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
857   else if( eCall==STAT_GET_ROWID ){
858     if( p->iGet<0 ){
859       samplePushPrevious(p, 0);
860       p->iGet = 0;
861     }
862     if( p->iGet<p->nSample ){
863       Stat4Sample *pS = p->a + p->iGet;
864       if( pS->nRowid==0 ){
865         sqlite3_result_int64(context, pS->u.iRowid);
866       }else{
867         sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
868                             SQLITE_TRANSIENT);
869       }
870     }
871   }else{
872     tRowcnt *aCnt = 0;
873 
874     assert( p->iGet<p->nSample );
875     switch( eCall ){
876       case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
877       case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
878       default: {
879         aCnt = p->a[p->iGet].anDLt;
880         p->iGet++;
881         break;
882       }
883     }
884 
885     if( IsStat3 ){
886       sqlite3_result_int64(context, (i64)aCnt[0]);
887     }else{
888       char *zRet = sqlite3MallocZero(p->nCol * 25);
889       if( zRet==0 ){
890         sqlite3_result_error_nomem(context);
891       }else{
892         int i;
893         char *z = zRet;
894         for(i=0; i<p->nCol; i++){
895           sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
896           z += sqlite3Strlen30(z);
897         }
898         assert( z[0]=='\0' && z>zRet );
899         z[-1] = '\0';
900         sqlite3_result_text(context, zRet, -1, sqlite3_free);
901       }
902     }
903   }
904 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
905 #ifndef SQLITE_DEBUG
906   UNUSED_PARAMETER( argc );
907 #endif
908 }
909 static const FuncDef statGetFuncdef = {
910   1+IsStat34,      /* nArg */
911   SQLITE_UTF8,     /* funcFlags */
912   0,               /* pUserData */
913   0,               /* pNext */
914   statGet,         /* xFunc */
915   0,               /* xStep */
916   0,               /* xFinalize */
917   "stat_get",      /* zName */
918   0,               /* pHash */
919   0                /* pDestructor */
920 };
921 
922 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
923   assert( regOut!=regStat4 && regOut!=regStat4+1 );
924 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
925   sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
926 #elif SQLITE_DEBUG
927   assert( iParam==STAT_GET_STAT1 );
928 #else
929   UNUSED_PARAMETER( iParam );
930 #endif
931   sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut);
932   sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF);
933   sqlite3VdbeChangeP5(v, 1 + IsStat34);
934 }
935 
936 /*
937 ** Generate code to do an analysis of all indices associated with
938 ** a single table.
939 */
940 static void analyzeOneTable(
941   Parse *pParse,   /* Parser context */
942   Table *pTab,     /* Table whose indices are to be analyzed */
943   Index *pOnlyIdx, /* If not NULL, only analyze this one index */
944   int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
945   int iMem,        /* Available memory locations begin here */
946   int iTab         /* Next available cursor */
947 ){
948   sqlite3 *db = pParse->db;    /* Database handle */
949   Index *pIdx;                 /* An index to being analyzed */
950   int iIdxCur;                 /* Cursor open on index being analyzed */
951   int iTabCur;                 /* Table cursor */
952   Vdbe *v;                     /* The virtual machine being built up */
953   int i;                       /* Loop counter */
954   int jZeroRows = -1;          /* Jump from here if number of rows is zero */
955   int iDb;                     /* Index of database containing pTab */
956   u8 needTableCnt = 1;         /* True to count the table */
957   int regNewRowid = iMem++;    /* Rowid for the inserted record */
958   int regStat4 = iMem++;       /* Register to hold Stat4Accum object */
959   int regChng = iMem++;        /* Index of changed index field */
960 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
961   int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
962 #endif
963   int regTemp = iMem++;        /* Temporary use register */
964   int regTabname = iMem++;     /* Register containing table name */
965   int regIdxname = iMem++;     /* Register containing index name */
966   int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
967   int regPrev = iMem;          /* MUST BE LAST (see below) */
968 
969   pParse->nMem = MAX(pParse->nMem, iMem);
970   v = sqlite3GetVdbe(pParse);
971   if( v==0 || NEVER(pTab==0) ){
972     return;
973   }
974   if( pTab->tnum==0 ){
975     /* Do not gather statistics on views or virtual tables */
976     return;
977   }
978   if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
979     /* Do not gather statistics on system tables */
980     return;
981   }
982   assert( sqlite3BtreeHoldsAllMutexes(db) );
983   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
984   assert( iDb>=0 );
985   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
986 #ifndef SQLITE_OMIT_AUTHORIZATION
987   if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
988       db->aDb[iDb].zName ) ){
989     return;
990   }
991 #endif
992 
993   /* Establish a read-lock on the table at the shared-cache level.
994   ** Open a read-only cursor on the table. Also allocate a cursor number
995   ** to use for scanning indexes (iIdxCur). No index cursor is opened at
996   ** this time though.  */
997   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
998   iTabCur = iTab++;
999   iIdxCur = iTab++;
1000   pParse->nTab = MAX(pParse->nTab, iTab);
1001   sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1002   sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
1003 
1004   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1005     int nCol;                     /* Number of columns indexed by pIdx */
1006     int *aGotoChng;               /* Array of jump instruction addresses */
1007     int addrRewind;               /* Address of "OP_Rewind iIdxCur" */
1008     int addrGotoChng0;            /* Address of "Goto addr_chng_0" */
1009     int addrNextRow;              /* Address of "next_row:" */
1010     const char *zIdxName;         /* Name of the index */
1011 
1012     if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1013     if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1014     if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1015       nCol = pIdx->nKeyCol;
1016       zIdxName = pTab->zName;
1017     }else{
1018       nCol = pIdx->nColumn;
1019       zIdxName = pIdx->zName;
1020     }
1021     aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*(nCol+1));
1022     if( aGotoChng==0 ) continue;
1023 
1024     /* Populate the register containing the index name. */
1025     sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0);
1026     VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1027 
1028     /*
1029     ** Pseudo-code for loop that calls stat_push():
1030     **
1031     **   Rewind csr
1032     **   if eof(csr) goto end_of_scan;
1033     **   regChng = 0
1034     **   goto chng_addr_0;
1035     **
1036     **  next_row:
1037     **   regChng = 0
1038     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1039     **   regChng = 1
1040     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1041     **   ...
1042     **   regChng = N
1043     **   goto chng_addr_N
1044     **
1045     **  chng_addr_0:
1046     **   regPrev(0) = idx(0)
1047     **  chng_addr_1:
1048     **   regPrev(1) = idx(1)
1049     **  ...
1050     **
1051     **  chng_addr_N:
1052     **   regRowid = idx(rowid)
1053     **   stat_push(P, regChng, regRowid)
1054     **   Next csr
1055     **   if !eof(csr) goto next_row;
1056     **
1057     **  end_of_scan:
1058     */
1059 
1060     /* Make sure there are enough memory cells allocated to accommodate
1061     ** the regPrev array and a trailing rowid (the rowid slot is required
1062     ** when building a record to insert into the sample column of
1063     ** the sqlite_stat4 table.  */
1064     pParse->nMem = MAX(pParse->nMem, regPrev+nCol);
1065 
1066     /* Open a read-only cursor on the index being analyzed. */
1067     assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1068     sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1069     sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1070     VdbeComment((v, "%s", pIdx->zName));
1071 
1072     /* Invoke the stat_init() function. The arguments are:
1073     **
1074     **    (1) the number of columns in the index including the rowid,
1075     **    (2) the number of rows in the index,
1076     **
1077     ** The second argument is only used for STAT3 and STAT4
1078     */
1079 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1080     sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
1081 #endif
1082     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
1083     sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
1084     sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4);
1085     sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF);
1086     sqlite3VdbeChangeP5(v, 2+IsStat34);
1087 
1088     /* Implementation of the following:
1089     **
1090     **   Rewind csr
1091     **   if eof(csr) goto end_of_scan;
1092     **   regChng = 0
1093     **   goto next_push_0;
1094     **
1095     */
1096     addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1097     VdbeCoverage(v);
1098     sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1099     addrGotoChng0 = sqlite3VdbeAddOp0(v, OP_Goto);
1100 
1101     /*
1102     **  next_row:
1103     **   regChng = 0
1104     **   if( idx(0) != regPrev(0) ) goto chng_addr_0
1105     **   regChng = 1
1106     **   if( idx(1) != regPrev(1) ) goto chng_addr_1
1107     **   ...
1108     **   regChng = N
1109     **   goto chng_addr_N
1110     */
1111     addrNextRow = sqlite3VdbeCurrentAddr(v);
1112     for(i=0; i<nCol; i++){
1113       char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1114       sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1115       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1116       aGotoChng[i] =
1117       sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1118       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1119       VdbeCoverage(v);
1120     }
1121     sqlite3VdbeAddOp2(v, OP_Integer, nCol, regChng);
1122     aGotoChng[nCol] = sqlite3VdbeAddOp0(v, OP_Goto);
1123 
1124     /*
1125     **  chng_addr_0:
1126     **   regPrev(0) = idx(0)
1127     **  chng_addr_1:
1128     **   regPrev(1) = idx(1)
1129     **  ...
1130     */
1131     sqlite3VdbeJumpHere(v, addrGotoChng0);
1132     for(i=0; i<nCol; i++){
1133       sqlite3VdbeJumpHere(v, aGotoChng[i]);
1134       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1135     }
1136 
1137     /*
1138     **  chng_addr_N:
1139     **   regRowid = idx(rowid)            // STAT34 only
1140     **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT34 only
1141     **   Next csr
1142     **   if !eof(csr) goto next_row;
1143     */
1144     sqlite3VdbeJumpHere(v, aGotoChng[nCol]);
1145 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1146     assert( regRowid==(regStat4+2) );
1147     if( HasRowid(pTab) ){
1148       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1149     }else{
1150       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1151       int j, k, regKey;
1152       regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1153       for(j=0; j<pPk->nKeyCol; j++){
1154         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1155         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1156         VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1157       }
1158       sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1159       sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1160     }
1161 #endif
1162     assert( regChng==(regStat4+1) );
1163     sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp);
1164     sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF);
1165     sqlite3VdbeChangeP5(v, 2+IsStat34);
1166     sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1167 
1168     /* Add the entry to the stat1 table. */
1169     callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
1170     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
1171     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1172     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1173     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1174 
1175     /* Add the entries to the stat3 or stat4 table. */
1176 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1177     {
1178       int regEq = regStat1;
1179       int regLt = regStat1+1;
1180       int regDLt = regStat1+2;
1181       int regSample = regStat1+3;
1182       int regCol = regStat1+4;
1183       int regSampleRowid = regCol + nCol;
1184       int addrNext;
1185       int addrIsNull;
1186       u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1187 
1188       pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1189 
1190       addrNext = sqlite3VdbeCurrentAddr(v);
1191       callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
1192       addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1193       VdbeCoverage(v);
1194       callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
1195       callStatGet(v, regStat4, STAT_GET_NLT, regLt);
1196       callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
1197       sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1198       /* We know that the regSampleRowid row exists because it was read by
1199       ** the previous loop.  Thus the not-found jump of seekOp will never
1200       ** be taken */
1201       VdbeCoverageNeverTaken(v);
1202 #ifdef SQLITE_ENABLE_STAT3
1203       sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
1204                                       pIdx->aiColumn[0], regSample);
1205 #else
1206       for(i=0; i<nCol; i++){
1207         i16 iCol = pIdx->aiColumn[i];
1208         sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i);
1209       }
1210       sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1211 #endif
1212       sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1213       sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1214       sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1215       sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1216       sqlite3VdbeJumpHere(v, addrIsNull);
1217     }
1218 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1219 
1220     /* End of analysis */
1221     sqlite3VdbeJumpHere(v, addrRewind);
1222     sqlite3DbFree(db, aGotoChng);
1223   }
1224 
1225 
1226   /* Create a single sqlite_stat1 entry containing NULL as the index
1227   ** name and the row count as the content.
1228   */
1229   if( pOnlyIdx==0 && needTableCnt ){
1230     VdbeComment((v, "%s", pTab->zName));
1231     sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1232     jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1233     sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1234     sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "aaa", 0);
1235     sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1236     sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1237     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1238     sqlite3VdbeJumpHere(v, jZeroRows);
1239   }
1240 }
1241 
1242 
1243 /*
1244 ** Generate code that will cause the most recent index analysis to
1245 ** be loaded into internal hash tables where is can be used.
1246 */
1247 static void loadAnalysis(Parse *pParse, int iDb){
1248   Vdbe *v = sqlite3GetVdbe(pParse);
1249   if( v ){
1250     sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1251   }
1252 }
1253 
1254 /*
1255 ** Generate code that will do an analysis of an entire database
1256 */
1257 static void analyzeDatabase(Parse *pParse, int iDb){
1258   sqlite3 *db = pParse->db;
1259   Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
1260   HashElem *k;
1261   int iStatCur;
1262   int iMem;
1263   int iTab;
1264 
1265   sqlite3BeginWriteOperation(pParse, 0, iDb);
1266   iStatCur = pParse->nTab;
1267   pParse->nTab += 3;
1268   openStatTable(pParse, iDb, iStatCur, 0, 0);
1269   iMem = pParse->nMem+1;
1270   iTab = pParse->nTab;
1271   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1272   for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1273     Table *pTab = (Table*)sqliteHashData(k);
1274     analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1275   }
1276   loadAnalysis(pParse, iDb);
1277 }
1278 
1279 /*
1280 ** Generate code that will do an analysis of a single table in
1281 ** a database.  If pOnlyIdx is not NULL then it is a single index
1282 ** in pTab that should be analyzed.
1283 */
1284 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1285   int iDb;
1286   int iStatCur;
1287 
1288   assert( pTab!=0 );
1289   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1290   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1291   sqlite3BeginWriteOperation(pParse, 0, iDb);
1292   iStatCur = pParse->nTab;
1293   pParse->nTab += 3;
1294   if( pOnlyIdx ){
1295     openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1296   }else{
1297     openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1298   }
1299   analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1300   loadAnalysis(pParse, iDb);
1301 }
1302 
1303 /*
1304 ** Generate code for the ANALYZE command.  The parser calls this routine
1305 ** when it recognizes an ANALYZE command.
1306 **
1307 **        ANALYZE                            -- 1
1308 **        ANALYZE  <database>                -- 2
1309 **        ANALYZE  ?<database>.?<tablename>  -- 3
1310 **
1311 ** Form 1 causes all indices in all attached databases to be analyzed.
1312 ** Form 2 analyzes all indices the single database named.
1313 ** Form 3 analyzes all indices associated with the named table.
1314 */
1315 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1316   sqlite3 *db = pParse->db;
1317   int iDb;
1318   int i;
1319   char *z, *zDb;
1320   Table *pTab;
1321   Index *pIdx;
1322   Token *pTableName;
1323 
1324   /* Read the database schema. If an error occurs, leave an error message
1325   ** and code in pParse and return NULL. */
1326   assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1327   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1328     return;
1329   }
1330 
1331   assert( pName2!=0 || pName1==0 );
1332   if( pName1==0 ){
1333     /* Form 1:  Analyze everything */
1334     for(i=0; i<db->nDb; i++){
1335       if( i==1 ) continue;  /* Do not analyze the TEMP database */
1336       analyzeDatabase(pParse, i);
1337     }
1338   }else if( pName2->n==0 ){
1339     /* Form 2:  Analyze the database or table named */
1340     iDb = sqlite3FindDb(db, pName1);
1341     if( iDb>=0 ){
1342       analyzeDatabase(pParse, iDb);
1343     }else{
1344       z = sqlite3NameFromToken(db, pName1);
1345       if( z ){
1346         if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
1347           analyzeTable(pParse, pIdx->pTable, pIdx);
1348         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
1349           analyzeTable(pParse, pTab, 0);
1350         }
1351         sqlite3DbFree(db, z);
1352       }
1353     }
1354   }else{
1355     /* Form 3: Analyze the fully qualified table name */
1356     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1357     if( iDb>=0 ){
1358       zDb = db->aDb[iDb].zName;
1359       z = sqlite3NameFromToken(db, pTableName);
1360       if( z ){
1361         if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1362           analyzeTable(pParse, pIdx->pTable, pIdx);
1363         }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1364           analyzeTable(pParse, pTab, 0);
1365         }
1366         sqlite3DbFree(db, z);
1367       }
1368     }
1369   }
1370 }
1371 
1372 /*
1373 ** Used to pass information from the analyzer reader through to the
1374 ** callback routine.
1375 */
1376 typedef struct analysisInfo analysisInfo;
1377 struct analysisInfo {
1378   sqlite3 *db;
1379   const char *zDatabase;
1380 };
1381 
1382 /*
1383 ** The first argument points to a nul-terminated string containing a
1384 ** list of space separated integers. Read the first nOut of these into
1385 ** the array aOut[].
1386 */
1387 static void decodeIntArray(
1388   char *zIntArray,       /* String containing int array to decode */
1389   int nOut,              /* Number of slots in aOut[] */
1390   tRowcnt *aOut,         /* Store integers here */
1391   LogEst *aLog,          /* Or, if aOut==0, here */
1392   Index *pIndex          /* Handle extra flags for this index, if not NULL */
1393 ){
1394   char *z = zIntArray;
1395   int c;
1396   int i;
1397   tRowcnt v;
1398 
1399 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1400   if( z==0 ) z = "";
1401 #else
1402   if( NEVER(z==0) ) z = "";
1403 #endif
1404   for(i=0; *z && i<nOut; i++){
1405     v = 0;
1406     while( (c=z[0])>='0' && c<='9' ){
1407       v = v*10 + c - '0';
1408       z++;
1409     }
1410 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1411     if( aOut ){
1412       aOut[i] = v;
1413     }else
1414 #else
1415     assert( aOut==0 );
1416     UNUSED_PARAMETER(aOut);
1417 #endif
1418     {
1419       aLog[i] = sqlite3LogEst(v);
1420     }
1421     if( *z==' ' ) z++;
1422   }
1423 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1424   assert( pIndex!=0 );
1425 #else
1426   if( pIndex )
1427 #endif
1428   {
1429     if( strcmp(z, "unordered")==0 ){
1430       pIndex->bUnordered = 1;
1431     }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1432       int v32 = 0;
1433       sqlite3GetInt32(z+3, &v32);
1434       pIndex->szIdxRow = sqlite3LogEst(v32);
1435     }
1436   }
1437 }
1438 
1439 /*
1440 ** This callback is invoked once for each index when reading the
1441 ** sqlite_stat1 table.
1442 **
1443 **     argv[0] = name of the table
1444 **     argv[1] = name of the index (might be NULL)
1445 **     argv[2] = results of analysis - on integer for each column
1446 **
1447 ** Entries for which argv[1]==NULL simply record the number of rows in
1448 ** the table.
1449 */
1450 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1451   analysisInfo *pInfo = (analysisInfo*)pData;
1452   Index *pIndex;
1453   Table *pTable;
1454   const char *z;
1455 
1456   assert( argc==3 );
1457   UNUSED_PARAMETER2(NotUsed, argc);
1458 
1459   if( argv==0 || argv[0]==0 || argv[2]==0 ){
1460     return 0;
1461   }
1462   pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1463   if( pTable==0 ){
1464     return 0;
1465   }
1466   if( argv[1]==0 ){
1467     pIndex = 0;
1468   }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1469     pIndex = sqlite3PrimaryKeyIndex(pTable);
1470   }else{
1471     pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1472   }
1473   z = argv[2];
1474 
1475   if( pIndex ){
1476     decodeIntArray((char*)z, pIndex->nKeyCol+1, 0, pIndex->aiRowLogEst, pIndex);
1477     if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1478   }else{
1479     Index fakeIdx;
1480     fakeIdx.szIdxRow = pTable->szTabRow;
1481     decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1482     pTable->szTabRow = fakeIdx.szIdxRow;
1483   }
1484 
1485   return 0;
1486 }
1487 
1488 /*
1489 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1490 ** and its contents.
1491 */
1492 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1493 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1494   if( pIdx->aSample ){
1495     int j;
1496     for(j=0; j<pIdx->nSample; j++){
1497       IndexSample *p = &pIdx->aSample[j];
1498       sqlite3DbFree(db, p->p);
1499     }
1500     sqlite3DbFree(db, pIdx->aSample);
1501   }
1502   if( db && db->pnBytesFreed==0 ){
1503     pIdx->nSample = 0;
1504     pIdx->aSample = 0;
1505   }
1506 #else
1507   UNUSED_PARAMETER(db);
1508   UNUSED_PARAMETER(pIdx);
1509 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1510 }
1511 
1512 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1513 /*
1514 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1515 ** stored in pIdx->aSample[].
1516 */
1517 static void initAvgEq(Index *pIdx){
1518   if( pIdx ){
1519     IndexSample *aSample = pIdx->aSample;
1520     IndexSample *pFinal = &aSample[pIdx->nSample-1];
1521     int iCol;
1522     int nCol = 1;
1523     if( pIdx->nSampleCol>1 ){
1524       /* If this is stat4 data, then calculate aAvgEq[] values for all
1525       ** sample columns except the last. The last is always set to 1, as
1526       ** once the trailing PK fields are considered all index keys are
1527       ** unique.  */
1528       nCol = pIdx->nSampleCol-1;
1529       pIdx->aAvgEq[nCol] = 1;
1530     }
1531     for(iCol=0; iCol<nCol; iCol++){
1532       int i;                    /* Used to iterate through samples */
1533       tRowcnt sumEq = 0;        /* Sum of the nEq values */
1534       tRowcnt nSum = 0;         /* Number of terms contributing to sumEq */
1535       tRowcnt avgEq = 0;
1536       tRowcnt nDLt = pFinal->anDLt[iCol];
1537 
1538       /* Set nSum to the number of distinct (iCol+1) field prefixes that
1539       ** occur in the stat4 table for this index before pFinal. Set
1540       ** sumEq to the sum of the nEq values for column iCol for the same
1541       ** set (adding the value only once where there exist dupicate
1542       ** prefixes).  */
1543       for(i=0; i<(pIdx->nSample-1); i++){
1544         if( aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] ){
1545           sumEq += aSample[i].anEq[iCol];
1546           nSum++;
1547         }
1548       }
1549       if( nDLt>nSum ){
1550         avgEq = (pFinal->anLt[iCol] - sumEq)/(nDLt - nSum);
1551       }
1552       if( avgEq==0 ) avgEq = 1;
1553       pIdx->aAvgEq[iCol] = avgEq;
1554     }
1555   }
1556 }
1557 
1558 /*
1559 ** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
1560 ** is supplied instead, find the PRIMARY KEY index for that table.
1561 */
1562 static Index *findIndexOrPrimaryKey(
1563   sqlite3 *db,
1564   const char *zName,
1565   const char *zDb
1566 ){
1567   Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1568   if( pIdx==0 ){
1569     Table *pTab = sqlite3FindTable(db, zName, zDb);
1570     if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1571   }
1572   return pIdx;
1573 }
1574 
1575 /*
1576 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1577 ** into the relevant Index.aSample[] arrays.
1578 **
1579 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1580 ** data equivalent to the following (statements are different for stat3,
1581 ** see the caller of this function for details):
1582 **
1583 **    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1584 **    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1585 **
1586 ** where %Q is replaced with the database name before the SQL is executed.
1587 */
1588 static int loadStatTbl(
1589   sqlite3 *db,                  /* Database handle */
1590   int bStat3,                   /* Assume single column records only */
1591   const char *zSql1,            /* SQL statement 1 (see above) */
1592   const char *zSql2,            /* SQL statement 2 (see above) */
1593   const char *zDb               /* Database name (e.g. "main") */
1594 ){
1595   int rc;                       /* Result codes from subroutines */
1596   sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
1597   char *zSql;                   /* Text of the SQL statement */
1598   Index *pPrevIdx = 0;          /* Previous index in the loop */
1599   IndexSample *pSample;         /* A slot in pIdx->aSample[] */
1600 
1601   assert( db->lookaside.bEnabled==0 );
1602   zSql = sqlite3MPrintf(db, zSql1, zDb);
1603   if( !zSql ){
1604     return SQLITE_NOMEM;
1605   }
1606   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1607   sqlite3DbFree(db, zSql);
1608   if( rc ) return rc;
1609 
1610   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1611     int nIdxCol = 1;              /* Number of columns in stat4 records */
1612 
1613     char *zIndex;   /* Index name */
1614     Index *pIdx;    /* Pointer to the index object */
1615     int nSample;    /* Number of samples */
1616     int nByte;      /* Bytes of space required */
1617     int i;          /* Bytes of space required */
1618     tRowcnt *pSpace;
1619 
1620     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1621     if( zIndex==0 ) continue;
1622     nSample = sqlite3_column_int(pStmt, 1);
1623     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1624     assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
1625     /* Index.nSample is non-zero at this point if data has already been
1626     ** loaded from the stat4 table. In this case ignore stat3 data.  */
1627     if( pIdx==0 || pIdx->nSample ) continue;
1628     if( bStat3==0 ){
1629       assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1630       if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1631         nIdxCol = pIdx->nKeyCol;
1632       }else{
1633         nIdxCol = pIdx->nColumn;
1634       }
1635     }
1636     pIdx->nSampleCol = nIdxCol;
1637     nByte = sizeof(IndexSample) * nSample;
1638     nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1639     nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */
1640 
1641     pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1642     if( pIdx->aSample==0 ){
1643       sqlite3_finalize(pStmt);
1644       return SQLITE_NOMEM;
1645     }
1646     pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1647     pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1648     for(i=0; i<nSample; i++){
1649       pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1650       pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1651       pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1652     }
1653     assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1654   }
1655   rc = sqlite3_finalize(pStmt);
1656   if( rc ) return rc;
1657 
1658   zSql = sqlite3MPrintf(db, zSql2, zDb);
1659   if( !zSql ){
1660     return SQLITE_NOMEM;
1661   }
1662   rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1663   sqlite3DbFree(db, zSql);
1664   if( rc ) return rc;
1665 
1666   while( sqlite3_step(pStmt)==SQLITE_ROW ){
1667     char *zIndex;                 /* Index name */
1668     Index *pIdx;                  /* Pointer to the index object */
1669     int nCol = 1;                 /* Number of columns in index */
1670 
1671     zIndex = (char *)sqlite3_column_text(pStmt, 0);
1672     if( zIndex==0 ) continue;
1673     pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1674     if( pIdx==0 ) continue;
1675     /* This next condition is true if data has already been loaded from
1676     ** the sqlite_stat4 table. In this case ignore stat3 data.  */
1677     nCol = pIdx->nSampleCol;
1678     if( bStat3 && nCol>1 ) continue;
1679     if( pIdx!=pPrevIdx ){
1680       initAvgEq(pPrevIdx);
1681       pPrevIdx = pIdx;
1682     }
1683     pSample = &pIdx->aSample[pIdx->nSample];
1684     decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1685     decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1686     decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1687 
1688     /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1689     ** This is in case the sample record is corrupted. In that case, the
1690     ** sqlite3VdbeRecordCompare() may read up to two varints past the
1691     ** end of the allocated buffer before it realizes it is dealing with
1692     ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1693     ** a buffer overread.  */
1694     pSample->n = sqlite3_column_bytes(pStmt, 4);
1695     pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1696     if( pSample->p==0 ){
1697       sqlite3_finalize(pStmt);
1698       return SQLITE_NOMEM;
1699     }
1700     memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1701     pIdx->nSample++;
1702   }
1703   rc = sqlite3_finalize(pStmt);
1704   if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1705   return rc;
1706 }
1707 
1708 /*
1709 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1710 ** the Index.aSample[] arrays of all indices.
1711 */
1712 static int loadStat4(sqlite3 *db, const char *zDb){
1713   int rc = SQLITE_OK;             /* Result codes from subroutines */
1714 
1715   assert( db->lookaside.bEnabled==0 );
1716   if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1717     rc = loadStatTbl(db, 0,
1718       "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1719       "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1720       zDb
1721     );
1722   }
1723 
1724   if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
1725     rc = loadStatTbl(db, 1,
1726       "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1727       "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1728       zDb
1729     );
1730   }
1731 
1732   return rc;
1733 }
1734 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1735 
1736 /*
1737 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1738 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1739 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1740 ** Index.aSample[] arrays.
1741 **
1742 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1743 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1744 ** during compilation and the sqlite_stat3/4 table is present, no data is
1745 ** read from it.
1746 **
1747 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1748 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1749 ** returned. However, in this case, data is read from the sqlite_stat1
1750 ** table (if it is present) before returning.
1751 **
1752 ** If an OOM error occurs, this function always sets db->mallocFailed.
1753 ** This means if the caller does not care about other errors, the return
1754 ** code may be ignored.
1755 */
1756 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1757   analysisInfo sInfo;
1758   HashElem *i;
1759   char *zSql;
1760   int rc;
1761 
1762   assert( iDb>=0 && iDb<db->nDb );
1763   assert( db->aDb[iDb].pBt!=0 );
1764 
1765   /* Clear any prior statistics */
1766   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1767   for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1768     Index *pIdx = sqliteHashData(i);
1769     sqlite3DefaultRowEst(pIdx);
1770 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1771     sqlite3DeleteIndexSamples(db, pIdx);
1772     pIdx->aSample = 0;
1773 #endif
1774   }
1775 
1776   /* Check to make sure the sqlite_stat1 table exists */
1777   sInfo.db = db;
1778   sInfo.zDatabase = db->aDb[iDb].zName;
1779   if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
1780     return SQLITE_ERROR;
1781   }
1782 
1783   /* Load new statistics out of the sqlite_stat1 table */
1784   zSql = sqlite3MPrintf(db,
1785       "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1786   if( zSql==0 ){
1787     rc = SQLITE_NOMEM;
1788   }else{
1789     rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1790     sqlite3DbFree(db, zSql);
1791   }
1792 
1793 
1794   /* Load the statistics from the sqlite_stat4 table. */
1795 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1796   if( rc==SQLITE_OK ){
1797     int lookasideEnabled = db->lookaside.bEnabled;
1798     db->lookaside.bEnabled = 0;
1799     rc = loadStat4(db, sInfo.zDatabase);
1800     db->lookaside.bEnabled = lookasideEnabled;
1801   }
1802 #endif
1803 
1804   if( rc==SQLITE_NOMEM ){
1805     db->mallocFailed = 1;
1806   }
1807   return rc;
1808 }
1809 
1810 
1811 #endif /* SQLITE_OMIT_ANALYZE */
1812